xref: /freebsd-src/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision 480093f4440d54b30b3025afeac24b48f2ba7a2e)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 namespace llvm {
119 
120 struct VerifierSupport {
121   raw_ostream *OS;
122   const Module &M;
123   ModuleSlotTracker MST;
124   Triple TT;
125   const DataLayout &DL;
126   LLVMContext &Context;
127 
128   /// Track the brokenness of the module while recursively visiting.
129   bool Broken = false;
130   /// Broken debug info can be "recovered" from by stripping the debug info.
131   bool BrokenDebugInfo = false;
132   /// Whether to treat broken debug info as an error.
133   bool TreatBrokenDebugInfoAsError = true;
134 
135   explicit VerifierSupport(raw_ostream *OS, const Module &M)
136       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
137         Context(M.getContext()) {}
138 
139 private:
140   void Write(const Module *M) {
141     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142   }
143 
144   void Write(const Value *V) {
145     if (V)
146       Write(*V);
147   }
148 
149   void Write(const Value &V) {
150     if (isa<Instruction>(V)) {
151       V.print(*OS, MST);
152       *OS << '\n';
153     } else {
154       V.printAsOperand(*OS, true, MST);
155       *OS << '\n';
156     }
157   }
158 
159   void Write(const Metadata *MD) {
160     if (!MD)
161       return;
162     MD->print(*OS, MST, &M);
163     *OS << '\n';
164   }
165 
166   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
167     Write(MD.get());
168   }
169 
170   void Write(const NamedMDNode *NMD) {
171     if (!NMD)
172       return;
173     NMD->print(*OS, MST);
174     *OS << '\n';
175   }
176 
177   void Write(Type *T) {
178     if (!T)
179       return;
180     *OS << ' ' << *T;
181   }
182 
183   void Write(const Comdat *C) {
184     if (!C)
185       return;
186     *OS << *C;
187   }
188 
189   void Write(const APInt *AI) {
190     if (!AI)
191       return;
192     *OS << *AI << '\n';
193   }
194 
195   void Write(const unsigned i) { *OS << i << '\n'; }
196 
197   template <typename T> void Write(ArrayRef<T> Vs) {
198     for (const T &V : Vs)
199       Write(V);
200   }
201 
202   template <typename T1, typename... Ts>
203   void WriteTs(const T1 &V1, const Ts &... Vs) {
204     Write(V1);
205     WriteTs(Vs...);
206   }
207 
208   template <typename... Ts> void WriteTs() {}
209 
210 public:
211   /// A check failed, so printout out the condition and the message.
212   ///
213   /// This provides a nice place to put a breakpoint if you want to see why
214   /// something is not correct.
215   void CheckFailed(const Twine &Message) {
216     if (OS)
217       *OS << Message << '\n';
218     Broken = true;
219   }
220 
221   /// A check failed (with values to print).
222   ///
223   /// This calls the Message-only version so that the above is easier to set a
224   /// breakpoint on.
225   template <typename T1, typename... Ts>
226   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
227     CheckFailed(Message);
228     if (OS)
229       WriteTs(V1, Vs...);
230   }
231 
232   /// A debug info check failed.
233   void DebugInfoCheckFailed(const Twine &Message) {
234     if (OS)
235       *OS << Message << '\n';
236     Broken |= TreatBrokenDebugInfoAsError;
237     BrokenDebugInfo = true;
238   }
239 
240   /// A debug info check failed (with values to print).
241   template <typename T1, typename... Ts>
242   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
243                             const Ts &... Vs) {
244     DebugInfoCheckFailed(Message);
245     if (OS)
246       WriteTs(V1, Vs...);
247   }
248 };
249 
250 } // namespace llvm
251 
252 namespace {
253 
254 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
255   friend class InstVisitor<Verifier>;
256 
257   DominatorTree DT;
258 
259   /// When verifying a basic block, keep track of all of the
260   /// instructions we have seen so far.
261   ///
262   /// This allows us to do efficient dominance checks for the case when an
263   /// instruction has an operand that is an instruction in the same block.
264   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
265 
266   /// Keep track of the metadata nodes that have been checked already.
267   SmallPtrSet<const Metadata *, 32> MDNodes;
268 
269   /// Keep track which DISubprogram is attached to which function.
270   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
271 
272   /// Track all DICompileUnits visited.
273   SmallPtrSet<const Metadata *, 2> CUVisited;
274 
275   /// The result type for a landingpad.
276   Type *LandingPadResultTy;
277 
278   /// Whether we've seen a call to @llvm.localescape in this function
279   /// already.
280   bool SawFrameEscape;
281 
282   /// Whether the current function has a DISubprogram attached to it.
283   bool HasDebugInfo = false;
284 
285   /// Whether source was present on the first DIFile encountered in each CU.
286   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
287 
288   /// Stores the count of how many objects were passed to llvm.localescape for a
289   /// given function and the largest index passed to llvm.localrecover.
290   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
291 
292   // Maps catchswitches and cleanuppads that unwind to siblings to the
293   // terminators that indicate the unwind, used to detect cycles therein.
294   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
295 
296   /// Cache of constants visited in search of ConstantExprs.
297   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
298 
299   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
300   SmallVector<const Function *, 4> DeoptimizeDeclarations;
301 
302   // Verify that this GlobalValue is only used in this module.
303   // This map is used to avoid visiting uses twice. We can arrive at a user
304   // twice, if they have multiple operands. In particular for very large
305   // constant expressions, we can arrive at a particular user many times.
306   SmallPtrSet<const Value *, 32> GlobalValueVisited;
307 
308   // Keeps track of duplicate function argument debug info.
309   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
310 
311   TBAAVerifier TBAAVerifyHelper;
312 
313   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
314 
315 public:
316   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
317                     const Module &M)
318       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
319         SawFrameEscape(false), TBAAVerifyHelper(this) {
320     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
321   }
322 
323   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
324 
325   bool verify(const Function &F) {
326     assert(F.getParent() == &M &&
327            "An instance of this class only works with a specific module!");
328 
329     // First ensure the function is well-enough formed to compute dominance
330     // information, and directly compute a dominance tree. We don't rely on the
331     // pass manager to provide this as it isolates us from a potentially
332     // out-of-date dominator tree and makes it significantly more complex to run
333     // this code outside of a pass manager.
334     // FIXME: It's really gross that we have to cast away constness here.
335     if (!F.empty())
336       DT.recalculate(const_cast<Function &>(F));
337 
338     for (const BasicBlock &BB : F) {
339       if (!BB.empty() && BB.back().isTerminator())
340         continue;
341 
342       if (OS) {
343         *OS << "Basic Block in function '" << F.getName()
344             << "' does not have terminator!\n";
345         BB.printAsOperand(*OS, true, MST);
346         *OS << "\n";
347       }
348       return false;
349     }
350 
351     Broken = false;
352     // FIXME: We strip const here because the inst visitor strips const.
353     visit(const_cast<Function &>(F));
354     verifySiblingFuncletUnwinds();
355     InstsInThisBlock.clear();
356     DebugFnArgs.clear();
357     LandingPadResultTy = nullptr;
358     SawFrameEscape = false;
359     SiblingFuncletInfo.clear();
360 
361     return !Broken;
362   }
363 
364   /// Verify the module that this instance of \c Verifier was initialized with.
365   bool verify() {
366     Broken = false;
367 
368     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
369     for (const Function &F : M)
370       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
371         DeoptimizeDeclarations.push_back(&F);
372 
373     // Now that we've visited every function, verify that we never asked to
374     // recover a frame index that wasn't escaped.
375     verifyFrameRecoverIndices();
376     for (const GlobalVariable &GV : M.globals())
377       visitGlobalVariable(GV);
378 
379     for (const GlobalAlias &GA : M.aliases())
380       visitGlobalAlias(GA);
381 
382     for (const NamedMDNode &NMD : M.named_metadata())
383       visitNamedMDNode(NMD);
384 
385     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
386       visitComdat(SMEC.getValue());
387 
388     visitModuleFlags(M);
389     visitModuleIdents(M);
390     visitModuleCommandLines(M);
391 
392     verifyCompileUnits();
393 
394     verifyDeoptimizeCallingConvs();
395     DISubprogramAttachments.clear();
396     return !Broken;
397   }
398 
399 private:
400   // Verification methods...
401   void visitGlobalValue(const GlobalValue &GV);
402   void visitGlobalVariable(const GlobalVariable &GV);
403   void visitGlobalAlias(const GlobalAlias &GA);
404   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
405   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
406                            const GlobalAlias &A, const Constant &C);
407   void visitNamedMDNode(const NamedMDNode &NMD);
408   void visitMDNode(const MDNode &MD);
409   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
410   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
411   void visitComdat(const Comdat &C);
412   void visitModuleIdents(const Module &M);
413   void visitModuleCommandLines(const Module &M);
414   void visitModuleFlags(const Module &M);
415   void visitModuleFlag(const MDNode *Op,
416                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
417                        SmallVectorImpl<const MDNode *> &Requirements);
418   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
419   void visitFunction(const Function &F);
420   void visitBasicBlock(BasicBlock &BB);
421   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
422   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
423   void visitProfMetadata(Instruction &I, MDNode *MD);
424 
425   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
426 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
427 #include "llvm/IR/Metadata.def"
428   void visitDIScope(const DIScope &N);
429   void visitDIVariable(const DIVariable &N);
430   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
431   void visitDITemplateParameter(const DITemplateParameter &N);
432 
433   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
434 
435   // InstVisitor overrides...
436   using InstVisitor<Verifier>::visit;
437   void visit(Instruction &I);
438 
439   void visitTruncInst(TruncInst &I);
440   void visitZExtInst(ZExtInst &I);
441   void visitSExtInst(SExtInst &I);
442   void visitFPTruncInst(FPTruncInst &I);
443   void visitFPExtInst(FPExtInst &I);
444   void visitFPToUIInst(FPToUIInst &I);
445   void visitFPToSIInst(FPToSIInst &I);
446   void visitUIToFPInst(UIToFPInst &I);
447   void visitSIToFPInst(SIToFPInst &I);
448   void visitIntToPtrInst(IntToPtrInst &I);
449   void visitPtrToIntInst(PtrToIntInst &I);
450   void visitBitCastInst(BitCastInst &I);
451   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
452   void visitPHINode(PHINode &PN);
453   void visitCallBase(CallBase &Call);
454   void visitUnaryOperator(UnaryOperator &U);
455   void visitBinaryOperator(BinaryOperator &B);
456   void visitICmpInst(ICmpInst &IC);
457   void visitFCmpInst(FCmpInst &FC);
458   void visitExtractElementInst(ExtractElementInst &EI);
459   void visitInsertElementInst(InsertElementInst &EI);
460   void visitShuffleVectorInst(ShuffleVectorInst &EI);
461   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
462   void visitCallInst(CallInst &CI);
463   void visitInvokeInst(InvokeInst &II);
464   void visitGetElementPtrInst(GetElementPtrInst &GEP);
465   void visitLoadInst(LoadInst &LI);
466   void visitStoreInst(StoreInst &SI);
467   void verifyDominatesUse(Instruction &I, unsigned i);
468   void visitInstruction(Instruction &I);
469   void visitTerminator(Instruction &I);
470   void visitBranchInst(BranchInst &BI);
471   void visitReturnInst(ReturnInst &RI);
472   void visitSwitchInst(SwitchInst &SI);
473   void visitIndirectBrInst(IndirectBrInst &BI);
474   void visitCallBrInst(CallBrInst &CBI);
475   void visitSelectInst(SelectInst &SI);
476   void visitUserOp1(Instruction &I);
477   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
478   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
479   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
480   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
481   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
482   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
483   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
484   void visitFenceInst(FenceInst &FI);
485   void visitAllocaInst(AllocaInst &AI);
486   void visitExtractValueInst(ExtractValueInst &EVI);
487   void visitInsertValueInst(InsertValueInst &IVI);
488   void visitEHPadPredecessors(Instruction &I);
489   void visitLandingPadInst(LandingPadInst &LPI);
490   void visitResumeInst(ResumeInst &RI);
491   void visitCatchPadInst(CatchPadInst &CPI);
492   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
493   void visitCleanupPadInst(CleanupPadInst &CPI);
494   void visitFuncletPadInst(FuncletPadInst &FPI);
495   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
496   void visitCleanupReturnInst(CleanupReturnInst &CRI);
497 
498   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
499   void verifySwiftErrorValue(const Value *SwiftErrorVal);
500   void verifyMustTailCall(CallInst &CI);
501   bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
502                         unsigned ArgNo, std::string &Suffix);
503   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
504   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
505                             const Value *V);
506   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
507   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
508                            const Value *V, bool IsIntrinsic);
509   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
510 
511   void visitConstantExprsRecursively(const Constant *EntryC);
512   void visitConstantExpr(const ConstantExpr *CE);
513   void verifyStatepoint(const CallBase &Call);
514   void verifyFrameRecoverIndices();
515   void verifySiblingFuncletUnwinds();
516 
517   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
518   template <typename ValueOrMetadata>
519   void verifyFragmentExpression(const DIVariable &V,
520                                 DIExpression::FragmentInfo Fragment,
521                                 ValueOrMetadata *Desc);
522   void verifyFnArgs(const DbgVariableIntrinsic &I);
523   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
524 
525   /// Module-level debug info verification...
526   void verifyCompileUnits();
527 
528   /// Module-level verification that all @llvm.experimental.deoptimize
529   /// declarations share the same calling convention.
530   void verifyDeoptimizeCallingConvs();
531 
532   /// Verify all-or-nothing property of DIFile source attribute within a CU.
533   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
534 };
535 
536 } // end anonymous namespace
537 
538 /// We know that cond should be true, if not print an error message.
539 #define Assert(C, ...) \
540   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
541 
542 /// We know that a debug info condition should be true, if not print
543 /// an error message.
544 #define AssertDI(C, ...) \
545   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
546 
547 void Verifier::visit(Instruction &I) {
548   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
549     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
550   InstVisitor<Verifier>::visit(I);
551 }
552 
553 // Helper to recursively iterate over indirect users. By
554 // returning false, the callback can ask to stop recursing
555 // further.
556 static void forEachUser(const Value *User,
557                         SmallPtrSet<const Value *, 32> &Visited,
558                         llvm::function_ref<bool(const Value *)> Callback) {
559   if (!Visited.insert(User).second)
560     return;
561   for (const Value *TheNextUser : User->materialized_users())
562     if (Callback(TheNextUser))
563       forEachUser(TheNextUser, Visited, Callback);
564 }
565 
566 void Verifier::visitGlobalValue(const GlobalValue &GV) {
567   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
568          "Global is external, but doesn't have external or weak linkage!", &GV);
569 
570   Assert(GV.getAlignment() <= Value::MaximumAlignment,
571          "huge alignment values are unsupported", &GV);
572   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
573          "Only global variables can have appending linkage!", &GV);
574 
575   if (GV.hasAppendingLinkage()) {
576     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
577     Assert(GVar && GVar->getValueType()->isArrayTy(),
578            "Only global arrays can have appending linkage!", GVar);
579   }
580 
581   if (GV.isDeclarationForLinker())
582     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
583 
584   if (GV.hasDLLImportStorageClass()) {
585     Assert(!GV.isDSOLocal(),
586            "GlobalValue with DLLImport Storage is dso_local!", &GV);
587 
588     Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
589                GV.hasAvailableExternallyLinkage(),
590            "Global is marked as dllimport, but not external", &GV);
591   }
592 
593   if (GV.hasLocalLinkage())
594     Assert(GV.isDSOLocal(),
595            "GlobalValue with private or internal linkage must be dso_local!",
596            &GV);
597 
598   if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
599     Assert(GV.isDSOLocal(),
600            "GlobalValue with non default visibility must be dso_local!", &GV);
601 
602   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
603     if (const Instruction *I = dyn_cast<Instruction>(V)) {
604       if (!I->getParent() || !I->getParent()->getParent())
605         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
606                     I);
607       else if (I->getParent()->getParent()->getParent() != &M)
608         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
609                     I->getParent()->getParent(),
610                     I->getParent()->getParent()->getParent());
611       return false;
612     } else if (const Function *F = dyn_cast<Function>(V)) {
613       if (F->getParent() != &M)
614         CheckFailed("Global is used by function in a different module", &GV, &M,
615                     F, F->getParent());
616       return false;
617     }
618     return true;
619   });
620 }
621 
622 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
623   if (GV.hasInitializer()) {
624     Assert(GV.getInitializer()->getType() == GV.getValueType(),
625            "Global variable initializer type does not match global "
626            "variable type!",
627            &GV);
628     // If the global has common linkage, it must have a zero initializer and
629     // cannot be constant.
630     if (GV.hasCommonLinkage()) {
631       Assert(GV.getInitializer()->isNullValue(),
632              "'common' global must have a zero initializer!", &GV);
633       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
634              &GV);
635       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
636     }
637   }
638 
639   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
640                        GV.getName() == "llvm.global_dtors")) {
641     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
642            "invalid linkage for intrinsic global variable", &GV);
643     // Don't worry about emitting an error for it not being an array,
644     // visitGlobalValue will complain on appending non-array.
645     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
646       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
647       PointerType *FuncPtrTy =
648           FunctionType::get(Type::getVoidTy(Context), false)->
649           getPointerTo(DL.getProgramAddressSpace());
650       Assert(STy &&
651                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
652                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
653                  STy->getTypeAtIndex(1) == FuncPtrTy,
654              "wrong type for intrinsic global variable", &GV);
655       Assert(STy->getNumElements() == 3,
656              "the third field of the element type is mandatory, "
657              "specify i8* null to migrate from the obsoleted 2-field form");
658       Type *ETy = STy->getTypeAtIndex(2);
659       Assert(ETy->isPointerTy() &&
660                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
661              "wrong type for intrinsic global variable", &GV);
662     }
663   }
664 
665   if (GV.hasName() && (GV.getName() == "llvm.used" ||
666                        GV.getName() == "llvm.compiler.used")) {
667     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
668            "invalid linkage for intrinsic global variable", &GV);
669     Type *GVType = GV.getValueType();
670     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
671       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
672       Assert(PTy, "wrong type for intrinsic global variable", &GV);
673       if (GV.hasInitializer()) {
674         const Constant *Init = GV.getInitializer();
675         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
676         Assert(InitArray, "wrong initalizer for intrinsic global variable",
677                Init);
678         for (Value *Op : InitArray->operands()) {
679           Value *V = Op->stripPointerCasts();
680           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
681                      isa<GlobalAlias>(V),
682                  "invalid llvm.used member", V);
683           Assert(V->hasName(), "members of llvm.used must be named", V);
684         }
685       }
686     }
687   }
688 
689   // Visit any debug info attachments.
690   SmallVector<MDNode *, 1> MDs;
691   GV.getMetadata(LLVMContext::MD_dbg, MDs);
692   for (auto *MD : MDs) {
693     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
694       visitDIGlobalVariableExpression(*GVE);
695     else
696       AssertDI(false, "!dbg attachment of global variable must be a "
697                       "DIGlobalVariableExpression");
698   }
699 
700   // Scalable vectors cannot be global variables, since we don't know
701   // the runtime size. If the global is a struct or an array containing
702   // scalable vectors, that will be caught by the isValidElementType methods
703   // in StructType or ArrayType instead.
704   if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
705     Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
706 
707   if (!GV.hasInitializer()) {
708     visitGlobalValue(GV);
709     return;
710   }
711 
712   // Walk any aggregate initializers looking for bitcasts between address spaces
713   visitConstantExprsRecursively(GV.getInitializer());
714 
715   visitGlobalValue(GV);
716 }
717 
718 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
719   SmallPtrSet<const GlobalAlias*, 4> Visited;
720   Visited.insert(&GA);
721   visitAliaseeSubExpr(Visited, GA, C);
722 }
723 
724 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
725                                    const GlobalAlias &GA, const Constant &C) {
726   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
727     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
728            &GA);
729 
730     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
731       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
732 
733       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
734              &GA);
735     } else {
736       // Only continue verifying subexpressions of GlobalAliases.
737       // Do not recurse into global initializers.
738       return;
739     }
740   }
741 
742   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
743     visitConstantExprsRecursively(CE);
744 
745   for (const Use &U : C.operands()) {
746     Value *V = &*U;
747     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
748       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
749     else if (const auto *C2 = dyn_cast<Constant>(V))
750       visitAliaseeSubExpr(Visited, GA, *C2);
751   }
752 }
753 
754 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
755   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
756          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
757          "weak_odr, or external linkage!",
758          &GA);
759   const Constant *Aliasee = GA.getAliasee();
760   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
761   Assert(GA.getType() == Aliasee->getType(),
762          "Alias and aliasee types should match!", &GA);
763 
764   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
765          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
766 
767   visitAliaseeSubExpr(GA, *Aliasee);
768 
769   visitGlobalValue(GA);
770 }
771 
772 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
773   // There used to be various other llvm.dbg.* nodes, but we don't support
774   // upgrading them and we want to reserve the namespace for future uses.
775   if (NMD.getName().startswith("llvm.dbg."))
776     AssertDI(NMD.getName() == "llvm.dbg.cu",
777              "unrecognized named metadata node in the llvm.dbg namespace",
778              &NMD);
779   for (const MDNode *MD : NMD.operands()) {
780     if (NMD.getName() == "llvm.dbg.cu")
781       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
782 
783     if (!MD)
784       continue;
785 
786     visitMDNode(*MD);
787   }
788 }
789 
790 void Verifier::visitMDNode(const MDNode &MD) {
791   // Only visit each node once.  Metadata can be mutually recursive, so this
792   // avoids infinite recursion here, as well as being an optimization.
