1 //===- Metadata.cpp - Implement Metadata classes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Metadata classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Metadata.h" 14 #include "LLVMContextImpl.h" 15 #include "MetadataImpl.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfoMetadata.h" 34 #include "llvm/IR/DebugLoc.h" 35 #include "llvm/IR/DebugProgramInstruction.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalObject.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ProfDataUtils.h" 44 #include "llvm/IR/TrackingMDRef.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/MathExtras.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstdint> 54 #include <type_traits> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD) 61 : Value(Ty, MetadataAsValueVal), MD(MD) { 62 track(); 63 } 64 65 MetadataAsValue::~MetadataAsValue() { 66 getType()->getContext().pImpl->MetadataAsValues.erase(MD); 67 untrack(); 68 } 69 70 /// Canonicalize metadata arguments to intrinsics. 71 /// 72 /// To support bitcode upgrades (and assembly semantic sugar) for \a 73 /// MetadataAsValue, we need to canonicalize certain metadata. 74 /// 75 /// - nullptr is replaced by an empty MDNode. 76 /// - An MDNode with a single null operand is replaced by an empty MDNode. 77 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped. 78 /// 79 /// This maintains readability of bitcode from when metadata was a type of 80 /// value, and these bridges were unnecessary. 81 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context, 82 Metadata *MD) { 83 if (!MD) 84 // !{} 85 return MDNode::get(Context, std::nullopt); 86 87 // Return early if this isn't a single-operand MDNode. 88 auto *N = dyn_cast<MDNode>(MD); 89 if (!N || N->getNumOperands() != 1) 90 return MD; 91 92 if (!N->getOperand(0)) 93 // !{} 94 return MDNode::get(Context, std::nullopt); 95 96 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0))) 97 // Look through the MDNode. 98 return C; 99 100 return MD; 101 } 102 103 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) { 104 MD = canonicalizeMetadataForValue(Context, MD); 105 auto *&Entry = Context.pImpl->MetadataAsValues[MD]; 106 if (!Entry) 107 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD); 108 return Entry; 109 } 110 111 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context, 112 Metadata *MD) { 113 MD = canonicalizeMetadataForValue(Context, MD); 114 auto &Store = Context.pImpl->MetadataAsValues; 115 return Store.lookup(MD); 116 } 117 118 void MetadataAsValue::handleChangedMetadata(Metadata *MD) { 119 LLVMContext &Context = getContext(); 120 MD = canonicalizeMetadataForValue(Context, MD); 121 auto &Store = Context.pImpl->MetadataAsValues; 122 123 // Stop tracking the old metadata. 124 Store.erase(this->MD); 125 untrack(); 126 this->MD = nullptr; 127 128 // Start tracking MD, or RAUW if necessary. 129 auto *&Entry = Store[MD]; 130 if (Entry) { 131 replaceAllUsesWith(Entry); 132 delete this; 133 return; 134 } 135 136 this->MD = MD; 137 track(); 138 Entry = this; 139 } 140 141 void MetadataAsValue::track() { 142 if (MD) 143 MetadataTracking::track(&MD, *MD, *this); 144 } 145 146 void MetadataAsValue::untrack() { 147 if (MD) 148 MetadataTracking::untrack(MD); 149 } 150 151 DPValue *DebugValueUser::getUser() { return static_cast<DPValue *>(this); } 152 const DPValue *DebugValueUser::getUser() const { 153 return static_cast<const DPValue *>(this); 154 } 155 void DebugValueUser::handleChangedValue(Metadata *NewMD) { 156 getUser()->handleChangedLocation(NewMD); 157 } 158 159 void DebugValueUser::trackDebugValue() { 160 if (DebugValue) 161 MetadataTracking::track(&DebugValue, *DebugValue, *this); 162 } 163 164 void DebugValueUser::untrackDebugValue() { 165 if (DebugValue) 166 MetadataTracking::untrack(DebugValue); 167 } 168 169 void DebugValueUser::retrackDebugValue(DebugValueUser &X) { 170 assert(DebugValue == X.DebugValue && "Expected values to match"); 171 if (X.DebugValue) { 172 MetadataTracking::retrack(X.DebugValue, DebugValue); 173 X.DebugValue = nullptr; 174 } 175 } 176 177 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) { 178 assert(Ref && "Expected live reference"); 179 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) && 180 "Reference without owner must be direct"); 181 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) { 182 R->addRef(Ref, Owner); 183 return true; 184 } 185 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) { 186 assert(!PH->Use && "Placeholders can only be used once"); 187 assert(!Owner && "Unexpected callback to owner"); 188 PH->Use = static_cast<Metadata **>(Ref); 189 return true; 190 } 191 return false; 192 } 193 194 void MetadataTracking::untrack(void *Ref, Metadata &MD) { 195 assert(Ref && "Expected live reference"); 196 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) 197 R->dropRef(Ref); 198 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) 199 PH->Use = nullptr; 200 } 201 202 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) { 203 assert(Ref && "Expected live reference"); 204 assert(New && "Expected live reference"); 205 assert(Ref != New && "Expected change"); 206 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) { 207 R->moveRef(Ref, New, MD); 208 return true; 209 } 210 assert(!isa<DistinctMDOperandPlaceholder>(MD) && 211 "Unexpected move of an MDOperand"); 212 assert(!isReplaceable(MD) && 213 "Expected un-replaceable metadata, since we didn't move a reference"); 214 return false; 215 } 216 217 bool MetadataTracking::isReplaceable(const Metadata &MD) { 218 return ReplaceableMetadataImpl::isReplaceable(MD); 219 } 220 221 SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() { 222 SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID; 223 for (auto Pair : UseMap) { 224 OwnerTy Owner = Pair.second.first; 225 if (Owner.isNull()) 226 continue; 227 if (!isa<Metadata *>(Owner)) 228 continue; 229 Metadata *OwnerMD = cast<Metadata *>(Owner); 230 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind) 231 MDUsersWithID.push_back(&UseMap[Pair.first]); 232 } 233 llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) { 234 return UserA->second < UserB->second; 235 }); 236 SmallVector<Metadata *> MDUsers; 237 for (auto *UserWithID : MDUsersWithID) 238 MDUsers.push_back(cast<Metadata *>(UserWithID->first)); 239 return MDUsers; 240 } 241 242 SmallVector<DPValue *> ReplaceableMetadataImpl::getAllDPValueUsers() { 243 SmallVector<std::pair<OwnerTy, uint64_t> *> DPVUsersWithID; 244 for (auto Pair : UseMap) { 245 OwnerTy Owner = Pair.second.first; 246 if (Owner.isNull()) 247 continue; 248 if (!Owner.is<DebugValueUser *>()) 249 continue; 250 DPVUsersWithID.push_back(&UseMap[Pair.first]); 251 } 252 // Order DPValue users in reverse-creation order. Normal dbg.value users 253 // of MetadataAsValues are ordered by their UseList, i.e. reverse order of 254 // when they were added: we need to replicate that here. The structure of 255 // debug-info output depends on the ordering of intrinsics, thus we need 256 // to keep them consistent for comparisons sake. 257 llvm::sort(DPVUsersWithID, [](auto UserA, auto UserB) { 258 return UserA->second > UserB->second; 259 }); 260 SmallVector<DPValue *> DPVUsers; 261 for (auto UserWithID : DPVUsersWithID) 262 DPVUsers.push_back(UserWithID->first.get<DebugValueUser *>()->getUser()); 263 return DPVUsers; 264 } 265 266 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) { 267 bool WasInserted = 268 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex))) 269 .second; 270 (void)WasInserted; 271 assert(WasInserted && "Expected to add a reference"); 272 273 ++NextIndex; 274 assert(NextIndex != 0 && "Unexpected overflow"); 275 } 276 277 void ReplaceableMetadataImpl::dropRef(void *Ref) { 278 bool WasErased = UseMap.erase(Ref); 279 (void)WasErased; 280 assert(WasErased && "Expected to drop a reference"); 281 } 282 283 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New, 284 const Metadata &MD) { 285 auto I = UseMap.find(Ref); 286 assert(I != UseMap.end() && "Expected to move a reference"); 287 auto OwnerAndIndex = I->second; 288 UseMap.erase(I); 289 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second; 290 (void)WasInserted; 291 assert(WasInserted && "Expected to add a reference"); 292 293 // Check that the references are direct if there's no owner. 294 (void)MD; 295 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) && 296 "Reference without owner must be direct"); 297 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) && 298 "Reference without owner must be direct"); 299 } 300 301 void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) { 302 if (!C.isUsedByMetadata()) { 303 return; 304 } 305 306 LLVMContext &Context = C.getType()->getContext(); 307 auto &Store = Context.pImpl->ValuesAsMetadata; 308 auto I = Store.find(&C); 309 ValueAsMetadata *MD = I->second; 310 using UseTy = 311 std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>; 312 // Copy out uses and update value of Constant used by debug info metadata with undef below 313 SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end()); 314 315 for (const auto &Pair : Uses) { 316 MetadataTracking::OwnerTy Owner = Pair.second.first; 317 if (!Owner) 318 continue; 319 if (!isa<Metadata *>(Owner)) 320 continue; 321 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner)); 322 if (!OwnerMD) 323 continue; 324 if (isa<DINode>(OwnerMD)) { 325 OwnerMD->handleChangedOperand( 326 Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType()))); 327 } 328 } 329 } 330 331 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) { 332 if (UseMap.empty()) 333 return; 334 335 // Copy out uses since UseMap will get touched below. 336 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 337 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 338 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 339 return L.second.second < R.second.second; 340 }); 341 for (const auto &Pair : Uses) { 342 // Check that this Ref hasn't disappeared after RAUW (when updating a 343 // previous Ref). 344 if (!UseMap.count(Pair.first)) 345 continue; 346 347 OwnerTy Owner = Pair.second.first; 348 if (!Owner) { 349 // Update unowned tracking references directly. 350 Metadata *&Ref = *static_cast<Metadata **>(Pair.first); 351 Ref = MD; 352 if (MD) 353 MetadataTracking::track(Ref); 354 UseMap.erase(Pair.first); 355 continue; 356 } 357 358 // Check for MetadataAsValue. 359 if (isa<MetadataAsValue *>(Owner)) { 360 cast<MetadataAsValue *>(Owner)->handleChangedMetadata(MD); 361 continue; 362 } 363 364 if (Owner.is<DebugValueUser *>()) { 365 Owner.get<DebugValueUser *>()->getUser()->handleChangedLocation(MD); 366 continue; 367 } 368 369 // There's a Metadata owner -- dispatch. 370 Metadata *OwnerMD = cast<Metadata *>(Owner); 371 switch (OwnerMD->getMetadataID()) { 372 #define HANDLE_METADATA_LEAF(CLASS) \ 373 case Metadata::CLASS##Kind: \ 374 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \ 375 continue; 376 #include "llvm/IR/Metadata.def" 377 default: 378 llvm_unreachable("Invalid metadata subclass"); 379 } 380 } 381 assert(UseMap.empty() && "Expected all uses to be replaced"); 382 } 383 384 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) { 385 if (UseMap.empty()) 386 return; 387 388 if (!ResolveUsers) { 389 UseMap.clear(); 390 return; 391 } 392 393 // Copy out uses since UseMap could get touched below. 394 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>; 395 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end()); 396 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) { 397 return L.second.second < R.second.second; 398 }); 399 UseMap.clear(); 400 for (const auto &Pair : Uses) { 401 auto Owner = Pair.second.first; 402 if (!Owner) 403 continue; 404 if (!Owner.is<Metadata *>()) 405 continue; 406 407 // Resolve MDNodes that point at this. 408 auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner)); 409 if (!OwnerMD) 410 continue; 411 if (OwnerMD->isResolved()) 412 continue; 413 OwnerMD->decrementUnresolvedOperandCount(); 414 } 415 } 416 417 // Special handing of DIArgList is required in the RemoveDIs project, see 418 // commentry in DIArgList::handleChangedOperand for details. Hidden behind 419 // conditional compilation to avoid a compile time regression. 420 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) { 421 if (auto *N = dyn_cast<MDNode>(&MD)) 422 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses(); 423 if (auto ArgList = dyn_cast<DIArgList>(&MD)) 424 return ArgList; 425 return dyn_cast<ValueAsMetadata>(&MD); 426 } 427 428 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) { 429 if (auto *N = dyn_cast<MDNode>(&MD)) 430 return N->isResolved() ? nullptr : N->Context.getReplaceableUses(); 431 if (auto ArgList = dyn_cast<DIArgList>(&MD)) 432 return ArgList; 433 return dyn_cast<ValueAsMetadata>(&MD); 434 } 435 436 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) { 437 if (auto *N = dyn_cast<MDNode>(&MD)) 438 return !N->isResolved(); 439 return isa<ValueAsMetadata>(&MD) || isa<DIArgList>(&MD); 440 } 441 442 static DISubprogram *getLocalFunctionMetadata(Value *V) { 443 assert(V && "Expected value"); 444 if (auto *A = dyn_cast<Argument>(V)) { 445 if (auto *Fn = A->getParent()) 446 return Fn->getSubprogram(); 447 return nullptr; 448 } 449 450 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) { 451 if (auto *Fn = BB->getParent()) 452 return Fn->getSubprogram(); 453 return nullptr; 454 } 455 456 return nullptr; 457 } 458 459 ValueAsMetadata *ValueAsMetadata::get(Value *V) { 460 assert(V && "Unexpected null Value"); 461 462 auto &Context = V->getContext(); 463 auto *&Entry = Context.pImpl->ValuesAsMetadata[V]; 464 if (!Entry) { 465 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && 466 "Expected constant or function-local value"); 467 assert(!V->IsUsedByMD && "Expected this to be the only metadata use"); 468 V->IsUsedByMD = true; 469 if (auto *C = dyn_cast<Constant>(V)) 470 Entry = new ConstantAsMetadata(C); 471 else 472 Entry = new LocalAsMetadata(V); 473 } 474 475 return Entry; 476 } 477 478 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) { 479 assert(V && "Unexpected null Value"); 480 return V->getContext().pImpl->ValuesAsMetadata.lookup(V); 481 } 482 483 void ValueAsMetadata::handleDeletion(Value *V) { 484 assert(V && "Expected valid value"); 485 486 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata; 487 auto I = Store.find(V); 488 if (I == Store.end()) 489 return; 490 491 // Remove old entry from the map. 492 ValueAsMetadata *MD = I->second; 493 assert(MD && "Expected valid metadata"); 494 assert(MD->getValue() == V && "Expected valid mapping"); 495 Store.erase(I); 496 497 // Delete the metadata. 