1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 //===----------------------------------------------------------------------===// 39 // ConstantFold*Instruction Implementations 40 //===----------------------------------------------------------------------===// 41 42 /// Convert the specified vector Constant node to the specified vector type. 43 /// At this point, we know that the elements of the input vector constant are 44 /// all simple integer or FP values. 45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { 46 47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); 48 if (CV->isNullValue()) return Constant::getNullValue(DstTy); 49 50 // Do not iterate on scalable vector. The num of elements is unknown at 51 // compile-time. 52 if (isa<ScalableVectorType>(DstTy)) 53 return nullptr; 54 55 // If this cast changes element count then we can't handle it here: 56 // doing so requires endianness information. This should be handled by 57 // Analysis/ConstantFolding.cpp 58 unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements(); 59 if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements()) 60 return nullptr; 61 62 Type *DstEltTy = DstTy->getElementType(); 63 // Fast path for splatted constants. 64 if (Constant *Splat = CV->getSplatValue()) { 65 return ConstantVector::getSplat(DstTy->getElementCount(), 66 ConstantExpr::getBitCast(Splat, DstEltTy)); 67 } 68 69 SmallVector<Constant*, 16> Result; 70 Type *Ty = IntegerType::get(CV->getContext(), 32); 71 for (unsigned i = 0; i != NumElts; ++i) { 72 Constant *C = 73 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); 74 C = ConstantExpr::getBitCast(C, DstEltTy); 75 Result.push_back(C); 76 } 77 78 return ConstantVector::get(Result); 79 } 80 81 /// This function determines which opcode to use to fold two constant cast 82 /// expressions together. It uses CastInst::isEliminableCastPair to determine 83 /// the opcode. Consequently its just a wrapper around that function. 84 /// Determine if it is valid to fold a cast of a cast 85 static unsigned 86 foldConstantCastPair( 87 unsigned opc, ///< opcode of the second cast constant expression 88 ConstantExpr *Op, ///< the first cast constant expression 89 Type *DstTy ///< destination type of the first cast 90 ) { 91 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 92 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 93 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 94 95 // The types and opcodes for the two Cast constant expressions 96 Type *SrcTy = Op->getOperand(0)->getType(); 97 Type *MidTy = Op->getType(); 98 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 99 Instruction::CastOps secondOp = Instruction::CastOps(opc); 100 101 // Assume that pointers are never more than 64 bits wide, and only use this 102 // for the middle type. Otherwise we could end up folding away illegal 103 // bitcasts between address spaces with different sizes. 104 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 105 106 // Let CastInst::isEliminableCastPair do the heavy lifting. 107 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 108 nullptr, FakeIntPtrTy, nullptr); 109 } 110 111 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 112 Type *SrcTy = V->getType(); 113 if (SrcTy == DestTy) 114 return V; // no-op cast 115 116 // Check to see if we are casting a pointer to an aggregate to a pointer to 117 // the first element. If so, return the appropriate GEP instruction. 118 if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) 119 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) 120 if (PTy->getAddressSpace() == DPTy->getAddressSpace() 121 && PTy->getElementType()->isSized()) { 122 SmallVector<Value*, 8> IdxList; 123 Value *Zero = 124 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); 125 IdxList.push_back(Zero); 126 Type *ElTy = PTy->getElementType(); 127 while (ElTy && ElTy != DPTy->getElementType()) { 128 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0); 129 IdxList.push_back(Zero); 130 } 131 132 if (ElTy == DPTy->getElementType()) 133 // This GEP is inbounds because all indices are zero. 134 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), 135 V, IdxList); 136 } 137 138 // Handle casts from one vector constant to another. We know that the src 139 // and dest type have the same size (otherwise its an illegal cast). 140 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 141 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { 142 assert(DestPTy->getPrimitiveSizeInBits() == 143 SrcTy->getPrimitiveSizeInBits() && 144 "Not cast between same sized vectors!"); 145 SrcTy = nullptr; 146 // First, check for null. Undef is already handled. 147 if (isa<ConstantAggregateZero>(V)) 148 return Constant::getNullValue(DestTy); 149 150 // Handle ConstantVector and ConstantAggregateVector. 151 return BitCastConstantVector(V, DestPTy); 152 } 153 154 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 155 // This allows for other simplifications (although some of them 156 // can only be handled by Analysis/ConstantFolding.cpp). 157 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 158 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 159 } 160 161 // Finally, implement bitcast folding now. The code below doesn't handle 162 // bitcast right. 163 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast. 164 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 165 166 // Handle integral constant input. 167 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 168 if (DestTy->isIntegerTy()) 169 // Integral -> Integral. This is a no-op because the bit widths must 170 // be the same. Consequently, we just fold to V. 171 return V; 172 173 // See note below regarding the PPC_FP128 restriction. 174 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 175 return ConstantFP::get(DestTy->getContext(), 176 APFloat(DestTy->getFltSemantics(), 177 CI->getValue())); 178 179 // Otherwise, can't fold this (vector?) 180 return nullptr; 181 } 182 183 // Handle ConstantFP input: FP -> Integral. 184 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 185 // PPC_FP128 is really the sum of two consecutive doubles, where the first 186 // double is always stored first in memory, regardless of the target 187 // endianness. The memory layout of i128, however, depends on the target 188 // endianness, and so we can't fold this without target endianness 189 // information. This should instead be handled by 190 // Analysis/ConstantFolding.cpp 191 if (FP->getType()->isPPC_FP128Ty()) 192 return nullptr; 193 194 // Make sure dest type is compatible with the folded integer constant. 195 if (!DestTy->isIntegerTy()) 196 return nullptr; 197 198 return ConstantInt::get(FP->getContext(), 199 FP->getValueAPF().bitcastToAPInt()); 200 } 201 202 return nullptr; 203 } 204 205 206 /// V is an integer constant which only has a subset of its bytes used. 207 /// The bytes used are indicated by ByteStart (which is the first byte used, 208 /// counting from the least significant byte) and ByteSize, which is the number 209 /// of bytes used. 210 /// 211 /// This function analyzes the specified constant to see if the specified byte 212 /// range can be returned as a simplified constant. If so, the constant is 213 /// returned, otherwise null is returned. 214 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 215 unsigned ByteSize) { 216 assert(C->getType()->isIntegerTy() && 217 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 218 "Non-byte sized integer input"); 219 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 220 assert(ByteSize && "Must be accessing some piece"); 221 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 222 assert(ByteSize != CSize && "Should not extract everything"); 223 224 // Constant Integers are simple. 225 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 226 APInt V = CI->getValue(); 227 if (ByteStart) 228 V.lshrInPlace(ByteStart*8); 229 V = V.trunc(ByteSize*8); 230 return ConstantInt::get(CI->getContext(), V); 231 } 232 233 // In the input is a constant expr, we might be able to recursively simplify. 234 // If not, we definitely can't do anything. 235 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 236 if (!CE) return nullptr; 237 238 switch (CE->getOpcode()) { 239 default: return nullptr; 240 case Instruction::Or: { 241 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 242 if (!RHS) 243 return nullptr; 244 245 // X | -1 -> -1. 246 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) 247 if (RHSC->isMinusOne()) 248 return RHSC; 249 250 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 251 if (!LHS) 252 return nullptr; 253 return ConstantExpr::getOr(LHS, RHS); 254 } 255 case Instruction::And: { 256 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); 257 if (!RHS) 258 return nullptr; 259 260 // X & 0 -> 0. 261 if (RHS->isNullValue()) 262 return RHS; 263 264 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); 265 if (!LHS) 266 return nullptr; 267 return ConstantExpr::getAnd(LHS, RHS); 268 } 269 case Instruction::LShr: { 270 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 271 if (!Amt) 272 return nullptr; 273 APInt ShAmt = Amt->getValue(); 274 // Cannot analyze non-byte shifts. 275 if ((ShAmt & 7) != 0) 276 return nullptr; 277 ShAmt.lshrInPlace(3); 278 279 // If the extract is known to be all zeros, return zero. 280 if (ShAmt.uge(CSize - ByteStart)) 281 return Constant::getNullValue( 282 IntegerType::get(CE->getContext(), ByteSize * 8)); 283 // If the extract is known to be fully in the input, extract it. 284 if (ShAmt.ule(CSize - (ByteStart + ByteSize))) 285 return ExtractConstantBytes(CE->getOperand(0), 286 ByteStart + ShAmt.getZExtValue(), ByteSize); 287 288 // TODO: Handle the 'partially zero' case. 289 return nullptr; 290 } 291 292 case Instruction::Shl: { 293 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 294 if (!Amt) 295 return nullptr; 296 APInt ShAmt = Amt->getValue(); 297 // Cannot analyze non-byte shifts. 298 if ((ShAmt & 7) != 0) 299 return nullptr; 300 ShAmt.lshrInPlace(3); 301 302 // If the extract is known to be all zeros, return zero. 303 if (ShAmt.uge(ByteStart + ByteSize)) 304 return Constant::getNullValue( 305 IntegerType::get(CE->getContext(), ByteSize * 8)); 306 // If the extract is known to be fully in the input, extract it. 307 if (ShAmt.ule(ByteStart)) 308 return ExtractConstantBytes(CE->getOperand(0), 309 ByteStart - ShAmt.getZExtValue(), ByteSize); 310 311 // TODO: Handle the 'partially zero' case. 312 return nullptr; 313 } 314 315 case Instruction::ZExt: { 316 unsigned SrcBitSize = 317 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); 318 319 // If extracting something that is completely zero, return 0. 320 if (ByteStart*8 >= SrcBitSize) 321 return Constant::getNullValue(IntegerType::get(CE->getContext(), 322 ByteSize*8)); 323 324 // If exactly extracting the input, return it. 325 if (ByteStart == 0 && ByteSize*8 == SrcBitSize) 326 return CE->getOperand(0); 327 328 // If extracting something completely in the input, if the input is a 329 // multiple of 8 bits, recurse. 330 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) 331 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); 332 333 // Otherwise, if extracting a subset of the input, which is not multiple of 334 // 8 bits, do a shift and trunc to get the bits. 335 if ((ByteStart+ByteSize)*8 < SrcBitSize) { 336 assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); 337 Constant *Res = CE->getOperand(0); 338 if (ByteStart) 339 Res = ConstantExpr::getLShr(Res, 340 ConstantInt::get(Res->getType(), ByteStart*8)); 341 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), 342 ByteSize*8)); 343 } 344 345 // TODO: Handle the 'partially zero' case. 346 return nullptr; 347 } 348 } 349 } 350 351 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known 352 /// factors factored out. If Folded is false, return null if no factoring was 353 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 354 /// top-level folder. 