793   if (!MDNodes.insert(&MD).second)
794     return;
795 
796   switch (MD.getMetadataID()) {
797   default:
798     llvm_unreachable("Invalid MDNode subclass");
799   case Metadata::MDTupleKind:
800     break;
801 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
802   case Metadata::CLASS##Kind:                                                  \
803     visit##CLASS(cast<CLASS>(MD));                                             \
804     break;
805 #include "llvm/IR/Metadata.def"
806   }
807 
808   for (const Metadata *Op : MD.operands()) {
809     if (!Op)
810       continue;
811     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
812            &MD, Op);
813     if (auto *N = dyn_cast<MDNode>(Op)) {
814       visitMDNode(*N);
815       continue;
816     }
817     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
818       visitValueAsMetadata(*V, nullptr);
819       continue;
820     }
821   }
822 
823   // Check these last, so we diagnose problems in operands first.
824   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
825   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
826 }
827 
828 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
829   Assert(MD.getValue(), "Expected valid value", &MD);
830   Assert(!MD.getValue()->getType()->isMetadataTy(),
831          "Unexpected metadata round-trip through values", &MD, MD.getValue());
832 
833   auto *L = dyn_cast<LocalAsMetadata>(&MD);
834   if (!L)
835     return;
836 
837   Assert(F, "function-local metadata used outside a function", L);
838 
839   // If this was an instruction, bb, or argument, verify that it is in the
840   // function that we expect.
841   Function *ActualF = nullptr;
842   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
843     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
844     ActualF = I->getParent()->getParent();
845   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
846     ActualF = BB->getParent();
847   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
848     ActualF = A->getParent();
849   assert(ActualF && "Unimplemented function local metadata case!");
850 
851   Assert(ActualF == F, "function-local metadata used in wrong function", L);
852 }
853 
854 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
855   Metadata *MD = MDV.getMetadata();
856   if (auto *N = dyn_cast<MDNode>(MD)) {
857     visitMDNode(*N);
858     return;
859   }
860 
861   // Only visit each node once.  Metadata can be mutually recursive, so this
862   // avoids infinite recursion here, as well as being an optimization.
863   if (!MDNodes.insert(MD).second)
864     return;
865 
866   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
867     visitValueAsMetadata(*V, F);
868 }
869 
870 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
871 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
872 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
873 
874 void Verifier::visitDILocation(const DILocation &N) {
875   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
876            "location requires a valid scope", &N, N.getRawScope());
877   if (auto *IA = N.getRawInlinedAt())
878     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
879   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
880     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
881 }
882 
883 void Verifier::visitGenericDINode(const GenericDINode &N) {
884   AssertDI(N.getTag(), "invalid tag", &N);
885 }
886 
887 void Verifier::visitDIScope(const DIScope &N) {
888   if (auto *F = N.getRawFile())
889     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
890 }
891 
892 void Verifier::visitDISubrange(const DISubrange &N) {
893   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
894   auto Count = N.getCount();
895   AssertDI(Count, "Count must either be a signed constant or a DIVariable",
896            &N);
897   AssertDI(!Count.is<ConstantInt*>() ||
898                Count.get<ConstantInt*>()->getSExtValue() >= -1,
899            "invalid subrange count", &N);
900 }
901 
902 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
903   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
904 }
905 
906 void Verifier::visitDIBasicType(const DIBasicType &N) {
907   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
908                N.getTag() == dwarf::DW_TAG_unspecified_type,
909            "invalid tag", &N);
910   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
911             "has conflicting flags", &N);
912 }
913 
914 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
915   // Common scope checks.
916   visitDIScope(N);
917 
918   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
919                N.getTag() == dwarf::DW_TAG_pointer_type ||
920                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
921                N.getTag() == dwarf::DW_TAG_reference_type ||
922                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
923                N.getTag() == dwarf::DW_TAG_const_type ||
924                N.getTag() == dwarf::DW_TAG_volatile_type ||
925                N.getTag() == dwarf::DW_TAG_restrict_type ||
926                N.getTag() == dwarf::DW_TAG_atomic_type ||
927                N.getTag() == dwarf::DW_TAG_member ||
928                N.getTag() == dwarf::DW_TAG_inheritance ||
929                N.getTag() == dwarf::DW_TAG_friend,
930            "invalid tag", &N);
931   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
932     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
933              N.getRawExtraData());
934   }
935 
936   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
937   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
938            N.getRawBaseType());
939 
940   if (N.getDWARFAddressSpace()) {
941     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
942                  N.getTag() == dwarf::DW_TAG_reference_type ||
943                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
944              "DWARF address space only applies to pointer or reference types",
945              &N);
946   }
947 }
948 
949 /// Detect mutually exclusive flags.
950 static bool hasConflictingReferenceFlags(unsigned Flags) {
951   return ((Flags & DINode::FlagLValueReference) &&
952           (Flags & DINode::FlagRValueReference)) ||
953          ((Flags & DINode::FlagTypePassByValue) &&
954           (Flags & DINode::FlagTypePassByReference));
955 }
956 
957 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
958   auto *Params = dyn_cast<MDTuple>(&RawParams);
959   AssertDI(Params, "invalid template params", &N, &RawParams);
960   for (Metadata *Op : Params->operands()) {
961     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
962              &N, Params, Op);
963   }
964 }
965 
966 void Verifier::visitDICompositeType(const DICompositeType &N) {
967   // Common scope checks.
968   visitDIScope(N);
969 
970   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
971                N.getTag() == dwarf::DW_TAG_structure_type ||
972                N.getTag() == dwarf::DW_TAG_union_type ||
973                N.getTag() == dwarf::DW_TAG_enumeration_type ||
974                N.getTag() == dwarf::DW_TAG_class_type ||
975                N.getTag() == dwarf::DW_TAG_variant_part,
976            "invalid tag", &N);
977 
978   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
979   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
980            N.getRawBaseType());
981 
982   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
983            "invalid composite elements", &N, N.getRawElements());
984   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
985            N.getRawVTableHolder());
986   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
987            "invalid reference flags", &N);
988   unsigned DIBlockByRefStruct = 1 << 4;
989   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
990            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
991 
992   if (N.isVector()) {
993     const DINodeArray Elements = N.getElements();
994     AssertDI(Elements.size() == 1 &&
995              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
996              "invalid vector, expected one element of type subrange", &N);
997   }
998 
999   if (auto *Params = N.getRawTemplateParams())
1000     visitTemplateParams(N, *Params);
1001 
1002   if (N.getTag() == dwarf::DW_TAG_class_type ||
1003       N.getTag() == dwarf::DW_TAG_union_type) {
1004     AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
1005              "class/union requires a filename", &N, N.getFile());
1006   }
1007 
1008   if (auto *D = N.getRawDiscriminator()) {
1009     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1010              "discriminator can only appear on variant part");
1011   }
1012 }
1013 
1014 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1015   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1016   if (auto *Types = N.getRawTypeArray()) {
1017     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1018     for (Metadata *Ty : N.getTypeArray()->operands()) {
1019       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1020     }
1021   }
1022   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1023            "invalid reference flags", &N);
1024 }
1025 
1026 void Verifier::visitDIFile(const DIFile &N) {
1027   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1028   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1029   if (Checksum) {
1030     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1031              "invalid checksum kind", &N);
1032     size_t Size;
1033     switch (Checksum->Kind) {
1034     case DIFile::CSK_MD5:
1035       Size = 32;
1036       break;
1037     case DIFile::CSK_SHA1:
1038       Size = 40;
1039       break;
1040     }
1041     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1042     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1043              "invalid checksum", &N);
1044   }
1045 }
1046 
1047 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1048   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1049   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1050 
1051   // Don't bother verifying the compilation directory or producer string
1052   // as those could be empty.
1053   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1054            N.getRawFile());
1055   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1056            N.getFile());
1057 
1058   verifySourceDebugInfo(N, *N.getFile());
1059 
1060   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1061            "invalid emission kind", &N);
1062 
1063   if (auto *Array = N.getRawEnumTypes()) {
1064     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1065     for (Metadata *Op : N.getEnumTypes()->operands()) {
1066       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1067       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1068                "invalid enum type", &N, N.getEnumTypes(), Op);
1069     }
1070   }
1071   if (auto *Array = N.getRawRetainedTypes()) {
1072     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1073     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1074       AssertDI(Op && (isa<DIType>(Op) ||
1075                       (isa<DISubprogram>(Op) &&
1076                        !cast<DISubprogram>(Op)->isDefinition())),
1077                "invalid retained type", &N, Op);
1078     }
1079   }
1080   if (auto *Array = N.getRawGlobalVariables()) {
1081     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1082     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1083       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1084                "invalid global variable ref", &N, Op);
1085     }
1086   }
1087   if (auto *Array = N.getRawImportedEntities()) {
1088     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1089     for (Metadata *Op : N.getImportedEntities()->operands()) {
1090       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1091                &N, Op);
1092     }
1093   }
1094   if (auto *Array = N.getRawMacros()) {
1095     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1096     for (Metadata *Op : N.getMacros()->operands()) {
1097       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1098     }
1099   }
1100   CUVisited.insert(&N);
1101 }
1102 
1103 void Verifier::visitDISubprogram(const DISubprogram &N) {
1104   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1105   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1106   if (auto *F = N.getRawFile())
1107     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1108   else
1109     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1110   if (auto *T = N.getRawType())
1111     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1112   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1113            N.getRawContainingType());
1114   if (auto *Params = N.getRawTemplateParams())
1115     visitTemplateParams(N, *Params);
1116   if (auto *S = N.getRawDeclaration())
1117     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1118              "invalid subprogram declaration", &N, S);
1119   if (auto *RawNode = N.getRawRetainedNodes()) {
1120     auto *Node = dyn_cast<MDTuple>(RawNode);
1121     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1122     for (Metadata *Op : Node->operands()) {
1123       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1124                "invalid retained nodes, expected DILocalVariable or DILabel",
1125                &N, Node, Op);
1126     }
1127   }
1128   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1129            "invalid reference flags", &N);
1130 
1131   auto *Unit = N.getRawUnit();
1132   if (N.isDefinition()) {
1133     // Subprogram definitions (not part of the type hierarchy).
1134     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1135     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1136     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1137     if (N.getFile())
1138       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1139   } else {
1140     // Subprogram declarations (part of the type hierarchy).
1141     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1142   }
1143 
1144   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1145     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1146     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1147     for (Metadata *Op : ThrownTypes->operands())
1148       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1149                Op);
1150   }
1151 
1152   if (N.areAllCallsDescribed())
1153     AssertDI(N.isDefinition(),
1154              "DIFlagAllCallsDescribed must be attached to a definition");
1155 }
1156 
1157 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1158   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1159   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1160            "invalid local scope", &N, N.getRawScope());
1161   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1162     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1163 }
1164 
1165 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1166   visitDILexicalBlockBase(N);
1167 
1168   AssertDI(N.getLine() || !N.getColumn(),
1169            "cannot have column info without line info", &N);
1170 }
1171 
1172 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1173   visitDILexicalBlockBase(N);
1174 }
1175 
1176 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1177   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1178   if (auto *S = N.getRawScope())
1179     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1180   if (auto *S = N.getRawDecl())
1181     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1182 }
1183 
1184 void Verifier::visitDINamespace(const DINamespace &N) {
1185   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1186   if (auto *S = N.getRawScope())
1187     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1188 }
1189 
1190 void Verifier::visitDIMacro(const DIMacro &N) {
1191   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1192                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1193            "invalid macinfo type", &N);
1194   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1195   if (!N.getValue().empty()) {
1196     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1197   }
1198 }
1199 
1200 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1201   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1202            "invalid macinfo type", &N);
1203   if (auto *F = N.getRawFile())
1204     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1205 
1206   if (auto *Array = N.getRawElements()) {
1207     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1208     for (Metadata *Op : N.getElements()->operands()) {
1209       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1210     }
1211   }
1212 }
1213 
1214 void Verifier::visitDIModule(const DIModule &N) {
1215   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1216   AssertDI(!N.getName().empty(), "anonymous module", &N);
1217 }
1218 
1219 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1220   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1221 }
1222 
1223 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1224   visitDITemplateParameter(N);
1225 
1226   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1227            &N);
1228 }
1229 
1230 void Verifier::visitDITemplateValueParameter(
1231     const DITemplateValueParameter &N) {
1232   visitDITemplateParameter(N);
1233 
1234   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1235                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1236                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1237            "invalid tag", &N);
1238 }
1239 
1240 void Verifier::visitDIVariable(const DIVariable &N) {
1241   if (auto *S = N.getRawScope())
1242     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1243   if (auto *F = N.getRawFile())
1244     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1245 }
1246 
1247 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1248   // Checks common to all variables.
1249   visitDIVariable(N);
1250 
1251   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1252   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1253   AssertDI(N.getType(), "missing global variable type", &N);
1254   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1255     AssertDI(isa<DIDerivedType>(Member),
1256              "invalid static data member declaration", &N, Member);
1257   }
1258 }
1259 
1260 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1261   // Checks common to all variables.
1262   visitDIVariable(N);
1263 
1264   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1265   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1266   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1267            "local variable requires a valid scope", &N, N.getRawScope());
1268   if (auto Ty = N.getType())
1269     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1270 }
1271 
1272 void Verifier::visitDILabel(const DILabel &N) {
1273   if (auto *S = N.getRawScope())
1274     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1275   if (auto *F = N.getRawFile())
1276     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1277 
1278   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1279   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1280            "label requires a valid scope", &N, N.getRawScope());
1281 }
1282 
1283 void Verifier::visitDIExpression(const DIExpression &N) {
1284   AssertDI(N.isValid(), "invalid expression", &N);
1285 }
1286 
1287 void Verifier::visitDIGlobalVariableExpression(
1288     const DIGlobalVariableExpression &GVE) {
1289   AssertDI(GVE.getVariable(), "missing variable");
1290   if (auto *Var = GVE.getVariable())
1291     visitDIGlobalVariable(*Var);
1292   if (auto *Expr = GVE.getExpression()) {
1293     visitDIExpression(*Expr);
1294     if (auto Fragment = Expr->getFragmentInfo())
1295       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1296   }
1297 }
1298 
1299 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1300   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1301   if (auto *T = N.getRawType())
1302     AssertDI(isType(T), "invalid type ref", &N, T);
1303   if (auto *F = N.getRawFile())
1304     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1305 }
1306 
1307 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1308   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1309                N.getTag() == dwarf::DW_TAG_imported_declaration,
1310            "invalid tag", &N);
1311   if (auto *S = N.getRawScope())
1312     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1313   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1314            N.getRawEntity());
1315 }
1316 
1317 void Verifier::visitComdat(const Comdat &C) {
1318   // In COFF the Module is invalid if the GlobalValue has private linkage.
1319   // Entities with private linkage don't have entries in the symbol table.
1320   if (TT.isOSBinFormatCOFF())
1321     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1322       Assert(!GV->hasPrivateLinkage(),
1323              "comdat global value has private linkage", GV);
1324 }
1325 
1326 void Verifier::visitModuleIdents(const Module &M) {
1327   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1328   if (!Idents)
1329     return;
1330 
1331   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1332   // Scan each llvm.ident entry and make sure that this requirement is met.
1333   for (const MDNode *N : Idents->operands()) {
1334     Assert(N->getNumOperands() == 1,
1335            "incorrect number of operands in llvm.ident metadata", N);
1336     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1337            ("invalid value for llvm.ident metadata entry operand"
1338             "(the operand should be a string)"),
1339            N->getOperand(0));
1340   }
1341 }
1342 
1343 void Verifier::visitModuleCommandLines(const Module &M) {
1344   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1345   if (!CommandLines)
1346     return;
1347 
1348   // llvm.commandline takes a list of metadata entry. Each entry has only one
1349   // string. Scan each llvm.commandline entry and make sure that this
1350   // requirement is met.
1351   for (const MDNode *N : CommandLines->operands()) {
1352     Assert(N->getNumOperands() == 1,
1353            "incorrect number of operands in llvm.commandline metadata", N);
1354     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1355            ("invalid value for llvm.commandline metadata entry operand"
1356             "(the operand should be a string)"),
1357            N->getOperand(0));
1358   }
1359 }
1360 
1361 void Verifier::visitModuleFlags(const Module &M) {
1362   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1363   if (!Flags) return;
1364 
1365   // Scan each flag, and track the flags and requirements.
1366   DenseMap<const MDString*, const MDNode*> SeenIDs;
1367   SmallVector<const MDNode*, 16> Requirements;
1368   for (const MDNode *MDN : Flags->operands())
1369     visitModuleFlag(MDN, SeenIDs, Requirements);
1370 
1371   // Validate that the requirements in the module are valid.
1372   for (const MDNode *Requirement : Requirements) {
1373     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1374     const Metadata *ReqValue = Requirement->getOperand(1);
1375 
1376     const MDNode *Op = SeenIDs.lookup(Flag);
1377     if (!Op) {
1378       CheckFailed("invalid requirement on flag, flag is not present in module",
1379                   Flag);
1380       continue;
1381     }
1382 
1383     if (Op->getOperand(2) != ReqValue) {
1384       CheckFailed(("invalid requirement on flag, "
1385                    "flag does not have the required value"),
1386                   Flag);
1387       continue;
1388     }
1389   }
1390 }
1391 
1392 void
1393 Verifier::visitModuleFlag(const MDNode *Op,
1394                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1395                           SmallVectorImpl<const MDNode *> &Requirements) {
1396   // Each module flag should have three arguments, the merge behavior (a
1397   // constant int), the flag ID (an MDString), and the value.
1398   Assert(Op->getNumOperands() == 3,
1399          "incorrect number of operands in module flag", Op);
1400   Module::ModFlagBehavior MFB;
1401   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1402     Assert(
1403         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1404         "invalid behavior operand in module flag (expected constant integer)",
1405         Op->getOperand(0));
1406     Assert(false,
1407            "invalid behavior operand in module flag (unexpected constant)",
1408            Op->getOperand(0));
1409   }
1410   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1411   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1412          Op->getOperand(1));
1413 
1414   // Sanity check the values for behaviors with additional requirements.
1415   switch (MFB) {
1416   case Module::Error:
1417   case Module::Warning:
1418   case Module::Override:
1419     // These behavior types accept any value.
1420     break;
1421 
1422   case Module::Max: {
1423     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1424            "invalid value for 'max' module flag (expected constant integer)",
1425            Op->getOperand(2));
1426     break;
1427   }
1428 
1429   case Module::Require: {
1430     // The value should itself be an MDNode with two operands, a flag ID (an
1431     // MDString), and a value.
1432     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1433     Assert(Value && Value->getNumOperands() == 2,
1434            "invalid value for 'require' module flag (expected metadata pair)",
1435            Op->getOperand(2));
1436     Assert(isa<MDString>(Value->getOperand(0)),
1437            ("invalid value for 'require' module flag "
1438             "(first value operand should be a string)"),
1439            Value->getOperand(0));
1440 
1441     // Append it to the list of requirements, to check once all module flags are
1442     // scanned.
1443     Requirements.push_back(Value);
1444     break;
1445   }
1446 
1447   case Module::Append:
1448   case Module::AppendUnique: {
1449     // These behavior types require the operand be an MDNode.
1450     Assert(isa<MDNode>(Op->getOperand(2)),
1451            "invalid value for 'append'-type module flag "
1452            "(expected a metadata node)",
1453            Op->getOperand(2));
1454     break;
1455   }
1456   }
1457 
1458   // Unless this is a "requires" flag, check the ID is unique.
1459   if (MFB != Module::Require) {
1460     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1461     Assert(Inserted,
1462            "module flag identifiers must be unique (or of 'require' type)", ID);
1463   }
1464 
1465   if (ID->getString() == "wchar_size") {
1466     ConstantInt *Value
1467       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1468     Assert(Value, "wchar_size metadata requires constant integer argument");
1469   }
1470 
1471   if (ID->getString() == "Linker Options") {
1472     // If the llvm.linker.options named metadata exists, we assume that the
1473     // bitcode reader has upgraded the module flag. Otherwise the flag might
1474     // have been created by a client directly.
1475     Assert(M.getNamedMetadata("llvm.linker.options"),
1476            "'Linker Options' named metadata no longer supported");
1477   }
1478 
1479   if (ID->getString() == "CG Profile") {
1480     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1481       visitModuleFlagCGProfileEntry(MDO);
1482   }
1483 }
1484 
1485 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1486   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1487     if (!FuncMDO)
1488       return;
1489     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1490     Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1491            FuncMDO);
1492   };
1493   auto Node = dyn_cast_or_null<MDNode>(MDO);
1494   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1495   CheckFunction(Node->getOperand(0));
1496   CheckFunction(Node->getOperand(1));
1497   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1498   Assert(Count && Count->getType()->isIntegerTy(),
1499          "expected an integer constant", Node->getOperand(2));
1500 }
1501 
1502 /// Return true if this attribute kind only applies to functions.
1503 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1504   switch (Kind) {
1505   case Attribute::NoReturn:
1506   case Attribute::NoSync:
1507   case Attribute::WillReturn:
1508   case Attribute::NoCfCheck:
1509   case Attribute::NoUnwind:
1510   case Attribute::NoInline:
1511   case Attribute::AlwaysInline:
1512   case Attribute::OptimizeForSize:
1513   case Attribute::StackProtect:
1514   case Attribute::StackProtectReq:
1515   case Attribute::StackProtectStrong:
1516   case Attribute::SafeStack:
1517   case Attribute::ShadowCallStack:
1518   case Attribute::NoRedZone:
1519   case Attribute::NoImplicitFloat:
1520   case Attribute::Naked:
1521   case Attribute::InlineHint:
1522   case Attribute::StackAlignment:
1523   case Attribute::UWTable:
1524   case Attribute::NonLazyBind:
1525   case Attribute::ReturnsTwice:
1526   case Attribute::SanitizeAddress:
1527   case Attribute::SanitizeHWAddress:
1528   case Attribute::SanitizeMemTag:
1529   case Attribute::SanitizeThread:
1530   case Attribute::SanitizeMemory:
1531   case Attribute::MinSize:
1532   case Attribute::NoDuplicate:
1533   case Attribute::Builtin:
1534   case Attribute::NoBuiltin:
1535   case Attribute::Cold:
1536   case Attribute::OptForFuzzing:
1537   case Attribute::OptimizeNone:
1538   case Attribute::JumpTable:
1539   case Attribute::Convergent:
1540   case Attribute::ArgMemOnly:
1541   case Attribute::NoRecurse:
1542   case Attribute::InaccessibleMemOnly:
1543   case Attribute::InaccessibleMemOrArgMemOnly:
1544   case Attribute::AllocSize:
1545   case Attribute::SpeculativeLoadHardening:
1546   case Attribute::Speculatable:
1547   case Attribute::StrictFP:
1548     return true;
1549   default:
1550     break;
1551   }
1552   return false;
1553 }
1554 
1555 /// Return true if this is a function attribute that can also appear on
1556 /// arguments.
