10b57cec5SDimitry Andric //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This implements the TargetLoweringBase class. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h" 140b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 150b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 160b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 170b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 180b57cec5SDimitry Andric #include "llvm/ADT/Twine.h" 195ffd83dbSDimitry Andric #include "llvm/Analysis/Loads.h" 205ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 210b57cec5SDimitry Andric #include "llvm/CodeGen/Analysis.h" 220b57cec5SDimitry Andric #include "llvm/CodeGen/ISDOpcodes.h" 230b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h" 240b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h" 250b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h" 260b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h" 270b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 280b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h" 290b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h" 300b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 31*0fca6ea1SDimitry Andric #include "llvm/CodeGen/RuntimeLibcallUtil.h" 320b57cec5SDimitry Andric #include "llvm/CodeGen/StackMaps.h" 330b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h" 340b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h" 350b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h" 360b57cec5SDimitry Andric #include "llvm/CodeGen/ValueTypes.h" 37*0fca6ea1SDimitry Andric #include "llvm/CodeGenTypes/MachineValueType.h" 380b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 390b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h" 400b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 410b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 420b57cec5SDimitry Andric #include "llvm/IR/Function.h" 430b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h" 440b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h" 450b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 460b57cec5SDimitry Andric #include "llvm/IR/Module.h" 470b57cec5SDimitry Andric #include "llvm/IR/Type.h" 480b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 490b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 500b57cec5SDimitry Andric #include "llvm/Support/Compiler.h" 510b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 520b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 530b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 54349cc55cSDimitry Andric #include "llvm/Target/TargetOptions.h" 5506c3fb27SDimitry Andric #include "llvm/TargetParser/Triple.h" 565ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/SizeOpts.h" 570b57cec5SDimitry Andric #include <algorithm> 580b57cec5SDimitry Andric #include <cassert> 590b57cec5SDimitry Andric #include <cstdint> 600b57cec5SDimitry Andric #include <cstring> 610b57cec5SDimitry Andric #include <iterator> 620b57cec5SDimitry Andric #include <string> 630b57cec5SDimitry Andric #include <tuple> 640b57cec5SDimitry Andric #include <utility> 650b57cec5SDimitry Andric 660b57cec5SDimitry Andric using namespace llvm; 670b57cec5SDimitry Andric 680b57cec5SDimitry Andric static cl::opt<bool> JumpIsExpensiveOverride( 690b57cec5SDimitry Andric "jump-is-expensive", cl::init(false), 700b57cec5SDimitry Andric cl::desc("Do not create extra branches to split comparison logic."), 710b57cec5SDimitry Andric cl::Hidden); 720b57cec5SDimitry Andric 730b57cec5SDimitry Andric static cl::opt<unsigned> MinimumJumpTableEntries 740b57cec5SDimitry Andric ("min-jump-table-entries", cl::init(4), cl::Hidden, 750b57cec5SDimitry Andric cl::desc("Set minimum number of entries to use a jump table.")); 760b57cec5SDimitry Andric 770b57cec5SDimitry Andric static cl::opt<unsigned> MaximumJumpTableSize 780b57cec5SDimitry Andric ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 790b57cec5SDimitry Andric cl::desc("Set maximum size of jump tables.")); 800b57cec5SDimitry Andric 810b57cec5SDimitry Andric /// Minimum jump table density for normal functions. 820b57cec5SDimitry Andric static cl::opt<unsigned> 830b57cec5SDimitry Andric JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 840b57cec5SDimitry Andric cl::desc("Minimum density for building a jump table in " 850b57cec5SDimitry Andric "a normal function")); 860b57cec5SDimitry Andric 870b57cec5SDimitry Andric /// Minimum jump table density for -Os or -Oz functions. 880b57cec5SDimitry Andric static cl::opt<unsigned> OptsizeJumpTableDensity( 890b57cec5SDimitry Andric "optsize-jump-table-density", cl::init(40), cl::Hidden, 900b57cec5SDimitry Andric cl::desc("Minimum density for building a jump table in " 910b57cec5SDimitry Andric "an optsize function")); 920b57cec5SDimitry Andric 93480093f4SDimitry Andric // FIXME: This option is only to test if the strict fp operation processed 94480093f4SDimitry Andric // correctly by preventing mutating strict fp operation to normal fp operation 95480093f4SDimitry Andric // during development. When the backend supports strict float operation, this 96480093f4SDimitry Andric // option will be meaningless. 97480093f4SDimitry Andric static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 98480093f4SDimitry Andric cl::desc("Don't mutate strict-float node to a legalize node"), 99480093f4SDimitry Andric cl::init(false), cl::Hidden); 100480093f4SDimitry Andric 101fe6060f1SDimitry Andric /// GetFPLibCall - Helper to return the right libcall for the given floating 102fe6060f1SDimitry Andric /// point type, or UNKNOWN_LIBCALL if there is none. 103fe6060f1SDimitry Andric RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, 104fe6060f1SDimitry Andric RTLIB::Libcall Call_F32, 105fe6060f1SDimitry Andric RTLIB::Libcall Call_F64, 106fe6060f1SDimitry Andric RTLIB::Libcall Call_F80, 107fe6060f1SDimitry Andric RTLIB::Libcall Call_F128, 108fe6060f1SDimitry Andric RTLIB::Libcall Call_PPCF128) { 109fe6060f1SDimitry Andric return 110fe6060f1SDimitry Andric VT == MVT::f32 ? Call_F32 : 111fe6060f1SDimitry Andric VT == MVT::f64 ? Call_F64 : 112fe6060f1SDimitry Andric VT == MVT::f80 ? Call_F80 : 113fe6060f1SDimitry Andric VT == MVT::f128 ? Call_F128 : 114fe6060f1SDimitry Andric VT == MVT::ppcf128 ? Call_PPCF128 : 115fe6060f1SDimitry Andric RTLIB::UNKNOWN_LIBCALL; 116fe6060f1SDimitry Andric } 117fe6060f1SDimitry Andric 1180b57cec5SDimitry Andric /// getFPEXT - Return the FPEXT_*_* value for the given types, or 1190b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 1200b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 1210b57cec5SDimitry Andric if (OpVT == MVT::f16) { 1220b57cec5SDimitry Andric if (RetVT == MVT::f32) 1230b57cec5SDimitry Andric return FPEXT_F16_F32; 124e8d8bef9SDimitry Andric if (RetVT == MVT::f64) 125e8d8bef9SDimitry Andric return FPEXT_F16_F64; 126349cc55cSDimitry Andric if (RetVT == MVT::f80) 127349cc55cSDimitry Andric return FPEXT_F16_F80; 128e8d8bef9SDimitry Andric if (RetVT == MVT::f128) 129e8d8bef9SDimitry Andric return FPEXT_F16_F128; 1300b57cec5SDimitry Andric } else if (OpVT == MVT::f32) { 1310b57cec5SDimitry Andric if (RetVT == MVT::f64) 1320b57cec5SDimitry Andric return FPEXT_F32_F64; 1330b57cec5SDimitry Andric if (RetVT == MVT::f128) 1340b57cec5SDimitry Andric return FPEXT_F32_F128; 1350b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 1360b57cec5SDimitry Andric return FPEXT_F32_PPCF128; 1370b57cec5SDimitry Andric } else if (OpVT == MVT::f64) { 1380b57cec5SDimitry Andric if (RetVT == MVT::f128) 1390b57cec5SDimitry Andric return FPEXT_F64_F128; 1400b57cec5SDimitry Andric else if (RetVT == MVT::ppcf128) 1410b57cec5SDimitry Andric return FPEXT_F64_PPCF128; 1420b57cec5SDimitry Andric } else if (OpVT == MVT::f80) { 1430b57cec5SDimitry Andric if (RetVT == MVT::f128) 1440b57cec5SDimitry Andric return FPEXT_F80_F128; 145*0fca6ea1SDimitry Andric } else if (OpVT == MVT::bf16) { 146*0fca6ea1SDimitry Andric if (RetVT == MVT::f32) 147*0fca6ea1SDimitry Andric return FPEXT_BF16_F32; 1480b57cec5SDimitry Andric } 1490b57cec5SDimitry Andric 1500b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 1510b57cec5SDimitry Andric } 1520b57cec5SDimitry Andric 1530b57cec5SDimitry Andric /// getFPROUND - Return the FPROUND_*_* value for the given types, or 1540b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 1550b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 1560b57cec5SDimitry Andric if (RetVT == MVT::f16) { 1570b57cec5SDimitry Andric if (OpVT == MVT::f32) 1580b57cec5SDimitry Andric return FPROUND_F32_F16; 1590b57cec5SDimitry Andric if (OpVT == MVT::f64) 1600b57cec5SDimitry Andric return FPROUND_F64_F16; 1610b57cec5SDimitry Andric if (OpVT == MVT::f80) 1620b57cec5SDimitry Andric return FPROUND_F80_F16; 1630b57cec5SDimitry Andric if (OpVT == MVT::f128) 1640b57cec5SDimitry Andric return FPROUND_F128_F16; 1650b57cec5SDimitry Andric if (OpVT == MVT::ppcf128) 1660b57cec5SDimitry Andric return FPROUND_PPCF128_F16; 16781ad6265SDimitry Andric } else if (RetVT == MVT::bf16) { 16881ad6265SDimitry Andric if (OpVT == MVT::f32) 16981ad6265SDimitry Andric return FPROUND_F32_BF16; 17081ad6265SDimitry Andric if (OpVT == MVT::f64) 17181ad6265SDimitry Andric return FPROUND_F64_BF16; 1720b57cec5SDimitry Andric } else if (RetVT == MVT::f32) { 1730b57cec5SDimitry Andric if (OpVT == MVT::f64) 1740b57cec5SDimitry Andric return FPROUND_F64_F32; 1750b57cec5SDimitry Andric if (OpVT == MVT::f80) 1760b57cec5SDimitry Andric return FPROUND_F80_F32; 1770b57cec5SDimitry Andric if (OpVT == MVT::f128) 1780b57cec5SDimitry Andric return FPROUND_F128_F32; 1790b57cec5SDimitry Andric if (OpVT == MVT::ppcf128) 1800b57cec5SDimitry Andric return FPROUND_PPCF128_F32; 1810b57cec5SDimitry Andric } else if (RetVT == MVT::f64) { 1820b57cec5SDimitry Andric if (OpVT == MVT::f80) 1830b57cec5SDimitry Andric return FPROUND_F80_F64; 1840b57cec5SDimitry Andric if (OpVT == MVT::f128) 1850b57cec5SDimitry Andric return FPROUND_F128_F64; 1860b57cec5SDimitry Andric if (OpVT == MVT::ppcf128) 1870b57cec5SDimitry Andric return FPROUND_PPCF128_F64; 1880b57cec5SDimitry Andric } else if (RetVT == MVT::f80) { 1890b57cec5SDimitry Andric if (OpVT == MVT::f128) 1900b57cec5SDimitry Andric return FPROUND_F128_F80; 1910b57cec5SDimitry Andric } 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 1940b57cec5SDimitry Andric } 1950b57cec5SDimitry Andric 1960b57cec5SDimitry Andric /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 1970b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 1980b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 199e8d8bef9SDimitry Andric if (OpVT == MVT::f16) { 200e8d8bef9SDimitry Andric if (RetVT == MVT::i32) 201e8d8bef9SDimitry Andric return FPTOSINT_F16_I32; 202e8d8bef9SDimitry Andric if (RetVT == MVT::i64) 203e8d8bef9SDimitry Andric return FPTOSINT_F16_I64; 204e8d8bef9SDimitry Andric if (RetVT == MVT::i128) 205e8d8bef9SDimitry Andric return FPTOSINT_F16_I128; 206e8d8bef9SDimitry Andric } else if (OpVT == MVT::f32) { 2070b57cec5SDimitry Andric if (RetVT == MVT::i32) 2080b57cec5SDimitry Andric return FPTOSINT_F32_I32; 2090b57cec5SDimitry Andric if (RetVT == MVT::i64) 2100b57cec5SDimitry Andric return FPTOSINT_F32_I64; 2110b57cec5SDimitry Andric if (RetVT == MVT::i128) 2120b57cec5SDimitry Andric return FPTOSINT_F32_I128; 2130b57cec5SDimitry Andric } else if (OpVT == MVT::f64) { 2140b57cec5SDimitry Andric if (RetVT == MVT::i32) 2150b57cec5SDimitry Andric return FPTOSINT_F64_I32; 2160b57cec5SDimitry Andric if (RetVT == MVT::i64) 2170b57cec5SDimitry Andric return FPTOSINT_F64_I64; 2180b57cec5SDimitry Andric if (RetVT == MVT::i128) 2190b57cec5SDimitry Andric return FPTOSINT_F64_I128; 2200b57cec5SDimitry Andric } else if (OpVT == MVT::f80) { 2210b57cec5SDimitry Andric if (RetVT == MVT::i32) 2220b57cec5SDimitry Andric return FPTOSINT_F80_I32; 2230b57cec5SDimitry Andric if (RetVT == MVT::i64) 2240b57cec5SDimitry Andric return FPTOSINT_F80_I64; 2250b57cec5SDimitry Andric if (RetVT == MVT::i128) 2260b57cec5SDimitry Andric return FPTOSINT_F80_I128; 2270b57cec5SDimitry Andric } else if (OpVT == MVT::f128) { 2280b57cec5SDimitry Andric if (RetVT == MVT::i32) 2290b57cec5SDimitry Andric return FPTOSINT_F128_I32; 2300b57cec5SDimitry Andric if (RetVT == MVT::i64) 2310b57cec5SDimitry Andric return FPTOSINT_F128_I64; 2320b57cec5SDimitry Andric if (RetVT == MVT::i128) 2330b57cec5SDimitry Andric return FPTOSINT_F128_I128; 2340b57cec5SDimitry Andric } else if (OpVT == MVT::ppcf128) { 2350b57cec5SDimitry Andric if (RetVT == MVT::i32) 2360b57cec5SDimitry Andric return FPTOSINT_PPCF128_I32; 2370b57cec5SDimitry Andric if (RetVT == MVT::i64) 2380b57cec5SDimitry Andric return FPTOSINT_PPCF128_I64; 2390b57cec5SDimitry Andric if (RetVT == MVT::i128) 2400b57cec5SDimitry Andric return FPTOSINT_PPCF128_I128; 2410b57cec5SDimitry Andric } 2420b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 2430b57cec5SDimitry Andric } 2440b57cec5SDimitry Andric 2450b57cec5SDimitry Andric /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 2460b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 2470b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 248e8d8bef9SDimitry Andric if (OpVT == MVT::f16) { 249e8d8bef9SDimitry Andric if (RetVT == MVT::i32) 250e8d8bef9SDimitry Andric return FPTOUINT_F16_I32; 251e8d8bef9SDimitry Andric if (RetVT == MVT::i64) 252e8d8bef9SDimitry Andric return FPTOUINT_F16_I64; 253e8d8bef9SDimitry Andric if (RetVT == MVT::i128) 254e8d8bef9SDimitry Andric return FPTOUINT_F16_I128; 255e8d8bef9SDimitry Andric } else if (OpVT == MVT::f32) { 2560b57cec5SDimitry Andric if (RetVT == MVT::i32) 2570b57cec5SDimitry Andric return FPTOUINT_F32_I32; 2580b57cec5SDimitry Andric if (RetVT == MVT::i64) 2590b57cec5SDimitry Andric return FPTOUINT_F32_I64; 2600b57cec5SDimitry Andric if (RetVT == MVT::i128) 2610b57cec5SDimitry Andric return FPTOUINT_F32_I128; 2620b57cec5SDimitry Andric } else if (OpVT == MVT::f64) { 2630b57cec5SDimitry Andric if (RetVT == MVT::i32) 2640b57cec5SDimitry Andric return FPTOUINT_F64_I32; 2650b57cec5SDimitry Andric if (RetVT == MVT::i64) 2660b57cec5SDimitry Andric return FPTOUINT_F64_I64; 2670b57cec5SDimitry Andric if (RetVT == MVT::i128) 2680b57cec5SDimitry Andric return FPTOUINT_F64_I128; 2690b57cec5SDimitry Andric } else if (OpVT == MVT::f80) { 2700b57cec5SDimitry Andric if (RetVT == MVT::i32) 2710b57cec5SDimitry Andric return FPTOUINT_F80_I32; 2720b57cec5SDimitry Andric if (RetVT == MVT::i64) 2730b57cec5SDimitry Andric return FPTOUINT_F80_I64; 2740b57cec5SDimitry Andric if (RetVT == MVT::i128) 2750b57cec5SDimitry Andric return FPTOUINT_F80_I128; 2760b57cec5SDimitry Andric } else if (OpVT == MVT::f128) { 2770b57cec5SDimitry Andric if (RetVT == MVT::i32) 2780b57cec5SDimitry Andric return FPTOUINT_F128_I32; 2790b57cec5SDimitry Andric if (RetVT == MVT::i64) 2800b57cec5SDimitry Andric return FPTOUINT_F128_I64; 2810b57cec5SDimitry Andric if (RetVT == MVT::i128) 2820b57cec5SDimitry Andric return FPTOUINT_F128_I128; 2830b57cec5SDimitry Andric } else if (OpVT == MVT::ppcf128) { 2840b57cec5SDimitry Andric if (RetVT == MVT::i32) 2850b57cec5SDimitry Andric return FPTOUINT_PPCF128_I32; 2860b57cec5SDimitry Andric if (RetVT == MVT::i64) 2870b57cec5SDimitry Andric return FPTOUINT_PPCF128_I64; 2880b57cec5SDimitry Andric if (RetVT == MVT::i128) 2890b57cec5SDimitry Andric return FPTOUINT_PPCF128_I128; 2900b57cec5SDimitry Andric } 2910b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 2920b57cec5SDimitry Andric } 2930b57cec5SDimitry Andric 2940b57cec5SDimitry Andric /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 2950b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 2960b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 2970b57cec5SDimitry Andric if (OpVT == MVT::i32) { 298e8d8bef9SDimitry Andric if (RetVT == MVT::f16) 299e8d8bef9SDimitry Andric return SINTTOFP_I32_F16; 3000b57cec5SDimitry Andric if (RetVT == MVT::f32) 3010b57cec5SDimitry Andric return SINTTOFP_I32_F32; 3020b57cec5SDimitry Andric if (RetVT == MVT::f64) 3030b57cec5SDimitry Andric return SINTTOFP_I32_F64; 3040b57cec5SDimitry Andric if (RetVT == MVT::f80) 3050b57cec5SDimitry Andric return SINTTOFP_I32_F80; 3060b57cec5SDimitry Andric if (RetVT == MVT::f128) 3070b57cec5SDimitry Andric return SINTTOFP_I32_F128; 3080b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 3090b57cec5SDimitry Andric return SINTTOFP_I32_PPCF128; 3100b57cec5SDimitry Andric } else if (OpVT == MVT::i64) { 311e8d8bef9SDimitry Andric if (RetVT == MVT::f16) 312e8d8bef9SDimitry Andric return SINTTOFP_I64_F16; 3130b57cec5SDimitry Andric if (RetVT == MVT::f32) 3140b57cec5SDimitry Andric return SINTTOFP_I64_F32; 3150b57cec5SDimitry Andric if (RetVT == MVT::f64) 3160b57cec5SDimitry Andric return SINTTOFP_I64_F64; 3170b57cec5SDimitry Andric if (RetVT == MVT::f80) 3180b57cec5SDimitry Andric return SINTTOFP_I64_F80; 3190b57cec5SDimitry Andric if (RetVT == MVT::f128) 3200b57cec5SDimitry Andric return SINTTOFP_I64_F128; 3210b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 3220b57cec5SDimitry Andric return SINTTOFP_I64_PPCF128; 3230b57cec5SDimitry Andric } else if (OpVT == MVT::i128) { 324e8d8bef9SDimitry Andric if (RetVT == MVT::f16) 