355 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { 356 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 357 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); 358 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 359 return ConstantExpr::getNUWMul(E, N); 360 } 361 362 if (StructType *STy = dyn_cast<StructType>(Ty)) 363 if (!STy->isPacked()) { 364 unsigned NumElems = STy->getNumElements(); 365 // An empty struct has size zero. 366 if (NumElems == 0) 367 return ConstantExpr::getNullValue(DestTy); 368 // Check for a struct with all members having the same size. 369 Constant *MemberSize = 370 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 371 bool AllSame = true; 372 for (unsigned i = 1; i != NumElems; ++i) 373 if (MemberSize != 374 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 375 AllSame = false; 376 break; 377 } 378 if (AllSame) { 379 Constant *N = ConstantInt::get(DestTy, NumElems); 380 return ConstantExpr::getNUWMul(MemberSize, N); 381 } 382 } 383 384 // Pointer size doesn't depend on the pointee type, so canonicalize them 385 // to an arbitrary pointee. 386 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 387 if (!PTy->getElementType()->isIntegerTy(1)) 388 return 389 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), 390 PTy->getAddressSpace()), 391 DestTy, true); 392 393 // If there's no interesting folding happening, bail so that we don't create 394 // a constant that looks like it needs folding but really doesn't. 395 if (!Folded) 396 return nullptr; 397 398 // Base case: Get a regular sizeof expression. 399 Constant *C = ConstantExpr::getSizeOf(Ty); 400 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 401 DestTy, false), 402 C, DestTy); 403 return C; 404 } 405 406 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known 407 /// factors factored out. If Folded is false, return null if no factoring was 408 /// possible, to avoid endlessly bouncing an unfoldable expression back into the 409 /// top-level folder. 410 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { 411 // The alignment of an array is equal to the alignment of the 412 // array element. Note that this is not always true for vectors. 413 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 414 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); 415 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 416 DestTy, 417 false), 418 C, DestTy); 419 return C; 420 } 421 422 if (StructType *STy = dyn_cast<StructType>(Ty)) { 423 // Packed structs always have an alignment of 1. 424 if (STy->isPacked()) 425 return ConstantInt::get(DestTy, 1); 426 427 // Otherwise, struct alignment is the maximum alignment of any member. 428 // Without target data, we can't compare much, but we can check to see 429 // if all the members have the same alignment. 430 unsigned NumElems = STy->getNumElements(); 431 // An empty struct has minimal alignment. 432 if (NumElems == 0) 433 return ConstantInt::get(DestTy, 1); 434 // Check for a struct with all members having the same alignment. 435 Constant *MemberAlign = 436 getFoldedAlignOf(STy->getElementType(0), DestTy, true); 437 bool AllSame = true; 438 for (unsigned i = 1; i != NumElems; ++i) 439 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { 440 AllSame = false; 441 break; 442 } 443 if (AllSame) 444 return MemberAlign; 445 } 446 447 // Pointer alignment doesn't depend on the pointee type, so canonicalize them 448 // to an arbitrary pointee. 449 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 450 if (!PTy->getElementType()->isIntegerTy(1)) 451 return 452 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), 453 1), 454 PTy->getAddressSpace()), 455 DestTy, true); 456 457 // If there's no interesting folding happening, bail so that we don't create 458 // a constant that looks like it needs folding but really doesn't. 459 if (!Folded) 460 return nullptr; 461 462 // Base case: Get a regular alignof expression. 463 Constant *C = ConstantExpr::getAlignOf(Ty); 464 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 465 DestTy, false), 466 C, DestTy); 467 return C; 468 } 469 470 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with 471 /// any known factors factored out. If Folded is false, return null if no 472 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression 473 /// back into the top-level folder. 474 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, 475 bool Folded) { 476 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 477 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, 478 DestTy, false), 479 FieldNo, DestTy); 480 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); 481 return ConstantExpr::getNUWMul(E, N); 482 } 483 484 if (StructType *STy = dyn_cast<StructType>(Ty)) 485 if (!STy->isPacked()) { 486 unsigned NumElems = STy->getNumElements(); 487 // An empty struct has no members. 488 if (NumElems == 0) 489 return nullptr; 490 // Check for a struct with all members having the same size. 491 Constant *MemberSize = 492 getFoldedSizeOf(STy->getElementType(0), DestTy, true); 493 bool AllSame = true; 494 for (unsigned i = 1; i != NumElems; ++i) 495 if (MemberSize != 496 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { 497 AllSame = false; 498 break; 499 } 500 if (AllSame) { 501 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, 502 false, 503 DestTy, 504 false), 505 FieldNo, DestTy); 506 return ConstantExpr::getNUWMul(MemberSize, N); 507 } 508 } 509 510 // If there's no interesting folding happening, bail so that we don't create 511 // a constant that looks like it needs folding but really doesn't. 512 if (!Folded) 513 return nullptr; 514 515 // Base case: Get a regular offsetof expression. 516 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); 517 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 518 DestTy, false), 519 C, DestTy); 520 return C; 521 } 522 523 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 524 Type *DestTy) { 525 if (isa<UndefValue>(V)) { 526 // zext(undef) = 0, because the top bits will be zero. 527 // sext(undef) = 0, because the top bits will all be the same. 528 // [us]itofp(undef) = 0, because the result value is bounded. 529 if (opc == Instruction::ZExt || opc == Instruction::SExt || 530 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 531 return Constant::getNullValue(DestTy); 532 return UndefValue::get(DestTy); 533 } 534 535 if (V->isNullValue() && !DestTy->isX86_MMXTy() && 536 opc != Instruction::AddrSpaceCast) 537 return Constant::getNullValue(DestTy); 538 539 // If the cast operand is a constant expression, there's a few things we can 540 // do to try to simplify it. 541 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 542 if (CE->isCast()) { 543 // Try hard to fold cast of cast because they are often eliminable. 544 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 545 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); 546 } else if (CE->getOpcode() == Instruction::GetElementPtr && 547 // Do not fold addrspacecast (gep 0, .., 0). It might make the 548 // addrspacecast uncanonicalized. 549 opc != Instruction::AddrSpaceCast && 550 // Do not fold bitcast (gep) with inrange index, as this loses 551 // information. 552 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && 553 // Do not fold if the gep type is a vector, as bitcasting 554 // operand 0 of a vector gep will result in a bitcast between 555 // different sizes. 556 !CE->getType()->isVectorTy()) { 557 // If all of the indexes in the GEP are null values, there is no pointer 558 // adjustment going on. We might as well cast the source pointer. 559 bool isAllNull = true; 560 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 561 if (!CE->getOperand(i)->isNullValue()) { 562 isAllNull = false; 563 break; 564 } 565 if (isAllNull) 566 // This is casting one pointer type to another, always BitCast 567 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); 568 } 569 } 570 571 // If the cast operand is a constant vector, perform the cast by 572 // operating on each element. In the cast of bitcasts, the element 573 // count may be mismatched; don't attempt to handle that here. 574 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 575 DestTy->isVectorTy() && 576 cast<FixedVectorType>(DestTy)->getNumElements() == 577 cast<FixedVectorType>(V->getType())->getNumElements()) { 578 VectorType *DestVecTy = cast<VectorType>(DestTy); 579 Type *DstEltTy = DestVecTy->getElementType(); 580 // Fast path for splatted constants. 581 if (Constant *Splat = V->getSplatValue()) { 582 return ConstantVector::getSplat( 583 cast<VectorType>(DestTy)->getElementCount(), 584 ConstantExpr::getCast(opc, Splat, DstEltTy)); 585 } 586 SmallVector<Constant *, 16> res; 587 Type *Ty = IntegerType::get(V->getContext(), 32); 588 for (unsigned i = 0, 589 e = cast<FixedVectorType>(V->getType())->getNumElements(); 590 i != e; ++i) { 591 Constant *C = 592 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 593 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); 594 } 595 return ConstantVector::get(res); 596 } 597 598 // We actually have to do a cast now. Perform the cast according to the 599 // opcode specified. 600 switch (opc) { 601 default: 602 llvm_unreachable("Failed to cast constant expression"); 603 case Instruction::FPTrunc: 604 case Instruction::FPExt: 605 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 606 bool ignored; 607 APFloat Val = FPC->getValueAPF(); 608 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : 609 DestTy->isFloatTy() ? APFloat::IEEEsingle() : 610 DestTy->isDoubleTy() ? APFloat::IEEEdouble() : 611 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : 612 DestTy->isFP128Ty() ? APFloat::IEEEquad() : 613 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : 614 APFloat::Bogus(), 615 APFloat::rmNearestTiesToEven, &ignored); 616 return ConstantFP::get(V->getContext(), Val); 617 } 618 return nullptr; // Can't fold. 619 case Instruction::FPToUI: 620 case Instruction::FPToSI: 621 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 622 const APFloat &V = FPC->getValueAPF(); 623 bool ignored; 624 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 625 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 626 if (APFloat::opInvalidOp == 627 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 628 // Undefined behavior invoked - the destination type can't represent 629 // the input constant. 630 return UndefValue::get(DestTy); 631 } 632 return ConstantInt::get(FPC->getContext(), IntVal); 633 } 634 return nullptr; // Can't fold. 635 case Instruction::IntToPtr: //always treated as unsigned 636 if (V->isNullValue()) // Is it an integral null value? 637 return ConstantPointerNull::get(cast<PointerType>(DestTy)); 638 return nullptr; // Other pointer types cannot be casted 639 case Instruction::PtrToInt: // always treated as unsigned 640 // Is it a null pointer value? 641 if (V->isNullValue()) 642 return ConstantInt::get(DestTy, 0); 643 // If this is a sizeof-like expression, pull out multiplications by 644 // known factors to expose them to subsequent folding. If it's an 645 // alignof-like expression, factor out known factors. 646 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 647 if (CE->getOpcode() == Instruction::GetElementPtr && 648 CE->getOperand(0)->isNullValue()) { 649 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and 650 // getFoldedAlignOf() don't handle the case when DestTy is a vector of 651 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see 652 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this 653 // happen in one "real" C-code test case, so it does not seem to be an 654 // important optimization to handle vectors here. For now, simply bail 655 // out. 656 if (DestTy->isVectorTy()) 657 return nullptr; 658 GEPOperator *GEPO = cast<GEPOperator>(CE); 659 Type *Ty = GEPO->getSourceElementType(); 660 if (CE->getNumOperands() == 2) { 661 // Handle a sizeof-like expression. 662 Constant *Idx = CE->getOperand(1); 663 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); 664 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { 665 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, 666 DestTy, false), 667 Idx, DestTy); 668 return ConstantExpr::getMul(C, Idx); 669 } 670 } else if (CE->getNumOperands() == 3 && 671 CE->getOperand(1)->isNullValue()) { 672 // Handle an alignof-like expression. 