1557 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1558   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1559          Kind == Attribute::ReadNone || Kind == Attribute::NoFree;
1560 }
1561 
1562 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1563                                     const Value *V) {
1564   for (Attribute A : Attrs) {
1565     if (A.isStringAttribute())
1566       continue;
1567 
1568     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1569       if (!IsFunction) {
1570         CheckFailed("Attribute '" + A.getAsString() +
1571                         "' only applies to functions!",
1572                     V);
1573         return;
1574       }
1575     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1576       CheckFailed("Attribute '" + A.getAsString() +
1577                       "' does not apply to functions!",
1578                   V);
1579       return;
1580     }
1581   }
1582 }
1583 
1584 // VerifyParameterAttrs - Check the given attributes for an argument or return
1585 // value of the specified type.  The value V is printed in error messages.
1586 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1587                                     const Value *V) {
1588   if (!Attrs.hasAttributes())
1589     return;
1590 
1591   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1592 
1593   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1594     Assert(Attrs.getNumAttributes() == 1,
1595            "Attribute 'immarg' is incompatible with other attributes", V);
1596   }
1597 
1598   // Check for mutually incompatible attributes.  Only inreg is compatible with
1599   // sret.
1600   unsigned AttrCount = 0;
1601   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1602   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1603   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1604                Attrs.hasAttribute(Attribute::InReg);
1605   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1606   Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1607                          "and 'sret' are incompatible!",
1608          V);
1609 
1610   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1611            Attrs.hasAttribute(Attribute::ReadOnly)),
1612          "Attributes "
1613          "'inalloca and readonly' are incompatible!",
1614          V);
1615 
1616   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1617            Attrs.hasAttribute(Attribute::Returned)),
1618          "Attributes "
1619          "'sret and returned' are incompatible!",
1620          V);
1621 
1622   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1623            Attrs.hasAttribute(Attribute::SExt)),
1624          "Attributes "
1625          "'zeroext and signext' are incompatible!",
1626          V);
1627 
1628   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1629            Attrs.hasAttribute(Attribute::ReadOnly)),
1630          "Attributes "
1631          "'readnone and readonly' are incompatible!",
1632          V);
1633 
1634   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1635            Attrs.hasAttribute(Attribute::WriteOnly)),
1636          "Attributes "
1637          "'readnone and writeonly' are incompatible!",
1638          V);
1639 
1640   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1641            Attrs.hasAttribute(Attribute::WriteOnly)),
1642          "Attributes "
1643          "'readonly and writeonly' are incompatible!",
1644          V);
1645 
1646   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1647            Attrs.hasAttribute(Attribute::AlwaysInline)),
1648          "Attributes "
1649          "'noinline and alwaysinline' are incompatible!",
1650          V);
1651 
1652   if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1653     Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1654            "Attribute 'byval' type does not match parameter!", V);
1655   }
1656 
1657   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1658   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1659          "Wrong types for attribute: " +
1660              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1661          V);
1662 
1663   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1664     SmallPtrSet<Type*, 4> Visited;
1665     if (!PTy->getElementType()->isSized(&Visited)) {
1666       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1667                  !Attrs.hasAttribute(Attribute::InAlloca),
1668              "Attributes 'byval' and 'inalloca' do not support unsized types!",
1669              V);
1670     }
1671     if (!isa<PointerType>(PTy->getElementType()))
1672       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1673              "Attribute 'swifterror' only applies to parameters "
1674              "with pointer to pointer type!",
1675              V);
1676   } else {
1677     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1678            "Attribute 'byval' only applies to parameters with pointer type!",
1679            V);
1680     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1681            "Attribute 'swifterror' only applies to parameters "
1682            "with pointer type!",
1683            V);
1684   }
1685 }
1686 
1687 // Check parameter attributes against a function type.
1688 // The value V is printed in error messages.
1689 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1690                                    const Value *V, bool IsIntrinsic) {
1691   if (Attrs.isEmpty())
1692     return;
1693 
1694   bool SawNest = false;
1695   bool SawReturned = false;
1696   bool SawSRet = false;
1697   bool SawSwiftSelf = false;
1698   bool SawSwiftError = false;
1699 
1700   // Verify return value attributes.
1701   AttributeSet RetAttrs = Attrs.getRetAttributes();
1702   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1703           !RetAttrs.hasAttribute(Attribute::Nest) &&
1704           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1705           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1706           !RetAttrs.hasAttribute(Attribute::NoFree) &&
1707           !RetAttrs.hasAttribute(Attribute::Returned) &&
1708           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1709           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1710           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1711          "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', 'nofree'"
1712          "'returned', 'swiftself', and 'swifterror' do not apply to return "
1713          "values!",
1714          V);
1715   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1716           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1717           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1718          "Attribute '" + RetAttrs.getAsString() +
1719              "' does not apply to function returns",
1720          V);
1721   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1722 
1723   // Verify parameter attributes.
1724   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1725     Type *Ty = FT->getParamType(i);
1726     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1727 
1728     if (!IsIntrinsic) {
1729       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1730              "immarg attribute only applies to intrinsics",V);
1731     }
1732 
1733     verifyParameterAttrs(ArgAttrs, Ty, V);
1734 
1735     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1736       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1737       SawNest = true;
1738     }
1739 
1740     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1741       Assert(!SawReturned, "More than one parameter has attribute returned!",
1742              V);
1743       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1744              "Incompatible argument and return types for 'returned' attribute",
1745              V);
1746       SawReturned = true;
1747     }
1748 
1749     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1750       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1751       Assert(i == 0 || i == 1,
1752              "Attribute 'sret' is not on first or second parameter!", V);
1753       SawSRet = true;
1754     }
1755 
1756     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1757       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1758       SawSwiftSelf = true;
1759     }
1760 
1761     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1762       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1763              V);
1764       SawSwiftError = true;
1765     }
1766 
1767     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1768       Assert(i == FT->getNumParams() - 1,
1769              "inalloca isn't on the last parameter!", V);
1770     }
1771   }
1772 
1773   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1774     return;
1775 
1776   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1777 
1778   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1779            Attrs.hasFnAttribute(Attribute::ReadOnly)),
1780          "Attributes 'readnone and readonly' are incompatible!", V);
1781 
1782   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1783            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1784          "Attributes 'readnone and writeonly' are incompatible!", V);
1785 
1786   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1787            Attrs.hasFnAttribute(Attribute::WriteOnly)),
1788          "Attributes 'readonly and writeonly' are incompatible!", V);
1789 
1790   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1791            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1792          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1793          "incompatible!",
1794          V);
1795 
1796   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1797            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1798          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1799 
1800   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1801            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1802          "Attributes 'noinline and alwaysinline' are incompatible!", V);
1803 
1804   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1805     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1806            "Attribute 'optnone' requires 'noinline'!", V);
1807 
1808     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1809            "Attributes 'optsize and optnone' are incompatible!", V);
1810 
1811     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1812            "Attributes 'minsize and optnone' are incompatible!", V);
1813   }
1814 
1815   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1816     const GlobalValue *GV = cast<GlobalValue>(V);
1817     Assert(GV->hasGlobalUnnamedAddr(),
1818            "Attribute 'jumptable' requires 'unnamed_addr'", V);
1819   }
1820 
1821   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1822     std::pair<unsigned, Optional<unsigned>> Args =
1823         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1824 
1825     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1826       if (ParamNo >= FT->getNumParams()) {
1827         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1828         return false;
1829       }
1830 
1831       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1832         CheckFailed("'allocsize' " + Name +
1833                         " argument must refer to an integer parameter",
1834                     V);
1835         return false;
1836       }
1837 
1838       return true;
1839     };
1840 
1841     if (!CheckParam("element size", Args.first))
1842       return;
1843 
1844     if (Args.second && !CheckParam("number of elements", *Args.second))
1845       return;
1846   }
1847 
1848   if (Attrs.hasFnAttribute("frame-pointer")) {
1849     StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
1850                                       "frame-pointer").getValueAsString();
1851     if (FP != "all" && FP != "non-leaf" && FP != "none")
1852       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
1853   }
1854 
1855   if (Attrs.hasFnAttribute("patchable-function-entry")) {
1856     StringRef S0 = Attrs
1857                        .getAttribute(AttributeList::FunctionIndex,
1858                                      "patchable-function-entry")
1859                        .getValueAsString();
1860     StringRef S = S0;
1861     unsigned N;
1862     if (S.getAsInteger(10, N))
1863       CheckFailed(
1864           "\"patchable-function-entry\" takes an unsigned integer: " + S0, V);
1865   }
1866 }
1867 
1868 void Verifier::verifyFunctionMetadata(
1869     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1870   for (const auto &Pair : MDs) {
1871     if (Pair.first == LLVMContext::MD_prof) {
1872       MDNode *MD = Pair.second;
1873       Assert(MD->getNumOperands() >= 2,
1874              "!prof annotations should have no less than 2 operands", MD);
1875 
1876       // Check first operand.
1877       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1878              MD);
1879       Assert(isa<MDString>(MD->getOperand(0)),
1880              "expected string with name of the !prof annotation", MD);
1881       MDString *MDS = cast<MDString>(MD->getOperand(0));
1882       StringRef ProfName = MDS->getString();
1883       Assert(ProfName.equals("function_entry_count") ||
1884                  ProfName.equals("synthetic_function_entry_count"),
1885              "first operand should be 'function_entry_count'"
1886              " or 'synthetic_function_entry_count'",
1887              MD);
1888 
1889       // Check second operand.
1890       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1891              MD);
1892       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1893              "expected integer argument to function_entry_count", MD);
1894     }
1895   }
1896 }
1897 
1898 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1899   if (!ConstantExprVisited.insert(EntryC).second)
1900     return;
1901 
1902   SmallVector<const Constant *, 16> Stack;
1903   Stack.push_back(EntryC);
1904 
1905   while (!Stack.empty()) {
1906     const Constant *C = Stack.pop_back_val();
1907 
1908     // Check this constant expression.
1909     if (const auto *CE = dyn_cast<ConstantExpr>(C))
1910       visitConstantExpr(CE);
1911 
1912     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1913       // Global Values get visited separately, but we do need to make sure
1914       // that the global value is in the correct module
1915       Assert(GV->getParent() == &M, "Referencing global in another module!",
1916              EntryC, &M, GV, GV->getParent());
1917       continue;
1918     }
1919 
1920     // Visit all sub-expressions.
1921     for (const Use &U : C->operands()) {
1922       const auto *OpC = dyn_cast<Constant>(U);
1923       if (!OpC)
1924         continue;
1925       if (!ConstantExprVisited.insert(OpC).second)
1926         continue;
1927       Stack.push_back(OpC);
1928     }
1929   }
1930 }
1931 
1932 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1933   if (CE->getOpcode() == Instruction::BitCast)
1934     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1935                                  CE->getType()),
1936            "Invalid bitcast", CE);
1937 
1938   if (CE->getOpcode() == Instruction::IntToPtr ||
1939       CE->getOpcode() == Instruction::PtrToInt) {
1940     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1941                       ? CE->getType()
1942                       : CE->getOperand(0)->getType();
1943     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1944                         ? "inttoptr not supported for non-integral pointers"
1945                         : "ptrtoint not supported for non-integral pointers";
1946     Assert(
1947         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1948         Msg);
1949   }
1950 }
1951 
1952 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1953   // There shouldn't be more attribute sets than there are parameters plus the
1954   // function and return value.
1955   return Attrs.getNumAttrSets() <= Params + 2;
1956 }
1957 
1958 /// Verify that statepoint intrinsic is well formed.
1959 void Verifier::verifyStatepoint(const CallBase &Call) {
1960   assert(Call.getCalledFunction() &&
1961          Call.getCalledFunction()->getIntrinsicID() ==
1962              Intrinsic::experimental_gc_statepoint);
1963 
1964   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1965              !Call.onlyAccessesArgMemory(),
1966          "gc.statepoint must read and write all memory to preserve "
1967          "reordering restrictions required by safepoint semantics",
1968          Call);
1969 
1970   const int64_t NumPatchBytes =
1971       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1972   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1973   Assert(NumPatchBytes >= 0,
1974          "gc.statepoint number of patchable bytes must be "
1975          "positive",
1976          Call);
1977 
1978   const Value *Target = Call.getArgOperand(2);
1979   auto *PT = dyn_cast<PointerType>(Target->getType());
1980   Assert(PT && PT->getElementType()->isFunctionTy(),
1981          "gc.statepoint callee must be of function pointer type", Call, Target);
1982   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1983 
1984   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1985   Assert(NumCallArgs >= 0,
1986          "gc.statepoint number of arguments to underlying call "
1987          "must be positive",
1988          Call);
1989   const int NumParams = (int)TargetFuncType->getNumParams();
1990   if (TargetFuncType->isVarArg()) {
1991     Assert(NumCallArgs >= NumParams,
1992            "gc.statepoint mismatch in number of vararg call args", Call);
1993 
1994     // TODO: Remove this limitation
1995     Assert(TargetFuncType->getReturnType()->isVoidTy(),
1996            "gc.statepoint doesn't support wrapping non-void "
1997            "vararg functions yet",
1998            Call);
1999   } else
2000     Assert(NumCallArgs == NumParams,
2001            "gc.statepoint mismatch in number of call args", Call);
2002 
2003   const uint64_t Flags
2004     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2005   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2006          "unknown flag used in gc.statepoint flags argument", Call);
2007 
2008   // Verify that the types of the call parameter arguments match
2009   // the type of the wrapped callee.
2010   AttributeList Attrs = Call.getAttributes();
2011   for (int i = 0; i < NumParams; i++) {
2012     Type *ParamType = TargetFuncType->getParamType(i);
2013     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2014     Assert(ArgType == ParamType,
2015            "gc.statepoint call argument does not match wrapped "
2016            "function type",
2017            Call);
2018 
2019     if (TargetFuncType->isVarArg()) {
2020       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2021       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2022              "Attribute 'sret' cannot be used for vararg call arguments!",
2023              Call);
2024     }
2025   }
2026 
2027   const int EndCallArgsInx = 4 + NumCallArgs;
2028 
2029   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2030   Assert(isa<ConstantInt>(NumTransitionArgsV),
2031          "gc.statepoint number of transition arguments "
2032          "must be constant integer",
2033          Call);
2034   const int NumTransitionArgs =
2035       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2036   Assert(NumTransitionArgs >= 0,
2037          "gc.statepoint number of transition arguments must be positive", Call);
2038   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2039 
2040   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2041   Assert(isa<ConstantInt>(NumDeoptArgsV),
2042          "gc.statepoint number of deoptimization arguments "
2043          "must be constant integer",
2044          Call);
2045   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2046   Assert(NumDeoptArgs >= 0,
2047          "gc.statepoint number of deoptimization arguments "
2048          "must be positive",
2049          Call);
2050 
2051   const int ExpectedNumArgs =
2052       7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2053   Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2054          "gc.statepoint too few arguments according to length fields", Call);
2055 
2056   // Check that the only uses of this gc.statepoint are gc.result or
2057   // gc.relocate calls which are tied to this statepoint and thus part
2058   // of the same statepoint sequence
2059   for (const User *U : Call.users()) {
2060     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2061     Assert(UserCall, "illegal use of statepoint token", Call, U);
2062     if (!UserCall)
2063       continue;
2064     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2065            "gc.result or gc.relocate are the only value uses "
2066            "of a gc.statepoint",
2067            Call, U);
2068     if (isa<GCResultInst>(UserCall)) {
2069       Assert(UserCall->getArgOperand(0) == &Call,
2070              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2071     } else if (isa<GCRelocateInst>(Call)) {
2072       Assert(UserCall->getArgOperand(0) == &Call,
2073              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2074     }
2075   }
2076 
2077   // Note: It is legal for a single derived pointer to be listed multiple
2078   // times.  It's non-optimal, but it is legal.  It can also happen after
2079   // insertion if we strip a bitcast away.
2080   // Note: It is really tempting to check that each base is relocated and
2081   // that a derived pointer is never reused as a base pointer.  This turns
2082   // out to be problematic since optimizations run after safepoint insertion
2083   // can recognize equality properties that the insertion logic doesn't know
2084   // about.  See example statepoint.ll in the verifier subdirectory
2085 }
2086 
2087 void Verifier::verifyFrameRecoverIndices() {
2088   for (auto &Counts : FrameEscapeInfo) {
2089     Function *F = Counts.first;
2090     unsigned EscapedObjectCount = Counts.second.first;
2091     unsigned MaxRecoveredIndex = Counts.second.second;
2092     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2093            "all indices passed to llvm.localrecover must be less than the "
2094            "number of arguments passed to llvm.localescape in the parent "
2095            "function",
2096            F);
2097   }
2098 }
2099 
2100 static Instruction *getSuccPad(Instruction *Terminator) {
2101   BasicBlock *UnwindDest;
2102   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2103     UnwindDest = II->getUnwindDest();
2104   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2105     UnwindDest = CSI->getUnwindDest();
2106   else
2107     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2108   return UnwindDest->getFirstNonPHI();
2109 }
2110 
2111 void Verifier::verifySiblingFuncletUnwinds() {
2112   SmallPtrSet<Instruction *, 8> Visited;
2113   SmallPtrSet<Instruction *, 8> Active;
2114   for (const auto &Pair : SiblingFuncletInfo) {
2115     Instruction *PredPad = Pair.first;
2116     if (Visited.count(PredPad))
2117       continue;
2118     Active.insert(PredPad);
2119     Instruction *Terminator = Pair.second;
2120     do {
2121       Instruction *SuccPad = getSuccPad(Terminator);
2122       if (Active.count(SuccPad)) {
2123         // Found a cycle; report error
2124         Instruction *CyclePad = SuccPad;
2125         SmallVector<Instruction *, 8> CycleNodes;
2126         do {
2127           CycleNodes.push_back(CyclePad);
2128           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2129           if (CycleTerminator != CyclePad)
2130             CycleNodes.push_back(CycleTerminator);
2131           CyclePad = getSuccPad(CycleTerminator);
2132         } while (CyclePad != SuccPad);
2133         Assert(false, "EH pads can't handle each other's exceptions",
2134                ArrayRef<Instruction *>(CycleNodes));
2135       }
2136       // Don't re-walk a node we've already checked
2137       if (!Visited.insert(SuccPad).second)
2138         break;
2139       // Walk to this successor if it has a map entry.
2140       PredPad = SuccPad;
2141       auto TermI = SiblingFuncletInfo.find(PredPad);
2142       if (TermI == SiblingFuncletInfo.end())
2143         break;
2144       Terminator = TermI->second;
2145       Active.insert(PredPad);
2146     } while (true);
2147     // Each node only has one successor, so we've walked all the active
2148     // nodes' successors.
2149     Active.clear();
2150   }
2151 }
2152 
2153 // visitFunction - Verify that a function is ok.
2154 //
2155 void Verifier::visitFunction(const Function &F) {
2156   visitGlobalValue(F);
2157 
2158   // Check function arguments.
2159   FunctionType *FT = F.getFunctionType();
2160   unsigned NumArgs = F.arg_size();
2161 
2162   Assert(&Context == &F.getContext(),
2163          "Function context does not match Module context!", &F);
2164 
2165   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2166   Assert(FT->getNumParams() == NumArgs,
2167          "# formal arguments must match # of arguments for function type!", &F,
2168          FT);
2169   Assert(F.getReturnType()->isFirstClassType() ||
2170              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2171          "Functions cannot return aggregate values!", &F);
2172 
2173   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2174          "Invalid struct return type!", &F);
2175 
2176   AttributeList Attrs = F.getAttributes();
2177 
2178   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2179          "Attribute after last parameter!", &F);
2180 
2181   bool isLLVMdotName = F.getName().size() >= 5 &&
2182                        F.getName().substr(0, 5) == "llvm.";
2183 
2184   // Check function attributes.
2185   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2186 
2187   // On function declarations/definitions, we do not support the builtin
2188   // attribute. We do not check this in VerifyFunctionAttrs since that is
2189   // checking for Attributes that can/can not ever be on functions.
2190   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2191          "Attribute 'builtin' can only be applied to a callsite.", &F);
2192 
2193   // Check that this function meets the restrictions on this calling convention.
2194   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2195   // restrictions can be lifted.
2196   switch (F.getCallingConv()) {
2197   default:
2198   case CallingConv::C:
2199     break;
2200   case CallingConv::AMDGPU_KERNEL:
2201   case CallingConv::SPIR_KERNEL:
2202     Assert(F.getReturnType()->isVoidTy(),
2203            "Calling convention requires void return type", &F);
2204     LLVM_FALLTHROUGH;
2205   case CallingConv::AMDGPU_VS:
2206   case CallingConv::AMDGPU_HS:
2207   case CallingConv::AMDGPU_GS:
2208   case CallingConv::AMDGPU_PS:
2209   case CallingConv::AMDGPU_CS:
2210     Assert(!F.hasStructRetAttr(),
2211            "Calling convention does not allow sret", &F);
2212     LLVM_FALLTHROUGH;
2213   case CallingConv::Fast:
2214   case CallingConv::Cold:
2215   case CallingConv::Intel_OCL_BI:
2216   case CallingConv::PTX_Kernel:
2217   case CallingConv::PTX_Device:
2218     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2219                           "perfect forwarding!",
2220            &F);
2221     break;
2222   }
2223 
2224   // Check that the argument values match the function type for this function...
