1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/SetVector.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DebugInfo.h" 16 #include "llvm/IR/DiagnosticPrinter.h" 17 #include "llvm/IR/GVMaterializer.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/TypeFinder.h" 20 #include "llvm/Support/Error.h" 21 #include "llvm/Transforms/Utils/Cloning.h" 22 #include <utility> 23 using namespace llvm; 24 25 //===----------------------------------------------------------------------===// 26 // TypeMap implementation. 27 //===----------------------------------------------------------------------===// 28 29 namespace { 30 class TypeMapTy : public ValueMapTypeRemapper { 31 /// This is a mapping from a source type to a destination type to use. 32 DenseMap<Type *, Type *> MappedTypes; 33 34 /// When checking to see if two subgraphs are isomorphic, we speculatively 35 /// add types to MappedTypes, but keep track of them here in case we need to 36 /// roll back. 37 SmallVector<Type *, 16> SpeculativeTypes; 38 39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 40 41 /// This is a list of non-opaque structs in the source module that are mapped 42 /// to an opaque struct in the destination module. 43 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 44 45 /// This is the set of opaque types in the destination modules who are 46 /// getting a body from the source module. 47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 48 49 public: 50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 51 : DstStructTypesSet(DstStructTypesSet) {} 52 53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 54 /// Indicate that the specified type in the destination module is conceptually 55 /// equivalent to the specified type in the source module. 56 void addTypeMapping(Type *DstTy, Type *SrcTy); 57 58 /// Produce a body for an opaque type in the dest module from a type 59 /// definition in the source module. 60 void linkDefinedTypeBodies(); 61 62 /// Return the mapped type to use for the specified input type from the 63 /// source module. 64 Type *get(Type *SrcTy); 65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 66 67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 68 69 FunctionType *get(FunctionType *T) { 70 return cast<FunctionType>(get((Type *)T)); 71 } 72 73 private: 74 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 75 76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 77 }; 78 } 79 80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 81 assert(SpeculativeTypes.empty()); 82 assert(SpeculativeDstOpaqueTypes.empty()); 83 84 // Check to see if these types are recursively isomorphic and establish a 85 // mapping between them if so. 86 if (!areTypesIsomorphic(DstTy, SrcTy)) { 87 // Oops, they aren't isomorphic. Just discard this request by rolling out 88 // any speculative mappings we've established. 89 for (Type *Ty : SpeculativeTypes) 90 MappedTypes.erase(Ty); 91 92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 93 SpeculativeDstOpaqueTypes.size()); 94 for (StructType *Ty : SpeculativeDstOpaqueTypes) 95 DstResolvedOpaqueTypes.erase(Ty); 96 } else { 97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 98 // and all its descendants to lower amount of renaming in LLVM context 99 // Renaming occurs because we load all source modules to the same context 100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 101 // As a result we may get several different types in the destination 102 // module, which are in fact the same. 103 for (Type *Ty : SpeculativeTypes) 104 if (auto *STy = dyn_cast<StructType>(Ty)) 105 if (STy->hasName()) 106 STy->setName(""); 107 } 108 SpeculativeTypes.clear(); 109 SpeculativeDstOpaqueTypes.clear(); 110 } 111 112 /// Recursively walk this pair of types, returning true if they are isomorphic, 113 /// false if they are not. 114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 115 // Two types with differing kinds are clearly not isomorphic. 116 if (DstTy->getTypeID() != SrcTy->getTypeID()) 117 return false; 118 119 // If we have an entry in the MappedTypes table, then we have our answer. 120 Type *&Entry = MappedTypes[SrcTy]; 121 if (Entry) 122 return Entry == DstTy; 123 124 // Two identical types are clearly isomorphic. Remember this 125 // non-speculatively. 126 if (DstTy == SrcTy) { 127 Entry = DstTy; 128 return true; 129 } 130 131 // Okay, we have two types with identical kinds that we haven't seen before. 132 133 // If this is an opaque struct type, special case it. 134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 135 // Mapping an opaque type to any struct, just keep the dest struct. 136 if (SSTy->isOpaque()) { 137 Entry = DstTy; 138 SpeculativeTypes.push_back(SrcTy); 139 return true; 140 } 141 142 // Mapping a non-opaque source type to an opaque dest. If this is the first 143 // type that we're mapping onto this destination type then we succeed. Keep 144 // the dest, but fill it in later. If this is the second (different) type 145 // that we're trying to map onto the same opaque type then we fail. 146 if (cast<StructType>(DstTy)->isOpaque()) { 147 // We can only map one source type onto the opaque destination type. 148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 149 return false; 150 SrcDefinitionsToResolve.push_back(SSTy); 151 SpeculativeTypes.push_back(SrcTy); 152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 153 Entry = DstTy; 154 return true; 155 } 156 } 157 158 // If the number of subtypes disagree between the two types, then we fail. 159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 160 return false; 161 162 // Fail if any of the extra properties (e.g. array size) of the type disagree. 163 if (isa<IntegerType>(DstTy)) 164 return false; // bitwidth disagrees. 165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 167 return false; 168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 170 return false; 171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 172 StructType *SSTy = cast<StructType>(SrcTy); 173 if (DSTy->isLiteral() != SSTy->isLiteral() || 174 DSTy->isPacked() != SSTy->isPacked()) 175 return false; 176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) { 177 if (DSeqTy->getNumElements() != 178 cast<SequentialType>(SrcTy)->getNumElements()) 179 return false; 180 } 181 182 // Otherwise, we speculate that these two types will line up and recursively 183 // check the subelements. 184 Entry = DstTy; 185 SpeculativeTypes.push_back(SrcTy); 186 187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 188 if (!areTypesIsomorphic(DstTy->getContainedType(I), 189 SrcTy->getContainedType(I))) 190 return false; 191 192 // If everything seems to have lined up, then everything is great. 