673 if (StructType *STy = dyn_cast<StructType>(Ty)) 674 if (!STy->isPacked()) { 675 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); 676 if (CI->isOne() && 677 STy->getNumElements() == 2 && 678 STy->getElementType(0)->isIntegerTy(1)) { 679 return getFoldedAlignOf(STy->getElementType(1), DestTy, false); 680 } 681 } 682 // Handle an offsetof-like expression. 683 if (Ty->isStructTy() || Ty->isArrayTy()) { 684 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), 685 DestTy, false)) 686 return C; 687 } 688 } 689 } 690 // Other pointer types cannot be casted 691 return nullptr; 692 case Instruction::UIToFP: 693 case Instruction::SIToFP: 694 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 695 const APInt &api = CI->getValue(); 696 APFloat apf(DestTy->getFltSemantics(), 697 APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); 698 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 699 APFloat::rmNearestTiesToEven); 700 return ConstantFP::get(V->getContext(), apf); 701 } 702 return nullptr; 703 case Instruction::ZExt: 704 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 705 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 706 return ConstantInt::get(V->getContext(), 707 CI->getValue().zext(BitWidth)); 708 } 709 return nullptr; 710 case Instruction::SExt: 711 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 712 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 713 return ConstantInt::get(V->getContext(), 714 CI->getValue().sext(BitWidth)); 715 } 716 return nullptr; 717 case Instruction::Trunc: { 718 if (V->getType()->isVectorTy()) 719 return nullptr; 720 721 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 722 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 723 return ConstantInt::get(V->getContext(), 724 CI->getValue().trunc(DestBitWidth)); 725 } 726 727 // The input must be a constantexpr. See if we can simplify this based on 728 // the bytes we are demanding. Only do this if the source and dest are an 729 // even multiple of a byte. 730 if ((DestBitWidth & 7) == 0 && 731 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 732 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 733 return Res; 734 735 return nullptr; 736 } 737 case Instruction::BitCast: 738 return FoldBitCast(V, DestTy); 739 case Instruction::AddrSpaceCast: 740 return nullptr; 741 } 742 } 743 744 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 745 Constant *V1, Constant *V2) { 746 // Check for i1 and vector true/false conditions. 747 if (Cond->isNullValue()) return V2; 748 if (Cond->isAllOnesValue()) return V1; 749 750 // If the condition is a vector constant, fold the result elementwise. 751 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 752 auto *V1VTy = CondV->getType(); 753 SmallVector<Constant*, 16> Result; 754 Type *Ty = IntegerType::get(CondV->getContext(), 32); 755 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 756 Constant *V; 757 Constant *V1Element = ConstantExpr::getExtractElement(V1, 758 ConstantInt::get(Ty, i)); 759 Constant *V2Element = ConstantExpr::getExtractElement(V2, 760 ConstantInt::get(Ty, i)); 761 auto *Cond = cast<Constant>(CondV->getOperand(i)); 762 if (V1Element == V2Element) { 763 V = V1Element; 764 } else if (isa<UndefValue>(Cond)) { 765 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 766 } else { 767 if (!isa<ConstantInt>(Cond)) break; 768 V = Cond->isNullValue() ? V2Element : V1Element; 769 } 770 Result.push_back(V); 771 } 772 773 // If we were able to build the vector, return it. 774 if (Result.size() == V1VTy->getNumElements()) 775 return ConstantVector::get(Result); 776 } 777 778 if (isa<UndefValue>(Cond)) { 779 if (isa<UndefValue>(V1)) return V1; 780 return V2; 781 } 782 783 if (V1 == V2) return V1; 784 785 // If the true or false value is undef, we can fold to the other value as 786 // long as the other value isn't poison. 787 auto NotPoison = [](Constant *C) { 788 // TODO: We can analyze ConstExpr by opcode to determine if there is any 789 // possibility of poison. 790 if (isa<ConstantExpr>(C)) 791 return false; 792 793 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 794 isa<ConstantPointerNull>(C) || isa<Function>(C)) 795 return true; 796 797 if (C->getType()->isVectorTy()) 798 return !C->containsUndefElement() && !C->containsConstantExpression(); 799 800 // TODO: Recursively analyze aggregates or other constants. 801 return false; 802 }; 803 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 804 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 805 806 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { 807 if (TrueVal->getOpcode() == Instruction::Select) 808 if (TrueVal->getOperand(0) == Cond) 809 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); 810 } 811 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { 812 if (FalseVal->getOpcode() == Instruction::Select) 813 if (FalseVal->getOperand(0) == Cond) 814 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); 815 } 816 817 return nullptr; 818 } 819 820 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 821 Constant *Idx) { 822 auto *ValVTy = cast<VectorType>(Val->getType()); 823 824 // extractelt undef, C -> undef 825 // extractelt C, undef -> undef 826 if (isa<UndefValue>(Val) || isa<UndefValue>(Idx)) 827 return UndefValue::get(ValVTy->getElementType()); 828 829 auto *CIdx = dyn_cast<ConstantInt>(Idx); 830 if (!CIdx) 831 return nullptr; 832 833 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 834 // ee({w,x,y,z}, wrong_value) -> undef 835 if (CIdx->uge(ValFVTy->getNumElements())) 836 return UndefValue::get(ValFVTy->getElementType()); 837 } 838 839 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 840 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 841 if (CE->getOpcode() == Instruction::GetElementPtr) { 842 SmallVector<Constant *, 8> Ops; 843 Ops.reserve(CE->getNumOperands()); 844 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 845 Constant *Op = CE->getOperand(i); 846 if (Op->getType()->isVectorTy()) { 847 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 848 if (!ScalarOp) 849 return nullptr; 850 Ops.push_back(ScalarOp); 851 } else 852 Ops.push_back(Op); 853 } 854 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 855 Ops[0]->getType()->getPointerElementType()); 856 } 857 } 858 859 // CAZ of type ScalableVectorType and n < CAZ->getMinNumElements() => 860 // extractelt CAZ, n -> 0 861 if (auto *ValSVTy = dyn_cast<ScalableVectorType>(Val->getType())) { 862 if (!CIdx->uge(ValSVTy->getMinNumElements())) { 863 if (auto *CAZ = dyn_cast<ConstantAggregateZero>(Val)) 864 return CAZ->getElementValue(CIdx->getZExtValue()); 865 } 866 return nullptr; 867 } 868 869 return Val->getAggregateElement(CIdx); 870 } 871 872 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 873 Constant *Elt, 874 Constant *Idx) { 875 if (isa<UndefValue>(Idx)) 876 return UndefValue::get(Val->getType()); 877 878 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 879 if (!CIdx) return nullptr; 880 881 // Do not iterate on scalable vector. The num of elements is unknown at 882 // compile-time. 883 if (isa<ScalableVectorType>(Val->getType())) 884 return nullptr; 885 886 auto *ValTy = cast<FixedVectorType>(Val->getType()); 887 888 unsigned NumElts = ValTy->getNumElements(); 889 if (CIdx->uge(NumElts)) 890 return UndefValue::get(Val->getType()); 891 892 SmallVector<Constant*, 16> Result; 893 Result.reserve(NumElts); 894 auto *Ty = Type::getInt32Ty(Val->getContext()); 895 uint64_t IdxVal = CIdx->getZExtValue(); 896 for (unsigned i = 0; i != NumElts; ++i) { 897 if (i == IdxVal) { 898 Result.push_back(Elt); 899 continue; 900 } 901 902 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 903 Result.push_back(C); 904 } 905 906 return ConstantVector::get(Result); 907 } 908 909 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 910 ArrayRef<int> Mask) { 911 auto *V1VTy = cast<VectorType>(V1->getType()); 912 unsigned MaskNumElts = Mask.size(); 913 ElementCount MaskEltCount = {MaskNumElts, isa<ScalableVectorType>(V1VTy)}; 914 Type *EltTy = V1VTy->getElementType(); 915 916 // Undefined shuffle mask -> undefined value. 917 if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) { 918 return UndefValue::get(FixedVectorType::get(EltTy, MaskNumElts)); 919 } 920 921 // If the mask is all zeros this is a splat, no need to go through all 922 // elements. 923 if (all_of(Mask, [](int Elt) { return Elt == 0; }) && 924 !MaskEltCount.Scalable) { 925 Type *Ty = IntegerType::get(V1->getContext(), 32); 926 Constant *Elt = 927 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 928 return ConstantVector::getSplat(MaskEltCount, Elt); 929 } 930 // Do not iterate on scalable vector. The num of elements is unknown at 931 // compile-time. 932 if (isa<ScalableVectorType>(V1VTy)) 933 return nullptr; 934 935 unsigned SrcNumElts = V1VTy->getElementCount().Min; 936 937 // Loop over the shuffle mask, evaluating each element. 938 SmallVector<Constant*, 32> Result; 939 for (unsigned i = 0; i != MaskNumElts; ++i) { 940 int Elt = Mask[i]; 941 if (Elt == -1) { 942 Result.push_back(UndefValue::get(EltTy)); 943 continue; 944 } 945 Constant *InElt; 946 if (unsigned(Elt) >= SrcNumElts*2) 947 InElt = UndefValue::get(EltTy); 948 else if (unsigned(Elt) >= SrcNumElts) { 949 Type *Ty = IntegerType::get(V2->getContext(), 32); 950 InElt = 951 ConstantExpr::getExtractElement(V2, 952 ConstantInt::get(Ty, Elt - SrcNumElts)); 953 } else { 954 Type *Ty = IntegerType::get(V1->getContext(), 32); 955 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 956 } 957 Result.push_back(InElt); 958 } 959 960 return ConstantVector::get(Result); 961 } 962 963 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 964 ArrayRef<unsigned> Idxs) { 965 // Base case: no indices, so return the entire value. 966 if (Idxs.empty()) 967 return Agg; 968 969 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 970 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 971 972 return nullptr; 973 } 974 975 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 976 Constant *Val, 977 ArrayRef<unsigned> Idxs) { 978 // Base case: no indices, so replace the entire value. 979 if (Idxs.empty()) 980 return Val; 981 982 unsigned NumElts; 983 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 984 NumElts = ST->getNumElements(); 985 else 986 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 987 988 SmallVector<Constant*, 32> Result; 989 for (unsigned i = 0; i != NumElts; ++i) { 990 Constant *C = Agg->getAggregateElement(i); 991 if (!C) return nullptr; 992 993 if (Idxs[0] == i) 994 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 995 996 Result.push_back(C); 997 } 998 999 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 1000 return ConstantStruct::get(ST, Result); 1001 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 1002 } 1003 1004 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 1005 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 1006 1007 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 1008 // vectors are always evaluated per element. 1009 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 1010 bool HasScalarUndefOrScalableVectorUndef = 1011 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 1012 1013 if (HasScalarUndefOrScalableVectorUndef) { 1014 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 1015 case Instruction::FNeg: 1016 return C; // -undef -> undef 1017 case Instruction::UnaryOpsEnd: 1018 llvm_unreachable("Invalid UnaryOp"); 1019 } 1020 } 1021 1022 // Constant should not be UndefValue, unless these are vector constants. 1023 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 1024 // We only have FP UnaryOps right now. 1025 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 1026 1027 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1028 const APFloat &CV = CFP->getValueAPF(); 1029 switch (Opcode) { 1030 default: 1031 break; 1032 case Instruction::FNeg: 1033 return ConstantFP::get(C->getContext(), neg(CV)); 1034 } 1035 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { 1036 1037 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1038 // Fast path for splatted constants. 