xref: /freebsd-src/contrib/llvm-project/llvm/lib/IR/Verifier.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyNoAliasScopeDomination(
119     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121              "scopes are not dominating"));
122 
123 namespace llvm {
124 
125 struct VerifierSupport {
126   raw_ostream *OS;
127   const Module &M;
128   ModuleSlotTracker MST;
129   Triple TT;
130   const DataLayout &DL;
131   LLVMContext &Context;
132 
133   /// Track the brokenness of the module while recursively visiting.
134   bool Broken = false;
135   /// Broken debug info can be "recovered" from by stripping the debug info.
136   bool BrokenDebugInfo = false;
137   /// Whether to treat broken debug info as an error.
138   bool TreatBrokenDebugInfoAsError = true;
139 
140   explicit VerifierSupport(raw_ostream *OS, const Module &M)
141       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142         Context(M.getContext()) {}
143 
144 private:
145   void Write(const Module *M) {
146     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147   }
148 
149   void Write(const Value *V) {
150     if (V)
151       Write(*V);
152   }
153 
154   void Write(const Value &V) {
155     if (isa<Instruction>(V)) {
156       V.print(*OS, MST);
157       *OS << '\n';
158     } else {
159       V.printAsOperand(*OS, true, MST);
160       *OS << '\n';
161     }
162   }
163 
164   void Write(const Metadata *MD) {
165     if (!MD)
166       return;
167     MD->print(*OS, MST, &M);
168     *OS << '\n';
169   }
170 
171   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172     Write(MD.get());
173   }
174 
175   void Write(const NamedMDNode *NMD) {
176     if (!NMD)
177       return;
178     NMD->print(*OS, MST);
179     *OS << '\n';
180   }
181 
182   void Write(Type *T) {
183     if (!T)
184       return;
185     *OS << ' ' << *T;
186   }
187 
188   void Write(const Comdat *C) {
189     if (!C)
190       return;
191     *OS << *C;
192   }
193 
194   void Write(const APInt *AI) {
195     if (!AI)
196       return;
197     *OS << *AI << '\n';
198   }
199 
200   void Write(const unsigned i) { *OS << i << '\n'; }
201 
202   // NOLINTNEXTLINE(readability-identifier-naming)
203   void Write(const Attribute *A) {
204     if (!A)
205       return;
206     *OS << A->getAsString() << '\n';
207   }
208 
209   // NOLINTNEXTLINE(readability-identifier-naming)
210   void Write(const AttributeSet *AS) {
211     if (!AS)
212       return;
213     *OS << AS->getAsString() << '\n';
214   }
215 
216   // NOLINTNEXTLINE(readability-identifier-naming)
217   void Write(const AttributeList *AL) {
218     if (!AL)
219       return;
220     AL->print(*OS);
221   }
222 
223   template <typename T> void Write(ArrayRef<T> Vs) {
224     for (const T &V : Vs)
225       Write(V);
226   }
227 
228   template <typename T1, typename... Ts>
229   void WriteTs(const T1 &V1, const Ts &... Vs) {
230     Write(V1);
231     WriteTs(Vs...);
232   }
233 
234   template <typename... Ts> void WriteTs() {}
235 
236 public:
237   /// A check failed, so printout out the condition and the message.
238   ///
239   /// This provides a nice place to put a breakpoint if you want to see why
240   /// something is not correct.
241   void CheckFailed(const Twine &Message) {
242     if (OS)
243       *OS << Message << '\n';
244     Broken = true;
245   }
246 
247   /// A check failed (with values to print).
248   ///
249   /// This calls the Message-only version so that the above is easier to set a
250   /// breakpoint on.
251   template <typename T1, typename... Ts>
252   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253     CheckFailed(Message);
254     if (OS)
255       WriteTs(V1, Vs...);
256   }
257 
258   /// A debug info check failed.
259   void DebugInfoCheckFailed(const Twine &Message) {
260     if (OS)
261       *OS << Message << '\n';
262     Broken |= TreatBrokenDebugInfoAsError;
263     BrokenDebugInfo = true;
264   }
265 
266   /// A debug info check failed (with values to print).
267   template <typename T1, typename... Ts>
268   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269                             const Ts &... Vs) {
270     DebugInfoCheckFailed(Message);
271     if (OS)
272       WriteTs(V1, Vs...);
273   }
274 };
275 
276 } // namespace llvm
277 
278 namespace {
279 
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281   friend class InstVisitor<Verifier>;
282 
283   DominatorTree DT;
284 
285   /// When verifying a basic block, keep track of all of the
286   /// instructions we have seen so far.
287   ///
288   /// This allows us to do efficient dominance checks for the case when an
289   /// instruction has an operand that is an instruction in the same block.
290   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291 
292   /// Keep track of the metadata nodes that have been checked already.
293   SmallPtrSet<const Metadata *, 32> MDNodes;
294 
295   /// Keep track which DISubprogram is attached to which function.
296   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297 
298   /// Track all DICompileUnits visited.
299   SmallPtrSet<const Metadata *, 2> CUVisited;
300 
301   /// The result type for a landingpad.
302   Type *LandingPadResultTy;
303 
304   /// Whether we've seen a call to @llvm.localescape in this function
305   /// already.
306   bool SawFrameEscape;
307 
308   /// Whether the current function has a DISubprogram attached to it.
309   bool HasDebugInfo = false;
310 
311   /// The current source language.
312   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313 
314   /// Whether source was present on the first DIFile encountered in each CU.
315   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316 
317   /// Stores the count of how many objects were passed to llvm.localescape for a
318   /// given function and the largest index passed to llvm.localrecover.
319   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
320 
321   // Maps catchswitches and cleanuppads that unwind to siblings to the
322   // terminators that indicate the unwind, used to detect cycles therein.
323   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324 
325   /// Cache of constants visited in search of ConstantExprs.
326   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327 
328   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329   SmallVector<const Function *, 4> DeoptimizeDeclarations;
330 
331   /// Cache of attribute lists verified.
332   SmallPtrSet<const void *, 32> AttributeListsVisited;
333 
334   // Verify that this GlobalValue is only used in this module.
335   // This map is used to avoid visiting uses twice. We can arrive at a user
336   // twice, if they have multiple operands. In particular for very large
337   // constant expressions, we can arrive at a particular user many times.
338   SmallPtrSet<const Value *, 32> GlobalValueVisited;
339 
340   // Keeps track of duplicate function argument debug info.
341   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
342 
343   TBAAVerifier TBAAVerifyHelper;
344 
345   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346 
347   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348 
349 public:
350   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351                     const Module &M)
352       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353         SawFrameEscape(false), TBAAVerifyHelper(this) {
354     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355   }
356 
357   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358 
359   bool verify(const Function &F) {
360     assert(F.getParent() == &M &&
361            "An instance of this class only works with a specific module!");
362 
363     // First ensure the function is well-enough formed to compute dominance
364     // information, and directly compute a dominance tree. We don't rely on the
365     // pass manager to provide this as it isolates us from a potentially
366     // out-of-date dominator tree and makes it significantly more complex to run
367     // this code outside of a pass manager.
368     // FIXME: It's really gross that we have to cast away constness here.
369     if (!F.empty())
370       DT.recalculate(const_cast<Function &>(F));
371 
372     for (const BasicBlock &BB : F) {
373       if (!BB.empty() && BB.back().isTerminator())
374         continue;
375 
376       if (OS) {
377         *OS << "Basic Block in function '" << F.getName()
378             << "' does not have terminator!\n";
379         BB.printAsOperand(*OS, true, MST);
380         *OS << "\n";
381       }
382       return false;
383     }
384 
385     Broken = false;
386     // FIXME: We strip const here because the inst visitor strips const.
387     visit(const_cast<Function &>(F));
388     verifySiblingFuncletUnwinds();
389     InstsInThisBlock.clear();
390     DebugFnArgs.clear();
391     LandingPadResultTy = nullptr;
392     SawFrameEscape = false;
393     SiblingFuncletInfo.clear();
394     verifyNoAliasScopeDecl();
395     NoAliasScopeDecls.clear();
396 
397     return !Broken;
398   }
399 
400   /// Verify the module that this instance of \c Verifier was initialized with.
401   bool verify() {
402     Broken = false;
403 
404     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405     for (const Function &F : M)
406       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407         DeoptimizeDeclarations.push_back(&F);
408 
409     // Now that we've visited every function, verify that we never asked to
410     // recover a frame index that wasn't escaped.
411     verifyFrameRecoverIndices();
412     for (const GlobalVariable &GV : M.globals())
413       visitGlobalVariable(GV);
414 
415     for (const GlobalAlias &GA : M.aliases())
416       visitGlobalAlias(GA);
417 
418     for (const GlobalIFunc &GI : M.ifuncs())
419       visitGlobalIFunc(GI);
420 
421     for (const NamedMDNode &NMD : M.named_metadata())
422       visitNamedMDNode(NMD);
423 
424     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
425       visitComdat(SMEC.getValue());
426 
427     visitModuleFlags();
428     visitModuleIdents();
429     visitModuleCommandLines();
430 
431     verifyCompileUnits();
432 
433     verifyDeoptimizeCallingConvs();
434     DISubprogramAttachments.clear();
435     return !Broken;
436   }
437 
438 private:
439   /// Whether a metadata node is allowed to be, or contain, a DILocation.
440   enum class AreDebugLocsAllowed { No, Yes };
441 
442   // Verification methods...
443   void visitGlobalValue(const GlobalValue &GV);
444   void visitGlobalVariable(const GlobalVariable &GV);
445   void visitGlobalAlias(const GlobalAlias &GA);
446   void visitGlobalIFunc(const GlobalIFunc &GI);
447   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
448   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
449                            const GlobalAlias &A, const Constant &C);
450   void visitNamedMDNode(const NamedMDNode &NMD);
451   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
452   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
453   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
454   void visitComdat(const Comdat &C);
455   void visitModuleIdents();
456   void visitModuleCommandLines();
457   void visitModuleFlags();
458   void visitModuleFlag(const MDNode *Op,
459                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
460                        SmallVectorImpl<const MDNode *> &Requirements);
461   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
462   void visitFunction(const Function &F);
463   void visitBasicBlock(BasicBlock &BB);
464   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
465   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
466   void visitProfMetadata(Instruction &I, MDNode *MD);
467   void visitAnnotationMetadata(MDNode *Annotation);
468   void visitAliasScopeMetadata(const MDNode *MD);
469   void visitAliasScopeListMetadata(const MDNode *MD);
470 
471   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
472 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
473 #include "llvm/IR/Metadata.def"
474   void visitDIScope(const DIScope &N);
475   void visitDIVariable(const DIVariable &N);
476   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
477   void visitDITemplateParameter(const DITemplateParameter &N);
478 
479   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
480 
481   // InstVisitor overrides...
482   using InstVisitor<Verifier>::visit;
483   void visit(Instruction &I);
484 
485   void visitTruncInst(TruncInst &I);
486   void visitZExtInst(ZExtInst &I);
487   void visitSExtInst(SExtInst &I);
488   void visitFPTruncInst(FPTruncInst &I);
489   void visitFPExtInst(FPExtInst &I);
490   void visitFPToUIInst(FPToUIInst &I);
491   void visitFPToSIInst(FPToSIInst &I);
492   void visitUIToFPInst(UIToFPInst &I);
493   void visitSIToFPInst(SIToFPInst &I);
494   void visitIntToPtrInst(IntToPtrInst &I);
495   void visitPtrToIntInst(PtrToIntInst &I);
496   void visitBitCastInst(BitCastInst &I);
497   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
498   void visitPHINode(PHINode &PN);
499   void visitCallBase(CallBase &Call);
500   void visitUnaryOperator(UnaryOperator &U);
501   void visitBinaryOperator(BinaryOperator &B);
502   void visitICmpInst(ICmpInst &IC);
503   void visitFCmpInst(FCmpInst &FC);
504   void visitExtractElementInst(ExtractElementInst &EI);
505   void visitInsertElementInst(InsertElementInst &EI);
506   void visitShuffleVectorInst(ShuffleVectorInst &EI);
507   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
508   void visitCallInst(CallInst &CI);
509   void visitInvokeInst(InvokeInst &II);
510   void visitGetElementPtrInst(GetElementPtrInst &GEP);
511   void visitLoadInst(LoadInst &LI);
512   void visitStoreInst(StoreInst &SI);
513   void verifyDominatesUse(Instruction &I, unsigned i);
514   void visitInstruction(Instruction &I);
515   void visitTerminator(Instruction &I);
516   void visitBranchInst(BranchInst &BI);
517   void visitReturnInst(ReturnInst &RI);
518   void visitSwitchInst(SwitchInst &SI);
519   void visitIndirectBrInst(IndirectBrInst &BI);
520   void visitCallBrInst(CallBrInst &CBI);
521   void visitSelectInst(SelectInst &SI);
522   void visitUserOp1(Instruction &I);
523   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
524   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
525   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
526   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
527   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
528   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
529   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
530   void visitFenceInst(FenceInst &FI);
531   void visitAllocaInst(AllocaInst &AI);
532   void visitExtractValueInst(ExtractValueInst &EVI);
533   void visitInsertValueInst(InsertValueInst &IVI);
534   void visitEHPadPredecessors(Instruction &I);
535   void visitLandingPadInst(LandingPadInst &LPI);
536   void visitResumeInst(ResumeInst &RI);
537   void visitCatchPadInst(CatchPadInst &CPI);
538   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
539   void visitCleanupPadInst(CleanupPadInst &CPI);
540   void visitFuncletPadInst(FuncletPadInst &FPI);
541   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
542   void visitCleanupReturnInst(CleanupReturnInst &CRI);
543 
544   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
545   void verifySwiftErrorValue(const Value *SwiftErrorVal);
546   void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
547   void verifyMustTailCall(CallInst &CI);
548   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
549   void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
550   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
551   void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
552                                     const Value *V);
553   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
554                            const Value *V, bool IsIntrinsic);
555   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
556 
557   void visitConstantExprsRecursively(const Constant *EntryC);
558   void visitConstantExpr(const ConstantExpr *CE);
559   void verifyStatepoint(const CallBase &Call);
560   void verifyFrameRecoverIndices();
561   void verifySiblingFuncletUnwinds();
562 
563   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
564   template <typename ValueOrMetadata>
565   void verifyFragmentExpression(const DIVariable &V,
566                                 DIExpression::FragmentInfo Fragment,
567                                 ValueOrMetadata *Desc);
568   void verifyFnArgs(const DbgVariableIntrinsic &I);
569   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
570 
571   /// Module-level debug info verification...
572   void verifyCompileUnits();
573 
574   /// Module-level verification that all @llvm.experimental.deoptimize
575   /// declarations share the same calling convention.
576   void verifyDeoptimizeCallingConvs();
577 
578   void verifyAttachedCallBundle(const CallBase &Call,
579                                 const OperandBundleUse &BU);
580 
581   /// Verify all-or-nothing property of DIFile source attribute within a CU.
582   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
583 
584   /// Verify the llvm.experimental.noalias.scope.decl declarations
585   void verifyNoAliasScopeDecl();
586 };
587 
588 } // end anonymous namespace
589 
590 /// We know that cond should be true, if not print an error message.
591 #define Assert(C, ...) \
592   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
593 
594 /// We know that a debug info condition should be true, if not print
595 /// an error message.
596 #define AssertDI(C, ...) \
597   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
598 
599 void Verifier::visit(Instruction &I) {
600   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
601     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
602   InstVisitor<Verifier>::visit(I);
603 }
604 
605 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
606 static void forEachUser(const Value *User,
607                         SmallPtrSet<const Value *, 32> &Visited,
608                         llvm::function_ref<bool(const Value *)> Callback) {
609   if (!Visited.insert(User).second)
610     return;
611 
612   SmallVector<const Value *> WorkList;
613   append_range(WorkList, User->materialized_users());
614   while (!WorkList.empty()) {
615    const Value *Cur = WorkList.pop_back_val();
616     if (!Visited.insert(Cur).second)
617       continue;
618     if (Callback(Cur))
619       append_range(WorkList, Cur->materialized_users());
620   }
621 }
622 
623 void Verifier::visitGlobalValue(const GlobalValue &GV) {
624   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
625          "Global is external, but doesn't have external or weak linkage!", &GV);
626 
627   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
628 
629     if (MaybeAlign A = GO->getAlign()) {
630       Assert(A->value() <= Value::MaximumAlignment,
631              "huge alignment values are unsupported", GO);
632     }
633   }
634   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
635          "Only global variables can have appending linkage!", &GV);
636 
637   if (GV.hasAppendingLinkage()) {
638     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
639     Assert(GVar && GVar->getValueType()->isArrayTy(),
640            "Only global arrays can have appending linkage!", GVar);
641   }
642 
643   if (GV.isDeclarationForLinker())
644     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
645 
646   if (GV.hasDLLImportStorageClass()) {
647     Assert(!GV.isDSOLocal(),
648            "GlobalValue with DLLImport Storage is dso_local!", &GV);
649 
650     Assert((GV.isDeclaration() &&
651             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
652                GV.hasAvailableExternallyLinkage(),
653            "Global is marked as dllimport, but not external", &GV);
654   }
655 
656   if (GV.isImplicitDSOLocal())
657     Assert(GV.isDSOLocal(),
658            "GlobalValue with local linkage or non-default "
659            "visibility must be dso_local!",
660            &GV);
661 
662   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
663     if (const Instruction *I = dyn_cast<Instruction>(V)) {
664       if (!I->getParent() || !I->getParent()->getParent())
665         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
666                     I);
667       else if (I->getParent()->getParent()->getParent() != &M)
668         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
669                     I->getParent()->getParent(),
670                     I->getParent()->getParent()->getParent());
671       return false;
672     } else if (const Function *F = dyn_cast<Function>(V)) {
673       if (F->getParent() != &M)
674         CheckFailed("Global is used by function in a different module", &GV, &M,
675                     F, F->getParent());
676       return false;
677     }
678     return true;
679   });
680 }
681 
682 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
683   if (GV.hasInitializer()) {
684     Assert(GV.getInitializer()->getType() == GV.getValueType(),
685            "Global variable initializer type does not match global "
686            "variable type!",
687            &GV);
688     // If the global has common linkage, it must have a zero initializer and
689     // cannot be constant.
690     if (GV.hasCommonLinkage()) {
691       Assert(GV.getInitializer()->isNullValue(),
692              "'common' global must have a zero initializer!", &GV);
693       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
694              &GV);
695       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
696     }
697   }
698 
699   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
700                        GV.getName() == "llvm.global_dtors")) {
701     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
702            "invalid linkage for intrinsic global variable", &GV);
703     // Don't worry about emitting an error for it not being an array,
704     // visitGlobalValue will complain on appending non-array.
705     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
706       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
707       PointerType *FuncPtrTy =
708           FunctionType::get(Type::getVoidTy(Context), false)->
709           getPointerTo(DL.getProgramAddressSpace());
710       Assert(STy &&
711                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
712                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
713                  STy->getTypeAtIndex(1) == FuncPtrTy,
714              "wrong type for intrinsic global variable", &GV);
715       Assert(STy->getNumElements() == 3,
716              "the third field of the element type is mandatory, "
717              "specify i8* null to migrate from the obsoleted 2-field form");
718       Type *ETy = STy->getTypeAtIndex(2);
719       Type *Int8Ty = Type::getInt8Ty(ETy->getContext());
720       Assert(ETy->isPointerTy() &&
721                  cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty),
722              "wrong type for intrinsic global variable", &GV);
723     }
724   }
725 
726   if (GV.hasName() && (GV.getName() == "llvm.used" ||
727                        GV.getName() == "llvm.compiler.used")) {
728     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
729            "invalid linkage for intrinsic global variable", &GV);
730     Type *GVType = GV.getValueType();
731     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
732       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
733       Assert(PTy, "wrong type for intrinsic global variable", &GV);
734       if (GV.hasInitializer()) {
735         const Constant *Init = GV.getInitializer();
736         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
737         Assert(InitArray, "wrong initalizer for intrinsic global variable",
738                Init);
739         for (Value *Op : InitArray->operands()) {
740           Value *V = Op->stripPointerCasts();
741           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
742                      isa<GlobalAlias>(V),
743                  Twine("invalid ") + GV.getName() + " member", V);
744           Assert(V->hasName(),
745                  Twine("members of ") + GV.getName() + " must be named", V);
746         }
747       }
748     }
749   }
750 
751   // Visit any debug info attachments.
752   SmallVector<MDNode *, 1> MDs;
753   GV.getMetadata(LLVMContext::MD_dbg, MDs);
754   for (auto *MD : MDs) {
755     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
756       visitDIGlobalVariableExpression(*GVE);
757     else
758       AssertDI(false, "!dbg attachment of global variable must be a "
759                       "DIGlobalVariableExpression");
760   }
761 
762   // Scalable vectors cannot be global variables, since we don't know
763   // the runtime size. If the global is an array containing scalable vectors,
764   // that will be caught by the isValidElementType methods in StructType or
765   // ArrayType instead.
766   Assert(!isa<ScalableVectorType>(GV.getValueType()),
767          "Globals cannot contain scalable vectors", &GV);
768 
769   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
770     Assert(!STy->containsScalableVectorType(),
771            "Globals cannot contain scalable vectors", &GV);
772 
773   if (!GV.hasInitializer()) {
774     visitGlobalValue(GV);
775     return;
776   }
777 
778   // Walk any aggregate initializers looking for bitcasts between address spaces
779   visitConstantExprsRecursively(GV.getInitializer());
780 
781   visitGlobalValue(GV);
782 }
783 
784 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
785   SmallPtrSet<const GlobalAlias*, 4> Visited;
786   Visited.insert(&GA);
787   visitAliaseeSubExpr(Visited, GA, C);
788 }
789 
790 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
791                                    const GlobalAlias &GA, const Constant &C) {
792   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
793     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
794            &GA);
795 
796     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
797       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
798 
799       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
800              &GA);
801     } else {
802       // Only continue verifying subexpressions of GlobalAliases.
803       // Do not recurse into global initializers.
804       return;
805     }
806   }
807 
808   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
809     visitConstantExprsRecursively(CE);
810 
811   for (const Use &U : C.operands()) {
812     Value *V = &*U;
813     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
814       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
815     else if (const auto *C2 = dyn_cast<Constant>(V))
816       visitAliaseeSubExpr(Visited, GA, *C2);
817   }
818 }
819 
820 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
821   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
822          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
823          "weak_odr, or external linkage!",
824          &GA);
825   const Constant *Aliasee = GA.getAliasee();
826   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
827   Assert(GA.getType() == Aliasee->getType(),
828          "Alias and aliasee types should match!", &GA);
829 
830   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
831          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
832 
833   visitAliaseeSubExpr(GA, *Aliasee);
834 
835   visitGlobalValue(GA);
836 }
837 
838 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
839   // Pierce through ConstantExprs and GlobalAliases and check that the resolver
840   // has a Function
841   const Function *Resolver = GI.getResolverFunction();
842   Assert(Resolver, "IFunc must have a Function resolver", &GI);
843 
844   // Check that the immediate resolver operand (prior to any bitcasts) has the
845   // correct type
846   const Type *ResolverTy = GI.getResolver()->getType();
847   const Type *ResolverFuncTy =
848       GlobalIFunc::getResolverFunctionType(GI.getValueType());
849   Assert(ResolverTy == ResolverFuncTy->getPointerTo(),
850          "IFunc resolver has incorrect type", &GI);
851 }
852 
853 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
854   // There used to be various other llvm.dbg.* nodes, but we don't support
855   // upgrading them and we want to reserve the namespace for future uses.
856   if (NMD.getName().startswith("llvm.dbg."))
857     AssertDI(NMD.getName() == "llvm.dbg.cu",
858              "unrecognized named metadata node in the llvm.dbg namespace",
859              &NMD);
860   for (const MDNode *MD : NMD.operands()) {
861     if (NMD.getName() == "llvm.dbg.cu")
862       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
863 
864     if (!MD)
865       continue;
866 
867     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
868   }
869 }
870 
871 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
872   // Only visit each node once.  Metadata can be mutually recursive, so this
873   // avoids infinite recursion here, as well as being an optimization.
874   if (!MDNodes.insert(&MD).second)
875     return;
876 
877   Assert(&MD.getContext() == &Context,
878          "MDNode context does not match Module context!", &MD);
879 
880   switch (MD.getMetadataID()) {
881   default:
882     llvm_unreachable("Invalid MDNode subclass");
883   case Metadata::MDTupleKind:
884     break;
885 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
886   case Metadata::CLASS##Kind:                                                  \
887     visit##CLASS(cast<CLASS>(MD));                                             \
888     break;
889 #include "llvm/IR/Metadata.def"
890   }
891 
892   for (const Metadata *Op : MD.operands()) {
893     if (!Op)
894       continue;
895     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
896            &MD, Op);
897     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
898              "DILocation not allowed within this metadata node", &MD, Op);
899     if (auto *N = dyn_cast<MDNode>(Op)) {
900       visitMDNode(*N, AllowLocs);
901       continue;
902     }
903     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
904       visitValueAsMetadata(*V, nullptr);
905       continue;
906     }
907   }
908 
909   // Check these last, so we diagnose problems in operands first.
