1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // sanity checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * PHI nodes must have at least one entry 27 // * All basic blocks should only end with terminator insts, not contain them 28 // * The entry node to a function must not have predecessors 29 // * All Instructions must be embedded into a basic block 30 // * Functions cannot take a void-typed parameter 31 // * Verify that a function's argument list agrees with it's declared type. 32 // * It is illegal to specify a name for a void value. 33 // * It is illegal to have a internal global value with no initializer 34 // * It is illegal to have a ret instruction that returns a value that does not 35 // agree with the function return value type. 36 // * Function call argument types match the function prototype 37 // * A landing pad is defined by a landingpad instruction, and can be jumped to 38 // only by the unwind edge of an invoke instruction. 39 // * A landingpad instruction must be the first non-PHI instruction in the 40 // block. 41 // * Landingpad instructions must be in a function with a personality function. 42 // * All other things that are tested by asserts spread about the code... 43 // 44 //===----------------------------------------------------------------------===// 45 46 #include "llvm/IR/Verifier.h" 47 #include "llvm/ADT/APFloat.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/ArrayRef.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/Optional.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/ADT/StringMap.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/ADT/ilist.h" 62 #include "llvm/BinaryFormat/Dwarf.h" 63 #include "llvm/IR/Argument.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/CallingConv.h" 68 #include "llvm/IR/Comdat.h" 69 #include "llvm/IR/Constant.h" 70 #include "llvm/IR/ConstantRange.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DebugInfoMetadata.h" 75 #include "llvm/IR/DebugLoc.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/GlobalVariable.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstVisitor.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/ModuleSlotTracker.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include <algorithm> 110 #include <cassert> 111 #include <cstdint> 112 #include <memory> 113 #include <string> 114 #include <utility> 115 116 using namespace llvm; 117 118 namespace llvm { 119 120 struct VerifierSupport { 121 raw_ostream *OS; 122 const Module &M; 123 ModuleSlotTracker MST; 124 Triple TT; 125 const DataLayout &DL; 126 LLVMContext &Context; 127 128 /// Track the brokenness of the module while recursively visiting. 129 bool Broken = false; 130 /// Broken debug info can be "recovered" from by stripping the debug info. 131 bool BrokenDebugInfo = false; 132 /// Whether to treat broken debug info as an error. 133 bool TreatBrokenDebugInfoAsError = true; 134 135 explicit VerifierSupport(raw_ostream *OS, const Module &M) 136 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), 137 Context(M.getContext()) {} 138 139 private: 140 void Write(const Module *M) { 141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 142 } 143 144 void Write(const Value *V) { 145 if (V) 146 Write(*V); 147 } 148 149 void Write(const Value &V) { 150 if (isa<Instruction>(V)) { 151 V.print(*OS, MST); 152 *OS << '\n'; 153 } else { 154 V.printAsOperand(*OS, true, MST); 155 *OS << '\n'; 156 } 157 } 158 159 void Write(const Metadata *MD) { 160 if (!MD) 161 return; 162 MD->print(*OS, MST, &M); 163 *OS << '\n'; 164 } 165 166 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 167 Write(MD.get()); 168 } 169 170 void Write(const NamedMDNode *NMD) { 171 if (!NMD) 172 return; 173 NMD->print(*OS, MST); 174 *OS << '\n'; 175 } 176 177 void Write(Type *T) { 178 if (!T) 179 return; 180 *OS << ' ' << *T; 181 } 182 183 void Write(const Comdat *C) { 184 if (!C) 185 return; 186 *OS << *C; 187 } 188 189 void Write(const APInt *AI) { 190 if (!AI) 191 return; 192 *OS << *AI << '\n'; 193 } 194 195 void Write(const unsigned i) { *OS << i << '\n'; } 196 197 template <typename T> void Write(ArrayRef<T> Vs) { 198 for (const T &V : Vs) 199 Write(V); 200 } 201 202 template <typename T1, typename... Ts> 203 void WriteTs(const T1 &V1, const Ts &... Vs) { 204 Write(V1); 205 WriteTs(Vs...); 206 } 207 208 template <typename... Ts> void WriteTs() {} 209 210 public: 211 /// A check failed, so printout out the condition and the message. 212 /// 213 /// This provides a nice place to put a breakpoint if you want to see why 214 /// something is not correct. 215 void CheckFailed(const Twine &Message) { 216 if (OS) 217 *OS << Message << '\n'; 218 Broken = true; 219 } 220 221 /// A check failed (with values to print). 222 /// 223 /// This calls the Message-only version so that the above is easier to set a 224 /// breakpoint on. 225 template <typename T1, typename... Ts> 226 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 227 CheckFailed(Message); 228 if (OS) 229 WriteTs(V1, Vs...); 230 } 231 232 /// A debug info check failed. 233 void DebugInfoCheckFailed(const Twine &Message) { 234 if (OS) 235 *OS << Message << '\n'; 236 Broken |= TreatBrokenDebugInfoAsError; 237 BrokenDebugInfo = true; 238 } 239 240 /// A debug info check failed (with values to print). 241 template <typename T1, typename... Ts> 242 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 243 const Ts &... Vs) { 244 DebugInfoCheckFailed(Message); 245 if (OS) 246 WriteTs(V1, Vs...); 247 } 248 }; 249 250 } // namespace llvm 251 252 namespace { 253 254 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 255 friend class InstVisitor<Verifier>; 256 257 DominatorTree DT; 258 259 /// When verifying a basic block, keep track of all of the 260 /// instructions we have seen so far. 261 /// 262 /// This allows us to do efficient dominance checks for the case when an 263 /// instruction has an operand that is an instruction in the same block. 264 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 265 266 /// Keep track of the metadata nodes that have been checked already. 267 SmallPtrSet<const Metadata *, 32> MDNodes; 268 269 /// Keep track which DISubprogram is attached to which function. 270 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 271 272 /// Track all DICompileUnits visited. 273 SmallPtrSet<const Metadata *, 2> CUVisited; 274 275 /// The result type for a landingpad. 276 Type *LandingPadResultTy; 277 278 /// Whether we've seen a call to @llvm.localescape in this function 279 /// already. 280 bool SawFrameEscape; 281 282 /// Whether the current function has a DISubprogram attached to it. 283 bool HasDebugInfo = false; 284 285 /// Whether source was present on the first DIFile encountered in each CU. 286 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; 287 288 /// Stores the count of how many objects were passed to llvm.localescape for a 289 /// given function and the largest index passed to llvm.localrecover. 290 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 291 292 // Maps catchswitches and cleanuppads that unwind to siblings to the 293 // terminators that indicate the unwind, used to detect cycles therein. 294 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 295 296 /// Cache of constants visited in search of ConstantExprs. 297 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 298 299 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 300 SmallVector<const Function *, 4> DeoptimizeDeclarations; 301 302 // Verify that this GlobalValue is only used in this module. 303 // This map is used to avoid visiting uses twice. We can arrive at a user 304 // twice, if they have multiple operands. In particular for very large 305 // constant expressions, we can arrive at a particular user many times. 306 SmallPtrSet<const Value *, 32> GlobalValueVisited; 307 308 // Keeps track of duplicate function argument debug info. 309 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 310 311 TBAAVerifier TBAAVerifyHelper; 312 313 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 314 315 public: 316 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 317 const Module &M) 318 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 319 SawFrameEscape(false), TBAAVerifyHelper(this) { 320 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 321 } 322 323 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 324 325 bool verify(const Function &F) { 326 assert(F.getParent() == &M && 327 "An instance of this class only works with a specific module!"); 328 329 // First ensure the function is well-enough formed to compute dominance 330 // information, and directly compute a dominance tree. We don't rely on the 331 // pass manager to provide this as it isolates us from a potentially 332 // out-of-date dominator tree and makes it significantly more complex to run 333 // this code outside of a pass manager. 334 // FIXME: It's really gross that we have to cast away constness here. 335 if (!F.empty()) 336 DT.recalculate(const_cast<Function &>(F)); 337 338 for (const BasicBlock &BB : F) { 339 if (!BB.empty() && BB.back().isTerminator()) 340 continue; 341 342 if (OS) { 343 *OS << "Basic Block in function '" << F.getName() 344 << "' does not have terminator!\n"; 345 BB.printAsOperand(*OS, true, MST); 346 *OS << "\n"; 347 } 348 return false; 349 } 350 351 Broken = false; 352 // FIXME: We strip const here because the inst visitor strips const. 353 visit(const_cast<Function &>(F)); 354 verifySiblingFuncletUnwinds(); 355 InstsInThisBlock.clear(); 356 DebugFnArgs.clear(); 357 LandingPadResultTy = nullptr; 358 SawFrameEscape = false; 359 SiblingFuncletInfo.clear(); 360 361 return !Broken; 362 } 363 364 /// Verify the module that this instance of \c Verifier was initialized with. 365 bool verify() { 366 Broken = false; 367 368 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 369 for (const Function &F : M) 370 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 371 DeoptimizeDeclarations.push_back(&F); 372 373 // Now that we've visited every function, verify that we never asked to 374 // recover a frame index that wasn't escaped. 375 verifyFrameRecoverIndices(); 376 for (const GlobalVariable &GV : M.globals()) 377 visitGlobalVariable(GV); 378 379 for (const GlobalAlias &GA : M.aliases()) 380 visitGlobalAlias(GA); 381 382 for (const NamedMDNode &NMD : M.named_metadata()) 383 visitNamedMDNode(NMD); 384 385 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 386 visitComdat(SMEC.getValue()); 387 388 visitModuleFlags(M); 389 visitModuleIdents(M); 390 visitModuleCommandLines(M); 391 392 verifyCompileUnits(); 393 394 verifyDeoptimizeCallingConvs(); 395 DISubprogramAttachments.clear(); 396 return !Broken; 397 } 398 399 private: 400 // Verification methods... 401 void visitGlobalValue(const GlobalValue &GV); 402 void visitGlobalVariable(const GlobalVariable &GV); 403 void visitGlobalAlias(const GlobalAlias &GA); 404 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 405 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 406 const GlobalAlias &A, const Constant &C); 407 void visitNamedMDNode(const NamedMDNode &NMD); 408 void visitMDNode(const MDNode &MD); 409 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 410 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 411 void visitComdat(const Comdat &C); 412 void visitModuleIdents(const Module &M); 413 void visitModuleCommandLines(const Module &M); 414 void visitModuleFlags(const Module &M); 415 void visitModuleFlag(const MDNode *Op, 416 DenseMap<const MDString *, const MDNode *> &SeenIDs, 417 SmallVectorImpl<const MDNode *> &Requirements); 418 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 419 void visitFunction(const Function &F); 420 void visitBasicBlock(BasicBlock &BB); 421 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 422 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 423 void visitProfMetadata(Instruction &I, MDNode *MD); 424 425 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 426 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 427 #include "llvm/IR/Metadata.def" 428 void visitDIScope(const DIScope &N); 429 void visitDIVariable(const DIVariable &N); 430 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 431 void visitDITemplateParameter(const DITemplateParameter &N); 432 433 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 434 435 // InstVisitor overrides... 436 using InstVisitor<Verifier>::visit; 437 void visit(Instruction &I); 438 439 void visitTruncInst(TruncInst &I); 440 void visitZExtInst(ZExtInst &I); 441 void visitSExtInst(SExtInst &I); 442 void visitFPTruncInst(FPTruncInst &I); 443 void visitFPExtInst(FPExtInst &I); 444 void visitFPToUIInst(FPToUIInst &I); 445 void visitFPToSIInst(FPToSIInst &I); 446 void visitUIToFPInst(UIToFPInst &I); 447 void visitSIToFPInst(SIToFPInst &I); 448 void visitIntToPtrInst(IntToPtrInst &I); 449 void visitPtrToIntInst(PtrToIntInst &I); 450 void visitBitCastInst(BitCastInst &I); 451 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 452 void visitPHINode(PHINode &PN); 453 void visitCallBase(CallBase &Call); 454 void visitUnaryOperator(UnaryOperator &U); 455 void visitBinaryOperator(BinaryOperator &B); 456 void visitICmpInst(ICmpInst &IC); 457 void visitFCmpInst(FCmpInst &FC); 458 void visitExtractElementInst(ExtractElementInst &EI); 459 void visitInsertElementInst(InsertElementInst &EI); 460 void visitShuffleVectorInst(ShuffleVectorInst &EI); 461 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 462 void visitCallInst(CallInst &CI); 463 void visitInvokeInst(InvokeInst &II); 464 void visitGetElementPtrInst(GetElementPtrInst &GEP); 465 void visitLoadInst(LoadInst &LI); 466 void visitStoreInst(StoreInst &SI); 467 void verifyDominatesUse(Instruction &I, unsigned i); 468 void visitInstruction(Instruction &I); 469 void visitTerminator(Instruction &I); 470 void visitBranchInst(BranchInst &BI); 471 void visitReturnInst(ReturnInst &RI); 472 void visitSwitchInst(SwitchInst &SI); 473 void visitIndirectBrInst(IndirectBrInst &BI); 474 void visitCallBrInst(CallBrInst &CBI); 475 void visitSelectInst(SelectInst &SI); 476 void visitUserOp1(Instruction &I); 477 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 478 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 479 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 480 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 481 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 482 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 483 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 484 void visitFenceInst(FenceInst &FI); 485 void visitAllocaInst(AllocaInst &AI); 486 void visitExtractValueInst(ExtractValueInst &EVI); 487 void visitInsertValueInst(InsertValueInst &IVI); 488 void visitEHPadPredecessors(Instruction &I); 489 void visitLandingPadInst(LandingPadInst &LPI); 490 void visitResumeInst(ResumeInst &RI); 491 void visitCatchPadInst(CatchPadInst &CPI); 492 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 493 void visitCleanupPadInst(CleanupPadInst &CPI); 494 void visitFuncletPadInst(FuncletPadInst &FPI); 495 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 496 void visitCleanupReturnInst(CleanupReturnInst &CRI); 497 498 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 499 void verifySwiftErrorValue(const Value *SwiftErrorVal); 500 void verifyMustTailCall(CallInst &CI); 501 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, 502 unsigned ArgNo, std::string &Suffix); 503 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 504 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 505 const Value *V); 506 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 507 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 508 const Value *V, bool IsIntrinsic); 509 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 510 511 void visitConstantExprsRecursively(const Constant *EntryC); 512 void visitConstantExpr(const ConstantExpr *CE); 513 void verifyStatepoint(const CallBase &Call); 514 void verifyFrameRecoverIndices(); 515 void verifySiblingFuncletUnwinds(); 516 517 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 518 template <typename ValueOrMetadata> 519 void verifyFragmentExpression(const DIVariable &V, 520 DIExpression::FragmentInfo Fragment, 521 ValueOrMetadata *Desc); 522 void verifyFnArgs(const DbgVariableIntrinsic &I); 523 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 524 525 /// Module-level debug info verification... 526 void verifyCompileUnits(); 527 528 /// Module-level verification that all @llvm.experimental.deoptimize 529 /// declarations share the same calling convention. 530 void verifyDeoptimizeCallingConvs(); 531 532 /// Verify all-or-nothing property of DIFile source attribute within a CU. 533 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); 534 }; 535 536 } // end anonymous namespace 537 538 /// We know that cond should be true, if not print an error message. 539 #define Assert(C, ...) \ 540 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false) 541 542 /// We know that a debug info condition should be true, if not print 543 /// an error message. 544 #define AssertDI(C, ...) \ 545 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false) 546 547 void Verifier::visit(Instruction &I) { 548 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 549 Assert(I.getOperand(i) != nullptr, "Operand is null", &I); 550 InstVisitor<Verifier>::visit(I); 551 } 552 553 // Helper to recursively iterate over indirect users. By 554 // returning false, the callback can ask to stop recursing 555 // further. 556 static void forEachUser(const Value *User, 557 SmallPtrSet<const Value *, 32> &Visited, 558 llvm::function_ref<bool(const Value *)> Callback) { 559 if (!Visited.insert(User).second) 560 return; 561 for (const Value *TheNextUser : User->materialized_users()) 562 if (Callback(TheNextUser)) 563 forEachUser(TheNextUser, Visited, Callback); 564 } 565 566 void Verifier::visitGlobalValue(const GlobalValue &GV) { 567 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 568 "Global is external, but doesn't have external or weak linkage!", &GV); 569 570 Assert(GV.getAlignment() <= Value::MaximumAlignment, 571 "huge alignment values are unsupported", &GV); 572 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 573 "Only global variables can have appending linkage!", &GV); 574 575 if (GV.hasAppendingLinkage()) { 576 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 577 Assert(GVar && GVar->getValueType()->isArrayTy(), 578 "Only global arrays can have appending linkage!", GVar); 579 } 580 581 if (GV.isDeclarationForLinker()) 582 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 583 584 if (GV.hasDLLImportStorageClass()) { 585 Assert(!GV.isDSOLocal(), 586 "GlobalValue with DLLImport Storage is dso_local!", &GV); 587 588 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) || 589 GV.hasAvailableExternallyLinkage(), 590 "Global is marked as dllimport, but not external", &GV); 591 } 592 593 if (GV.hasLocalLinkage()) 594 Assert(GV.isDSOLocal(), 595 "GlobalValue with private or internal linkage must be dso_local!", 596 &GV); 597 598 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage()) 599 Assert(GV.isDSOLocal(), 600 "GlobalValue with non default visibility must be dso_local!", &GV); 601 602 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 603 if (const Instruction *I = dyn_cast<Instruction>(V)) { 604 if (!I->getParent() || !I->getParent()->getParent()) 605 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 606 I); 607 else if (I->getParent()->getParent()->getParent() != &M) 608 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 609 I->getParent()->getParent(), 610 I->getParent()->getParent()->getParent()); 611 return false; 612 } else if (const Function *F = dyn_cast<Function>(V)) { 613 if (F->getParent() != &M) 614 CheckFailed("Global is used by function in a different module", &GV, &M, 615 F, F->getParent()); 616 return false; 617 } 618 return true; 619 }); 620 } 621 622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 623 if (GV.hasInitializer()) { 624 Assert(GV.getInitializer()->getType() == GV.getValueType(), 625 "Global variable initializer type does not match global " 626 "variable type!", 627 &GV); 628 // If the global has common linkage, it must have a zero initializer and 629 // cannot be constant. 630 if (GV.hasCommonLinkage()) { 631 Assert(GV.getInitializer()->isNullValue(), 632 "'common' global must have a zero initializer!", &GV); 633 Assert(!GV.isConstant(), "'common' global may not be marked constant!", 634 &GV); 635 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 636 } 637 } 638 639 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 640 GV.getName() == "llvm.global_dtors")) { 641 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 642 "invalid linkage for intrinsic global variable", &GV); 643 // Don't worry about emitting an error for it not being an array, 644 // visitGlobalValue will complain on appending non-array. 645 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { 646 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 647 PointerType *FuncPtrTy = 648 FunctionType::get(Type::getVoidTy(Context), false)-> 649 getPointerTo(DL.getProgramAddressSpace()); 650 Assert(STy && 651 (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 652 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 653 STy->getTypeAtIndex(1) == FuncPtrTy, 654 "wrong type for intrinsic global variable", &GV); 655 Assert(STy->getNumElements() == 3, 656 "the third field of the element type is mandatory, " 657 "specify i8* null to migrate from the obsoleted 2-field form"); 658 Type *ETy = STy->getTypeAtIndex(2); 659 Assert(ETy->isPointerTy() && 660 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8), 661 "wrong type for intrinsic global variable", &GV); 662 } 663 } 664 665 if (GV.hasName() && (GV.getName() == "llvm.used" || 666 GV.getName() == "llvm.compiler.used")) { 667 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(), 668 "invalid linkage for intrinsic global variable", &GV); 669 Type *GVType = GV.getValueType(); 670 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 671 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 672 Assert(PTy, "wrong type for intrinsic global variable", &GV); 673 if (GV.hasInitializer()) { 674 const Constant *Init = GV.getInitializer(); 675 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 676 Assert(InitArray, "wrong initalizer for intrinsic global variable", 677 Init); 678 for (Value *Op : InitArray->operands()) { 679 Value *V = Op->stripPointerCasts(); 680 Assert(isa<GlobalVariable>(V) || isa<Function>(V) || 681 isa<GlobalAlias>(V), 682 "invalid llvm.used member", V); 683 Assert(V->hasName(), "members of llvm.used must be named", V); 684 } 685 } 686 } 687 } 688 689 // Visit any debug info attachments. 690 SmallVector<MDNode *, 1> MDs; 691 GV.getMetadata(LLVMContext::MD_dbg, MDs); 692 for (auto *MD : MDs) { 693 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 694 visitDIGlobalVariableExpression(*GVE); 695 else 696 AssertDI(false, "!dbg attachment of global variable must be a " 697 "DIGlobalVariableExpression"); 698 } 699 700 // Scalable vectors cannot be global variables, since we don't know 701 // the runtime size. If the global is a struct or an array containing 702 // scalable vectors, that will be caught by the isValidElementType methods 703 // in StructType or ArrayType instead. 704 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType())) 705 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV); 706 707 if (!GV.hasInitializer()) { 708 visitGlobalValue(GV); 709 return; 710 } 711 712 // Walk any aggregate initializers looking for bitcasts between address spaces 713 visitConstantExprsRecursively(GV.getInitializer()); 714 715 visitGlobalValue(GV); 716 } 717 718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 719 SmallPtrSet<const GlobalAlias*, 4> Visited; 720 Visited.insert(&GA); 721 visitAliaseeSubExpr(Visited, GA, C); 722 } 723 724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 725 const GlobalAlias &GA, const Constant &C) { 726 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 727 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition", 728 &GA); 729 730 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 731 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 732 733 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias", 734 &GA); 735 } else { 736 // Only continue verifying subexpressions of GlobalAliases. 737 // Do not recurse into global initializers. 738 return; 739 } 740 } 741 742 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 743 visitConstantExprsRecursively(CE); 744 745 for (const Use &U : C.operands()) { 746 Value *V = &*U; 747 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 748 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 749 else if (const auto *C2 = dyn_cast<Constant>(V)) 750 visitAliaseeSubExpr(Visited, GA, *C2); 751 } 752 } 753 754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 755 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()), 756 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 757 "weak_odr, or external linkage!", 758 &GA); 759 const Constant *Aliasee = GA.getAliasee(); 760 Assert(Aliasee, "Aliasee cannot be NULL!", &GA); 761 Assert(GA.getType() == Aliasee->getType(), 762 "Alias and aliasee types should match!", &GA); 763 764 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 765 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 766 767 visitAliaseeSubExpr(GA, *Aliasee); 768 769 visitGlobalValue(GA); 770 } 771 772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 773 // There used to be various other llvm.dbg.