1 //===-- Constants.cpp - Implement Constant nodes --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Constant* classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Constants.h" 14 #include "ConstantFold.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/GetElementPtrTypeIterator.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 using namespace PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // Constant Class 38 //===----------------------------------------------------------------------===// 39 40 bool Constant::isNegativeZeroValue() const { 41 // Floating point values have an explicit -0.0 value. 42 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 43 return CFP->isZero() && CFP->isNegative(); 44 45 // Equivalent for a vector of -0.0's. 46 if (getType()->isVectorTy()) 47 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 48 return SplatCFP->isNegativeZeroValue(); 49 50 // We've already handled true FP case; any other FP vectors can't represent -0.0. 51 if (getType()->isFPOrFPVectorTy()) 52 return false; 53 54 // Otherwise, just use +0.0. 55 return isNullValue(); 56 } 57 58 // Return true iff this constant is positive zero (floating point), negative 59 // zero (floating point), or a null value. 60 bool Constant::isZeroValue() const { 61 // Floating point values have an explicit -0.0 value. 62 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 63 return CFP->isZero(); 64 65 // Check for constant splat vectors of 1 values. 66 if (getType()->isVectorTy()) 67 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 68 return SplatCFP->isZero(); 69 70 // Otherwise, just use +0.0. 71 return isNullValue(); 72 } 73 74 bool Constant::isNullValue() const { 75 // 0 is null. 76 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 77 return CI->isZero(); 78 79 // +0.0 is null. 80 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 81 // ppc_fp128 determine isZero using high order double only 82 // Should check the bitwise value to make sure all bits are zero. 83 return CFP->isExactlyValue(+0.0); 84 85 // constant zero is zero for aggregates, cpnull is null for pointers, none for 86 // tokens. 87 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || 88 isa<ConstantTokenNone>(this); 89 } 90 91 bool Constant::isAllOnesValue() const { 92 // Check for -1 integers 93 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 94 return CI->isMinusOne(); 95 96 // Check for FP which are bitcasted from -1 integers 97 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 98 return CFP->getValueAPF().bitcastToAPInt().isAllOnes(); 99 100 // Check for constant splat vectors of 1 values. 101 if (getType()->isVectorTy()) 102 if (const auto *SplatVal = getSplatValue()) 103 return SplatVal->isAllOnesValue(); 104 105 return false; 106 } 107 108 bool Constant::isOneValue() const { 109 // Check for 1 integers 110 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 111 return CI->isOne(); 112 113 // Check for FP which are bitcasted from 1 integers 114 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 115 return CFP->getValueAPF().bitcastToAPInt().isOne(); 116 117 // Check for constant splat vectors of 1 values. 118 if (getType()->isVectorTy()) 119 if (const auto *SplatVal = getSplatValue()) 120 return SplatVal->isOneValue(); 121 122 return false; 123 } 124 125 bool Constant::isNotOneValue() const { 126 // Check for 1 integers 127 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 128 return !CI->isOneValue(); 129 130 // Check for FP which are bitcasted from 1 integers 131 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 132 return !CFP->getValueAPF().bitcastToAPInt().isOne(); 133 134 // Check that vectors don't contain 1 135 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 136 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 137 Constant *Elt = getAggregateElement(I); 138 if (!Elt || !Elt->isNotOneValue()) 139 return false; 140 } 141 return true; 142 } 143 144 // Check for splats that don't contain 1 145 if (getType()->isVectorTy()) 146 if (const auto *SplatVal = getSplatValue()) 147 return SplatVal->isNotOneValue(); 148 149 // It *may* contain 1, we can't tell. 150 return false; 151 } 152 153 bool Constant::isMinSignedValue() const { 154 // Check for INT_MIN integers 155 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 156 return CI->isMinValue(/*isSigned=*/true); 157 158 // Check for FP which are bitcasted from INT_MIN integers 159 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 160 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 161 162 // Check for splats of INT_MIN values. 163 if (getType()->isVectorTy()) 164 if (const auto *SplatVal = getSplatValue()) 165 return SplatVal->isMinSignedValue(); 166 167 return false; 168 } 169 170 bool Constant::isNotMinSignedValue() const { 171 // Check for INT_MIN integers 172 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 173 return !CI->isMinValue(/*isSigned=*/true); 174 175 // Check for FP which are bitcasted from INT_MIN integers 176 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) 177 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); 178 179 // Check that vectors don't contain INT_MIN 180 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 181 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 182 Constant *Elt = getAggregateElement(I); 183 if (!Elt || !Elt->isNotMinSignedValue()) 184 return false; 185 } 186 return true; 187 } 188 189 // Check for splats that aren't INT_MIN 190 if (getType()->isVectorTy()) 191 if (const auto *SplatVal = getSplatValue()) 192 return SplatVal->isNotMinSignedValue(); 193 194 // It *may* contain INT_MIN, we can't tell. 195 return false; 196 } 197 198 bool Constant::isFiniteNonZeroFP() const { 199 if (auto *CFP = dyn_cast<ConstantFP>(this)) 200 return CFP->getValueAPF().isFiniteNonZero(); 201 202 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 203 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 204 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 205 if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) 206 return false; 207 } 208 return true; 209 } 210 211 if (getType()->isVectorTy()) 212 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 213 return SplatCFP->isFiniteNonZeroFP(); 214 215 // It *may* contain finite non-zero, we can't tell. 216 return false; 217 } 218 219 bool Constant::isNormalFP() const { 220 if (auto *CFP = dyn_cast<ConstantFP>(this)) 221 return CFP->getValueAPF().isNormal(); 222 223 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 224 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 225 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 226 if (!CFP || !CFP->getValueAPF().isNormal()) 227 return false; 228 } 229 return true; 230 } 231 232 if (getType()->isVectorTy()) 233 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 234 return SplatCFP->isNormalFP(); 235 236 // It *may* contain a normal fp value, we can't tell. 237 return false; 238 } 239 240 bool Constant::hasExactInverseFP() const { 241 if (auto *CFP = dyn_cast<ConstantFP>(this)) 242 return CFP->getValueAPF().getExactInverse(nullptr); 243 244 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 245 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 246 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 247 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) 248 return false; 249 } 250 return true; 251 } 252 253 if (getType()->isVectorTy()) 254 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 255 return SplatCFP->hasExactInverseFP(); 256 257 // It *may* have an exact inverse fp value, we can't tell. 258 return false; 259 } 260 261 bool Constant::isNaN() const { 262 if (auto *CFP = dyn_cast<ConstantFP>(this)) 263 return CFP->isNaN(); 264 265 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 266 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 267 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); 268 if (!CFP || !CFP->isNaN()) 269 return false; 270 } 271 return true; 272 } 273 274 if (getType()->isVectorTy()) 275 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) 276 return SplatCFP->isNaN(); 277 278 // It *may* be NaN, we can't tell. 279 return false; 280 } 281 282 bool Constant::isElementWiseEqual(Value *Y) const { 283 // Are they fully identical? 284 if (this == Y) 285 return true; 286 287 // The input value must be a vector constant with the same type. 288 auto *VTy = dyn_cast<VectorType>(getType()); 289 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) 290 return false; 291 292 // TODO: Compare pointer constants? 293 if (!(VTy->getElementType()->isIntegerTy() || 294 VTy->getElementType()->isFloatingPointTy())) 295 return false; 296 297 // They may still be identical element-wise (if they have `undef`s). 298 // Bitcast to integer to allow exact bitwise comparison for all types. 299 Type *IntTy = VectorType::getInteger(VTy); 300 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); 301 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); 302 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); 303 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); 304 } 305 306 static bool 307 containsUndefinedElement(const Constant *C, 308 function_ref<bool(const Constant *)> HasFn) { 309 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 310 if (HasFn(C)) 311 return true; 312 if (isa<ConstantAggregateZero>(C)) 313 return false; 314 if (isa<ScalableVectorType>(C->getType())) 315 return false; 316 317 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); 318 i != e; ++i) { 319 if (Constant *Elem = C->getAggregateElement(i)) 320 if (HasFn(Elem)) 321 return true; 322 } 323 } 324 325 return false; 326 } 327 328 bool Constant::containsUndefOrPoisonElement() const { 329 return containsUndefinedElement( 330 this, [&](const auto *C) { return isa<UndefValue>(C); }); 331 } 332 333 bool Constant::containsPoisonElement() const { 334 return containsUndefinedElement( 335 this, [&](const auto *C) { return isa<PoisonValue>(C); }); 336 } 337 338 bool Constant::containsConstantExpression() const { 339 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { 340 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 341 if (isa<ConstantExpr>(getAggregateElement(i))) 342 return true; 343 } 344 return false; 345 } 346 347 /// Constructor to create a '0' constant of arbitrary type. 348 Constant *Constant::getNullValue(Type *Ty) { 349 switch (Ty->getTypeID()) { 350 case Type::IntegerTyID: 351 return ConstantInt::get(Ty, 0); 352 case Type::HalfTyID: 353 return ConstantFP::get(Ty->getContext(), 354 APFloat::getZero(APFloat::IEEEhalf())); 355 case Type::BFloatTyID: 356 return ConstantFP::get(Ty->getContext(), 357 APFloat::getZero(APFloat::BFloat())); 358 case Type::FloatTyID: 359 return ConstantFP::get(Ty->getContext(), 360 APFloat::getZero(APFloat::IEEEsingle())); 361 case Type::DoubleTyID: 362 return ConstantFP::get(Ty->getContext(), 363 APFloat::getZero(APFloat::IEEEdouble())); 364 case Type::X86_FP80TyID: 365 return ConstantFP::get(Ty->getContext(), 366 APFloat::getZero(APFloat::x87DoubleExtended())); 367 case Type::FP128TyID: 368 return ConstantFP::get(Ty->getContext(), 369 APFloat::getZero(APFloat::IEEEquad())); 370 case Type::PPC_FP128TyID: 371 return ConstantFP::get(Ty->getContext(), APFloat(APFloat::PPCDoubleDouble(), 372 APInt::getZero(128))); 373 case Type::PointerTyID: 374 return ConstantPointerNull::get(cast<PointerType>(Ty)); 375 case Type::StructTyID: 376 case Type::ArrayTyID: 377 case Type::FixedVectorTyID: 378 case Type::ScalableVectorTyID: 379 return ConstantAggregateZero::get(Ty); 380 case Type::TokenTyID: 381 return ConstantTokenNone::get(Ty->getContext()); 382 default: 383 // Function, Label, or Opaque type? 384 llvm_unreachable("Cannot create a null constant of that type!"); 385 } 386 } 387 388 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { 389 Type *ScalarTy = Ty->getScalarType(); 390 391 // Create the base integer constant. 392 Constant *C = ConstantInt::get(Ty->getContext(), V); 393 394 // Convert an integer to a pointer, if necessary. 395 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) 396 C = ConstantExpr::getIntToPtr(C, PTy); 397 398 // Broadcast a scalar to a vector, if necessary. 399 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 400 C = ConstantVector::getSplat(VTy->getElementCount(), C); 401 402 return C; 403 } 404 405 Constant *Constant::getAllOnesValue(Type *Ty) { 406 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 407 return ConstantInt::get(Ty->getContext(), 408 APInt::getAllOnes(ITy->getBitWidth())); 409 410 if (Ty->isFloatingPointTy()) { 411 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics()); 412 return ConstantFP::get(Ty->getContext(), FL); 413 } 414 415 VectorType *VTy = cast<VectorType>(Ty); 416 return ConstantVector::getSplat(VTy->getElementCount(), 417 getAllOnesValue(VTy->getElementType())); 418 } 419 420 Constant *Constant::getAggregateElement(unsigned Elt) const { 421 assert((getType()->isAggregateType() || getType()->isVectorTy()) && 422 "Must be an aggregate/vector constant"); 423 424 if (const auto *CC = dyn_cast<ConstantAggregate>(this)) 425 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; 426 427 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) 428 return Elt < CAZ->getElementCount().getKnownMinValue() 429 ? CAZ->getElementValue(Elt) 430 : nullptr; 431 432 // FIXME: getNumElements() will fail for non-fixed vector types. 433 if (isa<ScalableVectorType>(getType())) 434 return nullptr; 435 436 if (const auto *PV = dyn_cast<PoisonValue>(this)) 437 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; 438 439 if (const auto *UV = dyn_cast<UndefValue>(this)) 440 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; 441 442 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) 443 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) 444 : nullptr; 445 446 return nullptr; 447 } 448 449 Constant *Constant::getAggregateElement(Constant *Elt) const { 450 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); 451 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { 452 // Check if the constant fits into an uint64_t. 453 if (CI->getValue().getActiveBits() > 64) 454 return nullptr; 455 return getAggregateElement(CI->getZExtValue()); 456 } 457 return nullptr; 458 } 459 460 void Constant::destroyConstant() { 461 /// First call destroyConstantImpl on the subclass. This gives the subclass 462 /// a chance to remove the constant from any maps/pools it's contained in. 463 switch (getValueID()) { 464 default: 465 llvm_unreachable("Not a constant!"); 466 #define HANDLE_CONSTANT(Name) \ 467 case Value::Name##Val: \ 468 cast<Name>(this)->destroyConstantImpl(); \ 469 break; 470 #include "llvm/IR/Value.def" 471 } 472 473 // When a Constant is destroyed, there may be lingering 474 // references to the constant by other constants in the constant pool. These 475 // constants are implicitly dependent on the module that is being deleted, 476 // but they don't know that. Because we only find out when the CPV is 477 // deleted, we must now notify all of our users (that should only be 478 // Constants) that they are, in fact, invalid now and should be deleted. 