325e8d8bef9SDimitry Andric return SINTTOFP_I128_F16; 3260b57cec5SDimitry Andric if (RetVT == MVT::f32) 3270b57cec5SDimitry Andric return SINTTOFP_I128_F32; 3280b57cec5SDimitry Andric if (RetVT == MVT::f64) 3290b57cec5SDimitry Andric return SINTTOFP_I128_F64; 3300b57cec5SDimitry Andric if (RetVT == MVT::f80) 3310b57cec5SDimitry Andric return SINTTOFP_I128_F80; 3320b57cec5SDimitry Andric if (RetVT == MVT::f128) 3330b57cec5SDimitry Andric return SINTTOFP_I128_F128; 3340b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 3350b57cec5SDimitry Andric return SINTTOFP_I128_PPCF128; 3360b57cec5SDimitry Andric } 3370b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 3380b57cec5SDimitry Andric } 3390b57cec5SDimitry Andric 3400b57cec5SDimitry Andric /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 3410b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 3420b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 3430b57cec5SDimitry Andric if (OpVT == MVT::i32) { 344e8d8bef9SDimitry Andric if (RetVT == MVT::f16) 345e8d8bef9SDimitry Andric return UINTTOFP_I32_F16; 3460b57cec5SDimitry Andric if (RetVT == MVT::f32) 3470b57cec5SDimitry Andric return UINTTOFP_I32_F32; 3480b57cec5SDimitry Andric if (RetVT == MVT::f64) 3490b57cec5SDimitry Andric return UINTTOFP_I32_F64; 3500b57cec5SDimitry Andric if (RetVT == MVT::f80) 3510b57cec5SDimitry Andric return UINTTOFP_I32_F80; 3520b57cec5SDimitry Andric if (RetVT == MVT::f128) 3530b57cec5SDimitry Andric return UINTTOFP_I32_F128; 3540b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 3550b57cec5SDimitry Andric return UINTTOFP_I32_PPCF128; 3560b57cec5SDimitry Andric } else if (OpVT == MVT::i64) { 357e8d8bef9SDimitry Andric if (RetVT == MVT::f16) 358e8d8bef9SDimitry Andric return UINTTOFP_I64_F16; 3590b57cec5SDimitry Andric if (RetVT == MVT::f32) 3600b57cec5SDimitry Andric return UINTTOFP_I64_F32; 3610b57cec5SDimitry Andric if (RetVT == MVT::f64) 3620b57cec5SDimitry Andric return UINTTOFP_I64_F64; 3630b57cec5SDimitry Andric if (RetVT == MVT::f80) 3640b57cec5SDimitry Andric return UINTTOFP_I64_F80; 3650b57cec5SDimitry Andric if (RetVT == MVT::f128) 3660b57cec5SDimitry Andric return UINTTOFP_I64_F128; 3670b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 3680b57cec5SDimitry Andric return UINTTOFP_I64_PPCF128; 3690b57cec5SDimitry Andric } else if (OpVT == MVT::i128) { 370e8d8bef9SDimitry Andric if (RetVT == MVT::f16) 371e8d8bef9SDimitry Andric return UINTTOFP_I128_F16; 3720b57cec5SDimitry Andric if (RetVT == MVT::f32) 3730b57cec5SDimitry Andric return UINTTOFP_I128_F32; 3740b57cec5SDimitry Andric if (RetVT == MVT::f64) 3750b57cec5SDimitry Andric return UINTTOFP_I128_F64; 3760b57cec5SDimitry Andric if (RetVT == MVT::f80) 3770b57cec5SDimitry Andric return UINTTOFP_I128_F80; 3780b57cec5SDimitry Andric if (RetVT == MVT::f128) 3790b57cec5SDimitry Andric return UINTTOFP_I128_F128; 3800b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 3810b57cec5SDimitry Andric return UINTTOFP_I128_PPCF128; 3820b57cec5SDimitry Andric } 3830b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 3840b57cec5SDimitry Andric } 3850b57cec5SDimitry Andric 386fe6060f1SDimitry Andric RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { 387fe6060f1SDimitry Andric return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, 388fe6060f1SDimitry Andric POWI_PPCF128); 389fe6060f1SDimitry Andric } 390fe6060f1SDimitry Andric 39106c3fb27SDimitry Andric RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) { 39206c3fb27SDimitry Andric return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128, 39306c3fb27SDimitry Andric LDEXP_PPCF128); 39406c3fb27SDimitry Andric } 39506c3fb27SDimitry Andric 39606c3fb27SDimitry Andric RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) { 39706c3fb27SDimitry Andric return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128, 39806c3fb27SDimitry Andric FREXP_PPCF128); 39906c3fb27SDimitry Andric } 40006c3fb27SDimitry Andric 4011db9f3b2SDimitry Andric RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4], 4021db9f3b2SDimitry Andric AtomicOrdering Order, 4031db9f3b2SDimitry Andric uint64_t MemSize) { 404e8d8bef9SDimitry Andric unsigned ModeN, ModelN; 4051db9f3b2SDimitry Andric switch (MemSize) { 4061db9f3b2SDimitry Andric case 1: 407e8d8bef9SDimitry Andric ModeN = 0; 408e8d8bef9SDimitry Andric break; 4091db9f3b2SDimitry Andric case 2: 410e8d8bef9SDimitry Andric ModeN = 1; 411e8d8bef9SDimitry Andric break; 4121db9f3b2SDimitry Andric case 4: 413e8d8bef9SDimitry Andric ModeN = 2; 414e8d8bef9SDimitry Andric break; 4151db9f3b2SDimitry Andric case 8: 416e8d8bef9SDimitry Andric ModeN = 3; 417e8d8bef9SDimitry Andric break; 4181db9f3b2SDimitry Andric case 16: 419e8d8bef9SDimitry Andric ModeN = 4; 420e8d8bef9SDimitry Andric break; 421e8d8bef9SDimitry Andric default: 4221db9f3b2SDimitry Andric return RTLIB::UNKNOWN_LIBCALL; 423e8d8bef9SDimitry Andric } 424e8d8bef9SDimitry Andric 425e8d8bef9SDimitry Andric switch (Order) { 426e8d8bef9SDimitry Andric case AtomicOrdering::Monotonic: 427e8d8bef9SDimitry Andric ModelN = 0; 428e8d8bef9SDimitry Andric break; 429e8d8bef9SDimitry Andric case AtomicOrdering::Acquire: 430e8d8bef9SDimitry Andric ModelN = 1; 431e8d8bef9SDimitry Andric break; 432e8d8bef9SDimitry Andric case AtomicOrdering::Release: 433e8d8bef9SDimitry Andric ModelN = 2; 434e8d8bef9SDimitry Andric break; 435e8d8bef9SDimitry Andric case AtomicOrdering::AcquireRelease: 436e8d8bef9SDimitry Andric case AtomicOrdering::SequentiallyConsistent: 437e8d8bef9SDimitry Andric ModelN = 3; 438e8d8bef9SDimitry Andric break; 439e8d8bef9SDimitry Andric default: 440e8d8bef9SDimitry Andric return UNKNOWN_LIBCALL; 441e8d8bef9SDimitry Andric } 442e8d8bef9SDimitry Andric 4431db9f3b2SDimitry Andric return LC[ModeN][ModelN]; 4441db9f3b2SDimitry Andric } 4451db9f3b2SDimitry Andric 4461db9f3b2SDimitry Andric RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 4471db9f3b2SDimitry Andric MVT VT) { 4481db9f3b2SDimitry Andric if (!VT.isScalarInteger()) 4491db9f3b2SDimitry Andric return UNKNOWN_LIBCALL; 4501db9f3b2SDimitry Andric uint64_t MemSize = VT.getScalarSizeInBits() / 8; 4511db9f3b2SDimitry Andric 452e8d8bef9SDimitry Andric #define LCALLS(A, B) \ 453e8d8bef9SDimitry Andric { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 454e8d8bef9SDimitry Andric #define LCALL5(A) \ 455e8d8bef9SDimitry Andric LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 456e8d8bef9SDimitry Andric switch (Opc) { 457e8d8bef9SDimitry Andric case ISD::ATOMIC_CMP_SWAP: { 458e8d8bef9SDimitry Andric const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 4591db9f3b2SDimitry Andric return getOutlineAtomicHelper(LC, Order, MemSize); 460e8d8bef9SDimitry Andric } 461e8d8bef9SDimitry Andric case ISD::ATOMIC_SWAP: { 462e8d8bef9SDimitry Andric const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 4631db9f3b2SDimitry Andric return getOutlineAtomicHelper(LC, Order, MemSize); 464e8d8bef9SDimitry Andric } 465e8d8bef9SDimitry Andric case ISD::ATOMIC_LOAD_ADD: { 466e8d8bef9SDimitry Andric const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 4671db9f3b2SDimitry Andric return getOutlineAtomicHelper(LC, Order, MemSize); 468e8d8bef9SDimitry Andric } 469e8d8bef9SDimitry Andric case ISD::ATOMIC_LOAD_OR: { 470e8d8bef9SDimitry Andric const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 4711db9f3b2SDimitry Andric return getOutlineAtomicHelper(LC, Order, MemSize); 472e8d8bef9SDimitry Andric } 473e8d8bef9SDimitry Andric case ISD::ATOMIC_LOAD_CLR: { 474e8d8bef9SDimitry Andric const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 4751db9f3b2SDimitry Andric return getOutlineAtomicHelper(LC, Order, MemSize); 476e8d8bef9SDimitry Andric } 477e8d8bef9SDimitry Andric case ISD::ATOMIC_LOAD_XOR: { 478e8d8bef9SDimitry Andric const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 4791db9f3b2SDimitry Andric return getOutlineAtomicHelper(LC, Order, MemSize); 480e8d8bef9SDimitry Andric } 481e8d8bef9SDimitry Andric default: 482e8d8bef9SDimitry Andric return UNKNOWN_LIBCALL; 483e8d8bef9SDimitry Andric } 484e8d8bef9SDimitry Andric #undef LCALLS 485e8d8bef9SDimitry Andric #undef LCALL5 486e8d8bef9SDimitry Andric } 487e8d8bef9SDimitry Andric 4880b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 4890b57cec5SDimitry Andric #define OP_TO_LIBCALL(Name, Enum) \ 4900b57cec5SDimitry Andric case Name: \ 4910b57cec5SDimitry Andric switch (VT.SimpleTy) { \ 4920b57cec5SDimitry Andric default: \ 4930b57cec5SDimitry Andric return UNKNOWN_LIBCALL; \ 4940b57cec5SDimitry Andric case MVT::i8: \ 4950b57cec5SDimitry Andric return Enum##_1; \ 4960b57cec5SDimitry Andric case MVT::i16: \ 4970b57cec5SDimitry Andric return Enum##_2; \ 4980b57cec5SDimitry Andric case MVT::i32: \ 4990b57cec5SDimitry Andric return Enum##_4; \ 5000b57cec5SDimitry Andric case MVT::i64: \ 5010b57cec5SDimitry Andric return Enum##_8; \ 5020b57cec5SDimitry Andric case MVT::i128: \ 5030b57cec5SDimitry Andric return Enum##_16; \ 5040b57cec5SDimitry Andric } 5050b57cec5SDimitry Andric 5060b57cec5SDimitry Andric switch (Opc) { 5070b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 5080b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 5090b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 5100b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 5110b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 5120b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 5130b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 5140b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 5150b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 5160b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 5170b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 5180b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 5190b57cec5SDimitry Andric } 5200b57cec5SDimitry Andric 5210b57cec5SDimitry Andric #undef OP_TO_LIBCALL 5220b57cec5SDimitry Andric 5230b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 5240b57cec5SDimitry Andric } 5250b57cec5SDimitry Andric 5260b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 5270b57cec5SDimitry Andric switch (ElementSize) { 5280b57cec5SDimitry Andric case 1: 5290b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 5300b57cec5SDimitry Andric case 2: 5310b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 5320b57cec5SDimitry Andric case 4: 5330b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 5340b57cec5SDimitry Andric case 8: 5350b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 5360b57cec5SDimitry Andric case 16: 5370b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 5380b57cec5SDimitry Andric default: 5390b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 5400b57cec5SDimitry Andric } 5410b57cec5SDimitry Andric } 5420b57cec5SDimitry Andric 5430b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 5440b57cec5SDimitry Andric switch (ElementSize) { 5450b57cec5SDimitry Andric case 1: 5460b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 5470b57cec5SDimitry Andric case 2: 5480b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 5490b57cec5SDimitry Andric case 4: 5500b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 5510b57cec5SDimitry Andric case 8: 5520b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 5530b57cec5SDimitry Andric case 16: 5540b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 5550b57cec5SDimitry Andric default: 5560b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 5570b57cec5SDimitry Andric } 5580b57cec5SDimitry Andric } 5590b57cec5SDimitry Andric 5600b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 5610b57cec5SDimitry Andric switch (ElementSize) { 5620b57cec5SDimitry Andric case 1: 5630b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 5640b57cec5SDimitry Andric case 2: 5650b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 5660b57cec5SDimitry Andric case 4: 5670b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 5680b57cec5SDimitry Andric case 8: 5690b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 5700b57cec5SDimitry Andric case 16: 5710b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 5720b57cec5SDimitry Andric default: 5730b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 5740b57cec5SDimitry Andric } 5750b57cec5SDimitry Andric } 5760b57cec5SDimitry Andric 577*0fca6ea1SDimitry Andric void RTLIB::initCmpLibcallCCs(ISD::CondCode *CmpLibcallCCs) { 578*0fca6ea1SDimitry Andric std::fill(CmpLibcallCCs, CmpLibcallCCs + RTLIB::UNKNOWN_LIBCALL, 579*0fca6ea1SDimitry Andric ISD::SETCC_INVALID); 580*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OEQ_F32] = ISD::SETEQ; 581*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OEQ_F64] = ISD::SETEQ; 582*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OEQ_F128] = ISD::SETEQ; 583*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 584*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UNE_F32] = ISD::SETNE; 585*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UNE_F64] = ISD::SETNE; 586*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UNE_F128] = ISD::SETNE; 587*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 588*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGE_F32] = ISD::SETGE; 589*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGE_F64] = ISD::SETGE; 590*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGE_F128] = ISD::SETGE; 591*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 592*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLT_F32] = ISD::SETLT; 593*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLT_F64] = ISD::SETLT; 594*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLT_F128] = ISD::SETLT; 595*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 596*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLE_F32] = ISD::SETLE; 597*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLE_F64] = ISD::SETLE; 598*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLE_F128] = ISD::SETLE; 599*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 600*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGT_F32] = ISD::SETGT; 601*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGT_F64] = ISD::SETGT; 602*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGT_F128] = ISD::SETGT; 603*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 604*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UO_F32] = ISD::SETNE; 605*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UO_F64] = ISD::SETNE; 606*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UO_F128] = ISD::SETNE; 607*0fca6ea1SDimitry Andric CmpLibcallCCs[RTLIB::UO_PPCF128] = ISD::SETNE; 6080b57cec5SDimitry Andric } 6090b57cec5SDimitry Andric 6100b57cec5SDimitry Andric /// NOTE: The TargetMachine owns TLOF. 611*0fca6ea1SDimitry Andric TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) 612*0fca6ea1SDimitry Andric : TM(tm), Libcalls(TM.getTargetTriple()) { 6130b57cec5SDimitry Andric initActions(); 6140b57cec5SDimitry Andric 6150b57cec5SDimitry Andric // Perform these initializations only once. 6160b57cec5SDimitry Andric MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 6170b57cec5SDimitry Andric MaxLoadsPerMemcmp = 8; 6180b57cec5SDimitry Andric MaxGluedStoresPerMemcpy = 0; 6190b57cec5SDimitry Andric MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 6200b57cec5SDimitry Andric MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 6210b57cec5SDimitry Andric HasMultipleConditionRegisters = false; 6220b57cec5SDimitry Andric HasExtractBitsInsn = false; 6230b57cec5SDimitry Andric JumpIsExpensive = JumpIsExpensiveOverride; 6240b57cec5SDimitry Andric PredictableSelectIsExpensive = false; 6250b57cec5SDimitry Andric EnableExtLdPromotion = false; 6260b57cec5SDimitry Andric StackPointerRegisterToSaveRestore = 0; 6270b57cec5SDimitry Andric BooleanContents = UndefinedBooleanContent; 6280b57cec5SDimitry Andric BooleanFloatContents = UndefinedBooleanContent; 6290b57cec5SDimitry Andric BooleanVectorContents = UndefinedBooleanContent; 6300b57cec5SDimitry Andric SchedPreferenceInfo = Sched::ILP; 6310b57cec5SDimitry Andric GatherAllAliasesMaxDepth = 18; 632480093f4SDimitry Andric IsStrictFPEnabled = DisableStrictNodeMutation; 63304eeddc0SDimitry Andric MaxBytesForAlignment = 0; 6347a6dacacSDimitry Andric MaxAtomicSizeInBitsSupported = 0; 6350b57cec5SDimitry Andric 6361ac55f4cSDimitry Andric // Assume that even with libcalls, no target supports wider than 128 bit 6371ac55f4cSDimitry Andric // division. 6381ac55f4cSDimitry Andric MaxDivRemBitWidthSupported = 128; 639bdd1243dSDimitry Andric 640bdd1243dSDimitry Andric MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS; 641bdd1243dSDimitry Andric 6420b57cec5SDimitry Andric MinCmpXchgSizeInBits = 0; 6430b57cec5SDimitry Andric SupportsUnalignedAtomics = false; 6440b57cec5SDimitry Andric 645*0fca6ea1SDimitry Andric RTLIB::initCmpLibcallCCs(CmpLibcallCCs); 6460b57cec5SDimitry Andric } 6470b57cec5SDimitry Andric 6480b57cec5SDimitry Andric void TargetLoweringBase::initActions() { 6490b57cec5SDimitry Andric // All operations default to being supported. 