* nodes, but we don't support 774 // upgrading them and we want to reserve the namespace for future uses. 775 if (NMD.getName().startswith("llvm.dbg.")) 776 AssertDI(NMD.getName() == "llvm.dbg.cu", 777 "unrecognized named metadata node in the llvm.dbg namespace", 778 &NMD); 779 for (const MDNode *MD : NMD.operands()) { 780 if (NMD.getName() == "llvm.dbg.cu") 781 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 782 783 if (!MD) 784 continue; 785 786 visitMDNode(*MD); 787 } 788 } 789 790 void Verifier::visitMDNode(const MDNode &MD) { 791 // Only visit each node once. Metadata can be mutually recursive, so this 792 // avoids infinite recursion here, as well as being an optimization. 793 if (!MDNodes.insert(&MD).second) 794 return; 795 796 switch (MD.getMetadataID()) { 797 default: 798 llvm_unreachable("Invalid MDNode subclass"); 799 case Metadata::MDTupleKind: 800 break; 801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 802 case Metadata::CLASS##Kind: \ 803 visit##CLASS(cast<CLASS>(MD)); \ 804 break; 805 #include "llvm/IR/Metadata.def" 806 } 807 808 for (const Metadata *Op : MD.operands()) { 809 if (!Op) 810 continue; 811 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 812 &MD, Op); 813 if (auto *N = dyn_cast<MDNode>(Op)) { 814 visitMDNode(*N); 815 continue; 816 } 817 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 818 visitValueAsMetadata(*V, nullptr); 819 continue; 820 } 821 } 822 823 // Check these last, so we diagnose problems in operands first. 824 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD); 825 Assert(MD.isResolved(), "All nodes should be resolved!", &MD); 826 } 827 828 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 829 Assert(MD.getValue(), "Expected valid value", &MD); 830 Assert(!MD.getValue()->getType()->isMetadataTy(), 831 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 832 833 auto *L = dyn_cast<LocalAsMetadata>(&MD); 834 if (!L) 835 return; 836 837 Assert(F, "function-local metadata used outside a function", L); 838 839 // If this was an instruction, bb, or argument, verify that it is in the 840 // function that we expect. 841 Function *ActualF = nullptr; 842 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 843 Assert(I->getParent(), "function-local metadata not in basic block", L, I); 844 ActualF = I->getParent()->getParent(); 845 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 846 ActualF = BB->getParent(); 847 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 848 ActualF = A->getParent(); 849 assert(ActualF && "Unimplemented function local metadata case!"); 850 851 Assert(ActualF == F, "function-local metadata used in wrong function", L); 852 } 853 854 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 855 Metadata *MD = MDV.getMetadata(); 856 if (auto *N = dyn_cast<MDNode>(MD)) { 857 visitMDNode(*N); 858 return; 859 } 860 861 // Only visit each node once. Metadata can be mutually recursive, so this 862 // avoids infinite recursion here, as well as being an optimization. 863 if (!MDNodes.insert(MD).second) 864 return; 865 866 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 867 visitValueAsMetadata(*V, F); 868 } 869 870 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 871 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 872 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 873 874 void Verifier::visitDILocation(const DILocation &N) { 875 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 876 "location requires a valid scope", &N, N.getRawScope()); 877 if (auto *IA = N.getRawInlinedAt()) 878 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 879 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 880 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 881 } 882 883 void Verifier::visitGenericDINode(const GenericDINode &N) { 884 AssertDI(N.getTag(), "invalid tag", &N); 885 } 886 887 void Verifier::visitDIScope(const DIScope &N) { 888 if (auto *F = N.getRawFile()) 889 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 890 } 891 892 void Verifier::visitDISubrange(const DISubrange &N) { 893 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 894 auto Count = N.getCount(); 895 AssertDI(Count, "Count must either be a signed constant or a DIVariable", 896 &N); 897 AssertDI(!Count.is<ConstantInt*>() || 898 Count.get<ConstantInt*>()->getSExtValue() >= -1, 899 "invalid subrange count", &N); 900 } 901 902 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 903 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 904 } 905 906 void Verifier::visitDIBasicType(const DIBasicType &N) { 907 AssertDI(N.getTag() == dwarf::DW_TAG_base_type || 908 N.getTag() == dwarf::DW_TAG_unspecified_type, 909 "invalid tag", &N); 910 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) , 911 "has conflicting flags", &N); 912 } 913 914 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 915 // Common scope checks. 916 visitDIScope(N); 917 918 AssertDI(N.getTag() == dwarf::DW_TAG_typedef || 919 N.getTag() == dwarf::DW_TAG_pointer_type || 920 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 921 N.getTag() == dwarf::DW_TAG_reference_type || 922 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 923 N.getTag() == dwarf::DW_TAG_const_type || 924 N.getTag() == dwarf::DW_TAG_volatile_type || 925 N.getTag() == dwarf::DW_TAG_restrict_type || 926 N.getTag() == dwarf::DW_TAG_atomic_type || 927 N.getTag() == dwarf::DW_TAG_member || 928 N.getTag() == dwarf::DW_TAG_inheritance || 929 N.getTag() == dwarf::DW_TAG_friend, 930 "invalid tag", &N); 931 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 932 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 933 N.getRawExtraData()); 934 } 935 936 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 937 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 938 N.getRawBaseType()); 939 940 if (N.getDWARFAddressSpace()) { 941 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type || 942 N.getTag() == dwarf::DW_TAG_reference_type || 943 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 944 "DWARF address space only applies to pointer or reference types", 945 &N); 946 } 947 } 948 949 /// Detect mutually exclusive flags. 950 static bool hasConflictingReferenceFlags(unsigned Flags) { 951 return ((Flags & DINode::FlagLValueReference) && 952 (Flags & DINode::FlagRValueReference)) || 953 ((Flags & DINode::FlagTypePassByValue) && 954 (Flags & DINode::FlagTypePassByReference)); 955 } 956 957 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 958 auto *Params = dyn_cast<MDTuple>(&RawParams); 959 AssertDI(Params, "invalid template params", &N, &RawParams); 960 for (Metadata *Op : Params->operands()) { 961 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 962 &N, Params, Op); 963 } 964 } 965 966 void Verifier::visitDICompositeType(const DICompositeType &N) { 967 // Common scope checks. 968 visitDIScope(N); 969 970 AssertDI(N.getTag() == dwarf::DW_TAG_array_type || 971 N.getTag() == dwarf::DW_TAG_structure_type || 972 N.getTag() == dwarf::DW_TAG_union_type || 973 N.getTag() == dwarf::DW_TAG_enumeration_type || 974 N.getTag() == dwarf::DW_TAG_class_type || 975 N.getTag() == dwarf::DW_TAG_variant_part, 976 "invalid tag", &N); 977 978 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 979 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N, 980 N.getRawBaseType()); 981 982 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 983 "invalid composite elements", &N, N.getRawElements()); 984 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 985 N.getRawVTableHolder()); 986 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 987 "invalid reference flags", &N); 988 unsigned DIBlockByRefStruct = 1 << 4; 989 AssertDI((N.getFlags() & DIBlockByRefStruct) == 0, 990 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 991 992 if (N.isVector()) { 993 const DINodeArray Elements = N.getElements(); 994 AssertDI(Elements.size() == 1 && 995 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 996 "invalid vector, expected one element of type subrange", &N); 997 } 998 999 if (auto *Params = N.getRawTemplateParams()) 1000 visitTemplateParams(N, *Params); 1001 1002 if (N.getTag() == dwarf::DW_TAG_class_type || 1003 N.getTag() == dwarf::DW_TAG_union_type) { 1004 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(), 1005 "class/union requires a filename", &N, N.getFile()); 1006 } 1007 1008 if (auto *D = N.getRawDiscriminator()) { 1009 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1010 "discriminator can only appear on variant part"); 1011 } 1012 } 1013 1014 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1015 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1016 if (auto *Types = N.getRawTypeArray()) { 1017 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1018 for (Metadata *Ty : N.getTypeArray()->operands()) { 1019 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1020 } 1021 } 1022 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1023 "invalid reference flags", &N); 1024 } 1025 1026 void Verifier::visitDIFile(const DIFile &N) { 1027 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1028 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1029 if (Checksum) { 1030 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1031 "invalid checksum kind", &N); 1032 size_t Size; 1033 switch (Checksum->Kind) { 1034 case DIFile::CSK_MD5: 1035 Size = 32; 1036 break; 1037 case DIFile::CSK_SHA1: 1038 Size = 40; 1039 break; 1040 } 1041 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1042 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1043 "invalid checksum", &N); 1044 } 1045 } 1046 1047 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1048 AssertDI(N.isDistinct(), "compile units must be distinct", &N); 1049 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1050 1051 // Don't bother verifying the compilation directory or producer string 1052 // as those could be empty. 1053 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1054 N.getRawFile()); 1055 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1056 N.getFile()); 1057 1058 verifySourceDebugInfo(N, *N.getFile()); 1059 1060 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1061 "invalid emission kind", &N); 1062 1063 if (auto *Array = N.getRawEnumTypes()) { 1064 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1065 for (Metadata *Op : N.getEnumTypes()->operands()) { 1066 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1067 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1068 "invalid enum type", &N, N.getEnumTypes(), Op); 1069 } 1070 } 1071 if (auto *Array = N.getRawRetainedTypes()) { 1072 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1073 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1074 AssertDI(Op && (isa<DIType>(Op) || 1075 (isa<DISubprogram>(Op) && 1076 !cast<DISubprogram>(Op)->isDefinition())), 1077 "invalid retained type", &N, Op); 1078 } 1079 } 1080 if (auto *Array = N.getRawGlobalVariables()) { 1081 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1082 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1083 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1084 "invalid global variable ref", &N, Op); 1085 } 1086 } 1087 if (auto *Array = N.getRawImportedEntities()) { 1088 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1089 for (Metadata *Op : N.getImportedEntities()->operands()) { 1090 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1091 &N, Op); 1092 } 1093 } 1094 if (auto *Array = N.getRawMacros()) { 1095 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1096 for (Metadata *Op : N.getMacros()->operands()) { 1097 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1098 } 1099 } 1100 CUVisited.insert(&N); 1101 } 1102 1103 void Verifier::visitDISubprogram(const DISubprogram &N) { 1104 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1105 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1106 if (auto *F = N.getRawFile()) 1107 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1108 else 1109 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1110 if (auto *T = N.getRawType()) 1111 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1112 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1113 N.getRawContainingType()); 1114 if (auto *Params = N.getRawTemplateParams()) 1115 visitTemplateParams(N, *Params); 1116 if (auto *S = N.getRawDeclaration()) 1117 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1118 "invalid subprogram declaration", &N, S); 1119 if (auto *RawNode = N.getRawRetainedNodes()) { 1120 auto *Node = dyn_cast<MDTuple>(RawNode); 1121 AssertDI(Node, "invalid retained nodes list", &N, RawNode); 1122 for (Metadata *Op : Node->operands()) { 1123 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), 1124 "invalid retained nodes, expected DILocalVariable or DILabel", 1125 &N, Node, Op); 1126 } 1127 } 1128 AssertDI(!hasConflictingReferenceFlags(N.getFlags()), 1129 "invalid reference flags", &N); 1130 1131 auto *Unit = N.getRawUnit(); 1132 if (N.isDefinition()) { 1133 // Subprogram definitions (not part of the type hierarchy). 1134 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1135 AssertDI(Unit, "subprogram definitions must have a compile unit", &N); 1136 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1137 if (N.getFile()) 1138 verifySourceDebugInfo(*N.getUnit(), *N.getFile()); 1139 } else { 1140 // Subprogram declarations (part of the type hierarchy). 1141 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1142 } 1143 1144 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1145 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1146 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1147 for (Metadata *Op : ThrownTypes->operands()) 1148 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1149 Op); 1150 } 1151 1152 if (N.areAllCallsDescribed()) 1153 AssertDI(N.isDefinition(), 1154 "DIFlagAllCallsDescribed must be attached to a definition"); 1155 } 1156 1157 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1158 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1159 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1160 "invalid local scope", &N, N.getRawScope()); 1161 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1162 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1163 } 1164 1165 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1166 visitDILexicalBlockBase(N); 1167 1168 AssertDI(N.getLine() || !N.getColumn(), 1169 "cannot have column info without line info", &N); 1170 } 1171 1172 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1173 visitDILexicalBlockBase(N); 1174 } 1175 1176 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1177 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1178 if (auto *S = N.getRawScope()) 1179 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1180 if (auto *S = N.getRawDecl()) 1181 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1182 } 1183 1184 void Verifier::visitDINamespace(const DINamespace &N) { 1185 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1186 if (auto *S = N.getRawScope()) 1187 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1188 } 1189 1190 void Verifier::visitDIMacro(const DIMacro &N) { 1191 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1192 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1193 "invalid macinfo type", &N); 1194 AssertDI(!N.getName().empty(), "anonymous macro", &N); 1195 if (!N.getValue().empty()) { 1196 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1197 } 1198 } 1199 1200 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1201 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1202 "invalid macinfo type", &N); 1203 if (auto *F = N.getRawFile()) 1204 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1205 1206 if (auto *Array = N.getRawElements()) { 1207 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1208 for (Metadata *Op : N.getElements()->operands()) { 1209 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1210 } 1211 } 1212 } 1213 1214 void Verifier::visitDIModule(const DIModule &N) { 1215 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1216 AssertDI(!N.getName().empty(), "anonymous module", &N); 1217 } 1218 1219 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1220 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1221 } 1222 1223 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1224 visitDITemplateParameter(N); 1225 1226 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1227 &N); 1228 } 1229 1230 void Verifier::visitDITemplateValueParameter( 1231 const DITemplateValueParameter &N) { 1232 visitDITemplateParameter(N); 1233 1234 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1235 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1236 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1237 "invalid tag", &N); 1238 } 1239 1240 void Verifier::visitDIVariable(const DIVariable &N) { 1241 if (auto *S = N.getRawScope()) 1242 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1243 if (auto *F = N.getRawFile()) 1244 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1245 } 1246 1247 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1248 // Checks common to all variables. 1249 visitDIVariable(N); 1250 1251 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1252 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1253 AssertDI(N.getType(), "missing global variable type", &N); 1254 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1255 AssertDI(isa<DIDerivedType>(Member), 1256 "invalid static data member declaration", &N, Member); 1257 } 1258 } 1259 1260 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1261 // Checks common to all variables. 1262 visitDIVariable(N); 1263 1264 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1265 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1266 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1267 "local variable requires a valid scope", &N, N.getRawScope()); 1268 if (auto Ty = N.getType()) 1269 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1270 } 1271 1272 void Verifier::visitDILabel(const DILabel &N) { 1273 if (auto *S = N.getRawScope()) 1274 AssertDI(isa<DIScope>(S), "invalid scope", &N, S); 1275 if (auto *F = N.getRawFile()) 1276 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1277 1278 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1279 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1280 "label requires a valid scope", &N, N.getRawScope()); 1281 } 1282 1283 void Verifier::visitDIExpression(const DIExpression &N) { 1284 AssertDI(N.isValid(), "invalid expression", &N); 1285 } 1286 1287 void Verifier::visitDIGlobalVariableExpression( 1288 const DIGlobalVariableExpression &GVE) { 1289 AssertDI(GVE.getVariable(), "missing variable"); 1290 if (auto *Var = GVE.getVariable()) 1291 visitDIGlobalVariable(*Var); 1292 if (auto *Expr = GVE.getExpression()) { 1293 visitDIExpression(*Expr); 1294 if (auto Fragment = Expr->getFragmentInfo()) 1295 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1296 } 1297 } 1298 1299 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1300 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1301 if (auto *T = N.getRawType()) 1302 AssertDI(isType(T), "invalid type ref", &N, T); 1303 if (auto *F = N.getRawFile()) 1304 AssertDI(isa<DIFile>(F), "invalid file", &N, F); 1305 } 1306 1307 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1308 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module || 1309 N.getTag() == dwarf::DW_TAG_imported_declaration, 1310 "invalid tag", &N); 1311 if (auto *S = N.getRawScope()) 1312 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1313 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1314 N.getRawEntity()); 1315 } 1316 1317 void Verifier::visitComdat(const Comdat &C) { 1318 // In COFF the Module is invalid if the GlobalValue has private linkage. 1319 // Entities with private linkage don't have entries in the symbol table. 1320 if (TT.isOSBinFormatCOFF()) 1321 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1322 Assert(!GV->hasPrivateLinkage(), 1323 "comdat global value has private linkage", GV); 1324 } 1325 1326 void Verifier::visitModuleIdents(const Module &M) { 1327 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1328 if (!Idents) 1329 return; 1330 1331 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1332 // Scan each llvm.ident entry and make sure that this requirement is met. 1333 for (const MDNode *N : Idents->operands()) { 1334 Assert(N->getNumOperands() == 1, 1335 "incorrect number of operands in llvm.ident metadata", N); 1336 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1337 ("invalid value for llvm.ident metadata entry operand" 1338 "(the operand should be a string)"), 1339 N->getOperand(0)); 1340 } 1341 } 1342 1343 void Verifier::visitModuleCommandLines(const Module &M) { 1344 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1345 if (!CommandLines) 1346 return; 1347 1348 // llvm.commandline takes a list of metadata entry. Each entry has only one 1349 // string. Scan each llvm.commandline entry and make sure that this 1350 // requirement is met. 1351 for (const MDNode *N : CommandLines->operands()) { 1352 Assert(N->getNumOperands() == 1, 1353 "incorrect number of operands in llvm.commandline metadata", N); 1354 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)), 1355 ("invalid value for llvm.commandline metadata entry operand" 1356 "(the operand should be a string)"), 1357 N->getOperand(0)); 1358 } 1359 } 1360 1361 void Verifier::visitModuleFlags(const Module &M) { 1362 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1363 if (!Flags) return; 1364 1365 // Scan each flag, and track the flags and requirements. 1366 DenseMap<const MDString*, const MDNode*> SeenIDs; 1367 SmallVector<const MDNode*, 16> Requirements; 1368 for (const MDNode *MDN : Flags->operands()) 1369 visitModuleFlag(MDN, SeenIDs, Requirements); 1370 1371 // Validate that the requirements in the module are valid. 1372 for (const MDNode *Requirement : Requirements) { 1373 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1374 const Metadata *ReqValue = Requirement->getOperand(1); 1375 1376 const MDNode *Op = SeenIDs.lookup(Flag); 1377 if (!Op) { 1378 CheckFailed("invalid requirement on flag, flag is not present in module", 1379 Flag); 1380 continue; 1381 } 1382 1383 if (Op->getOperand(2) != ReqValue) { 1384 CheckFailed(("invalid requirement on flag, " 1385 "flag does not have the required value"), 1386 Flag); 1387 continue; 1388 } 1389 } 1390 } 1391 1392 void 1393 Verifier::visitModuleFlag(const MDNode *Op, 1394 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1395 SmallVectorImpl<const MDNode *> &Requirements) { 1396 // Each module flag should have three arguments, the merge behavior (a 1397 // constant int), the flag ID (an MDString), and the value. 1398 Assert(Op->getNumOperands() == 3, 1399 "incorrect number of operands in module flag", Op); 1400 Module::ModFlagBehavior MFB; 1401 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1402 Assert( 1403 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1404 "invalid behavior operand in module flag (expected constant integer)", 1405 Op->getOperand(0)); 1406 Assert(false, 1407 "invalid behavior operand in module flag (unexpected constant)", 1408 Op->getOperand(0)); 1409 } 1410 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1411 Assert(ID, "invalid ID operand in module flag (expected metadata string)", 1412 Op->getOperand(1)); 1413 1414 // Sanity check the values for behaviors with additional requirements. 1415 switch (MFB) { 1416 case Module::Error: 1417 case Module::Warning: 1418 case Module::Override: 1419 // These behavior types accept any value. 1420 break; 1421 1422 case Module::Max: { 1423 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1424 "invalid value for 'max' module flag (expected constant integer)", 1425 Op->getOperand(2)); 1426 break; 1427 } 1428 1429 case Module::Require: { 1430 // The value should itself be an MDNode with two operands, a flag ID (an 1431 // MDString), and a value. 1432 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1433 Assert(Value && Value->getNumOperands() == 2, 1434 "invalid value for 'require' module flag (expected metadata pair)", 1435 Op->getOperand(2)); 1436 Assert(isa<MDString>(Value->getOperand(0)), 1437 ("invalid value for 'require' module flag " 1438 "(first value operand should be a string)"), 1439 Value->getOperand(0)); 1440 1441 // Append it to the list of requirements, to check once all module flags are 1442 // scanned. 1443 Requirements.push_back(Value); 1444 break; 1445 } 1446 1447 case Module::Append: 1448 case Module::AppendUnique: { 1449 // These behavior types require the operand be an MDNode. 1450 Assert(isa<MDNode>(Op->getOperand(2)), 1451 "invalid value for 'append'-type module flag " 1452 "(expected a metadata node)", 1453 Op->getOperand(2)); 1454 break; 1455 } 1456 } 1457 1458 // Unless this is a "requires" flag, check the ID is unique. 