479 // 480 while (!use_empty()) { 481 Value *V = user_back(); 482 #ifndef NDEBUG // Only in -g mode... 483 if (!isa<Constant>(V)) { 484 dbgs() << "While deleting: " << *this 485 << "\n\nUse still stuck around after Def is destroyed: " << *V 486 << "\n\n"; 487 } 488 #endif 489 assert(isa<Constant>(V) && "References remain to Constant being destroyed"); 490 cast<Constant>(V)->destroyConstant(); 491 492 // The constant should remove itself from our use list... 493 assert((use_empty() || user_back() != V) && "Constant not removed!"); 494 } 495 496 // Value has no outstanding references it is safe to delete it now... 497 deleteConstant(this); 498 } 499 500 void llvm::deleteConstant(Constant *C) { 501 switch (C->getValueID()) { 502 case Constant::ConstantIntVal: 503 delete static_cast<ConstantInt *>(C); 504 break; 505 case Constant::ConstantFPVal: 506 delete static_cast<ConstantFP *>(C); 507 break; 508 case Constant::ConstantAggregateZeroVal: 509 delete static_cast<ConstantAggregateZero *>(C); 510 break; 511 case Constant::ConstantArrayVal: 512 delete static_cast<ConstantArray *>(C); 513 break; 514 case Constant::ConstantStructVal: 515 delete static_cast<ConstantStruct *>(C); 516 break; 517 case Constant::ConstantVectorVal: 518 delete static_cast<ConstantVector *>(C); 519 break; 520 case Constant::ConstantPointerNullVal: 521 delete static_cast<ConstantPointerNull *>(C); 522 break; 523 case Constant::ConstantDataArrayVal: 524 delete static_cast<ConstantDataArray *>(C); 525 break; 526 case Constant::ConstantDataVectorVal: 527 delete static_cast<ConstantDataVector *>(C); 528 break; 529 case Constant::ConstantTokenNoneVal: 530 delete static_cast<ConstantTokenNone *>(C); 531 break; 532 case Constant::BlockAddressVal: 533 delete static_cast<BlockAddress *>(C); 534 break; 535 case Constant::DSOLocalEquivalentVal: 536 delete static_cast<DSOLocalEquivalent *>(C); 537 break; 538 case Constant::NoCFIValueVal: 539 delete static_cast<NoCFIValue *>(C); 540 break; 541 case Constant::UndefValueVal: 542 delete static_cast<UndefValue *>(C); 543 break; 544 case Constant::PoisonValueVal: 545 delete static_cast<PoisonValue *>(C); 546 break; 547 case Constant::ConstantExprVal: 548 if (isa<UnaryConstantExpr>(C)) 549 delete static_cast<UnaryConstantExpr *>(C); 550 else if (isa<BinaryConstantExpr>(C)) 551 delete static_cast<BinaryConstantExpr *>(C); 552 else if (isa<SelectConstantExpr>(C)) 553 delete static_cast<SelectConstantExpr *>(C); 554 else if (isa<ExtractElementConstantExpr>(C)) 555 delete static_cast<ExtractElementConstantExpr *>(C); 556 else if (isa<InsertElementConstantExpr>(C)) 557 delete static_cast<InsertElementConstantExpr *>(C); 558 else if (isa<ShuffleVectorConstantExpr>(C)) 559 delete static_cast<ShuffleVectorConstantExpr *>(C); 560 else if (isa<ExtractValueConstantExpr>(C)) 561 delete static_cast<ExtractValueConstantExpr *>(C); 562 else if (isa<InsertValueConstantExpr>(C)) 563 delete static_cast<InsertValueConstantExpr *>(C); 564 else if (isa<GetElementPtrConstantExpr>(C)) 565 delete static_cast<GetElementPtrConstantExpr *>(C); 566 else if (isa<CompareConstantExpr>(C)) 567 delete static_cast<CompareConstantExpr *>(C); 568 else 569 llvm_unreachable("Unexpected constant expr"); 570 break; 571 default: 572 llvm_unreachable("Unexpected constant"); 573 } 574 } 575 576 static bool canTrapImpl(const Constant *C, 577 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) { 578 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); 579 // The only thing that could possibly trap are constant exprs. 580 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 581 if (!CE) 582 return false; 583 584 // ConstantExpr traps if any operands can trap. 585 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 586 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) { 587 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps)) 588 return true; 589 } 590 } 591 592 // Otherwise, only specific operations can trap. 593 switch (CE->getOpcode()) { 594 default: 595 return false; 596 case Instruction::UDiv: 597 case Instruction::SDiv: 598 case Instruction::URem: 599 case Instruction::SRem: 600 // Div and rem can trap if the RHS is not known to be non-zero. 601 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) 602 return true; 603 return false; 604 } 605 } 606 607 bool Constant::canTrap() const { 608 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps; 609 return canTrapImpl(this, NonTrappingOps); 610 } 611 612 /// Check if C contains a GlobalValue for which Predicate is true. 613 static bool 614 ConstHasGlobalValuePredicate(const Constant *C, 615 bool (*Predicate)(const GlobalValue *)) { 616 SmallPtrSet<const Constant *, 8> Visited; 617 SmallVector<const Constant *, 8> WorkList; 618 WorkList.push_back(C); 619 Visited.insert(C); 620 621 while (!WorkList.empty()) { 622 const Constant *WorkItem = WorkList.pop_back_val(); 623 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) 624 if (Predicate(GV)) 625 return true; 626 for (const Value *Op : WorkItem->operands()) { 627 const Constant *ConstOp = dyn_cast<Constant>(Op); 628 if (!ConstOp) 629 continue; 630 if (Visited.insert(ConstOp).second) 631 WorkList.push_back(ConstOp); 632 } 633 } 634 return false; 635 } 636 637 bool Constant::isThreadDependent() const { 638 auto DLLImportPredicate = [](const GlobalValue *GV) { 639 return GV->isThreadLocal(); 640 }; 641 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 642 } 643 644 bool Constant::isDLLImportDependent() const { 645 auto DLLImportPredicate = [](const GlobalValue *GV) { 646 return GV->hasDLLImportStorageClass(); 647 }; 648 return ConstHasGlobalValuePredicate(this, DLLImportPredicate); 649 } 650 651 bool Constant::isConstantUsed() const { 652 for (const User *U : users()) { 653 const Constant *UC = dyn_cast<Constant>(U); 654 if (!UC || isa<GlobalValue>(UC)) 655 return true; 656 657 if (UC->isConstantUsed()) 658 return true; 659 } 660 return false; 661 } 662 663 bool Constant::needsDynamicRelocation() const { 664 return getRelocationInfo() == GlobalRelocation; 665 } 666 667 bool Constant::needsRelocation() const { 668 return getRelocationInfo() != NoRelocation; 669 } 670 671 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { 672 if (isa<GlobalValue>(this)) 673 return GlobalRelocation; // Global reference. 674 675 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) 676 return BA->getFunction()->getRelocationInfo(); 677 678 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { 679 if (CE->getOpcode() == Instruction::Sub) { 680 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); 681 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); 682 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && 683 RHS->getOpcode() == Instruction::PtrToInt) { 684 Constant *LHSOp0 = LHS->getOperand(0); 685 Constant *RHSOp0 = RHS->getOperand(0); 686 687 // While raw uses of blockaddress need to be relocated, differences 688 // between two of them don't when they are for labels in the same 689 // function. This is a common idiom when creating a table for the 690 // indirect goto extension, so we handle it efficiently here. 691 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && 692 cast<BlockAddress>(LHSOp0)->getFunction() == 693 cast<BlockAddress>(RHSOp0)->getFunction()) 694 return NoRelocation; 695 696 // Relative pointers do not need to be dynamically relocated. 697 if (auto *RHSGV = 698 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { 699 auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); 700 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { 701 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) 702 return LocalRelocation; 703 } else if (isa<DSOLocalEquivalent>(LHS)) { 704 if (RHSGV->isDSOLocal()) 705 return LocalRelocation; 706 } 707 } 708 } 709 } 710 } 711 712 PossibleRelocationsTy Result = NoRelocation; 713 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 714 Result = 715 std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result); 716 717 return Result; 718 } 719 720 /// Return true if the specified constantexpr is dead. This involves 721 /// recursively traversing users of the constantexpr. 722 /// If RemoveDeadUsers is true, also remove dead users at the same time. 723 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) { 724 if (isa<GlobalValue>(C)) return false; // Cannot remove this 725 726 Value::const_user_iterator I = C->user_begin(), E = C->user_end(); 727 while (I != E) { 728 const Constant *User = dyn_cast<Constant>(*I); 729 if (!User) return false; // Non-constant usage; 730 if (!constantIsDead(User, RemoveDeadUsers)) 731 return false; // Constant wasn't dead 732 733 // Just removed User, so the iterator was invalidated. 734 // Since we return immediately upon finding a live user, we can always 735 // restart from user_begin(). 736 if (RemoveDeadUsers) 737 I = C->user_begin(); 738 else 739 ++I; 740 } 741 742 if (RemoveDeadUsers) { 743 // If C is only used by metadata, it should not be preserved but should 744 // have its uses replaced. 745 if (C->isUsedByMetadata()) { 746 const_cast<Constant *>(C)->replaceAllUsesWith( 747 UndefValue::get(C->getType())); 748 } 749 const_cast<Constant *>(C)->destroyConstant(); 750 } 751 752 return true; 753 } 754 755 void Constant::removeDeadConstantUsers() const { 756 Value::const_user_iterator I = user_begin(), E = user_end(); 757 Value::const_user_iterator LastNonDeadUser = E; 758 while (I != E) { 759 const Constant *User = dyn_cast<Constant>(*I); 760 if (!User) { 761 LastNonDeadUser = I; 762 ++I; 763 continue; 764 } 765 766 if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) { 767 // If the constant wasn't dead, remember that this was the last live use 768 // and move on to the next constant. 769 LastNonDeadUser = I; 770 ++I; 771 continue; 772 } 773 774 // If the constant was dead, then the iterator is invalidated. 775 if (LastNonDeadUser == E) 776 I = user_begin(); 777 else 778 I = std::next(LastNonDeadUser); 779 } 780 } 781 782 bool Constant::hasOneLiveUse() const { 783 unsigned NumUses = 0; 784 for (const Use &use : uses()) { 785 const Constant *User = dyn_cast<Constant>(use.getUser()); 786 if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) { 787 ++NumUses; 788 789 if (NumUses > 1) 790 return false; 791 } 792 } 793 return NumUses == 1; 794 } 795 796 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { 797 assert(C && Replacement && "Expected non-nullptr constant arguments"); 798 Type *Ty = C->getType(); 799 if (match(C, m_Undef())) { 800 assert(Ty == Replacement->getType() && "Expected matching types"); 801 return Replacement; 802 } 803 804 // Don't know how to deal with this constant. 805 auto *VTy = dyn_cast<FixedVectorType>(Ty); 806 if (!VTy) 807 return C; 808 809 unsigned NumElts = VTy->getNumElements(); 810 SmallVector<Constant *, 32> NewC(NumElts); 811 for (unsigned i = 0; i != NumElts; ++i) { 812 Constant *EltC = C->getAggregateElement(i); 813 assert((!EltC || EltC->getType() == Replacement->getType()) && 814 "Expected matching types"); 815 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; 816 } 817 return ConstantVector::get(NewC); 818 } 819 820 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { 821 assert(C && Other && "Expected non-nullptr constant arguments"); 822 if (match(C, m_Undef())) 823 return C; 824 825 Type *Ty = C->getType(); 826 if (match(Other, m_Undef())) 827 return UndefValue::get(Ty); 828 829 auto *VTy = dyn_cast<FixedVectorType>(Ty); 830 if (!VTy) 831 return C; 832 833 Type *EltTy = VTy->getElementType(); 834 unsigned NumElts = VTy->getNumElements(); 835 assert(isa<FixedVectorType>(Other->getType()) && 836 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && 837 "Type mismatch"); 838 839 bool FoundExtraUndef = false; 840 SmallVector<Constant *, 32> NewC(NumElts); 841 for (unsigned I = 0; I != NumElts; ++I) { 842 NewC[I] = C->getAggregateElement(I); 843 Constant *OtherEltC = Other->getAggregateElement(I); 844 assert(NewC[I] && OtherEltC && "Unknown vector element"); 845 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { 846 NewC[I] = UndefValue::get(EltTy); 847 FoundExtraUndef = true; 848 } 849 } 850 if (FoundExtraUndef) 851 return ConstantVector::get(NewC); 852 return C; 853 } 854 855 bool Constant::isManifestConstant() const { 856 if (isa<ConstantData>(this)) 857 return true; 858 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) { 859 for (const Value *Op : operand_values()) 860 if (!cast<Constant>(Op)->isManifestConstant()) 861 return false; 862 return true; 863 } 864 return false; 865 } 866 867 //===----------------------------------------------------------------------===// 868 // ConstantInt 869 //===----------------------------------------------------------------------===// 870 871 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) 872 : ConstantData(Ty, ConstantIntVal), Val(V) { 873 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); 874 } 875 876 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { 877 LLVMContextImpl *pImpl = Context.pImpl; 878 if (!pImpl->TheTrueVal) 879 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); 880 return pImpl->TheTrueVal; 881 } 882 883 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { 884 LLVMContextImpl *pImpl = Context.pImpl; 885 if (!pImpl->TheFalseVal) 886 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); 887 return pImpl->TheFalseVal; 888 } 889 890 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { 891 return V ? getTrue(Context) : getFalse(Context); 892 } 893 894 Constant *ConstantInt::getTrue(Type *Ty) { 895 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 896 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); 897 if (auto *VTy = dyn_cast<VectorType>(Ty)) 898 return ConstantVector::getSplat(VTy->getElementCount(), TrueC); 899 return TrueC; 900 } 901 902 Constant *ConstantInt::getFalse(Type *Ty) { 903 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); 904 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); 905 if (auto *VTy = dyn_cast<VectorType>(Ty)) 906 return ConstantVector::getSplat(VTy->getElementCount(), FalseC); 907 return FalseC; 908 } 909 910 Constant *ConstantInt::getBool(Type *Ty, bool V) { 911 return V ? getTrue(Ty) : getFalse(Ty); 912 } 913 914 // Get a ConstantInt from an APInt. 915 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { 916 // get an existing value or the insertion position 917 LLVMContextImpl *pImpl = Context.pImpl; 918 std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V]; 919 if (!Slot) { 920 // Get the corresponding integer type for the bit width of the value. 921 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); 922 Slot.reset(new ConstantInt(ITy, V)); 923 } 924 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); 925 return Slot.get(); 926 } 927 928 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { 929 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); 930 931 // For vectors, broadcast the value. 932 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 933 return ConstantVector::getSplat(VTy->getElementCount(), C); 934 935 return C; 936 } 937 938 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { 939 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); 940 } 941 942 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { 943 return get(Ty, V, true); 944 } 945 946 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { 947 return get(Ty, V, true); 948 } 949 950 Constant *ConstantInt::get(Type *Ty, const APInt& V) { 951 ConstantInt *C = get(Ty->getContext(), V); 952 assert(C->getType() == Ty->getScalarType() && 953 "ConstantInt type doesn't match the type implied by its value!"); 954 955 // For vectors, broadcast the value. 956 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 957 return ConstantVector::getSplat(VTy->getElementCount(), C); 958 959 return C; 960 } 961 962 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { 963 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); 964 } 965 966 /// Remove the constant from the constant table. 967 void ConstantInt::destroyConstantImpl() { 968 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); 969 } 970 971 //===----------------------------------------------------------------------===// 972 // ConstantFP 973 //===----------------------------------------------------------------------===// 974 975 Constant *ConstantFP::get(Type *Ty, double V) { 976 LLVMContext &Context = Ty->getContext(); 977 978 APFloat FV(V); 979 bool ignored; 980 FV.convert(Ty->getScalarType()->getFltSemantics(), 981 APFloat::rmNearestTiesToEven, &ignored); 982 Constant *C = get(Context, FV); 983 984 // For vectors, broadcast the value. 