193 return true; 194 } 195 196 void TypeMapTy::linkDefinedTypeBodies() { 197 SmallVector<Type *, 16> Elements; 198 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 200 assert(DstSTy->isOpaque()); 201 202 // Map the body of the source type over to a new body for the dest type. 203 Elements.resize(SrcSTy->getNumElements()); 204 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 205 Elements[I] = get(SrcSTy->getElementType(I)); 206 207 DstSTy->setBody(Elements, SrcSTy->isPacked()); 208 DstStructTypesSet.switchToNonOpaque(DstSTy); 209 } 210 SrcDefinitionsToResolve.clear(); 211 DstResolvedOpaqueTypes.clear(); 212 } 213 214 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 215 ArrayRef<Type *> ETypes) { 216 DTy->setBody(ETypes, STy->isPacked()); 217 218 // Steal STy's name. 219 if (STy->hasName()) { 220 SmallString<16> TmpName = STy->getName(); 221 STy->setName(""); 222 DTy->setName(TmpName); 223 } 224 225 DstStructTypesSet.addNonOpaque(DTy); 226 } 227 228 Type *TypeMapTy::get(Type *Ty) { 229 SmallPtrSet<StructType *, 8> Visited; 230 return get(Ty, Visited); 231 } 232 233 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 234 // If we already have an entry for this type, return it. 235 Type **Entry = &MappedTypes[Ty]; 236 if (*Entry) 237 return *Entry; 238 239 // These are types that LLVM itself will unique. 240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 241 242 if (!IsUniqued) { 243 StructType *STy = cast<StructType>(Ty); 244 // This is actually a type from the destination module, this can be reached 245 // when this type is loaded in another module, added to DstStructTypesSet, 246 // and then we reach the same type in another module where it has not been 247 // added to MappedTypes. (PR37684) 248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() && 249 DstStructTypesSet.hasType(STy)) 250 return *Entry = STy; 251 252 #ifndef NDEBUG 253 for (auto &Pair : MappedTypes) { 254 assert(!(Pair.first != Ty && Pair.second == Ty) && 255 "mapping to a source type"); 256 } 257 #endif 258 259 if (!Visited.insert(STy).second) { 260 StructType *DTy = StructType::create(Ty->getContext()); 261 return *Entry = DTy; 262 } 263 } 264 265 // If this is not a recursive type, then just map all of the elements and 266 // then rebuild the type from inside out. 267 SmallVector<Type *, 4> ElementTypes; 268 269 // If there are no element types to map, then the type is itself. This is 270 // true for the anonymous {} struct, things like 'float', integers, etc. 271 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 272 return *Entry = Ty; 273 274 // Remap all of the elements, keeping track of whether any of them change. 275 bool AnyChange = false; 276 ElementTypes.resize(Ty->getNumContainedTypes()); 277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 278 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 280 } 281 282 // If we found our type while recursively processing stuff, just use it. 283 Entry = &MappedTypes[Ty]; 284 if (*Entry) { 285 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 286 if (DTy->isOpaque()) { 287 auto *STy = cast<StructType>(Ty); 288 finishType(DTy, STy, ElementTypes); 289 } 290 } 291 return *Entry; 292 } 293 294 // If all of the element types mapped directly over and the type is not 295 // a named struct, then the type is usable as-is. 296 if (!AnyChange && IsUniqued) 297 return *Entry = Ty; 298 299 // Otherwise, rebuild a modified type. 300 switch (Ty->getTypeID()) { 301 default: 302 llvm_unreachable("unknown derived type to remap"); 303 case Type::ArrayTyID: 304 return *Entry = ArrayType::get(ElementTypes[0], 305 cast<ArrayType>(Ty)->getNumElements()); 306 case Type::VectorTyID: 307 return *Entry = VectorType::get(ElementTypes[0], 308 cast<VectorType>(Ty)->getNumElements()); 309 case Type::PointerTyID: 310 return *Entry = PointerType::get(ElementTypes[0], 311 cast<PointerType>(Ty)->getAddressSpace()); 312 case Type::FunctionTyID: 313 return *Entry = FunctionType::get(ElementTypes[0], 314 makeArrayRef(ElementTypes).slice(1), 315 cast<FunctionType>(Ty)->isVarArg()); 316 case Type::StructTyID: { 317 auto *STy = cast<StructType>(Ty); 318 bool IsPacked = STy->isPacked(); 319 if (IsUniqued) 320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 321 322 // If the type is opaque, we can just use it directly. 323 if (STy->isOpaque()) { 324 DstStructTypesSet.addOpaque(STy); 325 return *Entry = Ty; 326 } 327 328 if (StructType *OldT = 329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 330 STy->setName(""); 331 return *Entry = OldT; 332 } 333 334 if (!AnyChange) { 335 DstStructTypesSet.addNonOpaque(STy); 336 return *Entry = Ty; 337 } 338 339 StructType *DTy = StructType::create(Ty->getContext()); 340 finishType(DTy, STy, ElementTypes); 341 return *Entry = DTy; 342 } 343 } 344 } 345 346 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 347 const Twine &Msg) 348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 349 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 350 351 //===----------------------------------------------------------------------===// 352 // IRLinker implementation. 353 //===----------------------------------------------------------------------===// 354 355 namespace { 356 class IRLinker; 357 358 /// Creates prototypes for functions that are lazily linked on the fly. This 359 /// speeds up linking for modules with many/ lazily linked functions of which 360 /// few get used. 361 class GlobalValueMaterializer final : public ValueMaterializer { 362 IRLinker &TheIRLinker; 363 364 public: 365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 366 Value *materialize(Value *V) override; 367 }; 368 369 class LocalValueMaterializer final : public ValueMaterializer { 370 IRLinker &TheIRLinker; 371 372 public: 373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 374 Value *materialize(Value *V) override; 375 }; 376 377 /// Type of the Metadata map in \a ValueToValueMapTy. 378 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 379 380 /// This is responsible for keeping track of the state used for moving data 381 /// from SrcM to DstM. 382 class IRLinker { 383 Module &DstM; 384 std::unique_ptr<Module> SrcM; 385 386 /// See IRMover::move(). 387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor; 388 389 TypeMapTy TypeMap; 390 GlobalValueMaterializer GValMaterializer; 391 LocalValueMaterializer LValMaterializer; 392 393 /// A metadata map that's shared between IRLinker instances. 394 MDMapT &SharedMDs; 395 396 /// Mapping of values from what they used to be in Src, to what they are now 397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 398 /// due to the use of Value handles which the Linker doesn't actually need, 399 /// but this allows us to reuse the ValueMapper code. 400 ValueToValueMapTy ValueMap; 401 ValueToValueMapTy AliasValueMap; 402 403 DenseSet<GlobalValue *> ValuesToLink; 404 std::vector<GlobalValue *> Worklist; 405 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 406 407 void maybeAdd(GlobalValue *GV) { 408 if (ValuesToLink.insert(GV).second) 409 Worklist.push_back(GV); 410 } 411 412 /// Whether we are importing globals for ThinLTO, as opposed to linking the 413 /// source module. If this flag is set, it means that we can rely on some 414 /// other object file to define any non-GlobalValue entities defined by the 415 /// source module. This currently causes us to not link retained types in 416 /// debug info metadata and module inline asm. 417 bool IsPerformingImport; 418 419 /// Set to true when all global value body linking is complete (including 420 /// lazy linking). Used to prevent metadata linking from creating new 421 /// references. 