xref: /freebsd-src/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision 46c59ea9b61755455ff6bf9f3e7b834e1af634ea)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * All basic blocks should only end with terminator insts, not contain them
27 //  * The entry node to a function must not have predecessors
28 //  * All Instructions must be embedded into a basic block
29 //  * Functions cannot take a void-typed parameter
30 //  * Verify that a function's argument list agrees with it's declared type.
31 //  * It is illegal to specify a name for a void value.
32 //  * It is illegal to have a internal global value with no initializer
33 //  * It is illegal to have a ret instruction that returns a value that does not
34 //    agree with the function return value type.
35 //  * Function call argument types match the function prototype
36 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
37 //    only by the unwind edge of an invoke instruction.
38 //  * A landingpad instruction must be the first non-PHI instruction in the
39 //    block.
40 //  * Landingpad instructions must be in a function with a personality function.
41 //  * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 //    The applied restrictions are too numerous to list here.
43 //  * The convergence entry intrinsic and the loop heart must be the first
44 //    non-PHI instruction in their respective block. This does not conflict with
45 //    the landing pads, since these two kinds cannot occur in the same block.
46 //  * All other things that are tested by asserts spread about the code...
47 //
48 //===----------------------------------------------------------------------===//
49 
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/PostOrderIterator.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallPtrSet.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/StringMap.h"
63 #include "llvm/ADT/StringRef.h"
64 #include "llvm/ADT/Twine.h"
65 #include "llvm/BinaryFormat/Dwarf.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/AttributeMask.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Comdat.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/ConvergenceVerifier.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DebugInfoMetadata.h"
80 #include "llvm/IR/DebugLoc.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/EHPersonalities.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/GCStrategy.h"
86 #include "llvm/IR/GlobalAlias.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/GlobalVariable.h"
89 #include "llvm/IR/InlineAsm.h"
90 #include "llvm/IR/InstVisitor.h"
91 #include "llvm/IR/InstrTypes.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/Intrinsics.h"
96 #include "llvm/IR/IntrinsicsAArch64.h"
97 #include "llvm/IR/IntrinsicsAMDGPU.h"
98 #include "llvm/IR/IntrinsicsARM.h"
99 #include "llvm/IR/IntrinsicsNVPTX.h"
100 #include "llvm/IR/IntrinsicsWebAssembly.h"
101 #include "llvm/IR/LLVMContext.h"
102 #include "llvm/IR/Metadata.h"
103 #include "llvm/IR/Module.h"
104 #include "llvm/IR/ModuleSlotTracker.h"
105 #include "llvm/IR/PassManager.h"
106 #include "llvm/IR/Statepoint.h"
107 #include "llvm/IR/Type.h"
108 #include "llvm/IR/Use.h"
109 #include "llvm/IR/User.h"
110 #include "llvm/IR/Value.h"
111 #include "llvm/InitializePasses.h"
112 #include "llvm/Pass.h"
113 #include "llvm/Support/AtomicOrdering.h"
114 #include "llvm/Support/Casting.h"
115 #include "llvm/Support/CommandLine.h"
116 #include "llvm/Support/ErrorHandling.h"
117 #include "llvm/Support/MathExtras.h"
118 #include "llvm/Support/raw_ostream.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cstdint>
122 #include <memory>
123 #include <optional>
124 #include <string>
125 #include <utility>
126 
127 using namespace llvm;
128 
129 static cl::opt<bool> VerifyNoAliasScopeDomination(
130     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
131     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
132              "scopes are not dominating"));
133 
134 namespace llvm {
135 
136 struct VerifierSupport {
137   raw_ostream *OS;
138   const Module &M;
139   ModuleSlotTracker MST;
140   Triple TT;
141   const DataLayout &DL;
142   LLVMContext &Context;
143 
144   /// Track the brokenness of the module while recursively visiting.
145   bool Broken = false;
146   /// Broken debug info can be "recovered" from by stripping the debug info.
147   bool BrokenDebugInfo = false;
148   /// Whether to treat broken debug info as an error.
149   bool TreatBrokenDebugInfoAsError = true;
150 
151   explicit VerifierSupport(raw_ostream *OS, const Module &M)
152       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
153         Context(M.getContext()) {}
154 
155 private:
156   void Write(const Module *M) {
157     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
158   }
159 
160   void Write(const Value *V) {
161     if (V)
162       Write(*V);
163   }
164 
165   void Write(const Value &V) {
166     if (isa<Instruction>(V)) {
167       V.print(*OS, MST);
168       *OS << '\n';
169     } else {
170       V.printAsOperand(*OS, true, MST);
171       *OS << '\n';
172     }
173   }
174 
175   void Write(const Metadata *MD) {
176     if (!MD)
177       return;
178     MD->print(*OS, MST, &M);
179     *OS << '\n';
180   }
181 
182   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
183     Write(MD.get());
184   }
185 
186   void Write(const NamedMDNode *NMD) {
187     if (!NMD)
188       return;
189     NMD->print(*OS, MST);
190     *OS << '\n';
191   }
192 
193   void Write(Type *T) {
194     if (!T)
195       return;
196     *OS << ' ' << *T;
197   }
198 
199   void Write(const Comdat *C) {
200     if (!C)
201       return;
202     *OS << *C;
203   }
204 
205   void Write(const APInt *AI) {
206     if (!AI)
207       return;
208     *OS << *AI << '\n';
209   }
210 
211   void Write(const unsigned i) { *OS << i << '\n'; }
212 
213   // NOLINTNEXTLINE(readability-identifier-naming)
214   void Write(const Attribute *A) {
215     if (!A)
216       return;
217     *OS << A->getAsString() << '\n';
218   }
219 
220   // NOLINTNEXTLINE(readability-identifier-naming)
221   void Write(const AttributeSet *AS) {
222     if (!AS)
223       return;
224     *OS << AS->getAsString() << '\n';
225   }
226 
227   // NOLINTNEXTLINE(readability-identifier-naming)
228   void Write(const AttributeList *AL) {
229     if (!AL)
230       return;
231     AL->print(*OS);
232   }
233 
234   void Write(Printable P) { *OS << P << '\n'; }
235 
236   template <typename T> void Write(ArrayRef<T> Vs) {
237     for (const T &V : Vs)
238       Write(V);
239   }
240 
241   template <typename T1, typename... Ts>
242   void WriteTs(const T1 &V1, const Ts &... Vs) {
243     Write(V1);
244     WriteTs(Vs...);
245   }
246 
247   template <typename... Ts> void WriteTs() {}
248 
249 public:
250   /// A check failed, so printout out the condition and the message.
251   ///
252   /// This provides a nice place to put a breakpoint if you want to see why
253   /// something is not correct.
254   void CheckFailed(const Twine &Message) {
255     if (OS)
256       *OS << Message << '\n';
257     Broken = true;
258   }
259 
260   /// A check failed (with values to print).
261   ///
262   /// This calls the Message-only version so that the above is easier to set a
263   /// breakpoint on.
264   template <typename T1, typename... Ts>
265   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
266     CheckFailed(Message);
267     if (OS)
268       WriteTs(V1, Vs...);
269   }
270 
271   /// A debug info check failed.
272   void DebugInfoCheckFailed(const Twine &Message) {
273     if (OS)
274       *OS << Message << '\n';
275     Broken |= TreatBrokenDebugInfoAsError;
276     BrokenDebugInfo = true;
277   }
278 
279   /// A debug info check failed (with values to print).
280   template <typename T1, typename... Ts>
281   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
282                             const Ts &... Vs) {
283     DebugInfoCheckFailed(Message);
284     if (OS)
285       WriteTs(V1, Vs...);
286   }
287 };
288 
289 } // namespace llvm
290 
291 namespace {
292 
293 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
294   friend class InstVisitor<Verifier>;
295 
296   // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
297   // the alignment size should not exceed 2^15. Since encode(Align)
298   // would plus the shift value by 1, the alignment size should
299   // not exceed 2^14, otherwise it can NOT be properly lowered
300   // in backend.
301   static constexpr unsigned ParamMaxAlignment = 1 << 14;
302   DominatorTree DT;
303 
304   /// When verifying a basic block, keep track of all of the
305   /// instructions we have seen so far.
306   ///
307   /// This allows us to do efficient dominance checks for the case when an
308   /// instruction has an operand that is an instruction in the same block.
309   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
310 
311   /// Keep track of the metadata nodes that have been checked already.
312   SmallPtrSet<const Metadata *, 32> MDNodes;
313 
314   /// Keep track which DISubprogram is attached to which function.
315   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
316 
317   /// Track all DICompileUnits visited.
318   SmallPtrSet<const Metadata *, 2> CUVisited;
319 
320   /// The result type for a landingpad.
321   Type *LandingPadResultTy;
322 
323   /// Whether we've seen a call to @llvm.localescape in this function
324   /// already.
325   bool SawFrameEscape;
326 
327   /// Whether the current function has a DISubprogram attached to it.
328   bool HasDebugInfo = false;
329 
330   /// The current source language.
331   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
332 
333   /// Stores the count of how many objects were passed to llvm.localescape for a
334   /// given function and the largest index passed to llvm.localrecover.
335   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
336 
337   // Maps catchswitches and cleanuppads that unwind to siblings to the
338   // terminators that indicate the unwind, used to detect cycles therein.
339   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
340 
341   /// Cache which blocks are in which funclet, if an EH funclet personality is
342   /// in use. Otherwise empty.
343   DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
344 
345   /// Cache of constants visited in search of ConstantExprs.
346   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
347 
348   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
349   SmallVector<const Function *, 4> DeoptimizeDeclarations;
350 
351   /// Cache of attribute lists verified.
352   SmallPtrSet<const void *, 32> AttributeListsVisited;
353 
354   // Verify that this GlobalValue is only used in this module.
355   // This map is used to avoid visiting uses twice. We can arrive at a user
356   // twice, if they have multiple operands. In particular for very large
357   // constant expressions, we can arrive at a particular user many times.
358   SmallPtrSet<const Value *, 32> GlobalValueVisited;
359 
360   // Keeps track of duplicate function argument debug info.
361   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
362 
363   TBAAVerifier TBAAVerifyHelper;
364   ConvergenceVerifier ConvergenceVerifyHelper;
365 
366   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
367 
368   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
369 
370 public:
371   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
372                     const Module &M)
373       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
374         SawFrameEscape(false), TBAAVerifyHelper(this) {
375     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
376   }
377 
378   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
379 
380   bool verify(const Function &F) {
381     assert(F.getParent() == &M &&
382            "An instance of this class only works with a specific module!");
383 
384     // First ensure the function is well-enough formed to compute dominance
385     // information, and directly compute a dominance tree. We don't rely on the
386     // pass manager to provide this as it isolates us from a potentially
387     // out-of-date dominator tree and makes it significantly more complex to run
388     // this code outside of a pass manager.
389     // FIXME: It's really gross that we have to cast away constness here.
390     if (!F.empty())
391       DT.recalculate(const_cast<Function &>(F));
392 
393     for (const BasicBlock &BB : F) {
394       if (!BB.empty() && BB.back().isTerminator())
395         continue;
396 
397       if (OS) {
398         *OS << "Basic Block in function '" << F.getName()
399             << "' does not have terminator!\n";
400         BB.printAsOperand(*OS, true, MST);
401         *OS << "\n";
402       }
403       return false;
404     }
405 
406     auto FailureCB = [this](const Twine &Message) {
407       this->CheckFailed(Message);
408     };
409     ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
410 
411     Broken = false;
412     // FIXME: We strip const here because the inst visitor strips const.
413     visit(const_cast<Function &>(F));
414     verifySiblingFuncletUnwinds();
415 
416     if (ConvergenceVerifyHelper.sawTokens())
417       ConvergenceVerifyHelper.verify(DT);
418 
419     InstsInThisBlock.clear();
420     DebugFnArgs.clear();
421     LandingPadResultTy = nullptr;
422     SawFrameEscape = false;
423     SiblingFuncletInfo.clear();
424     verifyNoAliasScopeDecl();
425     NoAliasScopeDecls.clear();
426 
427     return !Broken;
428   }
429 
430   /// Verify the module that this instance of \c Verifier was initialized with.
431   bool verify() {
432     Broken = false;
433 
434     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
435     for (const Function &F : M)
436       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
437         DeoptimizeDeclarations.push_back(&F);
438 
439     // Now that we've visited every function, verify that we never asked to
440     // recover a frame index that wasn't escaped.
441     verifyFrameRecoverIndices();
442     for (const GlobalVariable &GV : M.globals())
443       visitGlobalVariable(GV);
444 
445     for (const GlobalAlias &GA : M.aliases())
446       visitGlobalAlias(GA);
447 
448     for (const GlobalIFunc &GI : M.ifuncs())
449       visitGlobalIFunc(GI);
450 
451     for (const NamedMDNode &NMD : M.named_metadata())
452       visitNamedMDNode(NMD);
453 
454     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
455       visitComdat(SMEC.getValue());
456 
457     visitModuleFlags();
458     visitModuleIdents();
459     visitModuleCommandLines();
460 
461     verifyCompileUnits();
462 
463     verifyDeoptimizeCallingConvs();
464     DISubprogramAttachments.clear();
465     return !Broken;
466   }
467 
468 private:
469   /// Whether a metadata node is allowed to be, or contain, a DILocation.
470   enum class AreDebugLocsAllowed { No, Yes };
471 
472   // Verification methods...
473   void visitGlobalValue(const GlobalValue &GV);
474   void visitGlobalVariable(const GlobalVariable &GV);
475   void visitGlobalAlias(const GlobalAlias &GA);
476   void visitGlobalIFunc(const GlobalIFunc &GI);
477   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
478   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
479                            const GlobalAlias &A, const Constant &C);
480   void visitNamedMDNode(const NamedMDNode &NMD);
481   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
482   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
483   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
484   void visitDIArgList(const DIArgList &AL, Function *F);
485   void visitComdat(const Comdat &C);
486   void visitModuleIdents();
487   void visitModuleCommandLines();
488   void visitModuleFlags();
489   void visitModuleFlag(const MDNode *Op,
490                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
491                        SmallVectorImpl<const MDNode *> &Requirements);
492   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
493   void visitFunction(const Function &F);
494   void visitBasicBlock(BasicBlock &BB);
495   void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
496                            bool IsAbsoluteSymbol);
497   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
498   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
499   void visitProfMetadata(Instruction &I, MDNode *MD);
500   void visitCallStackMetadata(MDNode *MD);
501   void visitMemProfMetadata(Instruction &I, MDNode *MD);
502   void visitCallsiteMetadata(Instruction &I, MDNode *MD);
503   void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
504   void visitAnnotationMetadata(MDNode *Annotation);
505   void visitAliasScopeMetadata(const MDNode *MD);
506   void visitAliasScopeListMetadata(const MDNode *MD);
507   void visitAccessGroupMetadata(const MDNode *MD);
508 
509   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
510 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
511 #include "llvm/IR/Metadata.def"
512   void visitDIScope(const DIScope &N);
513   void visitDIVariable(const DIVariable &N);
514   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
515   void visitDITemplateParameter(const DITemplateParameter &N);
516 
517   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
518 
519   // InstVisitor overrides...
520   using InstVisitor<Verifier>::visit;
521   void visit(Instruction &I);
522 
523   void visitTruncInst(TruncInst &I);
524   void visitZExtInst(ZExtInst &I);
525   void visitSExtInst(SExtInst &I);
526   void visitFPTruncInst(FPTruncInst &I);
527   void visitFPExtInst(FPExtInst &I);
528   void visitFPToUIInst(FPToUIInst &I);
529   void visitFPToSIInst(FPToSIInst &I);
530   void visitUIToFPInst(UIToFPInst &I);
531   void visitSIToFPInst(SIToFPInst &I);
532   void visitIntToPtrInst(IntToPtrInst &I);
533   void visitPtrToIntInst(PtrToIntInst &I);
534   void visitBitCastInst(BitCastInst &I);
535   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
536   void visitPHINode(PHINode &PN);
537   void visitCallBase(CallBase &Call);
538   void visitUnaryOperator(UnaryOperator &U);
539   void visitBinaryOperator(BinaryOperator &B);
540   void visitICmpInst(ICmpInst &IC);
541   void visitFCmpInst(FCmpInst &FC);
542   void visitExtractElementInst(ExtractElementInst &EI);
543   void visitInsertElementInst(InsertElementInst &EI);
544   void visitShuffleVectorInst(ShuffleVectorInst &EI);
545   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
546   void visitCallInst(CallInst &CI);
547   void visitInvokeInst(InvokeInst &II);
548   void visitGetElementPtrInst(GetElementPtrInst &GEP);
549   void visitLoadInst(LoadInst &LI);
550   void visitStoreInst(StoreInst &SI);
551   void verifyDominatesUse(Instruction &I, unsigned i);
552   void visitInstruction(Instruction &I);
553   void visitTerminator(Instruction &I);
554   void visitBranchInst(BranchInst &BI);
555   void visitReturnInst(ReturnInst &RI);
556   void visitSwitchInst(SwitchInst &SI);
557   void visitIndirectBrInst(IndirectBrInst &BI);
558   void visitCallBrInst(CallBrInst &CBI);
559   void visitSelectInst(SelectInst &SI);
560   void visitUserOp1(Instruction &I);
561   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
562   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
563   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
564   void visitVPIntrinsic(VPIntrinsic &VPI);
565   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
566   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
567   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
568   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
569   void visitFenceInst(FenceInst &FI);
570   void visitAllocaInst(AllocaInst &AI);
571   void visitExtractValueInst(ExtractValueInst &EVI);
572   void visitInsertValueInst(InsertValueInst &IVI);
573   void visitEHPadPredecessors(Instruction &I);
574   void visitLandingPadInst(LandingPadInst &LPI);
575   void visitResumeInst(ResumeInst &RI);
576   void visitCatchPadInst(CatchPadInst &CPI);
577   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
578   void visitCleanupPadInst(CleanupPadInst &CPI);
579   void visitFuncletPadInst(FuncletPadInst &FPI);
580   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
581   void visitCleanupReturnInst(CleanupReturnInst &CRI);
582 
583   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
584   void verifySwiftErrorValue(const Value *SwiftErrorVal);
585   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
586   void verifyMustTailCall(CallInst &CI);
587   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
588   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
589   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
590   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
591                                     const Value *V);
592   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
593                            const Value *V, bool IsIntrinsic, bool IsInlineAsm);
594   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
595 
596   void visitConstantExprsRecursively(const Constant *EntryC);
597   void visitConstantExpr(const ConstantExpr *CE);
598   void verifyInlineAsmCall(const CallBase &Call);
599   void verifyStatepoint(const CallBase &Call);
600   void verifyFrameRecoverIndices();
601   void verifySiblingFuncletUnwinds();
602 
603   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
604   template <typename ValueOrMetadata>
605   void verifyFragmentExpression(const DIVariable &V,
606                                 DIExpression::FragmentInfo Fragment,
607                                 ValueOrMetadata *Desc);
608   void verifyFnArgs(const DbgVariableIntrinsic &I);
609   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
610 
611   /// Module-level debug info verification...
612   void verifyCompileUnits();
613 
614   /// Module-level verification that all @llvm.experimental.deoptimize
615   /// declarations share the same calling convention.
616   void verifyDeoptimizeCallingConvs();
617 
618   void verifyAttachedCallBundle(const CallBase &Call,
619                                 const OperandBundleUse &BU);
620 
621   /// Verify the llvm.experimental.noalias.scope.decl declarations
622   void verifyNoAliasScopeDecl();
623 };
624 
625 } // end anonymous namespace
626 
627 /// We know that cond should be true, if not print an error message.
628 #define Check(C, ...)                                                          \
629   do {                                                                         \
630     if (!(C)) {                                                                \
631       CheckFailed(__VA_ARGS__);                                                \
632       return;                                                                  \
633     }                                                                          \
634   } while (false)
635 
636 /// We know that a debug info condition should be true, if not print
637 /// an error message.
638 #define CheckDI(C, ...)                                                        \
639   do {                                                                         \
640     if (!(C)) {                                                                \
641       DebugInfoCheckFailed(__VA_ARGS__);                                       \
642       return;                                                                  \
643     }                                                                          \
644   } while (false)
645 
646 void Verifier::visit(Instruction &I) {
647   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
648     Check(I.getOperand(i) != nullptr, "Operand is null", &I);
649   InstVisitor<Verifier>::visit(I);
650 }
651 
652 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
653 static void forEachUser(const Value *User,
654                         SmallPtrSet<const Value *, 32> &Visited,
655                         llvm::function_ref<bool(const Value *)> Callback) {
656   if (!Visited.insert(User).second)
657     return;
658 
659   SmallVector<const Value *> WorkList;
660   append_range(WorkList, User->materialized_users());
661   while (!WorkList.empty()) {
662    const Value *Cur = WorkList.pop_back_val();
663     if (!Visited.insert(Cur).second)
664       continue;
665     if (Callback(Cur))
666       append_range(WorkList, Cur->materialized_users());
667   }
668 }
669 
670 void Verifier::visitGlobalValue(const GlobalValue &GV) {
671   Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
672         "Global is external, but doesn't have external or weak linkage!", &GV);
673 
674   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
675 
676     if (MaybeAlign A = GO->getAlign()) {
677       Check(A->value() <= Value::MaximumAlignment,
678             "huge alignment values are unsupported", GO);
679     }
680 
681     if (const MDNode *Associated =
682             GO->getMetadata(LLVMContext::MD_associated)) {
683       Check(Associated->getNumOperands() == 1,
684             "associated metadata must have one operand", &GV, Associated);
685       const Metadata *Op = Associated->getOperand(0).get();
686       Check(Op, "associated metadata must have a global value", GO, Associated);
687 
688       const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
689       Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
690       if (VM) {
691         Check(isa<PointerType>(VM->getValue()->getType()),
692               "associated value must be pointer typed", GV, Associated);
693 
694         const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
695         Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
696               "associated metadata must point to a GlobalObject", GO, Stripped);
697         Check(Stripped != GO,
698               "global values should not associate to themselves", GO,
699               Associated);
700       }
701     }
702 
703     // FIXME: Why is getMetadata on GlobalValue protected?
704     if (const MDNode *AbsoluteSymbol =
705             GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
706       verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()),
707                           true);
708     }
709   }
710 
711   Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
712         "Only global variables can have appending linkage!", &GV);
713 
714   if (GV.hasAppendingLinkage()) {
715     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
716     Check(GVar && GVar->getValueType()->isArrayTy(),
717           "Only global arrays can have appending linkage!", GVar);
718   }
719 
720   if (GV.isDeclarationForLinker())
721     Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
722 
723   if (GV.hasDLLExportStorageClass()) {
724     Check(!GV.hasHiddenVisibility(),
725           "dllexport GlobalValue must have default or protected visibility",
726           &GV);
727   }
728   if (GV.hasDLLImportStorageClass()) {
729     Check(GV.hasDefaultVisibility(),
730           "dllimport GlobalValue must have default visibility", &GV);
731     Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
732           &GV);
733 
734     Check((GV.isDeclaration() &&
735            (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
736               GV.hasAvailableExternallyLinkage(),
737           "Global is marked as dllimport, but not external", &GV);
738   }
739 
740   if (GV.isImplicitDSOLocal())
741     Check(GV.isDSOLocal(),
742           "GlobalValue with local linkage or non-default "
743           "visibility must be dso_local!",
744           &GV);
745 
746   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
747     if (const Instruction *I = dyn_cast<Instruction>(V)) {
748       if (!I->getParent() || !I->getParent()->getParent())
749         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
750                     I);
751       else if (I->getParent()->getParent()->getParent() != &M)
752         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
753                     I->getParent()->getParent(),
754                     I->getParent()->getParent()->getParent());
755       return false;
756     } else if (const Function *F = dyn_cast<Function>(V)) {
757       if (F->getParent() != &M)
758         CheckFailed("Global is used by function in a different module", &GV, &M,
759                     F, F->getParent());
760       return false;
761     }
762     return true;
763   });
764 }
765 
766 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
767   if (GV.hasInitializer()) {
768     Check(GV.getInitializer()->getType() == GV.getValueType(),
769           "Global variable initializer type does not match global "
770           "variable type!",
771           &GV);
772     // If the global has common linkage, it must have a zero initializer and
773     // cannot be constant.
774     if (GV.hasCommonLinkage()) {
775       Check(GV.getInitializer()->isNullValue(),
776             "'common' global must have a zero initializer!", &GV);
777       Check(!GV.isConstant(), "'common' global may not be marked constant!",
778             &GV);
779       Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
780     }
781   }
782 
783   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
784                        GV.getName() == "llvm.global_dtors")) {
785     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
786           "invalid linkage for intrinsic global variable", &GV);
787     Check(GV.materialized_use_empty(),
788           "invalid uses of intrinsic global variable", &GV);
789 
790     // Don't worry about emitting an error for it not being an array,
791     // visitGlobalValue will complain on appending non-array.
792     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
793       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
794       PointerType *FuncPtrTy =
795           PointerType::get(Context, DL.getProgramAddressSpace());
796       Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
797                 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
798                 STy->getTypeAtIndex(1) == FuncPtrTy,
799             "wrong type for intrinsic global variable", &GV);
800       Check(STy->getNumElements() == 3,
801             "the third field of the element type is mandatory, "
802             "specify ptr null to migrate from the obsoleted 2-field form");
803       Type *ETy = STy->getTypeAtIndex(2);
804       Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
805             &GV);
806     }
807   }
808 
809   if (GV.hasName() && (GV.getName() == "llvm.used" ||
810                        GV.getName() == "llvm.compiler.used")) {
811     Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
812           "invalid linkage for intrinsic global variable", &GV);
813     Check(GV.materialized_use_empty(),
814           "invalid uses of intrinsic global variable", &GV);
815 
816     Type *GVType = GV.getValueType();
817     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
818       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
819       Check(PTy, "wrong type for intrinsic global variable", &GV);
820       if (GV.hasInitializer()) {
821         const Constant *Init = GV.getInitializer();
822         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
823         Check(InitArray, "wrong initalizer for intrinsic global variable",
824               Init);
825         for (Value *Op : InitArray->operands()) {
826           Value *V = Op->stripPointerCasts();
827           Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
828                     isa<GlobalAlias>(V),
829                 Twine("invalid ") + GV.getName() + " member", V);
830           Check(V->hasName(),
831                 Twine("members of ") + GV.getName() + " must be named", V);
832         }
833       }
834     }
835   }
836 
837   // Visit any debug info attachments.
838   SmallVector<MDNode *, 1> MDs;
839   GV.getMetadata(LLVMContext::MD_dbg, MDs);
840   for (auto *MD : MDs) {
841     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
842       visitDIGlobalVariableExpression(*GVE);
843     else
844       CheckDI(false, "!dbg attachment of global variable must be a "
845                      "DIGlobalVariableExpression");
846   }
847 
848   // Scalable vectors cannot be global variables, since we don't know
849   // the runtime size.
850   Check(!GV.getValueType()->isScalableTy(),
851         "Globals cannot contain scalable types", &GV);
852 
853   // Check if it's a target extension type that disallows being used as a
854   // global.
855   if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
856     Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
857           "Global @" + GV.getName() + " has illegal target extension type",
858           TTy);
859 
860   if (!GV.hasInitializer()) {
861     visitGlobalValue(GV);
862     return;
863   }
864 
865   // Walk any aggregate initializers looking for bitcasts between address spaces
866   visitConstantExprsRecursively(GV.getInitializer());
867 
868   visitGlobalValue(GV);
869 }
870 
871 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
872   SmallPtrSet<const GlobalAlias*, 4> Visited;
873   Visited.insert(&GA);
874   visitAliaseeSubExpr(Visited, GA, C);
875 }
876 
877 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
878                                    const GlobalAlias &GA, const Constant &C) {
879   if (GA.hasAvailableExternallyLinkage()) {
880     Check(isa<GlobalValue>(C) &&
881               cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
882           "available_externally alias must point to available_externally "
883           "global value",
884           &GA);
885   }
886   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
887     if (!GA.hasAvailableExternallyLinkage()) {
888       Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
889             &GA);
890     }
891 
892     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
893       Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
894 
895       Check(!GA2->isInterposable(),
896             "Alias cannot point to an interposable alias", &GA);
897     } else {
898       // Only continue verifying subexpressions of GlobalAliases.
899       // Do not recurse into global initializers.
900       return;
901     }
902   }
903 
904   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
905     visitConstantExprsRecursively(CE);
906 
907   for (const Use &U : C.operands()) {
908     Value *V = &*U;
909     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
910       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
911     else if (const auto *C2 = dyn_cast<Constant>(V))
912       visitAliaseeSubExpr(Visited, GA, *C2);
913   }
914 }
915 
916 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
917   Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
918         "Alias should have private, internal, linkonce, weak, linkonce_odr, "
919         "weak_odr, external, or available_externally linkage!",
920         &GA);
921   const Constant *Aliasee = GA.getAliasee();
922   Check(Aliasee, "Aliasee cannot be NULL!", &GA);
923   Check(GA.getType() == Aliasee->getType(),
924         "Alias and aliasee types should match!", &GA);
925 
926   Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
927         "Aliasee should be either GlobalValue or ConstantExpr", &GA);
928 
929   visitAliaseeSubExpr(GA, *Aliasee);
930 
931   visitGlobalValue(GA);
932 }
933 
934 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
935   Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
936         "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
937         "weak_odr, or external linkage!",
938         &GI);
939   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
940   // is a Function definition.
