xref: /freebsd-src/contrib/llvm-project/llvm/lib/InterfaceStub/ELFObjHandler.cpp (revision fe6060f10f634930ff71b7c50291ddc610da2475)
1e8d8bef9SDimitry Andric //===- ELFObjHandler.cpp --------------------------------------------------===//
2e8d8bef9SDimitry Andric //
3e8d8bef9SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e8d8bef9SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5e8d8bef9SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e8d8bef9SDimitry Andric //
7e8d8bef9SDimitry Andric //===-----------------------------------------------------------------------===/
8e8d8bef9SDimitry Andric 
9e8d8bef9SDimitry Andric #include "llvm/InterfaceStub/ELFObjHandler.h"
10*fe6060f1SDimitry Andric #include "llvm/InterfaceStub/IFSStub.h"
11e8d8bef9SDimitry Andric #include "llvm/MC/StringTableBuilder.h"
12e8d8bef9SDimitry Andric #include "llvm/Object/Binary.h"
13e8d8bef9SDimitry Andric #include "llvm/Object/ELFObjectFile.h"
14e8d8bef9SDimitry Andric #include "llvm/Object/ELFTypes.h"
15e8d8bef9SDimitry Andric #include "llvm/Support/Errc.h"
16e8d8bef9SDimitry Andric #include "llvm/Support/Error.h"
17e8d8bef9SDimitry Andric #include "llvm/Support/FileOutputBuffer.h"
18e8d8bef9SDimitry Andric #include "llvm/Support/MathExtras.h"
19e8d8bef9SDimitry Andric #include "llvm/Support/MemoryBuffer.h"
20e8d8bef9SDimitry Andric #include "llvm/Support/Process.h"
21e8d8bef9SDimitry Andric 
22e8d8bef9SDimitry Andric using llvm::MemoryBufferRef;
23e8d8bef9SDimitry Andric using llvm::object::ELFObjectFile;
24e8d8bef9SDimitry Andric 
25e8d8bef9SDimitry Andric using namespace llvm;
26e8d8bef9SDimitry Andric using namespace llvm::object;
27e8d8bef9SDimitry Andric using namespace llvm::ELF;
28e8d8bef9SDimitry Andric 
29e8d8bef9SDimitry Andric namespace llvm {
30*fe6060f1SDimitry Andric namespace ifs {
31e8d8bef9SDimitry Andric 
32e8d8bef9SDimitry Andric // Simple struct to hold relevant .dynamic entries.
33e8d8bef9SDimitry Andric struct DynamicEntries {
34e8d8bef9SDimitry Andric   uint64_t StrTabAddr = 0;
35e8d8bef9SDimitry Andric   uint64_t StrSize = 0;
36e8d8bef9SDimitry Andric   Optional<uint64_t> SONameOffset;
37e8d8bef9SDimitry Andric   std::vector<uint64_t> NeededLibNames;
38e8d8bef9SDimitry Andric   // Symbol table:
39e8d8bef9SDimitry Andric   uint64_t DynSymAddr = 0;
40e8d8bef9SDimitry Andric   // Hash tables:
41e8d8bef9SDimitry Andric   Optional<uint64_t> ElfHash;
42e8d8bef9SDimitry Andric   Optional<uint64_t> GnuHash;
43e8d8bef9SDimitry Andric };
44e8d8bef9SDimitry Andric 
45e8d8bef9SDimitry Andric /// This initializes an ELF file header with information specific to a binary
46e8d8bef9SDimitry Andric /// dynamic shared object.
47e8d8bef9SDimitry Andric /// Offsets, indexes, links, etc. for section and program headers are just
48e8d8bef9SDimitry Andric /// zero-initialized as they will be updated elsewhere.
49e8d8bef9SDimitry Andric ///
50e8d8bef9SDimitry Andric /// @param ElfHeader Target ELFT::Ehdr to populate.
51e8d8bef9SDimitry Andric /// @param Machine Target architecture (e_machine from ELF specifications).
52e8d8bef9SDimitry Andric template <class ELFT>
53e8d8bef9SDimitry Andric static void initELFHeader(typename ELFT::Ehdr &ElfHeader, uint16_t Machine) {
54e8d8bef9SDimitry Andric   memset(&ElfHeader, 0, sizeof(ElfHeader));
55e8d8bef9SDimitry Andric   // ELF identification.
56e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_MAG0] = ElfMagic[EI_MAG0];
57e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_MAG1] = ElfMagic[EI_MAG1];
58e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_MAG2] = ElfMagic[EI_MAG2];
59e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_MAG3] = ElfMagic[EI_MAG3];
60e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
61e8d8bef9SDimitry Andric   bool IsLittleEndian = ELFT::TargetEndianness == support::little;
62e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
63e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_VERSION] = EV_CURRENT;
64e8d8bef9SDimitry Andric   ElfHeader.e_ident[EI_OSABI] = ELFOSABI_NONE;
65e8d8bef9SDimitry Andric 
66e8d8bef9SDimitry Andric   // Remainder of ELF header.
67e8d8bef9SDimitry Andric   ElfHeader.e_type = ET_DYN;
68e8d8bef9SDimitry Andric   ElfHeader.e_machine = Machine;
69e8d8bef9SDimitry Andric   ElfHeader.e_version = EV_CURRENT;
70e8d8bef9SDimitry Andric   ElfHeader.e_ehsize = sizeof(typename ELFT::Ehdr);
71e8d8bef9SDimitry Andric   ElfHeader.e_phentsize = sizeof(typename ELFT::Phdr);
72e8d8bef9SDimitry Andric   ElfHeader.e_shentsize = sizeof(typename ELFT::Shdr);
73e8d8bef9SDimitry Andric }
74e8d8bef9SDimitry Andric 
75e8d8bef9SDimitry Andric namespace {
76e8d8bef9SDimitry Andric template <class ELFT> struct OutputSection {
77e8d8bef9SDimitry Andric   using Elf_Shdr = typename ELFT::Shdr;
78e8d8bef9SDimitry Andric   std::string Name;
79e8d8bef9SDimitry Andric   Elf_Shdr Shdr;
80e8d8bef9SDimitry Andric   uint64_t Addr;
81e8d8bef9SDimitry Andric   uint64_t Offset;
82e8d8bef9SDimitry Andric   uint64_t Size;
83e8d8bef9SDimitry Andric   uint64_t Align;
84e8d8bef9SDimitry Andric   uint32_t Index;
85e8d8bef9SDimitry Andric   bool NoBits = true;
86e8d8bef9SDimitry Andric };
87e8d8bef9SDimitry Andric 
88e8d8bef9SDimitry Andric template <class T, class ELFT>
89e8d8bef9SDimitry Andric struct ContentSection : public OutputSection<ELFT> {
90e8d8bef9SDimitry Andric   T Content;
91e8d8bef9SDimitry Andric   ContentSection() { this->NoBits = false; }
92e8d8bef9SDimitry Andric };
93e8d8bef9SDimitry Andric 
94e8d8bef9SDimitry Andric // This class just wraps StringTableBuilder for the purpose of adding a
95e8d8bef9SDimitry Andric // default constructor.