1459 if (MFB != Module::Require) { 1460 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1461 Assert(Inserted, 1462 "module flag identifiers must be unique (or of 'require' type)", ID); 1463 } 1464 1465 if (ID->getString() == "wchar_size") { 1466 ConstantInt *Value 1467 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1468 Assert(Value, "wchar_size metadata requires constant integer argument"); 1469 } 1470 1471 if (ID->getString() == "Linker Options") { 1472 // If the llvm.linker.options named metadata exists, we assume that the 1473 // bitcode reader has upgraded the module flag. Otherwise the flag might 1474 // have been created by a client directly. 1475 Assert(M.getNamedMetadata("llvm.linker.options"), 1476 "'Linker Options' named metadata no longer supported"); 1477 } 1478 1479 if (ID->getString() == "CG Profile") { 1480 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1481 visitModuleFlagCGProfileEntry(MDO); 1482 } 1483 } 1484 1485 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1486 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1487 if (!FuncMDO) 1488 return; 1489 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1490 Assert(F && isa<Function>(F->getValue()), "expected a Function or null", 1491 FuncMDO); 1492 }; 1493 auto Node = dyn_cast_or_null<MDNode>(MDO); 1494 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1495 CheckFunction(Node->getOperand(0)); 1496 CheckFunction(Node->getOperand(1)); 1497 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1498 Assert(Count && Count->getType()->isIntegerTy(), 1499 "expected an integer constant", Node->getOperand(2)); 1500 } 1501 1502 /// Return true if this attribute kind only applies to functions. 1503 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) { 1504 switch (Kind) { 1505 case Attribute::NoReturn: 1506 case Attribute::NoSync: 1507 case Attribute::WillReturn: 1508 case Attribute::NoCfCheck: 1509 case Attribute::NoUnwind: 1510 case Attribute::NoInline: 1511 case Attribute::AlwaysInline: 1512 case Attribute::OptimizeForSize: 1513 case Attribute::StackProtect: 1514 case Attribute::StackProtectReq: 1515 case Attribute::StackProtectStrong: 1516 case Attribute::SafeStack: 1517 case Attribute::ShadowCallStack: 1518 case Attribute::NoRedZone: 1519 case Attribute::NoImplicitFloat: 1520 case Attribute::Naked: 1521 case Attribute::InlineHint: 1522 case Attribute::StackAlignment: 1523 case Attribute::UWTable: 1524 case Attribute::NonLazyBind: 1525 case Attribute::ReturnsTwice: 1526 case Attribute::SanitizeAddress: 1527 case Attribute::SanitizeHWAddress: 1528 case Attribute::SanitizeMemTag: 1529 case Attribute::SanitizeThread: 1530 case Attribute::SanitizeMemory: 1531 case Attribute::MinSize: 1532 case Attribute::NoDuplicate: 1533 case Attribute::Builtin: 1534 case Attribute::NoBuiltin: 1535 case Attribute::Cold: 1536 case Attribute::OptForFuzzing: 1537 case Attribute::OptimizeNone: 1538 case Attribute::JumpTable: 1539 case Attribute::Convergent: 1540 case Attribute::ArgMemOnly: 1541 case Attribute::NoRecurse: 1542 case Attribute::InaccessibleMemOnly: 1543 case Attribute::InaccessibleMemOrArgMemOnly: 1544 case Attribute::AllocSize: 1545 case Attribute::SpeculativeLoadHardening: 1546 case Attribute::Speculatable: 1547 case Attribute::StrictFP: 1548 return true; 1549 default: 1550 break; 1551 } 1552 return false; 1553 } 1554 1555 /// Return true if this is a function attribute that can also appear on 1556 /// arguments. 1557 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) { 1558 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly || 1559 Kind == Attribute::ReadNone || Kind == Attribute::NoFree; 1560 } 1561 1562 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction, 1563 const Value *V) { 1564 for (Attribute A : Attrs) { 1565 if (A.isStringAttribute()) 1566 continue; 1567 1568 if (isFuncOnlyAttr(A.getKindAsEnum())) { 1569 if (!IsFunction) { 1570 CheckFailed("Attribute '" + A.getAsString() + 1571 "' only applies to functions!", 1572 V); 1573 return; 1574 } 1575 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) { 1576 CheckFailed("Attribute '" + A.getAsString() + 1577 "' does not apply to functions!", 1578 V); 1579 return; 1580 } 1581 } 1582 } 1583 1584 // VerifyParameterAttrs - Check the given attributes for an argument or return 1585 // value of the specified type. The value V is printed in error messages. 1586 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1587 const Value *V) { 1588 if (!Attrs.hasAttributes()) 1589 return; 1590 1591 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V); 1592 1593 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1594 Assert(Attrs.getNumAttributes() == 1, 1595 "Attribute 'immarg' is incompatible with other attributes", V); 1596 } 1597 1598 // Check for mutually incompatible attributes. Only inreg is compatible with 1599 // sret. 1600 unsigned AttrCount = 0; 1601 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1602 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1603 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1604 Attrs.hasAttribute(Attribute::InReg); 1605 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1606 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', " 1607 "and 'sret' are incompatible!", 1608 V); 1609 1610 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) && 1611 Attrs.hasAttribute(Attribute::ReadOnly)), 1612 "Attributes " 1613 "'inalloca and readonly' are incompatible!", 1614 V); 1615 1616 Assert(!(Attrs.hasAttribute(Attribute::StructRet) && 1617 Attrs.hasAttribute(Attribute::Returned)), 1618 "Attributes " 1619 "'sret and returned' are incompatible!", 1620 V); 1621 1622 Assert(!(Attrs.hasAttribute(Attribute::ZExt) && 1623 Attrs.hasAttribute(Attribute::SExt)), 1624 "Attributes " 1625 "'zeroext and signext' are incompatible!", 1626 V); 1627 1628 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1629 Attrs.hasAttribute(Attribute::ReadOnly)), 1630 "Attributes " 1631 "'readnone and readonly' are incompatible!", 1632 V); 1633 1634 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) && 1635 Attrs.hasAttribute(Attribute::WriteOnly)), 1636 "Attributes " 1637 "'readnone and writeonly' are incompatible!", 1638 V); 1639 1640 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1641 Attrs.hasAttribute(Attribute::WriteOnly)), 1642 "Attributes " 1643 "'readonly and writeonly' are incompatible!", 1644 V); 1645 1646 Assert(!(Attrs.hasAttribute(Attribute::NoInline) && 1647 Attrs.hasAttribute(Attribute::AlwaysInline)), 1648 "Attributes " 1649 "'noinline and alwaysinline' are incompatible!", 1650 V); 1651 1652 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { 1653 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(), 1654 "Attribute 'byval' type does not match parameter!", V); 1655 } 1656 1657 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); 1658 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs), 1659 "Wrong types for attribute: " + 1660 AttributeSet::get(Context, IncompatibleAttrs).getAsString(), 1661 V); 1662 1663 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { 1664 SmallPtrSet<Type*, 4> Visited; 1665 if (!PTy->getElementType()->isSized(&Visited)) { 1666 Assert(!Attrs.hasAttribute(Attribute::ByVal) && 1667 !Attrs.hasAttribute(Attribute::InAlloca), 1668 "Attributes 'byval' and 'inalloca' do not support unsized types!", 1669 V); 1670 } 1671 if (!isa<PointerType>(PTy->getElementType())) 1672 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1673 "Attribute 'swifterror' only applies to parameters " 1674 "with pointer to pointer type!", 1675 V); 1676 } else { 1677 Assert(!Attrs.hasAttribute(Attribute::ByVal), 1678 "Attribute 'byval' only applies to parameters with pointer type!", 1679 V); 1680 Assert(!Attrs.hasAttribute(Attribute::SwiftError), 1681 "Attribute 'swifterror' only applies to parameters " 1682 "with pointer type!", 1683 V); 1684 } 1685 } 1686 1687 // Check parameter attributes against a function type. 1688 // The value V is printed in error messages. 1689 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 1690 const Value *V, bool IsIntrinsic) { 1691 if (Attrs.isEmpty()) 1692 return; 1693 1694 bool SawNest = false; 1695 bool SawReturned = false; 1696 bool SawSRet = false; 1697 bool SawSwiftSelf = false; 1698 bool SawSwiftError = false; 1699 1700 // Verify return value attributes. 1701 AttributeSet RetAttrs = Attrs.getRetAttributes(); 1702 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) && 1703 !RetAttrs.hasAttribute(Attribute::Nest) && 1704 !RetAttrs.hasAttribute(Attribute::StructRet) && 1705 !RetAttrs.hasAttribute(Attribute::NoCapture) && 1706 !RetAttrs.hasAttribute(Attribute::NoFree) && 1707 !RetAttrs.hasAttribute(Attribute::Returned) && 1708 !RetAttrs.hasAttribute(Attribute::InAlloca) && 1709 !RetAttrs.hasAttribute(Attribute::SwiftSelf) && 1710 !RetAttrs.hasAttribute(Attribute::SwiftError)), 1711 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'" 1712 "'returned', 'swiftself', and 'swifterror' do not apply to return " 1713 "values!", 1714 V); 1715 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) && 1716 !RetAttrs.hasAttribute(Attribute::WriteOnly) && 1717 !RetAttrs.hasAttribute(Attribute::ReadNone)), 1718 "Attribute '" + RetAttrs.getAsString() + 1719 "' does not apply to function returns", 1720 V); 1721 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 1722 1723 // Verify parameter attributes. 1724 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 1725 Type *Ty = FT->getParamType(i); 1726 AttributeSet ArgAttrs = Attrs.getParamAttributes(i); 1727 1728 if (!IsIntrinsic) { 1729 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg), 1730 "immarg attribute only applies to intrinsics",V); 1731 } 1732 1733 verifyParameterAttrs(ArgAttrs, Ty, V); 1734 1735 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 1736 Assert(!SawNest, "More than one parameter has attribute nest!", V); 1737 SawNest = true; 1738 } 1739 1740 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 1741 Assert(!SawReturned, "More than one parameter has attribute returned!", 1742 V); 1743 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 1744 "Incompatible argument and return types for 'returned' attribute", 1745 V); 1746 SawReturned = true; 1747 } 1748 1749 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 1750 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 1751 Assert(i == 0 || i == 1, 1752 "Attribute 'sret' is not on first or second parameter!", V); 1753 SawSRet = true; 1754 } 1755 1756 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 1757 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 1758 SawSwiftSelf = true; 1759 } 1760 1761 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 1762 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", 1763 V); 1764 SawSwiftError = true; 1765 } 1766 1767 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 1768 Assert(i == FT->getNumParams() - 1, 1769 "inalloca isn't on the last parameter!", V); 1770 } 1771 } 1772 1773 if (!Attrs.hasAttributes(AttributeList::FunctionIndex)) 1774 return; 1775 1776 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V); 1777 1778 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1779 Attrs.hasFnAttribute(Attribute::ReadOnly)), 1780 "Attributes 'readnone and readonly' are incompatible!", V); 1781 1782 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1783 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1784 "Attributes 'readnone and writeonly' are incompatible!", V); 1785 1786 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) && 1787 Attrs.hasFnAttribute(Attribute::WriteOnly)), 1788 "Attributes 'readonly and writeonly' are incompatible!", V); 1789 1790 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1791 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)), 1792 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are " 1793 "incompatible!", 1794 V); 1795 1796 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) && 1797 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)), 1798 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V); 1799 1800 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) && 1801 Attrs.hasFnAttribute(Attribute::AlwaysInline)), 1802 "Attributes 'noinline and alwaysinline' are incompatible!", V); 1803 1804 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) { 1805 Assert(Attrs.hasFnAttribute(Attribute::NoInline), 1806 "Attribute 'optnone' requires 'noinline'!", V); 1807 1808 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize), 1809 "Attributes 'optsize and optnone' are incompatible!", V); 1810 1811 Assert(!Attrs.hasFnAttribute(Attribute::MinSize), 1812 "Attributes 'minsize and optnone' are incompatible!", V); 1813 } 1814 1815 if (Attrs.hasFnAttribute(Attribute::JumpTable)) { 1816 const GlobalValue *GV = cast<GlobalValue>(V); 1817 Assert(GV->hasGlobalUnnamedAddr(), 1818 "Attribute 'jumptable' requires 'unnamed_addr'", V); 1819 } 1820 1821 if (Attrs.hasFnAttribute(Attribute::AllocSize)) { 1822 std::pair<unsigned, Optional<unsigned>> Args = 1823 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex); 1824 1825 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 1826 if (ParamNo >= FT->getNumParams()) { 1827 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 1828 return false; 1829 } 1830 1831 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 1832 CheckFailed("'allocsize' " + Name + 1833 " argument must refer to an integer parameter", 1834 V); 1835 return false; 1836 } 1837 1838 return true; 1839 }; 1840 1841 if (!CheckParam("element size", Args.first)) 1842 return; 1843 1844 if (Args.second && !CheckParam("number of elements", *Args.second)) 1845 return; 1846 } 1847 1848 if (Attrs.hasFnAttribute("frame-pointer")) { 1849 StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex, 1850 "frame-pointer").getValueAsString(); 1851 if (FP != "all" && FP != "non-leaf" && FP != "none") 1852 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 1853 } 1854 1855 if (Attrs.hasFnAttribute("patchable-function-entry")) { 1856 StringRef S0 = Attrs 1857 .getAttribute(AttributeList::FunctionIndex, 1858 "patchable-function-entry") 1859 .getValueAsString(); 1860 StringRef S = S0; 1861 unsigned N; 1862 if (S.getAsInteger(10, N)) 1863 CheckFailed( 1864 "\"patchable-function-entry\" takes an unsigned integer: " + S0, V); 1865 } 1866 } 1867 1868 void Verifier::verifyFunctionMetadata( 1869 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 1870 for (const auto &Pair : MDs) { 1871 if (Pair.first == LLVMContext::MD_prof) { 1872 MDNode *MD = Pair.second; 1873 Assert(MD->getNumOperands() >= 2, 1874 "!prof annotations should have no less than 2 operands", MD); 1875 1876 // Check first operand. 1877 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", 1878 MD); 1879 Assert(isa<MDString>(MD->getOperand(0)), 1880 "expected string with name of the !prof annotation", MD); 1881 MDString *MDS = cast<MDString>(MD->getOperand(0)); 1882 StringRef ProfName = MDS->getString(); 1883 Assert(ProfName.equals("function_entry_count") || 1884 ProfName.equals("synthetic_function_entry_count"), 1885 "first operand should be 'function_entry_count'" 1886 " or 'synthetic_function_entry_count'", 1887 MD); 1888 1889 // Check second operand. 1890 Assert(MD->getOperand(1) != nullptr, "second operand should not be null", 1891 MD); 1892 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)), 1893 "expected integer argument to function_entry_count", MD); 1894 } 1895 } 1896 } 1897 1898 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 1899 if (!ConstantExprVisited.insert(EntryC).second) 1900 return; 1901 1902 SmallVector<const Constant *, 16> Stack; 1903 Stack.push_back(EntryC); 1904 1905 while (!Stack.empty()) { 1906 const Constant *C = Stack.pop_back_val(); 1907 1908 // Check this constant expression. 1909 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 1910 visitConstantExpr(CE); 1911 1912 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 1913 // Global Values get visited separately, but we do need to make sure 1914 // that the global value is in the correct module 1915 Assert(GV->getParent() == &M, "Referencing global in another module!", 1916 EntryC, &M, GV, GV->getParent()); 1917 continue; 1918 } 1919 1920 // Visit all sub-expressions. 1921 for (const Use &U : C->operands()) { 1922 const auto *OpC = dyn_cast<Constant>(U); 1923 if (!OpC) 1924 continue; 1925 if (!ConstantExprVisited.insert(OpC).second) 1926 continue; 1927 Stack.push_back(OpC); 1928 } 1929 } 1930 } 1931 1932 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 1933 if (CE->getOpcode() == Instruction::BitCast) 1934 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 1935 CE->getType()), 1936 "Invalid bitcast", CE); 1937 1938 if (CE->getOpcode() == Instruction::IntToPtr || 1939 CE->getOpcode() == Instruction::PtrToInt) { 1940 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr 1941 ? CE->getType() 1942 : CE->getOperand(0)->getType(); 1943 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr 1944 ? "inttoptr not supported for non-integral pointers" 1945 : "ptrtoint not supported for non-integral pointers"; 1946 Assert( 1947 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())), 1948 Msg); 1949 } 1950 } 1951 1952 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 1953 // There shouldn't be more attribute sets than there are parameters plus the 1954 // function and return value. 1955 return Attrs.getNumAttrSets() <= Params + 2; 1956 } 1957 1958 /// Verify that statepoint intrinsic is well formed. 1959 void Verifier::verifyStatepoint(const CallBase &Call) { 1960 assert(Call.getCalledFunction() && 1961 Call.getCalledFunction()->getIntrinsicID() == 1962 Intrinsic::experimental_gc_statepoint); 1963 1964 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 1965 !Call.onlyAccessesArgMemory(), 1966 "gc.statepoint must read and write all memory to preserve " 1967 "reordering restrictions required by safepoint semantics", 1968 Call); 1969 1970 const int64_t NumPatchBytes = 1971 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 1972 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 1973 Assert(NumPatchBytes >= 0, 1974 "gc.statepoint number of patchable bytes must be " 1975 "positive", 1976 Call); 1977 1978 const Value *Target = Call.getArgOperand(2); 1979 auto *PT = dyn_cast<PointerType>(Target->getType()); 1980 Assert(PT && PT->getElementType()->isFunctionTy(), 1981 "gc.statepoint callee must be of function pointer type", Call, Target); 1982 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType()); 1983 1984 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 1985 Assert(NumCallArgs >= 0, 1986 "gc.statepoint number of arguments to underlying call " 1987 "must be positive", 1988 Call); 1989 const int NumParams = (int)TargetFuncType->getNumParams(); 1990 if (TargetFuncType->isVarArg()) { 1991 Assert(NumCallArgs >= NumParams, 1992 "gc.statepoint mismatch in number of vararg call args", Call); 1993 1994 // TODO: Remove this limitation 1995 Assert(TargetFuncType->getReturnType()->isVoidTy(), 1996 "gc.statepoint doesn't support wrapping non-void " 1997 "vararg functions yet", 1998 Call); 1999 } else 2000 Assert(NumCallArgs == NumParams, 2001 "gc.statepoint mismatch in number of call args", Call); 2002 2003 const uint64_t Flags 2004 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2005 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2006 "unknown flag used in gc.statepoint flags argument", Call); 2007 2008 // Verify that the types of the call parameter arguments match 2009 // the type of the wrapped callee. 2010 AttributeList Attrs = Call.getAttributes(); 2011 for (int i = 0; i < NumParams; i++) { 2012 Type *ParamType = TargetFuncType->getParamType(i); 2013 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2014 Assert(ArgType == ParamType, 2015 "gc.statepoint call argument does not match wrapped " 2016 "function type", 2017 Call); 2018 2019 if (TargetFuncType->isVarArg()) { 2020 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i); 2021 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2022 "Attribute 'sret' cannot be used for vararg call arguments!", 2023 Call); 2024 } 2025 } 2026 2027 const int EndCallArgsInx = 4 + NumCallArgs; 2028 2029 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2030 Assert(isa<ConstantInt>(NumTransitionArgsV), 2031 "gc.statepoint number of transition arguments " 2032 "must be constant integer", 2033 Call); 2034 const int NumTransitionArgs = 2035 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2036 Assert(NumTransitionArgs >= 0, 2037 "gc.statepoint number of transition arguments must be positive", Call); 2038 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2039 2040 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2041 Assert(isa<ConstantInt>(NumDeoptArgsV), 2042 "gc.statepoint number of deoptimization arguments " 2043 "must be constant integer", 2044 Call); 2045 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2046 Assert(NumDeoptArgs >= 0, 2047 "gc.statepoint number of deoptimization arguments " 2048 "must be positive", 2049 Call); 2050 2051 const int ExpectedNumArgs = 2052 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs; 2053 Assert(ExpectedNumArgs <= (int)Call.arg_size(), 2054 "gc.statepoint too few arguments according to length fields", Call); 2055 2056 // Check that the only uses of this gc.statepoint are gc.result or 2057 // gc.relocate calls which are tied to this statepoint and thus part 2058 // of the same statepoint sequence 2059 for (const User *U : Call.users()) { 2060 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2061 Assert(UserCall, "illegal use of statepoint token", Call, U); 2062 if (!UserCall) 2063 continue; 2064 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2065 "gc.result or gc.relocate are the only value uses " 2066 "of a gc.statepoint", 2067 Call, U); 2068 if (isa<GCResultInst>(UserCall)) { 2069 Assert(UserCall->getArgOperand(0) == &Call, 2070 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2071 } else if (isa<GCRelocateInst>(Call)) { 2072 Assert(UserCall->getArgOperand(0) == &Call, 2073 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2074 } 2075 } 2076 2077 // Note: It is legal for a single derived pointer to be listed multiple 2078 // times. It's non-optimal, but it is legal. It can also happen after 2079 // insertion if we strip a bitcast away. 2080 // Note: It is really tempting to check that each base is relocated and 2081 // that a derived pointer is never reused as a base pointer. This turns 2082 // out to be problematic since optimizations run after safepoint insertion 2083 // can recognize equality properties that the insertion logic doesn't know 2084 // about. See example statepoint.ll in the verifier subdirectory 2085 } 2086 2087 void Verifier::verifyFrameRecoverIndices() { 2088 for (auto &Counts : FrameEscapeInfo) { 2089 Function *F = Counts.first; 2090 unsigned EscapedObjectCount = Counts.second.first; 2091 unsigned MaxRecoveredIndex = Counts.second.second; 2092 Assert(MaxRecoveredIndex <= EscapedObjectCount, 2093 "all indices passed to llvm.localrecover must be less than the " 2094 "number of arguments passed to llvm.localescape in the parent " 2095 "function", 2096 F); 2097 } 2098 } 2099 2100 static Instruction *getSuccPad(Instruction *Terminator) { 2101 BasicBlock *UnwindDest; 2102 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2103 UnwindDest = II->getUnwindDest(); 2104 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2105 UnwindDest = CSI->getUnwindDest(); 2106 else 2107 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2108 return UnwindDest->getFirstNonPHI(); 2109 } 2110 2111 void Verifier::verifySiblingFuncletUnwinds() { 2112 SmallPtrSet<Instruction *, 8> Visited; 2113 SmallPtrSet<Instruction *, 8> Active; 2114 for (const auto &Pair : SiblingFuncletInfo) { 2115 Instruction *PredPad = Pair.first; 2116 if (Visited.count(PredPad)) 2117 continue; 2118 Active.insert(PredPad); 2119 Instruction *Terminator = Pair.second; 2120 do { 2121 Instruction *SuccPad = getSuccPad(Terminator); 2122 if (Active.count(SuccPad)) { 2123 // Found a cycle; report error 2124 Instruction *CyclePad = SuccPad; 2125 SmallVector<Instruction *, 8> CycleNodes; 2126 do { 2127 CycleNodes.push_back(CyclePad); 2128 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2129 if (CycleTerminator != CyclePad) 2130 CycleNodes.push_back(CycleTerminator); 2131 CyclePad = getSuccPad(CycleTerminator); 2132 } while (CyclePad != SuccPad); 2133 Assert(false, "EH pads can't handle each other's exceptions", 2134 ArrayRef<Instruction *>(CycleNodes)); 2135 } 2136 // Don't re-walk a node we've already checked 2137 if (!Visited.insert(SuccPad).second) 2138 break; 2139 // Walk to this successor if it has a map entry. 2140 PredPad = SuccPad; 2141 auto TermI = SiblingFuncletInfo.find(PredPad); 2142 if (TermI == SiblingFuncletInfo.end()) 2143 break; 2144 Terminator = TermI->second; 2145 Active.insert(PredPad); 2146 } while (true); 2147 // Each node only has one successor, so we've walked all the active 2148 // nodes' successors. 2149 Active.clear(); 2150 } 2151 } 2152 2153 // visitFunction - Verify that a function is ok. 2154 // 2155 void Verifier::visitFunction(const Function &F) { 2156 visitGlobalValue(F); 2157 2158 // Check function arguments. 2159 FunctionType *FT = F.getFunctionType(); 2160 unsigned NumArgs = F.arg_size(); 2161 2162 Assert(&Context == &F.getContext(), 2163 "Function context does not match Module context!", &F); 2164 2165 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2166 Assert(FT->getNumParams() == NumArgs, 2167 "# formal arguments must match # of arguments for function type!", &F, 2168 FT); 2169 Assert(F.getReturnType()->isFirstClassType() || 2170 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2171 "Functions cannot return aggregate values!", &F); 2172 2173 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2174 "Invalid struct return type!", &F); 2175 2176 AttributeList Attrs = F.getAttributes(); 2177 2178 Assert(verifyAttributeCount(Attrs, FT->getNumParams()), 2179 "Attribute after last parameter!", &F); 2180 2181 bool isLLVMdotName = F.getName().size() >= 5 && 2182 F.getName().substr(0, 5) == "llvm."; 2183 2184 // Check function attributes. 