422 bool DoneLinkingBodies = false; 423 424 /// The Error encountered during materialization. We use an Optional here to 425 /// avoid needing to manage an unconsumed success value. 426 Optional<Error> FoundError; 427 void setError(Error E) { 428 if (E) 429 FoundError = std::move(E); 430 } 431 432 /// Most of the errors produced by this module are inconvertible StringErrors. 433 /// This convenience function lets us return one of those more easily. 434 Error stringErr(const Twine &T) { 435 return make_error<StringError>(T, inconvertibleErrorCode()); 436 } 437 438 /// Entry point for mapping values and alternate context for mapping aliases. 439 ValueMapper Mapper; 440 unsigned AliasMCID; 441 442 /// Handles cloning of a global values from the source module into 443 /// the destination module, including setting the attributes and visibility. 444 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 445 446 void emitWarning(const Twine &Message) { 447 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 448 } 449 450 /// Given a global in the source module, return the global in the 451 /// destination module that is being linked to, if any. 452 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 453 // If the source has no name it can't link. If it has local linkage, 454 // there is no name match-up going on. 455 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 456 return nullptr; 457 458 // Otherwise see if we have a match in the destination module's symtab. 459 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 460 if (!DGV) 461 return nullptr; 462 463 // If we found a global with the same name in the dest module, but it has 464 // internal linkage, we are really not doing any linkage here. 465 if (DGV->hasLocalLinkage()) 466 return nullptr; 467 468 // Otherwise, we do in fact link to the destination global. 469 return DGV; 470 } 471 472 void computeTypeMapping(); 473 474 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 475 const GlobalVariable *SrcGV); 476 477 /// Given the GlobaValue \p SGV in the source module, and the matching 478 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 479 /// into the destination module. 480 /// 481 /// Note this code may call the client-provided \p AddLazyFor. 482 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 483 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias); 484 485 Error linkModuleFlagsMetadata(); 486 487 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 488 Error linkFunctionBody(Function &Dst, Function &Src); 489 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src); 490 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 491 492 /// Replace all types in the source AttributeList with the 493 /// corresponding destination type. 494 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 495 496 /// Functions that take care of cloning a specific global value type 497 /// into the destination module. 498 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 499 Function *copyFunctionProto(const Function *SF); 500 GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA); 501 502 /// Perform "replace all uses with" operations. These work items need to be 503 /// performed as part of materialization, but we postpone them to happen after 504 /// materialization is done. The materializer called by ValueMapper is not 505 /// expected to delete constants, as ValueMapper is holding pointers to some 506 /// of them, but constant destruction may be indirectly triggered by RAUW. 507 /// Hence, the need to move this out of the materialization call chain. 508 void flushRAUWWorklist(); 509 510 /// When importing for ThinLTO, prevent importing of types listed on 511 /// the DICompileUnit that we don't need a copy of in the importing 512 /// module. 513 void prepareCompileUnitsForImport(); 514 void linkNamedMDNodes(); 515 516 public: 517 IRLinker(Module &DstM, MDMapT &SharedMDs, 518 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 519 ArrayRef<GlobalValue *> ValuesToLink, 520 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor, 521 bool IsPerformingImport) 522 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 523 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 524 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 525 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap, 526 &GValMaterializer), 527 AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap, 528 &LValMaterializer)) { 529 ValueMap.getMDMap() = std::move(SharedMDs); 530 for (GlobalValue *GV : ValuesToLink) 531 maybeAdd(GV); 532 if (IsPerformingImport) 533 prepareCompileUnitsForImport(); 534 } 535 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 536 537 Error run(); 538 Value *materialize(Value *V, bool ForAlias); 539 }; 540 } 541 542 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 543 /// table. This is good for all clients except for us. Go through the trouble 544 /// to force this back. 545 static void forceRenaming(GlobalValue *GV, StringRef Name) { 546 // If the global doesn't force its name or if it already has the right name, 547 // there is nothing for us to do. 548 if (GV->hasLocalLinkage() || GV->getName() == Name) 549 return; 550 551 Module *M = GV->getParent(); 552 553 // If there is a conflict, rename the conflict. 554 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 555 GV->takeName(ConflictGV); 556 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 557 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 558 } else { 559 GV->setName(Name); // Force the name back 560 } 561 } 562 563 Value *GlobalValueMaterializer::materialize(Value *SGV) { 564 return TheIRLinker.materialize(SGV, false); 565 } 566 567 Value *LocalValueMaterializer::materialize(Value *SGV) { 568 return TheIRLinker.materialize(SGV, true); 569 } 570 571 Value *IRLinker::materialize(Value *V, bool ForAlias) { 572 auto *SGV = dyn_cast<GlobalValue>(V); 573 if (!SGV) 574 return nullptr; 575 576 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias); 577 if (!NewProto) { 578 setError(NewProto.takeError()); 579 return nullptr; 580 } 581 if (!*NewProto) 582 return nullptr; 583 584 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 585 if (!New) 586 return *NewProto; 587 588 // If we already created the body, just return. 589 if (auto *F = dyn_cast<Function>(New)) { 590 if (!F->isDeclaration()) 591 return New; 592 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 593 if (V->hasInitializer() || V->hasAppendingLinkage()) 594 return New; 595 } else { 596 auto *A = cast<GlobalAlias>(New); 597 if (A->getAliasee()) 598 return New; 599 } 600 601 // When linking a global for an alias, it will always be linked. However we 602 // need to check if it was not already scheduled to satisfy a reference from a 603 // regular global value initializer. We know if it has been schedule if the 604 // "New" GlobalValue that is mapped here for the alias is the same as the one 605 // already mapped. If there is an entry in the ValueMap but the value is 606 // different, it means that the value already had a definition in the 607 // destination module (linkonce for instance), but we need a new definition 608 // for the alias ("New" will be different. 