941   const Function *Resolver = GI.getResolverFunction();
942   Check(Resolver, "IFunc must have a Function resolver", &GI);
943   Check(!Resolver->isDeclarationForLinker(),
944         "IFunc resolver must be a definition", &GI);
945 
946   // Check that the immediate resolver operand (prior to any bitcasts) has the
947   // correct type.
948   const Type *ResolverTy = GI.getResolver()->getType();
949 
950   Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
951         "IFunc resolver must return a pointer", &GI);
952 
953   const Type *ResolverFuncTy =
954       GlobalIFunc::getResolverFunctionType(GI.getValueType());
955   Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
956         "IFunc resolver has incorrect type", &GI);
957 }
958 
959 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
960   // There used to be various other llvm.dbg.* nodes, but we don't support
961   // upgrading them and we want to reserve the namespace for future uses.
962   if (NMD.getName().starts_with("llvm.dbg."))
963     CheckDI(NMD.getName() == "llvm.dbg.cu",
964             "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
965   for (const MDNode *MD : NMD.operands()) {
966     if (NMD.getName() == "llvm.dbg.cu")
967       CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
968 
969     if (!MD)
970       continue;
971 
972     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
973   }
974 }
975 
976 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
977   // Only visit each node once.  Metadata can be mutually recursive, so this
978   // avoids infinite recursion here, as well as being an optimization.
979   if (!MDNodes.insert(&MD).second)
980     return;
981 
982   Check(&MD.getContext() == &Context,
983         "MDNode context does not match Module context!", &MD);
984 
985   switch (MD.getMetadataID()) {
986   default:
987     llvm_unreachable("Invalid MDNode subclass");
988   case Metadata::MDTupleKind:
989     break;
990 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
991   case Metadata::CLASS##Kind:                                                  \
992     visit##CLASS(cast<CLASS>(MD));                                             \
993     break;
994 #include "llvm/IR/Metadata.def"
995   }
996 
997   for (const Metadata *Op : MD.operands()) {
998     if (!Op)
999       continue;
1000     Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1001           &MD, Op);
1002     CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1003             "DILocation not allowed within this metadata node", &MD, Op);
1004     if (auto *N = dyn_cast<MDNode>(Op)) {
1005       visitMDNode(*N, AllowLocs);
1006       continue;
1007     }
1008     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1009       visitValueAsMetadata(*V, nullptr);
1010       continue;
1011     }
1012   }
1013 
1014   // Check these last, so we diagnose problems in operands first.
1015   Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1016   Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1017 }
1018 
1019 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1020   Check(MD.getValue(), "Expected valid value", &MD);
1021   Check(!MD.getValue()->getType()->isMetadataTy(),
1022         "Unexpected metadata round-trip through values", &MD, MD.getValue());
1023 
1024   auto *L = dyn_cast<LocalAsMetadata>(&MD);
1025   if (!L)
1026     return;
1027 
1028   Check(F, "function-local metadata used outside a function", L);
1029 
1030   // If this was an instruction, bb, or argument, verify that it is in the
1031   // function that we expect.
1032   Function *ActualF = nullptr;
1033   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1034     Check(I->getParent(), "function-local metadata not in basic block", L, I);
1035     ActualF = I->getParent()->getParent();
1036   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1037     ActualF = BB->getParent();
1038   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1039     ActualF = A->getParent();
1040   assert(ActualF && "Unimplemented function local metadata case!");
1041 
1042   Check(ActualF == F, "function-local metadata used in wrong function", L);
1043 }
1044 
1045 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1046   for (const ValueAsMetadata *VAM : AL.getArgs())
1047     visitValueAsMetadata(*VAM, F);
1048 }
1049 
1050 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1051   Metadata *MD = MDV.getMetadata();
1052   if (auto *N = dyn_cast<MDNode>(MD)) {
1053     visitMDNode(*N, AreDebugLocsAllowed::No);
1054     return;
1055   }
1056 
1057   // Only visit each node once.  Metadata can be mutually recursive, so this
1058   // avoids infinite recursion here, as well as being an optimization.
1059   if (!MDNodes.insert(MD).second)
1060     return;
1061 
1062   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1063     visitValueAsMetadata(*V, F);
1064 
1065   if (auto *AL = dyn_cast<DIArgList>(MD))
1066     visitDIArgList(*AL, F);
1067 }
1068 
1069 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1070 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1071 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1072 
1073 void Verifier::visitDILocation(const DILocation &N) {
1074   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1075           "location requires a valid scope", &N, N.getRawScope());
1076   if (auto *IA = N.getRawInlinedAt())
1077     CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1078   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1079     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1080 }
1081 
1082 void Verifier::visitGenericDINode(const GenericDINode &N) {
1083   CheckDI(N.getTag(), "invalid tag", &N);
1084 }
1085 
1086 void Verifier::visitDIScope(const DIScope &N) {
1087   if (auto *F = N.getRawFile())
1088     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1089 }
1090 
1091 void Verifier::visitDISubrange(const DISubrange &N) {
1092   CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1093   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1094   CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1095               N.getRawUpperBound(),
1096           "Subrange must contain count or upperBound", &N);
1097   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1098           "Subrange can have any one of count or upperBound", &N);
1099   auto *CBound = N.getRawCountNode();
1100   CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1101               isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1102           "Count must be signed constant or DIVariable or DIExpression", &N);
1103   auto Count = N.getCount();
1104   CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1105               cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1106           "invalid subrange count", &N);
1107   auto *LBound = N.getRawLowerBound();
1108   CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1109               isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1110           "LowerBound must be signed constant or DIVariable or DIExpression",
1111           &N);
1112   auto *UBound = N.getRawUpperBound();
1113   CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1114               isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1115           "UpperBound must be signed constant or DIVariable or DIExpression",
1116           &N);
1117   auto *Stride = N.getRawStride();
1118   CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1119               isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1120           "Stride must be signed constant or DIVariable or DIExpression", &N);
1121 }
1122 
1123 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1124   CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1125   CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1126           "GenericSubrange must contain count or upperBound", &N);
1127   CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1128           "GenericSubrange can have any one of count or upperBound", &N);
1129   auto *CBound = N.getRawCountNode();
1130   CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1131           "Count must be signed constant or DIVariable or DIExpression", &N);
1132   auto *LBound = N.getRawLowerBound();
1133   CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1134   CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1135           "LowerBound must be signed constant or DIVariable or DIExpression",
1136           &N);
1137   auto *UBound = N.getRawUpperBound();
1138   CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1139           "UpperBound must be signed constant or DIVariable or DIExpression",
1140           &N);
1141   auto *Stride = N.getRawStride();
1142   CheckDI(Stride, "GenericSubrange must contain stride", &N);
1143   CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1144           "Stride must be signed constant or DIVariable or DIExpression", &N);
1145 }
1146 
1147 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1148   CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1149 }
1150 
1151 void Verifier::visitDIBasicType(const DIBasicType &N) {
1152   CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1153               N.getTag() == dwarf::DW_TAG_unspecified_type ||
1154               N.getTag() == dwarf::DW_TAG_string_type,
1155           "invalid tag", &N);
1156 }
1157 
1158 void Verifier::visitDIStringType(const DIStringType &N) {
1159   CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1160   CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1161           &N);
1162 }
1163 
1164 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1165   // Common scope checks.
1166   visitDIScope(N);
1167 
1168   CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1169               N.getTag() == dwarf::DW_TAG_pointer_type ||
1170               N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1171               N.getTag() == dwarf::DW_TAG_reference_type ||
1172               N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1173               N.getTag() == dwarf::DW_TAG_const_type ||
1174               N.getTag() == dwarf::DW_TAG_immutable_type ||
1175               N.getTag() == dwarf::DW_TAG_volatile_type ||
1176               N.getTag() == dwarf::DW_TAG_restrict_type ||
1177               N.getTag() == dwarf::DW_TAG_atomic_type ||
1178               N.getTag() == dwarf::DW_TAG_member ||
1179               (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1180               N.getTag() == dwarf::DW_TAG_inheritance ||
1181               N.getTag() == dwarf::DW_TAG_friend ||
1182               N.getTag() == dwarf::DW_TAG_set_type,
1183           "invalid tag", &N);
1184   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1185     CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1186             N.getRawExtraData());
1187   }
1188 
1189   if (N.getTag() == dwarf::DW_TAG_set_type) {
1190     if (auto *T = N.getRawBaseType()) {
1191       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1192       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1193       CheckDI(
1194           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1195               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1196                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1197                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1198                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1199                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1200           "invalid set base type", &N, T);
1201     }
1202   }
1203 
1204   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1205   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1206           N.getRawBaseType());
1207 
1208   if (N.getDWARFAddressSpace()) {
1209     CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1210                 N.getTag() == dwarf::DW_TAG_reference_type ||
1211                 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1212             "DWARF address space only applies to pointer or reference types",
1213             &N);
1214   }
1215 }
1216 
1217 /// Detect mutually exclusive flags.
1218 static bool hasConflictingReferenceFlags(unsigned Flags) {
1219   return ((Flags & DINode::FlagLValueReference) &&
1220           (Flags & DINode::FlagRValueReference)) ||
1221          ((Flags & DINode::FlagTypePassByValue) &&
1222           (Flags & DINode::FlagTypePassByReference));
1223 }
1224 
1225 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1226   auto *Params = dyn_cast<MDTuple>(&RawParams);
1227   CheckDI(Params, "invalid template params", &N, &RawParams);
1228   for (Metadata *Op : Params->operands()) {
1229     CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1230             &N, Params, Op);
1231   }
1232 }
1233 
1234 void Verifier::visitDICompositeType(const DICompositeType &N) {
1235   // Common scope checks.
1236   visitDIScope(N);
1237 
1238   CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1239               N.getTag() == dwarf::DW_TAG_structure_type ||
1240               N.getTag() == dwarf::DW_TAG_union_type ||
1241               N.getTag() == dwarf::DW_TAG_enumeration_type ||
1242               N.getTag() == dwarf::DW_TAG_class_type ||
1243               N.getTag() == dwarf::DW_TAG_variant_part ||
1244               N.getTag() == dwarf::DW_TAG_namelist,
1245           "invalid tag", &N);
1246 
1247   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1248   CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1249           N.getRawBaseType());
1250 
1251   CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1252           "invalid composite elements", &N, N.getRawElements());
1253   CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1254           N.getRawVTableHolder());
1255   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1256           "invalid reference flags", &N);
1257   unsigned DIBlockByRefStruct = 1 << 4;
1258   CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1259           "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1260 
1261   if (N.isVector()) {
1262     const DINodeArray Elements = N.getElements();
1263     CheckDI(Elements.size() == 1 &&
1264                 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1265             "invalid vector, expected one element of type subrange", &N);
1266   }
1267 
1268   if (auto *Params = N.getRawTemplateParams())
1269     visitTemplateParams(N, *Params);
1270 
1271   if (auto *D = N.getRawDiscriminator()) {
1272     CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1273             "discriminator can only appear on variant part");
1274   }
1275 
1276   if (N.getRawDataLocation()) {
1277     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1278             "dataLocation can only appear in array type");
1279   }
1280 
1281   if (N.getRawAssociated()) {
1282     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1283             "associated can only appear in array type");
1284   }
1285 
1286   if (N.getRawAllocated()) {
1287     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1288             "allocated can only appear in array type");
1289   }
1290 
1291   if (N.getRawRank()) {
1292     CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1293             "rank can only appear in array type");
1294   }
1295 
1296   if (N.getTag() == dwarf::DW_TAG_array_type) {
1297     CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1298   }
1299 }
1300 
1301 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1302   CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1303   if (auto *Types = N.getRawTypeArray()) {
1304     CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1305     for (Metadata *Ty : N.getTypeArray()->operands()) {
1306       CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1307     }
1308   }
1309   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1310           "invalid reference flags", &N);
1311 }
1312 
1313 void Verifier::visitDIFile(const DIFile &N) {
1314   CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1315   std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1316   if (Checksum) {
1317     CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1318             "invalid checksum kind", &N);
1319     size_t Size;
1320     switch (Checksum->Kind) {
1321     case DIFile::CSK_MD5:
1322       Size = 32;
1323       break;
1324     case DIFile::CSK_SHA1:
1325       Size = 40;
1326       break;
1327     case DIFile::CSK_SHA256:
1328       Size = 64;
1329       break;
1330     }
1331     CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1332     CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1333             "invalid checksum", &N);
1334   }
1335 }
1336 
1337 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1338   CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1339   CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1340 
1341   // Don't bother verifying the compilation directory or producer string
1342   // as those could be empty.
1343   CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1344           N.getRawFile());
1345   CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1346           N.getFile());
1347 
1348   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1349 
1350   CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1351           "invalid emission kind", &N);
1352 
1353   if (auto *Array = N.getRawEnumTypes()) {
1354     CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1355     for (Metadata *Op : N.getEnumTypes()->operands()) {
1356       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1357       CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1358               "invalid enum type", &N, N.getEnumTypes(), Op);
1359     }
1360   }
1361   if (auto *Array = N.getRawRetainedTypes()) {
1362     CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1363     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1364       CheckDI(
1365           Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1366                                      !cast<DISubprogram>(Op)->isDefinition())),
1367           "invalid retained type", &N, Op);
1368     }
1369   }
1370   if (auto *Array = N.getRawGlobalVariables()) {
1371     CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1372     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1373       CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1374               "invalid global variable ref", &N, Op);
1375     }
1376   }
1377   if (auto *Array = N.getRawImportedEntities()) {
1378     CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1379     for (Metadata *Op : N.getImportedEntities()->operands()) {
1380       CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1381               &N, Op);
1382     }
1383   }
1384   if (auto *Array = N.getRawMacros()) {
1385     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1386     for (Metadata *Op : N.getMacros()->operands()) {
1387       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1388     }
1389   }
1390   CUVisited.insert(&N);
1391 }
1392 
1393 void Verifier::visitDISubprogram(const DISubprogram &N) {
1394   CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1395   CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1396   if (auto *F = N.getRawFile())
1397     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1398   else
1399     CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1400   if (auto *T = N.getRawType())
1401     CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1402   CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1403           N.getRawContainingType());
1404   if (auto *Params = N.getRawTemplateParams())
1405     visitTemplateParams(N, *Params);
1406   if (auto *S = N.getRawDeclaration())
1407     CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1408             "invalid subprogram declaration", &N, S);
1409   if (auto *RawNode = N.getRawRetainedNodes()) {
1410     auto *Node = dyn_cast<MDTuple>(RawNode);
1411     CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1412     for (Metadata *Op : Node->operands()) {
1413       CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1414                      isa<DIImportedEntity>(Op)),
1415               "invalid retained nodes, expected DILocalVariable, DILabel or "
1416               "DIImportedEntity",
1417               &N, Node, Op);
1418     }
1419   }
1420   CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1421           "invalid reference flags", &N);
1422 
1423   auto *Unit = N.getRawUnit();
1424   if (N.isDefinition()) {
1425     // Subprogram definitions (not part of the type hierarchy).
1426     CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1427     CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1428     CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1429     // There's no good way to cross the CU boundary to insert a nested
1430     // DISubprogram definition in one CU into a type defined in another CU.
1431     auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1432     if (CT && CT->getRawIdentifier() &&
1433         M.getContext().isODRUniquingDebugTypes())
1434       CheckDI(N.getDeclaration(),
1435               "definition subprograms cannot be nested within DICompositeType "
1436               "when enabling ODR",
1437               &N);
1438   } else {
1439     // Subprogram declarations (part of the type hierarchy).
1440     CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1441     CheckDI(!N.getRawDeclaration(),
1442             "subprogram declaration must not have a declaration field");
1443   }
1444 
1445   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1446     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1447     CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1448     for (Metadata *Op : ThrownTypes->operands())
1449       CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1450               Op);
1451   }
1452 
1453   if (N.areAllCallsDescribed())
1454     CheckDI(N.isDefinition(),
1455             "DIFlagAllCallsDescribed must be attached to a definition");
1456 }
1457 
1458 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1459   CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1460   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1461           "invalid local scope", &N, N.getRawScope());
1462   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1463     CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1464 }
1465 
1466 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1467   visitDILexicalBlockBase(N);
1468 
1469   CheckDI(N.getLine() || !N.getColumn(),
1470           "cannot have column info without line info", &N);
1471 }
1472 
1473 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1474   visitDILexicalBlockBase(N);
1475 }
1476 
1477 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1478   CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1479   if (auto *S = N.getRawScope())
1480     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1481   if (auto *S = N.getRawDecl())
1482     CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1483 }
1484 
1485 void Verifier::visitDINamespace(const DINamespace &N) {
1486   CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1487   if (auto *S = N.getRawScope())
1488     CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1489 }
1490 
1491 void Verifier::visitDIMacro(const DIMacro &N) {
1492   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1493               N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1494           "invalid macinfo type", &N);
1495   CheckDI(!N.getName().empty(), "anonymous macro", &N);
1496   if (!N.getValue().empty()) {
1497     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1498   }
1499 }
1500 
1501 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1502   CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1503           "invalid macinfo type", &N);
1504   if (auto *F = N.getRawFile())
1505     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1506 
1507   if (auto *Array = N.getRawElements()) {
1508     CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1509     for (Metadata *Op : N.getElements()->operands()) {
1510       CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1511     }
1512   }
1513 }
1514 
1515 void Verifier::visitDIModule(const DIModule &N) {
1516   CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1517   CheckDI(!N.getName().empty(), "anonymous module", &N);
1518 }
1519 
1520 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1521   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1522 }
1523 
1524 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1525   visitDITemplateParameter(N);
1526 
1527   CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1528           &N);
1529 }
1530 
1531 void Verifier::visitDITemplateValueParameter(
1532     const DITemplateValueParameter &N) {
1533   visitDITemplateParameter(N);
1534 
1535   CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1536               N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1537               N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1538           "invalid tag", &N);
1539 }
1540 
1541 void Verifier::visitDIVariable(const DIVariable &N) {
1542   if (auto *S = N.getRawScope())
1543     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1544   if (auto *F = N.getRawFile())
1545     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1546 }
1547 
1548 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1549   // Checks common to all variables.
1550   visitDIVariable(N);
1551 
1552   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1553   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1554   // Check only if the global variable is not an extern
1555   if (N.isDefinition())
1556     CheckDI(N.getType(), "missing global variable type", &N);
1557   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1558     CheckDI(isa<DIDerivedType>(Member),
1559             "invalid static data member declaration", &N, Member);
1560   }
1561 }
1562 
1563 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1564   // Checks common to all variables.
1565   visitDIVariable(N);
1566 
1567   CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1568   CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1569   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1570           "local variable requires a valid scope", &N, N.getRawScope());
1571   if (auto Ty = N.getType())
1572     CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1573 }
1574 
1575 void Verifier::visitDIAssignID(const DIAssignID &N) {
1576   CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1577   CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1578 }
1579 
1580 void Verifier::visitDILabel(const DILabel &N) {
1581   if (auto *S = N.getRawScope())
1582     CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1583   if (auto *F = N.getRawFile())
1584     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1585 
1586   CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1587   CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1588           "label requires a valid scope", &N, N.getRawScope());
1589 }
1590 
1591 void Verifier::visitDIExpression(const DIExpression &N) {
1592   CheckDI(N.isValid(), "invalid expression", &N);
1593 }
1594 
1595 void Verifier::visitDIGlobalVariableExpression(
1596     const DIGlobalVariableExpression &GVE) {
1597   CheckDI(GVE.getVariable(), "missing variable");
1598   if (auto *Var = GVE.getVariable())
1599     visitDIGlobalVariable(*Var);
1600   if (auto *Expr = GVE.getExpression()) {
1601     visitDIExpression(*Expr);
1602     if (auto Fragment = Expr->getFragmentInfo())
1603       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1604   }
1605 }
1606 
1607 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1608   CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1609   if (auto *T = N.getRawType())
1610     CheckDI(isType(T), "invalid type ref", &N, T);
1611   if (auto *F = N.getRawFile())
1612     CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1613 }
1614 
1615 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1616   CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1617               N.getTag() == dwarf::DW_TAG_imported_declaration,
1618           "invalid tag", &N);
1619   if (auto *S = N.getRawScope())
1620     CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1621   CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1622           N.getRawEntity());
1623 }
1624 
1625 void Verifier::visitComdat(const Comdat &C) {
1626   // In COFF the Module is invalid if the GlobalValue has private linkage.
1627   // Entities with private linkage don't have entries in the symbol table.
1628   if (TT.isOSBinFormatCOFF())
1629     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1630       Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1631             GV);
1632 }
1633 
1634 void Verifier::visitModuleIdents() {
1635   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1636   if (!Idents)
1637     return;
1638 
1639   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1640   // Scan each llvm.ident entry and make sure that this requirement is met.
1641   for (const MDNode *N : Idents->operands()) {
1642     Check(N->getNumOperands() == 1,
1643           "incorrect number of operands in llvm.ident metadata", N);
1644     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1645           ("invalid value for llvm.ident metadata entry operand"
1646            "(the operand should be a string)"),
1647           N->getOperand(0));
1648   }
1649 }
1650 
1651 void Verifier::visitModuleCommandLines() {
1652   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1653   if (!CommandLines)
1654     return;
1655 
1656   // llvm.commandline takes a list of metadata entry. Each entry has only one
1657   // string. Scan each llvm.commandline entry and make sure that this
1658   // requirement is met.
1659   for (const MDNode *N : CommandLines->operands()) {
1660     Check(N->getNumOperands() == 1,
1661           "incorrect number of operands in llvm.commandline metadata", N);
1662     Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1663           ("invalid value for llvm.commandline metadata entry operand"
1664            "(the operand should be a string)"),
1665           N->getOperand(0));
1666   }
1667 }
1668 
1669 void Verifier::visitModuleFlags() {
1670   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1671   if (!Flags) return;
1672 
1673   // Scan each flag, and track the flags and requirements.
1674   DenseMap<const MDString*, const MDNode*> SeenIDs;
1675   SmallVector<const MDNode*, 16> Requirements;
1676   for (const MDNode *MDN : Flags->operands())
1677     visitModuleFlag(MDN, SeenIDs, Requirements);
1678 
1679   // Validate that the requirements in the module are valid.
1680   for (const MDNode *Requirement : Requirements) {
1681     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1682     const Metadata *ReqValue = Requirement->getOperand(1);
1683 
1684     const MDNode *Op = SeenIDs.lookup(Flag);
1685     if (!Op) {
1686       CheckFailed("invalid requirement on flag, flag is not present in module",
1687                   Flag);
1688       continue;
1689     }
1690 
1691     if (Op->getOperand(2) != ReqValue) {
1692       CheckFailed(("invalid requirement on flag, "
1693                    "flag does not have the required value"),
1694                   Flag);
1695       continue;
1696     }
1697   }
1698 }
1699 
1700 void
1701 Verifier::visitModuleFlag(const MDNode *Op,
1702                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1703                           SmallVectorImpl<const MDNode *> &Requirements) {
1704   // Each module flag should have three arguments, the merge behavior (a
1705   // constant int), the flag ID (an MDString), and the value.
1706   Check(Op->getNumOperands() == 3,
1707         "incorrect number of operands in module flag", Op);
1708   Module::ModFlagBehavior MFB;
1709   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1710     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1711           "invalid behavior operand in module flag (expected constant integer)",
1712           Op->getOperand(0));
1713     Check(false,
1714           "invalid behavior operand in module flag (unexpected constant)",
1715           Op->getOperand(0));
1716   }
1717   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1718   Check(ID, "invalid ID operand in module flag (expected metadata string)",
1719         Op->getOperand(1));
1720 
1721   // Check the values for behaviors with additional requirements.
1722   switch (MFB) {
1723   case Module::Error:
1724   case Module::Warning:
1725   case Module::Override:
1726     // These behavior types accept any value.
1727     break;
1728 
1729   case Module::Min: {
1730     auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1731     Check(V && V->getValue().isNonNegative(),
1732           "invalid value for 'min' module flag (expected constant non-negative "
1733           "integer)",
1734           Op->getOperand(2));
1735     break;
1736   }
1737 
1738   case Module::Max: {
1739     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1740           "invalid value for 'max' module flag (expected constant integer)",
1741           Op->getOperand(2));
1742     break;
1743   }
1744 
1745   case Module::Require: {
1746     // The value should itself be an MDNode with two operands, a flag ID (an
1747     // MDString), and a value.
1748     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1749     Check(Value && Value->getNumOperands() == 2,
1750           "invalid value for 'require' module flag (expected metadata pair)",
1751           Op->getOperand(2));
1752     Check(isa<MDString>(Value->getOperand(0)),
1753           ("invalid value for 'require' module flag "
1754            "(first value operand should be a string)"),
1755           Value->getOperand(0));
1756 
1757     // Append it to the list of requirements, to check once all module flags are
1758     // scanned.
1759     Requirements.push_back(Value);
1760     break;
1761   }
1762 
1763   case Module::Append:
1764   case Module::AppendUnique: {
1765     // These behavior types require the operand be an MDNode.
1766     Check(isa<MDNode>(Op->getOperand(2)),
1767           "invalid value for 'append'-type module flag "
1768           "(expected a metadata node)",
1769           Op->getOperand(2));
1770     break;
1771   }
1772   }
1773 
1774   // Unless this is a "requires" flag, check the ID is unique.
1775   if (MFB != Module::Require) {
1776     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1777     Check(Inserted,
1778           "module flag identifiers must be unique (or of 'require' type)", ID);
1779   }
1780 
1781   if (ID->getString() == "wchar_size") {
1782     ConstantInt *Value
1783       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1784     Check(Value, "wchar_size metadata requires constant integer argument");
1785   }
1786 
1787   if (ID->getString() == "Linker Options") {
1788     // If the llvm.linker.options named metadata exists, we assume that the
1789     // bitcode reader has upgraded the module flag. Otherwise the flag might
1790     // have been created by a client directly.
1791     Check(M.getNamedMetadata("llvm.linker.options"),
1792           "'Linker Options' named metadata no longer supported");
1793   }
1794 
1795   if (ID->getString() == "SemanticInterposition") {
1796     ConstantInt *Value =
1797         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1798     Check(Value,
1799           "SemanticInterposition metadata requires constant integer argument");
1800   }
1801 
1802   if (ID->getString() == "CG Profile") {
1803     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1804       visitModuleFlagCGProfileEntry(MDO);
1805   }
1806 }
1807 
1808 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1809   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1810     if (!FuncMDO)
1811       return;
1812     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1813     Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1814           "expected a Function or null", FuncMDO);
1815   };
1816   auto Node = dyn_cast_or_null<MDNode>(MDO);
1817   Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1818   CheckFunction(Node->getOperand(0));
1819   CheckFunction(Node->getOperand(1));
1820   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1821   Check(Count && Count->getType()->isIntegerTy(),
1822         "expected an integer constant", Node->getOperand(2));
1823 }
1824 
1825 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1826   for (Attribute A : Attrs) {
1827 
1828     if (A.isStringAttribute()) {
1829 #define GET_ATTR_NAMES
1830 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1831 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1832   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1833     auto V = A.getValueAsString();                                             \
1834     if (!(V.empty() || V == "true" || V == "false"))                           \
1835       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1836                   "");                                                         \
1837   }
1838 
1839 #include "llvm/IR/Attributes.inc"
1840       continue;
1841     }
1842 
1843     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1844       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1845                   V);
1846       return;
1847     }
1848   }
1849 }
1850 
1851 // VerifyParameterAttrs - Check the given attributes for an argument or return
1852 // value of the specified type.  The value V is printed in error messages.
1853 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1854                                     const Value *V) {
1855   if (!Attrs.hasAttributes())
1856     return;
1857 
1858   verifyAttributeTypes(Attrs, V);
1859 
1860   for (Attribute Attr : Attrs)
1861     Check(Attr.isStringAttribute() ||
1862               Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1863           "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1864           V);
1865 
1866   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1867     Check(Attrs.getNumAttributes() == 1,
1868           "Attribute 'immarg' is incompatible with other attributes", V);
1869   }
1870 
1871   // Check for mutually incompatible attributes.  Only inreg is compatible with
1872   // sret.