2185 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName); 2186 2187 // On function declarations/definitions, we do not support the builtin 2188 // attribute. We do not check this in VerifyFunctionAttrs since that is 2189 // checking for Attributes that can/can not ever be on functions. 2190 Assert(!Attrs.hasFnAttribute(Attribute::Builtin), 2191 "Attribute 'builtin' can only be applied to a callsite.", &F); 2192 2193 // Check that this function meets the restrictions on this calling convention. 2194 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2195 // restrictions can be lifted. 2196 switch (F.getCallingConv()) { 2197 default: 2198 case CallingConv::C: 2199 break; 2200 case CallingConv::AMDGPU_KERNEL: 2201 case CallingConv::SPIR_KERNEL: 2202 Assert(F.getReturnType()->isVoidTy(), 2203 "Calling convention requires void return type", &F); 2204 LLVM_FALLTHROUGH; 2205 case CallingConv::AMDGPU_VS: 2206 case CallingConv::AMDGPU_HS: 2207 case CallingConv::AMDGPU_GS: 2208 case CallingConv::AMDGPU_PS: 2209 case CallingConv::AMDGPU_CS: 2210 Assert(!F.hasStructRetAttr(), 2211 "Calling convention does not allow sret", &F); 2212 LLVM_FALLTHROUGH; 2213 case CallingConv::Fast: 2214 case CallingConv::Cold: 2215 case CallingConv::Intel_OCL_BI: 2216 case CallingConv::PTX_Kernel: 2217 case CallingConv::PTX_Device: 2218 Assert(!F.isVarArg(), "Calling convention does not support varargs or " 2219 "perfect forwarding!", 2220 &F); 2221 break; 2222 } 2223 2224 // Check that the argument values match the function type for this function... 2225 unsigned i = 0; 2226 for (const Argument &Arg : F.args()) { 2227 Assert(Arg.getType() == FT->getParamType(i), 2228 "Argument value does not match function argument type!", &Arg, 2229 FT->getParamType(i)); 2230 Assert(Arg.getType()->isFirstClassType(), 2231 "Function arguments must have first-class types!", &Arg); 2232 if (!isLLVMdotName) { 2233 Assert(!Arg.getType()->isMetadataTy(), 2234 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2235 Assert(!Arg.getType()->isTokenTy(), 2236 "Function takes token but isn't an intrinsic", &Arg, &F); 2237 } 2238 2239 // Check that swifterror argument is only used by loads and stores. 2240 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) { 2241 verifySwiftErrorValue(&Arg); 2242 } 2243 ++i; 2244 } 2245 2246 if (!isLLVMdotName) 2247 Assert(!F.getReturnType()->isTokenTy(), 2248 "Functions returns a token but isn't an intrinsic", &F); 2249 2250 // Get the function metadata attachments. 2251 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2252 F.getAllMetadata(MDs); 2253 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2254 verifyFunctionMetadata(MDs); 2255 2256 // Check validity of the personality function 2257 if (F.hasPersonalityFn()) { 2258 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2259 if (Per) 2260 Assert(Per->getParent() == F.getParent(), 2261 "Referencing personality function in another module!", 2262 &F, F.getParent(), Per, Per->getParent()); 2263 } 2264 2265 if (F.isMaterializable()) { 2266 // Function has a body somewhere we can't see. 2267 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2268 MDs.empty() ? nullptr : MDs.front().second); 2269 } else if (F.isDeclaration()) { 2270 for (const auto &I : MDs) { 2271 // This is used for call site debug information. 2272 AssertDI(I.first != LLVMContext::MD_dbg || 2273 !cast<DISubprogram>(I.second)->isDistinct(), 2274 "function declaration may only have a unique !dbg attachment", 2275 &F); 2276 Assert(I.first != LLVMContext::MD_prof, 2277 "function declaration may not have a !prof attachment", &F); 2278 2279 // Verify the metadata itself. 2280 visitMDNode(*I.second); 2281 } 2282 Assert(!F.hasPersonalityFn(), 2283 "Function declaration shouldn't have a personality routine", &F); 2284 } else { 2285 // Verify that this function (which has a body) is not named "llvm.*". It 2286 // is not legal to define intrinsics. 2287 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); 2288 2289 // Check the entry node 2290 const BasicBlock *Entry = &F.getEntryBlock(); 2291 Assert(pred_empty(Entry), 2292 "Entry block to function must not have predecessors!", Entry); 2293 2294 // The address of the entry block cannot be taken, unless it is dead. 2295 if (Entry->hasAddressTaken()) { 2296 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(), 2297 "blockaddress may not be used with the entry block!", Entry); 2298 } 2299 2300 unsigned NumDebugAttachments = 0, NumProfAttachments = 0; 2301 // Visit metadata attachments. 2302 for (const auto &I : MDs) { 2303 // Verify that the attachment is legal. 2304 switch (I.first) { 2305 default: 2306 break; 2307 case LLVMContext::MD_dbg: { 2308 ++NumDebugAttachments; 2309 AssertDI(NumDebugAttachments == 1, 2310 "function must have a single !dbg attachment", &F, I.second); 2311 AssertDI(isa<DISubprogram>(I.second), 2312 "function !dbg attachment must be a subprogram", &F, I.second); 2313 auto *SP = cast<DISubprogram>(I.second); 2314 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2315 AssertDI(!AttachedTo || AttachedTo == &F, 2316 "DISubprogram attached to more than one function", SP, &F); 2317 AttachedTo = &F; 2318 break; 2319 } 2320 case LLVMContext::MD_prof: 2321 ++NumProfAttachments; 2322 Assert(NumProfAttachments == 1, 2323 "function must have a single !prof attachment", &F, I.second); 2324 break; 2325 } 2326 2327 // Verify the metadata itself. 2328 visitMDNode(*I.second); 2329 } 2330 } 2331 2332 // If this function is actually an intrinsic, verify that it is only used in 2333 // direct call/invokes, never having its "address taken". 2334 // Only do this if the module is materialized, otherwise we don't have all the 2335 // uses. 2336 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) { 2337 const User *U; 2338 if (F.hasAddressTaken(&U)) 2339 Assert(false, "Invalid user of intrinsic instruction!", U); 2340 } 2341 2342 auto *N = F.getSubprogram(); 2343 HasDebugInfo = (N != nullptr); 2344 if (!HasDebugInfo) 2345 return; 2346 2347 // Check that all !dbg attachments lead to back to N (or, at least, another 2348 // subprogram that describes the same function). 2349 // 2350 // FIXME: Check this incrementally while visiting !dbg attachments. 2351 // FIXME: Only check when N is the canonical subprogram for F. 2352 SmallPtrSet<const MDNode *, 32> Seen; 2353 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 2354 // Be careful about using DILocation here since we might be dealing with 2355 // broken code (this is the Verifier after all). 2356 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 2357 if (!DL) 2358 return; 2359 if (!Seen.insert(DL).second) 2360 return; 2361 2362 Metadata *Parent = DL->getRawScope(); 2363 AssertDI(Parent && isa<DILocalScope>(Parent), 2364 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, 2365 Parent); 2366 DILocalScope *Scope = DL->getInlinedAtScope(); 2367 if (Scope && !Seen.insert(Scope).second) 2368 return; 2369 2370 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr; 2371 2372 // Scope and SP could be the same MDNode and we don't want to skip 2373 // validation in that case 2374 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 2375 return; 2376 2377 // FIXME: Once N is canonical, check "SP == &N". 2378 AssertDI(SP->describes(&F), 2379 "!dbg attachment points at wrong subprogram for function", N, &F, 2380 &I, DL, Scope, SP); 2381 }; 2382 for (auto &BB : F) 2383 for (auto &I : BB) { 2384 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 2385 // The llvm.loop annotations also contain two DILocations. 2386 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 2387 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 2388 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 2389 if (BrokenDebugInfo) 2390 return; 2391 } 2392 } 2393 2394 // verifyBasicBlock - Verify that a basic block is well formed... 2395 // 2396 void Verifier::visitBasicBlock(BasicBlock &BB) { 2397 InstsInThisBlock.clear(); 2398 2399 // Ensure that basic blocks have terminators! 2400 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 2401 2402 // Check constraints that this basic block imposes on all of the PHI nodes in 2403 // it. 2404 if (isa<PHINode>(BB.front())) { 2405 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB)); 2406 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 2407 llvm::sort(Preds); 2408 for (const PHINode &PN : BB.phis()) { 2409 // Ensure that PHI nodes have at least one entry! 2410 Assert(PN.getNumIncomingValues() != 0, 2411 "PHI nodes must have at least one entry. If the block is dead, " 2412 "the PHI should be removed!", 2413 &PN); 2414 Assert(PN.getNumIncomingValues() == Preds.size(), 2415 "PHINode should have one entry for each predecessor of its " 2416 "parent basic block!", 2417 &PN); 2418 2419 // Get and sort all incoming values in the PHI node... 2420 Values.clear(); 2421 Values.reserve(PN.getNumIncomingValues()); 2422 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2423 Values.push_back( 2424 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 2425 llvm::sort(Values); 2426 2427 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 2428 // Check to make sure that if there is more than one entry for a 2429 // particular basic block in this PHI node, that the incoming values are 2430 // all identical. 2431 // 2432 Assert(i == 0 || Values[i].first != Values[i - 1].first || 2433 Values[i].second == Values[i - 1].second, 2434 "PHI node has multiple entries for the same basic block with " 2435 "different incoming values!", 2436 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 2437 2438 // Check to make sure that the predecessors and PHI node entries are 2439 // matched up. 2440 Assert(Values[i].first == Preds[i], 2441 "PHI node entries do not match predecessors!", &PN, 2442 Values[i].first, Preds[i]); 2443 } 2444 } 2445 } 2446 2447 // Check that all instructions have their parent pointers set up correctly. 2448 for (auto &I : BB) 2449 { 2450 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 2451 } 2452 } 2453 2454 void Verifier::visitTerminator(Instruction &I) { 2455 // Ensure that terminators only exist at the end of the basic block. 2456 Assert(&I == I.getParent()->getTerminator(), 2457 "Terminator found in the middle of a basic block!", I.getParent()); 2458 visitInstruction(I); 2459 } 2460 2461 void Verifier::visitBranchInst(BranchInst &BI) { 2462 if (BI.isConditional()) { 2463 Assert(BI.getCondition()->getType()->isIntegerTy(1), 2464 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 2465 } 2466 visitTerminator(BI); 2467 } 2468 2469 void Verifier::visitReturnInst(ReturnInst &RI) { 2470 Function *F = RI.getParent()->getParent(); 2471 unsigned N = RI.getNumOperands(); 2472 if (F->getReturnType()->isVoidTy()) 2473 Assert(N == 0, 2474 "Found return instr that returns non-void in Function of void " 2475 "return type!", 2476 &RI, F->getReturnType()); 2477 else 2478 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 2479 "Function return type does not match operand " 2480 "type of return inst!", 2481 &RI, F->getReturnType()); 2482 2483 // Check to make sure that the return value has necessary properties for 2484 // terminators... 2485 visitTerminator(RI); 2486 } 2487 2488 void Verifier::visitSwitchInst(SwitchInst &SI) { 2489 // Check to make sure that all of the constants in the switch instruction 2490 // have the same type as the switched-on value. 2491 Type *SwitchTy = SI.getCondition()->getType(); 2492 SmallPtrSet<ConstantInt*, 32> Constants; 2493 for (auto &Case : SI.cases()) { 2494 Assert(Case.getCaseValue()->getType() == SwitchTy, 2495 "Switch constants must all be same type as switch value!", &SI); 2496 Assert(Constants.insert(Case.getCaseValue()).second, 2497 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 2498 } 2499 2500 visitTerminator(SI); 2501 } 2502 2503 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 2504 Assert(BI.getAddress()->getType()->isPointerTy(), 2505 "Indirectbr operand must have pointer type!", &BI); 2506 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 2507 Assert(BI.getDestination(i)->getType()->isLabelTy(), 2508 "Indirectbr destinations must all have pointer type!", &BI); 2509 2510 visitTerminator(BI); 2511 } 2512 2513 void Verifier::visitCallBrInst(CallBrInst &CBI) { 2514 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", 2515 &CBI); 2516 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!", 2517 &CBI); 2518 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i) 2519 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(), 2520 "Callbr successors must all have pointer type!", &CBI); 2521 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) { 2522 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)), 2523 "Using an unescaped label as a callbr argument!", &CBI); 2524 if (isa<BasicBlock>(CBI.getOperand(i))) 2525 for (unsigned j = i + 1; j != e; ++j) 2526 Assert(CBI.getOperand(i) != CBI.getOperand(j), 2527 "Duplicate callbr destination!", &CBI); 2528 } 2529 { 2530 SmallPtrSet<BasicBlock *, 4> ArgBBs; 2531 for (Value *V : CBI.args()) 2532 if (auto *BA = dyn_cast<BlockAddress>(V)) 2533 ArgBBs.insert(BA->getBasicBlock()); 2534 for (BasicBlock *BB : CBI.getIndirectDests()) 2535 Assert(ArgBBs.find(BB) != ArgBBs.end(), 2536 "Indirect label missing from arglist.", &CBI); 2537 } 2538 2539 visitTerminator(CBI); 2540 } 2541 2542 void Verifier::visitSelectInst(SelectInst &SI) { 2543 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 2544 SI.getOperand(2)), 2545 "Invalid operands for select instruction!", &SI); 2546 2547 Assert(SI.getTrueValue()->getType() == SI.getType(), 2548 "Select values must have same type as select instruction!", &SI); 2549 visitInstruction(SI); 2550 } 2551 2552 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 2553 /// a pass, if any exist, it's an error. 2554 /// 2555 void Verifier::visitUserOp1(Instruction &I) { 2556 Assert(false, "User-defined operators should not live outside of a pass!", &I); 2557 } 2558 2559 void Verifier::visitTruncInst(TruncInst &I) { 2560 // Get the source and destination types 2561 Type *SrcTy = I.getOperand(0)->getType(); 2562 Type *DestTy = I.getType(); 2563 2564 // Get the size of the types in bits, we'll need this later 2565 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2566 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2567 2568 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 2569 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 2570 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2571 "trunc source and destination must both be a vector or neither", &I); 2572 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 2573 2574 visitInstruction(I); 2575 } 2576 2577 void Verifier::visitZExtInst(ZExtInst &I) { 2578 // Get the source and destination types 2579 Type *SrcTy = I.getOperand(0)->getType(); 2580 Type *DestTy = I.getType(); 2581 2582 // Get the size of the types in bits, we'll need this later 2583 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 2584 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 2585 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2586 "zext source and destination must both be a vector or neither", &I); 2587 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2588 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2589 2590 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 2591 2592 visitInstruction(I); 2593 } 2594 2595 void Verifier::visitSExtInst(SExtInst &I) { 2596 // Get the source and destination types 2597 Type *SrcTy = I.getOperand(0)->getType(); 2598 Type *DestTy = I.getType(); 2599 2600 // Get the size of the types in bits, we'll need this later 2601 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2602 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2603 2604 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 2605 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 2606 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2607 "sext source and destination must both be a vector or neither", &I); 2608 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 2609 2610 visitInstruction(I); 2611 } 2612 2613 void Verifier::visitFPTruncInst(FPTruncInst &I) { 2614 // Get the source and destination types 2615 Type *SrcTy = I.getOperand(0)->getType(); 2616 Type *DestTy = I.getType(); 2617 // Get the size of the types in bits, we'll need this later 2618 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2619 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2620 2621 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 2622 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 2623 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2624 "fptrunc source and destination must both be a vector or neither", &I); 2625 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 2626 2627 visitInstruction(I); 2628 } 2629 2630 void Verifier::visitFPExtInst(FPExtInst &I) { 2631 // Get the source and destination types 2632 Type *SrcTy = I.getOperand(0)->getType(); 2633 Type *DestTy = I.getType(); 2634 2635 // Get the size of the types in bits, we'll need this later 2636 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 2637 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 2638 2639 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 2640 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 2641 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), 2642 "fpext source and destination must both be a vector or neither", &I); 2643 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 2644 2645 visitInstruction(I); 2646 } 2647 2648 void Verifier::visitUIToFPInst(UIToFPInst &I) { 2649 // Get the source and destination types 2650 Type *SrcTy = I.getOperand(0)->getType(); 2651 Type *DestTy = I.getType(); 2652 2653 bool SrcVec = SrcTy->isVectorTy(); 2654 bool DstVec = DestTy->isVectorTy(); 2655 2656 Assert(SrcVec == DstVec, 2657 "UIToFP source and dest must both be vector or scalar", &I); 2658 Assert(SrcTy->isIntOrIntVectorTy(), 2659 "UIToFP source must be integer or integer vector", &I); 2660 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 2661 &I); 2662 2663 if (SrcVec && DstVec) 2664 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2665 cast<VectorType>(DestTy)->getNumElements(), 2666 "UIToFP source and dest vector length mismatch", &I); 2667 2668 visitInstruction(I); 2669 } 2670 2671 void Verifier::visitSIToFPInst(SIToFPInst &I) { 2672 // Get the source and destination types 2673 Type *SrcTy = I.getOperand(0)->getType(); 2674 Type *DestTy = I.getType(); 2675 2676 bool SrcVec = SrcTy->isVectorTy(); 2677 bool DstVec = DestTy->isVectorTy(); 2678 2679 Assert(SrcVec == DstVec, 2680 "SIToFP source and dest must both be vector or scalar", &I); 2681 Assert(SrcTy->isIntOrIntVectorTy(), 2682 "SIToFP source must be integer or integer vector", &I); 2683 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 2684 &I); 2685 2686 if (SrcVec && DstVec) 2687 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2688 cast<VectorType>(DestTy)->getNumElements(), 2689 "SIToFP source and dest vector length mismatch", &I); 2690 2691 visitInstruction(I); 2692 } 2693 2694 void Verifier::visitFPToUIInst(FPToUIInst &I) { 2695 // Get the source and destination types 2696 Type *SrcTy = I.getOperand(0)->getType(); 2697 Type *DestTy = I.getType(); 2698 2699 bool SrcVec = SrcTy->isVectorTy(); 2700 bool DstVec = DestTy->isVectorTy(); 2701 2702 Assert(SrcVec == DstVec, 2703 "FPToUI source and dest must both be vector or scalar", &I); 2704 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", 2705 &I); 2706 Assert(DestTy->isIntOrIntVectorTy(), 2707 "FPToUI result must be integer or integer vector", &I); 2708 2709 if (SrcVec && DstVec) 2710 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2711 cast<VectorType>(DestTy)->getNumElements(), 2712 "FPToUI source and dest vector length mismatch", &I); 2713 2714 visitInstruction(I); 2715 } 2716 2717 void Verifier::visitFPToSIInst(FPToSIInst &I) { 2718 // Get the source and destination types 2719 Type *SrcTy = I.getOperand(0)->getType(); 2720 Type *DestTy = I.getType(); 2721 2722 bool SrcVec = SrcTy->isVectorTy(); 2723 bool DstVec = DestTy->isVectorTy(); 2724 2725 Assert(SrcVec == DstVec, 2726 "FPToSI source and dest must both be vector or scalar", &I); 2727 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", 2728 &I); 2729 Assert(DestTy->isIntOrIntVectorTy(), 2730 "FPToSI result must be integer or integer vector", &I); 2731 2732 if (SrcVec && DstVec) 2733 Assert(cast<VectorType>(SrcTy)->getNumElements() == 2734 cast<VectorType>(DestTy)->getNumElements(), 2735 "FPToSI source and dest vector length mismatch", &I); 2736 2737 visitInstruction(I); 2738 } 2739 2740 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 2741 // Get the source and destination types 2742 Type *SrcTy = I.getOperand(0)->getType(); 2743 Type *DestTy = I.getType(); 2744 2745 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 2746 2747 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) 2748 Assert(!DL.isNonIntegralPointerType(PTy), 2749 "ptrtoint not supported for non-integral pointers"); 2750 2751 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 2752 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 2753 &I); 2754 2755 if (SrcTy->isVectorTy()) { 2756 VectorType *VSrc = cast<VectorType>(SrcTy); 2757 VectorType *VDest = cast<VectorType>(DestTy); 2758 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2759 "PtrToInt Vector width mismatch", &I); 2760 } 2761 2762 visitInstruction(I); 2763 } 2764 2765 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 2766 // Get the source and destination types 2767 Type *SrcTy = I.getOperand(0)->getType(); 2768 Type *DestTy = I.getType(); 2769 2770 Assert(SrcTy->isIntOrIntVectorTy(), 2771 "IntToPtr source must be an integral", &I); 2772 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 2773 2774 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) 2775 Assert(!DL.isNonIntegralPointerType(PTy), 2776 "inttoptr not supported for non-integral pointers"); 2777 2778 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 2779 &I); 2780 if (SrcTy->isVectorTy()) { 2781 VectorType *VSrc = cast<VectorType>(SrcTy); 2782 VectorType *VDest = cast<VectorType>(DestTy); 2783 Assert(VSrc->getNumElements() == VDest->getNumElements(), 2784 "IntToPtr Vector width mismatch", &I); 2785 } 2786 visitInstruction(I); 2787 } 2788 2789 void Verifier::visitBitCastInst(BitCastInst &I) { 2790 Assert( 2791 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 2792 "Invalid bitcast", &I); 2793 visitInstruction(I); 2794 } 2795 2796 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2797 Type *SrcTy = I.getOperand(0)->getType(); 2798 Type *DestTy = I.getType(); 2799 2800 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 2801 &I); 2802 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 2803 &I); 2804 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 2805 "AddrSpaceCast must be between different address spaces", &I); 2806 if (SrcTy->isVectorTy()) 2807 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(), 2808 "AddrSpaceCast vector pointer number of elements mismatch", &I); 2809 visitInstruction(I); 2810 } 2811 2812 /// visitPHINode - Ensure that a PHI node is well formed. 2813 /// 2814 void Verifier::visitPHINode(PHINode &PN) { 2815 // Ensure that the PHI nodes are all grouped together at the top of the block. 2816 // This can be tested by checking whether the instruction before this is 2817 // either nonexistent (because this is begin()) or is a PHI node. If not, 2818 // then there is some other instruction before a PHI. 2819 Assert(&PN == &PN.getParent()->front() || 2820 isa<PHINode>(--BasicBlock::iterator(&PN)), 2821 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 2822 2823 // Check that a PHI doesn't yield a Token. 2824 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 2825 2826 // Check that all of the values of the PHI node have the same type as the 2827 // result, and that the incoming blocks are really basic blocks. 2828 for (Value *IncValue : PN.incoming_values()) { 2829 Assert(PN.getType() == IncValue->getType(), 2830 "PHI node operands are not the same type as the result!", &PN); 2831 } 2832 2833 // All other PHI node constraints are checked in the visitBasicBlock method. 