1 //=== DWARFLinker.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DWARFLinker/Classic/DWARFLinker.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/StringExtras.h" 14 #include "llvm/CodeGen/NonRelocatableStringpool.h" 15 #include "llvm/DWARFLinker/Classic/DWARFLinkerDeclContext.h" 16 #include "llvm/DWARFLinker/Classic/DWARFStreamer.h" 17 #include "llvm/DWARFLinker/Utils.h" 18 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" 19 #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 22 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" 23 #include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h" 24 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" 25 #include "llvm/DebugInfo/DWARF/DWARFDie.h" 26 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 27 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 28 #include "llvm/DebugInfo/DWARF/DWARFSection.h" 29 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 30 #include "llvm/MC/MCDwarf.h" 31 #include "llvm/Support/DataExtractor.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/ErrorOr.h" 35 #include "llvm/Support/FormatVariadic.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Support/ThreadPool.h" 39 #include <vector> 40 41 namespace llvm { 42 43 using namespace dwarf_linker; 44 using namespace dwarf_linker::classic; 45 46 /// Hold the input and output of the debug info size in bytes. 47 struct DebugInfoSize { 48 uint64_t Input; 49 uint64_t Output; 50 }; 51 52 /// Compute the total size of the debug info. 53 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) { 54 uint64_t Size = 0; 55 for (auto &Unit : Dwarf.compile_units()) { 56 Size += Unit->getLength(); 57 } 58 return Size; 59 } 60 61 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our 62 /// CompileUnit object instead. 63 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) { 64 auto CU = llvm::upper_bound( 65 Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) { 66 return LHS < RHS->getOrigUnit().getNextUnitOffset(); 67 }); 68 return CU != Units.end() ? CU->get() : nullptr; 69 } 70 71 /// Resolve the DIE attribute reference that has been extracted in \p RefValue. 72 /// The resulting DIE might be in another CompileUnit which is stored into \p 73 /// ReferencedCU. \returns null if resolving fails for any reason. 74 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File, 75 const UnitListTy &Units, 76 const DWARFFormValue &RefValue, 77 const DWARFDie &DIE, 78 CompileUnit *&RefCU) { 79 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference)); 80 uint64_t RefOffset = *RefValue.getAsReference(); 81 if ((RefCU = getUnitForOffset(Units, RefOffset))) 82 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) { 83 // In a file with broken references, an attribute might point to a NULL 84 // DIE. 85 if (!RefDie.isNULL()) 86 return RefDie; 87 } 88 89 reportWarning("could not find referenced DIE", File, &DIE); 90 return DWARFDie(); 91 } 92 93 /// \returns whether the passed \a Attr type might contain a DIE reference 94 /// suitable for ODR uniquing. 95 static bool isODRAttribute(uint16_t Attr) { 96 switch (Attr) { 97 default: 98 return false; 99 case dwarf::DW_AT_type: 100 case dwarf::DW_AT_containing_type: 101 case dwarf::DW_AT_specification: 102 case dwarf::DW_AT_abstract_origin: 103 case dwarf::DW_AT_import: 104 return true; 105 } 106 llvm_unreachable("Improper attribute."); 107 } 108 109 static bool isTypeTag(uint16_t Tag) { 110 switch (Tag) { 111 case dwarf::DW_TAG_array_type: 112 case dwarf::DW_TAG_class_type: 113 case dwarf::DW_TAG_enumeration_type: 114 case dwarf::DW_TAG_pointer_type: 115 case dwarf::DW_TAG_reference_type: 116 case dwarf::DW_TAG_string_type: 117 case dwarf::DW_TAG_structure_type: 118 case dwarf::DW_TAG_subroutine_type: 119 case dwarf::DW_TAG_typedef: 120 case dwarf::DW_TAG_union_type: 121 case dwarf::DW_TAG_ptr_to_member_type: 122 case dwarf::DW_TAG_set_type: 123 case dwarf::DW_TAG_subrange_type: 124 case dwarf::DW_TAG_base_type: 125 case dwarf::DW_TAG_const_type: 126 case dwarf::DW_TAG_constant: 127 case dwarf::DW_TAG_file_type: 128 case dwarf::DW_TAG_namelist: 129 case dwarf::DW_TAG_packed_type: 130 case dwarf::DW_TAG_volatile_type: 131 case dwarf::DW_TAG_restrict_type: 132 case dwarf::DW_TAG_atomic_type: 133 case dwarf::DW_TAG_interface_type: 134 case dwarf::DW_TAG_unspecified_type: 135 case dwarf::DW_TAG_shared_type: 136 case dwarf::DW_TAG_immutable_type: 137 return true; 138 default: 139 break; 140 } 141 return false; 142 } 143 144 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die, 145 AttributesInfo &Info, 146 OffsetsStringPool &StringPool, 147 bool StripTemplate) { 148 // This function will be called on DIEs having low_pcs and 149 // ranges. As getting the name might be more expansive, filter out 150 // blocks directly. 151 if (Die.getTag() == dwarf::DW_TAG_lexical_block) 152 return false; 153 154 if (!Info.MangledName) 155 if (const char *MangledName = Die.getLinkageName()) 156 Info.MangledName = StringPool.getEntry(MangledName); 157 158 if (!Info.Name) 159 if (const char *Name = Die.getShortName()) 160 Info.Name = StringPool.getEntry(Name); 161 162 if (!Info.MangledName) 163 Info.MangledName = Info.Name; 164 165 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) { 166 StringRef Name = Info.Name.getString(); 167 if (std::optional<StringRef> StrippedName = StripTemplateParameters(Name)) 168 Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName); 169 } 170 171 return Info.Name || Info.MangledName; 172 } 173 174 /// Resolve the relative path to a build artifact referenced by DWARF by 175 /// applying DW_AT_comp_dir. 176 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) { 177 sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), "")); 178 } 179 180 /// Collect references to parseable Swift interfaces in imported 181 /// DW_TAG_module blocks. 182 static void analyzeImportedModule( 183 const DWARFDie &DIE, CompileUnit &CU, 184 DWARFLinkerBase::SwiftInterfacesMapTy *ParseableSwiftInterfaces, 185 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) { 186 if (CU.getLanguage() != dwarf::DW_LANG_Swift) 187 return; 188 189 if (!ParseableSwiftInterfaces) 190 return; 191 192 StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path)); 193 if (!Path.ends_with(".swiftinterface")) 194 return; 195 // Don't track interfaces that are part of the SDK. 196 StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot)); 197 if (SysRoot.empty()) 198 SysRoot = CU.getSysRoot(); 199 if (!SysRoot.empty() && Path.starts_with(SysRoot)) 200 return; 201 // Don't track interfaces that are part of the toolchain. 202 // For example: Swift, _Concurrency, ... 203 SmallString<128> Toolchain = guessToolchainBaseDir(SysRoot); 204 if (!Toolchain.empty() && Path.starts_with(Toolchain)) 205 return; 206 std::optional<const char *> Name = 207 dwarf::toString(DIE.find(dwarf::DW_AT_name)); 208 if (!Name) 209 return; 210 auto &Entry = (*ParseableSwiftInterfaces)[*Name]; 211 // The prepend path is applied later when copying. 212 DWARFDie CUDie = CU.getOrigUnit().getUnitDIE(); 213 SmallString<128> ResolvedPath; 214 if (sys::path::is_relative(Path)) 215 resolveRelativeObjectPath(ResolvedPath, CUDie); 216 sys::path::append(ResolvedPath, Path); 217 if (!Entry.empty() && Entry != ResolvedPath) 218 ReportWarning(Twine("Conflicting parseable interfaces for Swift Module ") + 219 *Name + ": " + Entry + " and " + Path, 220 DIE); 221 Entry = std::string(ResolvedPath.str()); 222 } 223 224 /// The distinct types of work performed by the work loop in 225 /// analyzeContextInfo. 226 enum class ContextWorklistItemType : uint8_t { 227 AnalyzeContextInfo, 228 UpdateChildPruning, 229 UpdatePruning, 230 }; 231 232 /// This class represents an item in the work list. The type defines what kind 233 /// of work needs to be performed when processing the current item. Everything 234 /// but the Type and Die fields are optional based on the type. 235 struct ContextWorklistItem { 236 DWARFDie Die; 237 unsigned ParentIdx; 238 union { 239 CompileUnit::DIEInfo *OtherInfo; 240 DeclContext *Context; 241 }; 242 ContextWorklistItemType Type; 243 bool InImportedModule; 244 245 ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T, 246 CompileUnit::DIEInfo *OtherInfo = nullptr) 247 : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T), 248 InImportedModule(false) {} 249 250 ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx, 251 bool InImportedModule) 252 : Die(Die), ParentIdx(ParentIdx), Context(Context), 253 Type(ContextWorklistItemType::AnalyzeContextInfo), 254 InImportedModule(InImportedModule) {} 255 }; 256 257 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU, 258 uint64_t ModulesEndOffset) { 259 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 260 261 // Prune this DIE if it is either a forward declaration inside a 262 // DW_TAG_module or a DW_TAG_module that contains nothing but 263 // forward declarations. 264 Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) || 265 (isTypeTag(Die.getTag()) && 266 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0)); 267 268 // Only prune forward declarations inside a DW_TAG_module for which a 269 // definition exists elsewhere. 270 if (ModulesEndOffset == 0) 271 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset(); 272 else 273 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 && 274 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset; 275 276 return Info.Prune; 277 } 278 279 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU, 280 CompileUnit::DIEInfo &ChildInfo) { 281 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 282 Info.Prune &= ChildInfo.Prune; 283 } 284 285 /// Recursive helper to build the global DeclContext information and 286 /// gather the child->parent relationships in the original compile unit. 287 /// 288 /// This function uses the same work list approach as lookForDIEsToKeep. 289 /// 290 /// \return true when this DIE and all of its children are only 291 /// forward declarations to types defined in external clang modules 292 /// (i.e., forward declarations that are children of a DW_TAG_module). 293 static void analyzeContextInfo( 294 const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU, 295 DeclContext *CurrentDeclContext, DeclContextTree &Contexts, 296 uint64_t ModulesEndOffset, 297 DWARFLinkerBase::SwiftInterfacesMapTy *ParseableSwiftInterfaces, 298 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) { 299 // LIFO work list. 300 std::vector<ContextWorklistItem> Worklist; 301 Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, false); 302 303 while (!Worklist.empty()) { 304 ContextWorklistItem Current = Worklist.back(); 305 Worklist.pop_back(); 306 307 switch (Current.Type) { 308 case ContextWorklistItemType::UpdatePruning: 309 updatePruning(Current.Die, CU, ModulesEndOffset); 310 continue; 311 case ContextWorklistItemType::UpdateChildPruning: 312 updateChildPruning(Current.Die, CU, *Current.OtherInfo); 313 continue; 314 case ContextWorklistItemType::AnalyzeContextInfo: 315 break; 316 } 317 318 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die); 319 CompileUnit::DIEInfo &Info = CU.getInfo(Idx); 320 321 // Clang imposes an ODR on modules(!) regardless of the language: 322 // "The module-id should consist of only a single identifier, 323 // which provides the name of the module being defined. Each 324 // module shall have a single definition." 325 // 326 // This does not extend to the types inside the modules: 327 // "[I]n C, this implies that if two structs are defined in 328 // different submodules with the same name, those two types are 329 // distinct types (but may be compatible types if their 330 // definitions match)." 331 // 332 // We treat non-C++ modules like namespaces for this reason. 333 if (Current.Die.getTag() == dwarf::DW_TAG_module && 334 Current.ParentIdx == 0 && 335 dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") != 336 CU.getClangModuleName()) { 337 Current.InImportedModule = true; 338 analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces, 339 ReportWarning); 340 } 341 342 Info.ParentIdx = Current.ParentIdx; 343 Info.InModuleScope = CU.isClangModule() || Current.InImportedModule; 344 if (CU.hasODR() || Info.InModuleScope) { 345 if (Current.Context) { 346 auto PtrInvalidPair = Contexts.getChildDeclContext( 347 *Current.Context, Current.Die, CU, Info.InModuleScope); 348 Current.Context = PtrInvalidPair.getPointer(); 349 Info.Ctxt = 350 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer(); 351 if (Info.Ctxt) 352 Info.Ctxt->setDefinedInClangModule(Info.InModuleScope); 353 } else 354 Info.Ctxt = Current.Context = nullptr; 355 } 356 357 Info.Prune = Current.InImportedModule; 358 // Add children in reverse order to the worklist to effectively process 359 // them in order. 360 Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning); 361 for (auto Child : reverse(Current.Die.children())) { 362 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child); 363 Worklist.emplace_back( 364 Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo); 365 Worklist.emplace_back(Child, Current.Context, Idx, 366 Current.InImportedModule); 367 } 368 } 369 } 370 371 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) { 372 switch (Tag) { 373 default: 374 return false; 375 case dwarf::DW_TAG_class_type: 376 case dwarf::DW_TAG_common_block: 377 case dwarf::DW_TAG_lexical_block: 378 case dwarf::DW_TAG_structure_type: 379 case dwarf::DW_TAG_subprogram: 380 case dwarf::DW_TAG_subroutine_type: 381 case dwarf::DW_TAG_union_type: 382 return true; 383 } 384 llvm_unreachable("Invalid Tag"); 385 } 386 387 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) { 388 Context.clear(); 389 390 for (DIEBlock *I : DIEBlocks) 391 I->~DIEBlock(); 392 for (DIELoc *I : DIELocs) 393 I->~DIELoc(); 394 395 DIEBlocks.clear(); 396 DIELocs.clear(); 397 DIEAlloc.Reset(); 398 } 399 400 static bool isTlsAddressCode(uint8_t DW_OP_Code) { 401 return DW_OP_Code == dwarf::DW_OP_form_tls_address || 402 DW_OP_Code == dwarf::DW_OP_GNU_push_tls_address; 403 } 404 405 std::pair<bool, std::optional<int64_t>> 406 DWARFLinker::getVariableRelocAdjustment(AddressesMap &RelocMgr, 407 const DWARFDie &DIE) { 408 assert((DIE.getTag() == dwarf::DW_TAG_variable || 409 DIE.getTag() == dwarf::DW_TAG_constant) && 410 "Wrong type of input die"); 411 412 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); 413 414 // Check if DIE has DW_AT_location attribute. 