6500b57cec5SDimitry Andric memset(OpActions, 0, sizeof(OpActions)); 6510b57cec5SDimitry Andric memset(LoadExtActions, 0, sizeof(LoadExtActions)); 6520b57cec5SDimitry Andric memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 6530b57cec5SDimitry Andric memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 6540b57cec5SDimitry Andric memset(CondCodeActions, 0, sizeof(CondCodeActions)); 6550b57cec5SDimitry Andric std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 6560b57cec5SDimitry Andric std::fill(std::begin(TargetDAGCombineArray), 6570b57cec5SDimitry Andric std::end(TargetDAGCombineArray), 0); 6580b57cec5SDimitry Andric 659*0fca6ea1SDimitry Andric // Let extending atomic loads be unsupported by default. 660*0fca6ea1SDimitry Andric for (MVT ValVT : MVT::all_valuetypes()) 661*0fca6ea1SDimitry Andric for (MVT MemVT : MVT::all_valuetypes()) 662*0fca6ea1SDimitry Andric setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT, MemVT, 663*0fca6ea1SDimitry Andric Expand); 664*0fca6ea1SDimitry Andric 66581ad6265SDimitry Andric // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to 66681ad6265SDimitry Andric // remove this and targets should individually set these types if not legal. 66781ad6265SDimitry Andric for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, 66881ad6265SDimitry Andric force_iteration_on_noniterable_enum)) { 66981ad6265SDimitry Andric for (MVT VT : {MVT::i2, MVT::i4}) 67081ad6265SDimitry Andric OpActions[(unsigned)VT.SimpleTy][NT] = Expand; 67181ad6265SDimitry Andric } 67281ad6265SDimitry Andric for (MVT AVT : MVT::all_valuetypes()) { 67381ad6265SDimitry Andric for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { 67481ad6265SDimitry Andric setTruncStoreAction(AVT, VT, Expand); 67581ad6265SDimitry Andric setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); 67681ad6265SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); 67781ad6265SDimitry Andric } 67881ad6265SDimitry Andric } 67981ad6265SDimitry Andric for (unsigned IM = (unsigned)ISD::PRE_INC; 68081ad6265SDimitry Andric IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 68181ad6265SDimitry Andric for (MVT VT : {MVT::i2, MVT::i4}) { 68281ad6265SDimitry Andric setIndexedLoadAction(IM, VT, Expand); 68381ad6265SDimitry Andric setIndexedStoreAction(IM, VT, Expand); 68481ad6265SDimitry Andric setIndexedMaskedLoadAction(IM, VT, Expand); 68581ad6265SDimitry Andric setIndexedMaskedStoreAction(IM, VT, Expand); 68681ad6265SDimitry Andric } 68781ad6265SDimitry Andric } 68881ad6265SDimitry Andric 6890b57cec5SDimitry Andric for (MVT VT : MVT::fp_valuetypes()) { 690e8d8bef9SDimitry Andric MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 6910b57cec5SDimitry Andric if (IntVT.isValid()) { 6920b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 6930b57cec5SDimitry Andric AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 6940b57cec5SDimitry Andric } 6950b57cec5SDimitry Andric } 6960b57cec5SDimitry Andric 6970b57cec5SDimitry Andric // Set default actions for various operations. 6980b57cec5SDimitry Andric for (MVT VT : MVT::all_valuetypes()) { 6990b57cec5SDimitry Andric // Default all indexed load / store to expand. 7000b57cec5SDimitry Andric for (unsigned IM = (unsigned)ISD::PRE_INC; 7010b57cec5SDimitry Andric IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 7020b57cec5SDimitry Andric setIndexedLoadAction(IM, VT, Expand); 7030b57cec5SDimitry Andric setIndexedStoreAction(IM, VT, Expand); 704480093f4SDimitry Andric setIndexedMaskedLoadAction(IM, VT, Expand); 705480093f4SDimitry Andric setIndexedMaskedStoreAction(IM, VT, Expand); 7060b57cec5SDimitry Andric } 7070b57cec5SDimitry Andric 7080b57cec5SDimitry Andric // Most backends expect to see the node which just returns the value loaded. 7090b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 7100b57cec5SDimitry Andric 7110b57cec5SDimitry Andric // These operations default to expand. 71281ad6265SDimitry Andric setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS, 71381ad6265SDimitry Andric ISD::FMINNUM, ISD::FMAXNUM, 71481ad6265SDimitry Andric ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, 71581ad6265SDimitry Andric ISD::FMINIMUM, ISD::FMAXIMUM, 71681ad6265SDimitry Andric ISD::FMAD, ISD::SMIN, 71781ad6265SDimitry Andric ISD::SMAX, ISD::UMIN, 71881ad6265SDimitry Andric ISD::UMAX, ISD::ABS, 71981ad6265SDimitry Andric ISD::FSHL, ISD::FSHR, 72081ad6265SDimitry Andric ISD::SADDSAT, ISD::UADDSAT, 72181ad6265SDimitry Andric ISD::SSUBSAT, ISD::USUBSAT, 72281ad6265SDimitry Andric ISD::SSHLSAT, ISD::USHLSAT, 72381ad6265SDimitry Andric ISD::SMULFIX, ISD::SMULFIXSAT, 72481ad6265SDimitry Andric ISD::UMULFIX, ISD::UMULFIXSAT, 72581ad6265SDimitry Andric ISD::SDIVFIX, ISD::SDIVFIXSAT, 72681ad6265SDimitry Andric ISD::UDIVFIX, ISD::UDIVFIXSAT, 72781ad6265SDimitry Andric ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 72881ad6265SDimitry Andric ISD::IS_FPCLASS}, 72981ad6265SDimitry Andric VT, Expand); 7300b57cec5SDimitry Andric 7310b57cec5SDimitry Andric // Overflow operations default to expand 73281ad6265SDimitry Andric setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, 73381ad6265SDimitry Andric ISD::SMULO, ISD::UMULO}, 73481ad6265SDimitry Andric VT, Expand); 7350b57cec5SDimitry Andric 73606c3fb27SDimitry Andric // Carry-using overflow operations default to expand. 73706c3fb27SDimitry Andric setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY, 73881ad6265SDimitry Andric ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, 73981ad6265SDimitry Andric VT, Expand); 7400b57cec5SDimitry Andric 7410b57cec5SDimitry Andric // ADDC/ADDE/SUBC/SUBE default to expand. 74281ad6265SDimitry Andric setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, 74381ad6265SDimitry Andric Expand); 74481ad6265SDimitry Andric 745*0fca6ea1SDimitry Andric // [US]CMP default to expand 746*0fca6ea1SDimitry Andric setOperationAction({ISD::UCMP, ISD::SCMP}, VT, Expand); 747*0fca6ea1SDimitry Andric 74881ad6265SDimitry Andric // Halving adds 74981ad6265SDimitry Andric setOperationAction( 75081ad6265SDimitry Andric {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, 75181ad6265SDimitry Andric Expand); 7520b57cec5SDimitry Andric 753fe6060f1SDimitry Andric // Absolute difference 75481ad6265SDimitry Andric setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); 755fe6060f1SDimitry Andric 7560b57cec5SDimitry Andric // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 75781ad6265SDimitry Andric setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 75881ad6265SDimitry Andric Expand); 7590b57cec5SDimitry Andric 76081ad6265SDimitry Andric setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); 7610b57cec5SDimitry Andric 7620b57cec5SDimitry Andric // These library functions default to expand. 7635f757f3fSDimitry Andric setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT, 7645f757f3fSDimitry Andric Expand); 7650b57cec5SDimitry Andric 7660b57cec5SDimitry Andric // These operations default to expand for vector types. 76781ad6265SDimitry Andric if (VT.isVector()) 7685f757f3fSDimitry Andric setOperationAction( 7695f757f3fSDimitry Andric {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG, 7705f757f3fSDimitry Andric ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG, 771*0fca6ea1SDimitry Andric ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT, ISD::FTAN, ISD::FACOS, 772*0fca6ea1SDimitry Andric ISD::FASIN, ISD::FATAN, ISD::FCOSH, ISD::FSINH, ISD::FTANH}, 77381ad6265SDimitry Andric VT, Expand); 7740b57cec5SDimitry Andric 7750b57cec5SDimitry Andric // Constrained floating-point operations default to expand. 7765ffd83dbSDimitry Andric #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 777480093f4SDimitry Andric setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 778480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def" 7790b57cec5SDimitry Andric 7800b57cec5SDimitry Andric // For most targets @llvm.get.dynamic.area.offset just returns 0. 7810b57cec5SDimitry Andric setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 7820b57cec5SDimitry Andric 7830b57cec5SDimitry Andric // Vector reduction default to expand. 78481ad6265SDimitry Andric setOperationAction( 78581ad6265SDimitry Andric {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, 78681ad6265SDimitry Andric ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 78781ad6265SDimitry Andric ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 78881ad6265SDimitry Andric ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, 78906c3fb27SDimitry Andric ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM, 79006c3fb27SDimitry Andric ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, 79181ad6265SDimitry Andric VT, Expand); 792fe6060f1SDimitry Andric 793fe6060f1SDimitry Andric // Named vector shuffles default to expand. 794fe6060f1SDimitry Andric setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); 795bdd1243dSDimitry Andric 796*0fca6ea1SDimitry Andric // Only some target support this vector operation. Most need to expand it. 797*0fca6ea1SDimitry Andric setOperationAction(ISD::VECTOR_COMPRESS, VT, Expand); 798*0fca6ea1SDimitry Andric 79906c3fb27SDimitry Andric // VP operations default to expand. 80006c3fb27SDimitry Andric #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 80106c3fb27SDimitry Andric setOperationAction(ISD::SDOPC, VT, Expand); 80206c3fb27SDimitry Andric #include "llvm/IR/VPIntrinsics.def" 80306c3fb27SDimitry Andric 80406c3fb27SDimitry Andric // FP environment operations default to expand. 80506c3fb27SDimitry Andric setOperationAction(ISD::GET_FPENV, VT, Expand); 80606c3fb27SDimitry Andric setOperationAction(ISD::SET_FPENV, VT, Expand); 80706c3fb27SDimitry Andric setOperationAction(ISD::RESET_FPENV, VT, Expand); 8080b57cec5SDimitry Andric } 8090b57cec5SDimitry Andric 8100b57cec5SDimitry Andric // Most targets ignore the @llvm.prefetch intrinsic. 8110b57cec5SDimitry Andric setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 8120b57cec5SDimitry Andric 8130b57cec5SDimitry Andric // Most targets also ignore the @llvm.readcyclecounter intrinsic. 8140b57cec5SDimitry Andric setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 8150b57cec5SDimitry Andric 816*0fca6ea1SDimitry Andric // Most targets also ignore the @llvm.readsteadycounter intrinsic. 817*0fca6ea1SDimitry Andric setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand); 818*0fca6ea1SDimitry Andric 8190b57cec5SDimitry Andric // ConstantFP nodes default to expand. Targets can either change this to 8200b57cec5SDimitry Andric // Legal, in which case all fp constants are legal, or use isFPImmLegal() 8210b57cec5SDimitry Andric // to optimize expansions for certain constants. 82281ad6265SDimitry Andric setOperationAction(ISD::ConstantFP, 8238a4dda33SDimitry Andric {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, 82481ad6265SDimitry Andric Expand); 8250b57cec5SDimitry Andric 8260b57cec5SDimitry Andric // These library functions default to expand. 827*0fca6ea1SDimitry Andric setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 828*0fca6ea1SDimitry Andric ISD::FEXP, ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR, 829*0fca6ea1SDimitry Andric ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, 830*0fca6ea1SDimitry Andric ISD::LROUND, ISD::LLROUND, ISD::LRINT, ISD::LLRINT, 831*0fca6ea1SDimitry Andric ISD::FROUNDEVEN, ISD::FTAN, ISD::FACOS, ISD::FASIN, 832*0fca6ea1SDimitry Andric ISD::FATAN, ISD::FCOSH, ISD::FSINH, ISD::FTANH}, 83381ad6265SDimitry Andric {MVT::f32, MVT::f64, MVT::f128}, Expand); 8340b57cec5SDimitry Andric 835*0fca6ea1SDimitry Andric setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH, 836*0fca6ea1SDimitry Andric ISD::FSINH, ISD::FTANH}, 837*0fca6ea1SDimitry Andric MVT::f16, Promote); 8380b57cec5SDimitry Andric // Default ISD::TRAP to expand (which turns it into abort). 8390b57cec5SDimitry Andric setOperationAction(ISD::TRAP, MVT::Other, Expand); 8400b57cec5SDimitry Andric 8410b57cec5SDimitry Andric // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 8420b57cec5SDimitry Andric // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 8430b57cec5SDimitry Andric setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 844e8d8bef9SDimitry Andric 845e8d8bef9SDimitry Andric setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 84606c3fb27SDimitry Andric 84706c3fb27SDimitry Andric setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand); 84806c3fb27SDimitry Andric setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand); 8495f757f3fSDimitry Andric 8505f757f3fSDimitry Andric for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { 8515f757f3fSDimitry Andric setOperationAction(ISD::GET_FPMODE, VT, Expand); 8525f757f3fSDimitry Andric setOperationAction(ISD::SET_FPMODE, VT, Expand); 8535f757f3fSDimitry Andric } 8545f757f3fSDimitry Andric setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand); 855*0fca6ea1SDimitry Andric 856*0fca6ea1SDimitry Andric // This one by default will call __clear_cache unless the target 857*0fca6ea1SDimitry Andric // wants something different. 858*0fca6ea1SDimitry Andric setOperationAction(ISD::CLEAR_CACHE, MVT::Other, LibCall); 8590b57cec5SDimitry Andric } 8600b57cec5SDimitry Andric 8610b57cec5SDimitry Andric MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 8620b57cec5SDimitry Andric EVT) const { 8630b57cec5SDimitry Andric return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 8640b57cec5SDimitry Andric } 8650b57cec5SDimitry Andric 866*0fca6ea1SDimitry Andric EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, 867*0fca6ea1SDimitry Andric const DataLayout &DL) const { 8680b57cec5SDimitry Andric assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 8690b57cec5SDimitry Andric if (LHSTy.isVector()) 8700b57cec5SDimitry Andric return LHSTy; 871*0fca6ea1SDimitry Andric MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy); 872349cc55cSDimitry Andric // If any possible shift value won't fit in the prefered type, just use 873349cc55cSDimitry Andric // something safe. Assume it will be legalized when the shift is expanded. 874349cc55cSDimitry Andric if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) 875349cc55cSDimitry Andric ShiftVT = MVT::i32; 876349cc55cSDimitry Andric assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && 877349cc55cSDimitry Andric "ShiftVT is still too small!"); 878349cc55cSDimitry Andric return ShiftVT; 8790b57cec5SDimitry Andric } 8800b57cec5SDimitry Andric 8810b57cec5SDimitry Andric bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 8820b57cec5SDimitry Andric assert(isTypeLegal(VT)); 8830b57cec5SDimitry Andric switch (Op) { 8840b57cec5SDimitry Andric default: 8850b57cec5SDimitry Andric return false; 8860b57cec5SDimitry Andric case ISD::SDIV: 8870b57cec5SDimitry Andric case ISD::UDIV: 8880b57cec5SDimitry Andric case ISD::SREM: 8890b57cec5SDimitry Andric case ISD::UREM: 8900b57cec5SDimitry Andric return true; 8910b57cec5SDimitry Andric } 8920b57cec5SDimitry Andric } 8930b57cec5SDimitry Andric 894e8d8bef9SDimitry Andric bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 895e8d8bef9SDimitry Andric unsigned DestAS) const { 896e8d8bef9SDimitry Andric return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 897e8d8bef9SDimitry Andric } 898e8d8bef9SDimitry Andric 899*0fca6ea1SDimitry Andric unsigned TargetLoweringBase::getBitWidthForCttzElements( 900*0fca6ea1SDimitry Andric Type *RetTy, ElementCount EC, bool ZeroIsPoison, 901*0fca6ea1SDimitry Andric const ConstantRange *VScaleRange) const { 902*0fca6ea1SDimitry Andric // Find the smallest "sensible" element type to use for the expansion. 903*0fca6ea1SDimitry Andric ConstantRange CR(APInt(64, EC.getKnownMinValue())); 904*0fca6ea1SDimitry Andric if (EC.isScalable()) 905*0fca6ea1SDimitry Andric CR = CR.umul_sat(*VScaleRange); 906*0fca6ea1SDimitry Andric 907*0fca6ea1SDimitry Andric if (ZeroIsPoison) 908*0fca6ea1SDimitry Andric CR = CR.subtract(APInt(64, 1)); 909*0fca6ea1SDimitry Andric 910*0fca6ea1SDimitry Andric unsigned EltWidth = RetTy->getScalarSizeInBits(); 911*0fca6ea1SDimitry Andric EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 912*0fca6ea1SDimitry Andric EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 913*0fca6ea1SDimitry Andric 914*0fca6ea1SDimitry Andric return EltWidth; 915*0fca6ea1SDimitry Andric } 916*0fca6ea1SDimitry Andric 9170b57cec5SDimitry Andric void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 9180b57cec5SDimitry Andric // If the command-line option was specified, ignore this request. 9190b57cec5SDimitry Andric if (!JumpIsExpensiveOverride.getNumOccurrences()) 9200b57cec5SDimitry Andric JumpIsExpensive = isExpensive; 9210b57cec5SDimitry Andric } 9220b57cec5SDimitry Andric 9230b57cec5SDimitry Andric TargetLoweringBase::LegalizeKind 9240b57cec5SDimitry Andric TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 9250b57cec5SDimitry Andric // If this is a simple type, use the ComputeRegisterProp mechanism. 