2834 2835 visitInstruction(PN); 2836 } 2837 2838 void Verifier::visitCallBase(CallBase &Call) { 2839 Assert(Call.getCalledValue()->getType()->isPointerTy(), 2840 "Called function must be a pointer!", Call); 2841 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType()); 2842 2843 Assert(FPTy->getElementType()->isFunctionTy(), 2844 "Called function is not pointer to function type!", Call); 2845 2846 Assert(FPTy->getElementType() == Call.getFunctionType(), 2847 "Called function is not the same type as the call!", Call); 2848 2849 FunctionType *FTy = Call.getFunctionType(); 2850 2851 // Verify that the correct number of arguments are being passed 2852 if (FTy->isVarArg()) 2853 Assert(Call.arg_size() >= FTy->getNumParams(), 2854 "Called function requires more parameters than were provided!", 2855 Call); 2856 else 2857 Assert(Call.arg_size() == FTy->getNumParams(), 2858 "Incorrect number of arguments passed to called function!", Call); 2859 2860 // Verify that all arguments to the call match the function type. 2861 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2862 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 2863 "Call parameter type does not match function signature!", 2864 Call.getArgOperand(i), FTy->getParamType(i), Call); 2865 2866 AttributeList Attrs = Call.getAttributes(); 2867 2868 Assert(verifyAttributeCount(Attrs, Call.arg_size()), 2869 "Attribute after last parameter!", Call); 2870 2871 bool IsIntrinsic = Call.getCalledFunction() && 2872 Call.getCalledFunction()->getName().startswith("llvm."); 2873 2874 Function *Callee 2875 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts()); 2876 2877 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) { 2878 // Don't allow speculatable on call sites, unless the underlying function 2879 // declaration is also speculatable. 2880 Assert(Callee && Callee->isSpeculatable(), 2881 "speculatable attribute may not apply to call sites", Call); 2882 } 2883 2884 // Verify call attributes. 2885 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic); 2886 2887 // Conservatively check the inalloca argument. 2888 // We have a bug if we can find that there is an underlying alloca without 2889 // inalloca. 2890 if (Call.hasInAllocaArgument()) { 2891 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 2892 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 2893 Assert(AI->isUsedWithInAlloca(), 2894 "inalloca argument for call has mismatched alloca", AI, Call); 2895 } 2896 2897 // For each argument of the callsite, if it has the swifterror argument, 2898 // make sure the underlying alloca/parameter it comes from has a swifterror as 2899 // well. 2900 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2901 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 2902 Value *SwiftErrorArg = Call.getArgOperand(i); 2903 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 2904 Assert(AI->isSwiftError(), 2905 "swifterror argument for call has mismatched alloca", AI, Call); 2906 continue; 2907 } 2908 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 2909 Assert(ArgI, 2910 "swifterror argument should come from an alloca or parameter", 2911 SwiftErrorArg, Call); 2912 Assert(ArgI->hasSwiftErrorAttr(), 2913 "swifterror argument for call has mismatched parameter", ArgI, 2914 Call); 2915 } 2916 2917 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) { 2918 // Don't allow immarg on call sites, unless the underlying declaration 2919 // also has the matching immarg. 2920 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 2921 "immarg may not apply only to call sites", 2922 Call.getArgOperand(i), Call); 2923 } 2924 2925 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 2926 Value *ArgVal = Call.getArgOperand(i); 2927 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 2928 "immarg operand has non-immediate parameter", ArgVal, Call); 2929 } 2930 } 2931 2932 if (FTy->isVarArg()) { 2933 // FIXME? is 'nest' even legal here? 2934 bool SawNest = false; 2935 bool SawReturned = false; 2936 2937 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 2938 if (Attrs.hasParamAttribute(Idx, Attribute::Nest)) 2939 SawNest = true; 2940 if (Attrs.hasParamAttribute(Idx, Attribute::Returned)) 2941 SawReturned = true; 2942 } 2943 2944 // Check attributes on the varargs part. 2945 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 2946 Type *Ty = Call.getArgOperand(Idx)->getType(); 2947 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx); 2948 verifyParameterAttrs(ArgAttrs, Ty, &Call); 2949 2950 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2951 Assert(!SawNest, "More than one parameter has attribute nest!", Call); 2952 SawNest = true; 2953 } 2954 2955 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2956 Assert(!SawReturned, "More than one parameter has attribute returned!", 2957 Call); 2958 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 2959 "Incompatible argument and return types for 'returned' " 2960 "attribute", 2961 Call); 2962 SawReturned = true; 2963 } 2964 2965 // Statepoint intrinsic is vararg but the wrapped function may be not. 2966 // Allow sret here and check the wrapped function in verifyStatepoint. 2967 if (!Call.getCalledFunction() || 2968 Call.getCalledFunction()->getIntrinsicID() != 2969 Intrinsic::experimental_gc_statepoint) 2970 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet), 2971 "Attribute 'sret' cannot be used for vararg call arguments!", 2972 Call); 2973 2974 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 2975 Assert(Idx == Call.arg_size() - 1, 2976 "inalloca isn't on the last argument!", Call); 2977 } 2978 } 2979 2980 // Verify that there's no metadata unless it's a direct call to an intrinsic. 2981 if (!IsIntrinsic) { 2982 for (Type *ParamTy : FTy->params()) { 2983 Assert(!ParamTy->isMetadataTy(), 2984 "Function has metadata parameter but isn't an intrinsic", Call); 2985 Assert(!ParamTy->isTokenTy(), 2986 "Function has token parameter but isn't an intrinsic", Call); 2987 } 2988 } 2989 2990 // Verify that indirect calls don't return tokens. 2991 if (!Call.getCalledFunction()) 2992 Assert(!FTy->getReturnType()->isTokenTy(), 2993 "Return type cannot be token for indirect call!"); 2994 2995 if (Function *F = Call.getCalledFunction()) 2996 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 2997 visitIntrinsicCall(ID, Call); 2998 2999 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3000 // most one "gc-transition", and at most one "cfguardtarget" operand bundle. 3001 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3002 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false; 3003 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3004 OperandBundleUse BU = Call.getOperandBundleAt(i); 3005 uint32_t Tag = BU.getTagID(); 3006 if (Tag == LLVMContext::OB_deopt) { 3007 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3008 FoundDeoptBundle = true; 3009 } else if (Tag == LLVMContext::OB_gc_transition) { 3010 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3011 Call); 3012 FoundGCTransitionBundle = true; 3013 } else if (Tag == LLVMContext::OB_funclet) { 3014 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3015 FoundFuncletBundle = true; 3016 Assert(BU.Inputs.size() == 1, 3017 "Expected exactly one funclet bundle operand", Call); 3018 Assert(isa<FuncletPadInst>(BU.Inputs.front()), 3019 "Funclet bundle operands should correspond to a FuncletPadInst", 3020 Call); 3021 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3022 Assert(!FoundCFGuardTargetBundle, 3023 "Multiple CFGuardTarget operand bundles", Call); 3024 FoundCFGuardTargetBundle = true; 3025 Assert(BU.Inputs.size() == 1, 3026 "Expected exactly one cfguardtarget bundle operand", Call); 3027 } 3028 } 3029 3030 // Verify that each inlinable callsite of a debug-info-bearing function in a 3031 // debug-info-bearing function has a debug location attached to it. Failure to 3032 // do so causes assertion failures when the inliner sets up inline scope info. 3033 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3034 Call.getCalledFunction()->getSubprogram()) 3035 AssertDI(Call.getDebugLoc(), 3036 "inlinable function call in a function with " 3037 "debug info must have a !dbg location", 3038 Call); 3039 3040 visitInstruction(Call); 3041 } 3042 3043 /// Two types are "congruent" if they are identical, or if they are both pointer 3044 /// types with different pointee types and the same address space. 3045 static bool isTypeCongruent(Type *L, Type *R) { 3046 if (L == R) 3047 return true; 3048 PointerType *PL = dyn_cast<PointerType>(L); 3049 PointerType *PR = dyn_cast<PointerType>(R); 3050 if (!PL || !PR) 3051 return false; 3052 return PL->getAddressSpace() == PR->getAddressSpace(); 3053 } 3054 3055 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) { 3056 static const Attribute::AttrKind ABIAttrs[] = { 3057 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3058 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf, 3059 Attribute::SwiftError}; 3060 AttrBuilder Copy; 3061 for (auto AK : ABIAttrs) { 3062 if (Attrs.hasParamAttribute(I, AK)) 3063 Copy.addAttribute(AK); 3064 } 3065 if (Attrs.hasParamAttribute(I, Attribute::Alignment)) 3066 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3067 return Copy; 3068 } 3069 3070 void Verifier::verifyMustTailCall(CallInst &CI) { 3071 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3072 3073 // - The caller and callee prototypes must match. Pointer types of 3074 // parameters or return types may differ in pointee type, but not 3075 // address space. 3076 Function *F = CI.getParent()->getParent(); 3077 FunctionType *CallerTy = F->getFunctionType(); 3078 FunctionType *CalleeTy = CI.getFunctionType(); 3079 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3080 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3081 "cannot guarantee tail call due to mismatched parameter counts", 3082 &CI); 3083 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3084 Assert( 3085 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3086 "cannot guarantee tail call due to mismatched parameter types", &CI); 3087 } 3088 } 3089 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3090 "cannot guarantee tail call due to mismatched varargs", &CI); 3091 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3092 "cannot guarantee tail call due to mismatched return types", &CI); 3093 3094 // - The calling conventions of the caller and callee must match. 3095 Assert(F->getCallingConv() == CI.getCallingConv(), 3096 "cannot guarantee tail call due to mismatched calling conv", &CI); 3097 3098 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3099 // returned, and inalloca, must match. 3100 AttributeList CallerAttrs = F->getAttributes(); 3101 AttributeList CalleeAttrs = CI.getAttributes(); 3102 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3103 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs); 3104 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs); 3105 Assert(CallerABIAttrs == CalleeABIAttrs, 3106 "cannot guarantee tail call due to mismatched ABI impacting " 3107 "function attributes", 3108 &CI, CI.getOperand(I)); 3109 } 3110 3111 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3112 // or a pointer bitcast followed by a ret instruction. 3113 // - The ret instruction must return the (possibly bitcasted) value 3114 // produced by the call or void. 3115 Value *RetVal = &CI; 3116 Instruction *Next = CI.getNextNode(); 3117 3118 // Handle the optional bitcast. 3119 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3120 Assert(BI->getOperand(0) == RetVal, 3121 "bitcast following musttail call must use the call", BI); 3122 RetVal = BI; 3123 Next = BI->getNextNode(); 3124 } 3125 3126 // Check the return. 3127 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3128 Assert(Ret, "musttail call must precede a ret with an optional bitcast", 3129 &CI); 3130 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal, 3131 "musttail call result must be returned", Ret); 3132 } 3133 3134 void Verifier::visitCallInst(CallInst &CI) { 3135 visitCallBase(CI); 3136 3137 if (CI.isMustTailCall()) 3138 verifyMustTailCall(CI); 3139 } 3140 3141 void Verifier::visitInvokeInst(InvokeInst &II) { 3142 visitCallBase(II); 3143 3144 // Verify that the first non-PHI instruction of the unwind destination is an 3145 // exception handling instruction. 3146 Assert( 3147 II.getUnwindDest()->isEHPad(), 3148 "The unwind destination does not have an exception handling instruction!", 3149 &II); 3150 3151 visitTerminator(II); 3152 } 3153 3154 /// visitUnaryOperator - Check the argument to the unary operator. 3155 /// 3156 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3157 Assert(U.getType() == U.getOperand(0)->getType(), 3158 "Unary operators must have same type for" 3159 "operands and result!", 3160 &U); 3161 3162 switch (U.getOpcode()) { 3163 // Check that floating-point arithmetic operators are only used with 3164 // floating-point operands. 3165 case Instruction::FNeg: 3166 Assert(U.getType()->isFPOrFPVectorTy(), 3167 "FNeg operator only works with float types!", &U); 3168 break; 3169 default: 3170 llvm_unreachable("Unknown UnaryOperator opcode!"); 3171 } 3172 3173 visitInstruction(U); 3174 } 3175 3176 /// visitBinaryOperator - Check that both arguments to the binary operator are 3177 /// of the same type! 3178 /// 3179 void Verifier::visitBinaryOperator(BinaryOperator &B) { 3180 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 3181 "Both operands to a binary operator are not of the same type!", &B); 3182 3183 switch (B.getOpcode()) { 3184 // Check that integer arithmetic operators are only used with 3185 // integral operands. 3186 case Instruction::Add: 3187 case Instruction::Sub: 3188 case Instruction::Mul: 3189 case Instruction::SDiv: 3190 case Instruction::UDiv: 3191 case Instruction::SRem: 3192 case Instruction::URem: 3193 Assert(B.getType()->isIntOrIntVectorTy(), 3194 "Integer arithmetic operators only work with integral types!", &B); 3195 Assert(B.getType() == B.getOperand(0)->getType(), 3196 "Integer arithmetic operators must have same type " 3197 "for operands and result!", 3198 &B); 3199 break; 3200 // Check that floating-point arithmetic operators are only used with 3201 // floating-point operands. 3202 case Instruction::FAdd: 3203 case Instruction::FSub: 3204 case Instruction::FMul: 3205 case Instruction::FDiv: 3206 case Instruction::FRem: 3207 Assert(B.getType()->isFPOrFPVectorTy(), 3208 "Floating-point arithmetic operators only work with " 3209 "floating-point types!", 3210 &B); 3211 Assert(B.getType() == B.getOperand(0)->getType(), 3212 "Floating-point arithmetic operators must have same type " 3213 "for operands and result!", 3214 &B); 3215 break; 3216 // Check that logical operators are only used with integral operands. 3217 case Instruction::And: 3218 case Instruction::Or: 3219 case Instruction::Xor: 3220 Assert(B.getType()->isIntOrIntVectorTy(), 3221 "Logical operators only work with integral types!", &B); 3222 Assert(B.getType() == B.getOperand(0)->getType(), 3223 "Logical operators must have same type for operands and result!", 3224 &B); 3225 break; 3226 case Instruction::Shl: 3227 case Instruction::LShr: 3228 case Instruction::AShr: 3229 Assert(B.getType()->isIntOrIntVectorTy(), 3230 "Shifts only work with integral types!", &B); 3231 Assert(B.getType() == B.getOperand(0)->getType(), 3232 "Shift return type must be same as operands!", &B); 3233 break; 3234 default: 3235 llvm_unreachable("Unknown BinaryOperator opcode!"); 3236 } 3237 3238 visitInstruction(B); 3239 } 3240 3241 void Verifier::visitICmpInst(ICmpInst &IC) { 3242 // Check that the operands are the same type 3243 Type *Op0Ty = IC.getOperand(0)->getType(); 3244 Type *Op1Ty = IC.getOperand(1)->getType(); 3245 Assert(Op0Ty == Op1Ty, 3246 "Both operands to ICmp instruction are not of the same type!", &IC); 3247 // Check that the operands are the right type 3248 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 3249 "Invalid operand types for ICmp instruction", &IC); 3250 // Check that the predicate is valid. 3251 Assert(IC.isIntPredicate(), 3252 "Invalid predicate in ICmp instruction!", &IC); 3253 3254 visitInstruction(IC); 3255 } 3256 3257 void Verifier::visitFCmpInst(FCmpInst &FC) { 3258 // Check that the operands are the same type 3259 Type *Op0Ty = FC.getOperand(0)->getType(); 3260 Type *Op1Ty = FC.getOperand(1)->getType(); 3261 Assert(Op0Ty == Op1Ty, 3262 "Both operands to FCmp instruction are not of the same type!", &FC); 3263 // Check that the operands are the right type 3264 Assert(Op0Ty->isFPOrFPVectorTy(), 3265 "Invalid operand types for FCmp instruction", &FC); 3266 // Check that the predicate is valid. 3267 Assert(FC.isFPPredicate(), 3268 "Invalid predicate in FCmp instruction!", &FC); 3269 3270 visitInstruction(FC); 3271 } 3272 3273 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 3274 Assert( 3275 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 3276 "Invalid extractelement operands!", &EI); 3277 visitInstruction(EI); 3278 } 3279 3280 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 3281 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 3282 IE.getOperand(2)), 3283 "Invalid insertelement operands!", &IE); 3284 visitInstruction(IE); 3285 } 3286 3287 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 3288 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 3289 SV.getOperand(2)), 3290 "Invalid shufflevector operands!", &SV); 3291 visitInstruction(SV); 3292 } 3293 3294 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 3295 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 3296 3297 Assert(isa<PointerType>(TargetTy), 3298 "GEP base pointer is not a vector or a vector of pointers", &GEP); 3299 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 3300 3301 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end()); 3302 Assert(all_of( 3303 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }), 3304 "GEP indexes must be integers", &GEP); 3305 Type *ElTy = 3306 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 3307 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); 3308 3309 Assert(GEP.getType()->isPtrOrPtrVectorTy() && 3310 GEP.getResultElementType() == ElTy, 3311 "GEP is not of right type for indices!", &GEP, ElTy); 3312 3313 if (GEP.getType()->isVectorTy()) { 3314 // Additional checks for vector GEPs. 3315 unsigned GEPWidth = GEP.getType()->getVectorNumElements(); 3316 if (GEP.getPointerOperandType()->isVectorTy()) 3317 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(), 3318 "Vector GEP result width doesn't match operand's", &GEP); 3319 for (Value *Idx : Idxs) { 3320 Type *IndexTy = Idx->getType(); 3321 if (IndexTy->isVectorTy()) { 3322 unsigned IndexWidth = IndexTy->getVectorNumElements(); 3323 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 3324 } 3325 Assert(IndexTy->isIntOrIntVectorTy(), 3326 "All GEP indices should be of integer type"); 3327 } 3328 } 3329 3330 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { 3331 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(), 3332 "GEP address space doesn't match type", &GEP); 3333 } 3334 3335 visitInstruction(GEP); 3336 } 3337 3338 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 3339 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 3340 } 3341 3342 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 3343 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 3344 "precondition violation"); 3345 3346 unsigned NumOperands = Range->getNumOperands(); 3347 Assert(NumOperands % 2 == 0, "Unfinished range!", Range); 3348 unsigned NumRanges = NumOperands / 2; 3349 Assert(NumRanges >= 1, "It should have at least one range!", Range); 3350 3351 ConstantRange LastRange(1, true); // Dummy initial value 3352 for (unsigned i = 0; i < NumRanges; ++i) { 3353 ConstantInt *Low = 3354 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 3355 Assert(Low, "The lower limit must be an integer!", Low); 3356 ConstantInt *High = 3357 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 3358 Assert(High, "The upper limit must be an integer!", High); 3359 Assert(High->getType() == Low->getType() && High->getType() == Ty, 3360 "Range types must match instruction type!", &I); 3361 3362 APInt HighV = High->getValue(); 3363 APInt LowV = Low->getValue(); 3364 ConstantRange CurRange(LowV, HighV); 3365 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(), 3366 "Range must not be empty!", Range); 3367 if (i != 0) { 3368 Assert(CurRange.intersectWith(LastRange).isEmptySet(), 3369 "Intervals are overlapping", Range); 3370 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 3371 Range); 3372 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 3373 Range); 3374 } 3375 LastRange = ConstantRange(LowV, HighV); 3376 } 3377 if (NumRanges > 2) { 3378 APInt FirstLow = 3379 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 3380 APInt FirstHigh = 3381 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 3382 ConstantRange FirstRange(FirstLow, FirstHigh); 3383 Assert(FirstRange.intersectWith(LastRange).isEmptySet(), 3384 "Intervals are overlapping", Range); 3385 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 3386 Range); 3387 } 3388 } 3389 3390 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 3391 unsigned Size = DL.getTypeSizeInBits(Ty); 3392 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 3393 Assert(!(Size & (Size - 1)), 3394 "atomic memory access' operand must have a power-of-two size", Ty, I); 3395 } 3396 3397 void Verifier::visitLoadInst(LoadInst &LI) { 3398 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 3399 Assert(PTy, "Load operand must be a pointer.", &LI); 3400 Type *ElTy = LI.getType(); 3401 Assert(LI.getAlignment() <= Value::MaximumAlignment, 3402 "huge alignment values are unsupported", &LI); 3403 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI); 3404 if (LI.isAtomic()) { 3405 Assert(LI.getOrdering() != AtomicOrdering::Release && 3406 LI.getOrdering() != AtomicOrdering::AcquireRelease, 3407 "Load cannot have Release ordering", &LI); 3408 Assert(LI.getAlignment() != 0, 3409 "Atomic load must specify explicit alignment", &LI); 3410 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3411 "atomic load operand must have integer, pointer, or floating point " 3412 "type!", 3413 ElTy, &LI); 3414 checkAtomicMemAccessSize(ElTy, &LI); 3415 } else { 3416 Assert(LI.getSyncScopeID() == SyncScope::System, 3417 "Non-atomic load cannot have SynchronizationScope specified", &LI); 3418 } 3419 3420 visitInstruction(LI); 3421 } 3422 3423 void Verifier::visitStoreInst(StoreInst &SI) { 3424 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 3425 Assert(PTy, "Store operand must be a pointer.", &SI); 3426 Type *ElTy = PTy->getElementType(); 3427 Assert(ElTy == SI.getOperand(0)->getType(), 3428 "Stored value type does not match pointer operand type!", &SI, ElTy); 3429 Assert(SI.getAlignment() <= Value::MaximumAlignment, 3430 "huge alignment values are unsupported", &SI); 3431 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI); 3432 if (SI.isAtomic()) { 3433 Assert(SI.getOrdering() != AtomicOrdering::Acquire && 3434 SI.getOrdering() != AtomicOrdering::AcquireRelease, 3435 "Store cannot have Acquire ordering", &SI); 3436 Assert(SI.getAlignment() != 0, 3437 "Atomic store must specify explicit alignment", &SI); 3438 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 3439 "atomic store operand must have integer, pointer, or floating point " 3440 "type!", 3441 ElTy, &SI); 3442 checkAtomicMemAccessSize(ElTy, &SI); 3443 } else { 3444 Assert(SI.getSyncScopeID() == SyncScope::System, 3445 "Non-atomic store cannot have SynchronizationScope specified", &SI); 3446 } 3447 visitInstruction(SI); 3448 } 3449 3450 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 3451 void Verifier::verifySwiftErrorCall(CallBase &Call, 3452 const Value *SwiftErrorVal) { 3453 unsigned Idx = 0; 3454 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) { 3455 if (*I == SwiftErrorVal) { 3456 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError), 3457 "swifterror value when used in a callsite should be marked " 3458 "with swifterror attribute", 3459 SwiftErrorVal, Call); 3460 } 3461 } 3462 } 3463 3464 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 3465 // Check that swifterror value is only used by loads, stores, or as 3466 // a swifterror argument. 3467 for (const User *U : SwiftErrorVal->users()) { 3468 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 3469 isa<InvokeInst>(U), 3470 "swifterror value can only be loaded and stored from, or " 3471 "as a swifterror argument!", 3472 SwiftErrorVal, U); 3473 // If it is used by a store, check it is the second operand. 3474 if (auto StoreI = dyn_cast<StoreInst>(U)) 3475 Assert(StoreI->getOperand(1) == SwiftErrorVal, 3476 "swifterror value should be the second operand when used " 3477 "by stores", SwiftErrorVal, U); 3478 if (auto *Call = dyn_cast<CallBase>(U)) 3479 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 3480 } 3481 } 3482 3483 void Verifier::visitAllocaInst(AllocaInst &AI) { 3484 SmallPtrSet<Type*, 4> Visited; 3485 PointerType *PTy = AI.getType(); 3486 // TODO: Relax this restriction? 3487 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(), 3488 "Allocation instruction pointer not in the stack address space!", 3489 &AI); 3490 Assert(AI.getAllocatedType()->isSized(&Visited), 3491 "Cannot allocate unsized type", &AI); 3492 Assert(AI.getArraySize()->getType()->isIntegerTy(), 3493 "Alloca array size must have integer type", &AI); 3494 Assert(AI.getAlignment() <= Value::MaximumAlignment, 3495 "huge alignment values are unsupported", &AI); 3496 3497 if (AI.isSwiftError()) { 3498 verifySwiftErrorValue(&AI); 3499 } 3500 3501 visitInstruction(AI); 3502 } 3503 3504 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 3505 3506 // FIXME: more conditions??? 