1873   unsigned AttrCount = 0;
1874   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1875   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1876   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1877   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1878                Attrs.hasAttribute(Attribute::InReg);
1879   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1880   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1881   Check(AttrCount <= 1,
1882         "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1883         "'byref', and 'sret' are incompatible!",
1884         V);
1885 
1886   Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1887           Attrs.hasAttribute(Attribute::ReadOnly)),
1888         "Attributes "
1889         "'inalloca and readonly' are incompatible!",
1890         V);
1891 
1892   Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1893           Attrs.hasAttribute(Attribute::Returned)),
1894         "Attributes "
1895         "'sret and returned' are incompatible!",
1896         V);
1897 
1898   Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1899           Attrs.hasAttribute(Attribute::SExt)),
1900         "Attributes "
1901         "'zeroext and signext' are incompatible!",
1902         V);
1903 
1904   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1905           Attrs.hasAttribute(Attribute::ReadOnly)),
1906         "Attributes "
1907         "'readnone and readonly' are incompatible!",
1908         V);
1909 
1910   Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1911           Attrs.hasAttribute(Attribute::WriteOnly)),
1912         "Attributes "
1913         "'readnone and writeonly' are incompatible!",
1914         V);
1915 
1916   Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1917           Attrs.hasAttribute(Attribute::WriteOnly)),
1918         "Attributes "
1919         "'readonly and writeonly' are incompatible!",
1920         V);
1921 
1922   Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1923           Attrs.hasAttribute(Attribute::AlwaysInline)),
1924         "Attributes "
1925         "'noinline and alwaysinline' are incompatible!",
1926         V);
1927 
1928   Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1929           Attrs.hasAttribute(Attribute::ReadNone)),
1930         "Attributes writable and readnone are incompatible!", V);
1931 
1932   Check(!(Attrs.hasAttribute(Attribute::Writable) &&
1933           Attrs.hasAttribute(Attribute::ReadOnly)),
1934         "Attributes writable and readonly are incompatible!", V);
1935 
1936   AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1937   for (Attribute Attr : Attrs) {
1938     if (!Attr.isStringAttribute() &&
1939         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1940       CheckFailed("Attribute '" + Attr.getAsString() +
1941                   "' applied to incompatible type!", V);
1942       return;
1943     }
1944   }
1945 
1946   if (isa<PointerType>(Ty)) {
1947     if (Attrs.hasAttribute(Attribute::ByVal)) {
1948       if (Attrs.hasAttribute(Attribute::Alignment)) {
1949         Align AttrAlign = Attrs.getAlignment().valueOrOne();
1950         Align MaxAlign(ParamMaxAlignment);
1951         Check(AttrAlign <= MaxAlign,
1952               "Attribute 'align' exceed the max size 2^14", V);
1953       }
1954       SmallPtrSet<Type *, 4> Visited;
1955       Check(Attrs.getByValType()->isSized(&Visited),
1956             "Attribute 'byval' does not support unsized types!", V);
1957     }
1958     if (Attrs.hasAttribute(Attribute::ByRef)) {
1959       SmallPtrSet<Type *, 4> Visited;
1960       Check(Attrs.getByRefType()->isSized(&Visited),
1961             "Attribute 'byref' does not support unsized types!", V);
1962     }
1963     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1964       SmallPtrSet<Type *, 4> Visited;
1965       Check(Attrs.getInAllocaType()->isSized(&Visited),
1966             "Attribute 'inalloca' does not support unsized types!", V);
1967     }
1968     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1969       SmallPtrSet<Type *, 4> Visited;
1970       Check(Attrs.getPreallocatedType()->isSized(&Visited),
1971             "Attribute 'preallocated' does not support unsized types!", V);
1972     }
1973   }
1974 
1975   if (Attrs.hasAttribute(Attribute::NoFPClass)) {
1976     uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
1977     Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
1978           V);
1979     Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
1980           "Invalid value for 'nofpclass' test mask", V);
1981   }
1982 }
1983 
1984 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1985                                             const Value *V) {
1986   if (Attrs.hasFnAttr(Attr)) {
1987     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1988     unsigned N;
1989     if (S.getAsInteger(10, N))
1990       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1991   }
1992 }
1993 
1994 // Check parameter attributes against a function type.
1995 // The value V is printed in error messages.
1996 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1997                                    const Value *V, bool IsIntrinsic,
1998                                    bool IsInlineAsm) {
1999   if (Attrs.isEmpty())
2000     return;
2001 
2002   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
2003     Check(Attrs.hasParentContext(Context),
2004           "Attribute list does not match Module context!", &Attrs, V);
2005     for (const auto &AttrSet : Attrs) {
2006       Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2007             "Attribute set does not match Module context!", &AttrSet, V);
2008       for (const auto &A : AttrSet) {
2009         Check(A.hasParentContext(Context),
2010               "Attribute does not match Module context!", &A, V);
2011       }
2012     }
2013   }
2014 
2015   bool SawNest = false;
2016   bool SawReturned = false;
2017   bool SawSRet = false;
2018   bool SawSwiftSelf = false;
2019   bool SawSwiftAsync = false;
2020   bool SawSwiftError = false;
2021 
2022   // Verify return value attributes.
2023   AttributeSet RetAttrs = Attrs.getRetAttrs();
2024   for (Attribute RetAttr : RetAttrs)
2025     Check(RetAttr.isStringAttribute() ||
2026               Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2027           "Attribute '" + RetAttr.getAsString() +
2028               "' does not apply to function return values",
2029           V);
2030 
2031   unsigned MaxParameterWidth = 0;
2032   auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2033     if (Ty->isVectorTy()) {
2034       if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2035         unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2036         if (Size > MaxParameterWidth)
2037           MaxParameterWidth = Size;
2038       }
2039     }
2040   };
2041   GetMaxParameterWidth(FT->getReturnType());
2042   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2043 
2044   // Verify parameter attributes.
2045   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2046     Type *Ty = FT->getParamType(i);
2047     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2048 
2049     if (!IsIntrinsic) {
2050       Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2051             "immarg attribute only applies to intrinsics", V);
2052       if (!IsInlineAsm)
2053         Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2054               "Attribute 'elementtype' can only be applied to intrinsics"
2055               " and inline asm.",
2056               V);
2057     }
2058 
2059     verifyParameterAttrs(ArgAttrs, Ty, V);
2060     GetMaxParameterWidth(Ty);
2061 
2062     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2063       Check(!SawNest, "More than one parameter has attribute nest!", V);
2064       SawNest = true;
2065     }
2066 
2067     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2068       Check(!SawReturned, "More than one parameter has attribute returned!", V);
2069       Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2070             "Incompatible argument and return types for 'returned' attribute",
2071             V);
2072       SawReturned = true;
2073     }
2074 
2075     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2076       Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2077       Check(i == 0 || i == 1,
2078             "Attribute 'sret' is not on first or second parameter!", V);
2079       SawSRet = true;
2080     }
2081 
2082     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2083       Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2084       SawSwiftSelf = true;
2085     }
2086 
2087     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2088       Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2089       SawSwiftAsync = true;
2090     }
2091 
2092     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2093       Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2094       SawSwiftError = true;
2095     }
2096 
2097     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2098       Check(i == FT->getNumParams() - 1,
2099             "inalloca isn't on the last parameter!", V);
2100     }
2101   }
2102 
2103   if (!Attrs.hasFnAttrs())
2104     return;
2105 
2106   verifyAttributeTypes(Attrs.getFnAttrs(), V);
2107   for (Attribute FnAttr : Attrs.getFnAttrs())
2108     Check(FnAttr.isStringAttribute() ||
2109               Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2110           "Attribute '" + FnAttr.getAsString() +
2111               "' does not apply to functions!",
2112           V);
2113 
2114   Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2115           Attrs.hasFnAttr(Attribute::AlwaysInline)),
2116         "Attributes 'noinline and alwaysinline' are incompatible!", V);
2117 
2118   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2119     Check(Attrs.hasFnAttr(Attribute::NoInline),
2120           "Attribute 'optnone' requires 'noinline'!", V);
2121 
2122     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2123           "Attributes 'optsize and optnone' are incompatible!", V);
2124 
2125     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2126           "Attributes 'minsize and optnone' are incompatible!", V);
2127 
2128     Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2129           "Attributes 'optdebug and optnone' are incompatible!", V);
2130   }
2131 
2132   if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2133     Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2134           "Attributes 'optsize and optdebug' are incompatible!", V);
2135 
2136     Check(!Attrs.hasFnAttr(Attribute::MinSize),
2137           "Attributes 'minsize and optdebug' are incompatible!", V);
2138   }
2139 
2140   Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2141         isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2142         "Attribute writable and memory without argmem: write are incompatible!",
2143         V);
2144 
2145   if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2146     Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2147            "Attributes 'aarch64_pstate_sm_enabled and "
2148            "aarch64_pstate_sm_compatible' are incompatible!",
2149            V);
2150   }
2151 
2152   if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
2153     Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
2154            "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
2155            "are incompatible!",
2156            V);
2157 
2158     Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
2159            "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
2160            "are incompatible!",
2161            V);
2162   }
2163 
2164   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2165     const GlobalValue *GV = cast<GlobalValue>(V);
2166     Check(GV->hasGlobalUnnamedAddr(),
2167           "Attribute 'jumptable' requires 'unnamed_addr'", V);
2168   }
2169 
2170   if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2171     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2172       if (ParamNo >= FT->getNumParams()) {
2173         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2174         return false;
2175       }
2176 
2177       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2178         CheckFailed("'allocsize' " + Name +
2179                         " argument must refer to an integer parameter",
2180                     V);
2181         return false;
2182       }
2183 
2184       return true;
2185     };
2186 
2187     if (!CheckParam("element size", Args->first))
2188       return;
2189 
2190     if (Args->second && !CheckParam("number of elements", *Args->second))
2191       return;
2192   }
2193 
2194   if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2195     AllocFnKind K = Attrs.getAllocKind();
2196     AllocFnKind Type =
2197         K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2198     if (!is_contained(
2199             {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2200             Type))
2201       CheckFailed(
2202           "'allockind()' requires exactly one of alloc, realloc, and free");
2203     if ((Type == AllocFnKind::Free) &&
2204         ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2205                AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2206       CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2207                   "or aligned modifiers.");
2208     AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2209     if ((K & ZeroedUninit) == ZeroedUninit)
2210       CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2211   }
2212 
2213   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2214     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2215     if (VScaleMin == 0)
2216       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2217     else if (!isPowerOf2_32(VScaleMin))
2218       CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2219     std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2220     if (VScaleMax && VScaleMin > VScaleMax)
2221       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2222     else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2223       CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2224   }
2225 
2226   if (Attrs.hasFnAttr("frame-pointer")) {
2227     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2228     if (FP != "all" && FP != "non-leaf" && FP != "none")
2229       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2230   }
2231 
2232   // Check EVEX512 feature.
2233   if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") &&
2234       TT.isX86()) {
2235     StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2236     Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2237           "512-bit vector arguments require 'evex512' for AVX512", V);
2238   }
2239 
2240   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2241   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2242   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2243 
2244   if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) {
2245     StringRef S = A.getValueAsString();
2246     if (S != "none" && S != "all" && S != "non-leaf")
2247       CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V);
2248   }
2249 
2250   if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) {
2251     StringRef S = A.getValueAsString();
2252     if (S != "a_key" && S != "b_key")
2253       CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S,
2254                   V);
2255   }
2256 
2257   if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) {
2258     StringRef S = A.getValueAsString();
2259     if (S != "true" && S != "false")
2260       CheckFailed(
2261           "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2262   }
2263 }
2264 
2265 void Verifier::verifyFunctionMetadata(
2266     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2267   for (const auto &Pair : MDs) {
2268     if (Pair.first == LLVMContext::MD_prof) {
2269       MDNode *MD = Pair.second;
2270       Check(MD->getNumOperands() >= 2,
2271             "!prof annotations should have no less than 2 operands", MD);
2272 
2273       // Check first operand.
2274       Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2275             MD);
2276       Check(isa<MDString>(MD->getOperand(0)),
2277             "expected string with name of the !prof annotation", MD);
2278       MDString *MDS = cast<MDString>(MD->getOperand(0));
2279       StringRef ProfName = MDS->getString();
2280       Check(ProfName.equals("function_entry_count") ||
2281                 ProfName.equals("synthetic_function_entry_count"),
2282             "first operand should be 'function_entry_count'"
2283             " or 'synthetic_function_entry_count'",
2284             MD);
2285 
2286       // Check second operand.
2287       Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2288             MD);
2289       Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2290             "expected integer argument to function_entry_count", MD);
2291     } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2292       MDNode *MD = Pair.second;
2293       Check(MD->getNumOperands() == 1,
2294             "!kcfi_type must have exactly one operand", MD);
2295       Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2296             MD);
2297       Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2298             "expected a constant operand for !kcfi_type", MD);
2299       Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2300       Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2301             "expected a constant integer operand for !kcfi_type", MD);
2302       Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2303             "expected a 32-bit integer constant operand for !kcfi_type", MD);
2304     }
2305   }
2306 }
2307 
2308 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2309   if (!ConstantExprVisited.insert(EntryC).second)
2310     return;
2311 
2312   SmallVector<const Constant *, 16> Stack;
2313   Stack.push_back(EntryC);
2314 
2315   while (!Stack.empty()) {
2316     const Constant *C = Stack.pop_back_val();
2317 
2318     // Check this constant expression.
2319     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2320       visitConstantExpr(CE);
2321 
2322     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2323       // Global Values get visited separately, but we do need to make sure
2324       // that the global value is in the correct module
2325       Check(GV->getParent() == &M, "Referencing global in another module!",
2326             EntryC, &M, GV, GV->getParent());
2327       continue;
2328     }
2329 
2330     // Visit all sub-expressions.
2331     for (const Use &U : C->operands()) {
2332       const auto *OpC = dyn_cast<Constant>(U);
2333       if (!OpC)
2334         continue;
2335       if (!ConstantExprVisited.insert(OpC).second)
2336         continue;
2337       Stack.push_back(OpC);
2338     }
2339   }
2340 }
2341 
2342 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2343   if (CE->getOpcode() == Instruction::BitCast)
2344     Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2345                                 CE->getType()),
2346           "Invalid bitcast", CE);
2347 }
2348 
2349 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2350   // There shouldn't be more attribute sets than there are parameters plus the
2351   // function and return value.
2352   return Attrs.getNumAttrSets() <= Params + 2;
2353 }
2354 
2355 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2356   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2357   unsigned ArgNo = 0;
2358   unsigned LabelNo = 0;
2359   for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2360     if (CI.Type == InlineAsm::isLabel) {
2361       ++LabelNo;
2362       continue;
2363     }
2364 
2365     // Only deal with constraints that correspond to call arguments.
2366     if (!CI.hasArg())
2367       continue;
2368 
2369     if (CI.isIndirect) {
2370       const Value *Arg = Call.getArgOperand(ArgNo);
2371       Check(Arg->getType()->isPointerTy(),
2372             "Operand for indirect constraint must have pointer type", &Call);
2373 
2374       Check(Call.getParamElementType(ArgNo),
2375             "Operand for indirect constraint must have elementtype attribute",
2376             &Call);
2377     } else {
2378       Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2379             "Elementtype attribute can only be applied for indirect "
2380             "constraints",
2381             &Call);
2382     }
2383 
2384     ArgNo++;
2385   }
2386 
2387   if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2388     Check(LabelNo == CallBr->getNumIndirectDests(),
2389           "Number of label constraints does not match number of callbr dests",
2390           &Call);
2391   } else {
2392     Check(LabelNo == 0, "Label constraints can only be used with callbr",
2393           &Call);
2394   }
2395 }
2396 
2397 /// Verify that statepoint intrinsic is well formed.
2398 void Verifier::verifyStatepoint(const CallBase &Call) {
2399   assert(Call.getCalledFunction() &&
2400          Call.getCalledFunction()->getIntrinsicID() ==
2401              Intrinsic::experimental_gc_statepoint);
2402 
2403   Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2404             !Call.onlyAccessesArgMemory(),
2405         "gc.statepoint must read and write all memory to preserve "
2406         "reordering restrictions required by safepoint semantics",
2407         Call);
2408 
2409   const int64_t NumPatchBytes =
2410       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2411   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2412   Check(NumPatchBytes >= 0,
2413         "gc.statepoint number of patchable bytes must be "
2414         "positive",
2415         Call);
2416 
2417   Type *TargetElemType = Call.getParamElementType(2);
2418   Check(TargetElemType,
2419         "gc.statepoint callee argument must have elementtype attribute", Call);
2420   FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2421   Check(TargetFuncType,
2422         "gc.statepoint callee elementtype must be function type", Call);
2423 
2424   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2425   Check(NumCallArgs >= 0,
2426         "gc.statepoint number of arguments to underlying call "
2427         "must be positive",
2428         Call);
2429   const int NumParams = (int)TargetFuncType->getNumParams();
2430   if (TargetFuncType->isVarArg()) {
2431     Check(NumCallArgs >= NumParams,
2432           "gc.statepoint mismatch in number of vararg call args", Call);
2433 
2434     // TODO: Remove this limitation
2435     Check(TargetFuncType->getReturnType()->isVoidTy(),
2436           "gc.statepoint doesn't support wrapping non-void "
2437           "vararg functions yet",
2438           Call);
2439   } else
2440     Check(NumCallArgs == NumParams,
2441           "gc.statepoint mismatch in number of call args", Call);
2442 
2443   const uint64_t Flags
2444     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2445   Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2446         "unknown flag used in gc.statepoint flags argument", Call);
2447 
2448   // Verify that the types of the call parameter arguments match
2449   // the type of the wrapped callee.
2450   AttributeList Attrs = Call.getAttributes();
2451   for (int i = 0; i < NumParams; i++) {
2452     Type *ParamType = TargetFuncType->getParamType(i);
2453     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2454     Check(ArgType == ParamType,
2455           "gc.statepoint call argument does not match wrapped "
2456           "function type",
2457           Call);
2458 
2459     if (TargetFuncType->isVarArg()) {
2460       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2461       Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2462             "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2463     }
2464   }
2465 
2466   const int EndCallArgsInx = 4 + NumCallArgs;
2467 
2468   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2469   Check(isa<ConstantInt>(NumTransitionArgsV),
2470         "gc.statepoint number of transition arguments "
2471         "must be constant integer",
2472         Call);
2473   const int NumTransitionArgs =
2474       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2475   Check(NumTransitionArgs == 0,
2476         "gc.statepoint w/inline transition bundle is deprecated", Call);
2477   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2478 
2479   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2480   Check(isa<ConstantInt>(NumDeoptArgsV),
2481         "gc.statepoint number of deoptimization arguments "
2482         "must be constant integer",
2483         Call);
2484   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2485   Check(NumDeoptArgs == 0,
2486         "gc.statepoint w/inline deopt operands is deprecated", Call);
2487 
2488   const int ExpectedNumArgs = 7 + NumCallArgs;
2489   Check(ExpectedNumArgs == (int)Call.arg_size(),
2490         "gc.statepoint too many arguments", Call);
2491 
2492   // Check that the only uses of this gc.statepoint are gc.result or
2493   // gc.relocate calls which are tied to this statepoint and thus part
2494   // of the same statepoint sequence
2495   for (const User *U : Call.users()) {
2496     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2497     Check(UserCall, "illegal use of statepoint token", Call, U);
2498     if (!UserCall)
2499       continue;
2500     Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2501           "gc.result or gc.relocate are the only value uses "
2502           "of a gc.statepoint",
2503           Call, U);
2504     if (isa<GCResultInst>(UserCall)) {
2505       Check(UserCall->getArgOperand(0) == &Call,
2506             "gc.result connected to wrong gc.statepoint", Call, UserCall);
2507     } else if (isa<GCRelocateInst>(Call)) {
2508       Check(UserCall->getArgOperand(0) == &Call,
2509             "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2510     }
2511   }
2512 
2513   // Note: It is legal for a single derived pointer to be listed multiple
2514   // times.  It's non-optimal, but it is legal.  It can also happen after
2515   // insertion if we strip a bitcast away.
2516   // Note: It is really tempting to check that each base is relocated and
2517   // that a derived pointer is never reused as a base pointer.  This turns
2518   // out to be problematic since optimizations run after safepoint insertion
2519   // can recognize equality properties that the insertion logic doesn't know
2520   // about.  See example statepoint.ll in the verifier subdirectory
2521 }
2522 
2523 void Verifier::verifyFrameRecoverIndices() {
2524   for (auto &Counts : FrameEscapeInfo) {
2525     Function *F = Counts.first;
2526     unsigned EscapedObjectCount = Counts.second.first;
2527     unsigned MaxRecoveredIndex = Counts.second.second;
2528     Check(MaxRecoveredIndex <= EscapedObjectCount,
2529           "all indices passed to llvm.localrecover must be less than the "
2530           "number of arguments passed to llvm.localescape in the parent "
2531           "function",
2532           F);
2533   }
2534 }
2535 
2536 static Instruction *getSuccPad(Instruction *Terminator) {
2537   BasicBlock *UnwindDest;
2538   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2539     UnwindDest = II->getUnwindDest();
2540   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2541     UnwindDest = CSI->getUnwindDest();
2542   else
2543     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2544   return UnwindDest->getFirstNonPHI();
2545 }
2546 
2547 void Verifier::verifySiblingFuncletUnwinds() {
2548   SmallPtrSet<Instruction *, 8> Visited;
2549   SmallPtrSet<Instruction *, 8> Active;
2550   for (const auto &Pair : SiblingFuncletInfo) {
2551     Instruction *PredPad = Pair.first;
2552     if (Visited.count(PredPad))
2553       continue;
2554     Active.insert(PredPad);
2555     Instruction *Terminator = Pair.second;
2556     do {
2557       Instruction *SuccPad = getSuccPad(Terminator);
2558       if (Active.count(SuccPad)) {
2559         // Found a cycle; report error
2560         Instruction *CyclePad = SuccPad;
2561         SmallVector<Instruction *, 8> CycleNodes;
2562         do {
2563           CycleNodes.push_back(CyclePad);
2564           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2565           if (CycleTerminator != CyclePad)
2566             CycleNodes.push_back(CycleTerminator);
2567           CyclePad = getSuccPad(CycleTerminator);
2568         } while (CyclePad != SuccPad);
2569         Check(false, "EH pads can't handle each other's exceptions",
2570               ArrayRef<Instruction *>(CycleNodes));
2571       }
2572       // Don't re-walk a node we've already checked
2573       if (!Visited.insert(SuccPad).second)
2574         break;
2575       // Walk to this successor if it has a map entry.
2576       PredPad = SuccPad;
2577       auto TermI = SiblingFuncletInfo.find(PredPad);
2578       if (TermI == SiblingFuncletInfo.end())
2579         break;
2580       Terminator = TermI->second;
2581       Active.insert(PredPad);
2582     } while (true);
2583     // Each node only has one successor, so we've walked all the active
2584     // nodes' successors.
2585     Active.clear();
2586   }
2587 }
2588 
2589 // visitFunction - Verify that a function is ok.
2590 //
2591 void Verifier::visitFunction(const Function &F) {
2592   visitGlobalValue(F);
2593 
2594   // Check function arguments.
2595   FunctionType *FT = F.getFunctionType();
2596   unsigned NumArgs = F.arg_size();
2597 
2598   Check(&Context == &F.getContext(),
2599         "Function context does not match Module context!", &F);
2600 
2601   Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2602   Check(FT->getNumParams() == NumArgs,
2603         "# formal arguments must match # of arguments for function type!", &F,
2604         FT);
2605   Check(F.getReturnType()->isFirstClassType() ||
2606             F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2607         "Functions cannot return aggregate values!", &F);
2608 
2609   Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2610         "Invalid struct return type!", &F);
2611 
2612   AttributeList Attrs = F.getAttributes();
2613 
2614   Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2615         "Attribute after last parameter!", &F);
2616 
2617   bool IsIntrinsic = F.isIntrinsic();
2618 
2619   // Check function attributes.
2620   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2621 
2622   // On function declarations/definitions, we do not support the builtin
2623   // attribute. We do not check this in VerifyFunctionAttrs since that is
2624   // checking for Attributes that can/can not ever be on functions.
2625   Check(!Attrs.hasFnAttr(Attribute::Builtin),
2626         "Attribute 'builtin' can only be applied to a callsite.", &F);
2627 
2628   Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2629         "Attribute 'elementtype' can only be applied to a callsite.", &F);
2630 
2631   // Check that this function meets the restrictions on this calling convention.
2632   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2633   // restrictions can be lifted.
2634   switch (F.getCallingConv()) {
2635   default:
2636   case CallingConv::C:
2637     break;
2638   case CallingConv::X86_INTR: {
2639     Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2640           "Calling convention parameter requires byval", &F);
2641     break;
2642   }
2643   case CallingConv::AMDGPU_KERNEL:
2644   case CallingConv::SPIR_KERNEL:
2645   case CallingConv::AMDGPU_CS_Chain:
2646   case CallingConv::AMDGPU_CS_ChainPreserve:
2647     Check(F.getReturnType()->isVoidTy(),
2648           "Calling convention requires void return type", &F);
2649     [[fallthrough]];
2650   case CallingConv::AMDGPU_VS:
2651   case CallingConv::AMDGPU_HS:
2652   case CallingConv::AMDGPU_GS:
2653   case CallingConv::AMDGPU_PS:
2654   case CallingConv::AMDGPU_CS:
2655     Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2656     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2657       const unsigned StackAS = DL.getAllocaAddrSpace();
2658       unsigned i = 0;
2659       for (const Argument &Arg : F.args()) {
2660         Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2661               "Calling convention disallows byval", &F);
2662         Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2663               "Calling convention disallows preallocated", &F);
2664         Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2665               "Calling convention disallows inalloca", &F);
2666 
2667         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2668           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2669           // value here.
2670           Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2671                 "Calling convention disallows stack byref", &F);
2672         }
2673 
2674         ++i;
2675       }
2676     }
2677 
2678     [[fallthrough]];
2679   case CallingConv::Fast:
2680   case CallingConv::Cold:
2681   case CallingConv::Intel_OCL_BI:
2682   case CallingConv::PTX_Kernel:
2683   case CallingConv::PTX_Device:
2684     Check(!F.isVarArg(),
2685           "Calling convention does not support varargs or "
2686           "perfect forwarding!",
2687           &F);
2688     break;
2689   }
2690 
2691   // Check that the argument values match the function type for this function...
2692   unsigned i = 0;
2693   for (const Argument &Arg : F.args()) {
2694     Check(Arg.getType() == FT->getParamType(i),
2695           "Argument value does not match function argument type!", &Arg,
2696           FT->getParamType(i));
2697     Check(Arg.getType()->isFirstClassType(),
2698           "Function arguments must have first-class types!", &Arg);
2699     if (!IsIntrinsic) {
2700       Check(!Arg.getType()->isMetadataTy(),
2701             "Function takes metadata but isn't an intrinsic", &Arg, &F);
2702       Check(!Arg.getType()->isTokenTy(),
2703             "Function takes token but isn't an intrinsic", &Arg, &F);
2704       Check(!Arg.getType()->isX86_AMXTy(),
2705             "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2706     }
2707 
2708     // Check that swifterror argument is only used by loads and stores.
2709     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2710       verifySwiftErrorValue(&Arg);
2711     }
2712     ++i;
2713   }
2714 
2715   if (!IsIntrinsic) {
2716     Check(!F.getReturnType()->isTokenTy(),
2717           "Function returns a token but isn't an intrinsic", &F);
2718     Check(!F.getReturnType()->isX86_AMXTy(),
2719           "Function returns a x86_amx but isn't an intrinsic", &F);
2720   }
2721 
2722   // Get the function metadata attachments.
2723   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2724   F.getAllMetadata(MDs);
2725   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2726   verifyFunctionMetadata(MDs);
2727 
2728   // Check validity of the personality function
2729   if (F.hasPersonalityFn()) {
2730     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2731     if (Per)
2732       Check(Per->getParent() == F.getParent(),
2733             "Referencing personality function in another module!", &F,
2734             F.getParent(), Per, Per->getParent());
2735   }
2736 
2737   // EH funclet coloring can be expensive, recompute on-demand
2738   BlockEHFuncletColors.clear();
2739 
2740   if (F.isMaterializable()) {
2741     // Function has a body somewhere we can't see.
2742     Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2743           MDs.empty() ? nullptr : MDs.front().second);
2744   } else if (F.isDeclaration()) {
2745     for (const auto &I : MDs) {
2746       // This is used for call site debug information.
2747       CheckDI(I.first != LLVMContext::MD_dbg ||
2748                   !cast<DISubprogram>(I.second)->isDistinct(),
2749               "function declaration may only have a unique !dbg attachment",
2750               &F);
2751       Check(I.first != LLVMContext::MD_prof,
2752             "function declaration may not have a !prof attachment", &F);
2753 
2754       // Verify the metadata itself.
2755       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2756     }
2757     Check(!F.hasPersonalityFn(),
2758           "Function declaration shouldn't have a personality routine", &F);
2759   } else {
2760     // Verify that this function (which has a body) is not named "llvm.*".  It
2761     // is not legal to define intrinsics.
2762     Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2763 
2764     // Check the entry node
2765     const BasicBlock *Entry = &F.getEntryBlock();
2766     Check(pred_empty(Entry),
2767           "Entry block to function must not have predecessors!", Entry);
2768 
2769     // The address of the entry block cannot be taken, unless it is dead.
2770     if (Entry->hasAddressTaken()) {
2771       Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2772             "blockaddress may not be used with the entry block!", Entry);
2773     }
2774 
2775     unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2776              NumKCFIAttachments = 0;
2777     // Visit metadata attachments.
2778     for (const auto &I : MDs) {
2779       // Verify that the attachment is legal.
2780       auto AllowLocs = AreDebugLocsAllowed::No;
2781       switch (I.first) {
2782       default:
2783         break;
2784       case LLVMContext::MD_dbg: {
2785         ++NumDebugAttachments;
2786         CheckDI(NumDebugAttachments == 1,
2787                 "function must have a single !dbg attachment", &F, I.second);
2788         CheckDI(isa<DISubprogram>(I.second),
2789                 "function !dbg attachment must be a subprogram", &F, I.second);
2790         CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2791                 "function definition may only have a distinct !dbg attachment",
2792                 &F);
2793 
2794         auto *SP = cast<DISubprogram>(I.second);
2795         const Function *&AttachedTo = DISubprogramAttachments[SP];
2796         CheckDI(!AttachedTo || AttachedTo == &F,
2797                 "DISubprogram attached to more than one function", SP, &F);
2798         AttachedTo = &F;
2799         AllowLocs = AreDebugLocsAllowed::Yes;
2800         break;
2801       }
2802       case LLVMContext::MD_prof:
2803         ++NumProfAttachments;
2804         Check(NumProfAttachments == 1,
2805               "function must have a single !prof attachment", &F, I.second);
2806         break;
2807       case LLVMContext::MD_kcfi_type:
2808         ++NumKCFIAttachments;
2809         Check(NumKCFIAttachments == 1,
2810               "function must have a single !kcfi_type attachment", &F,
2811               I.second);
2812         break;
2813       }
2814 
2815       // Verify the metadata itself.