609 if (ForAlias && ValueMap.lookup(SGV) == New) 610 return New; 611 612 if (ForAlias || shouldLink(New, *SGV)) 613 setError(linkGlobalValueBody(*New, *SGV)); 614 615 return New; 616 } 617 618 /// Loop through the global variables in the src module and merge them into the 619 /// dest module. 620 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 621 // No linking to be performed or linking from the source: simply create an 622 // identical version of the symbol over in the dest module... the 623 // initializer will be filled in later by LinkGlobalInits. 624 GlobalVariable *NewDGV = 625 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 626 SGVar->isConstant(), GlobalValue::ExternalLinkage, 627 /*init*/ nullptr, SGVar->getName(), 628 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 629 SGVar->getType()->getAddressSpace()); 630 NewDGV->setAlignment(SGVar->getAlignment()); 631 NewDGV->copyAttributesFrom(SGVar); 632 return NewDGV; 633 } 634 635 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 636 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 637 if (Attrs.hasAttribute(i, Attribute::ByVal)) { 638 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); 639 if (!Ty) 640 continue; 641 642 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); 643 Attrs = Attrs.addAttribute( 644 C, i, Attribute::getWithByValType(C, TypeMap.get(Ty))); 645 } 646 } 647 return Attrs; 648 } 649 650 /// Link the function in the source module into the destination module if 651 /// needed, setting up mapping information. 652 Function *IRLinker::copyFunctionProto(const Function *SF) { 653 // If there is no linkage to be performed or we are linking from the source, 654 // bring SF over. 655 auto *F = 656 Function::Create(TypeMap.get(SF->getFunctionType()), 657 GlobalValue::ExternalLinkage, SF->getName(), &DstM); 658 F->copyAttributesFrom(SF); 659 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 660 return F; 661 } 662 663 /// Set up prototypes for any aliases that come over from the source module. 664 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) { 665 // If there is no linkage to be performed or we're linking from the source, 666 // bring over SGA. 667 auto *Ty = TypeMap.get(SGA->getValueType()); 668 auto *GA = 669 GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(), 670 GlobalValue::ExternalLinkage, SGA->getName(), &DstM); 671 GA->copyAttributesFrom(SGA); 672 return GA; 673 } 674 675 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 676 bool ForDefinition) { 677 GlobalValue *NewGV; 678 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 679 NewGV = copyGlobalVariableProto(SGVar); 680 } else if (auto *SF = dyn_cast<Function>(SGV)) { 681 NewGV = copyFunctionProto(SF); 682 } else { 683 if (ForDefinition) 684 NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV)); 685 else if (SGV->getValueType()->isFunctionTy()) 686 NewGV = 687 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 688 GlobalValue::ExternalLinkage, SGV->getName(), &DstM); 689 else 690 NewGV = new GlobalVariable( 691 DstM, TypeMap.get(SGV->getValueType()), 692 /*isConstant*/ false, GlobalValue::ExternalLinkage, 693 /*init*/ nullptr, SGV->getName(), 694 /*insertbefore*/ nullptr, SGV->getThreadLocalMode(), 695 SGV->getType()->getAddressSpace()); 696 } 697 698 if (ForDefinition) 699 NewGV->setLinkage(SGV->getLinkage()); 700 else if (SGV->hasExternalWeakLinkage()) 701 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 702 703 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 704 // Metadata for global variables and function declarations is copied eagerly. 705 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 706 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 707 } 708 709 // Remove these copied constants in case this stays a declaration, since 710 // they point to the source module. If the def is linked the values will 711 // be mapped in during linkFunctionBody. 712 if (auto *NewF = dyn_cast<Function>(NewGV)) { 713 NewF->setPersonalityFn(nullptr); 714 NewF->setPrefixData(nullptr); 715 NewF->setPrologueData(nullptr); 716 } 717 718 return NewGV; 719 } 720 721 static StringRef getTypeNamePrefix(StringRef Name) { 722 size_t DotPos = Name.rfind('.'); 723 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 724 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 725 ? Name 726 : Name.substr(0, DotPos); 727 } 728 729 /// Loop over all of the linked values to compute type mappings. For example, 730 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 731 /// types 'Foo' but one got renamed when the module was loaded into the same 732 /// LLVMContext. 733 void IRLinker::computeTypeMapping() { 734 for (GlobalValue &SGV : SrcM->globals()) { 735 GlobalValue *DGV = getLinkedToGlobal(&SGV); 736 if (!DGV) 737 continue; 738 739 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 740 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 741 continue; 742 } 743 744 // Unify the element type of appending arrays. 745 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 746 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 747 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 748 } 749 750 for (GlobalValue &SGV : *SrcM) 751 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 752 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 753 754 for (GlobalValue &SGV : SrcM->aliases()) 755 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 756 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 757 758 // Incorporate types by name, scanning all the types in the source module. 759 // At this point, the destination module may have a type "%foo = { i32 }" for 760 // example. When the source module got loaded into the same LLVMContext, if 761 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 762 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 763 for (StructType *ST : Types) { 764 if (!ST->hasName()) 765 continue; 766 767 if (TypeMap.DstStructTypesSet.hasType(ST)) { 768 // This is actually a type from the destination module. 769 // getIdentifiedStructTypes() can have found it by walking debug info 770 // metadata nodes, some of which get linked by name when ODR Type Uniquing 771 // is enabled on the Context, from the source to the destination module. 