498 MD->replaceAllUsesWith(nullptr); 499 delete MD; 500 } 501 502 void ValueAsMetadata::handleRAUW(Value *From, Value *To) { 503 assert(From && "Expected valid value"); 504 assert(To && "Expected valid value"); 505 assert(From != To && "Expected changed value"); 506 assert(From->getType() == To->getType() && "Unexpected type change"); 507 508 LLVMContext &Context = From->getType()->getContext(); 509 auto &Store = Context.pImpl->ValuesAsMetadata; 510 auto I = Store.find(From); 511 if (I == Store.end()) { 512 assert(!From->IsUsedByMD && "Expected From not to be used by metadata"); 513 return; 514 } 515 516 // Remove old entry from the map. 517 assert(From->IsUsedByMD && "Expected From to be used by metadata"); 518 From->IsUsedByMD = false; 519 ValueAsMetadata *MD = I->second; 520 assert(MD && "Expected valid metadata"); 521 assert(MD->getValue() == From && "Expected valid mapping"); 522 Store.erase(I); 523 524 if (isa<LocalAsMetadata>(MD)) { 525 if (auto *C = dyn_cast<Constant>(To)) { 526 // Local became a constant. 527 MD->replaceAllUsesWith(ConstantAsMetadata::get(C)); 528 delete MD; 529 return; 530 } 531 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) && 532 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) { 533 // DISubprogram changed. 534 MD->replaceAllUsesWith(nullptr); 535 delete MD; 536 return; 537 } 538 } else if (!isa<Constant>(To)) { 539 // Changed to function-local value. 540 MD->replaceAllUsesWith(nullptr); 541 delete MD; 542 return; 543 } 544 545 auto *&Entry = Store[To]; 546 if (Entry) { 547 // The target already exists. 548 MD->replaceAllUsesWith(Entry); 549 delete MD; 550 return; 551 } 552 553 // Update MD in place (and update the map entry). 554 assert(!To->IsUsedByMD && "Expected this to be the only metadata use"); 555 To->IsUsedByMD = true; 556 MD->V = To; 557 Entry = MD; 558 } 559 560 //===----------------------------------------------------------------------===// 561 // MDString implementation. 562 // 563 564 MDString *MDString::get(LLVMContext &Context, StringRef Str) { 565 auto &Store = Context.pImpl->MDStringCache; 566 auto I = Store.try_emplace(Str); 567 auto &MapEntry = I.first->getValue(); 568 if (!I.second) 569 return &MapEntry; 570 MapEntry.Entry = &*I.first; 571 return &MapEntry; 572 } 573 574 StringRef MDString::getString() const { 575 assert(Entry && "Expected to find string map entry"); 576 return Entry->first(); 577 } 578 579 //===----------------------------------------------------------------------===// 580 // MDNode implementation. 581 // 582 583 // Assert that the MDNode types will not be unaligned by the objects 584 // prepended to them. 585 #define HANDLE_MDNODE_LEAF(CLASS) \ 586 static_assert( \ 587 alignof(uint64_t) >= alignof(CLASS), \ 588 "Alignment is insufficient after objects prepended to " #CLASS); 589 #include "llvm/IR/Metadata.def" 590 591 void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) { 592 // uint64_t is the most aligned type we need support (ensured by static_assert 593 // above) 594 size_t AllocSize = 595 alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t)); 596 char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size)); 597 Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage); 598 return reinterpret_cast<void *>(H + 1); 599 } 600 601 void MDNode::operator delete(void *N) { 602 Header *H = reinterpret_cast<Header *>(N) - 1; 603 void *Mem = H->getAllocation(); 604 H->~Header(); 605 ::operator delete(Mem); 606 } 607 608 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage, 609 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2) 610 : Metadata(ID, Storage), Context(Context) { 611 unsigned Op = 0; 612 for (Metadata *MD : Ops1) 613 setOperand(Op++, MD); 614 for (Metadata *MD : Ops2) 615 setOperand(Op++, MD); 616 617 if (!isUniqued()) 618 return; 619 620 // Count the unresolved operands. If there are any, RAUW support will be 621 // added lazily on first reference. 622 countUnresolvedOperands(); 623 } 624 625 TempMDNode MDNode::clone() const { 626 switch (getMetadataID()) { 627 default: 628 llvm_unreachable("Invalid MDNode subclass"); 629 #define HANDLE_MDNODE_LEAF(CLASS) \ 630 case CLASS##Kind: \ 631 return cast<CLASS>(this)->cloneImpl(); 632 #include "llvm/IR/Metadata.def" 633 } 634 } 635 636 MDNode::Header::Header(size_t NumOps, StorageType Storage) { 637 IsLarge = isLarge(NumOps); 638 IsResizable = isResizable(Storage); 639 SmallSize = getSmallSize(NumOps, IsResizable, IsLarge); 640 if (IsLarge) { 641 SmallNumOps = 0; 642 new (getLargePtr()) LargeStorageVector(); 643 getLarge().resize(NumOps); 644 return; 645 } 646 SmallNumOps = NumOps; 647 MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize; 648 for (MDOperand *E = O + SmallSize; O != E;) 649 (void)new (O++) MDOperand(); 650 } 651 652 MDNode::Header::~Header() { 653 if (IsLarge) { 654 getLarge().~LargeStorageVector(); 655 return; 656 } 657 MDOperand *O = reinterpret_cast<MDOperand *>(this); 658 for (MDOperand *E = O - SmallSize; O != E; --O) 659 (void)(O - 1)->~MDOperand(); 660 } 661 662 void *MDNode::Header::getSmallPtr() { 663 static_assert(alignof(MDOperand) <= alignof(Header), 664 "MDOperand too strongly aligned"); 665 return reinterpret_cast<char *>(const_cast<Header *>(this)) - 666 sizeof(MDOperand) * SmallSize; 667 } 668 669 void MDNode::Header::resize(size_t NumOps) { 670 assert(IsResizable && "Node is not resizable"); 671 if (operands().size() == NumOps) 672 return; 673 674 if (IsLarge) 675 getLarge().resize(NumOps); 676 else if (NumOps <= SmallSize) 677 resizeSmall(NumOps); 678 else 679 resizeSmallToLarge(NumOps); 680 } 681 682 void MDNode::Header::resizeSmall(size_t NumOps) { 683 assert(!IsLarge && "Expected a small MDNode"); 684 assert(NumOps <= SmallSize && "NumOps too large for small resize"); 685 686 MutableArrayRef<MDOperand> ExistingOps = operands(); 687 assert(NumOps != ExistingOps.size() && "Expected a different size"); 688 689 int NumNew = (int)NumOps - (int)ExistingOps.size(); 690 MDOperand *O = ExistingOps.end(); 691 for (int I = 0, E = NumNew; I < E; ++I) 692 (O++)->reset(); 693 for (int I = 0, E = NumNew; I > E; --I) 694 (--O)->reset(); 695 SmallNumOps = NumOps; 696 assert(O == operands().end() && "Operands not (un)initialized until the end"); 697 } 698 699 void MDNode::Header::resizeSmallToLarge(size_t NumOps) { 700 assert(!IsLarge && "Expected a small MDNode"); 701 assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation"); 702 LargeStorageVector NewOps; 703 NewOps.resize(NumOps); 704 llvm::move(operands(), NewOps.begin()); 705 resizeSmall(0); 706 new (getLargePtr()) LargeStorageVector(std::move(NewOps)); 707 IsLarge = true; 708 } 709 710 static bool isOperandUnresolved(Metadata *Op) { 711 if (auto *N = dyn_cast_or_null<MDNode>(Op)) 712 return !N->isResolved(); 713 return false; 714 } 715 716 void MDNode::countUnresolvedOperands() { 717 assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted"); 718 assert(isUniqued() && "Expected this to be uniqued"); 719 setNumUnresolved(count_if(operands(), isOperandUnresolved)); 720 } 721 722 void MDNode::makeUniqued() { 723 assert(isTemporary() && "Expected this to be temporary"); 724 assert(!isResolved() && "Expected this to be unresolved"); 725 726 // Enable uniquing callbacks. 