9260b57cec5SDimitry Andric if (VT.isSimple()) { 9270b57cec5SDimitry Andric MVT SVT = VT.getSimpleVT(); 928bdd1243dSDimitry Andric assert((unsigned)SVT.SimpleTy < std::size(TransformToType)); 9290b57cec5SDimitry Andric MVT NVT = TransformToType[SVT.SimpleTy]; 9300b57cec5SDimitry Andric LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 9310b57cec5SDimitry Andric 9320b57cec5SDimitry Andric assert((LA == TypeLegal || LA == TypeSoftenFloat || 9335ffd83dbSDimitry Andric LA == TypeSoftPromoteHalf || 9348bcb0991SDimitry Andric (NVT.isVector() || 9358bcb0991SDimitry Andric ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 9360b57cec5SDimitry Andric "Promote may not follow Expand or Promote"); 9370b57cec5SDimitry Andric 9380b57cec5SDimitry Andric if (LA == TypeSplitVector) 939e8d8bef9SDimitry Andric return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 9400b57cec5SDimitry Andric if (LA == TypeScalarizeVector) 9410b57cec5SDimitry Andric return LegalizeKind(LA, SVT.getVectorElementType()); 9420b57cec5SDimitry Andric return LegalizeKind(LA, NVT); 9430b57cec5SDimitry Andric } 9440b57cec5SDimitry Andric 9450b57cec5SDimitry Andric // Handle Extended Scalar Types. 9460b57cec5SDimitry Andric if (!VT.isVector()) { 9470b57cec5SDimitry Andric assert(VT.isInteger() && "Float types must be simple"); 9480b57cec5SDimitry Andric unsigned BitSize = VT.getSizeInBits(); 9490b57cec5SDimitry Andric // First promote to a power-of-two size, then expand if necessary. 9500b57cec5SDimitry Andric if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 9510b57cec5SDimitry Andric EVT NVT = VT.getRoundIntegerType(Context); 9520b57cec5SDimitry Andric assert(NVT != VT && "Unable to round integer VT"); 9530b57cec5SDimitry Andric LegalizeKind NextStep = getTypeConversion(Context, NVT); 9540b57cec5SDimitry Andric // Avoid multi-step promotion. 9550b57cec5SDimitry Andric if (NextStep.first == TypePromoteInteger) 9560b57cec5SDimitry Andric return NextStep; 9570b57cec5SDimitry Andric // Return rounded integer type. 9580b57cec5SDimitry Andric return LegalizeKind(TypePromoteInteger, NVT); 9590b57cec5SDimitry Andric } 9600b57cec5SDimitry Andric 9610b57cec5SDimitry Andric return LegalizeKind(TypeExpandInteger, 9620b57cec5SDimitry Andric EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 9630b57cec5SDimitry Andric } 9640b57cec5SDimitry Andric 9650b57cec5SDimitry Andric // Handle vector types. 9665ffd83dbSDimitry Andric ElementCount NumElts = VT.getVectorElementCount(); 9670b57cec5SDimitry Andric EVT EltVT = VT.getVectorElementType(); 9680b57cec5SDimitry Andric 9690b57cec5SDimitry Andric // Vectors with only one element are always scalarized. 970e8d8bef9SDimitry Andric if (NumElts.isScalar()) 9710b57cec5SDimitry Andric return LegalizeKind(TypeScalarizeVector, EltVT); 9720b57cec5SDimitry Andric 9730b57cec5SDimitry Andric // Try to widen vector elements until the element type is a power of two and 9740b57cec5SDimitry Andric // promote it to a legal type later on, for example: 9750b57cec5SDimitry Andric // <3 x i8> -> <4 x i8> -> <4 x i32> 9760b57cec5SDimitry Andric if (EltVT.isInteger()) { 9770b57cec5SDimitry Andric // Vectors with a number of elements that is not a power of two are always 9780b57cec5SDimitry Andric // widened, for example <3 x i8> -> <4 x i8>. 9790b57cec5SDimitry Andric if (!VT.isPow2VectorType()) { 980e8d8bef9SDimitry Andric NumElts = NumElts.coefficientNextPowerOf2(); 9810b57cec5SDimitry Andric EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 9820b57cec5SDimitry Andric return LegalizeKind(TypeWidenVector, NVT); 9830b57cec5SDimitry Andric } 9840b57cec5SDimitry Andric 9850b57cec5SDimitry Andric // Examine the element type. 9860b57cec5SDimitry Andric LegalizeKind LK = getTypeConversion(Context, EltVT); 9870b57cec5SDimitry Andric 9880b57cec5SDimitry Andric // If type is to be expanded, split the vector. 9890b57cec5SDimitry Andric // <4 x i140> -> <2 x i140> 990fe6060f1SDimitry Andric if (LK.first == TypeExpandInteger) { 991fe6060f1SDimitry Andric if (VT.getVectorElementCount().isScalable()) 992fe6060f1SDimitry Andric return LegalizeKind(TypeScalarizeScalableVector, EltVT); 9930b57cec5SDimitry Andric return LegalizeKind(TypeSplitVector, 994e8d8bef9SDimitry Andric VT.getHalfNumVectorElementsVT(Context)); 995fe6060f1SDimitry Andric } 9960b57cec5SDimitry Andric 9970b57cec5SDimitry Andric // Promote the integer element types until a legal vector type is found 9980b57cec5SDimitry Andric // or until the element integer type is too big. If a legal type was not 9990b57cec5SDimitry Andric // found, fallback to the usual mechanism of widening/splitting the 10000b57cec5SDimitry Andric // vector. 10010b57cec5SDimitry Andric EVT OldEltVT = EltVT; 10020b57cec5SDimitry Andric while (true) { 10030b57cec5SDimitry Andric // Increase the bitwidth of the element to the next pow-of-two 10040b57cec5SDimitry Andric // (which is greater than 8 bits). 10050b57cec5SDimitry Andric EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 10060b57cec5SDimitry Andric .getRoundIntegerType(Context); 10070b57cec5SDimitry Andric 10080b57cec5SDimitry Andric // Stop trying when getting a non-simple element type. 10090b57cec5SDimitry Andric // Note that vector elements may be greater than legal vector element 10100b57cec5SDimitry Andric // types. Example: X86 XMM registers hold 64bit element on 32bit 10110b57cec5SDimitry Andric // systems. 10120b57cec5SDimitry Andric if (!EltVT.isSimple()) 10130b57cec5SDimitry Andric break; 10140b57cec5SDimitry Andric 10150b57cec5SDimitry Andric // Build a new vector type and check if it is legal. 10160b57cec5SDimitry Andric MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 10170b57cec5SDimitry Andric // Found a legal promoted vector type. 10180b57cec5SDimitry Andric if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 10190b57cec5SDimitry Andric return LegalizeKind(TypePromoteInteger, 10200b57cec5SDimitry Andric EVT::getVectorVT(Context, EltVT, NumElts)); 10210b57cec5SDimitry Andric } 10220b57cec5SDimitry Andric 10230b57cec5SDimitry Andric // Reset the type to the unexpanded type if we did not find a legal vector 10240b57cec5SDimitry Andric // type with a promoted vector element type. 10250b57cec5SDimitry Andric EltVT = OldEltVT; 10260b57cec5SDimitry Andric } 10270b57cec5SDimitry Andric 10280b57cec5SDimitry Andric // Try to widen the vector until a legal type is found. 10290b57cec5SDimitry Andric // If there is no wider legal type, split the vector. 10300b57cec5SDimitry Andric while (true) { 10310b57cec5SDimitry Andric // Round up to the next power of 2. 1032e8d8bef9SDimitry Andric NumElts = NumElts.coefficientNextPowerOf2(); 10330b57cec5SDimitry Andric 10340b57cec5SDimitry Andric // If there is no simple vector type with this many elements then there 10350b57cec5SDimitry Andric // cannot be a larger legal vector type. Note that this assumes that 10360b57cec5SDimitry Andric // there are no skipped intermediate vector types in the simple types. 10370b57cec5SDimitry Andric if (!EltVT.isSimple()) 10380b57cec5SDimitry Andric break; 10390b57cec5SDimitry Andric MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 10400b57cec5SDimitry Andric if (LargerVector == MVT()) 10410b57cec5SDimitry Andric break; 10420b57cec5SDimitry Andric 10430b57cec5SDimitry Andric // If this type is legal then widen the vector. 10440b57cec5SDimitry Andric if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 10450b57cec5SDimitry Andric return LegalizeKind(TypeWidenVector, LargerVector); 10460b57cec5SDimitry Andric } 10470b57cec5SDimitry Andric 10480b57cec5SDimitry Andric // Widen odd vectors to next power of two. 10490b57cec5SDimitry Andric if (!VT.isPow2VectorType()) { 10500b57cec5SDimitry Andric EVT NVT = VT.getPow2VectorType(Context); 10510b57cec5SDimitry Andric return LegalizeKind(TypeWidenVector, NVT); 10520b57cec5SDimitry Andric } 10530b57cec5SDimitry Andric 1054fe6060f1SDimitry Andric if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 1055fe6060f1SDimitry Andric return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1056fe6060f1SDimitry Andric 10570b57cec5SDimitry Andric // Vectors with illegal element types are expanded. 1058e8d8bef9SDimitry Andric EVT NVT = EVT::getVectorVT(Context, EltVT, 1059e8d8bef9SDimitry Andric VT.getVectorElementCount().divideCoefficientBy(2)); 10600b57cec5SDimitry Andric return LegalizeKind(TypeSplitVector, NVT); 10610b57cec5SDimitry Andric } 10620b57cec5SDimitry Andric 10630b57cec5SDimitry Andric static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 10640b57cec5SDimitry Andric unsigned &NumIntermediates, 10650b57cec5SDimitry Andric MVT &RegisterVT, 10660b57cec5SDimitry Andric TargetLoweringBase *TLI) { 10670b57cec5SDimitry Andric // Figure out the right, legal destination reg to copy into. 10685ffd83dbSDimitry Andric ElementCount EC = VT.getVectorElementCount(); 10690b57cec5SDimitry Andric MVT EltTy = VT.getVectorElementType(); 10700b57cec5SDimitry Andric 10710b57cec5SDimitry Andric unsigned NumVectorRegs = 1; 10720b57cec5SDimitry Andric 10735ffd83dbSDimitry Andric // Scalable vectors cannot be scalarized, so splitting or widening is 10745ffd83dbSDimitry Andric // required. 1075e8d8bef9SDimitry Andric if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 10765ffd83dbSDimitry Andric llvm_unreachable( 10775ffd83dbSDimitry Andric "Splitting or widening of non-power-of-2 MVTs is not implemented."); 10785ffd83dbSDimitry Andric 10795ffd83dbSDimitry Andric // FIXME: We don't support non-power-of-2-sized vectors for now. 10805ffd83dbSDimitry Andric // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1081e8d8bef9SDimitry Andric if (!isPowerOf2_32(EC.getKnownMinValue())) { 10825ffd83dbSDimitry Andric // Split EC to unit size (scalable property is preserved). 1083e8d8bef9SDimitry Andric NumVectorRegs = EC.getKnownMinValue(); 1084e8d8bef9SDimitry Andric EC = ElementCount::getFixed(1); 10850b57cec5SDimitry Andric } 10860b57cec5SDimitry Andric 10875ffd83dbSDimitry Andric // Divide the input until we get to a supported size. This will 10885ffd83dbSDimitry Andric // always end up with an EC that represent a scalar or a scalable 10895ffd83dbSDimitry Andric // scalar. 1090e8d8bef9SDimitry Andric while (EC.getKnownMinValue() > 1 && 1091e8d8bef9SDimitry Andric !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1092e8d8bef9SDimitry Andric EC = EC.divideCoefficientBy(2); 10930b57cec5SDimitry Andric NumVectorRegs <<= 1; 10940b57cec5SDimitry Andric } 10950b57cec5SDimitry Andric 10960b57cec5SDimitry Andric NumIntermediates = NumVectorRegs; 10970b57cec5SDimitry Andric 10985ffd83dbSDimitry Andric MVT NewVT = MVT::getVectorVT(EltTy, EC); 10990b57cec5SDimitry Andric if (!TLI->isTypeLegal(NewVT)) 11000b57cec5SDimitry Andric NewVT = EltTy; 11010b57cec5SDimitry Andric IntermediateVT = NewVT; 11020b57cec5SDimitry Andric 1103e8d8bef9SDimitry Andric unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 11040b57cec5SDimitry Andric 11050b57cec5SDimitry Andric // Convert sizes such as i33 to i64. 110606c3fb27SDimitry Andric LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits); 11070b57cec5SDimitry Andric 11080b57cec5SDimitry Andric MVT DestVT = TLI->getRegisterType(NewVT); 11090b57cec5SDimitry Andric RegisterVT = DestVT; 11100b57cec5SDimitry Andric if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1111e8d8bef9SDimitry Andric return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 11120b57cec5SDimitry Andric 11130b57cec5SDimitry Andric // Otherwise, promotion or legal types use the same number of registers as 11140b57cec5SDimitry Andric // the vector decimated to the appropriate level. 11150b57cec5SDimitry Andric return NumVectorRegs; 11160b57cec5SDimitry Andric } 11170b57cec5SDimitry Andric 11180b57cec5SDimitry Andric /// isLegalRC - Return true if the value types that can be represented by the 11190b57cec5SDimitry Andric /// specified register class are all legal. 11200b57cec5SDimitry Andric bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 11210b57cec5SDimitry Andric const TargetRegisterClass &RC) const { 1122fcaf7f86SDimitry Andric for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 11230b57cec5SDimitry Andric if (isTypeLegal(*I)) 11240b57cec5SDimitry Andric return true; 11250b57cec5SDimitry Andric return false; 11260b57cec5SDimitry Andric } 11270b57cec5SDimitry Andric 11280b57cec5SDimitry Andric /// Replace/modify any TargetFrameIndex operands with a targte-dependent 11290b57cec5SDimitry Andric /// sequence of memory operands that is recognized by PrologEpilogInserter. 11300b57cec5SDimitry Andric MachineBasicBlock * 11310b57cec5SDimitry Andric TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 11320b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 11330b57cec5SDimitry Andric MachineInstr *MI = &InitialMI; 11340b57cec5SDimitry Andric MachineFunction &MF = *MI->getMF(); 11350b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 11360b57cec5SDimitry Andric 11370b57cec5SDimitry Andric // We're handling multiple types of operands here: 11380b57cec5SDimitry Andric // PATCHPOINT MetaArgs - live-in, read only, direct 11390b57cec5SDimitry Andric // STATEPOINT Deopt Spill - live-through, read only, indirect 11400b57cec5SDimitry Andric // STATEPOINT Deopt Alloca - live-through, read only, direct 11410b57cec5SDimitry Andric // (We're currently conservative and mark the deopt slots read/write in 11420b57cec5SDimitry Andric // practice.) 11430b57cec5SDimitry Andric // STATEPOINT GC Spill - live-through, read/write, indirect 11440b57cec5SDimitry Andric // STATEPOINT GC Alloca - live-through, read/write, direct 11450b57cec5SDimitry Andric // The live-in vs live-through is handled already (the live through ones are 11460b57cec5SDimitry Andric // all stack slots), but we need to handle the different type of stackmap 11470b57cec5SDimitry Andric // operands and memory effects here. 11480b57cec5SDimitry Andric 11490eae32dcSDimitry Andric if (llvm::none_of(MI->operands(), 11505ffd83dbSDimitry Andric [](MachineOperand &Operand) { return Operand.isFI(); })) 11515ffd83dbSDimitry Andric return MBB; 11525ffd83dbSDimitry Andric 11535ffd83dbSDimitry Andric MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 11545ffd83dbSDimitry Andric 11555ffd83dbSDimitry Andric // Inherit previous memory operands. 11565ffd83dbSDimitry Andric MIB.cloneMemRefs(*MI); 11575ffd83dbSDimitry Andric 1158e8d8bef9SDimitry Andric for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1159e8d8bef9SDimitry Andric MachineOperand &MO = MI->getOperand(i); 11605ffd83dbSDimitry Andric if (!MO.isFI()) { 1161e8d8bef9SDimitry Andric // Index of Def operand this Use it tied to. 1162e8d8bef9SDimitry Andric // Since Defs are coming before Uses, if Use is tied, then 1163e8d8bef9SDimitry Andric // index of Def must be smaller that index of that Use. 1164e8d8bef9SDimitry Andric // Also, Defs preserve their position in new MI. 1165e8d8bef9SDimitry Andric unsigned TiedTo = i; 1166e8d8bef9SDimitry Andric if (MO.isReg() && MO.isTied()) 1167e8d8bef9SDimitry Andric TiedTo = MI->findTiedOperandIdx(i); 11685ffd83dbSDimitry Andric MIB.add(MO); 1169e8d8bef9SDimitry Andric if (TiedTo < i) 1170e8d8bef9SDimitry Andric MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 11710b57cec5SDimitry Andric continue; 11725ffd83dbSDimitry Andric } 11730b57cec5SDimitry Andric 11740b57cec5SDimitry Andric // foldMemoryOperand builds a new MI after replacing a single FI operand 11750b57cec5SDimitry Andric // with the canonical set of five x86 addressing-mode operands. 11760b57cec5SDimitry Andric int FI = MO.getIndex(); 11770b57cec5SDimitry Andric 11780b57cec5SDimitry Andric // Add frame index operands recognized by stackmaps.cpp 11790b57cec5SDimitry Andric if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 11800b57cec5SDimitry Andric // indirect-mem-ref tag, size, #FI, offset. 11810b57cec5SDimitry Andric // Used for spills inserted by StatepointLowering. This codepath is not 11820b57cec5SDimitry Andric // used for patchpoints/stackmaps at all, for these spilling is done via 11830b57cec5SDimitry Andric // foldMemoryOperand callback only. 11840b57cec5SDimitry Andric assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 11850b57cec5SDimitry Andric MIB.addImm(StackMaps::IndirectMemRefOp); 11860b57cec5SDimitry Andric MIB.addImm(MFI.getObjectSize(FI)); 11875ffd83dbSDimitry Andric MIB.add(MO); 11880b57cec5SDimitry Andric MIB.addImm(0); 11890b57cec5SDimitry Andric } else { 11900b57cec5SDimitry Andric // direct-mem-ref tag, #FI, offset. 11910b57cec5SDimitry Andric // Used by patchpoint, and direct alloca arguments to statepoints 11920b57cec5SDimitry Andric MIB.addImm(StackMaps::DirectMemRefOp); 11935ffd83dbSDimitry Andric MIB.add(MO); 11940b57cec5SDimitry Andric MIB.addImm(0); 11950b57cec5SDimitry Andric } 11960b57cec5SDimitry Andric 11970b57cec5SDimitry Andric assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 11980b57cec5SDimitry Andric 11990b57cec5SDimitry Andric // Add a new memory operand for this FI. 12000b57cec5SDimitry Andric assert(MFI.getObjectOffset(FI) != -1); 12010b57cec5SDimitry Andric 12020b57cec5SDimitry Andric // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 12030b57cec5SDimitry Andric // PATCHPOINT should be updated to do the same. (TODO) 12040b57cec5SDimitry Andric if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 12050b57cec5SDimitry Andric auto Flags = MachineMemOperand::MOLoad; 12060b57cec5SDimitry Andric MachineMemOperand *MMO = MF.getMachineMemOperand( 12070b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI), Flags, 12085ffd83dbSDimitry Andric MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 12090b57cec5SDimitry Andric MIB->addMemOperand(MF, MMO); 12100b57cec5SDimitry Andric } 12110b57cec5SDimitry Andric } 12125ffd83dbSDimitry Andric MBB->insert(MachineBasicBlock::iterator(MI), MIB); 12135ffd83dbSDimitry Andric MI->eraseFromParent(); 12140b57cec5SDimitry Andric return MBB; 12150b57cec5SDimitry Andric } 12160b57cec5SDimitry Andric 12170b57cec5SDimitry Andric /// findRepresentativeClass - Return the largest legal super-reg register class 12180b57cec5SDimitry Andric /// of the register class for the specified type and its associated "cost". 