415 DWARFUnit *U = DIE.getDwarfUnit(); 416 std::optional<uint32_t> LocationIdx = 417 Abbrev->findAttributeIndex(dwarf::DW_AT_location); 418 if (!LocationIdx) 419 return std::make_pair(false, std::nullopt); 420 421 // Get offset to the DW_AT_location attribute. 422 uint64_t AttrOffset = 423 Abbrev->getAttributeOffsetFromIndex(*LocationIdx, DIE.getOffset(), *U); 424 425 // Get value of the DW_AT_location attribute. 426 std::optional<DWARFFormValue> LocationValue = 427 Abbrev->getAttributeValueFromOffset(*LocationIdx, AttrOffset, *U); 428 if (!LocationValue) 429 return std::make_pair(false, std::nullopt); 430 431 // Check that DW_AT_location attribute is of 'exprloc' class. 432 // Handling value of location expressions for attributes of 'loclist' 433 // class is not implemented yet. 434 std::optional<ArrayRef<uint8_t>> Expr = LocationValue->getAsBlock(); 435 if (!Expr) 436 return std::make_pair(false, std::nullopt); 437 438 // Parse 'exprloc' expression. 439 DataExtractor Data(toStringRef(*Expr), U->getContext().isLittleEndian(), 440 U->getAddressByteSize()); 441 DWARFExpression Expression(Data, U->getAddressByteSize(), 442 U->getFormParams().Format); 443 444 bool HasLocationAddress = false; 445 uint64_t CurExprOffset = 0; 446 for (DWARFExpression::iterator It = Expression.begin(); 447 It != Expression.end(); ++It) { 448 DWARFExpression::iterator NextIt = It; 449 ++NextIt; 450 451 const DWARFExpression::Operation &Op = *It; 452 switch (Op.getCode()) { 453 case dwarf::DW_OP_const2u: 454 case dwarf::DW_OP_const4u: 455 case dwarf::DW_OP_const8u: 456 case dwarf::DW_OP_const2s: 457 case dwarf::DW_OP_const4s: 458 case dwarf::DW_OP_const8s: 459 if (NextIt == Expression.end() || !isTlsAddressCode(NextIt->getCode())) 460 break; 461 [[fallthrough]]; 462 case dwarf::DW_OP_addr: { 463 HasLocationAddress = true; 464 // Check relocation for the address. 465 if (std::optional<int64_t> RelocAdjustment = 466 RelocMgr.getExprOpAddressRelocAdjustment( 467 *U, Op, AttrOffset + CurExprOffset, 468 AttrOffset + Op.getEndOffset())) 469 return std::make_pair(HasLocationAddress, *RelocAdjustment); 470 } break; 471 case dwarf::DW_OP_constx: 472 case dwarf::DW_OP_addrx: { 473 HasLocationAddress = true; 474 if (std::optional<uint64_t> AddressOffset = 475 DIE.getDwarfUnit()->getIndexedAddressOffset( 476 Op.getRawOperand(0))) { 477 // Check relocation for the address. 478 if (std::optional<int64_t> RelocAdjustment = 479 RelocMgr.getExprOpAddressRelocAdjustment( 480 *U, Op, *AddressOffset, 481 *AddressOffset + DIE.getDwarfUnit()->getAddressByteSize())) 482 return std::make_pair(HasLocationAddress, *RelocAdjustment); 483 } 484 } break; 485 default: { 486 // Nothing to do. 487 } break; 488 } 489 CurExprOffset = Op.getEndOffset(); 490 } 491 492 return std::make_pair(HasLocationAddress, std::nullopt); 493 } 494 495 /// Check if a variable describing DIE should be kept. 496 /// \returns updated TraversalFlags. 497 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr, 498 const DWARFDie &DIE, 499 CompileUnit::DIEInfo &MyInfo, 500 unsigned Flags) { 501 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr(); 502 503 // Global variables with constant value can always be kept. 504 if (!(Flags & TF_InFunctionScope) && 505 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) { 506 MyInfo.InDebugMap = true; 507 return Flags | TF_Keep; 508 } 509 510 // See if there is a relocation to a valid debug map entry inside this 511 // variable's location. The order is important here. We want to always check 512 // if the variable has a valid relocation, so that the DIEInfo is filled. 513 // However, we don't want a static variable in a function to force us to keep 514 // the enclosing function, unless requested explicitly. 515 std::pair<bool, std::optional<int64_t>> LocExprAddrAndRelocAdjustment = 516 getVariableRelocAdjustment(RelocMgr, DIE); 517 518 if (LocExprAddrAndRelocAdjustment.first) 519 MyInfo.HasLocationExpressionAddr = true; 520 521 if (!LocExprAddrAndRelocAdjustment.second) 522 return Flags; 523 524 MyInfo.AddrAdjust = *LocExprAddrAndRelocAdjustment.second; 525 MyInfo.InDebugMap = true; 526 527 if (((Flags & TF_InFunctionScope) && 528 !LLVM_UNLIKELY(Options.KeepFunctionForStatic))) 529 return Flags; 530 531 if (Options.Verbose) { 532 outs() << "Keeping variable DIE:"; 533 DIDumpOptions DumpOpts; 534 DumpOpts.ChildRecurseDepth = 0; 535 DumpOpts.Verbose = Options.Verbose; 536 DIE.dump(outs(), 8 /* Indent */, DumpOpts); 537 } 538 539 return Flags | TF_Keep; 540 } 541 542 /// Check if a function describing DIE should be kept. 543 /// \returns updated TraversalFlags. 544 unsigned DWARFLinker::shouldKeepSubprogramDIE( 545 AddressesMap &RelocMgr, const DWARFDie &DIE, const DWARFFile &File, 546 CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) { 547 Flags |= TF_InFunctionScope; 548 549 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc)); 550 if (!LowPc) 551 return Flags; 552 553 assert(LowPc && "low_pc attribute is not an address."); 554 std::optional<int64_t> RelocAdjustment = 555 RelocMgr.getSubprogramRelocAdjustment(DIE); 556 if (!RelocAdjustment) 557 return Flags; 558 559 MyInfo.AddrAdjust = *RelocAdjustment; 560 MyInfo.InDebugMap = true; 561 562 if (Options.Verbose) { 563 outs() << "Keeping subprogram DIE:"; 564 DIDumpOptions DumpOpts; 565 DumpOpts.ChildRecurseDepth = 0; 566 DumpOpts.Verbose = Options.Verbose; 567 DIE.dump(outs(), 8 /* Indent */, DumpOpts); 568 } 569 570 if (DIE.getTag() == dwarf::DW_TAG_label) { 571 if (Unit.hasLabelAt(*LowPc)) 572 return Flags; 573 574 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 575 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels 576 // that don't fall into the CU's aranges. This is wrong IMO. Debug info 577 // generation bugs aside, this is really wrong in the case of labels, where 578 // a label marking the end of a function will have a PC == CU's high_pc. 579 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc)) 580 .value_or(UINT64_MAX) <= LowPc) 581 return Flags; 582 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust); 583 return Flags | TF_Keep; 584 } 585 586 Flags |= TF_Keep; 587 588 std::optional<uint64_t> HighPc = DIE.getHighPC(*LowPc); 589 if (!HighPc) { 590 reportWarning("Function without high_pc. Range will be discarded.\n", File, 591 &DIE); 592 return Flags; 593 } 594 if (*LowPc > *HighPc) { 595 reportWarning("low_pc greater than high_pc. Range will be discarded.\n", 596 File, &DIE); 597 return Flags; 598 } 599 600 // Replace the debug map range with a more accurate one. 601 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust); 602 return Flags; 603 } 604 605 /// Check if a DIE should be kept. 606 /// \returns updated TraversalFlags. 607 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, const DWARFDie &DIE, 608 const DWARFFile &File, CompileUnit &Unit, 609 CompileUnit::DIEInfo &MyInfo, 610 unsigned Flags) { 611 switch (DIE.getTag()) { 612 case dwarf::DW_TAG_constant: 613 case dwarf::DW_TAG_variable: 614 return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags); 615 case dwarf::DW_TAG_subprogram: 616 case dwarf::DW_TAG_label: 617 return shouldKeepSubprogramDIE(RelocMgr, DIE, File, Unit, MyInfo, Flags); 618 case dwarf::DW_TAG_base_type: 619 // DWARF Expressions may reference basic types, but scanning them 620 // is expensive. Basic types are tiny, so just keep all of them. 621 case dwarf::DW_TAG_imported_module: 622 case dwarf::DW_TAG_imported_declaration: 623 case dwarf::DW_TAG_imported_unit: 624 // We always want to keep these. 625 return Flags | TF_Keep; 626 default: 627 break; 628 } 629 630 return Flags; 631 } 632 633 /// Helper that updates the completeness of the current DIE based on the 634 /// completeness of one of its children. It depends on the incompleteness of 635 /// the children already being computed. 636 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU, 637 CompileUnit::DIEInfo &ChildInfo) { 638 switch (Die.getTag()) { 639 case dwarf::DW_TAG_structure_type: 640 case dwarf::DW_TAG_class_type: 641 case dwarf::DW_TAG_union_type: 642 break; 643 default: 644 return; 645 } 646 647 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die); 648 649 if (ChildInfo.Incomplete || ChildInfo.Prune) 650 MyInfo.Incomplete = true; 651 } 652 653 /// Helper that updates the completeness of the current DIE based on the 654 /// completeness of the DIEs it references. It depends on the incompleteness of 655 /// the referenced DIE already being computed. 656 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU, 657 CompileUnit::DIEInfo &RefInfo) { 658 switch (Die.getTag()) { 659 case dwarf::DW_TAG_typedef: 660 case dwarf::DW_TAG_member: 661 case dwarf::DW_TAG_reference_type: 662 case dwarf::DW_TAG_ptr_to_member_type: 663 case dwarf::DW_TAG_pointer_type: 664 break; 665 default: 666 return; 667 } 668 669 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die); 670 671 if (MyInfo.Incomplete) 672 return; 673 674 if (RefInfo.Incomplete) 675 MyInfo.Incomplete = true; 676 } 677 678 /// Look at the children of the given DIE and decide whether they should be 679 /// kept. 680 void DWARFLinker::lookForChildDIEsToKeep( 681 const DWARFDie &Die, CompileUnit &CU, unsigned Flags, 682 SmallVectorImpl<WorklistItem> &Worklist) { 683 // The TF_ParentWalk flag tells us that we are currently walking up the 684 // parent chain of a required DIE, and we don't want to mark all the children 685 // of the parents as kept (consider for example a DW_TAG_namespace node in 686 // the parent chain). There are however a set of DIE types for which we want 687 // to ignore that directive and still walk their children. 688 if (dieNeedsChildrenToBeMeaningful(Die.getTag())) 689 Flags &= ~DWARFLinker::TF_ParentWalk; 690 691 // We're finished if this DIE has no children or we're walking the parent 692 // chain. 693 if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk)) 694 return; 695 696 // Add children in reverse order to the worklist to effectively process them 697 // in order. 698 for (auto Child : reverse(Die.children())) { 699 // Add a worklist item before every child to calculate incompleteness right 700 // after the current child is processed. 701 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child); 702 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness, 703 &ChildInfo); 704 Worklist.emplace_back(Child, CU, Flags); 705 } 706 } 707 708 static bool isODRCanonicalCandidate(const DWARFDie &Die, CompileUnit &CU) { 709 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 710 711 if (!Info.Ctxt || (Die.getTag() == dwarf::DW_TAG_namespace)) 712 return false; 713 714 if (!CU.hasODR() && !Info.InModuleScope) 715 return false; 716 717 return !Info.Incomplete && Info.Ctxt != CU.getInfo(Info.ParentIdx).Ctxt; 718 } 719 720 void DWARFLinker::markODRCanonicalDie(const DWARFDie &Die, CompileUnit &CU) { 721 CompileUnit::DIEInfo &Info = CU.getInfo(Die); 722 723 Info.ODRMarkingDone = true; 724 if (Info.Keep && isODRCanonicalCandidate(Die, CU) && 725 !Info.Ctxt->hasCanonicalDIE()) 726 Info.Ctxt->setHasCanonicalDIE(); 727 } 728 729 /// Look at DIEs referenced by the given DIE and decide whether they should be 730 /// kept. All DIEs referenced though attributes should be kept. 731 void DWARFLinker::lookForRefDIEsToKeep( 732 const DWARFDie &Die, CompileUnit &CU, unsigned Flags, 733 const UnitListTy &Units, const DWARFFile &File, 734 SmallVectorImpl<WorklistItem> &Worklist) { 735 bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk) 736 ? (Flags & DWARFLinker::TF_ODR) 737 : CU.hasODR(); 738 DWARFUnit &Unit = CU.getOrigUnit(); 739 DWARFDataExtractor Data = Unit.getDebugInfoExtractor(); 740 const auto *Abbrev = Die.getAbbreviationDeclarationPtr(); 741 uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode()); 742 743 SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs; 744 for (const auto &AttrSpec : Abbrev->attributes()) { 745 DWARFFormValue Val(AttrSpec.Form); 746 if (!Val.isFormClass(DWARFFormValue::FC_Reference) || 747 AttrSpec.Attr == dwarf::DW_AT_sibling) { 748 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, 749 Unit.getFormParams()); 750 continue; 751 } 752 753 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit); 754 CompileUnit *ReferencedCU; 755 if (auto RefDie = 756 resolveDIEReference(File, Units, Val, Die, ReferencedCU)) { 757 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie); 758 // If the referenced DIE has a DeclContext that has already been 759 // emitted, then do not keep the one in this CU. We'll link to 760 // the canonical DIE in cloneDieReferenceAttribute. 761 // 762 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't 763 // be necessary and could be advantageously replaced by 764 // ReferencedCU->hasODR() && CU.hasODR(). 765 // 766 // FIXME: compatibility with dsymutil-classic. There is no 767 // reason not to unique ref_addr references. 768 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && 769 isODRAttribute(AttrSpec.Attr) && Info.Ctxt && 770 Info.Ctxt->hasCanonicalDIE()) 771 continue; 772 773 // Keep a module forward declaration if there is no definition. 774 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt && 775 Info.Ctxt->hasCanonicalDIE())) 776 Info.Prune = false; 777 ReferencedDIEs.emplace_back(RefDie, *ReferencedCU); 778 } 779 } 780 781 unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0; 782 783 // Add referenced DIEs in reverse order to the worklist to effectively 784 // process them in order. 785 for (auto &P : reverse(ReferencedDIEs)) { 786 // Add a worklist item before every child to calculate incompleteness right 787 // after the current child is processed. 