2225   unsigned i = 0;
2226   for (const Argument &Arg : F.args()) {
2227     Assert(Arg.getType() == FT->getParamType(i),
2228            "Argument value does not match function argument type!", &Arg,
2229            FT->getParamType(i));
2230     Assert(Arg.getType()->isFirstClassType(),
2231            "Function arguments must have first-class types!", &Arg);
2232     if (!isLLVMdotName) {
2233       Assert(!Arg.getType()->isMetadataTy(),
2234              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2235       Assert(!Arg.getType()->isTokenTy(),
2236              "Function takes token but isn't an intrinsic", &Arg, &F);
2237     }
2238 
2239     // Check that swifterror argument is only used by loads and stores.
2240     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2241       verifySwiftErrorValue(&Arg);
2242     }
2243     ++i;
2244   }
2245 
2246   if (!isLLVMdotName)
2247     Assert(!F.getReturnType()->isTokenTy(),
2248            "Functions returns a token but isn't an intrinsic", &F);
2249 
2250   // Get the function metadata attachments.
2251   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2252   F.getAllMetadata(MDs);
2253   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2254   verifyFunctionMetadata(MDs);
2255 
2256   // Check validity of the personality function
2257   if (F.hasPersonalityFn()) {
2258     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2259     if (Per)
2260       Assert(Per->getParent() == F.getParent(),
2261              "Referencing personality function in another module!",
2262              &F, F.getParent(), Per, Per->getParent());
2263   }
2264 
2265   if (F.isMaterializable()) {
2266     // Function has a body somewhere we can't see.
2267     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2268            MDs.empty() ? nullptr : MDs.front().second);
2269   } else if (F.isDeclaration()) {
2270     for (const auto &I : MDs) {
2271       // This is used for call site debug information.
2272       AssertDI(I.first != LLVMContext::MD_dbg ||
2273                    !cast<DISubprogram>(I.second)->isDistinct(),
2274                "function declaration may only have a unique !dbg attachment",
2275                &F);
2276       Assert(I.first != LLVMContext::MD_prof,
2277              "function declaration may not have a !prof attachment", &F);
2278 
2279       // Verify the metadata itself.
2280       visitMDNode(*I.second);
2281     }
2282     Assert(!F.hasPersonalityFn(),
2283            "Function declaration shouldn't have a personality routine", &F);
2284   } else {
2285     // Verify that this function (which has a body) is not named "llvm.*".  It
2286     // is not legal to define intrinsics.
2287     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2288 
2289     // Check the entry node
2290     const BasicBlock *Entry = &F.getEntryBlock();
2291     Assert(pred_empty(Entry),
2292            "Entry block to function must not have predecessors!", Entry);
2293 
2294     // The address of the entry block cannot be taken, unless it is dead.
2295     if (Entry->hasAddressTaken()) {
2296       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2297              "blockaddress may not be used with the entry block!", Entry);
2298     }
2299 
2300     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2301     // Visit metadata attachments.
2302     for (const auto &I : MDs) {
2303       // Verify that the attachment is legal.
2304       switch (I.first) {
2305       default:
2306         break;
2307       case LLVMContext::MD_dbg: {
2308         ++NumDebugAttachments;
2309         AssertDI(NumDebugAttachments == 1,
2310                  "function must have a single !dbg attachment", &F, I.second);
2311         AssertDI(isa<DISubprogram>(I.second),
2312                  "function !dbg attachment must be a subprogram", &F, I.second);
2313         auto *SP = cast<DISubprogram>(I.second);
2314         const Function *&AttachedTo = DISubprogramAttachments[SP];
2315         AssertDI(!AttachedTo || AttachedTo == &F,
2316                  "DISubprogram attached to more than one function", SP, &F);
2317         AttachedTo = &F;
2318         break;
2319       }
2320       case LLVMContext::MD_prof:
2321         ++NumProfAttachments;
2322         Assert(NumProfAttachments == 1,
2323                "function must have a single !prof attachment", &F, I.second);
2324         break;
2325       }
2326 
2327       // Verify the metadata itself.
2328       visitMDNode(*I.second);
2329     }
2330   }
2331 
2332   // If this function is actually an intrinsic, verify that it is only used in
2333   // direct call/invokes, never having its "address taken".
2334   // Only do this if the module is materialized, otherwise we don't have all the
2335   // uses.
2336   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2337     const User *U;
2338     if (F.hasAddressTaken(&U))
2339       Assert(false, "Invalid user of intrinsic instruction!", U);
2340   }
2341 
2342   auto *N = F.getSubprogram();
2343   HasDebugInfo = (N != nullptr);
2344   if (!HasDebugInfo)
2345     return;
2346 
2347   // Check that all !dbg attachments lead to back to N (or, at least, another
2348   // subprogram that describes the same function).
2349   //
2350   // FIXME: Check this incrementally while visiting !dbg attachments.
2351   // FIXME: Only check when N is the canonical subprogram for F.
2352   SmallPtrSet<const MDNode *, 32> Seen;
2353   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2354     // Be careful about using DILocation here since we might be dealing with
2355     // broken code (this is the Verifier after all).
2356     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2357     if (!DL)
2358       return;
2359     if (!Seen.insert(DL).second)
2360       return;
2361 
2362     Metadata *Parent = DL->getRawScope();
2363     AssertDI(Parent && isa<DILocalScope>(Parent),
2364              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2365              Parent);
2366     DILocalScope *Scope = DL->getInlinedAtScope();
2367     if (Scope && !Seen.insert(Scope).second)
2368       return;
2369 
2370     DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2371 
2372     // Scope and SP could be the same MDNode and we don't want to skip
2373     // validation in that case
2374     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2375       return;
2376 
2377     // FIXME: Once N is canonical, check "SP == &N".
2378     AssertDI(SP->describes(&F),
2379              "!dbg attachment points at wrong subprogram for function", N, &F,
2380              &I, DL, Scope, SP);
2381   };
2382   for (auto &BB : F)
2383     for (auto &I : BB) {
2384       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2385       // The llvm.loop annotations also contain two DILocations.
2386       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2387         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2388           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2389       if (BrokenDebugInfo)
2390         return;
2391     }
2392 }
2393 
2394 // verifyBasicBlock - Verify that a basic block is well formed...
2395 //
2396 void Verifier::visitBasicBlock(BasicBlock &BB) {
2397   InstsInThisBlock.clear();
2398 
2399   // Ensure that basic blocks have terminators!
2400   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2401 
2402   // Check constraints that this basic block imposes on all of the PHI nodes in
2403   // it.
2404   if (isa<PHINode>(BB.front())) {
2405     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2406     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2407     llvm::sort(Preds);
2408     for (const PHINode &PN : BB.phis()) {
2409       // Ensure that PHI nodes have at least one entry!
2410       Assert(PN.getNumIncomingValues() != 0,
2411              "PHI nodes must have at least one entry.  If the block is dead, "
2412              "the PHI should be removed!",
2413              &PN);
2414       Assert(PN.getNumIncomingValues() == Preds.size(),
2415              "PHINode should have one entry for each predecessor of its "
2416              "parent basic block!",
2417              &PN);
2418 
2419       // Get and sort all incoming values in the PHI node...
2420       Values.clear();
2421       Values.reserve(PN.getNumIncomingValues());
2422       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2423         Values.push_back(
2424             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2425       llvm::sort(Values);
2426 
2427       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2428         // Check to make sure that if there is more than one entry for a
2429         // particular basic block in this PHI node, that the incoming values are
2430         // all identical.
2431         //
2432         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2433                    Values[i].second == Values[i - 1].second,
2434                "PHI node has multiple entries for the same basic block with "
2435                "different incoming values!",
2436                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2437 
2438         // Check to make sure that the predecessors and PHI node entries are
2439         // matched up.
2440         Assert(Values[i].first == Preds[i],
2441                "PHI node entries do not match predecessors!", &PN,
2442                Values[i].first, Preds[i]);
2443       }
2444     }
2445   }
2446 
2447   // Check that all instructions have their parent pointers set up correctly.
2448   for (auto &I : BB)
2449   {
2450     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2451   }
2452 }
2453 
2454 void Verifier::visitTerminator(Instruction &I) {
2455   // Ensure that terminators only exist at the end of the basic block.
2456   Assert(&I == I.getParent()->getTerminator(),
2457          "Terminator found in the middle of a basic block!", I.getParent());
2458   visitInstruction(I);
2459 }
2460 
2461 void Verifier::visitBranchInst(BranchInst &BI) {
2462   if (BI.isConditional()) {
2463     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2464            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2465   }
2466   visitTerminator(BI);
2467 }
2468 
2469 void Verifier::visitReturnInst(ReturnInst &RI) {
2470   Function *F = RI.getParent()->getParent();
2471   unsigned N = RI.getNumOperands();
2472   if (F->getReturnType()->isVoidTy())
2473     Assert(N == 0,
2474            "Found return instr that returns non-void in Function of void "
2475            "return type!",
2476            &RI, F->getReturnType());
2477   else
2478     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2479            "Function return type does not match operand "
2480            "type of return inst!",
2481            &RI, F->getReturnType());
2482 
2483   // Check to make sure that the return value has necessary properties for
2484   // terminators...
2485   visitTerminator(RI);
2486 }
2487 
2488 void Verifier::visitSwitchInst(SwitchInst &SI) {
2489   // Check to make sure that all of the constants in the switch instruction
2490   // have the same type as the switched-on value.
2491   Type *SwitchTy = SI.getCondition()->getType();
2492   SmallPtrSet<ConstantInt*, 32> Constants;
2493   for (auto &Case : SI.cases()) {
2494     Assert(Case.getCaseValue()->getType() == SwitchTy,
2495            "Switch constants must all be same type as switch value!", &SI);
2496     Assert(Constants.insert(Case.getCaseValue()).second,
2497            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2498   }
2499 
2500   visitTerminator(SI);
2501 }
2502 
2503 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2504   Assert(BI.getAddress()->getType()->isPointerTy(),
2505          "Indirectbr operand must have pointer type!", &BI);
2506   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2507     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2508            "Indirectbr destinations must all have pointer type!", &BI);
2509 
2510   visitTerminator(BI);
2511 }
2512 
2513 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2514   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2515          &CBI);
2516   Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2517          &CBI);
2518   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2519     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2520            "Callbr successors must all have pointer type!", &CBI);
2521   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2522     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2523            "Using an unescaped label as a callbr argument!", &CBI);
2524     if (isa<BasicBlock>(CBI.getOperand(i)))
2525       for (unsigned j = i + 1; j != e; ++j)
2526         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2527                "Duplicate callbr destination!", &CBI);
2528   }
2529   {
2530     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2531     for (Value *V : CBI.args())
2532       if (auto *BA = dyn_cast<BlockAddress>(V))
2533         ArgBBs.insert(BA->getBasicBlock());
2534     for (BasicBlock *BB : CBI.getIndirectDests())
2535       Assert(ArgBBs.find(BB) != ArgBBs.end(),
2536              "Indirect label missing from arglist.", &CBI);
2537   }
2538 
2539   visitTerminator(CBI);
2540 }
2541 
2542 void Verifier::visitSelectInst(SelectInst &SI) {
2543   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2544                                          SI.getOperand(2)),
2545          "Invalid operands for select instruction!", &SI);
2546 
2547   Assert(SI.getTrueValue()->getType() == SI.getType(),
2548          "Select values must have same type as select instruction!", &SI);
2549   visitInstruction(SI);
2550 }
2551 
2552 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2553 /// a pass, if any exist, it's an error.
2554 ///
2555 void Verifier::visitUserOp1(Instruction &I) {
2556   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2557 }
2558 
2559 void Verifier::visitTruncInst(TruncInst &I) {
2560   // Get the source and destination types
2561   Type *SrcTy = I.getOperand(0)->getType();
2562   Type *DestTy = I.getType();
2563 
2564   // Get the size of the types in bits, we'll need this later
2565   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2566   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2567 
2568   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2569   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2570   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2571          "trunc source and destination must both be a vector or neither", &I);
2572   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2573 
2574   visitInstruction(I);
2575 }
2576 
2577 void Verifier::visitZExtInst(ZExtInst &I) {
2578   // Get the source and destination types
2579   Type *SrcTy = I.getOperand(0)->getType();
2580   Type *DestTy = I.getType();
2581 
2582   // Get the size of the types in bits, we'll need this later
2583   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2584   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2585   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2586          "zext source and destination must both be a vector or neither", &I);
2587   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2588   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2589 
2590   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2591 
2592   visitInstruction(I);
2593 }
2594 
2595 void Verifier::visitSExtInst(SExtInst &I) {
2596   // Get the source and destination types
2597   Type *SrcTy = I.getOperand(0)->getType();
2598   Type *DestTy = I.getType();
2599 
2600   // Get the size of the types in bits, we'll need this later
2601   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2602   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2603 
2604   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2605   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2606   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2607          "sext source and destination must both be a vector or neither", &I);
2608   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2609 
2610   visitInstruction(I);
2611 }
2612 
2613 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2614   // Get the source and destination types
2615   Type *SrcTy = I.getOperand(0)->getType();
2616   Type *DestTy = I.getType();
2617   // Get the size of the types in bits, we'll need this later
2618   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2619   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2620 
2621   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2622   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2623   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2624          "fptrunc source and destination must both be a vector or neither", &I);
2625   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2626 
2627   visitInstruction(I);
2628 }
2629 
2630 void Verifier::visitFPExtInst(FPExtInst &I) {
2631   // Get the source and destination types
2632   Type *SrcTy = I.getOperand(0)->getType();
2633   Type *DestTy = I.getType();
2634 
2635   // Get the size of the types in bits, we'll need this later
2636   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2637   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2638 
2639   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2640   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2641   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2642          "fpext source and destination must both be a vector or neither", &I);
2643   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2644 
2645   visitInstruction(I);
2646 }
2647 
2648 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2649   // Get the source and destination types
2650   Type *SrcTy = I.getOperand(0)->getType();
2651   Type *DestTy = I.getType();
2652 
2653   bool SrcVec = SrcTy->isVectorTy();
2654   bool DstVec = DestTy->isVectorTy();
2655 
2656   Assert(SrcVec == DstVec,
2657          "UIToFP source and dest must both be vector or scalar", &I);
2658   Assert(SrcTy->isIntOrIntVectorTy(),
2659          "UIToFP source must be integer or integer vector", &I);
2660   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2661          &I);
2662 
2663   if (SrcVec && DstVec)
2664     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2665                cast<VectorType>(DestTy)->getNumElements(),
2666            "UIToFP source and dest vector length mismatch", &I);
2667 
2668   visitInstruction(I);
2669 }
2670 
2671 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2672   // Get the source and destination types
2673   Type *SrcTy = I.getOperand(0)->getType();
2674   Type *DestTy = I.getType();
2675 
2676   bool SrcVec = SrcTy->isVectorTy();
2677   bool DstVec = DestTy->isVectorTy();
2678 
2679   Assert(SrcVec == DstVec,
2680          "SIToFP source and dest must both be vector or scalar", &I);
2681   Assert(SrcTy->isIntOrIntVectorTy(),
2682          "SIToFP source must be integer or integer vector", &I);
2683   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2684          &I);
2685 
2686   if (SrcVec && DstVec)
2687     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2688                cast<VectorType>(DestTy)->getNumElements(),
2689            "SIToFP source and dest vector length mismatch", &I);
2690 
2691   visitInstruction(I);
2692 }
2693 
2694 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2695   // Get the source and destination types
2696   Type *SrcTy = I.getOperand(0)->getType();
2697   Type *DestTy = I.getType();
2698 
2699   bool SrcVec = SrcTy->isVectorTy();
2700   bool DstVec = DestTy->isVectorTy();
2701 
2702   Assert(SrcVec == DstVec,
2703          "FPToUI source and dest must both be vector or scalar", &I);
2704   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2705          &I);
2706   Assert(DestTy->isIntOrIntVectorTy(),
2707          "FPToUI result must be integer or integer vector", &I);
2708 
2709   if (SrcVec && DstVec)
2710     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2711                cast<VectorType>(DestTy)->getNumElements(),
2712            "FPToUI source and dest vector length mismatch", &I);
2713 
2714   visitInstruction(I);
2715 }
2716 
2717 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2718   // Get the source and destination types
2719   Type *SrcTy = I.getOperand(0)->getType();
2720   Type *DestTy = I.getType();
2721 
2722   bool SrcVec = SrcTy->isVectorTy();
2723   bool DstVec = DestTy->isVectorTy();
2724 
2725   Assert(SrcVec == DstVec,
2726          "FPToSI source and dest must both be vector or scalar", &I);
2727   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2728          &I);
2729   Assert(DestTy->isIntOrIntVectorTy(),
2730          "FPToSI result must be integer or integer vector", &I);
2731 
2732   if (SrcVec && DstVec)
2733     Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2734                cast<VectorType>(DestTy)->getNumElements(),
2735            "FPToSI source and dest vector length mismatch", &I);
2736 
2737   visitInstruction(I);
2738 }
2739 
2740 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2741   // Get the source and destination types
2742   Type *SrcTy = I.getOperand(0)->getType();
2743   Type *DestTy = I.getType();
2744 
2745   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2746 
2747   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2748     Assert(!DL.isNonIntegralPointerType(PTy),
2749            "ptrtoint not supported for non-integral pointers");
2750 
2751   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2752   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2753          &I);
2754 
2755   if (SrcTy->isVectorTy()) {
2756     VectorType *VSrc = cast<VectorType>(SrcTy);
2757     VectorType *VDest = cast<VectorType>(DestTy);
2758     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2759            "PtrToInt Vector width mismatch", &I);
2760   }
2761 
2762   visitInstruction(I);
2763 }
2764 
2765 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2766   // Get the source and destination types
2767   Type *SrcTy = I.getOperand(0)->getType();
2768   Type *DestTy = I.getType();
2769 
2770   Assert(SrcTy->isIntOrIntVectorTy(),
2771          "IntToPtr source must be an integral", &I);
2772   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2773 
2774   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2775     Assert(!DL.isNonIntegralPointerType(PTy),
2776            "inttoptr not supported for non-integral pointers");
2777 
2778   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2779          &I);
2780   if (SrcTy->isVectorTy()) {
2781     VectorType *VSrc = cast<VectorType>(SrcTy);
2782     VectorType *VDest = cast<VectorType>(DestTy);
2783     Assert(VSrc->getNumElements() == VDest->getNumElements(),
2784            "IntToPtr Vector width mismatch", &I);
2785   }
2786   visitInstruction(I);
2787 }
2788 
2789 void Verifier::visitBitCastInst(BitCastInst &I) {
2790   Assert(
2791       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2792       "Invalid bitcast", &I);
2793   visitInstruction(I);
2794 }
2795 
2796 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2797   Type *SrcTy = I.getOperand(0)->getType();
2798   Type *DestTy = I.getType();
2799 
2800   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2801          &I);
2802   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2803          &I);
2804   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2805          "AddrSpaceCast must be between different address spaces", &I);
2806   if (SrcTy->isVectorTy())
2807     Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2808            "AddrSpaceCast vector pointer number of elements mismatch", &I);
2809   visitInstruction(I);
2810 }
2811 
2812 /// visitPHINode - Ensure that a PHI node is well formed.
2813 ///
2814 void Verifier::visitPHINode(PHINode &PN) {
2815   // Ensure that the PHI nodes are all grouped together at the top of the block.
2816   // This can be tested by checking whether the instruction before this is
2817   // either nonexistent (because this is begin()) or is a PHI node.  If not,
2818   // then there is some other instruction before a PHI.
2819   Assert(&PN == &PN.getParent()->front() ||
2820              isa<PHINode>(--BasicBlock::iterator(&PN)),
2821          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2822 
2823   // Check that a PHI doesn't yield a Token.
2824   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2825 
2826   // Check that all of the values of the PHI node have the same type as the
2827   // result, and that the incoming blocks are really basic blocks.
2828   for (Value *IncValue : PN.incoming_values()) {
2829     Assert(PN.getType() == IncValue->getType(),
2830            "PHI node operands are not the same type as the result!", &PN);
2831   }
2832 
2833   // All other PHI node constraints are checked in the visitBasicBlock method.
2834 
2835   visitInstruction(PN);
2836 }
2837 
2838 void Verifier::visitCallBase(CallBase &Call) {
2839   Assert(Call.getCalledValue()->getType()->isPointerTy(),
2840          "Called function must be a pointer!", Call);
2841   PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2842 
2843   Assert(FPTy->getElementType()->isFunctionTy(),
2844          "Called function is not pointer to function type!", Call);
2845 
2846   Assert(FPTy->getElementType() == Call.getFunctionType(),
2847          "Called function is not the same type as the call!", Call);
2848 
2849   FunctionType *FTy = Call.getFunctionType();
2850 
2851   // Verify that the correct number of arguments are being passed
2852   if (FTy->isVarArg())
2853     Assert(Call.arg_size() >= FTy->getNumParams(),
2854            "Called function requires more parameters than were provided!",
2855            Call);
2856   else
2857     Assert(Call.arg_size() == FTy->getNumParams(),
2858            "Incorrect number of arguments passed to called function!", Call);
2859 
2860   // Verify that all arguments to the call match the function type.
2861   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2862     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2863            "Call parameter type does not match function signature!",
2864            Call.getArgOperand(i), FTy->getParamType(i), Call);
2865 
2866   AttributeList Attrs = Call.getAttributes();
2867 
2868   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2869          "Attribute after last parameter!", Call);
2870 
2871   bool IsIntrinsic = Call.getCalledFunction() &&
2872                      Call.getCalledFunction()->getName().startswith("llvm.");
2873 
2874   Function *Callee
2875     = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2876 
2877   if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2878     // Don't allow speculatable on call sites, unless the underlying function
2879     // declaration is also speculatable.