12190b57cec5SDimitry Andric // This function is in TargetLowering because it uses RegClassForVT which would 12200b57cec5SDimitry Andric // need to be moved to TargetRegisterInfo and would necessitate moving 12210b57cec5SDimitry Andric // isTypeLegal over as well - a massive change that would just require 12220b57cec5SDimitry Andric // TargetLowering having a TargetRegisterInfo class member that it would use. 12230b57cec5SDimitry Andric std::pair<const TargetRegisterClass *, uint8_t> 12240b57cec5SDimitry Andric TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 12250b57cec5SDimitry Andric MVT VT) const { 12260b57cec5SDimitry Andric const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 12270b57cec5SDimitry Andric if (!RC) 12280b57cec5SDimitry Andric return std::make_pair(RC, 0); 12290b57cec5SDimitry Andric 12300b57cec5SDimitry Andric // Compute the set of all super-register classes. 12310b57cec5SDimitry Andric BitVector SuperRegRC(TRI->getNumRegClasses()); 12320b57cec5SDimitry Andric for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 12330b57cec5SDimitry Andric SuperRegRC.setBitsInMask(RCI.getMask()); 12340b57cec5SDimitry Andric 12350b57cec5SDimitry Andric // Find the first legal register class with the largest spill size. 12360b57cec5SDimitry Andric const TargetRegisterClass *BestRC = RC; 12370b57cec5SDimitry Andric for (unsigned i : SuperRegRC.set_bits()) { 12380b57cec5SDimitry Andric const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 12390b57cec5SDimitry Andric // We want the largest possible spill size. 12400b57cec5SDimitry Andric if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 12410b57cec5SDimitry Andric continue; 12420b57cec5SDimitry Andric if (!isLegalRC(*TRI, *SuperRC)) 12430b57cec5SDimitry Andric continue; 12440b57cec5SDimitry Andric BestRC = SuperRC; 12450b57cec5SDimitry Andric } 12460b57cec5SDimitry Andric return std::make_pair(BestRC, 1); 12470b57cec5SDimitry Andric } 12480b57cec5SDimitry Andric 12490b57cec5SDimitry Andric /// computeRegisterProperties - Once all of the register classes are added, 12500b57cec5SDimitry Andric /// this allows us to compute derived properties we expose. 12510b57cec5SDimitry Andric void TargetLoweringBase::computeRegisterProperties( 12520b57cec5SDimitry Andric const TargetRegisterInfo *TRI) { 12530b57cec5SDimitry Andric // Everything defaults to needing one register. 1254fe6060f1SDimitry Andric for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 12550b57cec5SDimitry Andric NumRegistersForVT[i] = 1; 12560b57cec5SDimitry Andric RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 12570b57cec5SDimitry Andric } 12580b57cec5SDimitry Andric // ...except isVoid, which doesn't need any registers. 12590b57cec5SDimitry Andric NumRegistersForVT[MVT::isVoid] = 0; 12600b57cec5SDimitry Andric 12610b57cec5SDimitry Andric // Find the largest integer register class. 12620b57cec5SDimitry Andric unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 12630b57cec5SDimitry Andric for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 12640b57cec5SDimitry Andric assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 12650b57cec5SDimitry Andric 12660b57cec5SDimitry Andric // Every integer value type larger than this largest register takes twice as 12670b57cec5SDimitry Andric // many registers to represent as the previous ValueType. 12680b57cec5SDimitry Andric for (unsigned ExpandedReg = LargestIntReg + 1; 12690b57cec5SDimitry Andric ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 12700b57cec5SDimitry Andric NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 12710b57cec5SDimitry Andric RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 12720b57cec5SDimitry Andric TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 12730b57cec5SDimitry Andric ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 12740b57cec5SDimitry Andric TypeExpandInteger); 12750b57cec5SDimitry Andric } 12760b57cec5SDimitry Andric 12770b57cec5SDimitry Andric // Inspect all of the ValueType's smaller than the largest integer 12780b57cec5SDimitry Andric // register to see which ones need promotion. 12790b57cec5SDimitry Andric unsigned LegalIntReg = LargestIntReg; 12800b57cec5SDimitry Andric for (unsigned IntReg = LargestIntReg - 1; 12810b57cec5SDimitry Andric IntReg >= (unsigned)MVT::i1; --IntReg) { 12820b57cec5SDimitry Andric MVT IVT = (MVT::SimpleValueType)IntReg; 12830b57cec5SDimitry Andric if (isTypeLegal(IVT)) { 12840b57cec5SDimitry Andric LegalIntReg = IntReg; 12850b57cec5SDimitry Andric } else { 12860b57cec5SDimitry Andric RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 12870b57cec5SDimitry Andric (MVT::SimpleValueType)LegalIntReg; 12880b57cec5SDimitry Andric ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 12890b57cec5SDimitry Andric } 12900b57cec5SDimitry Andric } 12910b57cec5SDimitry Andric 12920b57cec5SDimitry Andric // ppcf128 type is really two f64's. 12930b57cec5SDimitry Andric if (!isTypeLegal(MVT::ppcf128)) { 12940b57cec5SDimitry Andric if (isTypeLegal(MVT::f64)) { 12950b57cec5SDimitry Andric NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 12960b57cec5SDimitry Andric RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 12970b57cec5SDimitry Andric TransformToType[MVT::ppcf128] = MVT::f64; 12980b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 12990b57cec5SDimitry Andric } else { 13000b57cec5SDimitry Andric NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 13010b57cec5SDimitry Andric RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 13020b57cec5SDimitry Andric TransformToType[MVT::ppcf128] = MVT::i128; 13030b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 13040b57cec5SDimitry Andric } 13050b57cec5SDimitry Andric } 13060b57cec5SDimitry Andric 13070b57cec5SDimitry Andric // Decide how to handle f128. If the target does not have native f128 support, 13080b57cec5SDimitry Andric // expand it to i128 and we will be generating soft float library calls. 13090b57cec5SDimitry Andric if (!isTypeLegal(MVT::f128)) { 13100b57cec5SDimitry Andric NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 13110b57cec5SDimitry Andric RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 13120b57cec5SDimitry Andric TransformToType[MVT::f128] = MVT::i128; 13130b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 13140b57cec5SDimitry Andric } 13150b57cec5SDimitry Andric 1316bdd1243dSDimitry Andric // Decide how to handle f80. If the target does not have native f80 support, 1317bdd1243dSDimitry Andric // expand it to i96 and we will be generating soft float library calls. 1318bdd1243dSDimitry Andric if (!isTypeLegal(MVT::f80)) { 1319bdd1243dSDimitry Andric NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32]; 1320bdd1243dSDimitry Andric RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32]; 1321bdd1243dSDimitry Andric TransformToType[MVT::f80] = MVT::i32; 1322bdd1243dSDimitry Andric ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat); 1323bdd1243dSDimitry Andric } 1324bdd1243dSDimitry Andric 13250b57cec5SDimitry Andric // Decide how to handle f64. If the target does not have native f64 support, 13260b57cec5SDimitry Andric // expand it to i64 and we will be generating soft float library calls. 13270b57cec5SDimitry Andric if (!isTypeLegal(MVT::f64)) { 13280b57cec5SDimitry Andric NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 13290b57cec5SDimitry Andric RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 13300b57cec5SDimitry Andric TransformToType[MVT::f64] = MVT::i64; 13310b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 13320b57cec5SDimitry Andric } 13330b57cec5SDimitry Andric 13340b57cec5SDimitry Andric // Decide how to handle f32. If the target does not have native f32 support, 13350b57cec5SDimitry Andric // expand it to i32 and we will be generating soft float library calls. 13360b57cec5SDimitry Andric if (!isTypeLegal(MVT::f32)) { 13370b57cec5SDimitry Andric NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 13380b57cec5SDimitry Andric RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 13390b57cec5SDimitry Andric TransformToType[MVT::f32] = MVT::i32; 13400b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 13410b57cec5SDimitry Andric } 13420b57cec5SDimitry Andric 13430b57cec5SDimitry Andric // Decide how to handle f16. If the target does not have native f16 support, 13440b57cec5SDimitry Andric // promote it to f32, because there are no f16 library calls (except for 13450b57cec5SDimitry Andric // conversions). 13460b57cec5SDimitry Andric if (!isTypeLegal(MVT::f16)) { 13475ffd83dbSDimitry Andric // Allow targets to control how we legalize half. 1348*0fca6ea1SDimitry Andric bool SoftPromoteHalfType = softPromoteHalfType(); 1349*0fca6ea1SDimitry Andric bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType(); 1350*0fca6ea1SDimitry Andric 1351*0fca6ea1SDimitry Andric if (!UseFPRegsForHalfType) { 13525ffd83dbSDimitry Andric NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 13535ffd83dbSDimitry Andric RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 13545ffd83dbSDimitry Andric } else { 13550b57cec5SDimitry Andric NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 13560b57cec5SDimitry Andric RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1357*0fca6ea1SDimitry Andric } 13580b57cec5SDimitry Andric TransformToType[MVT::f16] = MVT::f32; 1359*0fca6ea1SDimitry Andric if (SoftPromoteHalfType) { 1360*0fca6ea1SDimitry Andric ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1361*0fca6ea1SDimitry Andric } else { 13620b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 13630b57cec5SDimitry Andric } 13645ffd83dbSDimitry Andric } 13650b57cec5SDimitry Andric 136681ad6265SDimitry Andric // Decide how to handle bf16. If the target does not have native bf16 support, 136781ad6265SDimitry Andric // promote it to f32, because there are no bf16 library calls (except for 136881ad6265SDimitry Andric // converting from f32 to bf16). 136981ad6265SDimitry Andric if (!isTypeLegal(MVT::bf16)) { 137081ad6265SDimitry Andric NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32]; 137181ad6265SDimitry Andric RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32]; 137281ad6265SDimitry Andric TransformToType[MVT::bf16] = MVT::f32; 1373bdd1243dSDimitry Andric ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf); 137481ad6265SDimitry Andric } 137581ad6265SDimitry Andric 13760b57cec5SDimitry Andric // Loop over all of the vector value types to see which need transformations. 13770b57cec5SDimitry Andric for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 13780b57cec5SDimitry Andric i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 13790b57cec5SDimitry Andric MVT VT = (MVT::SimpleValueType) i; 13800b57cec5SDimitry Andric if (isTypeLegal(VT)) 13810b57cec5SDimitry Andric continue; 13820b57cec5SDimitry Andric 13830b57cec5SDimitry Andric MVT EltVT = VT.getVectorElementType(); 13845ffd83dbSDimitry Andric ElementCount EC = VT.getVectorElementCount(); 13850b57cec5SDimitry Andric bool IsLegalWiderType = false; 13868bcb0991SDimitry Andric bool IsScalable = VT.isScalableVector(); 13870b57cec5SDimitry Andric LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 13880b57cec5SDimitry Andric switch (PreferredAction) { 13898bcb0991SDimitry Andric case TypePromoteInteger: { 13908bcb0991SDimitry Andric MVT::SimpleValueType EndVT = IsScalable ? 13918bcb0991SDimitry Andric MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 13928bcb0991SDimitry Andric MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 13930b57cec5SDimitry Andric // Try to promote the elements of integer vectors. If no legal 13940b57cec5SDimitry Andric // promotion was found, fall through to the widen-vector method. 13958bcb0991SDimitry Andric for (unsigned nVT = i + 1; 13968bcb0991SDimitry Andric (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 13970b57cec5SDimitry Andric MVT SVT = (MVT::SimpleValueType) nVT; 13980b57cec5SDimitry Andric // Promote vectors of integers to vectors with the same number 13990b57cec5SDimitry Andric // of elements, with a wider element type. 1400e8d8bef9SDimitry Andric if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 14015ffd83dbSDimitry Andric SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 14020b57cec5SDimitry Andric TransformToType[i] = SVT; 14030b57cec5SDimitry Andric RegisterTypeForVT[i] = SVT; 14040b57cec5SDimitry Andric NumRegistersForVT[i] = 1; 14050b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 14060b57cec5SDimitry Andric IsLegalWiderType = true; 14070b57cec5SDimitry Andric break; 14080b57cec5SDimitry Andric } 14090b57cec5SDimitry Andric } 14100b57cec5SDimitry Andric if (IsLegalWiderType) 14110b57cec5SDimitry Andric break; 1412bdd1243dSDimitry Andric [[fallthrough]]; 14138bcb0991SDimitry Andric } 14140b57cec5SDimitry Andric 14150b57cec5SDimitry Andric case TypeWidenVector: 1416e8d8bef9SDimitry Andric if (isPowerOf2_32(EC.getKnownMinValue())) { 14170b57cec5SDimitry Andric // Try to widen the vector. 14180b57cec5SDimitry Andric for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 14190b57cec5SDimitry Andric MVT SVT = (MVT::SimpleValueType) nVT; 14205ffd83dbSDimitry Andric if (SVT.getVectorElementType() == EltVT && 14215ffd83dbSDimitry Andric SVT.isScalableVector() == IsScalable && 1422e8d8bef9SDimitry Andric SVT.getVectorElementCount().getKnownMinValue() > 1423e8d8bef9SDimitry Andric EC.getKnownMinValue() && 1424e8d8bef9SDimitry Andric isTypeLegal(SVT)) { 14250b57cec5SDimitry Andric TransformToType[i] = SVT; 14260b57cec5SDimitry Andric RegisterTypeForVT[i] = SVT; 14270b57cec5SDimitry Andric NumRegistersForVT[i] = 1; 14280b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeWidenVector); 14290b57cec5SDimitry Andric IsLegalWiderType = true; 14300b57cec5SDimitry Andric break; 14310b57cec5SDimitry Andric } 14320b57cec5SDimitry Andric } 14330b57cec5SDimitry Andric if (IsLegalWiderType) 14340b57cec5SDimitry Andric break; 14358bcb0991SDimitry Andric } else { 14368bcb0991SDimitry Andric // Only widen to the next power of 2 to keep consistency with EVT. 14378bcb0991SDimitry Andric MVT NVT = VT.getPow2VectorType(); 14388bcb0991SDimitry Andric if (isTypeLegal(NVT)) { 14398bcb0991SDimitry Andric TransformToType[i] = NVT; 14408bcb0991SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeWidenVector); 14418bcb0991SDimitry Andric RegisterTypeForVT[i] = NVT; 14428bcb0991SDimitry Andric NumRegistersForVT[i] = 1; 14438bcb0991SDimitry Andric break; 14448bcb0991SDimitry Andric } 14458bcb0991SDimitry Andric } 1446bdd1243dSDimitry Andric [[fallthrough]]; 14470b57cec5SDimitry Andric 14480b57cec5SDimitry Andric case TypeSplitVector: 14490b57cec5SDimitry Andric case TypeScalarizeVector: { 14500b57cec5SDimitry Andric MVT IntermediateVT; 14510b57cec5SDimitry Andric MVT RegisterVT; 14520b57cec5SDimitry Andric unsigned NumIntermediates; 1453480093f4SDimitry Andric unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 14540b57cec5SDimitry Andric NumIntermediates, RegisterVT, this); 1455480093f4SDimitry Andric NumRegistersForVT[i] = NumRegisters; 1456480093f4SDimitry Andric assert(NumRegistersForVT[i] == NumRegisters && 1457480093f4SDimitry Andric "NumRegistersForVT size cannot represent NumRegisters!"); 14580b57cec5SDimitry Andric RegisterTypeForVT[i] = RegisterVT; 14590b57cec5SDimitry Andric 14600b57cec5SDimitry Andric MVT NVT = VT.getPow2VectorType(); 14610b57cec5SDimitry Andric if (NVT == VT) { 14620b57cec5SDimitry Andric // Type is already a power of 2. The default action is to split. 14630b57cec5SDimitry Andric TransformToType[i] = MVT::Other; 14640b57cec5SDimitry Andric if (PreferredAction == TypeScalarizeVector) 14650b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 14660b57cec5SDimitry Andric else if (PreferredAction == TypeSplitVector) 14670b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1468e8d8bef9SDimitry Andric else if (EC.getKnownMinValue() > 1) 14695ffd83dbSDimitry Andric ValueTypeActions.setTypeAction(VT, TypeSplitVector); 14700b57cec5SDimitry Andric else 1471e8d8bef9SDimitry Andric ValueTypeActions.setTypeAction(VT, EC.isScalable() 14725ffd83dbSDimitry Andric ? TypeScalarizeScalableVector 14735ffd83dbSDimitry Andric : TypeScalarizeVector); 14740b57cec5SDimitry Andric } else { 14750b57cec5SDimitry Andric TransformToType[i] = NVT; 14760b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeWidenVector); 14770b57cec5SDimitry Andric } 14780b57cec5SDimitry Andric break; 14790b57cec5SDimitry Andric } 14800b57cec5SDimitry Andric default: 14810b57cec5SDimitry Andric llvm_unreachable("Unknown vector legalization action!"); 14820b57cec5SDimitry Andric } 14830b57cec5SDimitry Andric } 14840b57cec5SDimitry Andric 14850b57cec5SDimitry Andric // Determine the 'representative' register class for each value type. 14860b57cec5SDimitry Andric // An representative register class is the largest (meaning one which is 14870b57cec5SDimitry Andric // not a sub-register class / subreg register class) legal register class for 14880b57cec5SDimitry Andric // a group of value types. For example, on i386, i8, i16, and i32 14890b57cec5SDimitry Andric // representative would be GR32; while on x86_64 it's GR64. 