3507 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic, 3508 "cmpxchg instructions must be atomic.", &CXI); 3509 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic, 3510 "cmpxchg instructions must be atomic.", &CXI); 3511 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered, 3512 "cmpxchg instructions cannot be unordered.", &CXI); 3513 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered, 3514 "cmpxchg instructions cannot be unordered.", &CXI); 3515 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()), 3516 "cmpxchg instructions failure argument shall be no stronger than the " 3517 "success argument", 3518 &CXI); 3519 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release && 3520 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease, 3521 "cmpxchg failure ordering cannot include release semantics", &CXI); 3522 3523 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType()); 3524 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI); 3525 Type *ElTy = PTy->getElementType(); 3526 Assert(ElTy->isIntOrPtrTy(), 3527 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 3528 checkAtomicMemAccessSize(ElTy, &CXI); 3529 Assert(ElTy == CXI.getOperand(1)->getType(), 3530 "Expected value type does not match pointer operand type!", &CXI, 3531 ElTy); 3532 Assert(ElTy == CXI.getOperand(2)->getType(), 3533 "Stored value type does not match pointer operand type!", &CXI, ElTy); 3534 visitInstruction(CXI); 3535 } 3536 3537 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 3538 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic, 3539 "atomicrmw instructions must be atomic.", &RMWI); 3540 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered, 3541 "atomicrmw instructions cannot be unordered.", &RMWI); 3542 auto Op = RMWI.getOperation(); 3543 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType()); 3544 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI); 3545 Type *ElTy = PTy->getElementType(); 3546 if (Op == AtomicRMWInst::Xchg) { 3547 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " + 3548 AtomicRMWInst::getOperationName(Op) + 3549 " operand must have integer or floating point type!", 3550 &RMWI, ElTy); 3551 } else if (AtomicRMWInst::isFPOperation(Op)) { 3552 Assert(ElTy->isFloatingPointTy(), "atomicrmw " + 3553 AtomicRMWInst::getOperationName(Op) + 3554 " operand must have floating point type!", 3555 &RMWI, ElTy); 3556 } else { 3557 Assert(ElTy->isIntegerTy(), "atomicrmw " + 3558 AtomicRMWInst::getOperationName(Op) + 3559 " operand must have integer type!", 3560 &RMWI, ElTy); 3561 } 3562 checkAtomicMemAccessSize(ElTy, &RMWI); 3563 Assert(ElTy == RMWI.getOperand(1)->getType(), 3564 "Argument value type does not match pointer operand type!", &RMWI, 3565 ElTy); 3566 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 3567 "Invalid binary operation!", &RMWI); 3568 visitInstruction(RMWI); 3569 } 3570 3571 void Verifier::visitFenceInst(FenceInst &FI) { 3572 const AtomicOrdering Ordering = FI.getOrdering(); 3573 Assert(Ordering == AtomicOrdering::Acquire || 3574 Ordering == AtomicOrdering::Release || 3575 Ordering == AtomicOrdering::AcquireRelease || 3576 Ordering == AtomicOrdering::SequentiallyConsistent, 3577 "fence instructions may only have acquire, release, acq_rel, or " 3578 "seq_cst ordering.", 3579 &FI); 3580 visitInstruction(FI); 3581 } 3582 3583 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 3584 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 3585 EVI.getIndices()) == EVI.getType(), 3586 "Invalid ExtractValueInst operands!", &EVI); 3587 3588 visitInstruction(EVI); 3589 } 3590 3591 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 3592 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 3593 IVI.getIndices()) == 3594 IVI.getOperand(1)->getType(), 3595 "Invalid InsertValueInst operands!", &IVI); 3596 3597 visitInstruction(IVI); 3598 } 3599 3600 static Value *getParentPad(Value *EHPad) { 3601 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 3602 return FPI->getParentPad(); 3603 3604 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 3605 } 3606 3607 void Verifier::visitEHPadPredecessors(Instruction &I) { 3608 assert(I.isEHPad()); 3609 3610 BasicBlock *BB = I.getParent(); 3611 Function *F = BB->getParent(); 3612 3613 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 3614 3615 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 3616 // The landingpad instruction defines its parent as a landing pad block. The 3617 // landing pad block may be branched to only by the unwind edge of an 3618 // invoke. 3619 for (BasicBlock *PredBB : predecessors(BB)) { 3620 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 3621 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 3622 "Block containing LandingPadInst must be jumped to " 3623 "only by the unwind edge of an invoke.", 3624 LPI); 3625 } 3626 return; 3627 } 3628 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 3629 if (!pred_empty(BB)) 3630 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 3631 "Block containg CatchPadInst must be jumped to " 3632 "only by its catchswitch.", 3633 CPI); 3634 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(), 3635 "Catchswitch cannot unwind to one of its catchpads", 3636 CPI->getCatchSwitch(), CPI); 3637 return; 3638 } 3639 3640 // Verify that each pred has a legal terminator with a legal to/from EH 3641 // pad relationship. 3642 Instruction *ToPad = &I; 3643 Value *ToPadParent = getParentPad(ToPad); 3644 for (BasicBlock *PredBB : predecessors(BB)) { 3645 Instruction *TI = PredBB->getTerminator(); 3646 Value *FromPad; 3647 if (auto *II = dyn_cast<InvokeInst>(TI)) { 3648 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB, 3649 "EH pad must be jumped to via an unwind edge", ToPad, II); 3650 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 3651 FromPad = Bundle->Inputs[0]; 3652 else 3653 FromPad = ConstantTokenNone::get(II->getContext()); 3654 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3655 FromPad = CRI->getOperand(0); 3656 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 3657 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3658 FromPad = CSI; 3659 } else { 3660 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 3661 } 3662 3663 // The edge may exit from zero or more nested pads. 3664 SmallSet<Value *, 8> Seen; 3665 for (;; FromPad = getParentPad(FromPad)) { 3666 Assert(FromPad != ToPad, 3667 "EH pad cannot handle exceptions raised within it", FromPad, TI); 3668 if (FromPad == ToPadParent) { 3669 // This is a legal unwind edge. 3670 break; 3671 } 3672 Assert(!isa<ConstantTokenNone>(FromPad), 3673 "A single unwind edge may only enter one EH pad", TI); 3674 Assert(Seen.insert(FromPad).second, 3675 "EH pad jumps through a cycle of pads", FromPad); 3676 } 3677 } 3678 } 3679 3680 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 3681 // The landingpad instruction is ill-formed if it doesn't have any clauses and 3682 // isn't a cleanup. 3683 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(), 3684 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 3685 3686 visitEHPadPredecessors(LPI); 3687 3688 if (!LandingPadResultTy) 3689 LandingPadResultTy = LPI.getType(); 3690 else 3691 Assert(LandingPadResultTy == LPI.getType(), 3692 "The landingpad instruction should have a consistent result type " 3693 "inside a function.", 3694 &LPI); 3695 3696 Function *F = LPI.getParent()->getParent(); 3697 Assert(F->hasPersonalityFn(), 3698 "LandingPadInst needs to be in a function with a personality.", &LPI); 3699 3700 // The landingpad instruction must be the first non-PHI instruction in the 3701 // block. 3702 Assert(LPI.getParent()->getLandingPadInst() == &LPI, 3703 "LandingPadInst not the first non-PHI instruction in the block.", 3704 &LPI); 3705 3706 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 3707 Constant *Clause = LPI.getClause(i); 3708 if (LPI.isCatch(i)) { 3709 Assert(isa<PointerType>(Clause->getType()), 3710 "Catch operand does not have pointer type!", &LPI); 3711 } else { 3712 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 3713 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 3714 "Filter operand is not an array of constants!", &LPI); 3715 } 3716 } 3717 3718 visitInstruction(LPI); 3719 } 3720 3721 void Verifier::visitResumeInst(ResumeInst &RI) { 3722 Assert(RI.getFunction()->hasPersonalityFn(), 3723 "ResumeInst needs to be in a function with a personality.", &RI); 3724 3725 if (!LandingPadResultTy) 3726 LandingPadResultTy = RI.getValue()->getType(); 3727 else 3728 Assert(LandingPadResultTy == RI.getValue()->getType(), 3729 "The resume instruction should have a consistent result type " 3730 "inside a function.", 3731 &RI); 3732 3733 visitTerminator(RI); 3734 } 3735 3736 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 3737 BasicBlock *BB = CPI.getParent(); 3738 3739 Function *F = BB->getParent(); 3740 Assert(F->hasPersonalityFn(), 3741 "CatchPadInst needs to be in a function with a personality.", &CPI); 3742 3743 Assert(isa<CatchSwitchInst>(CPI.getParentPad()), 3744 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 3745 CPI.getParentPad()); 3746 3747 // The catchpad instruction must be the first non-PHI instruction in the 3748 // block. 3749 Assert(BB->getFirstNonPHI() == &CPI, 3750 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 3751 3752 visitEHPadPredecessors(CPI); 3753 visitFuncletPadInst(CPI); 3754 } 3755 3756 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 3757 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)), 3758 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 3759 CatchReturn.getOperand(0)); 3760 3761 visitTerminator(CatchReturn); 3762 } 3763 3764 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 3765 BasicBlock *BB = CPI.getParent(); 3766 3767 Function *F = BB->getParent(); 3768 Assert(F->hasPersonalityFn(), 3769 "CleanupPadInst needs to be in a function with a personality.", &CPI); 3770 3771 // The cleanuppad instruction must be the first non-PHI instruction in the 3772 // block. 3773 Assert(BB->getFirstNonPHI() == &CPI, 3774 "CleanupPadInst not the first non-PHI instruction in the block.", 3775 &CPI); 3776 3777 auto *ParentPad = CPI.getParentPad(); 3778 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3779 "CleanupPadInst has an invalid parent.", &CPI); 3780 3781 visitEHPadPredecessors(CPI); 3782 visitFuncletPadInst(CPI); 3783 } 3784 3785 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 3786 User *FirstUser = nullptr; 3787 Value *FirstUnwindPad = nullptr; 3788 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 3789 SmallSet<FuncletPadInst *, 8> Seen; 3790 3791 while (!Worklist.empty()) { 3792 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 3793 Assert(Seen.insert(CurrentPad).second, 3794 "FuncletPadInst must not be nested within itself", CurrentPad); 3795 Value *UnresolvedAncestorPad = nullptr; 3796 for (User *U : CurrentPad->users()) { 3797 BasicBlock *UnwindDest; 3798 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 3799 UnwindDest = CRI->getUnwindDest(); 3800 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 3801 // We allow catchswitch unwind to caller to nest 3802 // within an outer pad that unwinds somewhere else, 3803 // because catchswitch doesn't have a nounwind variant. 3804 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 3805 if (CSI->unwindsToCaller()) 3806 continue; 3807 UnwindDest = CSI->getUnwindDest(); 3808 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 3809 UnwindDest = II->getUnwindDest(); 3810 } else if (isa<CallInst>(U)) { 3811 // Calls which don't unwind may be found inside funclet 3812 // pads that unwind somewhere else. We don't *require* 3813 // such calls to be annotated nounwind. 3814 continue; 3815 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 3816 // The unwind dest for a cleanup can only be found by 3817 // recursive search. Add it to the worklist, and we'll 3818 // search for its first use that determines where it unwinds. 3819 Worklist.push_back(CPI); 3820 continue; 3821 } else { 3822 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 3823 continue; 3824 } 3825 3826 Value *UnwindPad; 3827 bool ExitsFPI; 3828 if (UnwindDest) { 3829 UnwindPad = UnwindDest->getFirstNonPHI(); 3830 if (!cast<Instruction>(UnwindPad)->isEHPad()) 3831 continue; 3832 Value *UnwindParent = getParentPad(UnwindPad); 3833 // Ignore unwind edges that don't exit CurrentPad. 3834 if (UnwindParent == CurrentPad) 3835 continue; 3836 // Determine whether the original funclet pad is exited, 3837 // and if we are scanning nested pads determine how many 3838 // of them are exited so we can stop searching their 3839 // children. 3840 Value *ExitedPad = CurrentPad; 3841 ExitsFPI = false; 3842 do { 3843 if (ExitedPad == &FPI) { 3844 ExitsFPI = true; 3845 // Now we can resolve any ancestors of CurrentPad up to 3846 // FPI, but not including FPI since we need to make sure 3847 // to check all direct users of FPI for consistency. 3848 UnresolvedAncestorPad = &FPI; 3849 break; 3850 } 3851 Value *ExitedParent = getParentPad(ExitedPad); 3852 if (ExitedParent == UnwindParent) { 3853 // ExitedPad is the ancestor-most pad which this unwind 3854 // edge exits, so we can resolve up to it, meaning that 3855 // ExitedParent is the first ancestor still unresolved. 3856 UnresolvedAncestorPad = ExitedParent; 3857 break; 3858 } 3859 ExitedPad = ExitedParent; 3860 } while (!isa<ConstantTokenNone>(ExitedPad)); 3861 } else { 3862 // Unwinding to caller exits all pads. 3863 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 3864 ExitsFPI = true; 3865 UnresolvedAncestorPad = &FPI; 3866 } 3867 3868 if (ExitsFPI) { 3869 // This unwind edge exits FPI. Make sure it agrees with other 3870 // such edges. 3871 if (FirstUser) { 3872 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet " 3873 "pad must have the same unwind " 3874 "dest", 3875 &FPI, U, FirstUser); 3876 } else { 3877 FirstUser = U; 3878 FirstUnwindPad = UnwindPad; 3879 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 3880 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 3881 getParentPad(UnwindPad) == getParentPad(&FPI)) 3882 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 3883 } 3884 } 3885 // Make sure we visit all uses of FPI, but for nested pads stop as 3886 // soon as we know where they unwind to. 3887 if (CurrentPad != &FPI) 3888 break; 3889 } 3890 if (UnresolvedAncestorPad) { 3891 if (CurrentPad == UnresolvedAncestorPad) { 3892 // When CurrentPad is FPI itself, we don't mark it as resolved even if 3893 // we've found an unwind edge that exits it, because we need to verify 3894 // all direct uses of FPI. 3895 assert(CurrentPad == &FPI); 3896 continue; 3897 } 3898 // Pop off the worklist any nested pads that we've found an unwind 3899 // destination for. The pads on the worklist are the uncles, 3900 // great-uncles, etc. of CurrentPad. We've found an unwind destination 3901 // for all ancestors of CurrentPad up to but not including 3902 // UnresolvedAncestorPad. 3903 Value *ResolvedPad = CurrentPad; 3904 while (!Worklist.empty()) { 3905 Value *UnclePad = Worklist.back(); 3906 Value *AncestorPad = getParentPad(UnclePad); 3907 // Walk ResolvedPad up the ancestor list until we either find the 3908 // uncle's parent or the last resolved ancestor. 3909 while (ResolvedPad != AncestorPad) { 3910 Value *ResolvedParent = getParentPad(ResolvedPad); 3911 if (ResolvedParent == UnresolvedAncestorPad) { 3912 break; 3913 } 3914 ResolvedPad = ResolvedParent; 3915 } 3916 // If the resolved ancestor search didn't find the uncle's parent, 3917 // then the uncle is not yet resolved. 3918 if (ResolvedPad != AncestorPad) 3919 break; 3920 // This uncle is resolved, so pop it from the worklist. 3921 Worklist.pop_back(); 3922 } 3923 } 3924 } 3925 3926 if (FirstUnwindPad) { 3927 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 3928 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 3929 Value *SwitchUnwindPad; 3930 if (SwitchUnwindDest) 3931 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); 3932 else 3933 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 3934 Assert(SwitchUnwindPad == FirstUnwindPad, 3935 "Unwind edges out of a catch must have the same unwind dest as " 3936 "the parent catchswitch", 3937 &FPI, FirstUser, CatchSwitch); 3938 } 3939 } 3940 3941 visitInstruction(FPI); 3942 } 3943 3944 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 3945 BasicBlock *BB = CatchSwitch.getParent(); 3946 3947 Function *F = BB->getParent(); 3948 Assert(F->hasPersonalityFn(), 3949 "CatchSwitchInst needs to be in a function with a personality.", 3950 &CatchSwitch); 3951 3952 // The catchswitch instruction must be the first non-PHI instruction in the 3953 // block. 3954 Assert(BB->getFirstNonPHI() == &CatchSwitch, 3955 "CatchSwitchInst not the first non-PHI instruction in the block.", 3956 &CatchSwitch); 3957 3958 auto *ParentPad = CatchSwitch.getParentPad(); 3959 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 3960 "CatchSwitchInst has an invalid parent.", ParentPad); 3961 3962 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 3963 Instruction *I = UnwindDest->getFirstNonPHI(); 3964 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3965 "CatchSwitchInst must unwind to an EH block which is not a " 3966 "landingpad.", 3967 &CatchSwitch); 3968 3969 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 3970 if (getParentPad(I) == ParentPad) 3971 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 3972 } 3973 3974 Assert(CatchSwitch.getNumHandlers() != 0, 3975 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 3976 3977 for (BasicBlock *Handler : CatchSwitch.handlers()) { 3978 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()), 3979 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 3980 } 3981 3982 visitEHPadPredecessors(CatchSwitch); 3983 visitTerminator(CatchSwitch); 3984 } 3985 3986 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 3987 Assert(isa<CleanupPadInst>(CRI.getOperand(0)), 3988 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 3989 CRI.getOperand(0)); 3990 3991 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 3992 Instruction *I = UnwindDest->getFirstNonPHI(); 3993 Assert(I->isEHPad() && !isa<LandingPadInst>(I), 3994 "CleanupReturnInst must unwind to an EH block which is not a " 3995 "landingpad.", 3996 &CRI); 3997 } 3998 3999 visitTerminator(CRI); 4000 } 4001 4002 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4003 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4004 // If the we have an invalid invoke, don't try to compute the dominance. 4005 // We already reject it in the invoke specific checks and the dominance 4006 // computation doesn't handle multiple edges. 4007 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4008 if (II->getNormalDest() == II->getUnwindDest()) 4009 return; 4010 } 4011 4012 // Quick check whether the def has already been encountered in the same block. 4013 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4014 // uses are defined to happen on the incoming edge, not at the instruction. 4015 // 4016 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4017 // wrapping an SSA value, assert that we've already encountered it. See 4018 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4019 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4020 return; 4021 4022 const Use &U = I.getOperandUse(i); 4023 Assert(DT.dominates(Op, U), 4024 "Instruction does not dominate all uses!", Op, &I); 4025 } 4026 4027 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4028 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null " 4029 "apply only to pointer types", &I); 4030 Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4031 "dereferenceable, dereferenceable_or_null apply only to load" 4032 " and inttoptr instructions, use attributes for calls or invokes", &I); 4033 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null " 4034 "take one operand!", &I); 4035 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4036 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, " 4037 "dereferenceable_or_null metadata value must be an i64!", &I); 4038 } 4039 4040 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4041 Assert(MD->getNumOperands() >= 2, 4042 "!prof annotations should have no less than 2 operands", MD); 4043 4044 // Check first operand. 4045 Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4046 Assert(isa<MDString>(MD->getOperand(0)), 4047 "expected string with name of the !prof annotation", MD); 4048 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4049 StringRef ProfName = MDS->getString(); 4050 4051 // Check consistency of !prof branch_weights metadata. 4052 if (ProfName.equals("branch_weights")) { 4053 unsigned ExpectedNumOperands = 0; 4054 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4055 ExpectedNumOperands = BI->getNumSuccessors(); 4056 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4057 ExpectedNumOperands = SI->getNumSuccessors(); 4058 else if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) 4059 ExpectedNumOperands = 1; 4060 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4061 ExpectedNumOperands = IBI->getNumDestinations(); 4062 else if (isa<SelectInst>(&I)) 4063 ExpectedNumOperands = 2; 4064 else 4065 CheckFailed("!prof branch_weights are not allowed for this instruction", 4066 MD); 4067 4068 Assert(MD->getNumOperands() == 1 + ExpectedNumOperands, 4069 "Wrong number of operands", MD); 4070 for (unsigned i = 1; i < MD->getNumOperands(); ++i) { 4071 auto &MDO = MD->getOperand(i); 4072 Assert(MDO, "second operand should not be null", MD); 4073 Assert(mdconst::dyn_extract<ConstantInt>(MDO), 4074 "!prof brunch_weights operand is not a const int"); 4075 } 4076 } 4077 } 4078 4079 /// verifyInstruction - Verify that an instruction is well formed. 4080 /// 4081 void Verifier::visitInstruction(Instruction &I) { 4082 BasicBlock *BB = I.getParent(); 4083 Assert(BB, "Instruction not embedded in basic block!", &I); 4084 4085 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 4086 for (User *U : I.users()) { 4087 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB), 4088 "Only PHI nodes may reference their own value!", &I); 4089 } 4090 } 4091 4092 // Check that void typed values don't have names 4093 Assert(!I.getType()->isVoidTy() || !I.hasName(), 4094 "Instruction has a name, but provides a void value!", &I); 4095 4096 // Check that the return value of the instruction is either void or a legal 4097 // value type. 4098 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 4099 "Instruction returns a non-scalar type!", &I); 4100 4101 // Check that the instruction doesn't produce metadata. Calls are already 4102 // checked against the callee type. 4103 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 4104 "Invalid use of metadata!", &I); 4105 4106 // Check that all uses of the instruction, if they are instructions 4107 // themselves, actually have parent basic blocks. If the use is not an 4108 // instruction, it is an error! 4109 for (Use &U : I.uses()) { 4110 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 4111 Assert(Used->getParent() != nullptr, 4112 "Instruction referencing" 4113 " instruction not embedded in a basic block!", 4114 &I, Used); 4115 else { 4116 CheckFailed("Use of instruction is not an instruction!", U); 4117 return; 4118 } 4119 } 4120 4121 // Get a pointer to the call base of the instruction if it is some form of 4122 // call. 4123 const CallBase *CBI = dyn_cast<CallBase>(&I); 4124 4125 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 4126 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 4127 4128 // Check to make sure that only first-class-values are operands to 4129 // instructions. 4130 if (!I.getOperand(i)->getType()->isFirstClassType()) { 4131 Assert(false, "Instruction operands must be first-class values!", &I); 4132 } 4133 4134 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 4135 // Check to make sure that the "address of" an intrinsic function is never 4136 // taken. 4137 Assert(!F->isIntrinsic() || 4138 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)), 4139 "Cannot take the address of an intrinsic!", &I); 4140 Assert( 4141 !F->isIntrinsic() || isa<CallInst>(I) || 4142 F->getIntrinsicID() == Intrinsic::donothing || 4143 F->getIntrinsicID() == Intrinsic::coro_resume || 4144 F->getIntrinsicID() == Intrinsic::coro_destroy || 4145 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void || 4146 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || 4147 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 4148 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch, 4149 "Cannot invoke an intrinsic other than donothing, patchpoint, " 4150 "statepoint, coro_resume or coro_destroy", 4151 &I); 4152 Assert(F->getParent() == &M, "Referencing function in another module!", 4153 &I, &M, F, F->getParent()); 4154 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 4155 Assert(OpBB->getParent() == BB->getParent(), 4156 "Referring to a basic block in another function!", &I); 4157 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 4158 Assert(OpArg->getParent() == BB->getParent(), 4159 "Referring to an argument in another function!", &I); 4160 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 4161 Assert(GV->getParent() == &M, "Referencing global in another module!", &I, 4162 &M, GV, GV->getParent()); 4163 } else if (isa<Instruction>(I.getOperand(i))) { 4164 verifyDominatesUse(I, i); 4165 } else if (isa<InlineAsm>(I.getOperand(i))) { 4166 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 4167 "Cannot take the address of an inline asm!", &I); 4168 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 4169 if (CE->getType()->isPtrOrPtrVectorTy() || 4170 !DL.getNonIntegralAddressSpaces().empty()) { 4171 // If we have a ConstantExpr pointer, we need to see if it came from an 4172 // illegal bitcast. If the datalayout string specifies non-integral 4173 // address spaces then we also need to check for illegal ptrtoint and 4174 // inttoptr expressions. 