910   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
911   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
912 }
913 
914 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
915   Assert(MD.getValue(), "Expected valid value", &MD);
916   Assert(!MD.getValue()->getType()->isMetadataTy(),
917          "Unexpected metadata round-trip through values", &MD, MD.getValue());
918 
919   auto *L = dyn_cast<LocalAsMetadata>(&MD);
920   if (!L)
921     return;
922 
923   Assert(F, "function-local metadata used outside a function", L);
924 
925   // If this was an instruction, bb, or argument, verify that it is in the
926   // function that we expect.
927   Function *ActualF = nullptr;
928   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
929     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
930     ActualF = I->getParent()->getParent();
931   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
932     ActualF = BB->getParent();
933   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
934     ActualF = A->getParent();
935   assert(ActualF && "Unimplemented function local metadata case!");
936 
937   Assert(ActualF == F, "function-local metadata used in wrong function", L);
938 }
939 
940 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
941   Metadata *MD = MDV.getMetadata();
942   if (auto *N = dyn_cast<MDNode>(MD)) {
943     visitMDNode(*N, AreDebugLocsAllowed::No);
944     return;
945   }
946 
947   // Only visit each node once.  Metadata can be mutually recursive, so this
948   // avoids infinite recursion here, as well as being an optimization.
949   if (!MDNodes.insert(MD).second)
950     return;
951 
952   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
953     visitValueAsMetadata(*V, F);
954 }
955 
956 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
957 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
958 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
959 
960 void Verifier::visitDILocation(const DILocation &N) {
961   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
962            "location requires a valid scope", &N, N.getRawScope());
963   if (auto *IA = N.getRawInlinedAt())
964     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
965   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
966     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
967 }
968 
969 void Verifier::visitGenericDINode(const GenericDINode &N) {
970   AssertDI(N.getTag(), "invalid tag", &N);
971 }
972 
973 void Verifier::visitDIScope(const DIScope &N) {
974   if (auto *F = N.getRawFile())
975     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
976 }
977 
978 void Verifier::visitDISubrange(const DISubrange &N) {
979   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
980   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
981   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
982                N.getRawUpperBound(),
983            "Subrange must contain count or upperBound", &N);
984   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
985            "Subrange can have any one of count or upperBound", &N);
986   auto *CBound = N.getRawCountNode();
987   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
988                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
989            "Count must be signed constant or DIVariable or DIExpression", &N);
990   auto Count = N.getCount();
991   AssertDI(!Count || !Count.is<ConstantInt *>() ||
992                Count.get<ConstantInt *>()->getSExtValue() >= -1,
993            "invalid subrange count", &N);
994   auto *LBound = N.getRawLowerBound();
995   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
996                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
997            "LowerBound must be signed constant or DIVariable or DIExpression",
998            &N);
999   auto *UBound = N.getRawUpperBound();
1000   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1001                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1002            "UpperBound must be signed constant or DIVariable or DIExpression",
1003            &N);
1004   auto *Stride = N.getRawStride();
1005   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1006                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1007            "Stride must be signed constant or DIVariable or DIExpression", &N);
1008 }
1009 
1010 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1011   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1012   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
1013            "GenericSubrange must contain count or upperBound", &N);
1014   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1015            "GenericSubrange can have any one of count or upperBound", &N);
1016   auto *CBound = N.getRawCountNode();
1017   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1018            "Count must be signed constant or DIVariable or DIExpression", &N);
1019   auto *LBound = N.getRawLowerBound();
1020   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
1021   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1022            "LowerBound must be signed constant or DIVariable or DIExpression",
1023            &N);
1024   auto *UBound = N.getRawUpperBound();
1025   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1026            "UpperBound must be signed constant or DIVariable or DIExpression",
1027            &N);
1028   auto *Stride = N.getRawStride();
1029   AssertDI(Stride, "GenericSubrange must contain stride", &N);
1030   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1031            "Stride must be signed constant or DIVariable or DIExpression", &N);
1032 }
1033 
1034 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1035   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1036 }
1037 
1038 void Verifier::visitDIBasicType(const DIBasicType &N) {
1039   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1040                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1041                N.getTag() == dwarf::DW_TAG_string_type,
1042            "invalid tag", &N);
1043 }
1044 
1045 void Verifier::visitDIStringType(const DIStringType &N) {
1046   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1047   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1048             "has conflicting flags", &N);
1049 }
1050 
1051 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1052   // Common scope checks.
1053   visitDIScope(N);
1054 
1055   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1056                N.getTag() == dwarf::DW_TAG_pointer_type ||
1057                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1058                N.getTag() == dwarf::DW_TAG_reference_type ||
1059                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1060                N.getTag() == dwarf::DW_TAG_const_type ||
1061                N.getTag() == dwarf::DW_TAG_volatile_type ||
1062                N.getTag() == dwarf::DW_TAG_restrict_type ||
1063                N.getTag() == dwarf::DW_TAG_atomic_type ||
1064                N.getTag() == dwarf::DW_TAG_member ||
1065                N.getTag() == dwarf::DW_TAG_inheritance ||
1066                N.getTag() == dwarf::DW_TAG_friend ||
1067                N.getTag() == dwarf::DW_TAG_set_type,
1068            "invalid tag", &N);
1069   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1070     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1071              N.getRawExtraData());
1072   }
1073 
1074   if (N.getTag() == dwarf::DW_TAG_set_type) {
1075     if (auto *T = N.getRawBaseType()) {
1076       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1077       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1078       AssertDI(
1079           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1080               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1081                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1082                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1083                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1084                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1085           "invalid set base type", &N, T);
1086     }
1087   }
1088 
1089   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1090   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1091            N.getRawBaseType());
1092 
1093   if (N.getDWARFAddressSpace()) {
1094     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1095                  N.getTag() == dwarf::DW_TAG_reference_type ||
1096                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1097              "DWARF address space only applies to pointer or reference types",
1098              &N);
1099   }
1100 }
1101 
1102 /// Detect mutually exclusive flags.
1103 static bool hasConflictingReferenceFlags(unsigned Flags) {
1104   return ((Flags & DINode::FlagLValueReference) &&
1105           (Flags & DINode::FlagRValueReference)) ||
1106          ((Flags & DINode::FlagTypePassByValue) &&
1107           (Flags & DINode::FlagTypePassByReference));
1108 }
1109 
1110 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1111   auto *Params = dyn_cast<MDTuple>(&RawParams);
1112   AssertDI(Params, "invalid template params", &N, &RawParams);
1113   for (Metadata *Op : Params->operands()) {
1114     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1115              &N, Params, Op);
1116   }
1117 }
1118 
1119 void Verifier::visitDICompositeType(const DICompositeType &N) {
1120   // Common scope checks.
1121   visitDIScope(N);
1122 
1123   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1124                N.getTag() == dwarf::DW_TAG_structure_type ||
1125                N.getTag() == dwarf::DW_TAG_union_type ||
1126                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1127                N.getTag() == dwarf::DW_TAG_class_type ||
1128                N.getTag() == dwarf::DW_TAG_variant_part ||
1129                N.getTag() == dwarf::DW_TAG_namelist,
1130            "invalid tag", &N);
1131 
1132   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1133   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1134            N.getRawBaseType());
1135 
1136   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1137            "invalid composite elements", &N, N.getRawElements());
1138   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1139            N.getRawVTableHolder());
1140   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1141            "invalid reference flags", &N);
1142   unsigned DIBlockByRefStruct = 1 << 4;
1143   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1144            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1145 
1146   if (N.isVector()) {
1147     const DINodeArray Elements = N.getElements();
1148     AssertDI(Elements.size() == 1 &&
1149              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1150              "invalid vector, expected one element of type subrange", &N);
1151   }
1152 
1153   if (auto *Params = N.getRawTemplateParams())
1154     visitTemplateParams(N, *Params);
1155 
1156   if (auto *D = N.getRawDiscriminator()) {
1157     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1158              "discriminator can only appear on variant part");
1159   }
1160 
1161   if (N.getRawDataLocation()) {
1162     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1163              "dataLocation can only appear in array type");
1164   }
1165 
1166   if (N.getRawAssociated()) {
1167     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1168              "associated can only appear in array type");
1169   }
1170 
1171   if (N.getRawAllocated()) {
1172     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1173              "allocated can only appear in array type");
1174   }
1175 
1176   if (N.getRawRank()) {
1177     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1178              "rank can only appear in array type");
1179   }
1180 }
1181 
1182 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1183   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1184   if (auto *Types = N.getRawTypeArray()) {
1185     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1186     for (Metadata *Ty : N.getTypeArray()->operands()) {
1187       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1188     }
1189   }
1190   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1191            "invalid reference flags", &N);
1192 }
1193 
1194 void Verifier::visitDIFile(const DIFile &N) {
1195   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1196   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1197   if (Checksum) {
1198     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1199              "invalid checksum kind", &N);
1200     size_t Size;
1201     switch (Checksum->Kind) {
1202     case DIFile::CSK_MD5:
1203       Size = 32;
1204       break;
1205     case DIFile::CSK_SHA1:
1206       Size = 40;
1207       break;
1208     case DIFile::CSK_SHA256:
1209       Size = 64;
1210       break;
1211     }
1212     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1213     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1214              "invalid checksum", &N);
1215   }
1216 }
1217 
1218 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1219   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1220   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1221 
1222   // Don't bother verifying the compilation directory or producer string
1223   // as those could be empty.
1224   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1225            N.getRawFile());
1226   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1227            N.getFile());
1228 
1229   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1230 
1231   verifySourceDebugInfo(N, *N.getFile());
1232 
1233   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1234            "invalid emission kind", &N);
1235 
1236   if (auto *Array = N.getRawEnumTypes()) {
1237     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1238     for (Metadata *Op : N.getEnumTypes()->operands()) {
1239       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1240       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1241                "invalid enum type", &N, N.getEnumTypes(), Op);
1242     }
1243   }
1244   if (auto *Array = N.getRawRetainedTypes()) {
1245     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1246     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1247       AssertDI(Op && (isa<DIType>(Op) ||
1248                       (isa<DISubprogram>(Op) &&
1249                        !cast<DISubprogram>(Op)->isDefinition())),
1250                "invalid retained type", &N, Op);
1251     }
1252   }
1253   if (auto *Array = N.getRawGlobalVariables()) {
1254     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1255     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1256       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1257                "invalid global variable ref", &N, Op);
1258     }
1259   }
1260   if (auto *Array = N.getRawImportedEntities()) {
1261     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1262     for (Metadata *Op : N.getImportedEntities()->operands()) {
1263       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1264                &N, Op);
1265     }
1266   }
1267   if (auto *Array = N.getRawMacros()) {
1268     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1269     for (Metadata *Op : N.getMacros()->operands()) {
1270       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1271     }
1272   }
1273   CUVisited.insert(&N);
1274 }
1275 
1276 void Verifier::visitDISubprogram(const DISubprogram &N) {
1277   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1278   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1279   if (auto *F = N.getRawFile())
1280     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1281   else
1282     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1283   if (auto *T = N.getRawType())
1284     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1285   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1286            N.getRawContainingType());
1287   if (auto *Params = N.getRawTemplateParams())
1288     visitTemplateParams(N, *Params);
1289   if (auto *S = N.getRawDeclaration())
1290     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1291              "invalid subprogram declaration", &N, S);
1292   if (auto *RawNode = N.getRawRetainedNodes()) {
1293     auto *Node = dyn_cast<MDTuple>(RawNode);
1294     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1295     for (Metadata *Op : Node->operands()) {
1296       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1297                "invalid retained nodes, expected DILocalVariable or DILabel",
1298                &N, Node, Op);
1299     }
1300   }
1301   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1302            "invalid reference flags", &N);
1303 
1304   auto *Unit = N.getRawUnit();
1305   if (N.isDefinition()) {
1306     // Subprogram definitions (not part of the type hierarchy).
1307     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1308     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1309     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1310     if (N.getFile())
1311       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1312   } else {
1313     // Subprogram declarations (part of the type hierarchy).
1314     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1315   }
1316 
1317   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1318     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1319     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1320     for (Metadata *Op : ThrownTypes->operands())
1321       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1322                Op);
1323   }
1324 
1325   if (N.areAllCallsDescribed())
1326     AssertDI(N.isDefinition(),
1327              "DIFlagAllCallsDescribed must be attached to a definition");
1328 }
1329 
1330 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1331   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1332   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1333            "invalid local scope", &N, N.getRawScope());
1334   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1335     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1336 }
1337 
1338 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1339   visitDILexicalBlockBase(N);
1340 
1341   AssertDI(N.getLine() || !N.getColumn(),
1342            "cannot have column info without line info", &N);
1343 }
1344 
1345 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1346   visitDILexicalBlockBase(N);
1347 }
1348 
1349 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1350   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1351   if (auto *S = N.getRawScope())
1352     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1353   if (auto *S = N.getRawDecl())
1354     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1355 }
1356 
1357 void Verifier::visitDINamespace(const DINamespace &N) {
1358   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1359   if (auto *S = N.getRawScope())
1360     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1361 }
1362 
1363 void Verifier::visitDIMacro(const DIMacro &N) {
1364   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1365                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1366            "invalid macinfo type", &N);
1367   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1368   if (!N.getValue().empty()) {
1369     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1370   }
1371 }
1372 
1373 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1374   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1375            "invalid macinfo type", &N);
1376   if (auto *F = N.getRawFile())
1377     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1378 
1379   if (auto *Array = N.getRawElements()) {
1380     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1381     for (Metadata *Op : N.getElements()->operands()) {
1382       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1383     }
1384   }
1385 }
1386 
1387 void Verifier::visitDIArgList(const DIArgList &N) {
1388   AssertDI(!N.getNumOperands(),
1389            "DIArgList should have no operands other than a list of "
1390            "ValueAsMetadata",
1391            &N);
1392 }
1393 
1394 void Verifier::visitDIModule(const DIModule &N) {
1395   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1396   AssertDI(!N.getName().empty(), "anonymous module", &N);
1397 }
1398 
1399 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1400   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1401 }
1402 
1403 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1404   visitDITemplateParameter(N);
1405 
1406   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1407            &N);
1408 }
1409 
1410 void Verifier::visitDITemplateValueParameter(
1411     const DITemplateValueParameter &N) {
1412   visitDITemplateParameter(N);
1413 
1414   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1415                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1416                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1417            "invalid tag", &N);
1418 }
1419 
1420 void Verifier::visitDIVariable(const DIVariable &N) {
1421   if (auto *S = N.getRawScope())
1422     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1423   if (auto *F = N.getRawFile())
1424     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1425 }
1426 
1427 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1428   // Checks common to all variables.
1429   visitDIVariable(N);
1430 
1431   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1432   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1433   // Assert only if the global variable is not an extern
1434   if (N.isDefinition())
1435     AssertDI(N.getType(), "missing global variable type", &N);
1436   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1437     AssertDI(isa<DIDerivedType>(Member),
1438              "invalid static data member declaration", &N, Member);
1439   }
1440 }
1441 
1442 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1443   // Checks common to all variables.
1444   visitDIVariable(N);
1445 
1446   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1447   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1448   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1449            "local variable requires a valid scope", &N, N.getRawScope());
1450   if (auto Ty = N.getType())
1451     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1452 }
1453 
1454 void Verifier::visitDILabel(const DILabel &N) {
1455   if (auto *S = N.getRawScope())
1456     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1457   if (auto *F = N.getRawFile())
1458     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1459 
1460   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1461   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1462            "label requires a valid scope", &N, N.getRawScope());
1463 }
1464 
1465 void Verifier::visitDIExpression(const DIExpression &N) {
1466   AssertDI(N.isValid(), "invalid expression", &N);
1467 }
1468 
1469 void Verifier::visitDIGlobalVariableExpression(
1470     const DIGlobalVariableExpression &GVE) {
1471   AssertDI(GVE.getVariable(), "missing variable");
1472   if (auto *Var = GVE.getVariable())
1473     visitDIGlobalVariable(*Var);
1474   if (auto *Expr = GVE.getExpression()) {
1475     visitDIExpression(*Expr);
1476     if (auto Fragment = Expr->getFragmentInfo())
1477       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1478   }
1479 }
1480 
1481 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1482   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1483   if (auto *T = N.getRawType())
1484     AssertDI(isType(T), "invalid type ref", &N, T);
1485   if (auto *F = N.getRawFile())
1486     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1487 }
1488 
1489 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1490   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1491                N.getTag() == dwarf::DW_TAG_imported_declaration,
1492            "invalid tag", &N);
1493   if (auto *S = N.getRawScope())
1494     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1495   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1496            N.getRawEntity());
1497 }
1498 
1499 void Verifier::visitComdat(const Comdat &C) {
1500   // In COFF the Module is invalid if the GlobalValue has private linkage.
1501   // Entities with private linkage don't have entries in the symbol table.
1502   if (TT.isOSBinFormatCOFF())
1503     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1504       Assert(!GV->hasPrivateLinkage(),
1505              "comdat global value has private linkage", GV);
1506 }
1507 
1508 void Verifier::visitModuleIdents() {
1509   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1510   if (!Idents)
1511     return;
1512 
1513   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1514   // Scan each llvm.ident entry and make sure that this requirement is met.
1515   for (const MDNode *N : Idents->operands()) {
1516     Assert(N->getNumOperands() == 1,
1517            "incorrect number of operands in llvm.ident metadata", N);
1518     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1519            ("invalid value for llvm.ident metadata entry operand"
1520             "(the operand should be a string)"),
1521            N->getOperand(0));
1522   }
1523 }
1524 
1525 void Verifier::visitModuleCommandLines() {
1526   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1527   if (!CommandLines)
1528     return;
1529 
1530   // llvm.commandline takes a list of metadata entry. Each entry has only one
1531   // string. Scan each llvm.commandline entry and make sure that this
1532   // requirement is met.
1533   for (const MDNode *N : CommandLines->operands()) {
1534     Assert(N->getNumOperands() == 1,
1535            "incorrect number of operands in llvm.commandline metadata", N);
1536     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1537            ("invalid value for llvm.commandline metadata entry operand"
1538             "(the operand should be a string)"),
1539            N->getOperand(0));
1540   }
1541 }
1542 
1543 void Verifier::visitModuleFlags() {
1544   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1545   if (!Flags) return;
1546 
1547   // Scan each flag, and track the flags and requirements.
1548   DenseMap<const MDString*, const MDNode*> SeenIDs;
1549   SmallVector<const MDNode*, 16> Requirements;
1550   for (const MDNode *MDN : Flags->operands())
1551     visitModuleFlag(MDN, SeenIDs, Requirements);
1552 
1553   // Validate that the requirements in the module are valid.
1554   for (const MDNode *Requirement : Requirements) {
1555     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1556     const Metadata *ReqValue = Requirement->getOperand(1);
1557 
1558     const MDNode *Op = SeenIDs.lookup(Flag);
1559     if (!Op) {
1560       CheckFailed("invalid requirement on flag, flag is not present in module",
1561                   Flag);
1562       continue;
1563     }
1564 
1565     if (Op->getOperand(2) != ReqValue) {
1566       CheckFailed(("invalid requirement on flag, "
1567                    "flag does not have the required value"),
1568                   Flag);
1569       continue;
1570     }
1571   }
1572 }
1573 
1574 void
1575 Verifier::visitModuleFlag(const MDNode *Op,
1576                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1577                           SmallVectorImpl<const MDNode *> &Requirements) {
1578   // Each module flag should have three arguments, the merge behavior (a
1579   // constant int), the flag ID (an MDString), and the value.
1580   Assert(Op->getNumOperands() == 3,
1581          "incorrect number of operands in module flag", Op);
1582   Module::ModFlagBehavior MFB;
1583   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1584     Assert(
1585         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1586         "invalid behavior operand in module flag (expected constant integer)",
1587         Op->getOperand(0));
1588     Assert(false,
1589            "invalid behavior operand in module flag (unexpected constant)",
1590            Op->getOperand(0));
1591   }
1592   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1593   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1594          Op->getOperand(1));
1595 
1596   // Check the values for behaviors with additional requirements.
1597   switch (MFB) {
1598   case Module::Error:
1599   case Module::Warning:
1600   case Module::Override:
1601     // These behavior types accept any value.
1602     break;
1603 
1604   case Module::Max: {
1605     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1606            "invalid value for 'max' module flag (expected constant integer)",
1607            Op->getOperand(2));
1608     break;
1609   }
1610 
1611   case Module::Require: {
1612     // The value should itself be an MDNode with two operands, a flag ID (an
1613     // MDString), and a value.
1614     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1615     Assert(Value && Value->getNumOperands() == 2,
1616            "invalid value for 'require' module flag (expected metadata pair)",
1617            Op->getOperand(2));
1618     Assert(isa<MDString>(Value->getOperand(0)),
1619            ("invalid value for 'require' module flag "
1620             "(first value operand should be a string)"),
1621            Value->getOperand(0));
1622 
1623     // Append it to the list of requirements, to check once all module flags are
1624     // scanned.
1625     Requirements.push_back(Value);
1626     break;
1627   }
1628 
1629   case Module::Append:
1630   case Module::AppendUnique: {
1631     // These behavior types require the operand be an MDNode.
1632     Assert(isa<MDNode>(Op->getOperand(2)),
1633            "invalid value for 'append'-type module flag "
1634            "(expected a metadata node)",
1635            Op->getOperand(2));
1636     break;
1637   }
1638   }
1639 
1640   // Unless this is a "requires" flag, check the ID is unique.
1641   if (MFB != Module::Require) {
1642     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1643     Assert(Inserted,
1644            "module flag identifiers must be unique (or of 'require' type)", ID);
1645   }
1646 
1647   if (ID->getString() == "wchar_size") {
1648     ConstantInt *Value
1649       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1650     Assert(Value, "wchar_size metadata requires constant integer argument");
1651   }
1652 
1653   if (ID->getString() == "Linker Options") {
1654     // If the llvm.linker.options named metadata exists, we assume that the
1655     // bitcode reader has upgraded the module flag. Otherwise the flag might
1656     // have been created by a client directly.
1657     Assert(M.getNamedMetadata("llvm.linker.options"),
1658            "'Linker Options' named metadata no longer supported");
1659   }
1660 
1661   if (ID->getString() == "SemanticInterposition") {
1662     ConstantInt *Value =
1663         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1664     Assert(Value,
1665            "SemanticInterposition metadata requires constant integer argument");
1666   }
1667 
1668   if (ID->getString() == "CG Profile") {
1669     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1670       visitModuleFlagCGProfileEntry(MDO);
1671   }
1672 }
1673 
1674 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1675   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1676     if (!FuncMDO)
1677       return;
1678     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1679     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1680            "expected a Function or null", FuncMDO);
1681   };
1682   auto Node = dyn_cast_or_null<MDNode>(MDO);
1683   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1684   CheckFunction(Node->getOperand(0));
1685   CheckFunction(Node->getOperand(1));
1686   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1687   Assert(Count && Count->getType()->isIntegerTy(),
1688          "expected an integer constant", Node->getOperand(2));
1689 }
1690 
1691 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1692   for (Attribute A : Attrs) {
1693 
1694     if (A.isStringAttribute()) {
1695 #define GET_ATTR_NAMES
1696 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1697 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1698   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1699     auto V = A.getValueAsString();                                             \
1700     if (!(V.empty() || V == "true" || V == "false"))                           \
1701       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1702                   "");                                                         \
1703   }
1704 
1705 #include "llvm/IR/Attributes.inc"
1706       continue;
1707     }
1708 
1709     if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1710       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1711                   V);
1712       return;
1713     }
1714   }
1715 }
1716 
1717 // VerifyParameterAttrs - Check the given attributes for an argument or return
1718 // value of the specified type.  The value V is printed in error messages.
1719 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1720                                     const Value *V) {
1721   if (!Attrs.hasAttributes())
1722     return;
1723 
1724   verifyAttributeTypes(Attrs, V);
1725 
1726   for (Attribute Attr : Attrs)
1727     Assert(Attr.isStringAttribute() ||
1728            Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1729            "Attribute '" + Attr.getAsString() +
1730                "' does not apply to parameters",
1731            V);
1732 
1733   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1734     Assert(Attrs.getNumAttributes() == 1,
1735            "Attribute 'immarg' is incompatible with other attributes", V);
1736   }
1737 
1738   // Check for mutually incompatible attributes.  Only inreg is compatible with
1739   // sret.