985 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 986 return ConstantVector::getSplat(VTy->getElementCount(), C); 987 988 return C; 989 } 990 991 Constant *ConstantFP::get(Type *Ty, const APFloat &V) { 992 ConstantFP *C = get(Ty->getContext(), V); 993 assert(C->getType() == Ty->getScalarType() && 994 "ConstantFP type doesn't match the type implied by its value!"); 995 996 // For vectors, broadcast the value. 997 if (auto *VTy = dyn_cast<VectorType>(Ty)) 998 return ConstantVector::getSplat(VTy->getElementCount(), C); 999 1000 return C; 1001 } 1002 1003 Constant *ConstantFP::get(Type *Ty, StringRef Str) { 1004 LLVMContext &Context = Ty->getContext(); 1005 1006 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); 1007 Constant *C = get(Context, FV); 1008 1009 // For vectors, broadcast the value. 1010 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1011 return ConstantVector::getSplat(VTy->getElementCount(), C); 1012 1013 return C; 1014 } 1015 1016 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { 1017 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1018 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); 1019 Constant *C = get(Ty->getContext(), NaN); 1020 1021 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1022 return ConstantVector::getSplat(VTy->getElementCount(), C); 1023 1024 return C; 1025 } 1026 1027 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { 1028 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1029 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); 1030 Constant *C = get(Ty->getContext(), NaN); 1031 1032 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1033 return ConstantVector::getSplat(VTy->getElementCount(), C); 1034 1035 return C; 1036 } 1037 1038 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { 1039 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1040 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); 1041 Constant *C = get(Ty->getContext(), NaN); 1042 1043 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1044 return ConstantVector::getSplat(VTy->getElementCount(), C); 1045 1046 return C; 1047 } 1048 1049 Constant *ConstantFP::getNegativeZero(Type *Ty) { 1050 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1051 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true); 1052 Constant *C = get(Ty->getContext(), NegZero); 1053 1054 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1055 return ConstantVector::getSplat(VTy->getElementCount(), C); 1056 1057 return C; 1058 } 1059 1060 1061 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { 1062 if (Ty->isFPOrFPVectorTy()) 1063 return getNegativeZero(Ty); 1064 1065 return Constant::getNullValue(Ty); 1066 } 1067 1068 1069 // ConstantFP accessors. 1070 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { 1071 LLVMContextImpl* pImpl = Context.pImpl; 1072 1073 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; 1074 1075 if (!Slot) { 1076 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); 1077 Slot.reset(new ConstantFP(Ty, V)); 1078 } 1079 1080 return Slot.get(); 1081 } 1082 1083 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { 1084 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); 1085 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); 1086 1087 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1088 return ConstantVector::getSplat(VTy->getElementCount(), C); 1089 1090 return C; 1091 } 1092 1093 ConstantFP::ConstantFP(Type *Ty, const APFloat &V) 1094 : ConstantData(Ty, ConstantFPVal), Val(V) { 1095 assert(&V.getSemantics() == &Ty->getFltSemantics() && 1096 "FP type Mismatch"); 1097 } 1098 1099 bool ConstantFP::isExactlyValue(const APFloat &V) const { 1100 return Val.bitwiseIsEqual(V); 1101 } 1102 1103 /// Remove the constant from the constant table. 1104 void ConstantFP::destroyConstantImpl() { 1105 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // ConstantAggregateZero Implementation 1110 //===----------------------------------------------------------------------===// 1111 1112 Constant *ConstantAggregateZero::getSequentialElement() const { 1113 if (auto *AT = dyn_cast<ArrayType>(getType())) 1114 return Constant::getNullValue(AT->getElementType()); 1115 return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); 1116 } 1117 1118 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { 1119 return Constant::getNullValue(getType()->getStructElementType(Elt)); 1120 } 1121 1122 Constant *ConstantAggregateZero::getElementValue(Constant *C) const { 1123 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1124 return getSequentialElement(); 1125 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1126 } 1127 1128 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { 1129 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1130 return getSequentialElement(); 1131 return getStructElement(Idx); 1132 } 1133 1134 ElementCount ConstantAggregateZero::getElementCount() const { 1135 Type *Ty = getType(); 1136 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1137 return ElementCount::getFixed(AT->getNumElements()); 1138 if (auto *VT = dyn_cast<VectorType>(Ty)) 1139 return VT->getElementCount(); 1140 return ElementCount::getFixed(Ty->getStructNumElements()); 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // UndefValue Implementation 1145 //===----------------------------------------------------------------------===// 1146 1147 UndefValue *UndefValue::getSequentialElement() const { 1148 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1149 return UndefValue::get(ATy->getElementType()); 1150 return UndefValue::get(cast<VectorType>(getType())->getElementType()); 1151 } 1152 1153 UndefValue *UndefValue::getStructElement(unsigned Elt) const { 1154 return UndefValue::get(getType()->getStructElementType(Elt)); 1155 } 1156 1157 UndefValue *UndefValue::getElementValue(Constant *C) const { 1158 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1159 return getSequentialElement(); 1160 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1161 } 1162 1163 UndefValue *UndefValue::getElementValue(unsigned Idx) const { 1164 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1165 return getSequentialElement(); 1166 return getStructElement(Idx); 1167 } 1168 1169 unsigned UndefValue::getNumElements() const { 1170 Type *Ty = getType(); 1171 if (auto *AT = dyn_cast<ArrayType>(Ty)) 1172 return AT->getNumElements(); 1173 if (auto *VT = dyn_cast<VectorType>(Ty)) 1174 return cast<FixedVectorType>(VT)->getNumElements(); 1175 return Ty->getStructNumElements(); 1176 } 1177 1178 //===----------------------------------------------------------------------===// 1179 // PoisonValue Implementation 1180 //===----------------------------------------------------------------------===// 1181 1182 PoisonValue *PoisonValue::getSequentialElement() const { 1183 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 1184 return PoisonValue::get(ATy->getElementType()); 1185 return PoisonValue::get(cast<VectorType>(getType())->getElementType()); 1186 } 1187 1188 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { 1189 return PoisonValue::get(getType()->getStructElementType(Elt)); 1190 } 1191 1192 PoisonValue *PoisonValue::getElementValue(Constant *C) const { 1193 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1194 return getSequentialElement(); 1195 return getStructElement(cast<ConstantInt>(C)->getZExtValue()); 1196 } 1197 1198 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { 1199 if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) 1200 return getSequentialElement(); 1201 return getStructElement(Idx); 1202 } 1203 1204 //===----------------------------------------------------------------------===// 1205 // ConstantXXX Classes 1206 //===----------------------------------------------------------------------===// 1207 1208 template <typename ItTy, typename EltTy> 1209 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { 1210 for (; Start != End; ++Start) 1211 if (*Start != Elt) 1212 return false; 1213 return true; 1214 } 1215 1216 template <typename SequentialTy, typename ElementTy> 1217 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1218 assert(!V.empty() && "Cannot get empty int sequence."); 1219 1220 SmallVector<ElementTy, 16> Elts; 1221 for (Constant *C : V) 1222 if (auto *CI = dyn_cast<ConstantInt>(C)) 1223 Elts.push_back(CI->getZExtValue()); 1224 else 1225 return nullptr; 1226 return SequentialTy::get(V[0]->getContext(), Elts); 1227 } 1228 1229 template <typename SequentialTy, typename ElementTy> 1230 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { 1231 assert(!V.empty() && "Cannot get empty FP sequence."); 1232 1233 SmallVector<ElementTy, 16> Elts; 1234 for (Constant *C : V) 1235 if (auto *CFP = dyn_cast<ConstantFP>(C)) 1236 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 1237 else 1238 return nullptr; 1239 return SequentialTy::getFP(V[0]->getType(), Elts); 1240 } 1241 1242 template <typename SequenceTy> 1243 static Constant *getSequenceIfElementsMatch(Constant *C, 1244 ArrayRef<Constant *> V) { 1245 // We speculatively build the elements here even if it turns out that there is 1246 // a constantexpr or something else weird, since it is so uncommon for that to 1247 // happen. 1248 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 1249 if (CI->getType()->isIntegerTy(8)) 1250 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); 1251 else if (CI->getType()->isIntegerTy(16)) 1252 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1253 else if (CI->getType()->isIntegerTy(32)) 1254 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1255 else if (CI->getType()->isIntegerTy(64)) 1256 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1257 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1258 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) 1259 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); 1260 else if (CFP->getType()->isFloatTy()) 1261 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); 1262 else if (CFP->getType()->isDoubleTy()) 1263 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); 1264 } 1265 1266 return nullptr; 1267 } 1268 1269 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, 1270 ArrayRef<Constant *> V) 1271 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), 1272 V.size()) { 1273 llvm::copy(V, op_begin()); 1274 1275 // Check that types match, unless this is an opaque struct. 1276 if (auto *ST = dyn_cast<StructType>(T)) { 1277 if (ST->isOpaque()) 1278 return; 1279 for (unsigned I = 0, E = V.size(); I != E; ++I) 1280 assert(V[I]->getType() == ST->getTypeAtIndex(I) && 1281 "Initializer for struct element doesn't match!"); 1282 } 1283 } 1284 1285 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) 1286 : ConstantAggregate(T, ConstantArrayVal, V) { 1287 assert(V.size() == T->getNumElements() && 1288 "Invalid initializer for constant array"); 1289 } 1290 1291 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { 1292 if (Constant *C = getImpl(Ty, V)) 1293 return C; 1294 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); 1295 } 1296 1297 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { 1298 // Empty arrays are canonicalized to ConstantAggregateZero. 1299 if (V.empty()) 1300 return ConstantAggregateZero::get(Ty); 1301 1302 for (Constant *C : V) { 1303 assert(C->getType() == Ty->getElementType() && 1304 "Wrong type in array element initializer"); 1305 (void)C; 1306 } 1307 1308 // If this is an all-zero array, return a ConstantAggregateZero object. If 1309 // all undef, return an UndefValue, if "all simple", then return a 1310 // ConstantDataArray. 1311 Constant *C = V[0]; 1312 if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1313 return PoisonValue::get(Ty); 1314 1315 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) 1316 return UndefValue::get(Ty); 1317 1318 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) 1319 return ConstantAggregateZero::get(Ty); 1320 1321 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1322 // the element type is compatible with ConstantDataVector. If so, use it. 1323 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1324 return getSequenceIfElementsMatch<ConstantDataArray>(C, V); 1325 1326 // Otherwise, we really do want to create a ConstantArray. 1327 return nullptr; 1328 } 1329 1330 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, 1331 ArrayRef<Constant*> V, 1332 bool Packed) { 1333 unsigned VecSize = V.size(); 1334 SmallVector<Type*, 16> EltTypes(VecSize); 1335 for (unsigned i = 0; i != VecSize; ++i) 1336 EltTypes[i] = V[i]->getType(); 1337 1338 return StructType::get(Context, EltTypes, Packed); 1339 } 1340 1341 1342 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, 1343 bool Packed) { 1344 assert(!V.empty() && 1345 "ConstantStruct::getTypeForElements cannot be called on empty list"); 1346 return getTypeForElements(V[0]->getContext(), V, Packed); 1347 } 1348 1349 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) 1350 : ConstantAggregate(T, ConstantStructVal, V) { 1351 assert((T->isOpaque() || V.size() == T->getNumElements()) && 1352 "Invalid initializer for constant struct"); 1353 } 1354 1355 // ConstantStruct accessors. 1356 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { 1357 assert((ST->isOpaque() || ST->getNumElements() == V.size()) && 1358 "Incorrect # elements specified to ConstantStruct::get"); 1359 1360 // Create a ConstantAggregateZero value if all elements are zeros. 1361 bool isZero = true; 1362 bool isUndef = false; 1363 bool isPoison = false; 1364 1365 if (!V.empty()) { 1366 isUndef = isa<UndefValue>(V[0]); 1367 isPoison = isa<PoisonValue>(V[0]); 1368 isZero = V[0]->isNullValue(); 1369 // PoisonValue inherits UndefValue, so its check is not necessary. 1370 if (isUndef || isZero) { 1371 for (Constant *C : V) { 1372 if (!C->isNullValue()) 1373 isZero = false; 1374 if (!isa<PoisonValue>(C)) 1375 isPoison = false; 1376 if (isa<PoisonValue>(C) || !isa<UndefValue>(C)) 1377 isUndef = false; 1378 } 1379 } 1380 } 1381 if (isZero) 1382 return ConstantAggregateZero::get(ST); 1383 if (isPoison) 1384 return PoisonValue::get(ST); 1385 if (isUndef) 1386 return UndefValue::get(ST); 1387 1388 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); 1389 } 1390 1391 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) 1392 : ConstantAggregate(T, ConstantVectorVal, V) { 1393 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && 1394 "Invalid initializer for constant vector"); 1395 } 1396 1397 // ConstantVector accessors. 1398 Constant *ConstantVector::get(ArrayRef<Constant*> V) { 1399 if (Constant *C = getImpl(V)) 1400 return C; 1401 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); 1402 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); 1403 } 1404 1405 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { 1406 assert(!V.empty() && "Vectors can't be empty"); 1407 auto *T = FixedVectorType::get(V.front()->getType(), V.size()); 1408 1409 // If this is an all-undef or all-zero vector, return a 1410 // ConstantAggregateZero or UndefValue. 1411 Constant *C = V[0]; 1412 bool isZero = C->isNullValue(); 1413 bool isUndef = isa<UndefValue>(C); 1414 bool isPoison = isa<PoisonValue>(C); 1415 1416 if (isZero || isUndef) { 1417 for (unsigned i = 1, e = V.size(); i != e; ++i) 1418 if (V[i] != C) { 1419 isZero = isUndef = isPoison = false; 1420 break; 1421 } 1422 } 1423 1424 if (isZero) 1425 return ConstantAggregateZero::get(T); 1426 if (isPoison) 1427 return PoisonValue::get(T); 1428 if (isUndef) 1429 return UndefValue::get(T); 1430 1431 // Check to see if all of the elements are ConstantFP or ConstantInt and if 1432 // the element type is compatible with ConstantDataVector. If so, use it. 1433 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) 1434 return getSequenceIfElementsMatch<ConstantDataVector>(C, V); 1435 1436 // Otherwise, the element type isn't compatible with ConstantDataVector, or 1437 // the operand list contains a ConstantExpr or something else strange. 