1490fe6060f1SDimitry Andric for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 14910b57cec5SDimitry Andric const TargetRegisterClass* RRC; 14920b57cec5SDimitry Andric uint8_t Cost; 14930b57cec5SDimitry Andric std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 14940b57cec5SDimitry Andric RepRegClassForVT[i] = RRC; 14950b57cec5SDimitry Andric RepRegClassCostForVT[i] = Cost; 14960b57cec5SDimitry Andric } 14970b57cec5SDimitry Andric } 14980b57cec5SDimitry Andric 14990b57cec5SDimitry Andric EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 15000b57cec5SDimitry Andric EVT VT) const { 15010b57cec5SDimitry Andric assert(!VT.isVector() && "No default SetCC type for vectors!"); 15020b57cec5SDimitry Andric return getPointerTy(DL).SimpleTy; 15030b57cec5SDimitry Andric } 15040b57cec5SDimitry Andric 15050b57cec5SDimitry Andric MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 15060b57cec5SDimitry Andric return MVT::i32; // return the default value 15070b57cec5SDimitry Andric } 15080b57cec5SDimitry Andric 15090b57cec5SDimitry Andric /// getVectorTypeBreakdown - Vector types are broken down into some number of 15100b57cec5SDimitry Andric /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 15110b57cec5SDimitry Andric /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 15120b57cec5SDimitry Andric /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 15130b57cec5SDimitry Andric /// 15140b57cec5SDimitry Andric /// This method returns the number of registers needed, and the VT for each 15150b57cec5SDimitry Andric /// register. It also returns the VT and quantity of the intermediate values 15160b57cec5SDimitry Andric /// before they are promoted/expanded. 1517fe6060f1SDimitry Andric unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, 1518fe6060f1SDimitry Andric EVT VT, EVT &IntermediateVT, 15190b57cec5SDimitry Andric unsigned &NumIntermediates, 15200b57cec5SDimitry Andric MVT &RegisterVT) const { 15215ffd83dbSDimitry Andric ElementCount EltCnt = VT.getVectorElementCount(); 15220b57cec5SDimitry Andric 15230b57cec5SDimitry Andric // If there is a wider vector type with the same element type as this one, 15240b57cec5SDimitry Andric // or a promoted vector type that has the same number of elements which 15250b57cec5SDimitry Andric // are wider, then we should convert to that legal vector type. 15260b57cec5SDimitry Andric // This handles things like <2 x float> -> <4 x float> and 15270b57cec5SDimitry Andric // <4 x i1> -> <4 x i32>. 15280b57cec5SDimitry Andric LegalizeTypeAction TA = getTypeAction(Context, VT); 1529fe6060f1SDimitry Andric if (!EltCnt.isScalar() && 1530e8d8bef9SDimitry Andric (TA == TypeWidenVector || TA == TypePromoteInteger)) { 15310b57cec5SDimitry Andric EVT RegisterEVT = getTypeToTransformTo(Context, VT); 15320b57cec5SDimitry Andric if (isTypeLegal(RegisterEVT)) { 15330b57cec5SDimitry Andric IntermediateVT = RegisterEVT; 15340b57cec5SDimitry Andric RegisterVT = RegisterEVT.getSimpleVT(); 15350b57cec5SDimitry Andric NumIntermediates = 1; 15360b57cec5SDimitry Andric return 1; 15370b57cec5SDimitry Andric } 15380b57cec5SDimitry Andric } 15390b57cec5SDimitry Andric 15400b57cec5SDimitry Andric // Figure out the right, legal destination reg to copy into. 15410b57cec5SDimitry Andric EVT EltTy = VT.getVectorElementType(); 15420b57cec5SDimitry Andric 15430b57cec5SDimitry Andric unsigned NumVectorRegs = 1; 15440b57cec5SDimitry Andric 15455ffd83dbSDimitry Andric // Scalable vectors cannot be scalarized, so handle the legalisation of the 15465ffd83dbSDimitry Andric // types like done elsewhere in SelectionDAG. 1547349cc55cSDimitry Andric if (EltCnt.isScalable()) { 15485ffd83dbSDimitry Andric LegalizeKind LK; 15495ffd83dbSDimitry Andric EVT PartVT = VT; 15505ffd83dbSDimitry Andric do { 15515ffd83dbSDimitry Andric // Iterate until we've found a legal (part) type to hold VT. 15525ffd83dbSDimitry Andric LK = getTypeConversion(Context, PartVT); 15535ffd83dbSDimitry Andric PartVT = LK.second; 15545ffd83dbSDimitry Andric } while (LK.first != TypeLegal); 15555ffd83dbSDimitry Andric 1556349cc55cSDimitry Andric if (!PartVT.isVector()) { 1557349cc55cSDimitry Andric report_fatal_error( 1558349cc55cSDimitry Andric "Don't know how to legalize this scalable vector type"); 1559349cc55cSDimitry Andric } 15605ffd83dbSDimitry Andric 1561349cc55cSDimitry Andric NumIntermediates = 1562349cc55cSDimitry Andric divideCeil(VT.getVectorElementCount().getKnownMinValue(), 1563349cc55cSDimitry Andric PartVT.getVectorElementCount().getKnownMinValue()); 15645ffd83dbSDimitry Andric IntermediateVT = PartVT; 15655ffd83dbSDimitry Andric RegisterVT = getRegisterType(Context, IntermediateVT); 15665ffd83dbSDimitry Andric return NumIntermediates; 15675ffd83dbSDimitry Andric } 15685ffd83dbSDimitry Andric 15695ffd83dbSDimitry Andric // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 15705ffd83dbSDimitry Andric // we could break down into LHS/RHS like LegalizeDAG does. 1571e8d8bef9SDimitry Andric if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1572e8d8bef9SDimitry Andric NumVectorRegs = EltCnt.getKnownMinValue(); 1573e8d8bef9SDimitry Andric EltCnt = ElementCount::getFixed(1); 15740b57cec5SDimitry Andric } 15750b57cec5SDimitry Andric 15760b57cec5SDimitry Andric // Divide the input until we get to a supported size. This will always 15770b57cec5SDimitry Andric // end with a scalar if the target doesn't support vectors. 1578e8d8bef9SDimitry Andric while (EltCnt.getKnownMinValue() > 1 && 15795ffd83dbSDimitry Andric !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1580e8d8bef9SDimitry Andric EltCnt = EltCnt.divideCoefficientBy(2); 15810b57cec5SDimitry Andric NumVectorRegs <<= 1; 15820b57cec5SDimitry Andric } 15830b57cec5SDimitry Andric 15840b57cec5SDimitry Andric NumIntermediates = NumVectorRegs; 15850b57cec5SDimitry Andric 15865ffd83dbSDimitry Andric EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 15870b57cec5SDimitry Andric if (!isTypeLegal(NewVT)) 15880b57cec5SDimitry Andric NewVT = EltTy; 15890b57cec5SDimitry Andric IntermediateVT = NewVT; 15900b57cec5SDimitry Andric 15910b57cec5SDimitry Andric MVT DestVT = getRegisterType(Context, NewVT); 15920b57cec5SDimitry Andric RegisterVT = DestVT; 15930b57cec5SDimitry Andric 15945ffd83dbSDimitry Andric if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 15955ffd83dbSDimitry Andric TypeSize NewVTSize = NewVT.getSizeInBits(); 15960b57cec5SDimitry Andric // Convert sizes such as i33 to i64. 159706c3fb27SDimitry Andric if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue())) 1598e8d8bef9SDimitry Andric NewVTSize = NewVTSize.coefficientNextPowerOf2(); 15990b57cec5SDimitry Andric return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 16005ffd83dbSDimitry Andric } 16010b57cec5SDimitry Andric 16020b57cec5SDimitry Andric // Otherwise, promotion or legal types use the same number of registers as 16030b57cec5SDimitry Andric // the vector decimated to the appropriate level. 16040b57cec5SDimitry Andric return NumVectorRegs; 16050b57cec5SDimitry Andric } 16060b57cec5SDimitry Andric 1607480093f4SDimitry Andric bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1608480093f4SDimitry Andric uint64_t NumCases, 1609480093f4SDimitry Andric uint64_t Range, 1610480093f4SDimitry Andric ProfileSummaryInfo *PSI, 1611480093f4SDimitry Andric BlockFrequencyInfo *BFI) const { 1612480093f4SDimitry Andric // FIXME: This function check the maximum table size and density, but the 1613480093f4SDimitry Andric // minimum size is not checked. It would be nice if the minimum size is 1614480093f4SDimitry Andric // also combined within this function. Currently, the minimum size check is 1615480093f4SDimitry Andric // performed in findJumpTable() in SelectionDAGBuiler and 1616480093f4SDimitry Andric // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1617480093f4SDimitry Andric const bool OptForSize = 1618480093f4SDimitry Andric SI->getParent()->getParent()->hasOptSize() || 1619480093f4SDimitry Andric llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1620480093f4SDimitry Andric const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1621480093f4SDimitry Andric const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1622480093f4SDimitry Andric 1623480093f4SDimitry Andric // Check whether the number of cases is small enough and 1624480093f4SDimitry Andric // the range is dense enough for a jump table. 1625480093f4SDimitry Andric return (OptForSize || Range <= MaxJumpTableSize) && 1626480093f4SDimitry Andric (NumCases * 100 >= Range * MinDensity); 1627480093f4SDimitry Andric } 1628480093f4SDimitry Andric 162981ad6265SDimitry Andric MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, 163081ad6265SDimitry Andric EVT ConditionVT) const { 163181ad6265SDimitry Andric return getRegisterType(Context, ConditionVT); 163281ad6265SDimitry Andric } 163381ad6265SDimitry Andric 16340b57cec5SDimitry Andric /// Get the EVTs and ArgFlags collections that represent the legalized return 16350b57cec5SDimitry Andric /// type of the given function. This does not require a DAG or a return value, 16360b57cec5SDimitry Andric /// and is suitable for use before any DAGs for the function are constructed. 16370b57cec5SDimitry Andric /// TODO: Move this out of TargetLowering.cpp. 16380b57cec5SDimitry Andric void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 16390b57cec5SDimitry Andric AttributeList attr, 16400b57cec5SDimitry Andric SmallVectorImpl<ISD::OutputArg> &Outs, 16410b57cec5SDimitry Andric const TargetLowering &TLI, const DataLayout &DL) { 16420b57cec5SDimitry Andric SmallVector<EVT, 4> ValueVTs; 16430b57cec5SDimitry Andric ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 16440b57cec5SDimitry Andric unsigned NumValues = ValueVTs.size(); 16450b57cec5SDimitry Andric if (NumValues == 0) return; 16460b57cec5SDimitry Andric 16470b57cec5SDimitry Andric for (unsigned j = 0, f = NumValues; j != f; ++j) { 16480b57cec5SDimitry Andric EVT VT = ValueVTs[j]; 16490b57cec5SDimitry Andric ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 16500b57cec5SDimitry Andric 1651349cc55cSDimitry Andric if (attr.hasRetAttr(Attribute::SExt)) 16520b57cec5SDimitry Andric ExtendKind = ISD::SIGN_EXTEND; 1653349cc55cSDimitry Andric else if (attr.hasRetAttr(Attribute::ZExt)) 16540b57cec5SDimitry Andric ExtendKind = ISD::ZERO_EXTEND; 16550b57cec5SDimitry Andric 1656*0fca6ea1SDimitry Andric if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1657*0fca6ea1SDimitry Andric VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind); 16580b57cec5SDimitry Andric 16590b57cec5SDimitry Andric unsigned NumParts = 16600b57cec5SDimitry Andric TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 16610b57cec5SDimitry Andric MVT PartVT = 16620b57cec5SDimitry Andric TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 16630b57cec5SDimitry Andric 16640b57cec5SDimitry Andric // 'inreg' on function refers to return value 16650b57cec5SDimitry Andric ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1666349cc55cSDimitry Andric if (attr.hasRetAttr(Attribute::InReg)) 16670b57cec5SDimitry Andric Flags.setInReg(); 16680b57cec5SDimitry Andric 16690b57cec5SDimitry Andric // Propagate extension type if any 1670349cc55cSDimitry Andric if (attr.hasRetAttr(Attribute::SExt)) 16710b57cec5SDimitry Andric Flags.setSExt(); 1672349cc55cSDimitry Andric else if (attr.hasRetAttr(Attribute::ZExt)) 16730b57cec5SDimitry Andric Flags.setZExt(); 16740b57cec5SDimitry Andric 1675*0fca6ea1SDimitry Andric for (unsigned i = 0; i < NumParts; ++i) { 1676*0fca6ea1SDimitry Andric ISD::ArgFlagsTy OutFlags = Flags; 1677*0fca6ea1SDimitry Andric if (NumParts > 1 && i == 0) 1678*0fca6ea1SDimitry Andric OutFlags.setSplit(); 1679*0fca6ea1SDimitry Andric else if (i == NumParts - 1 && i != 0) 1680*0fca6ea1SDimitry Andric OutFlags.setSplitEnd(); 1681*0fca6ea1SDimitry Andric 1682*0fca6ea1SDimitry Andric Outs.push_back( 1683*0fca6ea1SDimitry Andric ISD::OutputArg(OutFlags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1684*0fca6ea1SDimitry Andric } 16850b57cec5SDimitry Andric } 16860b57cec5SDimitry Andric } 16870b57cec5SDimitry Andric 16880b57cec5SDimitry Andric /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 16890b57cec5SDimitry Andric /// function arguments in the caller parameter area. This is the actual 16900b57cec5SDimitry Andric /// alignment, not its logarithm. 1691349cc55cSDimitry Andric uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, 16920b57cec5SDimitry Andric const DataLayout &DL) const { 16935ffd83dbSDimitry Andric return DL.getABITypeAlign(Ty).value(); 16940b57cec5SDimitry Andric } 16950b57cec5SDimitry Andric 16968bcb0991SDimitry Andric bool TargetLoweringBase::allowsMemoryAccessForAlignment( 16978bcb0991SDimitry Andric LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1698bdd1243dSDimitry Andric Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { 16990b57cec5SDimitry Andric // Check if the specified alignment is sufficient based on the data layout. 17000b57cec5SDimitry Andric // TODO: While using the data layout works in practice, a better solution 17010b57cec5SDimitry Andric // would be to implement this check directly (make this a virtual function). 17020b57cec5SDimitry Andric // For example, the ABI alignment may change based on software platform while 17030b57cec5SDimitry Andric // this function should only be affected by hardware implementation. 17040b57cec5SDimitry Andric Type *Ty = VT.getTypeForEVT(Context); 1705fe6060f1SDimitry Andric if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { 17060b57cec5SDimitry Andric // Assume that an access that meets the ABI-specified alignment is fast. 17070b57cec5SDimitry Andric if (Fast != nullptr) 1708bdd1243dSDimitry Andric *Fast = 1; 17090b57cec5SDimitry Andric return true; 17100b57cec5SDimitry Andric } 17110b57cec5SDimitry Andric 17120b57cec5SDimitry Andric // This is a misaligned access. 