1039 if (Constant *Splat = C->getSplatValue()) { 1040 Constant *Elt = ConstantExpr::get(Opcode, Splat); 1041 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 1042 } 1043 1044 // Fold each element and create a vector constant from those constants. 1045 SmallVector<Constant *, 16> Result; 1046 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1047 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1048 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 1049 1050 Result.push_back(ConstantExpr::get(Opcode, Elt)); 1051 } 1052 1053 return ConstantVector::get(Result); 1054 } 1055 1056 // We don't know how to fold this. 1057 return nullptr; 1058 } 1059 1060 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 1061 Constant *C2) { 1062 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 1063 1064 // Simplify BinOps with their identity values first. They are no-ops and we 1065 // can always return the other value, including undef or poison values. 1066 // FIXME: remove unnecessary duplicated identity patterns below. 1067 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops, 1068 // like X << 0 = X. 1069 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType()); 1070 if (Identity) { 1071 if (C1 == Identity) 1072 return C2; 1073 if (C2 == Identity) 1074 return C1; 1075 } 1076 1077 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 1078 // vectors are always evaluated per element. 1079 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 1080 bool HasScalarUndefOrScalableVectorUndef = 1081 (!C1->getType()->isVectorTy() || IsScalableVector) && 1082 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 1083 if (HasScalarUndefOrScalableVectorUndef) { 1084 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 1085 case Instruction::Xor: 1086 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1087 // Handle undef ^ undef -> 0 special case. This is a common 1088 // idiom (misuse). 1089 return Constant::getNullValue(C1->getType()); 1090 LLVM_FALLTHROUGH; 1091 case Instruction::Add: 1092 case Instruction::Sub: 1093 return UndefValue::get(C1->getType()); 1094 case Instruction::And: 1095 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 1096 return C1; 1097 return Constant::getNullValue(C1->getType()); // undef & X -> 0 1098 case Instruction::Mul: { 1099 // undef * undef -> undef 1100 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1101 return C1; 1102 const APInt *CV; 1103 // X * undef -> undef if X is odd 1104 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 1105 if ((*CV)[0]) 1106 return UndefValue::get(C1->getType()); 1107 1108 // X * undef -> 0 otherwise 1109 return Constant::getNullValue(C1->getType()); 1110 } 1111 case Instruction::SDiv: 1112 case Instruction::UDiv: 1113 // X / undef -> undef 1114 if (isa<UndefValue>(C2)) 1115 return C2; 1116 // undef / 0 -> undef 1117 // undef / 1 -> undef 1118 if (match(C2, m_Zero()) || match(C2, m_One())) 1119 return C1; 1120 // undef / X -> 0 otherwise 1121 return Constant::getNullValue(C1->getType()); 1122 case Instruction::URem: 1123 case Instruction::SRem: 1124 // X % undef -> undef 1125 if (match(C2, m_Undef())) 1126 return C2; 1127 // undef % 0 -> undef 1128 if (match(C2, m_Zero())) 1129 return C1; 1130 // undef % X -> 0 otherwise 1131 return Constant::getNullValue(C1->getType()); 1132 case Instruction::Or: // X | undef -> -1 1133 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 1134 return C1; 1135 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 1136 case Instruction::LShr: 1137 // X >>l undef -> undef 1138 if (isa<UndefValue>(C2)) 1139 return C2; 1140 // undef >>l 0 -> undef 1141 if (match(C2, m_Zero())) 1142 return C1; 1143 // undef >>l X -> 0 1144 return Constant::getNullValue(C1->getType()); 1145 case Instruction::AShr: 1146 // X >>a undef -> undef 1147 if (isa<UndefValue>(C2)) 1148 return C2; 1149 // undef >>a 0 -> undef 1150 if (match(C2, m_Zero())) 1151 return C1; 1152 // TODO: undef >>a X -> undef if the shift is exact 1153 // undef >>a X -> 0 1154 return Constant::getNullValue(C1->getType()); 1155 case Instruction::Shl: 1156 // X << undef -> undef 1157 if (isa<UndefValue>(C2)) 1158 return C2; 1159 // undef << 0 -> undef 1160 if (match(C2, m_Zero())) 1161 return C1; 1162 // undef << X -> 0 1163 return Constant::getNullValue(C1->getType()); 1164 case Instruction::FSub: 1165 // -0.0 - undef --> undef (consistent with "fneg undef") 1166 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 1167 return C2; 1168 LLVM_FALLTHROUGH; 1169 case Instruction::FAdd: 1170 case Instruction::FMul: 1171 case Instruction::FDiv: 1172 case Instruction::FRem: 1173 // [any flop] undef, undef -> undef 1174 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 1175 return C1; 1176 // [any flop] C, undef -> NaN 1177 // [any flop] undef, C -> NaN 1178 // We could potentially specialize NaN/Inf constants vs. 'normal' 1179 // constants (possibly differently depending on opcode and operand). This 1180 // would allow returning undef sometimes. But it is always safe to fold to 1181 // NaN because we can choose the undef operand as NaN, and any FP opcode 1182 // with a NaN operand will propagate NaN. 1183 return ConstantFP::getNaN(C1->getType()); 1184 case Instruction::BinaryOpsEnd: 1185 llvm_unreachable("Invalid BinaryOp"); 1186 } 1187 } 1188 1189 // Neither constant should be UndefValue, unless these are vector constants. 1190 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 1191 1192 // Handle simplifications when the RHS is a constant int. 1193 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1194 switch (Opcode) { 1195 case Instruction::Add: 1196 if (CI2->isZero()) return C1; // X + 0 == X 1197 break; 1198 case Instruction::Sub: 1199 if (CI2->isZero()) return C1; // X - 0 == X 1200 break; 1201 case Instruction::Mul: 1202 if (CI2->isZero()) return C2; // X * 0 == 0 1203 if (CI2->isOne()) 1204 return C1; // X * 1 == X 1205 break; 1206 case Instruction::UDiv: 1207 case Instruction::SDiv: 1208 if (CI2->isOne()) 1209 return C1; // X / 1 == X 1210 if (CI2->isZero()) 1211 return UndefValue::get(CI2->getType()); // X / 0 == undef 1212 break; 1213 case Instruction::URem: 1214 case Instruction::SRem: 1215 if (CI2->isOne()) 1216 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 1217 if (CI2->isZero()) 1218 return UndefValue::get(CI2->getType()); // X % 0 == undef 1219 break; 1220 case Instruction::And: 1221 if (CI2->isZero()) return C2; // X & 0 == 0 1222 if (CI2->isMinusOne()) 1223 return C1; // X & -1 == X 1224 1225 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1226 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) 1227 if (CE1->getOpcode() == Instruction::ZExt) { 1228 unsigned DstWidth = CI2->getType()->getBitWidth(); 1229 unsigned SrcWidth = 1230 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1231 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1232 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) 1233 return C1; 1234 } 1235 1236 // If and'ing the address of a global with a constant, fold it. 1237 if (CE1->getOpcode() == Instruction::PtrToInt && 1238 isa<GlobalValue>(CE1->getOperand(0))) { 1239 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 1240 1241 MaybeAlign GVAlign; 1242 1243 if (Module *TheModule = GV->getParent()) { 1244 const DataLayout &DL = TheModule->getDataLayout(); 1245 GVAlign = GV->getPointerAlignment(DL); 1246 1247 // If the function alignment is not specified then assume that it 1248 // is 4. 1249 // This is dangerous; on x86, the alignment of the pointer 1250 // corresponds to the alignment of the function, but might be less 1251 // than 4 if it isn't explicitly specified. 1252 // However, a fix for this behaviour was reverted because it 1253 // increased code size (see https://reviews.llvm.org/D55115) 1254 // FIXME: This code should be deleted once existing targets have 1255 // appropriate defaults 1256 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 1257 GVAlign = Align(4); 1258 } else if (isa<Function>(GV)) { 1259 // Without a datalayout we have to assume the worst case: that the 1260 // function pointer isn't aligned at all. 1261 GVAlign = llvm::None; 1262 } else if (isa<GlobalVariable>(GV)) { 1263 GVAlign = cast<GlobalVariable>(GV)->getAlign(); 1264 } 1265 1266 if (GVAlign && *GVAlign > 1) { 1267 unsigned DstWidth = CI2->getType()->getBitWidth(); 1268 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign)); 1269 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 1270 1271 // If checking bits we know are clear, return zero. 1272 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 1273 return Constant::getNullValue(CI2->getType()); 1274 } 1275 } 1276 } 1277 break; 1278 case Instruction::Or: 1279 if (CI2->isZero()) return C1; // X | 0 == X 1280 if (CI2->isMinusOne()) 1281 return C2; // X | -1 == -1 1282 break; 1283 case Instruction::Xor: 1284 if (CI2->isZero()) return C1; // X ^ 0 == X 1285 1286 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1287 switch (CE1->getOpcode()) { 1288 default: break; 1289 case Instruction::ICmp: 1290 case Instruction::FCmp: 1291 // cmp pred ^ true -> cmp !pred 1292 assert(CI2->isOne()); 1293 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 1294 pred = CmpInst::getInversePredicate(pred); 1295 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 1296 CE1->getOperand(1)); 1297 } 1298 } 1299 break; 1300 case Instruction::AShr: 1301 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 1302 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) 1303 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero. 1304 return ConstantExpr::getLShr(C1, C2); 1305 break; 1306 } 1307 } else if (isa<ConstantInt>(C1)) { 1308 // If C1 is a ConstantInt and C2 is not, swap the operands. 1309 if (Instruction::isCommutative(Opcode)) 1310 return ConstantExpr::get(Opcode, C2, C1); 1311 } 1312 1313 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 1314 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 1315 const APInt &C1V = CI1->getValue(); 1316 const APInt &C2V = CI2->getValue(); 1317 switch (Opcode) { 1318 default: 1319 break; 1320 case Instruction::Add: 1321 return ConstantInt::get(CI1->getContext(), C1V + C2V); 1322 case Instruction::Sub: 1323 return ConstantInt::get(CI1->getContext(), C1V - C2V); 1324 case Instruction::Mul: 1325 return ConstantInt::get(CI1->getContext(), C1V * C2V); 1326 case Instruction::UDiv: 1327 assert(!CI2->isZero() && "Div by zero handled above"); 1328 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 1329 case Instruction::SDiv: 1330 assert(!CI2->isZero() && "Div by zero handled above"); 1331 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1332 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef 1333 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 1334 case Instruction::URem: 1335 assert(!CI2->isZero() && "Div by zero handled above"); 1336 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 1337 case Instruction::SRem: 1338 assert(!CI2->isZero() && "Div by zero handled above"); 1339 if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) 1340 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef 1341 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 1342 case Instruction::And: 1343 return ConstantInt::get(CI1->getContext(), C1V & C2V); 1344 case Instruction::Or: 1345 return ConstantInt::get(CI1->getContext(), C1V | C2V); 1346 case Instruction::Xor: 1347 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 1348 case Instruction::Shl: 1349 if (C2V.ult(C1V.getBitWidth())) 1350 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 1351 return UndefValue::get(C1->getType()); // too big shift is undef 1352 case Instruction::LShr: 1353 if (C2V.ult(C1V.getBitWidth())) 1354 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 1355 return UndefValue::get(C1->getType()); // too big shift is undef 1356 case Instruction::AShr: 1357 if (C2V.ult(C1V.getBitWidth())) 1358 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 1359 return UndefValue::get(C1->getType()); // too big shift is undef 1360 } 1361 } 1362 1363 switch (Opcode) { 1364 case Instruction::SDiv: 1365 case Instruction::UDiv: 1366 case Instruction::URem: 1367 case Instruction::SRem: 1368 case Instruction::LShr: 1369 case Instruction::AShr: 1370 case Instruction::Shl: 1371 if (CI1->isZero()) return C1; 1372 break; 1373 default: 1374 break; 1375 } 1376 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 1377 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 1378 const APFloat &C1V = CFP1->getValueAPF(); 1379 const APFloat &C2V = CFP2->getValueAPF(); 1380 APFloat C3V = C1V; // copy for modification 1381 switch (Opcode) { 1382 default: 1383 break; 1384 case Instruction::FAdd: 1385 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 1386 return ConstantFP::get(C1->getContext(), C3V); 1387 case Instruction::FSub: 1388 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 1389 return ConstantFP::get(C1->getContext(), C3V); 1390 case Instruction::FMul: 1391 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 1392 return ConstantFP::get(C1->getContext(), C3V); 1393 case Instruction::FDiv: 1394 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 1395 return ConstantFP::get(C1->getContext(), C3V); 1396 case Instruction::FRem: 1397 (void)C3V.mod(C2V); 1398 return ConstantFP::get(C1->getContext(), C3V); 1399 } 1400 } 1401 } else if (IsScalableVector) { 1402 // Do not iterate on scalable vector. The number of elements is unknown at 1403 // compile-time. 1404 // FIXME: this branch can potentially be removed 1405 return nullptr; 1406 } else if (auto *VTy = dyn_cast<FixedVectorType>(C1->getType())) { 1407 // Fast path for splatted constants. 