2816       visitMDNode(*I.second, AllowLocs);
2817     }
2818   }
2819 
2820   // If this function is actually an intrinsic, verify that it is only used in
2821   // direct call/invokes, never having its "address taken".
2822   // Only do this if the module is materialized, otherwise we don't have all the
2823   // uses.
2824   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2825     const User *U;
2826     if (F.hasAddressTaken(&U, false, true, false,
2827                           /*IgnoreARCAttachedCall=*/true))
2828       Check(false, "Invalid user of intrinsic instruction!", U);
2829   }
2830 
2831   // Check intrinsics' signatures.
2832   switch (F.getIntrinsicID()) {
2833   case Intrinsic::experimental_gc_get_pointer_base: {
2834     FunctionType *FT = F.getFunctionType();
2835     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2836     Check(isa<PointerType>(F.getReturnType()),
2837           "gc.get.pointer.base must return a pointer", F);
2838     Check(FT->getParamType(0) == F.getReturnType(),
2839           "gc.get.pointer.base operand and result must be of the same type", F);
2840     break;
2841   }
2842   case Intrinsic::experimental_gc_get_pointer_offset: {
2843     FunctionType *FT = F.getFunctionType();
2844     Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2845     Check(isa<PointerType>(FT->getParamType(0)),
2846           "gc.get.pointer.offset operand must be a pointer", F);
2847     Check(F.getReturnType()->isIntegerTy(),
2848           "gc.get.pointer.offset must return integer", F);
2849     break;
2850   }
2851   }
2852 
2853   auto *N = F.getSubprogram();
2854   HasDebugInfo = (N != nullptr);
2855   if (!HasDebugInfo)
2856     return;
2857 
2858   // Check that all !dbg attachments lead to back to N.
2859   //
2860   // FIXME: Check this incrementally while visiting !dbg attachments.
2861   // FIXME: Only check when N is the canonical subprogram for F.
2862   SmallPtrSet<const MDNode *, 32> Seen;
2863   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2864     // Be careful about using DILocation here since we might be dealing with
2865     // broken code (this is the Verifier after all).
2866     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2867     if (!DL)
2868       return;
2869     if (!Seen.insert(DL).second)
2870       return;
2871 
2872     Metadata *Parent = DL->getRawScope();
2873     CheckDI(Parent && isa<DILocalScope>(Parent),
2874             "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2875 
2876     DILocalScope *Scope = DL->getInlinedAtScope();
2877     Check(Scope, "Failed to find DILocalScope", DL);
2878 
2879     if (!Seen.insert(Scope).second)
2880       return;
2881 
2882     DISubprogram *SP = Scope->getSubprogram();
2883 
2884     // Scope and SP could be the same MDNode and we don't want to skip
2885     // validation in that case
2886     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2887       return;
2888 
2889     CheckDI(SP->describes(&F),
2890             "!dbg attachment points at wrong subprogram for function", N, &F,
2891             &I, DL, Scope, SP);
2892   };
2893   for (auto &BB : F)
2894     for (auto &I : BB) {
2895       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2896       // The llvm.loop annotations also contain two DILocations.
2897       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2898         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2899           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2900       if (BrokenDebugInfo)
2901         return;
2902     }
2903 }
2904 
2905 // verifyBasicBlock - Verify that a basic block is well formed...
2906 //
2907 void Verifier::visitBasicBlock(BasicBlock &BB) {
2908   InstsInThisBlock.clear();
2909   ConvergenceVerifyHelper.visit(BB);
2910 
2911   // Ensure that basic blocks have terminators!
2912   Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2913 
2914   // Check constraints that this basic block imposes on all of the PHI nodes in
2915   // it.
2916   if (isa<PHINode>(BB.front())) {
2917     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2918     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2919     llvm::sort(Preds);
2920     for (const PHINode &PN : BB.phis()) {
2921       Check(PN.getNumIncomingValues() == Preds.size(),
2922             "PHINode should have one entry for each predecessor of its "
2923             "parent basic block!",
2924             &PN);
2925 
2926       // Get and sort all incoming values in the PHI node...
2927       Values.clear();
2928       Values.reserve(PN.getNumIncomingValues());
2929       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2930         Values.push_back(
2931             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2932       llvm::sort(Values);
2933 
2934       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2935         // Check to make sure that if there is more than one entry for a
2936         // particular basic block in this PHI node, that the incoming values are
2937         // all identical.
2938         //
2939         Check(i == 0 || Values[i].first != Values[i - 1].first ||
2940                   Values[i].second == Values[i - 1].second,
2941               "PHI node has multiple entries for the same basic block with "
2942               "different incoming values!",
2943               &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2944 
2945         // Check to make sure that the predecessors and PHI node entries are
2946         // matched up.
2947         Check(Values[i].first == Preds[i],
2948               "PHI node entries do not match predecessors!", &PN,
2949               Values[i].first, Preds[i]);
2950       }
2951     }
2952   }
2953 
2954   // Check that all instructions have their parent pointers set up correctly.
2955   for (auto &I : BB)
2956   {
2957     Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2958   }
2959 
2960   // Confirm that no issues arise from the debug program.
2961   if (BB.IsNewDbgInfoFormat) {
2962     // Configure the validate function to not fire assertions, instead print
2963     // errors and return true if there's a problem.
2964     bool RetVal = BB.validateDbgValues(false, true, OS);
2965     Check(!RetVal, "Invalid configuration of new-debug-info data found");
2966   }
2967 }
2968 
2969 void Verifier::visitTerminator(Instruction &I) {
2970   // Ensure that terminators only exist at the end of the basic block.
2971   Check(&I == I.getParent()->getTerminator(),
2972         "Terminator found in the middle of a basic block!", I.getParent());
2973   visitInstruction(I);
2974 }
2975 
2976 void Verifier::visitBranchInst(BranchInst &BI) {
2977   if (BI.isConditional()) {
2978     Check(BI.getCondition()->getType()->isIntegerTy(1),
2979           "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2980   }
2981   visitTerminator(BI);
2982 }
2983 
2984 void Verifier::visitReturnInst(ReturnInst &RI) {
2985   Function *F = RI.getParent()->getParent();
2986   unsigned N = RI.getNumOperands();
2987   if (F->getReturnType()->isVoidTy())
2988     Check(N == 0,
2989           "Found return instr that returns non-void in Function of void "
2990           "return type!",
2991           &RI, F->getReturnType());
2992   else
2993     Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2994           "Function return type does not match operand "
2995           "type of return inst!",
2996           &RI, F->getReturnType());
2997 
2998   // Check to make sure that the return value has necessary properties for
2999   // terminators...
3000   visitTerminator(RI);
3001 }
3002 
3003 void Verifier::visitSwitchInst(SwitchInst &SI) {
3004   Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3005   // Check to make sure that all of the constants in the switch instruction
3006   // have the same type as the switched-on value.
3007   Type *SwitchTy = SI.getCondition()->getType();
3008   SmallPtrSet<ConstantInt*, 32> Constants;
3009   for (auto &Case : SI.cases()) {
3010     Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3011           "Case value is not a constant integer.", &SI);
3012     Check(Case.getCaseValue()->getType() == SwitchTy,
3013           "Switch constants must all be same type as switch value!", &SI);
3014     Check(Constants.insert(Case.getCaseValue()).second,
3015           "Duplicate integer as switch case", &SI, Case.getCaseValue());
3016   }
3017 
3018   visitTerminator(SI);
3019 }
3020 
3021 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3022   Check(BI.getAddress()->getType()->isPointerTy(),
3023         "Indirectbr operand must have pointer type!", &BI);
3024   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3025     Check(BI.getDestination(i)->getType()->isLabelTy(),
3026           "Indirectbr destinations must all have pointer type!", &BI);
3027 
3028   visitTerminator(BI);
3029 }
3030 
3031 void Verifier::visitCallBrInst(CallBrInst &CBI) {
3032   Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3033   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
3034   Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3035 
3036   verifyInlineAsmCall(CBI);
3037   visitTerminator(CBI);
3038 }
3039 
3040 void Verifier::visitSelectInst(SelectInst &SI) {
3041   Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3042                                         SI.getOperand(2)),
3043         "Invalid operands for select instruction!", &SI);
3044 
3045   Check(SI.getTrueValue()->getType() == SI.getType(),
3046         "Select values must have same type as select instruction!", &SI);
3047   visitInstruction(SI);
3048 }
3049 
3050 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3051 /// a pass, if any exist, it's an error.
3052 ///
3053 void Verifier::visitUserOp1(Instruction &I) {
3054   Check(false, "User-defined operators should not live outside of a pass!", &I);
3055 }
3056 
3057 void Verifier::visitTruncInst(TruncInst &I) {
3058   // Get the source and destination types
3059   Type *SrcTy = I.getOperand(0)->getType();
3060   Type *DestTy = I.getType();
3061 
3062   // Get the size of the types in bits, we'll need this later
3063   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3064   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3065 
3066   Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3067   Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3068   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3069         "trunc source and destination must both be a vector or neither", &I);
3070   Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3071 
3072   visitInstruction(I);
3073 }
3074 
3075 void Verifier::visitZExtInst(ZExtInst &I) {
3076   // Get the source and destination types
3077   Type *SrcTy = I.getOperand(0)->getType();
3078   Type *DestTy = I.getType();
3079 
3080   // Get the size of the types in bits, we'll need this later
3081   Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3082   Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3083   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3084         "zext source and destination must both be a vector or neither", &I);
3085   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3086   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3087 
3088   Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3089 
3090   visitInstruction(I);
3091 }
3092 
3093 void Verifier::visitSExtInst(SExtInst &I) {
3094   // Get the source and destination types
3095   Type *SrcTy = I.getOperand(0)->getType();
3096   Type *DestTy = I.getType();
3097 
3098   // Get the size of the types in bits, we'll need this later
3099   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3100   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3101 
3102   Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3103   Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3104   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3105         "sext source and destination must both be a vector or neither", &I);
3106   Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3107 
3108   visitInstruction(I);
3109 }
3110 
3111 void Verifier::visitFPTruncInst(FPTruncInst &I) {
3112   // Get the source and destination types
3113   Type *SrcTy = I.getOperand(0)->getType();
3114   Type *DestTy = I.getType();
3115   // Get the size of the types in bits, we'll need this later
3116   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3117   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3118 
3119   Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3120   Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3121   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3122         "fptrunc source and destination must both be a vector or neither", &I);
3123   Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3124 
3125   visitInstruction(I);
3126 }
3127 
3128 void Verifier::visitFPExtInst(FPExtInst &I) {
3129   // Get the source and destination types
3130   Type *SrcTy = I.getOperand(0)->getType();
3131   Type *DestTy = I.getType();
3132 
3133   // Get the size of the types in bits, we'll need this later
3134   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3135   unsigned DestBitSize = DestTy->getScalarSizeInBits();
3136 
3137   Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3138   Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3139   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3140         "fpext source and destination must both be a vector or neither", &I);
3141   Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3142 
3143   visitInstruction(I);
3144 }
3145 
3146 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3147   // Get the source and destination types
3148   Type *SrcTy = I.getOperand(0)->getType();
3149   Type *DestTy = I.getType();
3150 
3151   bool SrcVec = SrcTy->isVectorTy();
3152   bool DstVec = DestTy->isVectorTy();
3153 
3154   Check(SrcVec == DstVec,
3155         "UIToFP source and dest must both be vector or scalar", &I);
3156   Check(SrcTy->isIntOrIntVectorTy(),
3157         "UIToFP source must be integer or integer vector", &I);
3158   Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3159         &I);
3160 
3161   if (SrcVec && DstVec)
3162     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3163               cast<VectorType>(DestTy)->getElementCount(),
3164           "UIToFP source and dest vector length mismatch", &I);
3165 
3166   visitInstruction(I);
3167 }
3168 
3169 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3170   // Get the source and destination types
3171   Type *SrcTy = I.getOperand(0)->getType();
3172   Type *DestTy = I.getType();
3173 
3174   bool SrcVec = SrcTy->isVectorTy();
3175   bool DstVec = DestTy->isVectorTy();
3176 
3177   Check(SrcVec == DstVec,
3178         "SIToFP source and dest must both be vector or scalar", &I);
3179   Check(SrcTy->isIntOrIntVectorTy(),
3180         "SIToFP source must be integer or integer vector", &I);
3181   Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3182         &I);
3183 
3184   if (SrcVec && DstVec)
3185     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3186               cast<VectorType>(DestTy)->getElementCount(),
3187           "SIToFP source and dest vector length mismatch", &I);
3188 
3189   visitInstruction(I);
3190 }
3191 
3192 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3193   // Get the source and destination types
3194   Type *SrcTy = I.getOperand(0)->getType();
3195   Type *DestTy = I.getType();
3196 
3197   bool SrcVec = SrcTy->isVectorTy();
3198   bool DstVec = DestTy->isVectorTy();
3199 
3200   Check(SrcVec == DstVec,
3201         "FPToUI source and dest must both be vector or scalar", &I);
3202   Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3203   Check(DestTy->isIntOrIntVectorTy(),
3204         "FPToUI result must be integer or integer vector", &I);
3205 
3206   if (SrcVec && DstVec)
3207     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3208               cast<VectorType>(DestTy)->getElementCount(),
3209           "FPToUI source and dest vector length mismatch", &I);
3210 
3211   visitInstruction(I);
3212 }
3213 
3214 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3215   // Get the source and destination types
3216   Type *SrcTy = I.getOperand(0)->getType();
3217   Type *DestTy = I.getType();
3218 
3219   bool SrcVec = SrcTy->isVectorTy();
3220   bool DstVec = DestTy->isVectorTy();
3221 
3222   Check(SrcVec == DstVec,
3223         "FPToSI source and dest must both be vector or scalar", &I);
3224   Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3225   Check(DestTy->isIntOrIntVectorTy(),
3226         "FPToSI result must be integer or integer vector", &I);
3227 
3228   if (SrcVec && DstVec)
3229     Check(cast<VectorType>(SrcTy)->getElementCount() ==
3230               cast<VectorType>(DestTy)->getElementCount(),
3231           "FPToSI source and dest vector length mismatch", &I);
3232 
3233   visitInstruction(I);
3234 }
3235 
3236 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3237   // Get the source and destination types
3238   Type *SrcTy = I.getOperand(0)->getType();
3239   Type *DestTy = I.getType();
3240 
3241   Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3242 
3243   Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3244   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3245         &I);
3246 
3247   if (SrcTy->isVectorTy()) {
3248     auto *VSrc = cast<VectorType>(SrcTy);
3249     auto *VDest = cast<VectorType>(DestTy);
3250     Check(VSrc->getElementCount() == VDest->getElementCount(),
3251           "PtrToInt Vector width mismatch", &I);
3252   }
3253 
3254   visitInstruction(I);
3255 }
3256 
3257 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3258   // Get the source and destination types
3259   Type *SrcTy = I.getOperand(0)->getType();
3260   Type *DestTy = I.getType();
3261 
3262   Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3263   Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3264 
3265   Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3266         &I);
3267   if (SrcTy->isVectorTy()) {
3268     auto *VSrc = cast<VectorType>(SrcTy);
3269     auto *VDest = cast<VectorType>(DestTy);
3270     Check(VSrc->getElementCount() == VDest->getElementCount(),
3271           "IntToPtr Vector width mismatch", &I);
3272   }
3273   visitInstruction(I);
3274 }
3275 
3276 void Verifier::visitBitCastInst(BitCastInst &I) {
3277   Check(
3278       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3279       "Invalid bitcast", &I);
3280   visitInstruction(I);
3281 }
3282 
3283 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3284   Type *SrcTy = I.getOperand(0)->getType();
3285   Type *DestTy = I.getType();
3286 
3287   Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3288         &I);
3289   Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3290         &I);
3291   Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3292         "AddrSpaceCast must be between different address spaces", &I);
3293   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3294     Check(SrcVTy->getElementCount() ==
3295               cast<VectorType>(DestTy)->getElementCount(),
3296           "AddrSpaceCast vector pointer number of elements mismatch", &I);
3297   visitInstruction(I);
3298 }
3299 
3300 /// visitPHINode - Ensure that a PHI node is well formed.
3301 ///
3302 void Verifier::visitPHINode(PHINode &PN) {
3303   // Ensure that the PHI nodes are all grouped together at the top of the block.
3304   // This can be tested by checking whether the instruction before this is
3305   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3306   // then there is some other instruction before a PHI.
3307   Check(&PN == &PN.getParent()->front() ||
3308             isa<PHINode>(--BasicBlock::iterator(&PN)),
3309         "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3310 
3311   // Check that a PHI doesn't yield a Token.
3312   Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3313 
3314   // Check that all of the values of the PHI node have the same type as the
3315   // result, and that the incoming blocks are really basic blocks.
3316   for (Value *IncValue : PN.incoming_values()) {
3317     Check(PN.getType() == IncValue->getType(),
3318           "PHI node operands are not the same type as the result!", &PN);
3319   }
3320 
3321   // All other PHI node constraints are checked in the visitBasicBlock method.
3322 
3323   visitInstruction(PN);
3324 }
3325 
3326 void Verifier::visitCallBase(CallBase &Call) {
3327   Check(Call.getCalledOperand()->getType()->isPointerTy(),
3328         "Called function must be a pointer!", Call);
3329   FunctionType *FTy = Call.getFunctionType();
3330 
3331   // Verify that the correct number of arguments are being passed
3332   if (FTy->isVarArg())
3333     Check(Call.arg_size() >= FTy->getNumParams(),
3334           "Called function requires more parameters than were provided!", Call);
3335   else
3336     Check(Call.arg_size() == FTy->getNumParams(),
3337           "Incorrect number of arguments passed to called function!", Call);
3338 
3339   // Verify that all arguments to the call match the function type.
3340   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3341     Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3342           "Call parameter type does not match function signature!",
3343           Call.getArgOperand(i), FTy->getParamType(i), Call);
3344 
3345   AttributeList Attrs = Call.getAttributes();
3346 
3347   Check(verifyAttributeCount(Attrs, Call.arg_size()),
3348         "Attribute after last parameter!", Call);
3349 
3350   Function *Callee =
3351       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3352   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3353   if (IsIntrinsic)
3354     Check(Callee->getValueType() == FTy,
3355           "Intrinsic called with incompatible signature", Call);
3356 
3357   // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3358   // convention.
3359   auto CC = Call.getCallingConv();
3360   Check(CC != CallingConv::AMDGPU_CS_Chain &&
3361             CC != CallingConv::AMDGPU_CS_ChainPreserve,
3362         "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3363         "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3364         Call);
3365 
3366   auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3367     if (!Ty->isSized())
3368       return;
3369     Align ABIAlign = DL.getABITypeAlign(Ty);
3370     Align MaxAlign(ParamMaxAlignment);
3371     Check(ABIAlign <= MaxAlign,
3372           "Incorrect alignment of " + Message + " to called function!", Call);
3373   };
3374 
3375   if (!IsIntrinsic) {
3376     VerifyTypeAlign(FTy->getReturnType(), "return type");
3377     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3378       Type *Ty = FTy->getParamType(i);
3379       VerifyTypeAlign(Ty, "argument passed");
3380     }
3381   }
3382 
3383   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3384     // Don't allow speculatable on call sites, unless the underlying function
3385     // declaration is also speculatable.
3386     Check(Callee && Callee->isSpeculatable(),
3387           "speculatable attribute may not apply to call sites", Call);
3388   }
3389 
3390   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3391     Check(Call.getCalledFunction()->getIntrinsicID() ==
3392               Intrinsic::call_preallocated_arg,
3393           "preallocated as a call site attribute can only be on "
3394           "llvm.call.preallocated.arg");
3395   }
3396 
3397   // Verify call attributes.
3398   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3399 
3400   // Conservatively check the inalloca argument.
3401   // We have a bug if we can find that there is an underlying alloca without
3402   // inalloca.
3403   if (Call.hasInAllocaArgument()) {
3404     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3405     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3406       Check(AI->isUsedWithInAlloca(),
3407             "inalloca argument for call has mismatched alloca", AI, Call);
3408   }
3409 
3410   // For each argument of the callsite, if it has the swifterror argument,
3411   // make sure the underlying alloca/parameter it comes from has a swifterror as
3412   // well.
3413   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3414     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3415       Value *SwiftErrorArg = Call.getArgOperand(i);
3416       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3417         Check(AI->isSwiftError(),
3418               "swifterror argument for call has mismatched alloca", AI, Call);
3419         continue;
3420       }
3421       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3422       Check(ArgI, "swifterror argument should come from an alloca or parameter",
3423             SwiftErrorArg, Call);
3424       Check(ArgI->hasSwiftErrorAttr(),
3425             "swifterror argument for call has mismatched parameter", ArgI,
3426             Call);
3427     }
3428 
3429     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3430       // Don't allow immarg on call sites, unless the underlying declaration
3431       // also has the matching immarg.
3432       Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3433             "immarg may not apply only to call sites", Call.getArgOperand(i),
3434             Call);
3435     }
3436 
3437     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3438       Value *ArgVal = Call.getArgOperand(i);
3439       Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3440             "immarg operand has non-immediate parameter", ArgVal, Call);
3441     }
3442 
3443     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3444       Value *ArgVal = Call.getArgOperand(i);
3445       bool hasOB =
3446           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3447       bool isMustTail = Call.isMustTailCall();
3448       Check(hasOB != isMustTail,
3449             "preallocated operand either requires a preallocated bundle or "
3450             "the call to be musttail (but not both)",
3451             ArgVal, Call);
3452     }
3453   }
3454 
3455   if (FTy->isVarArg()) {
3456     // FIXME? is 'nest' even legal here?
3457     bool SawNest = false;
3458     bool SawReturned = false;
3459 
3460     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3461       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3462         SawNest = true;
3463       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3464         SawReturned = true;
3465     }
3466 
3467     // Check attributes on the varargs part.
3468     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3469       Type *Ty = Call.getArgOperand(Idx)->getType();
3470       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3471       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3472 
3473       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3474         Check(!SawNest, "More than one parameter has attribute nest!", Call);
3475         SawNest = true;
3476       }
3477 
3478       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3479         Check(!SawReturned, "More than one parameter has attribute returned!",
3480               Call);
3481         Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3482               "Incompatible argument and return types for 'returned' "
3483               "attribute",
3484               Call);
3485         SawReturned = true;
3486       }
3487 
3488       // Statepoint intrinsic is vararg but the wrapped function may be not.
3489       // Allow sret here and check the wrapped function in verifyStatepoint.
3490       if (!Call.getCalledFunction() ||
3491           Call.getCalledFunction()->getIntrinsicID() !=
3492               Intrinsic::experimental_gc_statepoint)
3493         Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3494               "Attribute 'sret' cannot be used for vararg call arguments!",
3495               Call);
3496 
3497       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3498         Check(Idx == Call.arg_size() - 1,
3499               "inalloca isn't on the last argument!", Call);
3500     }
3501   }
3502 
3503   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3504   if (!IsIntrinsic) {
3505     for (Type *ParamTy : FTy->params()) {
3506       Check(!ParamTy->isMetadataTy(),
3507             "Function has metadata parameter but isn't an intrinsic", Call);
3508       Check(!ParamTy->isTokenTy(),
3509             "Function has token parameter but isn't an intrinsic", Call);
3510     }
3511   }
3512 
3513   // Verify that indirect calls don't return tokens.
3514   if (!Call.getCalledFunction()) {
3515     Check(!FTy->getReturnType()->isTokenTy(),
3516           "Return type cannot be token for indirect call!");
3517     Check(!FTy->getReturnType()->isX86_AMXTy(),
3518           "Return type cannot be x86_amx for indirect call!");
3519   }
3520 
3521   if (Function *F = Call.getCalledFunction())
3522     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3523       visitIntrinsicCall(ID, Call);
3524 
3525   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3526   // most one "gc-transition", at most one "cfguardtarget", at most one
3527   // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3528   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3529        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3530        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3531        FoundPtrauthBundle = false, FoundKCFIBundle = false,
3532        FoundAttachedCallBundle = false;
3533   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3534     OperandBundleUse BU = Call.getOperandBundleAt(i);
3535     uint32_t Tag = BU.getTagID();
3536     if (Tag == LLVMContext::OB_deopt) {
3537       Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3538       FoundDeoptBundle = true;
3539     } else if (Tag == LLVMContext::OB_gc_transition) {
3540       Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3541             Call);
3542       FoundGCTransitionBundle = true;
3543     } else if (Tag == LLVMContext::OB_funclet) {
3544       Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3545       FoundFuncletBundle = true;
3546       Check(BU.Inputs.size() == 1,
3547             "Expected exactly one funclet bundle operand", Call);
3548       Check(isa<FuncletPadInst>(BU.Inputs.front()),
3549             "Funclet bundle operands should correspond to a FuncletPadInst",
3550             Call);
3551     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3552       Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3553             Call);
3554       FoundCFGuardTargetBundle = true;
3555       Check(BU.Inputs.size() == 1,
3556             "Expected exactly one cfguardtarget bundle operand", Call);
3557     } else if (Tag == LLVMContext::OB_ptrauth) {
3558       Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3559       FoundPtrauthBundle = true;
3560       Check(BU.Inputs.size() == 2,
3561             "Expected exactly two ptrauth bundle operands", Call);
3562       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3563                 BU.Inputs[0]->getType()->isIntegerTy(32),
3564             "Ptrauth bundle key operand must be an i32 constant", Call);
3565       Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3566             "Ptrauth bundle discriminator operand must be an i64", Call);
3567     } else if (Tag == LLVMContext::OB_kcfi) {
3568       Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3569       FoundKCFIBundle = true;
3570       Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3571             Call);
3572       Check(isa<ConstantInt>(BU.Inputs[0]) &&
3573                 BU.Inputs[0]->getType()->isIntegerTy(32),
3574             "Kcfi bundle operand must be an i32 constant", Call);
3575     } else if (Tag == LLVMContext::OB_preallocated) {
3576       Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3577             Call);
3578       FoundPreallocatedBundle = true;
3579       Check(BU.Inputs.size() == 1,
3580             "Expected exactly one preallocated bundle operand", Call);
3581       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3582       Check(Input &&
3583                 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3584             "\"preallocated\" argument must be a token from "
3585             "llvm.call.preallocated.setup",
3586             Call);
3587     } else if (Tag == LLVMContext::OB_gc_live) {
3588       Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3589       FoundGCLiveBundle = true;
3590     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3591       Check(!FoundAttachedCallBundle,
3592             "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3593       FoundAttachedCallBundle = true;
3594       verifyAttachedCallBundle(Call, BU);
3595     }
3596   }
3597 
3598   // Verify that callee and callsite agree on whether to use pointer auth.
3599   Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3600         "Direct call cannot have a ptrauth bundle", Call);
3601 
3602   // Verify that each inlinable callsite of a debug-info-bearing function in a
3603   // debug-info-bearing function has a debug location attached to it. Failure to
3604   // do so causes assertion failures when the inliner sets up inline scope info
3605   // (Interposable functions are not inlinable, neither are functions without
3606   //  definitions.)
3607   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3608       !Call.getCalledFunction()->isInterposable() &&
3609       !Call.getCalledFunction()->isDeclaration() &&
3610       Call.getCalledFunction()->getSubprogram())
3611     CheckDI(Call.getDebugLoc(),
3612             "inlinable function call in a function with "
3613             "debug info must have a !dbg location",
3614             Call);
3615 
3616   if (Call.isInlineAsm())
3617     verifyInlineAsmCall(Call);
3618 
3619   ConvergenceVerifyHelper.visit(Call);
3620 
3621   visitInstruction(Call);
3622 }
3623 
3624 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3625                                          StringRef Context) {
3626   Check(!Attrs.contains(Attribute::InAlloca),
3627         Twine("inalloca attribute not allowed in ") + Context);
3628   Check(!Attrs.contains(Attribute::InReg),
3629         Twine("inreg attribute not allowed in ") + Context);
3630   Check(!Attrs.contains(Attribute::SwiftError),
3631         Twine("swifterror attribute not allowed in ") + Context);
3632   Check(!Attrs.contains(Attribute::Preallocated),
3633         Twine("preallocated attribute not allowed in ") + Context);
3634   Check(!Attrs.contains(Attribute::ByRef),
3635         Twine("byref attribute not allowed in ") + Context);
3636 }
3637 
3638 /// Two types are "congruent" if they are identical, or if they are both pointer
3639 /// types with different pointee types and the same address space.