788 CompileUnit::DIEInfo &Info = P.second.getInfo(P.first); 789 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness, 790 &Info); 791 Worklist.emplace_back(P.first, P.second, 792 DWARFLinker::TF_Keep | 793 DWARFLinker::TF_DependencyWalk | ODRFlag); 794 } 795 } 796 797 /// Look at the parent of the given DIE and decide whether they should be kept. 798 void DWARFLinker::lookForParentDIEsToKeep( 799 unsigned AncestorIdx, CompileUnit &CU, unsigned Flags, 800 SmallVectorImpl<WorklistItem> &Worklist) { 801 // Stop if we encounter an ancestor that's already marked as kept. 802 if (CU.getInfo(AncestorIdx).Keep) 803 return; 804 805 DWARFUnit &Unit = CU.getOrigUnit(); 806 DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx); 807 Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags); 808 Worklist.emplace_back(ParentDIE, CU, Flags); 809 } 810 811 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that 812 /// information in \p CU's DIEInfo. 813 /// 814 /// This function is the entry point of the DIE selection algorithm. It is 815 /// expected to walk the DIE tree in file order and (though the mediation of 816 /// its helper) call hasValidRelocation() on each DIE that might be a 'root 817 /// DIE' (See DwarfLinker class comment). 818 /// 819 /// While walking the dependencies of root DIEs, this function is also called, 820 /// but during these dependency walks the file order is not respected. The 821 /// TF_DependencyWalk flag tells us which kind of traversal we are currently 822 /// doing. 823 /// 824 /// The recursive algorithm is implemented iteratively as a work list because 825 /// very deep recursion could exhaust the stack for large projects. The work 826 /// list acts as a scheduler for different types of work that need to be 827 /// performed. 828 /// 829 /// The recursive nature of the algorithm is simulated by running the "main" 830 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs 831 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or 832 /// fixing up a computed property (UpdateChildIncompleteness, 833 /// UpdateRefIncompleteness). 834 /// 835 /// The return value indicates whether the DIE is incomplete. 836 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap, 837 const UnitListTy &Units, 838 const DWARFDie &Die, const DWARFFile &File, 839 CompileUnit &Cu, unsigned Flags) { 840 // LIFO work list. 841 SmallVector<WorklistItem, 4> Worklist; 842 Worklist.emplace_back(Die, Cu, Flags); 843 844 while (!Worklist.empty()) { 845 WorklistItem Current = Worklist.pop_back_val(); 846 847 // Look at the worklist type to decide what kind of work to perform. 848 switch (Current.Type) { 849 case WorklistItemType::UpdateChildIncompleteness: 850 updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); 851 continue; 852 case WorklistItemType::UpdateRefIncompleteness: 853 updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo); 854 continue; 855 case WorklistItemType::LookForChildDIEsToKeep: 856 lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist); 857 continue; 858 case WorklistItemType::LookForRefDIEsToKeep: 859 lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File, 860 Worklist); 861 continue; 862 case WorklistItemType::LookForParentDIEsToKeep: 863 lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags, 864 Worklist); 865 continue; 866 case WorklistItemType::MarkODRCanonicalDie: 867 markODRCanonicalDie(Current.Die, Current.CU); 868 continue; 869 case WorklistItemType::LookForDIEsToKeep: 870 break; 871 } 872 873 unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die); 874 CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx); 875 876 if (MyInfo.Prune) { 877 // We're walking the dependencies of a module forward declaration that was 878 // kept because there is no definition. 879 if (Current.Flags & TF_DependencyWalk) 880 MyInfo.Prune = false; 881 else 882 continue; 883 } 884 885 // If the Keep flag is set, we are marking a required DIE's dependencies. 886 // If our target is already marked as kept, we're all set. 887 bool AlreadyKept = MyInfo.Keep; 888 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept) 889 continue; 890 891 if (!(Current.Flags & TF_DependencyWalk)) 892 Current.Flags = shouldKeepDIE(AddressesMap, Current.Die, File, Current.CU, 893 MyInfo, Current.Flags); 894 895 // We need to mark context for the canonical die in the end of normal 896 // traversing(not TF_DependencyWalk) or after normal traversing if die 897 // was not marked as kept. 898 if (!(Current.Flags & TF_DependencyWalk) || 899 (MyInfo.ODRMarkingDone && !MyInfo.Keep)) { 900 if (Current.CU.hasODR() || MyInfo.InModuleScope) 901 Worklist.emplace_back(Current.Die, Current.CU, 902 WorklistItemType::MarkODRCanonicalDie); 903 } 904 905 // Finish by looking for child DIEs. Because of the LIFO worklist we need 906 // to schedule that work before any subsequent items are added to the 907 // worklist. 908 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, 909 WorklistItemType::LookForChildDIEsToKeep); 910 911 if (AlreadyKept || !(Current.Flags & TF_Keep)) 912 continue; 913 914 // If it is a newly kept DIE mark it as well as all its dependencies as 915 // kept. 916 MyInfo.Keep = true; 917 918 // We're looking for incomplete types. 919 MyInfo.Incomplete = 920 Current.Die.getTag() != dwarf::DW_TAG_subprogram && 921 Current.Die.getTag() != dwarf::DW_TAG_member && 922 dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0); 923 924 // After looking at the parent chain, look for referenced DIEs. Because of 925 // the LIFO worklist we need to schedule that work before any subsequent 926 // items are added to the worklist. 927 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags, 928 WorklistItemType::LookForRefDIEsToKeep); 929 930 bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR) 931 : Current.CU.hasODR(); 932 unsigned ODRFlag = UseOdr ? TF_ODR : 0; 933 unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag; 934 935 // Now schedule the parent walk. 936 Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags); 937 } 938 } 939 940 #ifndef NDEBUG 941 /// A broken link in the keep chain. By recording both the parent and the child 942 /// we can show only broken links for DIEs with multiple children. 943 struct BrokenLink { 944 BrokenLink(DWARFDie Parent, DWARFDie Child) : Parent(Parent), Child(Child) {} 945 DWARFDie Parent; 946 DWARFDie Child; 947 }; 948 949 /// Verify the keep chain by looking for DIEs that are kept but who's parent 950 /// isn't. 951 static void verifyKeepChain(CompileUnit &CU) { 952 std::vector<DWARFDie> Worklist; 953 Worklist.push_back(CU.getOrigUnit().getUnitDIE()); 954 955 // List of broken links. 956 std::vector<BrokenLink> BrokenLinks; 957 958 while (!Worklist.empty()) { 959 const DWARFDie Current = Worklist.back(); 960 Worklist.pop_back(); 961 962 const bool CurrentDieIsKept = CU.getInfo(Current).Keep; 963 964 for (DWARFDie Child : reverse(Current.children())) { 965 Worklist.push_back(Child); 966 967 const bool ChildDieIsKept = CU.getInfo(Child).Keep; 968 if (!CurrentDieIsKept && ChildDieIsKept) 969 BrokenLinks.emplace_back(Current, Child); 970 } 971 } 972 973 if (!BrokenLinks.empty()) { 974 for (BrokenLink Link : BrokenLinks) { 975 WithColor::error() << formatv( 976 "Found invalid link in keep chain between {0:x} and {1:x}\n", 977 Link.Parent.getOffset(), Link.Child.getOffset()); 978 979 errs() << "Parent:"; 980 Link.Parent.dump(errs(), 0, {}); 981 CU.getInfo(Link.Parent).dump(); 982 983 errs() << "Child:"; 984 Link.Child.dump(errs(), 2, {}); 985 CU.getInfo(Link.Child).dump(); 986 } 987 report_fatal_error("invalid keep chain"); 988 } 989 } 990 #endif 991 992 /// Assign an abbreviation number to \p Abbrev. 993 /// 994 /// Our DIEs get freed after every DebugMapObject has been processed, 995 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to 996 /// the instances hold by the DIEs. When we encounter an abbreviation 997 /// that we don't know, we create a permanent copy of it. 998 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) { 999 // Check the set for priors. 1000 FoldingSetNodeID ID; 1001 Abbrev.Profile(ID); 1002 void *InsertToken; 1003 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken); 1004 1005 // If it's newly added. 1006 if (InSet) { 1007 // Assign existing abbreviation number. 1008 Abbrev.setNumber(InSet->getNumber()); 1009 } else { 1010 // Add to abbreviation list. 1011 Abbreviations.push_back( 1012 std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren())); 1013 for (const auto &Attr : Abbrev.getData()) 1014 Abbreviations.back()->AddAttribute(Attr); 1015 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken); 1016 // Assign the unique abbreviation number. 1017 Abbrev.setNumber(Abbreviations.size()); 1018 Abbreviations.back()->setNumber(Abbreviations.size()); 1019 } 1020 } 1021 1022 unsigned DWARFLinker::DIECloner::cloneStringAttribute(DIE &Die, 1023 AttributeSpec AttrSpec, 1024 const DWARFFormValue &Val, 1025 const DWARFUnit &U, 1026 AttributesInfo &Info) { 1027 std::optional<const char *> String = dwarf::toString(Val); 1028 if (!String) 1029 return 0; 1030 DwarfStringPoolEntryRef StringEntry; 1031 if (AttrSpec.Form == dwarf::DW_FORM_line_strp) { 1032 StringEntry = DebugLineStrPool.getEntry(*String); 1033 } else { 1034 StringEntry = DebugStrPool.getEntry(*String); 1035 1036 if (AttrSpec.Attr == dwarf::DW_AT_APPLE_origin) { 1037 Info.HasAppleOrigin = true; 1038 if (std::optional<StringRef> FileName = 1039 ObjFile.Addresses->getLibraryInstallName()) { 1040 StringEntry = DebugStrPool.getEntry(*FileName); 1041 } 1042 } 1043 1044 // Update attributes info. 1045 if (AttrSpec.Attr == dwarf::DW_AT_name) 1046 Info.Name = StringEntry; 1047 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name || 1048 AttrSpec.Attr == dwarf::DW_AT_linkage_name) 1049 Info.MangledName = StringEntry; 1050 if (U.getVersion() >= 5) { 1051 // Switch everything to DW_FORM_strx strings. 1052 auto StringOffsetIndex = 1053 StringOffsetPool.getValueIndex(StringEntry.getOffset()); 1054 return Die 1055 .addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1056 dwarf::DW_FORM_strx, DIEInteger(StringOffsetIndex)) 1057 ->sizeOf(U.getFormParams()); 1058 } 1059 // Switch everything to out of line strings. 1060 AttrSpec.Form = dwarf::DW_FORM_strp; 1061 } 1062 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), AttrSpec.Form, 1063 DIEInteger(StringEntry.getOffset())); 1064 return 4; 1065 } 1066 1067 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute( 1068 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec, 1069 unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File, 1070 CompileUnit &Unit) { 1071 const DWARFUnit &U = Unit.getOrigUnit(); 1072 uint64_t Ref = *Val.getAsReference(); 1073 1074 DIE *NewRefDie = nullptr; 1075 CompileUnit *RefUnit = nullptr; 1076 1077 DWARFDie RefDie = 1078 Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit); 1079 1080 // If the referenced DIE is not found, drop the attribute. 1081 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling) 1082 return 0; 1083 1084 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie); 1085 1086 // If we already have emitted an equivalent DeclContext, just point 1087 // at it. 1088 if (isODRAttribute(AttrSpec.Attr) && RefInfo.Ctxt && 1089 RefInfo.Ctxt->getCanonicalDIEOffset()) { 1090 assert(RefInfo.Ctxt->hasCanonicalDIE() && 1091 "Offset to canonical die is set, but context is not marked"); 1092 DIEInteger Attr(RefInfo.Ctxt->getCanonicalDIEOffset()); 1093 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1094 dwarf::DW_FORM_ref_addr, Attr); 1095 return U.getRefAddrByteSize(); 1096 } 1097 1098 if (!RefInfo.Clone) { 1099 // We haven't cloned this DIE yet. Just create an empty one and 1100 // store it. It'll get really cloned when we process it. 1101 RefInfo.UnclonedReference = true; 1102 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag())); 1103 } 1104 NewRefDie = RefInfo.Clone; 1105 1106 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr || 1107 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) { 1108 // We cannot currently rely on a DIEEntry to emit ref_addr 1109 // references, because the implementation calls back to DwarfDebug 1110 // to find the unit offset. (We don't have a DwarfDebug) 1111 // FIXME: we should be able to design DIEEntry reliance on 1112 // DwarfDebug away. 1113 uint64_t Attr; 1114 if (Ref < InputDIE.getOffset() && !RefInfo.UnclonedReference) { 1115 // We have already cloned that DIE. 1116 uint32_t NewRefOffset = 1117 RefUnit->getStartOffset() + NewRefDie->getOffset(); 1118 Attr = NewRefOffset; 1119 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1120 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)); 1121 } else { 1122 // A forward reference. Note and fixup later. 1123 Attr = 0xBADDEF; 1124 Unit.noteForwardReference( 1125 NewRefDie, RefUnit, RefInfo.Ctxt, 1126 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1127 dwarf::DW_FORM_ref_addr, DIEInteger(Attr))); 1128 } 1129 return U.getRefAddrByteSize(); 1130 } 1131 1132 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1133 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie)); 1134 1135 return AttrSize; 1136 } 1137 1138 void DWARFLinker::DIECloner::cloneExpression( 1139 DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File, 1140 CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer, 1141 int64_t AddrRelocAdjustment, bool IsLittleEndian) { 1142 using Encoding = DWARFExpression::Operation::Encoding; 1143 1144 uint8_t OrigAddressByteSize = Unit.getOrigUnit().getAddressByteSize(); 1145 1146 uint64_t OpOffset = 0; 1147 for (auto &Op : Expression) { 1148 auto Desc = Op.getDescription(); 1149 // DW_OP_const_type is variable-length and has 3 1150 // operands. Thus far we only support 2. 1151 if ((Desc.Op.size() == 2 && Desc.Op[0] == Encoding::BaseTypeRef) || 1152 (Desc.Op.size() == 2 && Desc.Op[1] == Encoding::BaseTypeRef && 1153 Desc.Op[0] != Encoding::Size1)) 1154 Linker.reportWarning("Unsupported DW_OP encoding.", File); 1155 1156 if ((Desc.Op.size() == 1 && Desc.Op[0] == Encoding::BaseTypeRef) || 1157 (Desc.Op.size() == 2 && Desc.Op[1] == Encoding::BaseTypeRef && 1158 Desc.Op[0] == Encoding::Size1)) { 1159 // This code assumes that the other non-typeref operand fits into 1 byte. 1160 assert(OpOffset < Op.getEndOffset()); 1161 uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1; 1162 assert(ULEBsize <= 16); 1163 1164 // Copy over the operation. 