1408 if (Constant *C2Splat = C2->getSplatValue()) { 1409 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 1410 return UndefValue::get(VTy); 1411 if (Constant *C1Splat = C1->getSplatValue()) { 1412 return ConstantVector::getSplat( 1413 VTy->getElementCount(), 1414 ConstantExpr::get(Opcode, C1Splat, C2Splat)); 1415 } 1416 } 1417 1418 // Fold each element and create a vector constant from those constants. 1419 SmallVector<Constant*, 16> Result; 1420 Type *Ty = IntegerType::get(VTy->getContext(), 32); 1421 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 1422 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1423 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 1424 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 1425 1426 // If any element of a divisor vector is zero, the whole op is undef. 1427 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 1428 return UndefValue::get(VTy); 1429 1430 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); 1431 } 1432 1433 return ConstantVector::get(Result); 1434 } 1435 1436 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1437 // There are many possible foldings we could do here. We should probably 1438 // at least fold add of a pointer with an integer into the appropriate 1439 // getelementptr. This will improve alias analysis a bit. 1440 1441 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1442 // (a + (b + c)). 1443 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1444 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1445 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1446 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1447 } 1448 } else if (isa<ConstantExpr>(C2)) { 1449 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1450 // other way if possible. 1451 if (Instruction::isCommutative(Opcode)) 1452 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1453 } 1454 1455 // i1 can be simplified in many cases. 1456 if (C1->getType()->isIntegerTy(1)) { 1457 switch (Opcode) { 1458 case Instruction::Add: 1459 case Instruction::Sub: 1460 return ConstantExpr::getXor(C1, C2); 1461 case Instruction::Mul: 1462 return ConstantExpr::getAnd(C1, C2); 1463 case Instruction::Shl: 1464 case Instruction::LShr: 1465 case Instruction::AShr: 1466 // We can assume that C2 == 0. If it were one the result would be 1467 // undefined because the shift value is as large as the bitwidth. 1468 return C1; 1469 case Instruction::SDiv: 1470 case Instruction::UDiv: 1471 // We can assume that C2 == 1. If it were zero the result would be 1472 // undefined through division by zero. 1473 return C1; 1474 case Instruction::URem: 1475 case Instruction::SRem: 1476 // We can assume that C2 == 1. If it were zero the result would be 1477 // undefined through division by zero. 1478 return ConstantInt::getFalse(C1->getContext()); 1479 default: 1480 break; 1481 } 1482 } 1483 1484 // We don't know how to fold this. 1485 return nullptr; 1486 } 1487 1488 /// This type is zero-sized if it's an array or structure of zero-sized types. 1489 /// The only leaf zero-sized type is an empty structure. 1490 static bool isMaybeZeroSizedType(Type *Ty) { 1491 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1492 if (STy->isOpaque()) return true; // Can't say. 1493 1494 // If all of elements have zero size, this does too. 1495 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1496 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; 1497 return true; 1498 1499 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1500 return isMaybeZeroSizedType(ATy->getElementType()); 1501 } 1502 return false; 1503 } 1504 1505 /// Compare the two constants as though they were getelementptr indices. 1506 /// This allows coercion of the types to be the same thing. 1507 /// 1508 /// If the two constants are the "same" (after coercion), return 0. If the 1509 /// first is less than the second, return -1, if the second is less than the 1510 /// first, return 1. If the constants are not integral, return -2. 1511 /// 1512 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { 1513 if (C1 == C2) return 0; 1514 1515 // Ok, we found a different index. If they are not ConstantInt, we can't do 1516 // anything with them. 1517 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) 1518 return -2; // don't know! 1519 1520 // We cannot compare the indices if they don't fit in an int64_t. 1521 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || 1522 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) 1523 return -2; // don't know! 1524 1525 // Ok, we have two differing integer indices. Sign extend them to be the same 1526 // type. 1527 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); 1528 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); 1529 1530 if (C1Val == C2Val) return 0; // They are equal 1531 1532 // If the type being indexed over is really just a zero sized type, there is 1533 // no pointer difference being made here. 1534 if (isMaybeZeroSizedType(ElTy)) 1535 return -2; // dunno. 1536 1537 // If they are really different, now that they are the same type, then we 1538 // found a difference! 1539 if (C1Val < C2Val) 1540 return -1; 1541 else 1542 return 1; 1543 } 1544 1545 /// This function determines if there is anything we can decide about the two 1546 /// constants provided. This doesn't need to handle simple things like 1547 /// ConstantFP comparisons, but should instead handle ConstantExprs. 1548 /// If we can determine that the two constants have a particular relation to 1549 /// each other, we should return the corresponding FCmpInst predicate, 1550 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in 1551 /// ConstantFoldCompareInstruction. 1552 /// 1553 /// To simplify this code we canonicalize the relation so that the first 1554 /// operand is always the most "complex" of the two. We consider ConstantFP 1555 /// to be the simplest, and ConstantExprs to be the most complex. 1556 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { 1557 assert(V1->getType() == V2->getType() && 1558 "Cannot compare values of different types!"); 1559 1560 // We do not know if a constant expression will evaluate to a number or NaN. 1561 // Therefore, we can only say that the relation is unordered or equal. 1562 if (V1 == V2) return FCmpInst::FCMP_UEQ; 1563 1564 if (!isa<ConstantExpr>(V1)) { 1565 if (!isa<ConstantExpr>(V2)) { 1566 // Simple case, use the standard constant folder. 1567 ConstantInt *R = nullptr; 1568 R = dyn_cast<ConstantInt>( 1569 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); 1570 if (R && !R->isZero()) 1571 return FCmpInst::FCMP_OEQ; 1572 R = dyn_cast<ConstantInt>( 1573 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); 1574 if (R && !R->isZero()) 1575 return FCmpInst::FCMP_OLT; 1576 R = dyn_cast<ConstantInt>( 1577 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); 1578 if (R && !R->isZero()) 1579 return FCmpInst::FCMP_OGT; 1580 1581 // Nothing more we can do 1582 return FCmpInst::BAD_FCMP_PREDICATE; 1583 } 1584 1585 // If the first operand is simple and second is ConstantExpr, swap operands. 1586 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); 1587 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) 1588 return FCmpInst::getSwappedPredicate(SwappedRelation); 1589 } else { 1590 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1591 // constantexpr or a simple constant. 1592 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1593 switch (CE1->getOpcode()) { 1594 case Instruction::FPTrunc: 1595 case Instruction::FPExt: 1596 case Instruction::UIToFP: 1597 case Instruction::SIToFP: 1598 // We might be able to do something with these but we don't right now. 1599 break; 1600 default: 1601 break; 1602 } 1603 } 1604 // There are MANY other foldings that we could perform here. They will 1605 // probably be added on demand, as they seem needed. 1606 return FCmpInst::BAD_FCMP_PREDICATE; 1607 } 1608 1609 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 1610 const GlobalValue *GV2) { 1611 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 1612 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage()) 1613 return true; 1614 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 1615 Type *Ty = GVar->getValueType(); 1616 // A global with opaque type might end up being zero sized. 1617 if (!Ty->isSized()) 1618 return true; 1619 // A global with an empty type might lie at the address of any other 1620 // global. 1621 if (Ty->isEmptyTy()) 1622 return true; 1623 } 1624 return false; 1625 }; 1626 // Don't try to decide equality of aliases. 1627 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1628 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1629 return ICmpInst::ICMP_NE; 1630 return ICmpInst::BAD_ICMP_PREDICATE; 1631 } 1632 1633 /// This function determines if there is anything we can decide about the two 1634 /// constants provided. This doesn't need to handle simple things like integer 1635 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1636 /// If we can determine that the two constants have a particular relation to 1637 /// each other, we should return the corresponding ICmp predicate, otherwise 1638 /// return ICmpInst::BAD_ICMP_PREDICATE. 1639 /// 1640 /// To simplify this code we canonicalize the relation so that the first 1641 /// operand is always the most "complex" of the two. We consider simple 1642 /// constants (like ConstantInt) to be the simplest, followed by 1643 /// GlobalValues, followed by ConstantExpr's (the most complex). 1644 /// 1645 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, 1646 bool isSigned) { 1647 assert(V1->getType() == V2->getType() && 1648 "Cannot compare different types of values!"); 1649 if (V1 == V2) return ICmpInst::ICMP_EQ; 1650 1651 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && 1652 !isa<BlockAddress>(V1)) { 1653 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && 1654 !isa<BlockAddress>(V2)) { 1655 // We distilled this down to a simple case, use the standard constant 1656 // folder. 1657 ConstantInt *R = nullptr; 1658 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; 1659 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1660 if (R && !R->isZero()) 1661 return pred; 1662 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1663 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1664 if (R && !R->isZero()) 1665 return pred; 1666 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1667 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); 1668 if (R && !R->isZero()) 1669 return pred; 1670 1671 // If we couldn't figure it out, bail. 1672 return ICmpInst::BAD_ICMP_PREDICATE; 1673 } 1674 1675 // If the first operand is simple, swap operands. 