772 continue; 773 } 774 775 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 776 if (STTypePrefix.size()== ST->getName().size()) 777 continue; 778 779 // Check to see if the destination module has a struct with the prefix name. 780 StructType *DST = DstM.getTypeByName(STTypePrefix); 781 if (!DST) 782 continue; 783 784 // Don't use it if this actually came from the source module. They're in 785 // the same LLVMContext after all. Also don't use it unless the type is 786 // actually used in the destination module. This can happen in situations 787 // like this: 788 // 789 // Module A Module B 790 // -------- -------- 791 // %Z = type { %A } %B = type { %C.1 } 792 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 793 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 794 // %C = type { i8* } %B.3 = type { %C.1 } 795 // 796 // When we link Module B with Module A, the '%B' in Module B is 797 // used. However, that would then use '%C.1'. But when we process '%C.1', 798 // we prefer to take the '%C' version. So we are then left with both 799 // '%C.1' and '%C' being used for the same types. This leads to some 800 // variables using one type and some using the other. 801 if (TypeMap.DstStructTypesSet.hasType(DST)) 802 TypeMap.addTypeMapping(DST, ST); 803 } 804 805 // Now that we have discovered all of the type equivalences, get a body for 806 // any 'opaque' types in the dest module that are now resolved. 807 TypeMap.linkDefinedTypeBodies(); 808 } 809 810 static void getArrayElements(const Constant *C, 811 SmallVectorImpl<Constant *> &Dest) { 812 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 813 814 for (unsigned i = 0; i != NumElements; ++i) 815 Dest.push_back(C->getAggregateElement(i)); 816 } 817 818 /// If there were any appending global variables, link them together now. 819 Expected<Constant *> 820 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 821 const GlobalVariable *SrcGV) { 822 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 823 ->getElementType(); 824 825 // FIXME: This upgrade is done during linking to support the C API. Once the 826 // old form is deprecated, we should move this upgrade to 827 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 828 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 829 StringRef Name = SrcGV->getName(); 830 bool IsNewStructor = false; 831 bool IsOldStructor = false; 832 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 833 if (cast<StructType>(EltTy)->getNumElements() == 3) 834 IsNewStructor = true; 835 else 836 IsOldStructor = true; 837 } 838 839 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 840 if (IsOldStructor) { 841 auto &ST = *cast<StructType>(EltTy); 842 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 843 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 844 } 845 846 uint64_t DstNumElements = 0; 847 if (DstGV) { 848 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 849 DstNumElements = DstTy->getNumElements(); 850 851 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 852 return stringErr( 853 "Linking globals named '" + SrcGV->getName() + 854 "': can only link appending global with another appending " 855 "global!"); 856 857 // Check to see that they two arrays agree on type. 858 if (EltTy != DstTy->getElementType()) 859 return stringErr("Appending variables with different element types!"); 860 if (DstGV->isConstant() != SrcGV->isConstant()) 861 return stringErr("Appending variables linked with different const'ness!"); 862 863 if (DstGV->getAlignment() != SrcGV->getAlignment()) 864 return stringErr( 865 "Appending variables with different alignment need to be linked!"); 866 867 if (DstGV->getVisibility() != SrcGV->getVisibility()) 868 return stringErr( 869 "Appending variables with different visibility need to be linked!"); 870 871 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 872 return stringErr( 873 "Appending variables with different unnamed_addr need to be linked!"); 874 875 if (DstGV->getSection() != SrcGV->getSection()) 876 return stringErr( 877 "Appending variables with different section name need to be linked!"); 878 } 879 880 SmallVector<Constant *, 16> SrcElements; 881 getArrayElements(SrcGV->getInitializer(), SrcElements); 882 883 if (IsNewStructor) { 884 auto It = remove_if(SrcElements, [this](Constant *E) { 885 auto *Key = 886 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 887 if (!Key) 888 return false; 889 GlobalValue *DGV = getLinkedToGlobal(Key); 890 return !shouldLink(DGV, *Key); 891 }); 892 SrcElements.erase(It, SrcElements.end()); 893 } 894 uint64_t NewSize = DstNumElements + SrcElements.size(); 895 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 896 897 // Create the new global variable. 898 GlobalVariable *NG = new GlobalVariable( 899 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 900 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 901 SrcGV->getType()->getAddressSpace()); 902 903 NG->copyAttributesFrom(SrcGV); 904 forceRenaming(NG, SrcGV->getName()); 905 906 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 907 908 Mapper.scheduleMapAppendingVariable(*NG, 909 DstGV ? DstGV->getInitializer() : nullptr, 910 IsOldStructor, SrcElements); 911 912 // Replace any uses of the two global variables with uses of the new 913 // global. 914 if (DstGV) { 915 RAUWWorklist.push_back( 916 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType()))); 917 } 918 919 return Ret; 920 } 921 922 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 923 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 924 return true; 925 926 if (DGV && !DGV->isDeclarationForLinker()) 927 return false; 928 929 if (SGV.isDeclaration() || DoneLinkingBodies) 930 return false; 931 932 // Callback to the client to give a chance to lazily add the Global to the 933 // list of value to link. 934 bool LazilyAdded = false; 935 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 936 maybeAdd(&GV); 937 LazilyAdded = true; 938 }); 939 return LazilyAdded; 940 } 941 942 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 943 bool ForAlias) { 944 GlobalValue *DGV = getLinkedToGlobal(SGV); 945 946 bool ShouldLink = shouldLink(DGV, *SGV); 947 948 // just missing from map 949 if (ShouldLink) { 950 auto I = ValueMap.find(SGV); 951 if (I != ValueMap.end()) 952 return cast<Constant>(I->second); 953 954 I = AliasValueMap.find(SGV); 955 if (I != AliasValueMap.end()) 956 return cast<Constant>(I->second); 957 } 958 959 if (!ShouldLink && ForAlias) 960 DGV = nullptr; 961 962 // Handle the ultra special appending linkage case first. 