96e8d8bef9SDimitry Andric class ELFStringTableBuilder : public StringTableBuilder {
97e8d8bef9SDimitry Andric public:
98e8d8bef9SDimitry Andric   ELFStringTableBuilder() : StringTableBuilder(StringTableBuilder::ELF) {}
99e8d8bef9SDimitry Andric };
100e8d8bef9SDimitry Andric 
101e8d8bef9SDimitry Andric template <class ELFT> class ELFSymbolTableBuilder {
102e8d8bef9SDimitry Andric public:
103e8d8bef9SDimitry Andric   using Elf_Sym = typename ELFT::Sym;
104e8d8bef9SDimitry Andric 
105e8d8bef9SDimitry Andric   ELFSymbolTableBuilder() { Symbols.push_back({}); }
106e8d8bef9SDimitry Andric 
107e8d8bef9SDimitry Andric   void add(size_t StNameOffset, uint64_t StSize, uint8_t StBind, uint8_t StType,
108e8d8bef9SDimitry Andric            uint8_t StOther, uint16_t StShndx) {
109e8d8bef9SDimitry Andric     Elf_Sym S{};
110e8d8bef9SDimitry Andric     S.st_name = StNameOffset;
111e8d8bef9SDimitry Andric     S.st_size = StSize;
112e8d8bef9SDimitry Andric     S.st_info = (StBind << 4) | (StType & 0xf);
113e8d8bef9SDimitry Andric     S.st_other = StOther;
114e8d8bef9SDimitry Andric     S.st_shndx = StShndx;
115e8d8bef9SDimitry Andric     Symbols.push_back(S);
116e8d8bef9SDimitry Andric   }
117e8d8bef9SDimitry Andric 
118e8d8bef9SDimitry Andric   size_t getSize() const { return Symbols.size() * sizeof(Elf_Sym); }
119e8d8bef9SDimitry Andric 
120e8d8bef9SDimitry Andric   void write(uint8_t *Buf) const {
121e8d8bef9SDimitry Andric     memcpy(Buf, Symbols.data(), sizeof(Elf_Sym) * Symbols.size());
122e8d8bef9SDimitry Andric   }
123e8d8bef9SDimitry Andric 
124e8d8bef9SDimitry Andric private:
125e8d8bef9SDimitry Andric   llvm::SmallVector<Elf_Sym, 8> Symbols;
126e8d8bef9SDimitry Andric };
127e8d8bef9SDimitry Andric 
128e8d8bef9SDimitry Andric template <class ELFT> class ELFDynamicTableBuilder {
129e8d8bef9SDimitry Andric public:
130e8d8bef9SDimitry Andric   using Elf_Dyn = typename ELFT::Dyn;
131e8d8bef9SDimitry Andric 
132e8d8bef9SDimitry Andric   size_t addAddr(uint64_t Tag, uint64_t Addr) {
133e8d8bef9SDimitry Andric     Elf_Dyn Entry;
134e8d8bef9SDimitry Andric     Entry.d_tag = Tag;
135e8d8bef9SDimitry Andric     Entry.d_un.d_ptr = Addr;
136e8d8bef9SDimitry Andric     Entries.push_back(Entry);
137e8d8bef9SDimitry Andric     return Entries.size() - 1;
138e8d8bef9SDimitry Andric   }
139e8d8bef9SDimitry Andric 
140e8d8bef9SDimitry Andric   void modifyAddr(size_t Index, uint64_t Addr) {
141e8d8bef9SDimitry Andric     Entries[Index].d_un.d_ptr = Addr;
142e8d8bef9SDimitry Andric   }
143e8d8bef9SDimitry Andric 
144e8d8bef9SDimitry Andric   size_t addValue(uint64_t Tag, uint64_t Value) {
145e8d8bef9SDimitry Andric     Elf_Dyn Entry;
146e8d8bef9SDimitry Andric     Entry.d_tag = Tag;
147e8d8bef9SDimitry Andric     Entry.d_un.d_val = Value;
148e8d8bef9SDimitry Andric     Entries.push_back(Entry);
149e8d8bef9SDimitry Andric     return Entries.size() - 1;
150e8d8bef9SDimitry Andric   }
151e8d8bef9SDimitry Andric 
152e8d8bef9SDimitry Andric   void modifyValue(size_t Index, uint64_t Value) {
153e8d8bef9SDimitry Andric     Entries[Index].d_un.d_val = Value;
154e8d8bef9SDimitry Andric   }
155e8d8bef9SDimitry Andric 
156e8d8bef9SDimitry Andric   size_t getSize() const {
157e8d8bef9SDimitry Andric     // Add DT_NULL entry at the end.
158e8d8bef9SDimitry Andric     return (Entries.size() + 1) * sizeof(Elf_Dyn);
159e8d8bef9SDimitry Andric   }
160e8d8bef9SDimitry Andric 
161e8d8bef9SDimitry Andric   void write(uint8_t *Buf) const {
162e8d8bef9SDimitry Andric     memcpy(Buf, Entries.data(), sizeof(Elf_Dyn) * Entries.size());
163e8d8bef9SDimitry Andric     // Add DT_NULL entry at the end.
164e8d8bef9SDimitry Andric     memset(Buf + sizeof(Elf_Dyn) * Entries.size(), 0, sizeof(Elf_Dyn));
165e8d8bef9SDimitry Andric   }
166e8d8bef9SDimitry Andric 
167e8d8bef9SDimitry Andric private:
168e8d8bef9SDimitry Andric   llvm::SmallVector<Elf_Dyn, 8> Entries;
169e8d8bef9SDimitry Andric };
170e8d8bef9SDimitry Andric 
171e8d8bef9SDimitry Andric template <class ELFT> class ELFStubBuilder {
172e8d8bef9SDimitry Andric public:
173e8d8bef9SDimitry Andric   using Elf_Ehdr = typename ELFT::Ehdr;
174e8d8bef9SDimitry Andric   using Elf_Shdr = typename ELFT::Shdr;
175e8d8bef9SDimitry Andric   using Elf_Phdr = typename ELFT::Phdr;
176e8d8bef9SDimitry Andric   using Elf_Sym = typename ELFT::Sym;
177e8d8bef9SDimitry Andric   using Elf_Addr = typename ELFT::Addr;
178e8d8bef9SDimitry Andric   using Elf_Dyn = typename ELFT::Dyn;
179e8d8bef9SDimitry Andric 
180e8d8bef9SDimitry Andric   ELFStubBuilder(const ELFStubBuilder &) = delete;
181e8d8bef9SDimitry Andric   ELFStubBuilder(ELFStubBuilder &&) = default;
182e8d8bef9SDimitry Andric 
183*fe6060f1SDimitry Andric   explicit ELFStubBuilder(const IFSStub &Stub) {
184e8d8bef9SDimitry Andric     DynSym.Name = ".dynsym";
185e8d8bef9SDimitry Andric     DynSym.Align = sizeof(Elf_Addr);
186e8d8bef9SDimitry Andric     DynStr.Name = ".dynstr";
187e8d8bef9SDimitry Andric     DynStr.Align = 1;
188e8d8bef9SDimitry Andric     DynTab.Name = ".dynamic";
189e8d8bef9SDimitry Andric     DynTab.Align = sizeof(Elf_Addr);
190e8d8bef9SDimitry Andric     ShStrTab.Name = ".shstrtab";
191e8d8bef9SDimitry Andric     ShStrTab.Align = 1;
192e8d8bef9SDimitry Andric 
193e8d8bef9SDimitry Andric     // Populate string tables.