1676 ICmpInst::Predicate SwappedRelation = 1677 evaluateICmpRelation(V2, V1, isSigned); 1678 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1679 return ICmpInst::getSwappedPredicate(SwappedRelation); 1680 1681 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1682 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1683 ICmpInst::Predicate SwappedRelation = 1684 evaluateICmpRelation(V2, V1, isSigned); 1685 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1686 return ICmpInst::getSwappedPredicate(SwappedRelation); 1687 return ICmpInst::BAD_ICMP_PREDICATE; 1688 } 1689 1690 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1691 // constant (which, since the types must match, means that it's a 1692 // ConstantPointerNull). 1693 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1694 return areGlobalsPotentiallyEqual(GV, GV2); 1695 } else if (isa<BlockAddress>(V2)) { 1696 return ICmpInst::ICMP_NE; // Globals never equal labels. 1697 } else { 1698 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); 1699 // GlobalVals can never be null unless they have external weak linkage. 1700 // We don't try to evaluate aliases here. 1701 // NOTE: We should not be doing this constant folding if null pointer 1702 // is considered valid for the function. But currently there is no way to 1703 // query it from the Constant type. 1704 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1705 !NullPointerIsDefined(nullptr /* F */, 1706 GV->getType()->getAddressSpace())) 1707 return ICmpInst::ICMP_NE; 1708 } 1709 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1710 if (isa<ConstantExpr>(V2)) { // Swap as necessary. 1711 ICmpInst::Predicate SwappedRelation = 1712 evaluateICmpRelation(V2, V1, isSigned); 1713 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1714 return ICmpInst::getSwappedPredicate(SwappedRelation); 1715 return ICmpInst::BAD_ICMP_PREDICATE; 1716 } 1717 1718 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1719 // constant (which, since the types must match, means that it is a 1720 // ConstantPointerNull). 1721 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1722 // Block address in another function can't equal this one, but block 1723 // addresses in the current function might be the same if blocks are 1724 // empty. 1725 if (BA2->getFunction() != BA->getFunction()) 1726 return ICmpInst::ICMP_NE; 1727 } else { 1728 // Block addresses aren't null, don't equal the address of globals. 1729 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && 1730 "Canonicalization guarantee!"); 1731 return ICmpInst::ICMP_NE; 1732 } 1733 } else { 1734 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1735 // constantexpr, a global, block address, or a simple constant. 1736 ConstantExpr *CE1 = cast<ConstantExpr>(V1); 1737 Constant *CE1Op0 = CE1->getOperand(0); 1738 1739 switch (CE1->getOpcode()) { 1740 case Instruction::Trunc: 1741 case Instruction::FPTrunc: 1742 case Instruction::FPExt: 1743 case Instruction::FPToUI: 1744 case Instruction::FPToSI: 1745 break; // We can't evaluate floating point casts or truncations. 1746 1747 case Instruction::UIToFP: 1748 case Instruction::SIToFP: 1749 case Instruction::BitCast: 1750 case Instruction::ZExt: 1751 case Instruction::SExt: 1752 // We can't evaluate floating point casts or truncations. 1753 if (CE1Op0->getType()->isFPOrFPVectorTy()) 1754 break; 1755 1756 // If the cast is not actually changing bits, and the second operand is a 1757 // null pointer, do the comparison with the pre-casted value. 1758 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { 1759 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; 1760 if (CE1->getOpcode() == Instruction::SExt) isSigned = true; 1761 return evaluateICmpRelation(CE1Op0, 1762 Constant::getNullValue(CE1Op0->getType()), 1763 isSigned); 1764 } 1765 break; 1766 1767 case Instruction::GetElementPtr: { 1768 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1769 // Ok, since this is a getelementptr, we know that the constant has a 1770 // pointer type. Check the various cases. 1771 if (isa<ConstantPointerNull>(V2)) { 1772 // If we are comparing a GEP to a null pointer, check to see if the base 1773 // of the GEP equals the null pointer. 1774 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1775 if (GV->hasExternalWeakLinkage()) 1776 // Weak linkage GVals could be zero or not. We're comparing that 1777 // to null pointer so its greater-or-equal 1778 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 1779 else 1780 // If its not weak linkage, the GVal must have a non-zero address 1781 // so the result is greater-than 1782 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1783 } else if (isa<ConstantPointerNull>(CE1Op0)) { 1784 // If we are indexing from a null pointer, check to see if we have any 1785 // non-zero indices. 1786 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) 1787 if (!CE1->getOperand(i)->isNullValue()) 1788 // Offsetting from null, must not be equal. 1789 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1790 // Only zero indexes from null, must still be zero. 1791 return ICmpInst::ICMP_EQ; 1792 } 1793 // Otherwise, we can't really say if the first operand is null or not. 1794 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1795 if (isa<ConstantPointerNull>(CE1Op0)) { 1796 if (GV2->hasExternalWeakLinkage()) 1797 // Weak linkage GVals could be zero or not. We're comparing it to 1798 // a null pointer, so its less-or-equal 1799 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 1800 else 1801 // If its not weak linkage, the GVal must have a non-zero address 1802 // so the result is less-than 1803 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1804 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1805 if (GV == GV2) { 1806 // If this is a getelementptr of the same global, then it must be 1807 // different. Because the types must match, the getelementptr could 1808 // only have at most one index, and because we fold getelementptr's 1809 // with a single zero index, it must be nonzero. 1810 assert(CE1->getNumOperands() == 2 && 1811 !CE1->getOperand(1)->isNullValue() && 1812 "Surprising getelementptr!"); 1813 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1814 } else { 1815 if (CE1GEP->hasAllZeroIndices()) 1816 return areGlobalsPotentiallyEqual(GV, GV2); 1817 return ICmpInst::BAD_ICMP_PREDICATE; 1818 } 1819 } 1820 } else { 1821 ConstantExpr *CE2 = cast<ConstantExpr>(V2); 1822 Constant *CE2Op0 = CE2->getOperand(0); 1823 1824 // There are MANY other foldings that we could perform here. They will 1825 // probably be added on demand, as they seem needed. 1826 switch (CE2->getOpcode()) { 1827 default: break; 1828 case Instruction::GetElementPtr: 1829 // By far the most common case to handle is when the base pointers are 1830 // obviously to the same global. 1831 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1832 // Don't know relative ordering, but check for inequality. 1833 if (CE1Op0 != CE2Op0) { 1834 GEPOperator *CE2GEP = cast<GEPOperator>(CE2); 1835 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1836 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1837 cast<GlobalValue>(CE2Op0)); 1838 return ICmpInst::BAD_ICMP_PREDICATE; 1839 } 1840 // Ok, we know that both getelementptr instructions are based on the 1841 // same global. From this, we can precisely determine the relative 1842 // ordering of the resultant pointers. 1843 unsigned i = 1; 1844 1845 // The logic below assumes that the result of the comparison 1846 // can be determined by finding the first index that differs. 1847 // This doesn't work if there is over-indexing in any 1848 // subsequent indices, so check for that case first. 1849 if (!CE1->isGEPWithNoNotionalOverIndexing() || 1850 !CE2->isGEPWithNoNotionalOverIndexing()) 1851 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1852 1853 // Compare all of the operands the GEP's have in common. 1854 gep_type_iterator GTI = gep_type_begin(CE1); 1855 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); 1856 ++i, ++GTI) 1857 switch (IdxCompare(CE1->getOperand(i), 1858 CE2->getOperand(i), GTI.getIndexedType())) { 1859 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; 1860 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; 1861 case -2: return ICmpInst::BAD_ICMP_PREDICATE; 1862 } 1863 1864 // Ok, we ran out of things they have in common. If any leftovers 1865 // are non-zero then we have a difference, otherwise we are equal. 1866 for (; i < CE1->getNumOperands(); ++i) 1867 if (!CE1->getOperand(i)->isNullValue()) { 1868 if (isa<ConstantInt>(CE1->getOperand(i))) 1869 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 1870 else 1871 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1872 } 1873 1874 for (; i < CE2->getNumOperands(); ++i) 1875 if (!CE2->getOperand(i)->isNullValue()) { 1876 if (isa<ConstantInt>(CE2->getOperand(i))) 1877 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 1878 else 1879 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. 1880 } 1881 return ICmpInst::ICMP_EQ; 1882 } 1883 } 1884 } 1885 break; 1886 } 1887 default: 1888 break; 1889 } 1890 } 1891 1892 return ICmpInst::BAD_ICMP_PREDICATE; 1893 } 1894 1895 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 1896 Constant *C1, Constant *C2) { 1897 Type *ResultTy; 1898 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1899 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1900 VT->getElementCount()); 1901 else 1902 ResultTy = Type::getInt1Ty(C1->getContext()); 1903 1904 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1905 if (pred == FCmpInst::FCMP_FALSE) 1906 return Constant::getNullValue(ResultTy); 1907 1908 if (pred == FCmpInst::FCMP_TRUE) 1909 return Constant::getAllOnesValue(ResultTy); 1910 1911 // Handle some degenerate cases first 1912 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1913 CmpInst::Predicate Predicate = CmpInst::Predicate(pred); 1914 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1915 // For EQ and NE, we can always pick a value for the undef to make the 1916 // predicate pass or fail, so we can return undef. 1917 // Also, if both operands are undef, we can return undef for int comparison. 1918 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1919 return UndefValue::get(ResultTy); 1920 1921 // Otherwise, for integer compare, pick the same value as the non-undef 1922 // operand, and fold it to true or false. 1923 if (isIntegerPredicate) 1924 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1925 1926 // Choosing NaN for the undef will always make unordered comparison succeed 1927 // and ordered comparison fails. 