1165 assert(!Op.getSubCode() && "SubOps not yet supported"); 1166 OutputBuffer.push_back(Op.getCode()); 1167 uint64_t RefOffset; 1168 if (Desc.Op.size() == 1) { 1169 RefOffset = Op.getRawOperand(0); 1170 } else { 1171 OutputBuffer.push_back(Op.getRawOperand(0)); 1172 RefOffset = Op.getRawOperand(1); 1173 } 1174 uint32_t Offset = 0; 1175 // Look up the base type. For DW_OP_convert, the operand may be 0 to 1176 // instead indicate the generic type. The same holds for 1177 // DW_OP_reinterpret, which is currently not supported. 1178 if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) { 1179 RefOffset += Unit.getOrigUnit().getOffset(); 1180 auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset); 1181 CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie); 1182 if (DIE *Clone = Info.Clone) 1183 Offset = Clone->getOffset(); 1184 else 1185 Linker.reportWarning( 1186 "base type ref doesn't point to DW_TAG_base_type.", File); 1187 } 1188 uint8_t ULEB[16]; 1189 unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize); 1190 if (RealSize > ULEBsize) { 1191 // Emit the generic type as a fallback. 1192 RealSize = encodeULEB128(0, ULEB, ULEBsize); 1193 Linker.reportWarning("base type ref doesn't fit.", File); 1194 } 1195 assert(RealSize == ULEBsize && "padding failed"); 1196 ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize); 1197 OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end()); 1198 } else if (!Linker.Options.Update && Op.getCode() == dwarf::DW_OP_addrx) { 1199 if (std::optional<object::SectionedAddress> SA = 1200 Unit.getOrigUnit().getAddrOffsetSectionItem( 1201 Op.getRawOperand(0))) { 1202 // DWARFLinker does not use addrx forms since it generates relocated 1203 // addresses. Replace DW_OP_addrx with DW_OP_addr here. 1204 // Argument of DW_OP_addrx should be relocated here as it is not 1205 // processed by applyValidRelocs. 1206 OutputBuffer.push_back(dwarf::DW_OP_addr); 1207 uint64_t LinkedAddress = SA->Address + AddrRelocAdjustment; 1208 if (IsLittleEndian != sys::IsLittleEndianHost) 1209 sys::swapByteOrder(LinkedAddress); 1210 ArrayRef<uint8_t> AddressBytes( 1211 reinterpret_cast<const uint8_t *>(&LinkedAddress), 1212 OrigAddressByteSize); 1213 OutputBuffer.append(AddressBytes.begin(), AddressBytes.end()); 1214 } else 1215 Linker.reportWarning("cannot read DW_OP_addrx operand.", File); 1216 } else if (!Linker.Options.Update && Op.getCode() == dwarf::DW_OP_constx) { 1217 if (std::optional<object::SectionedAddress> SA = 1218 Unit.getOrigUnit().getAddrOffsetSectionItem( 1219 Op.getRawOperand(0))) { 1220 // DWARFLinker does not use constx forms since it generates relocated 1221 // addresses. Replace DW_OP_constx with DW_OP_const[*]u here. 1222 // Argument of DW_OP_constx should be relocated here as it is not 1223 // processed by applyValidRelocs. 1224 std::optional<uint8_t> OutOperandKind; 1225 switch (OrigAddressByteSize) { 1226 case 4: 1227 OutOperandKind = dwarf::DW_OP_const4u; 1228 break; 1229 case 8: 1230 OutOperandKind = dwarf::DW_OP_const8u; 1231 break; 1232 default: 1233 Linker.reportWarning( 1234 formatv(("unsupported address size: {0}."), OrigAddressByteSize), 1235 File); 1236 break; 1237 } 1238 1239 if (OutOperandKind) { 1240 OutputBuffer.push_back(*OutOperandKind); 1241 uint64_t LinkedAddress = SA->Address + AddrRelocAdjustment; 1242 if (IsLittleEndian != sys::IsLittleEndianHost) 1243 sys::swapByteOrder(LinkedAddress); 1244 ArrayRef<uint8_t> AddressBytes( 1245 reinterpret_cast<const uint8_t *>(&LinkedAddress), 1246 OrigAddressByteSize); 1247 OutputBuffer.append(AddressBytes.begin(), AddressBytes.end()); 1248 } 1249 } else 1250 Linker.reportWarning("cannot read DW_OP_constx operand.", File); 1251 } else { 1252 // Copy over everything else unmodified. 1253 StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset()); 1254 OutputBuffer.append(Bytes.begin(), Bytes.end()); 1255 } 1256 OpOffset = Op.getEndOffset(); 1257 } 1258 } 1259 1260 unsigned DWARFLinker::DIECloner::cloneBlockAttribute( 1261 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File, 1262 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, 1263 bool IsLittleEndian) { 1264 DIEValueList *Attr; 1265 DIEValue Value; 1266 DIELoc *Loc = nullptr; 1267 DIEBlock *Block = nullptr; 1268 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) { 1269 Loc = new (DIEAlloc) DIELoc; 1270 Linker.DIELocs.push_back(Loc); 1271 } else { 1272 Block = new (DIEAlloc) DIEBlock; 1273 Linker.DIEBlocks.push_back(Block); 1274 } 1275 Attr = Loc ? static_cast<DIEValueList *>(Loc) 1276 : static_cast<DIEValueList *>(Block); 1277 1278 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 1279 // If the block is a DWARF Expression, clone it into the temporary 1280 // buffer using cloneExpression(), otherwise copy the data directly. 1281 SmallVector<uint8_t, 32> Buffer; 1282 ArrayRef<uint8_t> Bytes = *Val.getAsBlock(); 1283 if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) && 1284 (Val.isFormClass(DWARFFormValue::FC_Block) || 1285 Val.isFormClass(DWARFFormValue::FC_Exprloc))) { 1286 DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()), 1287 IsLittleEndian, OrigUnit.getAddressByteSize()); 1288 DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(), 1289 OrigUnit.getFormParams().Format); 1290 cloneExpression(Data, Expr, File, Unit, Buffer, 1291 Unit.getInfo(InputDIE).AddrAdjust, IsLittleEndian); 1292 Bytes = Buffer; 1293 } 1294 for (auto Byte : Bytes) 1295 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0), 1296 dwarf::DW_FORM_data1, DIEInteger(Byte)); 1297 1298 // FIXME: If DIEBlock and DIELoc just reuses the Size field of 1299 // the DIE class, this "if" could be replaced by 1300 // Attr->setSize(Bytes.size()). 1301 if (Loc) 1302 Loc->setSize(Bytes.size()); 1303 else 1304 Block->setSize(Bytes.size()); 1305 1306 if (Loc) 1307 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), 1308 dwarf::Form(AttrSpec.Form), Loc); 1309 else { 1310 // The expression location data might be updated and exceed the original 1311 // size. Check whether the new data fits into the original form. 1312 if ((AttrSpec.Form == dwarf::DW_FORM_block1 && 1313 (Bytes.size() > UINT8_MAX)) || 1314 (AttrSpec.Form == dwarf::DW_FORM_block2 && 1315 (Bytes.size() > UINT16_MAX)) || 1316 (AttrSpec.Form == dwarf::DW_FORM_block4 && (Bytes.size() > UINT32_MAX))) 1317 AttrSpec.Form = dwarf::DW_FORM_block; 1318 1319 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr), 1320 dwarf::Form(AttrSpec.Form), Block); 1321 } 1322 1323 return Die.addValue(DIEAlloc, Value)->sizeOf(OrigUnit.getFormParams()); 1324 } 1325 1326 unsigned DWARFLinker::DIECloner::cloneAddressAttribute( 1327 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec, 1328 unsigned AttrSize, const DWARFFormValue &Val, const CompileUnit &Unit, 1329 AttributesInfo &Info) { 1330 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) 1331 Info.HasLowPc = true; 1332 1333 if (LLVM_UNLIKELY(Linker.Options.Update)) { 1334 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1335 dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue())); 1336 return AttrSize; 1337 } 1338 1339 // Cloned Die may have address attributes relocated to a 1340 // totally unrelated value. This can happen: 1341 // - If high_pc is an address (Dwarf version == 2), then it might have been 1342 // relocated to a totally unrelated value (because the end address in the 1343 // object file might be start address of another function which got moved 1344 // independently by the linker). 1345 // - If address relocated in an inline_subprogram that happens at the 1346 // beginning of its inlining function. 1347 // To avoid above cases and to not apply relocation twice (in 1348 // applyValidRelocs and here), read address attribute from InputDIE and apply 1349 // Info.PCOffset here. 1350 1351 std::optional<DWARFFormValue> AddrAttribute = InputDIE.find(AttrSpec.Attr); 1352 if (!AddrAttribute) 1353 llvm_unreachable("Cann't find attribute."); 1354 1355 std::optional<uint64_t> Addr = AddrAttribute->getAsAddress(); 1356 if (!Addr) { 1357 Linker.reportWarning("Cann't read address attribute value.", ObjFile); 1358 return 0; 1359 } 1360 1361 if (InputDIE.getTag() == dwarf::DW_TAG_compile_unit && 1362 AttrSpec.Attr == dwarf::DW_AT_low_pc) { 1363 if (std::optional<uint64_t> LowPC = Unit.getLowPc()) 1364 Addr = *LowPC; 1365 else 1366 return 0; 1367 } else if (InputDIE.getTag() == dwarf::DW_TAG_compile_unit && 1368 AttrSpec.Attr == dwarf::DW_AT_high_pc) { 1369 if (uint64_t HighPc = Unit.getHighPc()) 1370 Addr = HighPc; 1371 else 1372 return 0; 1373 } else { 1374 *Addr += Info.PCOffset; 1375 } 1376 1377 if (AttrSpec.Form == dwarf::DW_FORM_addr) { 1378 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr), 1379 AttrSpec.Form, DIEInteger(*Addr)); 1380 return Unit.getOrigUnit().getAddressByteSize(); 1381 } 1382 1383 auto AddrIndex = AddrPool.getValueIndex(*Addr); 1384 1385 return Die 1386 .addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr), 1387 dwarf::Form::DW_FORM_addrx, DIEInteger(AddrIndex)) 1388 ->sizeOf(Unit.getOrigUnit().getFormParams()); 1389 } 1390 1391 unsigned DWARFLinker::DIECloner::cloneScalarAttribute( 1392 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File, 1393 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val, 1394 unsigned AttrSize, AttributesInfo &Info) { 1395 uint64_t Value; 1396 1397 // Check for the offset to the macro table. If offset is incorrect then we 1398 // need to remove the attribute. 1399 if (AttrSpec.Attr == dwarf::DW_AT_macro_info) { 1400 if (std::optional<uint64_t> Offset = Val.getAsSectionOffset()) { 1401 const llvm::DWARFDebugMacro *Macro = File.Dwarf->getDebugMacinfo(); 1402 if (Macro == nullptr || !Macro->hasEntryForOffset(*Offset)) 1403 return 0; 1404 } 1405 } 1406 1407 if (AttrSpec.Attr == dwarf::DW_AT_macros) { 1408 if (std::optional<uint64_t> Offset = Val.getAsSectionOffset()) { 1409 const llvm::DWARFDebugMacro *Macro = File.Dwarf->getDebugMacro(); 1410 if (Macro == nullptr || !Macro->hasEntryForOffset(*Offset)) 1411 return 0; 1412 } 1413 } 1414 1415 if (AttrSpec.Attr == dwarf::DW_AT_str_offsets_base) { 1416 // DWARFLinker generates common .debug_str_offsets table used for all 1417 // compile units. The offset to the common .debug_str_offsets table is 8 on 1418 // DWARF32. 1419 Info.AttrStrOffsetBaseSeen = true; 1420 return Die 1421 .addValue(DIEAlloc, dwarf::DW_AT_str_offsets_base, 1422 dwarf::DW_FORM_sec_offset, DIEInteger(8)) 1423 ->sizeOf(Unit.getOrigUnit().getFormParams()); 1424 } 1425 1426 if (LLVM_UNLIKELY(Linker.Options.Update)) { 1427 if (auto OptionalValue = Val.getAsUnsignedConstant()) 1428 Value = *OptionalValue; 1429 else if (auto OptionalValue = Val.getAsSignedConstant()) 1430 Value = *OptionalValue; 1431 else if (auto OptionalValue = Val.getAsSectionOffset()) 1432 Value = *OptionalValue; 1433 else { 1434 Linker.reportWarning( 1435 "Unsupported scalar attribute form. Dropping attribute.", File, 1436 &InputDIE); 1437 return 0; 1438 } 1439 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) 1440 Info.IsDeclaration = true; 1441 1442 if (AttrSpec.Form == dwarf::DW_FORM_loclistx) 1443 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1444 dwarf::Form(AttrSpec.Form), DIELocList(Value)); 1445 else 1446 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1447 dwarf::Form(AttrSpec.Form), DIEInteger(Value)); 1448 return AttrSize; 1449 } 1450 1451 [[maybe_unused]] dwarf::Form OriginalForm = AttrSpec.Form; 1452 if (AttrSpec.Form == dwarf::DW_FORM_rnglistx) { 1453 // DWARFLinker does not generate .debug_addr table. Thus we need to change 1454 // all "addrx" related forms to "addr" version. Change DW_FORM_rnglistx 1455 // to DW_FORM_sec_offset here. 1456 std::optional<uint64_t> Index = Val.getAsSectionOffset(); 1457 if (!Index) { 1458 Linker.reportWarning("Cannot read the attribute. Dropping.", File, 1459 &InputDIE); 1460 return 0; 1461 } 1462 std::optional<uint64_t> Offset = 1463 Unit.getOrigUnit().getRnglistOffset(*Index); 1464 if (!Offset) { 1465 Linker.reportWarning("Cannot read the attribute. Dropping.", File, 1466 &InputDIE); 1467 return 0; 1468 } 1469 1470 Value = *Offset; 1471 AttrSpec.Form = dwarf::DW_FORM_sec_offset; 1472 AttrSize = Unit.getOrigUnit().getFormParams().getDwarfOffsetByteSize(); 1473 } else if (AttrSpec.Form == dwarf::DW_FORM_loclistx) { 1474 // DWARFLinker does not generate .debug_addr table. Thus we need to change 1475 // all "addrx" related forms to "addr" version. Change DW_FORM_loclistx 1476 // to DW_FORM_sec_offset here. 1477 std::optional<uint64_t> Index = Val.getAsSectionOffset(); 1478 if (!Index) { 1479 Linker.reportWarning("Cannot read the attribute. Dropping.", File, 1480 &InputDIE); 1481 return 0; 1482 } 1483 std::optional<uint64_t> Offset = 1484 Unit.getOrigUnit().getLoclistOffset(*Index); 1485 if (!Offset) { 1486 Linker.reportWarning("Cannot read the attribute. Dropping.", File, 1487 &InputDIE); 1488 return 0; 1489 } 1490 1491 Value = *Offset; 1492 AttrSpec.Form = dwarf::DW_FORM_sec_offset; 1493 AttrSize = Unit.getOrigUnit().getFormParams().getDwarfOffsetByteSize(); 1494 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc && 1495 Die.getTag() == dwarf::DW_TAG_compile_unit) { 1496 std::optional<uint64_t> LowPC = Unit.getLowPc(); 1497 if (!LowPC) 1498 return 0; 1499 // Dwarf >= 4 high_pc is an size, not an address. 1500 Value = Unit.getHighPc() - *LowPC; 1501 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset) 1502 Value = *Val.getAsSectionOffset(); 1503 else if (AttrSpec.Form == dwarf::DW_FORM_sdata) 1504 Value = *Val.getAsSignedConstant(); 1505 else if (auto OptionalValue = Val.getAsUnsignedConstant()) 1506 Value = *OptionalValue; 1507 else { 1508 Linker.reportWarning( 1509 "Unsupported scalar attribute form. Dropping attribute.", File, 1510 &InputDIE); 1511 return 0; 1512 } 1513 1514 DIE::value_iterator Patch = 1515 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), 1516 dwarf::Form(AttrSpec.Form), DIEInteger(Value)); 1517 if (AttrSpec.Attr == dwarf::DW_AT_ranges || 1518 AttrSpec.Attr == dwarf::DW_AT_start_scope) { 1519 Unit.noteRangeAttribute(Die, Patch); 1520 Info.HasRanges = true; 1521 } else if (DWARFAttribute::mayHaveLocationList(AttrSpec.Attr) && 1522 dwarf::doesFormBelongToClass(AttrSpec.Form, 1523 DWARFFormValue::FC_SectionOffset, 1524 Unit.getOrigUnit().getVersion())) { 1525 1526 CompileUnit::DIEInfo &LocationDieInfo = Unit.getInfo(InputDIE); 1527 Unit.noteLocationAttribute({Patch, LocationDieInfo.InDebugMap 1528 ? LocationDieInfo.AddrAdjust 1529 : Info.PCOffset}); 1530 } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value) 1531 Info.IsDeclaration = true; 1532 1533 // check that all dwarf::DW_FORM_rnglistx are handled previously. 