xref: /freebsd-src/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/iterator_range.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/AssemblyAnnotationWriter.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Comdat.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalIFunc.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ModuleSlotTracker.h"
61 #include "llvm/IR/ModuleSummaryIndex.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/SaveAndRestore.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 using OrderMap = MapVector<const Value *, unsigned>;
99 
100 using UseListOrderMap =
101     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
102 
103 /// Look for a value that might be wrapped as metadata, e.g. a value in a
104 /// metadata operand. Returns the input value as-is if it is not wrapped.
105 static const Value *skipMetadataWrapper(const Value *V) {
106   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
107     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108       return VAM->getValue();
109   return V;
110 }
111 
112 static void orderValue(const Value *V, OrderMap &OM) {
113   if (OM.lookup(V))
114     return;
115 
116   if (const Constant *C = dyn_cast<Constant>(V))
117     if (C->getNumOperands() && !isa<GlobalValue>(C))
118       for (const Value *Op : C->operands())
119         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
120           orderValue(Op, OM);
121 
122   // Note: we cannot cache this lookup above, since inserting into the map
123   // changes the map's size, and thus affects the other IDs.
124   unsigned ID = OM.size() + 1;
125   OM[V] = ID;
126 }
127 
128 static OrderMap orderModule(const Module *M) {
129   OrderMap OM;
130 
131   for (const GlobalVariable &G : M->globals()) {
132     if (G.hasInitializer())
133       if (!isa<GlobalValue>(G.getInitializer()))
134         orderValue(G.getInitializer(), OM);
135     orderValue(&G, OM);
136   }
137   for (const GlobalAlias &A : M->aliases()) {
138     if (!isa<GlobalValue>(A.getAliasee()))
139       orderValue(A.getAliasee(), OM);
140     orderValue(&A, OM);
141   }
142   for (const GlobalIFunc &I : M->ifuncs()) {
143     if (!isa<GlobalValue>(I.getResolver()))
144       orderValue(I.getResolver(), OM);
145     orderValue(&I, OM);
146   }
147   for (const Function &F : *M) {
148     for (const Use &U : F.operands())
149       if (!isa<GlobalValue>(U.get()))
150         orderValue(U.get(), OM);
151 
152     orderValue(&F, OM);
153 
154     if (F.isDeclaration())
155       continue;
156 
157     for (const Argument &A : F.args())
158       orderValue(&A, OM);
159     for (const BasicBlock &BB : F) {
160       orderValue(&BB, OM);
161       for (const Instruction &I : BB) {
162         for (const Value *Op : I.operands()) {
163           Op = skipMetadataWrapper(Op);
164           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
165               isa<InlineAsm>(*Op))
166             orderValue(Op, OM);
167         }
168         orderValue(&I, OM);
169       }
170     }
171   }
172   return OM;
173 }
174 
175 static std::vector<unsigned>
176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
177   // Predict use-list order for this one.
178   using Entry = std::pair<const Use *, unsigned>;
179   SmallVector<Entry, 64> List;
180   for (const Use &U : V->uses())
181     // Check if this user will be serialized.
182     if (OM.lookup(U.getUser()))
183       List.push_back(std::make_pair(&U, List.size()));
184 
185   if (List.size() < 2)
186     // We may have lost some users.
187     return {};
188 
189   // When referencing a value before its declaration, a temporary value is
190   // created, which will later be RAUWed with the actual value. This reverses
191   // the use list. This happens for all values apart from basic blocks.
192   bool GetsReversed = !isa<BasicBlock>(V);
193   if (auto *BA = dyn_cast<BlockAddress>(V))
194     ID = OM.lookup(BA->getBasicBlock());
195   llvm::sort(List, [&](const Entry &L, const Entry &R) {
196     const Use *LU = L.first;
197     const Use *RU = R.first;
198     if (LU == RU)
199       return false;
200 
201     auto LID = OM.lookup(LU->getUser());
202     auto RID = OM.lookup(RU->getUser());
203 
204     // If ID is 4, then expect: 7 6 5 1 2 3.
205     if (LID < RID) {
206       if (GetsReversed)
207         if (RID <= ID)
208           return true;
209       return false;
210     }
211     if (RID < LID) {
212       if (GetsReversed)
213         if (LID <= ID)
214           return false;
215       return true;
216     }
217 
218     // LID and RID are equal, so we have different operands of the same user.
219     // Assume operands are added in order for all instructions.
220     if (GetsReversed)
221       if (LID <= ID)
222         return LU->getOperandNo() < RU->getOperandNo();
223     return LU->getOperandNo() > RU->getOperandNo();
224   });
225 
226   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
227         return L.second < R.second;
228       }))
229     // Order is already correct.
230     return {};
231 
232   // Store the shuffle.
233   std::vector<unsigned> Shuffle(List.size());
234   for (size_t I = 0, E = List.size(); I != E; ++I)
235     Shuffle[I] = List[I].second;
236   return Shuffle;
237 }
238 
239 static UseListOrderMap predictUseListOrder(const Module *M) {
240   OrderMap OM = orderModule(M);
241   UseListOrderMap ULOM;
242   for (const auto &Pair : OM) {
243     const Value *V = Pair.first;
244     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
245       continue;
246 
247     std::vector<unsigned> Shuffle =
248         predictValueUseListOrder(V, Pair.second, OM);
249     if (Shuffle.empty())
250       continue;
251 
252     const Function *F = nullptr;
253     if (auto *I = dyn_cast<Instruction>(V))
254       F = I->getFunction();
255     if (auto *A = dyn_cast<Argument>(V))
256       F = A->getParent();
257     if (auto *BB = dyn_cast<BasicBlock>(V))
258       F = BB->getParent();
259     ULOM[F][V] = std::move(Shuffle);
260   }
261   return ULOM;
262 }
263 
264 static const Module *getModuleFromVal(const Value *V) {
265   if (const Argument *MA = dyn_cast<Argument>(V))
266     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
267 
268   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
269     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
270 
271   if (const Instruction *I = dyn_cast<Instruction>(V)) {
272     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
273     return M ? M->getParent() : nullptr;
274   }
275 
276   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
277     return GV->getParent();
278 
279   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
280     for (const User *U : MAV->users())
281       if (isa<Instruction>(U))
282         if (const Module *M = getModuleFromVal(U))
283           return M;
284     return nullptr;
285   }
286 
287   return nullptr;
288 }
289 
290 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
291   switch (cc) {
292   default:                         Out << "cc" << cc; break;
293   case CallingConv::Fast:          Out << "fastcc"; break;
294   case CallingConv::Cold:          Out << "coldcc"; break;
295   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
296   case CallingConv::AnyReg:        Out << "anyregcc"; break;
297   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
298   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
299   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
300   case CallingConv::GHC:           Out << "ghccc"; break;
301   case CallingConv::Tail:          Out << "tailcc"; break;
302   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
303   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
304   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
305   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
306   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
307   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
308   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
309   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
310   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
311   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
312   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
313   case CallingConv::AArch64_SVE_VectorCall:
314     Out << "aarch64_sve_vector_pcs";
315     break;
316   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
317   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
318   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
319   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
320   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
321   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
322   case CallingConv::Win64:         Out << "win64cc"; break;
323   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
324   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
325   case CallingConv::Swift:         Out << "swiftcc"; break;
326   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
327   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
328   case CallingConv::HHVM:          Out << "hhvmcc"; break;
329   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
330   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
331   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
332   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
333   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
334   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
335   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
336   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
337   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
338   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
339   }
340 }
341 
342 enum PrefixType {
343   GlobalPrefix,
344   ComdatPrefix,
345   LabelPrefix,
346   LocalPrefix,
347   NoPrefix
348 };
349 
350 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
351   assert(!Name.empty() && "Cannot get empty name!");
352 
353   // Scan the name to see if it needs quotes first.
354   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
355   if (!NeedsQuotes) {
356     for (unsigned char C : Name) {
357       // By making this unsigned, the value passed in to isalnum will always be
358       // in the range 0-255.  This is important when building with MSVC because
359       // its implementation will assert.  This situation can arise when dealing
360       // with UTF-8 multibyte characters.
361       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
362           C != '_') {
363         NeedsQuotes = true;
364         break;
365       }
366     }
367   }
368 
369   // If we didn't need any quotes, just write out the name in one blast.
370   if (!NeedsQuotes) {
371     OS << Name;
372     return;
373   }
374 
375   // Okay, we need quotes.  Output the quotes and escape any scary characters as
376   // needed.
377   OS << '"';
378   printEscapedString(Name, OS);
379   OS << '"';
380 }
381 
382 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
383 /// (if the string only contains simple characters) or is surrounded with ""'s
384 /// (if it has special chars in it). Print it out.
385 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
386   switch (Prefix) {
387   case NoPrefix:
388     break;
389   case GlobalPrefix:
390     OS << '@';
391     break;
392   case ComdatPrefix:
393     OS << '$';
394     break;
395   case LabelPrefix:
396     break;
397   case LocalPrefix:
398     OS << '%';
399     break;
400   }
401   printLLVMNameWithoutPrefix(OS, Name);
402 }
403 
404 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
405 /// (if the string only contains simple characters) or is surrounded with ""'s
406 /// (if it has special chars in it). Print it out.
407 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
408   PrintLLVMName(OS, V->getName(),
409                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
410 }
411 
412 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
413   Out << ", <";
414   if (isa<ScalableVectorType>(Ty))
415     Out << "vscale x ";
416   Out << Mask.size() << " x i32> ";
417   bool FirstElt = true;
418   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
419     Out << "zeroinitializer";
420   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
421     Out << "undef";
422   } else {
423     Out << "<";
424     for (int Elt : Mask) {
425       if (FirstElt)
426         FirstElt = false;
427       else
428         Out << ", ";
429       Out << "i32 ";
430       if (Elt == UndefMaskElem)
431         Out << "undef";
432       else
433         Out << Elt;
434     }
435     Out << ">";
436   }
437 }
438 
439 namespace {
440 
441 class TypePrinting {
442 public:
443   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
444 
445   TypePrinting(const TypePrinting &) = delete;
446   TypePrinting &operator=(const TypePrinting &) = delete;
447 
448   /// The named types that are used by the current module.
449   TypeFinder &getNamedTypes();
450 
451   /// The numbered types, number to type mapping.
452   std::vector<StructType *> &getNumberedTypes();
453 
454   bool empty();
455 
456   void print(Type *Ty, raw_ostream &OS);
457 
458   void printStructBody(StructType *Ty, raw_ostream &OS);
459 
460 private:
461   void incorporateTypes();
462 
463   /// A module to process lazily when needed. Set to nullptr as soon as used.
464   const Module *DeferredM;
465 
466   TypeFinder NamedTypes;
467 
468   // The numbered types, along with their value.
469   DenseMap<StructType *, unsigned> Type2Number;
470 
471   std::vector<StructType *> NumberedTypes;
472 };
473 
474 } // end anonymous namespace
475 
476 TypeFinder &TypePrinting::getNamedTypes() {
477   incorporateTypes();
478   return NamedTypes;
479 }
480 
481 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
482   incorporateTypes();
483 
484   // We know all the numbers that each type is used and we know that it is a
485   // dense assignment. Convert the map to an index table, if it's not done
486   // already (judging from the sizes):
487   if (NumberedTypes.size() == Type2Number.size())
488     return NumberedTypes;
489 
490   NumberedTypes.resize(Type2Number.size());
491   for (const auto &P : Type2Number) {
492     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
493     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
494     NumberedTypes[P.second] = P.first;
495   }
496   return NumberedTypes;
497 }
498 
499 bool TypePrinting::empty() {
500   incorporateTypes();
501   return NamedTypes.empty() && Type2Number.empty();
502 }
503 
504 void TypePrinting::incorporateTypes() {
505   if (!DeferredM)
506     return;
507 
508   NamedTypes.run(*DeferredM, false);
509   DeferredM = nullptr;
510 
511   // The list of struct types we got back includes all the struct types, split
512   // the unnamed ones out to a numbering and remove the anonymous structs.
513   unsigned NextNumber = 0;
514 
515   std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
516   for (StructType *STy : NamedTypes) {
517     // Ignore anonymous types.
518     if (STy->isLiteral())
519       continue;
520 
521     if (STy->getName().empty())
522       Type2Number[STy] = NextNumber++;
523     else
524       *NextToUse++ = STy;
525   }
526 
527   NamedTypes.erase(NextToUse, NamedTypes.end());
528 }
529 
530 /// Write the specified type to the specified raw_ostream, making use of type
531 /// names or up references to shorten the type name where possible.
532 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
533   switch (Ty->getTypeID()) {
534   case Type::VoidTyID:      OS << "void"; return;
535   case Type::HalfTyID:      OS << "half"; return;
536   case Type::BFloatTyID:    OS << "bfloat"; return;
537   case Type::FloatTyID:     OS << "float"; return;
538   case Type::DoubleTyID:    OS << "double"; return;
539   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
540   case Type::FP128TyID:     OS << "fp128"; return;
541   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
542   case Type::LabelTyID:     OS << "label"; return;
543   case Type::MetadataTyID:  OS << "metadata"; return;
544   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
545   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
546   case Type::TokenTyID:     OS << "token"; return;
547   case Type::IntegerTyID:
548     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
549     return;
550 
551   case Type::FunctionTyID: {
552     FunctionType *FTy = cast<FunctionType>(Ty);
553     print(FTy->getReturnType(), OS);
554     OS << " (";
555     ListSeparator LS;
556     for (Type *Ty : FTy->params()) {
557       OS << LS;
558       print(Ty, OS);
559     }
560     if (FTy->isVarArg())
561       OS << LS << "...";
562     OS << ')';
563     return;
564   }
565   case Type::StructTyID: {
566     StructType *STy = cast<StructType>(Ty);
567 
568     if (STy->isLiteral())
569       return printStructBody(STy, OS);
570 
571     if (!STy->getName().empty())
572       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
573 
574     incorporateTypes();
575     const auto I = Type2Number.find(STy);
576     if (I != Type2Number.end())
577       OS << '%' << I->second;
578     else  // Not enumerated, print the hex address.
579       OS << "%\"type " << STy << '\"';
580     return;
581   }
582   case Type::PointerTyID: {
583     PointerType *PTy = cast<PointerType>(Ty);
584     if (PTy->isOpaque()) {
585       OS << "ptr";
586       if (unsigned AddressSpace = PTy->getAddressSpace())
587         OS << " addrspace(" << AddressSpace << ')';
588       return;
589     }
590     print(PTy->getElementType(), OS);
591     if (unsigned AddressSpace = PTy->getAddressSpace())
592       OS << " addrspace(" << AddressSpace << ')';
593     OS << '*';
594     return;
595   }
596   case Type::ArrayTyID: {
597     ArrayType *ATy = cast<ArrayType>(Ty);
598     OS << '[' << ATy->getNumElements() << " x ";
599     print(ATy->getElementType(), OS);
600     OS << ']';
601     return;
602   }
603   case Type::FixedVectorTyID:
604   case Type::ScalableVectorTyID: {
605     VectorType *PTy = cast<VectorType>(Ty);
606     ElementCount EC = PTy->getElementCount();
607     OS << "<";
608     if (EC.isScalable())
609       OS << "vscale x ";
610     OS << EC.getKnownMinValue() << " x ";
611     print(PTy->getElementType(), OS);
612     OS << '>';
613     return;
614   }
615   }
616   llvm_unreachable("Invalid TypeID");
617 }
618 
619 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
620   if (STy->isOpaque()) {
621     OS << "opaque";
622     return;
623   }
624 
625   if (STy->isPacked())
626     OS << '<';
627 
628   if (STy->getNumElements() == 0) {
629     OS << "{}";
630   } else {
631     OS << "{ ";
632     ListSeparator LS;
633     for (Type *Ty : STy->elements()) {
634       OS << LS;
635       print(Ty, OS);
636     }
637 
638     OS << " }";
639   }
640   if (STy->isPacked())
641     OS << '>';
642 }
643 
644 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {}
645 
646 namespace llvm {
647 
648 //===----------------------------------------------------------------------===//
649 // SlotTracker Class: Enumerate slot numbers for unnamed values
650 //===----------------------------------------------------------------------===//
651 /// This class provides computation of slot numbers for LLVM Assembly writing.
652 ///
653 class SlotTracker : public AbstractSlotTrackerStorage {
654 public:
655   /// ValueMap - A mapping of Values to slot numbers.
656   using ValueMap = DenseMap<const Value *, unsigned>;
657 
658 private:
659   /// TheModule - The module for which we are holding slot numbers.
660   const Module* TheModule;
661 
662   /// TheFunction - The function for which we are holding slot numbers.
663   const Function* TheFunction = nullptr;
664   bool FunctionProcessed = false;
665   bool ShouldInitializeAllMetadata;
666 
667   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
668       ProcessModuleHookFn;
669   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
670       ProcessFunctionHookFn;
671 
672   /// The summary index for which we are holding slot numbers.
673   const ModuleSummaryIndex *TheIndex = nullptr;
674 
675   /// mMap - The slot map for the module level data.
676   ValueMap mMap;
677   unsigned mNext = 0;
678 
679   /// fMap - The slot map for the function level data.
680   ValueMap fMap;
681   unsigned fNext = 0;
682 
683   /// mdnMap - Map for MDNodes.
684   DenseMap<const MDNode*, unsigned> mdnMap;
685   unsigned mdnNext = 0;
686 
687   /// asMap - The slot map for attribute sets.
688   DenseMap<AttributeSet, unsigned> asMap;
689   unsigned asNext = 0;
690 
691   /// ModulePathMap - The slot map for Module paths used in the summary index.
692   StringMap<unsigned> ModulePathMap;
693   unsigned ModulePathNext = 0;
694 
695   /// GUIDMap - The slot map for GUIDs used in the summary index.
696   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
697   unsigned GUIDNext = 0;
698 
699   /// TypeIdMap - The slot map for type ids used in the summary index.
700   StringMap<unsigned> TypeIdMap;
701   unsigned TypeIdNext = 0;
702 
703 public:
704   /// Construct from a module.
705   ///
706   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
707   /// functions, giving correct numbering for metadata referenced only from
708   /// within a function (even if no functions have been initialized).
709   explicit SlotTracker(const Module *M,
710                        bool ShouldInitializeAllMetadata = false);
711 
712   /// Construct from a function, starting out in incorp state.
713   ///
714   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
715   /// functions, giving correct numbering for metadata referenced only from
716   /// within a function (even if no functions have been initialized).