2880     Assert(Callee && Callee->isSpeculatable(),
2881            "speculatable attribute may not apply to call sites", Call);
2882   }
2883 
2884   // Verify call attributes.
2885   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2886 
2887   // Conservatively check the inalloca argument.
2888   // We have a bug if we can find that there is an underlying alloca without
2889   // inalloca.
2890   if (Call.hasInAllocaArgument()) {
2891     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2892     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2893       Assert(AI->isUsedWithInAlloca(),
2894              "inalloca argument for call has mismatched alloca", AI, Call);
2895   }
2896 
2897   // For each argument of the callsite, if it has the swifterror argument,
2898   // make sure the underlying alloca/parameter it comes from has a swifterror as
2899   // well.
2900   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2901     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2902       Value *SwiftErrorArg = Call.getArgOperand(i);
2903       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2904         Assert(AI->isSwiftError(),
2905                "swifterror argument for call has mismatched alloca", AI, Call);
2906         continue;
2907       }
2908       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2909       Assert(ArgI,
2910              "swifterror argument should come from an alloca or parameter",
2911              SwiftErrorArg, Call);
2912       Assert(ArgI->hasSwiftErrorAttr(),
2913              "swifterror argument for call has mismatched parameter", ArgI,
2914              Call);
2915     }
2916 
2917     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2918       // Don't allow immarg on call sites, unless the underlying declaration
2919       // also has the matching immarg.
2920       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2921              "immarg may not apply only to call sites",
2922              Call.getArgOperand(i), Call);
2923     }
2924 
2925     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2926       Value *ArgVal = Call.getArgOperand(i);
2927       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2928              "immarg operand has non-immediate parameter", ArgVal, Call);
2929     }
2930   }
2931 
2932   if (FTy->isVarArg()) {
2933     // FIXME? is 'nest' even legal here?
2934     bool SawNest = false;
2935     bool SawReturned = false;
2936 
2937     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2938       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2939         SawNest = true;
2940       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2941         SawReturned = true;
2942     }
2943 
2944     // Check attributes on the varargs part.
2945     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2946       Type *Ty = Call.getArgOperand(Idx)->getType();
2947       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2948       verifyParameterAttrs(ArgAttrs, Ty, &Call);
2949 
2950       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2951         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2952         SawNest = true;
2953       }
2954 
2955       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2956         Assert(!SawReturned, "More than one parameter has attribute returned!",
2957                Call);
2958         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2959                "Incompatible argument and return types for 'returned' "
2960                "attribute",
2961                Call);
2962         SawReturned = true;
2963       }
2964 
2965       // Statepoint intrinsic is vararg but the wrapped function may be not.
2966       // Allow sret here and check the wrapped function in verifyStatepoint.
2967       if (!Call.getCalledFunction() ||
2968           Call.getCalledFunction()->getIntrinsicID() !=
2969               Intrinsic::experimental_gc_statepoint)
2970         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2971                "Attribute 'sret' cannot be used for vararg call arguments!",
2972                Call);
2973 
2974       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2975         Assert(Idx == Call.arg_size() - 1,
2976                "inalloca isn't on the last argument!", Call);
2977     }
2978   }
2979 
2980   // Verify that there's no metadata unless it's a direct call to an intrinsic.
2981   if (!IsIntrinsic) {
2982     for (Type *ParamTy : FTy->params()) {
2983       Assert(!ParamTy->isMetadataTy(),
2984              "Function has metadata parameter but isn't an intrinsic", Call);
2985       Assert(!ParamTy->isTokenTy(),
2986              "Function has token parameter but isn't an intrinsic", Call);
2987     }
2988   }
2989 
2990   // Verify that indirect calls don't return tokens.
2991   if (!Call.getCalledFunction())
2992     Assert(!FTy->getReturnType()->isTokenTy(),
2993            "Return type cannot be token for indirect call!");
2994 
2995   if (Function *F = Call.getCalledFunction())
2996     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2997       visitIntrinsicCall(ID, Call);
2998 
2999   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3000   // most one "gc-transition", and at most one "cfguardtarget" operand bundle.
3001   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3002        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false;
3003   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3004     OperandBundleUse BU = Call.getOperandBundleAt(i);
3005     uint32_t Tag = BU.getTagID();
3006     if (Tag == LLVMContext::OB_deopt) {
3007       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3008       FoundDeoptBundle = true;
3009     } else if (Tag == LLVMContext::OB_gc_transition) {
3010       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3011              Call);
3012       FoundGCTransitionBundle = true;
3013     } else if (Tag == LLVMContext::OB_funclet) {
3014       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3015       FoundFuncletBundle = true;
3016       Assert(BU.Inputs.size() == 1,
3017              "Expected exactly one funclet bundle operand", Call);
3018       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3019              "Funclet bundle operands should correspond to a FuncletPadInst",
3020              Call);
3021     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3022       Assert(!FoundCFGuardTargetBundle,
3023              "Multiple CFGuardTarget operand bundles", Call);
3024       FoundCFGuardTargetBundle = true;
3025       Assert(BU.Inputs.size() == 1,
3026              "Expected exactly one cfguardtarget bundle operand", Call);
3027     }
3028   }
3029 
3030   // Verify that each inlinable callsite of a debug-info-bearing function in a
3031   // debug-info-bearing function has a debug location attached to it. Failure to
3032   // do so causes assertion failures when the inliner sets up inline scope info.
3033   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3034       Call.getCalledFunction()->getSubprogram())
3035     AssertDI(Call.getDebugLoc(),
3036              "inlinable function call in a function with "
3037              "debug info must have a !dbg location",
3038              Call);
3039 
3040   visitInstruction(Call);
3041 }
3042 
3043 /// Two types are "congruent" if they are identical, or if they are both pointer
3044 /// types with different pointee types and the same address space.
3045 static bool isTypeCongruent(Type *L, Type *R) {
3046   if (L == R)
3047     return true;
3048   PointerType *PL = dyn_cast<PointerType>(L);
3049   PointerType *PR = dyn_cast<PointerType>(R);
3050   if (!PL || !PR)
3051     return false;
3052   return PL->getAddressSpace() == PR->getAddressSpace();
3053 }
3054 
3055 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3056   static const Attribute::AttrKind ABIAttrs[] = {
3057       Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3058       Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3059       Attribute::SwiftError};
3060   AttrBuilder Copy;
3061   for (auto AK : ABIAttrs) {
3062     if (Attrs.hasParamAttribute(I, AK))
3063       Copy.addAttribute(AK);
3064   }
3065   if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3066     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3067   return Copy;
3068 }
3069 
3070 void Verifier::verifyMustTailCall(CallInst &CI) {
3071   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3072 
3073   // - The caller and callee prototypes must match.  Pointer types of
3074   //   parameters or return types may differ in pointee type, but not
3075   //   address space.
3076   Function *F = CI.getParent()->getParent();
3077   FunctionType *CallerTy = F->getFunctionType();
3078   FunctionType *CalleeTy = CI.getFunctionType();
3079   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3080     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3081            "cannot guarantee tail call due to mismatched parameter counts",
3082            &CI);
3083     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3084       Assert(
3085           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3086           "cannot guarantee tail call due to mismatched parameter types", &CI);
3087     }
3088   }
3089   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3090          "cannot guarantee tail call due to mismatched varargs", &CI);
3091   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3092          "cannot guarantee tail call due to mismatched return types", &CI);
3093 
3094   // - The calling conventions of the caller and callee must match.
3095   Assert(F->getCallingConv() == CI.getCallingConv(),
3096          "cannot guarantee tail call due to mismatched calling conv", &CI);
3097 
3098   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3099   //   returned, and inalloca, must match.
3100   AttributeList CallerAttrs = F->getAttributes();
3101   AttributeList CalleeAttrs = CI.getAttributes();
3102   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3103     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3104     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3105     Assert(CallerABIAttrs == CalleeABIAttrs,
3106            "cannot guarantee tail call due to mismatched ABI impacting "
3107            "function attributes",
3108            &CI, CI.getOperand(I));
3109   }
3110 
3111   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3112   //   or a pointer bitcast followed by a ret instruction.
3113   // - The ret instruction must return the (possibly bitcasted) value
3114   //   produced by the call or void.
3115   Value *RetVal = &CI;
3116   Instruction *Next = CI.getNextNode();
3117 
3118   // Handle the optional bitcast.
3119   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3120     Assert(BI->getOperand(0) == RetVal,
3121            "bitcast following musttail call must use the call", BI);
3122     RetVal = BI;
3123     Next = BI->getNextNode();
3124   }
3125 
3126   // Check the return.
3127   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3128   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3129          &CI);
3130   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3131          "musttail call result must be returned", Ret);
3132 }
3133 
3134 void Verifier::visitCallInst(CallInst &CI) {
3135   visitCallBase(CI);
3136 
3137   if (CI.isMustTailCall())
3138     verifyMustTailCall(CI);
3139 }
3140 
3141 void Verifier::visitInvokeInst(InvokeInst &II) {
3142   visitCallBase(II);
3143 
3144   // Verify that the first non-PHI instruction of the unwind destination is an
3145   // exception handling instruction.
3146   Assert(
3147       II.getUnwindDest()->isEHPad(),
3148       "The unwind destination does not have an exception handling instruction!",
3149       &II);
3150 
3151   visitTerminator(II);
3152 }
3153 
3154 /// visitUnaryOperator - Check the argument to the unary operator.
3155 ///
3156 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3157   Assert(U.getType() == U.getOperand(0)->getType(),
3158          "Unary operators must have same type for"
3159          "operands and result!",
3160          &U);
3161 
3162   switch (U.getOpcode()) {
3163   // Check that floating-point arithmetic operators are only used with
3164   // floating-point operands.
3165   case Instruction::FNeg:
3166     Assert(U.getType()->isFPOrFPVectorTy(),
3167            "FNeg operator only works with float types!", &U);
3168     break;
3169   default:
3170     llvm_unreachable("Unknown UnaryOperator opcode!");
3171   }
3172 
3173   visitInstruction(U);
3174 }
3175 
3176 /// visitBinaryOperator - Check that both arguments to the binary operator are
3177 /// of the same type!
3178 ///
3179 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3180   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3181          "Both operands to a binary operator are not of the same type!", &B);
3182 
3183   switch (B.getOpcode()) {
3184   // Check that integer arithmetic operators are only used with
3185   // integral operands.
3186   case Instruction::Add:
3187   case Instruction::Sub:
3188   case Instruction::Mul:
3189   case Instruction::SDiv:
3190   case Instruction::UDiv:
3191   case Instruction::SRem:
3192   case Instruction::URem:
3193     Assert(B.getType()->isIntOrIntVectorTy(),
3194            "Integer arithmetic operators only work with integral types!", &B);
3195     Assert(B.getType() == B.getOperand(0)->getType(),
3196            "Integer arithmetic operators must have same type "
3197            "for operands and result!",
3198            &B);
3199     break;
3200   // Check that floating-point arithmetic operators are only used with
3201   // floating-point operands.
3202   case Instruction::FAdd:
3203   case Instruction::FSub:
3204   case Instruction::FMul:
3205   case Instruction::FDiv:
3206   case Instruction::FRem:
3207     Assert(B.getType()->isFPOrFPVectorTy(),
3208            "Floating-point arithmetic operators only work with "
3209            "floating-point types!",
3210            &B);
3211     Assert(B.getType() == B.getOperand(0)->getType(),
3212            "Floating-point arithmetic operators must have same type "
3213            "for operands and result!",
3214            &B);
3215     break;
3216   // Check that logical operators are only used with integral operands.
3217   case Instruction::And:
3218   case Instruction::Or:
3219   case Instruction::Xor:
3220     Assert(B.getType()->isIntOrIntVectorTy(),
3221            "Logical operators only work with integral types!", &B);
3222     Assert(B.getType() == B.getOperand(0)->getType(),
3223            "Logical operators must have same type for operands and result!",
3224            &B);
3225     break;
3226   case Instruction::Shl:
3227   case Instruction::LShr:
3228   case Instruction::AShr:
3229     Assert(B.getType()->isIntOrIntVectorTy(),
3230            "Shifts only work with integral types!", &B);
3231     Assert(B.getType() == B.getOperand(0)->getType(),
3232            "Shift return type must be same as operands!", &B);
3233     break;
3234   default:
3235     llvm_unreachable("Unknown BinaryOperator opcode!");
3236   }
3237 
3238   visitInstruction(B);
3239 }
3240 
3241 void Verifier::visitICmpInst(ICmpInst &IC) {
3242   // Check that the operands are the same type
3243   Type *Op0Ty = IC.getOperand(0)->getType();
3244   Type *Op1Ty = IC.getOperand(1)->getType();
3245   Assert(Op0Ty == Op1Ty,
3246          "Both operands to ICmp instruction are not of the same type!", &IC);
3247   // Check that the operands are the right type
3248   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3249          "Invalid operand types for ICmp instruction", &IC);
3250   // Check that the predicate is valid.
3251   Assert(IC.isIntPredicate(),
3252          "Invalid predicate in ICmp instruction!", &IC);
3253 
3254   visitInstruction(IC);
3255 }
3256 
3257 void Verifier::visitFCmpInst(FCmpInst &FC) {
3258   // Check that the operands are the same type
3259   Type *Op0Ty = FC.getOperand(0)->getType();
3260   Type *Op1Ty = FC.getOperand(1)->getType();
3261   Assert(Op0Ty == Op1Ty,
3262          "Both operands to FCmp instruction are not of the same type!", &FC);
3263   // Check that the operands are the right type
3264   Assert(Op0Ty->isFPOrFPVectorTy(),
3265          "Invalid operand types for FCmp instruction", &FC);
3266   // Check that the predicate is valid.
3267   Assert(FC.isFPPredicate(),
3268          "Invalid predicate in FCmp instruction!", &FC);
3269 
3270   visitInstruction(FC);
3271 }
3272 
3273 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3274   Assert(
3275       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3276       "Invalid extractelement operands!", &EI);
3277   visitInstruction(EI);
3278 }
3279 
3280 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3281   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3282                                             IE.getOperand(2)),
3283          "Invalid insertelement operands!", &IE);
3284   visitInstruction(IE);
3285 }
3286 
3287 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3288   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3289                                             SV.getOperand(2)),
3290          "Invalid shufflevector operands!", &SV);
3291   visitInstruction(SV);
3292 }
3293 
3294 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3295   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3296 
3297   Assert(isa<PointerType>(TargetTy),
3298          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3299   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3300 
3301   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3302   Assert(all_of(
3303       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3304       "GEP indexes must be integers", &GEP);
3305   Type *ElTy =
3306       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3307   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3308 
3309   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3310              GEP.getResultElementType() == ElTy,
3311          "GEP is not of right type for indices!", &GEP, ElTy);
3312 
3313   if (GEP.getType()->isVectorTy()) {
3314     // Additional checks for vector GEPs.
3315     unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3316     if (GEP.getPointerOperandType()->isVectorTy())
3317       Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3318              "Vector GEP result width doesn't match operand's", &GEP);
3319     for (Value *Idx : Idxs) {
3320       Type *IndexTy = Idx->getType();
3321       if (IndexTy->isVectorTy()) {
3322         unsigned IndexWidth = IndexTy->getVectorNumElements();
3323         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3324       }
3325       Assert(IndexTy->isIntOrIntVectorTy(),
3326              "All GEP indices should be of integer type");
3327     }
3328   }
3329 
3330   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3331     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3332            "GEP address space doesn't match type", &GEP);
3333   }
3334 
3335   visitInstruction(GEP);
3336 }
3337 
3338 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3339   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3340 }
3341 
3342 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3343   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3344          "precondition violation");
3345 
3346   unsigned NumOperands = Range->getNumOperands();
3347   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3348   unsigned NumRanges = NumOperands / 2;
3349   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3350 
3351   ConstantRange LastRange(1, true); // Dummy initial value
3352   for (unsigned i = 0; i < NumRanges; ++i) {
3353     ConstantInt *Low =
3354         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3355     Assert(Low, "The lower limit must be an integer!", Low);
3356     ConstantInt *High =
3357         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3358     Assert(High, "The upper limit must be an integer!", High);
3359     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3360            "Range types must match instruction type!", &I);
3361 
3362     APInt HighV = High->getValue();
3363     APInt LowV = Low->getValue();
3364     ConstantRange CurRange(LowV, HighV);
3365     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3366            "Range must not be empty!", Range);
3367     if (i != 0) {
3368       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3369              "Intervals are overlapping", Range);
3370       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3371              Range);
3372       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3373              Range);
3374     }
3375     LastRange = ConstantRange(LowV, HighV);
3376   }
3377   if (NumRanges > 2) {
3378     APInt FirstLow =
3379         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3380     APInt FirstHigh =
3381         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3382     ConstantRange FirstRange(FirstLow, FirstHigh);
3383     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3384            "Intervals are overlapping", Range);
3385     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3386            Range);
3387   }
3388 }
3389 
3390 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3391   unsigned Size = DL.getTypeSizeInBits(Ty);
3392   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3393   Assert(!(Size & (Size - 1)),
3394          "atomic memory access' operand must have a power-of-two size", Ty, I);
3395 }
3396 
3397 void Verifier::visitLoadInst(LoadInst &LI) {
3398   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3399   Assert(PTy, "Load operand must be a pointer.", &LI);
3400   Type *ElTy = LI.getType();
3401   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3402          "huge alignment values are unsupported", &LI);
3403   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3404   if (LI.isAtomic()) {
3405     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3406                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3407            "Load cannot have Release ordering", &LI);
3408     Assert(LI.getAlignment() != 0,
3409            "Atomic load must specify explicit alignment", &LI);
3410     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3411            "atomic load operand must have integer, pointer, or floating point "
3412            "type!",
3413            ElTy, &LI);
3414     checkAtomicMemAccessSize(ElTy, &LI);
3415   } else {
3416     Assert(LI.getSyncScopeID() == SyncScope::System,
3417            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3418   }
3419 
3420   visitInstruction(LI);
3421 }
3422 
3423 void Verifier::visitStoreInst(StoreInst &SI) {
3424   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3425   Assert(PTy, "Store operand must be a pointer.", &SI);
3426   Type *ElTy = PTy->getElementType();
3427   Assert(ElTy == SI.getOperand(0)->getType(),
3428          "Stored value type does not match pointer operand type!", &SI, ElTy);
3429   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3430          "huge alignment values are unsupported", &SI);
3431   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3432   if (SI.isAtomic()) {
3433     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3434                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3435            "Store cannot have Acquire ordering", &SI);
3436     Assert(SI.getAlignment() != 0,
3437            "Atomic store must specify explicit alignment", &SI);
3438     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3439            "atomic store operand must have integer, pointer, or floating point "
3440            "type!",
3441            ElTy, &SI);
3442     checkAtomicMemAccessSize(ElTy, &SI);
3443   } else {
3444     Assert(SI.getSyncScopeID() == SyncScope::System,
3445            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3446   }
3447   visitInstruction(SI);
3448 }
3449 
3450 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3451 void Verifier::verifySwiftErrorCall(CallBase &Call,
3452                                     const Value *SwiftErrorVal) {
3453   unsigned Idx = 0;
3454   for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3455     if (*I == SwiftErrorVal) {
3456       Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3457              "swifterror value when used in a callsite should be marked "
3458              "with swifterror attribute",
3459              SwiftErrorVal, Call);
3460     }
3461   }
3462 }
3463 
3464 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3465   // Check that swifterror value is only used by loads, stores, or as
3466   // a swifterror argument.
3467   for (const User *U : SwiftErrorVal->users()) {
3468     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3469            isa<InvokeInst>(U),
3470            "swifterror value can only be loaded and stored from, or "
3471            "as a swifterror argument!",
3472            SwiftErrorVal, U);
3473     // If it is used by a store, check it is the second operand.
3474     if (auto StoreI = dyn_cast<StoreInst>(U))
3475       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3476              "swifterror value should be the second operand when used "
3477              "by stores", SwiftErrorVal, U);
3478     if (auto *Call = dyn_cast<CallBase>(U))
3479       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3480   }
3481 }
3482 
3483 void Verifier::visitAllocaInst(AllocaInst &AI) {
3484   SmallPtrSet<Type*, 4> Visited;
3485   PointerType *PTy = AI.getType();
3486   // TODO: Relax this restriction?
3487   Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3488          "Allocation instruction pointer not in the stack address space!",
3489          &AI);
3490   Assert(AI.getAllocatedType()->isSized(&Visited),
3491          "Cannot allocate unsized type", &AI);
3492   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3493          "Alloca array size must have integer type", &AI);
3494   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3495          "huge alignment values are unsupported", &AI);
3496 
3497   if (AI.isSwiftError()) {
3498     verifySwiftErrorValue(&AI);
3499   }
3500 
3501   visitInstruction(AI);
3502 }
3503 
3504 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3505 
3506   // FIXME: more conditions???