1534 assert((Info.HasRanges || (OriginalForm != dwarf::DW_FORM_rnglistx)) && 1535 "Unhandled DW_FORM_rnglistx attribute"); 1536 1537 return AttrSize; 1538 } 1539 1540 /// Clone \p InputDIE's attribute described by \p AttrSpec with 1541 /// value \p Val, and add it to \p Die. 1542 /// \returns the size of the cloned attribute. 1543 unsigned DWARFLinker::DIECloner::cloneAttribute( 1544 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File, 1545 CompileUnit &Unit, const DWARFFormValue &Val, const AttributeSpec AttrSpec, 1546 unsigned AttrSize, AttributesInfo &Info, bool IsLittleEndian) { 1547 const DWARFUnit &U = Unit.getOrigUnit(); 1548 1549 switch (AttrSpec.Form) { 1550 case dwarf::DW_FORM_strp: 1551 case dwarf::DW_FORM_line_strp: 1552 case dwarf::DW_FORM_string: 1553 case dwarf::DW_FORM_strx: 1554 case dwarf::DW_FORM_strx1: 1555 case dwarf::DW_FORM_strx2: 1556 case dwarf::DW_FORM_strx3: 1557 case dwarf::DW_FORM_strx4: 1558 return cloneStringAttribute(Die, AttrSpec, Val, U, Info); 1559 case dwarf::DW_FORM_ref_addr: 1560 case dwarf::DW_FORM_ref1: 1561 case dwarf::DW_FORM_ref2: 1562 case dwarf::DW_FORM_ref4: 1563 case dwarf::DW_FORM_ref8: 1564 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, 1565 File, Unit); 1566 case dwarf::DW_FORM_block: 1567 case dwarf::DW_FORM_block1: 1568 case dwarf::DW_FORM_block2: 1569 case dwarf::DW_FORM_block4: 1570 case dwarf::DW_FORM_exprloc: 1571 return cloneBlockAttribute(Die, InputDIE, File, Unit, AttrSpec, Val, 1572 IsLittleEndian); 1573 case dwarf::DW_FORM_addr: 1574 case dwarf::DW_FORM_addrx: 1575 case dwarf::DW_FORM_addrx1: 1576 case dwarf::DW_FORM_addrx2: 1577 case dwarf::DW_FORM_addrx3: 1578 case dwarf::DW_FORM_addrx4: 1579 return cloneAddressAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, Unit, 1580 Info); 1581 case dwarf::DW_FORM_data1: 1582 case dwarf::DW_FORM_data2: 1583 case dwarf::DW_FORM_data4: 1584 case dwarf::DW_FORM_data8: 1585 case dwarf::DW_FORM_udata: 1586 case dwarf::DW_FORM_sdata: 1587 case dwarf::DW_FORM_sec_offset: 1588 case dwarf::DW_FORM_flag: 1589 case dwarf::DW_FORM_flag_present: 1590 case dwarf::DW_FORM_rnglistx: 1591 case dwarf::DW_FORM_loclistx: 1592 case dwarf::DW_FORM_implicit_const: 1593 return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val, 1594 AttrSize, Info); 1595 default: 1596 Linker.reportWarning("Unsupported attribute form " + 1597 dwarf::FormEncodingString(AttrSpec.Form) + 1598 " in cloneAttribute. Dropping.", 1599 File, &InputDIE); 1600 } 1601 1602 return 0; 1603 } 1604 1605 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit, 1606 const DIE *Die, 1607 DwarfStringPoolEntryRef Name, 1608 OffsetsStringPool &StringPool, 1609 bool SkipPubSection) { 1610 std::optional<ObjCSelectorNames> Names = 1611 getObjCNamesIfSelector(Name.getString()); 1612 if (!Names) 1613 return; 1614 Unit.addNameAccelerator(Die, StringPool.getEntry(Names->Selector), 1615 SkipPubSection); 1616 Unit.addObjCAccelerator(Die, StringPool.getEntry(Names->ClassName), 1617 SkipPubSection); 1618 if (Names->ClassNameNoCategory) 1619 Unit.addObjCAccelerator( 1620 Die, StringPool.getEntry(*Names->ClassNameNoCategory), SkipPubSection); 1621 if (Names->MethodNameNoCategory) 1622 Unit.addNameAccelerator( 1623 Die, StringPool.getEntry(*Names->MethodNameNoCategory), SkipPubSection); 1624 } 1625 1626 static bool 1627 shouldSkipAttribute(bool Update, 1628 DWARFAbbreviationDeclaration::AttributeSpec AttrSpec, 1629 bool SkipPC) { 1630 switch (AttrSpec.Attr) { 1631 default: 1632 return false; 1633 case dwarf::DW_AT_low_pc: 1634 case dwarf::DW_AT_high_pc: 1635 case dwarf::DW_AT_ranges: 1636 return !Update && SkipPC; 1637 case dwarf::DW_AT_rnglists_base: 1638 // In case !Update the .debug_addr table is not generated/preserved. 1639 // Thus instead of DW_FORM_rnglistx the DW_FORM_sec_offset is used. 1640 // Since DW_AT_rnglists_base is used for only DW_FORM_rnglistx the 1641 // DW_AT_rnglists_base is removed. 1642 return !Update; 1643 case dwarf::DW_AT_loclists_base: 1644 // In case !Update the .debug_addr table is not generated/preserved. 1645 // Thus instead of DW_FORM_loclistx the DW_FORM_sec_offset is used. 1646 // Since DW_AT_loclists_base is used for only DW_FORM_loclistx the 1647 // DW_AT_loclists_base is removed. 1648 return !Update; 1649 case dwarf::DW_AT_location: 1650 case dwarf::DW_AT_frame_base: 1651 return !Update && SkipPC; 1652 } 1653 } 1654 1655 struct AttributeLinkedOffsetFixup { 1656 int64_t LinkedOffsetFixupVal; 1657 uint64_t InputAttrStartOffset; 1658 uint64_t InputAttrEndOffset; 1659 }; 1660 1661 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE, 1662 const DWARFFile &File, CompileUnit &Unit, 1663 int64_t PCOffset, uint32_t OutOffset, 1664 unsigned Flags, bool IsLittleEndian, 1665 DIE *Die) { 1666 DWARFUnit &U = Unit.getOrigUnit(); 1667 unsigned Idx = U.getDIEIndex(InputDIE); 1668 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx); 1669 1670 // Should the DIE appear in the output? 1671 if (!Unit.getInfo(Idx).Keep) 1672 return nullptr; 1673 1674 uint64_t Offset = InputDIE.getOffset(); 1675 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE"); 1676 if (!Die) { 1677 // The DIE might have been already created by a forward reference 1678 // (see cloneDieReferenceAttribute()). 1679 if (!Info.Clone) 1680 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag())); 1681 Die = Info.Clone; 1682 } 1683 1684 assert(Die->getTag() == InputDIE.getTag()); 1685 Die->setOffset(OutOffset); 1686 if (isODRCanonicalCandidate(InputDIE, Unit) && Info.Ctxt && 1687 (Info.Ctxt->getCanonicalDIEOffset() == 0)) { 1688 if (!Info.Ctxt->hasCanonicalDIE()) 1689 Info.Ctxt->setHasCanonicalDIE(); 1690 // We are about to emit a DIE that is the root of its own valid 1691 // DeclContext tree. Make the current offset the canonical offset 1692 // for this context. 1693 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset()); 1694 } 1695 1696 // Extract and clone every attribute. 1697 DWARFDataExtractor Data = U.getDebugInfoExtractor(); 1698 // Point to the next DIE (generally there is always at least a NULL 1699 // entry after the current one). If this is a lone 1700 // DW_TAG_compile_unit without any children, point to the next unit. 1701 uint64_t NextOffset = (Idx + 1 < U.getNumDIEs()) 1702 ? U.getDIEAtIndex(Idx + 1).getOffset() 1703 : U.getNextUnitOffset(); 1704 AttributesInfo AttrInfo; 1705 1706 // We could copy the data only if we need to apply a relocation to it. After 1707 // testing, it seems there is no performance downside to doing the copy 1708 // unconditionally, and it makes the code simpler. 1709 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset)); 1710 Data = 1711 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize()); 1712 1713 // Modify the copy with relocated addresses. 1714 ObjFile.Addresses->applyValidRelocs(DIECopy, Offset, Data.isLittleEndian()); 1715 1716 // Reset the Offset to 0 as we will be working on the local copy of 1717 // the data. 1718 Offset = 0; 1719 1720 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr(); 1721 Offset += getULEB128Size(Abbrev->getCode()); 1722 1723 // We are entering a subprogram. Get and propagate the PCOffset. 1724 if (Die->getTag() == dwarf::DW_TAG_subprogram) 1725 PCOffset = Info.AddrAdjust; 1726 AttrInfo.PCOffset = PCOffset; 1727 1728 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) { 1729 Flags |= TF_InFunctionScope; 1730 if (!Info.InDebugMap && LLVM_LIKELY(!Update)) 1731 Flags |= TF_SkipPC; 1732 } else if (Abbrev->getTag() == dwarf::DW_TAG_variable) { 1733 // Function-local globals could be in the debug map even when the function 1734 // is not, e.g., inlined functions. 1735 if ((Flags & TF_InFunctionScope) && Info.InDebugMap) 1736 Flags &= ~TF_SkipPC; 1737 // Location expressions referencing an address which is not in debug map 1738 // should be deleted. 1739 else if (!Info.InDebugMap && Info.HasLocationExpressionAddr && 1740 LLVM_LIKELY(!Update)) 1741 Flags |= TF_SkipPC; 1742 } 1743 1744 std::optional<StringRef> LibraryInstallName = 1745 ObjFile.Addresses->getLibraryInstallName(); 1746 SmallVector<AttributeLinkedOffsetFixup> AttributesFixups; 1747 for (const auto &AttrSpec : Abbrev->attributes()) { 1748 if (shouldSkipAttribute(Update, AttrSpec, Flags & TF_SkipPC)) { 1749 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, 1750 U.getFormParams()); 1751 continue; 1752 } 1753 1754 AttributeLinkedOffsetFixup CurAttrFixup; 1755 CurAttrFixup.InputAttrStartOffset = InputDIE.getOffset() + Offset; 1756 CurAttrFixup.LinkedOffsetFixupVal = 1757 Unit.getStartOffset() + OutOffset - CurAttrFixup.InputAttrStartOffset; 1758 1759 DWARFFormValue Val = AttrSpec.getFormValue(); 1760 uint64_t AttrSize = Offset; 1761 Val.extractValue(Data, &Offset, U.getFormParams(), &U); 1762 CurAttrFixup.InputAttrEndOffset = InputDIE.getOffset() + Offset; 1763 AttrSize = Offset - AttrSize; 1764 1765 uint64_t FinalAttrSize = 1766 cloneAttribute(*Die, InputDIE, File, Unit, Val, AttrSpec, AttrSize, 1767 AttrInfo, IsLittleEndian); 1768 if (FinalAttrSize != 0 && ObjFile.Addresses->needToSaveValidRelocs()) 1769 AttributesFixups.push_back(CurAttrFixup); 1770 1771 OutOffset += FinalAttrSize; 1772 } 1773 1774 uint16_t Tag = InputDIE.getTag(); 1775 // Add the DW_AT_APPLE_origin attribute to Compile Unit die if we have 1776 // an install name and the DWARF doesn't have the attribute yet. 1777 const bool NeedsAppleOrigin = (Tag == dwarf::DW_TAG_compile_unit) && 1778 LibraryInstallName.has_value() && 1779 !AttrInfo.HasAppleOrigin; 1780 if (NeedsAppleOrigin) { 1781 auto StringEntry = DebugStrPool.getEntry(LibraryInstallName.value()); 1782 Die->addValue(DIEAlloc, dwarf::Attribute(dwarf::DW_AT_APPLE_origin), 1783 dwarf::DW_FORM_strp, DIEInteger(StringEntry.getOffset())); 1784 AttrInfo.Name = StringEntry; 1785 OutOffset += 4; 1786 } 1787 1788 // Look for accelerator entries. 1789 // FIXME: This is slightly wrong. An inline_subroutine without a 1790 // low_pc, but with AT_ranges might be interesting to get into the 1791 // accelerator tables too. For now stick with dsymutil's behavior. 1792 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) && 1793 Tag != dwarf::DW_TAG_compile_unit && 1794 getDIENames(InputDIE, AttrInfo, DebugStrPool, 1795 Tag != dwarf::DW_TAG_inlined_subroutine)) { 1796 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name) 1797 Unit.addNameAccelerator(Die, AttrInfo.MangledName, 1798 Tag == dwarf::DW_TAG_inlined_subroutine); 1799 if (AttrInfo.Name) { 1800 if (AttrInfo.NameWithoutTemplate) 1801 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate, 1802 /* SkipPubSection */ true); 1803 Unit.addNameAccelerator(Die, AttrInfo.Name, 1804 Tag == dwarf::DW_TAG_inlined_subroutine); 1805 } 1806 if (AttrInfo.Name) 1807 addObjCAccelerator(Unit, Die, AttrInfo.Name, DebugStrPool, 1808 /* SkipPubSection =*/true); 1809 1810 } else if (Tag == dwarf::DW_TAG_namespace) { 1811 if (!AttrInfo.Name) 1812 AttrInfo.Name = DebugStrPool.getEntry("(anonymous namespace)"); 1813 Unit.addNamespaceAccelerator(Die, AttrInfo.Name); 1814 } else if (Tag == dwarf::DW_TAG_imported_declaration && AttrInfo.Name) { 1815 Unit.addNamespaceAccelerator(Die, AttrInfo.Name); 1816 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration && 1817 getDIENames(InputDIE, AttrInfo, DebugStrPool) && AttrInfo.Name && 1818 AttrInfo.Name.getString()[0]) { 1819 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File); 1820 uint64_t RuntimeLang = 1821 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class)) 1822 .value_or(0); 1823 bool ObjCClassIsImplementation = 1824 (RuntimeLang == dwarf::DW_LANG_ObjC || 1825 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) && 1826 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type)) 1827 .value_or(0); 1828 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation, 1829 Hash); 1830 } 1831 1832 // Determine whether there are any children that we want to keep. 1833 bool HasChildren = false; 1834 for (auto Child : InputDIE.children()) { 1835 unsigned Idx = U.getDIEIndex(Child); 1836 if (Unit.getInfo(Idx).Keep) { 1837 HasChildren = true; 1838 break; 1839 } 1840 } 1841 1842 if (Unit.getOrigUnit().getVersion() >= 5 && !AttrInfo.AttrStrOffsetBaseSeen && 1843 Die->getTag() == dwarf::DW_TAG_compile_unit) { 1844 // No DW_AT_str_offsets_base seen, add it to the DIE. 1845 Die->addValue(DIEAlloc, dwarf::DW_AT_str_offsets_base, 1846 dwarf::DW_FORM_sec_offset, DIEInteger(8)); 1847 OutOffset += 4; 1848 } 1849 1850 DIEAbbrev NewAbbrev = Die->generateAbbrev(); 1851 if (HasChildren) 1852 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes); 1853 // Assign a permanent abbrev number 1854 Linker.assignAbbrev(NewAbbrev); 1855 Die->setAbbrevNumber(NewAbbrev.getNumber()); 1856 1857 uint64_t AbbrevNumberSize = getULEB128Size(Die->getAbbrevNumber()); 1858 1859 // Add the size of the abbreviation number to the output offset. 1860 OutOffset += AbbrevNumberSize; 1861 1862 // Update fixups with the size of the abbreviation number 1863 for (AttributeLinkedOffsetFixup &F : AttributesFixups) 1864 F.LinkedOffsetFixupVal += AbbrevNumberSize; 1865 1866 for (AttributeLinkedOffsetFixup &F : AttributesFixups) 1867 ObjFile.Addresses->updateAndSaveValidRelocs( 1868 Unit.getOrigUnit().getVersion() >= 5, Unit.getOrigUnit().getOffset(), 1869 F.LinkedOffsetFixupVal, F.InputAttrStartOffset, F.InputAttrEndOffset); 1870 1871 if (!HasChildren) { 1872 // Update our size. 1873 Die->setSize(OutOffset - Die->getOffset()); 1874 return Die; 1875 } 1876 1877 // Recursively clone children. 1878 for (auto Child : InputDIE.children()) { 1879 if (DIE *Clone = cloneDIE(Child, File, Unit, PCOffset, OutOffset, Flags, 1880 IsLittleEndian)) { 1881 Die->addChild(Clone); 1882 OutOffset = Clone->getOffset() + Clone->getSize(); 1883 } 1884 } 1885 1886 // Account for the end of children marker. 