1 //===-- Operator.cpp - Implement the LLVM operators -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the non-inline methods for the LLVM Operator classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/GetElementPtrTypeIterator.h" 16 #include "llvm/IR/Instructions.h" 17 #include "llvm/IR/Type.h" 18 19 #include "ConstantsContext.h" 20 21 namespace llvm { 22 bool Operator::hasPoisonGeneratingFlags() const { 23 switch (getOpcode()) { 24 case Instruction::Add: 25 case Instruction::Sub: 26 case Instruction::Mul: 27 case Instruction::Shl: { 28 auto *OBO = cast<OverflowingBinaryOperator>(this); 29 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 30 } 31 case Instruction::UDiv: 32 case Instruction::SDiv: 33 case Instruction::AShr: 34 case Instruction::LShr: 35 return cast<PossiblyExactOperator>(this)->isExact(); 36 case Instruction::GetElementPtr: { 37 auto *GEP = cast<GEPOperator>(this); 38 // Note: inrange exists on constexpr only 39 return GEP->isInBounds() || GEP->getInRangeIndex() != None; 40 } 41 default: 42 if (const auto *FP = dyn_cast<FPMathOperator>(this)) 43 return FP->hasNoNaNs() || FP->hasNoInfs(); 44 return false; 45 } 46 } 47 48 Type *GEPOperator::getSourceElementType() const { 49 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 50 return I->getSourceElementType(); 51 return cast<GetElementPtrConstantExpr>(this)->getSourceElementType(); 52 } 53 54 Type *GEPOperator::getResultElementType() const { 55 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 56 return I->getResultElementType(); 57 return cast<GetElementPtrConstantExpr>(this)->getResultElementType(); 58 } 59 60 Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const { 61 /// compute the worse possible offset for every level of the GEP et accumulate 62 /// the minimum alignment into Result. 63 64 Align Result = Align(llvm::Value::MaximumAlignment); 65 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 66 GTI != GTE; ++GTI) { 67 int64_t Offset = 1; 68 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 69 70 if (StructType *STy = GTI.getStructTypeOrNull()) { 71 const StructLayout *SL = DL.getStructLayout(STy); 72 Offset = SL->getElementOffset(OpC->getZExtValue()); 73 } else { 74 assert(GTI.isSequential() && "should be sequencial"); 75 /// If the index isn't know we take 1 because it is the index that will 76 /// give the worse alignment of the offset. 77 int64_t ElemCount = 1; 78 if (OpC) 79 ElemCount = OpC->getZExtValue(); 80 Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount; 81 } 82 Result = Align(MinAlign(Offset, Result.value())); 83 } 84 return Result; 85 } 86 87 bool GEPOperator::accumulateConstantOffset( 88 const DataLayout &DL, APInt &Offset, 89 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 90 assert(Offset.getBitWidth() == 91 DL.getIndexSizeInBits(getPointerAddressSpace()) && 92 "The offset bit width does not match DL specification."); 93 SmallVector<const Value *> Index(llvm::drop_begin(operand_values())); 94 return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index, 95 DL, Offset, ExternalAnalysis); 96 } 97 98 bool GEPOperator::accumulateConstantOffset( 99 Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL, 100 APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) { 101 bool UsedExternalAnalysis = false; 102 auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool { 103 Index = Index.sextOrTrunc(Offset.getBitWidth()); 104 APInt IndexedSize = APInt(Offset.getBitWidth(), Size); 105 // For array or vector indices, scale the index by the size of the type. 106 if (!UsedExternalAnalysis) { 107 Offset += Index * IndexedSize; 108 } else { 109 // External Analysis can return a result higher/lower than the value 110 // represents. We need to detect overflow/underflow. 111 bool Overflow = false; 112 APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow); 113 if (Overflow) 114 return false; 115 Offset = Offset.sadd_ov(OffsetPlus, Overflow); 116 if (Overflow) 117 return false; 118 } 119 return true; 120 }; 121 auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin( 122 SourceType, Index.begin()); 123 auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end()); 124 for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) { 125 // Scalable vectors are multiplied by a runtime constant. 