3507   Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3508          "cmpxchg instructions must be atomic.", &CXI);
3509   Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3510          "cmpxchg instructions must be atomic.", &CXI);
3511   Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3512          "cmpxchg instructions cannot be unordered.", &CXI);
3513   Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3514          "cmpxchg instructions cannot be unordered.", &CXI);
3515   Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3516          "cmpxchg instructions failure argument shall be no stronger than the "
3517          "success argument",
3518          &CXI);
3519   Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3520              CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3521          "cmpxchg failure ordering cannot include release semantics", &CXI);
3522 
3523   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3524   Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3525   Type *ElTy = PTy->getElementType();
3526   Assert(ElTy->isIntOrPtrTy(),
3527          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3528   checkAtomicMemAccessSize(ElTy, &CXI);
3529   Assert(ElTy == CXI.getOperand(1)->getType(),
3530          "Expected value type does not match pointer operand type!", &CXI,
3531          ElTy);
3532   Assert(ElTy == CXI.getOperand(2)->getType(),
3533          "Stored value type does not match pointer operand type!", &CXI, ElTy);
3534   visitInstruction(CXI);
3535 }
3536 
3537 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3538   Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3539          "atomicrmw instructions must be atomic.", &RMWI);
3540   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3541          "atomicrmw instructions cannot be unordered.", &RMWI);
3542   auto Op = RMWI.getOperation();
3543   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3544   Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3545   Type *ElTy = PTy->getElementType();
3546   if (Op == AtomicRMWInst::Xchg) {
3547     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3548            AtomicRMWInst::getOperationName(Op) +
3549            " operand must have integer or floating point type!",
3550            &RMWI, ElTy);
3551   } else if (AtomicRMWInst::isFPOperation(Op)) {
3552     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3553            AtomicRMWInst::getOperationName(Op) +
3554            " operand must have floating point type!",
3555            &RMWI, ElTy);
3556   } else {
3557     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3558            AtomicRMWInst::getOperationName(Op) +
3559            " operand must have integer type!",
3560            &RMWI, ElTy);
3561   }
3562   checkAtomicMemAccessSize(ElTy, &RMWI);
3563   Assert(ElTy == RMWI.getOperand(1)->getType(),
3564          "Argument value type does not match pointer operand type!", &RMWI,
3565          ElTy);
3566   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3567          "Invalid binary operation!", &RMWI);
3568   visitInstruction(RMWI);
3569 }
3570 
3571 void Verifier::visitFenceInst(FenceInst &FI) {
3572   const AtomicOrdering Ordering = FI.getOrdering();
3573   Assert(Ordering == AtomicOrdering::Acquire ||
3574              Ordering == AtomicOrdering::Release ||
3575              Ordering == AtomicOrdering::AcquireRelease ||
3576              Ordering == AtomicOrdering::SequentiallyConsistent,
3577          "fence instructions may only have acquire, release, acq_rel, or "
3578          "seq_cst ordering.",
3579          &FI);
3580   visitInstruction(FI);
3581 }
3582 
3583 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3584   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3585                                           EVI.getIndices()) == EVI.getType(),
3586          "Invalid ExtractValueInst operands!", &EVI);
3587 
3588   visitInstruction(EVI);
3589 }
3590 
3591 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3592   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3593                                           IVI.getIndices()) ==
3594              IVI.getOperand(1)->getType(),
3595          "Invalid InsertValueInst operands!", &IVI);
3596 
3597   visitInstruction(IVI);
3598 }
3599 
3600 static Value *getParentPad(Value *EHPad) {
3601   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3602     return FPI->getParentPad();
3603 
3604   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3605 }
3606 
3607 void Verifier::visitEHPadPredecessors(Instruction &I) {
3608   assert(I.isEHPad());
3609 
3610   BasicBlock *BB = I.getParent();
3611   Function *F = BB->getParent();
3612 
3613   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3614 
3615   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3616     // The landingpad instruction defines its parent as a landing pad block. The
3617     // landing pad block may be branched to only by the unwind edge of an
3618     // invoke.
3619     for (BasicBlock *PredBB : predecessors(BB)) {
3620       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3621       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3622              "Block containing LandingPadInst must be jumped to "
3623              "only by the unwind edge of an invoke.",
3624              LPI);
3625     }
3626     return;
3627   }
3628   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3629     if (!pred_empty(BB))
3630       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3631              "Block containg CatchPadInst must be jumped to "
3632              "only by its catchswitch.",
3633              CPI);
3634     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3635            "Catchswitch cannot unwind to one of its catchpads",
3636            CPI->getCatchSwitch(), CPI);
3637     return;
3638   }
3639 
3640   // Verify that each pred has a legal terminator with a legal to/from EH
3641   // pad relationship.
3642   Instruction *ToPad = &I;
3643   Value *ToPadParent = getParentPad(ToPad);
3644   for (BasicBlock *PredBB : predecessors(BB)) {
3645     Instruction *TI = PredBB->getTerminator();
3646     Value *FromPad;
3647     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3648       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3649              "EH pad must be jumped to via an unwind edge", ToPad, II);
3650       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3651         FromPad = Bundle->Inputs[0];
3652       else
3653         FromPad = ConstantTokenNone::get(II->getContext());
3654     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3655       FromPad = CRI->getOperand(0);
3656       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3657     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3658       FromPad = CSI;
3659     } else {
3660       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3661     }
3662 
3663     // The edge may exit from zero or more nested pads.
3664     SmallSet<Value *, 8> Seen;
3665     for (;; FromPad = getParentPad(FromPad)) {
3666       Assert(FromPad != ToPad,
3667              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3668       if (FromPad == ToPadParent) {
3669         // This is a legal unwind edge.
3670         break;
3671       }
3672       Assert(!isa<ConstantTokenNone>(FromPad),
3673              "A single unwind edge may only enter one EH pad", TI);
3674       Assert(Seen.insert(FromPad).second,
3675              "EH pad jumps through a cycle of pads", FromPad);
3676     }
3677   }
3678 }
3679 
3680 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3681   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3682   // isn't a cleanup.
3683   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3684          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3685 
3686   visitEHPadPredecessors(LPI);
3687 
3688   if (!LandingPadResultTy)
3689     LandingPadResultTy = LPI.getType();
3690   else
3691     Assert(LandingPadResultTy == LPI.getType(),
3692            "The landingpad instruction should have a consistent result type "
3693            "inside a function.",
3694            &LPI);
3695 
3696   Function *F = LPI.getParent()->getParent();
3697   Assert(F->hasPersonalityFn(),
3698          "LandingPadInst needs to be in a function with a personality.", &LPI);
3699 
3700   // The landingpad instruction must be the first non-PHI instruction in the
3701   // block.
3702   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3703          "LandingPadInst not the first non-PHI instruction in the block.",
3704          &LPI);
3705 
3706   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3707     Constant *Clause = LPI.getClause(i);
3708     if (LPI.isCatch(i)) {
3709       Assert(isa<PointerType>(Clause->getType()),
3710              "Catch operand does not have pointer type!", &LPI);
3711     } else {
3712       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3713       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3714              "Filter operand is not an array of constants!", &LPI);
3715     }
3716   }
3717 
3718   visitInstruction(LPI);
3719 }
3720 
3721 void Verifier::visitResumeInst(ResumeInst &RI) {
3722   Assert(RI.getFunction()->hasPersonalityFn(),
3723          "ResumeInst needs to be in a function with a personality.", &RI);
3724 
3725   if (!LandingPadResultTy)
3726     LandingPadResultTy = RI.getValue()->getType();
3727   else
3728     Assert(LandingPadResultTy == RI.getValue()->getType(),
3729            "The resume instruction should have a consistent result type "
3730            "inside a function.",
3731            &RI);
3732 
3733   visitTerminator(RI);
3734 }
3735 
3736 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3737   BasicBlock *BB = CPI.getParent();
3738 
3739   Function *F = BB->getParent();
3740   Assert(F->hasPersonalityFn(),
3741          "CatchPadInst needs to be in a function with a personality.", &CPI);
3742 
3743   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3744          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3745          CPI.getParentPad());
3746 
3747   // The catchpad instruction must be the first non-PHI instruction in the
3748   // block.
3749   Assert(BB->getFirstNonPHI() == &CPI,
3750          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3751 
3752   visitEHPadPredecessors(CPI);
3753   visitFuncletPadInst(CPI);
3754 }
3755 
3756 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3757   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3758          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3759          CatchReturn.getOperand(0));
3760 
3761   visitTerminator(CatchReturn);
3762 }
3763 
3764 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3765   BasicBlock *BB = CPI.getParent();
3766 
3767   Function *F = BB->getParent();
3768   Assert(F->hasPersonalityFn(),
3769          "CleanupPadInst needs to be in a function with a personality.", &CPI);
3770 
3771   // The cleanuppad instruction must be the first non-PHI instruction in the
3772   // block.
3773   Assert(BB->getFirstNonPHI() == &CPI,
3774          "CleanupPadInst not the first non-PHI instruction in the block.",
3775          &CPI);
3776 
3777   auto *ParentPad = CPI.getParentPad();
3778   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3779          "CleanupPadInst has an invalid parent.", &CPI);
3780 
3781   visitEHPadPredecessors(CPI);
3782   visitFuncletPadInst(CPI);
3783 }
3784 
3785 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3786   User *FirstUser = nullptr;
3787   Value *FirstUnwindPad = nullptr;
3788   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3789   SmallSet<FuncletPadInst *, 8> Seen;
3790 
3791   while (!Worklist.empty()) {
3792     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3793     Assert(Seen.insert(CurrentPad).second,
3794            "FuncletPadInst must not be nested within itself", CurrentPad);
3795     Value *UnresolvedAncestorPad = nullptr;
3796     for (User *U : CurrentPad->users()) {
3797       BasicBlock *UnwindDest;
3798       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3799         UnwindDest = CRI->getUnwindDest();
3800       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3801         // We allow catchswitch unwind to caller to nest
3802         // within an outer pad that unwinds somewhere else,
3803         // because catchswitch doesn't have a nounwind variant.
3804         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3805         if (CSI->unwindsToCaller())
3806           continue;
3807         UnwindDest = CSI->getUnwindDest();
3808       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3809         UnwindDest = II->getUnwindDest();
3810       } else if (isa<CallInst>(U)) {
3811         // Calls which don't unwind may be found inside funclet
3812         // pads that unwind somewhere else.  We don't *require*
3813         // such calls to be annotated nounwind.
3814         continue;
3815       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3816         // The unwind dest for a cleanup can only be found by
3817         // recursive search.  Add it to the worklist, and we'll
3818         // search for its first use that determines where it unwinds.
3819         Worklist.push_back(CPI);
3820         continue;
3821       } else {
3822         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3823         continue;
3824       }
3825 
3826       Value *UnwindPad;
3827       bool ExitsFPI;
3828       if (UnwindDest) {
3829         UnwindPad = UnwindDest->getFirstNonPHI();
3830         if (!cast<Instruction>(UnwindPad)->isEHPad())
3831           continue;
3832         Value *UnwindParent = getParentPad(UnwindPad);
3833         // Ignore unwind edges that don't exit CurrentPad.
3834         if (UnwindParent == CurrentPad)
3835           continue;
3836         // Determine whether the original funclet pad is exited,
3837         // and if we are scanning nested pads determine how many
3838         // of them are exited so we can stop searching their
3839         // children.
3840         Value *ExitedPad = CurrentPad;
3841         ExitsFPI = false;
3842         do {
3843           if (ExitedPad == &FPI) {
3844             ExitsFPI = true;
3845             // Now we can resolve any ancestors of CurrentPad up to
3846             // FPI, but not including FPI since we need to make sure
3847             // to check all direct users of FPI for consistency.
3848             UnresolvedAncestorPad = &FPI;
3849             break;
3850           }
3851           Value *ExitedParent = getParentPad(ExitedPad);
3852           if (ExitedParent == UnwindParent) {
3853             // ExitedPad is the ancestor-most pad which this unwind
3854             // edge exits, so we can resolve up to it, meaning that
3855             // ExitedParent is the first ancestor still unresolved.
3856             UnresolvedAncestorPad = ExitedParent;
3857             break;
3858           }
3859           ExitedPad = ExitedParent;
3860         } while (!isa<ConstantTokenNone>(ExitedPad));
3861       } else {
3862         // Unwinding to caller exits all pads.
3863         UnwindPad = ConstantTokenNone::get(FPI.getContext());
3864         ExitsFPI = true;
3865         UnresolvedAncestorPad = &FPI;
3866       }
3867 
3868       if (ExitsFPI) {
3869         // This unwind edge exits FPI.  Make sure it agrees with other
3870         // such edges.
3871         if (FirstUser) {
3872           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3873                                               "pad must have the same unwind "
3874                                               "dest",
3875                  &FPI, U, FirstUser);
3876         } else {
3877           FirstUser = U;
3878           FirstUnwindPad = UnwindPad;
3879           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3880           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3881               getParentPad(UnwindPad) == getParentPad(&FPI))
3882             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3883         }
3884       }
3885       // Make sure we visit all uses of FPI, but for nested pads stop as
3886       // soon as we know where they unwind to.
3887       if (CurrentPad != &FPI)
3888         break;
3889     }
3890     if (UnresolvedAncestorPad) {
3891       if (CurrentPad == UnresolvedAncestorPad) {
3892         // When CurrentPad is FPI itself, we don't mark it as resolved even if
3893         // we've found an unwind edge that exits it, because we need to verify
3894         // all direct uses of FPI.
3895         assert(CurrentPad == &FPI);
3896         continue;
3897       }
3898       // Pop off the worklist any nested pads that we've found an unwind
3899       // destination for.  The pads on the worklist are the uncles,
3900       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
3901       // for all ancestors of CurrentPad up to but not including
3902       // UnresolvedAncestorPad.
3903       Value *ResolvedPad = CurrentPad;
3904       while (!Worklist.empty()) {
3905         Value *UnclePad = Worklist.back();
3906         Value *AncestorPad = getParentPad(UnclePad);
3907         // Walk ResolvedPad up the ancestor list until we either find the
3908         // uncle's parent or the last resolved ancestor.
3909         while (ResolvedPad != AncestorPad) {
3910           Value *ResolvedParent = getParentPad(ResolvedPad);
3911           if (ResolvedParent == UnresolvedAncestorPad) {
3912             break;
3913           }
3914           ResolvedPad = ResolvedParent;
3915         }
3916         // If the resolved ancestor search didn't find the uncle's parent,
3917         // then the uncle is not yet resolved.
3918         if (ResolvedPad != AncestorPad)
3919           break;
3920         // This uncle is resolved, so pop it from the worklist.
3921         Worklist.pop_back();
3922       }
3923     }
3924   }
3925 
3926   if (FirstUnwindPad) {
3927     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3928       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3929       Value *SwitchUnwindPad;
3930       if (SwitchUnwindDest)
3931         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3932       else
3933         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3934       Assert(SwitchUnwindPad == FirstUnwindPad,
3935              "Unwind edges out of a catch must have the same unwind dest as "
3936              "the parent catchswitch",
3937              &FPI, FirstUser, CatchSwitch);
3938     }
3939   }
3940 
3941   visitInstruction(FPI);
3942 }
3943 
3944 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3945   BasicBlock *BB = CatchSwitch.getParent();
3946 
3947   Function *F = BB->getParent();
3948   Assert(F->hasPersonalityFn(),
3949          "CatchSwitchInst needs to be in a function with a personality.",
3950          &CatchSwitch);
3951 
3952   // The catchswitch instruction must be the first non-PHI instruction in the
3953   // block.
3954   Assert(BB->getFirstNonPHI() == &CatchSwitch,
3955          "CatchSwitchInst not the first non-PHI instruction in the block.",
3956          &CatchSwitch);
3957 
3958   auto *ParentPad = CatchSwitch.getParentPad();
3959   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3960          "CatchSwitchInst has an invalid parent.", ParentPad);
3961 
3962   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3963     Instruction *I = UnwindDest->getFirstNonPHI();
3964     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3965            "CatchSwitchInst must unwind to an EH block which is not a "
3966            "landingpad.",
3967            &CatchSwitch);
3968 
3969     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3970     if (getParentPad(I) == ParentPad)
3971       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3972   }
3973 
3974   Assert(CatchSwitch.getNumHandlers() != 0,
3975          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3976 
3977   for (BasicBlock *Handler : CatchSwitch.handlers()) {
3978     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3979            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3980   }
3981 
3982   visitEHPadPredecessors(CatchSwitch);
3983   visitTerminator(CatchSwitch);
3984 }
3985 
3986 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3987   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3988          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3989          CRI.getOperand(0));
3990 
3991   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3992     Instruction *I = UnwindDest->getFirstNonPHI();
3993     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3994            "CleanupReturnInst must unwind to an EH block which is not a "
3995            "landingpad.",
3996            &CRI);
3997   }
3998 
3999   visitTerminator(CRI);
4000 }
4001 
4002 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4003   Instruction *Op = cast<Instruction>(I.getOperand(i));
4004   // If the we have an invalid invoke, don't try to compute the dominance.
4005   // We already reject it in the invoke specific checks and the dominance
4006   // computation doesn't handle multiple edges.
4007   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4008     if (II->getNormalDest() == II->getUnwindDest())
4009       return;
4010   }
4011 
4012   // Quick check whether the def has already been encountered in the same block.
4013   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4014   // uses are defined to happen on the incoming edge, not at the instruction.
4015   //
4016   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4017   // wrapping an SSA value, assert that we've already encountered it.  See
4018   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4019   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4020     return;
4021 
4022   const Use &U = I.getOperandUse(i);
4023   Assert(DT.dominates(Op, U),
4024          "Instruction does not dominate all uses!", Op, &I);
4025 }
4026 
4027 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4028   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4029          "apply only to pointer types", &I);
4030   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4031          "dereferenceable, dereferenceable_or_null apply only to load"
4032          " and inttoptr instructions, use attributes for calls or invokes", &I);
4033   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4034          "take one operand!", &I);
4035   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4036   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4037          "dereferenceable_or_null metadata value must be an i64!", &I);
4038 }
4039 
4040 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4041   Assert(MD->getNumOperands() >= 2,
4042          "!prof annotations should have no less than 2 operands", MD);
4043 
4044   // Check first operand.
4045   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4046   Assert(isa<MDString>(MD->getOperand(0)),
4047          "expected string with name of the !prof annotation", MD);
4048   MDString *MDS = cast<MDString>(MD->getOperand(0));
4049   StringRef ProfName = MDS->getString();
4050 
4051   // Check consistency of !prof branch_weights metadata.
4052   if (ProfName.equals("branch_weights")) {
4053     unsigned ExpectedNumOperands = 0;
4054     if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4055       ExpectedNumOperands = BI->getNumSuccessors();
4056     else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4057       ExpectedNumOperands = SI->getNumSuccessors();
4058     else if (isa<CallInst>(&I) || isa<InvokeInst>(&I))
4059       ExpectedNumOperands = 1;
4060     else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4061       ExpectedNumOperands = IBI->getNumDestinations();
4062     else if (isa<SelectInst>(&I))
4063       ExpectedNumOperands = 2;
4064     else
4065       CheckFailed("!prof branch_weights are not allowed for this instruction",
4066                   MD);
4067 
4068     Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4069            "Wrong number of operands", MD);
4070     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4071       auto &MDO = MD->getOperand(i);
4072       Assert(MDO, "second operand should not be null", MD);
4073       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4074              "!prof brunch_weights operand is not a const int");
4075     }
4076   }
4077 }
4078 
4079 /// verifyInstruction - Verify that an instruction is well formed.
4080 ///
4081 void Verifier::visitInstruction(Instruction &I) {
4082   BasicBlock *BB = I.getParent();
4083   Assert(BB, "Instruction not embedded in basic block!", &I);
4084 
4085   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4086     for (User *U : I.users()) {
4087       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4088              "Only PHI nodes may reference their own value!", &I);
4089     }
4090   }
4091 
4092   // Check that void typed values don't have names
4093   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4094          "Instruction has a name, but provides a void value!", &I);
4095 
4096   // Check that the return value of the instruction is either void or a legal
4097   // value type.
4098   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4099          "Instruction returns a non-scalar type!", &I);
4100 
4101   // Check that the instruction doesn't produce metadata. Calls are already
4102   // checked against the callee type.
4103   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4104          "Invalid use of metadata!", &I);
4105 
4106   // Check that all uses of the instruction, if they are instructions
4107   // themselves, actually have parent basic blocks.  If the use is not an
4108   // instruction, it is an error!
4109   for (Use &U : I.uses()) {
4110     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4111       Assert(Used->getParent() != nullptr,
4112              "Instruction referencing"
4113              " instruction not embedded in a basic block!",
4114              &I, Used);
4115     else {
4116       CheckFailed("Use of instruction is not an instruction!", U);
4117       return;
4118     }
4119   }
4120 
4121   // Get a pointer to the call base of the instruction if it is some form of
4122   // call.
4123   const CallBase *CBI = dyn_cast<CallBase>(&I);
4124 
4125   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4126     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4127 
4128     // Check to make sure that only first-class-values are operands to
4129     // instructions.
4130     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4131       Assert(false, "Instruction operands must be first-class values!", &I);
4132     }
4133 
4134     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4135       // Check to make sure that the "address of" an intrinsic function is never
4136       // taken.
4137       Assert(!F->isIntrinsic() ||
4138                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4139              "Cannot take the address of an intrinsic!", &I);
4140       Assert(
4141           !F->isIntrinsic() || isa<CallInst>(I) ||
4142               F->getIntrinsicID() == Intrinsic::donothing ||
4143               F->getIntrinsicID() == Intrinsic::coro_resume ||
4144               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4145               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4146               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4147               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4148               F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4149           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4150           "statepoint, coro_resume or coro_destroy",
4151           &I);
4152       Assert(F->getParent() == &M, "Referencing function in another module!",
4153              &I, &M, F, F->getParent());
4154     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4155       Assert(OpBB->getParent() == BB->getParent(),
4156              "Referring to a basic block in another function!", &I);
4157     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4158       Assert(OpArg->getParent() == BB->getParent(),
4159              "Referring to an argument in another function!", &I);
4160     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4161       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4162              &M, GV, GV->getParent());
4163     } else if (isa<Instruction>(I.getOperand(i))) {
4164       verifyDominatesUse(I, i);
4165     } else if (isa<InlineAsm>(I.getOperand(i))) {
4166       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4167              "Cannot take the address of an inline asm!", &I);
4168     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4169       if (CE->getType()->isPtrOrPtrVectorTy() ||
4170           !DL.getNonIntegralAddressSpaces().empty()) {
4171         // If we have a ConstantExpr pointer, we need to see if it came from an
4172         // illegal bitcast.  If the datalayout string specifies non-integral
4173         // address spaces then we also need to check for illegal ptrtoint and
4174         // inttoptr expressions.