1887 OutOffset += sizeof(int8_t); 1888 // Update our size. 1889 Die->setSize(OutOffset - Die->getOffset()); 1890 return Die; 1891 } 1892 1893 /// Patch the input object file relevant debug_ranges or debug_rnglists 1894 /// entries and emit them in the output file. Update the relevant attributes 1895 /// to point at the new entries. 1896 void DWARFLinker::generateUnitRanges(CompileUnit &Unit, const DWARFFile &File, 1897 DebugDieValuePool &AddrPool) const { 1898 if (LLVM_UNLIKELY(Options.Update)) 1899 return; 1900 1901 const auto &FunctionRanges = Unit.getFunctionRanges(); 1902 1903 // Build set of linked address ranges for unit function ranges. 1904 AddressRanges LinkedFunctionRanges; 1905 for (const AddressRangeValuePair &Range : FunctionRanges) 1906 LinkedFunctionRanges.insert( 1907 {Range.Range.start() + Range.Value, Range.Range.end() + Range.Value}); 1908 1909 // Emit LinkedFunctionRanges into .debug_aranges 1910 if (!LinkedFunctionRanges.empty()) 1911 TheDwarfEmitter->emitDwarfDebugArangesTable(Unit, LinkedFunctionRanges); 1912 1913 RngListAttributesTy AllRngListAttributes = Unit.getRangesAttributes(); 1914 std::optional<PatchLocation> UnitRngListAttribute = 1915 Unit.getUnitRangesAttribute(); 1916 1917 if (!AllRngListAttributes.empty() || UnitRngListAttribute) { 1918 std::optional<AddressRangeValuePair> CachedRange; 1919 MCSymbol *EndLabel = TheDwarfEmitter->emitDwarfDebugRangeListHeader(Unit); 1920 1921 // Read original address ranges, apply relocation value, emit linked address 1922 // ranges. 1923 for (PatchLocation &AttributePatch : AllRngListAttributes) { 1924 // Get ranges from the source DWARF corresponding to the current 1925 // attribute. 1926 AddressRanges LinkedRanges; 1927 if (Expected<DWARFAddressRangesVector> OriginalRanges = 1928 Unit.getOrigUnit().findRnglistFromOffset(AttributePatch.get())) { 1929 // Apply relocation adjustment. 1930 for (const auto &Range : *OriginalRanges) { 1931 if (!CachedRange || !CachedRange->Range.contains(Range.LowPC)) 1932 CachedRange = FunctionRanges.getRangeThatContains(Range.LowPC); 1933 1934 // All range entries should lie in the function range. 1935 if (!CachedRange) { 1936 reportWarning("inconsistent range data.", File); 1937 continue; 1938 } 1939 1940 // Store range for emiting. 1941 LinkedRanges.insert({Range.LowPC + CachedRange->Value, 1942 Range.HighPC + CachedRange->Value}); 1943 } 1944 } else { 1945 llvm::consumeError(OriginalRanges.takeError()); 1946 reportWarning("invalid range list ignored.", File); 1947 } 1948 1949 // Emit linked ranges. 1950 TheDwarfEmitter->emitDwarfDebugRangeListFragment( 1951 Unit, LinkedRanges, AttributePatch, AddrPool); 1952 } 1953 1954 // Emit ranges for Unit AT_ranges attribute. 1955 if (UnitRngListAttribute.has_value()) 1956 TheDwarfEmitter->emitDwarfDebugRangeListFragment( 1957 Unit, LinkedFunctionRanges, *UnitRngListAttribute, AddrPool); 1958 1959 // Emit ranges footer. 1960 TheDwarfEmitter->emitDwarfDebugRangeListFooter(Unit, EndLabel); 1961 } 1962 } 1963 1964 void DWARFLinker::DIECloner::generateUnitLocations( 1965 CompileUnit &Unit, const DWARFFile &File, 1966 ExpressionHandlerRef ExprHandler) { 1967 if (LLVM_UNLIKELY(Linker.Options.Update)) 1968 return; 1969 1970 const LocListAttributesTy &AllLocListAttributes = 1971 Unit.getLocationAttributes(); 1972 1973 if (AllLocListAttributes.empty()) 1974 return; 1975 1976 // Emit locations list table header. 1977 MCSymbol *EndLabel = Emitter->emitDwarfDebugLocListHeader(Unit); 1978 1979 for (auto &CurLocAttr : AllLocListAttributes) { 1980 // Get location expressions vector corresponding to the current attribute 1981 // from the source DWARF. 1982 Expected<DWARFLocationExpressionsVector> OriginalLocations = 1983 Unit.getOrigUnit().findLoclistFromOffset(CurLocAttr.get()); 1984 1985 if (!OriginalLocations) { 1986 llvm::consumeError(OriginalLocations.takeError()); 1987 Linker.reportWarning("Invalid location attribute ignored.", File); 1988 continue; 1989 } 1990 1991 DWARFLocationExpressionsVector LinkedLocationExpressions; 1992 for (DWARFLocationExpression &CurExpression : *OriginalLocations) { 1993 DWARFLocationExpression LinkedExpression; 1994 1995 if (CurExpression.Range) { 1996 // Relocate address range. 1997 LinkedExpression.Range = { 1998 CurExpression.Range->LowPC + CurLocAttr.RelocAdjustment, 1999 CurExpression.Range->HighPC + CurLocAttr.RelocAdjustment}; 2000 } 2001 2002 // Clone expression. 2003 LinkedExpression.Expr.reserve(CurExpression.Expr.size()); 2004 ExprHandler(CurExpression.Expr, LinkedExpression.Expr, 2005 CurLocAttr.RelocAdjustment); 2006 2007 LinkedLocationExpressions.push_back(LinkedExpression); 2008 } 2009 2010 // Emit locations list table fragment corresponding to the CurLocAttr. 2011 Emitter->emitDwarfDebugLocListFragment(Unit, LinkedLocationExpressions, 2012 CurLocAttr, AddrPool); 2013 } 2014 2015 // Emit locations list table footer. 2016 Emitter->emitDwarfDebugLocListFooter(Unit, EndLabel); 2017 } 2018 2019 static void patchAddrBase(DIE &Die, DIEInteger Offset) { 2020 for (auto &V : Die.values()) 2021 if (V.getAttribute() == dwarf::DW_AT_addr_base) { 2022 V = DIEValue(V.getAttribute(), V.getForm(), Offset); 2023 return; 2024 } 2025 2026 llvm_unreachable("Didn't find a DW_AT_addr_base in cloned DIE!"); 2027 } 2028 2029 void DWARFLinker::DIECloner::emitDebugAddrSection( 2030 CompileUnit &Unit, const uint16_t DwarfVersion) const { 2031 2032 if (LLVM_UNLIKELY(Linker.Options.Update)) 2033 return; 2034 2035 if (DwarfVersion < 5) 2036 return; 2037 2038 if (AddrPool.DieValues.empty()) 2039 return; 2040 2041 MCSymbol *EndLabel = Emitter->emitDwarfDebugAddrsHeader(Unit); 2042 patchAddrBase(*Unit.getOutputUnitDIE(), 2043 DIEInteger(Emitter->getDebugAddrSectionSize())); 2044 Emitter->emitDwarfDebugAddrs(AddrPool.DieValues, 2045 Unit.getOrigUnit().getAddressByteSize()); 2046 Emitter->emitDwarfDebugAddrsFooter(Unit, EndLabel); 2047 } 2048 2049 /// Insert the new line info sequence \p Seq into the current 2050 /// set of already linked line info \p Rows. 2051 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq, 2052 std::vector<DWARFDebugLine::Row> &Rows) { 2053 if (Seq.empty()) 2054 return; 2055 2056 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) { 2057 llvm::append_range(Rows, Seq); 2058 Seq.clear(); 2059 return; 2060 } 2061 2062 object::SectionedAddress Front = Seq.front().Address; 2063 auto InsertPoint = partition_point( 2064 Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; }); 2065 2066 // FIXME: this only removes the unneeded end_sequence if the 2067 // sequences have been inserted in order. Using a global sort like 2068 // described in generateLineTableForUnit() and delaying the end_sequene 2069 // elimination to emitLineTableForUnit() we can get rid of all of them. 2070 if (InsertPoint != Rows.end() && InsertPoint->Address == Front && 2071 InsertPoint->EndSequence) { 2072 *InsertPoint = Seq.front(); 2073 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end()); 2074 } else { 2075 Rows.insert(InsertPoint, Seq.begin(), Seq.end()); 2076 } 2077 2078 Seq.clear(); 2079 } 2080 2081 static void patchStmtList(DIE &Die, DIEInteger Offset) { 2082 for (auto &V : Die.values()) 2083 if (V.getAttribute() == dwarf::DW_AT_stmt_list) { 2084 V = DIEValue(V.getAttribute(), V.getForm(), Offset); 2085 return; 2086 } 2087 2088 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!"); 2089 } 2090 2091 void DWARFLinker::DIECloner::rememberUnitForMacroOffset(CompileUnit &Unit) { 2092 DWARFUnit &OrigUnit = Unit.getOrigUnit(); 2093 DWARFDie OrigUnitDie = OrigUnit.getUnitDIE(); 2094 2095 if (std::optional<uint64_t> MacroAttr = 2096 dwarf::toSectionOffset(OrigUnitDie.find(dwarf::DW_AT_macros))) { 2097 UnitMacroMap.insert(std::make_pair(*MacroAttr, &Unit)); 2098 return; 2099 } 2100 2101 if (std::optional<uint64_t> MacroAttr = 2102 dwarf::toSectionOffset(OrigUnitDie.find(dwarf::DW_AT_macro_info))) { 2103 UnitMacroMap.insert(std::make_pair(*MacroAttr, &Unit)); 2104 return; 2105 } 2106 } 2107 2108 void DWARFLinker::DIECloner::generateLineTableForUnit(CompileUnit &Unit) { 2109 if (LLVM_UNLIKELY(Emitter == nullptr)) 2110 return; 2111 2112 // Check whether DW_AT_stmt_list attribute is presented. 2113 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE(); 2114 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 2115 if (!StmtList) 2116 return; 2117 2118 // Update the cloned DW_AT_stmt_list with the correct debug_line offset. 2119 if (auto *OutputDIE = Unit.getOutputUnitDIE()) 2120 patchStmtList(*OutputDIE, DIEInteger(Emitter->getLineSectionSize())); 2121 2122 if (const DWARFDebugLine::LineTable *LT = 2123 ObjFile.Dwarf->getLineTableForUnit(&Unit.getOrigUnit())) { 2124 2125 DWARFDebugLine::LineTable LineTable; 2126 2127 // Set Line Table header. 2128 LineTable.Prologue = LT->Prologue; 2129 2130 // Set Line Table Rows. 2131 if (Linker.Options.Update) { 2132 LineTable.Rows = LT->Rows; 2133 // If all the line table contains is a DW_LNE_end_sequence, clear the line 2134 // table rows, it will be inserted again in the DWARFStreamer. 2135 if (LineTable.Rows.size() == 1 && LineTable.Rows[0].EndSequence) 2136 LineTable.Rows.clear(); 2137 2138 LineTable.Sequences = LT->Sequences; 2139 } else { 2140 // This vector is the output line table. 2141 std::vector<DWARFDebugLine::Row> NewRows; 2142 NewRows.reserve(LT->Rows.size()); 2143 2144 // Current sequence of rows being extracted, before being inserted 2145 // in NewRows. 2146 std::vector<DWARFDebugLine::Row> Seq; 2147 2148 const auto &FunctionRanges = Unit.getFunctionRanges(); 2149 std::optional<AddressRangeValuePair> CurrRange; 2150 2151 // FIXME: This logic is meant to generate exactly the same output as 2152 // Darwin's classic dsymutil. There is a nicer way to implement this 2153 // by simply putting all the relocated line info in NewRows and simply 2154 // sorting NewRows before passing it to emitLineTableForUnit. This 2155 // should be correct as sequences for a function should stay 2156 // together in the sorted output. There are a few corner cases that 2157 // look suspicious though, and that required to implement the logic 2158 // this way. Revisit that once initial validation is finished. 2159 2160 // Iterate over the object file line info and extract the sequences 2161 // that correspond to linked functions. 2162 for (DWARFDebugLine::Row Row : LT->Rows) { 2163 // Check whether we stepped out of the range. The range is 2164 // half-open, but consider accept the end address of the range if 2165 // it is marked as end_sequence in the input (because in that 2166 // case, the relocation offset is accurate and that entry won't 2167 // serve as the start of another function). 2168 if (!CurrRange || !CurrRange->Range.contains(Row.Address.Address)) { 2169 // We just stepped out of a known range. Insert a end_sequence 2170 // corresponding to the end of the range. 2171 uint64_t StopAddress = 2172 CurrRange ? CurrRange->Range.end() + CurrRange->Value : -1ULL; 2173 CurrRange = FunctionRanges.getRangeThatContains(Row.Address.Address); 2174 if (StopAddress != -1ULL && !Seq.empty()) { 2175 // Insert end sequence row with the computed end address, but 2176 // the same line as the previous one. 2177 auto NextLine = Seq.back(); 2178 NextLine.Address.Address = StopAddress; 2179 NextLine.EndSequence = 1; 2180 NextLine.PrologueEnd = 0; 2181 NextLine.BasicBlock = 0; 2182 NextLine.EpilogueBegin = 0; 2183 Seq.push_back(NextLine); 2184 insertLineSequence(Seq, NewRows); 2185 } 2186 2187 if (!CurrRange) 2188 continue; 2189 } 2190 2191 // Ignore empty sequences. 2192 if (Row.EndSequence && Seq.empty()) 2193 continue; 2194 2195 // Relocate row address and add it to the current sequence. 2196 Row.Address.Address += CurrRange->Value; 2197 Seq.emplace_back(Row); 2198 2199 if (Row.EndSequence) 2200 insertLineSequence(Seq, NewRows); 2201 } 2202 2203 LineTable.Rows = std::move(NewRows); 2204 } 2205 2206 Emitter->emitLineTableForUnit(LineTable, Unit, DebugStrPool, 2207 DebugLineStrPool); 2208 } else 2209 Linker.reportWarning("Cann't load line table.", ObjFile); 2210 } 2211 2212 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) { 2213 for (AccelTableKind AccelTableKind : Options.AccelTables) { 2214 switch (AccelTableKind) { 2215 case AccelTableKind::Apple: { 2216 // Add namespaces. 2217 for (const auto &Namespace : Unit.getNamespaces()) 2218 AppleNamespaces.addName(Namespace.Name, Namespace.Die->getOffset() + 2219 Unit.getStartOffset()); 2220 // Add names. 2221 for (const auto &Pubname : Unit.getPubnames()) 2222 AppleNames.addName(Pubname.Name, 2223 Pubname.Die->getOffset() + Unit.getStartOffset()); 2224 // Add types. 2225 for (const auto &Pubtype : Unit.getPubtypes()) 2226 AppleTypes.addName( 2227 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(), 2228 Pubtype.Die->getTag(), 2229 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation 2230 : 0, 2231 Pubtype.QualifiedNameHash); 2232 // Add ObjC names. 2233 for (const auto &ObjC : Unit.getObjC()) 2234 AppleObjc.addName(ObjC.Name, 2235 ObjC.Die->getOffset() + Unit.getStartOffset()); 2236 } break; 2237 case AccelTableKind::Pub: { 2238 TheDwarfEmitter->emitPubNamesForUnit(Unit); 2239 TheDwarfEmitter->emitPubTypesForUnit(Unit); 2240 } break; 2241 case AccelTableKind::DebugNames: { 2242 for (const auto &Namespace : Unit.getNamespaces()) 2243 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(), 2244 Namespace.Die->getTag(), Unit.getUniqueID()); 2245 for (const auto &Pubname : Unit.getPubnames()) 2246 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(), 2247 Pubname.Die->getTag(), Unit.getUniqueID()); 2248 for (const auto &Pubtype : Unit.getPubtypes()) 2249 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(), 2250 Pubtype.Die->getTag(), Unit.getUniqueID()); 2251 } break; 2252 } 2253 } 2254 } 2255 2256 /// Read the frame info stored in the object, and emit the 2257 /// patched frame descriptions for the resulting file. 2258 /// 2259 /// This is actually pretty easy as the data of the CIEs and FDEs can 2260 /// be considered as black boxes and moved as is. The only thing to do 2261 /// is to patch the addresses in the headers. 