727 for (auto &Op : mutable_operands()) 728 Op.reset(Op.get(), this); 729 730 // Make this 'uniqued'. 731 Storage = Uniqued; 732 countUnresolvedOperands(); 733 if (!getNumUnresolved()) { 734 dropReplaceableUses(); 735 assert(isResolved() && "Expected this to be resolved"); 736 } 737 738 assert(isUniqued() && "Expected this to be uniqued"); 739 } 740 741 void MDNode::makeDistinct() { 742 assert(isTemporary() && "Expected this to be temporary"); 743 assert(!isResolved() && "Expected this to be unresolved"); 744 745 // Drop RAUW support and store as a distinct node. 746 dropReplaceableUses(); 747 storeDistinctInContext(); 748 749 assert(isDistinct() && "Expected this to be distinct"); 750 assert(isResolved() && "Expected this to be resolved"); 751 } 752 753 void MDNode::resolve() { 754 assert(isUniqued() && "Expected this to be uniqued"); 755 assert(!isResolved() && "Expected this to be unresolved"); 756 757 setNumUnresolved(0); 758 dropReplaceableUses(); 759 760 assert(isResolved() && "Expected this to be resolved"); 761 } 762 763 void MDNode::dropReplaceableUses() { 764 assert(!getNumUnresolved() && "Unexpected unresolved operand"); 765 766 // Drop any RAUW support. 767 if (Context.hasReplaceableUses()) 768 Context.takeReplaceableUses()->resolveAllUses(); 769 } 770 771 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) { 772 assert(isUniqued() && "Expected this to be uniqued"); 773 assert(getNumUnresolved() != 0 && "Expected unresolved operands"); 774 775 // Check if an operand was resolved. 776 if (!isOperandUnresolved(Old)) { 777 if (isOperandUnresolved(New)) 778 // An operand was un-resolved! 779 setNumUnresolved(getNumUnresolved() + 1); 780 } else if (!isOperandUnresolved(New)) 781 decrementUnresolvedOperandCount(); 782 } 783 784 void MDNode::decrementUnresolvedOperandCount() { 785 assert(!isResolved() && "Expected this to be unresolved"); 786 if (isTemporary()) 787 return; 788 789 assert(isUniqued() && "Expected this to be uniqued"); 790 setNumUnresolved(getNumUnresolved() - 1); 791 if (getNumUnresolved()) 792 return; 793 794 // Last unresolved operand has just been resolved. 795 dropReplaceableUses(); 796 assert(isResolved() && "Expected this to become resolved"); 797 } 798 799 void MDNode::resolveCycles() { 800 if (isResolved()) 801 return; 802 803 // Resolve this node immediately. 804 resolve(); 805 806 // Resolve all operands. 807 for (const auto &Op : operands()) { 808 auto *N = dyn_cast_or_null<MDNode>(Op); 809 if (!N) 810 continue; 811 812 assert(!N->isTemporary() && 813 "Expected all forward declarations to be resolved"); 814 if (!N->isResolved()) 815 N->resolveCycles(); 816 } 817 } 818 819 static bool hasSelfReference(MDNode *N) { 820 return llvm::is_contained(N->operands(), N); 821 } 822 823 MDNode *MDNode::replaceWithPermanentImpl() { 824 switch (getMetadataID()) { 825 default: 826 // If this type isn't uniquable, replace with a distinct node. 827 return replaceWithDistinctImpl(); 828 829 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 830 case CLASS##Kind: \ 831 break; 832 #include "llvm/IR/Metadata.def" 833 } 834 835 // Even if this type is uniquable, self-references have to be distinct. 836 if (hasSelfReference(this)) 837 return replaceWithDistinctImpl(); 838 return replaceWithUniquedImpl(); 839 } 840 841 MDNode *MDNode::replaceWithUniquedImpl() { 842 // Try to uniquify in place. 843 MDNode *UniquedNode = uniquify(); 844 845 if (UniquedNode == this) { 846 makeUniqued(); 847 return this; 848 } 849 850 // Collision, so RAUW instead. 851 replaceAllUsesWith(UniquedNode); 852 deleteAsSubclass(); 853 return UniquedNode; 854 } 855 856 MDNode *MDNode::replaceWithDistinctImpl() { 857 makeDistinct(); 858 return this; 859 } 860 861 void MDTuple::recalculateHash() { 862 setHash(MDTupleInfo::KeyTy::calculateHash(this)); 863 } 864 865 void MDNode::dropAllReferences() { 866 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 867 setOperand(I, nullptr); 868 if (Context.hasReplaceableUses()) { 869 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false); 870 (void)Context.takeReplaceableUses(); 871 } 872 } 873 874 void MDNode::handleChangedOperand(void *Ref, Metadata *New) { 875 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin(); 876 assert(Op < getNumOperands() && "Expected valid operand"); 877 878 if (!isUniqued()) { 879 // This node is not uniqued. Just set the operand and be done with it. 880 setOperand(Op, New); 881 return; 882 } 883 884 // This node is uniqued. 885 eraseFromStore(); 886 887 Metadata *Old = getOperand(Op); 888 setOperand(Op, New); 889 890 // Drop uniquing for self-reference cycles and deleted constants. 891 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) { 892 if (!isResolved()) 893 resolve(); 894 storeDistinctInContext(); 895 return; 896 } 897 898 // Re-unique the node. 899 auto *Uniqued = uniquify(); 900 if (Uniqued == this) { 901 if (!isResolved()) 902 resolveAfterOperandChange(Old, New); 903 return; 904 } 905 906 // Collision. 907 if (!isResolved()) { 908 // Still unresolved, so RAUW. 909 // 910 // First, clear out all operands to prevent any recursion (similar to 911 // dropAllReferences(), but we still need the use-list). 912 for (unsigned O = 0, E = getNumOperands(); O != E; ++O) 913 setOperand(O, nullptr); 914 if (Context.hasReplaceableUses()) 915 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued); 916 deleteAsSubclass(); 917 return; 918 } 919 920 // Store in non-uniqued form if RAUW isn't possible. 921 storeDistinctInContext(); 922 } 923 924 void MDNode::deleteAsSubclass() { 925 switch (getMetadataID()) { 926 default: 927 llvm_unreachable("Invalid subclass of MDNode"); 928 #define HANDLE_MDNODE_LEAF(CLASS) \ 929 case CLASS##Kind: \ 930 delete cast<CLASS>(this); \ 931 break; 932 #include "llvm/IR/Metadata.def" 933 } 934 } 935 936 template <class T, class InfoT> 937 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) { 938 if (T *U = getUniqued(Store, N)) 939 return U; 940 941 Store.insert(N); 942 return N; 943 } 944 945 template <class NodeTy> struct MDNode::HasCachedHash { 946 using Yes = char[1]; 947 using No = char[2]; 948 template <class U, U Val> struct SFINAE {}; 949 950 template <class U> 951 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *); 952 template <class U> static No &check(...); 953 954 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes); 955 }; 956 957 MDNode *MDNode::uniquify() { 958 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node"); 959 960 // Try to insert into uniquing store. 