717   explicit SlotTracker(const Function *F,
718                        bool ShouldInitializeAllMetadata = false);
719 
720   /// Construct from a module summary index.
721   explicit SlotTracker(const ModuleSummaryIndex *Index);
722 
723   SlotTracker(const SlotTracker &) = delete;
724   SlotTracker &operator=(const SlotTracker &) = delete;
725 
726   ~SlotTracker() = default;
727 
728   void setProcessHook(
729       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
730   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
731                                          const Function *, bool)>);
732 
733   unsigned getNextMetadataSlot() override { return mdnNext; }
734 
735   void createMetadataSlot(const MDNode *N) override;
736 
737   /// Return the slot number of the specified value in it's type
738   /// plane.  If something is not in the SlotTracker, return -1.
739   int getLocalSlot(const Value *V);
740   int getGlobalSlot(const GlobalValue *V);
741   int getMetadataSlot(const MDNode *N) override;
742   int getAttributeGroupSlot(AttributeSet AS);
743   int getModulePathSlot(StringRef Path);
744   int getGUIDSlot(GlobalValue::GUID GUID);
745   int getTypeIdSlot(StringRef Id);
746 
747   /// If you'd like to deal with a function instead of just a module, use
748   /// this method to get its data into the SlotTracker.
749   void incorporateFunction(const Function *F) {
750     TheFunction = F;
751     FunctionProcessed = false;
752   }
753 
754   const Function *getFunction() const { return TheFunction; }
755 
756   /// After calling incorporateFunction, use this method to remove the
757   /// most recently incorporated function from the SlotTracker. This
758   /// will reset the state of the machine back to just the module contents.
759   void purgeFunction();
760 
761   /// MDNode map iterators.
762   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
763 
764   mdn_iterator mdn_begin() { return mdnMap.begin(); }
765   mdn_iterator mdn_end() { return mdnMap.end(); }
766   unsigned mdn_size() const { return mdnMap.size(); }
767   bool mdn_empty() const { return mdnMap.empty(); }
768 
769   /// AttributeSet map iterators.
770   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
771 
772   as_iterator as_begin()   { return asMap.begin(); }
773   as_iterator as_end()     { return asMap.end(); }
774   unsigned as_size() const { return asMap.size(); }
775   bool as_empty() const    { return asMap.empty(); }
776 
777   /// GUID map iterators.
778   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
779 
780   /// These functions do the actual initialization.
781   inline void initializeIfNeeded();
782   int initializeIndexIfNeeded();
783 
784   // Implementation Details
785 private:
786   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
787   void CreateModuleSlot(const GlobalValue *V);
788 
789   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
790   void CreateMetadataSlot(const MDNode *N);
791 
792   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
793   void CreateFunctionSlot(const Value *V);
794 
795   /// Insert the specified AttributeSet into the slot table.
796   void CreateAttributeSetSlot(AttributeSet AS);
797 
798   inline void CreateModulePathSlot(StringRef Path);
799   void CreateGUIDSlot(GlobalValue::GUID GUID);
800   void CreateTypeIdSlot(StringRef Id);
801 
802   /// Add all of the module level global variables (and their initializers)
803   /// and function declarations, but not the contents of those functions.
804   void processModule();
805   // Returns number of allocated slots
806   int processIndex();
807 
808   /// Add all of the functions arguments, basic blocks, and instructions.
809   void processFunction();
810 
811   /// Add the metadata directly attached to a GlobalObject.
812   void processGlobalObjectMetadata(const GlobalObject &GO);
813 
814   /// Add all of the metadata from a function.
815   void processFunctionMetadata(const Function &F);
816 
817   /// Add all of the metadata from an instruction.
818   void processInstructionMetadata(const Instruction &I);
819 };
820 
821 } // end namespace llvm
822 
823 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
824                                      const Function *F)
825     : M(M), F(F), Machine(&Machine) {}
826 
827 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
828                                      bool ShouldInitializeAllMetadata)
829     : ShouldCreateStorage(M),
830       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
831 
832 ModuleSlotTracker::~ModuleSlotTracker() = default;
833 
834 SlotTracker *ModuleSlotTracker::getMachine() {
835   if (!ShouldCreateStorage)
836     return Machine;
837 
838   ShouldCreateStorage = false;
839   MachineStorage =
840       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
841   Machine = MachineStorage.get();
842   if (ProcessModuleHookFn)
843     Machine->setProcessHook(ProcessModuleHookFn);
844   if (ProcessFunctionHookFn)
845     Machine->setProcessHook(ProcessFunctionHookFn);
846   return Machine;
847 }
848 
849 void ModuleSlotTracker::incorporateFunction(const Function &F) {
850   // Using getMachine() may lazily create the slot tracker.
851   if (!getMachine())
852     return;
853 
854   // Nothing to do if this is the right function already.
855   if (this->F == &F)
856     return;
857   if (this->F)
858     Machine->purgeFunction();
859   Machine->incorporateFunction(&F);
860   this->F = &F;
861 }
862 
863 int ModuleSlotTracker::getLocalSlot(const Value *V) {
864   assert(F && "No function incorporated");
865   return Machine->getLocalSlot(V);
866 }
867 
868 void ModuleSlotTracker::setProcessHook(
869     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
870         Fn) {
871   ProcessModuleHookFn = Fn;
872 }
873 
874 void ModuleSlotTracker::setProcessHook(
875     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
876         Fn) {
877   ProcessFunctionHookFn = Fn;
878 }
879 
880 static SlotTracker *createSlotTracker(const Value *V) {
881   if (const Argument *FA = dyn_cast<Argument>(V))
882     return new SlotTracker(FA->getParent());
883 
884   if (const Instruction *I = dyn_cast<Instruction>(V))
885     if (I->getParent())
886       return new SlotTracker(I->getParent()->getParent());
887 
888   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
889     return new SlotTracker(BB->getParent());
890 
891   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
892     return new SlotTracker(GV->getParent());
893 
894   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
895     return new SlotTracker(GA->getParent());
896 
897   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
898     return new SlotTracker(GIF->getParent());
899 
900   if (const Function *Func = dyn_cast<Function>(V))
901     return new SlotTracker(Func);
902 
903   return nullptr;
904 }
905 
906 #if 0
907 #define ST_DEBUG(X) dbgs() << X
908 #else
909 #define ST_DEBUG(X)
910 #endif
911 
912 // Module level constructor. Causes the contents of the Module (sans functions)
913 // to be added to the slot table.
914 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
915     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
916 
917 // Function level constructor. Causes the contents of the Module and the one
918 // function provided to be added to the slot table.
919 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
920     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
921       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
922 
923 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
924     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
925 
926 inline void SlotTracker::initializeIfNeeded() {
927   if (TheModule) {
928     processModule();
929     TheModule = nullptr; ///< Prevent re-processing next time we're called.
930   }
931 
932   if (TheFunction && !FunctionProcessed)
933     processFunction();
934 }
935 
936 int SlotTracker::initializeIndexIfNeeded() {
937   if (!TheIndex)
938     return 0;
939   int NumSlots = processIndex();
940   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
941   return NumSlots;
942 }
943 
944 // Iterate through all the global variables, functions, and global
945 // variable initializers and create slots for them.
946 void SlotTracker::processModule() {
947   ST_DEBUG("begin processModule!\n");
948 
949   // Add all of the unnamed global variables to the value table.
950   for (const GlobalVariable &Var : TheModule->globals()) {
951     if (!Var.hasName())
952       CreateModuleSlot(&Var);
953     processGlobalObjectMetadata(Var);
954     auto Attrs = Var.getAttributes();
955     if (Attrs.hasAttributes())
956       CreateAttributeSetSlot(Attrs);
957   }
958 
959   for (const GlobalAlias &A : TheModule->aliases()) {
960     if (!A.hasName())
961       CreateModuleSlot(&A);
962   }
963 
964   for (const GlobalIFunc &I : TheModule->ifuncs()) {
965     if (!I.hasName())
966       CreateModuleSlot(&I);
967   }
968 
969   // Add metadata used by named metadata.
970   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
971     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
972       CreateMetadataSlot(NMD.getOperand(i));
973   }
974 
975   for (const Function &F : *TheModule) {
976     if (!F.hasName())
977       // Add all the unnamed functions to the table.
978       CreateModuleSlot(&F);
979 
980     if (ShouldInitializeAllMetadata)
981       processFunctionMetadata(F);
982 
983     // Add all the function attributes to the table.
984     // FIXME: Add attributes of other objects?
985     AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
986     if (FnAttrs.hasAttributes())
987       CreateAttributeSetSlot(FnAttrs);
988   }
989 
990   if (ProcessModuleHookFn)
991     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
992 
993   ST_DEBUG("end processModule!\n");
994 }
995 
996 // Process the arguments, basic blocks, and instructions  of a function.
997 void SlotTracker::processFunction() {
998   ST_DEBUG("begin processFunction!\n");
999   fNext = 0;
1000 
1001   // Process function metadata if it wasn't hit at the module-level.
1002   if (!ShouldInitializeAllMetadata)
1003     processFunctionMetadata(*TheFunction);
1004 
1005   // Add all the function arguments with no names.
1006   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1007       AE = TheFunction->arg_end(); AI != AE; ++AI)
1008     if (!AI->hasName())
1009       CreateFunctionSlot(&*AI);
1010 
1011   ST_DEBUG("Inserting Instructions:\n");
1012 
1013   // Add all of the basic blocks and instructions with no names.
1014   for (auto &BB : *TheFunction) {
1015     if (!BB.hasName())
1016       CreateFunctionSlot(&BB);
1017 
1018     for (auto &I : BB) {
1019       if (!I.getType()->isVoidTy() && !I.hasName())
1020         CreateFunctionSlot(&I);
1021 
1022       // We allow direct calls to any llvm.foo function here, because the
1023       // target may not be linked into the optimizer.
1024       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1025         // Add all the call attributes to the table.
1026         AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1027         if (Attrs.hasAttributes())
1028           CreateAttributeSetSlot(Attrs);
1029       }
1030     }
1031   }
1032 
1033   if (ProcessFunctionHookFn)
1034     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1035 
1036   FunctionProcessed = true;
1037 
1038   ST_DEBUG("end processFunction!\n");
1039 }
1040 
1041 // Iterate through all the GUID in the index and create slots for them.
1042 int SlotTracker::processIndex() {
1043   ST_DEBUG("begin processIndex!\n");
1044   assert(TheIndex);
1045 
1046   // The first block of slots are just the module ids, which start at 0 and are
1047   // assigned consecutively. Since the StringMap iteration order isn't
1048   // guaranteed, use a std::map to order by module ID before assigning slots.
1049   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1050   for (auto &ModPath : TheIndex->modulePaths())
1051     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1052   for (auto &ModPair : ModuleIdToPathMap)
1053     CreateModulePathSlot(ModPair.second);
1054 
1055   // Start numbering the GUIDs after the module ids.
1056   GUIDNext = ModulePathNext;
1057 
1058   for (auto &GlobalList : *TheIndex)
1059     CreateGUIDSlot(GlobalList.first);
1060 
1061   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1062     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1063 
1064   // Start numbering the TypeIds after the GUIDs.
1065   TypeIdNext = GUIDNext;
1066   for (const auto &TID : TheIndex->typeIds())
1067     CreateTypeIdSlot(TID.second.first);
1068 
1069   ST_DEBUG("end processIndex!\n");
1070   return TypeIdNext;
1071 }
1072 
1073 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1074   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1075   GO.getAllMetadata(MDs);
1076   for (auto &MD : MDs)
1077     CreateMetadataSlot(MD.second);
1078 }
1079 
1080 void SlotTracker::processFunctionMetadata(const Function &F) {
1081   processGlobalObjectMetadata(F);
1082   for (auto &BB : F) {
1083     for (auto &I : BB)
1084       processInstructionMetadata(I);
1085   }
1086 }
1087 
1088 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1089   // Process metadata used directly by intrinsics.
1090   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1091     if (Function *F = CI->getCalledFunction())
1092       if (F->isIntrinsic())
1093         for (auto &Op : I.operands())
1094           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1095             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1096               CreateMetadataSlot(N);
1097 
1098   // Process metadata attached to this instruction.
1099   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1100   I.getAllMetadata(MDs);
1101   for (auto &MD : MDs)
1102     CreateMetadataSlot(MD.second);
1103 }
1104 
1105 /// Clean up after incorporating a function. This is the only way to get out of
1106 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1107 /// incorporation state is indicated by TheFunction != 0.
1108 void SlotTracker::purgeFunction() {
1109   ST_DEBUG("begin purgeFunction!\n");
1110   fMap.clear(); // Simply discard the function level map
1111   TheFunction = nullptr;
1112   FunctionProcessed = false;
1113   ST_DEBUG("end purgeFunction!\n");
1114 }
1115 
1116 /// getGlobalSlot - Get the slot number of a global value.
1117 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1118   // Check for uninitialized state and do lazy initialization.
1119   initializeIfNeeded();
1120 
1121   // Find the value in the module map
1122   ValueMap::iterator MI = mMap.find(V);
1123   return MI == mMap.end() ? -1 : (int)MI->second;
1124 }
1125 
1126 void SlotTracker::setProcessHook(
1127     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1128         Fn) {
1129   ProcessModuleHookFn = Fn;
1130 }
1131 
1132 void SlotTracker::setProcessHook(
1133     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1134         Fn) {
1135   ProcessFunctionHookFn = Fn;
1136 }
1137 
1138 /// getMetadataSlot - Get the slot number of a MDNode.
1139 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1140 
1141 /// getMetadataSlot - Get the slot number of a MDNode.
1142 int SlotTracker::getMetadataSlot(const MDNode *N) {
1143   // Check for uninitialized state and do lazy initialization.
1144   initializeIfNeeded();
1145 
1146   // Find the MDNode in the module map
1147   mdn_iterator MI = mdnMap.find(N);
1148   return MI == mdnMap.end() ? -1 : (int)MI->second;
1149 }
1150 
1151 /// getLocalSlot - Get the slot number for a value that is local to a function.
1152 int SlotTracker::getLocalSlot(const Value *V) {
1153   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1154 
1155   // Check for uninitialized state and do lazy initialization.
1156   initializeIfNeeded();
1157 
1158   ValueMap::iterator FI = fMap.find(V);
1159   return FI == fMap.end() ? -1 : (int)FI->second;
1160 }
1161 
1162 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1163   // Check for uninitialized state and do lazy initialization.
1164   initializeIfNeeded();
1165 
1166   // Find the AttributeSet in the module map.
1167   as_iterator AI = asMap.find(AS);
1168   return AI == asMap.end() ? -1 : (int)AI->second;
1169 }
1170 
1171 int SlotTracker::getModulePathSlot(StringRef Path) {
1172   // Check for uninitialized state and do lazy initialization.
1173   initializeIndexIfNeeded();
1174 
1175   // Find the Module path in the map
1176   auto I = ModulePathMap.find(Path);
1177   return I == ModulePathMap.end() ? -1 : (int)I->second;
1178 }
1179 
1180 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1181   // Check for uninitialized state and do lazy initialization.
1182   initializeIndexIfNeeded();
1183 
1184   // Find the GUID in the map
1185   guid_iterator I = GUIDMap.find(GUID);
1186   return I == GUIDMap.end() ? -1 : (int)I->second;
1187 }
1188 
1189 int SlotTracker::getTypeIdSlot(StringRef Id) {
1190   // Check for uninitialized state and do lazy initialization.
1191   initializeIndexIfNeeded();
1192 
1193   // Find the TypeId string in the map
1194   auto I = TypeIdMap.find(Id);
1195   return I == TypeIdMap.end() ? -1 : (int)I->second;
1196 }
1197 
1198 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1199 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1200   assert(V && "Can't insert a null Value into SlotTracker!");
1201   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1202   assert(!V->hasName() && "Doesn't need a slot!");
1203 
1204   unsigned DestSlot = mNext++;
1205   mMap[V] = DestSlot;
1206 
1207   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1208            DestSlot << " [");
1209   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1210   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1211             (isa<Function>(V) ? 'F' :
1212              (isa<GlobalAlias>(V) ? 'A' :
1213               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1214 }
1215 
1216 /// CreateSlot - Create a new slot for the specified value if it has no name.
1217 void SlotTracker::CreateFunctionSlot(const Value *V) {
1218   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1219 
1220   unsigned DestSlot = fNext++;
1221   fMap[V] = DestSlot;
1222 
1223   // G = Global, F = Function, o = other
1224   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1225            DestSlot << " [o]\n");
1226 }
1227 
1228 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1229 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1230   assert(N && "Can't insert a null Value into SlotTracker!");
1231 
1232   // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1233   // everywhere.
1234   if (isa<DIExpression>(N) || isa<DIArgList>(N))
1235     return;
1236 
1237   unsigned DestSlot = mdnNext;
1238   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1239     return;
1240   ++mdnNext;
1241 
1242   // Recursively add any MDNodes referenced by operands.
1243   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1244     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1245       CreateMetadataSlot(Op);
1246 }
1247 
1248 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1249   assert(AS.hasAttributes() && "Doesn't need a slot!");
1250 
1251   as_iterator I = asMap.find(AS);
1252   if (I != asMap.end())
1253     return;
1254 
1255   unsigned DestSlot = asNext++;
1256   asMap[AS] = DestSlot;
1257 }
1258 
1259 /// Create a new slot for the specified Module
1260 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1261   ModulePathMap[Path] = ModulePathNext++;
1262 }
1263 
1264 /// Create a new slot for the specified GUID
1265 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1266   GUIDMap[GUID] = GUIDNext++;
1267 }
1268 
1269 /// Create a new slot for the specified Id
1270 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1271   TypeIdMap[Id] = TypeIdNext++;
1272 }
1273 
1274 namespace {
1275 /// Common instances used by most of the printer functions.
1276 struct AsmWriterContext {
1277   TypePrinting *TypePrinter = nullptr;
1278   SlotTracker *Machine = nullptr;
1279   const Module *Context = nullptr;
1280 
1281   AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1282       : TypePrinter(TP), Machine(ST), Context(M) {}
1283 
1284   static AsmWriterContext &getEmpty() {
1285     static AsmWriterContext EmptyCtx(nullptr, nullptr);
1286     return EmptyCtx;
1287   }
1288 
1289   /// A callback that will be triggered when the underlying printer
1290   /// prints a Metadata as operand.