194*fe6060f1SDimitry Andric     for (const IFSSymbol &Sym : Stub.Symbols)
195e8d8bef9SDimitry Andric       DynStr.Content.add(Sym.Name);
196e8d8bef9SDimitry Andric     for (const std::string &Lib : Stub.NeededLibs)
197e8d8bef9SDimitry Andric       DynStr.Content.add(Lib);
198e8d8bef9SDimitry Andric     if (Stub.SoName)
199e8d8bef9SDimitry Andric       DynStr.Content.add(Stub.SoName.getValue());
200e8d8bef9SDimitry Andric 
201e8d8bef9SDimitry Andric     std::vector<OutputSection<ELFT> *> Sections = {&DynSym, &DynStr, &DynTab,
202e8d8bef9SDimitry Andric                                                    &ShStrTab};
203e8d8bef9SDimitry Andric     const OutputSection<ELFT> *LastSection = Sections.back();
204e8d8bef9SDimitry Andric     // Now set the Index and put sections names into ".shstrtab".
205e8d8bef9SDimitry Andric     uint64_t Index = 1;
206e8d8bef9SDimitry Andric     for (OutputSection<ELFT> *Sec : Sections) {
207e8d8bef9SDimitry Andric       Sec->Index = Index++;
208e8d8bef9SDimitry Andric       ShStrTab.Content.add(Sec->Name);
209e8d8bef9SDimitry Andric     }
210e8d8bef9SDimitry Andric     ShStrTab.Content.finalize();
211e8d8bef9SDimitry Andric     ShStrTab.Size = ShStrTab.Content.getSize();
212e8d8bef9SDimitry Andric     DynStr.Content.finalize();
213e8d8bef9SDimitry Andric     DynStr.Size = DynStr.Content.getSize();
214e8d8bef9SDimitry Andric 
215e8d8bef9SDimitry Andric     // Populate dynamic symbol table.
216*fe6060f1SDimitry Andric     for (const IFSSymbol &Sym : Stub.Symbols) {
217e8d8bef9SDimitry Andric       uint8_t Bind = Sym.Weak ? STB_WEAK : STB_GLOBAL;
218e8d8bef9SDimitry Andric       // For non-undefined symbols, value of the shndx is not relevant at link
219e8d8bef9SDimitry Andric       // time as long as it is not SHN_UNDEF. Set shndx to 1, which
220e8d8bef9SDimitry Andric       // points to ".dynsym".
221e8d8bef9SDimitry Andric       uint16_t Shndx = Sym.Undefined ? SHN_UNDEF : 1;
222e8d8bef9SDimitry Andric       DynSym.Content.add(DynStr.Content.getOffset(Sym.Name), Sym.Size, Bind,
223*fe6060f1SDimitry Andric                          convertIFSSymbolTypeToELF(Sym.Type), 0, Shndx);
224e8d8bef9SDimitry Andric     }
225e8d8bef9SDimitry Andric     DynSym.Size = DynSym.Content.getSize();
226e8d8bef9SDimitry Andric 
227e8d8bef9SDimitry Andric     // Poplulate dynamic table.
228e8d8bef9SDimitry Andric     size_t DynSymIndex = DynTab.Content.addAddr(DT_SYMTAB, 0);
229e8d8bef9SDimitry Andric     size_t DynStrIndex = DynTab.Content.addAddr(DT_STRTAB, 0);
230e8d8bef9SDimitry Andric     for (const std::string &Lib : Stub.NeededLibs)
231e8d8bef9SDimitry Andric       DynTab.Content.addValue(DT_NEEDED, DynStr.Content.getOffset(Lib));
232e8d8bef9SDimitry Andric     if (Stub.SoName)
233e8d8bef9SDimitry Andric       DynTab.Content.addValue(DT_SONAME,
234e8d8bef9SDimitry Andric                               DynStr.Content.getOffset(Stub.SoName.getValue()));
235e8d8bef9SDimitry Andric     DynTab.Size = DynTab.Content.getSize();
236e8d8bef9SDimitry Andric     // Calculate sections' addresses and offsets.
237e8d8bef9SDimitry Andric     uint64_t CurrentOffset = sizeof(Elf_Ehdr);
238e8d8bef9SDimitry Andric     for (OutputSection<ELFT> *Sec : Sections) {
239e8d8bef9SDimitry Andric       Sec->Offset = alignTo(CurrentOffset, Sec->Align);
240e8d8bef9SDimitry Andric       Sec->Addr = Sec->Offset;
241e8d8bef9SDimitry Andric       CurrentOffset = Sec->Offset + Sec->Size;
242e8d8bef9SDimitry Andric     }
243e8d8bef9SDimitry Andric     // Fill Addr back to dynamic table.
244e8d8bef9SDimitry Andric     DynTab.Content.modifyAddr(DynSymIndex, DynSym.Addr);
245e8d8bef9SDimitry Andric     DynTab.Content.modifyAddr(DynStrIndex, DynStr.Addr);
246e8d8bef9SDimitry Andric     // Write section headers of string tables.
247e8d8bef9SDimitry Andric     fillSymTabShdr(DynSym, SHT_DYNSYM);
248e8d8bef9SDimitry Andric     fillStrTabShdr(DynStr, SHF_ALLOC);
249e8d8bef9SDimitry Andric     fillDynTabShdr(DynTab);
250e8d8bef9SDimitry Andric     fillStrTabShdr(ShStrTab);
251e8d8bef9SDimitry Andric 
252e8d8bef9SDimitry Andric     // Finish initializing the ELF header.