1740   unsigned AttrCount = 0;
1741   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1742   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1743   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1744   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1745                Attrs.hasAttribute(Attribute::InReg);
1746   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1747   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1748   Assert(AttrCount <= 1,
1749          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1750          "'byref', and 'sret' are incompatible!",
1751          V);
1752 
1753   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1754            Attrs.hasAttribute(Attribute::ReadOnly)),
1755          "Attributes "
1756          "'inalloca and readonly' are incompatible!",
1757          V);
1758 
1759   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1760            Attrs.hasAttribute(Attribute::Returned)),
1761          "Attributes "
1762          "'sret and returned' are incompatible!",
1763          V);
1764 
1765   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1766            Attrs.hasAttribute(Attribute::SExt)),
1767          "Attributes "
1768          "'zeroext and signext' are incompatible!",
1769          V);
1770 
1771   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1772            Attrs.hasAttribute(Attribute::ReadOnly)),
1773          "Attributes "
1774          "'readnone and readonly' are incompatible!",
1775          V);
1776 
1777   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1778            Attrs.hasAttribute(Attribute::WriteOnly)),
1779          "Attributes "
1780          "'readnone and writeonly' are incompatible!",
1781          V);
1782 
1783   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1784            Attrs.hasAttribute(Attribute::WriteOnly)),
1785          "Attributes "
1786          "'readonly and writeonly' are incompatible!",
1787          V);
1788 
1789   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1790            Attrs.hasAttribute(Attribute::AlwaysInline)),
1791          "Attributes "
1792          "'noinline and alwaysinline' are incompatible!",
1793          V);
1794 
1795   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1796   for (Attribute Attr : Attrs) {
1797     if (!Attr.isStringAttribute() &&
1798         IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1799       CheckFailed("Attribute '" + Attr.getAsString() +
1800                   "' applied to incompatible type!", V);
1801       return;
1802     }
1803   }
1804 
1805   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1806     if (Attrs.hasAttribute(Attribute::ByVal)) {
1807       SmallPtrSet<Type *, 4> Visited;
1808       Assert(Attrs.getByValType()->isSized(&Visited),
1809              "Attribute 'byval' does not support unsized types!", V);
1810     }
1811     if (Attrs.hasAttribute(Attribute::ByRef)) {
1812       SmallPtrSet<Type *, 4> Visited;
1813       Assert(Attrs.getByRefType()->isSized(&Visited),
1814              "Attribute 'byref' does not support unsized types!", V);
1815     }
1816     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1817       SmallPtrSet<Type *, 4> Visited;
1818       Assert(Attrs.getInAllocaType()->isSized(&Visited),
1819              "Attribute 'inalloca' does not support unsized types!", V);
1820     }
1821     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1822       SmallPtrSet<Type *, 4> Visited;
1823       Assert(Attrs.getPreallocatedType()->isSized(&Visited),
1824              "Attribute 'preallocated' does not support unsized types!", V);
1825     }
1826     if (!PTy->isOpaque()) {
1827       if (!isa<PointerType>(PTy->getElementType()))
1828         Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1829                "Attribute 'swifterror' only applies to parameters "
1830                "with pointer to pointer type!",
1831                V);
1832       if (Attrs.hasAttribute(Attribute::ByRef)) {
1833         Assert(Attrs.getByRefType() == PTy->getElementType(),
1834                "Attribute 'byref' type does not match parameter!", V);
1835       }
1836 
1837       if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1838         Assert(Attrs.getByValType() == PTy->getElementType(),
1839                "Attribute 'byval' type does not match parameter!", V);
1840       }
1841 
1842       if (Attrs.hasAttribute(Attribute::Preallocated)) {
1843         Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1844                "Attribute 'preallocated' type does not match parameter!", V);
1845       }
1846 
1847       if (Attrs.hasAttribute(Attribute::InAlloca)) {
1848         Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1849                "Attribute 'inalloca' type does not match parameter!", V);
1850       }
1851 
1852       if (Attrs.hasAttribute(Attribute::ElementType)) {
1853         Assert(Attrs.getElementType() == PTy->getElementType(),
1854                "Attribute 'elementtype' type does not match parameter!", V);
1855       }
1856     }
1857   }
1858 }
1859 
1860 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1861                                             const Value *V) {
1862   if (Attrs.hasFnAttr(Attr)) {
1863     StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1864     unsigned N;
1865     if (S.getAsInteger(10, N))
1866       CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1867   }
1868 }
1869 
1870 // Check parameter attributes against a function type.
1871 // The value V is printed in error messages.
1872 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1873                                    const Value *V, bool IsIntrinsic) {
1874   if (Attrs.isEmpty())
1875     return;
1876 
1877   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1878     Assert(Attrs.hasParentContext(Context),
1879            "Attribute list does not match Module context!", &Attrs, V);
1880     for (const auto &AttrSet : Attrs) {
1881       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1882              "Attribute set does not match Module context!", &AttrSet, V);
1883       for (const auto &A : AttrSet) {
1884         Assert(A.hasParentContext(Context),
1885                "Attribute does not match Module context!", &A, V);
1886       }
1887     }
1888   }
1889 
1890   bool SawNest = false;
1891   bool SawReturned = false;
1892   bool SawSRet = false;
1893   bool SawSwiftSelf = false;
1894   bool SawSwiftAsync = false;
1895   bool SawSwiftError = false;
1896 
1897   // Verify return value attributes.
1898   AttributeSet RetAttrs = Attrs.getRetAttrs();
1899   for (Attribute RetAttr : RetAttrs)
1900     Assert(RetAttr.isStringAttribute() ||
1901            Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
1902            "Attribute '" + RetAttr.getAsString() +
1903                "' does not apply to function return values",
1904            V);
1905 
1906   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1907 
1908   // Verify parameter attributes.
1909   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1910     Type *Ty = FT->getParamType(i);
1911     AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
1912 
1913     if (!IsIntrinsic) {
1914       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1915              "immarg attribute only applies to intrinsics",V);
1916       Assert(!ArgAttrs.hasAttribute(Attribute::ElementType),
1917              "Attribute 'elementtype' can only be applied to intrinsics.", V);
1918     }
1919 
1920     verifyParameterAttrs(ArgAttrs, Ty, V);
1921 
1922     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1923       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1924       SawNest = true;
1925     }
1926 
1927     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1928       Assert(!SawReturned, "More than one parameter has attribute returned!",
1929              V);
1930       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1931              "Incompatible argument and return types for 'returned' attribute",
1932              V);
1933       SawReturned = true;
1934     }
1935 
1936     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1937       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1938       Assert(i == 0 || i == 1,
1939              "Attribute 'sret' is not on first or second parameter!", V);
1940       SawSRet = true;
1941     }
1942 
1943     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1944       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1945       SawSwiftSelf = true;
1946     }
1947 
1948     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1949       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1950       SawSwiftAsync = true;
1951     }
1952 
1953     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1954       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1955              V);
1956       SawSwiftError = true;
1957     }
1958 
1959     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1960       Assert(i == FT->getNumParams() - 1,
1961              "inalloca isn't on the last parameter!", V);
1962     }
1963   }
1964 
1965   if (!Attrs.hasFnAttrs())
1966     return;
1967 
1968   verifyAttributeTypes(Attrs.getFnAttrs(), V);
1969   for (Attribute FnAttr : Attrs.getFnAttrs())
1970     Assert(FnAttr.isStringAttribute() ||
1971            Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
1972            "Attribute '" + FnAttr.getAsString() +
1973                "' does not apply to functions!",
1974            V);
1975 
1976   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1977            Attrs.hasFnAttr(Attribute::ReadOnly)),
1978          "Attributes 'readnone and readonly' are incompatible!", V);
1979 
1980   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1981            Attrs.hasFnAttr(Attribute::WriteOnly)),
1982          "Attributes 'readnone and writeonly' are incompatible!", V);
1983 
1984   Assert(!(Attrs.hasFnAttr(Attribute::ReadOnly) &&
1985            Attrs.hasFnAttr(Attribute::WriteOnly)),
1986          "Attributes 'readonly and writeonly' are incompatible!", V);
1987 
1988   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1989            Attrs.hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly)),
1990          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1991          "incompatible!",
1992          V);
1993 
1994   Assert(!(Attrs.hasFnAttr(Attribute::ReadNone) &&
1995            Attrs.hasFnAttr(Attribute::InaccessibleMemOnly)),
1996          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1997 
1998   Assert(!(Attrs.hasFnAttr(Attribute::NoInline) &&
1999            Attrs.hasFnAttr(Attribute::AlwaysInline)),
2000          "Attributes 'noinline and alwaysinline' are incompatible!", V);
2001 
2002   if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2003     Assert(Attrs.hasFnAttr(Attribute::NoInline),
2004            "Attribute 'optnone' requires 'noinline'!", V);
2005 
2006     Assert(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2007            "Attributes 'optsize and optnone' are incompatible!", V);
2008 
2009     Assert(!Attrs.hasFnAttr(Attribute::MinSize),
2010            "Attributes 'minsize and optnone' are incompatible!", V);
2011   }
2012 
2013   if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2014     const GlobalValue *GV = cast<GlobalValue>(V);
2015     Assert(GV->hasGlobalUnnamedAddr(),
2016            "Attribute 'jumptable' requires 'unnamed_addr'", V);
2017   }
2018 
2019   if (Attrs.hasFnAttr(Attribute::AllocSize)) {
2020     std::pair<unsigned, Optional<unsigned>> Args =
2021         Attrs.getFnAttrs().getAllocSizeArgs();
2022 
2023     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2024       if (ParamNo >= FT->getNumParams()) {
2025         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2026         return false;
2027       }
2028 
2029       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2030         CheckFailed("'allocsize' " + Name +
2031                         " argument must refer to an integer parameter",
2032                     V);
2033         return false;
2034       }
2035 
2036       return true;
2037     };
2038 
2039     if (!CheckParam("element size", Args.first))
2040       return;
2041 
2042     if (Args.second && !CheckParam("number of elements", *Args.second))
2043       return;
2044   }
2045 
2046   if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2047     unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2048     if (VScaleMin == 0)
2049       CheckFailed("'vscale_range' minimum must be greater than 0", V);
2050 
2051     Optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2052     if (VScaleMax && VScaleMin > VScaleMax)
2053       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2054   }
2055 
2056   if (Attrs.hasFnAttr("frame-pointer")) {
2057     StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2058     if (FP != "all" && FP != "non-leaf" && FP != "none")
2059       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2060   }
2061 
2062   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2063   checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2064   checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2065 }
2066 
2067 void Verifier::verifyFunctionMetadata(
2068     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2069   for (const auto &Pair : MDs) {
2070     if (Pair.first == LLVMContext::MD_prof) {
2071       MDNode *MD = Pair.second;
2072       Assert(MD->getNumOperands() >= 2,
2073              "!prof annotations should have no less than 2 operands", MD);
2074 
2075       // Check first operand.
2076       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2077              MD);
2078       Assert(isa<MDString>(MD->getOperand(0)),
2079              "expected string with name of the !prof annotation", MD);
2080       MDString *MDS = cast<MDString>(MD->getOperand(0));
2081       StringRef ProfName = MDS->getString();
2082       Assert(ProfName.equals("function_entry_count") ||
2083                  ProfName.equals("synthetic_function_entry_count"),
2084              "first operand should be 'function_entry_count'"
2085              " or 'synthetic_function_entry_count'",
2086              MD);
2087 
2088       // Check second operand.
2089       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2090              MD);
2091       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2092              "expected integer argument to function_entry_count", MD);
2093     }
2094   }
2095 }
2096 
2097 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2098   if (!ConstantExprVisited.insert(EntryC).second)
2099     return;
2100 
2101   SmallVector<const Constant *, 16> Stack;
2102   Stack.push_back(EntryC);
2103 
2104   while (!Stack.empty()) {
2105     const Constant *C = Stack.pop_back_val();
2106 
2107     // Check this constant expression.
2108     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2109       visitConstantExpr(CE);
2110 
2111     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2112       // Global Values get visited separately, but we do need to make sure
2113       // that the global value is in the correct module
2114       Assert(GV->getParent() == &M, "Referencing global in another module!",
2115              EntryC, &M, GV, GV->getParent());
2116       continue;
2117     }
2118 
2119     // Visit all sub-expressions.
2120     for (const Use &U : C->operands()) {
2121       const auto *OpC = dyn_cast<Constant>(U);
2122       if (!OpC)
2123         continue;
2124       if (!ConstantExprVisited.insert(OpC).second)
2125         continue;
2126       Stack.push_back(OpC);
2127     }
2128   }
2129 }
2130 
2131 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2132   if (CE->getOpcode() == Instruction::BitCast)
2133     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2134                                  CE->getType()),
2135            "Invalid bitcast", CE);
2136 }
2137 
2138 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2139   // There shouldn't be more attribute sets than there are parameters plus the
2140   // function and return value.
2141   return Attrs.getNumAttrSets() <= Params + 2;
2142 }
2143 
2144 /// Verify that statepoint intrinsic is well formed.
2145 void Verifier::verifyStatepoint(const CallBase &Call) {
2146   assert(Call.getCalledFunction() &&
2147          Call.getCalledFunction()->getIntrinsicID() ==
2148              Intrinsic::experimental_gc_statepoint);
2149 
2150   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2151              !Call.onlyAccessesArgMemory(),
2152          "gc.statepoint must read and write all memory to preserve "
2153          "reordering restrictions required by safepoint semantics",
2154          Call);
2155 
2156   const int64_t NumPatchBytes =
2157       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2158   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2159   Assert(NumPatchBytes >= 0,
2160          "gc.statepoint number of patchable bytes must be "
2161          "positive",
2162          Call);
2163 
2164   const Value *Target = Call.getArgOperand(2);
2165   auto *PT = dyn_cast<PointerType>(Target->getType());
2166   Assert(PT && PT->getElementType()->isFunctionTy(),
2167          "gc.statepoint callee must be of function pointer type", Call, Target);
2168   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2169 
2170   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2171   Assert(NumCallArgs >= 0,
2172          "gc.statepoint number of arguments to underlying call "
2173          "must be positive",
2174          Call);
2175   const int NumParams = (int)TargetFuncType->getNumParams();
2176   if (TargetFuncType->isVarArg()) {
2177     Assert(NumCallArgs >= NumParams,
2178            "gc.statepoint mismatch in number of vararg call args", Call);
2179 
2180     // TODO: Remove this limitation
2181     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2182            "gc.statepoint doesn't support wrapping non-void "
2183            "vararg functions yet",
2184            Call);
2185   } else
2186     Assert(NumCallArgs == NumParams,
2187            "gc.statepoint mismatch in number of call args", Call);
2188 
2189   const uint64_t Flags
2190     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2191   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2192          "unknown flag used in gc.statepoint flags argument", Call);
2193 
2194   // Verify that the types of the call parameter arguments match
2195   // the type of the wrapped callee.
2196   AttributeList Attrs = Call.getAttributes();
2197   for (int i = 0; i < NumParams; i++) {
2198     Type *ParamType = TargetFuncType->getParamType(i);
2199     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2200     Assert(ArgType == ParamType,
2201            "gc.statepoint call argument does not match wrapped "
2202            "function type",
2203            Call);
2204 
2205     if (TargetFuncType->isVarArg()) {
2206       AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2207       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2208              "Attribute 'sret' cannot be used for vararg call arguments!",
2209              Call);
2210     }
2211   }
2212 
2213   const int EndCallArgsInx = 4 + NumCallArgs;
2214 
2215   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2216   Assert(isa<ConstantInt>(NumTransitionArgsV),
2217          "gc.statepoint number of transition arguments "
2218          "must be constant integer",
2219          Call);
2220   const int NumTransitionArgs =
2221       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2222   Assert(NumTransitionArgs == 0,
2223          "gc.statepoint w/inline transition bundle is deprecated", Call);
2224   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2225 
2226   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2227   Assert(isa<ConstantInt>(NumDeoptArgsV),
2228          "gc.statepoint number of deoptimization arguments "
2229          "must be constant integer",
2230          Call);
2231   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2232   Assert(NumDeoptArgs == 0,
2233          "gc.statepoint w/inline deopt operands is deprecated", Call);
2234 
2235   const int ExpectedNumArgs = 7 + NumCallArgs;
2236   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2237          "gc.statepoint too many arguments", Call);
2238 
2239   // Check that the only uses of this gc.statepoint are gc.result or
2240   // gc.relocate calls which are tied to this statepoint and thus part
2241   // of the same statepoint sequence
2242   for (const User *U : Call.users()) {
2243     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2244     Assert(UserCall, "illegal use of statepoint token", Call, U);
2245     if (!UserCall)
2246       continue;
2247     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2248            "gc.result or gc.relocate are the only value uses "
2249            "of a gc.statepoint",
2250            Call, U);
2251     if (isa<GCResultInst>(UserCall)) {
2252       Assert(UserCall->getArgOperand(0) == &Call,
2253              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2254     } else if (isa<GCRelocateInst>(Call)) {
2255       Assert(UserCall->getArgOperand(0) == &Call,
2256              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2257     }
2258   }
2259 
2260   // Note: It is legal for a single derived pointer to be listed multiple
2261   // times.  It's non-optimal, but it is legal.  It can also happen after
2262   // insertion if we strip a bitcast away.
2263   // Note: It is really tempting to check that each base is relocated and
2264   // that a derived pointer is never reused as a base pointer.  This turns
2265   // out to be problematic since optimizations run after safepoint insertion
2266   // can recognize equality properties that the insertion logic doesn't know
2267   // about.  See example statepoint.ll in the verifier subdirectory
2268 }
2269 
2270 void Verifier::verifyFrameRecoverIndices() {
2271   for (auto &Counts : FrameEscapeInfo) {
2272     Function *F = Counts.first;
2273     unsigned EscapedObjectCount = Counts.second.first;
2274     unsigned MaxRecoveredIndex = Counts.second.second;
2275     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2276            "all indices passed to llvm.localrecover must be less than the "
2277            "number of arguments passed to llvm.localescape in the parent "
2278            "function",
2279            F);
2280   }
2281 }
2282 
2283 static Instruction *getSuccPad(Instruction *Terminator) {
2284   BasicBlock *UnwindDest;
2285   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2286     UnwindDest = II->getUnwindDest();
2287   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2288     UnwindDest = CSI->getUnwindDest();
2289   else
2290     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2291   return UnwindDest->getFirstNonPHI();
2292 }
2293 
2294 void Verifier::verifySiblingFuncletUnwinds() {
2295   SmallPtrSet<Instruction *, 8> Visited;
2296   SmallPtrSet<Instruction *, 8> Active;
2297   for (const auto &Pair : SiblingFuncletInfo) {
2298     Instruction *PredPad = Pair.first;
2299     if (Visited.count(PredPad))
2300       continue;
2301     Active.insert(PredPad);
2302     Instruction *Terminator = Pair.second;
2303     do {
2304       Instruction *SuccPad = getSuccPad(Terminator);
2305       if (Active.count(SuccPad)) {
2306         // Found a cycle; report error
2307         Instruction *CyclePad = SuccPad;
2308         SmallVector<Instruction *, 8> CycleNodes;
2309         do {
2310           CycleNodes.push_back(CyclePad);
2311           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2312           if (CycleTerminator != CyclePad)
2313             CycleNodes.push_back(CycleTerminator);
2314           CyclePad = getSuccPad(CycleTerminator);
2315         } while (CyclePad != SuccPad);
2316         Assert(false, "EH pads can't handle each other's exceptions",
2317                ArrayRef<Instruction *>(CycleNodes));
2318       }
2319       // Don't re-walk a node we've already checked
2320       if (!Visited.insert(SuccPad).second)
2321         break;
2322       // Walk to this successor if it has a map entry.
2323       PredPad = SuccPad;
2324       auto TermI = SiblingFuncletInfo.find(PredPad);
2325       if (TermI == SiblingFuncletInfo.end())
2326         break;
2327       Terminator = TermI->second;
2328       Active.insert(PredPad);
2329     } while (true);
2330     // Each node only has one successor, so we've walked all the active
2331     // nodes' successors.
2332     Active.clear();
2333   }
2334 }
2335 
2336 // visitFunction - Verify that a function is ok.
2337 //
2338 void Verifier::visitFunction(const Function &F) {
2339   visitGlobalValue(F);
2340 
2341   // Check function arguments.
2342   FunctionType *FT = F.getFunctionType();
2343   unsigned NumArgs = F.arg_size();
2344 
2345   Assert(&Context == &F.getContext(),
2346          "Function context does not match Module context!", &F);
2347 
2348   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2349   Assert(FT->getNumParams() == NumArgs,
2350          "# formal arguments must match # of arguments for function type!", &F,
2351          FT);
2352   Assert(F.getReturnType()->isFirstClassType() ||
2353              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2354          "Functions cannot return aggregate values!", &F);
2355 
2356   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2357          "Invalid struct return type!", &F);
2358 
2359   AttributeList Attrs = F.getAttributes();
2360 
2361   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2362          "Attribute after last parameter!", &F);
2363 
2364   bool IsIntrinsic = F.isIntrinsic();
2365 
2366   // Check function attributes.
2367   verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic);
2368 
2369   // On function declarations/definitions, we do not support the builtin
2370   // attribute. We do not check this in VerifyFunctionAttrs since that is
2371   // checking for Attributes that can/can not ever be on functions.
2372   Assert(!Attrs.hasFnAttr(Attribute::Builtin),
2373          "Attribute 'builtin' can only be applied to a callsite.", &F);
2374 
2375   Assert(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2376          "Attribute 'elementtype' can only be applied to a callsite.", &F);
2377 
2378   // Check that this function meets the restrictions on this calling convention.
2379   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2380   // restrictions can be lifted.
2381   switch (F.getCallingConv()) {
2382   default:
2383   case CallingConv::C:
2384     break;
2385   case CallingConv::X86_INTR: {
2386     Assert(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2387            "Calling convention parameter requires byval", &F);
2388     break;
2389   }
2390   case CallingConv::AMDGPU_KERNEL:
2391   case CallingConv::SPIR_KERNEL:
2392     Assert(F.getReturnType()->isVoidTy(),
2393            "Calling convention requires void return type", &F);
2394     LLVM_FALLTHROUGH;
2395   case CallingConv::AMDGPU_VS:
2396   case CallingConv::AMDGPU_HS:
2397   case CallingConv::AMDGPU_GS:
2398   case CallingConv::AMDGPU_PS:
2399   case CallingConv::AMDGPU_CS:
2400     Assert(!F.hasStructRetAttr(),
2401            "Calling convention does not allow sret", &F);
2402     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2403       const unsigned StackAS = DL.getAllocaAddrSpace();
2404       unsigned i = 0;
2405       for (const Argument &Arg : F.args()) {
2406         Assert(!Attrs.hasParamAttr(i, Attribute::ByVal),
2407                "Calling convention disallows byval", &F);
2408         Assert(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2409                "Calling convention disallows preallocated", &F);
2410         Assert(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2411                "Calling convention disallows inalloca", &F);
2412 
2413         if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2414           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2415           // value here.
2416           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2417                  "Calling convention disallows stack byref", &F);
2418         }
2419 
2420         ++i;
2421       }
2422     }
2423 
2424     LLVM_FALLTHROUGH;
2425   case CallingConv::Fast:
2426   case CallingConv::Cold:
2427   case CallingConv::Intel_OCL_BI:
2428   case CallingConv::PTX_Kernel:
2429   case CallingConv::PTX_Device:
2430     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2431                           "perfect forwarding!",
2432            &F);
2433     break;
2434   }
2435 
2436   // Check that the argument values match the function type for this function...
2437   unsigned i = 0;
2438   for (const Argument &Arg : F.args()) {
2439     Assert(Arg.getType() == FT->getParamType(i),
2440            "Argument value does not match function argument type!", &Arg,
2441            FT->getParamType(i));
2442     Assert(Arg.getType()->isFirstClassType(),
2443            "Function arguments must have first-class types!", &Arg);
2444     if (!IsIntrinsic) {
2445       Assert(!Arg.getType()->isMetadataTy(),
2446              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2447       Assert(!Arg.getType()->isTokenTy(),
2448              "Function takes token but isn't an intrinsic", &Arg, &F);
2449       Assert(!Arg.getType()->isX86_AMXTy(),
2450              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2451     }
2452 
2453     // Check that swifterror argument is only used by loads and stores.
2454     if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2455       verifySwiftErrorValue(&Arg);
2456     }
2457     ++i;
2458   }
2459 
2460   if (!IsIntrinsic) {
2461     Assert(!F.getReturnType()->isTokenTy(),
2462            "Function returns a token but isn't an intrinsic", &F);
2463     Assert(!F.getReturnType()->isX86_AMXTy(),
2464            "Function returns a x86_amx but isn't an intrinsic", &F);
2465   }
2466 
2467   // Get the function metadata attachments.
2468   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2469   F.getAllMetadata(MDs);
2470   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2471   verifyFunctionMetadata(MDs);
2472 
2473   // Check validity of the personality function
2474   if (F.hasPersonalityFn()) {
2475     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2476     if (Per)
2477       Assert(Per->getParent() == F.getParent(),
2478              "Referencing personality function in another module!",
2479              &F, F.getParent(), Per, Per->getParent());
2480   }
2481 
2482   if (F.isMaterializable()) {
2483     // Function has a body somewhere we can't see.
2484     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2485            MDs.empty() ? nullptr : MDs.front().second);
2486   } else if (F.isDeclaration()) {
2487     for (const auto &I : MDs) {
2488       // This is used for call site debug information.
2489       AssertDI(I.first != LLVMContext::MD_dbg ||
2490                    !cast<DISubprogram>(I.second)->isDistinct(),
2491                "function declaration may only have a unique !dbg attachment",
2492                &F);
2493       Assert(I.first != LLVMContext::MD_prof,
2494              "function declaration may not have a !prof attachment", &F);
2495 
2496       // Verify the metadata itself.
2497       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2498     }
2499     Assert(!F.hasPersonalityFn(),
2500            "Function declaration shouldn't have a personality routine", &F);
2501   } else {
2502     // Verify that this function (which has a body) is not named "llvm.*".  It
2503     // is not legal to define intrinsics.