1291   virtual void onWriteMetadataAsOperand(const Metadata *) {}
1292 
1293   virtual ~AsmWriterContext() {}
1294 };
1295 } // end anonymous namespace
1296 
1297 //===----------------------------------------------------------------------===//
1298 // AsmWriter Implementation
1299 //===----------------------------------------------------------------------===//
1300 
1301 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1302                                    AsmWriterContext &WriterCtx);
1303 
1304 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1305                                    AsmWriterContext &WriterCtx,
1306                                    bool FromValue = false);
1307 
1308 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1309   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1310     Out << FPO->getFastMathFlags();
1311 
1312   if (const OverflowingBinaryOperator *OBO =
1313         dyn_cast<OverflowingBinaryOperator>(U)) {
1314     if (OBO->hasNoUnsignedWrap())
1315       Out << " nuw";
1316     if (OBO->hasNoSignedWrap())
1317       Out << " nsw";
1318   } else if (const PossiblyExactOperator *Div =
1319                dyn_cast<PossiblyExactOperator>(U)) {
1320     if (Div->isExact())
1321       Out << " exact";
1322   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1323     if (GEP->isInBounds())
1324       Out << " inbounds";
1325   }
1326 }
1327 
1328 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1329                                   AsmWriterContext &WriterCtx) {
1330   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1331     if (CI->getType()->isIntegerTy(1)) {
1332       Out << (CI->getZExtValue() ? "true" : "false");
1333       return;
1334     }
1335     Out << CI->getValue();
1336     return;
1337   }
1338 
1339   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1340     const APFloat &APF = CFP->getValueAPF();
1341     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1342         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1343       // We would like to output the FP constant value in exponential notation,
1344       // but we cannot do this if doing so will lose precision.  Check here to
1345       // make sure that we only output it in exponential format if we can parse
1346       // the value back and get the same value.
1347       //
1348       bool ignored;
1349       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1350       bool isInf = APF.isInfinity();
1351       bool isNaN = APF.isNaN();
1352       if (!isInf && !isNaN) {
1353         double Val = APF.convertToDouble();
1354         SmallString<128> StrVal;
1355         APF.toString(StrVal, 6, 0, false);
1356         // Check to make sure that the stringized number is not some string like
1357         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1358         // that the string matches the "[-+]?[0-9]" regex.
1359         //
1360         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1361                                        isDigit(StrVal[1]))) &&
1362                "[-+]?[0-9] regex does not match!");
1363         // Reparse stringized version!
1364         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1365           Out << StrVal;
1366           return;
1367         }
1368       }
1369       // Otherwise we could not reparse it to exactly the same value, so we must
1370       // output the string in hexadecimal format!  Note that loading and storing
1371       // floating point types changes the bits of NaNs on some hosts, notably
1372       // x86, so we must not use these types.
1373       static_assert(sizeof(double) == sizeof(uint64_t),
1374                     "assuming that double is 64 bits!");
1375       APFloat apf = APF;
1376       // Floats are represented in ASCII IR as double, convert.
1377       // FIXME: We should allow 32-bit hex float and remove this.
1378       if (!isDouble) {
1379         // A signaling NaN is quieted on conversion, so we need to recreate the
1380         // expected value after convert (quiet bit of the payload is clear).
1381         bool IsSNAN = apf.isSignaling();
1382         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1383                     &ignored);
1384         if (IsSNAN) {
1385           APInt Payload = apf.bitcastToAPInt();
1386           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1387                                  &Payload);
1388         }
1389       }
1390       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1391       return;
1392     }
1393 
1394     // Either half, bfloat or some form of long double.
1395     // These appear as a magic letter identifying the type, then a
1396     // fixed number of hex digits.
1397     Out << "0x";
1398     APInt API = APF.bitcastToAPInt();
1399     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1400       Out << 'K';
1401       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1402                                   /*Upper=*/true);
1403       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1404                                   /*Upper=*/true);
1405       return;
1406     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1407       Out << 'L';
1408       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1409                                   /*Upper=*/true);
1410       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1411                                   /*Upper=*/true);
1412     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1413       Out << 'M';
1414       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1415                                   /*Upper=*/true);
1416       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1417                                   /*Upper=*/true);
1418     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1419       Out << 'H';
1420       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1421                                   /*Upper=*/true);
1422     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1423       Out << 'R';
1424       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1425                                   /*Upper=*/true);
1426     } else
1427       llvm_unreachable("Unsupported floating point type");
1428     return;
1429   }
1430 
1431   if (isa<ConstantAggregateZero>(CV)) {
1432     Out << "zeroinitializer";
1433     return;
1434   }
1435 
1436   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1437     Out << "blockaddress(";
1438     WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1439     Out << ", ";
1440     WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1441     Out << ")";
1442     return;
1443   }
1444 
1445   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1446     Out << "dso_local_equivalent ";
1447     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1448     return;
1449   }
1450 
1451   if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1452     Out << "no_cfi ";
1453     WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1454     return;
1455   }
1456 
1457   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1458     Type *ETy = CA->getType()->getElementType();
1459     Out << '[';
1460     WriterCtx.TypePrinter->print(ETy, Out);
1461     Out << ' ';
1462     WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1463     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1464       Out << ", ";
1465       WriterCtx.TypePrinter->print(ETy, Out);
1466       Out << ' ';
1467       WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1468     }
1469     Out << ']';
1470     return;
1471   }
1472 
1473   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1474     // As a special case, print the array as a string if it is an array of
1475     // i8 with ConstantInt values.
1476     if (CA->isString()) {
1477       Out << "c\"";
1478       printEscapedString(CA->getAsString(), Out);
1479       Out << '"';
1480       return;
1481     }
1482 
1483     Type *ETy = CA->getType()->getElementType();
1484     Out << '[';
1485     WriterCtx.TypePrinter->print(ETy, Out);
1486     Out << ' ';
1487     WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1488     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1489       Out << ", ";
1490       WriterCtx.TypePrinter->print(ETy, Out);
1491       Out << ' ';
1492       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1493     }
1494     Out << ']';
1495     return;
1496   }
1497 
1498   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1499     if (CS->getType()->isPacked())
1500       Out << '<';
1501     Out << '{';
1502     unsigned N = CS->getNumOperands();
1503     if (N) {
1504       Out << ' ';
1505       WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1506       Out << ' ';
1507 
1508       WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1509 
1510       for (unsigned i = 1; i < N; i++) {
1511         Out << ", ";
1512         WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1513         Out << ' ';
1514 
1515         WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1516       }
1517       Out << ' ';
1518     }
1519 
1520     Out << '}';
1521     if (CS->getType()->isPacked())
1522       Out << '>';
1523     return;
1524   }
1525 
1526   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1527     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1528     Type *ETy = CVVTy->getElementType();
1529     Out << '<';
1530     WriterCtx.TypePrinter->print(ETy, Out);
1531     Out << ' ';
1532     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1533     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1534       Out << ", ";
1535       WriterCtx.TypePrinter->print(ETy, Out);
1536       Out << ' ';
1537       WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1538     }
1539     Out << '>';
1540     return;
1541   }
1542 
1543   if (isa<ConstantPointerNull>(CV)) {
1544     Out << "null";
1545     return;
1546   }
1547 
1548   if (isa<ConstantTokenNone>(CV)) {
1549     Out << "none";
1550     return;
1551   }
1552 
1553   if (isa<PoisonValue>(CV)) {
1554     Out << "poison";
1555     return;
1556   }
1557 
1558   if (isa<UndefValue>(CV)) {
1559     Out << "undef";
1560     return;
1561   }
1562 
1563   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1564     Out << CE->getOpcodeName();
1565     WriteOptimizationInfo(Out, CE);
1566     if (CE->isCompare())
1567       Out << ' ' << CmpInst::getPredicateName(
1568                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1569     Out << " (";
1570 
1571     Optional<unsigned> InRangeOp;
1572     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1573       WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1574       Out << ", ";
1575       InRangeOp = GEP->getInRangeIndex();
1576       if (InRangeOp)
1577         ++*InRangeOp;
1578     }
1579 
1580     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1581       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1582         Out << "inrange ";
1583       WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1584       Out << ' ';
1585       WriteAsOperandInternal(Out, *OI, WriterCtx);
1586       if (OI+1 != CE->op_end())
1587         Out << ", ";
1588     }
1589 
1590     if (CE->hasIndices())
1591       for (unsigned I : CE->getIndices())
1592         Out << ", " << I;
1593 
1594     if (CE->isCast()) {
1595       Out << " to ";
1596       WriterCtx.TypePrinter->print(CE->getType(), Out);
1597     }
1598 
1599     if (CE->getOpcode() == Instruction::ShuffleVector)
1600       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1601 
1602     Out << ')';
1603     return;
1604   }
1605 
1606   Out << "<placeholder or erroneous Constant>";
1607 }
1608 
1609 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1610                          AsmWriterContext &WriterCtx) {
1611   Out << "!{";
1612   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1613     const Metadata *MD = Node->getOperand(mi);
1614     if (!MD)
1615       Out << "null";
1616     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1617       Value *V = MDV->getValue();
1618       WriterCtx.TypePrinter->print(V->getType(), Out);
1619       Out << ' ';
1620       WriteAsOperandInternal(Out, V, WriterCtx);
1621     } else {
1622       WriteAsOperandInternal(Out, MD, WriterCtx);
1623       WriterCtx.onWriteMetadataAsOperand(MD);
1624     }
1625     if (mi + 1 != me)
1626       Out << ", ";
1627   }
1628 
1629   Out << "}";
1630 }
1631 
1632 namespace {
1633 
1634 struct FieldSeparator {
1635   bool Skip = true;
1636   const char *Sep;
1637 
1638   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1639 };
1640 
1641 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1642   if (FS.Skip) {
1643     FS.Skip = false;
1644     return OS;
1645   }
1646   return OS << FS.Sep;
1647 }
1648 
1649 struct MDFieldPrinter {
1650   raw_ostream &Out;
1651   FieldSeparator FS;
1652   AsmWriterContext &WriterCtx;
1653 
1654   explicit MDFieldPrinter(raw_ostream &Out)
1655       : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1656   MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1657       : Out(Out), WriterCtx(Ctx) {}
1658 
1659   void printTag(const DINode *N);
1660   void printMacinfoType(const DIMacroNode *N);
1661   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1662   void printString(StringRef Name, StringRef Value,
1663                    bool ShouldSkipEmpty = true);
1664   void printMetadata(StringRef Name, const Metadata *MD,
1665                      bool ShouldSkipNull = true);
1666   template <class IntTy>
1667   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1668   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1669                   bool ShouldSkipZero);
1670   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1671   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1672   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1673   template <class IntTy, class Stringifier>
1674   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1675                       bool ShouldSkipZero = true);
1676   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1677   void printNameTableKind(StringRef Name,
1678                           DICompileUnit::DebugNameTableKind NTK);
1679 };
1680 
1681 } // end anonymous namespace
1682 
1683 void MDFieldPrinter::printTag(const DINode *N) {
1684   Out << FS << "tag: ";
1685   auto Tag = dwarf::TagString(N->getTag());
1686   if (!Tag.empty())
1687     Out << Tag;
1688   else
1689     Out << N->getTag();
1690 }
1691 
1692 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1693   Out << FS << "type: ";
1694   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1695   if (!Type.empty())
1696     Out << Type;
1697   else
1698     Out << N->getMacinfoType();
1699 }
1700 
1701 void MDFieldPrinter::printChecksum(
1702     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1703   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1704   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1705 }
1706 
1707 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1708                                  bool ShouldSkipEmpty) {
1709   if (ShouldSkipEmpty && Value.empty())
1710     return;
1711 
1712   Out << FS << Name << ": \"";
1713   printEscapedString(Value, Out);
1714   Out << "\"";
1715 }
1716 
1717 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1718                                    AsmWriterContext &WriterCtx) {
1719   if (!MD) {
1720     Out << "null";
1721     return;
1722   }
1723   WriteAsOperandInternal(Out, MD, WriterCtx);
1724   WriterCtx.onWriteMetadataAsOperand(MD);
1725 }
1726 
1727 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1728                                    bool ShouldSkipNull) {
1729   if (ShouldSkipNull && !MD)
1730     return;
1731 
1732   Out << FS << Name << ": ";
1733   writeMetadataAsOperand(Out, MD, WriterCtx);
1734 }
1735 
1736 template <class IntTy>
1737 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1738   if (ShouldSkipZero && !Int)
1739     return;
1740 
1741   Out << FS << Name << ": " << Int;
1742 }
1743 
1744 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1745                                 bool IsUnsigned, bool ShouldSkipZero) {
1746   if (ShouldSkipZero && Int.isZero())
1747     return;
1748 
1749   Out << FS << Name << ": ";
1750   Int.print(Out, !IsUnsigned);
1751 }
1752 
1753 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1754                                Optional<bool> Default) {
1755   if (Default && Value == *Default)
1756     return;
1757   Out << FS << Name << ": " << (Value ? "true" : "false");
1758 }
1759 
1760 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1761   if (!Flags)
1762     return;
1763 
1764   Out << FS << Name << ": ";
1765 
1766   SmallVector<DINode::DIFlags, 8> SplitFlags;
1767   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1768 
1769   FieldSeparator FlagsFS(" | ");
1770   for (auto F : SplitFlags) {
1771     auto StringF = DINode::getFlagString(F);
1772     assert(!StringF.empty() && "Expected valid flag");
1773     Out << FlagsFS << StringF;
1774   }
1775   if (Extra || SplitFlags.empty())
1776     Out << FlagsFS << Extra;
1777 }
1778 
1779 void MDFieldPrinter::printDISPFlags(StringRef Name,
1780                                     DISubprogram::DISPFlags Flags) {
1781   // Always print this field, because no flags in the IR at all will be
1782   // interpreted as old-style isDefinition: true.
1783   Out << FS << Name << ": ";
1784 
1785   if (!Flags) {
1786     Out << 0;
1787     return;
1788   }
1789 
1790   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1791   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1792 
1793   FieldSeparator FlagsFS(" | ");
1794   for (auto F : SplitFlags) {
1795     auto StringF = DISubprogram::getFlagString(F);
1796     assert(!StringF.empty() && "Expected valid flag");
1797     Out << FlagsFS << StringF;
1798   }
1799   if (Extra || SplitFlags.empty())
1800     Out << FlagsFS << Extra;
1801 }
1802 
1803 void MDFieldPrinter::printEmissionKind(StringRef Name,
1804                                        DICompileUnit::DebugEmissionKind EK) {
1805   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1806 }
1807 
1808 void MDFieldPrinter::printNameTableKind(StringRef Name,
1809                                         DICompileUnit::DebugNameTableKind NTK) {
1810   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1811     return;
1812   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1813 }
1814 
1815 template <class IntTy, class Stringifier>
1816 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1817                                     Stringifier toString, bool ShouldSkipZero) {
1818   if (!Value)
1819     return;
1820 
1821   Out << FS << Name << ": ";
1822   auto S = toString(Value);
1823   if (!S.empty())
1824     Out << S;
1825   else
1826     Out << Value;
1827 }
1828 
1829 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1830                                AsmWriterContext &WriterCtx) {
1831   Out << "!GenericDINode(";
1832   MDFieldPrinter Printer(Out, WriterCtx);
1833   Printer.printTag(N);
1834   Printer.printString("header", N->getHeader());
1835   if (N->getNumDwarfOperands()) {
1836     Out << Printer.FS << "operands: {";
1837     FieldSeparator IFS;
1838     for (auto &I : N->dwarf_operands()) {
1839       Out << IFS;
1840       writeMetadataAsOperand(Out, I, WriterCtx);
1841     }
1842     Out << "}";
1843   }
1844   Out << ")";
1845 }
1846 
1847 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1848                             AsmWriterContext &WriterCtx) {
1849   Out << "!DILocation(";
1850   MDFieldPrinter Printer(Out, WriterCtx);
1851   // Always output the line, since 0 is a relevant and important value for it.
1852   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1853   Printer.printInt("column", DL->getColumn());
1854   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1855   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1856   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1857                     /* Default */ false);
1858   Out << ")";
1859 }
1860 
1861 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1862                             AsmWriterContext &WriterCtx) {
1863   Out << "!DISubrange(";
1864   MDFieldPrinter Printer(Out, WriterCtx);
1865 
1866   auto *Count = N->getRawCountNode();
1867   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1868     auto *CV = cast<ConstantInt>(CE->getValue());
1869     Printer.printInt("count", CV->getSExtValue(),
1870                      /* ShouldSkipZero */ false);
1871   } else
1872     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1873 
1874   // A lowerBound of constant 0 should not be skipped, since it is different
1875   // from an unspecified lower bound (= nullptr).