253*fe6060f1SDimitry Andric     initELFHeader<ELFT>(ElfHeader,
254*fe6060f1SDimitry Andric                         static_cast<uint16_t>(Stub.Target.Arch.getValue()));
255e8d8bef9SDimitry Andric     ElfHeader.e_shstrndx = ShStrTab.Index;
256e8d8bef9SDimitry Andric     ElfHeader.e_shnum = LastSection->Index + 1;
257e8d8bef9SDimitry Andric     ElfHeader.e_shoff =
258e8d8bef9SDimitry Andric         alignTo(LastSection->Offset + LastSection->Size, sizeof(Elf_Addr));
259e8d8bef9SDimitry Andric   }
260e8d8bef9SDimitry Andric 
261e8d8bef9SDimitry Andric   size_t getSize() const {
262e8d8bef9SDimitry Andric     return ElfHeader.e_shoff + ElfHeader.e_shnum * sizeof(Elf_Shdr);
263e8d8bef9SDimitry Andric   }
264e8d8bef9SDimitry Andric 
265e8d8bef9SDimitry Andric   void write(uint8_t *Data) const {
266e8d8bef9SDimitry Andric     write(Data, ElfHeader);
267e8d8bef9SDimitry Andric     DynSym.Content.write(Data + DynSym.Shdr.sh_offset);
268e8d8bef9SDimitry Andric     DynStr.Content.write(Data + DynStr.Shdr.sh_offset);
269e8d8bef9SDimitry Andric     DynTab.Content.write(Data + DynTab.Shdr.sh_offset);
270e8d8bef9SDimitry Andric     ShStrTab.Content.write(Data + ShStrTab.Shdr.sh_offset);
271e8d8bef9SDimitry Andric     writeShdr(Data, DynSym);
272e8d8bef9SDimitry Andric     writeShdr(Data, DynStr);
273e8d8bef9SDimitry Andric     writeShdr(Data, DynTab);
274e8d8bef9SDimitry Andric     writeShdr(Data, ShStrTab);
275e8d8bef9SDimitry Andric   }
276e8d8bef9SDimitry Andric 
277e8d8bef9SDimitry Andric private:
278e8d8bef9SDimitry Andric   Elf_Ehdr ElfHeader;
279e8d8bef9SDimitry Andric   ContentSection<ELFStringTableBuilder, ELFT> DynStr;
280e8d8bef9SDimitry Andric   ContentSection<ELFStringTableBuilder, ELFT> ShStrTab;
281e8d8bef9SDimitry Andric   ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> DynSym;
282e8d8bef9SDimitry Andric   ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> DynTab;
283e8d8bef9SDimitry Andric 
284e8d8bef9SDimitry Andric   template <class T> static void write(uint8_t *Data, const T &Value) {
285e8d8bef9SDimitry Andric     *reinterpret_cast<T *>(Data) = Value;
286e8d8bef9SDimitry Andric   }
287e8d8bef9SDimitry Andric 
288e8d8bef9SDimitry Andric   void fillStrTabShdr(ContentSection<ELFStringTableBuilder, ELFT> &StrTab,
289e8d8bef9SDimitry Andric                       uint32_t ShFlags = 0) const {
290e8d8bef9SDimitry Andric     StrTab.Shdr.sh_type = SHT_STRTAB;
291e8d8bef9SDimitry Andric     StrTab.Shdr.sh_flags = ShFlags;
292e8d8bef9SDimitry Andric     StrTab.Shdr.sh_addr = StrTab.Addr;
293e8d8bef9SDimitry Andric     StrTab.Shdr.sh_offset = StrTab.Offset;
294e8d8bef9SDimitry Andric     StrTab.Shdr.sh_info = 0;
295e8d8bef9SDimitry Andric     StrTab.Shdr.sh_size = StrTab.Size;
296e8d8bef9SDimitry Andric     StrTab.Shdr.sh_name = ShStrTab.Content.getOffset(StrTab.Name);
297e8d8bef9SDimitry Andric     StrTab.Shdr.sh_addralign = StrTab.Align;
298e8d8bef9SDimitry Andric     StrTab.Shdr.sh_entsize = 0;
299e8d8bef9SDimitry Andric     StrTab.Shdr.sh_link = 0;
300e8d8bef9SDimitry Andric   }
301e8d8bef9SDimitry Andric   void fillSymTabShdr(ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> &SymTab,
302e8d8bef9SDimitry Andric                       uint32_t ShType) const {
303e8d8bef9SDimitry Andric     SymTab.Shdr.sh_type = ShType;
304e8d8bef9SDimitry Andric     SymTab.Shdr.sh_flags = SHF_ALLOC;
305e8d8bef9SDimitry Andric     SymTab.Shdr.sh_addr = SymTab.Addr;
306e8d8bef9SDimitry Andric     SymTab.Shdr.sh_offset = SymTab.Offset;
307*fe6060f1SDimitry Andric     // Only non-local symbols are included in the tbe file, so .dynsym only
308*fe6060f1SDimitry Andric     // contains 1 local symbol (the undefined symbol at index 0). The sh_info
309*fe6060f1SDimitry Andric     // should always be 1.
310*fe6060f1SDimitry Andric     SymTab.Shdr.sh_info = 1;
311e8d8bef9SDimitry Andric     SymTab.Shdr.sh_size = SymTab.Size;
312e8d8bef9SDimitry Andric     SymTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(SymTab.Name);
313e8d8bef9SDimitry Andric     SymTab.Shdr.sh_addralign = SymTab.Align;
314e8d8bef9SDimitry Andric     SymTab.Shdr.sh_entsize = sizeof(Elf_Sym);
315e8d8bef9SDimitry Andric     SymTab.Shdr.sh_link = this->DynStr.Index;
316e8d8bef9SDimitry Andric   }
317e8d8bef9SDimitry Andric   void fillDynTabShdr(
318e8d8bef9SDimitry Andric       ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> &DynTab) const {
319e8d8bef9SDimitry Andric     DynTab.Shdr.sh_type = SHT_DYNAMIC;
320e8d8bef9SDimitry Andric     DynTab.Shdr.sh_flags = SHF_ALLOC;
321e8d8bef9SDimitry Andric     DynTab.Shdr.sh_addr = DynTab.Addr;
322e8d8bef9SDimitry Andric     DynTab.Shdr.sh_offset = DynTab.Offset;
323e8d8bef9SDimitry Andric     DynTab.Shdr.sh_info = 0;
324e8d8bef9SDimitry Andric     DynTab.Shdr.sh_size = DynTab.Size;
325e8d8bef9SDimitry Andric     DynTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(DynTab.Name);
326e8d8bef9SDimitry Andric     DynTab.Shdr.sh_addralign = DynTab.Align;
327e8d8bef9SDimitry Andric     DynTab.Shdr.sh_entsize = sizeof(Elf_Dyn);
328e8d8bef9SDimitry Andric     DynTab.Shdr.sh_link = this->DynStr.Index;
329e8d8bef9SDimitry Andric   }
330e8d8bef9SDimitry Andric   uint64_t shdrOffset(const OutputSection<ELFT> &Sec) const {
331e8d8bef9SDimitry Andric     return ElfHeader.e_shoff + Sec.Index * sizeof(Elf_Shdr);
332e8d8bef9SDimitry Andric   }
333e8d8bef9SDimitry Andric 
334e8d8bef9SDimitry Andric   void writeShdr(uint8_t *Data, const OutputSection<ELFT> &Sec) const {
335e8d8bef9SDimitry Andric     write(Data + shdrOffset(Sec), Sec.Shdr);
336e8d8bef9SDimitry Andric   }
337e8d8bef9SDimitry Andric };
338e8d8bef9SDimitry Andric } // end anonymous namespace
339e8d8bef9SDimitry Andric 
340e8d8bef9SDimitry Andric /// This function behaves similarly to StringRef::substr(), but attempts to
341e8d8bef9SDimitry Andric /// terminate the returned StringRef at the first null terminator. If no null
342e8d8bef9SDimitry Andric /// terminator is found, an error is returned.