1713fe6060f1SDimitry Andric return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 17140b57cec5SDimitry Andric } 17150b57cec5SDimitry Andric 17168bcb0991SDimitry Andric bool TargetLoweringBase::allowsMemoryAccessForAlignment( 17178bcb0991SDimitry Andric LLVMContext &Context, const DataLayout &DL, EVT VT, 1718bdd1243dSDimitry Andric const MachineMemOperand &MMO, unsigned *Fast) const { 17198bcb0991SDimitry Andric return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 17205ffd83dbSDimitry Andric MMO.getAlign(), MMO.getFlags(), Fast); 17218bcb0991SDimitry Andric } 17228bcb0991SDimitry Andric 17235ffd83dbSDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 17245ffd83dbSDimitry Andric const DataLayout &DL, EVT VT, 17255ffd83dbSDimitry Andric unsigned AddrSpace, Align Alignment, 17265ffd83dbSDimitry Andric MachineMemOperand::Flags Flags, 1727bdd1243dSDimitry Andric unsigned *Fast) const { 17288bcb0991SDimitry Andric return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 17298bcb0991SDimitry Andric Flags, Fast); 17308bcb0991SDimitry Andric } 17318bcb0991SDimitry Andric 17320b57cec5SDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 17330b57cec5SDimitry Andric const DataLayout &DL, EVT VT, 17340b57cec5SDimitry Andric const MachineMemOperand &MMO, 1735bdd1243dSDimitry Andric unsigned *Fast) const { 17365ffd83dbSDimitry Andric return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 17375ffd83dbSDimitry Andric MMO.getFlags(), Fast); 17380b57cec5SDimitry Andric } 17390b57cec5SDimitry Andric 1740e8d8bef9SDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1741e8d8bef9SDimitry Andric const DataLayout &DL, LLT Ty, 1742e8d8bef9SDimitry Andric const MachineMemOperand &MMO, 1743bdd1243dSDimitry Andric unsigned *Fast) const { 1744349cc55cSDimitry Andric EVT VT = getApproximateEVTForLLT(Ty, DL, Context); 1745349cc55cSDimitry Andric return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1746349cc55cSDimitry Andric MMO.getFlags(), Fast); 1747e8d8bef9SDimitry Andric } 1748e8d8bef9SDimitry Andric 17490b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 17500b57cec5SDimitry Andric // TargetTransformInfo Helpers 17510b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 17520b57cec5SDimitry Andric 17530b57cec5SDimitry Andric int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 17540b57cec5SDimitry Andric enum InstructionOpcodes { 17550b57cec5SDimitry Andric #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 17560b57cec5SDimitry Andric #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 17570b57cec5SDimitry Andric #include "llvm/IR/Instruction.def" 17580b57cec5SDimitry Andric }; 17590b57cec5SDimitry Andric switch (static_cast<InstructionOpcodes>(Opcode)) { 17600b57cec5SDimitry Andric case Ret: return 0; 17610b57cec5SDimitry Andric case Br: return 0; 17620b57cec5SDimitry Andric case Switch: return 0; 17630b57cec5SDimitry Andric case IndirectBr: return 0; 17640b57cec5SDimitry Andric case Invoke: return 0; 17650b57cec5SDimitry Andric case CallBr: return 0; 17660b57cec5SDimitry Andric case Resume: return 0; 17670b57cec5SDimitry Andric case Unreachable: return 0; 17680b57cec5SDimitry Andric case CleanupRet: return 0; 17690b57cec5SDimitry Andric case CatchRet: return 0; 17700b57cec5SDimitry Andric case CatchPad: return 0; 17710b57cec5SDimitry Andric case CatchSwitch: return 0; 17720b57cec5SDimitry Andric case CleanupPad: return 0; 17730b57cec5SDimitry Andric case FNeg: return ISD::FNEG; 17740b57cec5SDimitry Andric case Add: return ISD::ADD; 17750b57cec5SDimitry Andric case FAdd: return ISD::FADD; 17760b57cec5SDimitry Andric case Sub: return ISD::SUB; 17770b57cec5SDimitry Andric case FSub: return ISD::FSUB; 17780b57cec5SDimitry Andric case Mul: return ISD::MUL; 17790b57cec5SDimitry Andric case FMul: return ISD::FMUL; 17800b57cec5SDimitry Andric case UDiv: return ISD::UDIV; 17810b57cec5SDimitry Andric case SDiv: return ISD::SDIV; 17820b57cec5SDimitry Andric case FDiv: return ISD::FDIV; 17830b57cec5SDimitry Andric case URem: return ISD::UREM; 17840b57cec5SDimitry Andric case SRem: return ISD::SREM; 17850b57cec5SDimitry Andric case FRem: return ISD::FREM; 17860b57cec5SDimitry Andric case Shl: return ISD::SHL; 17870b57cec5SDimitry Andric case LShr: return ISD::SRL; 17880b57cec5SDimitry Andric case AShr: return ISD::SRA; 17890b57cec5SDimitry Andric case And: return ISD::AND; 17900b57cec5SDimitry Andric case Or: return ISD::OR; 17910b57cec5SDimitry Andric case Xor: return ISD::XOR; 17920b57cec5SDimitry Andric case Alloca: return 0; 17930b57cec5SDimitry Andric case Load: return ISD::LOAD; 17940b57cec5SDimitry Andric case Store: return ISD::STORE; 17950b57cec5SDimitry Andric case GetElementPtr: return 0; 17960b57cec5SDimitry Andric case Fence: return 0; 17970b57cec5SDimitry Andric case AtomicCmpXchg: return 0; 17980b57cec5SDimitry Andric case AtomicRMW: return 0; 17990b57cec5SDimitry Andric case Trunc: return ISD::TRUNCATE; 18000b57cec5SDimitry Andric case ZExt: return ISD::ZERO_EXTEND; 18010b57cec5SDimitry Andric case SExt: return ISD::SIGN_EXTEND; 18020b57cec5SDimitry Andric case FPToUI: return ISD::FP_TO_UINT; 18030b57cec5SDimitry Andric case FPToSI: return ISD::FP_TO_SINT; 18040b57cec5SDimitry Andric case UIToFP: return ISD::UINT_TO_FP; 18050b57cec5SDimitry Andric case SIToFP: return ISD::SINT_TO_FP; 18060b57cec5SDimitry Andric case FPTrunc: return ISD::FP_ROUND; 18070b57cec5SDimitry Andric case FPExt: return ISD::FP_EXTEND; 18080b57cec5SDimitry Andric case PtrToInt: return ISD::BITCAST; 18090b57cec5SDimitry Andric case IntToPtr: return ISD::BITCAST; 18100b57cec5SDimitry Andric case BitCast: return ISD::BITCAST; 18110b57cec5SDimitry Andric case AddrSpaceCast: return ISD::ADDRSPACECAST; 18120b57cec5SDimitry Andric case ICmp: return ISD::SETCC; 18130b57cec5SDimitry Andric case FCmp: return ISD::SETCC; 18140b57cec5SDimitry Andric case PHI: return 0; 18150b57cec5SDimitry Andric case Call: return 0; 18160b57cec5SDimitry Andric case Select: return ISD::SELECT; 18170b57cec5SDimitry Andric case UserOp1: return 0; 18180b57cec5SDimitry Andric case UserOp2: return 0; 18190b57cec5SDimitry Andric case VAArg: return 0; 18200b57cec5SDimitry Andric case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 18210b57cec5SDimitry Andric case InsertElement: return ISD::INSERT_VECTOR_ELT; 18220b57cec5SDimitry Andric case ShuffleVector: return ISD::VECTOR_SHUFFLE; 18230b57cec5SDimitry Andric case ExtractValue: return ISD::MERGE_VALUES; 18240b57cec5SDimitry Andric case InsertValue: return ISD::MERGE_VALUES; 18250b57cec5SDimitry Andric case LandingPad: return 0; 18265ffd83dbSDimitry Andric case Freeze: return ISD::FREEZE; 18270b57cec5SDimitry Andric } 18280b57cec5SDimitry Andric 18290b57cec5SDimitry Andric llvm_unreachable("Unknown instruction type encountered!"); 18300b57cec5SDimitry Andric } 18310b57cec5SDimitry Andric 1832fe6060f1SDimitry Andric Value * 1833fe6060f1SDimitry Andric TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, 18340b57cec5SDimitry Andric bool UseTLS) const { 18350b57cec5SDimitry Andric // compiler-rt provides a variable with a magic name. Targets that do not 18360b57cec5SDimitry Andric // link with compiler-rt may also provide such a variable. 18370b57cec5SDimitry Andric Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 18380b57cec5SDimitry Andric const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 18390b57cec5SDimitry Andric auto UnsafeStackPtr = 18400b57cec5SDimitry Andric dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 18410b57cec5SDimitry Andric 18425f757f3fSDimitry Andric Type *StackPtrTy = PointerType::getUnqual(M->getContext()); 18430b57cec5SDimitry Andric 18440b57cec5SDimitry Andric if (!UnsafeStackPtr) { 18450b57cec5SDimitry Andric auto TLSModel = UseTLS ? 18460b57cec5SDimitry Andric GlobalValue::InitialExecTLSModel : 18470b57cec5SDimitry Andric GlobalValue::NotThreadLocal; 18480b57cec5SDimitry Andric // The global variable is not defined yet, define it ourselves. 18490b57cec5SDimitry Andric // We use the initial-exec TLS model because we do not support the 18500b57cec5SDimitry Andric // variable living anywhere other than in the main executable. 18510b57cec5SDimitry Andric UnsafeStackPtr = new GlobalVariable( 18520b57cec5SDimitry Andric *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 18530b57cec5SDimitry Andric UnsafeStackPtrVar, nullptr, TLSModel); 18540b57cec5SDimitry Andric } else { 18550b57cec5SDimitry Andric // The variable exists, check its type and attributes. 18560b57cec5SDimitry Andric if (UnsafeStackPtr->getValueType() != StackPtrTy) 18570b57cec5SDimitry Andric report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 18580b57cec5SDimitry Andric if (UseTLS != UnsafeStackPtr->isThreadLocal()) 18590b57cec5SDimitry Andric report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 18600b57cec5SDimitry Andric (UseTLS ? "" : "not ") + "be thread-local"); 18610b57cec5SDimitry Andric } 18620b57cec5SDimitry Andric return UnsafeStackPtr; 18630b57cec5SDimitry Andric } 18640b57cec5SDimitry Andric 1865fe6060f1SDimitry Andric Value * 1866fe6060f1SDimitry Andric TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { 18670b57cec5SDimitry Andric if (!TM.getTargetTriple().isAndroid()) 18680b57cec5SDimitry Andric return getDefaultSafeStackPointerLocation(IRB, true); 18690b57cec5SDimitry Andric 18700b57cec5SDimitry Andric // Android provides a libc function to retrieve the address of the current 18710b57cec5SDimitry Andric // thread's unsafe stack pointer. 18720b57cec5SDimitry Andric Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 18735f757f3fSDimitry Andric auto *PtrTy = PointerType::getUnqual(M->getContext()); 18745f757f3fSDimitry Andric FunctionCallee Fn = 18755f757f3fSDimitry Andric M->getOrInsertFunction("__safestack_pointer_address", PtrTy); 18760b57cec5SDimitry Andric return IRB.CreateCall(Fn); 18770b57cec5SDimitry Andric } 18780b57cec5SDimitry Andric 18790b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 18800b57cec5SDimitry Andric // Loop Strength Reduction hooks 18810b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 18820b57cec5SDimitry Andric 18830b57cec5SDimitry Andric /// isLegalAddressingMode - Return true if the addressing mode represented 18840b57cec5SDimitry Andric /// by AM is legal for this target, for a load/store of the specified type. 18850b57cec5SDimitry Andric bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 18860b57cec5SDimitry Andric const AddrMode &AM, Type *Ty, 18870b57cec5SDimitry Andric unsigned AS, Instruction *I) const { 18880b57cec5SDimitry Andric // The default implementation of this implements a conservative RISCy, r+r and 18890b57cec5SDimitry Andric // r+i addr mode. 18900b57cec5SDimitry Andric 1891*0fca6ea1SDimitry Andric // Scalable offsets not supported 1892*0fca6ea1SDimitry Andric if (AM.ScalableOffset) 1893*0fca6ea1SDimitry Andric return false; 1894*0fca6ea1SDimitry Andric 18950b57cec5SDimitry Andric // Allows a sign-extended 16-bit immediate field. 18960b57cec5SDimitry Andric if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 18970b57cec5SDimitry Andric return false; 18980b57cec5SDimitry Andric 18990b57cec5SDimitry Andric // No global is ever allowed as a base. 19000b57cec5SDimitry Andric if (AM.BaseGV) 19010b57cec5SDimitry Andric return false; 19020b57cec5SDimitry Andric 19030b57cec5SDimitry Andric // Only support r+r, 19040b57cec5SDimitry Andric switch (AM.Scale) { 19050b57cec5SDimitry Andric case 0: // "r+i" or just "i", depending on HasBaseReg. 19060b57cec5SDimitry Andric break; 19070b57cec5SDimitry Andric case 1: 19080b57cec5SDimitry Andric if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 19090b57cec5SDimitry Andric return false; 19100b57cec5SDimitry Andric // Otherwise we have r+r or r+i. 19110b57cec5SDimitry Andric break; 19120b57cec5SDimitry Andric case 2: 19130b57cec5SDimitry Andric if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 19140b57cec5SDimitry Andric return false; 19150b57cec5SDimitry Andric // Allow 2*r as r+r. 19160b57cec5SDimitry Andric break; 19170b57cec5SDimitry Andric default: // Don't allow n * r 19180b57cec5SDimitry Andric return false; 19190b57cec5SDimitry Andric } 19200b57cec5SDimitry Andric 19210b57cec5SDimitry Andric return true; 19220b57cec5SDimitry Andric } 19230b57cec5SDimitry Andric 19240b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 19250b57cec5SDimitry Andric // Stack Protector 19260b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 19270b57cec5SDimitry Andric 19280b57cec5SDimitry Andric // For OpenBSD return its special guard variable. Otherwise return nullptr, 19290b57cec5SDimitry Andric // so that SelectionDAG handle SSP. 1930fe6060f1SDimitry Andric Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { 19310b57cec5SDimitry Andric if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 19320b57cec5SDimitry Andric Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 19335f757f3fSDimitry Andric PointerType *PtrTy = PointerType::getUnqual(M.getContext()); 193416d6b3b3SDimitry Andric Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 193516d6b3b3SDimitry Andric if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 193616d6b3b3SDimitry Andric G->setVisibility(GlobalValue::HiddenVisibility); 193716d6b3b3SDimitry Andric return C; 19380b57cec5SDimitry Andric } 19390b57cec5SDimitry Andric return nullptr; 19400b57cec5SDimitry Andric } 19410b57cec5SDimitry Andric 19420b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard. 19430b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support. 19440b57cec5SDimitry Andric void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1945e8d8bef9SDimitry Andric if (!M.getNamedValue("__stack_chk_guard")) { 19465f757f3fSDimitry Andric auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()), 19475f757f3fSDimitry Andric false, GlobalVariable::ExternalLinkage, 19485f757f3fSDimitry Andric nullptr, "__stack_chk_guard"); 1949349cc55cSDimitry Andric 1950349cc55cSDimitry Andric // FreeBSD has "__stack_chk_guard" defined externally on libc.so 195106c3fb27SDimitry Andric if (M.getDirectAccessExternalData() && 19529a4d48a6SAlfredo Dal'Ava Junior !TM.getTargetTriple().isWindowsGNUEnvironment() && 1953*0fca6ea1SDimitry Andric !(TM.getTargetTriple().isPPC64() && 1954*0fca6ea1SDimitry Andric TM.getTargetTriple().isOSFreeBSD()) && 19555f757f3fSDimitry Andric (!TM.getTargetTriple().isOSDarwin() || 19565f757f3fSDimitry Andric TM.getRelocationModel() == Reloc::Static)) 1957e8d8bef9SDimitry Andric GV->setDSOLocal(true); 1958e8d8bef9SDimitry Andric } 19590b57cec5SDimitry Andric } 19600b57cec5SDimitry Andric 19610b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard. 19620b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support. 19630b57cec5SDimitry Andric Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 19640b57cec5SDimitry Andric return M.getNamedValue("__stack_chk_guard"); 19650b57cec5SDimitry Andric } 19660b57cec5SDimitry Andric 19670b57cec5SDimitry Andric Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 19680b57cec5SDimitry Andric return nullptr; 19690b57cec5SDimitry Andric } 19700b57cec5SDimitry Andric 19710b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 19720b57cec5SDimitry Andric return MinimumJumpTableEntries; 19730b57cec5SDimitry Andric } 19740b57cec5SDimitry Andric 19750b57cec5SDimitry Andric void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 19760b57cec5SDimitry Andric MinimumJumpTableEntries = Val; 19770b57cec5SDimitry Andric } 19780b57cec5SDimitry Andric 19790b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 19800b57cec5SDimitry Andric return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 19810b57cec5SDimitry Andric } 19820b57cec5SDimitry Andric 19830b57cec5SDimitry Andric unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 19840b57cec5SDimitry Andric return MaximumJumpTableSize; 19850b57cec5SDimitry Andric } 19860b57cec5SDimitry Andric 19870b57cec5SDimitry Andric void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 19880b57cec5SDimitry Andric MaximumJumpTableSize = Val; 19890b57cec5SDimitry Andric } 19900b57cec5SDimitry Andric 19915ffd83dbSDimitry Andric bool TargetLoweringBase::isJumpTableRelative() const { 19925ffd83dbSDimitry Andric return getTargetMachine().isPositionIndependent(); 19935ffd83dbSDimitry Andric } 19945ffd83dbSDimitry Andric 1995349cc55cSDimitry Andric Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { 1996349cc55cSDimitry Andric if (TM.Options.LoopAlignment) 1997349cc55cSDimitry Andric return Align(TM.Options.LoopAlignment); 1998349cc55cSDimitry Andric return PrefLoopAlignment; 1999349cc55cSDimitry Andric } 2000349cc55cSDimitry Andric 200104eeddc0SDimitry Andric unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( 200204eeddc0SDimitry Andric MachineBasicBlock *MBB) const { 200304eeddc0SDimitry Andric return MaxBytesForAlignment; 200404eeddc0SDimitry Andric } 200504eeddc0SDimitry Andric 20060b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 20070b57cec5SDimitry Andric // Reciprocal Estimates 20080b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 20090b57cec5SDimitry Andric 20100b57cec5SDimitry Andric /// Get the reciprocal estimate attribute string for a function that will 20110b57cec5SDimitry Andric /// override the target defaults. 20120b57cec5SDimitry Andric static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 20130b57cec5SDimitry Andric const Function &F = MF.getFunction(); 20140b57cec5SDimitry Andric return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 20150b57cec5SDimitry Andric } 20160b57cec5SDimitry Andric 20170b57cec5SDimitry Andric /// Construct a string for the given reciprocal operation of the given type. 20180b57cec5SDimitry Andric /// This string should match the corresponding option to the front-end's 20190b57cec5SDimitry Andric /// "-mrecip" flag assuming those strings have been passed through in an 20200b57cec5SDimitry Andric /// attribute string. For example, "vec-divf" for a division of a vXf32. 20210b57cec5SDimitry Andric static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 20220b57cec5SDimitry Andric std::string Name = VT.isVector() ? "vec-" : ""; 20230b57cec5SDimitry Andric 20240b57cec5SDimitry Andric Name += IsSqrt ? "sqrt" : "div"; 20250b57cec5SDimitry Andric 202681ad6265SDimitry Andric // TODO: Handle other float types? 20270b57cec5SDimitry Andric if (VT.getScalarType() == MVT::f64) { 20280b57cec5SDimitry Andric Name += "d"; 202981ad6265SDimitry Andric } else if (VT.getScalarType() == MVT::f16) { 203081ad6265SDimitry Andric Name += "h"; 20310b57cec5SDimitry Andric } else { 20320b57cec5SDimitry Andric assert(VT.getScalarType() == MVT::f32 && 20330b57cec5SDimitry Andric "Unexpected FP type for reciprocal estimate"); 20340b57cec5SDimitry Andric Name += "f"; 20350b57cec5SDimitry Andric } 20360b57cec5SDimitry Andric 20370b57cec5SDimitry Andric return Name; 20380b57cec5SDimitry Andric } 20390b57cec5SDimitry Andric 20400b57cec5SDimitry Andric /// Return the character position and value (a single numeric character) of a 20410b57cec5SDimitry Andric /// customized refinement operation in the input string if it exists. Return 20420b57cec5SDimitry Andric /// false if there is no customized refinement step count. 20430b57cec5SDimitry Andric static bool parseRefinementStep(StringRef In, size_t &Position, 20440b57cec5SDimitry Andric uint8_t &Value) { 20450b57cec5SDimitry Andric const char RefStepToken = ':'; 20460b57cec5SDimitry Andric Position = In.find(RefStepToken); 20470b57cec5SDimitry Andric if (Position == StringRef::npos) 20480b57cec5SDimitry Andric return false; 20490b57cec5SDimitry Andric 20500b57cec5SDimitry Andric StringRef RefStepString = In.substr(Position + 1); 20510b57cec5SDimitry Andric // Allow exactly one numeric character for the additional refinement 20520b57cec5SDimitry Andric // step parameter. 