4175 visitConstantExprsRecursively(CE); 4176 } 4177 } 4178 } 4179 4180 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 4181 Assert(I.getType()->isFPOrFPVectorTy(), 4182 "fpmath requires a floating point result!", &I); 4183 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 4184 if (ConstantFP *CFP0 = 4185 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 4186 const APFloat &Accuracy = CFP0->getValueAPF(); 4187 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 4188 "fpmath accuracy must have float type", &I); 4189 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 4190 "fpmath accuracy not a positive number!", &I); 4191 } else { 4192 Assert(false, "invalid fpmath accuracy!", &I); 4193 } 4194 } 4195 4196 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 4197 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 4198 "Ranges are only for loads, calls and invokes!", &I); 4199 visitRangeMetadata(I, Range, I.getType()); 4200 } 4201 4202 if (I.getMetadata(LLVMContext::MD_nonnull)) { 4203 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 4204 &I); 4205 Assert(isa<LoadInst>(I), 4206 "nonnull applies only to load instructions, use attributes" 4207 " for calls or invokes", 4208 &I); 4209 } 4210 4211 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 4212 visitDereferenceableMetadata(I, MD); 4213 4214 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 4215 visitDereferenceableMetadata(I, MD); 4216 4217 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 4218 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 4219 4220 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 4221 Assert(I.getType()->isPointerTy(), "align applies only to pointer types", 4222 &I); 4223 Assert(isa<LoadInst>(I), "align applies only to load instructions, " 4224 "use attributes for calls or invokes", &I); 4225 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 4226 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 4227 Assert(CI && CI->getType()->isIntegerTy(64), 4228 "align metadata value must be an i64!", &I); 4229 uint64_t Align = CI->getZExtValue(); 4230 Assert(isPowerOf2_64(Align), 4231 "align metadata value must be a power of 2!", &I); 4232 Assert(Align <= Value::MaximumAlignment, 4233 "alignment is larger that implementation defined limit", &I); 4234 } 4235 4236 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 4237 visitProfMetadata(I, MD); 4238 4239 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 4240 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 4241 visitMDNode(*N); 4242 } 4243 4244 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 4245 verifyFragmentExpression(*DII); 4246 verifyNotEntryValue(*DII); 4247 } 4248 4249 InstsInThisBlock.insert(&I); 4250 } 4251 4252 /// Allow intrinsics to be verified in different ways. 4253 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 4254 Function *IF = Call.getCalledFunction(); 4255 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!", 4256 IF); 4257 4258 // Verify that the intrinsic prototype lines up with what the .td files 4259 // describe. 4260 FunctionType *IFTy = IF->getFunctionType(); 4261 bool IsVarArg = IFTy->isVarArg(); 4262 4263 SmallVector<Intrinsic::IITDescriptor, 8> Table; 4264 getIntrinsicInfoTableEntries(ID, Table); 4265 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 4266 4267 // Walk the descriptors to extract overloaded types. 4268 SmallVector<Type *, 4> ArgTys; 4269 Intrinsic::MatchIntrinsicTypesResult Res = 4270 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 4271 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 4272 "Intrinsic has incorrect return type!", IF); 4273 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 4274 "Intrinsic has incorrect argument type!", IF); 4275 4276 // Verify if the intrinsic call matches the vararg property. 4277 if (IsVarArg) 4278 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4279 "Intrinsic was not defined with variable arguments!", IF); 4280 else 4281 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 4282 "Callsite was not defined with variable arguments!", IF); 4283 4284 // All descriptors should be absorbed by now. 4285 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF); 4286 4287 // Now that we have the intrinsic ID and the actual argument types (and we 4288 // know they are legal for the intrinsic!) get the intrinsic name through the 4289 // usual means. This allows us to verify the mangling of argument types into 4290 // the name. 4291 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys); 4292 Assert(ExpectedName == IF->getName(), 4293 "Intrinsic name not mangled correctly for type arguments! " 4294 "Should be: " + 4295 ExpectedName, 4296 IF); 4297 4298 // If the intrinsic takes MDNode arguments, verify that they are either global 4299 // or are local to *this* function. 4300 for (Value *V : Call.args()) 4301 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 4302 visitMetadataAsValue(*MD, Call.getCaller()); 4303 4304 switch (ID) { 4305 default: 4306 break; 4307 case Intrinsic::coro_id: { 4308 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 4309 if (isa<ConstantPointerNull>(InfoArg)) 4310 break; 4311 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 4312 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 4313 "info argument of llvm.coro.begin must refer to an initialized " 4314 "constant"); 4315 Constant *Init = GV->getInitializer(); 4316 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 4317 "info argument of llvm.coro.begin must refer to either a struct or " 4318 "an array"); 4319 break; 4320 } 4321 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC, DAGN) \ 4322 case Intrinsic::INTRINSIC: 4323 #include "llvm/IR/ConstrainedOps.def" 4324 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 4325 break; 4326 case Intrinsic::dbg_declare: // llvm.dbg.declare 4327 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)), 4328 "invalid llvm.dbg.declare intrinsic call 1", Call); 4329 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 4330 break; 4331 case Intrinsic::dbg_addr: // llvm.dbg.addr 4332 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); 4333 break; 4334 case Intrinsic::dbg_value: // llvm.dbg.value 4335 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 4336 break; 4337 case Intrinsic::dbg_label: // llvm.dbg.label 4338 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 4339 break; 4340 case Intrinsic::memcpy: 4341 case Intrinsic::memmove: 4342 case Intrinsic::memset: { 4343 const auto *MI = cast<MemIntrinsic>(&Call); 4344 auto IsValidAlignment = [&](unsigned Alignment) -> bool { 4345 return Alignment == 0 || isPowerOf2_32(Alignment); 4346 }; 4347 Assert(IsValidAlignment(MI->getDestAlignment()), 4348 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2", 4349 Call); 4350 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 4351 Assert(IsValidAlignment(MTI->getSourceAlignment()), 4352 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2", 4353 Call); 4354 } 4355 4356 break; 4357 } 4358 case Intrinsic::memcpy_element_unordered_atomic: 4359 case Intrinsic::memmove_element_unordered_atomic: 4360 case Intrinsic::memset_element_unordered_atomic: { 4361 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 4362 4363 ConstantInt *ElementSizeCI = 4364 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 4365 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 4366 Assert(ElementSizeVal.isPowerOf2(), 4367 "element size of the element-wise atomic memory intrinsic " 4368 "must be a power of 2", 4369 Call); 4370 4371 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) { 4372 uint64_t Length = LengthCI->getZExtValue(); 4373 uint64_t ElementSize = AMI->getElementSizeInBytes(); 4374 Assert((Length % ElementSize) == 0, 4375 "constant length must be a multiple of the element size in the " 4376 "element-wise atomic memory intrinsic", 4377 Call); 4378 } 4379 4380 auto IsValidAlignment = [&](uint64_t Alignment) { 4381 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); 4382 }; 4383 uint64_t DstAlignment = AMI->getDestAlignment(); 4384 Assert(IsValidAlignment(DstAlignment), 4385 "incorrect alignment of the destination argument", Call); 4386 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 4387 uint64_t SrcAlignment = AMT->getSourceAlignment(); 4388 Assert(IsValidAlignment(SrcAlignment), 4389 "incorrect alignment of the source argument", Call); 4390 } 4391 break; 4392 } 4393 case Intrinsic::gcroot: 4394 case Intrinsic::gcwrite: 4395 case Intrinsic::gcread: 4396 if (ID == Intrinsic::gcroot) { 4397 AllocaInst *AI = 4398 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 4399 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 4400 Assert(isa<Constant>(Call.getArgOperand(1)), 4401 "llvm.gcroot parameter #2 must be a constant.", Call); 4402 if (!AI->getAllocatedType()->isPointerTy()) { 4403 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 4404 "llvm.gcroot parameter #1 must either be a pointer alloca, " 4405 "or argument #2 must be a non-null constant.", 4406 Call); 4407 } 4408 } 4409 4410 Assert(Call.getParent()->getParent()->hasGC(), 4411 "Enclosing function does not use GC.", Call); 4412 break; 4413 case Intrinsic::init_trampoline: 4414 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 4415 "llvm.init_trampoline parameter #2 must resolve to a function.", 4416 Call); 4417 break; 4418 case Intrinsic::prefetch: 4419 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 && 4420 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 4421 "invalid arguments to llvm.prefetch", Call); 4422 break; 4423 case Intrinsic::stackprotector: 4424 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 4425 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 4426 break; 4427 case Intrinsic::localescape: { 4428 BasicBlock *BB = Call.getParent(); 4429 Assert(BB == &BB->getParent()->front(), 4430 "llvm.localescape used outside of entry block", Call); 4431 Assert(!SawFrameEscape, 4432 "multiple calls to llvm.localescape in one function", Call); 4433 for (Value *Arg : Call.args()) { 4434 if (isa<ConstantPointerNull>(Arg)) 4435 continue; // Null values are allowed as placeholders. 4436 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 4437 Assert(AI && AI->isStaticAlloca(), 4438 "llvm.localescape only accepts static allocas", Call); 4439 } 4440 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands(); 4441 SawFrameEscape = true; 4442 break; 4443 } 4444 case Intrinsic::localrecover: { 4445 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 4446 Function *Fn = dyn_cast<Function>(FnArg); 4447 Assert(Fn && !Fn->isDeclaration(), 4448 "llvm.localrecover first " 4449 "argument must be function defined in this module", 4450 Call); 4451 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 4452 auto &Entry = FrameEscapeInfo[Fn]; 4453 Entry.second = unsigned( 4454 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 4455 break; 4456 } 4457 4458 case Intrinsic::experimental_gc_statepoint: 4459 if (auto *CI = dyn_cast<CallInst>(&Call)) 4460 Assert(!CI->isInlineAsm(), 4461 "gc.statepoint support for inline assembly unimplemented", CI); 4462 Assert(Call.getParent()->getParent()->hasGC(), 4463 "Enclosing function does not use GC.", Call); 4464 4465 verifyStatepoint(Call); 4466 break; 4467 case Intrinsic::experimental_gc_result: { 4468 Assert(Call.getParent()->getParent()->hasGC(), 4469 "Enclosing function does not use GC.", Call); 4470 // Are we tied to a statepoint properly? 4471 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0)); 4472 const Function *StatepointFn = 4473 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 4474 Assert(StatepointFn && StatepointFn->isDeclaration() && 4475 StatepointFn->getIntrinsicID() == 4476 Intrinsic::experimental_gc_statepoint, 4477 "gc.result operand #1 must be from a statepoint", Call, 4478 Call.getArgOperand(0)); 4479 4480 // Assert that result type matches wrapped callee. 4481 const Value *Target = StatepointCall->getArgOperand(2); 4482 auto *PT = cast<PointerType>(Target->getType()); 4483 auto *TargetFuncType = cast<FunctionType>(PT->getElementType()); 4484 Assert(Call.getType() == TargetFuncType->getReturnType(), 4485 "gc.result result type does not match wrapped callee", Call); 4486 break; 4487 } 4488 case Intrinsic::experimental_gc_relocate: { 4489 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call); 4490 4491 Assert(isa<PointerType>(Call.getType()->getScalarType()), 4492 "gc.relocate must return a pointer or a vector of pointers", Call); 4493 4494 // Check that this relocate is correctly tied to the statepoint 4495 4496 // This is case for relocate on the unwinding path of an invoke statepoint 4497 if (LandingPadInst *LandingPad = 4498 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 4499 4500 const BasicBlock *InvokeBB = 4501 LandingPad->getParent()->getUniquePredecessor(); 4502 4503 // Landingpad relocates should have only one predecessor with invoke 4504 // statepoint terminator 4505 Assert(InvokeBB, "safepoints should have unique landingpads", 4506 LandingPad->getParent()); 4507 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed", 4508 InvokeBB); 4509 Assert(isStatepoint(InvokeBB->getTerminator()), 4510 "gc relocate should be linked to a statepoint", InvokeBB); 4511 } else { 4512 // In all other cases relocate should be tied to the statepoint directly. 4513 // This covers relocates on a normal return path of invoke statepoint and 4514 // relocates of a call statepoint. 4515 auto Token = Call.getArgOperand(0); 4516 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)), 4517 "gc relocate is incorrectly tied to the statepoint", Call, Token); 4518 } 4519 4520 // Verify rest of the relocate arguments. 4521 const CallBase &StatepointCall = 4522 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint()); 4523 4524 // Both the base and derived must be piped through the safepoint. 4525 Value *Base = Call.getArgOperand(1); 4526 Assert(isa<ConstantInt>(Base), 4527 "gc.relocate operand #2 must be integer offset", Call); 4528 4529 Value *Derived = Call.getArgOperand(2); 4530 Assert(isa<ConstantInt>(Derived), 4531 "gc.relocate operand #3 must be integer offset", Call); 4532 4533 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 4534 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 4535 // Check the bounds 4536 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(), 4537 "gc.relocate: statepoint base index out of bounds", Call); 4538 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(), 4539 "gc.relocate: statepoint derived index out of bounds", Call); 4540 4541 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters' 4542 // section of the statepoint's argument. 4543 Assert(StatepointCall.arg_size() > 0, 4544 "gc.statepoint: insufficient arguments"); 4545 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)), 4546 "gc.statement: number of call arguments must be constant integer"); 4547 const unsigned NumCallArgs = 4548 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue(); 4549 Assert(StatepointCall.arg_size() > NumCallArgs + 5, 4550 "gc.statepoint: mismatch in number of call arguments"); 4551 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)), 4552 "gc.statepoint: number of transition arguments must be " 4553 "a constant integer"); 4554 const int NumTransitionArgs = 4555 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)) 4556 ->getZExtValue(); 4557 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1; 4558 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)), 4559 "gc.statepoint: number of deoptimization arguments must be " 4560 "a constant integer"); 4561 const int NumDeoptArgs = 4562 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)) 4563 ->getZExtValue(); 4564 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs; 4565 const int GCParamArgsEnd = StatepointCall.arg_size(); 4566 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd, 4567 "gc.relocate: statepoint base index doesn't fall within the " 4568 "'gc parameters' section of the statepoint call", 4569 Call); 4570 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd, 4571 "gc.relocate: statepoint derived index doesn't fall within the " 4572 "'gc parameters' section of the statepoint call", 4573 Call); 4574 4575 // Relocated value must be either a pointer type or vector-of-pointer type, 4576 // but gc_relocate does not need to return the same pointer type as the 4577 // relocated pointer. It can be casted to the correct type later if it's 4578 // desired. However, they must have the same address space and 'vectorness' 4579 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 4580 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), 4581 "gc.relocate: relocated value must be a gc pointer", Call); 4582 4583 auto ResultType = Call.getType(); 4584 auto DerivedType = Relocate.getDerivedPtr()->getType(); 4585 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(), 4586 "gc.relocate: vector relocates to vector and pointer to pointer", 4587 Call); 4588 Assert( 4589 ResultType->getPointerAddressSpace() == 4590 DerivedType->getPointerAddressSpace(), 4591 "gc.relocate: relocating a pointer shouldn't change its address space", 4592 Call); 4593 break; 4594 } 4595 case Intrinsic::eh_exceptioncode: 4596 case Intrinsic::eh_exceptionpointer: { 4597 Assert(isa<CatchPadInst>(Call.getArgOperand(0)), 4598 "eh.exceptionpointer argument must be a catchpad", Call); 4599 break; 4600 } 4601 case Intrinsic::masked_load: { 4602 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector", 4603 Call); 4604 4605 Value *Ptr = Call.getArgOperand(0); 4606 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 4607 Value *Mask = Call.getArgOperand(2); 4608 Value *PassThru = Call.getArgOperand(3); 4609 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 4610 Call); 4611 Assert(Alignment->getValue().isPowerOf2(), 4612 "masked_load: alignment must be a power of 2", Call); 4613 4614 // DataTy is the overloaded type 4615 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4616 Assert(DataTy == Call.getType(), 4617 "masked_load: return must match pointer type", Call); 4618 Assert(PassThru->getType() == DataTy, 4619 "masked_load: pass through and data type must match", Call); 4620 Assert(Mask->getType()->getVectorNumElements() == 4621 DataTy->getVectorNumElements(), 4622 "masked_load: vector mask must be same length as data", Call); 4623 break; 4624 } 4625 case Intrinsic::masked_store: { 4626 Value *Val = Call.getArgOperand(0); 4627 Value *Ptr = Call.getArgOperand(1); 4628 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 4629 Value *Mask = Call.getArgOperand(3); 4630 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 4631 Call); 4632 Assert(Alignment->getValue().isPowerOf2(), 4633 "masked_store: alignment must be a power of 2", Call); 4634 4635 // DataTy is the overloaded type 4636 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 4637 Assert(DataTy == Val->getType(), 4638 "masked_store: storee must match pointer type", Call); 4639 Assert(Mask->getType()->getVectorNumElements() == 4640 DataTy->getVectorNumElements(), 4641 "masked_store: vector mask must be same length as data", Call); 4642 break; 4643 } 4644 4645 case Intrinsic::experimental_guard: { 4646 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 4647 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4648 "experimental_guard must have exactly one " 4649 "\"deopt\" operand bundle"); 4650 break; 4651 } 4652 4653 case Intrinsic::experimental_deoptimize: { 4654 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 4655 Call); 4656 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 4657 "experimental_deoptimize must have exactly one " 4658 "\"deopt\" operand bundle"); 4659 Assert(Call.getType() == Call.getFunction()->getReturnType(), 4660 "experimental_deoptimize return type must match caller return type"); 4661 4662 if (isa<CallInst>(Call)) { 4663 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 4664 Assert(RI, 4665 "calls to experimental_deoptimize must be followed by a return"); 4666 4667 if (!Call.getType()->isVoidTy() && RI) 4668 Assert(RI->getReturnValue() == &Call, 4669 "calls to experimental_deoptimize must be followed by a return " 4670 "of the value computed by experimental_deoptimize"); 4671 } 4672 4673 break; 4674 } 4675 case Intrinsic::sadd_sat: 4676 case Intrinsic::uadd_sat: 4677 case Intrinsic::ssub_sat: 4678 case Intrinsic::usub_sat: { 4679 Value *Op1 = Call.getArgOperand(0); 4680 Value *Op2 = Call.getArgOperand(1); 4681 Assert(Op1->getType()->isIntOrIntVectorTy(), 4682 "first operand of [us][add|sub]_sat must be an int type or vector " 4683 "of ints"); 4684 Assert(Op2->getType()->isIntOrIntVectorTy(), 4685 "second operand of [us][add|sub]_sat must be an int type or vector " 4686 "of ints"); 4687 break; 4688 } 4689 case Intrinsic::smul_fix: 4690 case Intrinsic::smul_fix_sat: 4691 case Intrinsic::umul_fix: 4692 case Intrinsic::umul_fix_sat: 4693 case Intrinsic::sdiv_fix: 4694 case Intrinsic::udiv_fix: { 4695 Value *Op1 = Call.getArgOperand(0); 4696 Value *Op2 = Call.getArgOperand(1); 4697 Assert(Op1->getType()->isIntOrIntVectorTy(), 4698 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 4699 "vector of ints"); 4700 Assert(Op2->getType()->isIntOrIntVectorTy(), 4701 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 4702 "vector of ints"); 4703 4704 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 4705 Assert(Op3->getType()->getBitWidth() <= 32, 4706 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); 4707 4708 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 4709 ID == Intrinsic::sdiv_fix) { 4710 Assert( 4711 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 4712 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 4713 "the operands"); 4714 } else { 4715 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 4716 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 4717 "to the width of the operands"); 4718 } 4719 break; 4720 } 4721 case Intrinsic::lround: 4722 case Intrinsic::llround: 4723 case Intrinsic::lrint: 4724 case Intrinsic::llrint: { 4725 Type *ValTy = Call.getArgOperand(0)->getType(); 4726 Type *ResultTy = Call.getType(); 4727 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4728 "Intrinsic does not support vectors", &Call); 4729 break; 4730 } 4731 }; 4732 } 4733 4734 /// Carefully grab the subprogram from a local scope. 4735 /// 4736 /// This carefully grabs the subprogram from a local scope, avoiding the 4737 /// built-in assertions that would typically fire. 4738 static DISubprogram *getSubprogram(Metadata *LocalScope) { 4739 if (!LocalScope) 4740 return nullptr; 4741 4742 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 4743 return SP; 4744 4745 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 4746 return getSubprogram(LB->getRawScope()); 4747 4748 // Just return null; broken scope chains are checked elsewhere. 4749 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 4750 return nullptr; 4751 } 4752 4753 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 4754 unsigned NumOperands; 4755 bool HasRoundingMD; 4756 switch (FPI.getIntrinsicID()) { 4757 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 4758 case Intrinsic::INTRINSIC: \ 4759 NumOperands = NARG; \ 4760 HasRoundingMD = ROUND_MODE; \ 4761 break; 4762 #include "llvm/IR/ConstrainedOps.def" 4763 default: 4764 llvm_unreachable("Invalid constrained FP intrinsic!"); 4765 } 4766 NumOperands += (1 + HasRoundingMD); 4767 // Compare intrinsics carry an extra predicate metadata operand. 