1438 return nullptr; 1439 } 1440 1441 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { 1442 if (!EC.isScalable()) { 1443 // If this splat is compatible with ConstantDataVector, use it instead of 1444 // ConstantVector. 1445 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && 1446 ConstantDataSequential::isElementTypeCompatible(V->getType())) 1447 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); 1448 1449 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); 1450 return get(Elts); 1451 } 1452 1453 Type *VTy = VectorType::get(V->getType(), EC); 1454 1455 if (V->isNullValue()) 1456 return ConstantAggregateZero::get(VTy); 1457 else if (isa<UndefValue>(V)) 1458 return UndefValue::get(VTy); 1459 1460 Type *I32Ty = Type::getInt32Ty(VTy->getContext()); 1461 1462 // Move scalar into vector. 1463 Constant *PoisonV = PoisonValue::get(VTy); 1464 V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(I32Ty, 0)); 1465 // Build shuffle mask to perform the splat. 1466 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); 1467 // Splat. 1468 return ConstantExpr::getShuffleVector(V, PoisonV, Zeros); 1469 } 1470 1471 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { 1472 LLVMContextImpl *pImpl = Context.pImpl; 1473 if (!pImpl->TheNoneToken) 1474 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); 1475 return pImpl->TheNoneToken.get(); 1476 } 1477 1478 /// Remove the constant from the constant table. 1479 void ConstantTokenNone::destroyConstantImpl() { 1480 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); 1481 } 1482 1483 // Utility function for determining if a ConstantExpr is a CastOp or not. This 1484 // can't be inline because we don't want to #include Instruction.h into 1485 // Constant.h 1486 bool ConstantExpr::isCast() const { 1487 return Instruction::isCast(getOpcode()); 1488 } 1489 1490 bool ConstantExpr::isCompare() const { 1491 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; 1492 } 1493 1494 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { 1495 if (getOpcode() != Instruction::GetElementPtr) return false; 1496 1497 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); 1498 User::const_op_iterator OI = std::next(this->op_begin()); 1499 1500 // The remaining indices may be compile-time known integers within the bounds 1501 // of the corresponding notional static array types. 1502 for (; GEPI != E; ++GEPI, ++OI) { 1503 if (isa<UndefValue>(*OI)) 1504 continue; 1505 auto *CI = dyn_cast<ConstantInt>(*OI); 1506 if (!CI || (GEPI.isBoundedSequential() && 1507 (CI->getValue().getActiveBits() > 64 || 1508 CI->getZExtValue() >= GEPI.getSequentialNumElements()))) 1509 return false; 1510 } 1511 1512 // All the indices checked out. 1513 return true; 1514 } 1515 1516 bool ConstantExpr::hasIndices() const { 1517 return getOpcode() == Instruction::ExtractValue || 1518 getOpcode() == Instruction::InsertValue; 1519 } 1520 1521 ArrayRef<unsigned> ConstantExpr::getIndices() const { 1522 if (const ExtractValueConstantExpr *EVCE = 1523 dyn_cast<ExtractValueConstantExpr>(this)) 1524 return EVCE->Indices; 1525 1526 return cast<InsertValueConstantExpr>(this)->Indices; 1527 } 1528 1529 unsigned ConstantExpr::getPredicate() const { 1530 return cast<CompareConstantExpr>(this)->predicate; 1531 } 1532 1533 ArrayRef<int> ConstantExpr::getShuffleMask() const { 1534 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; 1535 } 1536 1537 Constant *ConstantExpr::getShuffleMaskForBitcode() const { 1538 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; 1539 } 1540 1541 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, 1542 bool OnlyIfReduced, Type *SrcTy) const { 1543 assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); 1544 1545 // If no operands changed return self. 1546 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) 1547 return const_cast<ConstantExpr*>(this); 1548 1549 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; 1550 switch (getOpcode()) { 1551 case Instruction::Trunc: 1552 case Instruction::ZExt: 1553 case Instruction::SExt: 1554 case Instruction::FPTrunc: 1555 case Instruction::FPExt: 1556 case Instruction::UIToFP: 1557 case Instruction::SIToFP: 1558 case Instruction::FPToUI: 1559 case Instruction::FPToSI: 1560 case Instruction::PtrToInt: 1561 case Instruction::IntToPtr: 1562 case Instruction::BitCast: 1563 case Instruction::AddrSpaceCast: 1564 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); 1565 case Instruction::Select: 1566 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy); 1567 case Instruction::InsertElement: 1568 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], 1569 OnlyIfReducedTy); 1570 case Instruction::ExtractElement: 1571 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); 1572 case Instruction::InsertValue: 1573 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(), 1574 OnlyIfReducedTy); 1575 case Instruction::ExtractValue: 1576 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy); 1577 case Instruction::FNeg: 1578 return ConstantExpr::getFNeg(Ops[0]); 1579 case Instruction::ShuffleVector: 1580 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), 1581 OnlyIfReducedTy); 1582 case Instruction::GetElementPtr: { 1583 auto *GEPO = cast<GEPOperator>(this); 1584 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); 1585 return ConstantExpr::getGetElementPtr( 1586 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), 1587 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); 1588 } 1589 case Instruction::ICmp: 1590 case Instruction::FCmp: 1591 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], 1592 OnlyIfReducedTy); 1593 default: 1594 assert(getNumOperands() == 2 && "Must be binary operator?"); 1595 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, 1596 OnlyIfReducedTy); 1597 } 1598 } 1599 1600 1601 //===----------------------------------------------------------------------===// 1602 // isValueValidForType implementations 1603 1604 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { 1605 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay 1606 if (Ty->isIntegerTy(1)) 1607 return Val == 0 || Val == 1; 1608 return isUIntN(NumBits, Val); 1609 } 1610 1611 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { 1612 unsigned NumBits = Ty->getIntegerBitWidth(); 1613 if (Ty->isIntegerTy(1)) 1614 return Val == 0 || Val == 1 || Val == -1; 1615 return isIntN(NumBits, Val); 1616 } 1617 1618 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { 1619 // convert modifies in place, so make a copy. 1620 APFloat Val2 = APFloat(Val); 1621 bool losesInfo; 1622 switch (Ty->getTypeID()) { 1623 default: 1624 return false; // These can't be represented as floating point! 1625 1626 // FIXME rounding mode needs to be more flexible 1627 case Type::HalfTyID: { 1628 if (&Val2.getSemantics() == &APFloat::IEEEhalf()) 1629 return true; 1630 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); 1631 return !losesInfo; 1632 } 1633 case Type::BFloatTyID: { 1634 if (&Val2.getSemantics() == &APFloat::BFloat()) 1635 return true; 1636 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); 1637 return !losesInfo; 1638 } 1639 case Type::FloatTyID: { 1640 if (&Val2.getSemantics() == &APFloat::IEEEsingle()) 1641 return true; 1642 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); 1643 return !losesInfo; 1644 } 1645 case Type::DoubleTyID: { 1646 if (&Val2.getSemantics() == &APFloat::IEEEhalf() || 1647 &Val2.getSemantics() == &APFloat::BFloat() || 1648 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1649 &Val2.getSemantics() == &APFloat::IEEEdouble()) 1650 return true; 1651 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); 1652 return !losesInfo; 1653 } 1654 case Type::X86_FP80TyID: 1655 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1656 &Val2.getSemantics() == &APFloat::BFloat() || 1657 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1658 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1659 &Val2.getSemantics() == &APFloat::x87DoubleExtended(); 1660 case Type::FP128TyID: 1661 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1662 &Val2.getSemantics() == &APFloat::BFloat() || 1663 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1664 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1665 &Val2.getSemantics() == &APFloat::IEEEquad(); 1666 case Type::PPC_FP128TyID: 1667 return &Val2.getSemantics() == &APFloat::IEEEhalf() || 1668 &Val2.getSemantics() == &APFloat::BFloat() || 1669 &Val2.getSemantics() == &APFloat::IEEEsingle() || 1670 &Val2.getSemantics() == &APFloat::IEEEdouble() || 1671 &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); 1672 } 1673 } 1674 1675 1676 //===----------------------------------------------------------------------===// 1677 // Factory Function Implementation 1678 1679 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { 1680 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && 1681 "Cannot create an aggregate zero of non-aggregate type!"); 1682 1683 std::unique_ptr<ConstantAggregateZero> &Entry = 1684 Ty->getContext().pImpl->CAZConstants[Ty]; 1685 if (!Entry) 1686 Entry.reset(new ConstantAggregateZero(Ty)); 1687 1688 return Entry.get(); 1689 } 1690 1691 /// Remove the constant from the constant table. 1692 void ConstantAggregateZero::destroyConstantImpl() { 1693 getContext().pImpl->CAZConstants.erase(getType()); 1694 } 1695 1696 /// Remove the constant from the constant table. 1697 void ConstantArray::destroyConstantImpl() { 1698 getType()->getContext().pImpl->ArrayConstants.remove(this); 1699 } 1700 1701 1702 //---- ConstantStruct::get() implementation... 1703 // 1704 1705 /// Remove the constant from the constant table. 1706 void ConstantStruct::destroyConstantImpl() { 1707 getType()->getContext().pImpl->StructConstants.remove(this); 1708 } 1709 1710 /// Remove the constant from the constant table. 1711 void ConstantVector::destroyConstantImpl() { 1712 getType()->getContext().pImpl->VectorConstants.remove(this); 1713 } 1714 1715 Constant *Constant::getSplatValue(bool AllowUndefs) const { 1716 assert(this->getType()->isVectorTy() && "Only valid for vectors!"); 1717 if (isa<ConstantAggregateZero>(this)) 1718 return getNullValue(cast<VectorType>(getType())->getElementType()); 1719 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) 1720 return CV->getSplatValue(); 1721 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) 1722 return CV->getSplatValue(AllowUndefs); 1723 1724 // Check if this is a constant expression splat of the form returned by 1725 // ConstantVector::getSplat() 1726 const auto *Shuf = dyn_cast<ConstantExpr>(this); 1727 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && 1728 isa<UndefValue>(Shuf->getOperand(1))) { 1729 1730 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); 1731 if (IElt && IElt->getOpcode() == Instruction::InsertElement && 1732 isa<UndefValue>(IElt->getOperand(0))) { 1733 1734 ArrayRef<int> Mask = Shuf->getShuffleMask(); 1735 Constant *SplatVal = IElt->getOperand(1); 1736 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); 1737 1738 if (Index && Index->getValue() == 0 && 1739 llvm::all_of(Mask, [](int I) { return I == 0; })) 1740 return SplatVal; 1741 } 1742 } 1743 1744 return nullptr; 1745 } 1746 1747 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { 1748 // Check out first element. 1749 Constant *Elt = getOperand(0); 1750 // Then make sure all remaining elements point to the same value. 1751 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { 1752 Constant *OpC = getOperand(I); 1753 if (OpC == Elt) 1754 continue; 1755 1756 // Strict mode: any mismatch is not a splat. 1757 if (!AllowUndefs) 1758 return nullptr; 1759 1760 // Allow undefs mode: ignore undefined elements. 1761 if (isa<UndefValue>(OpC)) 1762 continue; 1763 1764 // If we do not have a defined element yet, use the current operand. 1765 if (isa<UndefValue>(Elt)) 1766 Elt = OpC; 1767 1768 if (OpC != Elt) 1769 return nullptr; 1770 } 1771 return Elt; 1772 } 1773 1774 const APInt &Constant::getUniqueInteger() const { 1775 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) 1776 return CI->getValue(); 1777 assert(this->getSplatValue() && "Doesn't contain a unique integer!"); 1778 const Constant *C = this->getAggregateElement(0U); 1779 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); 1780 return cast<ConstantInt>(C)->getValue(); 1781 } 1782 1783 //---- ConstantPointerNull::get() implementation. 1784 // 1785 1786 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { 1787 std::unique_ptr<ConstantPointerNull> &Entry = 1788 Ty->getContext().pImpl->CPNConstants[Ty]; 1789 if (!Entry) 1790 Entry.reset(new ConstantPointerNull(Ty)); 1791 1792 return Entry.get(); 1793 } 1794 1795 /// Remove the constant from the constant table. 1796 void ConstantPointerNull::destroyConstantImpl() { 1797 getContext().pImpl->CPNConstants.erase(getType()); 1798 } 1799 1800 UndefValue *UndefValue::get(Type *Ty) { 1801 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; 1802 if (!Entry) 1803 Entry.reset(new UndefValue(Ty)); 1804 1805 return Entry.get(); 1806 } 1807 1808 /// Remove the constant from the constant table. 1809 void UndefValue::destroyConstantImpl() { 1810 // Free the constant and any dangling references to it. 1811 if (getValueID() == UndefValueVal) { 1812 getContext().pImpl->UVConstants.erase(getType()); 1813 } else if (getValueID() == PoisonValueVal) { 1814 getContext().pImpl->PVConstants.erase(getType()); 1815 } 1816 llvm_unreachable("Not a undef or a poison!"); 1817 } 1818 1819 PoisonValue *PoisonValue::get(Type *Ty) { 1820 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; 1821 if (!Entry) 1822 Entry.reset(new PoisonValue(Ty)); 1823 1824 return Entry.get(); 1825 } 1826 1827 /// Remove the constant from the constant table. 1828 void PoisonValue::destroyConstantImpl() { 1829 // Free the constant and any dangling references to it. 1830 getContext().pImpl->PVConstants.erase(getType()); 1831 } 1832 1833 BlockAddress *BlockAddress::get(BasicBlock *BB) { 1834 assert(BB->getParent() && "Block must have a parent"); 1835 return get(BB->getParent(), BB); 1836 } 1837 1838 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { 1839 BlockAddress *&BA = 1840 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; 1841 if (!BA) 1842 BA = new BlockAddress(F, BB); 1843 1844 assert(BA->getFunction() == F && "Basic block moved between functions"); 1845 return BA; 1846 } 1847 1848 BlockAddress::BlockAddress(Function *F, BasicBlock *BB) 1849 : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()), 1850 Value::BlockAddressVal, &Op<0>(), 2) { 1851 setOperand(0, F); 1852 setOperand(1, BB); 1853 BB->AdjustBlockAddressRefCount(1); 1854 } 1855 1856 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { 1857 if (!BB->hasAddressTaken()) 1858 return nullptr; 1859 1860 const Function *F = BB->getParent(); 1861 assert(F && "Block must have a parent"); 1862 BlockAddress *BA = 1863 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); 1864 assert(BA && "Refcount and block address map disagree!"); 1865 return BA; 1866 } 1867 1868 /// Remove the constant from the constant table. 1869 void BlockAddress::destroyConstantImpl() { 1870 getFunction()->getType()->getContext().pImpl 1871 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); 1872 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1873 } 1874 1875 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { 1876 // This could be replacing either the Basic Block or the Function. In either 1877 // case, we have to remove the map entry. 