961 switch (getMetadataID()) { 962 default: 963 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 964 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 965 case CLASS##Kind: { \ 966 CLASS *SubclassThis = cast<CLASS>(this); \ 967 std::integral_constant<bool, HasCachedHash<CLASS>::value> \ 968 ShouldRecalculateHash; \ 969 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \ 970 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \ 971 } 972 #include "llvm/IR/Metadata.def" 973 } 974 } 975 976 void MDNode::eraseFromStore() { 977 switch (getMetadataID()) { 978 default: 979 llvm_unreachable("Invalid or non-uniquable subclass of MDNode"); 980 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \ 981 case CLASS##Kind: \ 982 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \ 983 break; 984 #include "llvm/IR/Metadata.def" 985 } 986 } 987 988 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs, 989 StorageType Storage, bool ShouldCreate) { 990 unsigned Hash = 0; 991 if (Storage == Uniqued) { 992 MDTupleInfo::KeyTy Key(MDs); 993 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key)) 994 return N; 995 if (!ShouldCreate) 996 return nullptr; 997 Hash = Key.getHash(); 998 } else { 999 assert(ShouldCreate && "Expected non-uniqued nodes to always be created"); 1000 } 1001 1002 return storeImpl(new (MDs.size(), Storage) 1003 MDTuple(Context, Storage, Hash, MDs), 1004 Storage, Context.pImpl->MDTuples); 1005 } 1006 1007 void MDNode::deleteTemporary(MDNode *N) { 1008 assert(N->isTemporary() && "Expected temporary node"); 1009 N->replaceAllUsesWith(nullptr); 1010 N->deleteAsSubclass(); 1011 } 1012 1013 void MDNode::storeDistinctInContext() { 1014 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses"); 1015 assert(!getNumUnresolved() && "Unexpected unresolved nodes"); 1016 Storage = Distinct; 1017 assert(isResolved() && "Expected this to be resolved"); 1018 1019 // Reset the hash. 1020 switch (getMetadataID()) { 1021 default: 1022 llvm_unreachable("Invalid subclass of MDNode"); 1023 #define HANDLE_MDNODE_LEAF(CLASS) \ 1024 case CLASS##Kind: { \ 1025 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \ 1026 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \ 1027 break; \ 1028 } 1029 #include "llvm/IR/Metadata.def" 1030 } 1031 1032 getContext().pImpl->DistinctMDNodes.push_back(this); 1033 } 1034 1035 void MDNode::replaceOperandWith(unsigned I, Metadata *New) { 1036 if (getOperand(I) == New) 1037 return; 1038 1039 if (!isUniqued()) { 1040 setOperand(I, New); 1041 return; 1042 } 1043 1044 handleChangedOperand(mutable_begin() + I, New); 1045 } 1046 1047 void MDNode::setOperand(unsigned I, Metadata *New) { 1048 assert(I < getNumOperands()); 1049 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr); 1050 } 1051 1052 /// Get a node or a self-reference that looks like it. 1053 /// 1054 /// Special handling for finding self-references, for use by \a 1055 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from 1056 /// when self-referencing nodes were still uniqued. If the first operand has 1057 /// the same operands as \c Ops, return the first operand instead. 1058 static MDNode *getOrSelfReference(LLVMContext &Context, 1059 ArrayRef<Metadata *> Ops) { 1060 if (!Ops.empty()) 1061 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0])) 1062 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) { 1063 for (unsigned I = 1, E = Ops.size(); I != E; ++I) 1064 if (Ops[I] != N->getOperand(I)) 1065 return MDNode::get(Context, Ops); 1066 return N; 1067 } 1068 1069 return MDNode::get(Context, Ops); 1070 } 1071 1072 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) { 1073 if (!A) 1074 return B; 1075 if (!B) 1076 return A; 1077 1078 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 1079 MDs.insert(B->op_begin(), B->op_end()); 1080 1081 // FIXME: This preserves long-standing behaviour, but is it really the right 1082 // behaviour? Or was that an unintended side-effect of node uniquing? 1083 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1084 } 1085 1086 MDNode *MDNode::intersect(MDNode *A, MDNode *B) { 1087 if (!A || !B) 1088 return nullptr; 1089 1090 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end()); 1091 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end()); 1092 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); }); 1093 1094 // FIXME: This preserves long-standing behaviour, but is it really the right 1095 // behaviour? Or was that an unintended side-effect of node uniquing? 1096 return getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1097 } 1098 1099 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) { 1100 if (!A || !B) 1101 return nullptr; 1102 1103 // Take the intersection of domains then union the scopes 1104 // within those domains 1105 SmallPtrSet<const MDNode *, 16> ADomains; 1106 SmallPtrSet<const MDNode *, 16> IntersectDomains; 1107 SmallSetVector<Metadata *, 4> MDs; 1108 for (const MDOperand &MDOp : A->operands()) 1109 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1110 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1111 ADomains.insert(Domain); 1112 1113 for (const MDOperand &MDOp : B->operands()) 1114 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1115 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1116 if (ADomains.contains(Domain)) { 1117 IntersectDomains.insert(Domain); 1118 MDs.insert(MDOp); 1119 } 1120 1121 for (const MDOperand &MDOp : A->operands()) 1122 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp)) 1123 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain()) 1124 if (IntersectDomains.contains(Domain)) 1125 MDs.insert(MDOp); 1126 1127 return MDs.empty() ? nullptr 1128 : getOrSelfReference(A->getContext(), MDs.getArrayRef()); 1129 } 1130 1131 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { 1132 if (!A || !B) 1133 return nullptr; 1134 1135 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF(); 1136 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF(); 1137 if (AVal < BVal) 1138 return A; 1139 return B; 1140 } 1141 1142 // Call instructions with branch weights are only used in SamplePGO as 1143 // documented in 1144 /// https://llvm.org/docs/BranchWeightMetadata.html#callinst). 1145 MDNode *MDNode::mergeDirectCallProfMetadata(MDNode *A, MDNode *B, 1146 const Instruction *AInstr, 1147 const Instruction *BInstr) { 1148 assert(A && B && AInstr && BInstr && "Caller should guarantee"); 1149 auto &Ctx = AInstr->getContext(); 1150 MDBuilder MDHelper(Ctx); 1151 1152 // LLVM IR verifier verifies !prof metadata has at least 2 operands. 1153 assert(A->getNumOperands() >= 2 && B->getNumOperands() >= 2 && 1154 "!prof annotations should have no less than 2 operands"); 1155 MDString *AMDS = dyn_cast<MDString>(A->getOperand(0)); 1156 MDString *BMDS = dyn_cast<MDString>(B->getOperand(0)); 1157 // LLVM IR verfier verifies first operand is MDString. 1158 assert(AMDS != nullptr && BMDS != nullptr && 1159 "first operand should be a non-null MDString"); 1160 StringRef AProfName = AMDS->getString(); 1161 StringRef BProfName = BMDS->getString(); 1162 if (AProfName.equals("branch_weights") && 1163 BProfName.equals("branch_weights")) { 1164 ConstantInt *AInstrWeight = 1165 mdconst::dyn_extract<ConstantInt>(A->getOperand(1)); 1166 ConstantInt *BInstrWeight = 1167 mdconst::dyn_extract<ConstantInt>(B->getOperand(1)); 1168 assert(AInstrWeight && BInstrWeight && "verified by LLVM verifier"); 1169 return MDNode::get(Ctx, 1170 {MDHelper.createString("branch_weights"), 1171 MDHelper.createConstant(ConstantInt::get( 1172 Type::getInt64Ty(Ctx), 1173 SaturatingAdd(AInstrWeight->getZExtValue(), 1174 BInstrWeight->getZExtValue())))}); 1175 } 1176 return nullptr; 1177 } 1178 1179 // Pass in both instructions and nodes. Instruction information (e.g., 1180 // instruction type) helps interpret profiles and make implementation clearer. 