963 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()); 964 if (SGV->hasAppendingLinkage()) 965 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 966 cast<GlobalVariable>(SGV)); 967 968 GlobalValue *NewGV; 969 if (DGV && !ShouldLink) { 970 NewGV = DGV; 971 } else { 972 // If we are done linking global value bodies (i.e. we are performing 973 // metadata linking), don't link in the global value due to this 974 // reference, simply map it to null. 975 if (DoneLinkingBodies) 976 return nullptr; 977 978 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForAlias); 979 if (ShouldLink || !ForAlias) 980 forceRenaming(NewGV, SGV->getName()); 981 } 982 983 // Overloaded intrinsics have overloaded types names as part of their 984 // names. If we renamed overloaded types we should rename the intrinsic 985 // as well. 986 if (Function *F = dyn_cast<Function>(NewGV)) 987 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) 988 NewGV = Remangled.getValue(); 989 990 if (ShouldLink || ForAlias) { 991 if (const Comdat *SC = SGV->getComdat()) { 992 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 993 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 994 DC->setSelectionKind(SC->getSelectionKind()); 995 GO->setComdat(DC); 996 } 997 } 998 } 999 1000 if (!ShouldLink && ForAlias) 1001 NewGV->setLinkage(GlobalValue::InternalLinkage); 1002 1003 Constant *C = NewGV; 1004 // Only create a bitcast if necessary. In particular, with 1005 // DebugTypeODRUniquing we may reach metadata in the destination module 1006 // containing a GV from the source module, in which case SGV will be 1007 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1008 // assumes it is being invoked on a type in the source module. 1009 if (DGV && NewGV != SGV) { 1010 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1011 NewGV, TypeMap.get(SGV->getType())); 1012 } 1013 1014 if (DGV && NewGV != DGV) { 1015 // Schedule "replace all uses with" to happen after materializing is 1016 // done. It is not safe to do it now, since ValueMapper may be holding 1017 // pointers to constants that will get deleted if RAUW runs. 1018 RAUWWorklist.push_back(std::make_pair( 1019 DGV, 1020 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1021 } 1022 1023 return C; 1024 } 1025 1026 /// Update the initializers in the Dest module now that all globals that may be 1027 /// referenced are in Dest. 1028 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1029 // Figure out what the initializer looks like in the dest module. 1030 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1031 } 1032 1033 /// Copy the source function over into the dest function and fix up references 1034 /// to values. At this point we know that Dest is an external function, and 1035 /// that Src is not. 1036 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1037 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1038 1039 // Materialize if needed. 1040 if (Error Err = Src.materialize()) 1041 return Err; 1042 1043 // Link in the operands without remapping. 1044 if (Src.hasPrefixData()) 1045 Dst.setPrefixData(Src.getPrefixData()); 1046 if (Src.hasPrologueData()) 1047 Dst.setPrologueData(Src.getPrologueData()); 1048 if (Src.hasPersonalityFn()) 1049 Dst.setPersonalityFn(Src.getPersonalityFn()); 1050 1051 // Copy over the metadata attachments without remapping. 1052 Dst.copyMetadata(&Src, 0); 1053 1054 // Steal arguments and splice the body of Src into Dst. 1055 Dst.stealArgumentListFrom(Src); 1056 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 1057 1058 // Everything has been moved over. Remap it. 1059 Mapper.scheduleRemapFunction(Dst); 1060 return Error::success(); 1061 } 1062 1063 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) { 1064 Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID); 1065 } 1066 1067 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1068 if (auto *F = dyn_cast<Function>(&Src)) 1069 return linkFunctionBody(cast<Function>(Dst), *F); 1070 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1071 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1072 return Error::success(); 1073 } 1074 linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src)); 1075 return Error::success(); 1076 } 1077 1078 void IRLinker::flushRAUWWorklist() { 1079 for (const auto Elem : RAUWWorklist) { 1080 GlobalValue *Old; 1081 Value *New; 1082 std::tie(Old, New) = Elem; 1083 1084 Old->replaceAllUsesWith(New); 1085 Old->eraseFromParent(); 1086 } 1087 RAUWWorklist.clear(); 1088 } 1089 1090 void IRLinker::prepareCompileUnitsForImport() { 1091 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1092 if (!SrcCompileUnits) 1093 return; 1094 // When importing for ThinLTO, prevent importing of types listed on 1095 // the DICompileUnit that we don't need a copy of in the importing 1096 // module. They will be emitted by the originating module. 1097 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) { 1098 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I)); 1099 assert(CU && "Expected valid compile unit"); 1100 // Enums, macros, and retained types don't need to be listed on the 1101 // imported DICompileUnit. This means they will only be imported 1102 // if reached from the mapped IR. Do this by setting their value map 1103 // entries to nullptr, which will automatically prevent their importing 1104 // when reached from the DICompileUnit during metadata mapping. 1105 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr); 1106 ValueMap.MD()[CU->getRawMacros()].reset(nullptr); 1107 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr); 1108 // The original definition (or at least its debug info - if the variable is 1109 // internalized an optimized away) will remain in the source module, so 1110 // there's no need to import them. 1111 // If LLVM ever does more advanced optimizations on global variables 1112 // (removing/localizing write operations, for instance) that can track 1113 // through debug info, this decision may need to be revisited - but do so 1114 // with care when it comes to debug info size. Emitting small CUs containing 1115 // only a few imported entities into every destination module may be very 1116 // size inefficient. 1117 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr); 1118 1119 // Imported entities only need to be mapped in if they have local 1120 // scope, as those might correspond to an imported entity inside a 1121 // function being imported (any locally scoped imported entities that 1122 // don't end up referenced by an imported function will not be emitted 1123 // into the object). Imported entities not in a local scope 1124 // (e.g. on the namespace) only need to be emitted by the originating 1125 // module. Create a list of the locally scoped imported entities, and 1126 // replace the source CUs imported entity list with the new list, so 1127 // only those are mapped in. 1128 // FIXME: Locally-scoped imported entities could be moved to the 1129 // functions they are local to instead of listing them on the CU, and 1130 // we would naturally only link in those needed by function importing. 1131 SmallVector<TrackingMDNodeRef, 4> AllImportedModules; 1132 bool ReplaceImportedEntities = false; 1133 for (auto *IE : CU->getImportedEntities()) { 1134 DIScope *Scope = IE->getScope(); 1135 assert(Scope && "Invalid Scope encoding!"); 1136 if (isa<DILocalScope>(Scope)) 1137 AllImportedModules.emplace_back(IE); 1138 else 1139 ReplaceImportedEntities = true; 1140 } 1141 if (ReplaceImportedEntities) { 1142 if (!AllImportedModules.empty()) 1143 CU->replaceImportedEntities(MDTuple::get( 1144 CU->getContext(), 1145 SmallVector<Metadata *, 16>(AllImportedModules.begin(), 1146 AllImportedModules.end()))); 1147 else 1148 // If there were no local scope imported entities, we can map 1149 // the whole list to nullptr. 