1876   auto *LBound = N->getRawLowerBound();
1877   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1878     auto *LV = cast<ConstantInt>(LE->getValue());
1879     Printer.printInt("lowerBound", LV->getSExtValue(),
1880                      /* ShouldSkipZero */ false);
1881   } else
1882     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1883 
1884   auto *UBound = N->getRawUpperBound();
1885   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1886     auto *UV = cast<ConstantInt>(UE->getValue());
1887     Printer.printInt("upperBound", UV->getSExtValue(),
1888                      /* ShouldSkipZero */ false);
1889   } else
1890     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1891 
1892   auto *Stride = N->getRawStride();
1893   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1894     auto *SV = cast<ConstantInt>(SE->getValue());
1895     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1896   } else
1897     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1898 
1899   Out << ")";
1900 }
1901 
1902 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1903                                    AsmWriterContext &WriterCtx) {
1904   Out << "!DIGenericSubrange(";
1905   MDFieldPrinter Printer(Out, WriterCtx);
1906 
1907   auto IsConstant = [&](Metadata *Bound) -> bool {
1908     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1909       return BE->isConstant() &&
1910              DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1911                  *BE->isConstant();
1912     }
1913     return false;
1914   };
1915 
1916   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1917     assert(IsConstant(Bound) && "Expected constant");
1918     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1919     return static_cast<int64_t>(BE->getElement(1));
1920   };
1921 
1922   auto *Count = N->getRawCountNode();
1923   if (IsConstant(Count))
1924     Printer.printInt("count", GetConstant(Count),
1925                      /* ShouldSkipZero */ false);
1926   else
1927     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1928 
1929   auto *LBound = N->getRawLowerBound();
1930   if (IsConstant(LBound))
1931     Printer.printInt("lowerBound", GetConstant(LBound),
1932                      /* ShouldSkipZero */ false);
1933   else
1934     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1935 
1936   auto *UBound = N->getRawUpperBound();
1937   if (IsConstant(UBound))
1938     Printer.printInt("upperBound", GetConstant(UBound),
1939                      /* ShouldSkipZero */ false);
1940   else
1941     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1942 
1943   auto *Stride = N->getRawStride();
1944   if (IsConstant(Stride))
1945     Printer.printInt("stride", GetConstant(Stride),
1946                      /* ShouldSkipZero */ false);
1947   else
1948     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1949 
1950   Out << ")";
1951 }
1952 
1953 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1954                               AsmWriterContext &) {
1955   Out << "!DIEnumerator(";
1956   MDFieldPrinter Printer(Out);
1957   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1958   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1959                      /*ShouldSkipZero=*/false);
1960   if (N->isUnsigned())
1961     Printer.printBool("isUnsigned", true);
1962   Out << ")";
1963 }
1964 
1965 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1966                              AsmWriterContext &) {
1967   Out << "!DIBasicType(";
1968   MDFieldPrinter Printer(Out);
1969   if (N->getTag() != dwarf::DW_TAG_base_type)
1970     Printer.printTag(N);
1971   Printer.printString("name", N->getName());
1972   Printer.printInt("size", N->getSizeInBits());
1973   Printer.printInt("align", N->getAlignInBits());
1974   Printer.printDwarfEnum("encoding", N->getEncoding(),
1975                          dwarf::AttributeEncodingString);
1976   Printer.printDIFlags("flags", N->getFlags());
1977   Out << ")";
1978 }
1979 
1980 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
1981                               AsmWriterContext &WriterCtx) {
1982   Out << "!DIStringType(";
1983   MDFieldPrinter Printer(Out, WriterCtx);
1984   if (N->getTag() != dwarf::DW_TAG_string_type)
1985     Printer.printTag(N);
1986   Printer.printString("name", N->getName());
1987   Printer.printMetadata("stringLength", N->getRawStringLength());
1988   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
1989   Printer.printInt("size", N->getSizeInBits());
1990   Printer.printInt("align", N->getAlignInBits());
1991   Printer.printDwarfEnum("encoding", N->getEncoding(),
1992                          dwarf::AttributeEncodingString);
1993   Out << ")";
1994 }
1995 
1996 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1997                                AsmWriterContext &WriterCtx) {
1998   Out << "!DIDerivedType(";
1999   MDFieldPrinter Printer(Out, WriterCtx);
2000   Printer.printTag(N);
2001   Printer.printString("name", N->getName());
2002   Printer.printMetadata("scope", N->getRawScope());
2003   Printer.printMetadata("file", N->getRawFile());
2004   Printer.printInt("line", N->getLine());
2005   Printer.printMetadata("baseType", N->getRawBaseType(),
2006                         /* ShouldSkipNull */ false);
2007   Printer.printInt("size", N->getSizeInBits());
2008   Printer.printInt("align", N->getAlignInBits());
2009   Printer.printInt("offset", N->getOffsetInBits());
2010   Printer.printDIFlags("flags", N->getFlags());
2011   Printer.printMetadata("extraData", N->getRawExtraData());
2012   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2013     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2014                      /* ShouldSkipZero */ false);
2015   Printer.printMetadata("annotations", N->getRawAnnotations());
2016   Out << ")";
2017 }
2018 
2019 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2020                                  AsmWriterContext &WriterCtx) {
2021   Out << "!DICompositeType(";
2022   MDFieldPrinter Printer(Out, WriterCtx);
2023   Printer.printTag(N);
2024   Printer.printString("name", N->getName());
2025   Printer.printMetadata("scope", N->getRawScope());
2026   Printer.printMetadata("file", N->getRawFile());
2027   Printer.printInt("line", N->getLine());
2028   Printer.printMetadata("baseType", N->getRawBaseType());
2029   Printer.printInt("size", N->getSizeInBits());
2030   Printer.printInt("align", N->getAlignInBits());
2031   Printer.printInt("offset", N->getOffsetInBits());
2032   Printer.printDIFlags("flags", N->getFlags());
2033   Printer.printMetadata("elements", N->getRawElements());
2034   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2035                          dwarf::LanguageString);
2036   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2037   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2038   Printer.printString("identifier", N->getIdentifier());
2039   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2040   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2041   Printer.printMetadata("associated", N->getRawAssociated());
2042   Printer.printMetadata("allocated", N->getRawAllocated());
2043   if (auto *RankConst = N->getRankConst())
2044     Printer.printInt("rank", RankConst->getSExtValue(),
2045                      /* ShouldSkipZero */ false);
2046   else
2047     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2048   Printer.printMetadata("annotations", N->getRawAnnotations());
2049   Out << ")";
2050 }
2051 
2052 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2053                                   AsmWriterContext &WriterCtx) {
2054   Out << "!DISubroutineType(";
2055   MDFieldPrinter Printer(Out, WriterCtx);
2056   Printer.printDIFlags("flags", N->getFlags());
2057   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2058   Printer.printMetadata("types", N->getRawTypeArray(),
2059                         /* ShouldSkipNull */ false);
2060   Out << ")";
2061 }
2062 
2063 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2064   Out << "!DIFile(";
2065   MDFieldPrinter Printer(Out);
2066   Printer.printString("filename", N->getFilename(),
2067                       /* ShouldSkipEmpty */ false);
2068   Printer.printString("directory", N->getDirectory(),
2069                       /* ShouldSkipEmpty */ false);
2070   // Print all values for checksum together, or not at all.
2071   if (N->getChecksum())
2072     Printer.printChecksum(*N->getChecksum());
2073   Printer.printString("source", N->getSource().getValueOr(StringRef()),
2074                       /* ShouldSkipEmpty */ true);
2075   Out << ")";
2076 }
2077 
2078 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2079                                AsmWriterContext &WriterCtx) {
2080   Out << "!DICompileUnit(";
2081   MDFieldPrinter Printer(Out, WriterCtx);
2082   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2083                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2084   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2085   Printer.printString("producer", N->getProducer());
2086   Printer.printBool("isOptimized", N->isOptimized());
2087   Printer.printString("flags", N->getFlags());
2088   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2089                    /* ShouldSkipZero */ false);
2090   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2091   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2092   Printer.printMetadata("enums", N->getRawEnumTypes());
2093   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2094   Printer.printMetadata("globals", N->getRawGlobalVariables());
2095   Printer.printMetadata("imports", N->getRawImportedEntities());
2096   Printer.printMetadata("macros", N->getRawMacros());
2097   Printer.printInt("dwoId", N->getDWOId());
2098   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2099   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2100                     false);
2101   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2102   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2103   Printer.printString("sysroot", N->getSysRoot());
2104   Printer.printString("sdk", N->getSDK());
2105   Out << ")";
2106 }
2107 
2108 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2109                               AsmWriterContext &WriterCtx) {
2110   Out << "!DISubprogram(";
2111   MDFieldPrinter Printer(Out, WriterCtx);
2112   Printer.printString("name", N->getName());
2113   Printer.printString("linkageName", N->getLinkageName());
2114   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2115   Printer.printMetadata("file", N->getRawFile());
2116   Printer.printInt("line", N->getLine());
2117   Printer.printMetadata("type", N->getRawType());
2118   Printer.printInt("scopeLine", N->getScopeLine());
2119   Printer.printMetadata("containingType", N->getRawContainingType());
2120   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2121       N->getVirtualIndex() != 0)
2122     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2123   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2124   Printer.printDIFlags("flags", N->getFlags());
2125   Printer.printDISPFlags("spFlags", N->getSPFlags());
2126   Printer.printMetadata("unit", N->getRawUnit());
2127   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2128   Printer.printMetadata("declaration", N->getRawDeclaration());
2129   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2130   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2131   Printer.printMetadata("annotations", N->getRawAnnotations());
2132   Out << ")";
2133 }
2134 
2135 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2136                                 AsmWriterContext &WriterCtx) {
2137   Out << "!DILexicalBlock(";
2138   MDFieldPrinter Printer(Out, WriterCtx);
2139   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2140   Printer.printMetadata("file", N->getRawFile());
2141   Printer.printInt("line", N->getLine());
2142   Printer.printInt("column", N->getColumn());
2143   Out << ")";
2144 }
2145 
2146 static void writeDILexicalBlockFile(raw_ostream &Out,
2147                                     const DILexicalBlockFile *N,
2148                                     AsmWriterContext &WriterCtx) {
2149   Out << "!DILexicalBlockFile(";
2150   MDFieldPrinter Printer(Out, WriterCtx);
2151   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2152   Printer.printMetadata("file", N->getRawFile());
2153   Printer.printInt("discriminator", N->getDiscriminator(),
2154                    /* ShouldSkipZero */ false);
2155   Out << ")";
2156 }
2157 
2158 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2159                              AsmWriterContext &WriterCtx) {
2160   Out << "!DINamespace(";
2161   MDFieldPrinter Printer(Out, WriterCtx);
2162   Printer.printString("name", N->getName());
2163   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2164   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2165   Out << ")";
2166 }
2167 
2168 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2169                                AsmWriterContext &WriterCtx) {
2170   Out << "!DICommonBlock(";
2171   MDFieldPrinter Printer(Out, WriterCtx);
2172   Printer.printMetadata("scope", N->getRawScope(), false);
2173   Printer.printMetadata("declaration", N->getRawDecl(), false);
2174   Printer.printString("name", N->getName());
2175   Printer.printMetadata("file", N->getRawFile());
2176   Printer.printInt("line", N->getLineNo());
2177   Out << ")";
2178 }
2179 
2180 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2181                          AsmWriterContext &WriterCtx) {
2182   Out << "!DIMacro(";
2183   MDFieldPrinter Printer(Out, WriterCtx);
2184   Printer.printMacinfoType(N);
2185   Printer.printInt("line", N->getLine());
2186   Printer.printString("name", N->getName());
2187   Printer.printString("value", N->getValue());
2188   Out << ")";
2189 }
2190 
2191 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2192                              AsmWriterContext &WriterCtx) {
2193   Out << "!DIMacroFile(";
2194   MDFieldPrinter Printer(Out, WriterCtx);
2195   Printer.printInt("line", N->getLine());
2196   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2197   Printer.printMetadata("nodes", N->getRawElements());
2198   Out << ")";
2199 }
2200 
2201 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2202                           AsmWriterContext &WriterCtx) {
2203   Out << "!DIModule(";
2204   MDFieldPrinter Printer(Out, WriterCtx);
2205   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2206   Printer.printString("name", N->getName());
2207   Printer.printString("configMacros", N->getConfigurationMacros());
2208   Printer.printString("includePath", N->getIncludePath());
2209   Printer.printString("apinotes", N->getAPINotesFile());
2210   Printer.printMetadata("file", N->getRawFile());
2211   Printer.printInt("line", N->getLineNo());
2212   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2213   Out << ")";
2214 }
2215 
2216 static void writeDITemplateTypeParameter(raw_ostream &Out,
2217                                          const DITemplateTypeParameter *N,
2218                                          AsmWriterContext &WriterCtx) {
2219   Out << "!DITemplateTypeParameter(";
2220   MDFieldPrinter Printer(Out, WriterCtx);
2221   Printer.printString("name", N->getName());
2222   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2223   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2224   Out << ")";
2225 }
2226 
2227 static void writeDITemplateValueParameter(raw_ostream &Out,
2228                                           const DITemplateValueParameter *N,
2229                                           AsmWriterContext &WriterCtx) {
2230   Out << "!DITemplateValueParameter(";
2231   MDFieldPrinter Printer(Out, WriterCtx);
2232   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2233     Printer.printTag(N);
2234   Printer.printString("name", N->getName());
2235   Printer.printMetadata("type", N->getRawType());
2236   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2237   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2238   Out << ")";
2239 }
2240 
2241 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2242                                   AsmWriterContext &WriterCtx) {
2243   Out << "!DIGlobalVariable(";
2244   MDFieldPrinter Printer(Out, WriterCtx);
2245   Printer.printString("name", N->getName());
2246   Printer.printString("linkageName", N->getLinkageName());
2247   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2248   Printer.printMetadata("file", N->getRawFile());
2249   Printer.printInt("line", N->getLine());
2250   Printer.printMetadata("type", N->getRawType());
2251   Printer.printBool("isLocal", N->isLocalToUnit());
2252   Printer.printBool("isDefinition", N->isDefinition());
2253   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2254   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2255   Printer.printInt("align", N->getAlignInBits());
2256   Printer.printMetadata("annotations", N->getRawAnnotations());
2257   Out << ")";
2258 }
2259 
2260 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2261                                  AsmWriterContext &WriterCtx) {
2262   Out << "!DILocalVariable(";
2263   MDFieldPrinter Printer(Out, WriterCtx);
2264   Printer.printString("name", N->getName());
2265   Printer.printInt("arg", N->getArg());
2266   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2267   Printer.printMetadata("file", N->getRawFile());
2268   Printer.printInt("line", N->getLine());
2269   Printer.printMetadata("type", N->getRawType());
2270   Printer.printDIFlags("flags", N->getFlags());
2271   Printer.printInt("align", N->getAlignInBits());
2272   Printer.printMetadata("annotations", N->getRawAnnotations());
2273   Out << ")";
2274 }
2275 
2276 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2277                          AsmWriterContext &WriterCtx) {
2278   Out << "!DILabel(";
2279   MDFieldPrinter Printer(Out, WriterCtx);
2280   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2281   Printer.printString("name", N->getName());
2282   Printer.printMetadata("file", N->getRawFile());
2283   Printer.printInt("line", N->getLine());
2284   Out << ")";
2285 }
2286 
2287 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2288                               AsmWriterContext &WriterCtx) {
2289   Out << "!DIExpression(";
2290   FieldSeparator FS;
2291   if (N->isValid()) {
2292     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2293       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2294       assert(!OpStr.empty() && "Expected valid opcode");
2295 
2296       Out << FS << OpStr;
2297       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2298         Out << FS << Op.getArg(0);
2299         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2300       } else {
2301         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2302           Out << FS << Op.getArg(A);
2303       }
2304     }
2305   } else {
2306     for (const auto &I : N->getElements())
2307       Out << FS << I;
2308   }
2309   Out << ")";
2310 }
2311 
2312 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2313                            AsmWriterContext &WriterCtx,
2314                            bool FromValue = false) {
2315   assert(FromValue &&
2316          "Unexpected DIArgList metadata outside of value argument");
2317   Out << "!DIArgList(";
2318   FieldSeparator FS;
2319   MDFieldPrinter Printer(Out, WriterCtx);
2320   for (Metadata *Arg : N->getArgs()) {
2321     Out << FS;
2322     WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2323   }
2324   Out << ")";
2325 }
2326 
2327 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2328                                             const DIGlobalVariableExpression *N,
2329                                             AsmWriterContext &WriterCtx) {
2330   Out << "!DIGlobalVariableExpression(";
2331   MDFieldPrinter Printer(Out, WriterCtx);
2332   Printer.printMetadata("var", N->getVariable());
2333   Printer.printMetadata("expr", N->getExpression());
2334   Out << ")";
2335 }
2336 
2337 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2338                                 AsmWriterContext &WriterCtx) {
2339   Out << "!DIObjCProperty(";
2340   MDFieldPrinter Printer(Out, WriterCtx);
2341   Printer.printString("name", N->getName());
2342   Printer.printMetadata("file", N->getRawFile());
2343   Printer.printInt("line", N->getLine());
2344   Printer.printString("setter", N->getSetterName());
2345   Printer.printString("getter", N->getGetterName());
2346   Printer.printInt("attributes", N->getAttributes());
2347   Printer.printMetadata("type", N->getRawType());
2348   Out << ")";
2349 }
2350 
2351 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2352                                   AsmWriterContext &WriterCtx) {
2353   Out << "!DIImportedEntity(";
2354   MDFieldPrinter Printer(Out, WriterCtx);
2355   Printer.printTag(N);
2356   Printer.printString("name", N->getName());
2357   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2358   Printer.printMetadata("entity", N->getRawEntity());
2359   Printer.printMetadata("file", N->getRawFile());
2360   Printer.printInt("line", N->getLine());
2361   Printer.printMetadata("elements", N->getRawElements());
2362   Out << ")";
2363 }
2364 
2365 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2366                                     AsmWriterContext &Ctx) {
2367   if (Node->isDistinct())
2368     Out << "distinct ";
2369   else if (Node->isTemporary())
2370     Out << "<temporary!> "; // Handle broken code.
2371 
2372   switch (Node->getMetadataID()) {
2373   default:
2374     llvm_unreachable("Expected uniquable MDNode");
2375 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2376   case Metadata::CLASS##Kind:                                                  \
2377     write##CLASS(Out, cast<CLASS>(Node), Ctx);                                 \
2378     break;
2379 #include "llvm/IR/Metadata.def"
2380   }
2381 }
2382 
2383 // Full implementation of printing a Value as an operand with support for
2384 // TypePrinting, etc.
2385 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2386                                    AsmWriterContext &WriterCtx) {
2387   if (V->hasName()) {
2388     PrintLLVMName(Out, V);
2389     return;
2390   }
2391 
2392   const Constant *CV = dyn_cast<Constant>(V);
2393   if (CV && !isa<GlobalValue>(CV)) {
2394     assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2395     WriteConstantInternal(Out, CV, WriterCtx);
2396     return;
2397   }
2398 
2399   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2400     Out << "asm ";
2401     if (IA->hasSideEffects())
2402       Out << "sideeffect ";
2403     if (IA->isAlignStack())
2404       Out << "alignstack ";
2405     // We don't emit the AD_ATT dialect as it's the assumed default.
2406     if (IA->getDialect() == InlineAsm::AD_Intel)
2407       Out << "inteldialect ";
2408     if (IA->canThrow())
2409       Out << "unwind ";
2410     Out << '"';
2411     printEscapedString(IA->getAsmString(), Out);
2412     Out << "\", \"";
2413     printEscapedString(IA->getConstraintString(), Out);
2414     Out << '"';
2415     return;
2416   }
2417 
2418   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2419     WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2420                            /* FromValue */ true);
2421     return;
2422   }
2423 
2424   char Prefix = '%';
2425   int Slot;
2426   auto *Machine = WriterCtx.Machine;
2427   // If we have a SlotTracker, use it.
2428   if (Machine) {
2429     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2430       Slot = Machine->getGlobalSlot(GV);
2431       Prefix = '@';
2432     } else {
2433       Slot = Machine->getLocalSlot(V);
2434 
2435       // If the local value didn't succeed, then we may be referring to a value
2436       // from a different function.  Translate it, as this can happen when using
2437       // address of blocks.