3640 static bool isTypeCongruent(Type *L, Type *R) {
3641   if (L == R)
3642     return true;
3643   PointerType *PL = dyn_cast<PointerType>(L);
3644   PointerType *PR = dyn_cast<PointerType>(R);
3645   if (!PL || !PR)
3646     return false;
3647   return PL->getAddressSpace() == PR->getAddressSpace();
3648 }
3649 
3650 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3651   static const Attribute::AttrKind ABIAttrs[] = {
3652       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3653       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3654       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3655       Attribute::ByRef};
3656   AttrBuilder Copy(C);
3657   for (auto AK : ABIAttrs) {
3658     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3659     if (Attr.isValid())
3660       Copy.addAttribute(Attr);
3661   }
3662 
3663   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3664   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3665       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3666        Attrs.hasParamAttr(I, Attribute::ByRef)))
3667     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3668   return Copy;
3669 }
3670 
3671 void Verifier::verifyMustTailCall(CallInst &CI) {
3672   Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3673 
3674   Function *F = CI.getParent()->getParent();
3675   FunctionType *CallerTy = F->getFunctionType();
3676   FunctionType *CalleeTy = CI.getFunctionType();
3677   Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3678         "cannot guarantee tail call due to mismatched varargs", &CI);
3679   Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3680         "cannot guarantee tail call due to mismatched return types", &CI);
3681 
3682   // - The calling conventions of the caller and callee must match.
3683   Check(F->getCallingConv() == CI.getCallingConv(),
3684         "cannot guarantee tail call due to mismatched calling conv", &CI);
3685 
3686   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3687   //   or a pointer bitcast followed by a ret instruction.
3688   // - The ret instruction must return the (possibly bitcasted) value
3689   //   produced by the call or void.
3690   Value *RetVal = &CI;
3691   Instruction *Next = CI.getNextNode();
3692 
3693   // Handle the optional bitcast.
3694   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3695     Check(BI->getOperand(0) == RetVal,
3696           "bitcast following musttail call must use the call", BI);
3697     RetVal = BI;
3698     Next = BI->getNextNode();
3699   }
3700 
3701   // Check the return.
3702   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3703   Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3704   Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3705             isa<UndefValue>(Ret->getReturnValue()),
3706         "musttail call result must be returned", Ret);
3707 
3708   AttributeList CallerAttrs = F->getAttributes();
3709   AttributeList CalleeAttrs = CI.getAttributes();
3710   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3711       CI.getCallingConv() == CallingConv::Tail) {
3712     StringRef CCName =
3713         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3714 
3715     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3716     //   are allowed in swifttailcc call
3717     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3718       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3719       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3720       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3721     }
3722     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3723       AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3724       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3725       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3726     }
3727     // - Varargs functions are not allowed
3728     Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3729                                      " tail call for varargs function");
3730     return;
3731   }
3732 
3733   // - The caller and callee prototypes must match.  Pointer types of
3734   //   parameters or return types may differ in pointee type, but not
3735   //   address space.
3736   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3737     Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3738           "cannot guarantee tail call due to mismatched parameter counts", &CI);
3739     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3740       Check(
3741           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3742           "cannot guarantee tail call due to mismatched parameter types", &CI);
3743     }
3744   }
3745 
3746   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3747   //   returned, preallocated, and inalloca, must match.
3748   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3749     AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3750     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3751     Check(CallerABIAttrs == CalleeABIAttrs,
3752           "cannot guarantee tail call due to mismatched ABI impacting "
3753           "function attributes",
3754           &CI, CI.getOperand(I));
3755   }
3756 }
3757 
3758 void Verifier::visitCallInst(CallInst &CI) {
3759   visitCallBase(CI);
3760 
3761   if (CI.isMustTailCall())
3762     verifyMustTailCall(CI);
3763 }
3764 
3765 void Verifier::visitInvokeInst(InvokeInst &II) {
3766   visitCallBase(II);
3767 
3768   // Verify that the first non-PHI instruction of the unwind destination is an
3769   // exception handling instruction.
3770   Check(
3771       II.getUnwindDest()->isEHPad(),
3772       "The unwind destination does not have an exception handling instruction!",
3773       &II);
3774 
3775   visitTerminator(II);
3776 }
3777 
3778 /// visitUnaryOperator - Check the argument to the unary operator.
3779 ///
3780 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3781   Check(U.getType() == U.getOperand(0)->getType(),
3782         "Unary operators must have same type for"
3783         "operands and result!",
3784         &U);
3785 
3786   switch (U.getOpcode()) {
3787   // Check that floating-point arithmetic operators are only used with
3788   // floating-point operands.
3789   case Instruction::FNeg:
3790     Check(U.getType()->isFPOrFPVectorTy(),
3791           "FNeg operator only works with float types!", &U);
3792     break;
3793   default:
3794     llvm_unreachable("Unknown UnaryOperator opcode!");
3795   }
3796 
3797   visitInstruction(U);
3798 }
3799 
3800 /// visitBinaryOperator - Check that both arguments to the binary operator are
3801 /// of the same type!
3802 ///
3803 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3804   Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3805         "Both operands to a binary operator are not of the same type!", &B);
3806 
3807   switch (B.getOpcode()) {
3808   // Check that integer arithmetic operators are only used with
3809   // integral operands.
3810   case Instruction::Add:
3811   case Instruction::Sub:
3812   case Instruction::Mul:
3813   case Instruction::SDiv:
3814   case Instruction::UDiv:
3815   case Instruction::SRem:
3816   case Instruction::URem:
3817     Check(B.getType()->isIntOrIntVectorTy(),
3818           "Integer arithmetic operators only work with integral types!", &B);
3819     Check(B.getType() == B.getOperand(0)->getType(),
3820           "Integer arithmetic operators must have same type "
3821           "for operands and result!",
3822           &B);
3823     break;
3824   // Check that floating-point arithmetic operators are only used with
3825   // floating-point operands.
3826   case Instruction::FAdd:
3827   case Instruction::FSub:
3828   case Instruction::FMul:
3829   case Instruction::FDiv:
3830   case Instruction::FRem:
3831     Check(B.getType()->isFPOrFPVectorTy(),
3832           "Floating-point arithmetic operators only work with "
3833           "floating-point types!",
3834           &B);
3835     Check(B.getType() == B.getOperand(0)->getType(),
3836           "Floating-point arithmetic operators must have same type "
3837           "for operands and result!",
3838           &B);
3839     break;
3840   // Check that logical operators are only used with integral operands.
3841   case Instruction::And:
3842   case Instruction::Or:
3843   case Instruction::Xor:
3844     Check(B.getType()->isIntOrIntVectorTy(),
3845           "Logical operators only work with integral types!", &B);
3846     Check(B.getType() == B.getOperand(0)->getType(),
3847           "Logical operators must have same type for operands and result!", &B);
3848     break;
3849   case Instruction::Shl:
3850   case Instruction::LShr:
3851   case Instruction::AShr:
3852     Check(B.getType()->isIntOrIntVectorTy(),
3853           "Shifts only work with integral types!", &B);
3854     Check(B.getType() == B.getOperand(0)->getType(),
3855           "Shift return type must be same as operands!", &B);
3856     break;
3857   default:
3858     llvm_unreachable("Unknown BinaryOperator opcode!");
3859   }
3860 
3861   visitInstruction(B);
3862 }
3863 
3864 void Verifier::visitICmpInst(ICmpInst &IC) {
3865   // Check that the operands are the same type
3866   Type *Op0Ty = IC.getOperand(0)->getType();
3867   Type *Op1Ty = IC.getOperand(1)->getType();
3868   Check(Op0Ty == Op1Ty,
3869         "Both operands to ICmp instruction are not of the same type!", &IC);
3870   // Check that the operands are the right type
3871   Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3872         "Invalid operand types for ICmp instruction", &IC);
3873   // Check that the predicate is valid.
3874   Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3875 
3876   visitInstruction(IC);
3877 }
3878 
3879 void Verifier::visitFCmpInst(FCmpInst &FC) {
3880   // Check that the operands are the same type
3881   Type *Op0Ty = FC.getOperand(0)->getType();
3882   Type *Op1Ty = FC.getOperand(1)->getType();
3883   Check(Op0Ty == Op1Ty,
3884         "Both operands to FCmp instruction are not of the same type!", &FC);
3885   // Check that the operands are the right type
3886   Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3887         &FC);
3888   // Check that the predicate is valid.
3889   Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3890 
3891   visitInstruction(FC);
3892 }
3893 
3894 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3895   Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3896         "Invalid extractelement operands!", &EI);
3897   visitInstruction(EI);
3898 }
3899 
3900 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3901   Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3902                                            IE.getOperand(2)),
3903         "Invalid insertelement operands!", &IE);
3904   visitInstruction(IE);
3905 }
3906 
3907 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3908   Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3909                                            SV.getShuffleMask()),
3910         "Invalid shufflevector operands!", &SV);
3911   visitInstruction(SV);
3912 }
3913 
3914 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3915   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3916 
3917   Check(isa<PointerType>(TargetTy),
3918         "GEP base pointer is not a vector or a vector of pointers", &GEP);
3919   Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3920 
3921   if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
3922     SmallPtrSet<Type *, 4> Visited;
3923     Check(!STy->containsScalableVectorType(&Visited),
3924           "getelementptr cannot target structure that contains scalable vector"
3925           "type",
3926           &GEP);
3927   }
3928 
3929   SmallVector<Value *, 16> Idxs(GEP.indices());
3930   Check(
3931       all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3932       "GEP indexes must be integers", &GEP);
3933   Type *ElTy =
3934       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3935   Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3936 
3937   Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3938             GEP.getResultElementType() == ElTy,
3939         "GEP is not of right type for indices!", &GEP, ElTy);
3940 
3941   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3942     // Additional checks for vector GEPs.
3943     ElementCount GEPWidth = GEPVTy->getElementCount();
3944     if (GEP.getPointerOperandType()->isVectorTy())
3945       Check(
3946           GEPWidth ==
3947               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3948           "Vector GEP result width doesn't match operand's", &GEP);
3949     for (Value *Idx : Idxs) {
3950       Type *IndexTy = Idx->getType();
3951       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3952         ElementCount IndexWidth = IndexVTy->getElementCount();
3953         Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3954       }
3955       Check(IndexTy->isIntOrIntVectorTy(),
3956             "All GEP indices should be of integer type");
3957     }
3958   }
3959 
3960   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3961     Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3962           "GEP address space doesn't match type", &GEP);
3963   }
3964 
3965   visitInstruction(GEP);
3966 }
3967 
3968 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3969   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3970 }
3971 
3972 /// Verify !range and !absolute_symbol metadata. These have the same
3973 /// restrictions, except !absolute_symbol allows the full set.
3974 void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
3975                                    Type *Ty, bool IsAbsoluteSymbol) {
3976   unsigned NumOperands = Range->getNumOperands();
3977   Check(NumOperands % 2 == 0, "Unfinished range!", Range);
3978   unsigned NumRanges = NumOperands / 2;
3979   Check(NumRanges >= 1, "It should have at least one range!", Range);
3980 
3981   ConstantRange LastRange(1, true); // Dummy initial value
3982   for (unsigned i = 0; i < NumRanges; ++i) {
3983     ConstantInt *Low =
3984         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3985     Check(Low, "The lower limit must be an integer!", Low);
3986     ConstantInt *High =
3987         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3988     Check(High, "The upper limit must be an integer!", High);
3989     Check(High->getType() == Low->getType() &&
3990           High->getType() == Ty->getScalarType(),
3991           "Range types must match instruction type!", &I);
3992 
3993     APInt HighV = High->getValue();
3994     APInt LowV = Low->getValue();
3995 
3996     // ConstantRange asserts if the ranges are the same except for the min/max
3997     // value. Leave the cases it tolerates for the empty range error below.
3998     Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
3999           "The upper and lower limits cannot be the same value", &I);
4000 
4001     ConstantRange CurRange(LowV, HighV);
4002     Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
4003           "Range must not be empty!", Range);
4004     if (i != 0) {
4005       Check(CurRange.intersectWith(LastRange).isEmptySet(),
4006             "Intervals are overlapping", Range);
4007       Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4008             Range);
4009       Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4010             Range);
4011     }
4012     LastRange = ConstantRange(LowV, HighV);
4013   }
4014   if (NumRanges > 2) {
4015     APInt FirstLow =
4016         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
4017     APInt FirstHigh =
4018         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
4019     ConstantRange FirstRange(FirstLow, FirstHigh);
4020     Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4021           "Intervals are overlapping", Range);
4022     Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4023           Range);
4024   }
4025 }
4026 
4027 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4028   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4029          "precondition violation");
4030   verifyRangeMetadata(I, Range, Ty, false);
4031 }
4032 
4033 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4034   unsigned Size = DL.getTypeSizeInBits(Ty);
4035   Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4036   Check(!(Size & (Size - 1)),
4037         "atomic memory access' operand must have a power-of-two size", Ty, I);
4038 }
4039 
4040 void Verifier::visitLoadInst(LoadInst &LI) {
4041   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
4042   Check(PTy, "Load operand must be a pointer.", &LI);
4043   Type *ElTy = LI.getType();
4044   if (MaybeAlign A = LI.getAlign()) {
4045     Check(A->value() <= Value::MaximumAlignment,
4046           "huge alignment values are unsupported", &LI);
4047   }
4048   Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4049   if (LI.isAtomic()) {
4050     Check(LI.getOrdering() != AtomicOrdering::Release &&
4051               LI.getOrdering() != AtomicOrdering::AcquireRelease,
4052           "Load cannot have Release ordering", &LI);
4053     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4054           "atomic load operand must have integer, pointer, or floating point "
4055           "type!",
4056           ElTy, &LI);
4057     checkAtomicMemAccessSize(ElTy, &LI);
4058   } else {
4059     Check(LI.getSyncScopeID() == SyncScope::System,
4060           "Non-atomic load cannot have SynchronizationScope specified", &LI);
4061   }
4062 
4063   visitInstruction(LI);
4064 }
4065 
4066 void Verifier::visitStoreInst(StoreInst &SI) {
4067   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4068   Check(PTy, "Store operand must be a pointer.", &SI);
4069   Type *ElTy = SI.getOperand(0)->getType();
4070   if (MaybeAlign A = SI.getAlign()) {
4071     Check(A->value() <= Value::MaximumAlignment,
4072           "huge alignment values are unsupported", &SI);
4073   }
4074   Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4075   if (SI.isAtomic()) {
4076     Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4077               SI.getOrdering() != AtomicOrdering::AcquireRelease,
4078           "Store cannot have Acquire ordering", &SI);
4079     Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4080           "atomic store operand must have integer, pointer, or floating point "
4081           "type!",
4082           ElTy, &SI);
4083     checkAtomicMemAccessSize(ElTy, &SI);
4084   } else {
4085     Check(SI.getSyncScopeID() == SyncScope::System,
4086           "Non-atomic store cannot have SynchronizationScope specified", &SI);
4087   }
4088   visitInstruction(SI);
4089 }
4090 
4091 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4092 void Verifier::verifySwiftErrorCall(CallBase &Call,
4093                                     const Value *SwiftErrorVal) {
4094   for (const auto &I : llvm::enumerate(Call.args())) {
4095     if (I.value() == SwiftErrorVal) {
4096       Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4097             "swifterror value when used in a callsite should be marked "
4098             "with swifterror attribute",
4099             SwiftErrorVal, Call);
4100     }
4101   }
4102 }
4103 
4104 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4105   // Check that swifterror value is only used by loads, stores, or as
4106   // a swifterror argument.
4107   for (const User *U : SwiftErrorVal->users()) {
4108     Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4109               isa<InvokeInst>(U),
4110           "swifterror value can only be loaded and stored from, or "
4111           "as a swifterror argument!",
4112           SwiftErrorVal, U);
4113     // If it is used by a store, check it is the second operand.
4114     if (auto StoreI = dyn_cast<StoreInst>(U))
4115       Check(StoreI->getOperand(1) == SwiftErrorVal,
4116             "swifterror value should be the second operand when used "
4117             "by stores",
4118             SwiftErrorVal, U);
4119     if (auto *Call = dyn_cast<CallBase>(U))
4120       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4121   }
4122 }
4123 
4124 void Verifier::visitAllocaInst(AllocaInst &AI) {
4125   SmallPtrSet<Type*, 4> Visited;
4126   Check(AI.getAllocatedType()->isSized(&Visited),
4127         "Cannot allocate unsized type", &AI);
4128   Check(AI.getArraySize()->getType()->isIntegerTy(),
4129         "Alloca array size must have integer type", &AI);
4130   if (MaybeAlign A = AI.getAlign()) {
4131     Check(A->value() <= Value::MaximumAlignment,
4132           "huge alignment values are unsupported", &AI);
4133   }
4134 
4135   if (AI.isSwiftError()) {
4136     Check(AI.getAllocatedType()->isPointerTy(),
4137           "swifterror alloca must have pointer type", &AI);
4138     Check(!AI.isArrayAllocation(),
4139           "swifterror alloca must not be array allocation", &AI);
4140     verifySwiftErrorValue(&AI);
4141   }
4142 
4143   visitInstruction(AI);
4144 }
4145 
4146 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4147   Type *ElTy = CXI.getOperand(1)->getType();
4148   Check(ElTy->isIntOrPtrTy(),
4149         "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4150   checkAtomicMemAccessSize(ElTy, &CXI);
4151   visitInstruction(CXI);
4152 }
4153 
4154 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4155   Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4156         "atomicrmw instructions cannot be unordered.", &RMWI);
4157   auto Op = RMWI.getOperation();
4158   Type *ElTy = RMWI.getOperand(1)->getType();
4159   if (Op == AtomicRMWInst::Xchg) {
4160     Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4161               ElTy->isPointerTy(),
4162           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4163               " operand must have integer or floating point type!",
4164           &RMWI, ElTy);
4165   } else if (AtomicRMWInst::isFPOperation(Op)) {
4166     Check(ElTy->isFloatingPointTy(),
4167           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4168               " operand must have floating point type!",
4169           &RMWI, ElTy);
4170   } else {
4171     Check(ElTy->isIntegerTy(),
4172           "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4173               " operand must have integer type!",
4174           &RMWI, ElTy);
4175   }
4176   checkAtomicMemAccessSize(ElTy, &RMWI);
4177   Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4178         "Invalid binary operation!", &RMWI);
4179   visitInstruction(RMWI);
4180 }
4181 
4182 void Verifier::visitFenceInst(FenceInst &FI) {
4183   const AtomicOrdering Ordering = FI.getOrdering();
4184   Check(Ordering == AtomicOrdering::Acquire ||
4185             Ordering == AtomicOrdering::Release ||
4186             Ordering == AtomicOrdering::AcquireRelease ||
4187             Ordering == AtomicOrdering::SequentiallyConsistent,
4188         "fence instructions may only have acquire, release, acq_rel, or "
4189         "seq_cst ordering.",
4190         &FI);
4191   visitInstruction(FI);
4192 }
4193 
4194 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4195   Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4196                                          EVI.getIndices()) == EVI.getType(),
4197         "Invalid ExtractValueInst operands!", &EVI);
4198 
4199   visitInstruction(EVI);
4200 }
4201 
4202 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4203   Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4204                                          IVI.getIndices()) ==
4205             IVI.getOperand(1)->getType(),
4206         "Invalid InsertValueInst operands!", &IVI);
4207 
4208   visitInstruction(IVI);
4209 }
4210 
4211 static Value *getParentPad(Value *EHPad) {
4212   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4213     return FPI->getParentPad();
4214 
4215   return cast<CatchSwitchInst>(EHPad)->getParentPad();
4216 }
4217 
4218 void Verifier::visitEHPadPredecessors(Instruction &I) {
4219   assert(I.isEHPad());
4220 
4221   BasicBlock *BB = I.getParent();
4222   Function *F = BB->getParent();
4223 
4224   Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4225 
4226   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4227     // The landingpad instruction defines its parent as a landing pad block. The
4228     // landing pad block may be branched to only by the unwind edge of an
4229     // invoke.
4230     for (BasicBlock *PredBB : predecessors(BB)) {
4231       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4232       Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4233             "Block containing LandingPadInst must be jumped to "
4234             "only by the unwind edge of an invoke.",
4235             LPI);
4236     }
4237     return;
4238   }
4239   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4240     if (!pred_empty(BB))
4241       Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4242             "Block containg CatchPadInst must be jumped to "
4243             "only by its catchswitch.",
4244             CPI);
4245     Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4246           "Catchswitch cannot unwind to one of its catchpads",
4247           CPI->getCatchSwitch(), CPI);
4248     return;
4249   }
4250 
4251   // Verify that each pred has a legal terminator with a legal to/from EH
4252   // pad relationship.
4253   Instruction *ToPad = &I;
4254   Value *ToPadParent = getParentPad(ToPad);
4255   for (BasicBlock *PredBB : predecessors(BB)) {
4256     Instruction *TI = PredBB->getTerminator();
4257     Value *FromPad;
4258     if (auto *II = dyn_cast<InvokeInst>(TI)) {
4259       Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4260             "EH pad must be jumped to via an unwind edge", ToPad, II);
4261       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4262         FromPad = Bundle->Inputs[0];
4263       else
4264         FromPad = ConstantTokenNone::get(II->getContext());
4265     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4266       FromPad = CRI->getOperand(0);
4267       Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4268     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4269       FromPad = CSI;
4270     } else {
4271       Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4272     }
4273 
4274     // The edge may exit from zero or more nested pads.
4275     SmallSet<Value *, 8> Seen;
4276     for (;; FromPad = getParentPad(FromPad)) {
4277       Check(FromPad != ToPad,
4278             "EH pad cannot handle exceptions raised within it", FromPad, TI);
4279       if (FromPad == ToPadParent) {
4280         // This is a legal unwind edge.
4281         break;
4282       }
4283       Check(!isa<ConstantTokenNone>(FromPad),
4284             "A single unwind edge may only enter one EH pad", TI);
4285       Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4286             FromPad);
4287 
4288       // This will be diagnosed on the corresponding instruction already. We
4289       // need the extra check here to make sure getParentPad() works.
4290       Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4291             "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4292     }
4293   }
4294 }
4295 
4296 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4297   // The landingpad instruction is ill-formed if it doesn't have any clauses and
4298   // isn't a cleanup.
4299   Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4300         "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4301 
4302   visitEHPadPredecessors(LPI);
4303 
4304   if (!LandingPadResultTy)
4305     LandingPadResultTy = LPI.getType();
4306   else
4307     Check(LandingPadResultTy == LPI.getType(),
4308           "The landingpad instruction should have a consistent result type "
4309           "inside a function.",
4310           &LPI);
4311 
4312   Function *F = LPI.getParent()->getParent();
4313   Check(F->hasPersonalityFn(),
4314         "LandingPadInst needs to be in a function with a personality.", &LPI);
4315 
4316   // The landingpad instruction must be the first non-PHI instruction in the
4317   // block.
4318   Check(LPI.getParent()->getLandingPadInst() == &LPI,
4319         "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4320 
4321   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4322     Constant *Clause = LPI.getClause(i);
4323     if (LPI.isCatch(i)) {
4324       Check(isa<PointerType>(Clause->getType()),
4325             "Catch operand does not have pointer type!", &LPI);
4326     } else {
4327       Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4328       Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4329             "Filter operand is not an array of constants!", &LPI);
4330     }
4331   }
4332 
4333   visitInstruction(LPI);
4334 }
4335 
4336 void Verifier::visitResumeInst(ResumeInst &RI) {
4337   Check(RI.getFunction()->hasPersonalityFn(),
4338         "ResumeInst needs to be in a function with a personality.", &RI);
4339 
4340   if (!LandingPadResultTy)
4341     LandingPadResultTy = RI.getValue()->getType();
4342   else
4343     Check(LandingPadResultTy == RI.getValue()->getType(),
4344           "The resume instruction should have a consistent result type "
4345           "inside a function.",
4346           &RI);
4347 
4348   visitTerminator(RI);
4349 }
4350 
4351 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4352   BasicBlock *BB = CPI.getParent();
4353 
4354   Function *F = BB->getParent();
4355   Check(F->hasPersonalityFn(),
4356         "CatchPadInst needs to be in a function with a personality.", &CPI);
4357 
4358   Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4359         "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4360         CPI.getParentPad());
4361 
4362   // The catchpad instruction must be the first non-PHI instruction in the
4363   // block.
4364   Check(BB->getFirstNonPHI() == &CPI,
4365         "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4366 
4367   visitEHPadPredecessors(CPI);
4368   visitFuncletPadInst(CPI);
4369 }
4370 
4371 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4372   Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4373         "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4374         CatchReturn.getOperand(0));
4375 
4376   visitTerminator(CatchReturn);
4377 }
4378 
4379 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4380   BasicBlock *BB = CPI.getParent();
4381 
4382   Function *F = BB->getParent();
4383   Check(F->hasPersonalityFn(),
4384         "CleanupPadInst needs to be in a function with a personality.", &CPI);
4385 
4386   // The cleanuppad instruction must be the first non-PHI instruction in the
4387   // block.
4388   Check(BB->getFirstNonPHI() == &CPI,
4389         "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4390 
4391   auto *ParentPad = CPI.getParentPad();
4392   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4393         "CleanupPadInst has an invalid parent.", &CPI);
4394 
4395   visitEHPadPredecessors(CPI);
4396   visitFuncletPadInst(CPI);
4397 }
4398 
4399 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4400   User *FirstUser = nullptr;
4401   Value *FirstUnwindPad = nullptr;
4402   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4403   SmallSet<FuncletPadInst *, 8> Seen;
4404 
4405   while (!Worklist.empty()) {
4406     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4407     Check(Seen.insert(CurrentPad).second,
4408           "FuncletPadInst must not be nested within itself", CurrentPad);
4409     Value *UnresolvedAncestorPad = nullptr;
4410     for (User *U : CurrentPad->users()) {
4411       BasicBlock *UnwindDest;
4412       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4413         UnwindDest = CRI->getUnwindDest();
4414       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4415         // We allow catchswitch unwind to caller to nest
4416         // within an outer pad that unwinds somewhere else,
4417         // because catchswitch doesn't have a nounwind variant.
4418         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4419         if (CSI->unwindsToCaller())
4420           continue;
4421         UnwindDest = CSI->getUnwindDest();
4422       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4423         UnwindDest = II->getUnwindDest();
4424       } else if (isa<CallInst>(U)) {
4425         // Calls which don't unwind may be found inside funclet
4426         // pads that unwind somewhere else.  We don't *require*
4427         // such calls to be annotated nounwind.
4428         continue;
4429       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4430         // The unwind dest for a cleanup can only be found by
4431         // recursive search.  Add it to the worklist, and we'll
4432         // search for its first use that determines where it unwinds.
4433         Worklist.push_back(CPI);
4434         continue;
4435       } else {
4436         Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4437         continue;
4438       }
4439 
4440       Value *UnwindPad;
4441       bool ExitsFPI;
4442       if (UnwindDest) {
4443         UnwindPad = UnwindDest->getFirstNonPHI();
4444         if (!cast<Instruction>(UnwindPad)->isEHPad())
4445           continue;
4446         Value *UnwindParent = getParentPad(UnwindPad);
4447         // Ignore unwind edges that don't exit CurrentPad.
4448         if (UnwindParent == CurrentPad)
4449           continue;
4450         // Determine whether the original funclet pad is exited,
4451         // and if we are scanning nested pads determine how many
4452         // of them are exited so we can stop searching their
4453         // children.
4454         Value *ExitedPad = CurrentPad;
4455         ExitsFPI = false;
4456         do {
4457           if (ExitedPad == &FPI) {
4458             ExitsFPI = true;
4459             // Now we can resolve any ancestors of CurrentPad up to
4460             // FPI, but not including FPI since we need to make sure
4461             // to check all direct users of FPI for consistency.
4462             UnresolvedAncestorPad = &FPI;
4463             break;
4464           }
4465           Value *ExitedParent = getParentPad(ExitedPad);
4466           if (ExitedParent == UnwindParent) {
4467             // ExitedPad is the ancestor-most pad which this unwind
4468             // edge exits, so we can resolve up to it, meaning that
4469             // ExitedParent is the first ancestor still unresolved.
4470             UnresolvedAncestorPad = ExitedParent;
4471             break;
4472           }
4473           ExitedPad = ExitedParent;
4474         } while (!isa<ConstantTokenNone>(ExitedPad));
4475       } else {
4476         // Unwinding to caller exits all pads.
4477         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4478         ExitsFPI = true;
4479         UnresolvedAncestorPad = &FPI;
4480       }
4481 
4482       if (ExitsFPI) {
4483         // This unwind edge exits FPI.  Make sure it agrees with other
4484         // such edges.
4485         if (FirstUser) {
4486           Check(UnwindPad == FirstUnwindPad,
4487                 "Unwind edges out of a funclet "
4488                 "pad must have the same unwind "
4489                 "dest",
4490                 &FPI, U, FirstUser);
4491         } else {
4492           FirstUser = U;
4493           FirstUnwindPad = UnwindPad;
4494           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4495           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4496               getParentPad(UnwindPad) == getParentPad(&FPI))
4497             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4498         }
4499       }
4500       // Make sure we visit all uses of FPI, but for nested pads stop as
4501       // soon as we know where they unwind to.
4502       if (CurrentPad != &FPI)
4503         break;
4504     }
4505     if (UnresolvedAncestorPad) {
4506       if (CurrentPad == UnresolvedAncestorPad) {
4507         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4508         // we've found an unwind edge that exits it, because we need to verify
4509         // all direct uses of FPI.
4510         assert(CurrentPad == &FPI);
4511         continue;
4512       }
4513       // Pop off the worklist any nested pads that we've found an unwind
4514       // destination for.  The pads on the worklist are the uncles,
4515       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4516       // for all ancestors of CurrentPad up to but not including
4517       // UnresolvedAncestorPad.