2504     Assert(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2505 
2506     // Check the entry node
2507     const BasicBlock *Entry = &F.getEntryBlock();
2508     Assert(pred_empty(Entry),
2509            "Entry block to function must not have predecessors!", Entry);
2510 
2511     // The address of the entry block cannot be taken, unless it is dead.
2512     if (Entry->hasAddressTaken()) {
2513       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2514              "blockaddress may not be used with the entry block!", Entry);
2515     }
2516 
2517     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2518     // Visit metadata attachments.
2519     for (const auto &I : MDs) {
2520       // Verify that the attachment is legal.
2521       auto AllowLocs = AreDebugLocsAllowed::No;
2522       switch (I.first) {
2523       default:
2524         break;
2525       case LLVMContext::MD_dbg: {
2526         ++NumDebugAttachments;
2527         AssertDI(NumDebugAttachments == 1,
2528                  "function must have a single !dbg attachment", &F, I.second);
2529         AssertDI(isa<DISubprogram>(I.second),
2530                  "function !dbg attachment must be a subprogram", &F, I.second);
2531         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2532                  "function definition may only have a distinct !dbg attachment",
2533                  &F);
2534 
2535         auto *SP = cast<DISubprogram>(I.second);
2536         const Function *&AttachedTo = DISubprogramAttachments[SP];
2537         AssertDI(!AttachedTo || AttachedTo == &F,
2538                  "DISubprogram attached to more than one function", SP, &F);
2539         AttachedTo = &F;
2540         AllowLocs = AreDebugLocsAllowed::Yes;
2541         break;
2542       }
2543       case LLVMContext::MD_prof:
2544         ++NumProfAttachments;
2545         Assert(NumProfAttachments == 1,
2546                "function must have a single !prof attachment", &F, I.second);
2547         break;
2548       }
2549 
2550       // Verify the metadata itself.
2551       visitMDNode(*I.second, AllowLocs);
2552     }
2553   }
2554 
2555   // If this function is actually an intrinsic, verify that it is only used in
2556   // direct call/invokes, never having its "address taken".
2557   // Only do this if the module is materialized, otherwise we don't have all the
2558   // uses.
2559   if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2560     const User *U;
2561     if (F.hasAddressTaken(&U, false, true, false,
2562                           /*IgnoreARCAttachedCall=*/true))
2563       Assert(false, "Invalid user of intrinsic instruction!", U);
2564   }
2565 
2566   // Check intrinsics' signatures.
2567   switch (F.getIntrinsicID()) {
2568   case Intrinsic::experimental_gc_get_pointer_base: {
2569     FunctionType *FT = F.getFunctionType();
2570     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2571     Assert(isa<PointerType>(F.getReturnType()),
2572            "gc.get.pointer.base must return a pointer", F);
2573     Assert(FT->getParamType(0) == F.getReturnType(),
2574            "gc.get.pointer.base operand and result must be of the same type",
2575            F);
2576     break;
2577   }
2578   case Intrinsic::experimental_gc_get_pointer_offset: {
2579     FunctionType *FT = F.getFunctionType();
2580     Assert(FT->getNumParams() == 1, "wrong number of parameters", F);
2581     Assert(isa<PointerType>(FT->getParamType(0)),
2582            "gc.get.pointer.offset operand must be a pointer", F);
2583     Assert(F.getReturnType()->isIntegerTy(),
2584            "gc.get.pointer.offset must return integer", F);
2585     break;
2586   }
2587   }
2588 
2589   auto *N = F.getSubprogram();
2590   HasDebugInfo = (N != nullptr);
2591   if (!HasDebugInfo)
2592     return;
2593 
2594   // Check that all !dbg attachments lead to back to N.
2595   //
2596   // FIXME: Check this incrementally while visiting !dbg attachments.
2597   // FIXME: Only check when N is the canonical subprogram for F.
2598   SmallPtrSet<const MDNode *, 32> Seen;
2599   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2600     // Be careful about using DILocation here since we might be dealing with
2601     // broken code (this is the Verifier after all).
2602     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2603     if (!DL)
2604       return;
2605     if (!Seen.insert(DL).second)
2606       return;
2607 
2608     Metadata *Parent = DL->getRawScope();
2609     AssertDI(Parent && isa<DILocalScope>(Parent),
2610              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2611              Parent);
2612 
2613     DILocalScope *Scope = DL->getInlinedAtScope();
2614     Assert(Scope, "Failed to find DILocalScope", DL);
2615 
2616     if (!Seen.insert(Scope).second)
2617       return;
2618 
2619     DISubprogram *SP = Scope->getSubprogram();
2620 
2621     // Scope and SP could be the same MDNode and we don't want to skip
2622     // validation in that case
2623     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2624       return;
2625 
2626     AssertDI(SP->describes(&F),
2627              "!dbg attachment points at wrong subprogram for function", N, &F,
2628              &I, DL, Scope, SP);
2629   };
2630   for (auto &BB : F)
2631     for (auto &I : BB) {
2632       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2633       // The llvm.loop annotations also contain two DILocations.
2634       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2635         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2636           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2637       if (BrokenDebugInfo)
2638         return;
2639     }
2640 }
2641 
2642 // verifyBasicBlock - Verify that a basic block is well formed...
2643 //
2644 void Verifier::visitBasicBlock(BasicBlock &BB) {
2645   InstsInThisBlock.clear();
2646 
2647   // Ensure that basic blocks have terminators!
2648   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2649 
2650   // Check constraints that this basic block imposes on all of the PHI nodes in
2651   // it.
2652   if (isa<PHINode>(BB.front())) {
2653     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2654     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2655     llvm::sort(Preds);
2656     for (const PHINode &PN : BB.phis()) {
2657       Assert(PN.getNumIncomingValues() == Preds.size(),
2658              "PHINode should have one entry for each predecessor of its "
2659              "parent basic block!",
2660              &PN);
2661 
2662       // Get and sort all incoming values in the PHI node...
2663       Values.clear();
2664       Values.reserve(PN.getNumIncomingValues());
2665       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2666         Values.push_back(
2667             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2668       llvm::sort(Values);
2669 
2670       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2671         // Check to make sure that if there is more than one entry for a
2672         // particular basic block in this PHI node, that the incoming values are
2673         // all identical.
2674         //
2675         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2676                    Values[i].second == Values[i - 1].second,
2677                "PHI node has multiple entries for the same basic block with "
2678                "different incoming values!",
2679                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2680 
2681         // Check to make sure that the predecessors and PHI node entries are
2682         // matched up.
2683         Assert(Values[i].first == Preds[i],
2684                "PHI node entries do not match predecessors!", &PN,
2685                Values[i].first, Preds[i]);
2686       }
2687     }
2688   }
2689 
2690   // Check that all instructions have their parent pointers set up correctly.
2691   for (auto &I : BB)
2692   {
2693     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2694   }
2695 }
2696 
2697 void Verifier::visitTerminator(Instruction &I) {
2698   // Ensure that terminators only exist at the end of the basic block.
2699   Assert(&I == I.getParent()->getTerminator(),
2700          "Terminator found in the middle of a basic block!", I.getParent());
2701   visitInstruction(I);
2702 }
2703 
2704 void Verifier::visitBranchInst(BranchInst &BI) {
2705   if (BI.isConditional()) {
2706     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2707            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2708   }
2709   visitTerminator(BI);
2710 }
2711 
2712 void Verifier::visitReturnInst(ReturnInst &RI) {
2713   Function *F = RI.getParent()->getParent();
2714   unsigned N = RI.getNumOperands();
2715   if (F->getReturnType()->isVoidTy())
2716     Assert(N == 0,
2717            "Found return instr that returns non-void in Function of void "
2718            "return type!",
2719            &RI, F->getReturnType());
2720   else
2721     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2722            "Function return type does not match operand "
2723            "type of return inst!",
2724            &RI, F->getReturnType());
2725 
2726   // Check to make sure that the return value has necessary properties for
2727   // terminators...
2728   visitTerminator(RI);
2729 }
2730 
2731 void Verifier::visitSwitchInst(SwitchInst &SI) {
2732   Assert(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2733   // Check to make sure that all of the constants in the switch instruction
2734   // have the same type as the switched-on value.
2735   Type *SwitchTy = SI.getCondition()->getType();
2736   SmallPtrSet<ConstantInt*, 32> Constants;
2737   for (auto &Case : SI.cases()) {
2738     Assert(Case.getCaseValue()->getType() == SwitchTy,
2739            "Switch constants must all be same type as switch value!", &SI);
2740     Assert(Constants.insert(Case.getCaseValue()).second,
2741            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2742   }
2743 
2744   visitTerminator(SI);
2745 }
2746 
2747 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2748   Assert(BI.getAddress()->getType()->isPointerTy(),
2749          "Indirectbr operand must have pointer type!", &BI);
2750   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2751     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2752            "Indirectbr destinations must all have pointer type!", &BI);
2753 
2754   visitTerminator(BI);
2755 }
2756 
2757 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2758   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2759          &CBI);
2760   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2761   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2762   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2763     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2764            "Callbr successors must all have pointer type!", &CBI);
2765   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2766     Assert(i >= CBI.arg_size() || !isa<BasicBlock>(CBI.getOperand(i)),
2767            "Using an unescaped label as a callbr argument!", &CBI);
2768     if (isa<BasicBlock>(CBI.getOperand(i)))
2769       for (unsigned j = i + 1; j != e; ++j)
2770         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2771                "Duplicate callbr destination!", &CBI);
2772   }
2773   {
2774     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2775     for (Value *V : CBI.args())
2776       if (auto *BA = dyn_cast<BlockAddress>(V))
2777         ArgBBs.insert(BA->getBasicBlock());
2778     for (BasicBlock *BB : CBI.getIndirectDests())
2779       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2780   }
2781 
2782   visitTerminator(CBI);
2783 }
2784 
2785 void Verifier::visitSelectInst(SelectInst &SI) {
2786   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2787                                          SI.getOperand(2)),
2788          "Invalid operands for select instruction!", &SI);
2789 
2790   Assert(SI.getTrueValue()->getType() == SI.getType(),
2791          "Select values must have same type as select instruction!", &SI);
2792   visitInstruction(SI);
2793 }
2794 
2795 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2796 /// a pass, if any exist, it's an error.
2797 ///
2798 void Verifier::visitUserOp1(Instruction &I) {
2799   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2800 }
2801 
2802 void Verifier::visitTruncInst(TruncInst &I) {
2803   // Get the source and destination types
2804   Type *SrcTy = I.getOperand(0)->getType();
2805   Type *DestTy = I.getType();
2806 
2807   // Get the size of the types in bits, we'll need this later
2808   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2809   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2810 
2811   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2812   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2813   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2814          "trunc source and destination must both be a vector or neither", &I);
2815   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2816 
2817   visitInstruction(I);
2818 }
2819 
2820 void Verifier::visitZExtInst(ZExtInst &I) {
2821   // Get the source and destination types
2822   Type *SrcTy = I.getOperand(0)->getType();
2823   Type *DestTy = I.getType();
2824 
2825   // Get the size of the types in bits, we'll need this later
2826   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2827   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2828   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2829          "zext source and destination must both be a vector or neither", &I);
2830   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2831   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2832 
2833   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2834 
2835   visitInstruction(I);
2836 }
2837 
2838 void Verifier::visitSExtInst(SExtInst &I) {
2839   // Get the source and destination types
2840   Type *SrcTy = I.getOperand(0)->getType();
2841   Type *DestTy = I.getType();
2842 
2843   // Get the size of the types in bits, we'll need this later
2844   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2845   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2846 
2847   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2848   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2849   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2850          "sext source and destination must both be a vector or neither", &I);
2851   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2852 
2853   visitInstruction(I);
2854 }
2855 
2856 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2857   // Get the source and destination types
2858   Type *SrcTy = I.getOperand(0)->getType();
2859   Type *DestTy = I.getType();
2860   // Get the size of the types in bits, we'll need this later
2861   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2862   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2863 
2864   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2865   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2866   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2867          "fptrunc source and destination must both be a vector or neither", &I);
2868   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2869 
2870   visitInstruction(I);
2871 }
2872 
2873 void Verifier::visitFPExtInst(FPExtInst &I) {
2874   // Get the source and destination types
2875   Type *SrcTy = I.getOperand(0)->getType();
2876   Type *DestTy = I.getType();
2877 
2878   // Get the size of the types in bits, we'll need this later
2879   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2880   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2881 
2882   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2883   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2884   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2885          "fpext source and destination must both be a vector or neither", &I);
2886   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2887 
2888   visitInstruction(I);
2889 }
2890 
2891 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2892   // Get the source and destination types
2893   Type *SrcTy = I.getOperand(0)->getType();
2894   Type *DestTy = I.getType();
2895 
2896   bool SrcVec = SrcTy->isVectorTy();
2897   bool DstVec = DestTy->isVectorTy();
2898 
2899   Assert(SrcVec == DstVec,
2900          "UIToFP source and dest must both be vector or scalar", &I);
2901   Assert(SrcTy->isIntOrIntVectorTy(),
2902          "UIToFP source must be integer or integer vector", &I);
2903   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2904          &I);
2905 
2906   if (SrcVec && DstVec)
2907     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2908                cast<VectorType>(DestTy)->getElementCount(),
2909            "UIToFP source and dest vector length mismatch", &I);
2910 
2911   visitInstruction(I);
2912 }
2913 
2914 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2915   // Get the source and destination types
2916   Type *SrcTy = I.getOperand(0)->getType();
2917   Type *DestTy = I.getType();
2918 
2919   bool SrcVec = SrcTy->isVectorTy();
2920   bool DstVec = DestTy->isVectorTy();
2921 
2922   Assert(SrcVec == DstVec,
2923          "SIToFP source and dest must both be vector or scalar", &I);
2924   Assert(SrcTy->isIntOrIntVectorTy(),
2925          "SIToFP source must be integer or integer vector", &I);
2926   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2927          &I);
2928 
2929   if (SrcVec && DstVec)
2930     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2931                cast<VectorType>(DestTy)->getElementCount(),
2932            "SIToFP source and dest vector length mismatch", &I);
2933 
2934   visitInstruction(I);
2935 }
2936 
2937 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2938   // Get the source and destination types
2939   Type *SrcTy = I.getOperand(0)->getType();
2940   Type *DestTy = I.getType();
2941 
2942   bool SrcVec = SrcTy->isVectorTy();
2943   bool DstVec = DestTy->isVectorTy();
2944 
2945   Assert(SrcVec == DstVec,
2946          "FPToUI source and dest must both be vector or scalar", &I);
2947   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2948          &I);
2949   Assert(DestTy->isIntOrIntVectorTy(),
2950          "FPToUI result must be integer or integer vector", &I);
2951 
2952   if (SrcVec && DstVec)
2953     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2954                cast<VectorType>(DestTy)->getElementCount(),
2955            "FPToUI source and dest vector length mismatch", &I);
2956 
2957   visitInstruction(I);
2958 }
2959 
2960 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2961   // Get the source and destination types
2962   Type *SrcTy = I.getOperand(0)->getType();
2963   Type *DestTy = I.getType();
2964 
2965   bool SrcVec = SrcTy->isVectorTy();
2966   bool DstVec = DestTy->isVectorTy();
2967 
2968   Assert(SrcVec == DstVec,
2969          "FPToSI source and dest must both be vector or scalar", &I);
2970   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2971          &I);
2972   Assert(DestTy->isIntOrIntVectorTy(),
2973          "FPToSI result must be integer or integer vector", &I);
2974 
2975   if (SrcVec && DstVec)
2976     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2977                cast<VectorType>(DestTy)->getElementCount(),
2978            "FPToSI source and dest vector length mismatch", &I);
2979 
2980   visitInstruction(I);
2981 }
2982 
2983 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2984   // Get the source and destination types
2985   Type *SrcTy = I.getOperand(0)->getType();
2986   Type *DestTy = I.getType();
2987 
2988   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2989 
2990   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2991   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2992          &I);
2993 
2994   if (SrcTy->isVectorTy()) {
2995     auto *VSrc = cast<VectorType>(SrcTy);
2996     auto *VDest = cast<VectorType>(DestTy);
2997     Assert(VSrc->getElementCount() == VDest->getElementCount(),
2998            "PtrToInt Vector width mismatch", &I);
2999   }
3000 
3001   visitInstruction(I);
3002 }
3003 
3004 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3005   // Get the source and destination types
3006   Type *SrcTy = I.getOperand(0)->getType();
3007   Type *DestTy = I.getType();
3008 
3009   Assert(SrcTy->isIntOrIntVectorTy(),
3010          "IntToPtr source must be an integral", &I);
3011   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3012 
3013   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3014          &I);
3015   if (SrcTy->isVectorTy()) {
3016     auto *VSrc = cast<VectorType>(SrcTy);
3017     auto *VDest = cast<VectorType>(DestTy);
3018     Assert(VSrc->getElementCount() == VDest->getElementCount(),
3019            "IntToPtr Vector width mismatch", &I);
3020   }
3021   visitInstruction(I);
3022 }
3023 
3024 void Verifier::visitBitCastInst(BitCastInst &I) {
3025   Assert(
3026       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3027       "Invalid bitcast", &I);
3028   visitInstruction(I);
3029 }
3030 
3031 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3032   Type *SrcTy = I.getOperand(0)->getType();
3033   Type *DestTy = I.getType();
3034 
3035   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3036          &I);
3037   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3038          &I);
3039   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3040          "AddrSpaceCast must be between different address spaces", &I);
3041   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3042     Assert(SrcVTy->getElementCount() ==
3043                cast<VectorType>(DestTy)->getElementCount(),
3044            "AddrSpaceCast vector pointer number of elements mismatch", &I);
3045   visitInstruction(I);
3046 }
3047 
3048 /// visitPHINode - Ensure that a PHI node is well formed.
3049 ///
3050 void Verifier::visitPHINode(PHINode &PN) {
3051   // Ensure that the PHI nodes are all grouped together at the top of the block.
3052   // This can be tested by checking whether the instruction before this is
3053   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3054   // then there is some other instruction before a PHI.
3055   Assert(&PN == &PN.getParent()->front() ||
3056              isa<PHINode>(--BasicBlock::iterator(&PN)),
3057          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3058 
3059   // Check that a PHI doesn't yield a Token.
3060   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3061 
3062   // Check that all of the values of the PHI node have the same type as the
3063   // result, and that the incoming blocks are really basic blocks.
3064   for (Value *IncValue : PN.incoming_values()) {
3065     Assert(PN.getType() == IncValue->getType(),
3066            "PHI node operands are not the same type as the result!", &PN);
3067   }
3068 
3069   // All other PHI node constraints are checked in the visitBasicBlock method.
3070 
3071   visitInstruction(PN);
3072 }
3073 
3074 void Verifier::visitCallBase(CallBase &Call) {
3075   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3076          "Called function must be a pointer!", Call);
3077   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3078 
3079   Assert(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()),
3080          "Called function is not the same type as the call!", Call);
3081 
3082   FunctionType *FTy = Call.getFunctionType();
3083 
3084   // Verify that the correct number of arguments are being passed
3085   if (FTy->isVarArg())
3086     Assert(Call.arg_size() >= FTy->getNumParams(),
3087            "Called function requires more parameters than were provided!",
3088            Call);
3089   else
3090     Assert(Call.arg_size() == FTy->getNumParams(),
3091            "Incorrect number of arguments passed to called function!", Call);
3092 
3093   // Verify that all arguments to the call match the function type.
3094   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3095     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3096            "Call parameter type does not match function signature!",
3097            Call.getArgOperand(i), FTy->getParamType(i), Call);
3098 
3099   AttributeList Attrs = Call.getAttributes();
3100 
3101   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3102          "Attribute after last parameter!", Call);
3103 
3104   Function *Callee =
3105       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3106   bool IsIntrinsic = Callee && Callee->isIntrinsic();
3107   if (IsIntrinsic)
3108     Assert(Callee->getValueType() == FTy,
3109            "Intrinsic called with incompatible signature", Call);
3110 
3111   if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3112     // Don't allow speculatable on call sites, unless the underlying function
3113     // declaration is also speculatable.
3114     Assert(Callee && Callee->isSpeculatable(),
3115            "speculatable attribute may not apply to call sites", Call);
3116   }
3117 
3118   if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3119     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3120                Intrinsic::call_preallocated_arg,
3121            "preallocated as a call site attribute can only be on "
3122            "llvm.call.preallocated.arg");
3123   }
3124 
3125   // Verify call attributes.
3126   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3127 
3128   // Conservatively check the inalloca argument.
3129   // We have a bug if we can find that there is an underlying alloca without
3130   // inalloca.
3131   if (Call.hasInAllocaArgument()) {
3132     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3133     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3134       Assert(AI->isUsedWithInAlloca(),
3135              "inalloca argument for call has mismatched alloca", AI, Call);
3136   }
3137 
3138   // For each argument of the callsite, if it has the swifterror argument,
3139   // make sure the underlying alloca/parameter it comes from has a swifterror as
3140   // well.
3141   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3142     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3143       Value *SwiftErrorArg = Call.getArgOperand(i);
3144       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3145         Assert(AI->isSwiftError(),
3146                "swifterror argument for call has mismatched alloca", AI, Call);
3147         continue;
3148       }
3149       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3150       Assert(ArgI,
3151              "swifterror argument should come from an alloca or parameter",
3152              SwiftErrorArg, Call);
3153       Assert(ArgI->hasSwiftErrorAttr(),
3154              "swifterror argument for call has mismatched parameter", ArgI,
3155              Call);
3156     }
3157 
3158     if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3159       // Don't allow immarg on call sites, unless the underlying declaration
3160       // also has the matching immarg.
3161       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3162              "immarg may not apply only to call sites",
3163              Call.getArgOperand(i), Call);
3164     }
3165 
3166     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3167       Value *ArgVal = Call.getArgOperand(i);
3168       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3169              "immarg operand has non-immediate parameter", ArgVal, Call);
3170     }
3171 
3172     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3173       Value *ArgVal = Call.getArgOperand(i);
3174       bool hasOB =
3175           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3176       bool isMustTail = Call.isMustTailCall();
3177       Assert(hasOB != isMustTail,
3178              "preallocated operand either requires a preallocated bundle or "
3179              "the call to be musttail (but not both)",
3180              ArgVal, Call);
3181     }
3182   }
3183 
3184   if (FTy->isVarArg()) {
3185     // FIXME? is 'nest' even legal here?
3186     bool SawNest = false;
3187     bool SawReturned = false;
3188 
3189     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3190       if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3191         SawNest = true;
3192       if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3193         SawReturned = true;
3194     }
3195 
3196     // Check attributes on the varargs part.
3197     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3198       Type *Ty = Call.getArgOperand(Idx)->getType();
3199       AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3200       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3201 
3202       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3203         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3204         SawNest = true;
3205       }
3206 
3207       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3208         Assert(!SawReturned, "More than one parameter has attribute returned!",
3209                Call);
3210         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3211                "Incompatible argument and return types for 'returned' "
3212                "attribute",
3213                Call);
3214         SawReturned = true;
3215       }
3216 
3217       // Statepoint intrinsic is vararg but the wrapped function may be not.
3218       // Allow sret here and check the wrapped function in verifyStatepoint.
3219       if (!Call.getCalledFunction() ||
3220           Call.getCalledFunction()->getIntrinsicID() !=
3221               Intrinsic::experimental_gc_statepoint)
3222         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3223                "Attribute 'sret' cannot be used for vararg call arguments!",
3224                Call);
3225 
3226       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3227         Assert(Idx == Call.arg_size() - 1,
3228                "inalloca isn't on the last argument!", Call);
3229     }
3230   }
3231 
3232   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3233   if (!IsIntrinsic) {
3234     for (Type *ParamTy : FTy->params()) {
3235       Assert(!ParamTy->isMetadataTy(),
3236              "Function has metadata parameter but isn't an intrinsic", Call);
3237       Assert(!ParamTy->isTokenTy(),
3238              "Function has token parameter but isn't an intrinsic", Call);
3239     }
3240   }
3241 
3242   // Verify that indirect calls don't return tokens.
3243   if (!Call.getCalledFunction()) {
3244     Assert(!FTy->getReturnType()->isTokenTy(),
3245            "Return type cannot be token for indirect call!");
3246     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3247            "Return type cannot be x86_amx for indirect call!");
3248   }
3249 
3250   if (Function *F = Call.getCalledFunction())
3251     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3252       visitIntrinsicCall(ID, Call);
3253 
3254   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3255   // most one "gc-transition", at most one "cfguardtarget",
3256   // and at most one "preallocated" operand bundle.