1878 Function *NewF = getFunction(); 1879 BasicBlock *NewBB = getBasicBlock(); 1880 1881 if (From == NewF) 1882 NewF = cast<Function>(To->stripPointerCasts()); 1883 else { 1884 assert(From == NewBB && "From does not match any operand"); 1885 NewBB = cast<BasicBlock>(To); 1886 } 1887 1888 // See if the 'new' entry already exists, if not, just update this in place 1889 // and return early. 1890 BlockAddress *&NewBA = 1891 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; 1892 if (NewBA) 1893 return NewBA; 1894 1895 getBasicBlock()->AdjustBlockAddressRefCount(-1); 1896 1897 // Remove the old entry, this can't cause the map to rehash (just a 1898 // tombstone will get added). 1899 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), 1900 getBasicBlock())); 1901 NewBA = this; 1902 setOperand(0, NewF); 1903 setOperand(1, NewBB); 1904 getBasicBlock()->AdjustBlockAddressRefCount(1); 1905 1906 // If we just want to keep the existing value, then return null. 1907 // Callers know that this means we shouldn't delete this value. 1908 return nullptr; 1909 } 1910 1911 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { 1912 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; 1913 if (!Equiv) 1914 Equiv = new DSOLocalEquivalent(GV); 1915 1916 assert(Equiv->getGlobalValue() == GV && 1917 "DSOLocalFunction does not match the expected global value"); 1918 return Equiv; 1919 } 1920 1921 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) 1922 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { 1923 setOperand(0, GV); 1924 } 1925 1926 /// Remove the constant from the constant table. 1927 void DSOLocalEquivalent::destroyConstantImpl() { 1928 const GlobalValue *GV = getGlobalValue(); 1929 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); 1930 } 1931 1932 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { 1933 assert(From == getGlobalValue() && "Changing value does not match operand."); 1934 assert(isa<Constant>(To) && "Can only replace the operands with a constant"); 1935 1936 // The replacement is with another global value. 1937 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { 1938 DSOLocalEquivalent *&NewEquiv = 1939 getContext().pImpl->DSOLocalEquivalents[ToObj]; 1940 if (NewEquiv) 1941 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1942 } 1943 1944 // If the argument is replaced with a null value, just replace this constant 1945 // with a null value. 1946 if (cast<Constant>(To)->isNullValue()) 1947 return To; 1948 1949 // The replacement could be a bitcast or an alias to another function. We can 1950 // replace it with a bitcast to the dso_local_equivalent of that function. 1951 auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); 1952 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; 1953 if (NewEquiv) 1954 return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); 1955 1956 // Replace this with the new one. 1957 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); 1958 NewEquiv = this; 1959 setOperand(0, Func); 1960 1961 if (Func->getType() != getType()) { 1962 // It is ok to mutate the type here because this constant should always 1963 // reflect the type of the function it's holding. 1964 mutateType(Func->getType()); 1965 } 1966 return nullptr; 1967 } 1968 1969 NoCFIValue *NoCFIValue::get(GlobalValue *GV) { 1970 NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV]; 1971 if (!NC) 1972 NC = new NoCFIValue(GV); 1973 1974 assert(NC->getGlobalValue() == GV && 1975 "NoCFIValue does not match the expected global value"); 1976 return NC; 1977 } 1978 1979 NoCFIValue::NoCFIValue(GlobalValue *GV) 1980 : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) { 1981 setOperand(0, GV); 1982 } 1983 1984 /// Remove the constant from the constant table. 1985 void NoCFIValue::destroyConstantImpl() { 1986 const GlobalValue *GV = getGlobalValue(); 1987 GV->getContext().pImpl->NoCFIValues.erase(GV); 1988 } 1989 1990 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) { 1991 assert(From == getGlobalValue() && "Changing value does not match operand."); 1992 1993 GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts()); 1994 assert(GV && "Can only replace the operands with a global value"); 1995 1996 NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV]; 1997 if (NewNC) 1998 return llvm::ConstantExpr::getBitCast(NewNC, getType()); 1999 2000 getContext().pImpl->NoCFIValues.erase(getGlobalValue()); 2001 NewNC = this; 2002 setOperand(0, GV); 2003 2004 if (GV->getType() != getType()) 2005 mutateType(GV->getType()); 2006 2007 return nullptr; 2008 } 2009 2010 //---- ConstantExpr::get() implementations. 2011 // 2012 2013 /// This is a utility function to handle folding of casts and lookup of the 2014 /// cast in the ExprConstants map. It is used by the various get* methods below. 2015 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, 2016 bool OnlyIfReduced = false) { 2017 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); 2018 // Fold a few common cases 2019 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) 2020 return FC; 2021 2022 if (OnlyIfReduced) 2023 return nullptr; 2024 2025 LLVMContextImpl *pImpl = Ty->getContext().pImpl; 2026 2027 // Look up the constant in the table first to ensure uniqueness. 2028 ConstantExprKeyType Key(opc, C); 2029 2030 return pImpl->ExprConstants.getOrCreate(Ty, Key); 2031 } 2032 2033 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, 2034 bool OnlyIfReduced) { 2035 Instruction::CastOps opc = Instruction::CastOps(oc); 2036 assert(Instruction::isCast(opc) && "opcode out of range"); 2037 assert(C && Ty && "Null arguments to getCast"); 2038 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); 2039 2040 switch (opc) { 2041 default: 2042 llvm_unreachable("Invalid cast opcode"); 2043 case Instruction::Trunc: 2044 return getTrunc(C, Ty, OnlyIfReduced); 2045 case Instruction::ZExt: 2046 return getZExt(C, Ty, OnlyIfReduced); 2047 case Instruction::SExt: 2048 return getSExt(C, Ty, OnlyIfReduced); 2049 case Instruction::FPTrunc: 2050 return getFPTrunc(C, Ty, OnlyIfReduced); 2051 case Instruction::FPExt: 2052 return getFPExtend(C, Ty, OnlyIfReduced); 2053 case Instruction::UIToFP: 2054 return getUIToFP(C, Ty, OnlyIfReduced); 2055 case Instruction::SIToFP: 2056 return getSIToFP(C, Ty, OnlyIfReduced); 2057 case Instruction::FPToUI: 2058 return getFPToUI(C, Ty, OnlyIfReduced); 2059 case Instruction::FPToSI: 2060 return getFPToSI(C, Ty, OnlyIfReduced); 2061 case Instruction::PtrToInt: 2062 return getPtrToInt(C, Ty, OnlyIfReduced); 2063 case Instruction::IntToPtr: 2064 return getIntToPtr(C, Ty, OnlyIfReduced); 2065 case Instruction::BitCast: 2066 return getBitCast(C, Ty, OnlyIfReduced); 2067 case Instruction::AddrSpaceCast: 2068 return getAddrSpaceCast(C, Ty, OnlyIfReduced); 2069 } 2070 } 2071 2072 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { 2073 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2074 return getBitCast(C, Ty); 2075 return getZExt(C, Ty); 2076 } 2077 2078 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { 2079 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2080 return getBitCast(C, Ty); 2081 return getSExt(C, Ty); 2082 } 2083 2084 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { 2085 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) 2086 return getBitCast(C, Ty); 2087 return getTrunc(C, Ty); 2088 } 2089 2090 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { 2091 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2092 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && 2093 "Invalid cast"); 2094 2095 if (Ty->isIntOrIntVectorTy()) 2096 return getPtrToInt(S, Ty); 2097 2098 unsigned SrcAS = S->getType()->getPointerAddressSpace(); 2099 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) 2100 return getAddrSpaceCast(S, Ty); 2101 2102 return getBitCast(S, Ty); 2103 } 2104 2105 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, 2106 Type *Ty) { 2107 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); 2108 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); 2109 2110 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) 2111 return getAddrSpaceCast(S, Ty); 2112 2113 return getBitCast(S, Ty); 2114 } 2115 2116 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { 2117 assert(C->getType()->isIntOrIntVectorTy() && 2118 Ty->isIntOrIntVectorTy() && "Invalid cast"); 2119 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2120 unsigned DstBits = Ty->getScalarSizeInBits(); 2121 Instruction::CastOps opcode = 2122 (SrcBits == DstBits ? Instruction::BitCast : 2123 (SrcBits > DstBits ? Instruction::Trunc : 2124 (isSigned ? Instruction::SExt : Instruction::ZExt))); 2125 return getCast(opcode, C, Ty); 2126 } 2127 2128 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { 2129 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2130 "Invalid cast"); 2131 unsigned SrcBits = C->getType()->getScalarSizeInBits(); 2132 unsigned DstBits = Ty->getScalarSizeInBits(); 2133 if (SrcBits == DstBits) 2134 return C; // Avoid a useless cast 2135 Instruction::CastOps opcode = 2136 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); 2137 return getCast(opcode, C, Ty); 2138 } 2139 2140 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2141 #ifndef NDEBUG 2142 bool fromVec = isa<VectorType>(C->getType()); 2143 bool toVec = isa<VectorType>(Ty); 2144 #endif 2145 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2146 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); 2147 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); 2148 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2149 "SrcTy must be larger than DestTy for Trunc!"); 2150 2151 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); 2152 } 2153 2154 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2155 #ifndef NDEBUG 2156 bool fromVec = isa<VectorType>(C->getType()); 2157 bool toVec = isa<VectorType>(Ty); 2158 #endif 2159 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2160 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); 2161 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); 2162 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2163 "SrcTy must be smaller than DestTy for SExt!"); 2164 2165 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); 2166 } 2167 2168 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { 2169 #ifndef NDEBUG 2170 bool fromVec = isa<VectorType>(C->getType()); 2171 bool toVec = isa<VectorType>(Ty); 2172 #endif 2173 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2174 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); 2175 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); 2176 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2177 "SrcTy must be smaller than DestTy for ZExt!"); 2178 2179 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); 2180 } 2181 2182 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { 2183 #ifndef NDEBUG 2184 bool fromVec = isa<VectorType>(C->getType()); 2185 bool toVec = isa<VectorType>(Ty); 2186 #endif 2187 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2188 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2189 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& 2190 "This is an illegal floating point truncation!"); 2191 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); 2192 } 2193 2194 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { 2195 #ifndef NDEBUG 2196 bool fromVec = isa<VectorType>(C->getType()); 2197 bool toVec = isa<VectorType>(Ty); 2198 #endif 2199 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2200 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && 2201 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& 2202 "This is an illegal floating point extension!"); 2203 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); 2204 } 2205 2206 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2207 #ifndef NDEBUG 2208 bool fromVec = isa<VectorType>(C->getType()); 2209 bool toVec = isa<VectorType>(Ty); 2210 #endif 2211 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2212 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2213 "This is an illegal uint to floating point cast!"); 2214 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); 2215 } 2216 2217 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { 2218 #ifndef NDEBUG 2219 bool fromVec = isa<VectorType>(C->getType()); 2220 bool toVec = isa<VectorType>(Ty); 2221 #endif 2222 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2223 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && 2224 "This is an illegal sint to floating point cast!"); 2225 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); 2226 } 2227 2228 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2229 #ifndef NDEBUG 2230 bool fromVec = isa<VectorType>(C->getType()); 2231 bool toVec = isa<VectorType>(Ty); 2232 #endif 2233 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2234 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2235 "This is an illegal floating point to uint cast!"); 2236 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); 2237 } 2238 2239 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { 2240 #ifndef NDEBUG 2241 bool fromVec = isa<VectorType>(C->getType()); 2242 bool toVec = isa<VectorType>(Ty); 2243 #endif 2244 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); 2245 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && 2246 "This is an illegal floating point to sint cast!"); 2247 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); 2248 } 2249 2250 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, 2251 bool OnlyIfReduced) { 2252 assert(C->getType()->isPtrOrPtrVectorTy() && 2253 "PtrToInt source must be pointer or pointer vector"); 2254 assert(DstTy->isIntOrIntVectorTy() && 2255 "PtrToInt destination must be integer or integer vector"); 2256 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2257 if (isa<VectorType>(C->getType())) 2258 assert(cast<FixedVectorType>(C->getType())->getNumElements() == 2259 cast<FixedVectorType>(DstTy)->getNumElements() && 2260 "Invalid cast between a different number of vector elements"); 2261 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); 2262 } 2263 2264 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, 2265 bool OnlyIfReduced) { 2266 assert(C->getType()->isIntOrIntVectorTy() && 2267 "IntToPtr source must be integer or integer vector"); 2268 assert(DstTy->isPtrOrPtrVectorTy() && 2269 "IntToPtr destination must be a pointer or pointer vector"); 2270 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); 2271 if (isa<VectorType>(C->getType())) 2272 assert(cast<VectorType>(C->getType())->getElementCount() == 2273 cast<VectorType>(DstTy)->getElementCount() && 2274 "Invalid cast between a different number of vector elements"); 2275 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); 2276 } 2277 2278 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, 2279 bool OnlyIfReduced) { 2280 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && 2281 "Invalid constantexpr bitcast!"); 2282 2283 // It is common to ask for a bitcast of a value to its own type, handle this 2284 // speedily. 2285 if (C->getType() == DstTy) return C; 2286 2287 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); 2288 } 2289 2290 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, 2291 bool OnlyIfReduced) { 2292 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && 2293 "Invalid constantexpr addrspacecast!"); 2294 2295 // Canonicalize addrspacecasts between different pointer types by first 2296 // bitcasting the pointer type and then converting the address space. 2297 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType()); 2298 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType()); 2299 if (!SrcScalarTy->hasSameElementTypeAs(DstScalarTy)) { 2300 Type *MidTy = PointerType::getWithSamePointeeType( 2301 DstScalarTy, SrcScalarTy->getAddressSpace()); 2302 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) { 2303 // Handle vectors of pointers. 