4175         visitConstantExprsRecursively(CE);
4176       }
4177     }
4178   }
4179 
4180   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4181     Assert(I.getType()->isFPOrFPVectorTy(),
4182            "fpmath requires a floating point result!", &I);
4183     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4184     if (ConstantFP *CFP0 =
4185             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4186       const APFloat &Accuracy = CFP0->getValueAPF();
4187       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4188              "fpmath accuracy must have float type", &I);
4189       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4190              "fpmath accuracy not a positive number!", &I);
4191     } else {
4192       Assert(false, "invalid fpmath accuracy!", &I);
4193     }
4194   }
4195 
4196   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4197     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4198            "Ranges are only for loads, calls and invokes!", &I);
4199     visitRangeMetadata(I, Range, I.getType());
4200   }
4201 
4202   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4203     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4204            &I);
4205     Assert(isa<LoadInst>(I),
4206            "nonnull applies only to load instructions, use attributes"
4207            " for calls or invokes",
4208            &I);
4209   }
4210 
4211   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4212     visitDereferenceableMetadata(I, MD);
4213 
4214   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4215     visitDereferenceableMetadata(I, MD);
4216 
4217   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4218     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4219 
4220   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4221     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4222            &I);
4223     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4224            "use attributes for calls or invokes", &I);
4225     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4226     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4227     Assert(CI && CI->getType()->isIntegerTy(64),
4228            "align metadata value must be an i64!", &I);
4229     uint64_t Align = CI->getZExtValue();
4230     Assert(isPowerOf2_64(Align),
4231            "align metadata value must be a power of 2!", &I);
4232     Assert(Align <= Value::MaximumAlignment,
4233            "alignment is larger that implementation defined limit", &I);
4234   }
4235 
4236   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4237     visitProfMetadata(I, MD);
4238 
4239   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4240     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4241     visitMDNode(*N);
4242   }
4243 
4244   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4245     verifyFragmentExpression(*DII);
4246     verifyNotEntryValue(*DII);
4247   }
4248 
4249   InstsInThisBlock.insert(&I);
4250 }
4251 
4252 /// Allow intrinsics to be verified in different ways.
4253 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4254   Function *IF = Call.getCalledFunction();
4255   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4256          IF);
4257 
4258   // Verify that the intrinsic prototype lines up with what the .td files
4259   // describe.
4260   FunctionType *IFTy = IF->getFunctionType();
4261   bool IsVarArg = IFTy->isVarArg();
4262 
4263   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4264   getIntrinsicInfoTableEntries(ID, Table);
4265   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4266 
4267   // Walk the descriptors to extract overloaded types.
4268   SmallVector<Type *, 4> ArgTys;
4269   Intrinsic::MatchIntrinsicTypesResult Res =
4270       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4271   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4272          "Intrinsic has incorrect return type!", IF);
4273   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4274          "Intrinsic has incorrect argument type!", IF);
4275 
4276   // Verify if the intrinsic call matches the vararg property.
4277   if (IsVarArg)
4278     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4279            "Intrinsic was not defined with variable arguments!", IF);
4280   else
4281     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4282            "Callsite was not defined with variable arguments!", IF);
4283 
4284   // All descriptors should be absorbed by now.
4285   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4286 
4287   // Now that we have the intrinsic ID and the actual argument types (and we
4288   // know they are legal for the intrinsic!) get the intrinsic name through the
4289   // usual means.  This allows us to verify the mangling of argument types into
4290   // the name.
4291   const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4292   Assert(ExpectedName == IF->getName(),
4293          "Intrinsic name not mangled correctly for type arguments! "
4294          "Should be: " +
4295              ExpectedName,
4296          IF);
4297 
4298   // If the intrinsic takes MDNode arguments, verify that they are either global
4299   // or are local to *this* function.
4300   for (Value *V : Call.args())
4301     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4302       visitMetadataAsValue(*MD, Call.getCaller());
4303 
4304   switch (ID) {
4305   default:
4306     break;
4307   case Intrinsic::coro_id: {
4308     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4309     if (isa<ConstantPointerNull>(InfoArg))
4310       break;
4311     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4312     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4313       "info argument of llvm.coro.begin must refer to an initialized "
4314       "constant");
4315     Constant *Init = GV->getInitializer();
4316     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4317       "info argument of llvm.coro.begin must refer to either a struct or "
4318       "an array");
4319     break;
4320   }
4321 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC, DAGN)                  \
4322   case Intrinsic::INTRINSIC:
4323 #include "llvm/IR/ConstrainedOps.def"
4324     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4325     break;
4326   case Intrinsic::dbg_declare: // llvm.dbg.declare
4327     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4328            "invalid llvm.dbg.declare intrinsic call 1", Call);
4329     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4330     break;
4331   case Intrinsic::dbg_addr: // llvm.dbg.addr
4332     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4333     break;
4334   case Intrinsic::dbg_value: // llvm.dbg.value
4335     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4336     break;
4337   case Intrinsic::dbg_label: // llvm.dbg.label
4338     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4339     break;
4340   case Intrinsic::memcpy:
4341   case Intrinsic::memmove:
4342   case Intrinsic::memset: {
4343     const auto *MI = cast<MemIntrinsic>(&Call);
4344     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4345       return Alignment == 0 || isPowerOf2_32(Alignment);
4346     };
4347     Assert(IsValidAlignment(MI->getDestAlignment()),
4348            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4349            Call);
4350     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4351       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4352              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4353              Call);
4354     }
4355 
4356     break;
4357   }
4358   case Intrinsic::memcpy_element_unordered_atomic:
4359   case Intrinsic::memmove_element_unordered_atomic:
4360   case Intrinsic::memset_element_unordered_atomic: {
4361     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4362 
4363     ConstantInt *ElementSizeCI =
4364         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4365     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4366     Assert(ElementSizeVal.isPowerOf2(),
4367            "element size of the element-wise atomic memory intrinsic "
4368            "must be a power of 2",
4369            Call);
4370 
4371     if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4372       uint64_t Length = LengthCI->getZExtValue();
4373       uint64_t ElementSize = AMI->getElementSizeInBytes();
4374       Assert((Length % ElementSize) == 0,
4375              "constant length must be a multiple of the element size in the "
4376              "element-wise atomic memory intrinsic",
4377              Call);
4378     }
4379 
4380     auto IsValidAlignment = [&](uint64_t Alignment) {
4381       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4382     };
4383     uint64_t DstAlignment = AMI->getDestAlignment();
4384     Assert(IsValidAlignment(DstAlignment),
4385            "incorrect alignment of the destination argument", Call);
4386     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4387       uint64_t SrcAlignment = AMT->getSourceAlignment();
4388       Assert(IsValidAlignment(SrcAlignment),
4389              "incorrect alignment of the source argument", Call);
4390     }
4391     break;
4392   }
4393   case Intrinsic::gcroot:
4394   case Intrinsic::gcwrite:
4395   case Intrinsic::gcread:
4396     if (ID == Intrinsic::gcroot) {
4397       AllocaInst *AI =
4398           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4399       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4400       Assert(isa<Constant>(Call.getArgOperand(1)),
4401              "llvm.gcroot parameter #2 must be a constant.", Call);
4402       if (!AI->getAllocatedType()->isPointerTy()) {
4403         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4404                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4405                "or argument #2 must be a non-null constant.",
4406                Call);
4407       }
4408     }
4409 
4410     Assert(Call.getParent()->getParent()->hasGC(),
4411            "Enclosing function does not use GC.", Call);
4412     break;
4413   case Intrinsic::init_trampoline:
4414     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4415            "llvm.init_trampoline parameter #2 must resolve to a function.",
4416            Call);
4417     break;
4418   case Intrinsic::prefetch:
4419     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4420            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4421            "invalid arguments to llvm.prefetch", Call);
4422     break;
4423   case Intrinsic::stackprotector:
4424     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4425            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4426     break;
4427   case Intrinsic::localescape: {
4428     BasicBlock *BB = Call.getParent();
4429     Assert(BB == &BB->getParent()->front(),
4430            "llvm.localescape used outside of entry block", Call);
4431     Assert(!SawFrameEscape,
4432            "multiple calls to llvm.localescape in one function", Call);
4433     for (Value *Arg : Call.args()) {
4434       if (isa<ConstantPointerNull>(Arg))
4435         continue; // Null values are allowed as placeholders.
4436       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4437       Assert(AI && AI->isStaticAlloca(),
4438              "llvm.localescape only accepts static allocas", Call);
4439     }
4440     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4441     SawFrameEscape = true;
4442     break;
4443   }
4444   case Intrinsic::localrecover: {
4445     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4446     Function *Fn = dyn_cast<Function>(FnArg);
4447     Assert(Fn && !Fn->isDeclaration(),
4448            "llvm.localrecover first "
4449            "argument must be function defined in this module",
4450            Call);
4451     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4452     auto &Entry = FrameEscapeInfo[Fn];
4453     Entry.second = unsigned(
4454         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4455     break;
4456   }
4457 
4458   case Intrinsic::experimental_gc_statepoint:
4459     if (auto *CI = dyn_cast<CallInst>(&Call))
4460       Assert(!CI->isInlineAsm(),
4461              "gc.statepoint support for inline assembly unimplemented", CI);
4462     Assert(Call.getParent()->getParent()->hasGC(),
4463            "Enclosing function does not use GC.", Call);
4464 
4465     verifyStatepoint(Call);
4466     break;
4467   case Intrinsic::experimental_gc_result: {
4468     Assert(Call.getParent()->getParent()->hasGC(),
4469            "Enclosing function does not use GC.", Call);
4470     // Are we tied to a statepoint properly?
4471     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4472     const Function *StatepointFn =
4473         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4474     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4475                StatepointFn->getIntrinsicID() ==
4476                    Intrinsic::experimental_gc_statepoint,
4477            "gc.result operand #1 must be from a statepoint", Call,
4478            Call.getArgOperand(0));
4479 
4480     // Assert that result type matches wrapped callee.
4481     const Value *Target = StatepointCall->getArgOperand(2);
4482     auto *PT = cast<PointerType>(Target->getType());
4483     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4484     Assert(Call.getType() == TargetFuncType->getReturnType(),
4485            "gc.result result type does not match wrapped callee", Call);
4486     break;
4487   }
4488   case Intrinsic::experimental_gc_relocate: {
4489     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4490 
4491     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4492            "gc.relocate must return a pointer or a vector of pointers", Call);
4493 
4494     // Check that this relocate is correctly tied to the statepoint
4495 
4496     // This is case for relocate on the unwinding path of an invoke statepoint
4497     if (LandingPadInst *LandingPad =
4498             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4499 
4500       const BasicBlock *InvokeBB =
4501           LandingPad->getParent()->getUniquePredecessor();
4502 
4503       // Landingpad relocates should have only one predecessor with invoke
4504       // statepoint terminator
4505       Assert(InvokeBB, "safepoints should have unique landingpads",
4506              LandingPad->getParent());
4507       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4508              InvokeBB);
4509       Assert(isStatepoint(InvokeBB->getTerminator()),
4510              "gc relocate should be linked to a statepoint", InvokeBB);
4511     } else {
4512       // In all other cases relocate should be tied to the statepoint directly.
4513       // This covers relocates on a normal return path of invoke statepoint and
4514       // relocates of a call statepoint.
4515       auto Token = Call.getArgOperand(0);
4516       Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4517              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4518     }
4519 
4520     // Verify rest of the relocate arguments.
4521     const CallBase &StatepointCall =
4522         *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4523 
4524     // Both the base and derived must be piped through the safepoint.
4525     Value *Base = Call.getArgOperand(1);
4526     Assert(isa<ConstantInt>(Base),
4527            "gc.relocate operand #2 must be integer offset", Call);
4528 
4529     Value *Derived = Call.getArgOperand(2);
4530     Assert(isa<ConstantInt>(Derived),
4531            "gc.relocate operand #3 must be integer offset", Call);
4532 
4533     const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4534     const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4535     // Check the bounds
4536     Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4537            "gc.relocate: statepoint base index out of bounds", Call);
4538     Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4539            "gc.relocate: statepoint derived index out of bounds", Call);
4540 
4541     // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4542     // section of the statepoint's argument.
4543     Assert(StatepointCall.arg_size() > 0,
4544            "gc.statepoint: insufficient arguments");
4545     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4546            "gc.statement: number of call arguments must be constant integer");
4547     const unsigned NumCallArgs =
4548         cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4549     Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4550            "gc.statepoint: mismatch in number of call arguments");
4551     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4552            "gc.statepoint: number of transition arguments must be "
4553            "a constant integer");
4554     const int NumTransitionArgs =
4555         cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4556             ->getZExtValue();
4557     const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4558     Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4559            "gc.statepoint: number of deoptimization arguments must be "
4560            "a constant integer");
4561     const int NumDeoptArgs =
4562         cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4563             ->getZExtValue();
4564     const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4565     const int GCParamArgsEnd = StatepointCall.arg_size();
4566     Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4567            "gc.relocate: statepoint base index doesn't fall within the "
4568            "'gc parameters' section of the statepoint call",
4569            Call);
4570     Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4571            "gc.relocate: statepoint derived index doesn't fall within the "
4572            "'gc parameters' section of the statepoint call",
4573            Call);
4574 
4575     // Relocated value must be either a pointer type or vector-of-pointer type,
4576     // but gc_relocate does not need to return the same pointer type as the
4577     // relocated pointer. It can be casted to the correct type later if it's
4578     // desired. However, they must have the same address space and 'vectorness'
4579     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4580     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4581            "gc.relocate: relocated value must be a gc pointer", Call);
4582 
4583     auto ResultType = Call.getType();
4584     auto DerivedType = Relocate.getDerivedPtr()->getType();
4585     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4586            "gc.relocate: vector relocates to vector and pointer to pointer",
4587            Call);
4588     Assert(
4589         ResultType->getPointerAddressSpace() ==
4590             DerivedType->getPointerAddressSpace(),
4591         "gc.relocate: relocating a pointer shouldn't change its address space",
4592         Call);
4593     break;
4594   }
4595   case Intrinsic::eh_exceptioncode:
4596   case Intrinsic::eh_exceptionpointer: {
4597     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4598            "eh.exceptionpointer argument must be a catchpad", Call);
4599     break;
4600   }
4601   case Intrinsic::masked_load: {
4602     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4603            Call);
4604 
4605     Value *Ptr = Call.getArgOperand(0);
4606     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4607     Value *Mask = Call.getArgOperand(2);
4608     Value *PassThru = Call.getArgOperand(3);
4609     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4610            Call);
4611     Assert(Alignment->getValue().isPowerOf2(),
4612            "masked_load: alignment must be a power of 2", Call);
4613 
4614     // DataTy is the overloaded type
4615     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4616     Assert(DataTy == Call.getType(),
4617            "masked_load: return must match pointer type", Call);
4618     Assert(PassThru->getType() == DataTy,
4619            "masked_load: pass through and data type must match", Call);
4620     Assert(Mask->getType()->getVectorNumElements() ==
4621                DataTy->getVectorNumElements(),
4622            "masked_load: vector mask must be same length as data", Call);
4623     break;
4624   }
4625   case Intrinsic::masked_store: {
4626     Value *Val = Call.getArgOperand(0);
4627     Value *Ptr = Call.getArgOperand(1);
4628     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4629     Value *Mask = Call.getArgOperand(3);
4630     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4631            Call);
4632     Assert(Alignment->getValue().isPowerOf2(),
4633            "masked_store: alignment must be a power of 2", Call);
4634 
4635     // DataTy is the overloaded type
4636     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4637     Assert(DataTy == Val->getType(),
4638            "masked_store: storee must match pointer type", Call);
4639     Assert(Mask->getType()->getVectorNumElements() ==
4640                DataTy->getVectorNumElements(),
4641            "masked_store: vector mask must be same length as data", Call);
4642     break;
4643   }
4644 
4645   case Intrinsic::experimental_guard: {
4646     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4647     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4648            "experimental_guard must have exactly one "
4649            "\"deopt\" operand bundle");
4650     break;
4651   }
4652 
4653   case Intrinsic::experimental_deoptimize: {
4654     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4655            Call);
4656     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4657            "experimental_deoptimize must have exactly one "
4658            "\"deopt\" operand bundle");
4659     Assert(Call.getType() == Call.getFunction()->getReturnType(),
4660            "experimental_deoptimize return type must match caller return type");
4661 
4662     if (isa<CallInst>(Call)) {
4663       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4664       Assert(RI,
4665              "calls to experimental_deoptimize must be followed by a return");
4666 
4667       if (!Call.getType()->isVoidTy() && RI)
4668         Assert(RI->getReturnValue() == &Call,
4669                "calls to experimental_deoptimize must be followed by a return "
4670                "of the value computed by experimental_deoptimize");
4671     }
4672 
4673     break;
4674   }
4675   case Intrinsic::sadd_sat:
4676   case Intrinsic::uadd_sat:
4677   case Intrinsic::ssub_sat:
4678   case Intrinsic::usub_sat: {
4679     Value *Op1 = Call.getArgOperand(0);
4680     Value *Op2 = Call.getArgOperand(1);
4681     Assert(Op1->getType()->isIntOrIntVectorTy(),
4682            "first operand of [us][add|sub]_sat must be an int type or vector "
4683            "of ints");
4684     Assert(Op2->getType()->isIntOrIntVectorTy(),
4685            "second operand of [us][add|sub]_sat must be an int type or vector "
4686            "of ints");
4687     break;
4688   }
4689   case Intrinsic::smul_fix:
4690   case Intrinsic::smul_fix_sat:
4691   case Intrinsic::umul_fix:
4692   case Intrinsic::umul_fix_sat:
4693   case Intrinsic::sdiv_fix:
4694   case Intrinsic::udiv_fix: {
4695     Value *Op1 = Call.getArgOperand(0);
4696     Value *Op2 = Call.getArgOperand(1);
4697     Assert(Op1->getType()->isIntOrIntVectorTy(),
4698            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
4699            "vector of ints");
4700     Assert(Op2->getType()->isIntOrIntVectorTy(),
4701            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
4702            "vector of ints");
4703 
4704     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4705     Assert(Op3->getType()->getBitWidth() <= 32,
4706            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
4707 
4708     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
4709         ID == Intrinsic::sdiv_fix) {
4710       Assert(
4711           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4712           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
4713           "the operands");
4714     } else {
4715       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4716              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
4717              "to the width of the operands");
4718     }
4719     break;
4720   }
4721   case Intrinsic::lround:
4722   case Intrinsic::llround:
4723   case Intrinsic::lrint:
4724   case Intrinsic::llrint: {
4725     Type *ValTy = Call.getArgOperand(0)->getType();
4726     Type *ResultTy = Call.getType();
4727     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4728            "Intrinsic does not support vectors", &Call);
4729     break;
4730   }
4731   };
4732 }
4733 
4734 /// Carefully grab the subprogram from a local scope.
4735 ///
4736 /// This carefully grabs the subprogram from a local scope, avoiding the
4737 /// built-in assertions that would typically fire.
4738 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4739   if (!LocalScope)
4740     return nullptr;
4741 
4742   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4743     return SP;
4744 
4745   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4746     return getSubprogram(LB->getRawScope());
4747 
4748   // Just return null; broken scope chains are checked elsewhere.
4749   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4750   return nullptr;
4751 }
4752 
4753 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4754   unsigned NumOperands;
4755   bool HasRoundingMD;
4756   switch (FPI.getIntrinsicID()) {
4757 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
4758   case Intrinsic::INTRINSIC:                                                   \
4759     NumOperands = NARG;                                                        \
4760     HasRoundingMD = ROUND_MODE;                                                \
4761     break;
4762 #include "llvm/IR/ConstrainedOps.def"
4763   default:
4764     llvm_unreachable("Invalid constrained FP intrinsic!");
4765   }
4766   NumOperands += (1 + HasRoundingMD);
4767   // Compare intrinsics carry an extra predicate metadata operand.