3257   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3258        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3259        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3260        FoundAttachedCallBundle = false;
3261   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3262     OperandBundleUse BU = Call.getOperandBundleAt(i);
3263     uint32_t Tag = BU.getTagID();
3264     if (Tag == LLVMContext::OB_deopt) {
3265       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3266       FoundDeoptBundle = true;
3267     } else if (Tag == LLVMContext::OB_gc_transition) {
3268       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3269              Call);
3270       FoundGCTransitionBundle = true;
3271     } else if (Tag == LLVMContext::OB_funclet) {
3272       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3273       FoundFuncletBundle = true;
3274       Assert(BU.Inputs.size() == 1,
3275              "Expected exactly one funclet bundle operand", Call);
3276       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3277              "Funclet bundle operands should correspond to a FuncletPadInst",
3278              Call);
3279     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3280       Assert(!FoundCFGuardTargetBundle,
3281              "Multiple CFGuardTarget operand bundles", Call);
3282       FoundCFGuardTargetBundle = true;
3283       Assert(BU.Inputs.size() == 1,
3284              "Expected exactly one cfguardtarget bundle operand", Call);
3285     } else if (Tag == LLVMContext::OB_preallocated) {
3286       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3287              Call);
3288       FoundPreallocatedBundle = true;
3289       Assert(BU.Inputs.size() == 1,
3290              "Expected exactly one preallocated bundle operand", Call);
3291       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3292       Assert(Input &&
3293                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3294              "\"preallocated\" argument must be a token from "
3295              "llvm.call.preallocated.setup",
3296              Call);
3297     } else if (Tag == LLVMContext::OB_gc_live) {
3298       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3299              Call);
3300       FoundGCLiveBundle = true;
3301     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3302       Assert(!FoundAttachedCallBundle,
3303              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3304       FoundAttachedCallBundle = true;
3305       verifyAttachedCallBundle(Call, BU);
3306     }
3307   }
3308 
3309   // Verify that each inlinable callsite of a debug-info-bearing function in a
3310   // debug-info-bearing function has a debug location attached to it. Failure to
3311   // do so causes assertion failures when the inliner sets up inline scope info.
3312   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3313       Call.getCalledFunction()->getSubprogram())
3314     AssertDI(Call.getDebugLoc(),
3315              "inlinable function call in a function with "
3316              "debug info must have a !dbg location",
3317              Call);
3318 
3319   visitInstruction(Call);
3320 }
3321 
3322 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3323                                          StringRef Context) {
3324   Assert(!Attrs.contains(Attribute::InAlloca),
3325          Twine("inalloca attribute not allowed in ") + Context);
3326   Assert(!Attrs.contains(Attribute::InReg),
3327          Twine("inreg attribute not allowed in ") + Context);
3328   Assert(!Attrs.contains(Attribute::SwiftError),
3329          Twine("swifterror attribute not allowed in ") + Context);
3330   Assert(!Attrs.contains(Attribute::Preallocated),
3331          Twine("preallocated attribute not allowed in ") + Context);
3332   Assert(!Attrs.contains(Attribute::ByRef),
3333          Twine("byref attribute not allowed in ") + Context);
3334 }
3335 
3336 /// Two types are "congruent" if they are identical, or if they are both pointer
3337 /// types with different pointee types and the same address space.
3338 static bool isTypeCongruent(Type *L, Type *R) {
3339   if (L == R)
3340     return true;
3341   PointerType *PL = dyn_cast<PointerType>(L);
3342   PointerType *PR = dyn_cast<PointerType>(R);
3343   if (!PL || !PR)
3344     return false;
3345   return PL->getAddressSpace() == PR->getAddressSpace();
3346 }
3347 
3348 static AttrBuilder getParameterABIAttributes(unsigned I, AttributeList Attrs) {
3349   static const Attribute::AttrKind ABIAttrs[] = {
3350       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3351       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3352       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3353       Attribute::ByRef};
3354   AttrBuilder Copy;
3355   for (auto AK : ABIAttrs) {
3356     Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3357     if (Attr.isValid())
3358       Copy.addAttribute(Attr);
3359   }
3360 
3361   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3362   if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3363       (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3364        Attrs.hasParamAttr(I, Attribute::ByRef)))
3365     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3366   return Copy;
3367 }
3368 
3369 void Verifier::verifyMustTailCall(CallInst &CI) {
3370   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3371 
3372   Function *F = CI.getParent()->getParent();
3373   FunctionType *CallerTy = F->getFunctionType();
3374   FunctionType *CalleeTy = CI.getFunctionType();
3375   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3376          "cannot guarantee tail call due to mismatched varargs", &CI);
3377   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3378          "cannot guarantee tail call due to mismatched return types", &CI);
3379 
3380   // - The calling conventions of the caller and callee must match.
3381   Assert(F->getCallingConv() == CI.getCallingConv(),
3382          "cannot guarantee tail call due to mismatched calling conv", &CI);
3383 
3384   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3385   //   or a pointer bitcast followed by a ret instruction.
3386   // - The ret instruction must return the (possibly bitcasted) value
3387   //   produced by the call or void.
3388   Value *RetVal = &CI;
3389   Instruction *Next = CI.getNextNode();
3390 
3391   // Handle the optional bitcast.
3392   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3393     Assert(BI->getOperand(0) == RetVal,
3394            "bitcast following musttail call must use the call", BI);
3395     RetVal = BI;
3396     Next = BI->getNextNode();
3397   }
3398 
3399   // Check the return.
3400   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3401   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3402          &CI);
3403   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3404              isa<UndefValue>(Ret->getReturnValue()),
3405          "musttail call result must be returned", Ret);
3406 
3407   AttributeList CallerAttrs = F->getAttributes();
3408   AttributeList CalleeAttrs = CI.getAttributes();
3409   if (CI.getCallingConv() == CallingConv::SwiftTail ||
3410       CI.getCallingConv() == CallingConv::Tail) {
3411     StringRef CCName =
3412         CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3413 
3414     // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3415     //   are allowed in swifttailcc call
3416     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3417       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3418       SmallString<32> Context{CCName, StringRef(" musttail caller")};
3419       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3420     }
3421     for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3422       AttrBuilder ABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3423       SmallString<32> Context{CCName, StringRef(" musttail callee")};
3424       verifyTailCCMustTailAttrs(ABIAttrs, Context);
3425     }
3426     // - Varargs functions are not allowed
3427     Assert(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3428                                       " tail call for varargs function");
3429     return;
3430   }
3431 
3432   // - The caller and callee prototypes must match.  Pointer types of
3433   //   parameters or return types may differ in pointee type, but not
3434   //   address space.
3435   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3436     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3437            "cannot guarantee tail call due to mismatched parameter counts",
3438            &CI);
3439     for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3440       Assert(
3441           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3442           "cannot guarantee tail call due to mismatched parameter types", &CI);
3443     }
3444   }
3445 
3446   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3447   //   returned, preallocated, and inalloca, must match.
3448   for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3449     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3450     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3451     Assert(CallerABIAttrs == CalleeABIAttrs,
3452            "cannot guarantee tail call due to mismatched ABI impacting "
3453            "function attributes",
3454            &CI, CI.getOperand(I));
3455   }
3456 }
3457 
3458 void Verifier::visitCallInst(CallInst &CI) {
3459   visitCallBase(CI);
3460 
3461   if (CI.isMustTailCall())
3462     verifyMustTailCall(CI);
3463 }
3464 
3465 void Verifier::visitInvokeInst(InvokeInst &II) {
3466   visitCallBase(II);
3467 
3468   // Verify that the first non-PHI instruction of the unwind destination is an
3469   // exception handling instruction.
3470   Assert(
3471       II.getUnwindDest()->isEHPad(),
3472       "The unwind destination does not have an exception handling instruction!",
3473       &II);
3474 
3475   visitTerminator(II);
3476 }
3477 
3478 /// visitUnaryOperator - Check the argument to the unary operator.
3479 ///
3480 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3481   Assert(U.getType() == U.getOperand(0)->getType(),
3482          "Unary operators must have same type for"
3483          "operands and result!",
3484          &U);
3485 
3486   switch (U.getOpcode()) {
3487   // Check that floating-point arithmetic operators are only used with
3488   // floating-point operands.
3489   case Instruction::FNeg:
3490     Assert(U.getType()->isFPOrFPVectorTy(),
3491            "FNeg operator only works with float types!", &U);
3492     break;
3493   default:
3494     llvm_unreachable("Unknown UnaryOperator opcode!");
3495   }
3496 
3497   visitInstruction(U);
3498 }
3499 
3500 /// visitBinaryOperator - Check that both arguments to the binary operator are
3501 /// of the same type!
3502 ///
3503 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3504   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3505          "Both operands to a binary operator are not of the same type!", &B);
3506 
3507   switch (B.getOpcode()) {
3508   // Check that integer arithmetic operators are only used with
3509   // integral operands.
3510   case Instruction::Add:
3511   case Instruction::Sub:
3512   case Instruction::Mul:
3513   case Instruction::SDiv:
3514   case Instruction::UDiv:
3515   case Instruction::SRem:
3516   case Instruction::URem:
3517     Assert(B.getType()->isIntOrIntVectorTy(),
3518            "Integer arithmetic operators only work with integral types!", &B);
3519     Assert(B.getType() == B.getOperand(0)->getType(),
3520            "Integer arithmetic operators must have same type "
3521            "for operands and result!",
3522            &B);
3523     break;
3524   // Check that floating-point arithmetic operators are only used with
3525   // floating-point operands.
3526   case Instruction::FAdd:
3527   case Instruction::FSub:
3528   case Instruction::FMul:
3529   case Instruction::FDiv:
3530   case Instruction::FRem:
3531     Assert(B.getType()->isFPOrFPVectorTy(),
3532            "Floating-point arithmetic operators only work with "
3533            "floating-point types!",
3534            &B);
3535     Assert(B.getType() == B.getOperand(0)->getType(),
3536            "Floating-point arithmetic operators must have same type "
3537            "for operands and result!",
3538            &B);
3539     break;
3540   // Check that logical operators are only used with integral operands.
3541   case Instruction::And:
3542   case Instruction::Or:
3543   case Instruction::Xor:
3544     Assert(B.getType()->isIntOrIntVectorTy(),
3545            "Logical operators only work with integral types!", &B);
3546     Assert(B.getType() == B.getOperand(0)->getType(),
3547            "Logical operators must have same type for operands and result!",
3548            &B);
3549     break;
3550   case Instruction::Shl:
3551   case Instruction::LShr:
3552   case Instruction::AShr:
3553     Assert(B.getType()->isIntOrIntVectorTy(),
3554            "Shifts only work with integral types!", &B);
3555     Assert(B.getType() == B.getOperand(0)->getType(),
3556            "Shift return type must be same as operands!", &B);
3557     break;
3558   default:
3559     llvm_unreachable("Unknown BinaryOperator opcode!");
3560   }
3561 
3562   visitInstruction(B);
3563 }
3564 
3565 void Verifier::visitICmpInst(ICmpInst &IC) {
3566   // Check that the operands are the same type
3567   Type *Op0Ty = IC.getOperand(0)->getType();
3568   Type *Op1Ty = IC.getOperand(1)->getType();
3569   Assert(Op0Ty == Op1Ty,
3570          "Both operands to ICmp instruction are not of the same type!", &IC);
3571   // Check that the operands are the right type
3572   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3573          "Invalid operand types for ICmp instruction", &IC);
3574   // Check that the predicate is valid.
3575   Assert(IC.isIntPredicate(),
3576          "Invalid predicate in ICmp instruction!", &IC);
3577 
3578   visitInstruction(IC);
3579 }
3580 
3581 void Verifier::visitFCmpInst(FCmpInst &FC) {
3582   // Check that the operands are the same type
3583   Type *Op0Ty = FC.getOperand(0)->getType();
3584   Type *Op1Ty = FC.getOperand(1)->getType();
3585   Assert(Op0Ty == Op1Ty,
3586          "Both operands to FCmp instruction are not of the same type!", &FC);
3587   // Check that the operands are the right type
3588   Assert(Op0Ty->isFPOrFPVectorTy(),
3589          "Invalid operand types for FCmp instruction", &FC);
3590   // Check that the predicate is valid.
3591   Assert(FC.isFPPredicate(),
3592          "Invalid predicate in FCmp instruction!", &FC);
3593 
3594   visitInstruction(FC);
3595 }
3596 
3597 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3598   Assert(
3599       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3600       "Invalid extractelement operands!", &EI);
3601   visitInstruction(EI);
3602 }
3603 
3604 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3605   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3606                                             IE.getOperand(2)),
3607          "Invalid insertelement operands!", &IE);
3608   visitInstruction(IE);
3609 }
3610 
3611 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3612   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3613                                             SV.getShuffleMask()),
3614          "Invalid shufflevector operands!", &SV);
3615   visitInstruction(SV);
3616 }
3617 
3618 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3619   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3620 
3621   Assert(isa<PointerType>(TargetTy),
3622          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3623   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3624 
3625   SmallVector<Value *, 16> Idxs(GEP.indices());
3626   Assert(all_of(
3627       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3628       "GEP indexes must be integers", &GEP);
3629   Type *ElTy =
3630       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3631   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3632 
3633   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3634              GEP.getResultElementType() == ElTy,
3635          "GEP is not of right type for indices!", &GEP, ElTy);
3636 
3637   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3638     // Additional checks for vector GEPs.
3639     ElementCount GEPWidth = GEPVTy->getElementCount();
3640     if (GEP.getPointerOperandType()->isVectorTy())
3641       Assert(
3642           GEPWidth ==
3643               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3644           "Vector GEP result width doesn't match operand's", &GEP);
3645     for (Value *Idx : Idxs) {
3646       Type *IndexTy = Idx->getType();
3647       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3648         ElementCount IndexWidth = IndexVTy->getElementCount();
3649         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3650       }
3651       Assert(IndexTy->isIntOrIntVectorTy(),
3652              "All GEP indices should be of integer type");
3653     }
3654   }
3655 
3656   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3657     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3658            "GEP address space doesn't match type", &GEP);
3659   }
3660 
3661   visitInstruction(GEP);
3662 }
3663 
3664 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3665   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3666 }
3667 
3668 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3669   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3670          "precondition violation");
3671 
3672   unsigned NumOperands = Range->getNumOperands();
3673   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3674   unsigned NumRanges = NumOperands / 2;
3675   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3676 
3677   ConstantRange LastRange(1, true); // Dummy initial value
3678   for (unsigned i = 0; i < NumRanges; ++i) {
3679     ConstantInt *Low =
3680         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3681     Assert(Low, "The lower limit must be an integer!", Low);
3682     ConstantInt *High =
3683         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3684     Assert(High, "The upper limit must be an integer!", High);
3685     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3686            "Range types must match instruction type!", &I);
3687 
3688     APInt HighV = High->getValue();
3689     APInt LowV = Low->getValue();
3690     ConstantRange CurRange(LowV, HighV);
3691     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3692            "Range must not be empty!", Range);
3693     if (i != 0) {
3694       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3695              "Intervals are overlapping", Range);
3696       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3697              Range);
3698       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3699              Range);
3700     }
3701     LastRange = ConstantRange(LowV, HighV);
3702   }
3703   if (NumRanges > 2) {
3704     APInt FirstLow =
3705         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3706     APInt FirstHigh =
3707         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3708     ConstantRange FirstRange(FirstLow, FirstHigh);
3709     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3710            "Intervals are overlapping", Range);
3711     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3712            Range);
3713   }
3714 }
3715 
3716 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3717   unsigned Size = DL.getTypeSizeInBits(Ty);
3718   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3719   Assert(!(Size & (Size - 1)),
3720          "atomic memory access' operand must have a power-of-two size", Ty, I);
3721 }
3722 
3723 void Verifier::visitLoadInst(LoadInst &LI) {
3724   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3725   Assert(PTy, "Load operand must be a pointer.", &LI);
3726   Type *ElTy = LI.getType();
3727   if (MaybeAlign A = LI.getAlign()) {
3728     Assert(A->value() <= Value::MaximumAlignment,
3729            "huge alignment values are unsupported", &LI);
3730   }
3731   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3732   if (LI.isAtomic()) {
3733     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3734                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3735            "Load cannot have Release ordering", &LI);
3736     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3737            "atomic load operand must have integer, pointer, or floating point "
3738            "type!",
3739            ElTy, &LI);
3740     checkAtomicMemAccessSize(ElTy, &LI);
3741   } else {
3742     Assert(LI.getSyncScopeID() == SyncScope::System,
3743            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3744   }
3745 
3746   visitInstruction(LI);
3747 }
3748 
3749 void Verifier::visitStoreInst(StoreInst &SI) {
3750   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3751   Assert(PTy, "Store operand must be a pointer.", &SI);
3752   Type *ElTy = SI.getOperand(0)->getType();
3753   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3754          "Stored value type does not match pointer operand type!", &SI, ElTy);
3755   if (MaybeAlign A = SI.getAlign()) {
3756     Assert(A->value() <= Value::MaximumAlignment,
3757            "huge alignment values are unsupported", &SI);
3758   }
3759   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3760   if (SI.isAtomic()) {
3761     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3762                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3763            "Store cannot have Acquire ordering", &SI);
3764     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3765            "atomic store operand must have integer, pointer, or floating point "
3766            "type!",
3767            ElTy, &SI);
3768     checkAtomicMemAccessSize(ElTy, &SI);
3769   } else {
3770     Assert(SI.getSyncScopeID() == SyncScope::System,
3771            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3772   }
3773   visitInstruction(SI);
3774 }
3775 
3776 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3777 void Verifier::verifySwiftErrorCall(CallBase &Call,
3778                                     const Value *SwiftErrorVal) {
3779   for (const auto &I : llvm::enumerate(Call.args())) {
3780     if (I.value() == SwiftErrorVal) {
3781       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3782              "swifterror value when used in a callsite should be marked "
3783              "with swifterror attribute",
3784              SwiftErrorVal, Call);
3785     }
3786   }
3787 }
3788 
3789 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3790   // Check that swifterror value is only used by loads, stores, or as
3791   // a swifterror argument.
3792   for (const User *U : SwiftErrorVal->users()) {
3793     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3794            isa<InvokeInst>(U),
3795            "swifterror value can only be loaded and stored from, or "
3796            "as a swifterror argument!",
3797            SwiftErrorVal, U);
3798     // If it is used by a store, check it is the second operand.
3799     if (auto StoreI = dyn_cast<StoreInst>(U))
3800       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3801              "swifterror value should be the second operand when used "
3802              "by stores", SwiftErrorVal, U);
3803     if (auto *Call = dyn_cast<CallBase>(U))
3804       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3805   }
3806 }
3807 
3808 void Verifier::visitAllocaInst(AllocaInst &AI) {
3809   SmallPtrSet<Type*, 4> Visited;
3810   Assert(AI.getAllocatedType()->isSized(&Visited),
3811          "Cannot allocate unsized type", &AI);
3812   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3813          "Alloca array size must have integer type", &AI);
3814   if (MaybeAlign A = AI.getAlign()) {
3815     Assert(A->value() <= Value::MaximumAlignment,
3816            "huge alignment values are unsupported", &AI);
3817   }
3818 
3819   if (AI.isSwiftError()) {
3820     verifySwiftErrorValue(&AI);
3821   }
3822 
3823   visitInstruction(AI);
3824 }
3825 
3826 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3827   Type *ElTy = CXI.getOperand(1)->getType();
3828   Assert(ElTy->isIntOrPtrTy(),
3829          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3830   checkAtomicMemAccessSize(ElTy, &CXI);
3831   visitInstruction(CXI);
3832 }
3833 
3834 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3835   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3836          "atomicrmw instructions cannot be unordered.", &RMWI);
3837   auto Op = RMWI.getOperation();
3838   Type *ElTy = RMWI.getOperand(1)->getType();
3839   if (Op == AtomicRMWInst::Xchg) {
3840     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3841            AtomicRMWInst::getOperationName(Op) +
3842            " operand must have integer or floating point type!",
3843            &RMWI, ElTy);
3844   } else if (AtomicRMWInst::isFPOperation(Op)) {
3845     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3846            AtomicRMWInst::getOperationName(Op) +
3847            " operand must have floating point type!",
3848            &RMWI, ElTy);
3849   } else {
3850     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3851            AtomicRMWInst::getOperationName(Op) +
3852            " operand must have integer type!",
3853            &RMWI, ElTy);
3854   }
3855   checkAtomicMemAccessSize(ElTy, &RMWI);
3856   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3857          "Invalid binary operation!", &RMWI);
3858   visitInstruction(RMWI);
3859 }
3860 
3861 void Verifier::visitFenceInst(FenceInst &FI) {
3862   const AtomicOrdering Ordering = FI.getOrdering();
3863   Assert(Ordering == AtomicOrdering::Acquire ||
3864              Ordering == AtomicOrdering::Release ||
3865              Ordering == AtomicOrdering::AcquireRelease ||
3866              Ordering == AtomicOrdering::SequentiallyConsistent,
3867          "fence instructions may only have acquire, release, acq_rel, or "
3868          "seq_cst ordering.",
3869          &FI);
3870   visitInstruction(FI);
3871 }
3872 
3873 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3874   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3875                                           EVI.getIndices()) == EVI.getType(),
3876          "Invalid ExtractValueInst operands!", &EVI);
3877 
3878   visitInstruction(EVI);
3879 }
3880 
3881 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3882   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3883                                           IVI.getIndices()) ==
3884              IVI.getOperand(1)->getType(),
3885          "Invalid InsertValueInst operands!", &IVI);
3886 
3887   visitInstruction(IVI);
3888 }
3889 
3890 static Value *getParentPad(Value *EHPad) {
3891   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3892     return FPI->getParentPad();
3893 
3894   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3895 }
3896 
3897 void Verifier::visitEHPadPredecessors(Instruction &I) {
3898   assert(I.isEHPad());
3899 
3900   BasicBlock *BB = I.getParent();
3901   Function *F = BB->getParent();
3902 
3903   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3904 
3905   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3906     // The landingpad instruction defines its parent as a landing pad block. The
3907     // landing pad block may be branched to only by the unwind edge of an
3908     // invoke.
3909     for (BasicBlock *PredBB : predecessors(BB)) {
3910       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3911       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3912              "Block containing LandingPadInst must be jumped to "
3913              "only by the unwind edge of an invoke.",
3914              LPI);
3915     }
3916     return;
3917   }
3918   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3919     if (!pred_empty(BB))
3920       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3921              "Block containg CatchPadInst must be jumped to "
3922              "only by its catchswitch.",
3923              CPI);
3924     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3925            "Catchswitch cannot unwind to one of its catchpads",
3926            CPI->getCatchSwitch(), CPI);
3927     return;
3928   }
3929 
3930   // Verify that each pred has a legal terminator with a legal to/from EH
3931   // pad relationship.
3932   Instruction *ToPad = &I;
3933   Value *ToPadParent = getParentPad(ToPad);
3934   for (BasicBlock *PredBB : predecessors(BB)) {
3935     Instruction *TI = PredBB->getTerminator();
3936     Value *FromPad;
3937     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3938       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3939              "EH pad must be jumped to via an unwind edge", ToPad, II);
3940       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3941         FromPad = Bundle->Inputs[0];
3942       else
3943         FromPad = ConstantTokenNone::get(II->getContext());
3944     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3945       FromPad = CRI->getOperand(0);
3946       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3947     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3948       FromPad = CSI;
3949     } else {
3950       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3951     }
3952 
3953     // The edge may exit from zero or more nested pads.
3954     SmallSet<Value *, 8> Seen;
3955     for (;; FromPad = getParentPad(FromPad)) {
3956       Assert(FromPad != ToPad,
3957              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3958       if (FromPad == ToPadParent) {
3959         // This is a legal unwind edge.
3960         break;
3961       }
3962       Assert(!isa<ConstantTokenNone>(FromPad),
3963              "A single unwind edge may only enter one EH pad", TI);
3964       Assert(Seen.insert(FromPad).second,
3965              "EH pad jumps through a cycle of pads", FromPad);
3966     }
3967   }
3968 }
3969 
3970 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3971   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3972   // isn't a cleanup.
3973   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3974          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3975 
3976   visitEHPadPredecessors(LPI);
3977 
3978   if (!LandingPadResultTy)
3979     LandingPadResultTy = LPI.getType();
3980   else
3981     Assert(LandingPadResultTy == LPI.getType(),
3982            "The landingpad instruction should have a consistent result type "
3983            "inside a function.",
3984            &LPI);
3985 
3986   Function *F = LPI.getParent()->getParent();
3987   Assert(F->hasPersonalityFn(),
3988          "LandingPadInst needs to be in a function with a personality.", &LPI);
3989 
3990   // The landingpad instruction must be the first non-PHI instruction in the
3991   // block.
3992   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3993          "LandingPadInst not the first non-PHI instruction in the block.",
3994          &LPI);
3995 
3996   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3997     Constant *Clause = LPI.getClause(i);
3998     if (LPI.isCatch(i)) {
3999       Assert(isa<PointerType>(Clause->getType()),
4000              "Catch operand does not have pointer type!", &LPI);
4001     } else {
4002       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4003       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4004              "Filter operand is not an array of constants!", &LPI);
4005     }
4006   }
4007 
4008   visitInstruction(LPI);
4009 }
4010 
4011 void Verifier::visitResumeInst(ResumeInst &RI) {
4012   Assert(RI.getFunction()->hasPersonalityFn(),
4013          "ResumeInst needs to be in a function with a personality.", &RI);
4014 
4015   if (!LandingPadResultTy)
4016     LandingPadResultTy = RI.getValue()->getType();
4017   else
4018     Assert(LandingPadResultTy == RI.getValue()->getType(),
4019            "The resume instruction should have a consistent result type "
4020            "inside a function.",
4021            &RI);
4022 
4023   visitTerminator(RI);
4024 }
4025 
4026 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4027   BasicBlock *BB = CPI.getParent();
4028 
4029   Function *F = BB->getParent();
4030   Assert(F->hasPersonalityFn(),
4031          "CatchPadInst needs to be in a function with a personality.", &CPI);
4032 
4033   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4034          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4035          CPI.getParentPad());
4036 
4037   // The catchpad instruction must be the first non-PHI instruction in the
4038   // block.