2304 MidTy = FixedVectorType::get(MidTy, 2305 cast<FixedVectorType>(VT)->getNumElements()); 2306 } 2307 C = getBitCast(C, MidTy); 2308 } 2309 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); 2310 } 2311 2312 Constant *ConstantExpr::get(unsigned Opcode, Constant *C, unsigned Flags, 2313 Type *OnlyIfReducedTy) { 2314 // Check the operands for consistency first. 2315 assert(Instruction::isUnaryOp(Opcode) && 2316 "Invalid opcode in unary constant expression"); 2317 2318 #ifndef NDEBUG 2319 switch (Opcode) { 2320 case Instruction::FNeg: 2321 assert(C->getType()->isFPOrFPVectorTy() && 2322 "Tried to create a floating-point operation on a " 2323 "non-floating-point type!"); 2324 break; 2325 default: 2326 break; 2327 } 2328 #endif 2329 2330 if (Constant *FC = ConstantFoldUnaryInstruction(Opcode, C)) 2331 return FC; 2332 2333 if (OnlyIfReducedTy == C->getType()) 2334 return nullptr; 2335 2336 Constant *ArgVec[] = { C }; 2337 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2338 2339 LLVMContextImpl *pImpl = C->getContext().pImpl; 2340 return pImpl->ExprConstants.getOrCreate(C->getType(), Key); 2341 } 2342 2343 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, 2344 unsigned Flags, Type *OnlyIfReducedTy) { 2345 // Check the operands for consistency first. 2346 assert(Instruction::isBinaryOp(Opcode) && 2347 "Invalid opcode in binary constant expression"); 2348 assert(C1->getType() == C2->getType() && 2349 "Operand types in binary constant expression should match"); 2350 2351 #ifndef NDEBUG 2352 switch (Opcode) { 2353 case Instruction::Add: 2354 case Instruction::Sub: 2355 case Instruction::Mul: 2356 case Instruction::UDiv: 2357 case Instruction::SDiv: 2358 case Instruction::URem: 2359 case Instruction::SRem: 2360 assert(C1->getType()->isIntOrIntVectorTy() && 2361 "Tried to create an integer operation on a non-integer type!"); 2362 break; 2363 case Instruction::FAdd: 2364 case Instruction::FSub: 2365 case Instruction::FMul: 2366 case Instruction::FDiv: 2367 case Instruction::FRem: 2368 assert(C1->getType()->isFPOrFPVectorTy() && 2369 "Tried to create a floating-point operation on a " 2370 "non-floating-point type!"); 2371 break; 2372 case Instruction::And: 2373 case Instruction::Or: 2374 case Instruction::Xor: 2375 assert(C1->getType()->isIntOrIntVectorTy() && 2376 "Tried to create a logical operation on a non-integral type!"); 2377 break; 2378 case Instruction::Shl: 2379 case Instruction::LShr: 2380 case Instruction::AShr: 2381 assert(C1->getType()->isIntOrIntVectorTy() && 2382 "Tried to create a shift operation on a non-integer type!"); 2383 break; 2384 default: 2385 break; 2386 } 2387 #endif 2388 2389 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) 2390 return FC; 2391 2392 if (OnlyIfReducedTy == C1->getType()) 2393 return nullptr; 2394 2395 Constant *ArgVec[] = { C1, C2 }; 2396 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); 2397 2398 LLVMContextImpl *pImpl = C1->getContext().pImpl; 2399 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); 2400 } 2401 2402 Constant *ConstantExpr::getSizeOf(Type* Ty) { 2403 // sizeof is implemented as: (i64) gep (Ty*)null, 1 2404 // Note that a non-inbounds gep is used, as null isn't within any object. 2405 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2406 Constant *GEP = getGetElementPtr( 2407 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2408 return getPtrToInt(GEP, 2409 Type::getInt64Ty(Ty->getContext())); 2410 } 2411 2412 Constant *ConstantExpr::getAlignOf(Type* Ty) { 2413 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 2414 // Note that a non-inbounds gep is used, as null isn't within any object. 2415 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); 2416 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); 2417 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); 2418 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); 2419 Constant *Indices[2] = { Zero, One }; 2420 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); 2421 return getPtrToInt(GEP, 2422 Type::getInt64Ty(Ty->getContext())); 2423 } 2424 2425 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { 2426 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), 2427 FieldNo)); 2428 } 2429 2430 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { 2431 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo 2432 // Note that a non-inbounds gep is used, as null isn't within any object. 2433 Constant *GEPIdx[] = { 2434 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), 2435 FieldNo 2436 }; 2437 Constant *GEP = getGetElementPtr( 2438 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); 2439 return getPtrToInt(GEP, 2440 Type::getInt64Ty(Ty->getContext())); 2441 } 2442 2443 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, 2444 Constant *C2, bool OnlyIfReduced) { 2445 assert(C1->getType() == C2->getType() && "Op types should be identical!"); 2446 2447 switch (Predicate) { 2448 default: llvm_unreachable("Invalid CmpInst predicate"); 2449 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: 2450 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: 2451 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: 2452 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: 2453 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: 2454 case CmpInst::FCMP_TRUE: 2455 return getFCmp(Predicate, C1, C2, OnlyIfReduced); 2456 2457 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: 2458 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: 2459 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: 2460 case CmpInst::ICMP_SLE: 2461 return getICmp(Predicate, C1, C2, OnlyIfReduced); 2462 } 2463 } 2464 2465 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2, 2466 Type *OnlyIfReducedTy) { 2467 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); 2468 2469 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) 2470 return SC; // Fold common cases 2471 2472 if (OnlyIfReducedTy == V1->getType()) 2473 return nullptr; 2474 2475 Constant *ArgVec[] = { C, V1, V2 }; 2476 ConstantExprKeyType Key(Instruction::Select, ArgVec); 2477 2478 LLVMContextImpl *pImpl = C->getContext().pImpl; 2479 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); 2480 } 2481 2482 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, 2483 ArrayRef<Value *> Idxs, bool InBounds, 2484 Optional<unsigned> InRangeIndex, 2485 Type *OnlyIfReducedTy) { 2486 PointerType *OrigPtrTy = cast<PointerType>(C->getType()->getScalarType()); 2487 assert(Ty && "Must specify element type"); 2488 assert(OrigPtrTy->isOpaqueOrPointeeTypeMatches(Ty)); 2489 2490 if (Constant *FC = 2491 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) 2492 return FC; // Fold a few common cases. 2493 2494 // Get the result type of the getelementptr! 2495 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs); 2496 assert(DestTy && "GEP indices invalid!"); 2497 unsigned AS = OrigPtrTy->getAddressSpace(); 2498 Type *ReqTy = OrigPtrTy->isOpaque() 2499 ? PointerType::get(OrigPtrTy->getContext(), AS) 2500 : DestTy->getPointerTo(AS); 2501 2502 auto EltCount = ElementCount::getFixed(0); 2503 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) 2504 EltCount = VecTy->getElementCount(); 2505 else 2506 for (auto Idx : Idxs) 2507 if (VectorType *VecTy = dyn_cast<VectorType>(Idx->getType())) 2508 EltCount = VecTy->getElementCount(); 2509 2510 if (EltCount.isNonZero()) 2511 ReqTy = VectorType::get(ReqTy, EltCount); 2512 2513 if (OnlyIfReducedTy == ReqTy) 2514 return nullptr; 2515 2516 // Look up the constant in the table first to ensure uniqueness 2517 std::vector<Constant*> ArgVec; 2518 ArgVec.reserve(1 + Idxs.size()); 2519 ArgVec.push_back(C); 2520 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); 2521 for (; GTI != GTE; ++GTI) { 2522 auto *Idx = cast<Constant>(GTI.getOperand()); 2523 assert( 2524 (!isa<VectorType>(Idx->getType()) || 2525 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && 2526 "getelementptr index type missmatch"); 2527 2528 if (GTI.isStruct() && Idx->getType()->isVectorTy()) { 2529 Idx = Idx->getSplatValue(); 2530 } else if (GTI.isSequential() && EltCount.isNonZero() && 2531 !Idx->getType()->isVectorTy()) { 2532 Idx = ConstantVector::getSplat(EltCount, Idx); 2533 } 2534 ArgVec.push_back(Idx); 2535 } 2536 2537 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; 2538 if (InRangeIndex && *InRangeIndex < 63) 2539 SubClassOptionalData |= (*InRangeIndex + 1) << 1; 2540 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, 2541 SubClassOptionalData, None, None, Ty); 2542 2543 LLVMContextImpl *pImpl = C->getContext().pImpl; 2544 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2545 } 2546 2547 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, 2548 Constant *RHS, bool OnlyIfReduced) { 2549 assert(LHS->getType() == RHS->getType()); 2550 assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && 2551 "Invalid ICmp Predicate"); 2552 2553 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2554 return FC; // Fold a few common cases... 2555 2556 if (OnlyIfReduced) 2557 return nullptr; 2558 2559 // Look up the constant in the table first to ensure uniqueness 2560 Constant *ArgVec[] = { LHS, RHS }; 2561 // Get the key type with both the opcode and predicate 2562 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred); 2563 2564 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2565 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2566 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2567 2568 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2569 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2570 } 2571 2572 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, 2573 Constant *RHS, bool OnlyIfReduced) { 2574 assert(LHS->getType() == RHS->getType()); 2575 assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && 2576 "Invalid FCmp Predicate"); 2577 2578 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) 2579 return FC; // Fold a few common cases... 2580 2581 if (OnlyIfReduced) 2582 return nullptr; 2583 2584 // Look up the constant in the table first to ensure uniqueness 2585 Constant *ArgVec[] = { LHS, RHS }; 2586 // Get the key type with both the opcode and predicate 2587 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred); 2588 2589 Type *ResultTy = Type::getInt1Ty(LHS->getContext()); 2590 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) 2591 ResultTy = VectorType::get(ResultTy, VT->getElementCount()); 2592 2593 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; 2594 return pImpl->ExprConstants.getOrCreate(ResultTy, Key); 2595 } 2596 2597 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, 2598 Type *OnlyIfReducedTy) { 2599 assert(Val->getType()->isVectorTy() && 2600 "Tried to create extractelement operation on non-vector type!"); 2601 assert(Idx->getType()->isIntegerTy() && 2602 "Extractelement index must be an integer type!"); 2603 2604 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) 2605 return FC; // Fold a few common cases. 2606 2607 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); 2608 if (OnlyIfReducedTy == ReqTy) 2609 return nullptr; 2610 2611 // Look up the constant in the table first to ensure uniqueness 2612 Constant *ArgVec[] = { Val, Idx }; 2613 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); 2614 2615 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2616 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2617 } 2618 2619 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 2620 Constant *Idx, Type *OnlyIfReducedTy) { 2621 assert(Val->getType()->isVectorTy() && 2622 "Tried to create insertelement operation on non-vector type!"); 2623 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && 2624 "Insertelement types must match!"); 2625 assert(Idx->getType()->isIntegerTy() && 2626 "Insertelement index must be i32 type!"); 2627 2628 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) 2629 return FC; // Fold a few common cases. 2630 2631 if (OnlyIfReducedTy == Val->getType()) 2632 return nullptr; 2633 2634 // Look up the constant in the table first to ensure uniqueness 2635 Constant *ArgVec[] = { Val, Elt, Idx }; 2636 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); 2637 2638 LLVMContextImpl *pImpl = Val->getContext().pImpl; 2639 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); 2640 } 2641 2642 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 2643 ArrayRef<int> Mask, 2644 Type *OnlyIfReducedTy) { 2645 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && 2646 "Invalid shuffle vector constant expr operands!"); 2647 2648 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) 2649 return FC; // Fold a few common cases. 2650 2651 unsigned NElts = Mask.size(); 2652 auto V1VTy = cast<VectorType>(V1->getType()); 2653 Type *EltTy = V1VTy->getElementType(); 2654 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); 2655 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); 2656 2657 if (OnlyIfReducedTy == ShufTy) 2658 return nullptr; 2659 2660 // Look up the constant in the table first to ensure uniqueness 2661 Constant *ArgVec[] = {V1, V2}; 2662 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, None, Mask); 2663 2664 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; 2665 return pImpl->ExprConstants.getOrCreate(ShufTy, Key); 2666 } 2667 2668 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, 2669 ArrayRef<unsigned> Idxs, 2670 Type *OnlyIfReducedTy) { 2671 assert(Agg->getType()->isFirstClassType() && 2672 "Non-first-class type for constant insertvalue expression"); 2673 2674 assert(ExtractValueInst::getIndexedType(Agg->getType(), 2675 Idxs) == Val->getType() && 2676 "insertvalue indices invalid!"); 2677 Type *ReqTy = Val->getType(); 2678 2679 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs)) 2680 return FC; 2681 2682 if (OnlyIfReducedTy == ReqTy) 2683 return nullptr; 2684 2685 Constant *ArgVec[] = { Agg, Val }; 2686 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs); 2687 2688 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2689 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2690 } 2691 2692 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, 2693 Type *OnlyIfReducedTy) { 2694 assert(Agg->getType()->isFirstClassType() && 2695 "Tried to create extractelement operation on non-first-class type!"); 2696 2697 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); 2698 (void)ReqTy; 2699 assert(ReqTy && "extractvalue indices invalid!"); 2700 2701 assert(Agg->getType()->isFirstClassType() && 2702 "Non-first-class type for constant extractvalue expression"); 2703 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs)) 2704 return FC; 2705 2706 if (OnlyIfReducedTy == ReqTy) 2707 return nullptr; 2708 2709 Constant *ArgVec[] = { Agg }; 2710 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs); 2711 2712 LLVMContextImpl *pImpl = Agg->getContext().pImpl; 2713 return pImpl->ExprConstants.getOrCreate(ReqTy, Key); 2714 } 2715 2716 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { 2717 assert(C->getType()->isIntOrIntVectorTy() && 2718 "Cannot NEG a nonintegral value!"); 2719 return getSub(ConstantFP::getZeroValueForNegation(C->getType()), 2720 C, HasNUW, HasNSW); 2721 } 2722 2723 Constant *ConstantExpr::getFNeg(Constant *C) { 2724 assert(C->getType()->isFPOrFPVectorTy() && 2725 "Cannot FNEG a non-floating-point value!"); 2726 return get(Instruction::FNeg, C); 2727 } 2728 2729 Constant *ConstantExpr::getNot(Constant *C) { 2730 assert(C->getType()->isIntOrIntVectorTy() && 2731 "Cannot NOT a nonintegral value!"); 2732 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); 2733 } 2734 2735 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, 2736 bool HasNUW, bool HasNSW) { 