4518       Value *ResolvedPad = CurrentPad;
4519       while (!Worklist.empty()) {
4520         Value *UnclePad = Worklist.back();
4521         Value *AncestorPad = getParentPad(UnclePad);
4522         // Walk ResolvedPad up the ancestor list until we either find the
4523         // uncle's parent or the last resolved ancestor.
4524         while (ResolvedPad != AncestorPad) {
4525           Value *ResolvedParent = getParentPad(ResolvedPad);
4526           if (ResolvedParent == UnresolvedAncestorPad) {
4527             break;
4528           }
4529           ResolvedPad = ResolvedParent;
4530         }
4531         // If the resolved ancestor search didn't find the uncle's parent,
4532         // then the uncle is not yet resolved.
4533         if (ResolvedPad != AncestorPad)
4534           break;
4535         // This uncle is resolved, so pop it from the worklist.
4536         Worklist.pop_back();
4537       }
4538     }
4539   }
4540 
4541   if (FirstUnwindPad) {
4542     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4543       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4544       Value *SwitchUnwindPad;
4545       if (SwitchUnwindDest)
4546         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4547       else
4548         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4549       Check(SwitchUnwindPad == FirstUnwindPad,
4550             "Unwind edges out of a catch must have the same unwind dest as "
4551             "the parent catchswitch",
4552             &FPI, FirstUser, CatchSwitch);
4553     }
4554   }
4555 
4556   visitInstruction(FPI);
4557 }
4558 
4559 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4560   BasicBlock *BB = CatchSwitch.getParent();
4561 
4562   Function *F = BB->getParent();
4563   Check(F->hasPersonalityFn(),
4564         "CatchSwitchInst needs to be in a function with a personality.",
4565         &CatchSwitch);
4566 
4567   // The catchswitch instruction must be the first non-PHI instruction in the
4568   // block.
4569   Check(BB->getFirstNonPHI() == &CatchSwitch,
4570         "CatchSwitchInst not the first non-PHI instruction in the block.",
4571         &CatchSwitch);
4572 
4573   auto *ParentPad = CatchSwitch.getParentPad();
4574   Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4575         "CatchSwitchInst has an invalid parent.", ParentPad);
4576 
4577   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4578     Instruction *I = UnwindDest->getFirstNonPHI();
4579     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4580           "CatchSwitchInst must unwind to an EH block which is not a "
4581           "landingpad.",
4582           &CatchSwitch);
4583 
4584     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4585     if (getParentPad(I) == ParentPad)
4586       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4587   }
4588 
4589   Check(CatchSwitch.getNumHandlers() != 0,
4590         "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4591 
4592   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4593     Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4594           "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4595   }
4596 
4597   visitEHPadPredecessors(CatchSwitch);
4598   visitTerminator(CatchSwitch);
4599 }
4600 
4601 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4602   Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4603         "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4604         CRI.getOperand(0));
4605 
4606   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4607     Instruction *I = UnwindDest->getFirstNonPHI();
4608     Check(I->isEHPad() && !isa<LandingPadInst>(I),
4609           "CleanupReturnInst must unwind to an EH block which is not a "
4610           "landingpad.",
4611           &CRI);
4612   }
4613 
4614   visitTerminator(CRI);
4615 }
4616 
4617 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4618   Instruction *Op = cast<Instruction>(I.getOperand(i));
4619   // If the we have an invalid invoke, don't try to compute the dominance.
4620   // We already reject it in the invoke specific checks and the dominance
4621   // computation doesn't handle multiple edges.
4622   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4623     if (II->getNormalDest() == II->getUnwindDest())
4624       return;
4625   }
4626 
4627   // Quick check whether the def has already been encountered in the same block.
4628   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4629   // uses are defined to happen on the incoming edge, not at the instruction.
4630   //
4631   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4632   // wrapping an SSA value, assert that we've already encountered it.  See
4633   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4634   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4635     return;
4636 
4637   const Use &U = I.getOperandUse(i);
4638   Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4639 }
4640 
4641 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4642   Check(I.getType()->isPointerTy(),
4643         "dereferenceable, dereferenceable_or_null "
4644         "apply only to pointer types",
4645         &I);
4646   Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4647         "dereferenceable, dereferenceable_or_null apply only to load"
4648         " and inttoptr instructions, use attributes for calls or invokes",
4649         &I);
4650   Check(MD->getNumOperands() == 1,
4651         "dereferenceable, dereferenceable_or_null "
4652         "take one operand!",
4653         &I);
4654   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4655   Check(CI && CI->getType()->isIntegerTy(64),
4656         "dereferenceable, "
4657         "dereferenceable_or_null metadata value must be an i64!",
4658         &I);
4659 }
4660 
4661 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4662   Check(MD->getNumOperands() >= 2,
4663         "!prof annotations should have no less than 2 operands", MD);
4664 
4665   // Check first operand.
4666   Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4667   Check(isa<MDString>(MD->getOperand(0)),
4668         "expected string with name of the !prof annotation", MD);
4669   MDString *MDS = cast<MDString>(MD->getOperand(0));
4670   StringRef ProfName = MDS->getString();
4671 
4672   // Check consistency of !prof branch_weights metadata.
4673   if (ProfName.equals("branch_weights")) {
4674     if (isa<InvokeInst>(&I)) {
4675       Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4676             "Wrong number of InvokeInst branch_weights operands", MD);
4677     } else {
4678       unsigned ExpectedNumOperands = 0;
4679       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4680         ExpectedNumOperands = BI->getNumSuccessors();
4681       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4682         ExpectedNumOperands = SI->getNumSuccessors();
4683       else if (isa<CallInst>(&I))
4684         ExpectedNumOperands = 1;
4685       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4686         ExpectedNumOperands = IBI->getNumDestinations();
4687       else if (isa<SelectInst>(&I))
4688         ExpectedNumOperands = 2;
4689       else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4690         ExpectedNumOperands = CI->getNumSuccessors();
4691       else
4692         CheckFailed("!prof branch_weights are not allowed for this instruction",
4693                     MD);
4694 
4695       Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4696             "Wrong number of operands", MD);
4697     }
4698     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4699       auto &MDO = MD->getOperand(i);
4700       Check(MDO, "second operand should not be null", MD);
4701       Check(mdconst::dyn_extract<ConstantInt>(MDO),
4702             "!prof brunch_weights operand is not a const int");
4703     }
4704   }
4705 }
4706 
4707 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4708   assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4709   bool ExpectedInstTy =
4710       isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4711   CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4712           I, MD);
4713   // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4714   // only be found as DbgAssignIntrinsic operands.
4715   if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4716     for (auto *User : AsValue->users()) {
4717       CheckDI(isa<DbgAssignIntrinsic>(User),
4718               "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4719               MD, User);
4720       // All of the dbg.assign intrinsics should be in the same function as I.
4721       if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4722         CheckDI(DAI->getFunction() == I.getFunction(),
4723                 "dbg.assign not in same function as inst", DAI, &I);
4724     }
4725   }
4726 }
4727 
4728 void Verifier::visitCallStackMetadata(MDNode *MD) {
4729   // Call stack metadata should consist of a list of at least 1 constant int
4730   // (representing a hash of the location).
4731   Check(MD->getNumOperands() >= 1,
4732         "call stack metadata should have at least 1 operand", MD);
4733 
4734   for (const auto &Op : MD->operands())
4735     Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4736           "call stack metadata operand should be constant integer", Op);
4737 }
4738 
4739 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4740   Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4741   Check(MD->getNumOperands() >= 1,
4742         "!memprof annotations should have at least 1 metadata operand "
4743         "(MemInfoBlock)",
4744         MD);
4745 
4746   // Check each MIB
4747   for (auto &MIBOp : MD->operands()) {
4748     MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4749     // The first operand of an MIB should be the call stack metadata.
4750     // There rest of the operands should be MDString tags, and there should be
4751     // at least one.
4752     Check(MIB->getNumOperands() >= 2,
4753           "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4754 
4755     // Check call stack metadata (first operand).
4756     Check(MIB->getOperand(0) != nullptr,
4757           "!memprof MemInfoBlock first operand should not be null", MIB);
4758     Check(isa<MDNode>(MIB->getOperand(0)),
4759           "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4760     MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4761     visitCallStackMetadata(StackMD);
4762 
4763     // Check that remaining operands are MDString.
4764     Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4765                        [](const MDOperand &Op) { return isa<MDString>(Op); }),
4766           "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4767   }
4768 }
4769 
4770 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4771   Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4772   // Verify the partial callstack annotated from memprof profiles. This callsite
4773   // is a part of a profiled allocation callstack.
4774   visitCallStackMetadata(MD);
4775 }
4776 
4777 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4778   Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4779   Check(Annotation->getNumOperands() >= 1,
4780         "annotation must have at least one operand");
4781   for (const MDOperand &Op : Annotation->operands()) {
4782     bool TupleOfStrings =
4783         isa<MDTuple>(Op.get()) &&
4784         all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
4785           return isa<MDString>(Annotation.get());
4786         });
4787     Check(isa<MDString>(Op.get()) || TupleOfStrings,
4788           "operands must be a string or a tuple of strings");
4789   }
4790 }
4791 
4792 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4793   unsigned NumOps = MD->getNumOperands();
4794   Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4795         MD);
4796   Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4797         "first scope operand must be self-referential or string", MD);
4798   if (NumOps == 3)
4799     Check(isa<MDString>(MD->getOperand(2)),
4800           "third scope operand must be string (if used)", MD);
4801 
4802   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4803   Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4804 
4805   unsigned NumDomainOps = Domain->getNumOperands();
4806   Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4807         "domain must have one or two operands", Domain);
4808   Check(Domain->getOperand(0).get() == Domain ||
4809             isa<MDString>(Domain->getOperand(0)),
4810         "first domain operand must be self-referential or string", Domain);
4811   if (NumDomainOps == 2)
4812     Check(isa<MDString>(Domain->getOperand(1)),
4813           "second domain operand must be string (if used)", Domain);
4814 }
4815 
4816 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4817   for (const MDOperand &Op : MD->operands()) {
4818     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4819     Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4820     visitAliasScopeMetadata(OpMD);
4821   }
4822 }
4823 
4824 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4825   auto IsValidAccessScope = [](const MDNode *MD) {
4826     return MD->getNumOperands() == 0 && MD->isDistinct();
4827   };
4828 
4829   // It must be either an access scope itself...
4830   if (IsValidAccessScope(MD))
4831     return;
4832 
4833   // ...or a list of access scopes.
4834   for (const MDOperand &Op : MD->operands()) {
4835     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4836     Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4837     Check(IsValidAccessScope(OpMD),
4838           "Access scope list contains invalid access scope", MD);
4839   }
4840 }
4841 
4842 /// verifyInstruction - Verify that an instruction is well formed.
4843 ///
4844 void Verifier::visitInstruction(Instruction &I) {
4845   BasicBlock *BB = I.getParent();
4846   Check(BB, "Instruction not embedded in basic block!", &I);
4847 
4848   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4849     for (User *U : I.users()) {
4850       Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4851             "Only PHI nodes may reference their own value!", &I);
4852     }
4853   }
4854 
4855   // Check that void typed values don't have names
4856   Check(!I.getType()->isVoidTy() || !I.hasName(),
4857         "Instruction has a name, but provides a void value!", &I);
4858 
4859   // Check that the return value of the instruction is either void or a legal
4860   // value type.
4861   Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4862         "Instruction returns a non-scalar type!", &I);
4863 
4864   // Check that the instruction doesn't produce metadata. Calls are already
4865   // checked against the callee type.
4866   Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4867         "Invalid use of metadata!", &I);
4868 
4869   // Check that all uses of the instruction, if they are instructions
4870   // themselves, actually have parent basic blocks.  If the use is not an
4871   // instruction, it is an error!
4872   for (Use &U : I.uses()) {
4873     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4874       Check(Used->getParent() != nullptr,
4875             "Instruction referencing"
4876             " instruction not embedded in a basic block!",
4877             &I, Used);
4878     else {
4879       CheckFailed("Use of instruction is not an instruction!", U);
4880       return;
4881     }
4882   }
4883 
4884   // Get a pointer to the call base of the instruction if it is some form of
4885   // call.
4886   const CallBase *CBI = dyn_cast<CallBase>(&I);
4887 
4888   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4889     Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4890 
4891     // Check to make sure that only first-class-values are operands to
4892     // instructions.
4893     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4894       Check(false, "Instruction operands must be first-class values!", &I);
4895     }
4896 
4897     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4898       // This code checks whether the function is used as the operand of a
4899       // clang_arc_attachedcall operand bundle.
4900       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4901                                       int Idx) {
4902         return CBI && CBI->isOperandBundleOfType(
4903                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4904       };
4905 
4906       // Check to make sure that the "address of" an intrinsic function is never
4907       // taken. Ignore cases where the address of the intrinsic function is used
4908       // as the argument of operand bundle "clang.arc.attachedcall" as those
4909       // cases are handled in verifyAttachedCallBundle.
4910       Check((!F->isIntrinsic() ||
4911              (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4912              IsAttachedCallOperand(F, CBI, i)),
4913             "Cannot take the address of an intrinsic!", &I);
4914       Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4915                 F->getIntrinsicID() == Intrinsic::donothing ||
4916                 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4917                 F->getIntrinsicID() == Intrinsic::seh_try_end ||
4918                 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4919                 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4920                 F->getIntrinsicID() == Intrinsic::coro_resume ||
4921                 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4922                 F->getIntrinsicID() ==
4923                     Intrinsic::experimental_patchpoint_void ||
4924                 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4925                 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4926                 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4927                 IsAttachedCallOperand(F, CBI, i),
4928             "Cannot invoke an intrinsic other than donothing, patchpoint, "
4929             "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4930             &I);
4931       Check(F->getParent() == &M, "Referencing function in another module!", &I,
4932             &M, F, F->getParent());
4933     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4934       Check(OpBB->getParent() == BB->getParent(),
4935             "Referring to a basic block in another function!", &I);
4936     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4937       Check(OpArg->getParent() == BB->getParent(),
4938             "Referring to an argument in another function!", &I);
4939     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4940       Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4941             &M, GV, GV->getParent());
4942     } else if (isa<Instruction>(I.getOperand(i))) {
4943       verifyDominatesUse(I, i);
4944     } else if (isa<InlineAsm>(I.getOperand(i))) {
4945       Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4946             "Cannot take the address of an inline asm!", &I);
4947     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4948       if (CE->getType()->isPtrOrPtrVectorTy()) {
4949         // If we have a ConstantExpr pointer, we need to see if it came from an
4950         // illegal bitcast.
4951         visitConstantExprsRecursively(CE);
4952       }
4953     }
4954   }
4955 
4956   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4957     Check(I.getType()->isFPOrFPVectorTy(),
4958           "fpmath requires a floating point result!", &I);
4959     Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4960     if (ConstantFP *CFP0 =
4961             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4962       const APFloat &Accuracy = CFP0->getValueAPF();
4963       Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4964             "fpmath accuracy must have float type", &I);
4965       Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4966             "fpmath accuracy not a positive number!", &I);
4967     } else {
4968       Check(false, "invalid fpmath accuracy!", &I);
4969     }
4970   }
4971 
4972   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4973     Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4974           "Ranges are only for loads, calls and invokes!", &I);
4975     visitRangeMetadata(I, Range, I.getType());
4976   }
4977 
4978   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4979     Check(isa<LoadInst>(I) || isa<StoreInst>(I),
4980           "invariant.group metadata is only for loads and stores", &I);
4981   }
4982 
4983   if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
4984     Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4985           &I);
4986     Check(isa<LoadInst>(I),
4987           "nonnull applies only to load instructions, use attributes"
4988           " for calls or invokes",
4989           &I);
4990     Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
4991   }
4992 
4993   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4994     visitDereferenceableMetadata(I, MD);
4995 
4996   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4997     visitDereferenceableMetadata(I, MD);
4998 
4999   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
5000     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
5001 
5002   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
5003     visitAliasScopeListMetadata(MD);
5004   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
5005     visitAliasScopeListMetadata(MD);
5006 
5007   if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
5008     visitAccessGroupMetadata(MD);
5009 
5010   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
5011     Check(I.getType()->isPointerTy(), "align applies only to pointer types",
5012           &I);
5013     Check(isa<LoadInst>(I),
5014           "align applies only to load instructions, "
5015           "use attributes for calls or invokes",
5016           &I);
5017     Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
5018     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
5019     Check(CI && CI->getType()->isIntegerTy(64),
5020           "align metadata value must be an i64!", &I);
5021     uint64_t Align = CI->getZExtValue();
5022     Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5023           &I);
5024     Check(Align <= Value::MaximumAlignment,
5025           "alignment is larger that implementation defined limit", &I);
5026   }
5027 
5028   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
5029     visitProfMetadata(I, MD);
5030 
5031   if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
5032     visitMemProfMetadata(I, MD);
5033 
5034   if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
5035     visitCallsiteMetadata(I, MD);
5036 
5037   if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
5038     visitDIAssignIDMetadata(I, MD);
5039 
5040   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
5041     visitAnnotationMetadata(Annotation);
5042 
5043   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5044     CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5045     visitMDNode(*N, AreDebugLocsAllowed::Yes);
5046   }
5047 
5048   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5049     verifyFragmentExpression(*DII);
5050     verifyNotEntryValue(*DII);
5051   }
5052 
5053   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5054   I.getAllMetadata(MDs);
5055   for (auto Attachment : MDs) {
5056     unsigned Kind = Attachment.first;
5057     auto AllowLocs =
5058         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5059             ? AreDebugLocsAllowed::Yes
5060             : AreDebugLocsAllowed::No;
5061     visitMDNode(*Attachment.second, AllowLocs);
5062   }
5063 
5064   InstsInThisBlock.insert(&I);
5065 }
5066 
5067 /// Allow intrinsics to be verified in different ways.
5068 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5069   Function *IF = Call.getCalledFunction();
5070   Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5071         IF);
5072 
5073   // Verify that the intrinsic prototype lines up with what the .td files
5074   // describe.
5075   FunctionType *IFTy = IF->getFunctionType();
5076   bool IsVarArg = IFTy->isVarArg();
5077 
5078   SmallVector<Intrinsic::IITDescriptor, 8> Table;
5079   getIntrinsicInfoTableEntries(ID, Table);
5080   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5081 
5082   // Walk the descriptors to extract overloaded types.
5083   SmallVector<Type *, 4> ArgTys;
5084   Intrinsic::MatchIntrinsicTypesResult Res =
5085       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5086   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5087         "Intrinsic has incorrect return type!", IF);
5088   Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5089         "Intrinsic has incorrect argument type!", IF);
5090 
5091   // Verify if the intrinsic call matches the vararg property.
5092   if (IsVarArg)
5093     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5094           "Intrinsic was not defined with variable arguments!", IF);
5095   else
5096     Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5097           "Callsite was not defined with variable arguments!", IF);
5098 
5099   // All descriptors should be absorbed by now.
5100   Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5101 
5102   // Now that we have the intrinsic ID and the actual argument types (and we
5103   // know they are legal for the intrinsic!) get the intrinsic name through the
5104   // usual means.  This allows us to verify the mangling of argument types into
5105   // the name.
5106   const std::string ExpectedName =
5107       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5108   Check(ExpectedName == IF->getName(),
5109         "Intrinsic name not mangled correctly for type arguments! "
5110         "Should be: " +
5111             ExpectedName,
5112         IF);
5113 
5114   // If the intrinsic takes MDNode arguments, verify that they are either global
5115   // or are local to *this* function.
5116   for (Value *V : Call.args()) {
5117     if (auto *MD = dyn_cast<MetadataAsValue>(V))
5118       visitMetadataAsValue(*MD, Call.getCaller());
5119     if (auto *Const = dyn_cast<Constant>(V))
5120       Check(!Const->getType()->isX86_AMXTy(),
5121             "const x86_amx is not allowed in argument!");
5122   }
5123 
5124   switch (ID) {
5125   default:
5126     break;
5127   case Intrinsic::assume: {
5128     for (auto &Elem : Call.bundle_op_infos()) {
5129       unsigned ArgCount = Elem.End - Elem.Begin;
5130       // Separate storage assumptions are special insofar as they're the only
5131       // operand bundles allowed on assumes that aren't parameter attributes.
5132       if (Elem.Tag->getKey() == "separate_storage") {
5133         Check(ArgCount == 2,
5134               "separate_storage assumptions should have 2 arguments", Call);
5135         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5136                   Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5137               "arguments to separate_storage assumptions should be pointers",
5138               Call);
5139         return;
5140       }
5141       Check(Elem.Tag->getKey() == "ignore" ||
5142                 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5143             "tags must be valid attribute names", Call);
5144       Attribute::AttrKind Kind =
5145           Attribute::getAttrKindFromName(Elem.Tag->getKey());
5146       if (Kind == Attribute::Alignment) {
5147         Check(ArgCount <= 3 && ArgCount >= 2,
5148               "alignment assumptions should have 2 or 3 arguments", Call);
5149         Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5150               "first argument should be a pointer", Call);
5151         Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5152               "second argument should be an integer", Call);
5153         if (ArgCount == 3)
5154           Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5155                 "third argument should be an integer if present", Call);
5156         return;
5157       }
5158       Check(ArgCount <= 2, "too many arguments", Call);
5159       if (Kind == Attribute::None)
5160         break;
5161       if (Attribute::isIntAttrKind(Kind)) {
5162         Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5163         Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5164               "the second argument should be a constant integral value", Call);
5165       } else if (Attribute::canUseAsParamAttr(Kind)) {
5166         Check((ArgCount) == 1, "this attribute should have one argument", Call);
5167       } else if (Attribute::canUseAsFnAttr(Kind)) {
5168         Check((ArgCount) == 0, "this attribute has no argument", Call);
5169       }
5170     }
5171     break;
5172   }
5173   case Intrinsic::coro_id: {
5174     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5175     if (isa<ConstantPointerNull>(InfoArg))
5176       break;
5177     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5178     Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5179           "info argument of llvm.coro.id must refer to an initialized "
5180           "constant");
5181     Constant *Init = GV->getInitializer();
5182     Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5183           "info argument of llvm.coro.id must refer to either a struct or "
5184           "an array");
5185     break;
5186   }
5187   case Intrinsic::is_fpclass: {
5188     const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5189     Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5190           "unsupported bits for llvm.is.fpclass test mask");
5191     break;
5192   }
5193   case Intrinsic::fptrunc_round: {
5194     // Check the rounding mode
5195     Metadata *MD = nullptr;
5196     auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5197     if (MAV)
5198       MD = MAV->getMetadata();
5199 
5200     Check(MD != nullptr, "missing rounding mode argument", Call);
5201 
5202     Check(isa<MDString>(MD),
5203           ("invalid value for llvm.fptrunc.round metadata operand"
5204            " (the operand should be a string)"),
5205           MD);
5206 
5207     std::optional<RoundingMode> RoundMode =
5208         convertStrToRoundingMode(cast<MDString>(MD)->getString());
5209     Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5210           "unsupported rounding mode argument", Call);
5211     break;
5212   }
5213 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5214 #include "llvm/IR/VPIntrinsics.def"
5215     visitVPIntrinsic(cast<VPIntrinsic>(Call));
5216     break;
5217 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
5218   case Intrinsic::INTRINSIC:
5219 #include "llvm/IR/ConstrainedOps.def"
5220     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5221     break;
5222   case Intrinsic::dbg_declare: // llvm.dbg.declare
5223     Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5224           "invalid llvm.dbg.declare intrinsic call 1", Call);
5225     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5226     break;
5227   case Intrinsic::dbg_value: // llvm.dbg.value
5228     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5229     break;
5230   case Intrinsic::dbg_assign: // llvm.dbg.assign
5231     visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5232     break;
5233   case Intrinsic::dbg_label: // llvm.dbg.label
5234     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5235     break;
5236   case Intrinsic::memcpy:
5237   case Intrinsic::memcpy_inline:
5238   case Intrinsic::memmove:
5239   case Intrinsic::memset:
5240   case Intrinsic::memset_inline: {
5241     break;
5242   }
5243   case Intrinsic::memcpy_element_unordered_atomic:
5244   case Intrinsic::memmove_element_unordered_atomic:
5245   case Intrinsic::memset_element_unordered_atomic: {
5246     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5247 
5248     ConstantInt *ElementSizeCI =
5249         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5250     const APInt &ElementSizeVal = ElementSizeCI->getValue();
5251     Check(ElementSizeVal.isPowerOf2(),
5252           "element size of the element-wise atomic memory intrinsic "
5253           "must be a power of 2",
5254           Call);
5255 
5256     auto IsValidAlignment = [&](MaybeAlign Alignment) {
5257       return Alignment && ElementSizeVal.ule(Alignment->value());
5258     };
5259     Check(IsValidAlignment(AMI->getDestAlign()),
5260           "incorrect alignment of the destination argument", Call);
5261     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5262       Check(IsValidAlignment(AMT->getSourceAlign()),
5263             "incorrect alignment of the source argument", Call);
5264     }
5265     break;
5266   }
5267   case Intrinsic::call_preallocated_setup: {
5268     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5269     Check(NumArgs != nullptr,
5270           "llvm.call.preallocated.setup argument must be a constant");
5271     bool FoundCall = false;
5272     for (User *U : Call.users()) {
5273       auto *UseCall = dyn_cast<CallBase>(U);
5274       Check(UseCall != nullptr,
5275             "Uses of llvm.call.preallocated.setup must be calls");
5276       const Function *Fn = UseCall->getCalledFunction();
5277       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5278         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5279         Check(AllocArgIndex != nullptr,
5280               "llvm.call.preallocated.alloc arg index must be a constant");
5281         auto AllocArgIndexInt = AllocArgIndex->getValue();
5282         Check(AllocArgIndexInt.sge(0) &&
5283                   AllocArgIndexInt.slt(NumArgs->getValue()),
5284               "llvm.call.preallocated.alloc arg index must be between 0 and "
5285               "corresponding "
5286               "llvm.call.preallocated.setup's argument count");
5287       } else if (Fn && Fn->getIntrinsicID() ==
5288                            Intrinsic::call_preallocated_teardown) {
5289         // nothing to do
5290       } else {
5291         Check(!FoundCall, "Can have at most one call corresponding to a "
5292                           "llvm.call.preallocated.setup");
5293         FoundCall = true;
5294         size_t NumPreallocatedArgs = 0;
5295         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5296           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5297             ++NumPreallocatedArgs;
5298           }
5299         }
5300         Check(NumPreallocatedArgs != 0,
5301               "cannot use preallocated intrinsics on a call without "
5302               "preallocated arguments");
5303         Check(NumArgs->equalsInt(NumPreallocatedArgs),
5304               "llvm.call.preallocated.setup arg size must be equal to number "
5305               "of preallocated arguments "
5306               "at call site",
5307               Call, *UseCall);
5308         // getOperandBundle() cannot be called if more than one of the operand
5309         // bundle exists. There is already a check elsewhere for this, so skip
5310         // here if we see more than one.
5311         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5312             1) {
5313           return;
5314         }
5315         auto PreallocatedBundle =
5316             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5317         Check(PreallocatedBundle,
5318               "Use of llvm.call.preallocated.setup outside intrinsics "
5319               "must be in \"preallocated\" operand bundle");
5320         Check(PreallocatedBundle->Inputs.front().get() == &Call,
5321               "preallocated bundle must have token from corresponding "
5322               "llvm.call.preallocated.setup");
5323       }
5324     }
5325     break;
5326   }
5327   case Intrinsic::call_preallocated_arg: {
5328     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5329     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5330                        Intrinsic::call_preallocated_setup,
5331           "llvm.call.preallocated.arg token argument must be a "
5332           "llvm.call.preallocated.setup");
5333     Check(Call.hasFnAttr(Attribute::Preallocated),
5334           "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5335           "call site attribute");
5336     break;
5337   }
5338   case Intrinsic::call_preallocated_teardown: {
5339     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5340     Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5341                        Intrinsic::call_preallocated_setup,
5342           "llvm.call.preallocated.teardown token argument must be a "
5343           "llvm.call.preallocated.setup");
5344     break;
5345   }
5346   case Intrinsic::gcroot:
5347   case Intrinsic::gcwrite:
5348   case Intrinsic::gcread:
5349     if (ID == Intrinsic::gcroot) {
5350       AllocaInst *AI =
5351           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5352       Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5353       Check(isa<Constant>(Call.getArgOperand(1)),
5354             "llvm.gcroot parameter #2 must be a constant.", Call);
5355       if (!AI->getAllocatedType()->isPointerTy()) {
5356         Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5357               "llvm.gcroot parameter #1 must either be a pointer alloca, "
5358               "or argument #2 must be a non-null constant.",
5359               Call);
5360       }
5361     }
5362 
5363     Check(Call.getParent()->getParent()->hasGC(),
5364           "Enclosing function does not use GC.", Call);
5365     break;
5366   case Intrinsic::init_trampoline:
5367     Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5368           "llvm.init_trampoline parameter #2 must resolve to a function.",
5369           Call);
5370     break;
5371   case Intrinsic::prefetch:
5372     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5373           "rw argument to llvm.prefetch must be 0-1", Call);
5374     Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5375           "locality argument to llvm.prefetch must be 0-3", Call);
5376     Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5377           "cache type argument to llvm.prefetch must be 0-1", Call);
5378     break;
5379   case Intrinsic::stackprotector:
5380     Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5381           "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5382     break;
5383   case Intrinsic::localescape: {
5384     BasicBlock *BB = Call.getParent();
5385     Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5386           Call);
5387     Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5388           Call);
5389     for (Value *Arg : Call.args()) {
5390       if (isa<ConstantPointerNull>(Arg))
5391         continue; // Null values are allowed as placeholders.