4039   Assert(BB->getFirstNonPHI() == &CPI,
4040          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4041 
4042   visitEHPadPredecessors(CPI);
4043   visitFuncletPadInst(CPI);
4044 }
4045 
4046 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4047   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4048          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4049          CatchReturn.getOperand(0));
4050 
4051   visitTerminator(CatchReturn);
4052 }
4053 
4054 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4055   BasicBlock *BB = CPI.getParent();
4056 
4057   Function *F = BB->getParent();
4058   Assert(F->hasPersonalityFn(),
4059          "CleanupPadInst needs to be in a function with a personality.", &CPI);
4060 
4061   // The cleanuppad instruction must be the first non-PHI instruction in the
4062   // block.
4063   Assert(BB->getFirstNonPHI() == &CPI,
4064          "CleanupPadInst not the first non-PHI instruction in the block.",
4065          &CPI);
4066 
4067   auto *ParentPad = CPI.getParentPad();
4068   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4069          "CleanupPadInst has an invalid parent.", &CPI);
4070 
4071   visitEHPadPredecessors(CPI);
4072   visitFuncletPadInst(CPI);
4073 }
4074 
4075 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4076   User *FirstUser = nullptr;
4077   Value *FirstUnwindPad = nullptr;
4078   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4079   SmallSet<FuncletPadInst *, 8> Seen;
4080 
4081   while (!Worklist.empty()) {
4082     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4083     Assert(Seen.insert(CurrentPad).second,
4084            "FuncletPadInst must not be nested within itself", CurrentPad);
4085     Value *UnresolvedAncestorPad = nullptr;
4086     for (User *U : CurrentPad->users()) {
4087       BasicBlock *UnwindDest;
4088       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4089         UnwindDest = CRI->getUnwindDest();
4090       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4091         // We allow catchswitch unwind to caller to nest
4092         // within an outer pad that unwinds somewhere else,
4093         // because catchswitch doesn't have a nounwind variant.
4094         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4095         if (CSI->unwindsToCaller())
4096           continue;
4097         UnwindDest = CSI->getUnwindDest();
4098       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4099         UnwindDest = II->getUnwindDest();
4100       } else if (isa<CallInst>(U)) {
4101         // Calls which don't unwind may be found inside funclet
4102         // pads that unwind somewhere else.  We don't *require*
4103         // such calls to be annotated nounwind.
4104         continue;
4105       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4106         // The unwind dest for a cleanup can only be found by
4107         // recursive search.  Add it to the worklist, and we'll
4108         // search for its first use that determines where it unwinds.
4109         Worklist.push_back(CPI);
4110         continue;
4111       } else {
4112         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4113         continue;
4114       }
4115 
4116       Value *UnwindPad;
4117       bool ExitsFPI;
4118       if (UnwindDest) {
4119         UnwindPad = UnwindDest->getFirstNonPHI();
4120         if (!cast<Instruction>(UnwindPad)->isEHPad())
4121           continue;
4122         Value *UnwindParent = getParentPad(UnwindPad);
4123         // Ignore unwind edges that don't exit CurrentPad.
4124         if (UnwindParent == CurrentPad)
4125           continue;
4126         // Determine whether the original funclet pad is exited,
4127         // and if we are scanning nested pads determine how many
4128         // of them are exited so we can stop searching their
4129         // children.
4130         Value *ExitedPad = CurrentPad;
4131         ExitsFPI = false;
4132         do {
4133           if (ExitedPad == &FPI) {
4134             ExitsFPI = true;
4135             // Now we can resolve any ancestors of CurrentPad up to
4136             // FPI, but not including FPI since we need to make sure
4137             // to check all direct users of FPI for consistency.
4138             UnresolvedAncestorPad = &FPI;
4139             break;
4140           }
4141           Value *ExitedParent = getParentPad(ExitedPad);
4142           if (ExitedParent == UnwindParent) {
4143             // ExitedPad is the ancestor-most pad which this unwind
4144             // edge exits, so we can resolve up to it, meaning that
4145             // ExitedParent is the first ancestor still unresolved.
4146             UnresolvedAncestorPad = ExitedParent;
4147             break;
4148           }
4149           ExitedPad = ExitedParent;
4150         } while (!isa<ConstantTokenNone>(ExitedPad));
4151       } else {
4152         // Unwinding to caller exits all pads.
4153         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4154         ExitsFPI = true;
4155         UnresolvedAncestorPad = &FPI;
4156       }
4157 
4158       if (ExitsFPI) {
4159         // This unwind edge exits FPI.  Make sure it agrees with other
4160         // such edges.
4161         if (FirstUser) {
4162           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4163                                               "pad must have the same unwind "
4164                                               "dest",
4165                  &FPI, U, FirstUser);
4166         } else {
4167           FirstUser = U;
4168           FirstUnwindPad = UnwindPad;
4169           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4170           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4171               getParentPad(UnwindPad) == getParentPad(&FPI))
4172             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4173         }
4174       }
4175       // Make sure we visit all uses of FPI, but for nested pads stop as
4176       // soon as we know where they unwind to.
4177       if (CurrentPad != &FPI)
4178         break;
4179     }
4180     if (UnresolvedAncestorPad) {
4181       if (CurrentPad == UnresolvedAncestorPad) {
4182         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4183         // we've found an unwind edge that exits it, because we need to verify
4184         // all direct uses of FPI.
4185         assert(CurrentPad == &FPI);
4186         continue;
4187       }
4188       // Pop off the worklist any nested pads that we've found an unwind
4189       // destination for.  The pads on the worklist are the uncles,
4190       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4191       // for all ancestors of CurrentPad up to but not including
4192       // UnresolvedAncestorPad.
4193       Value *ResolvedPad = CurrentPad;
4194       while (!Worklist.empty()) {
4195         Value *UnclePad = Worklist.back();
4196         Value *AncestorPad = getParentPad(UnclePad);
4197         // Walk ResolvedPad up the ancestor list until we either find the
4198         // uncle's parent or the last resolved ancestor.
4199         while (ResolvedPad != AncestorPad) {
4200           Value *ResolvedParent = getParentPad(ResolvedPad);
4201           if (ResolvedParent == UnresolvedAncestorPad) {
4202             break;
4203           }
4204           ResolvedPad = ResolvedParent;
4205         }
4206         // If the resolved ancestor search didn't find the uncle's parent,
4207         // then the uncle is not yet resolved.
4208         if (ResolvedPad != AncestorPad)
4209           break;
4210         // This uncle is resolved, so pop it from the worklist.
4211         Worklist.pop_back();
4212       }
4213     }
4214   }
4215 
4216   if (FirstUnwindPad) {
4217     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4218       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4219       Value *SwitchUnwindPad;
4220       if (SwitchUnwindDest)
4221         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4222       else
4223         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4224       Assert(SwitchUnwindPad == FirstUnwindPad,
4225              "Unwind edges out of a catch must have the same unwind dest as "
4226              "the parent catchswitch",
4227              &FPI, FirstUser, CatchSwitch);
4228     }
4229   }
4230 
4231   visitInstruction(FPI);
4232 }
4233 
4234 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4235   BasicBlock *BB = CatchSwitch.getParent();
4236 
4237   Function *F = BB->getParent();
4238   Assert(F->hasPersonalityFn(),
4239          "CatchSwitchInst needs to be in a function with a personality.",
4240          &CatchSwitch);
4241 
4242   // The catchswitch instruction must be the first non-PHI instruction in the
4243   // block.
4244   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4245          "CatchSwitchInst not the first non-PHI instruction in the block.",
4246          &CatchSwitch);
4247 
4248   auto *ParentPad = CatchSwitch.getParentPad();
4249   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4250          "CatchSwitchInst has an invalid parent.", ParentPad);
4251 
4252   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4253     Instruction *I = UnwindDest->getFirstNonPHI();
4254     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4255            "CatchSwitchInst must unwind to an EH block which is not a "
4256            "landingpad.",
4257            &CatchSwitch);
4258 
4259     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4260     if (getParentPad(I) == ParentPad)
4261       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4262   }
4263 
4264   Assert(CatchSwitch.getNumHandlers() != 0,
4265          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4266 
4267   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4268     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4269            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4270   }
4271 
4272   visitEHPadPredecessors(CatchSwitch);
4273   visitTerminator(CatchSwitch);
4274 }
4275 
4276 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4277   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4278          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4279          CRI.getOperand(0));
4280 
4281   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4282     Instruction *I = UnwindDest->getFirstNonPHI();
4283     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4284            "CleanupReturnInst must unwind to an EH block which is not a "
4285            "landingpad.",
4286            &CRI);
4287   }
4288 
4289   visitTerminator(CRI);
4290 }
4291 
4292 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4293   Instruction *Op = cast<Instruction>(I.getOperand(i));
4294   // If the we have an invalid invoke, don't try to compute the dominance.
4295   // We already reject it in the invoke specific checks and the dominance
4296   // computation doesn't handle multiple edges.
4297   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4298     if (II->getNormalDest() == II->getUnwindDest())
4299       return;
4300   }
4301 
4302   // Quick check whether the def has already been encountered in the same block.
4303   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4304   // uses are defined to happen on the incoming edge, not at the instruction.
4305   //
4306   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4307   // wrapping an SSA value, assert that we've already encountered it.  See
4308   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4309   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4310     return;
4311 
4312   const Use &U = I.getOperandUse(i);
4313   Assert(DT.dominates(Op, U),
4314          "Instruction does not dominate all uses!", Op, &I);
4315 }
4316 
4317 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4318   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4319          "apply only to pointer types", &I);
4320   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4321          "dereferenceable, dereferenceable_or_null apply only to load"
4322          " and inttoptr instructions, use attributes for calls or invokes", &I);
4323   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4324          "take one operand!", &I);
4325   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4326   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4327          "dereferenceable_or_null metadata value must be an i64!", &I);
4328 }
4329 
4330 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4331   Assert(MD->getNumOperands() >= 2,
4332          "!prof annotations should have no less than 2 operands", MD);
4333 
4334   // Check first operand.
4335   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4336   Assert(isa<MDString>(MD->getOperand(0)),
4337          "expected string with name of the !prof annotation", MD);
4338   MDString *MDS = cast<MDString>(MD->getOperand(0));
4339   StringRef ProfName = MDS->getString();
4340 
4341   // Check consistency of !prof branch_weights metadata.
4342   if (ProfName.equals("branch_weights")) {
4343     if (isa<InvokeInst>(&I)) {
4344       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4345              "Wrong number of InvokeInst branch_weights operands", MD);
4346     } else {
4347       unsigned ExpectedNumOperands = 0;
4348       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4349         ExpectedNumOperands = BI->getNumSuccessors();
4350       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4351         ExpectedNumOperands = SI->getNumSuccessors();
4352       else if (isa<CallInst>(&I))
4353         ExpectedNumOperands = 1;
4354       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4355         ExpectedNumOperands = IBI->getNumDestinations();
4356       else if (isa<SelectInst>(&I))
4357         ExpectedNumOperands = 2;
4358       else
4359         CheckFailed("!prof branch_weights are not allowed for this instruction",
4360                     MD);
4361 
4362       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4363              "Wrong number of operands", MD);
4364     }
4365     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4366       auto &MDO = MD->getOperand(i);
4367       Assert(MDO, "second operand should not be null", MD);
4368       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4369              "!prof brunch_weights operand is not a const int");
4370     }
4371   }
4372 }
4373 
4374 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4375   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4376   Assert(Annotation->getNumOperands() >= 1,
4377          "annotation must have at least one operand");
4378   for (const MDOperand &Op : Annotation->operands())
4379     Assert(isa<MDString>(Op.get()), "operands must be strings");
4380 }
4381 
4382 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4383   unsigned NumOps = MD->getNumOperands();
4384   Assert(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4385          MD);
4386   Assert(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4387          "first scope operand must be self-referential or string", MD);
4388   if (NumOps == 3)
4389     Assert(isa<MDString>(MD->getOperand(2)),
4390            "third scope operand must be string (if used)", MD);
4391 
4392   MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4393   Assert(Domain != nullptr, "second scope operand must be MDNode", MD);
4394 
4395   unsigned NumDomainOps = Domain->getNumOperands();
4396   Assert(NumDomainOps >= 1 && NumDomainOps <= 2,
4397          "domain must have one or two operands", Domain);
4398   Assert(Domain->getOperand(0).get() == Domain ||
4399              isa<MDString>(Domain->getOperand(0)),
4400          "first domain operand must be self-referential or string", Domain);
4401   if (NumDomainOps == 2)
4402     Assert(isa<MDString>(Domain->getOperand(1)),
4403            "second domain operand must be string (if used)", Domain);
4404 }
4405 
4406 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4407   for (const MDOperand &Op : MD->operands()) {
4408     const MDNode *OpMD = dyn_cast<MDNode>(Op);
4409     Assert(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4410     visitAliasScopeMetadata(OpMD);
4411   }
4412 }
4413 
4414 /// verifyInstruction - Verify that an instruction is well formed.
4415 ///
4416 void Verifier::visitInstruction(Instruction &I) {
4417   BasicBlock *BB = I.getParent();
4418   Assert(BB, "Instruction not embedded in basic block!", &I);
4419 
4420   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4421     for (User *U : I.users()) {
4422       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4423              "Only PHI nodes may reference their own value!", &I);
4424     }
4425   }
4426 
4427   // Check that void typed values don't have names
4428   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4429          "Instruction has a name, but provides a void value!", &I);
4430 
4431   // Check that the return value of the instruction is either void or a legal
4432   // value type.
4433   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4434          "Instruction returns a non-scalar type!", &I);
4435 
4436   // Check that the instruction doesn't produce metadata. Calls are already
4437   // checked against the callee type.
4438   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4439          "Invalid use of metadata!", &I);
4440 
4441   // Check that all uses of the instruction, if they are instructions
4442   // themselves, actually have parent basic blocks.  If the use is not an
4443   // instruction, it is an error!
4444   for (Use &U : I.uses()) {
4445     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4446       Assert(Used->getParent() != nullptr,
4447              "Instruction referencing"
4448              " instruction not embedded in a basic block!",
4449              &I, Used);
4450     else {
4451       CheckFailed("Use of instruction is not an instruction!", U);
4452       return;
4453     }
4454   }
4455 
4456   // Get a pointer to the call base of the instruction if it is some form of
4457   // call.
4458   const CallBase *CBI = dyn_cast<CallBase>(&I);
4459 
4460   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4461     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4462 
4463     // Check to make sure that only first-class-values are operands to
4464     // instructions.
4465     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4466       Assert(false, "Instruction operands must be first-class values!", &I);
4467     }
4468 
4469     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4470       // This code checks whether the function is used as the operand of a
4471       // clang_arc_attachedcall operand bundle.
4472       auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4473                                       int Idx) {
4474         return CBI && CBI->isOperandBundleOfType(
4475                           LLVMContext::OB_clang_arc_attachedcall, Idx);
4476       };
4477 
4478       // Check to make sure that the "address of" an intrinsic function is never
4479       // taken. Ignore cases where the address of the intrinsic function is used
4480       // as the argument of operand bundle "clang.arc.attachedcall" as those
4481       // cases are handled in verifyAttachedCallBundle.
4482       Assert((!F->isIntrinsic() ||
4483               (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4484               IsAttachedCallOperand(F, CBI, i)),
4485              "Cannot take the address of an intrinsic!", &I);
4486       Assert(
4487           !F->isIntrinsic() || isa<CallInst>(I) ||
4488               F->getIntrinsicID() == Intrinsic::donothing ||
4489               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4490               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4491               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4492               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4493               F->getIntrinsicID() == Intrinsic::coro_resume ||
4494               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4495               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4496               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4497               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4498               F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4499               IsAttachedCallOperand(F, CBI, i),
4500           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4501           "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4502           &I);
4503       Assert(F->getParent() == &M, "Referencing function in another module!",
4504              &I, &M, F, F->getParent());
4505     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4506       Assert(OpBB->getParent() == BB->getParent(),
4507              "Referring to a basic block in another function!", &I);
4508     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4509       Assert(OpArg->getParent() == BB->getParent(),
4510              "Referring to an argument in another function!", &I);
4511     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4512       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4513              &M, GV, GV->getParent());
4514     } else if (isa<Instruction>(I.getOperand(i))) {
4515       verifyDominatesUse(I, i);
4516     } else if (isa<InlineAsm>(I.getOperand(i))) {
4517       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4518              "Cannot take the address of an inline asm!", &I);
4519     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4520       if (CE->getType()->isPtrOrPtrVectorTy()) {
4521         // If we have a ConstantExpr pointer, we need to see if it came from an
4522         // illegal bitcast.
4523         visitConstantExprsRecursively(CE);
4524       }
4525     }
4526   }
4527 
4528   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4529     Assert(I.getType()->isFPOrFPVectorTy(),
4530            "fpmath requires a floating point result!", &I);
4531     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4532     if (ConstantFP *CFP0 =
4533             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4534       const APFloat &Accuracy = CFP0->getValueAPF();
4535       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4536              "fpmath accuracy must have float type", &I);
4537       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4538              "fpmath accuracy not a positive number!", &I);
4539     } else {
4540       Assert(false, "invalid fpmath accuracy!", &I);
4541     }
4542   }
4543 
4544   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4545     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4546            "Ranges are only for loads, calls and invokes!", &I);
4547     visitRangeMetadata(I, Range, I.getType());
4548   }
4549 
4550   if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4551     Assert(isa<LoadInst>(I) || isa<StoreInst>(I),
4552            "invariant.group metadata is only for loads and stores", &I);
4553   }
4554 
4555   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4556     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4557            &I);
4558     Assert(isa<LoadInst>(I),
4559            "nonnull applies only to load instructions, use attributes"
4560            " for calls or invokes",
4561            &I);
4562   }
4563 
4564   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4565     visitDereferenceableMetadata(I, MD);
4566 
4567   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4568     visitDereferenceableMetadata(I, MD);
4569 
4570   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4571     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4572 
4573   if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4574     visitAliasScopeListMetadata(MD);
4575   if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4576     visitAliasScopeListMetadata(MD);
4577 
4578   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4579     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4580            &I);
4581     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4582            "use attributes for calls or invokes", &I);
4583     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4584     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4585     Assert(CI && CI->getType()->isIntegerTy(64),
4586            "align metadata value must be an i64!", &I);
4587     uint64_t Align = CI->getZExtValue();
4588     Assert(isPowerOf2_64(Align),
4589            "align metadata value must be a power of 2!", &I);
4590     Assert(Align <= Value::MaximumAlignment,
4591            "alignment is larger that implementation defined limit", &I);
4592   }
4593 
4594   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4595     visitProfMetadata(I, MD);
4596 
4597   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4598     visitAnnotationMetadata(Annotation);
4599 
4600   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4601     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4602     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4603   }
4604 
4605   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4606     verifyFragmentExpression(*DII);
4607     verifyNotEntryValue(*DII);
4608   }
4609 
4610   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4611   I.getAllMetadata(MDs);
4612   for (auto Attachment : MDs) {
4613     unsigned Kind = Attachment.first;
4614     auto AllowLocs =
4615         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4616             ? AreDebugLocsAllowed::Yes
4617             : AreDebugLocsAllowed::No;
4618     visitMDNode(*Attachment.second, AllowLocs);
4619   }
4620 
4621   InstsInThisBlock.insert(&I);
4622 }
4623 
4624 /// Allow intrinsics to be verified in different ways.
4625 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4626   Function *IF = Call.getCalledFunction();
4627   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4628          IF);
4629 
4630   // Verify that the intrinsic prototype lines up with what the .td files
4631   // describe.
4632   FunctionType *IFTy = IF->getFunctionType();
4633   bool IsVarArg = IFTy->isVarArg();
4634 
4635   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4636   getIntrinsicInfoTableEntries(ID, Table);
4637   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4638 
4639   // Walk the descriptors to extract overloaded types.
4640   SmallVector<Type *, 4> ArgTys;
4641   Intrinsic::MatchIntrinsicTypesResult Res =
4642       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4643   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4644          "Intrinsic has incorrect return type!", IF);
4645   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4646          "Intrinsic has incorrect argument type!", IF);
4647 
4648   // Verify if the intrinsic call matches the vararg property.
4649   if (IsVarArg)
4650     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4651            "Intrinsic was not defined with variable arguments!", IF);
4652   else
4653     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4654            "Callsite was not defined with variable arguments!", IF);
4655 
4656   // All descriptors should be absorbed by now.
4657   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4658 
4659   // Now that we have the intrinsic ID and the actual argument types (and we
4660   // know they are legal for the intrinsic!) get the intrinsic name through the
4661   // usual means.  This allows us to verify the mangling of argument types into
4662   // the name.
4663   const std::string ExpectedName =
4664       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4665   Assert(ExpectedName == IF->getName(),
4666          "Intrinsic name not mangled correctly for type arguments! "
4667          "Should be: " +
4668              ExpectedName,
4669          IF);
4670 
4671   // If the intrinsic takes MDNode arguments, verify that they are either global
4672   // or are local to *this* function.
4673   for (Value *V : Call.args()) {
4674     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4675       visitMetadataAsValue(*MD, Call.getCaller());
4676     if (auto *Const = dyn_cast<Constant>(V))
4677       Assert(!Const->getType()->isX86_AMXTy(),
4678              "const x86_amx is not allowed in argument!");
4679   }
4680 
4681   switch (ID) {
4682   default:
4683     break;
4684   case Intrinsic::assume: {
4685     for (auto &Elem : Call.bundle_op_infos()) {
4686       Assert(Elem.Tag->getKey() == "ignore" ||
4687                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4688              "tags must be valid attribute names", Call);
4689       Attribute::AttrKind Kind =
4690           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4691       unsigned ArgCount = Elem.End - Elem.Begin;
4692       if (Kind == Attribute::Alignment) {
4693         Assert(ArgCount <= 3 && ArgCount >= 2,
4694                "alignment assumptions should have 2 or 3 arguments", Call);
4695         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4696                "first argument should be a pointer", Call);
4697         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4698                "second argument should be an integer", Call);
4699         if (ArgCount == 3)
4700           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4701                  "third argument should be an integer if present", Call);
4702         return;
4703       }
4704       Assert(ArgCount <= 2, "too many arguments", Call);
4705       if (Kind == Attribute::None)
4706         break;
4707       if (Attribute::isIntAttrKind(Kind)) {
4708         Assert(ArgCount == 2, "this attribute should have 2 arguments", Call);
4709         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4710                "the second argument should be a constant integral value", Call);
4711       } else if (Attribute::canUseAsParamAttr(Kind)) {
4712         Assert((ArgCount) == 1, "this attribute should have one argument",
4713                Call);
4714       } else if (Attribute::canUseAsFnAttr(Kind)) {
4715         Assert((ArgCount) == 0, "this attribute has no argument", Call);
4716       }
4717     }
4718     break;
4719   }
4720   case Intrinsic::coro_id: {
4721     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4722     if (isa<ConstantPointerNull>(InfoArg))
4723       break;
4724     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4725     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4726            "info argument of llvm.coro.id must refer to an initialized "
4727            "constant");
4728     Constant *Init = GV->getInitializer();
4729     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4730            "info argument of llvm.coro.id must refer to either a struct or "
4731            "an array");
4732     break;
4733   }
4734 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4735   case Intrinsic::INTRINSIC:
4736 #include "llvm/IR/ConstrainedOps.def"
4737     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4738     break;
4739   case Intrinsic::dbg_declare: // llvm.dbg.declare
4740     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4741            "invalid llvm.dbg.declare intrinsic call 1", Call);
4742     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4743     break;
4744   case Intrinsic::dbg_addr: // llvm.dbg.addr
4745     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4746     break;
4747   case Intrinsic::dbg_value: // llvm.dbg.value
4748     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4749     break;
4750   case Intrinsic::dbg_label: // llvm.dbg.label
4751     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4752     break;
4753   case Intrinsic::memcpy:
4754   case Intrinsic::memcpy_inline:
4755   case Intrinsic::memmove:
4756   case Intrinsic::memset: {
4757     const auto *MI = cast<MemIntrinsic>(&Call);
4758     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4759       return Alignment == 0 || isPowerOf2_32(Alignment);
4760     };
4761     Assert(IsValidAlignment(MI->getDestAlignment()),
4762            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4763            Call);
4764     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4765       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4766              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4767              Call);
4768     }
4769 
4770     break;
4771   }
4772   case Intrinsic::memcpy_element_unordered_atomic:
4773   case Intrinsic::memmove_element_unordered_atomic:
4774   case Intrinsic::memset_element_unordered_atomic: {
4775     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4776 
4777     ConstantInt *ElementSizeCI =
4778         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4779     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4780     Assert(ElementSizeVal.isPowerOf2(),
4781            "element size of the element-wise atomic memory intrinsic "
4782            "must be a power of 2",
4783            Call);
4784 
4785     auto IsValidAlignment = [&](uint64_t Alignment) {
4786       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4787     };
4788     uint64_t DstAlignment = AMI->getDestAlignment();
4789     Assert(IsValidAlignment(DstAlignment),
4790            "incorrect alignment of the destination argument", Call);
4791     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4792       uint64_t SrcAlignment = AMT->getSourceAlignment();
4793       Assert(IsValidAlignment(SrcAlignment),
4794              "incorrect alignment of the source argument", Call);
4795     }
4796     break;
4797   }
4798   case Intrinsic::call_preallocated_setup: {
4799     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4800     Assert(NumArgs != nullptr,
4801            "llvm.call.preallocated.setup argument must be a constant");
4802     bool FoundCall = false;
4803     for (User *U : Call.users()) {
4804       auto *UseCall = dyn_cast<CallBase>(U);
4805       Assert(UseCall != nullptr,
4806              "Uses of llvm.call.preallocated.setup must be calls");
4807       const Function *Fn = UseCall->getCalledFunction();
4808       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4809         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4810         Assert(AllocArgIndex != nullptr,
4811                "llvm.call.preallocated.alloc arg index must be a constant");
4812         auto AllocArgIndexInt = AllocArgIndex->getValue();
4813         Assert(AllocArgIndexInt.sge(0) &&
4814                    AllocArgIndexInt.slt(NumArgs->getValue()),
4815                "llvm.call.preallocated.alloc arg index must be between 0 and "
4816                "corresponding "
4817                "llvm.call.preallocated.setup's argument count");
4818       } else if (Fn && Fn->getIntrinsicID() ==
4819                            Intrinsic::call_preallocated_teardown) {
4820         // nothing to do
4821       } else {
4822         Assert(!FoundCall, "Can have at most one call corresponding to a "
4823                            "llvm.call.preallocated.setup");
4824         FoundCall = true;
4825         size_t NumPreallocatedArgs = 0;
4826         for (unsigned i = 0; i < UseCall->arg_size(); i++) {
4827           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4828             ++NumPreallocatedArgs;
4829           }
4830         }
4831         Assert(NumPreallocatedArgs != 0,
4832                "cannot use preallocated intrinsics on a call without "
4833                "preallocated arguments");
4834         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4835                "llvm.call.preallocated.setup arg size must be equal to number "
4836                "of preallocated arguments "
4837                "at call site",
4838                Call, *UseCall);
4839         // getOperandBundle() cannot be called if more than one of the operand
4840         // bundle exists. There is already a check elsewhere for this, so skip
4841         // here if we see more than one.