2438       if (Slot == -1)
2439         if ((Machine = createSlotTracker(V))) {
2440           Slot = Machine->getLocalSlot(V);
2441           delete Machine;
2442         }
2443     }
2444   } else if ((Machine = createSlotTracker(V))) {
2445     // Otherwise, create one to get the # and then destroy it.
2446     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2447       Slot = Machine->getGlobalSlot(GV);
2448       Prefix = '@';
2449     } else {
2450       Slot = Machine->getLocalSlot(V);
2451     }
2452     delete Machine;
2453     Machine = nullptr;
2454   } else {
2455     Slot = -1;
2456   }
2457 
2458   if (Slot != -1)
2459     Out << Prefix << Slot;
2460   else
2461     Out << "<badref>";
2462 }
2463 
2464 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2465                                    AsmWriterContext &WriterCtx,
2466                                    bool FromValue) {
2467   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2468   // readability of debug info intrinsics.
2469   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2470     writeDIExpression(Out, Expr, WriterCtx);
2471     return;
2472   }
2473   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2474     writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2475     return;
2476   }
2477 
2478   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2479     std::unique_ptr<SlotTracker> MachineStorage;
2480     SaveAndRestore<SlotTracker *> SARMachine(WriterCtx.Machine);
2481     if (!WriterCtx.Machine) {
2482       MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2483       WriterCtx.Machine = MachineStorage.get();
2484     }
2485     int Slot = WriterCtx.Machine->getMetadataSlot(N);
2486     if (Slot == -1) {
2487       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2488         writeDILocation(Out, Loc, WriterCtx);
2489         return;
2490       }
2491       // Give the pointer value instead of "badref", since this comes up all
2492       // the time when debugging.
2493       Out << "<" << N << ">";
2494     } else
2495       Out << '!' << Slot;
2496     return;
2497   }
2498 
2499   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2500     Out << "!\"";
2501     printEscapedString(MDS->getString(), Out);
2502     Out << '"';
2503     return;
2504   }
2505 
2506   auto *V = cast<ValueAsMetadata>(MD);
2507   assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2508   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2509          "Unexpected function-local metadata outside of value argument");
2510 
2511   WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2512   Out << ' ';
2513   WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2514 }
2515 
2516 namespace {
2517 
2518 class AssemblyWriter {
2519   formatted_raw_ostream &Out;
2520   const Module *TheModule = nullptr;
2521   const ModuleSummaryIndex *TheIndex = nullptr;
2522   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2523   SlotTracker &Machine;
2524   TypePrinting TypePrinter;
2525   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2526   SetVector<const Comdat *> Comdats;
2527   bool IsForDebug;
2528   bool ShouldPreserveUseListOrder;
2529   UseListOrderMap UseListOrders;
2530   SmallVector<StringRef, 8> MDNames;
2531   /// Synchronization scope names registered with LLVMContext.
2532   SmallVector<StringRef, 8> SSNs;
2533   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2534 
2535 public:
2536   /// Construct an AssemblyWriter with an external SlotTracker
2537   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2538                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2539                  bool ShouldPreserveUseListOrder = false);
2540 
2541   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2542                  const ModuleSummaryIndex *Index, bool IsForDebug);
2543 
2544   AsmWriterContext getContext() {
2545     return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2546   }
2547 
2548   void printMDNodeBody(const MDNode *MD);
2549   void printNamedMDNode(const NamedMDNode *NMD);
2550 
2551   void printModule(const Module *M);
2552 
2553   void writeOperand(const Value *Op, bool PrintType);
2554   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2555   void writeOperandBundles(const CallBase *Call);
2556   void writeSyncScope(const LLVMContext &Context,
2557                       SyncScope::ID SSID);
2558   void writeAtomic(const LLVMContext &Context,
2559                    AtomicOrdering Ordering,
2560                    SyncScope::ID SSID);
2561   void writeAtomicCmpXchg(const LLVMContext &Context,
2562                           AtomicOrdering SuccessOrdering,
2563                           AtomicOrdering FailureOrdering,
2564                           SyncScope::ID SSID);
2565 
2566   void writeAllMDNodes();
2567   void writeMDNode(unsigned Slot, const MDNode *Node);
2568   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2569   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2570   void writeAllAttributeGroups();
2571 
2572   void printTypeIdentities();
2573   void printGlobal(const GlobalVariable *GV);
2574   void printAlias(const GlobalAlias *GA);
2575   void printIFunc(const GlobalIFunc *GI);
2576   void printComdat(const Comdat *C);
2577   void printFunction(const Function *F);
2578   void printArgument(const Argument *FA, AttributeSet Attrs);
2579   void printBasicBlock(const BasicBlock *BB);
2580   void printInstructionLine(const Instruction &I);
2581   void printInstruction(const Instruction &I);
2582 
2583   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2584   void printUseLists(const Function *F);
2585 
2586   void printModuleSummaryIndex();
2587   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2588   void printSummary(const GlobalValueSummary &Summary);
2589   void printAliasSummary(const AliasSummary *AS);
2590   void printGlobalVarSummary(const GlobalVarSummary *GS);
2591   void printFunctionSummary(const FunctionSummary *FS);
2592   void printTypeIdSummary(const TypeIdSummary &TIS);
2593   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2594   void printTypeTestResolution(const TypeTestResolution &TTRes);
2595   void printArgs(const std::vector<uint64_t> &Args);
2596   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2597   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2598   void printVFuncId(const FunctionSummary::VFuncId VFId);
2599   void
2600   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2601                       const char *Tag);
2602   void
2603   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2604                    const char *Tag);
2605 
2606 private:
2607   /// Print out metadata attachments.
2608   void printMetadataAttachments(
2609       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2610       StringRef Separator);
2611 
2612   // printInfoComment - Print a little comment after the instruction indicating
2613   // which slot it occupies.
2614   void printInfoComment(const Value &V);
2615 
2616   // printGCRelocateComment - print comment after call to the gc.relocate
2617   // intrinsic indicating base and derived pointer names.
2618   void printGCRelocateComment(const GCRelocateInst &Relocate);
2619 };
2620 
2621 } // end anonymous namespace
2622 
2623 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2624                                const Module *M, AssemblyAnnotationWriter *AAW,
2625                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2626     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2627       IsForDebug(IsForDebug),
2628       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2629   if (!TheModule)
2630     return;
2631   for (const GlobalObject &GO : TheModule->global_objects())
2632     if (const Comdat *C = GO.getComdat())
2633       Comdats.insert(C);
2634 }
2635 
2636 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2637                                const ModuleSummaryIndex *Index, bool IsForDebug)
2638     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2639       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2640 
2641 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2642   if (!Operand) {
2643     Out << "<null operand!>";
2644     return;
2645   }
2646   if (PrintType) {
2647     TypePrinter.print(Operand->getType(), Out);
2648     Out << ' ';
2649   }
2650   auto WriterCtx = getContext();
2651   WriteAsOperandInternal(Out, Operand, WriterCtx);
2652 }
2653 
2654 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2655                                     SyncScope::ID SSID) {
2656   switch (SSID) {
2657   case SyncScope::System: {
2658     break;
2659   }
2660   default: {
2661     if (SSNs.empty())
2662       Context.getSyncScopeNames(SSNs);
2663 
2664     Out << " syncscope(\"";
2665     printEscapedString(SSNs[SSID], Out);
2666     Out << "\")";
2667     break;
2668   }
2669   }
2670 }
2671 
2672 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2673                                  AtomicOrdering Ordering,
2674                                  SyncScope::ID SSID) {
2675   if (Ordering == AtomicOrdering::NotAtomic)
2676     return;
2677 
2678   writeSyncScope(Context, SSID);
2679   Out << " " << toIRString(Ordering);
2680 }
2681 
2682 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2683                                         AtomicOrdering SuccessOrdering,
2684                                         AtomicOrdering FailureOrdering,
2685                                         SyncScope::ID SSID) {
2686   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2687          FailureOrdering != AtomicOrdering::NotAtomic);
2688 
2689   writeSyncScope(Context, SSID);
2690   Out << " " << toIRString(SuccessOrdering);
2691   Out << " " << toIRString(FailureOrdering);
2692 }
2693 
2694 void AssemblyWriter::writeParamOperand(const Value *Operand,
2695                                        AttributeSet Attrs) {
2696   if (!Operand) {
2697     Out << "<null operand!>";
2698     return;
2699   }
2700 
2701   // Print the type
2702   TypePrinter.print(Operand->getType(), Out);
2703   // Print parameter attributes list
2704   if (Attrs.hasAttributes()) {
2705     Out << ' ';
2706     writeAttributeSet(Attrs);
2707   }
2708   Out << ' ';
2709   // Print the operand
2710   auto WriterCtx = getContext();
2711   WriteAsOperandInternal(Out, Operand, WriterCtx);
2712 }
2713 
2714 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2715   if (!Call->hasOperandBundles())
2716     return;
2717 
2718   Out << " [ ";
2719 
2720   bool FirstBundle = true;
2721   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2722     OperandBundleUse BU = Call->getOperandBundleAt(i);
2723 
2724     if (!FirstBundle)
2725       Out << ", ";
2726     FirstBundle = false;
2727 
2728     Out << '"';
2729     printEscapedString(BU.getTagName(), Out);
2730     Out << '"';
2731 
2732     Out << '(';
2733 
2734     bool FirstInput = true;
2735     auto WriterCtx = getContext();
2736     for (const auto &Input : BU.Inputs) {
2737       if (!FirstInput)
2738         Out << ", ";
2739       FirstInput = false;
2740 
2741       TypePrinter.print(Input->getType(), Out);
2742       Out << " ";
2743       WriteAsOperandInternal(Out, Input, WriterCtx);
2744     }
2745 
2746     Out << ')';
2747   }
2748 
2749   Out << " ]";
2750 }
2751 
2752 void AssemblyWriter::printModule(const Module *M) {
2753   Machine.initializeIfNeeded();
2754 
2755   if (ShouldPreserveUseListOrder)
2756     UseListOrders = predictUseListOrder(M);
2757 
2758   if (!M->getModuleIdentifier().empty() &&
2759       // Don't print the ID if it will start a new line (which would
2760       // require a comment char before it).
2761       M->getModuleIdentifier().find('\n') == std::string::npos)
2762     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2763 
2764   if (!M->getSourceFileName().empty()) {
2765     Out << "source_filename = \"";
2766     printEscapedString(M->getSourceFileName(), Out);
2767     Out << "\"\n";
2768   }
2769 
2770   const std::string &DL = M->getDataLayoutStr();
2771   if (!DL.empty())
2772     Out << "target datalayout = \"" << DL << "\"\n";
2773   if (!M->getTargetTriple().empty())
2774     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2775 
2776   if (!M->getModuleInlineAsm().empty()) {
2777     Out << '\n';
2778 
2779     // Split the string into lines, to make it easier to read the .ll file.
2780     StringRef Asm = M->getModuleInlineAsm();
2781     do {
2782       StringRef Front;
2783       std::tie(Front, Asm) = Asm.split('\n');
2784 
2785       // We found a newline, print the portion of the asm string from the
2786       // last newline up to this newline.
2787       Out << "module asm \"";
2788       printEscapedString(Front, Out);
2789       Out << "\"\n";
2790     } while (!Asm.empty());
2791   }
2792 
2793   printTypeIdentities();
2794 
2795   // Output all comdats.
2796   if (!Comdats.empty())
2797     Out << '\n';
2798   for (const Comdat *C : Comdats) {
2799     printComdat(C);
2800     if (C != Comdats.back())
2801       Out << '\n';
2802   }
2803 
2804   // Output all globals.
2805   if (!M->global_empty()) Out << '\n';
2806   for (const GlobalVariable &GV : M->globals()) {
2807     printGlobal(&GV); Out << '\n';
2808   }
2809 
2810   // Output all aliases.
2811   if (!M->alias_empty()) Out << "\n";
2812   for (const GlobalAlias &GA : M->aliases())
2813     printAlias(&GA);
2814 
2815   // Output all ifuncs.
2816   if (!M->ifunc_empty()) Out << "\n";
2817   for (const GlobalIFunc &GI : M->ifuncs())
2818     printIFunc(&GI);
2819 
2820   // Output all of the functions.
2821   for (const Function &F : *M) {
2822     Out << '\n';
2823     printFunction(&F);
2824   }
2825 
2826   // Output global use-lists.
2827   printUseLists(nullptr);
2828 
2829   // Output all attribute groups.
2830   if (!Machine.as_empty()) {
2831     Out << '\n';
2832     writeAllAttributeGroups();
2833   }
2834 
2835   // Output named metadata.
2836   if (!M->named_metadata_empty()) Out << '\n';
2837 
2838   for (const NamedMDNode &Node : M->named_metadata())
2839     printNamedMDNode(&Node);
2840 
2841   // Output metadata.
2842   if (!Machine.mdn_empty()) {
2843     Out << '\n';
2844     writeAllMDNodes();
2845   }
2846 }
2847 
2848 void AssemblyWriter::printModuleSummaryIndex() {
2849   assert(TheIndex);
2850   int NumSlots = Machine.initializeIndexIfNeeded();
2851 
2852   Out << "\n";
2853 
2854   // Print module path entries. To print in order, add paths to a vector
2855   // indexed by module slot.
2856   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2857   std::string RegularLTOModuleName =
2858       ModuleSummaryIndex::getRegularLTOModuleName();
2859   moduleVec.resize(TheIndex->modulePaths().size());
2860   for (auto &ModPath : TheIndex->modulePaths())
2861     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2862         // A module id of -1 is a special entry for a regular LTO module created
2863         // during the thin link.
2864         ModPath.second.first == -1u ? RegularLTOModuleName
2865                                     : (std::string)std::string(ModPath.first()),
2866         ModPath.second.second);
2867 
2868   unsigned i = 0;
2869   for (auto &ModPair : moduleVec) {
2870     Out << "^" << i++ << " = module: (";
2871     Out << "path: \"";
2872     printEscapedString(ModPair.first, Out);
2873     Out << "\", hash: (";
2874     FieldSeparator FS;
2875     for (auto Hash : ModPair.second)
2876       Out << FS << Hash;
2877     Out << "))\n";
2878   }
2879 
2880   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2881   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2882   for (auto &GlobalList : *TheIndex) {
2883     auto GUID = GlobalList.first;
2884     for (auto &Summary : GlobalList.second.SummaryList)
2885       SummaryToGUIDMap[Summary.get()] = GUID;
2886   }
2887 
2888   // Print the global value summary entries.
2889   for (auto &GlobalList : *TheIndex) {
2890     auto GUID = GlobalList.first;
2891     auto VI = TheIndex->getValueInfo(GlobalList);
2892     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2893   }
2894 
2895   // Print the TypeIdMap entries.
2896   for (const auto &TID : TheIndex->typeIds()) {
2897     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2898         << " = typeid: (name: \"" << TID.second.first << "\"";
2899     printTypeIdSummary(TID.second.second);
2900     Out << ") ; guid = " << TID.first << "\n";
2901   }
2902 
2903   // Print the TypeIdCompatibleVtableMap entries.
2904   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2905     auto GUID = GlobalValue::getGUID(TId.first);
2906     Out << "^" << Machine.getGUIDSlot(GUID)
2907         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2908     printTypeIdCompatibleVtableSummary(TId.second);
2909     Out << ") ; guid = " << GUID << "\n";
2910   }
2911 
2912   // Don't emit flags when it's not really needed (value is zero by default).
2913   if (TheIndex->getFlags()) {
2914     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2915     ++NumSlots;
2916   }
2917 
2918   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2919       << "\n";
2920 }
2921 
2922 static const char *
2923 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2924   switch (K) {
2925   case WholeProgramDevirtResolution::Indir:
2926     return "indir";
2927   case WholeProgramDevirtResolution::SingleImpl:
2928     return "singleImpl";
2929   case WholeProgramDevirtResolution::BranchFunnel:
2930     return "branchFunnel";
2931   }
2932   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2933 }
2934 
2935 static const char *getWholeProgDevirtResByArgKindName(
2936     WholeProgramDevirtResolution::ByArg::Kind K) {
2937   switch (K) {
2938   case WholeProgramDevirtResolution::ByArg::Indir:
2939     return "indir";
2940   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2941     return "uniformRetVal";
2942   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2943     return "uniqueRetVal";
2944   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2945     return "virtualConstProp";
2946   }
2947   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2948 }
2949 
2950 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2951   switch (K) {
2952   case TypeTestResolution::Unknown:
2953     return "unknown";
2954   case TypeTestResolution::Unsat:
2955     return "unsat";
2956   case TypeTestResolution::ByteArray:
2957     return "byteArray";
2958   case TypeTestResolution::Inline:
2959     return "inline";
2960   case TypeTestResolution::Single:
2961     return "single";
2962   case TypeTestResolution::AllOnes:
2963     return "allOnes";
2964   }
2965   llvm_unreachable("invalid TypeTestResolution kind");
2966 }
2967 
2968 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2969   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2970       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2971 
2972   // The following fields are only used if the target does not support the use
2973   // of absolute symbols to store constants. Print only if non-zero.
2974   if (TTRes.AlignLog2)
2975     Out << ", alignLog2: " << TTRes.AlignLog2;
2976   if (TTRes.SizeM1)
2977     Out << ", sizeM1: " << TTRes.SizeM1;
2978   if (TTRes.BitMask)
2979     // BitMask is uint8_t which causes it to print the corresponding char.