343e8d8bef9SDimitry Andric ///
344e8d8bef9SDimitry Andric /// @param Str Source string to create a substring from.
345e8d8bef9SDimitry Andric /// @param Offset The start index of the desired substring.
346e8d8bef9SDimitry Andric static Expected<StringRef> terminatedSubstr(StringRef Str, size_t Offset) {
347e8d8bef9SDimitry Andric   size_t StrEnd = Str.find('\0', Offset);
348e8d8bef9SDimitry Andric   if (StrEnd == StringLiteral::npos) {
349e8d8bef9SDimitry Andric     return createError(
350e8d8bef9SDimitry Andric         "String overran bounds of string table (no null terminator)");
351e8d8bef9SDimitry Andric   }
352e8d8bef9SDimitry Andric 
353e8d8bef9SDimitry Andric   size_t StrLen = StrEnd - Offset;
354e8d8bef9SDimitry Andric   return Str.substr(Offset, StrLen);
355e8d8bef9SDimitry Andric }
356e8d8bef9SDimitry Andric 
357e8d8bef9SDimitry Andric /// This function takes an error, and appends a string of text to the end of
358e8d8bef9SDimitry Andric /// that error. Since "appending" to an Error isn't supported behavior of an
359e8d8bef9SDimitry Andric /// Error, this function technically creates a new error with the combined
360e8d8bef9SDimitry Andric /// message and consumes the old error.
361e8d8bef9SDimitry Andric ///
362e8d8bef9SDimitry Andric /// @param Err Source error.
363e8d8bef9SDimitry Andric /// @param After Text to append at the end of Err's error message.
364e8d8bef9SDimitry Andric Error appendToError(Error Err, StringRef After) {
365e8d8bef9SDimitry Andric   std::string Message;
366e8d8bef9SDimitry Andric   raw_string_ostream Stream(Message);
367e8d8bef9SDimitry Andric   Stream << Err;
368e8d8bef9SDimitry Andric   Stream << " " << After;
369e8d8bef9SDimitry Andric   consumeError(std::move(Err));
370e8d8bef9SDimitry Andric   return createError(Stream.str().c_str());
371e8d8bef9SDimitry Andric }
372e8d8bef9SDimitry Andric 
373e8d8bef9SDimitry Andric /// This function populates a DynamicEntries struct using an ELFT::DynRange.
374e8d8bef9SDimitry Andric /// After populating the struct, the members are validated with
375e8d8bef9SDimitry Andric /// some basic sanity checks.
376e8d8bef9SDimitry Andric ///
377e8d8bef9SDimitry Andric /// @param Dyn Target DynamicEntries struct to populate.
378e8d8bef9SDimitry Andric /// @param DynTable Source dynamic table.
379e8d8bef9SDimitry Andric template <class ELFT>
380e8d8bef9SDimitry Andric static Error populateDynamic(DynamicEntries &Dyn,
381e8d8bef9SDimitry Andric                              typename ELFT::DynRange DynTable) {
382e8d8bef9SDimitry Andric   if (DynTable.empty())
383e8d8bef9SDimitry Andric     return createError("No .dynamic section found");
384e8d8bef9SDimitry Andric 
385e8d8bef9SDimitry Andric   // Search .dynamic for relevant entries.
386e8d8bef9SDimitry Andric   bool FoundDynStr = false;
387e8d8bef9SDimitry Andric   bool FoundDynStrSz = false;
388e8d8bef9SDimitry Andric   bool FoundDynSym = false;
389e8d8bef9SDimitry Andric   for (auto &Entry : DynTable) {
390e8d8bef9SDimitry Andric     switch (Entry.d_tag) {
391e8d8bef9SDimitry Andric     case DT_SONAME:
392e8d8bef9SDimitry Andric       Dyn.SONameOffset = Entry.d_un.d_val;
393e8d8bef9SDimitry Andric       break;
394e8d8bef9SDimitry Andric     case DT_STRTAB:
395e8d8bef9SDimitry Andric       Dyn.StrTabAddr = Entry.d_un.d_ptr;
396e8d8bef9SDimitry Andric       FoundDynStr = true;
397e8d8bef9SDimitry Andric       break;
398e8d8bef9SDimitry Andric     case DT_STRSZ:
399e8d8bef9SDimitry Andric       Dyn.StrSize = Entry.d_un.d_val;
400e8d8bef9SDimitry Andric       FoundDynStrSz = true;
401e8d8bef9SDimitry Andric       break;
402e8d8bef9SDimitry Andric     case DT_NEEDED:
403e8d8bef9SDimitry Andric       Dyn.NeededLibNames.push_back(Entry.d_un.d_val);
404e8d8bef9SDimitry Andric       break;
405e8d8bef9SDimitry Andric     case DT_SYMTAB:
406e8d8bef9SDimitry Andric       Dyn.DynSymAddr = Entry.d_un.d_ptr;
407e8d8bef9SDimitry Andric       FoundDynSym = true;
408e8d8bef9SDimitry Andric       break;
409e8d8bef9SDimitry Andric     case DT_HASH:
410e8d8bef9SDimitry Andric       Dyn.ElfHash = Entry.d_un.d_ptr;
411e8d8bef9SDimitry Andric       break;
412e8d8bef9SDimitry Andric     case DT_GNU_HASH:
413e8d8bef9SDimitry Andric       Dyn.GnuHash = Entry.d_un.d_ptr;
414e8d8bef9SDimitry Andric     }
415e8d8bef9SDimitry Andric   }
416e8d8bef9SDimitry Andric 
417e8d8bef9SDimitry Andric   if (!FoundDynStr) {
418e8d8bef9SDimitry Andric     return createError(
419e8d8bef9SDimitry Andric         "Couldn't locate dynamic string table (no DT_STRTAB entry)");
420e8d8bef9SDimitry Andric   }
421e8d8bef9SDimitry Andric   if (!FoundDynStrSz) {
422e8d8bef9SDimitry Andric     return createError(
423e8d8bef9SDimitry Andric         "Couldn't determine dynamic string table size (no DT_STRSZ entry)");
424e8d8bef9SDimitry Andric   }
425e8d8bef9SDimitry Andric   if (!FoundDynSym) {
426e8d8bef9SDimitry Andric     return createError(
427e8d8bef9SDimitry Andric         "Couldn't locate dynamic symbol table (no DT_SYMTAB entry)");
428e8d8bef9SDimitry Andric   }
429e8d8bef9SDimitry Andric   if (Dyn.SONameOffset.hasValue() && *Dyn.SONameOffset >= Dyn.StrSize) {
430e8d8bef9SDimitry Andric     return createStringError(object_error::parse_failed,
431e8d8bef9SDimitry Andric                              "DT_SONAME string offset (0x%016" PRIx64
432e8d8bef9SDimitry Andric                              ") outside of dynamic string table",
433e8d8bef9SDimitry Andric                              *Dyn.SONameOffset);
434e8d8bef9SDimitry Andric   }
435e8d8bef9SDimitry Andric   for (uint64_t Offset : Dyn.NeededLibNames) {
436e8d8bef9SDimitry Andric     if (Offset >= Dyn.StrSize) {
437e8d8bef9SDimitry Andric       return createStringError(object_error::parse_failed,
438e8d8bef9SDimitry Andric                                "DT_NEEDED string offset (0x%016" PRIx64
439e8d8bef9SDimitry Andric                                ") outside of dynamic string table",
440e8d8bef9SDimitry Andric                                Offset);
441e8d8bef9SDimitry Andric     }
442e8d8bef9SDimitry Andric   }
443e8d8bef9SDimitry Andric 
444e8d8bef9SDimitry Andric   return Error::success();
445e8d8bef9SDimitry Andric }
446e8d8bef9SDimitry Andric 
447*fe6060f1SDimitry Andric /// This function creates an IFSSymbol and populates all members using
448e8d8bef9SDimitry Andric /// information from a binary ELFT::Sym.