5392       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5393       Check(AI && AI->isStaticAlloca(),
5394             "llvm.localescape only accepts static allocas", Call);
5395     }
5396     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5397     SawFrameEscape = true;
5398     break;
5399   }
5400   case Intrinsic::localrecover: {
5401     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5402     Function *Fn = dyn_cast<Function>(FnArg);
5403     Check(Fn && !Fn->isDeclaration(),
5404           "llvm.localrecover first "
5405           "argument must be function defined in this module",
5406           Call);
5407     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5408     auto &Entry = FrameEscapeInfo[Fn];
5409     Entry.second = unsigned(
5410         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5411     break;
5412   }
5413 
5414   case Intrinsic::experimental_gc_statepoint:
5415     if (auto *CI = dyn_cast<CallInst>(&Call))
5416       Check(!CI->isInlineAsm(),
5417             "gc.statepoint support for inline assembly unimplemented", CI);
5418     Check(Call.getParent()->getParent()->hasGC(),
5419           "Enclosing function does not use GC.", Call);
5420 
5421     verifyStatepoint(Call);
5422     break;
5423   case Intrinsic::experimental_gc_result: {
5424     Check(Call.getParent()->getParent()->hasGC(),
5425           "Enclosing function does not use GC.", Call);
5426 
5427     auto *Statepoint = Call.getArgOperand(0);
5428     if (isa<UndefValue>(Statepoint))
5429       break;
5430 
5431     // Are we tied to a statepoint properly?
5432     const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5433     const Function *StatepointFn =
5434         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5435     Check(StatepointFn && StatepointFn->isDeclaration() &&
5436               StatepointFn->getIntrinsicID() ==
5437                   Intrinsic::experimental_gc_statepoint,
5438           "gc.result operand #1 must be from a statepoint", Call,
5439           Call.getArgOperand(0));
5440 
5441     // Check that result type matches wrapped callee.
5442     auto *TargetFuncType =
5443         cast<FunctionType>(StatepointCall->getParamElementType(2));
5444     Check(Call.getType() == TargetFuncType->getReturnType(),
5445           "gc.result result type does not match wrapped callee", Call);
5446     break;
5447   }
5448   case Intrinsic::experimental_gc_relocate: {
5449     Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5450 
5451     Check(isa<PointerType>(Call.getType()->getScalarType()),
5452           "gc.relocate must return a pointer or a vector of pointers", Call);
5453 
5454     // Check that this relocate is correctly tied to the statepoint
5455 
5456     // This is case for relocate on the unwinding path of an invoke statepoint
5457     if (LandingPadInst *LandingPad =
5458             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5459 
5460       const BasicBlock *InvokeBB =
5461           LandingPad->getParent()->getUniquePredecessor();
5462 
5463       // Landingpad relocates should have only one predecessor with invoke
5464       // statepoint terminator
5465       Check(InvokeBB, "safepoints should have unique landingpads",
5466             LandingPad->getParent());
5467       Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5468             InvokeBB);
5469       Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5470             "gc relocate should be linked to a statepoint", InvokeBB);
5471     } else {
5472       // In all other cases relocate should be tied to the statepoint directly.
5473       // This covers relocates on a normal return path of invoke statepoint and
5474       // relocates of a call statepoint.
5475       auto *Token = Call.getArgOperand(0);
5476       Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5477             "gc relocate is incorrectly tied to the statepoint", Call, Token);
5478     }
5479 
5480     // Verify rest of the relocate arguments.
5481     const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5482 
5483     // Both the base and derived must be piped through the safepoint.
5484     Value *Base = Call.getArgOperand(1);
5485     Check(isa<ConstantInt>(Base),
5486           "gc.relocate operand #2 must be integer offset", Call);
5487 
5488     Value *Derived = Call.getArgOperand(2);
5489     Check(isa<ConstantInt>(Derived),
5490           "gc.relocate operand #3 must be integer offset", Call);
5491 
5492     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5493     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5494 
5495     // Check the bounds
5496     if (isa<UndefValue>(StatepointCall))
5497       break;
5498     if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5499                        .getOperandBundle(LLVMContext::OB_gc_live)) {
5500       Check(BaseIndex < Opt->Inputs.size(),
5501             "gc.relocate: statepoint base index out of bounds", Call);
5502       Check(DerivedIndex < Opt->Inputs.size(),
5503             "gc.relocate: statepoint derived index out of bounds", Call);
5504     }
5505 
5506     // Relocated value must be either a pointer type or vector-of-pointer type,
5507     // but gc_relocate does not need to return the same pointer type as the
5508     // relocated pointer. It can be casted to the correct type later if it's
5509     // desired. However, they must have the same address space and 'vectorness'
5510     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5511     auto *ResultType = Call.getType();
5512     auto *DerivedType = Relocate.getDerivedPtr()->getType();
5513     auto *BaseType = Relocate.getBasePtr()->getType();
5514 
5515     Check(BaseType->isPtrOrPtrVectorTy(),
5516           "gc.relocate: relocated value must be a pointer", Call);
5517     Check(DerivedType->isPtrOrPtrVectorTy(),
5518           "gc.relocate: relocated value must be a pointer", Call);
5519 
5520     Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5521           "gc.relocate: vector relocates to vector and pointer to pointer",
5522           Call);
5523     Check(
5524         ResultType->getPointerAddressSpace() ==
5525             DerivedType->getPointerAddressSpace(),
5526         "gc.relocate: relocating a pointer shouldn't change its address space",
5527         Call);
5528 
5529     auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5530     Check(GC, "gc.relocate: calling function must have GCStrategy",
5531           Call.getFunction());
5532     if (GC) {
5533       auto isGCPtr = [&GC](Type *PTy) {
5534         return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5535       };
5536       Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5537       Check(isGCPtr(BaseType),
5538             "gc.relocate: relocated value must be a gc pointer", Call);
5539       Check(isGCPtr(DerivedType),
5540             "gc.relocate: relocated value must be a gc pointer", Call);
5541     }
5542     break;
5543   }
5544   case Intrinsic::eh_exceptioncode:
5545   case Intrinsic::eh_exceptionpointer: {
5546     Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5547           "eh.exceptionpointer argument must be a catchpad", Call);
5548     break;
5549   }
5550   case Intrinsic::get_active_lane_mask: {
5551     Check(Call.getType()->isVectorTy(),
5552           "get_active_lane_mask: must return a "
5553           "vector",
5554           Call);
5555     auto *ElemTy = Call.getType()->getScalarType();
5556     Check(ElemTy->isIntegerTy(1),
5557           "get_active_lane_mask: element type is not "
5558           "i1",
5559           Call);
5560     break;
5561   }
5562   case Intrinsic::experimental_get_vector_length: {
5563     ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5564     Check(!VF->isNegative() && !VF->isZero(),
5565           "get_vector_length: VF must be positive", Call);
5566     break;
5567   }
5568   case Intrinsic::masked_load: {
5569     Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5570           Call);
5571 
5572     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5573     Value *Mask = Call.getArgOperand(2);
5574     Value *PassThru = Call.getArgOperand(3);
5575     Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5576           Call);
5577     Check(Alignment->getValue().isPowerOf2(),
5578           "masked_load: alignment must be a power of 2", Call);
5579     Check(PassThru->getType() == Call.getType(),
5580           "masked_load: pass through and return type must match", Call);
5581     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5582               cast<VectorType>(Call.getType())->getElementCount(),
5583           "masked_load: vector mask must be same length as return", Call);
5584     break;
5585   }
5586   case Intrinsic::masked_store: {
5587     Value *Val = Call.getArgOperand(0);
5588     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5589     Value *Mask = Call.getArgOperand(3);
5590     Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5591           Call);
5592     Check(Alignment->getValue().isPowerOf2(),
5593           "masked_store: alignment must be a power of 2", Call);
5594     Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5595               cast<VectorType>(Val->getType())->getElementCount(),
5596           "masked_store: vector mask must be same length as value", Call);
5597     break;
5598   }
5599 
5600   case Intrinsic::masked_gather: {
5601     const APInt &Alignment =
5602         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5603     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5604           "masked_gather: alignment must be 0 or a power of 2", Call);
5605     break;
5606   }
5607   case Intrinsic::masked_scatter: {
5608     const APInt &Alignment =
5609         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5610     Check(Alignment.isZero() || Alignment.isPowerOf2(),
5611           "masked_scatter: alignment must be 0 or a power of 2", Call);
5612     break;
5613   }
5614 
5615   case Intrinsic::experimental_guard: {
5616     Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5617     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5618           "experimental_guard must have exactly one "
5619           "\"deopt\" operand bundle");
5620     break;
5621   }
5622 
5623   case Intrinsic::experimental_deoptimize: {
5624     Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5625           Call);
5626     Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5627           "experimental_deoptimize must have exactly one "
5628           "\"deopt\" operand bundle");
5629     Check(Call.getType() == Call.getFunction()->getReturnType(),
5630           "experimental_deoptimize return type must match caller return type");
5631 
5632     if (isa<CallInst>(Call)) {
5633       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5634       Check(RI,
5635             "calls to experimental_deoptimize must be followed by a return");
5636 
5637       if (!Call.getType()->isVoidTy() && RI)
5638         Check(RI->getReturnValue() == &Call,
5639               "calls to experimental_deoptimize must be followed by a return "
5640               "of the value computed by experimental_deoptimize");
5641     }
5642 
5643     break;
5644   }
5645   case Intrinsic::vector_reduce_and:
5646   case Intrinsic::vector_reduce_or:
5647   case Intrinsic::vector_reduce_xor:
5648   case Intrinsic::vector_reduce_add:
5649   case Intrinsic::vector_reduce_mul:
5650   case Intrinsic::vector_reduce_smax:
5651   case Intrinsic::vector_reduce_smin:
5652   case Intrinsic::vector_reduce_umax:
5653   case Intrinsic::vector_reduce_umin: {
5654     Type *ArgTy = Call.getArgOperand(0)->getType();
5655     Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5656           "Intrinsic has incorrect argument type!");
5657     break;
5658   }
5659   case Intrinsic::vector_reduce_fmax:
5660   case Intrinsic::vector_reduce_fmin: {
5661     Type *ArgTy = Call.getArgOperand(0)->getType();
5662     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5663           "Intrinsic has incorrect argument type!");
5664     break;
5665   }
5666   case Intrinsic::vector_reduce_fadd:
5667   case Intrinsic::vector_reduce_fmul: {
5668     // Unlike the other reductions, the first argument is a start value. The
5669     // second argument is the vector to be reduced.
5670     Type *ArgTy = Call.getArgOperand(1)->getType();
5671     Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5672           "Intrinsic has incorrect argument type!");
5673     break;
5674   }
5675   case Intrinsic::smul_fix:
5676   case Intrinsic::smul_fix_sat:
5677   case Intrinsic::umul_fix:
5678   case Intrinsic::umul_fix_sat:
5679   case Intrinsic::sdiv_fix:
5680   case Intrinsic::sdiv_fix_sat:
5681   case Intrinsic::udiv_fix:
5682   case Intrinsic::udiv_fix_sat: {
5683     Value *Op1 = Call.getArgOperand(0);
5684     Value *Op2 = Call.getArgOperand(1);
5685     Check(Op1->getType()->isIntOrIntVectorTy(),
5686           "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5687           "vector of ints");
5688     Check(Op2->getType()->isIntOrIntVectorTy(),
5689           "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5690           "vector of ints");
5691 
5692     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5693     Check(Op3->getType()->isIntegerTy(),
5694           "third operand of [us][mul|div]_fix[_sat] must be an int type");
5695     Check(Op3->getBitWidth() <= 32,
5696           "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
5697 
5698     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5699         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5700       Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5701             "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5702             "the operands");
5703     } else {
5704       Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5705             "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5706             "to the width of the operands");
5707     }
5708     break;
5709   }
5710   case Intrinsic::lrint:
5711   case Intrinsic::llrint: {
5712     Type *ValTy = Call.getArgOperand(0)->getType();
5713     Type *ResultTy = Call.getType();
5714     Check(
5715         ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
5716         "llvm.lrint, llvm.llrint: argument must be floating-point or vector "
5717         "of floating-points, and result must be integer or vector of integers",
5718         &Call);
5719     Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
5720           "llvm.lrint, llvm.llrint: argument and result disagree on vector use",
5721           &Call);
5722     if (ValTy->isVectorTy()) {
5723       Check(cast<VectorType>(ValTy)->getElementCount() ==
5724                 cast<VectorType>(ResultTy)->getElementCount(),
5725             "llvm.lrint, llvm.llrint: argument must be same length as result",
5726             &Call);
5727     }
5728     break;
5729   }
5730   case Intrinsic::lround:
5731   case Intrinsic::llround: {
5732     Type *ValTy = Call.getArgOperand(0)->getType();
5733     Type *ResultTy = Call.getType();
5734     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5735           "Intrinsic does not support vectors", &Call);
5736     break;
5737   }
5738   case Intrinsic::bswap: {
5739     Type *Ty = Call.getType();
5740     unsigned Size = Ty->getScalarSizeInBits();
5741     Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5742     break;
5743   }
5744   case Intrinsic::invariant_start: {
5745     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5746     Check(InvariantSize &&
5747               (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5748           "invariant_start parameter must be -1, 0 or a positive number",
5749           &Call);
5750     break;
5751   }
5752   case Intrinsic::matrix_multiply:
5753   case Intrinsic::matrix_transpose:
5754   case Intrinsic::matrix_column_major_load:
5755   case Intrinsic::matrix_column_major_store: {
5756     Function *IF = Call.getCalledFunction();
5757     ConstantInt *Stride = nullptr;
5758     ConstantInt *NumRows;
5759     ConstantInt *NumColumns;
5760     VectorType *ResultTy;
5761     Type *Op0ElemTy = nullptr;
5762     Type *Op1ElemTy = nullptr;
5763     switch (ID) {
5764     case Intrinsic::matrix_multiply: {
5765       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5766       ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
5767       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5768       Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
5769                     ->getNumElements() ==
5770                 NumRows->getZExtValue() * N->getZExtValue(),
5771             "First argument of a matrix operation does not match specified "
5772             "shape!");
5773       Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
5774                     ->getNumElements() ==
5775                 N->getZExtValue() * NumColumns->getZExtValue(),
5776             "Second argument of a matrix operation does not match specified "
5777             "shape!");
5778 
5779       ResultTy = cast<VectorType>(Call.getType());
5780       Op0ElemTy =
5781           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5782       Op1ElemTy =
5783           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5784       break;
5785     }
5786     case Intrinsic::matrix_transpose:
5787       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5788       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5789       ResultTy = cast<VectorType>(Call.getType());
5790       Op0ElemTy =
5791           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5792       break;
5793     case Intrinsic::matrix_column_major_load: {
5794       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5795       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5796       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5797       ResultTy = cast<VectorType>(Call.getType());
5798       break;
5799     }
5800     case Intrinsic::matrix_column_major_store: {
5801       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5802       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5803       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5804       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5805       Op0ElemTy =
5806           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5807       break;
5808     }
5809     default:
5810       llvm_unreachable("unexpected intrinsic");
5811     }
5812 
5813     Check(ResultTy->getElementType()->isIntegerTy() ||
5814               ResultTy->getElementType()->isFloatingPointTy(),
5815           "Result type must be an integer or floating-point type!", IF);
5816 
5817     if (Op0ElemTy)
5818       Check(ResultTy->getElementType() == Op0ElemTy,
5819             "Vector element type mismatch of the result and first operand "
5820             "vector!",
5821             IF);
5822 
5823     if (Op1ElemTy)
5824       Check(ResultTy->getElementType() == Op1ElemTy,
5825             "Vector element type mismatch of the result and second operand "
5826             "vector!",
5827             IF);
5828 
5829     Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5830               NumRows->getZExtValue() * NumColumns->getZExtValue(),
5831           "Result of a matrix operation does not fit in the returned vector!");
5832 
5833     if (Stride)
5834       Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5835             "Stride must be greater or equal than the number of rows!", IF);
5836 
5837     break;
5838   }
5839   case Intrinsic::experimental_vector_splice: {
5840     VectorType *VecTy = cast<VectorType>(Call.getType());
5841     int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5842     int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5843     if (Call.getParent() && Call.getParent()->getParent()) {
5844       AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5845       if (Attrs.hasFnAttr(Attribute::VScaleRange))
5846         KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5847     }
5848     Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5849               (Idx >= 0 && Idx < KnownMinNumElements),
5850           "The splice index exceeds the range [-VL, VL-1] where VL is the "
5851           "known minimum number of elements in the vector. For scalable "
5852           "vectors the minimum number of elements is determined from "
5853           "vscale_range.",
5854           &Call);
5855     break;
5856   }
5857   case Intrinsic::experimental_stepvector: {
5858     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5859     Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5860               VecTy->getScalarSizeInBits() >= 8,
5861           "experimental_stepvector only supported for vectors of integers "
5862           "with a bitwidth of at least 8.",
5863           &Call);
5864     break;
5865   }
5866   case Intrinsic::vector_insert: {
5867     Value *Vec = Call.getArgOperand(0);
5868     Value *SubVec = Call.getArgOperand(1);
5869     Value *Idx = Call.getArgOperand(2);
5870     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5871 
5872     VectorType *VecTy = cast<VectorType>(Vec->getType());
5873     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5874 
5875     ElementCount VecEC = VecTy->getElementCount();
5876     ElementCount SubVecEC = SubVecTy->getElementCount();
5877     Check(VecTy->getElementType() == SubVecTy->getElementType(),
5878           "vector_insert parameters must have the same element "
5879           "type.",
5880           &Call);
5881     Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5882           "vector_insert index must be a constant multiple of "
5883           "the subvector's known minimum vector length.");
5884 
5885     // If this insertion is not the 'mixed' case where a fixed vector is
5886     // inserted into a scalable vector, ensure that the insertion of the
5887     // subvector does not overrun the parent vector.
5888     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5889       Check(IdxN < VecEC.getKnownMinValue() &&
5890                 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5891             "subvector operand of vector_insert would overrun the "
5892             "vector being inserted into.");
5893     }
5894     break;
5895   }
5896   case Intrinsic::vector_extract: {
5897     Value *Vec = Call.getArgOperand(0);
5898     Value *Idx = Call.getArgOperand(1);
5899     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5900 
5901     VectorType *ResultTy = cast<VectorType>(Call.getType());
5902     VectorType *VecTy = cast<VectorType>(Vec->getType());
5903 
5904     ElementCount VecEC = VecTy->getElementCount();
5905     ElementCount ResultEC = ResultTy->getElementCount();
5906 
5907     Check(ResultTy->getElementType() == VecTy->getElementType(),
5908           "vector_extract result must have the same element "
5909           "type as the input vector.",
5910           &Call);
5911     Check(IdxN % ResultEC.getKnownMinValue() == 0,
5912           "vector_extract index must be a constant multiple of "
5913           "the result type's known minimum vector length.");
5914 
5915     // If this extraction is not the 'mixed' case where a fixed vector is
5916     // extracted from a scalable vector, ensure that the extraction does not
5917     // overrun the parent vector.
5918     if (VecEC.isScalable() == ResultEC.isScalable()) {
5919       Check(IdxN < VecEC.getKnownMinValue() &&
5920                 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5921             "vector_extract would overrun.");
5922     }
5923     break;
5924   }
5925   case Intrinsic::experimental_noalias_scope_decl: {
5926     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5927     break;
5928   }
5929   case Intrinsic::preserve_array_access_index:
5930   case Intrinsic::preserve_struct_access_index:
5931   case Intrinsic::aarch64_ldaxr:
5932   case Intrinsic::aarch64_ldxr:
5933   case Intrinsic::arm_ldaex:
5934   case Intrinsic::arm_ldrex: {
5935     Type *ElemTy = Call.getParamElementType(0);
5936     Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5937           &Call);
5938     break;
5939   }
5940   case Intrinsic::aarch64_stlxr:
5941   case Intrinsic::aarch64_stxr:
5942   case Intrinsic::arm_stlex:
5943   case Intrinsic::arm_strex: {
5944     Type *ElemTy = Call.getAttributes().getParamElementType(1);
5945     Check(ElemTy,
5946           "Intrinsic requires elementtype attribute on second argument.",
5947           &Call);
5948     break;
5949   }
5950   case Intrinsic::aarch64_prefetch: {
5951     Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5952           "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5953     Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5954           "target argument to llvm.aarch64.prefetch must be 0-3", Call);
5955     Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5956           "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5957     Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
5958           "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5959     break;
5960   }
5961   case Intrinsic::callbr_landingpad: {
5962     const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
5963     Check(CBR, "intrinstic requires callbr operand", &Call);
5964     if (!CBR)
5965       break;
5966 
5967     const BasicBlock *LandingPadBB = Call.getParent();
5968     const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
5969     if (!PredBB) {
5970       CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
5971       break;
5972     }
5973     if (!isa<CallBrInst>(PredBB->getTerminator())) {
5974       CheckFailed("Intrinsic must have corresponding callbr in predecessor",
5975                   &Call);
5976       break;
5977     }
5978     Check(llvm::any_of(CBR->getIndirectDests(),
5979                        [LandingPadBB](const BasicBlock *IndDest) {
5980                          return IndDest == LandingPadBB;
5981                        }),
5982           "Intrinsic's corresponding callbr must have intrinsic's parent basic "
5983           "block in indirect destination list",
5984           &Call);
5985     const Instruction &First = *LandingPadBB->begin();
5986     Check(&First == &Call, "No other instructions may proceed intrinsic",
5987           &Call);
5988     break;
5989   }
5990   case Intrinsic::amdgcn_cs_chain: {
5991     auto CallerCC = Call.getCaller()->getCallingConv();
5992     switch (CallerCC) {
5993     case CallingConv::AMDGPU_CS:
5994     case CallingConv::AMDGPU_CS_Chain:
5995     case CallingConv::AMDGPU_CS_ChainPreserve:
5996       break;
5997     default:
5998       CheckFailed("Intrinsic can only be used from functions with the "
5999                   "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6000                   "calling conventions",
6001                   &Call);
6002       break;
6003     }
6004 
6005     Check(Call.paramHasAttr(2, Attribute::InReg),
6006           "SGPR arguments must have the `inreg` attribute", &Call);
6007     Check(!Call.paramHasAttr(3, Attribute::InReg),
6008           "VGPR arguments must not have the `inreg` attribute", &Call);
6009     break;
6010   }
6011   case Intrinsic::amdgcn_set_inactive_chain_arg: {
6012     auto CallerCC = Call.getCaller()->getCallingConv();
6013     switch (CallerCC) {
6014     case CallingConv::AMDGPU_CS_Chain:
6015     case CallingConv::AMDGPU_CS_ChainPreserve:
6016       break;
6017     default:
6018       CheckFailed("Intrinsic can only be used from functions with the "
6019                   "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6020                   "calling conventions",
6021                   &Call);
6022       break;
6023     }
6024 
6025     unsigned InactiveIdx = 1;
6026     Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6027           "Value for inactive lanes must not have the `inreg` attribute",
6028           &Call);
6029     Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
6030           "Value for inactive lanes must be a function argument", &Call);
6031     Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6032           "Value for inactive lanes must be a VGPR function argument", &Call);
6033     break;
6034   }
6035   case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6036   case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6037     Value *V = Call.getArgOperand(0);
6038     unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
6039     Check(RegCount % 8 == 0,
6040           "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6041     Check((RegCount >= 24 && RegCount <= 256),
6042           "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6043     break;
6044   }
6045   case Intrinsic::experimental_convergence_entry:
6046     LLVM_FALLTHROUGH;
6047   case Intrinsic::experimental_convergence_anchor:
6048     break;
6049   case Intrinsic::experimental_convergence_loop:
6050     break;
6051   case Intrinsic::ptrmask: {
6052     Type *Ty0 = Call.getArgOperand(0)->getType();
6053     Type *Ty1 = Call.getArgOperand(1)->getType();
6054     Check(Ty0->isPtrOrPtrVectorTy(),
6055           "llvm.ptrmask intrinsic first argument must be pointer or vector "
6056           "of pointers",
6057           &Call);
6058     Check(
6059         Ty0->isVectorTy() == Ty1->isVectorTy(),
6060         "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6061         &Call);
6062     if (Ty0->isVectorTy())
6063       Check(cast<VectorType>(Ty0)->getElementCount() ==
6064                 cast<VectorType>(Ty1)->getElementCount(),
6065             "llvm.ptrmask intrinsic arguments must have the same number of "
6066             "elements",
6067             &Call);
6068     Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6069           "llvm.ptrmask intrinsic second argument bitwidth must match "
6070           "pointer index type size of first argument",
6071           &Call);
6072     break;
6073   }
6074   };
6075 
6076   // Verify that there aren't any unmediated control transfers between funclets.
6077   if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
6078     Function *F = Call.getParent()->getParent();
6079     if (F->hasPersonalityFn() &&
6080         isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
6081       // Run EH funclet coloring on-demand and cache results for other intrinsic
6082       // calls in this function
6083       if (BlockEHFuncletColors.empty())
6084         BlockEHFuncletColors = colorEHFunclets(*F);
6085 
6086       // Check for catch-/cleanup-pad in first funclet block
6087       bool InEHFunclet = false;
6088       BasicBlock *CallBB = Call.getParent();
6089       const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
6090       assert(CV.size() > 0 && "Uncolored block");
6091       for (BasicBlock *ColorFirstBB : CV)
6092         if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
6093           InEHFunclet = true;
6094 
6095       // Check for funclet operand bundle
6096       bool HasToken = false;
6097       for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6098         if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
6099           HasToken = true;
6100 
6101       // This would cause silent code truncation in WinEHPrepare
6102       if (InEHFunclet)
6103         Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6104     }
6105   }
6106 }
6107 
6108 /// Carefully grab the subprogram from a local scope.
6109 ///
6110 /// This carefully grabs the subprogram from a local scope, avoiding the
6111 /// built-in assertions that would typically fire.
6112 static DISubprogram *getSubprogram(Metadata *LocalScope) {
6113   if (!LocalScope)
6114     return nullptr;
6115 
6116   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
6117     return SP;
6118 
6119   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6120     return getSubprogram(LB->getRawScope());
6121 
6122   // Just return null; broken scope chains are checked elsewhere.
6123   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6124   return nullptr;
6125 }
6126 
6127 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6128   if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6129     auto *RetTy = cast<VectorType>(VPCast->getType());
6130     auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6131     Check(RetTy->getElementCount() == ValTy->getElementCount(),
6132           "VP cast intrinsic first argument and result vector lengths must be "
6133           "equal",
6134           *VPCast);
6135 
6136     switch (VPCast->getIntrinsicID()) {
6137     default:
6138       llvm_unreachable("Unknown VP cast intrinsic");
6139     case Intrinsic::vp_trunc:
6140       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6141             "llvm.vp.trunc intrinsic first argument and result element type "
6142             "must be integer",
6143             *VPCast);
6144       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6145             "llvm.vp.trunc intrinsic the bit size of first argument must be "
6146             "larger than the bit size of the return type",
6147             *VPCast);
6148       break;
6149     case Intrinsic::vp_zext:
6150     case Intrinsic::vp_sext:
6151       Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6152             "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6153             "element type must be integer",
6154             *VPCast);
6155       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6156             "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6157             "argument must be smaller than the bit size of the return type",
6158             *VPCast);
6159       break;
6160     case Intrinsic::vp_fptoui:
6161     case Intrinsic::vp_fptosi:
6162       Check(
6163           RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6164           "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
6165           "type must be floating-point and result element type must be integer",
6166           *VPCast);
6167       break;
6168     case Intrinsic::vp_uitofp:
6169     case Intrinsic::vp_sitofp:
6170       Check(
6171           RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6172           "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6173           "type must be integer and result element type must be floating-point",
6174           *VPCast);
6175       break;
6176     case Intrinsic::vp_fptrunc:
6177       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6178             "llvm.vp.fptrunc intrinsic first argument and result element type "
6179             "must be floating-point",
6180             *VPCast);
6181       Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6182             "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6183             "larger than the bit size of the return type",
6184             *VPCast);
6185       break;
6186     case Intrinsic::vp_fpext:
6187       Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6188             "llvm.vp.fpext intrinsic first argument and result element type "
6189             "must be floating-point",
6190             *VPCast);
6191       Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6192             "llvm.vp.fpext intrinsic the bit size of first argument must be "
6193             "smaller than the bit size of the return type",
6194             *VPCast);
6195       break;
6196     case Intrinsic::vp_ptrtoint:
6197       Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6198             "llvm.vp.ptrtoint intrinsic first argument element type must be "
6199             "pointer and result element type must be integer",
6200             *VPCast);
6201       break;
6202     case Intrinsic::vp_inttoptr:
6203       Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6204             "llvm.vp.inttoptr intrinsic first argument element type must be "
6205             "integer and result element type must be pointer",
6206             *VPCast);
6207       break;
6208     }
6209   }
6210   if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6211     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6212     Check(CmpInst::isFPPredicate(Pred),
6213           "invalid predicate for VP FP comparison intrinsic", &VPI);
6214   }
6215   if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6216     auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6217     Check(CmpInst::isIntPredicate(Pred),
6218           "invalid predicate for VP integer comparison intrinsic", &VPI);
6219   }
6220   if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6221     auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6222     Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6223           "unsupported bits for llvm.vp.is.fpclass test mask");
6224   }
6225 }
6226 
6227 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6228   unsigned NumOperands;
6229   bool HasRoundingMD;
6230   switch (FPI.getIntrinsicID()) {
6231 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6232   case Intrinsic::INTRINSIC:                                                   \
6233     NumOperands = NARG;                                                        \
6234     HasRoundingMD = ROUND_MODE;                                                \
6235     break;
6236 #include "llvm/IR/ConstrainedOps.def"
6237   default:
6238     llvm_unreachable("Invalid constrained FP intrinsic!");
6239   }
6240   NumOperands += (1 + HasRoundingMD);
6241   // Compare intrinsics carry an extra predicate metadata operand.