1928 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1929 } 1930 1931 // icmp eq/ne(null,GV) -> false/true 1932 if (C1->isNullValue()) { 1933 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) 1934 // Don't try to evaluate aliases. External weak GV can be null. 1935 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1936 !NullPointerIsDefined(nullptr /* F */, 1937 GV->getType()->getAddressSpace())) { 1938 if (pred == ICmpInst::ICMP_EQ) 1939 return ConstantInt::getFalse(C1->getContext()); 1940 else if (pred == ICmpInst::ICMP_NE) 1941 return ConstantInt::getTrue(C1->getContext()); 1942 } 1943 // icmp eq/ne(GV,null) -> false/true 1944 } else if (C2->isNullValue()) { 1945 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) 1946 // Don't try to evaluate aliases. External weak GV can be null. 1947 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && 1948 !NullPointerIsDefined(nullptr /* F */, 1949 GV->getType()->getAddressSpace())) { 1950 if (pred == ICmpInst::ICMP_EQ) 1951 return ConstantInt::getFalse(C1->getContext()); 1952 else if (pred == ICmpInst::ICMP_NE) 1953 return ConstantInt::getTrue(C1->getContext()); 1954 } 1955 } 1956 1957 // If the comparison is a comparison between two i1's, simplify it. 1958 if (C1->getType()->isIntegerTy(1)) { 1959 switch(pred) { 1960 case ICmpInst::ICMP_EQ: 1961 if (isa<ConstantInt>(C2)) 1962 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1963 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1964 case ICmpInst::ICMP_NE: 1965 return ConstantExpr::getXor(C1, C2); 1966 default: 1967 break; 1968 } 1969 } 1970 1971 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1972 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1973 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1974 switch (pred) { 1975 default: llvm_unreachable("Invalid ICmp Predicate"); 1976 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2); 1977 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2); 1978 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); 1979 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); 1980 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); 1981 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); 1982 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); 1983 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); 1984 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); 1985 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); 1986 } 1987 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1988 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1989 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1990 APFloat::cmpResult R = C1V.compare(C2V); 1991 switch (pred) { 1992 default: llvm_unreachable("Invalid FCmp Predicate"); 1993 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); 1994 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy); 1995 case FCmpInst::FCMP_UNO: 1996 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); 1997 case FCmpInst::FCMP_ORD: 1998 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); 1999 case FCmpInst::FCMP_UEQ: 2000 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 2001 R==APFloat::cmpEqual); 2002 case FCmpInst::FCMP_OEQ: 2003 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); 2004 case FCmpInst::FCMP_UNE: 2005 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); 2006 case FCmpInst::FCMP_ONE: 2007 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 2008 R==APFloat::cmpGreaterThan); 2009 case FCmpInst::FCMP_ULT: 2010 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 2011 R==APFloat::cmpLessThan); 2012 case FCmpInst::FCMP_OLT: 2013 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); 2014 case FCmpInst::FCMP_UGT: 2015 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || 2016 R==APFloat::cmpGreaterThan); 2017 case FCmpInst::FCMP_OGT: 2018 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); 2019 case FCmpInst::FCMP_ULE: 2020 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); 2021 case FCmpInst::FCMP_OLE: 2022 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || 2023 R==APFloat::cmpEqual); 2024 case FCmpInst::FCMP_UGE: 2025 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); 2026 case FCmpInst::FCMP_OGE: 2027 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || 2028 R==APFloat::cmpEqual); 2029 } 2030 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 2031 2032 // Do not iterate on scalable vector. The number of elements is unknown at 2033 // compile-time. 2034 if (isa<ScalableVectorType>(C1VTy)) 2035 return nullptr; 2036 2037 // Fast path for splatted constants. 2038 if (Constant *C1Splat = C1->getSplatValue()) 2039 if (Constant *C2Splat = C2->getSplatValue()) 2040 return ConstantVector::getSplat( 2041 C1VTy->getElementCount(), 2042 ConstantExpr::getCompare(pred, C1Splat, C2Splat)); 2043 2044 // If we can constant fold the comparison of each element, constant fold 2045 // the whole vector comparison. 2046 SmallVector<Constant*, 4> ResElts; 2047 Type *Ty = IntegerType::get(C1->getContext(), 32); 2048 // Compare the elements, producing an i1 result or constant expr. 2049 for (unsigned i = 0, e = C1VTy->getElementCount().Min; i != e; ++i) { 2050 Constant *C1E = 2051 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); 2052 Constant *C2E = 2053 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); 2054 2055 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); 2056 } 2057 2058 return ConstantVector::get(ResElts); 2059 } 2060 2061 if (C1->getType()->isFloatingPointTy() && 2062 // Only call evaluateFCmpRelation if we have a constant expr to avoid 2063 // infinite recursive loop 2064 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { 2065 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 2066 switch (evaluateFCmpRelation(C1, C2)) { 2067 default: llvm_unreachable("Unknown relation!"); 2068 case FCmpInst::FCMP_UNO: 2069 case FCmpInst::FCMP_ORD: 2070 case FCmpInst::FCMP_UNE: 2071 case FCmpInst::FCMP_ULT: 2072 case FCmpInst::FCMP_UGT: 2073 case FCmpInst::FCMP_ULE: 2074 case FCmpInst::FCMP_UGE: 2075 case FCmpInst::FCMP_TRUE: 2076 case FCmpInst::FCMP_FALSE: 2077 case FCmpInst::BAD_FCMP_PREDICATE: 2078 break; // Couldn't determine anything about these constants. 2079 case FCmpInst::FCMP_OEQ: // We know that C1 == C2 2080 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || 2081 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || 2082 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 2083 break; 2084 case FCmpInst::FCMP_OLT: // We know that C1 < C2 2085 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 2086 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || 2087 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); 2088 break; 2089 case FCmpInst::FCMP_OGT: // We know that C1 > C2 2090 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || 2091 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || 2092 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); 2093 break; 2094 case FCmpInst::FCMP_OLE: // We know that C1 <= C2 2095 // We can only partially decide this relation. 2096 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 2097 Result = 0; 2098 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2099 Result = 1; 2100 break; 2101 case FCmpInst::FCMP_OGE: // We known that C1 >= C2 2102 // We can only partially decide this relation. 2103 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 2104 Result = 0; 2105 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 2106 Result = 1; 2107 break; 2108 case FCmpInst::FCMP_ONE: // We know that C1 != C2 2109 // We can only partially decide this relation. 2110 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 2111 Result = 0; 2112 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 2113 Result = 1; 2114 break; 2115 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2). 2116 // We can only partially decide this relation. 2117 if (pred == FCmpInst::FCMP_ONE) 2118 Result = 0; 2119 else if (pred == FCmpInst::FCMP_UEQ) 2120 Result = 1; 2121 break; 2122 } 2123 2124 // If we evaluated the result, return it now. 2125 if (Result != -1) 2126 return ConstantInt::get(ResultTy, Result); 2127 2128 } else { 2129 // Evaluate the relation between the two constants, per the predicate. 2130 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 2131 switch (evaluateICmpRelation(C1, C2, 2132 CmpInst::isSigned((CmpInst::Predicate)pred))) { 2133 default: llvm_unreachable("Unknown relational!"); 2134 case ICmpInst::BAD_ICMP_PREDICATE: 2135 break; // Couldn't determine anything about these constants. 2136 case ICmpInst::ICMP_EQ: // We know the constants are equal! 2137 // If we know the constants are equal, we can decide the result of this 2138 // computation precisely. 2139 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); 2140 break; 2141 case ICmpInst::ICMP_ULT: 2142 switch (pred) { 2143 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 2144 Result = 1; break; 2145 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 2146 Result = 0; break; 2147 } 2148 break; 2149 case ICmpInst::ICMP_SLT: 2150 switch (pred) { 2151 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 2152 Result = 1; break; 2153 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 2154 Result = 0; break; 2155 } 2156 break; 2157 case ICmpInst::ICMP_UGT: 2158 switch (pred) { 2159 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 2160 Result = 1; break; 2161 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 2162 Result = 0; break; 2163 } 2164 break; 2165 case ICmpInst::ICMP_SGT: 2166 switch (pred) { 2167 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 2168 Result = 1; break; 2169 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 2170 Result = 0; break; 2171 } 2172 break; 2173 case ICmpInst::ICMP_ULE: 2174 if (pred == ICmpInst::ICMP_UGT) Result = 0; 2175 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; 2176 break; 2177 case ICmpInst::ICMP_SLE: 2178 if (pred == ICmpInst::ICMP_SGT) Result = 0; 2179 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; 2180 break; 2181 case ICmpInst::ICMP_UGE: 2182 if (pred == ICmpInst::ICMP_ULT) Result = 0; 2183 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; 2184 break; 2185 case ICmpInst::ICMP_SGE: 2186 if (pred == ICmpInst::ICMP_SLT) Result = 0; 2187 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; 2188 break; 2189 case ICmpInst::ICMP_NE: 2190 if (pred == ICmpInst::ICMP_EQ) Result = 0; 2191 if (pred == ICmpInst::ICMP_NE) Result = 1; 2192 break; 2193 } 2194 2195 // If we evaluated the result, return it now. 2196 if (Result != -1) 2197 return ConstantInt::get(ResultTy, Result); 2198 2199 // If the right hand side is a bitcast, try using its inverse to simplify 2200 // it by moving it to the left hand side. We can't do this if it would turn 2201 // a vector compare into a scalar compare or visa versa, or if it would turn 2202 // the operands into FP values. 2203 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { 2204 Constant *CE2Op0 = CE2->getOperand(0); 2205 if (CE2->getOpcode() == Instruction::BitCast && 2206 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && 2207 !CE2Op0->getType()->isFPOrFPVectorTy()) { 2208 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); 2209 return ConstantExpr::getICmp(pred, Inverse, CE2Op0); 2210 } 2211 } 2212 2213 // If the left hand side is an extension, try eliminating it. 2214 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 2215 if ((CE1->getOpcode() == Instruction::SExt && 2216 ICmpInst::isSigned((ICmpInst::Predicate)pred)) || 2217 (CE1->getOpcode() == Instruction::ZExt && 2218 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ 2219 Constant *CE1Op0 = CE1->getOperand(0); 2220 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); 2221 if (CE1Inverse == CE1Op0) { 2222 // Check whether we can safely truncate the right hand side. 2223 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); 2224 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, 2225 C2->getType()) == C2) 2226 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); 2227 } 2228 } 2229 } 2230 2231 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 2232 (C1->isNullValue() && !C2->isNullValue())) { 2233 // If C2 is a constant expr and C1 isn't, flip them around and fold the 2234 // other way if possible. 2235 // Also, if C1 is null and C2 isn't, flip them around. 2236 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); 2237 return ConstantExpr::getICmp(pred, C2, C1); 2238 } 2239 } 2240 return nullptr; 2241 } 2242 2243 /// Test whether the given sequence of *normalized* indices is "inbounds". 2244 template<typename IndexTy> 2245 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 2246 // No indices means nothing that could be out of bounds. 2247 if (Idxs.empty()) return true; 2248 2249 // If the first index is zero, it's in bounds. 2250 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 2251 2252 // If the first index is one and all the rest are zero, it's in bounds, 2253 // by the one-past-the-end rule. 2254 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { 2255 if (!CI->isOne()) 2256 return false; 2257 } else { 2258 auto *CV = cast<ConstantDataVector>(Idxs[0]); 2259 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); 2260 if (!CI || !CI->isOne()) 2261 return false; 2262 } 2263 2264 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 2265 if (!cast<Constant>(Idxs[i])->isNullValue()) 2266 return false; 2267 return true; 2268 } 2269 2270 /// Test whether a given ConstantInt is in-range for a SequentialType. 2271 static bool isIndexInRangeOfArrayType(uint64_t NumElements, 2272 const ConstantInt *CI) { 2273 // We cannot bounds check the index if it doesn't fit in an int64_t. 2274 if (CI->getValue().getMinSignedBits() > 64) 2275 return false; 2276 2277 // A negative index or an index past the end of our sequential type is 2278 // considered out-of-range. 