449e8d8bef9SDimitry Andric ///
450*fe6060f1SDimitry Andric /// @param SymName The desired name of the IFSSymbol.
451e8d8bef9SDimitry Andric /// @param RawSym ELFT::Sym to extract symbol information from.
452e8d8bef9SDimitry Andric template <class ELFT>
453*fe6060f1SDimitry Andric static IFSSymbol createELFSym(StringRef SymName,
454e8d8bef9SDimitry Andric                               const typename ELFT::Sym &RawSym) {
455*fe6060f1SDimitry Andric   IFSSymbol TargetSym{std::string(SymName)};
456e8d8bef9SDimitry Andric   uint8_t Binding = RawSym.getBinding();
457e8d8bef9SDimitry Andric   if (Binding == STB_WEAK)
458e8d8bef9SDimitry Andric     TargetSym.Weak = true;
459e8d8bef9SDimitry Andric   else
460e8d8bef9SDimitry Andric     TargetSym.Weak = false;
461e8d8bef9SDimitry Andric 
462e8d8bef9SDimitry Andric   TargetSym.Undefined = RawSym.isUndefined();
463*fe6060f1SDimitry Andric   TargetSym.Type = convertELFSymbolTypeToIFS(RawSym.st_info);
464e8d8bef9SDimitry Andric 
465*fe6060f1SDimitry Andric   if (TargetSym.Type == IFSSymbolType::Func) {
466e8d8bef9SDimitry Andric     TargetSym.Size = 0;
467e8d8bef9SDimitry Andric   } else {
468e8d8bef9SDimitry Andric     TargetSym.Size = RawSym.st_size;
469e8d8bef9SDimitry Andric   }
470e8d8bef9SDimitry Andric   return TargetSym;
471e8d8bef9SDimitry Andric }
472e8d8bef9SDimitry Andric 
473*fe6060f1SDimitry Andric /// This function populates an IFSStub with symbols using information read
474e8d8bef9SDimitry Andric /// from an ELF binary.
475e8d8bef9SDimitry Andric ///
476*fe6060f1SDimitry Andric /// @param TargetStub IFSStub to add symbols to.
477e8d8bef9SDimitry Andric /// @param DynSym Range of dynamic symbols to add to TargetStub.
478e8d8bef9SDimitry Andric /// @param DynStr StringRef to the dynamic string table.
479e8d8bef9SDimitry Andric template <class ELFT>
480*fe6060f1SDimitry Andric static Error populateSymbols(IFSStub &TargetStub,
481e8d8bef9SDimitry Andric                              const typename ELFT::SymRange DynSym,
482e8d8bef9SDimitry Andric                              StringRef DynStr) {
483e8d8bef9SDimitry Andric   // Skips the first symbol since it's the NULL symbol.
484e8d8bef9SDimitry Andric   for (auto RawSym : DynSym.drop_front(1)) {
485e8d8bef9SDimitry Andric     // If a symbol does not have global or weak binding, ignore it.
486e8d8bef9SDimitry Andric     uint8_t Binding = RawSym.getBinding();
487e8d8bef9SDimitry Andric     if (!(Binding == STB_GLOBAL || Binding == STB_WEAK))
488e8d8bef9SDimitry Andric       continue;
489e8d8bef9SDimitry Andric     // If a symbol doesn't have default or protected visibility, ignore it.
490e8d8bef9SDimitry Andric     uint8_t Visibility = RawSym.getVisibility();
491e8d8bef9SDimitry Andric     if (!(Visibility == STV_DEFAULT || Visibility == STV_PROTECTED))
492e8d8bef9SDimitry Andric       continue;
493*fe6060f1SDimitry Andric     // Create an IFSSymbol and populate it with information from the symbol
494e8d8bef9SDimitry Andric     // table entry.
495e8d8bef9SDimitry Andric     Expected<StringRef> SymName = terminatedSubstr(DynStr, RawSym.st_name);
496e8d8bef9SDimitry Andric     if (!SymName)
497e8d8bef9SDimitry Andric       return SymName.takeError();
498*fe6060f1SDimitry Andric     IFSSymbol Sym = createELFSym<ELFT>(*SymName, RawSym);
499*fe6060f1SDimitry Andric     TargetStub.Symbols.push_back(std::move(Sym));
500e8d8bef9SDimitry Andric     // TODO: Populate symbol warning.
501e8d8bef9SDimitry Andric   }
502e8d8bef9SDimitry Andric   return Error::success();
503e8d8bef9SDimitry Andric }
504e8d8bef9SDimitry Andric 
505*fe6060f1SDimitry Andric /// Returns a new IFSStub with all members populated from an ELFObjectFile.
506e8d8bef9SDimitry Andric /// @param ElfObj Source ELFObjectFile.