2980     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2981   if (TTRes.InlineBits)
2982     Out << ", inlineBits: " << TTRes.InlineBits;
2983 
2984   Out << ")";
2985 }
2986 
2987 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2988   Out << ", summary: (";
2989   printTypeTestResolution(TIS.TTRes);
2990   if (!TIS.WPDRes.empty()) {
2991     Out << ", wpdResolutions: (";
2992     FieldSeparator FS;
2993     for (auto &WPDRes : TIS.WPDRes) {
2994       Out << FS;
2995       Out << "(offset: " << WPDRes.first << ", ";
2996       printWPDRes(WPDRes.second);
2997       Out << ")";
2998     }
2999     Out << ")";
3000   }
3001   Out << ")";
3002 }
3003 
3004 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3005     const TypeIdCompatibleVtableInfo &TI) {
3006   Out << ", summary: (";
3007   FieldSeparator FS;
3008   for (auto &P : TI) {
3009     Out << FS;
3010     Out << "(offset: " << P.AddressPointOffset << ", ";
3011     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3012     Out << ")";
3013   }
3014   Out << ")";
3015 }
3016 
3017 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3018   Out << "args: (";
3019   FieldSeparator FS;
3020   for (auto arg : Args) {
3021     Out << FS;
3022     Out << arg;
3023   }
3024   Out << ")";
3025 }
3026 
3027 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3028   Out << "wpdRes: (kind: ";
3029   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3030 
3031   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3032     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3033 
3034   if (!WPDRes.ResByArg.empty()) {
3035     Out << ", resByArg: (";
3036     FieldSeparator FS;
3037     for (auto &ResByArg : WPDRes.ResByArg) {
3038       Out << FS;
3039       printArgs(ResByArg.first);
3040       Out << ", byArg: (kind: ";
3041       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3042       if (ResByArg.second.TheKind ==
3043               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3044           ResByArg.second.TheKind ==
3045               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3046         Out << ", info: " << ResByArg.second.Info;
3047 
3048       // The following fields are only used if the target does not support the
3049       // use of absolute symbols to store constants. Print only if non-zero.
3050       if (ResByArg.second.Byte || ResByArg.second.Bit)
3051         Out << ", byte: " << ResByArg.second.Byte
3052             << ", bit: " << ResByArg.second.Bit;
3053 
3054       Out << ")";
3055     }
3056     Out << ")";
3057   }
3058   Out << ")";
3059 }
3060 
3061 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3062   switch (SK) {
3063   case GlobalValueSummary::AliasKind:
3064     return "alias";
3065   case GlobalValueSummary::FunctionKind:
3066     return "function";
3067   case GlobalValueSummary::GlobalVarKind:
3068     return "variable";
3069   }
3070   llvm_unreachable("invalid summary kind");
3071 }
3072 
3073 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3074   Out << ", aliasee: ";
3075   // The indexes emitted for distributed backends may not include the
3076   // aliasee summary (only if it is being imported directly). Handle
3077   // that case by just emitting "null" as the aliasee.
3078   if (AS->hasAliasee())
3079     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3080   else
3081     Out << "null";
3082 }
3083 
3084 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3085   auto VTableFuncs = GS->vTableFuncs();
3086   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3087       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3088       << "constant: " << GS->VarFlags.Constant;
3089   if (!VTableFuncs.empty())
3090     Out << ", "
3091         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3092   Out << ")";
3093 
3094   if (!VTableFuncs.empty()) {
3095     Out << ", vTableFuncs: (";
3096     FieldSeparator FS;
3097     for (auto &P : VTableFuncs) {
3098       Out << FS;
3099       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3100           << ", offset: " << P.VTableOffset;
3101       Out << ")";
3102     }
3103     Out << ")";
3104   }
3105 }
3106 
3107 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3108   switch (LT) {
3109   case GlobalValue::ExternalLinkage:
3110     return "external";
3111   case GlobalValue::PrivateLinkage:
3112     return "private";
3113   case GlobalValue::InternalLinkage:
3114     return "internal";
3115   case GlobalValue::LinkOnceAnyLinkage:
3116     return "linkonce";
3117   case GlobalValue::LinkOnceODRLinkage:
3118     return "linkonce_odr";
3119   case GlobalValue::WeakAnyLinkage:
3120     return "weak";
3121   case GlobalValue::WeakODRLinkage:
3122     return "weak_odr";
3123   case GlobalValue::CommonLinkage:
3124     return "common";
3125   case GlobalValue::AppendingLinkage:
3126     return "appending";
3127   case GlobalValue::ExternalWeakLinkage:
3128     return "extern_weak";
3129   case GlobalValue::AvailableExternallyLinkage:
3130     return "available_externally";
3131   }
3132   llvm_unreachable("invalid linkage");
3133 }
3134 
3135 // When printing the linkage types in IR where the ExternalLinkage is
3136 // not printed, and other linkage types are expected to be printed with
3137 // a space after the name.
3138 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3139   if (LT == GlobalValue::ExternalLinkage)
3140     return "";
3141   return getLinkageName(LT) + " ";
3142 }
3143 
3144 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3145   switch (Vis) {
3146   case GlobalValue::DefaultVisibility:
3147     return "default";
3148   case GlobalValue::HiddenVisibility:
3149     return "hidden";
3150   case GlobalValue::ProtectedVisibility:
3151     return "protected";
3152   }
3153   llvm_unreachable("invalid visibility");
3154 }
3155 
3156 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3157   Out << ", insts: " << FS->instCount();
3158   if (FS->fflags().anyFlagSet())
3159     Out << ", " << FS->fflags();
3160 
3161   if (!FS->calls().empty()) {
3162     Out << ", calls: (";
3163     FieldSeparator IFS;
3164     for (auto &Call : FS->calls()) {
3165       Out << IFS;
3166       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3167       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3168         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3169       else if (Call.second.RelBlockFreq)
3170         Out << ", relbf: " << Call.second.RelBlockFreq;
3171       Out << ")";
3172     }
3173     Out << ")";
3174   }
3175 
3176   if (const auto *TIdInfo = FS->getTypeIdInfo())
3177     printTypeIdInfo(*TIdInfo);
3178 
3179   auto PrintRange = [&](const ConstantRange &Range) {
3180     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3181   };
3182 
3183   if (!FS->paramAccesses().empty()) {
3184     Out << ", params: (";
3185     FieldSeparator IFS;
3186     for (auto &PS : FS->paramAccesses()) {
3187       Out << IFS;
3188       Out << "(param: " << PS.ParamNo;
3189       Out << ", offset: ";
3190       PrintRange(PS.Use);
3191       if (!PS.Calls.empty()) {
3192         Out << ", calls: (";
3193         FieldSeparator IFS;
3194         for (auto &Call : PS.Calls) {
3195           Out << IFS;
3196           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3197           Out << ", param: " << Call.ParamNo;
3198           Out << ", offset: ";
3199           PrintRange(Call.Offsets);
3200           Out << ")";
3201         }
3202         Out << ")";
3203       }
3204       Out << ")";
3205     }
3206     Out << ")";
3207   }
3208 }
3209 
3210 void AssemblyWriter::printTypeIdInfo(
3211     const FunctionSummary::TypeIdInfo &TIDInfo) {
3212   Out << ", typeIdInfo: (";
3213   FieldSeparator TIDFS;
3214   if (!TIDInfo.TypeTests.empty()) {
3215     Out << TIDFS;
3216     Out << "typeTests: (";
3217     FieldSeparator FS;
3218     for (auto &GUID : TIDInfo.TypeTests) {
3219       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3220       if (TidIter.first == TidIter.second) {
3221         Out << FS;
3222         Out << GUID;
3223         continue;
3224       }
3225       // Print all type id that correspond to this GUID.
3226       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3227         Out << FS;
3228         auto Slot = Machine.getTypeIdSlot(It->second.first);
3229         assert(Slot != -1);
3230         Out << "^" << Slot;
3231       }
3232     }
3233     Out << ")";
3234   }
3235   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3236     Out << TIDFS;
3237     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3238   }
3239   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3240     Out << TIDFS;
3241     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3242   }
3243   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3244     Out << TIDFS;
3245     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3246                      "typeTestAssumeConstVCalls");
3247   }
3248   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3249     Out << TIDFS;
3250     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3251                      "typeCheckedLoadConstVCalls");
3252   }
3253   Out << ")";
3254 }
3255 
3256 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3257   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3258   if (TidIter.first == TidIter.second) {
3259     Out << "vFuncId: (";
3260     Out << "guid: " << VFId.GUID;
3261     Out << ", offset: " << VFId.Offset;
3262     Out << ")";
3263     return;
3264   }
3265   // Print all type id that correspond to this GUID.
3266   FieldSeparator FS;
3267   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3268     Out << FS;
3269     Out << "vFuncId: (";
3270     auto Slot = Machine.getTypeIdSlot(It->second.first);
3271     assert(Slot != -1);
3272     Out << "^" << Slot;
3273     Out << ", offset: " << VFId.Offset;
3274     Out << ")";
3275   }
3276 }
3277 
3278 void AssemblyWriter::printNonConstVCalls(
3279     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3280   Out << Tag << ": (";
3281   FieldSeparator FS;
3282   for (auto &VFuncId : VCallList) {
3283     Out << FS;
3284     printVFuncId(VFuncId);
3285   }
3286   Out << ")";
3287 }
3288 
3289 void AssemblyWriter::printConstVCalls(
3290     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3291     const char *Tag) {
3292   Out << Tag << ": (";
3293   FieldSeparator FS;
3294   for (auto &ConstVCall : VCallList) {
3295     Out << FS;
3296     Out << "(";
3297     printVFuncId(ConstVCall.VFunc);
3298     if (!ConstVCall.Args.empty()) {
3299       Out << ", ";
3300       printArgs(ConstVCall.Args);
3301     }
3302     Out << ")";
3303   }
3304   Out << ")";
3305 }
3306 
3307 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3308   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3309   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3310   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3311   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3312       << ", flags: (";
3313   Out << "linkage: " << getLinkageName(LT);
3314   Out << ", visibility: "
3315       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3316   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3317   Out << ", live: " << GVFlags.Live;
3318   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3319   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3320   Out << ")";
3321 
3322   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3323     printAliasSummary(cast<AliasSummary>(&Summary));
3324   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3325     printFunctionSummary(cast<FunctionSummary>(&Summary));
3326   else
3327     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3328 
3329   auto RefList = Summary.refs();
3330   if (!RefList.empty()) {
3331     Out << ", refs: (";
3332     FieldSeparator FS;
3333     for (auto &Ref : RefList) {
3334       Out << FS;
3335       if (Ref.isReadOnly())
3336         Out << "readonly ";
3337       else if (Ref.isWriteOnly())
3338         Out << "writeonly ";
3339       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3340     }
3341     Out << ")";
3342   }
3343 
3344   Out << ")";
3345 }
3346 
3347 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3348   Out << "^" << Slot << " = gv: (";
3349   if (!VI.name().empty())
3350     Out << "name: \"" << VI.name() << "\"";
3351   else
3352     Out << "guid: " << VI.getGUID();
3353   if (!VI.getSummaryList().empty()) {
3354     Out << ", summaries: (";
3355     FieldSeparator FS;
3356     for (auto &Summary : VI.getSummaryList()) {
3357       Out << FS;
3358       printSummary(*Summary);
3359     }
3360     Out << ")";
3361   }
3362   Out << ")";
3363   if (!VI.name().empty())
3364     Out << " ; guid = " << VI.getGUID();
3365   Out << "\n";
3366 }
3367 
3368 static void printMetadataIdentifier(StringRef Name,
3369                                     formatted_raw_ostream &Out) {
3370   if (Name.empty()) {
3371     Out << "<empty name> ";
3372   } else {
3373     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3374         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3375       Out << Name[0];
3376     else
3377       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3378     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3379       unsigned char C = Name[i];
3380       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3381           C == '.' || C == '_')
3382         Out << C;
3383       else
3384         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3385     }
3386   }
3387 }
3388 
3389 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3390   Out << '!';
3391   printMetadataIdentifier(NMD->getName(), Out);
3392   Out << " = !{";
3393   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3394     if (i)
3395       Out << ", ";
3396 
3397     // Write DIExpressions inline.
3398     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3399     MDNode *Op = NMD->getOperand(i);
3400     assert(!isa<DIArgList>(Op) &&
3401            "DIArgLists should not appear in NamedMDNodes");
3402     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3403       writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3404       continue;
3405     }
3406 
3407     int Slot = Machine.getMetadataSlot(Op);
3408     if (Slot == -1)
3409       Out << "<badref>";
3410     else
3411       Out << '!' << Slot;
3412   }
3413   Out << "}\n";
3414 }
3415 
3416 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3417                             formatted_raw_ostream &Out) {
3418   switch (Vis) {
3419   case GlobalValue::DefaultVisibility: break;
3420   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3421   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3422   }
3423 }
3424 
3425 static void PrintDSOLocation(const GlobalValue &GV,
3426                              formatted_raw_ostream &Out) {
3427   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3428     Out << "dso_local ";
3429 }
3430 
3431 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3432                                  formatted_raw_ostream &Out) {
3433   switch (SCT) {
3434   case GlobalValue::DefaultStorageClass: break;
3435   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3436   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3437   }
3438 }
3439 
3440 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3441                                   formatted_raw_ostream &Out) {
3442   switch (TLM) {
3443     case GlobalVariable::NotThreadLocal:
3444       break;
3445     case GlobalVariable::GeneralDynamicTLSModel:
3446       Out << "thread_local ";
3447       break;
3448     case GlobalVariable::LocalDynamicTLSModel:
3449       Out << "thread_local(localdynamic) ";
3450       break;
3451     case GlobalVariable::InitialExecTLSModel:
3452       Out << "thread_local(initialexec) ";
3453       break;
3454     case GlobalVariable::LocalExecTLSModel:
3455       Out << "thread_local(localexec) ";
3456       break;
3457   }
3458 }
3459 
3460 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3461   switch (UA) {
3462   case GlobalVariable::UnnamedAddr::None:
3463     return "";
3464   case GlobalVariable::UnnamedAddr::Local:
3465     return "local_unnamed_addr";
3466   case GlobalVariable::UnnamedAddr::Global:
3467     return "unnamed_addr";
3468   }
3469   llvm_unreachable("Unknown UnnamedAddr");
3470 }
3471 
3472 static void maybePrintComdat(formatted_raw_ostream &Out,
3473                              const GlobalObject &GO) {
3474   const Comdat *C = GO.getComdat();
3475   if (!C)
3476     return;
3477 
3478   if (isa<GlobalVariable>(GO))
3479     Out << ',';
3480   Out << " comdat";
3481 
3482   if (GO.getName() == C->getName())
3483     return;
3484 
3485   Out << '(';
3486   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3487   Out << ')';
3488 }
3489 
3490 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3491   if (GV->isMaterializable())
3492     Out << "; Materializable\n";
3493 
3494   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3495   WriteAsOperandInternal(Out, GV, WriterCtx);
3496   Out << " = ";
3497 
3498   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3499     Out << "external ";
3500 
3501   Out << getLinkageNameWithSpace(GV->getLinkage());
3502   PrintDSOLocation(*GV, Out);
3503   PrintVisibility(GV->getVisibility(), Out);
3504   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3505   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3506   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3507   if (!UA.empty())
3508       Out << UA << ' ';
3509 
3510   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3511     Out << "addrspace(" << AddressSpace << ") ";
3512   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3513   Out << (GV->isConstant() ? "constant " : "global ");
3514   TypePrinter.print(GV->getValueType(), Out);
3515 
3516   if (GV->hasInitializer()) {
3517     Out << ' ';
3518     writeOperand(GV->getInitializer(), false);
3519   }
3520 
3521   if (GV->hasSection()) {
3522     Out << ", section \"";
3523     printEscapedString(GV->getSection(), Out);
3524     Out << '"';
3525   }
3526   if (GV->hasPartition()) {
3527     Out << ", partition \"";
3528     printEscapedString(GV->getPartition(), Out);
3529     Out << '"';
3530   }
3531 
3532   maybePrintComdat(Out, *GV);
3533   if (MaybeAlign A = GV->getAlign())
3534     Out << ", align " << A->value();
3535 
3536   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3537   GV->getAllMetadata(MDs);
3538   printMetadataAttachments(MDs, ", ");
3539 
3540   auto Attrs = GV->getAttributes();
3541   if (Attrs.hasAttributes())
3542     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3543 
3544   printInfoComment(*GV);
3545 }
3546 
3547 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3548   if (GA->isMaterializable())
3549     Out << "; Materializable\n";
3550 
3551   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3552   WriteAsOperandInternal(Out, GA, WriterCtx);
3553   Out << " = ";
3554 
3555   Out << getLinkageNameWithSpace(GA->getLinkage());
3556   PrintDSOLocation(*GA, Out);
3557   PrintVisibility(GA->getVisibility(), Out);
3558   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3559   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3560   StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3561   if (!UA.empty())
3562       Out << UA << ' ';
3563 
3564   Out << "alias ";
3565 
3566   TypePrinter.print(GA->getValueType(), Out);
3567   Out << ", ";
3568 
3569   if (const Constant *Aliasee = GA->getAliasee()) {
3570     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3571   } else {
3572     TypePrinter.print(GA->getType(), Out);
3573     Out << " <<NULL ALIASEE>>";
3574   }
3575 
3576   if (GA->hasPartition()) {
3577     Out << ", partition \"";
3578     printEscapedString(GA->getPartition(), Out);
3579     Out << '"';
3580   }
3581 
3582   printInfoComment(*GA);
3583   Out << '\n';
3584 }
3585 
3586 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3587   if (GI->isMaterializable())
3588     Out << "; Materializable\n";
3589 
3590   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3591   WriteAsOperandInternal(Out, GI, WriterCtx);
3592   Out << " = ";
3593 
3594   Out << getLinkageNameWithSpace(GI->getLinkage());
3595   PrintDSOLocation(*GI, Out);
3596   PrintVisibility(GI->getVisibility(), Out);
3597 
3598   Out << "ifunc ";
3599 
3600   TypePrinter.print(GI->getValueType(), Out);
3601   Out << ", ";
3602 
3603   if (const Constant *Resolver = GI->getResolver()) {
3604     writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3605   } else {
3606     TypePrinter.print(GI->getType(), Out);
3607     Out << " <<NULL RESOLVER>>";
3608   }
3609 
3610   if (GI->hasPartition()) {
3611     Out << ", partition \"";
3612     printEscapedString(GI->getPartition(), Out);
3613     Out << '"';
3614   }
3615 
3616   printInfoComment(*GI);
3617   Out << '\n';
3618 }
3619 
3620 void AssemblyWriter::printComdat(const Comdat *C) {
3621   C->print(Out);
3622 }
3623 
3624 void AssemblyWriter::printTypeIdentities() {
3625   if (TypePrinter.empty())
3626     return;
3627 
3628   Out << '\n';
3629 
3630   // Emit all numbered types.
3631   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3632   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3633     Out << '%' << I << " = type ";
3634 
3635     // Make sure we print out at least one level of the type structure, so
3636     // that we do not get %2 = type %2
3637     TypePrinter.printStructBody(NumberedTypes[I], Out);
3638     Out << '\n';
3639   }
3640 
3641   auto &NamedTypes = TypePrinter.getNamedTypes();
3642   for (StructType *NamedType : NamedTypes) {
3643     PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3644     Out << " = type ";
3645 
3646     // Make sure we print out at least one level of the type structure, so
3647     // that we do not get %FILE = type %FILE
3648     TypePrinter.printStructBody(NamedType, Out);
3649     Out << '\n';
3650   }
3651 }
3652 
3653 /// printFunction - Print all aspects of a function.