1181 MDNode *MDNode::getMergedProfMetadata(MDNode *A, MDNode *B, 1182 const Instruction *AInstr, 1183 const Instruction *BInstr) { 1184 if (!(A && B)) { 1185 return A ? A : B; 1186 } 1187 1188 assert(AInstr->getMetadata(LLVMContext::MD_prof) == A && 1189 "Caller should guarantee"); 1190 assert(BInstr->getMetadata(LLVMContext::MD_prof) == B && 1191 "Caller should guarantee"); 1192 1193 const CallInst *ACall = dyn_cast<CallInst>(AInstr); 1194 const CallInst *BCall = dyn_cast<CallInst>(BInstr); 1195 1196 // Both ACall and BCall are direct callsites. 1197 if (ACall && BCall && ACall->getCalledFunction() && 1198 BCall->getCalledFunction()) 1199 return mergeDirectCallProfMetadata(A, B, AInstr, BInstr); 1200 1201 // The rest of the cases are not implemented but could be added 1202 // when there are use cases. 1203 return nullptr; 1204 } 1205 1206 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 1207 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 1208 } 1209 1210 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { 1211 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); 1212 } 1213 1214 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1215 ConstantInt *Low, ConstantInt *High) { 1216 ConstantRange NewRange(Low->getValue(), High->getValue()); 1217 unsigned Size = EndPoints.size(); 1218 APInt LB = EndPoints[Size - 2]->getValue(); 1219 APInt LE = EndPoints[Size - 1]->getValue(); 1220 ConstantRange LastRange(LB, LE); 1221 if (canBeMerged(NewRange, LastRange)) { 1222 ConstantRange Union = LastRange.unionWith(NewRange); 1223 Type *Ty = High->getType(); 1224 EndPoints[Size - 2] = 1225 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower())); 1226 EndPoints[Size - 1] = 1227 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper())); 1228 return true; 1229 } 1230 return false; 1231 } 1232 1233 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints, 1234 ConstantInt *Low, ConstantInt *High) { 1235 if (!EndPoints.empty()) 1236 if (tryMergeRange(EndPoints, Low, High)) 1237 return; 1238 1239 EndPoints.push_back(Low); 1240 EndPoints.push_back(High); 1241 } 1242 1243 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { 1244 // Given two ranges, we want to compute the union of the ranges. This 1245 // is slightly complicated by having to combine the intervals and merge 1246 // the ones that overlap. 1247 1248 if (!A || !B) 1249 return nullptr; 1250 1251 if (A == B) 1252 return A; 1253 1254 // First, walk both lists in order of the lower boundary of each interval. 1255 // At each step, try to merge the new interval to the last one we adedd. 1256 SmallVector<ConstantInt *, 4> EndPoints; 1257 int AI = 0; 1258 int BI = 0; 1259 int AN = A->getNumOperands() / 2; 1260 int BN = B->getNumOperands() / 2; 1261 while (AI < AN && BI < BN) { 1262 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI)); 1263 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI)); 1264 1265 if (ALow->getValue().slt(BLow->getValue())) { 1266 addRange(EndPoints, ALow, 1267 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1268 ++AI; 1269 } else { 1270 addRange(EndPoints, BLow, 1271 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1272 ++BI; 1273 } 1274 } 1275 while (AI < AN) { 1276 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)), 1277 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1))); 1278 ++AI; 1279 } 1280 while (BI < BN) { 1281 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)), 1282 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1))); 1283 ++BI; 1284 } 1285 1286 // If we have more than 2 ranges (4 endpoints) we have to try to merge 1287 // the last and first ones. 1288 unsigned Size = EndPoints.size(); 1289 if (Size > 4) { 1290 ConstantInt *FB = EndPoints[0]; 1291 ConstantInt *FE = EndPoints[1]; 1292 if (tryMergeRange(EndPoints, FB, FE)) { 1293 for (unsigned i = 0; i < Size - 2; ++i) { 1294 EndPoints[i] = EndPoints[i + 2]; 1295 } 1296 EndPoints.resize(Size - 2); 1297 } 1298 } 1299 1300 // If in the end we have a single range, it is possible that it is now the 1301 // full range. Just drop the metadata in that case. 1302 if (EndPoints.size() == 2) { 1303 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue()); 1304 if (Range.isFullSet()) 1305 return nullptr; 1306 } 1307 1308 SmallVector<Metadata *, 4> MDs; 1309 MDs.reserve(EndPoints.size()); 1310 for (auto *I : EndPoints) 1311 MDs.push_back(ConstantAsMetadata::get(I)); 1312 return MDNode::get(A->getContext(), MDs); 1313 } 1314 1315 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) { 1316 if (!A || !B) 1317 return nullptr; 1318 1319 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0)); 1320 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0)); 1321 if (AVal->getZExtValue() < BVal->getZExtValue()) 1322 return A; 1323 return B; 1324 } 1325 1326 //===----------------------------------------------------------------------===// 1327 // NamedMDNode implementation. 1328 // 1329 1330 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) { 1331 return *(SmallVector<TrackingMDRef, 4> *)Operands; 1332 } 1333 1334 NamedMDNode::NamedMDNode(const Twine &N) 1335 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {} 1336 1337 NamedMDNode::~NamedMDNode() { 1338 dropAllReferences(); 1339 delete &getNMDOps(Operands); 1340 } 1341 1342 unsigned NamedMDNode::getNumOperands() const { 1343 return (unsigned)getNMDOps(Operands).size(); 1344 } 1345 1346 MDNode *NamedMDNode::getOperand(unsigned i) const { 1347 assert(i < getNumOperands() && "Invalid Operand number!"); 1348 auto *N = getNMDOps(Operands)[i].get(); 1349 return cast_or_null<MDNode>(N); 1350 } 1351 1352 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); } 1353 1354 void NamedMDNode::setOperand(unsigned I, MDNode *New) { 1355 assert(I < getNumOperands() && "Invalid operand number"); 1356 getNMDOps(Operands)[I].reset(New); 1357 } 1358 1359 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } 1360 1361 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); } 1362 1363 StringRef NamedMDNode::getName() const { return StringRef(Name); } 1364 1365 //===----------------------------------------------------------------------===// 1366 // Instruction Metadata method implementations. 1367 // 1368 1369 MDNode *MDAttachments::lookup(unsigned ID) const { 1370 for (const auto &A : Attachments) 1371 if (A.MDKind == ID) 1372 return A.Node; 1373 return nullptr; 1374 } 1375 1376 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const { 1377 for (const auto &A : Attachments) 1378 if (A.MDKind == ID) 1379 Result.push_back(A.Node); 1380 } 1381 1382 void MDAttachments::getAll( 1383 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1384 for (const auto &A : Attachments) 1385 Result.emplace_back(A.MDKind, A.Node); 1386 1387 // Sort the resulting array so it is stable with respect to metadata IDs. We 1388 // need to preserve the original insertion order though. 