4768 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 4769 NumOperands += 1; 4770 Assert((FPI.getNumArgOperands() == NumOperands), 4771 "invalid arguments for constrained FP intrinsic", &FPI); 4772 4773 switch (FPI.getIntrinsicID()) { 4774 case Intrinsic::experimental_constrained_lrint: 4775 case Intrinsic::experimental_constrained_llrint: { 4776 Type *ValTy = FPI.getArgOperand(0)->getType(); 4777 Type *ResultTy = FPI.getType(); 4778 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4779 "Intrinsic does not support vectors", &FPI); 4780 } 4781 break; 4782 4783 case Intrinsic::experimental_constrained_lround: 4784 case Intrinsic::experimental_constrained_llround: { 4785 Type *ValTy = FPI.getArgOperand(0)->getType(); 4786 Type *ResultTy = FPI.getType(); 4787 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 4788 "Intrinsic does not support vectors", &FPI); 4789 break; 4790 } 4791 4792 case Intrinsic::experimental_constrained_fcmp: 4793 case Intrinsic::experimental_constrained_fcmps: { 4794 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 4795 Assert(CmpInst::isFPPredicate(Pred), 4796 "invalid predicate for constrained FP comparison intrinsic", &FPI); 4797 break; 4798 } 4799 4800 case Intrinsic::experimental_constrained_fptosi: 4801 case Intrinsic::experimental_constrained_fptoui: { 4802 Value *Operand = FPI.getArgOperand(0); 4803 uint64_t NumSrcElem = 0; 4804 Assert(Operand->getType()->isFPOrFPVectorTy(), 4805 "Intrinsic first argument must be floating point", &FPI); 4806 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4807 NumSrcElem = OperandT->getNumElements(); 4808 } 4809 4810 Operand = &FPI; 4811 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4812 "Intrinsic first argument and result disagree on vector use", &FPI); 4813 Assert(Operand->getType()->isIntOrIntVectorTy(), 4814 "Intrinsic result must be an integer", &FPI); 4815 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4816 Assert(NumSrcElem == OperandT->getNumElements(), 4817 "Intrinsic first argument and result vector lengths must be equal", 4818 &FPI); 4819 } 4820 } 4821 break; 4822 4823 case Intrinsic::experimental_constrained_sitofp: 4824 case Intrinsic::experimental_constrained_uitofp: { 4825 Value *Operand = FPI.getArgOperand(0); 4826 uint64_t NumSrcElem = 0; 4827 Assert(Operand->getType()->isIntOrIntVectorTy(), 4828 "Intrinsic first argument must be integer", &FPI); 4829 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4830 NumSrcElem = OperandT->getNumElements(); 4831 } 4832 4833 Operand = &FPI; 4834 Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(), 4835 "Intrinsic first argument and result disagree on vector use", &FPI); 4836 Assert(Operand->getType()->isFPOrFPVectorTy(), 4837 "Intrinsic result must be a floating point", &FPI); 4838 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 4839 Assert(NumSrcElem == OperandT->getNumElements(), 4840 "Intrinsic first argument and result vector lengths must be equal", 4841 &FPI); 4842 } 4843 } break; 4844 4845 case Intrinsic::experimental_constrained_fptrunc: 4846 case Intrinsic::experimental_constrained_fpext: { 4847 Value *Operand = FPI.getArgOperand(0); 4848 Type *OperandTy = Operand->getType(); 4849 Value *Result = &FPI; 4850 Type *ResultTy = Result->getType(); 4851 Assert(OperandTy->isFPOrFPVectorTy(), 4852 "Intrinsic first argument must be FP or FP vector", &FPI); 4853 Assert(ResultTy->isFPOrFPVectorTy(), 4854 "Intrinsic result must be FP or FP vector", &FPI); 4855 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 4856 "Intrinsic first argument and result disagree on vector use", &FPI); 4857 if (OperandTy->isVectorTy()) { 4858 auto *OperandVecTy = cast<VectorType>(OperandTy); 4859 auto *ResultVecTy = cast<VectorType>(ResultTy); 4860 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(), 4861 "Intrinsic first argument and result vector lengths must be equal", 4862 &FPI); 4863 } 4864 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 4865 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 4866 "Intrinsic first argument's type must be larger than result type", 4867 &FPI); 4868 } else { 4869 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 4870 "Intrinsic first argument's type must be smaller than result type", 4871 &FPI); 4872 } 4873 } 4874 break; 4875 4876 default: 4877 break; 4878 } 4879 4880 // If a non-metadata argument is passed in a metadata slot then the 4881 // error will be caught earlier when the incorrect argument doesn't 4882 // match the specification in the intrinsic call table. Thus, no 4883 // argument type check is needed here. 4884 4885 Assert(FPI.getExceptionBehavior().hasValue(), 4886 "invalid exception behavior argument", &FPI); 4887 if (HasRoundingMD) { 4888 Assert(FPI.getRoundingMode().hasValue(), 4889 "invalid rounding mode argument", &FPI); 4890 } 4891 } 4892 4893 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 4894 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata(); 4895 AssertDI(isa<ValueAsMetadata>(MD) || 4896 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 4897 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 4898 AssertDI(isa<DILocalVariable>(DII.getRawVariable()), 4899 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 4900 DII.getRawVariable()); 4901 AssertDI(isa<DIExpression>(DII.getRawExpression()), 4902 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 4903 DII.getRawExpression()); 4904 4905 // Ignore broken !dbg attachments; they're checked elsewhere. 4906 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 4907 if (!isa<DILocation>(N)) 4908 return; 4909 4910 BasicBlock *BB = DII.getParent(); 4911 Function *F = BB ? BB->getParent() : nullptr; 4912 4913 // The scopes for variables and !dbg attachments must agree. 4914 DILocalVariable *Var = DII.getVariable(); 4915 DILocation *Loc = DII.getDebugLoc(); 4916 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4917 &DII, BB, F); 4918 4919 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 4920 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4921 if (!VarSP || !LocSP) 4922 return; // Broken scope chains are checked elsewhere. 4923 4924 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4925 " variable and !dbg attachment", 4926 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 4927 Loc->getScope()->getSubprogram()); 4928 4929 // This check is redundant with one in visitLocalVariable(). 4930 AssertDI(isType(Var->getRawType()), "invalid type ref", Var, 4931 Var->getRawType()); 4932 verifyFnArgs(DII); 4933 } 4934 4935 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 4936 AssertDI(isa<DILabel>(DLI.getRawLabel()), 4937 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 4938 DLI.getRawLabel()); 4939 4940 // Ignore broken !dbg attachments; they're checked elsewhere. 4941 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 4942 if (!isa<DILocation>(N)) 4943 return; 4944 4945 BasicBlock *BB = DLI.getParent(); 4946 Function *F = BB ? BB->getParent() : nullptr; 4947 4948 // The scopes for variables and !dbg attachments must agree. 4949 DILabel *Label = DLI.getLabel(); 4950 DILocation *Loc = DLI.getDebugLoc(); 4951 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 4952 &DLI, BB, F); 4953 4954 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 4955 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 4956 if (!LabelSP || !LocSP) 4957 return; 4958 4959 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind + 4960 " label and !dbg attachment", 4961 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 4962 Loc->getScope()->getSubprogram()); 4963 } 4964 4965 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 4966 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 4967 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 4968 4969 // We don't know whether this intrinsic verified correctly. 4970 if (!V || !E || !E->isValid()) 4971 return; 4972 4973 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 4974 auto Fragment = E->getFragmentInfo(); 4975 if (!Fragment) 4976 return; 4977 4978 // The frontend helps out GDB by emitting the members of local anonymous 4979 // unions as artificial local variables with shared storage. When SROA splits 4980 // the storage for artificial local variables that are smaller than the entire 4981 // union, the overhang piece will be outside of the allotted space for the 4982 // variable and this check fails. 4983 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 4984 if (V->isArtificial()) 4985 return; 4986 4987 verifyFragmentExpression(*V, *Fragment, &I); 4988 } 4989 4990 template <typename ValueOrMetadata> 4991 void Verifier::verifyFragmentExpression(const DIVariable &V, 4992 DIExpression::FragmentInfo Fragment, 4993 ValueOrMetadata *Desc) { 4994 // If there's no size, the type is broken, but that should be checked 4995 // elsewhere. 4996 auto VarSize = V.getSizeInBits(); 4997 if (!VarSize) 4998 return; 4999 5000 unsigned FragSize = Fragment.SizeInBits; 5001 unsigned FragOffset = Fragment.OffsetInBits; 5002 AssertDI(FragSize + FragOffset <= *VarSize, 5003 "fragment is larger than or outside of variable", Desc, &V); 5004 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 5005 } 5006 5007 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 5008 // This function does not take the scope of noninlined function arguments into 5009 // account. Don't run it if current function is nodebug, because it may 5010 // contain inlined debug intrinsics. 5011 if (!HasDebugInfo) 5012 return; 5013 5014 // For performance reasons only check non-inlined ones. 5015 if (I.getDebugLoc()->getInlinedAt()) 5016 return; 5017 5018 DILocalVariable *Var = I.getVariable(); 5019 AssertDI(Var, "dbg intrinsic without variable"); 5020 5021 unsigned ArgNo = Var->getArg(); 5022 if (!ArgNo) 5023 return; 5024 5025 // Verify there are no duplicate function argument debug info entries. 5026 // These will cause hard-to-debug assertions in the DWARF backend. 5027 if (DebugFnArgs.size() < ArgNo) 5028 DebugFnArgs.resize(ArgNo, nullptr); 5029 5030 auto *Prev = DebugFnArgs[ArgNo - 1]; 5031 DebugFnArgs[ArgNo - 1] = Var; 5032 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 5033 Prev, Var); 5034 } 5035 5036 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 5037 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 5038 5039 // We don't know whether this intrinsic verified correctly. 5040 if (!E || !E->isValid()) 5041 return; 5042 5043 AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); 5044 } 5045 5046 void Verifier::verifyCompileUnits() { 5047 // When more than one Module is imported into the same context, such as during 5048 // an LTO build before linking the modules, ODR type uniquing may cause types 5049 // to point to a different CU. This check does not make sense in this case. 5050 if (M.getContext().isODRUniquingDebugTypes()) 5051 return; 5052 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 5053 SmallPtrSet<const Metadata *, 2> Listed; 5054 if (CUs) 5055 Listed.insert(CUs->op_begin(), CUs->op_end()); 5056 for (auto *CU : CUVisited) 5057 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 5058 CUVisited.clear(); 5059 } 5060 5061 void Verifier::verifyDeoptimizeCallingConvs() { 5062 if (DeoptimizeDeclarations.empty()) 5063 return; 5064 5065 const Function *First = DeoptimizeDeclarations[0]; 5066 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) { 5067 Assert(First->getCallingConv() == F->getCallingConv(), 5068 "All llvm.experimental.deoptimize declarations must have the same " 5069 "calling convention", 5070 First, F); 5071 } 5072 } 5073 5074 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { 5075 bool HasSource = F.getSource().hasValue(); 5076 if (!HasSourceDebugInfo.count(&U)) 5077 HasSourceDebugInfo[&U] = HasSource; 5078 AssertDI(HasSource == HasSourceDebugInfo[&U], 5079 "inconsistent use of embedded source"); 5080 } 5081 5082 //===----------------------------------------------------------------------===// 5083 // Implement the public interfaces to this file... 5084 //===----------------------------------------------------------------------===// 5085 5086 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 5087 Function &F = const_cast<Function &>(f); 5088 5089 // Don't use a raw_null_ostream. Printing IR is expensive. 5090 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 5091 5092 // Note that this function's return value is inverted from what you would 5093 // expect of a function called "verify". 5094 return !V.verify(F); 5095 } 5096 5097 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 5098 bool *BrokenDebugInfo) { 5099 // Don't use a raw_null_ostream. Printing IR is expensive. 5100 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 5101 5102 bool Broken = false; 5103 for (const Function &F : M) 5104 Broken |= !V.verify(F); 5105 5106 Broken |= !V.verify(); 5107 if (BrokenDebugInfo) 5108 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 5109 // Note that this function's return value is inverted from what you would 5110 // expect of a function called "verify". 5111 return Broken; 5112 } 5113 5114 namespace { 5115 5116 struct VerifierLegacyPass : public FunctionPass { 5117 static char ID; 5118 5119 std::unique_ptr<Verifier> V; 5120 bool FatalErrors = true; 5121 5122 VerifierLegacyPass() : FunctionPass(ID) { 5123 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5124 } 5125 explicit VerifierLegacyPass(bool FatalErrors) 5126 : FunctionPass(ID), 5127 FatalErrors(FatalErrors) { 5128 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 5129 } 5130 5131 bool doInitialization(Module &M) override { 5132 V = std::make_unique<Verifier>( 5133 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 5134 return false; 5135 } 5136 5137 bool runOnFunction(Function &F) override { 5138 if (!V->verify(F) && FatalErrors) { 5139 errs() << "in function " << F.getName() << '\n'; 5140 report_fatal_error("Broken function found, compilation aborted!"); 5141 } 5142 return false; 5143 } 5144 5145 bool doFinalization(Module &M) override { 5146 bool HasErrors = false; 5147 for (Function &F : M) 5148 if (F.isDeclaration()) 5149 HasErrors |= !V->verify(F); 5150 5151 HasErrors |= !V->verify(); 5152 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 5153 report_fatal_error("Broken module found, compilation aborted!"); 5154 return false; 5155 } 5156 5157 void getAnalysisUsage(AnalysisUsage &AU) const override { 5158 AU.setPreservesAll(); 5159 } 5160 }; 5161 5162 } // end anonymous namespace 5163 5164 /// Helper to issue failure from the TBAA verification 5165 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 5166 if (Diagnostic) 5167 return Diagnostic->CheckFailed(Args...); 5168 } 5169 5170 #define AssertTBAA(C, ...) \ 5171 do { \ 5172 if (!(C)) { \ 5173 CheckFailed(__VA_ARGS__); \ 5174 return false; \ 5175 } \ 5176 } while (false) 5177 5178 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 5179 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 5180 /// struct-type node describing an aggregate data structure (like a struct). 5181 TBAAVerifier::TBAABaseNodeSummary 5182 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 5183 bool IsNewFormat) { 5184 if (BaseNode->getNumOperands() < 2) { 5185 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 5186 return {true, ~0u}; 5187 } 5188 5189 auto Itr = TBAABaseNodes.find(BaseNode); 5190 if (Itr != TBAABaseNodes.end()) 5191 return Itr->second; 5192 5193 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 5194 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 5195 (void)InsertResult; 5196 assert(InsertResult.second && "We just checked!"); 5197 return Result; 5198 } 5199 5200 TBAAVerifier::TBAABaseNodeSummary 5201 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 5202 bool IsNewFormat) { 5203 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 5204 5205 if (BaseNode->getNumOperands() == 2) { 5206 // Scalar nodes can only be accessed at offset 0. 5207 return isValidScalarTBAANode(BaseNode) 5208 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 5209 : InvalidNode; 5210 } 5211 5212 if (IsNewFormat) { 5213 if (BaseNode->getNumOperands() % 3 != 0) { 5214 CheckFailed("Access tag nodes must have the number of operands that is a " 5215 "multiple of 3!", BaseNode); 5216 return InvalidNode; 5217 } 5218 } else { 5219 if (BaseNode->getNumOperands() % 2 != 1) { 5220 CheckFailed("Struct tag nodes must have an odd number of operands!", 5221 BaseNode); 5222 return InvalidNode; 5223 } 5224 } 5225 5226 // Check the type size field. 5227 if (IsNewFormat) { 5228 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5229 BaseNode->getOperand(1)); 5230 if (!TypeSizeNode) { 5231 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 5232 return InvalidNode; 5233 } 5234 } 5235 5236 // Check the type name field. In the new format it can be anything. 5237 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 5238 CheckFailed("Struct tag nodes have a string as their first operand", 5239 BaseNode); 5240 return InvalidNode; 5241 } 5242 5243 bool Failed = false; 5244 5245 Optional<APInt> PrevOffset; 5246 unsigned BitWidth = ~0u; 5247 5248 // We've already checked that BaseNode is not a degenerate root node with one 5249 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 5250 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5251 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5252 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5253 Idx += NumOpsPerField) { 5254 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 5255 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 5256 if (!isa<MDNode>(FieldTy)) { 5257 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 5258 Failed = true; 5259 continue; 5260 } 5261 5262 auto *OffsetEntryCI = 5263 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 5264 if (!OffsetEntryCI) { 5265 CheckFailed("Offset entries must be constants!", &I, BaseNode); 5266 Failed = true; 5267 continue; 5268 } 5269 5270 if (BitWidth == ~0u) 5271 BitWidth = OffsetEntryCI->getBitWidth(); 5272 5273 if (OffsetEntryCI->getBitWidth() != BitWidth) { 5274 CheckFailed( 5275 "Bitwidth between the offsets and struct type entries must match", &I, 5276 BaseNode); 5277 Failed = true; 5278 continue; 5279 } 5280 5281 // NB! As far as I can tell, we generate a non-strictly increasing offset 5282 // sequence only from structs that have zero size bit fields. When 5283 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 5284 // pick the field lexically the latest in struct type metadata node. This 5285 // mirrors the actual behavior of the alias analysis implementation. 5286 bool IsAscending = 5287 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 5288 5289 if (!IsAscending) { 5290 CheckFailed("Offsets must be increasing!", &I, BaseNode); 5291 Failed = true; 5292 } 5293 5294 PrevOffset = OffsetEntryCI->getValue(); 5295 5296 if (IsNewFormat) { 5297 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5298 BaseNode->getOperand(Idx + 2)); 5299 if (!MemberSizeNode) { 5300 CheckFailed("Member size entries must be constants!", &I, BaseNode); 5301 Failed = true; 5302 continue; 5303 } 5304 } 5305 } 5306 5307 return Failed ? InvalidNode 5308 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 5309 } 5310 5311 static bool IsRootTBAANode(const MDNode *MD) { 5312 return MD->getNumOperands() < 2; 5313 } 5314 5315 static bool IsScalarTBAANodeImpl(const MDNode *MD, 5316 SmallPtrSetImpl<const MDNode *> &Visited) { 5317 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 5318 return false; 5319 5320 if (!isa<MDString>(MD->getOperand(0))) 5321 return false; 5322 5323 if (MD->getNumOperands() == 3) { 5324 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 5325 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 5326 return false; 5327 } 5328 5329 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5330 return Parent && Visited.insert(Parent).second && 5331 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 5332 } 5333 5334 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 5335 auto ResultIt = TBAAScalarNodes.find(MD); 5336 if (ResultIt != TBAAScalarNodes.end()) 5337 return ResultIt->second; 5338 5339 SmallPtrSet<const MDNode *, 4> Visited; 5340 bool Result = IsScalarTBAANodeImpl(MD, Visited); 5341 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 5342 (void)InsertResult; 5343 assert(InsertResult.second && "Just checked!"); 5344 5345 return Result; 5346 } 5347 5348 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 5349 /// Offset in place to be the offset within the field node returned. 5350 /// 5351 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 5352 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 5353 const MDNode *BaseNode, 5354 APInt &Offset, 5355 bool IsNewFormat) { 5356 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 5357 5358 // Scalar nodes have only one possible "field" -- their parent in the access 5359 // hierarchy. Offset must be zero at this point, but our caller is supposed 5360 // to Assert that. 5361 if (BaseNode->getNumOperands() == 2) 5362 return cast<MDNode>(BaseNode->getOperand(1)); 5363 5364 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 5365 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 5366 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 5367 Idx += NumOpsPerField) { 5368 auto *OffsetEntryCI = 5369 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 5370 if (OffsetEntryCI->getValue().ugt(Offset)) { 5371 if (Idx == FirstFieldOpNo) { 5372 CheckFailed("Could not find TBAA parent in struct type node", &I, 5373 BaseNode, &Offset); 5374 return nullptr; 5375 } 5376 5377 unsigned PrevIdx = Idx - NumOpsPerField; 5378 auto *PrevOffsetEntryCI = 5379 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 5380 Offset -= PrevOffsetEntryCI->getValue(); 5381 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 5382 } 5383 } 5384 5385 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 5386 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 5387 BaseNode->getOperand(LastIdx + 1)); 5388 Offset -= LastOffsetEntryCI->getValue(); 5389 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 5390 } 5391 5392 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 5393 if (!Type || Type->getNumOperands() < 3) 5394 return false; 5395 5396 // In the new format type nodes shall have a reference to the parent type as 5397 // its first operand. 5398 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0)); 5399 if (!Parent) 5400 return false; 5401 5402 return true; 5403 } 5404 5405 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 5406 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 5407 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 5408 isa<AtomicCmpXchgInst>(I), 5409 "This instruction shall not have a TBAA access tag!", &I); 5410 5411 bool IsStructPathTBAA = 5412 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 5413 5414 AssertTBAA( 5415 IsStructPathTBAA, 5416 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I); 5417 5418 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 5419 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 5420 5421 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 5422 5423 if (IsNewFormat) { 5424 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 5425 "Access tag metadata must have either 4 or 5 operands", &I, MD); 5426 } else { 5427 AssertTBAA(MD->getNumOperands() < 5, 5428 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 5429 } 5430 5431 // Check the access size field. 5432 if (IsNewFormat) { 5433 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 5434 MD->getOperand(3)); 5435 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 5436 } 5437 5438 // Check the immutability flag. 5439 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 5440 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 5441 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 5442 MD->getOperand(ImmutabilityFlagOpNo)); 5443 AssertTBAA(IsImmutableCI, 5444 "Immutability tag on struct tag metadata must be a constant", 5445 &I, MD); 5446 AssertTBAA( 5447 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 5448 "Immutability part of the struct tag metadata must be either 0 or 1", 5449 &I, MD); 5450 } 5451 5452 AssertTBAA(BaseNode && AccessType, 5453 "Malformed struct tag metadata: base and access-type " 5454 "should be non-null and point to Metadata nodes", 5455 &I, MD, BaseNode, AccessType); 5456 5457 if (!IsNewFormat) { 5458 AssertTBAA(isValidScalarTBAANode(AccessType), 5459 "Access type node must be a valid scalar type", &I, MD, 5460 AccessType); 5461 } 5462 5463 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 5464 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 5465 5466 APInt Offset = OffsetCI->getValue(); 5467 bool SeenAccessTypeInPath = false; 5468 5469 SmallPtrSet<MDNode *, 4> StructPath; 5470 5471 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 5472 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 5473 IsNewFormat)) { 5474 if (!StructPath.insert(BaseNode).second) { 5475 CheckFailed("Cycle detected in struct path", &I, MD); 5476 return false; 5477 } 5478 5479 bool Invalid; 5480 unsigned BaseNodeBitWidth; 5481 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 5482 IsNewFormat); 5483 5484 // If the base node is invalid in itself, then we've already printed all the 5485 // errors we wanted to print. 5486 if (Invalid) 5487 return false; 5488 5489 SeenAccessTypeInPath |= BaseNode == AccessType; 5490 5491 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 5492 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access", 5493 &I, MD, &Offset); 5494 5495 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 5496 (BaseNodeBitWidth == 0 && Offset == 0) || 5497 (IsNewFormat && BaseNodeBitWidth == ~0u), 5498 "Access bit-width not the same as description bit-width", &I, MD, 5499 BaseNodeBitWidth, Offset.getBitWidth()); 5500 5501 if (IsNewFormat && SeenAccessTypeInPath) 5502 break; 5503 } 5504 5505 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", 5506 &I, MD); 5507 return true; 5508 } 5509 5510 char VerifierLegacyPass::ID = 0; 5511 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 5512 5513 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 5514 return new VerifierLegacyPass(FatalErrors); 5515 } 5516 5517 AnalysisKey VerifierAnalysis::Key; 5518 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 5519 ModuleAnalysisManager &) { 5520 Result Res; 5521 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 5522 return Res; 5523 } 5524 5525 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 5526 FunctionAnalysisManager &) { 5527 return { llvm::verifyFunction(F, &dbgs()), false }; 5528 } 5529 5530 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 5531 auto Res = AM.getResult<VerifierAnalysis>(M); 5532 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 5533 report_fatal_error("Broken module found, compilation aborted!"); 5534 5535 return PreservedAnalyses::all(); 5536 } 5537 5538 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 5539 auto res = AM.getResult<VerifierAnalysis>(F); 5540 if (res.IRBroken && FatalErrors) 5541 report_fatal_error("Broken function found, compilation aborted!"); 5542 5543 return PreservedAnalyses::all(); 5544 } 5545