3654 void AssemblyWriter::printFunction(const Function *F) {
3655   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3656 
3657   if (F->isMaterializable())
3658     Out << "; Materializable\n";
3659 
3660   const AttributeList &Attrs = F->getAttributes();
3661   if (Attrs.hasFnAttrs()) {
3662     AttributeSet AS = Attrs.getFnAttrs();
3663     std::string AttrStr;
3664 
3665     for (const Attribute &Attr : AS) {
3666       if (!Attr.isStringAttribute()) {
3667         if (!AttrStr.empty()) AttrStr += ' ';
3668         AttrStr += Attr.getAsString();
3669       }
3670     }
3671 
3672     if (!AttrStr.empty())
3673       Out << "; Function Attrs: " << AttrStr << '\n';
3674   }
3675 
3676   Machine.incorporateFunction(F);
3677 
3678   if (F->isDeclaration()) {
3679     Out << "declare";
3680     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3681     F->getAllMetadata(MDs);
3682     printMetadataAttachments(MDs, " ");
3683     Out << ' ';
3684   } else
3685     Out << "define ";
3686 
3687   Out << getLinkageNameWithSpace(F->getLinkage());
3688   PrintDSOLocation(*F, Out);
3689   PrintVisibility(F->getVisibility(), Out);
3690   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3691 
3692   // Print the calling convention.
3693   if (F->getCallingConv() != CallingConv::C) {
3694     PrintCallingConv(F->getCallingConv(), Out);
3695     Out << " ";
3696   }
3697 
3698   FunctionType *FT = F->getFunctionType();
3699   if (Attrs.hasRetAttrs())
3700     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3701   TypePrinter.print(F->getReturnType(), Out);
3702   AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
3703   Out << ' ';
3704   WriteAsOperandInternal(Out, F, WriterCtx);
3705   Out << '(';
3706 
3707   // Loop over the arguments, printing them...
3708   if (F->isDeclaration() && !IsForDebug) {
3709     // We're only interested in the type here - don't print argument names.
3710     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3711       // Insert commas as we go... the first arg doesn't get a comma
3712       if (I)
3713         Out << ", ";
3714       // Output type...
3715       TypePrinter.print(FT->getParamType(I), Out);
3716 
3717       AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3718       if (ArgAttrs.hasAttributes()) {
3719         Out << ' ';
3720         writeAttributeSet(ArgAttrs);
3721       }
3722     }
3723   } else {
3724     // The arguments are meaningful here, print them in detail.
3725     for (const Argument &Arg : F->args()) {
3726       // Insert commas as we go... the first arg doesn't get a comma
3727       if (Arg.getArgNo() != 0)
3728         Out << ", ";
3729       printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3730     }
3731   }
3732 
3733   // Finish printing arguments...
3734   if (FT->isVarArg()) {
3735     if (FT->getNumParams()) Out << ", ";
3736     Out << "...";  // Output varargs portion of signature!
3737   }
3738   Out << ')';
3739   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3740   if (!UA.empty())
3741     Out << ' ' << UA;
3742   // We print the function address space if it is non-zero or if we are writing
3743   // a module with a non-zero program address space or if there is no valid
3744   // Module* so that the file can be parsed without the datalayout string.
3745   const Module *Mod = F->getParent();
3746   if (F->getAddressSpace() != 0 || !Mod ||
3747       Mod->getDataLayout().getProgramAddressSpace() != 0)
3748     Out << " addrspace(" << F->getAddressSpace() << ")";
3749   if (Attrs.hasFnAttrs())
3750     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3751   if (F->hasSection()) {
3752     Out << " section \"";
3753     printEscapedString(F->getSection(), Out);
3754     Out << '"';
3755   }
3756   if (F->hasPartition()) {
3757     Out << " partition \"";
3758     printEscapedString(F->getPartition(), Out);
3759     Out << '"';
3760   }
3761   maybePrintComdat(Out, *F);
3762   if (MaybeAlign A = F->getAlign())
3763     Out << " align " << A->value();
3764   if (F->hasGC())
3765     Out << " gc \"" << F->getGC() << '"';
3766   if (F->hasPrefixData()) {
3767     Out << " prefix ";
3768     writeOperand(F->getPrefixData(), true);
3769   }
3770   if (F->hasPrologueData()) {
3771     Out << " prologue ";
3772     writeOperand(F->getPrologueData(), true);
3773   }
3774   if (F->hasPersonalityFn()) {
3775     Out << " personality ";
3776     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3777   }
3778 
3779   if (F->isDeclaration()) {
3780     Out << '\n';
3781   } else {
3782     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3783     F->getAllMetadata(MDs);
3784     printMetadataAttachments(MDs, " ");
3785 
3786     Out << " {";
3787     // Output all of the function's basic blocks.
3788     for (const BasicBlock &BB : *F)
3789       printBasicBlock(&BB);
3790 
3791     // Output the function's use-lists.
3792     printUseLists(F);
3793 
3794     Out << "}\n";
3795   }
3796 
3797   Machine.purgeFunction();
3798 }
3799 
3800 /// printArgument - This member is called for every argument that is passed into
3801 /// the function.  Simply print it out
3802 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3803   // Output type...
3804   TypePrinter.print(Arg->getType(), Out);
3805 
3806   // Output parameter attributes list
3807   if (Attrs.hasAttributes()) {
3808     Out << ' ';
3809     writeAttributeSet(Attrs);
3810   }
3811 
3812   // Output name, if available...
3813   if (Arg->hasName()) {
3814     Out << ' ';
3815     PrintLLVMName(Out, Arg);
3816   } else {
3817     int Slot = Machine.getLocalSlot(Arg);
3818     assert(Slot != -1 && "expect argument in function here");
3819     Out << " %" << Slot;
3820   }
3821 }
3822 
3823 /// printBasicBlock - This member is called for each basic block in a method.
3824 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3825   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
3826   if (BB->hasName()) {              // Print out the label if it exists...
3827     Out << "\n";
3828     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3829     Out << ':';
3830   } else if (!IsEntryBlock) {
3831     Out << "\n";
3832     int Slot = Machine.getLocalSlot(BB);
3833     if (Slot != -1)
3834       Out << Slot << ":";
3835     else
3836       Out << "<badref>:";
3837   }
3838 
3839   if (!IsEntryBlock) {
3840     // Output predecessors for the block.
3841     Out.PadToColumn(50);
3842     Out << ";";
3843     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3844 
3845     if (PI == PE) {
3846       Out << " No predecessors!";
3847     } else {
3848       Out << " preds = ";
3849       writeOperand(*PI, false);
3850       for (++PI; PI != PE; ++PI) {
3851         Out << ", ";
3852         writeOperand(*PI, false);
3853       }
3854     }
3855   }
3856 
3857   Out << "\n";
3858 
3859   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3860 
3861   // Output all of the instructions in the basic block...
3862   for (const Instruction &I : *BB) {
3863     printInstructionLine(I);
3864   }
3865 
3866   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3867 }
3868 
3869 /// printInstructionLine - Print an instruction and a newline character.
3870 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3871   printInstruction(I);
3872   Out << '\n';
3873 }
3874 
3875 /// printGCRelocateComment - print comment after call to the gc.relocate
3876 /// intrinsic indicating base and derived pointer names.
3877 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3878   Out << " ; (";
3879   writeOperand(Relocate.getBasePtr(), false);
3880   Out << ", ";
3881   writeOperand(Relocate.getDerivedPtr(), false);
3882   Out << ")";
3883 }
3884 
3885 /// printInfoComment - Print a little comment after the instruction indicating
3886 /// which slot it occupies.
3887 void AssemblyWriter::printInfoComment(const Value &V) {
3888   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3889     printGCRelocateComment(*Relocate);
3890 
3891   if (AnnotationWriter)
3892     AnnotationWriter->printInfoComment(V, Out);
3893 }
3894 
3895 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3896                                     raw_ostream &Out) {
3897   // We print the address space of the call if it is non-zero.
3898   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3899   bool PrintAddrSpace = CallAddrSpace != 0;
3900   if (!PrintAddrSpace) {
3901     const Module *Mod = getModuleFromVal(I);
3902     // We also print it if it is zero but not equal to the program address space
3903     // or if we can't find a valid Module* to make it possible to parse
3904     // the resulting file even without a datalayout string.
3905     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3906       PrintAddrSpace = true;
3907   }
3908   if (PrintAddrSpace)
3909     Out << " addrspace(" << CallAddrSpace << ")";
3910 }
3911 
3912 // This member is called for each Instruction in a function..
3913 void AssemblyWriter::printInstruction(const Instruction &I) {
3914   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3915 
3916   // Print out indentation for an instruction.
3917   Out << "  ";
3918 
3919   // Print out name if it exists...
3920   if (I.hasName()) {
3921     PrintLLVMName(Out, &I);
3922     Out << " = ";
3923   } else if (!I.getType()->isVoidTy()) {
3924     // Print out the def slot taken.
3925     int SlotNum = Machine.getLocalSlot(&I);
3926     if (SlotNum == -1)
3927       Out << "<badref> = ";
3928     else
3929       Out << '%' << SlotNum << " = ";
3930   }
3931 
3932   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3933     if (CI->isMustTailCall())
3934       Out << "musttail ";
3935     else if (CI->isTailCall())
3936       Out << "tail ";
3937     else if (CI->isNoTailCall())
3938       Out << "notail ";
3939   }
3940 
3941   // Print out the opcode...
3942   Out << I.getOpcodeName();
3943 
3944   // If this is an atomic load or store, print out the atomic marker.
3945   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3946       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3947     Out << " atomic";
3948 
3949   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3950     Out << " weak";
3951 
3952   // If this is a volatile operation, print out the volatile marker.
3953   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3954       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3955       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3956       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3957     Out << " volatile";
3958 
3959   // Print out optimization information.
3960   WriteOptimizationInfo(Out, &I);
3961 
3962   // Print out the compare instruction predicates
3963   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3964     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3965 
3966   // Print out the atomicrmw operation
3967   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3968     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3969 
3970   // Print out the type of the operands...
3971   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3972 
3973   // Special case conditional branches to swizzle the condition out to the front
3974   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3975     const BranchInst &BI(cast<BranchInst>(I));
3976     Out << ' ';
3977     writeOperand(BI.getCondition(), true);
3978     Out << ", ";
3979     writeOperand(BI.getSuccessor(0), true);
3980     Out << ", ";
3981     writeOperand(BI.getSuccessor(1), true);
3982 
3983   } else if (isa<SwitchInst>(I)) {
3984     const SwitchInst& SI(cast<SwitchInst>(I));
3985     // Special case switch instruction to get formatting nice and correct.
3986     Out << ' ';
3987     writeOperand(SI.getCondition(), true);
3988     Out << ", ";
3989     writeOperand(SI.getDefaultDest(), true);
3990     Out << " [";
3991     for (auto Case : SI.cases()) {
3992       Out << "\n    ";
3993       writeOperand(Case.getCaseValue(), true);
3994       Out << ", ";
3995       writeOperand(Case.getCaseSuccessor(), true);
3996     }
3997     Out << "\n  ]";
3998   } else if (isa<IndirectBrInst>(I)) {
3999     // Special case indirectbr instruction to get formatting nice and correct.
4000     Out << ' ';
4001     writeOperand(Operand, true);
4002     Out << ", [";
4003 
4004     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4005       if (i != 1)
4006         Out << ", ";
4007       writeOperand(I.getOperand(i), true);
4008     }
4009     Out << ']';
4010   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4011     Out << ' ';
4012     TypePrinter.print(I.getType(), Out);
4013     Out << ' ';
4014 
4015     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4016       if (op) Out << ", ";
4017       Out << "[ ";
4018       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4019       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4020     }
4021   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4022     Out << ' ';
4023     writeOperand(I.getOperand(0), true);
4024     for (unsigned i : EVI->indices())
4025       Out << ", " << i;
4026   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4027     Out << ' ';
4028     writeOperand(I.getOperand(0), true); Out << ", ";
4029     writeOperand(I.getOperand(1), true);
4030     for (unsigned i : IVI->indices())
4031       Out << ", " << i;
4032   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4033     Out << ' ';
4034     TypePrinter.print(I.getType(), Out);
4035     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4036       Out << '\n';
4037 
4038     if (LPI->isCleanup())
4039       Out << "          cleanup";
4040 
4041     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4042       if (i != 0 || LPI->isCleanup()) Out << "\n";
4043       if (LPI->isCatch(i))
4044         Out << "          catch ";
4045       else
4046         Out << "          filter ";
4047 
4048       writeOperand(LPI->getClause(i), true);
4049     }
4050   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4051     Out << " within ";
4052     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4053     Out << " [";
4054     unsigned Op = 0;
4055     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4056       if (Op > 0)
4057         Out << ", ";
4058       writeOperand(PadBB, /*PrintType=*/true);
4059       ++Op;
4060     }
4061     Out << "] unwind ";
4062     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4063       writeOperand(UnwindDest, /*PrintType=*/true);
4064     else
4065       Out << "to caller";
4066   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4067     Out << " within ";
4068     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4069     Out << " [";
4070     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4071          ++Op) {
4072       if (Op > 0)
4073         Out << ", ";
4074       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4075     }
4076     Out << ']';
4077   } else if (isa<ReturnInst>(I) && !Operand) {
4078     Out << " void";
4079   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4080     Out << " from ";
4081     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4082 
4083     Out << " to ";
4084     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4085   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4086     Out << " from ";
4087     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4088 
4089     Out << " unwind ";
4090     if (CRI->hasUnwindDest())
4091       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4092     else
4093       Out << "to caller";
4094   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4095     // Print the calling convention being used.
4096     if (CI->getCallingConv() != CallingConv::C) {
4097       Out << " ";
4098       PrintCallingConv(CI->getCallingConv(), Out);
4099     }
4100 
4101     Operand = CI->getCalledOperand();
4102     FunctionType *FTy = CI->getFunctionType();
4103     Type *RetTy = FTy->getReturnType();
4104     const AttributeList &PAL = CI->getAttributes();
4105 
4106     if (PAL.hasRetAttrs())
4107       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4108 
4109     // Only print addrspace(N) if necessary:
4110     maybePrintCallAddrSpace(Operand, &I, Out);
4111 
4112     // If possible, print out the short form of the call instruction.  We can
4113     // only do this if the first argument is a pointer to a nonvararg function,
4114     // and if the return type is not a pointer to a function.
4115     //
4116     Out << ' ';
4117     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4118     Out << ' ';
4119     writeOperand(Operand, false);
4120     Out << '(';
4121     for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4122       if (op > 0)
4123         Out << ", ";
4124       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4125     }
4126 
4127     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4128     // is only to aid readability, musttail calls forward varargs by default.
4129     if (CI->isMustTailCall() && CI->getParent() &&
4130         CI->getParent()->getParent() &&
4131         CI->getParent()->getParent()->isVarArg())
4132       Out << ", ...";
4133 
4134     Out << ')';
4135     if (PAL.hasFnAttrs())
4136       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4137 
4138     writeOperandBundles(CI);
4139   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4140     Operand = II->getCalledOperand();
4141     FunctionType *FTy = II->getFunctionType();
4142     Type *RetTy = FTy->getReturnType();
4143     const AttributeList &PAL = II->getAttributes();
4144 
4145     // Print the calling convention being used.
4146     if (II->getCallingConv() != CallingConv::C) {
4147       Out << " ";
4148       PrintCallingConv(II->getCallingConv(), Out);
4149     }
4150 
4151     if (PAL.hasRetAttrs())
4152       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4153 
4154     // Only print addrspace(N) if necessary:
4155     maybePrintCallAddrSpace(Operand, &I, Out);
4156 
4157     // If possible, print out the short form of the invoke instruction. We can
4158     // only do this if the first argument is a pointer to a nonvararg function,
4159     // and if the return type is not a pointer to a function.
4160     //
4161     Out << ' ';
4162     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4163     Out << ' ';
4164     writeOperand(Operand, false);
4165     Out << '(';
4166     for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4167       if (op)
4168         Out << ", ";
4169       writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4170     }
4171 
4172     Out << ')';
4173     if (PAL.hasFnAttrs())
4174       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4175 
4176     writeOperandBundles(II);
4177 
4178     Out << "\n          to ";
4179     writeOperand(II->getNormalDest(), true);
4180     Out << " unwind ";
4181     writeOperand(II->getUnwindDest(), true);
4182   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4183     Operand = CBI->getCalledOperand();
4184     FunctionType *FTy = CBI->getFunctionType();
4185     Type *RetTy = FTy->getReturnType();
4186     const AttributeList &PAL = CBI->getAttributes();
4187 
4188     // Print the calling convention being used.
4189     if (CBI->getCallingConv() != CallingConv::C) {
4190       Out << " ";
4191       PrintCallingConv(CBI->getCallingConv(), Out);
4192     }
4193 
4194     if (PAL.hasRetAttrs())
4195       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4196 
4197     // If possible, print out the short form of the callbr instruction. We can
4198     // only do this if the first argument is a pointer to a nonvararg function,
4199     // and if the return type is not a pointer to a function.
4200     //
4201     Out << ' ';
4202     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4203     Out << ' ';
4204     writeOperand(Operand, false);
4205     Out << '(';
4206     for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4207       if (op)
4208         Out << ", ";
4209       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4210     }
4211 
4212     Out << ')';
4213     if (PAL.hasFnAttrs())
4214       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4215 
4216     writeOperandBundles(CBI);
4217 
4218     Out << "\n          to ";
4219     writeOperand(CBI->getDefaultDest(), true);
4220     Out << " [";
4221     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4222       if (i != 0)
4223         Out << ", ";
4224       writeOperand(CBI->getIndirectDest(i), true);
4225     }
4226     Out << ']';
4227   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4228     Out << ' ';
4229     if (AI->isUsedWithInAlloca())
4230       Out << "inalloca ";
4231     if (AI->isSwiftError())
4232       Out << "swifterror ";
4233     TypePrinter.print(AI->getAllocatedType(), Out);
4234 
4235     // Explicitly write the array size if the code is broken, if it's an array
4236     // allocation, or if the type is not canonical for scalar allocations.  The
4237     // latter case prevents the type from mutating when round-tripping through
4238     // assembly.