4768   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
4769     NumOperands += 1;
4770   Assert((FPI.getNumArgOperands() == NumOperands),
4771          "invalid arguments for constrained FP intrinsic", &FPI);
4772 
4773   switch (FPI.getIntrinsicID()) {
4774   case Intrinsic::experimental_constrained_lrint:
4775   case Intrinsic::experimental_constrained_llrint: {
4776     Type *ValTy = FPI.getArgOperand(0)->getType();
4777     Type *ResultTy = FPI.getType();
4778     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4779            "Intrinsic does not support vectors", &FPI);
4780   }
4781     break;
4782 
4783   case Intrinsic::experimental_constrained_lround:
4784   case Intrinsic::experimental_constrained_llround: {
4785     Type *ValTy = FPI.getArgOperand(0)->getType();
4786     Type *ResultTy = FPI.getType();
4787     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4788            "Intrinsic does not support vectors", &FPI);
4789     break;
4790   }
4791 
4792   case Intrinsic::experimental_constrained_fcmp:
4793   case Intrinsic::experimental_constrained_fcmps: {
4794     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
4795     Assert(CmpInst::isFPPredicate(Pred),
4796            "invalid predicate for constrained FP comparison intrinsic", &FPI);
4797     break;
4798   }
4799 
4800   case Intrinsic::experimental_constrained_fptosi:
4801   case Intrinsic::experimental_constrained_fptoui: {
4802     Value *Operand = FPI.getArgOperand(0);
4803     uint64_t NumSrcElem = 0;
4804     Assert(Operand->getType()->isFPOrFPVectorTy(),
4805            "Intrinsic first argument must be floating point", &FPI);
4806     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4807       NumSrcElem = OperandT->getNumElements();
4808     }
4809 
4810     Operand = &FPI;
4811     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
4812            "Intrinsic first argument and result disagree on vector use", &FPI);
4813     Assert(Operand->getType()->isIntOrIntVectorTy(),
4814            "Intrinsic result must be an integer", &FPI);
4815     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4816       Assert(NumSrcElem == OperandT->getNumElements(),
4817              "Intrinsic first argument and result vector lengths must be equal",
4818              &FPI);
4819     }
4820   }
4821     break;
4822 
4823   case Intrinsic::experimental_constrained_sitofp:
4824   case Intrinsic::experimental_constrained_uitofp: {
4825     Value *Operand = FPI.getArgOperand(0);
4826     uint64_t NumSrcElem = 0;
4827     Assert(Operand->getType()->isIntOrIntVectorTy(),
4828            "Intrinsic first argument must be integer", &FPI);
4829     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4830       NumSrcElem = OperandT->getNumElements();
4831     }
4832 
4833     Operand = &FPI;
4834     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
4835            "Intrinsic first argument and result disagree on vector use", &FPI);
4836     Assert(Operand->getType()->isFPOrFPVectorTy(),
4837            "Intrinsic result must be a floating point", &FPI);
4838     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
4839       Assert(NumSrcElem == OperandT->getNumElements(),
4840              "Intrinsic first argument and result vector lengths must be equal",
4841              &FPI);
4842     }
4843   } break;
4844 
4845   case Intrinsic::experimental_constrained_fptrunc:
4846   case Intrinsic::experimental_constrained_fpext: {
4847     Value *Operand = FPI.getArgOperand(0);
4848     Type *OperandTy = Operand->getType();
4849     Value *Result = &FPI;
4850     Type *ResultTy = Result->getType();
4851     Assert(OperandTy->isFPOrFPVectorTy(),
4852            "Intrinsic first argument must be FP or FP vector", &FPI);
4853     Assert(ResultTy->isFPOrFPVectorTy(),
4854            "Intrinsic result must be FP or FP vector", &FPI);
4855     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4856            "Intrinsic first argument and result disagree on vector use", &FPI);
4857     if (OperandTy->isVectorTy()) {
4858       auto *OperandVecTy = cast<VectorType>(OperandTy);
4859       auto *ResultVecTy = cast<VectorType>(ResultTy);
4860       Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4861              "Intrinsic first argument and result vector lengths must be equal",
4862              &FPI);
4863     }
4864     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4865       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4866              "Intrinsic first argument's type must be larger than result type",
4867              &FPI);
4868     } else {
4869       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4870              "Intrinsic first argument's type must be smaller than result type",
4871              &FPI);
4872     }
4873   }
4874     break;
4875 
4876   default:
4877     break;
4878   }
4879 
4880   // If a non-metadata argument is passed in a metadata slot then the
4881   // error will be caught earlier when the incorrect argument doesn't
4882   // match the specification in the intrinsic call table. Thus, no
4883   // argument type check is needed here.
4884 
4885   Assert(FPI.getExceptionBehavior().hasValue(),
4886          "invalid exception behavior argument", &FPI);
4887   if (HasRoundingMD) {
4888     Assert(FPI.getRoundingMode().hasValue(),
4889            "invalid rounding mode argument", &FPI);
4890   }
4891 }
4892 
4893 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4894   auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4895   AssertDI(isa<ValueAsMetadata>(MD) ||
4896              (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4897          "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4898   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4899          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4900          DII.getRawVariable());
4901   AssertDI(isa<DIExpression>(DII.getRawExpression()),
4902          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4903          DII.getRawExpression());
4904 
4905   // Ignore broken !dbg attachments; they're checked elsewhere.
4906   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4907     if (!isa<DILocation>(N))
4908       return;
4909 
4910   BasicBlock *BB = DII.getParent();
4911   Function *F = BB ? BB->getParent() : nullptr;
4912 
4913   // The scopes for variables and !dbg attachments must agree.
4914   DILocalVariable *Var = DII.getVariable();
4915   DILocation *Loc = DII.getDebugLoc();
4916   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4917            &DII, BB, F);
4918 
4919   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4920   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4921   if (!VarSP || !LocSP)
4922     return; // Broken scope chains are checked elsewhere.
4923 
4924   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4925                                " variable and !dbg attachment",
4926            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4927            Loc->getScope()->getSubprogram());
4928 
4929   // This check is redundant with one in visitLocalVariable().
4930   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4931            Var->getRawType());
4932   verifyFnArgs(DII);
4933 }
4934 
4935 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4936   AssertDI(isa<DILabel>(DLI.getRawLabel()),
4937          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4938          DLI.getRawLabel());
4939 
4940   // Ignore broken !dbg attachments; they're checked elsewhere.
4941   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4942     if (!isa<DILocation>(N))
4943       return;
4944 
4945   BasicBlock *BB = DLI.getParent();
4946   Function *F = BB ? BB->getParent() : nullptr;
4947 
4948   // The scopes for variables and !dbg attachments must agree.
4949   DILabel *Label = DLI.getLabel();
4950   DILocation *Loc = DLI.getDebugLoc();
4951   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4952          &DLI, BB, F);
4953 
4954   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4955   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4956   if (!LabelSP || !LocSP)
4957     return;
4958 
4959   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4960                              " label and !dbg attachment",
4961            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4962            Loc->getScope()->getSubprogram());
4963 }
4964 
4965 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4966   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4967   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4968 
4969   // We don't know whether this intrinsic verified correctly.
4970   if (!V || !E || !E->isValid())
4971     return;
4972 
4973   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4974   auto Fragment = E->getFragmentInfo();
4975   if (!Fragment)
4976     return;
4977 
4978   // The frontend helps out GDB by emitting the members of local anonymous
4979   // unions as artificial local variables with shared storage. When SROA splits
4980   // the storage for artificial local variables that are smaller than the entire
4981   // union, the overhang piece will be outside of the allotted space for the
4982   // variable and this check fails.
4983   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4984   if (V->isArtificial())
4985     return;
4986 
4987   verifyFragmentExpression(*V, *Fragment, &I);
4988 }
4989 
4990 template <typename ValueOrMetadata>
4991 void Verifier::verifyFragmentExpression(const DIVariable &V,
4992                                         DIExpression::FragmentInfo Fragment,
4993                                         ValueOrMetadata *Desc) {
4994   // If there's no size, the type is broken, but that should be checked
4995   // elsewhere.
4996   auto VarSize = V.getSizeInBits();
4997   if (!VarSize)
4998     return;
4999 
5000   unsigned FragSize = Fragment.SizeInBits;
5001   unsigned FragOffset = Fragment.OffsetInBits;
5002   AssertDI(FragSize + FragOffset <= *VarSize,
5003          "fragment is larger than or outside of variable", Desc, &V);
5004   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5005 }
5006 
5007 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5008   // This function does not take the scope of noninlined function arguments into
5009   // account. Don't run it if current function is nodebug, because it may
5010   // contain inlined debug intrinsics.
5011   if (!HasDebugInfo)
5012     return;
5013 
5014   // For performance reasons only check non-inlined ones.
5015   if (I.getDebugLoc()->getInlinedAt())
5016     return;
5017 
5018   DILocalVariable *Var = I.getVariable();
5019   AssertDI(Var, "dbg intrinsic without variable");
5020 
5021   unsigned ArgNo = Var->getArg();
5022   if (!ArgNo)
5023     return;
5024 
5025   // Verify there are no duplicate function argument debug info entries.
5026   // These will cause hard-to-debug assertions in the DWARF backend.
5027   if (DebugFnArgs.size() < ArgNo)
5028     DebugFnArgs.resize(ArgNo, nullptr);
5029 
5030   auto *Prev = DebugFnArgs[ArgNo - 1];
5031   DebugFnArgs[ArgNo - 1] = Var;
5032   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5033            Prev, Var);
5034 }
5035 
5036 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5037   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5038 
5039   // We don't know whether this intrinsic verified correctly.
5040   if (!E || !E->isValid())
5041     return;
5042 
5043   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5044 }
5045 
5046 void Verifier::verifyCompileUnits() {
5047   // When more than one Module is imported into the same context, such as during
5048   // an LTO build before linking the modules, ODR type uniquing may cause types
5049   // to point to a different CU. This check does not make sense in this case.
5050   if (M.getContext().isODRUniquingDebugTypes())
5051     return;
5052   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5053   SmallPtrSet<const Metadata *, 2> Listed;
5054   if (CUs)
5055     Listed.insert(CUs->op_begin(), CUs->op_end());
5056   for (auto *CU : CUVisited)
5057     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5058   CUVisited.clear();
5059 }
5060 
5061 void Verifier::verifyDeoptimizeCallingConvs() {
5062   if (DeoptimizeDeclarations.empty())
5063     return;
5064 
5065   const Function *First = DeoptimizeDeclarations[0];
5066   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5067     Assert(First->getCallingConv() == F->getCallingConv(),
5068            "All llvm.experimental.deoptimize declarations must have the same "
5069            "calling convention",
5070            First, F);
5071   }
5072 }
5073 
5074 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5075   bool HasSource = F.getSource().hasValue();
5076   if (!HasSourceDebugInfo.count(&U))
5077     HasSourceDebugInfo[&U] = HasSource;
5078   AssertDI(HasSource == HasSourceDebugInfo[&U],
5079            "inconsistent use of embedded source");
5080 }
5081 
5082 //===----------------------------------------------------------------------===//
5083 //  Implement the public interfaces to this file...
5084 //===----------------------------------------------------------------------===//
5085 
5086 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5087   Function &F = const_cast<Function &>(f);
5088 
5089   // Don't use a raw_null_ostream.  Printing IR is expensive.
5090   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5091 
5092   // Note that this function's return value is inverted from what you would
5093   // expect of a function called "verify".
5094   return !V.verify(F);
5095 }
5096 
5097 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5098                         bool *BrokenDebugInfo) {
5099   // Don't use a raw_null_ostream.  Printing IR is expensive.
5100   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5101 
5102   bool Broken = false;
5103   for (const Function &F : M)
5104     Broken |= !V.verify(F);
5105 
5106   Broken |= !V.verify();
5107   if (BrokenDebugInfo)
5108     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5109   // Note that this function's return value is inverted from what you would
5110   // expect of a function called "verify".
5111   return Broken;
5112 }
5113 
5114 namespace {
5115 
5116 struct VerifierLegacyPass : public FunctionPass {
5117   static char ID;
5118 
5119   std::unique_ptr<Verifier> V;
5120   bool FatalErrors = true;
5121 
5122   VerifierLegacyPass() : FunctionPass(ID) {
5123     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5124   }
5125   explicit VerifierLegacyPass(bool FatalErrors)
5126       : FunctionPass(ID),
5127         FatalErrors(FatalErrors) {
5128     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5129   }
5130 
5131   bool doInitialization(Module &M) override {
5132     V = std::make_unique<Verifier>(
5133         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5134     return false;
5135   }
5136 
5137   bool runOnFunction(Function &F) override {
5138     if (!V->verify(F) && FatalErrors) {
5139       errs() << "in function " << F.getName() << '\n';
5140       report_fatal_error("Broken function found, compilation aborted!");
5141     }
5142     return false;
5143   }
5144 
5145   bool doFinalization(Module &M) override {
5146     bool HasErrors = false;
5147     for (Function &F : M)
5148       if (F.isDeclaration())
5149         HasErrors |= !V->verify(F);
5150 
5151     HasErrors |= !V->verify();
5152     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5153       report_fatal_error("Broken module found, compilation aborted!");
5154     return false;
5155   }
5156 
5157   void getAnalysisUsage(AnalysisUsage &AU) const override {
5158     AU.setPreservesAll();
5159   }
5160 };
5161 
5162 } // end anonymous namespace
5163 
5164 /// Helper to issue failure from the TBAA verification
5165 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5166   if (Diagnostic)
5167     return Diagnostic->CheckFailed(Args...);
5168 }
5169 
5170 #define AssertTBAA(C, ...)                                                     \
5171   do {                                                                         \
5172     if (!(C)) {                                                                \
5173       CheckFailed(__VA_ARGS__);                                                \
5174       return false;                                                            \
5175     }                                                                          \
5176   } while (false)
5177 
5178 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5179 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5180 /// struct-type node describing an aggregate data structure (like a struct).
5181 TBAAVerifier::TBAABaseNodeSummary
5182 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5183                                  bool IsNewFormat) {
5184   if (BaseNode->getNumOperands() < 2) {
5185     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5186     return {true, ~0u};
5187   }
5188 
5189   auto Itr = TBAABaseNodes.find(BaseNode);
5190   if (Itr != TBAABaseNodes.end())
5191     return Itr->second;
5192 
5193   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5194   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5195   (void)InsertResult;
5196   assert(InsertResult.second && "We just checked!");
5197   return Result;
5198 }
5199 
5200 TBAAVerifier::TBAABaseNodeSummary
5201 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5202                                      bool IsNewFormat) {
5203   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5204 
5205   if (BaseNode->getNumOperands() == 2) {
5206     // Scalar nodes can only be accessed at offset 0.
5207     return isValidScalarTBAANode(BaseNode)
5208                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5209                : InvalidNode;
5210   }
5211 
5212   if (IsNewFormat) {
5213     if (BaseNode->getNumOperands() % 3 != 0) {
5214       CheckFailed("Access tag nodes must have the number of operands that is a "
5215                   "multiple of 3!", BaseNode);
5216       return InvalidNode;
5217     }
5218   } else {
5219     if (BaseNode->getNumOperands() % 2 != 1) {
5220       CheckFailed("Struct tag nodes must have an odd number of operands!",
5221                   BaseNode);
5222       return InvalidNode;
5223     }
5224   }
5225 
5226   // Check the type size field.
5227   if (IsNewFormat) {
5228     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5229         BaseNode->getOperand(1));
5230     if (!TypeSizeNode) {
5231       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5232       return InvalidNode;
5233     }
5234   }
5235 
5236   // Check the type name field. In the new format it can be anything.
5237   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5238     CheckFailed("Struct tag nodes have a string as their first operand",
5239                 BaseNode);
5240     return InvalidNode;
5241   }
5242 
5243   bool Failed = false;
5244 
5245   Optional<APInt> PrevOffset;
5246   unsigned BitWidth = ~0u;
5247 
5248   // We've already checked that BaseNode is not a degenerate root node with one
5249   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5250   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5251   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5252   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5253            Idx += NumOpsPerField) {
5254     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5255     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5256     if (!isa<MDNode>(FieldTy)) {
5257       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5258       Failed = true;
5259       continue;
5260     }
5261 
5262     auto *OffsetEntryCI =
5263         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5264     if (!OffsetEntryCI) {
5265       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5266       Failed = true;
5267       continue;
5268     }
5269 
5270     if (BitWidth == ~0u)
5271       BitWidth = OffsetEntryCI->getBitWidth();
5272 
5273     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5274       CheckFailed(
5275           "Bitwidth between the offsets and struct type entries must match", &I,
5276           BaseNode);
5277       Failed = true;
5278       continue;
5279     }
5280 
5281     // NB! As far as I can tell, we generate a non-strictly increasing offset
5282     // sequence only from structs that have zero size bit fields.  When
5283     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5284     // pick the field lexically the latest in struct type metadata node.  This
5285     // mirrors the actual behavior of the alias analysis implementation.
5286     bool IsAscending =
5287         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5288 
5289     if (!IsAscending) {
5290       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5291       Failed = true;
5292     }
5293 
5294     PrevOffset = OffsetEntryCI->getValue();
5295 
5296     if (IsNewFormat) {
5297       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5298           BaseNode->getOperand(Idx + 2));
5299       if (!MemberSizeNode) {
5300         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5301         Failed = true;
5302         continue;
5303       }
5304     }
5305   }
5306 
5307   return Failed ? InvalidNode
5308                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5309 }
5310 
5311 static bool IsRootTBAANode(const MDNode *MD) {
5312   return MD->getNumOperands() < 2;
5313 }
5314 
5315 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5316                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5317   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5318     return false;
5319 
5320   if (!isa<MDString>(MD->getOperand(0)))
5321     return false;
5322 
5323   if (MD->getNumOperands() == 3) {
5324     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5325     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5326       return false;
5327   }
5328 
5329   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5330   return Parent && Visited.insert(Parent).second &&
5331          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5332 }
5333 
5334 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5335   auto ResultIt = TBAAScalarNodes.find(MD);
5336   if (ResultIt != TBAAScalarNodes.end())
5337     return ResultIt->second;
5338 
5339   SmallPtrSet<const MDNode *, 4> Visited;
5340   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5341   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5342   (void)InsertResult;
5343   assert(InsertResult.second && "Just checked!");
5344 
5345   return Result;
5346 }
5347 
5348 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5349 /// Offset in place to be the offset within the field node returned.
5350 ///
5351 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5352 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5353                                                    const MDNode *BaseNode,
5354                                                    APInt &Offset,
5355                                                    bool IsNewFormat) {
5356   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5357 
5358   // Scalar nodes have only one possible "field" -- their parent in the access
5359   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5360   // to Assert that.
5361   if (BaseNode->getNumOperands() == 2)
5362     return cast<MDNode>(BaseNode->getOperand(1));
5363 
5364   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5365   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5366   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5367            Idx += NumOpsPerField) {
5368     auto *OffsetEntryCI =
5369         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5370     if (OffsetEntryCI->getValue().ugt(Offset)) {
5371       if (Idx == FirstFieldOpNo) {
5372         CheckFailed("Could not find TBAA parent in struct type node", &I,
5373                     BaseNode, &Offset);
5374         return nullptr;
5375       }
5376 
5377       unsigned PrevIdx = Idx - NumOpsPerField;
5378       auto *PrevOffsetEntryCI =
5379           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5380       Offset -= PrevOffsetEntryCI->getValue();
5381       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5382     }
5383   }
5384 
5385   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5386   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5387       BaseNode->getOperand(LastIdx + 1));
5388   Offset -= LastOffsetEntryCI->getValue();
5389   return cast<MDNode>(BaseNode->getOperand(LastIdx));
5390 }
5391 
5392 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5393   if (!Type || Type->getNumOperands() < 3)
5394     return false;
5395 
5396   // In the new format type nodes shall have a reference to the parent type as
5397   // its first operand.
5398   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5399   if (!Parent)
5400     return false;
5401 
5402   return true;
5403 }
5404 
5405 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5406   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5407                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5408                  isa<AtomicCmpXchgInst>(I),
5409              "This instruction shall not have a TBAA access tag!", &I);
5410 
5411   bool IsStructPathTBAA =
5412       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5413 
5414   AssertTBAA(
5415       IsStructPathTBAA,
5416       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5417 
5418   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5419   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5420 
5421   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5422 
5423   if (IsNewFormat) {
5424     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5425                "Access tag metadata must have either 4 or 5 operands", &I, MD);
5426   } else {
5427     AssertTBAA(MD->getNumOperands() < 5,
5428                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5429   }
5430 
5431   // Check the access size field.
5432   if (IsNewFormat) {
5433     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5434         MD->getOperand(3));
5435     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5436   }
5437 
5438   // Check the immutability flag.
5439   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5440   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5441     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5442         MD->getOperand(ImmutabilityFlagOpNo));
5443     AssertTBAA(IsImmutableCI,
5444                "Immutability tag on struct tag metadata must be a constant",
5445                &I, MD);
5446     AssertTBAA(
5447         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5448         "Immutability part of the struct tag metadata must be either 0 or 1",
5449         &I, MD);
5450   }
5451 
5452   AssertTBAA(BaseNode && AccessType,
5453              "Malformed struct tag metadata: base and access-type "
5454              "should be non-null and point to Metadata nodes",
5455              &I, MD, BaseNode, AccessType);
5456 
5457   if (!IsNewFormat) {
5458     AssertTBAA(isValidScalarTBAANode(AccessType),
5459                "Access type node must be a valid scalar type", &I, MD,
5460                AccessType);
5461   }
5462 
5463   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5464   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5465 
5466   APInt Offset = OffsetCI->getValue();
5467   bool SeenAccessTypeInPath = false;
5468 
5469   SmallPtrSet<MDNode *, 4> StructPath;
5470 
5471   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5472        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5473                                                IsNewFormat)) {
5474     if (!StructPath.insert(BaseNode).second) {
5475       CheckFailed("Cycle detected in struct path", &I, MD);
5476       return false;
5477     }
5478 
5479     bool Invalid;
5480     unsigned BaseNodeBitWidth;
5481     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5482                                                              IsNewFormat);
5483 
5484     // If the base node is invalid in itself, then we've already printed all the
5485     // errors we wanted to print.
5486     if (Invalid)
5487       return false;
5488 
5489     SeenAccessTypeInPath |= BaseNode == AccessType;
5490 
5491     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5492       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5493                  &I, MD, &Offset);
5494 
5495     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5496                    (BaseNodeBitWidth == 0 && Offset == 0) ||
5497                    (IsNewFormat && BaseNodeBitWidth == ~0u),
5498                "Access bit-width not the same as description bit-width", &I, MD,
5499                BaseNodeBitWidth, Offset.getBitWidth());
5500 
5501     if (IsNewFormat && SeenAccessTypeInPath)
5502       break;
5503   }
5504 
5505   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5506              &I, MD);
5507   return true;
5508 }
5509 
5510 char VerifierLegacyPass::ID = 0;
5511 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5512 
5513 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5514   return new VerifierLegacyPass(FatalErrors);
5515 }
5516 
5517 AnalysisKey VerifierAnalysis::Key;
5518 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5519                                                ModuleAnalysisManager &) {
5520   Result Res;
5521   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5522   return Res;
5523 }
5524 
5525 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5526                                                FunctionAnalysisManager &) {
5527   return { llvm::verifyFunction(F, &dbgs()), false };
5528 }
5529 
5530 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5531   auto Res = AM.getResult<VerifierAnalysis>(M);
5532   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5533     report_fatal_error("Broken module found, compilation aborted!");
5534 
5535   return PreservedAnalyses::all();
5536 }
5537 
5538 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5539   auto res = AM.getResult<VerifierAnalysis>(F);
5540   if (res.IRBroken && FatalErrors)
5541     report_fatal_error("Broken function found, compilation aborted!");
5542 
5543   return PreservedAnalyses::all();
5544 }
5545