1150 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr); 1151 } 1152 } 1153 } 1154 1155 /// Insert all of the named MDNodes in Src into the Dest module. 1156 void IRLinker::linkNamedMDNodes() { 1157 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1158 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1159 // Don't link module flags here. Do them separately. 1160 if (&NMD == SrcModFlags) 1161 continue; 1162 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1163 // Add Src elements into Dest node. 1164 for (const MDNode *Op : NMD.operands()) 1165 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1166 } 1167 } 1168 1169 /// Merge the linker flags in Src into the Dest module. 1170 Error IRLinker::linkModuleFlagsMetadata() { 1171 // If the source module has no module flags, we are done. 1172 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1173 if (!SrcModFlags) 1174 return Error::success(); 1175 1176 // If the destination module doesn't have module flags yet, then just copy 1177 // over the source module's flags. 1178 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1179 if (DstModFlags->getNumOperands() == 0) { 1180 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1181 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1182 1183 return Error::success(); 1184 } 1185 1186 // First build a map of the existing module flags and requirements. 1187 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1188 SmallSetVector<MDNode *, 16> Requirements; 1189 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1190 MDNode *Op = DstModFlags->getOperand(I); 1191 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0)); 1192 MDString *ID = cast<MDString>(Op->getOperand(1)); 1193 1194 if (Behavior->getZExtValue() == Module::Require) { 1195 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1196 } else { 1197 Flags[ID] = std::make_pair(Op, I); 1198 } 1199 } 1200 1201 // Merge in the flags from the source module, and also collect its set of 1202 // requirements. 1203 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1204 MDNode *SrcOp = SrcModFlags->getOperand(I); 1205 ConstantInt *SrcBehavior = 1206 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1207 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1208 MDNode *DstOp; 1209 unsigned DstIndex; 1210 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1211 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1212 1213 // If this is a requirement, add it and continue. 1214 if (SrcBehaviorValue == Module::Require) { 1215 // If the destination module does not already have this requirement, add 1216 // it. 1217 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1218 DstModFlags->addOperand(SrcOp); 1219 } 1220 continue; 1221 } 1222 1223 // If there is no existing flag with this ID, just add it. 1224 if (!DstOp) { 1225 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1226 DstModFlags->addOperand(SrcOp); 1227 continue; 1228 } 1229 1230 // Otherwise, perform a merge. 1231 ConstantInt *DstBehavior = 1232 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1233 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1234 1235 auto overrideDstValue = [&]() { 1236 DstModFlags->setOperand(DstIndex, SrcOp); 1237 Flags[ID].first = SrcOp; 1238 }; 1239 1240 // If either flag has override behavior, handle it first. 1241 if (DstBehaviorValue == Module::Override) { 1242 // Diagnose inconsistent flags which both have override behavior. 1243 if (SrcBehaviorValue == Module::Override && 1244 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1245 return stringErr("linking module flags '" + ID->getString() + 1246 "': IDs have conflicting override values in '" + 1247 SrcM->getModuleIdentifier() + "' and '" + 1248 DstM.getModuleIdentifier() + "'"); 1249 continue; 1250 } else if (SrcBehaviorValue == Module::Override) { 1251 // Update the destination flag to that of the source. 1252 overrideDstValue(); 1253 continue; 1254 } 1255 1256 // Diagnose inconsistent merge behavior types. 1257 if (SrcBehaviorValue != DstBehaviorValue) 1258 return stringErr("linking module flags '" + ID->getString() + 1259 "': IDs have conflicting behaviors in '" + 1260 SrcM->getModuleIdentifier() + "' and '" + 1261 DstM.getModuleIdentifier() + "'"); 1262 1263 auto replaceDstValue = [&](MDNode *New) { 1264 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1265 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1266 DstModFlags->setOperand(DstIndex, Flag); 1267 Flags[ID].first = Flag; 1268 }; 1269 1270 // Perform the merge for standard behavior types. 1271 switch (SrcBehaviorValue) { 1272 case Module::Require: 1273 case Module::Override: 1274 llvm_unreachable("not possible"); 1275 case Module::Error: { 1276 // Emit an error if the values differ. 1277 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1278 return stringErr("linking module flags '" + ID->getString() + 1279 "': IDs have conflicting values in '" + 1280 SrcM->getModuleIdentifier() + "' and '" + 1281 DstM.getModuleIdentifier() + "'"); 1282 continue; 1283 } 1284 case Module::Warning: { 1285 // Emit a warning if the values differ. 1286 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1287 std::string str; 1288 raw_string_ostream(str) 1289 << "linking module flags '" << ID->getString() 1290 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1291 << "' from " << SrcM->getModuleIdentifier() << " with '" 1292 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1293 << ')'; 1294 emitWarning(str); 1295 } 1296 continue; 1297 } 1298 case Module::Max: { 1299 ConstantInt *DstValue = 1300 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1301 ConstantInt *SrcValue = 1302 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1303 if (SrcValue->getZExtValue() > DstValue->getZExtValue()) 1304 overrideDstValue(); 1305 break; 1306 } 1307 case Module::Append: { 1308 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1309 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1310 SmallVector<Metadata *, 8> MDs; 1311 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); 1312 MDs.append(DstValue->op_begin(), DstValue->op_end()); 1313 MDs.append(SrcValue->op_begin(), SrcValue->op_end()); 1314 1315 replaceDstValue(MDNode::get(DstM.getContext(), MDs)); 1316 break; 1317 } 1318 case Module::AppendUnique: { 1319 SmallSetVector<Metadata *, 16> Elts; 1320 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1321 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1322 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1323 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1324 1325 replaceDstValue(MDNode::get(DstM.getContext(), 1326 makeArrayRef(Elts.begin(), Elts.end()))); 1327 break; 1328 } 1329 } 1330 } 1331 1332 // Check all of the requirements. 1333 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1334 MDNode *Requirement = Requirements[I]; 1335 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1336 Metadata *ReqValue = Requirement->getOperand(1); 1337 1338 MDNode *Op = Flags[Flag].first; 1339 if (!Op || Op->getOperand(2) != ReqValue) 1340 return stringErr("linking module flags '" + Flag->getString() + 1341 "': does not have the required value"); 1342 } 1343 return Error::success(); 1344 } 1345 1346 /// Return InlineAsm adjusted with target-specific directives if required. 