2262 void DWARFLinker::patchFrameInfoForObject(LinkContext &Context) { 2263 DWARFContext &OrigDwarf = *Context.File.Dwarf; 2264 unsigned SrcAddrSize = OrigDwarf.getDWARFObj().getAddressSize(); 2265 2266 StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data; 2267 if (FrameData.empty()) 2268 return; 2269 2270 RangesTy AllUnitsRanges; 2271 for (std::unique_ptr<CompileUnit> &Unit : Context.CompileUnits) { 2272 for (auto CurRange : Unit->getFunctionRanges()) 2273 AllUnitsRanges.insert(CurRange.Range, CurRange.Value); 2274 } 2275 2276 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0); 2277 uint64_t InputOffset = 0; 2278 2279 // Store the data of the CIEs defined in this object, keyed by their 2280 // offsets. 2281 DenseMap<uint64_t, StringRef> LocalCIES; 2282 2283 while (Data.isValidOffset(InputOffset)) { 2284 uint64_t EntryOffset = InputOffset; 2285 uint32_t InitialLength = Data.getU32(&InputOffset); 2286 if (InitialLength == 0xFFFFFFFF) 2287 return reportWarning("Dwarf64 bits no supported", Context.File); 2288 2289 uint32_t CIEId = Data.getU32(&InputOffset); 2290 if (CIEId == 0xFFFFFFFF) { 2291 // This is a CIE, store it. 2292 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4); 2293 LocalCIES[EntryOffset] = CIEData; 2294 // The -4 is to account for the CIEId we just read. 2295 InputOffset += InitialLength - 4; 2296 continue; 2297 } 2298 2299 uint64_t Loc = Data.getUnsigned(&InputOffset, SrcAddrSize); 2300 2301 // Some compilers seem to emit frame info that doesn't start at 2302 // the function entry point, thus we can't just lookup the address 2303 // in the debug map. Use the AddressInfo's range map to see if the FDE 2304 // describes something that we can relocate. 2305 std::optional<AddressRangeValuePair> Range = 2306 AllUnitsRanges.getRangeThatContains(Loc); 2307 if (!Range) { 2308 // The +4 is to account for the size of the InitialLength field itself. 2309 InputOffset = EntryOffset + InitialLength + 4; 2310 continue; 2311 } 2312 2313 // This is an FDE, and we have a mapping. 2314 // Have we already emitted a corresponding CIE? 2315 StringRef CIEData = LocalCIES[CIEId]; 2316 if (CIEData.empty()) 2317 return reportWarning("Inconsistent debug_frame content. Dropping.", 2318 Context.File); 2319 2320 // Look if we already emitted a CIE that corresponds to the 2321 // referenced one (the CIE data is the key of that lookup). 2322 auto IteratorInserted = EmittedCIEs.insert( 2323 std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize())); 2324 // If there is no CIE yet for this ID, emit it. 2325 if (IteratorInserted.second) { 2326 LastCIEOffset = TheDwarfEmitter->getFrameSectionSize(); 2327 IteratorInserted.first->getValue() = LastCIEOffset; 2328 TheDwarfEmitter->emitCIE(CIEData); 2329 } 2330 2331 // Emit the FDE with updated address and CIE pointer. 2332 // (4 + AddrSize) is the size of the CIEId + initial_location 2333 // fields that will get reconstructed by emitFDE(). 2334 unsigned FDERemainingBytes = InitialLength - (4 + SrcAddrSize); 2335 TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), SrcAddrSize, 2336 Loc + Range->Value, 2337 FrameData.substr(InputOffset, FDERemainingBytes)); 2338 InputOffset += FDERemainingBytes; 2339 } 2340 } 2341 2342 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE, 2343 CompileUnit &U, 2344 const DWARFFile &File, 2345 int ChildRecurseDepth) { 2346 const char *Name = nullptr; 2347 DWARFUnit *OrigUnit = &U.getOrigUnit(); 2348 CompileUnit *CU = &U; 2349 std::optional<DWARFFormValue> Ref; 2350 2351 while (true) { 2352 if (const char *CurrentName = DIE.getName(DINameKind::ShortName)) 2353 Name = CurrentName; 2354 2355 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) && 2356 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin))) 2357 break; 2358 2359 if (!Ref->isFormClass(DWARFFormValue::FC_Reference)) 2360 break; 2361 2362 CompileUnit *RefCU; 2363 if (auto RefDIE = 2364 Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) { 2365 CU = RefCU; 2366 OrigUnit = &RefCU->getOrigUnit(); 2367 DIE = RefDIE; 2368 } 2369 } 2370 2371 unsigned Idx = OrigUnit->getDIEIndex(DIE); 2372 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace) 2373 Name = "(anonymous namespace)"; 2374 2375 if (CU->getInfo(Idx).ParentIdx == 0 || 2376 // FIXME: dsymutil-classic compatibility. Ignore modules. 2377 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() == 2378 dwarf::DW_TAG_module) 2379 return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::")); 2380 2381 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx); 2382 return djbHash( 2383 (Name ? Name : ""), 2384 djbHash((Name ? "::" : ""), 2385 hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth))); 2386 } 2387 2388 static uint64_t getDwoId(const DWARFDie &CUDie) { 2389 auto DwoId = dwarf::toUnsigned( 2390 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id})); 2391 if (DwoId) 2392 return *DwoId; 2393 return 0; 2394 } 2395 2396 static std::string 2397 remapPath(StringRef Path, 2398 const DWARFLinkerBase::ObjectPrefixMapTy &ObjectPrefixMap) { 2399 if (ObjectPrefixMap.empty()) 2400 return Path.str(); 2401 2402 SmallString<256> p = Path; 2403 for (const auto &Entry : ObjectPrefixMap) 2404 if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second)) 2405 break; 2406 return p.str().str(); 2407 } 2408 2409 static std::string 2410 getPCMFile(const DWARFDie &CUDie, 2411 const DWARFLinkerBase::ObjectPrefixMapTy *ObjectPrefixMap) { 2412 std::string PCMFile = dwarf::toString( 2413 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), ""); 2414 2415 if (PCMFile.empty()) 2416 return PCMFile; 2417 2418 if (ObjectPrefixMap) 2419 PCMFile = remapPath(PCMFile, *ObjectPrefixMap); 2420 2421 return PCMFile; 2422 } 2423 2424 std::pair<bool, bool> DWARFLinker::isClangModuleRef(const DWARFDie &CUDie, 2425 std::string &PCMFile, 2426 LinkContext &Context, 2427 unsigned Indent, 2428 bool Quiet) { 2429 if (PCMFile.empty()) 2430 return std::make_pair(false, false); 2431 2432 // Clang module DWARF skeleton CUs abuse this for the path to the module. 2433 uint64_t DwoId = getDwoId(CUDie); 2434 2435 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), ""); 2436 if (Name.empty()) { 2437 if (!Quiet) 2438 reportWarning("Anonymous module skeleton CU for " + PCMFile, 2439 Context.File); 2440 return std::make_pair(true, true); 2441 } 2442 2443 if (!Quiet && Options.Verbose) { 2444 outs().indent(Indent); 2445 outs() << "Found clang module reference " << PCMFile; 2446 } 2447 2448 auto Cached = ClangModules.find(PCMFile); 2449 if (Cached != ClangModules.end()) { 2450 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is 2451 // fixed in clang, only warn about DWO_id mismatches in verbose mode. 2452 // ASTFileSignatures will change randomly when a module is rebuilt. 2453 if (!Quiet && Options.Verbose && (Cached->second != DwoId)) 2454 reportWarning(Twine("hash mismatch: this object file was built against a " 2455 "different version of the module ") + 2456 PCMFile, 2457 Context.File); 2458 if (!Quiet && Options.Verbose) 2459 outs() << " [cached].\n"; 2460 return std::make_pair(true, true); 2461 } 2462 2463 return std::make_pair(true, false); 2464 } 2465 2466 bool DWARFLinker::registerModuleReference(const DWARFDie &CUDie, 2467 LinkContext &Context, 2468 ObjFileLoaderTy Loader, 2469 CompileUnitHandlerTy OnCUDieLoaded, 2470 unsigned Indent) { 2471 std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap); 2472 std::pair<bool, bool> IsClangModuleRef = 2473 isClangModuleRef(CUDie, PCMFile, Context, Indent, false); 2474 2475 if (!IsClangModuleRef.first) 2476 return false; 2477 2478 if (IsClangModuleRef.second) 2479 return true; 2480 2481 if (Options.Verbose) 2482 outs() << " ...\n"; 2483 2484 // Cyclic dependencies are disallowed by Clang, but we still 2485 // shouldn't run into an infinite loop, so mark it as processed now. 2486 ClangModules.insert({PCMFile, getDwoId(CUDie)}); 2487 2488 if (Error E = loadClangModule(Loader, CUDie, PCMFile, Context, OnCUDieLoaded, 2489 Indent + 2)) { 2490 consumeError(std::move(E)); 2491 return false; 2492 } 2493 return true; 2494 } 2495 2496 Error DWARFLinker::loadClangModule( 2497 ObjFileLoaderTy Loader, const DWARFDie &CUDie, const std::string &PCMFile, 2498 LinkContext &Context, CompileUnitHandlerTy OnCUDieLoaded, unsigned Indent) { 2499 2500 uint64_t DwoId = getDwoId(CUDie); 2501 std::string ModuleName = dwarf::toString(CUDie.find(dwarf::DW_AT_name), ""); 2502 2503 /// Using a SmallString<0> because loadClangModule() is recursive. 2504 SmallString<0> Path(Options.PrependPath); 2505 if (sys::path::is_relative(PCMFile)) 2506 resolveRelativeObjectPath(Path, CUDie); 2507 sys::path::append(Path, PCMFile); 2508 // Don't use the cached binary holder because we have no thread-safety 2509 // guarantee and the lifetime is limited. 2510 2511 if (Loader == nullptr) { 2512 reportError("Could not load clang module: loader is not specified.\n", 2513 Context.File); 2514 return Error::success(); 2515 } 2516 2517 auto ErrOrObj = Loader(Context.File.FileName, Path); 2518 if (!ErrOrObj) 2519 return Error::success(); 2520 2521 std::unique_ptr<CompileUnit> Unit; 2522 for (const auto &CU : ErrOrObj->Dwarf->compile_units()) { 2523 OnCUDieLoaded(*CU); 2524 // Recursively get all modules imported by this one. 2525 auto ChildCUDie = CU->getUnitDIE(); 2526 if (!ChildCUDie) 2527 continue; 2528 if (!registerModuleReference(ChildCUDie, Context, Loader, OnCUDieLoaded, 2529 Indent)) { 2530 if (Unit) { 2531 std::string Err = 2532 (PCMFile + 2533 ": Clang modules are expected to have exactly 1 compile unit.\n"); 2534 reportError(Err, Context.File); 2535 return make_error<StringError>(Err, inconvertibleErrorCode()); 2536 } 2537 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is 2538 // fixed in clang, only warn about DWO_id mismatches in verbose mode. 2539 // ASTFileSignatures will change randomly when a module is rebuilt. 2540 uint64_t PCMDwoId = getDwoId(ChildCUDie); 2541 if (PCMDwoId != DwoId) { 2542 if (Options.Verbose) 2543 reportWarning( 2544 Twine("hash mismatch: this object file was built against a " 2545 "different version of the module ") + 2546 PCMFile, 2547 Context.File); 2548 // Update the cache entry with the DwoId of the module loaded from disk. 2549 ClangModules[PCMFile] = PCMDwoId; 2550 } 2551 2552 // Add this module. 2553 Unit = std::make_unique<CompileUnit>(*CU, UniqueUnitID++, !Options.NoODR, 2554 ModuleName); 2555 } 2556 } 2557 2558 if (Unit) 2559 Context.ModuleUnits.emplace_back(RefModuleUnit{*ErrOrObj, std::move(Unit)}); 2560 2561 return Error::success(); 2562 } 2563 2564 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits( 2565 DWARFContext &DwarfContext, const DWARFFile &File, bool IsLittleEndian) { 2566 uint64_t OutputDebugInfoSize = 2567 (Emitter == nullptr) ? 0 : Emitter->getDebugInfoSectionSize(); 2568 const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize; 2569 2570 for (auto &CurrentUnit : CompileUnits) { 2571 const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion(); 2572 const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11; 2573 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE(); 2574 CurrentUnit->setStartOffset(OutputDebugInfoSize); 2575 if (!InputDIE) { 2576 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion); 2577 continue; 2578 } 2579 if (CurrentUnit->getInfo(0).Keep) { 2580 // Clone the InputDIE into your Unit DIE in our compile unit since it 2581 // already has a DIE inside of it. 2582 CurrentUnit->createOutputDIE(); 2583 rememberUnitForMacroOffset(*CurrentUnit); 2584 cloneDIE(InputDIE, File, *CurrentUnit, 0 /* PC offset */, UnitHeaderSize, 2585 0, IsLittleEndian, CurrentUnit->getOutputUnitDIE()); 2586 } 2587 2588 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion); 2589 2590 if (Emitter != nullptr) { 2591 2592 generateLineTableForUnit(*CurrentUnit); 2593 2594 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit); 2595 2596 if (LLVM_UNLIKELY(Linker.Options.Update)) 2597 continue; 2598 2599 Linker.generateUnitRanges(*CurrentUnit, File, AddrPool); 2600 2601 auto ProcessExpr = [&](SmallVectorImpl<uint8_t> &SrcBytes, 2602 SmallVectorImpl<uint8_t> &OutBytes, 2603 int64_t RelocAdjustment) { 2604 DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit(); 2605 DataExtractor Data(SrcBytes, IsLittleEndian, 2606 OrigUnit.getAddressByteSize()); 2607 cloneExpression(Data, 2608 DWARFExpression(Data, OrigUnit.getAddressByteSize(), 2609 OrigUnit.getFormParams().Format), 2610 File, *CurrentUnit, OutBytes, RelocAdjustment, 2611 IsLittleEndian); 2612 }; 2613 generateUnitLocations(*CurrentUnit, File, ProcessExpr); 2614 emitDebugAddrSection(*CurrentUnit, DwarfVersion); 2615 } 2616 AddrPool.clear(); 2617 } 2618 2619 if (Emitter != nullptr) { 2620 assert(Emitter); 2621 // Emit macro tables. 2622 Emitter->emitMacroTables(File.Dwarf.get(), UnitMacroMap, DebugStrPool); 2623 2624 // Emit all the compile unit's debug information. 2625 for (auto &CurrentUnit : CompileUnits) { 2626 CurrentUnit->fixupForwardReferences(); 2627 2628 if (!CurrentUnit->getOutputUnitDIE()) 2629 continue; 2630 2631 unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion(); 2632 2633 assert(Emitter->getDebugInfoSectionSize() == 2634 CurrentUnit->getStartOffset()); 2635 Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion); 2636 Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE()); 2637 assert(Emitter->getDebugInfoSectionSize() == 2638 CurrentUnit->computeNextUnitOffset(DwarfVersion)); 2639 } 2640 } 2641 2642 return OutputDebugInfoSize - StartOutputDebugInfoSize; 2643 } 2644 2645 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) { 2646 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data, 2647 "debug_loc"); 2648 TheDwarfEmitter->emitSectionContents( 2649 Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges"); 2650 TheDwarfEmitter->emitSectionContents( 2651 Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame"); 2652 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(), 2653 "debug_aranges"); 2654 TheDwarfEmitter->emitSectionContents( 2655 Dwarf.getDWARFObj().getAddrSection().Data, "debug_addr"); 2656 TheDwarfEmitter->emitSectionContents( 2657 Dwarf.getDWARFObj().getRnglistsSection().Data, "debug_rnglists"); 2658 TheDwarfEmitter->emitSectionContents( 2659 Dwarf.getDWARFObj().getLoclistsSection().Data, "debug_loclists"); 2660 } 2661 2662 void DWARFLinker::addObjectFile(DWARFFile &File, ObjFileLoaderTy Loader, 2663 CompileUnitHandlerTy OnCUDieLoaded) { 2664 ObjectContexts.emplace_back(LinkContext(File)); 2665 2666 if (ObjectContexts.back().File.Dwarf) { 2667 for (const std::unique_ptr<DWARFUnit> &CU : 2668 ObjectContexts.back().File.Dwarf->compile_units()) { 2669 DWARFDie CUDie = CU->getUnitDIE(); 2670 2671 if (!CUDie) 2672 continue; 2673 2674 OnCUDieLoaded(*CU); 2675 2676 if (!LLVM_UNLIKELY(Options.Update)) 2677 registerModuleReference(CUDie, ObjectContexts.back(), Loader, 2678 OnCUDieLoaded); 2679 } 2680 } 2681 } 2682 2683 Error DWARFLinker::link() { 2684 assert((Options.TargetDWARFVersion != 0) && 2685 "TargetDWARFVersion should be set"); 2686 2687 // First populate the data structure we need for each iteration of the 2688 // parallel loop. 2689 unsigned NumObjects = ObjectContexts.size(); 2690 2691 // This Dwarf string pool which is used for emission. It must be used 2692 // serially as the order of calling getStringOffset matters for 2693 // reproducibility. 