2279 int64_t IndexVal = CI->getSExtValue(); 2280 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) 2281 return false; 2282 2283 // Otherwise, it is in-range. 2284 return true; 2285 } 2286 2287 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 2288 bool InBounds, 2289 Optional<unsigned> InRangeIndex, 2290 ArrayRef<Value *> Idxs) { 2291 if (Idxs.empty()) return C; 2292 2293 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 2294 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); 2295 2296 if (isa<UndefValue>(C)) 2297 return UndefValue::get(GEPTy); 2298 2299 Constant *Idx0 = cast<Constant>(Idxs[0]); 2300 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) 2301 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 2302 ? ConstantVector::getSplat( 2303 cast<VectorType>(GEPTy)->getElementCount(), C) 2304 : C; 2305 2306 if (C->isNullValue()) { 2307 bool isNull = true; 2308 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2309 if (!isa<UndefValue>(Idxs[i]) && 2310 !cast<Constant>(Idxs[i])->isNullValue()) { 2311 isNull = false; 2312 break; 2313 } 2314 if (isNull) { 2315 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); 2316 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); 2317 2318 assert(Ty && "Invalid indices for GEP!"); 2319 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2320 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); 2321 if (VectorType *VT = dyn_cast<VectorType>(C->getType())) 2322 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2323 2324 // The GEP returns a vector of pointers when one of more of 2325 // its arguments is a vector. 2326 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { 2327 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { 2328 assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) == 2329 isa<ScalableVectorType>(VT)) && 2330 "Mismatched GEPTy vector types"); 2331 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount()); 2332 break; 2333 } 2334 } 2335 2336 return Constant::getNullValue(GEPTy); 2337 } 2338 } 2339 2340 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2341 // Combine Indices - If the source pointer to this getelementptr instruction 2342 // is a getelementptr instruction, combine the indices of the two 2343 // getelementptr instructions into a single instruction. 2344 // 2345 if (CE->getOpcode() == Instruction::GetElementPtr) { 2346 gep_type_iterator LastI = gep_type_end(CE); 2347 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); 2348 I != E; ++I) 2349 LastI = I; 2350 2351 // We cannot combine indices if doing so would take us outside of an 2352 // array or vector. Doing otherwise could trick us if we evaluated such a 2353 // GEP as part of a load. 2354 // 2355 // e.g. Consider if the original GEP was: 2356 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2357 // i32 0, i32 0, i64 0) 2358 // 2359 // If we then tried to offset it by '8' to get to the third element, 2360 // an i8, we should *not* get: 2361 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, 2362 // i32 0, i32 0, i64 8) 2363 // 2364 // This GEP tries to index array element '8 which runs out-of-bounds. 2365 // Subsequent evaluation would get confused and produce erroneous results. 2366 // 2367 // The following prohibits such a GEP from being formed by checking to see 2368 // if the index is in-range with respect to an array. 2369 // TODO: This code may be extended to handle vectors as well. 2370 bool PerformFold = false; 2371 if (Idx0->isNullValue()) 2372 PerformFold = true; 2373 else if (LastI.isSequential()) 2374 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) 2375 PerformFold = (!LastI.isBoundedSequential() || 2376 isIndexInRangeOfArrayType( 2377 LastI.getSequentialNumElements(), CI)) && 2378 !CE->getOperand(CE->getNumOperands() - 1) 2379 ->getType() 2380 ->isVectorTy(); 2381 2382 if (PerformFold) { 2383 SmallVector<Value*, 16> NewIndices; 2384 NewIndices.reserve(Idxs.size() + CE->getNumOperands()); 2385 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); 2386 2387 // Add the last index of the source with the first index of the new GEP. 2388 // Make sure to handle the case when they are actually different types. 2389 Constant *Combined = CE->getOperand(CE->getNumOperands()-1); 2390 // Otherwise it must be an array. 2391 if (!Idx0->isNullValue()) { 2392 Type *IdxTy = Combined->getType(); 2393 if (IdxTy != Idx0->getType()) { 2394 unsigned CommonExtendedWidth = 2395 std::max(IdxTy->getIntegerBitWidth(), 2396 Idx0->getType()->getIntegerBitWidth()); 2397 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2398 2399 Type *CommonTy = 2400 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); 2401 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); 2402 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); 2403 Combined = ConstantExpr::get(Instruction::Add, C1, C2); 2404 } else { 2405 Combined = 2406 ConstantExpr::get(Instruction::Add, Idx0, Combined); 2407 } 2408 } 2409 2410 NewIndices.push_back(Combined); 2411 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 2412 2413 // The combined GEP normally inherits its index inrange attribute from 2414 // the inner GEP, but if the inner GEP's last index was adjusted by the 2415 // outer GEP, any inbounds attribute on that index is invalidated. 2416 Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); 2417 if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) 2418 IRIndex = None; 2419 2420 return ConstantExpr::getGetElementPtr( 2421 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), 2422 NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), 2423 IRIndex); 2424 } 2425 } 2426 2427 // Attempt to fold casts to the same type away. For example, folding: 2428 // 2429 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), 2430 // i64 0, i64 0) 2431 // into: 2432 // 2433 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) 2434 // 2435 // Don't fold if the cast is changing address spaces. 2436 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { 2437 PointerType *SrcPtrTy = 2438 dyn_cast<PointerType>(CE->getOperand(0)->getType()); 2439 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); 2440 if (SrcPtrTy && DstPtrTy) { 2441 ArrayType *SrcArrayTy = 2442 dyn_cast<ArrayType>(SrcPtrTy->getElementType()); 2443 ArrayType *DstArrayTy = 2444 dyn_cast<ArrayType>(DstPtrTy->getElementType()); 2445 if (SrcArrayTy && DstArrayTy 2446 && SrcArrayTy->getElementType() == DstArrayTy->getElementType() 2447 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) 2448 return ConstantExpr::getGetElementPtr(SrcArrayTy, 2449 (Constant *)CE->getOperand(0), 2450 Idxs, InBounds, InRangeIndex); 2451 } 2452 } 2453 } 2454 2455 // Check to see if any array indices are not within the corresponding 2456 // notional array or vector bounds. If so, try to determine if they can be 2457 // factored out into preceding dimensions. 2458 SmallVector<Constant *, 8> NewIdxs; 2459 Type *Ty = PointeeTy; 2460 Type *Prev = C->getType(); 2461 auto GEPIter = gep_type_begin(PointeeTy, Idxs); 2462 bool Unknown = 2463 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); 2464 for (unsigned i = 1, e = Idxs.size(); i != e; 2465 Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) { 2466 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { 2467 // We don't know if it's in range or not. 2468 Unknown = true; 2469 continue; 2470 } 2471 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) 2472 // Skip if the type of the previous index is not supported. 2473 continue; 2474 if (InRangeIndex && i == *InRangeIndex + 1) { 2475 // If an index is marked inrange, we cannot apply this canonicalization to 2476 // the following index, as that will cause the inrange index to point to 2477 // the wrong element. 2478 continue; 2479 } 2480 if (isa<StructType>(Ty)) { 2481 // The verify makes sure that GEPs into a struct are in range. 2482 continue; 2483 } 2484 if (isa<VectorType>(Ty)) { 2485 // There can be awkward padding in after a non-power of two vector. 2486 Unknown = true; 2487 continue; 2488 } 2489 auto *STy = cast<ArrayType>(Ty); 2490 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 2491 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) 2492 // It's in range, skip to the next index. 2493 continue; 2494 if (CI->getSExtValue() < 0) { 2495 // It's out of range and negative, don't try to factor it. 2496 Unknown = true; 2497 continue; 2498 } 2499 } else { 2500 auto *CV = cast<ConstantDataVector>(Idxs[i]); 2501 bool InRange = true; 2502 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 2503 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); 2504 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); 2505 if (CI->getSExtValue() < 0) { 2506 Unknown = true; 2507 break; 2508 } 2509 } 2510 if (InRange || Unknown) 2511 // It's in range, skip to the next index. 2512 // It's out of range and negative, don't try to factor it. 2513 continue; 2514 } 2515 if (isa<StructType>(Prev)) { 2516 // It's out of range, but the prior dimension is a struct 2517 // so we can't do anything about it. 2518 Unknown = true; 2519 continue; 2520 } 2521 // It's out of range, but we can factor it into the prior 2522 // dimension. 2523 NewIdxs.resize(Idxs.size()); 2524 // Determine the number of elements in our sequential type. 2525 uint64_t NumElements = STy->getArrayNumElements(); 2526 2527 // Expand the current index or the previous index to a vector from a scalar 2528 // if necessary. 2529 Constant *CurrIdx = cast<Constant>(Idxs[i]); 2530 auto *PrevIdx = 2531 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); 2532 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); 2533 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); 2534 bool UseVector = IsCurrIdxVector || IsPrevIdxVector; 2535 2536 if (!IsCurrIdxVector && IsPrevIdxVector) 2537 CurrIdx = ConstantDataVector::getSplat( 2538 cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx); 2539 2540 if (!IsPrevIdxVector && IsCurrIdxVector) 2541 PrevIdx = ConstantDataVector::getSplat( 2542 cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx); 2543 2544 Constant *Factor = 2545 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); 2546 if (UseVector) 2547 Factor = ConstantDataVector::getSplat( 2548 IsPrevIdxVector 2549 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2550 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), 2551 Factor); 2552 2553 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); 2554 2555 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); 2556 2557 unsigned CommonExtendedWidth = 2558 std::max(PrevIdx->getType()->getScalarSizeInBits(), 2559 Div->getType()->getScalarSizeInBits()); 2560 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 2561 2562 // Before adding, extend both operands to i64 to avoid 2563 // overflow trouble. 2564 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); 2565 if (UseVector) 2566 ExtendedTy = FixedVectorType::get( 2567 ExtendedTy, 2568 IsPrevIdxVector 2569 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 2570 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements()); 2571 2572 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2573 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); 2574 2575 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 2576 Div = ConstantExpr::getSExt(Div, ExtendedTy); 2577 2578 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); 2579 } 2580 2581 // If we did any factoring, start over with the adjusted indices. 2582 if (!NewIdxs.empty()) { 2583 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 2584 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 2585 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, 2586 InRangeIndex); 2587 } 2588 2589 // If all indices are known integers and normalized, we can do a simple 2590 // check for the "inbounds" property. 2591 if (!Unknown && !InBounds) 2592 if (auto *GV = dyn_cast<GlobalVariable>(C)) 2593 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) 2594 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, 2595 /*InBounds=*/true, InRangeIndex); 2596 2597 return nullptr; 2598 } 2599