1347 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1348 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1349 static std::string adjustInlineAsm(const std::string &InlineAsm, 1350 const Triple &Triple) { 1351 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1352 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1353 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1354 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1355 return InlineAsm; 1356 } 1357 1358 Error IRLinker::run() { 1359 // Ensure metadata materialized before value mapping. 1360 if (SrcM->getMaterializer()) 1361 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1362 return Err; 1363 1364 // Inherit the target data from the source module if the destination module 1365 // doesn't have one already. 1366 if (DstM.getDataLayout().isDefault()) 1367 DstM.setDataLayout(SrcM->getDataLayout()); 1368 1369 if (SrcM->getDataLayout() != DstM.getDataLayout()) { 1370 emitWarning("Linking two modules of different data layouts: '" + 1371 SrcM->getModuleIdentifier() + "' is '" + 1372 SrcM->getDataLayoutStr() + "' whereas '" + 1373 DstM.getModuleIdentifier() + "' is '" + 1374 DstM.getDataLayoutStr() + "'\n"); 1375 } 1376 1377 // Copy the target triple from the source to dest if the dest's is empty. 1378 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1379 DstM.setTargetTriple(SrcM->getTargetTriple()); 1380 1381 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1382 1383 if (!SrcM->getTargetTriple().empty()&& 1384 !SrcTriple.isCompatibleWith(DstTriple)) 1385 emitWarning("Linking two modules of different target triples: " + 1386 SrcM->getModuleIdentifier() + "' is '" + 1387 SrcM->getTargetTriple() + "' whereas '" + 1388 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1389 "'\n"); 1390 1391 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1392 1393 // Append the module inline asm string. 1394 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1395 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(), 1396 SrcTriple); 1397 if (DstM.getModuleInlineAsm().empty()) 1398 DstM.setModuleInlineAsm(SrcModuleInlineAsm); 1399 else 1400 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" + 1401 SrcModuleInlineAsm); 1402 } 1403 1404 // Loop over all of the linked values to compute type mappings. 1405 computeTypeMapping(); 1406 1407 std::reverse(Worklist.begin(), Worklist.end()); 1408 while (!Worklist.empty()) { 1409 GlobalValue *GV = Worklist.back(); 1410 Worklist.pop_back(); 1411 1412 // Already mapped. 1413 if (ValueMap.find(GV) != ValueMap.end() || 1414 AliasValueMap.find(GV) != AliasValueMap.end()) 1415 continue; 1416 1417 assert(!GV->isDeclaration()); 1418 Mapper.mapValue(*GV); 1419 if (FoundError) 1420 return std::move(*FoundError); 1421 flushRAUWWorklist(); 1422 } 1423 1424 // Note that we are done linking global value bodies. This prevents 1425 // metadata linking from creating new references. 1426 DoneLinkingBodies = true; 1427 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1428 1429 // Remap all of the named MDNodes in Src into the DstM module. We do this 1430 // after linking GlobalValues so that MDNodes that reference GlobalValues 1431 // are properly remapped. 1432 linkNamedMDNodes(); 1433 1434 // Merge the module flags into the DstM module. 1435 return linkModuleFlagsMetadata(); 1436 } 1437 1438 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1439 : ETypes(E), IsPacked(P) {} 1440 1441 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1442 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1443 1444 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1445 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1446 } 1447 1448 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1449 return !this->operator==(That); 1450 } 1451 1452 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1453 return DenseMapInfo<StructType *>::getEmptyKey(); 1454 } 1455 1456 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1457 return DenseMapInfo<StructType *>::getTombstoneKey(); 1458 } 1459 1460 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1461 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1462 Key.IsPacked); 1463 } 1464 1465 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1466 return getHashValue(KeyTy(ST)); 1467 } 1468 1469 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1470 const StructType *RHS) { 1471 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1472 return false; 1473 return LHS == KeyTy(RHS); 1474 } 1475 1476 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1477 const StructType *RHS) { 1478 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1479 return LHS == RHS; 1480 return KeyTy(LHS) == KeyTy(RHS); 1481 } 1482 1483 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1484 assert(!Ty->isOpaque()); 1485 NonOpaqueStructTypes.insert(Ty); 1486 } 1487 1488 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1489 assert(!Ty->isOpaque()); 1490 NonOpaqueStructTypes.insert(Ty); 1491 bool Removed = OpaqueStructTypes.erase(Ty); 1492 (void)Removed; 1493 assert(Removed); 1494 } 1495 1496 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1497 assert(Ty->isOpaque()); 1498 OpaqueStructTypes.insert(Ty); 1499 } 1500 1501 StructType * 1502 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1503 bool IsPacked) { 1504 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1505 auto I = NonOpaqueStructTypes.find_as(Key); 1506 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1507 } 1508 1509 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1510 if (Ty->isOpaque()) 1511 return OpaqueStructTypes.count(Ty); 1512 auto I = NonOpaqueStructTypes.find(Ty); 1513 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1514 } 1515 1516 IRMover::IRMover(Module &M) : Composite(M) { 1517 TypeFinder StructTypes; 1518 StructTypes.run(M, /* OnlyNamed */ false); 1519 for (StructType *Ty : StructTypes) { 1520 if (Ty->isOpaque()) 1521 IdentifiedStructTypes.addOpaque(Ty); 1522 else 1523 IdentifiedStructTypes.addNonOpaque(Ty); 1524 } 1525 // Self-map metadatas in the destination module. This is needed when 1526 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1527 // destination module may be reached from the source module. 1528 for (auto *MD : StructTypes.getVisitedMetadata()) { 1529 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1530 } 1531 } 1532 1533 Error IRMover::move( 1534 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink, 1535 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor, 1536 bool IsPerformingImport) { 1537 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1538 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1539 IsPerformingImport); 1540 Error E = TheIRLinker.run(); 1541 Composite.dropTriviallyDeadConstantArrays(); 1542 return E; 1543 } 1544