2737 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2738 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2739 return get(Instruction::Add, C1, C2, Flags); 2740 } 2741 2742 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { 2743 return get(Instruction::FAdd, C1, C2); 2744 } 2745 2746 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, 2747 bool HasNUW, bool HasNSW) { 2748 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2749 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2750 return get(Instruction::Sub, C1, C2, Flags); 2751 } 2752 2753 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { 2754 return get(Instruction::FSub, C1, C2); 2755 } 2756 2757 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, 2758 bool HasNUW, bool HasNSW) { 2759 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2760 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2761 return get(Instruction::Mul, C1, C2, Flags); 2762 } 2763 2764 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { 2765 return get(Instruction::FMul, C1, C2); 2766 } 2767 2768 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { 2769 return get(Instruction::UDiv, C1, C2, 2770 isExact ? PossiblyExactOperator::IsExact : 0); 2771 } 2772 2773 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { 2774 return get(Instruction::SDiv, C1, C2, 2775 isExact ? PossiblyExactOperator::IsExact : 0); 2776 } 2777 2778 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { 2779 return get(Instruction::FDiv, C1, C2); 2780 } 2781 2782 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { 2783 return get(Instruction::URem, C1, C2); 2784 } 2785 2786 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { 2787 return get(Instruction::SRem, C1, C2); 2788 } 2789 2790 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { 2791 return get(Instruction::FRem, C1, C2); 2792 } 2793 2794 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { 2795 return get(Instruction::And, C1, C2); 2796 } 2797 2798 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { 2799 return get(Instruction::Or, C1, C2); 2800 } 2801 2802 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { 2803 return get(Instruction::Xor, C1, C2); 2804 } 2805 2806 Constant *ConstantExpr::getUMin(Constant *C1, Constant *C2) { 2807 Constant *Cmp = ConstantExpr::getICmp(CmpInst::ICMP_ULT, C1, C2); 2808 return getSelect(Cmp, C1, C2); 2809 } 2810 2811 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, 2812 bool HasNUW, bool HasNSW) { 2813 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | 2814 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); 2815 return get(Instruction::Shl, C1, C2, Flags); 2816 } 2817 2818 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { 2819 return get(Instruction::LShr, C1, C2, 2820 isExact ? PossiblyExactOperator::IsExact : 0); 2821 } 2822 2823 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { 2824 return get(Instruction::AShr, C1, C2, 2825 isExact ? PossiblyExactOperator::IsExact : 0); 2826 } 2827 2828 Constant *ConstantExpr::getExactLogBase2(Constant *C) { 2829 Type *Ty = C->getType(); 2830 const APInt *IVal; 2831 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) 2832 return ConstantInt::get(Ty, IVal->logBase2()); 2833 2834 // FIXME: We can extract pow of 2 of splat constant for scalable vectors. 2835 auto *VecTy = dyn_cast<FixedVectorType>(Ty); 2836 if (!VecTy) 2837 return nullptr; 2838 2839 SmallVector<Constant *, 4> Elts; 2840 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 2841 Constant *Elt = C->getAggregateElement(I); 2842 if (!Elt) 2843 return nullptr; 2844 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. 2845 if (isa<UndefValue>(Elt)) { 2846 Elts.push_back(Constant::getNullValue(Ty->getScalarType())); 2847 continue; 2848 } 2849 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) 2850 return nullptr; 2851 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); 2852 } 2853 2854 return ConstantVector::get(Elts); 2855 } 2856 2857 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, 2858 bool AllowRHSConstant) { 2859 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); 2860 2861 // Commutative opcodes: it does not matter if AllowRHSConstant is set. 2862 if (Instruction::isCommutative(Opcode)) { 2863 switch (Opcode) { 2864 case Instruction::Add: // X + 0 = X 2865 case Instruction::Or: // X | 0 = X 2866 case Instruction::Xor: // X ^ 0 = X 2867 return Constant::getNullValue(Ty); 2868 case Instruction::Mul: // X * 1 = X 2869 return ConstantInt::get(Ty, 1); 2870 case Instruction::And: // X & -1 = X 2871 return Constant::getAllOnesValue(Ty); 2872 case Instruction::FAdd: // X + -0.0 = X 2873 // TODO: If the fadd has 'nsz', should we return +0.0? 2874 return ConstantFP::getNegativeZero(Ty); 2875 case Instruction::FMul: // X * 1.0 = X 2876 return ConstantFP::get(Ty, 1.0); 2877 default: 2878 llvm_unreachable("Every commutative binop has an identity constant"); 2879 } 2880 } 2881 2882 // Non-commutative opcodes: AllowRHSConstant must be set. 2883 if (!AllowRHSConstant) 2884 return nullptr; 2885 2886 switch (Opcode) { 2887 case Instruction::Sub: // X - 0 = X 2888 case Instruction::Shl: // X << 0 = X 2889 case Instruction::LShr: // X >>u 0 = X 2890 case Instruction::AShr: // X >> 0 = X 2891 case Instruction::FSub: // X - 0.0 = X 2892 return Constant::getNullValue(Ty); 2893 case Instruction::SDiv: // X / 1 = X 2894 case Instruction::UDiv: // X /u 1 = X 2895 return ConstantInt::get(Ty, 1); 2896 case Instruction::FDiv: // X / 1.0 = X 2897 return ConstantFP::get(Ty, 1.0); 2898 default: 2899 return nullptr; 2900 } 2901 } 2902 2903 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { 2904 switch (Opcode) { 2905 default: 2906 // Doesn't have an absorber. 2907 return nullptr; 2908 2909 case Instruction::Or: 2910 return Constant::getAllOnesValue(Ty); 2911 2912 case Instruction::And: 2913 case Instruction::Mul: 2914 return Constant::getNullValue(Ty); 2915 } 2916 } 2917 2918 /// Remove the constant from the constant table. 2919 void ConstantExpr::destroyConstantImpl() { 2920 getType()->getContext().pImpl->ExprConstants.remove(this); 2921 } 2922 2923 const char *ConstantExpr::getOpcodeName() const { 2924 return Instruction::getOpcodeName(getOpcode()); 2925 } 2926 2927 GetElementPtrConstantExpr::GetElementPtrConstantExpr( 2928 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) 2929 : ConstantExpr(DestTy, Instruction::GetElementPtr, 2930 OperandTraits<GetElementPtrConstantExpr>::op_end(this) - 2931 (IdxList.size() + 1), 2932 IdxList.size() + 1), 2933 SrcElementTy(SrcElementTy), 2934 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { 2935 Op<0>() = C; 2936 Use *OperandList = getOperandList(); 2937 for (unsigned i = 0, E = IdxList.size(); i != E; ++i) 2938 OperandList[i+1] = IdxList[i]; 2939 } 2940 2941 Type *GetElementPtrConstantExpr::getSourceElementType() const { 2942 return SrcElementTy; 2943 } 2944 2945 Type *GetElementPtrConstantExpr::getResultElementType() const { 2946 return ResElementTy; 2947 } 2948 2949 //===----------------------------------------------------------------------===// 2950 // ConstantData* implementations 2951 2952 Type *ConstantDataSequential::getElementType() const { 2953 if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) 2954 return ATy->getElementType(); 2955 return cast<VectorType>(getType())->getElementType(); 2956 } 2957 2958 StringRef ConstantDataSequential::getRawDataValues() const { 2959 return StringRef(DataElements, getNumElements()*getElementByteSize()); 2960 } 2961 2962 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { 2963 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2964 return true; 2965 if (auto *IT = dyn_cast<IntegerType>(Ty)) { 2966 switch (IT->getBitWidth()) { 2967 case 8: 2968 case 16: 2969 case 32: 2970 case 64: 2971 return true; 2972 default: break; 2973 } 2974 } 2975 return false; 2976 } 2977 2978 unsigned ConstantDataSequential::getNumElements() const { 2979 if (ArrayType *AT = dyn_cast<ArrayType>(getType())) 2980 return AT->getNumElements(); 2981 return cast<FixedVectorType>(getType())->getNumElements(); 2982 } 2983 2984 2985 uint64_t ConstantDataSequential::getElementByteSize() const { 2986 return getElementType()->getPrimitiveSizeInBits()/8; 2987 } 2988 2989 /// Return the start of the specified element. 2990 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { 2991 assert(Elt < getNumElements() && "Invalid Elt"); 2992 return DataElements+Elt*getElementByteSize(); 2993 } 2994 2995 2996 /// Return true if the array is empty or all zeros. 2997 static bool isAllZeros(StringRef Arr) { 2998 for (char I : Arr) 2999 if (I != 0) 3000 return false; 3001 return true; 3002 } 3003 3004 /// This is the underlying implementation of all of the 3005 /// ConstantDataSequential::get methods. They all thunk down to here, providing 3006 /// the correct element type. We take the bytes in as a StringRef because 3007 /// we *want* an underlying "char*" to avoid TBAA type punning violations. 3008 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { 3009 #ifndef NDEBUG 3010 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) 3011 assert(isElementTypeCompatible(ATy->getElementType())); 3012 else 3013 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); 3014 #endif 3015 // If the elements are all zero or there are no elements, return a CAZ, which 3016 // is more dense and canonical. 3017 if (isAllZeros(Elements)) 3018 return ConstantAggregateZero::get(Ty); 3019 3020 // Do a lookup to see if we have already formed one of these. 3021 auto &Slot = 3022 *Ty->getContext() 3023 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) 3024 .first; 3025 3026 // The bucket can point to a linked list of different CDS's that have the same 3027 // body but different types. For example, 0,0,0,1 could be a 4 element array 3028 // of i8, or a 1-element array of i32. They'll both end up in the same 3029 /// StringMap bucket, linked up by their Next pointers. Walk the list. 3030 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; 3031 for (; *Entry; Entry = &(*Entry)->Next) 3032 if ((*Entry)->getType() == Ty) 3033 return Entry->get(); 3034 3035 // Okay, we didn't get a hit. Create a node of the right class, link it in, 3036 // and return it. 3037 if (isa<ArrayType>(Ty)) { 3038 // Use reset because std::make_unique can't access the constructor. 3039 Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); 3040 return Entry->get(); 3041 } 3042 3043 assert(isa<VectorType>(Ty)); 3044 // Use reset because std::make_unique can't access the constructor. 3045 Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); 3046 return Entry->get(); 3047 } 3048 3049 void ConstantDataSequential::destroyConstantImpl() { 3050 // Remove the constant from the StringMap. 3051 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = 3052 getType()->getContext().pImpl->CDSConstants; 3053 3054 auto Slot = CDSConstants.find(getRawDataValues()); 3055 3056 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); 3057 3058 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); 3059 3060 // Remove the entry from the hash table. 3061 if (!(*Entry)->Next) { 3062 // If there is only one value in the bucket (common case) it must be this 3063 // entry, and removing the entry should remove the bucket completely. 3064 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); 3065 getContext().pImpl->CDSConstants.erase(Slot); 3066 return; 3067 } 3068 3069 // Otherwise, there are multiple entries linked off the bucket, unlink the 3070 // node we care about but keep the bucket around. 3071 while (true) { 3072 std::unique_ptr<ConstantDataSequential> &Node = *Entry; 3073 assert(Node && "Didn't find entry in its uniquing hash table!"); 3074 // If we found our entry, unlink it from the list and we're done. 3075 if (Node.get() == this) { 3076 Node = std::move(Node->Next); 3077 return; 3078 } 3079 3080 Entry = &Node->Next; 3081 } 3082 } 3083 3084 /// getFP() constructors - Return a constant of array type with a float 3085 /// element type taken from argument `ElementType', and count taken from 3086 /// argument `Elts'. The amount of bits of the contained type must match the 3087 /// number of bits of the type contained in the passed in ArrayRef. 3088 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3089 /// that this can return a ConstantAggregateZero object. 3090 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { 3091 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3092 "Element type is not a 16-bit float type"); 3093 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3094 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3095 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3096 } 3097 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { 3098 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3099 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3100 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3101 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3102 } 3103 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { 3104 assert(ElementType->isDoubleTy() && 3105 "Element type is not a 64-bit float type"); 3106 Type *Ty = ArrayType::get(ElementType, Elts.size()); 3107 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3108 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3109 } 3110 3111 Constant *ConstantDataArray::getString(LLVMContext &Context, 3112 StringRef Str, bool AddNull) { 3113 if (!AddNull) { 3114 const uint8_t *Data = Str.bytes_begin(); 3115 return get(Context, makeArrayRef(Data, Str.size())); 3116 } 3117 3118 SmallVector<uint8_t, 64> ElementVals; 3119 ElementVals.append(Str.begin(), Str.end()); 3120 ElementVals.push_back(0); 3121 return get(Context, ElementVals); 3122 } 3123 3124 /// get() constructors - Return a constant with vector type with an element 3125 /// count and element type matching the ArrayRef passed in. Note that this 3126 /// can return a ConstantAggregateZero object. 3127 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ 3128 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); 3129 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3130 return getImpl(StringRef(Data, Elts.size() * 1), Ty); 3131 } 3132 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ 3133 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); 3134 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3135 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3136 } 3137 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ 3138 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); 3139 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3140 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3141 } 3142 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ 3143 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); 3144 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3145 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3146 } 3147 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { 3148 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); 3149 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3150 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3151 } 3152 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { 3153 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); 3154 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3155 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3156 } 3157 3158 /// getFP() constructors - Return a constant of vector type with a float 3159 /// element type taken from argument `ElementType', and count taken from 3160 /// argument `Elts'. The amount of bits of the contained type must match the 3161 /// number of bits of the type contained in the passed in ArrayRef. 3162 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note 3163 /// that this can return a ConstantAggregateZero object. 