20530b57cec5SDimitry Andric if (RefStepString.size() == 1) { 20540b57cec5SDimitry Andric char RefStepChar = RefStepString[0]; 2055e8d8bef9SDimitry Andric if (isDigit(RefStepChar)) { 20560b57cec5SDimitry Andric Value = RefStepChar - '0'; 20570b57cec5SDimitry Andric return true; 20580b57cec5SDimitry Andric } 20590b57cec5SDimitry Andric } 20600b57cec5SDimitry Andric report_fatal_error("Invalid refinement step for -recip."); 20610b57cec5SDimitry Andric } 20620b57cec5SDimitry Andric 20630b57cec5SDimitry Andric /// For the input attribute string, return one of the ReciprocalEstimate enum 20640b57cec5SDimitry Andric /// status values (enabled, disabled, or not specified) for this operation on 20650b57cec5SDimitry Andric /// the specified data type. 20660b57cec5SDimitry Andric static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 20670b57cec5SDimitry Andric if (Override.empty()) 20680b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 20690b57cec5SDimitry Andric 20700b57cec5SDimitry Andric SmallVector<StringRef, 4> OverrideVector; 20710b57cec5SDimitry Andric Override.split(OverrideVector, ','); 20720b57cec5SDimitry Andric unsigned NumArgs = OverrideVector.size(); 20730b57cec5SDimitry Andric 20740b57cec5SDimitry Andric // Check if "all", "none", or "default" was specified. 20750b57cec5SDimitry Andric if (NumArgs == 1) { 20760b57cec5SDimitry Andric // Look for an optional setting of the number of refinement steps needed 20770b57cec5SDimitry Andric // for this type of reciprocal operation. 20780b57cec5SDimitry Andric size_t RefPos; 20790b57cec5SDimitry Andric uint8_t RefSteps; 20800b57cec5SDimitry Andric if (parseRefinementStep(Override, RefPos, RefSteps)) { 20810b57cec5SDimitry Andric // Split the string for further processing. 20820b57cec5SDimitry Andric Override = Override.substr(0, RefPos); 20830b57cec5SDimitry Andric } 20840b57cec5SDimitry Andric 20850b57cec5SDimitry Andric // All reciprocal types are enabled. 20860b57cec5SDimitry Andric if (Override == "all") 20870b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Enabled; 20880b57cec5SDimitry Andric 20890b57cec5SDimitry Andric // All reciprocal types are disabled. 20900b57cec5SDimitry Andric if (Override == "none") 20910b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Disabled; 20920b57cec5SDimitry Andric 20930b57cec5SDimitry Andric // Target defaults for enablement are used. 20940b57cec5SDimitry Andric if (Override == "default") 20950b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 20960b57cec5SDimitry Andric } 20970b57cec5SDimitry Andric 20980b57cec5SDimitry Andric // The attribute string may omit the size suffix ('f'/'d'). 20990b57cec5SDimitry Andric std::string VTName = getReciprocalOpName(IsSqrt, VT); 21000b57cec5SDimitry Andric std::string VTNameNoSize = VTName; 21010b57cec5SDimitry Andric VTNameNoSize.pop_back(); 21020b57cec5SDimitry Andric static const char DisabledPrefix = '!'; 21030b57cec5SDimitry Andric 21040b57cec5SDimitry Andric for (StringRef RecipType : OverrideVector) { 21050b57cec5SDimitry Andric size_t RefPos; 21060b57cec5SDimitry Andric uint8_t RefSteps; 21070b57cec5SDimitry Andric if (parseRefinementStep(RecipType, RefPos, RefSteps)) 21080b57cec5SDimitry Andric RecipType = RecipType.substr(0, RefPos); 21090b57cec5SDimitry Andric 21100b57cec5SDimitry Andric // Ignore the disablement token for string matching. 21110b57cec5SDimitry Andric bool IsDisabled = RecipType[0] == DisabledPrefix; 21120b57cec5SDimitry Andric if (IsDisabled) 21130b57cec5SDimitry Andric RecipType = RecipType.substr(1); 21140b57cec5SDimitry Andric 2115*0fca6ea1SDimitry Andric if (RecipType == VTName || RecipType == VTNameNoSize) 21160b57cec5SDimitry Andric return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 21170b57cec5SDimitry Andric : TargetLoweringBase::ReciprocalEstimate::Enabled; 21180b57cec5SDimitry Andric } 21190b57cec5SDimitry Andric 21200b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 21210b57cec5SDimitry Andric } 21220b57cec5SDimitry Andric 21230b57cec5SDimitry Andric /// For the input attribute string, return the customized refinement step count 21240b57cec5SDimitry Andric /// for this operation on the specified data type. If the step count does not 21250b57cec5SDimitry Andric /// exist, return the ReciprocalEstimate enum value for unspecified. 21260b57cec5SDimitry Andric static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 21270b57cec5SDimitry Andric if (Override.empty()) 21280b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 21290b57cec5SDimitry Andric 21300b57cec5SDimitry Andric SmallVector<StringRef, 4> OverrideVector; 21310b57cec5SDimitry Andric Override.split(OverrideVector, ','); 21320b57cec5SDimitry Andric unsigned NumArgs = OverrideVector.size(); 21330b57cec5SDimitry Andric 21340b57cec5SDimitry Andric // Check if "all", "default", or "none" was specified. 21350b57cec5SDimitry Andric if (NumArgs == 1) { 21360b57cec5SDimitry Andric // Look for an optional setting of the number of refinement steps needed 21370b57cec5SDimitry Andric // for this type of reciprocal operation. 21380b57cec5SDimitry Andric size_t RefPos; 21390b57cec5SDimitry Andric uint8_t RefSteps; 21400b57cec5SDimitry Andric if (!parseRefinementStep(Override, RefPos, RefSteps)) 21410b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 21420b57cec5SDimitry Andric 21430b57cec5SDimitry Andric // Split the string for further processing. 21440b57cec5SDimitry Andric Override = Override.substr(0, RefPos); 21450b57cec5SDimitry Andric assert(Override != "none" && 21460b57cec5SDimitry Andric "Disabled reciprocals, but specifed refinement steps?"); 21470b57cec5SDimitry Andric 21480b57cec5SDimitry Andric // If this is a general override, return the specified number of steps. 21490b57cec5SDimitry Andric if (Override == "all" || Override == "default") 21500b57cec5SDimitry Andric return RefSteps; 21510b57cec5SDimitry Andric } 21520b57cec5SDimitry Andric 21530b57cec5SDimitry Andric // The attribute string may omit the size suffix ('f'/'d'). 21540b57cec5SDimitry Andric std::string VTName = getReciprocalOpName(IsSqrt, VT); 21550b57cec5SDimitry Andric std::string VTNameNoSize = VTName; 21560b57cec5SDimitry Andric VTNameNoSize.pop_back(); 21570b57cec5SDimitry Andric 21580b57cec5SDimitry Andric for (StringRef RecipType : OverrideVector) { 21590b57cec5SDimitry Andric size_t RefPos; 21600b57cec5SDimitry Andric uint8_t RefSteps; 21610b57cec5SDimitry Andric if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 21620b57cec5SDimitry Andric continue; 21630b57cec5SDimitry Andric 21640b57cec5SDimitry Andric RecipType = RecipType.substr(0, RefPos); 2165*0fca6ea1SDimitry Andric if (RecipType == VTName || RecipType == VTNameNoSize) 21660b57cec5SDimitry Andric return RefSteps; 21670b57cec5SDimitry Andric } 21680b57cec5SDimitry Andric 21690b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 21700b57cec5SDimitry Andric } 21710b57cec5SDimitry Andric 21720b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 21730b57cec5SDimitry Andric MachineFunction &MF) const { 21740b57cec5SDimitry Andric return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 21750b57cec5SDimitry Andric } 21760b57cec5SDimitry Andric 21770b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 21780b57cec5SDimitry Andric MachineFunction &MF) const { 21790b57cec5SDimitry Andric return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 21800b57cec5SDimitry Andric } 21810b57cec5SDimitry Andric 21820b57cec5SDimitry Andric int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 21830b57cec5SDimitry Andric MachineFunction &MF) const { 21840b57cec5SDimitry Andric return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 21850b57cec5SDimitry Andric } 21860b57cec5SDimitry Andric 21870b57cec5SDimitry Andric int TargetLoweringBase::getDivRefinementSteps(EVT VT, 21880b57cec5SDimitry Andric MachineFunction &MF) const { 21890b57cec5SDimitry Andric return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 21900b57cec5SDimitry Andric } 21910b57cec5SDimitry Andric 2192bdd1243dSDimitry Andric bool TargetLoweringBase::isLoadBitCastBeneficial( 2193bdd1243dSDimitry Andric EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, 2194bdd1243dSDimitry Andric const MachineMemOperand &MMO) const { 2195bdd1243dSDimitry Andric // Single-element vectors are scalarized, so we should generally avoid having 2196bdd1243dSDimitry Andric // any memory operations on such types, as they would get scalarized too. 2197bdd1243dSDimitry Andric if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() && 2198bdd1243dSDimitry Andric BitcastVT.getVectorNumElements() == 1) 2199bdd1243dSDimitry Andric return false; 2200bdd1243dSDimitry Andric 2201bdd1243dSDimitry Andric // Don't do if we could do an indexed load on the original type, but not on 2202bdd1243dSDimitry Andric // the new one. 2203bdd1243dSDimitry Andric if (!LoadVT.isSimple() || !BitcastVT.isSimple()) 2204bdd1243dSDimitry Andric return true; 2205bdd1243dSDimitry Andric 2206bdd1243dSDimitry Andric MVT LoadMVT = LoadVT.getSimpleVT(); 2207bdd1243dSDimitry Andric 2208bdd1243dSDimitry Andric // Don't bother doing this if it's just going to be promoted again later, as 2209bdd1243dSDimitry Andric // doing so might interfere with other combines. 2210bdd1243dSDimitry Andric if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && 2211bdd1243dSDimitry Andric getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) 2212bdd1243dSDimitry Andric return false; 2213bdd1243dSDimitry Andric 2214bdd1243dSDimitry Andric unsigned Fast = 0; 2215bdd1243dSDimitry Andric return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT, 2216bdd1243dSDimitry Andric MMO, &Fast) && 2217bdd1243dSDimitry Andric Fast; 2218bdd1243dSDimitry Andric } 2219bdd1243dSDimitry Andric 22200b57cec5SDimitry Andric void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2221*0fca6ea1SDimitry Andric MF.getRegInfo().freezeReservedRegs(); 22220b57cec5SDimitry Andric } 22235ffd83dbSDimitry Andric 2224bdd1243dSDimitry Andric MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags( 2225bdd1243dSDimitry Andric const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC, 2226bdd1243dSDimitry Andric const TargetLibraryInfo *LibInfo) const { 22275ffd83dbSDimitry Andric MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 22285ffd83dbSDimitry Andric if (LI.isVolatile()) 22295ffd83dbSDimitry Andric Flags |= MachineMemOperand::MOVolatile; 22305ffd83dbSDimitry Andric 22315ffd83dbSDimitry Andric if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 22325ffd83dbSDimitry Andric Flags |= MachineMemOperand::MONonTemporal; 22335ffd83dbSDimitry Andric 22345ffd83dbSDimitry Andric if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 22355ffd83dbSDimitry Andric Flags |= MachineMemOperand::MOInvariant; 22365ffd83dbSDimitry Andric 2237bdd1243dSDimitry Andric if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(), 2238bdd1243dSDimitry Andric LI.getAlign(), DL, &LI, AC, 2239bdd1243dSDimitry Andric /*DT=*/nullptr, LibInfo)) 22405ffd83dbSDimitry Andric Flags |= MachineMemOperand::MODereferenceable; 22415ffd83dbSDimitry Andric 22425ffd83dbSDimitry Andric Flags |= getTargetMMOFlags(LI); 22435ffd83dbSDimitry Andric return Flags; 22445ffd83dbSDimitry Andric } 22455ffd83dbSDimitry Andric 22465ffd83dbSDimitry Andric MachineMemOperand::Flags 22475ffd83dbSDimitry Andric TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 22485ffd83dbSDimitry Andric const DataLayout &DL) const { 22495ffd83dbSDimitry Andric MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 22505ffd83dbSDimitry Andric 22515ffd83dbSDimitry Andric if (SI.isVolatile()) 22525ffd83dbSDimitry Andric Flags |= MachineMemOperand::MOVolatile; 22535ffd83dbSDimitry Andric 22545ffd83dbSDimitry Andric if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 22555ffd83dbSDimitry Andric Flags |= MachineMemOperand::MONonTemporal; 22565ffd83dbSDimitry Andric 22575ffd83dbSDimitry Andric // FIXME: Not preserving dereferenceable 22585ffd83dbSDimitry Andric Flags |= getTargetMMOFlags(SI); 22595ffd83dbSDimitry Andric return Flags; 22605ffd83dbSDimitry Andric } 22615ffd83dbSDimitry Andric 22625ffd83dbSDimitry Andric MachineMemOperand::Flags 22635ffd83dbSDimitry Andric TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 22645ffd83dbSDimitry Andric const DataLayout &DL) const { 22655ffd83dbSDimitry Andric auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 22665ffd83dbSDimitry Andric 22675ffd83dbSDimitry Andric if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 22685ffd83dbSDimitry Andric if (RMW->isVolatile()) 22695ffd83dbSDimitry Andric Flags |= MachineMemOperand::MOVolatile; 22705ffd83dbSDimitry Andric } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 22715ffd83dbSDimitry Andric if (CmpX->isVolatile()) 22725ffd83dbSDimitry Andric Flags |= MachineMemOperand::MOVolatile; 22735ffd83dbSDimitry Andric } else 22745ffd83dbSDimitry Andric llvm_unreachable("not an atomic instruction"); 22755ffd83dbSDimitry Andric 22765ffd83dbSDimitry Andric // FIXME: Not preserving dereferenceable 22775ffd83dbSDimitry Andric Flags |= getTargetMMOFlags(AI); 22785ffd83dbSDimitry Andric return Flags; 22795ffd83dbSDimitry Andric } 22805ffd83dbSDimitry Andric 2281fe6060f1SDimitry Andric Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, 2282fe6060f1SDimitry Andric Instruction *Inst, 2283fe6060f1SDimitry Andric AtomicOrdering Ord) const { 2284fe6060f1SDimitry Andric if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) 2285fe6060f1SDimitry Andric return Builder.CreateFence(Ord); 2286fe6060f1SDimitry Andric else 2287fe6060f1SDimitry Andric return nullptr; 2288fe6060f1SDimitry Andric } 2289fe6060f1SDimitry Andric 2290fe6060f1SDimitry Andric Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, 2291fe6060f1SDimitry Andric Instruction *Inst, 2292fe6060f1SDimitry Andric AtomicOrdering Ord) const { 2293fe6060f1SDimitry Andric if (isAcquireOrStronger(Ord)) 2294fe6060f1SDimitry Andric return Builder.CreateFence(Ord); 2295fe6060f1SDimitry Andric else 2296fe6060f1SDimitry Andric return nullptr; 2297fe6060f1SDimitry Andric } 2298fe6060f1SDimitry Andric 22995ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 23005ffd83dbSDimitry Andric // GlobalISel Hooks 23015ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 23025ffd83dbSDimitry Andric 23035ffd83dbSDimitry Andric bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 23045ffd83dbSDimitry Andric const TargetTransformInfo *TTI) const { 23055ffd83dbSDimitry Andric auto &MF = *MI.getMF(); 23065ffd83dbSDimitry Andric auto &MRI = MF.getRegInfo(); 23075ffd83dbSDimitry Andric // Assuming a spill and reload of a value has a cost of 1 instruction each, 23085ffd83dbSDimitry Andric // this helper function computes the maximum number of uses we should consider 23095ffd83dbSDimitry Andric // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 23105ffd83dbSDimitry Andric // break even in terms of code size when the original MI has 2 users vs 23115ffd83dbSDimitry Andric // choosing to potentially spill. Any more than 2 users we we have a net code 23125ffd83dbSDimitry Andric // size increase. This doesn't take into account register pressure though. 23135ffd83dbSDimitry Andric auto maxUses = [](unsigned RematCost) { 23145ffd83dbSDimitry Andric // A cost of 1 means remats are basically free. 23155ffd83dbSDimitry Andric if (RematCost == 1) 2316bdd1243dSDimitry Andric return std::numeric_limits<unsigned>::max(); 23175ffd83dbSDimitry Andric if (RematCost == 2) 23185ffd83dbSDimitry Andric return 2U; 23195ffd83dbSDimitry Andric 23205ffd83dbSDimitry Andric // Remat is too expensive, only sink if there's one user. 23215ffd83dbSDimitry Andric if (RematCost > 2) 23225ffd83dbSDimitry Andric return 1U; 23235ffd83dbSDimitry Andric llvm_unreachable("Unexpected remat cost"); 23245ffd83dbSDimitry Andric }; 23255ffd83dbSDimitry Andric 23265ffd83dbSDimitry Andric switch (MI.getOpcode()) { 23275ffd83dbSDimitry Andric default: 23285ffd83dbSDimitry Andric return false; 23295ffd83dbSDimitry Andric // Constants-like instructions should be close to their users. 23305ffd83dbSDimitry Andric // We don't want long live-ranges for them. 23315ffd83dbSDimitry Andric case TargetOpcode::G_CONSTANT: 23325ffd83dbSDimitry Andric case TargetOpcode::G_FCONSTANT: 23335ffd83dbSDimitry Andric case TargetOpcode::G_FRAME_INDEX: 23345ffd83dbSDimitry Andric case TargetOpcode::G_INTTOPTR: 23355ffd83dbSDimitry Andric return true; 23365ffd83dbSDimitry Andric case TargetOpcode::G_GLOBAL_VALUE: { 23375ffd83dbSDimitry Andric unsigned RematCost = TTI->getGISelRematGlobalCost(); 23385ffd83dbSDimitry Andric Register Reg = MI.getOperand(0).getReg(); 23395ffd83dbSDimitry Andric unsigned MaxUses = maxUses(RematCost); 23405ffd83dbSDimitry Andric if (MaxUses == UINT_MAX) 23415ffd83dbSDimitry Andric return true; // Remats are "free" so always localize. 2342bdd1243dSDimitry Andric return MRI.hasAtMostUserInstrs(Reg, MaxUses); 23435ffd83dbSDimitry Andric } 23445ffd83dbSDimitry Andric } 23455ffd83dbSDimitry Andric } 2346