2694 OffsetsStringPool DebugStrPool(StringsTranslator, true); 2695 OffsetsStringPool DebugLineStrPool(StringsTranslator, false); 2696 DebugDieValuePool StringOffsetPool; 2697 2698 // ODR Contexts for the optimize. 2699 DeclContextTree ODRContexts; 2700 2701 for (LinkContext &OptContext : ObjectContexts) { 2702 if (Options.Verbose) 2703 outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n"; 2704 2705 if (!OptContext.File.Dwarf) 2706 continue; 2707 2708 if (Options.VerifyInputDWARF) 2709 verifyInput(OptContext.File); 2710 2711 // Look for relocations that correspond to address map entries. 2712 2713 // there was findvalidrelocations previously ... probably we need to gather 2714 // info here 2715 if (LLVM_LIKELY(!Options.Update) && 2716 !OptContext.File.Addresses->hasValidRelocs()) { 2717 if (Options.Verbose) 2718 outs() << "No valid relocations found. Skipping.\n"; 2719 2720 // Set "Skip" flag as a signal to other loops that we should not 2721 // process this iteration. 2722 OptContext.Skip = true; 2723 continue; 2724 } 2725 2726 // Setup access to the debug info. 2727 if (!OptContext.File.Dwarf) 2728 continue; 2729 2730 // Check whether type units are presented. 2731 if (!OptContext.File.Dwarf->types_section_units().empty()) { 2732 reportWarning("type units are not currently supported: file will " 2733 "be skipped", 2734 OptContext.File); 2735 OptContext.Skip = true; 2736 continue; 2737 } 2738 2739 // Clone all the clang modules with requires extracting the DIE units. We 2740 // don't need the full debug info until the Analyze phase. 2741 OptContext.CompileUnits.reserve( 2742 OptContext.File.Dwarf->getNumCompileUnits()); 2743 for (const auto &CU : OptContext.File.Dwarf->compile_units()) { 2744 auto CUDie = CU->getUnitDIE(/*ExtractUnitDIEOnly=*/true); 2745 if (Options.Verbose) { 2746 outs() << "Input compilation unit:"; 2747 DIDumpOptions DumpOpts; 2748 DumpOpts.ChildRecurseDepth = 0; 2749 DumpOpts.Verbose = Options.Verbose; 2750 CUDie.dump(outs(), 0, DumpOpts); 2751 } 2752 } 2753 2754 for (auto &CU : OptContext.ModuleUnits) { 2755 if (Error Err = cloneModuleUnit(OptContext, CU, ODRContexts, DebugStrPool, 2756 DebugLineStrPool, StringOffsetPool)) 2757 reportWarning(toString(std::move(Err)), CU.File); 2758 } 2759 } 2760 2761 // At this point we know how much data we have emitted. We use this value to 2762 // compare canonical DIE offsets in analyzeContextInfo to see if a definition 2763 // is already emitted, without being affected by canonical die offsets set 2764 // later. This prevents undeterminism when analyze and clone execute 2765 // concurrently, as clone set the canonical DIE offset and analyze reads it. 2766 const uint64_t ModulesEndOffset = 2767 (TheDwarfEmitter == nullptr) ? 0 2768 : TheDwarfEmitter->getDebugInfoSectionSize(); 2769 2770 // These variables manage the list of processed object files. 2771 // The mutex and condition variable are to ensure that this is thread safe. 2772 std::mutex ProcessedFilesMutex; 2773 std::condition_variable ProcessedFilesConditionVariable; 2774 BitVector ProcessedFiles(NumObjects, false); 2775 2776 // Analyzing the context info is particularly expensive so it is executed in 2777 // parallel with emitting the previous compile unit. 2778 auto AnalyzeLambda = [&](size_t I) { 2779 auto &Context = ObjectContexts[I]; 2780 2781 if (Context.Skip || !Context.File.Dwarf) 2782 return; 2783 2784 for (const auto &CU : Context.File.Dwarf->compile_units()) { 2785 // Previously we only extracted the unit DIEs. We need the full debug info 2786 // now. 2787 auto CUDie = CU->getUnitDIE(/*ExtractUnitDIEOnly=*/false); 2788 std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap); 2789 2790 if (!CUDie || LLVM_UNLIKELY(Options.Update) || 2791 !isClangModuleRef(CUDie, PCMFile, Context, 0, true).first) { 2792 Context.CompileUnits.push_back(std::make_unique<CompileUnit>( 2793 *CU, UniqueUnitID++, !Options.NoODR && !Options.Update, "")); 2794 } 2795 } 2796 2797 // Now build the DIE parent links that we will use during the next phase. 2798 for (auto &CurrentUnit : Context.CompileUnits) { 2799 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE(); 2800 if (!CUDie) 2801 continue; 2802 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0, 2803 *CurrentUnit, &ODRContexts.getRoot(), ODRContexts, 2804 ModulesEndOffset, Options.ParseableSwiftInterfaces, 2805 [&](const Twine &Warning, const DWARFDie &DIE) { 2806 reportWarning(Warning, Context.File, &DIE); 2807 }); 2808 } 2809 }; 2810 2811 // For each object file map how many bytes were emitted. 2812 StringMap<DebugInfoSize> SizeByObject; 2813 2814 // And then the remaining work in serial again. 2815 // Note, although this loop runs in serial, it can run in parallel with 2816 // the analyzeContextInfo loop so long as we process files with indices >= 2817 // than those processed by analyzeContextInfo. 2818 auto CloneLambda = [&](size_t I) { 2819 auto &OptContext = ObjectContexts[I]; 2820 if (OptContext.Skip || !OptContext.File.Dwarf) 2821 return; 2822 2823 // Then mark all the DIEs that need to be present in the generated output 2824 // and collect some information about them. 2825 // Note that this loop can not be merged with the previous one because 2826 // cross-cu references require the ParentIdx to be setup for every CU in 2827 // the object file before calling this. 2828 if (LLVM_UNLIKELY(Options.Update)) { 2829 for (auto &CurrentUnit : OptContext.CompileUnits) 2830 CurrentUnit->markEverythingAsKept(); 2831 copyInvariantDebugSection(*OptContext.File.Dwarf); 2832 } else { 2833 for (auto &CurrentUnit : OptContext.CompileUnits) { 2834 lookForDIEsToKeep(*OptContext.File.Addresses, OptContext.CompileUnits, 2835 CurrentUnit->getOrigUnit().getUnitDIE(), 2836 OptContext.File, *CurrentUnit, 0); 2837 #ifndef NDEBUG 2838 verifyKeepChain(*CurrentUnit); 2839 #endif 2840 } 2841 } 2842 2843 // The calls to applyValidRelocs inside cloneDIE will walk the reloc 2844 // array again (in the same way findValidRelocsInDebugInfo() did). We 2845 // need to reset the NextValidReloc index to the beginning. 2846 if (OptContext.File.Addresses->hasValidRelocs() || 2847 LLVM_UNLIKELY(Options.Update)) { 2848 SizeByObject[OptContext.File.FileName].Input = 2849 getDebugInfoSize(*OptContext.File.Dwarf); 2850 SizeByObject[OptContext.File.FileName].Output = 2851 DIECloner(*this, TheDwarfEmitter.get(), OptContext.File, DIEAlloc, 2852 OptContext.CompileUnits, Options.Update, DebugStrPool, 2853 DebugLineStrPool, StringOffsetPool) 2854 .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File, 2855 OptContext.File.Dwarf->isLittleEndian()); 2856 } 2857 if ((TheDwarfEmitter != nullptr) && !OptContext.CompileUnits.empty() && 2858 LLVM_LIKELY(!Options.Update)) 2859 patchFrameInfoForObject(OptContext); 2860 2861 // Clean-up before starting working on the next object. 2862 cleanupAuxiliarryData(OptContext); 2863 }; 2864 2865 auto EmitLambda = [&]() { 2866 // Emit everything that's global. 2867 if (TheDwarfEmitter != nullptr) { 2868 TheDwarfEmitter->emitAbbrevs(Abbreviations, Options.TargetDWARFVersion); 2869 TheDwarfEmitter->emitStrings(DebugStrPool); 2870 TheDwarfEmitter->emitStringOffsets(StringOffsetPool.DieValues, 2871 Options.TargetDWARFVersion); 2872 TheDwarfEmitter->emitLineStrings(DebugLineStrPool); 2873 for (AccelTableKind TableKind : Options.AccelTables) { 2874 switch (TableKind) { 2875 case AccelTableKind::Apple: 2876 TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces); 2877 TheDwarfEmitter->emitAppleNames(AppleNames); 2878 TheDwarfEmitter->emitAppleTypes(AppleTypes); 2879 TheDwarfEmitter->emitAppleObjc(AppleObjc); 2880 break; 2881 case AccelTableKind::Pub: 2882 // Already emitted by emitAcceleratorEntriesForUnit. 2883 // Already emitted by emitAcceleratorEntriesForUnit. 2884 break; 2885 case AccelTableKind::DebugNames: 2886 TheDwarfEmitter->emitDebugNames(DebugNames); 2887 break; 2888 } 2889 } 2890 } 2891 }; 2892 2893 auto AnalyzeAll = [&]() { 2894 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2895 AnalyzeLambda(I); 2896 2897 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex); 2898 ProcessedFiles.set(I); 2899 ProcessedFilesConditionVariable.notify_one(); 2900 } 2901 }; 2902 2903 auto CloneAll = [&]() { 2904 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2905 { 2906 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex); 2907 if (!ProcessedFiles[I]) { 2908 ProcessedFilesConditionVariable.wait( 2909 LockGuard, [&]() { return ProcessedFiles[I]; }); 2910 } 2911 } 2912 2913 CloneLambda(I); 2914 } 2915 EmitLambda(); 2916 }; 2917 2918 // To limit memory usage in the single threaded case, analyze and clone are 2919 // run sequentially so the OptContext is freed after processing each object 2920 // in endDebugObject. 2921 if (Options.Threads == 1) { 2922 for (unsigned I = 0, E = NumObjects; I != E; ++I) { 2923 AnalyzeLambda(I); 2924 CloneLambda(I); 2925 } 2926 EmitLambda(); 2927 } else { 2928 ThreadPool Pool(hardware_concurrency(2)); 2929 Pool.async(AnalyzeAll); 2930 Pool.async(CloneAll); 2931 Pool.wait(); 2932 } 2933 2934 if (Options.Statistics) { 2935 // Create a vector sorted in descending order by output size. 2936 std::vector<std::pair<StringRef, DebugInfoSize>> Sorted; 2937 for (auto &E : SizeByObject) 2938 Sorted.emplace_back(E.first(), E.second); 2939 llvm::sort(Sorted, [](auto &LHS, auto &RHS) { 2940 return LHS.second.Output > RHS.second.Output; 2941 }); 2942 2943 auto ComputePercentange = [](int64_t Input, int64_t Output) -> float { 2944 const float Difference = Output - Input; 2945 const float Sum = Input + Output; 2946 if (Sum == 0) 2947 return 0; 2948 return (Difference / (Sum / 2)); 2949 }; 2950 2951 int64_t InputTotal = 0; 2952 int64_t OutputTotal = 0; 2953 const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n"; 2954 2955 // Print header. 2956 outs() << ".debug_info section size (in bytes)\n"; 2957 outs() << "----------------------------------------------------------------" 2958 "---------------\n"; 2959 outs() << "Filename Object " 2960 " dSYM Change\n"; 2961 outs() << "----------------------------------------------------------------" 2962 "---------------\n"; 2963 2964 // Print body. 2965 for (auto &E : Sorted) { 2966 InputTotal += E.second.Input; 2967 OutputTotal += E.second.Output; 2968 llvm::outs() << formatv( 2969 FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input, 2970 E.second.Output, ComputePercentange(E.second.Input, E.second.Output)); 2971 } 2972 // Print total and footer. 2973 outs() << "----------------------------------------------------------------" 2974 "---------------\n"; 2975 llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal, 2976 ComputePercentange(InputTotal, OutputTotal)); 2977 outs() << "----------------------------------------------------------------" 2978 "---------------\n\n"; 2979 } 2980 2981 return Error::success(); 2982 } 2983 2984 Error DWARFLinker::cloneModuleUnit(LinkContext &Context, RefModuleUnit &Unit, 2985 DeclContextTree &ODRContexts, 2986 OffsetsStringPool &DebugStrPool, 2987 OffsetsStringPool &DebugLineStrPool, 2988 DebugDieValuePool &StringOffsetPool, 2989 unsigned Indent) { 2990 assert(Unit.Unit.get() != nullptr); 2991 2992 if (!Unit.Unit->getOrigUnit().getUnitDIE().hasChildren()) 2993 return Error::success(); 2994 2995 if (Options.Verbose) { 2996 outs().indent(Indent); 2997 outs() << "cloning .debug_info from " << Unit.File.FileName << "\n"; 2998 } 2999 3000 // Analyze context for the module. 3001 analyzeContextInfo(Unit.Unit->getOrigUnit().getUnitDIE(), 0, *(Unit.Unit), 3002 &ODRContexts.getRoot(), ODRContexts, 0, 3003 Options.ParseableSwiftInterfaces, 3004 [&](const Twine &Warning, const DWARFDie &DIE) { 3005 reportWarning(Warning, Context.File, &DIE); 3006 }); 3007 // Keep everything. 3008 Unit.Unit->markEverythingAsKept(); 3009 3010 // Clone unit. 3011 UnitListTy CompileUnits; 3012 CompileUnits.emplace_back(std::move(Unit.Unit)); 3013 assert(TheDwarfEmitter); 3014 DIECloner(*this, TheDwarfEmitter.get(), Unit.File, DIEAlloc, CompileUnits, 3015 Options.Update, DebugStrPool, DebugLineStrPool, StringOffsetPool) 3016 .cloneAllCompileUnits(*Unit.File.Dwarf, Unit.File, 3017 Unit.File.Dwarf->isLittleEndian()); 3018 return Error::success(); 3019 } 3020 3021 void DWARFLinker::verifyInput(const DWARFFile &File) { 3022 assert(File.Dwarf); 3023 3024 std::string Buffer; 3025 raw_string_ostream OS(Buffer); 3026 DIDumpOptions DumpOpts; 3027 if (!File.Dwarf->verify(OS, DumpOpts.noImplicitRecursion())) { 3028 if (Options.InputVerificationHandler) 3029 Options.InputVerificationHandler(File, OS.str()); 3030 } 3031 } 3032 3033 Error DWARFLinker::createEmitter(const Triple &TheTriple, 3034 OutputFileType FileType, 3035 raw_pwrite_stream &OutFile) { 3036 3037 TheDwarfEmitter = std::make_unique<DwarfStreamer>( 3038 FileType, OutFile, StringsTranslator, WarningHandler); 3039 3040 return TheDwarfEmitter->init(TheTriple, "__DWARF"); 3041 } 3042 3043 DwarfEmitter *DWARFLinker::getEmitter() { return TheDwarfEmitter.get(); } 3044 3045 } // namespace llvm 3046