3164 Constant *ConstantDataVector::getFP(Type *ElementType, 3165 ArrayRef<uint16_t> Elts) { 3166 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && 3167 "Element type is not a 16-bit float type"); 3168 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3169 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3170 return getImpl(StringRef(Data, Elts.size() * 2), Ty); 3171 } 3172 Constant *ConstantDataVector::getFP(Type *ElementType, 3173 ArrayRef<uint32_t> Elts) { 3174 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); 3175 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3176 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3177 return getImpl(StringRef(Data, Elts.size() * 4), Ty); 3178 } 3179 Constant *ConstantDataVector::getFP(Type *ElementType, 3180 ArrayRef<uint64_t> Elts) { 3181 assert(ElementType->isDoubleTy() && 3182 "Element type is not a 64-bit float type"); 3183 auto *Ty = FixedVectorType::get(ElementType, Elts.size()); 3184 const char *Data = reinterpret_cast<const char *>(Elts.data()); 3185 return getImpl(StringRef(Data, Elts.size() * 8), Ty); 3186 } 3187 3188 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { 3189 assert(isElementTypeCompatible(V->getType()) && 3190 "Element type not compatible with ConstantData"); 3191 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3192 if (CI->getType()->isIntegerTy(8)) { 3193 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); 3194 return get(V->getContext(), Elts); 3195 } 3196 if (CI->getType()->isIntegerTy(16)) { 3197 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); 3198 return get(V->getContext(), Elts); 3199 } 3200 if (CI->getType()->isIntegerTy(32)) { 3201 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); 3202 return get(V->getContext(), Elts); 3203 } 3204 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); 3205 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); 3206 return get(V->getContext(), Elts); 3207 } 3208 3209 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3210 if (CFP->getType()->isHalfTy()) { 3211 SmallVector<uint16_t, 16> Elts( 3212 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3213 return getFP(V->getType(), Elts); 3214 } 3215 if (CFP->getType()->isBFloatTy()) { 3216 SmallVector<uint16_t, 16> Elts( 3217 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3218 return getFP(V->getType(), Elts); 3219 } 3220 if (CFP->getType()->isFloatTy()) { 3221 SmallVector<uint32_t, 16> Elts( 3222 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3223 return getFP(V->getType(), Elts); 3224 } 3225 if (CFP->getType()->isDoubleTy()) { 3226 SmallVector<uint64_t, 16> Elts( 3227 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); 3228 return getFP(V->getType(), Elts); 3229 } 3230 } 3231 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); 3232 } 3233 3234 3235 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { 3236 assert(isa<IntegerType>(getElementType()) && 3237 "Accessor can only be used when element is an integer"); 3238 const char *EltPtr = getElementPointer(Elt); 3239 3240 // The data is stored in host byte order, make sure to cast back to the right 3241 // type to load with the right endianness. 3242 switch (getElementType()->getIntegerBitWidth()) { 3243 default: llvm_unreachable("Invalid bitwidth for CDS"); 3244 case 8: 3245 return *reinterpret_cast<const uint8_t *>(EltPtr); 3246 case 16: 3247 return *reinterpret_cast<const uint16_t *>(EltPtr); 3248 case 32: 3249 return *reinterpret_cast<const uint32_t *>(EltPtr); 3250 case 64: 3251 return *reinterpret_cast<const uint64_t *>(EltPtr); 3252 } 3253 } 3254 3255 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { 3256 assert(isa<IntegerType>(getElementType()) && 3257 "Accessor can only be used when element is an integer"); 3258 const char *EltPtr = getElementPointer(Elt); 3259 3260 // The data is stored in host byte order, make sure to cast back to the right 3261 // type to load with the right endianness. 3262 switch (getElementType()->getIntegerBitWidth()) { 3263 default: llvm_unreachable("Invalid bitwidth for CDS"); 3264 case 8: { 3265 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); 3266 return APInt(8, EltVal); 3267 } 3268 case 16: { 3269 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3270 return APInt(16, EltVal); 3271 } 3272 case 32: { 3273 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3274 return APInt(32, EltVal); 3275 } 3276 case 64: { 3277 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3278 return APInt(64, EltVal); 3279 } 3280 } 3281 } 3282 3283 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { 3284 const char *EltPtr = getElementPointer(Elt); 3285 3286 switch (getElementType()->getTypeID()) { 3287 default: 3288 llvm_unreachable("Accessor can only be used when element is float/double!"); 3289 case Type::HalfTyID: { 3290 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3291 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); 3292 } 3293 case Type::BFloatTyID: { 3294 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); 3295 return APFloat(APFloat::BFloat(), APInt(16, EltVal)); 3296 } 3297 case Type::FloatTyID: { 3298 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); 3299 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); 3300 } 3301 case Type::DoubleTyID: { 3302 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); 3303 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); 3304 } 3305 } 3306 } 3307 3308 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { 3309 assert(getElementType()->isFloatTy() && 3310 "Accessor can only be used when element is a 'float'"); 3311 return *reinterpret_cast<const float *>(getElementPointer(Elt)); 3312 } 3313 3314 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { 3315 assert(getElementType()->isDoubleTy() && 3316 "Accessor can only be used when element is a 'float'"); 3317 return *reinterpret_cast<const double *>(getElementPointer(Elt)); 3318 } 3319 3320 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { 3321 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || 3322 getElementType()->isFloatTy() || getElementType()->isDoubleTy()) 3323 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); 3324 3325 return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); 3326 } 3327 3328 bool ConstantDataSequential::isString(unsigned CharSize) const { 3329 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); 3330 } 3331 3332 bool ConstantDataSequential::isCString() const { 3333 if (!isString()) 3334 return false; 3335 3336 StringRef Str = getAsString(); 3337 3338 // The last value must be nul. 3339 if (Str.back() != 0) return false; 3340 3341 // Other elements must be non-nul. 3342 return !Str.drop_back().contains(0); 3343 } 3344 3345 bool ConstantDataVector::isSplatData() const { 3346 const char *Base = getRawDataValues().data(); 3347 3348 // Compare elements 1+ to the 0'th element. 3349 unsigned EltSize = getElementByteSize(); 3350 for (unsigned i = 1, e = getNumElements(); i != e; ++i) 3351 if (memcmp(Base, Base+i*EltSize, EltSize)) 3352 return false; 3353 3354 return true; 3355 } 3356 3357 bool ConstantDataVector::isSplat() const { 3358 if (!IsSplatSet) { 3359 IsSplatSet = true; 3360 IsSplat = isSplatData(); 3361 } 3362 return IsSplat; 3363 } 3364 3365 Constant *ConstantDataVector::getSplatValue() const { 3366 // If they're all the same, return the 0th one as a representative. 3367 return isSplat() ? getElementAsConstant(0) : nullptr; 3368 } 3369 3370 //===----------------------------------------------------------------------===// 3371 // handleOperandChange implementations 3372 3373 /// Update this constant array to change uses of 3374 /// 'From' to be uses of 'To'. This must update the uniquing data structures 3375 /// etc. 3376 /// 3377 /// Note that we intentionally replace all uses of From with To here. Consider 3378 /// a large array that uses 'From' 1000 times. By handling this case all here, 3379 /// ConstantArray::handleOperandChange is only invoked once, and that 3380 /// single invocation handles all 1000 uses. Handling them one at a time would 3381 /// work, but would be really slow because it would have to unique each updated 3382 /// array instance. 3383 /// 3384 void Constant::handleOperandChange(Value *From, Value *To) { 3385 Value *Replacement = nullptr; 3386 switch (getValueID()) { 3387 default: 3388 llvm_unreachable("Not a constant!"); 3389 #define HANDLE_CONSTANT(Name) \ 3390 case Value::Name##Val: \ 3391 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \ 3392 break; 3393 #include "llvm/IR/Value.def" 3394 } 3395 3396 // If handleOperandChangeImpl returned nullptr, then it handled 3397 // replacing itself and we don't want to delete or replace anything else here. 3398 if (!Replacement) 3399 return; 3400 3401 // I do need to replace this with an existing value. 3402 assert(Replacement != this && "I didn't contain From!"); 3403 3404 // Everyone using this now uses the replacement. 3405 replaceAllUsesWith(Replacement); 3406 3407 // Delete the old constant! 3408 destroyConstant(); 3409 } 3410 3411 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { 3412 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3413 Constant *ToC = cast<Constant>(To); 3414 3415 SmallVector<Constant*, 8> Values; 3416 Values.reserve(getNumOperands()); // Build replacement array. 3417 3418 // Fill values with the modified operands of the constant array. Also, 3419 // compute whether this turns into an all-zeros array. 3420 unsigned NumUpdated = 0; 3421 3422 // Keep track of whether all the values in the array are "ToC". 3423 bool AllSame = true; 3424 Use *OperandList = getOperandList(); 3425 unsigned OperandNo = 0; 3426 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { 3427 Constant *Val = cast<Constant>(O->get()); 3428 if (Val == From) { 3429 OperandNo = (O - OperandList); 3430 Val = ToC; 3431 ++NumUpdated; 3432 } 3433 Values.push_back(Val); 3434 AllSame &= Val == ToC; 3435 } 3436 3437 if (AllSame && ToC->isNullValue()) 3438 return ConstantAggregateZero::get(getType()); 3439 3440 if (AllSame && isa<UndefValue>(ToC)) 3441 return UndefValue::get(getType()); 3442 3443 // Check for any other type of constant-folding. 3444 if (Constant *C = getImpl(getType(), Values)) 3445 return C; 3446 3447 // Update to the new value. 3448 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( 3449 Values, this, From, ToC, NumUpdated, OperandNo); 3450 } 3451 3452 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { 3453 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3454 Constant *ToC = cast<Constant>(To); 3455 3456 Use *OperandList = getOperandList(); 3457 3458 SmallVector<Constant*, 8> Values; 3459 Values.reserve(getNumOperands()); // Build replacement struct. 3460 3461 // Fill values with the modified operands of the constant struct. Also, 3462 // compute whether this turns into an all-zeros struct. 3463 unsigned NumUpdated = 0; 3464 bool AllSame = true; 3465 unsigned OperandNo = 0; 3466 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { 3467 Constant *Val = cast<Constant>(O->get()); 3468 if (Val == From) { 3469 OperandNo = (O - OperandList); 3470 Val = ToC; 3471 ++NumUpdated; 3472 } 3473 Values.push_back(Val); 3474 AllSame &= Val == ToC; 3475 } 3476 3477 if (AllSame && ToC->isNullValue()) 3478 return ConstantAggregateZero::get(getType()); 3479 3480 if (AllSame && isa<UndefValue>(ToC)) 3481 return UndefValue::get(getType()); 3482 3483 // Update to the new value. 3484 return getContext().pImpl->StructConstants.replaceOperandsInPlace( 3485 Values, this, From, ToC, NumUpdated, OperandNo); 3486 } 3487 3488 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { 3489 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); 3490 Constant *ToC = cast<Constant>(To); 3491 3492 SmallVector<Constant*, 8> Values; 3493 Values.reserve(getNumOperands()); // Build replacement array... 3494 unsigned NumUpdated = 0; 3495 unsigned OperandNo = 0; 3496 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3497 Constant *Val = getOperand(i); 3498 if (Val == From) { 3499 OperandNo = i; 3500 ++NumUpdated; 3501 Val = ToC; 3502 } 3503 Values.push_back(Val); 3504 } 3505 3506 if (Constant *C = getImpl(Values)) 3507 return C; 3508 3509 // Update to the new value. 3510 return getContext().pImpl->VectorConstants.replaceOperandsInPlace( 3511 Values, this, From, ToC, NumUpdated, OperandNo); 3512 } 3513 3514 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { 3515 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); 3516 Constant *To = cast<Constant>(ToV); 3517 3518 SmallVector<Constant*, 8> NewOps; 3519 unsigned NumUpdated = 0; 3520 unsigned OperandNo = 0; 3521 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 3522 Constant *Op = getOperand(i); 3523 if (Op == From) { 3524 OperandNo = i; 3525 ++NumUpdated; 3526 Op = To; 3527 } 3528 NewOps.push_back(Op); 3529 } 3530 assert(NumUpdated && "I didn't contain From!"); 3531 3532 if (Constant *C = getWithOperands(NewOps, getType(), true)) 3533 return C; 3534 3535 // Update to the new value. 3536 return getContext().pImpl->ExprConstants.replaceOperandsInPlace( 3537 NewOps, this, From, To, NumUpdated, OperandNo); 3538 } 3539 3540 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const { 3541 SmallVector<Value *, 4> ValueOperands(operands()); 3542 ArrayRef<Value*> Ops(ValueOperands); 3543 3544 switch (getOpcode()) { 3545 case Instruction::Trunc: 3546 case Instruction::ZExt: 3547 case Instruction::SExt: 3548 case Instruction::FPTrunc: 3549 case Instruction::FPExt: 3550 case Instruction::UIToFP: 3551 case Instruction::SIToFP: 3552 case Instruction::FPToUI: 3553 case Instruction::FPToSI: 3554 case Instruction::PtrToInt: 3555 case Instruction::IntToPtr: 3556 case Instruction::BitCast: 3557 case Instruction::AddrSpaceCast: 3558 return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], 3559 getType(), "", InsertBefore); 3560 case Instruction::Select: 3561 return SelectInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3562 case Instruction::InsertElement: 3563 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); 3564 case Instruction::ExtractElement: 3565 return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore); 3566 case Instruction::InsertValue: 3567 return InsertValueInst::Create(Ops[0], Ops[1], getIndices(), "", 3568 InsertBefore); 3569 case Instruction::ExtractValue: 3570 return ExtractValueInst::Create(Ops[0], getIndices(), "", InsertBefore); 3571 case Instruction::ShuffleVector: 3572 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "", 3573 InsertBefore); 3574 3575 case Instruction::GetElementPtr: { 3576 const auto *GO = cast<GEPOperator>(this); 3577 if (GO->isInBounds()) 3578 return GetElementPtrInst::CreateInBounds( 3579 GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore); 3580 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], 3581 Ops.slice(1), "", InsertBefore); 3582 } 3583 case Instruction::ICmp: 3584 case Instruction::FCmp: 3585 return CmpInst::Create((Instruction::OtherOps)getOpcode(), 3586 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1], 3587 "", InsertBefore); 3588 case Instruction::FNeg: 3589 return UnaryOperator::Create((Instruction::UnaryOps)getOpcode(), Ops[0], "", 3590 InsertBefore); 3591 default: 3592 assert(getNumOperands() == 2 && "Must be binary operator?"); 3593 BinaryOperator *BO = BinaryOperator::Create( 3594 (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore); 3595 if (isa<OverflowingBinaryOperator>(BO)) { 3596 BO->setHasNoUnsignedWrap(SubclassOptionalData & 3597 OverflowingBinaryOperator::NoUnsignedWrap); 3598 BO->setHasNoSignedWrap(SubclassOptionalData & 3599 OverflowingBinaryOperator::NoSignedWrap); 3600 } 3601 if (isa<PossiblyExactOperator>(BO)) 3602 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); 3603 return BO; 3604 } 3605 } 3606