126 bool ScalableType = false; 127 if (isa<ScalableVectorType>(GTI.getIndexedType())) 128 ScalableType = true; 129 130 Value *V = GTI.getOperand(); 131 StructType *STy = GTI.getStructTypeOrNull(); 132 // Handle ConstantInt if possible. 133 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 134 if (ConstOffset->isZero()) 135 continue; 136 // if the type is scalable and the constant is not zero (vscale * n * 0 = 137 // 0) bailout. 138 if (ScalableType) 139 return false; 140 // Handle a struct index, which adds its field offset to the pointer. 141 if (STy) { 142 unsigned ElementIdx = ConstOffset->getZExtValue(); 143 const StructLayout *SL = DL.getStructLayout(STy); 144 // Element offset is in bytes. 145 if (!AccumulateOffset( 146 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)), 147 1)) 148 return false; 149 continue; 150 } 151 if (!AccumulateOffset(ConstOffset->getValue(), 152 DL.getTypeAllocSize(GTI.getIndexedType()))) 153 return false; 154 continue; 155 } 156 157 // The operand is not constant, check if an external analysis was provided. 158 // External analsis is not applicable to a struct type. 159 if (!ExternalAnalysis || STy || ScalableType) 160 return false; 161 APInt AnalysisIndex; 162 if (!ExternalAnalysis(*V, AnalysisIndex)) 163 return false; 164 UsedExternalAnalysis = true; 165 if (!AccumulateOffset(AnalysisIndex, 166 DL.getTypeAllocSize(GTI.getIndexedType()))) 167 return false; 168 } 169 return true; 170 } 171 172 bool GEPOperator::collectOffset( 173 const DataLayout &DL, unsigned BitWidth, 174 MapVector<Value *, APInt> &VariableOffsets, 175 APInt &ConstantOffset) const { 176 assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) && 177 "The offset bit width does not match DL specification."); 178 179 auto CollectConstantOffset = [&](APInt Index, uint64_t Size) { 180 Index = Index.sextOrTrunc(BitWidth); 181 APInt IndexedSize = APInt(BitWidth, Size); 182 ConstantOffset += Index * IndexedSize; 183 }; 184 185 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 186 GTI != GTE; ++GTI) { 187 // Scalable vectors are multiplied by a runtime constant. 188 bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType()); 189 190 Value *V = GTI.getOperand(); 191 StructType *STy = GTI.getStructTypeOrNull(); 192 // Handle ConstantInt if possible. 193 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 194 if (ConstOffset->isZero()) 195 continue; 196 // If the type is scalable and the constant is not zero (vscale * n * 0 = 197 // 0) bailout. 198 // TODO: If the runtime value is accessible at any point before DWARF 199 // emission, then we could potentially keep a forward reference to it 200 // in the debug value to be filled in later. 201 if (ScalableType) 202 return false; 203 // Handle a struct index, which adds its field offset to the pointer. 204 if (STy) { 205 unsigned ElementIdx = ConstOffset->getZExtValue(); 206 const StructLayout *SL = DL.getStructLayout(STy); 207 // Element offset is in bytes. 208 CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)), 209 1); 210 continue; 211 } 212 CollectConstantOffset(ConstOffset->getValue(), 213 DL.getTypeAllocSize(GTI.getIndexedType())); 214 continue; 215 } 216 217 if (STy || ScalableType) 218 return false; 219 APInt IndexedSize = 220 APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 221 // Insert an initial offset of 0 for V iff none exists already, then 222 // increment the offset by IndexedSize. 223 if (!IndexedSize.isZero()) { 224 VariableOffsets.insert({V, APInt(BitWidth, 0)}); 225 VariableOffsets[V] += IndexedSize; 226 } 227 } 228 return true; 229 } 230 231 void FastMathFlags::print(raw_ostream &O) const { 232 if (all()) 233 O << " fast"; 234 else { 235 if (allowReassoc()) 236 O << " reassoc"; 237 if (noNaNs()) 238 O << " nnan"; 239 if (noInfs()) 240 O << " ninf"; 241 if (noSignedZeros()) 242 O << " nsz"; 243 if (allowReciprocal()) 244 O << " arcp"; 245 if (allowContract()) 246 O << " contract"; 247 if (approxFunc()) 248 O << " afn"; 249 } 250 } 251 } // namespace llvm 252