4842         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4843             1) {
4844           return;
4845         }
4846         auto PreallocatedBundle =
4847             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4848         Assert(PreallocatedBundle,
4849                "Use of llvm.call.preallocated.setup outside intrinsics "
4850                "must be in \"preallocated\" operand bundle");
4851         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4852                "preallocated bundle must have token from corresponding "
4853                "llvm.call.preallocated.setup");
4854       }
4855     }
4856     break;
4857   }
4858   case Intrinsic::call_preallocated_arg: {
4859     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4860     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4861                         Intrinsic::call_preallocated_setup,
4862            "llvm.call.preallocated.arg token argument must be a "
4863            "llvm.call.preallocated.setup");
4864     Assert(Call.hasFnAttr(Attribute::Preallocated),
4865            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4866            "call site attribute");
4867     break;
4868   }
4869   case Intrinsic::call_preallocated_teardown: {
4870     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4871     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4872                         Intrinsic::call_preallocated_setup,
4873            "llvm.call.preallocated.teardown token argument must be a "
4874            "llvm.call.preallocated.setup");
4875     break;
4876   }
4877   case Intrinsic::gcroot:
4878   case Intrinsic::gcwrite:
4879   case Intrinsic::gcread:
4880     if (ID == Intrinsic::gcroot) {
4881       AllocaInst *AI =
4882           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4883       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4884       Assert(isa<Constant>(Call.getArgOperand(1)),
4885              "llvm.gcroot parameter #2 must be a constant.", Call);
4886       if (!AI->getAllocatedType()->isPointerTy()) {
4887         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4888                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4889                "or argument #2 must be a non-null constant.",
4890                Call);
4891       }
4892     }
4893 
4894     Assert(Call.getParent()->getParent()->hasGC(),
4895            "Enclosing function does not use GC.", Call);
4896     break;
4897   case Intrinsic::init_trampoline:
4898     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4899            "llvm.init_trampoline parameter #2 must resolve to a function.",
4900            Call);
4901     break;
4902   case Intrinsic::prefetch:
4903     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4904            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4905            "invalid arguments to llvm.prefetch", Call);
4906     break;
4907   case Intrinsic::stackprotector:
4908     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4909            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4910     break;
4911   case Intrinsic::localescape: {
4912     BasicBlock *BB = Call.getParent();
4913     Assert(BB == &BB->getParent()->front(),
4914            "llvm.localescape used outside of entry block", Call);
4915     Assert(!SawFrameEscape,
4916            "multiple calls to llvm.localescape in one function", Call);
4917     for (Value *Arg : Call.args()) {
4918       if (isa<ConstantPointerNull>(Arg))
4919         continue; // Null values are allowed as placeholders.
4920       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4921       Assert(AI && AI->isStaticAlloca(),
4922              "llvm.localescape only accepts static allocas", Call);
4923     }
4924     FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
4925     SawFrameEscape = true;
4926     break;
4927   }
4928   case Intrinsic::localrecover: {
4929     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4930     Function *Fn = dyn_cast<Function>(FnArg);
4931     Assert(Fn && !Fn->isDeclaration(),
4932            "llvm.localrecover first "
4933            "argument must be function defined in this module",
4934            Call);
4935     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4936     auto &Entry = FrameEscapeInfo[Fn];
4937     Entry.second = unsigned(
4938         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4939     break;
4940   }
4941 
4942   case Intrinsic::experimental_gc_statepoint:
4943     if (auto *CI = dyn_cast<CallInst>(&Call))
4944       Assert(!CI->isInlineAsm(),
4945              "gc.statepoint support for inline assembly unimplemented", CI);
4946     Assert(Call.getParent()->getParent()->hasGC(),
4947            "Enclosing function does not use GC.", Call);
4948 
4949     verifyStatepoint(Call);
4950     break;
4951   case Intrinsic::experimental_gc_result: {
4952     Assert(Call.getParent()->getParent()->hasGC(),
4953            "Enclosing function does not use GC.", Call);
4954     // Are we tied to a statepoint properly?
4955     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4956     const Function *StatepointFn =
4957         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4958     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4959                StatepointFn->getIntrinsicID() ==
4960                    Intrinsic::experimental_gc_statepoint,
4961            "gc.result operand #1 must be from a statepoint", Call,
4962            Call.getArgOperand(0));
4963 
4964     // Assert that result type matches wrapped callee.
4965     const Value *Target = StatepointCall->getArgOperand(2);
4966     auto *PT = cast<PointerType>(Target->getType());
4967     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4968     Assert(Call.getType() == TargetFuncType->getReturnType(),
4969            "gc.result result type does not match wrapped callee", Call);
4970     break;
4971   }
4972   case Intrinsic::experimental_gc_relocate: {
4973     Assert(Call.arg_size() == 3, "wrong number of arguments", Call);
4974 
4975     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4976            "gc.relocate must return a pointer or a vector of pointers", Call);
4977 
4978     // Check that this relocate is correctly tied to the statepoint
4979 
4980     // This is case for relocate on the unwinding path of an invoke statepoint
4981     if (LandingPadInst *LandingPad =
4982             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4983 
4984       const BasicBlock *InvokeBB =
4985           LandingPad->getParent()->getUniquePredecessor();
4986 
4987       // Landingpad relocates should have only one predecessor with invoke
4988       // statepoint terminator
4989       Assert(InvokeBB, "safepoints should have unique landingpads",
4990              LandingPad->getParent());
4991       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4992              InvokeBB);
4993       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4994              "gc relocate should be linked to a statepoint", InvokeBB);
4995     } else {
4996       // In all other cases relocate should be tied to the statepoint directly.
4997       // This covers relocates on a normal return path of invoke statepoint and
4998       // relocates of a call statepoint.
4999       auto Token = Call.getArgOperand(0);
5000       Assert(isa<GCStatepointInst>(Token),
5001              "gc relocate is incorrectly tied to the statepoint", Call, Token);
5002     }
5003 
5004     // Verify rest of the relocate arguments.
5005     const CallBase &StatepointCall =
5006       *cast<GCRelocateInst>(Call).getStatepoint();
5007 
5008     // Both the base and derived must be piped through the safepoint.
5009     Value *Base = Call.getArgOperand(1);
5010     Assert(isa<ConstantInt>(Base),
5011            "gc.relocate operand #2 must be integer offset", Call);
5012 
5013     Value *Derived = Call.getArgOperand(2);
5014     Assert(isa<ConstantInt>(Derived),
5015            "gc.relocate operand #3 must be integer offset", Call);
5016 
5017     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5018     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5019 
5020     // Check the bounds
5021     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
5022       Assert(BaseIndex < Opt->Inputs.size(),
5023              "gc.relocate: statepoint base index out of bounds", Call);
5024       Assert(DerivedIndex < Opt->Inputs.size(),
5025              "gc.relocate: statepoint derived index out of bounds", Call);
5026     }
5027 
5028     // Relocated value must be either a pointer type or vector-of-pointer type,
5029     // but gc_relocate does not need to return the same pointer type as the
5030     // relocated pointer. It can be casted to the correct type later if it's
5031     // desired. However, they must have the same address space and 'vectorness'
5032     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5033     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
5034            "gc.relocate: relocated value must be a gc pointer", Call);
5035 
5036     auto ResultType = Call.getType();
5037     auto DerivedType = Relocate.getDerivedPtr()->getType();
5038     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5039            "gc.relocate: vector relocates to vector and pointer to pointer",
5040            Call);
5041     Assert(
5042         ResultType->getPointerAddressSpace() ==
5043             DerivedType->getPointerAddressSpace(),
5044         "gc.relocate: relocating a pointer shouldn't change its address space",
5045         Call);
5046     break;
5047   }
5048   case Intrinsic::eh_exceptioncode:
5049   case Intrinsic::eh_exceptionpointer: {
5050     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
5051            "eh.exceptionpointer argument must be a catchpad", Call);
5052     break;
5053   }
5054   case Intrinsic::get_active_lane_mask: {
5055     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
5056            "vector", Call);
5057     auto *ElemTy = Call.getType()->getScalarType();
5058     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
5059            "i1", Call);
5060     break;
5061   }
5062   case Intrinsic::masked_load: {
5063     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5064            Call);
5065 
5066     Value *Ptr = Call.getArgOperand(0);
5067     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5068     Value *Mask = Call.getArgOperand(2);
5069     Value *PassThru = Call.getArgOperand(3);
5070     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5071            Call);
5072     Assert(Alignment->getValue().isPowerOf2(),
5073            "masked_load: alignment must be a power of 2", Call);
5074 
5075     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5076     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()),
5077            "masked_load: return must match pointer type", Call);
5078     Assert(PassThru->getType() == Call.getType(),
5079            "masked_load: pass through and return type must match", Call);
5080     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5081                cast<VectorType>(Call.getType())->getElementCount(),
5082            "masked_load: vector mask must be same length as return", Call);
5083     break;
5084   }
5085   case Intrinsic::masked_store: {
5086     Value *Val = Call.getArgOperand(0);
5087     Value *Ptr = Call.getArgOperand(1);
5088     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5089     Value *Mask = Call.getArgOperand(3);
5090     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5091            Call);
5092     Assert(Alignment->getValue().isPowerOf2(),
5093            "masked_store: alignment must be a power of 2", Call);
5094 
5095     PointerType *PtrTy = cast<PointerType>(Ptr->getType());
5096     Assert(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()),
5097            "masked_store: storee must match pointer type", Call);
5098     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5099                cast<VectorType>(Val->getType())->getElementCount(),
5100            "masked_store: vector mask must be same length as value", Call);
5101     break;
5102   }
5103 
5104   case Intrinsic::masked_gather: {
5105     const APInt &Alignment =
5106         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5107     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5108            "masked_gather: alignment must be 0 or a power of 2", Call);
5109     break;
5110   }
5111   case Intrinsic::masked_scatter: {
5112     const APInt &Alignment =
5113         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5114     Assert(Alignment.isZero() || Alignment.isPowerOf2(),
5115            "masked_scatter: alignment must be 0 or a power of 2", Call);
5116     break;
5117   }
5118 
5119   case Intrinsic::experimental_guard: {
5120     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5121     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5122            "experimental_guard must have exactly one "
5123            "\"deopt\" operand bundle");
5124     break;
5125   }
5126 
5127   case Intrinsic::experimental_deoptimize: {
5128     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5129            Call);
5130     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5131            "experimental_deoptimize must have exactly one "
5132            "\"deopt\" operand bundle");
5133     Assert(Call.getType() == Call.getFunction()->getReturnType(),
5134            "experimental_deoptimize return type must match caller return type");
5135 
5136     if (isa<CallInst>(Call)) {
5137       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5138       Assert(RI,
5139              "calls to experimental_deoptimize must be followed by a return");
5140 
5141       if (!Call.getType()->isVoidTy() && RI)
5142         Assert(RI->getReturnValue() == &Call,
5143                "calls to experimental_deoptimize must be followed by a return "
5144                "of the value computed by experimental_deoptimize");
5145     }
5146 
5147     break;
5148   }
5149   case Intrinsic::vector_reduce_and:
5150   case Intrinsic::vector_reduce_or:
5151   case Intrinsic::vector_reduce_xor:
5152   case Intrinsic::vector_reduce_add:
5153   case Intrinsic::vector_reduce_mul:
5154   case Intrinsic::vector_reduce_smax:
5155   case Intrinsic::vector_reduce_smin:
5156   case Intrinsic::vector_reduce_umax:
5157   case Intrinsic::vector_reduce_umin: {
5158     Type *ArgTy = Call.getArgOperand(0)->getType();
5159     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5160            "Intrinsic has incorrect argument type!");
5161     break;
5162   }
5163   case Intrinsic::vector_reduce_fmax:
5164   case Intrinsic::vector_reduce_fmin: {
5165     Type *ArgTy = Call.getArgOperand(0)->getType();
5166     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5167            "Intrinsic has incorrect argument type!");
5168     break;
5169   }
5170   case Intrinsic::vector_reduce_fadd:
5171   case Intrinsic::vector_reduce_fmul: {
5172     // Unlike the other reductions, the first argument is a start value. The
5173     // second argument is the vector to be reduced.
5174     Type *ArgTy = Call.getArgOperand(1)->getType();
5175     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5176            "Intrinsic has incorrect argument type!");
5177     break;
5178   }
5179   case Intrinsic::smul_fix:
5180   case Intrinsic::smul_fix_sat:
5181   case Intrinsic::umul_fix:
5182   case Intrinsic::umul_fix_sat:
5183   case Intrinsic::sdiv_fix:
5184   case Intrinsic::sdiv_fix_sat:
5185   case Intrinsic::udiv_fix:
5186   case Intrinsic::udiv_fix_sat: {
5187     Value *Op1 = Call.getArgOperand(0);
5188     Value *Op2 = Call.getArgOperand(1);
5189     Assert(Op1->getType()->isIntOrIntVectorTy(),
5190            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5191            "vector of ints");
5192     Assert(Op2->getType()->isIntOrIntVectorTy(),
5193            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5194            "vector of ints");
5195 
5196     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5197     Assert(Op3->getType()->getBitWidth() <= 32,
5198            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5199 
5200     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5201         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5202       Assert(
5203           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5204           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5205           "the operands");
5206     } else {
5207       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5208              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5209              "to the width of the operands");
5210     }
5211     break;
5212   }
5213   case Intrinsic::lround:
5214   case Intrinsic::llround:
5215   case Intrinsic::lrint:
5216   case Intrinsic::llrint: {
5217     Type *ValTy = Call.getArgOperand(0)->getType();
5218     Type *ResultTy = Call.getType();
5219     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5220            "Intrinsic does not support vectors", &Call);
5221     break;
5222   }
5223   case Intrinsic::bswap: {
5224     Type *Ty = Call.getType();
5225     unsigned Size = Ty->getScalarSizeInBits();
5226     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5227     break;
5228   }
5229   case Intrinsic::invariant_start: {
5230     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5231     Assert(InvariantSize &&
5232                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5233            "invariant_start parameter must be -1, 0 or a positive number",
5234            &Call);
5235     break;
5236   }
5237   case Intrinsic::matrix_multiply:
5238   case Intrinsic::matrix_transpose:
5239   case Intrinsic::matrix_column_major_load:
5240   case Intrinsic::matrix_column_major_store: {
5241     Function *IF = Call.getCalledFunction();
5242     ConstantInt *Stride = nullptr;
5243     ConstantInt *NumRows;
5244     ConstantInt *NumColumns;
5245     VectorType *ResultTy;
5246     Type *Op0ElemTy = nullptr;
5247     Type *Op1ElemTy = nullptr;
5248     switch (ID) {
5249     case Intrinsic::matrix_multiply:
5250       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5251       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5252       ResultTy = cast<VectorType>(Call.getType());
5253       Op0ElemTy =
5254           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5255       Op1ElemTy =
5256           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5257       break;
5258     case Intrinsic::matrix_transpose:
5259       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5260       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5261       ResultTy = cast<VectorType>(Call.getType());
5262       Op0ElemTy =
5263           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5264       break;
5265     case Intrinsic::matrix_column_major_load: {
5266       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5267       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5268       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5269       ResultTy = cast<VectorType>(Call.getType());
5270 
5271       PointerType *Op0PtrTy =
5272           cast<PointerType>(Call.getArgOperand(0)->getType());
5273       if (!Op0PtrTy->isOpaque())
5274         Op0ElemTy = Op0PtrTy->getElementType();
5275       break;
5276     }
5277     case Intrinsic::matrix_column_major_store: {
5278       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5279       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5280       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5281       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5282       Op0ElemTy =
5283           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5284 
5285       PointerType *Op1PtrTy =
5286           cast<PointerType>(Call.getArgOperand(1)->getType());
5287       if (!Op1PtrTy->isOpaque())
5288         Op1ElemTy = Op1PtrTy->getElementType();
5289       break;
5290     }
5291     default:
5292       llvm_unreachable("unexpected intrinsic");
5293     }
5294 
5295     Assert(ResultTy->getElementType()->isIntegerTy() ||
5296            ResultTy->getElementType()->isFloatingPointTy(),
5297            "Result type must be an integer or floating-point type!", IF);
5298 
5299     if (Op0ElemTy)
5300       Assert(ResultTy->getElementType() == Op0ElemTy,
5301              "Vector element type mismatch of the result and first operand "
5302              "vector!", IF);
5303 
5304     if (Op1ElemTy)
5305       Assert(ResultTy->getElementType() == Op1ElemTy,
5306              "Vector element type mismatch of the result and second operand "
5307              "vector!", IF);
5308 
5309     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5310                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5311            "Result of a matrix operation does not fit in the returned vector!");
5312 
5313     if (Stride)
5314       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5315              "Stride must be greater or equal than the number of rows!", IF);
5316 
5317     break;
5318   }
5319   case Intrinsic::experimental_stepvector: {
5320     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5321     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5322                VecTy->getScalarSizeInBits() >= 8,
5323            "experimental_stepvector only supported for vectors of integers "
5324            "with a bitwidth of at least 8.",
5325            &Call);
5326     break;
5327   }
5328   case Intrinsic::experimental_vector_insert: {
5329     Value *Vec = Call.getArgOperand(0);
5330     Value *SubVec = Call.getArgOperand(1);
5331     Value *Idx = Call.getArgOperand(2);
5332     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5333 
5334     VectorType *VecTy = cast<VectorType>(Vec->getType());
5335     VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5336 
5337     ElementCount VecEC = VecTy->getElementCount();
5338     ElementCount SubVecEC = SubVecTy->getElementCount();
5339     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5340            "experimental_vector_insert parameters must have the same element "
5341            "type.",
5342            &Call);
5343     Assert(IdxN % SubVecEC.getKnownMinValue() == 0,
5344            "experimental_vector_insert index must be a constant multiple of "
5345            "the subvector's known minimum vector length.");
5346 
5347     // If this insertion is not the 'mixed' case where a fixed vector is
5348     // inserted into a scalable vector, ensure that the insertion of the
5349     // subvector does not overrun the parent vector.
5350     if (VecEC.isScalable() == SubVecEC.isScalable()) {
5351       Assert(
5352           IdxN < VecEC.getKnownMinValue() &&
5353               IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5354           "subvector operand of experimental_vector_insert would overrun the "
5355           "vector being inserted into.");
5356     }
5357     break;
5358   }
5359   case Intrinsic::experimental_vector_extract: {
5360     Value *Vec = Call.getArgOperand(0);
5361     Value *Idx = Call.getArgOperand(1);
5362     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5363 
5364     VectorType *ResultTy = cast<VectorType>(Call.getType());
5365     VectorType *VecTy = cast<VectorType>(Vec->getType());
5366 
5367     ElementCount VecEC = VecTy->getElementCount();
5368     ElementCount ResultEC = ResultTy->getElementCount();
5369 
5370     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5371            "experimental_vector_extract result must have the same element "
5372            "type as the input vector.",
5373            &Call);
5374     Assert(IdxN % ResultEC.getKnownMinValue() == 0,
5375            "experimental_vector_extract index must be a constant multiple of "
5376            "the result type's known minimum vector length.");
5377 
5378     // If this extraction is not the 'mixed' case where a fixed vector is is
5379     // extracted from a scalable vector, ensure that the extraction does not
5380     // overrun the parent vector.
5381     if (VecEC.isScalable() == ResultEC.isScalable()) {
5382       Assert(IdxN < VecEC.getKnownMinValue() &&
5383                  IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5384              "experimental_vector_extract would overrun.");
5385     }
5386     break;
5387   }
5388   case Intrinsic::experimental_noalias_scope_decl: {
5389     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5390     break;
5391   }
5392   case Intrinsic::preserve_array_access_index:
5393   case Intrinsic::preserve_struct_access_index: {
5394     Type *ElemTy = Call.getAttributes().getParamElementType(0);
5395     Assert(ElemTy,
5396            "Intrinsic requires elementtype attribute on first argument.",
5397            &Call);
5398     break;
5399   }
5400   };
5401 }
5402 
5403 /// Carefully grab the subprogram from a local scope.
5404 ///
5405 /// This carefully grabs the subprogram from a local scope, avoiding the
5406 /// built-in assertions that would typically fire.
5407 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5408   if (!LocalScope)
5409     return nullptr;
5410 
5411   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5412     return SP;
5413 
5414   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5415     return getSubprogram(LB->getRawScope());
5416 
5417   // Just return null; broken scope chains are checked elsewhere.
5418   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5419   return nullptr;
5420 }
5421 
5422 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5423   unsigned NumOperands;
5424   bool HasRoundingMD;
5425   switch (FPI.getIntrinsicID()) {
5426 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5427   case Intrinsic::INTRINSIC:                                                   \
5428     NumOperands = NARG;                                                        \
5429     HasRoundingMD = ROUND_MODE;                                                \
5430     break;
5431 #include "llvm/IR/ConstrainedOps.def"
5432   default:
5433     llvm_unreachable("Invalid constrained FP intrinsic!");
5434   }
5435   NumOperands += (1 + HasRoundingMD);
5436   // Compare intrinsics carry an extra predicate metadata operand.