4239     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4240         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4241       Out << ", ";
4242       writeOperand(AI->getArraySize(), true);
4243     }
4244     if (MaybeAlign A = AI->getAlign()) {
4245       Out << ", align " << A->value();
4246     }
4247 
4248     unsigned AddrSpace = AI->getType()->getAddressSpace();
4249     if (AddrSpace != 0) {
4250       Out << ", addrspace(" << AddrSpace << ')';
4251     }
4252   } else if (isa<CastInst>(I)) {
4253     if (Operand) {
4254       Out << ' ';
4255       writeOperand(Operand, true);   // Work with broken code
4256     }
4257     Out << " to ";
4258     TypePrinter.print(I.getType(), Out);
4259   } else if (isa<VAArgInst>(I)) {
4260     if (Operand) {
4261       Out << ' ';
4262       writeOperand(Operand, true);   // Work with broken code
4263     }
4264     Out << ", ";
4265     TypePrinter.print(I.getType(), Out);
4266   } else if (Operand) {   // Print the normal way.
4267     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4268       Out << ' ';
4269       TypePrinter.print(GEP->getSourceElementType(), Out);
4270       Out << ',';
4271     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4272       Out << ' ';
4273       TypePrinter.print(LI->getType(), Out);
4274       Out << ',';
4275     }
4276 
4277     // PrintAllTypes - Instructions who have operands of all the same type
4278     // omit the type from all but the first operand.  If the instruction has
4279     // different type operands (for example br), then they are all printed.
4280     bool PrintAllTypes = false;
4281     Type *TheType = Operand->getType();
4282 
4283     // Select, Store and ShuffleVector always print all types.
4284     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4285         || isa<ReturnInst>(I)) {
4286       PrintAllTypes = true;
4287     } else {
4288       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4289         Operand = I.getOperand(i);
4290         // note that Operand shouldn't be null, but the test helps make dump()
4291         // more tolerant of malformed IR
4292         if (Operand && Operand->getType() != TheType) {
4293           PrintAllTypes = true;    // We have differing types!  Print them all!
4294           break;
4295         }
4296       }
4297     }
4298 
4299     if (!PrintAllTypes) {
4300       Out << ' ';
4301       TypePrinter.print(TheType, Out);
4302     }
4303 
4304     Out << ' ';
4305     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4306       if (i) Out << ", ";
4307       writeOperand(I.getOperand(i), PrintAllTypes);
4308     }
4309   }
4310 
4311   // Print atomic ordering/alignment for memory operations
4312   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4313     if (LI->isAtomic())
4314       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4315     if (MaybeAlign A = LI->getAlign())
4316       Out << ", align " << A->value();
4317   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4318     if (SI->isAtomic())
4319       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4320     if (MaybeAlign A = SI->getAlign())
4321       Out << ", align " << A->value();
4322   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4323     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4324                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4325     Out << ", align " << CXI->getAlign().value();
4326   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4327     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4328                 RMWI->getSyncScopeID());
4329     Out << ", align " << RMWI->getAlign().value();
4330   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4331     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4332   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4333     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4334   }
4335 
4336   // Print Metadata info.
4337   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4338   I.getAllMetadata(InstMD);
4339   printMetadataAttachments(InstMD, ", ");
4340 
4341   // Print a nice comment.
4342   printInfoComment(I);
4343 }
4344 
4345 void AssemblyWriter::printMetadataAttachments(
4346     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4347     StringRef Separator) {
4348   if (MDs.empty())
4349     return;
4350 
4351   if (MDNames.empty())
4352     MDs[0].second->getContext().getMDKindNames(MDNames);
4353 
4354   auto WriterCtx = getContext();
4355   for (const auto &I : MDs) {
4356     unsigned Kind = I.first;
4357     Out << Separator;
4358     if (Kind < MDNames.size()) {
4359       Out << "!";
4360       printMetadataIdentifier(MDNames[Kind], Out);
4361     } else
4362       Out << "!<unknown kind #" << Kind << ">";
4363     Out << ' ';
4364     WriteAsOperandInternal(Out, I.second, WriterCtx);
4365   }
4366 }
4367 
4368 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4369   Out << '!' << Slot << " = ";
4370   printMDNodeBody(Node);
4371   Out << "\n";
4372 }
4373 
4374 void AssemblyWriter::writeAllMDNodes() {
4375   SmallVector<const MDNode *, 16> Nodes;
4376   Nodes.resize(Machine.mdn_size());
4377   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4378     Nodes[I.second] = cast<MDNode>(I.first);
4379 
4380   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4381     writeMDNode(i, Nodes[i]);
4382   }
4383 }
4384 
4385 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4386   auto WriterCtx = getContext();
4387   WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4388 }
4389 
4390 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4391   if (!Attr.isTypeAttribute()) {
4392     Out << Attr.getAsString(InAttrGroup);
4393     return;
4394   }
4395 
4396   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4397   if (Type *Ty = Attr.getValueAsType()) {
4398     Out << '(';
4399     TypePrinter.print(Ty, Out);
4400     Out << ')';
4401   }
4402 }
4403 
4404 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4405                                        bool InAttrGroup) {
4406   bool FirstAttr = true;
4407   for (const auto &Attr : AttrSet) {
4408     if (!FirstAttr)
4409       Out << ' ';
4410     writeAttribute(Attr, InAttrGroup);
4411     FirstAttr = false;
4412   }
4413 }
4414 
4415 void AssemblyWriter::writeAllAttributeGroups() {
4416   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4417   asVec.resize(Machine.as_size());
4418 
4419   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4420     asVec[I.second] = I;
4421 
4422   for (const auto &I : asVec)
4423     Out << "attributes #" << I.second << " = { "
4424         << I.first.getAsString(true) << " }\n";
4425 }
4426 
4427 void AssemblyWriter::printUseListOrder(const Value *V,
4428                                        const std::vector<unsigned> &Shuffle) {
4429   bool IsInFunction = Machine.getFunction();
4430   if (IsInFunction)
4431     Out << "  ";
4432 
4433   Out << "uselistorder";
4434   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4435     Out << "_bb ";
4436     writeOperand(BB->getParent(), false);
4437     Out << ", ";
4438     writeOperand(BB, false);
4439   } else {
4440     Out << " ";
4441     writeOperand(V, true);
4442   }
4443   Out << ", { ";
4444 
4445   assert(Shuffle.size() >= 2 && "Shuffle too small");
4446   Out << Shuffle[0];
4447   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4448     Out << ", " << Shuffle[I];
4449   Out << " }\n";
4450 }
4451 
4452 void AssemblyWriter::printUseLists(const Function *F) {
4453   auto It = UseListOrders.find(F);
4454   if (It == UseListOrders.end())
4455     return;
4456 
4457   Out << "\n; uselistorder directives\n";
4458   for (const auto &Pair : It->second)
4459     printUseListOrder(Pair.first, Pair.second);
4460 }
4461 
4462 //===----------------------------------------------------------------------===//
4463 //                       External Interface declarations
4464 //===----------------------------------------------------------------------===//
4465 
4466 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4467                      bool ShouldPreserveUseListOrder,
4468                      bool IsForDebug) const {
4469   SlotTracker SlotTable(this->getParent());
4470   formatted_raw_ostream OS(ROS);
4471   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4472                    IsForDebug,
4473                    ShouldPreserveUseListOrder);
4474   W.printFunction(this);
4475 }
4476 
4477 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4478                      bool ShouldPreserveUseListOrder,
4479                      bool IsForDebug) const {
4480   SlotTracker SlotTable(this->getParent());
4481   formatted_raw_ostream OS(ROS);
4482   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4483                    IsForDebug,
4484                    ShouldPreserveUseListOrder);
4485   W.printBasicBlock(this);
4486 }
4487 
4488 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4489                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4490   SlotTracker SlotTable(this);
4491   formatted_raw_ostream OS(ROS);
4492   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4493                    ShouldPreserveUseListOrder);
4494   W.printModule(this);
4495 }
4496 
4497 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4498   SlotTracker SlotTable(getParent());
4499   formatted_raw_ostream OS(ROS);
4500   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4501   W.printNamedMDNode(this);
4502 }
4503 
4504 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4505                         bool IsForDebug) const {
4506   Optional<SlotTracker> LocalST;
4507   SlotTracker *SlotTable;
4508   if (auto *ST = MST.getMachine())
4509     SlotTable = ST;
4510   else {
4511     LocalST.emplace(getParent());
4512     SlotTable = &*LocalST;
4513   }
4514 
4515   formatted_raw_ostream OS(ROS);
4516   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4517   W.printNamedMDNode(this);
4518 }
4519 
4520 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4521   PrintLLVMName(ROS, getName(), ComdatPrefix);
4522   ROS << " = comdat ";
4523 
4524   switch (getSelectionKind()) {
4525   case Comdat::Any:
4526     ROS << "any";
4527     break;
4528   case Comdat::ExactMatch:
4529     ROS << "exactmatch";
4530     break;
4531   case Comdat::Largest:
4532     ROS << "largest";
4533     break;
4534   case Comdat::NoDeduplicate:
4535     ROS << "nodeduplicate";
4536     break;
4537   case Comdat::SameSize:
4538     ROS << "samesize";
4539     break;
4540   }
4541 
4542   ROS << '\n';
4543 }
4544 
4545 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4546   TypePrinting TP;
4547   TP.print(const_cast<Type*>(this), OS);
4548 
4549   if (NoDetails)
4550     return;
4551 
4552   // If the type is a named struct type, print the body as well.
4553   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4554     if (!STy->isLiteral()) {
4555       OS << " = type ";
4556       TP.printStructBody(STy, OS);
4557     }
4558 }
4559 
4560 static bool isReferencingMDNode(const Instruction &I) {
4561   if (const auto *CI = dyn_cast<CallInst>(&I))
4562     if (Function *F = CI->getCalledFunction())
4563       if (F->isIntrinsic())
4564         for (auto &Op : I.operands())
4565           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4566             if (isa<MDNode>(V->getMetadata()))
4567               return true;
4568   return false;
4569 }
4570 
4571 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4572   bool ShouldInitializeAllMetadata = false;
4573   if (auto *I = dyn_cast<Instruction>(this))
4574     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4575   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4576     ShouldInitializeAllMetadata = true;
4577 
4578   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4579   print(ROS, MST, IsForDebug);
4580 }
4581 
4582 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4583                   bool IsForDebug) const {
4584   formatted_raw_ostream OS(ROS);
4585   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4586   SlotTracker &SlotTable =
4587       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4588   auto incorporateFunction = [&](const Function *F) {
4589     if (F)
4590       MST.incorporateFunction(*F);
4591   };
4592 
4593   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4594     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4595     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4596     W.printInstruction(*I);
4597   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4598     incorporateFunction(BB->getParent());
4599     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4600     W.printBasicBlock(BB);
4601   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4602     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4603     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4604       W.printGlobal(V);
4605     else if (const Function *F = dyn_cast<Function>(GV))
4606       W.printFunction(F);
4607     else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
4608       W.printAlias(A);
4609     else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
4610       W.printIFunc(I);
4611     else
4612       llvm_unreachable("Unknown GlobalValue to print out!");
4613   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4614     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4615   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4616     TypePrinting TypePrinter;
4617     TypePrinter.print(C->getType(), OS);
4618     OS << ' ';
4619     AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
4620     WriteConstantInternal(OS, C, WriterCtx);
4621   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4622     this->printAsOperand(OS, /* PrintType */ true, MST);
4623   } else {
4624     llvm_unreachable("Unknown value to print out!");
4625   }
4626 }
4627 
4628 /// Print without a type, skipping the TypePrinting object.
4629 ///
4630 /// \return \c true iff printing was successful.
4631 static bool printWithoutType(const Value &V, raw_ostream &O,
4632                              SlotTracker *Machine, const Module *M) {
4633   if (V.hasName() || isa<GlobalValue>(V) ||
4634       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4635     AsmWriterContext WriterCtx(nullptr, Machine, M);
4636     WriteAsOperandInternal(O, &V, WriterCtx);
4637     return true;
4638   }
4639   return false;
4640 }
4641 
4642 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4643                                ModuleSlotTracker &MST) {
4644   TypePrinting TypePrinter(MST.getModule());
4645   if (PrintType) {
4646     TypePrinter.print(V.getType(), O);
4647     O << ' ';
4648   }
4649 
4650   AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
4651   WriteAsOperandInternal(O, &V, WriterCtx);
4652 }
4653 
4654 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4655                            const Module *M) const {
4656   if (!M)
4657     M = getModuleFromVal(this);
4658 
4659   if (!PrintType)
4660     if (printWithoutType(*this, O, nullptr, M))
4661       return;
4662 
4663   SlotTracker Machine(
4664       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4665   ModuleSlotTracker MST(Machine, M);
4666   printAsOperandImpl(*this, O, PrintType, MST);
4667 }
4668 
4669 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4670                            ModuleSlotTracker &MST) const {
4671   if (!PrintType)
4672     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4673       return;
4674 
4675   printAsOperandImpl(*this, O, PrintType, MST);
4676 }
4677 
4678 /// Recursive version of printMetadataImpl.
4679 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
4680                                  AsmWriterContext &WriterCtx) {
4681   formatted_raw_ostream OS(ROS);
4682   WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
4683 
4684   auto *N = dyn_cast<MDNode>(&MD);
4685   if (!N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4686     return;
4687 
4688   OS << " = ";
4689   WriteMDNodeBodyInternal(OS, N, WriterCtx);
4690 }
4691 
4692 namespace {
4693 struct MDTreeAsmWriterContext : public AsmWriterContext {
4694   unsigned Level;
4695   // {Level, Printed string}
4696   using EntryTy = std::pair<unsigned, std::string>;
4697   SmallVector<EntryTy, 4> Buffer;
4698 
4699   // Used to break the cycle in case there is any.
4700   SmallPtrSet<const Metadata *, 4> Visited;
4701 
4702   raw_ostream &MainOS;
4703 
4704   MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
4705                          raw_ostream &OS, const Metadata *InitMD)
4706       : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
4707 
4708   void onWriteMetadataAsOperand(const Metadata *MD) override {
4709     if (Visited.count(MD))
4710       return;
4711     Visited.insert(MD);
4712 
4713     std::string Str;
4714     raw_string_ostream SS(Str);
4715     ++Level;
4716     // A placeholder entry to memorize the correct
4717     // position in buffer.
4718     Buffer.emplace_back(std::make_pair(Level, ""));
4719     unsigned InsertIdx = Buffer.size() - 1;
4720 
4721     printMetadataImplRec(SS, *MD, *this);
4722     Buffer[InsertIdx].second = std::move(SS.str());
4723     --Level;
4724   }
4725 
4726   ~MDTreeAsmWriterContext() {
4727     for (const auto &Entry : Buffer) {
4728       MainOS << "\n";
4729       unsigned NumIndent = Entry.first * 2U;
4730       MainOS.indent(NumIndent) << Entry.second;
4731     }
4732   }
4733 };
4734 } // end anonymous namespace
4735 
4736 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4737                               ModuleSlotTracker &MST, const Module *M,
4738                               bool OnlyAsOperand, bool PrintAsTree = false) {
4739   formatted_raw_ostream OS(ROS);
4740 
4741   TypePrinting TypePrinter(M);
4742 
4743   std::unique_ptr<AsmWriterContext> WriterCtx;
4744   if (PrintAsTree && !OnlyAsOperand)
4745     WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
4746         &TypePrinter, MST.getMachine(), M, OS, &MD);
4747   else
4748     WriterCtx =
4749         std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
4750 
4751   WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
4752 
4753   auto *N = dyn_cast<MDNode>(&MD);
4754   if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4755     return;
4756 
4757   OS << " = ";
4758   WriteMDNodeBodyInternal(OS, N, *WriterCtx);
4759 }
4760 
4761 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4762   ModuleSlotTracker MST(M, isa<MDNode>(this));
4763   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4764 }
4765 
4766 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4767                               const Module *M) const {
4768   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4769 }
4770 
4771 void Metadata::print(raw_ostream &OS, const Module *M,
4772                      bool /*IsForDebug*/) const {
4773   ModuleSlotTracker MST(M, isa<MDNode>(this));
4774   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4775 }
4776 
4777 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4778                      const Module *M, bool /*IsForDebug*/) const {
4779   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4780 }
4781 
4782 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
4783   ModuleSlotTracker MST(M, true);
4784   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4785                     /*PrintAsTree=*/true);
4786 }
4787 
4788 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
4789                        const Module *M) const {
4790   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
4791                     /*PrintAsTree=*/true);
4792 }
4793 
4794 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4795   SlotTracker SlotTable(this);
4796   formatted_raw_ostream OS(ROS);
4797   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4798   W.printModuleSummaryIndex();
4799 }
4800 
4801 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
4802                                        unsigned UB) const {
4803   SlotTracker *ST = MachineStorage.get();
4804   if (!ST)
4805     return;
4806 
4807   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
4808     if (I.second >= LB && I.second < UB)
4809       L.push_back(std::make_pair(I.second, I.first));
4810 }
4811 
4812 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4813 // Value::dump - allow easy printing of Values from the debugger.
4814 LLVM_DUMP_METHOD
4815 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4816 
4817 // Type::dump - allow easy printing of Types from the debugger.
4818 LLVM_DUMP_METHOD
4819 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4820 
4821 // Module::dump() - Allow printing of Modules from the debugger.
4822 LLVM_DUMP_METHOD
4823 void Module::dump() const {
4824   print(dbgs(), nullptr,
4825         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4826 }
4827 
4828 // Allow printing of Comdats from the debugger.
4829 LLVM_DUMP_METHOD
4830 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4831 
4832 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4833 LLVM_DUMP_METHOD
4834 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4835 
4836 LLVM_DUMP_METHOD
4837 void Metadata::dump() const { dump(nullptr); }
4838 
4839 LLVM_DUMP_METHOD
4840 void Metadata::dump(const Module *M) const {
4841   print(dbgs(), M, /*IsForDebug=*/true);
4842   dbgs() << '\n';
4843 }
4844 
4845 LLVM_DUMP_METHOD
4846 void MDNode::dumpTree() const { dumpTree(nullptr); }
4847 
4848 LLVM_DUMP_METHOD
4849 void MDNode::dumpTree(const Module *M) const {
4850   printTree(dbgs(), M);
4851   dbgs() << '\n';
4852 }
4853 
4854 // Allow printing of ModuleSummaryIndex from the debugger.
4855 LLVM_DUMP_METHOD
4856 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4857 #endif
4858