6242   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6243     NumOperands += 1;
6244   Check((FPI.arg_size() == NumOperands),
6245         "invalid arguments for constrained FP intrinsic", &FPI);
6246 
6247   switch (FPI.getIntrinsicID()) {
6248   case Intrinsic::experimental_constrained_lrint:
6249   case Intrinsic::experimental_constrained_llrint: {
6250     Type *ValTy = FPI.getArgOperand(0)->getType();
6251     Type *ResultTy = FPI.getType();
6252     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6253           "Intrinsic does not support vectors", &FPI);
6254   }
6255     break;
6256 
6257   case Intrinsic::experimental_constrained_lround:
6258   case Intrinsic::experimental_constrained_llround: {
6259     Type *ValTy = FPI.getArgOperand(0)->getType();
6260     Type *ResultTy = FPI.getType();
6261     Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6262           "Intrinsic does not support vectors", &FPI);
6263     break;
6264   }
6265 
6266   case Intrinsic::experimental_constrained_fcmp:
6267   case Intrinsic::experimental_constrained_fcmps: {
6268     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6269     Check(CmpInst::isFPPredicate(Pred),
6270           "invalid predicate for constrained FP comparison intrinsic", &FPI);
6271     break;
6272   }
6273 
6274   case Intrinsic::experimental_constrained_fptosi:
6275   case Intrinsic::experimental_constrained_fptoui: {
6276     Value *Operand = FPI.getArgOperand(0);
6277     ElementCount SrcEC;
6278     Check(Operand->getType()->isFPOrFPVectorTy(),
6279           "Intrinsic first argument must be floating point", &FPI);
6280     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6281       SrcEC = cast<VectorType>(OperandT)->getElementCount();
6282     }
6283 
6284     Operand = &FPI;
6285     Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6286           "Intrinsic first argument and result disagree on vector use", &FPI);
6287     Check(Operand->getType()->isIntOrIntVectorTy(),
6288           "Intrinsic result must be an integer", &FPI);
6289     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6290       Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6291             "Intrinsic first argument and result vector lengths must be equal",
6292             &FPI);
6293     }
6294   }
6295     break;
6296 
6297   case Intrinsic::experimental_constrained_sitofp:
6298   case Intrinsic::experimental_constrained_uitofp: {
6299     Value *Operand = FPI.getArgOperand(0);
6300     ElementCount SrcEC;
6301     Check(Operand->getType()->isIntOrIntVectorTy(),
6302           "Intrinsic first argument must be integer", &FPI);
6303     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6304       SrcEC = cast<VectorType>(OperandT)->getElementCount();
6305     }
6306 
6307     Operand = &FPI;
6308     Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6309           "Intrinsic first argument and result disagree on vector use", &FPI);
6310     Check(Operand->getType()->isFPOrFPVectorTy(),
6311           "Intrinsic result must be a floating point", &FPI);
6312     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6313       Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6314             "Intrinsic first argument and result vector lengths must be equal",
6315             &FPI);
6316     }
6317   } break;
6318 
6319   case Intrinsic::experimental_constrained_fptrunc:
6320   case Intrinsic::experimental_constrained_fpext: {
6321     Value *Operand = FPI.getArgOperand(0);
6322     Type *OperandTy = Operand->getType();
6323     Value *Result = &FPI;
6324     Type *ResultTy = Result->getType();
6325     Check(OperandTy->isFPOrFPVectorTy(),
6326           "Intrinsic first argument must be FP or FP vector", &FPI);
6327     Check(ResultTy->isFPOrFPVectorTy(),
6328           "Intrinsic result must be FP or FP vector", &FPI);
6329     Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6330           "Intrinsic first argument and result disagree on vector use", &FPI);
6331     if (OperandTy->isVectorTy()) {
6332       Check(cast<VectorType>(OperandTy)->getElementCount() ==
6333                 cast<VectorType>(ResultTy)->getElementCount(),
6334             "Intrinsic first argument and result vector lengths must be equal",
6335             &FPI);
6336     }
6337     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6338       Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6339             "Intrinsic first argument's type must be larger than result type",
6340             &FPI);
6341     } else {
6342       Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6343             "Intrinsic first argument's type must be smaller than result type",
6344             &FPI);
6345     }
6346   }
6347     break;
6348 
6349   default:
6350     break;
6351   }
6352 
6353   // If a non-metadata argument is passed in a metadata slot then the
6354   // error will be caught earlier when the incorrect argument doesn't
6355   // match the specification in the intrinsic call table. Thus, no
6356   // argument type check is needed here.
6357 
6358   Check(FPI.getExceptionBehavior().has_value(),
6359         "invalid exception behavior argument", &FPI);
6360   if (HasRoundingMD) {
6361     Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6362           &FPI);
6363   }
6364 }
6365 
6366 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6367   auto *MD = DII.getRawLocation();
6368   CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6369               (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6370           "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6371   CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6372           "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6373           DII.getRawVariable());
6374   CheckDI(isa<DIExpression>(DII.getRawExpression()),
6375           "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6376           DII.getRawExpression());
6377 
6378   if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6379     CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6380             "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6381             DAI->getRawAssignID());
6382     const auto *RawAddr = DAI->getRawAddress();
6383     CheckDI(
6384         isa<ValueAsMetadata>(RawAddr) ||
6385             (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6386         "invalid llvm.dbg.assign intrinsic address", &DII,
6387         DAI->getRawAddress());
6388     CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6389             "invalid llvm.dbg.assign intrinsic address expression", &DII,
6390             DAI->getRawAddressExpression());
6391     // All of the linked instructions should be in the same function as DII.
6392     for (Instruction *I : at::getAssignmentInsts(DAI))
6393       CheckDI(DAI->getFunction() == I->getFunction(),
6394               "inst not in same function as dbg.assign", I, DAI);
6395   }
6396 
6397   // Ignore broken !dbg attachments; they're checked elsewhere.
6398   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6399     if (!isa<DILocation>(N))
6400       return;
6401 
6402   BasicBlock *BB = DII.getParent();
6403   Function *F = BB ? BB->getParent() : nullptr;
6404 
6405   // The scopes for variables and !dbg attachments must agree.
6406   DILocalVariable *Var = DII.getVariable();
6407   DILocation *Loc = DII.getDebugLoc();
6408   CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6409           &DII, BB, F);
6410 
6411   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6412   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6413   if (!VarSP || !LocSP)
6414     return; // Broken scope chains are checked elsewhere.
6415 
6416   CheckDI(VarSP == LocSP,
6417           "mismatched subprogram between llvm.dbg." + Kind +
6418               " variable and !dbg attachment",
6419           &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6420           Loc->getScope()->getSubprogram());
6421 
6422   // This check is redundant with one in visitLocalVariable().
6423   CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6424           Var->getRawType());
6425   verifyFnArgs(DII);
6426 }
6427 
6428 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6429   CheckDI(isa<DILabel>(DLI.getRawLabel()),
6430           "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6431           DLI.getRawLabel());
6432 
6433   // Ignore broken !dbg attachments; they're checked elsewhere.
6434   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6435     if (!isa<DILocation>(N))
6436       return;
6437 
6438   BasicBlock *BB = DLI.getParent();
6439   Function *F = BB ? BB->getParent() : nullptr;
6440 
6441   // The scopes for variables and !dbg attachments must agree.
6442   DILabel *Label = DLI.getLabel();
6443   DILocation *Loc = DLI.getDebugLoc();
6444   Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6445         BB, F);
6446 
6447   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6448   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6449   if (!LabelSP || !LocSP)
6450     return;
6451 
6452   CheckDI(LabelSP == LocSP,
6453           "mismatched subprogram between llvm.dbg." + Kind +
6454               " label and !dbg attachment",
6455           &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6456           Loc->getScope()->getSubprogram());
6457 }
6458 
6459 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6460   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6461   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6462 
6463   // We don't know whether this intrinsic verified correctly.
6464   if (!V || !E || !E->isValid())
6465     return;
6466 
6467   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6468   auto Fragment = E->getFragmentInfo();
6469   if (!Fragment)
6470     return;
6471 
6472   // The frontend helps out GDB by emitting the members of local anonymous
6473   // unions as artificial local variables with shared storage. When SROA splits
6474   // the storage for artificial local variables that are smaller than the entire
6475   // union, the overhang piece will be outside of the allotted space for the
6476   // variable and this check fails.
6477   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6478   if (V->isArtificial())
6479     return;
6480 
6481   verifyFragmentExpression(*V, *Fragment, &I);
6482 }
6483 
6484 template <typename ValueOrMetadata>
6485 void Verifier::verifyFragmentExpression(const DIVariable &V,
6486                                         DIExpression::FragmentInfo Fragment,
6487                                         ValueOrMetadata *Desc) {
6488   // If there's no size, the type is broken, but that should be checked
6489   // elsewhere.
6490   auto VarSize = V.getSizeInBits();
6491   if (!VarSize)
6492     return;
6493 
6494   unsigned FragSize = Fragment.SizeInBits;
6495   unsigned FragOffset = Fragment.OffsetInBits;
6496   CheckDI(FragSize + FragOffset <= *VarSize,
6497           "fragment is larger than or outside of variable", Desc, &V);
6498   CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6499 }
6500 
6501 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6502   // This function does not take the scope of noninlined function arguments into
6503   // account. Don't run it if current function is nodebug, because it may
6504   // contain inlined debug intrinsics.
6505   if (!HasDebugInfo)
6506     return;
6507 
6508   // For performance reasons only check non-inlined ones.
6509   if (I.getDebugLoc()->getInlinedAt())
6510     return;
6511 
6512   DILocalVariable *Var = I.getVariable();
6513   CheckDI(Var, "dbg intrinsic without variable");
6514 
6515   unsigned ArgNo = Var->getArg();
6516   if (!ArgNo)
6517     return;
6518 
6519   // Verify there are no duplicate function argument debug info entries.
6520   // These will cause hard-to-debug assertions in the DWARF backend.
6521   if (DebugFnArgs.size() < ArgNo)
6522     DebugFnArgs.resize(ArgNo, nullptr);
6523 
6524   auto *Prev = DebugFnArgs[ArgNo - 1];
6525   DebugFnArgs[ArgNo - 1] = Var;
6526   CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6527           Prev, Var);
6528 }
6529 
6530 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6531   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6532 
6533   // We don't know whether this intrinsic verified correctly.
6534   if (!E || !E->isValid())
6535     return;
6536 
6537   if (isa<ValueAsMetadata>(I.getRawLocation())) {
6538     Value *VarValue = I.getVariableLocationOp(0);
6539     if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
6540       return;
6541     // We allow EntryValues for swift async arguments, as they have an
6542     // ABI-guarantee to be turned into a specific register.
6543     if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
6544         ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6545       return;
6546   }
6547 
6548   CheckDI(!E->isEntryValue(),
6549           "Entry values are only allowed in MIR unless they target a "
6550           "swiftasync Argument",
6551           &I);
6552 }
6553 
6554 void Verifier::verifyCompileUnits() {
6555   // When more than one Module is imported into the same context, such as during
6556   // an LTO build before linking the modules, ODR type uniquing may cause types
6557   // to point to a different CU. This check does not make sense in this case.
6558   if (M.getContext().isODRUniquingDebugTypes())
6559     return;
6560   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6561   SmallPtrSet<const Metadata *, 2> Listed;
6562   if (CUs)
6563     Listed.insert(CUs->op_begin(), CUs->op_end());
6564   for (const auto *CU : CUVisited)
6565     CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6566   CUVisited.clear();
6567 }
6568 
6569 void Verifier::verifyDeoptimizeCallingConvs() {
6570   if (DeoptimizeDeclarations.empty())
6571     return;
6572 
6573   const Function *First = DeoptimizeDeclarations[0];
6574   for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
6575     Check(First->getCallingConv() == F->getCallingConv(),
6576           "All llvm.experimental.deoptimize declarations must have the same "
6577           "calling convention",
6578           First, F);
6579   }
6580 }
6581 
6582 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6583                                         const OperandBundleUse &BU) {
6584   FunctionType *FTy = Call.getFunctionType();
6585 
6586   Check((FTy->getReturnType()->isPointerTy() ||
6587          (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6588         "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6589         "function returning a pointer or a non-returning function that has a "
6590         "void return type",
6591         Call);
6592 
6593   Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6594         "operand bundle \"clang.arc.attachedcall\" requires one function as "
6595         "an argument",
6596         Call);
6597 
6598   auto *Fn = cast<Function>(BU.Inputs.front());
6599   Intrinsic::ID IID = Fn->getIntrinsicID();
6600 
6601   if (IID) {
6602     Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6603            IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6604           "invalid function argument", Call);
6605   } else {
6606     StringRef FnName = Fn->getName();
6607     Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6608            FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6609           "invalid function argument", Call);
6610   }
6611 }
6612 
6613 void Verifier::verifyNoAliasScopeDecl() {
6614   if (NoAliasScopeDecls.empty())
6615     return;
6616 
6617   // only a single scope must be declared at a time.
6618   for (auto *II : NoAliasScopeDecls) {
6619     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6620            "Not a llvm.experimental.noalias.scope.decl ?");
6621     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6622         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6623     Check(ScopeListMV != nullptr,
6624           "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6625           "argument",
6626           II);
6627 
6628     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6629     Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6630     Check(ScopeListMD->getNumOperands() == 1,
6631           "!id.scope.list must point to a list with a single scope", II);
6632     visitAliasScopeListMetadata(ScopeListMD);
6633   }
6634 
6635   // Only check the domination rule when requested. Once all passes have been
6636   // adapted this option can go away.
6637   if (!VerifyNoAliasScopeDomination)
6638     return;
6639 
6640   // Now sort the intrinsics based on the scope MDNode so that declarations of
6641   // the same scopes are next to each other.
6642   auto GetScope = [](IntrinsicInst *II) {
6643     const auto *ScopeListMV = cast<MetadataAsValue>(
6644         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6645     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6646   };
6647 
6648   // We are sorting on MDNode pointers here. For valid input IR this is ok.
6649   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6650   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6651     return GetScope(Lhs) < GetScope(Rhs);
6652   };
6653 
6654   llvm::sort(NoAliasScopeDecls, Compare);
6655 
6656   // Go over the intrinsics and check that for the same scope, they are not
6657   // dominating each other.
6658   auto ItCurrent = NoAliasScopeDecls.begin();
6659   while (ItCurrent != NoAliasScopeDecls.end()) {
6660     auto CurScope = GetScope(*ItCurrent);
6661     auto ItNext = ItCurrent;
6662     do {
6663       ++ItNext;
6664     } while (ItNext != NoAliasScopeDecls.end() &&
6665              GetScope(*ItNext) == CurScope);
6666 
6667     // [ItCurrent, ItNext) represents the declarations for the same scope.
6668     // Ensure they are not dominating each other.. but only if it is not too
6669     // expensive.
6670     if (ItNext - ItCurrent < 32)
6671       for (auto *I : llvm::make_range(ItCurrent, ItNext))
6672         for (auto *J : llvm::make_range(ItCurrent, ItNext))
6673           if (I != J)
6674             Check(!DT.dominates(I, J),
6675                   "llvm.experimental.noalias.scope.decl dominates another one "
6676                   "with the same scope",
6677                   I);
6678     ItCurrent = ItNext;
6679   }
6680 }
6681 
6682 //===----------------------------------------------------------------------===//
6683 //  Implement the public interfaces to this file...
6684 //===----------------------------------------------------------------------===//
6685 
6686 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6687   Function &F = const_cast<Function &>(f);
6688 
6689   // Don't use a raw_null_ostream.  Printing IR is expensive.
6690   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6691 
6692   // Note that this function's return value is inverted from what you would
6693   // expect of a function called "verify".
6694   return !V.verify(F);
6695 }
6696 
6697 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6698                         bool *BrokenDebugInfo) {
6699   // Don't use a raw_null_ostream.  Printing IR is expensive.
6700   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6701 
6702   bool Broken = false;
6703   for (const Function &F : M)
6704     Broken |= !V.verify(F);
6705 
6706   Broken |= !V.verify();
6707   if (BrokenDebugInfo)
6708     *BrokenDebugInfo = V.hasBrokenDebugInfo();
6709   // Note that this function's return value is inverted from what you would
6710   // expect of a function called "verify".
6711   return Broken;
6712 }
6713 
6714 namespace {
6715 
6716 struct VerifierLegacyPass : public FunctionPass {
6717   static char ID;
6718 
6719   std::unique_ptr<Verifier> V;
6720   bool FatalErrors = true;
6721 
6722   VerifierLegacyPass() : FunctionPass(ID) {
6723     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6724   }
6725   explicit VerifierLegacyPass(bool FatalErrors)
6726       : FunctionPass(ID),
6727         FatalErrors(FatalErrors) {
6728     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6729   }
6730 
6731   bool doInitialization(Module &M) override {
6732     V = std::make_unique<Verifier>(
6733         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6734     return false;
6735   }
6736 
6737   bool runOnFunction(Function &F) override {
6738     if (!V->verify(F) && FatalErrors) {
6739       errs() << "in function " << F.getName() << '\n';
6740       report_fatal_error("Broken function found, compilation aborted!");
6741     }
6742     return false;
6743   }
6744 
6745   bool doFinalization(Module &M) override {
6746     bool HasErrors = false;
6747     for (Function &F : M)
6748       if (F.isDeclaration())
6749         HasErrors |= !V->verify(F);
6750 
6751     HasErrors |= !V->verify();
6752     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6753       report_fatal_error("Broken module found, compilation aborted!");
6754     return false;
6755   }
6756 
6757   void getAnalysisUsage(AnalysisUsage &AU) const override {
6758     AU.setPreservesAll();
6759   }
6760 };
6761 
6762 } // end anonymous namespace
6763 
6764 /// Helper to issue failure from the TBAA verification
6765 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6766   if (Diagnostic)
6767     return Diagnostic->CheckFailed(Args...);
6768 }
6769 
6770 #define CheckTBAA(C, ...)                                                      \
6771   do {                                                                         \
6772     if (!(C)) {                                                                \
6773       CheckFailed(__VA_ARGS__);                                                \
6774       return false;                                                            \
6775     }                                                                          \
6776   } while (false)
6777 
6778 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6779 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
6780 /// struct-type node describing an aggregate data structure (like a struct).
6781 TBAAVerifier::TBAABaseNodeSummary
6782 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6783                                  bool IsNewFormat) {
6784   if (BaseNode->getNumOperands() < 2) {
6785     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6786     return {true, ~0u};
6787   }
6788 
6789   auto Itr = TBAABaseNodes.find(BaseNode);
6790   if (Itr != TBAABaseNodes.end())
6791     return Itr->second;
6792 
6793   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6794   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6795   (void)InsertResult;
6796   assert(InsertResult.second && "We just checked!");
6797   return Result;
6798 }
6799 
6800 TBAAVerifier::TBAABaseNodeSummary
6801 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6802                                      bool IsNewFormat) {
6803   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6804 
6805   if (BaseNode->getNumOperands() == 2) {
6806     // Scalar nodes can only be accessed at offset 0.
6807     return isValidScalarTBAANode(BaseNode)
6808                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6809                : InvalidNode;
6810   }
6811 
6812   if (IsNewFormat) {
6813     if (BaseNode->getNumOperands() % 3 != 0) {
6814       CheckFailed("Access tag nodes must have the number of operands that is a "
6815                   "multiple of 3!", BaseNode);
6816       return InvalidNode;
6817     }
6818   } else {
6819     if (BaseNode->getNumOperands() % 2 != 1) {
6820       CheckFailed("Struct tag nodes must have an odd number of operands!",
6821                   BaseNode);
6822       return InvalidNode;
6823     }
6824   }
6825 
6826   // Check the type size field.
6827   if (IsNewFormat) {
6828     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6829         BaseNode->getOperand(1));
6830     if (!TypeSizeNode) {
6831       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6832       return InvalidNode;
6833     }
6834   }
6835 
6836   // Check the type name field. In the new format it can be anything.
6837   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6838     CheckFailed("Struct tag nodes have a string as their first operand",
6839                 BaseNode);
6840     return InvalidNode;
6841   }
6842 
6843   bool Failed = false;
6844 
6845   std::optional<APInt> PrevOffset;
6846   unsigned BitWidth = ~0u;
6847 
6848   // We've already checked that BaseNode is not a degenerate root node with one
6849   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6850   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6851   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6852   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6853            Idx += NumOpsPerField) {
6854     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6855     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6856     if (!isa<MDNode>(FieldTy)) {
6857       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6858       Failed = true;
6859       continue;
6860     }
6861 
6862     auto *OffsetEntryCI =
6863         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6864     if (!OffsetEntryCI) {
6865       CheckFailed("Offset entries must be constants!", &I, BaseNode);
6866       Failed = true;
6867       continue;
6868     }
6869 
6870     if (BitWidth == ~0u)
6871       BitWidth = OffsetEntryCI->getBitWidth();
6872 
6873     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6874       CheckFailed(
6875           "Bitwidth between the offsets and struct type entries must match", &I,
6876           BaseNode);
6877       Failed = true;
6878       continue;
6879     }
6880 
6881     // NB! As far as I can tell, we generate a non-strictly increasing offset
6882     // sequence only from structs that have zero size bit fields.  When
6883     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6884     // pick the field lexically the latest in struct type metadata node.  This
6885     // mirrors the actual behavior of the alias analysis implementation.
6886     bool IsAscending =
6887         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6888 
6889     if (!IsAscending) {
6890       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6891       Failed = true;
6892     }
6893 
6894     PrevOffset = OffsetEntryCI->getValue();
6895 
6896     if (IsNewFormat) {
6897       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6898           BaseNode->getOperand(Idx + 2));
6899       if (!MemberSizeNode) {
6900         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6901         Failed = true;
6902         continue;
6903       }
6904     }
6905   }
6906 
6907   return Failed ? InvalidNode
6908                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6909 }
6910 
6911 static bool IsRootTBAANode(const MDNode *MD) {
6912   return MD->getNumOperands() < 2;
6913 }
6914 
6915 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6916                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6917   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6918     return false;
6919 
6920   if (!isa<MDString>(MD->getOperand(0)))
6921     return false;
6922 
6923   if (MD->getNumOperands() == 3) {
6924     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6925     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6926       return false;
6927   }
6928 
6929   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6930   return Parent && Visited.insert(Parent).second &&
6931          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6932 }
6933 
6934 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6935   auto ResultIt = TBAAScalarNodes.find(MD);
6936   if (ResultIt != TBAAScalarNodes.end())
6937     return ResultIt->second;
6938 
6939   SmallPtrSet<const MDNode *, 4> Visited;
6940   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6941   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6942   (void)InsertResult;
6943   assert(InsertResult.second && "Just checked!");
6944 
6945   return Result;
6946 }
6947 
6948 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6949 /// Offset in place to be the offset within the field node returned.
6950 ///
6951 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6952 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6953                                                    const MDNode *BaseNode,
6954                                                    APInt &Offset,
6955                                                    bool IsNewFormat) {
6956   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6957 
6958   // Scalar nodes have only one possible "field" -- their parent in the access
6959   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6960   // to check that.
6961   if (BaseNode->getNumOperands() == 2)
6962     return cast<MDNode>(BaseNode->getOperand(1));
6963 
6964   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6965   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6966   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6967            Idx += NumOpsPerField) {
6968     auto *OffsetEntryCI =
6969         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6970     if (OffsetEntryCI->getValue().ugt(Offset)) {
6971       if (Idx == FirstFieldOpNo) {
6972         CheckFailed("Could not find TBAA parent in struct type node", &I,
6973                     BaseNode, &Offset);
6974         return nullptr;
6975       }
6976 
6977       unsigned PrevIdx = Idx - NumOpsPerField;
6978       auto *PrevOffsetEntryCI =
6979           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6980       Offset -= PrevOffsetEntryCI->getValue();
6981       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6982     }
6983   }
6984 
6985   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6986   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6987       BaseNode->getOperand(LastIdx + 1));
6988   Offset -= LastOffsetEntryCI->getValue();
6989   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6990 }
6991 
6992 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6993   if (!Type || Type->getNumOperands() < 3)
6994     return false;
6995 
6996   // In the new format type nodes shall have a reference to the parent type as
6997   // its first operand.
6998   return isa_and_nonnull<MDNode>(Type->getOperand(0));
6999 }
7000 
7001 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
7002   CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7003             &I, MD);
7004 
7005   CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
7006                 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
7007                 isa<AtomicCmpXchgInst>(I),
7008             "This instruction shall not have a TBAA access tag!", &I);
7009 
7010   bool IsStructPathTBAA =
7011       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
7012 
7013   CheckTBAA(IsStructPathTBAA,
7014             "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7015             &I);
7016 
7017   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
7018   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
7019 
7020   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
7021 
7022   if (IsNewFormat) {
7023     CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
7024               "Access tag metadata must have either 4 or 5 operands", &I, MD);
7025   } else {
7026     CheckTBAA(MD->getNumOperands() < 5,
7027               "Struct tag metadata must have either 3 or 4 operands", &I, MD);
7028   }
7029 
7030   // Check the access size field.
7031   if (IsNewFormat) {
7032     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7033         MD->getOperand(3));
7034     CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
7035   }
7036 
7037   // Check the immutability flag.
7038   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7039   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
7040     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7041         MD->getOperand(ImmutabilityFlagOpNo));
7042     CheckTBAA(IsImmutableCI,
7043               "Immutability tag on struct tag metadata must be a constant", &I,
7044               MD);
7045     CheckTBAA(
7046         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7047         "Immutability part of the struct tag metadata must be either 0 or 1",
7048         &I, MD);
7049   }
7050 
7051   CheckTBAA(BaseNode && AccessType,
7052             "Malformed struct tag metadata: base and access-type "
7053             "should be non-null and point to Metadata nodes",
7054             &I, MD, BaseNode, AccessType);
7055 
7056   if (!IsNewFormat) {
7057     CheckTBAA(isValidScalarTBAANode(AccessType),
7058               "Access type node must be a valid scalar type", &I, MD,
7059               AccessType);
7060   }
7061 
7062   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
7063   CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7064 
7065   APInt Offset = OffsetCI->getValue();
7066   bool SeenAccessTypeInPath = false;
7067 
7068   SmallPtrSet<MDNode *, 4> StructPath;
7069 
7070   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
7071        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7072                                                IsNewFormat)) {
7073     if (!StructPath.insert(BaseNode).second) {
7074       CheckFailed("Cycle detected in struct path", &I, MD);
7075       return false;
7076     }
7077 
7078     bool Invalid;
7079     unsigned BaseNodeBitWidth;
7080     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7081                                                              IsNewFormat);
7082 
7083     // If the base node is invalid in itself, then we've already printed all the
7084     // errors we wanted to print.
7085     if (Invalid)
7086       return false;
7087 
7088     SeenAccessTypeInPath |= BaseNode == AccessType;
7089 
7090     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7091       CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7092                 &I, MD, &Offset);
7093 
7094     CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7095                   (BaseNodeBitWidth == 0 && Offset == 0) ||
7096                   (IsNewFormat && BaseNodeBitWidth == ~0u),
7097               "Access bit-width not the same as description bit-width", &I, MD,
7098               BaseNodeBitWidth, Offset.getBitWidth());
7099 
7100     if (IsNewFormat && SeenAccessTypeInPath)
7101       break;
7102   }
7103 
7104   CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7105             MD);
7106   return true;
7107 }
7108 
7109 char VerifierLegacyPass::ID = 0;
7110 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7111 
7112 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7113   return new VerifierLegacyPass(FatalErrors);
7114 }
7115 
7116 AnalysisKey VerifierAnalysis::Key;
7117 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7118                                                ModuleAnalysisManager &) {
7119   Result Res;
7120   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7121   return Res;
7122 }
7123 
7124 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7125                                                FunctionAnalysisManager &) {
7126   return { llvm::verifyFunction(F, &dbgs()), false };
7127 }
7128 
7129 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7130   auto Res = AM.getResult<VerifierAnalysis>(M);
7131   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7132     report_fatal_error("Broken module found, compilation aborted!");
7133 
7134   return PreservedAnalyses::all();
7135 }
7136 
7137 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7138   auto res = AM.getResult<VerifierAnalysis>(F);
7139   if (res.IRBroken && FatalErrors)
7140     report_fatal_error("Broken function found, compilation aborted!");
7141 
7142   return PreservedAnalyses::all();
7143 }
7144