5437   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5438     NumOperands += 1;
5439   Assert((FPI.arg_size() == NumOperands),
5440          "invalid arguments for constrained FP intrinsic", &FPI);
5441 
5442   switch (FPI.getIntrinsicID()) {
5443   case Intrinsic::experimental_constrained_lrint:
5444   case Intrinsic::experimental_constrained_llrint: {
5445     Type *ValTy = FPI.getArgOperand(0)->getType();
5446     Type *ResultTy = FPI.getType();
5447     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5448            "Intrinsic does not support vectors", &FPI);
5449   }
5450     break;
5451 
5452   case Intrinsic::experimental_constrained_lround:
5453   case Intrinsic::experimental_constrained_llround: {
5454     Type *ValTy = FPI.getArgOperand(0)->getType();
5455     Type *ResultTy = FPI.getType();
5456     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5457            "Intrinsic does not support vectors", &FPI);
5458     break;
5459   }
5460 
5461   case Intrinsic::experimental_constrained_fcmp:
5462   case Intrinsic::experimental_constrained_fcmps: {
5463     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5464     Assert(CmpInst::isFPPredicate(Pred),
5465            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5466     break;
5467   }
5468 
5469   case Intrinsic::experimental_constrained_fptosi:
5470   case Intrinsic::experimental_constrained_fptoui: {
5471     Value *Operand = FPI.getArgOperand(0);
5472     uint64_t NumSrcElem = 0;
5473     Assert(Operand->getType()->isFPOrFPVectorTy(),
5474            "Intrinsic first argument must be floating point", &FPI);
5475     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5476       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5477     }
5478 
5479     Operand = &FPI;
5480     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5481            "Intrinsic first argument and result disagree on vector use", &FPI);
5482     Assert(Operand->getType()->isIntOrIntVectorTy(),
5483            "Intrinsic result must be an integer", &FPI);
5484     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5485       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5486              "Intrinsic first argument and result vector lengths must be equal",
5487              &FPI);
5488     }
5489   }
5490     break;
5491 
5492   case Intrinsic::experimental_constrained_sitofp:
5493   case Intrinsic::experimental_constrained_uitofp: {
5494     Value *Operand = FPI.getArgOperand(0);
5495     uint64_t NumSrcElem = 0;
5496     Assert(Operand->getType()->isIntOrIntVectorTy(),
5497            "Intrinsic first argument must be integer", &FPI);
5498     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5499       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5500     }
5501 
5502     Operand = &FPI;
5503     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5504            "Intrinsic first argument and result disagree on vector use", &FPI);
5505     Assert(Operand->getType()->isFPOrFPVectorTy(),
5506            "Intrinsic result must be a floating point", &FPI);
5507     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5508       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5509              "Intrinsic first argument and result vector lengths must be equal",
5510              &FPI);
5511     }
5512   } break;
5513 
5514   case Intrinsic::experimental_constrained_fptrunc:
5515   case Intrinsic::experimental_constrained_fpext: {
5516     Value *Operand = FPI.getArgOperand(0);
5517     Type *OperandTy = Operand->getType();
5518     Value *Result = &FPI;
5519     Type *ResultTy = Result->getType();
5520     Assert(OperandTy->isFPOrFPVectorTy(),
5521            "Intrinsic first argument must be FP or FP vector", &FPI);
5522     Assert(ResultTy->isFPOrFPVectorTy(),
5523            "Intrinsic result must be FP or FP vector", &FPI);
5524     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5525            "Intrinsic first argument and result disagree on vector use", &FPI);
5526     if (OperandTy->isVectorTy()) {
5527       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5528                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5529              "Intrinsic first argument and result vector lengths must be equal",
5530              &FPI);
5531     }
5532     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5533       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5534              "Intrinsic first argument's type must be larger than result type",
5535              &FPI);
5536     } else {
5537       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5538              "Intrinsic first argument's type must be smaller than result type",
5539              &FPI);
5540     }
5541   }
5542     break;
5543 
5544   default:
5545     break;
5546   }
5547 
5548   // If a non-metadata argument is passed in a metadata slot then the
5549   // error will be caught earlier when the incorrect argument doesn't
5550   // match the specification in the intrinsic call table. Thus, no
5551   // argument type check is needed here.
5552 
5553   Assert(FPI.getExceptionBehavior().hasValue(),
5554          "invalid exception behavior argument", &FPI);
5555   if (HasRoundingMD) {
5556     Assert(FPI.getRoundingMode().hasValue(),
5557            "invalid rounding mode argument", &FPI);
5558   }
5559 }
5560 
5561 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5562   auto *MD = DII.getRawLocation();
5563   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5564                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5565            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5566   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5567          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5568          DII.getRawVariable());
5569   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5570          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5571          DII.getRawExpression());
5572 
5573   // Ignore broken !dbg attachments; they're checked elsewhere.
5574   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5575     if (!isa<DILocation>(N))
5576       return;
5577 
5578   BasicBlock *BB = DII.getParent();
5579   Function *F = BB ? BB->getParent() : nullptr;
5580 
5581   // The scopes for variables and !dbg attachments must agree.
5582   DILocalVariable *Var = DII.getVariable();
5583   DILocation *Loc = DII.getDebugLoc();
5584   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5585            &DII, BB, F);
5586 
5587   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5588   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5589   if (!VarSP || !LocSP)
5590     return; // Broken scope chains are checked elsewhere.
5591 
5592   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5593                                " variable and !dbg attachment",
5594            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5595            Loc->getScope()->getSubprogram());
5596 
5597   // This check is redundant with one in visitLocalVariable().
5598   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5599            Var->getRawType());
5600   verifyFnArgs(DII);
5601 }
5602 
5603 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5604   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5605          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5606          DLI.getRawLabel());
5607 
5608   // Ignore broken !dbg attachments; they're checked elsewhere.
5609   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5610     if (!isa<DILocation>(N))
5611       return;
5612 
5613   BasicBlock *BB = DLI.getParent();
5614   Function *F = BB ? BB->getParent() : nullptr;
5615 
5616   // The scopes for variables and !dbg attachments must agree.
5617   DILabel *Label = DLI.getLabel();
5618   DILocation *Loc = DLI.getDebugLoc();
5619   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5620          &DLI, BB, F);
5621 
5622   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5623   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5624   if (!LabelSP || !LocSP)
5625     return;
5626 
5627   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5628                              " label and !dbg attachment",
5629            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5630            Loc->getScope()->getSubprogram());
5631 }
5632 
5633 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5634   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5635   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5636 
5637   // We don't know whether this intrinsic verified correctly.
5638   if (!V || !E || !E->isValid())
5639     return;
5640 
5641   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5642   auto Fragment = E->getFragmentInfo();
5643   if (!Fragment)
5644     return;
5645 
5646   // The frontend helps out GDB by emitting the members of local anonymous
5647   // unions as artificial local variables with shared storage. When SROA splits
5648   // the storage for artificial local variables that are smaller than the entire
5649   // union, the overhang piece will be outside of the allotted space for the
5650   // variable and this check fails.
5651   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5652   if (V->isArtificial())
5653     return;
5654 
5655   verifyFragmentExpression(*V, *Fragment, &I);
5656 }
5657 
5658 template <typename ValueOrMetadata>
5659 void Verifier::verifyFragmentExpression(const DIVariable &V,
5660                                         DIExpression::FragmentInfo Fragment,
5661                                         ValueOrMetadata *Desc) {
5662   // If there's no size, the type is broken, but that should be checked
5663   // elsewhere.
5664   auto VarSize = V.getSizeInBits();
5665   if (!VarSize)
5666     return;
5667 
5668   unsigned FragSize = Fragment.SizeInBits;
5669   unsigned FragOffset = Fragment.OffsetInBits;
5670   AssertDI(FragSize + FragOffset <= *VarSize,
5671          "fragment is larger than or outside of variable", Desc, &V);
5672   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5673 }
5674 
5675 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5676   // This function does not take the scope of noninlined function arguments into
5677   // account. Don't run it if current function is nodebug, because it may
5678   // contain inlined debug intrinsics.
5679   if (!HasDebugInfo)
5680     return;
5681 
5682   // For performance reasons only check non-inlined ones.
5683   if (I.getDebugLoc()->getInlinedAt())
5684     return;
5685 
5686   DILocalVariable *Var = I.getVariable();
5687   AssertDI(Var, "dbg intrinsic without variable");
5688 
5689   unsigned ArgNo = Var->getArg();
5690   if (!ArgNo)
5691     return;
5692 
5693   // Verify there are no duplicate function argument debug info entries.
5694   // These will cause hard-to-debug assertions in the DWARF backend.
5695   if (DebugFnArgs.size() < ArgNo)
5696     DebugFnArgs.resize(ArgNo, nullptr);
5697 
5698   auto *Prev = DebugFnArgs[ArgNo - 1];
5699   DebugFnArgs[ArgNo - 1] = Var;
5700   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5701            Prev, Var);
5702 }
5703 
5704 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5705   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5706 
5707   // We don't know whether this intrinsic verified correctly.
5708   if (!E || !E->isValid())
5709     return;
5710 
5711   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5712 }
5713 
5714 void Verifier::verifyCompileUnits() {
5715   // When more than one Module is imported into the same context, such as during
5716   // an LTO build before linking the modules, ODR type uniquing may cause types
5717   // to point to a different CU. This check does not make sense in this case.
5718   if (M.getContext().isODRUniquingDebugTypes())
5719     return;
5720   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5721   SmallPtrSet<const Metadata *, 2> Listed;
5722   if (CUs)
5723     Listed.insert(CUs->op_begin(), CUs->op_end());
5724   for (auto *CU : CUVisited)
5725     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5726   CUVisited.clear();
5727 }
5728 
5729 void Verifier::verifyDeoptimizeCallingConvs() {
5730   if (DeoptimizeDeclarations.empty())
5731     return;
5732 
5733   const Function *First = DeoptimizeDeclarations[0];
5734   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5735     Assert(First->getCallingConv() == F->getCallingConv(),
5736            "All llvm.experimental.deoptimize declarations must have the same "
5737            "calling convention",
5738            First, F);
5739   }
5740 }
5741 
5742 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
5743                                         const OperandBundleUse &BU) {
5744   FunctionType *FTy = Call.getFunctionType();
5745 
5746   Assert((FTy->getReturnType()->isPointerTy() ||
5747           (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
5748          "a call with operand bundle \"clang.arc.attachedcall\" must call a "
5749          "function returning a pointer or a non-returning function that has a "
5750          "void return type",
5751          Call);
5752 
5753   Assert((BU.Inputs.empty() ||
5754           (BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()))),
5755          "operand bundle \"clang.arc.attachedcall\" can take either no "
5756          "arguments or one function as an argument",
5757          Call);
5758 
5759   if (BU.Inputs.empty())
5760     return;
5761 
5762   auto *Fn = cast<Function>(BU.Inputs.front());
5763   Intrinsic::ID IID = Fn->getIntrinsicID();
5764 
5765   if (IID) {
5766     Assert((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
5767             IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
5768            "invalid function argument", Call);
5769   } else {
5770     StringRef FnName = Fn->getName();
5771     Assert((FnName == "objc_retainAutoreleasedReturnValue" ||
5772             FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
5773            "invalid function argument", Call);
5774   }
5775 }
5776 
5777 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5778   bool HasSource = F.getSource().hasValue();
5779   if (!HasSourceDebugInfo.count(&U))
5780     HasSourceDebugInfo[&U] = HasSource;
5781   AssertDI(HasSource == HasSourceDebugInfo[&U],
5782            "inconsistent use of embedded source");
5783 }
5784 
5785 void Verifier::verifyNoAliasScopeDecl() {
5786   if (NoAliasScopeDecls.empty())
5787     return;
5788 
5789   // only a single scope must be declared at a time.
5790   for (auto *II : NoAliasScopeDecls) {
5791     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5792            "Not a llvm.experimental.noalias.scope.decl ?");
5793     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5794         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5795     Assert(ScopeListMV != nullptr,
5796            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5797            "argument",
5798            II);
5799 
5800     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5801     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5802            II);
5803     Assert(ScopeListMD->getNumOperands() == 1,
5804            "!id.scope.list must point to a list with a single scope", II);
5805     visitAliasScopeListMetadata(ScopeListMD);
5806   }
5807 
5808   // Only check the domination rule when requested. Once all passes have been
5809   // adapted this option can go away.
5810   if (!VerifyNoAliasScopeDomination)
5811     return;
5812 
5813   // Now sort the intrinsics based on the scope MDNode so that declarations of
5814   // the same scopes are next to each other.
5815   auto GetScope = [](IntrinsicInst *II) {
5816     const auto *ScopeListMV = cast<MetadataAsValue>(
5817         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5818     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5819   };
5820 
5821   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5822   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5823   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5824     return GetScope(Lhs) < GetScope(Rhs);
5825   };
5826 
5827   llvm::sort(NoAliasScopeDecls, Compare);
5828 
5829   // Go over the intrinsics and check that for the same scope, they are not
5830   // dominating each other.
5831   auto ItCurrent = NoAliasScopeDecls.begin();
5832   while (ItCurrent != NoAliasScopeDecls.end()) {
5833     auto CurScope = GetScope(*ItCurrent);
5834     auto ItNext = ItCurrent;
5835     do {
5836       ++ItNext;
5837     } while (ItNext != NoAliasScopeDecls.end() &&
5838              GetScope(*ItNext) == CurScope);
5839 
5840     // [ItCurrent, ItNext) represents the declarations for the same scope.
5841     // Ensure they are not dominating each other.. but only if it is not too
5842     // expensive.
5843     if (ItNext - ItCurrent < 32)
5844       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5845         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5846           if (I != J)
5847             Assert(!DT.dominates(I, J),
5848                    "llvm.experimental.noalias.scope.decl dominates another one "
5849                    "with the same scope",
5850                    I);
5851     ItCurrent = ItNext;
5852   }
5853 }
5854 
5855 //===----------------------------------------------------------------------===//
5856 //  Implement the public interfaces to this file...
5857 //===----------------------------------------------------------------------===//
5858 
5859 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5860   Function &F = const_cast<Function &>(f);
5861 
5862   // Don't use a raw_null_ostream.  Printing IR is expensive.
5863   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5864 
5865   // Note that this function's return value is inverted from what you would
5866   // expect of a function called "verify".
5867   return !V.verify(F);
5868 }
5869 
5870 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5871                         bool *BrokenDebugInfo) {
5872   // Don't use a raw_null_ostream.  Printing IR is expensive.
5873   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5874 
5875   bool Broken = false;
5876   for (const Function &F : M)
5877     Broken |= !V.verify(F);
5878 
5879   Broken |= !V.verify();
5880   if (BrokenDebugInfo)
5881     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5882   // Note that this function's return value is inverted from what you would
5883   // expect of a function called "verify".
5884   return Broken;
5885 }
5886 
5887 namespace {
5888 
5889 struct VerifierLegacyPass : public FunctionPass {
5890   static char ID;
5891 
5892   std::unique_ptr<Verifier> V;
5893   bool FatalErrors = true;
5894 
5895   VerifierLegacyPass() : FunctionPass(ID) {
5896     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5897   }
5898   explicit VerifierLegacyPass(bool FatalErrors)
5899       : FunctionPass(ID),
5900         FatalErrors(FatalErrors) {
5901     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5902   }
5903 
5904   bool doInitialization(Module &M) override {
5905     V = std::make_unique<Verifier>(
5906         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5907     return false;
5908   }
5909 
5910   bool runOnFunction(Function &F) override {
5911     if (!V->verify(F) && FatalErrors) {
5912       errs() << "in function " << F.getName() << '\n';
5913       report_fatal_error("Broken function found, compilation aborted!");
5914     }
5915     return false;
5916   }
5917 
5918   bool doFinalization(Module &M) override {
5919     bool HasErrors = false;
5920     for (Function &F : M)
5921       if (F.isDeclaration())
5922         HasErrors |= !V->verify(F);
5923 
5924     HasErrors |= !V->verify();
5925     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5926       report_fatal_error("Broken module found, compilation aborted!");
5927     return false;
5928   }
5929 
5930   void getAnalysisUsage(AnalysisUsage &AU) const override {
5931     AU.setPreservesAll();
5932   }
5933 };
5934 
5935 } // end anonymous namespace
5936 
5937 /// Helper to issue failure from the TBAA verification
5938 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5939   if (Diagnostic)
5940     return Diagnostic->CheckFailed(Args...);
5941 }
5942 
5943 #define AssertTBAA(C, ...)                                                     \
5944   do {                                                                         \
5945     if (!(C)) {                                                                \
5946       CheckFailed(__VA_ARGS__);                                                \
5947       return false;                                                            \
5948     }                                                                          \
5949   } while (false)
5950 
5951 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5952 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5953 /// struct-type node describing an aggregate data structure (like a struct).
5954 TBAAVerifier::TBAABaseNodeSummary
5955 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5956                                  bool IsNewFormat) {
5957   if (BaseNode->getNumOperands() < 2) {
5958     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5959     return {true, ~0u};
5960   }
5961 
5962   auto Itr = TBAABaseNodes.find(BaseNode);
5963   if (Itr != TBAABaseNodes.end())
5964     return Itr->second;
5965 
5966   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5967   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5968   (void)InsertResult;
5969   assert(InsertResult.second && "We just checked!");
5970   return Result;
5971 }
5972 
5973 TBAAVerifier::TBAABaseNodeSummary
5974 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5975                                      bool IsNewFormat) {
5976   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5977 
5978   if (BaseNode->getNumOperands() == 2) {
5979     // Scalar nodes can only be accessed at offset 0.
5980     return isValidScalarTBAANode(BaseNode)
5981                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5982                : InvalidNode;
5983   }
5984 
5985   if (IsNewFormat) {
5986     if (BaseNode->getNumOperands() % 3 != 0) {
5987       CheckFailed("Access tag nodes must have the number of operands that is a "
5988                   "multiple of 3!", BaseNode);
5989       return InvalidNode;
5990     }
5991   } else {
5992     if (BaseNode->getNumOperands() % 2 != 1) {
5993       CheckFailed("Struct tag nodes must have an odd number of operands!",
5994                   BaseNode);
5995       return InvalidNode;
5996     }
5997   }
5998 
5999   // Check the type size field.
6000   if (IsNewFormat) {
6001     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6002         BaseNode->getOperand(1));
6003     if (!TypeSizeNode) {
6004       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6005       return InvalidNode;
6006     }
6007   }
6008 
6009   // Check the type name field. In the new format it can be anything.
6010   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6011     CheckFailed("Struct tag nodes have a string as their first operand",
6012                 BaseNode);
6013     return InvalidNode;
6014   }
6015 
6016   bool Failed = false;
6017 
6018   Optional<APInt> PrevOffset;
6019   unsigned BitWidth = ~0u;
6020 
6021   // We've already checked that BaseNode is not a degenerate root node with one
6022   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6023   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6024   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6025   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6026            Idx += NumOpsPerField) {
6027     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6028     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6029     if (!isa<MDNode>(FieldTy)) {
6030       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6031       Failed = true;
6032       continue;
6033     }
6034 
6035     auto *OffsetEntryCI =
6036         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6037     if (!OffsetEntryCI) {
6038       CheckFailed("Offset entries must be constants!", &I, BaseNode);
6039       Failed = true;
6040       continue;
6041     }
6042 
6043     if (BitWidth == ~0u)
6044       BitWidth = OffsetEntryCI->getBitWidth();
6045 
6046     if (OffsetEntryCI->getBitWidth() != BitWidth) {
6047       CheckFailed(
6048           "Bitwidth between the offsets and struct type entries must match", &I,
6049           BaseNode);
6050       Failed = true;
6051       continue;
6052     }
6053 
6054     // NB! As far as I can tell, we generate a non-strictly increasing offset
6055     // sequence only from structs that have zero size bit fields.  When
6056     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6057     // pick the field lexically the latest in struct type metadata node.  This
6058     // mirrors the actual behavior of the alias analysis implementation.
6059     bool IsAscending =
6060         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6061 
6062     if (!IsAscending) {
6063       CheckFailed("Offsets must be increasing!", &I, BaseNode);
6064       Failed = true;
6065     }
6066 
6067     PrevOffset = OffsetEntryCI->getValue();
6068 
6069     if (IsNewFormat) {
6070       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6071           BaseNode->getOperand(Idx + 2));
6072       if (!MemberSizeNode) {
6073         CheckFailed("Member size entries must be constants!", &I, BaseNode);
6074         Failed = true;
6075         continue;
6076       }
6077     }
6078   }
6079 
6080   return Failed ? InvalidNode
6081                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6082 }
6083 
6084 static bool IsRootTBAANode(const MDNode *MD) {
6085   return MD->getNumOperands() < 2;
6086 }
6087 
6088 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6089                                  SmallPtrSetImpl<const MDNode *> &Visited) {
6090   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6091     return false;
6092 
6093   if (!isa<MDString>(MD->getOperand(0)))
6094     return false;
6095 
6096   if (MD->getNumOperands() == 3) {
6097     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6098     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6099       return false;
6100   }
6101 
6102   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6103   return Parent && Visited.insert(Parent).second &&
6104          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6105 }
6106 
6107 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6108   auto ResultIt = TBAAScalarNodes.find(MD);
6109   if (ResultIt != TBAAScalarNodes.end())
6110     return ResultIt->second;
6111 
6112   SmallPtrSet<const MDNode *, 4> Visited;
6113   bool Result = IsScalarTBAANodeImpl(MD, Visited);
6114   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6115   (void)InsertResult;
6116   assert(InsertResult.second && "Just checked!");
6117 
6118   return Result;
6119 }
6120 
6121 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
6122 /// Offset in place to be the offset within the field node returned.
6123 ///
6124 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6125 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6126                                                    const MDNode *BaseNode,
6127                                                    APInt &Offset,
6128                                                    bool IsNewFormat) {
6129   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6130 
6131   // Scalar nodes have only one possible "field" -- their parent in the access
6132   // hierarchy.  Offset must be zero at this point, but our caller is supposed
6133   // to Assert that.
6134   if (BaseNode->getNumOperands() == 2)
6135     return cast<MDNode>(BaseNode->getOperand(1));
6136 
6137   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6138   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6139   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6140            Idx += NumOpsPerField) {
6141     auto *OffsetEntryCI =
6142         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6143     if (OffsetEntryCI->getValue().ugt(Offset)) {
6144       if (Idx == FirstFieldOpNo) {
6145         CheckFailed("Could not find TBAA parent in struct type node", &I,
6146                     BaseNode, &Offset);
6147         return nullptr;
6148       }
6149 
6150       unsigned PrevIdx = Idx - NumOpsPerField;
6151       auto *PrevOffsetEntryCI =
6152           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6153       Offset -= PrevOffsetEntryCI->getValue();
6154       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6155     }
6156   }
6157 
6158   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6159   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6160       BaseNode->getOperand(LastIdx + 1));
6161   Offset -= LastOffsetEntryCI->getValue();
6162   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6163 }
6164 
6165 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6166   if (!Type || Type->getNumOperands() < 3)
6167     return false;
6168 
6169   // In the new format type nodes shall have a reference to the parent type as
6170   // its first operand.
6171   return isa_and_nonnull<MDNode>(Type->getOperand(0));
6172 }
6173 
6174 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6175   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6176                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6177                  isa<AtomicCmpXchgInst>(I),
6178              "This instruction shall not have a TBAA access tag!", &I);
6179 
6180   bool IsStructPathTBAA =
6181       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6182 
6183   AssertTBAA(
6184       IsStructPathTBAA,
6185       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
6186 
6187   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6188   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6189 
6190   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6191 
6192   if (IsNewFormat) {
6193     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6194                "Access tag metadata must have either 4 or 5 operands", &I, MD);
6195   } else {
6196     AssertTBAA(MD->getNumOperands() < 5,
6197                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6198   }
6199 
6200   // Check the access size field.
6201   if (IsNewFormat) {
6202     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6203         MD->getOperand(3));
6204     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6205   }
6206 
6207   // Check the immutability flag.
6208   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6209   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6210     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6211         MD->getOperand(ImmutabilityFlagOpNo));
6212     AssertTBAA(IsImmutableCI,
6213                "Immutability tag on struct tag metadata must be a constant",
6214                &I, MD);
6215     AssertTBAA(
6216         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6217         "Immutability part of the struct tag metadata must be either 0 or 1",
6218         &I, MD);
6219   }
6220 
6221   AssertTBAA(BaseNode && AccessType,
6222              "Malformed struct tag metadata: base and access-type "
6223              "should be non-null and point to Metadata nodes",
6224              &I, MD, BaseNode, AccessType);
6225 
6226   if (!IsNewFormat) {
6227     AssertTBAA(isValidScalarTBAANode(AccessType),
6228                "Access type node must be a valid scalar type", &I, MD,
6229                AccessType);
6230   }
6231 
6232   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6233   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6234 
6235   APInt Offset = OffsetCI->getValue();
6236   bool SeenAccessTypeInPath = false;
6237 
6238   SmallPtrSet<MDNode *, 4> StructPath;
6239 
6240   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6241        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6242                                                IsNewFormat)) {
6243     if (!StructPath.insert(BaseNode).second) {
6244       CheckFailed("Cycle detected in struct path", &I, MD);
6245       return false;
6246     }
6247 
6248     bool Invalid;
6249     unsigned BaseNodeBitWidth;
6250     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6251                                                              IsNewFormat);
6252 
6253     // If the base node is invalid in itself, then we've already printed all the
6254     // errors we wanted to print.
6255     if (Invalid)
6256       return false;
6257 
6258     SeenAccessTypeInPath |= BaseNode == AccessType;
6259 
6260     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6261       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6262                  &I, MD, &Offset);
6263 
6264     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6265                    (BaseNodeBitWidth == 0 && Offset == 0) ||
6266                    (IsNewFormat && BaseNodeBitWidth == ~0u),
6267                "Access bit-width not the same as description bit-width", &I, MD,
6268                BaseNodeBitWidth, Offset.getBitWidth());
6269 
6270     if (IsNewFormat && SeenAccessTypeInPath)
6271       break;
6272   }
6273 
6274   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
6275              &I, MD);
6276   return true;
6277 }
6278 
6279 char VerifierLegacyPass::ID = 0;
6280 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6281 
6282 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6283   return new VerifierLegacyPass(FatalErrors);
6284 }
6285 
6286 AnalysisKey VerifierAnalysis::Key;
6287 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6288                                                ModuleAnalysisManager &) {
6289   Result Res;
6290   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6291   return Res;
6292 }
6293 
6294 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6295                                                FunctionAnalysisManager &) {
6296   return { llvm::verifyFunction(F, &dbgs()), false };
6297 }
6298 
6299 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6300   auto Res = AM.getResult<VerifierAnalysis>(M);
6301   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6302     report_fatal_error("Broken module found, compilation aborted!");
6303 
6304   return PreservedAnalyses::all();
6305 }
6306 
6307 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6308   auto res = AM.getResult<VerifierAnalysis>(F);
6309   if (res.IRBroken && FatalErrors)
6310     report_fatal_error("Broken function found, compilation aborted!");
6311 
6312   return PreservedAnalyses::all();
6313 }
6314