507e8d8bef9SDimitry Andric template <class ELFT>
508*fe6060f1SDimitry Andric static Expected<std::unique_ptr<IFSStub>>
509e8d8bef9SDimitry Andric buildStub(const ELFObjectFile<ELFT> &ElfObj) {
510e8d8bef9SDimitry Andric   using Elf_Dyn_Range = typename ELFT::DynRange;
511e8d8bef9SDimitry Andric   using Elf_Phdr_Range = typename ELFT::PhdrRange;
512e8d8bef9SDimitry Andric   using Elf_Sym_Range = typename ELFT::SymRange;
513e8d8bef9SDimitry Andric   using Elf_Sym = typename ELFT::Sym;
514*fe6060f1SDimitry Andric   std::unique_ptr<IFSStub> DestStub = std::make_unique<IFSStub>();
515e8d8bef9SDimitry Andric   const ELFFile<ELFT> &ElfFile = ElfObj.getELFFile();
516e8d8bef9SDimitry Andric   // Fetch .dynamic table.
517e8d8bef9SDimitry Andric   Expected<Elf_Dyn_Range> DynTable = ElfFile.dynamicEntries();
518e8d8bef9SDimitry Andric   if (!DynTable) {
519e8d8bef9SDimitry Andric     return DynTable.takeError();
520e8d8bef9SDimitry Andric   }
521e8d8bef9SDimitry Andric 
522e8d8bef9SDimitry Andric   // Fetch program headers.
523e8d8bef9SDimitry Andric   Expected<Elf_Phdr_Range> PHdrs = ElfFile.program_headers();
524e8d8bef9SDimitry Andric   if (!PHdrs) {
525e8d8bef9SDimitry Andric     return PHdrs.takeError();
526e8d8bef9SDimitry Andric   }
527e8d8bef9SDimitry Andric 
528e8d8bef9SDimitry Andric   // Collect relevant .dynamic entries.
529e8d8bef9SDimitry Andric   DynamicEntries DynEnt;
530e8d8bef9SDimitry Andric   if (Error Err = populateDynamic<ELFT>(DynEnt, *DynTable))
531e8d8bef9SDimitry Andric     return std::move(Err);
532e8d8bef9SDimitry Andric 
533e8d8bef9SDimitry Andric   // Get pointer to in-memory location of .dynstr section.
534e8d8bef9SDimitry Andric   Expected<const uint8_t *> DynStrPtr = ElfFile.toMappedAddr(DynEnt.StrTabAddr);
535e8d8bef9SDimitry Andric   if (!DynStrPtr)
536e8d8bef9SDimitry Andric     return appendToError(DynStrPtr.takeError(),
537e8d8bef9SDimitry Andric                          "when locating .dynstr section contents");
538e8d8bef9SDimitry Andric 
539e8d8bef9SDimitry Andric   StringRef DynStr(reinterpret_cast<const char *>(DynStrPtr.get()),
540e8d8bef9SDimitry Andric                    DynEnt.StrSize);
541e8d8bef9SDimitry Andric 
542e8d8bef9SDimitry Andric   // Populate Arch from ELF header.
543*fe6060f1SDimitry Andric   DestStub->Target.Arch = static_cast<IFSArch>(ElfFile.getHeader().e_machine);
544*fe6060f1SDimitry Andric   DestStub->Target.BitWidth =
545*fe6060f1SDimitry Andric       convertELFBitWidthToIFS(ElfFile.getHeader().e_ident[EI_CLASS]);
546*fe6060f1SDimitry Andric   DestStub->Target.Endianness =
547*fe6060f1SDimitry Andric       convertELFEndiannessToIFS(ElfFile.getHeader().e_ident[EI_DATA]);
548*fe6060f1SDimitry Andric   DestStub->Target.ObjectFormat = "ELF";
549e8d8bef9SDimitry Andric 
550e8d8bef9SDimitry Andric   // Populate SoName from .dynamic entries and dynamic string table.
551e8d8bef9SDimitry Andric   if (DynEnt.SONameOffset.hasValue()) {
552e8d8bef9SDimitry Andric     Expected<StringRef> NameOrErr =
553e8d8bef9SDimitry Andric         terminatedSubstr(DynStr, *DynEnt.SONameOffset);
554e8d8bef9SDimitry Andric     if (!NameOrErr) {
555e8d8bef9SDimitry Andric       return appendToError(NameOrErr.takeError(), "when reading DT_SONAME");
556e8d8bef9SDimitry Andric     }
557e8d8bef9SDimitry Andric     DestStub->SoName = std::string(*NameOrErr);
558e8d8bef9SDimitry Andric   }
559e8d8bef9SDimitry Andric 
560e8d8bef9SDimitry Andric   // Populate NeededLibs from .dynamic entries and dynamic string table.
561e8d8bef9SDimitry Andric   for (uint64_t NeededStrOffset : DynEnt.NeededLibNames) {
562e8d8bef9SDimitry Andric     Expected<StringRef> LibNameOrErr =
563e8d8bef9SDimitry Andric         terminatedSubstr(DynStr, NeededStrOffset);
564e8d8bef9SDimitry Andric     if (!LibNameOrErr) {
565e8d8bef9SDimitry Andric       return appendToError(LibNameOrErr.takeError(), "when reading DT_NEEDED");
566e8d8bef9SDimitry Andric     }
567e8d8bef9SDimitry Andric     DestStub->NeededLibs.push_back(std::string(*LibNameOrErr));
568e8d8bef9SDimitry Andric   }
569e8d8bef9SDimitry Andric 
570e8d8bef9SDimitry Andric   // Populate Symbols from .dynsym table and dynamic string table.
571e8d8bef9SDimitry Andric   Expected<uint64_t> SymCount = ElfFile.getDynSymtabSize();
572e8d8bef9SDimitry Andric   if (!SymCount)
573e8d8bef9SDimitry Andric     return SymCount.takeError();
574e8d8bef9SDimitry Andric   if (*SymCount > 0) {
575e8d8bef9SDimitry Andric     // Get pointer to in-memory location of .dynsym section.
576e8d8bef9SDimitry Andric     Expected<const uint8_t *> DynSymPtr =
577e8d8bef9SDimitry Andric         ElfFile.toMappedAddr(DynEnt.DynSymAddr);
578e8d8bef9SDimitry Andric     if (!DynSymPtr)
579e8d8bef9SDimitry Andric       return appendToError(DynSymPtr.takeError(),
580e8d8bef9SDimitry Andric                            "when locating .dynsym section contents");
581e8d8bef9SDimitry Andric     Elf_Sym_Range DynSyms = ArrayRef<Elf_Sym>(
582e8d8bef9SDimitry Andric         reinterpret_cast<const Elf_Sym *>(*DynSymPtr), *SymCount);
583e8d8bef9SDimitry Andric     Error SymReadError = populateSymbols<ELFT>(*DestStub, DynSyms, DynStr);
584e8d8bef9SDimitry Andric     if (SymReadError)
585e8d8bef9SDimitry Andric       return appendToError(std::move(SymReadError),
586e8d8bef9SDimitry Andric                            "when reading dynamic symbols");
587e8d8bef9SDimitry Andric   }
588e8d8bef9SDimitry Andric 
589e8d8bef9SDimitry Andric   return std::move(DestStub);
590e8d8bef9SDimitry Andric }
591e8d8bef9SDimitry Andric 
592e8d8bef9SDimitry Andric /// This function opens a file for writing and then writes a binary ELF stub to
593e8d8bef9SDimitry Andric /// the file.