1389 if (Result.size() > 1) 1390 llvm::stable_sort(Result, less_first()); 1391 } 1392 1393 void MDAttachments::set(unsigned ID, MDNode *MD) { 1394 erase(ID); 1395 if (MD) 1396 insert(ID, *MD); 1397 } 1398 1399 void MDAttachments::insert(unsigned ID, MDNode &MD) { 1400 Attachments.push_back({ID, TrackingMDNodeRef(&MD)}); 1401 } 1402 1403 bool MDAttachments::erase(unsigned ID) { 1404 if (empty()) 1405 return false; 1406 1407 // Common case is one value. 1408 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) { 1409 Attachments.pop_back(); 1410 return true; 1411 } 1412 1413 auto OldSize = Attachments.size(); 1414 llvm::erase_if(Attachments, 1415 [ID](const Attachment &A) { return A.MDKind == ID; }); 1416 return OldSize != Attachments.size(); 1417 } 1418 1419 MDNode *Value::getMetadata(StringRef Kind) const { 1420 if (!hasMetadata()) 1421 return nullptr; 1422 unsigned KindID = getContext().getMDKindID(Kind); 1423 return getMetadataImpl(KindID); 1424 } 1425 1426 MDNode *Value::getMetadataImpl(unsigned KindID) const { 1427 const LLVMContext &Ctx = getContext(); 1428 const MDAttachments &Attachements = Ctx.pImpl->ValueMetadata.at(this); 1429 return Attachements.lookup(KindID); 1430 } 1431 1432 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const { 1433 if (hasMetadata()) 1434 getContext().pImpl->ValueMetadata.at(this).get(KindID, MDs); 1435 } 1436 1437 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const { 1438 if (hasMetadata()) 1439 getMetadata(getContext().getMDKindID(Kind), MDs); 1440 } 1441 1442 void Value::getAllMetadata( 1443 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { 1444 if (hasMetadata()) { 1445 assert(getContext().pImpl->ValueMetadata.count(this) && 1446 "bit out of sync with hash table"); 1447 const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this); 1448 Info.getAll(MDs); 1449 } 1450 } 1451 1452 void Value::setMetadata(unsigned KindID, MDNode *Node) { 1453 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1454 1455 // Handle the case when we're adding/updating metadata on a value. 1456 if (Node) { 1457 MDAttachments &Info = getContext().pImpl->ValueMetadata[this]; 1458 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table"); 1459 if (Info.empty()) 1460 HasMetadata = true; 1461 Info.set(KindID, Node); 1462 return; 1463 } 1464 1465 // Otherwise, we're removing metadata from an instruction. 1466 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) && 1467 "bit out of sync with hash table"); 1468 if (!HasMetadata) 1469 return; // Nothing to remove! 1470 MDAttachments &Info = getContext().pImpl->ValueMetadata.find(this)->second; 1471 1472 // Handle removal of an existing value. 1473 Info.erase(KindID); 1474 if (!Info.empty()) 1475 return; 1476 getContext().pImpl->ValueMetadata.erase(this); 1477 HasMetadata = false; 1478 } 1479 1480 void Value::setMetadata(StringRef Kind, MDNode *Node) { 1481 if (!Node && !HasMetadata) 1482 return; 1483 setMetadata(getContext().getMDKindID(Kind), Node); 1484 } 1485 1486 void Value::addMetadata(unsigned KindID, MDNode &MD) { 1487 assert(isa<Instruction>(this) || isa<GlobalObject>(this)); 1488 if (!HasMetadata) 1489 HasMetadata = true; 1490 getContext().pImpl->ValueMetadata[this].insert(KindID, MD); 1491 } 1492 1493 void Value::addMetadata(StringRef Kind, MDNode &MD) { 1494 addMetadata(getContext().getMDKindID(Kind), MD); 1495 } 1496 1497 bool Value::eraseMetadata(unsigned KindID) { 1498 // Nothing to unset. 1499 if (!HasMetadata) 1500 return false; 1501 1502 MDAttachments &Store = getContext().pImpl->ValueMetadata.find(this)->second; 1503 bool Changed = Store.erase(KindID); 1504 if (Store.empty()) 1505 clearMetadata(); 1506 return Changed; 1507 } 1508 1509 void Value::clearMetadata() { 1510 if (!HasMetadata) 1511 return; 1512 assert(getContext().pImpl->ValueMetadata.count(this) && 1513 "bit out of sync with hash table"); 1514 getContext().pImpl->ValueMetadata.erase(this); 1515 HasMetadata = false; 1516 } 1517 1518 void Instruction::setMetadata(StringRef Kind, MDNode *Node) { 1519 if (!Node && !hasMetadata()) 1520 return; 1521 setMetadata(getContext().getMDKindID(Kind), Node); 1522 } 1523 1524 MDNode *Instruction::getMetadataImpl(StringRef Kind) const { 1525 const LLVMContext &Ctx = getContext(); 1526 unsigned KindID = Ctx.getMDKindID(Kind); 1527 if (KindID == LLVMContext::MD_dbg) 1528 return DbgLoc.getAsMDNode(); 1529 return Value::getMetadata(KindID); 1530 } 1531 1532 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) { 1533 if (!Value::hasMetadata()) 1534 return; // Nothing to remove! 1535 1536 SmallSet<unsigned, 4> KnownSet; 1537 KnownSet.insert(KnownIDs.begin(), KnownIDs.end()); 1538 1539 // A DIAssignID attachment is debug metadata, don't drop it. 1540 KnownSet.insert(LLVMContext::MD_DIAssignID); 1541 1542 auto &MetadataStore = getContext().pImpl->ValueMetadata; 1543 MDAttachments &Info = MetadataStore.find(this)->second; 1544 assert(!Info.empty() && "bit out of sync with hash table"); 1545 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) { 1546 return !KnownSet.count(I.MDKind); 1547 }); 1548 1549 if (Info.empty()) { 1550 // Drop our entry at the store. 1551 clearMetadata(); 1552 } 1553 } 1554 1555 void Instruction::updateDIAssignIDMapping(DIAssignID *ID) { 1556 auto &IDToInstrs = getContext().pImpl->AssignmentIDToInstrs; 1557 if (const DIAssignID *CurrentID = 1558 cast_or_null<DIAssignID>(getMetadata(LLVMContext::MD_DIAssignID))) { 1559 // Nothing to do if the ID isn't changing. 1560 if (ID == CurrentID) 1561 return; 1562 1563 // Unmap this instruction from its current ID. 1564 auto InstrsIt = IDToInstrs.find(CurrentID); 1565 assert(InstrsIt != IDToInstrs.end() && 1566 "Expect existing attachment to be mapped"); 1567 1568 auto &InstVec = InstrsIt->second; 1569 auto *InstIt = llvm::find(InstVec, this); 1570 assert(InstIt != InstVec.end() && 1571 "Expect instruction to be mapped to attachment"); 1572 // The vector contains a ptr to this. If this is the only element in the 1573 // vector, remove the ID:vector entry, otherwise just remove the 1574 // instruction from the vector. 1575 if (InstVec.size() == 1) 1576 IDToInstrs.erase(InstrsIt); 1577 else 1578 InstVec.erase(InstIt); 1579 } 1580 1581 // Map this instruction to the new ID. 1582 if (ID) 1583 IDToInstrs[ID].push_back(this); 1584 } 1585 1586 void Instruction::setMetadata(unsigned KindID, MDNode *Node) { 1587 if (!Node && !hasMetadata()) 1588 return; 1589 1590 // Handle 'dbg' as a special case since it is not stored in the hash table. 1591 if (KindID == LLVMContext::MD_dbg) { 1592 DbgLoc = DebugLoc(Node); 1593 return; 1594 } 1595 1596 // Update DIAssignID to Instruction(s) mapping. 1597 if (KindID == LLVMContext::MD_DIAssignID) { 1598 // The DIAssignID tracking infrastructure doesn't support RAUWing temporary 1599 // nodes with DIAssignIDs. The cast_or_null below would also catch this, but 1600 // having a dedicated assert helps make this obvious. 1601 assert((!Node || !Node->isTemporary()) && 1602 "Temporary DIAssignIDs are invalid"); 1603 updateDIAssignIDMapping(cast_or_null<DIAssignID>(Node)); 1604 } 1605 1606 Value::setMetadata(KindID, Node); 1607 } 1608 1609 void Instruction::addAnnotationMetadata(SmallVector<StringRef> Annotations) { 1610 SmallVector<Metadata *, 4> Names; 1611 if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) { 1612 SmallSetVector<StringRef, 2> AnnotationsSet(Annotations.begin(), 1613 Annotations.end()); 1614 auto *Tuple = cast<MDTuple>(Existing); 1615 for (auto &N : Tuple->operands()) { 1616 if (isa<MDString>(N.get())) { 1617 Names.push_back(N); 1618 continue; 1619 } 1620 auto *MDAnnotationTuple = cast<MDTuple>(N); 1621 if (any_of(MDAnnotationTuple->operands(), [&AnnotationsSet](auto &Op) { 1622 return AnnotationsSet.contains(cast<MDString>(Op)->getString()); 1623 })) 1624 return; 1625 Names.push_back(N); 1626 } 1627 } 1628 1629 MDBuilder MDB(getContext()); 1630 SmallVector<Metadata *> MDAnnotationStrings; 1631 for (StringRef Annotation : Annotations) 1632 MDAnnotationStrings.push_back(MDB.createString(Annotation)); 1633 MDNode *InfoTuple = MDTuple::get(getContext(), MDAnnotationStrings); 1634 Names.push_back(InfoTuple); 1635 MDNode *MD = MDTuple::get(getContext(), Names); 1636 setMetadata(LLVMContext::MD_annotation, MD); 1637 } 1638 1639 void Instruction::addAnnotationMetadata(StringRef Name) { 1640 SmallVector<Metadata *, 4> Names; 1641 if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) { 1642 auto *Tuple = cast<MDTuple>(Existing); 1643 for (auto &N : Tuple->operands()) { 1644 if (isa<MDString>(N.get()) && 1645 cast<MDString>(N.get())->getString() == Name) 1646 return; 1647 Names.push_back(N.get()); 1648 } 1649 } 1650 1651 MDBuilder MDB(getContext()); 1652 Names.push_back(MDB.createString(Name)); 1653 MDNode *MD = MDTuple::get(getContext(), Names); 1654 setMetadata(LLVMContext::MD_annotation, MD); 1655 } 1656 1657 AAMDNodes Instruction::getAAMetadata() const { 1658 AAMDNodes Result; 1659 // Not using Instruction::hasMetadata() because we're not interested in 1660 // DebugInfoMetadata. 1661 if (Value::hasMetadata()) { 1662 const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this); 1663 Result.TBAA = Info.lookup(LLVMContext::MD_tbaa); 1664 Result.TBAAStruct = Info.lookup(LLVMContext::MD_tbaa_struct); 1665 Result.Scope = Info.lookup(LLVMContext::MD_alias_scope); 1666 Result.NoAlias = Info.lookup(LLVMContext::MD_noalias); 1667 } 1668 return Result; 1669 } 1670 1671 void Instruction::setAAMetadata(const AAMDNodes &N) { 1672 setMetadata(LLVMContext::MD_tbaa, N.TBAA); 1673 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct); 1674 setMetadata(LLVMContext::MD_alias_scope, N.Scope); 1675 setMetadata(LLVMContext::MD_noalias, N.NoAlias); 1676 } 1677 1678 void Instruction::setNoSanitizeMetadata() { 1679 setMetadata(llvm::LLVMContext::MD_nosanitize, 1680 llvm::MDNode::get(getContext(), std::nullopt)); 1681 } 1682 1683 void Instruction::getAllMetadataImpl( 1684 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const { 1685 Result.clear(); 1686 1687 // Handle 'dbg' as a special case since it is not stored in the hash table. 1688 if (DbgLoc) { 1689 Result.push_back( 1690 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode())); 1691 } 1692 Value::getAllMetadata(Result); 1693 } 1694 1695 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const { 1696 assert( 1697 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select || 1698 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke || 1699 getOpcode() == Instruction::IndirectBr || 1700 getOpcode() == Instruction::Switch) && 1701 "Looking for branch weights on something besides branch"); 1702 1703 return ::extractProfTotalWeight(*this, TotalVal); 1704 } 1705 1706 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) { 1707 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 1708 Other->getAllMetadata(MDs); 1709 for (auto &MD : MDs) { 1710 // We need to adjust the type metadata offset. 1711 if (Offset != 0 && MD.first == LLVMContext::MD_type) { 1712 auto *OffsetConst = cast<ConstantInt>( 1713 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue()); 1714 Metadata *TypeId = MD.second->getOperand(1); 1715 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get( 1716 OffsetConst->getType(), OffsetConst->getValue() + Offset)); 1717 addMetadata(LLVMContext::MD_type, 1718 *MDNode::get(getContext(), {NewOffsetMD, TypeId})); 1719 continue; 1720 } 1721 // If an offset adjustment was specified we need to modify the DIExpression 1722 // to prepend the adjustment: 1723 // !DIExpression(DW_OP_plus, Offset, [original expr]) 1724 auto *Attachment = MD.second; 1725 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) { 1726 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment); 1727 DIExpression *E = nullptr; 1728 if (!GV) { 1729 auto *GVE = cast<DIGlobalVariableExpression>(Attachment); 1730 GV = GVE->getVariable(); 1731 E = GVE->getExpression(); 1732 } 1733 ArrayRef<uint64_t> OrigElements; 1734 if (E) 1735 OrigElements = E->getElements(); 1736 std::vector<uint64_t> Elements(OrigElements.size() + 2); 1737 Elements[0] = dwarf::DW_OP_plus_uconst; 1738 Elements[1] = Offset; 1739 llvm::copy(OrigElements, Elements.begin() + 2); 1740 E = DIExpression::get(getContext(), Elements); 1741 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E); 1742 } 1743 addMetadata(MD.first, *Attachment); 1744 } 1745 } 1746 1747 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) { 1748 addMetadata( 1749 LLVMContext::MD_type, 1750 *MDTuple::get(getContext(), 1751 {ConstantAsMetadata::get(ConstantInt::get( 1752 Type::getInt64Ty(getContext()), Offset)), 1753 TypeID})); 1754 } 1755 1756 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) { 1757 // Remove any existing vcall visibility metadata first in case we are 1758 // updating. 1759 eraseMetadata(LLVMContext::MD_vcall_visibility); 1760 addMetadata(LLVMContext::MD_vcall_visibility, 1761 *MDNode::get(getContext(), 1762 {ConstantAsMetadata::get(ConstantInt::get( 1763 Type::getInt64Ty(getContext()), Visibility))})); 1764 } 1765 1766 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const { 1767 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) { 1768 uint64_t Val = cast<ConstantInt>( 1769 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue()) 1770 ->getZExtValue(); 1771 assert(Val <= 2 && "unknown vcall visibility!"); 1772 return (VCallVisibility)Val; 1773 } 1774 return VCallVisibility::VCallVisibilityPublic; 1775 } 1776 1777 void Function::setSubprogram(DISubprogram *SP) { 1778 setMetadata(LLVMContext::MD_dbg, SP); 1779 } 1780 1781 DISubprogram *Function::getSubprogram() const { 1782 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg)); 1783 } 1784 1785 bool Function::shouldEmitDebugInfoForProfiling() const { 1786 if (DISubprogram *SP = getSubprogram()) { 1787 if (DICompileUnit *CU = SP->getUnit()) { 1788 return CU->getDebugInfoForProfiling(); 1789 } 1790 } 1791 return false; 1792 } 1793 1794 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) { 1795 addMetadata(LLVMContext::MD_dbg, *GV); 1796 } 1797 1798 void GlobalVariable::getDebugInfo( 1799 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const { 1800 SmallVector<MDNode *, 1> MDs; 1801 getMetadata(LLVMContext::MD_dbg, MDs); 1802 for (MDNode *MD : MDs) 1803 GVs.push_back(cast<DIGlobalVariableExpression>(MD)); 1804 } 1805