594e8d8bef9SDimitry Andric ///
595e8d8bef9SDimitry Andric /// @param FilePath File path for writing the ELF binary.
596*fe6060f1SDimitry Andric /// @param Stub Source InterFace Stub to generate a binary ELF stub from.
597e8d8bef9SDimitry Andric template <class ELFT>
598*fe6060f1SDimitry Andric static Error writeELFBinaryToFile(StringRef FilePath, const IFSStub &Stub,
599e8d8bef9SDimitry Andric                                   bool WriteIfChanged) {
600e8d8bef9SDimitry Andric   ELFStubBuilder<ELFT> Builder{Stub};
601e8d8bef9SDimitry Andric   // Write Stub to memory first.
602e8d8bef9SDimitry Andric   std::vector<uint8_t> Buf(Builder.getSize());
603e8d8bef9SDimitry Andric   Builder.write(Buf.data());
604e8d8bef9SDimitry Andric 
605e8d8bef9SDimitry Andric   if (WriteIfChanged) {
606e8d8bef9SDimitry Andric     if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrError =
607e8d8bef9SDimitry Andric             MemoryBuffer::getFile(FilePath)) {
608e8d8bef9SDimitry Andric       // Compare Stub output with existing Stub file.
609e8d8bef9SDimitry Andric       // If Stub file unchanged, abort updating.
610e8d8bef9SDimitry Andric       if ((*BufOrError)->getBufferSize() == Builder.getSize() &&
611e8d8bef9SDimitry Andric           !memcmp((*BufOrError)->getBufferStart(), Buf.data(),
612e8d8bef9SDimitry Andric                   Builder.getSize()))
613e8d8bef9SDimitry Andric         return Error::success();
614e8d8bef9SDimitry Andric     }
615e8d8bef9SDimitry Andric   }
616e8d8bef9SDimitry Andric 
617e8d8bef9SDimitry Andric   Expected<std::unique_ptr<FileOutputBuffer>> BufOrError =
618e8d8bef9SDimitry Andric       FileOutputBuffer::create(FilePath, Builder.getSize());
619e8d8bef9SDimitry Andric   if (!BufOrError)
620e8d8bef9SDimitry Andric     return createStringError(errc::invalid_argument,
621e8d8bef9SDimitry Andric                              toString(BufOrError.takeError()) +
622e8d8bef9SDimitry Andric                                  " when trying to open `" + FilePath +
623e8d8bef9SDimitry Andric                                  "` for writing");
624e8d8bef9SDimitry Andric 
625e8d8bef9SDimitry Andric   // Write binary to file.
626e8d8bef9SDimitry Andric   std::unique_ptr<FileOutputBuffer> FileBuf = std::move(*BufOrError);
627e8d8bef9SDimitry Andric   memcpy(FileBuf->getBufferStart(), Buf.data(), Buf.size());
628e8d8bef9SDimitry Andric 
629e8d8bef9SDimitry Andric   return FileBuf->commit();
630e8d8bef9SDimitry Andric }
631e8d8bef9SDimitry Andric 
632*fe6060f1SDimitry Andric Expected<std::unique_ptr<IFSStub>> readELFFile(MemoryBufferRef Buf) {
633e8d8bef9SDimitry Andric   Expected<std::unique_ptr<Binary>> BinOrErr = createBinary(Buf);
634e8d8bef9SDimitry Andric   if (!BinOrErr) {
635e8d8bef9SDimitry Andric     return BinOrErr.takeError();
636e8d8bef9SDimitry Andric   }
637e8d8bef9SDimitry Andric 
638e8d8bef9SDimitry Andric   Binary *Bin = BinOrErr->get();
639e8d8bef9SDimitry Andric   if (auto Obj = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
640e8d8bef9SDimitry Andric     return buildStub(*Obj);
641e8d8bef9SDimitry Andric   } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
642e8d8bef9SDimitry Andric     return buildStub(*Obj);
643e8d8bef9SDimitry Andric   } else if (auto Obj = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
644e8d8bef9SDimitry Andric     return buildStub(*Obj);
645e8d8bef9SDimitry Andric   } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
646e8d8bef9SDimitry Andric     return buildStub(*Obj);
647e8d8bef9SDimitry Andric   }
648e8d8bef9SDimitry Andric   return createStringError(errc::not_supported, "unsupported binary format");
649e8d8bef9SDimitry Andric }
650e8d8bef9SDimitry Andric 
651e8d8bef9SDimitry Andric // This function wraps the ELFT writeELFBinaryToFile() so writeBinaryStub()
652e8d8bef9SDimitry Andric // can be called without having to use ELFType templates directly.
653*fe6060f1SDimitry Andric Error writeBinaryStub(StringRef FilePath, const IFSStub &Stub,
654*fe6060f1SDimitry Andric                       bool WriteIfChanged) {
655*fe6060f1SDimitry Andric   assert(Stub.Target.Arch);
656*fe6060f1SDimitry Andric   assert(Stub.Target.BitWidth);
657*fe6060f1SDimitry Andric   assert(Stub.Target.Endianness);
658*fe6060f1SDimitry Andric   if (Stub.Target.BitWidth == IFSBitWidthType::IFS32) {
659*fe6060f1SDimitry Andric     if (Stub.Target.Endianness == IFSEndiannessType::Little) {
660e8d8bef9SDimitry Andric       return writeELFBinaryToFile<ELF32LE>(FilePath, Stub, WriteIfChanged);
661*fe6060f1SDimitry Andric     } else {
662e8d8bef9SDimitry Andric       return writeELFBinaryToFile<ELF32BE>(FilePath, Stub, WriteIfChanged);
663*fe6060f1SDimitry Andric     }
664*fe6060f1SDimitry Andric   } else {
665*fe6060f1SDimitry Andric     if (Stub.Target.Endianness == IFSEndiannessType::Little) {
666e8d8bef9SDimitry Andric       return writeELFBinaryToFile<ELF64LE>(FilePath, Stub, WriteIfChanged);
667*fe6060f1SDimitry Andric     } else {
668e8d8bef9SDimitry Andric       return writeELFBinaryToFile<ELF64BE>(FilePath, Stub, WriteIfChanged);
669*fe6060f1SDimitry Andric     }
670*fe6060f1SDimitry Andric   }
671e8d8bef9SDimitry Andric   llvm_unreachable("invalid binary output target");
672e8d8bef9SDimitry Andric }
673e8d8bef9SDimitry Andric 
674*fe6060f1SDimitry Andric } // end namespace ifs
675e8d8bef9SDimitry Andric } // end namespace llvm
676