1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cctype> 37 using namespace llvm; 38 39 /// NOTE: The TargetMachine owns TLOF. 40 TargetLowering::TargetLowering(const TargetMachine &tm) 41 : TargetLoweringBase(tm) {} 42 43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 44 return nullptr; 45 } 46 47 bool TargetLowering::isPositionIndependent() const { 48 return getTargetMachine().isPositionIndependent(); 49 } 50 51 /// Check whether a given call node is in tail position within its function. If 52 /// so, it sets Chain to the input chain of the tail call. 53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 54 SDValue &Chain) const { 55 const Function &F = DAG.getMachineFunction().getFunction(); 56 57 // First, check if tail calls have been disabled in this function. 58 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 59 return false; 60 61 // Conservatively require the attributes of the call to match those of 62 // the return. Ignore following attributes because they don't affect the 63 // call sequence. 64 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 65 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 66 Attribute::DereferenceableOrNull, Attribute::NoAlias, 67 Attribute::NonNull, Attribute::NoUndef}) 68 CallerAttrs.removeAttribute(Attr); 69 70 if (CallerAttrs.hasAttributes()) 71 return false; 72 73 // It's not safe to eliminate the sign / zero extension of the return value. 74 if (CallerAttrs.contains(Attribute::ZExt) || 75 CallerAttrs.contains(Attribute::SExt)) 76 return false; 77 78 // Check if the only use is a function return node. 79 return isUsedByReturnOnly(Node, Chain); 80 } 81 82 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 83 const uint32_t *CallerPreservedMask, 84 const SmallVectorImpl<CCValAssign> &ArgLocs, 85 const SmallVectorImpl<SDValue> &OutVals) const { 86 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 87 const CCValAssign &ArgLoc = ArgLocs[I]; 88 if (!ArgLoc.isRegLoc()) 89 continue; 90 MCRegister Reg = ArgLoc.getLocReg(); 91 // Only look at callee saved registers. 92 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 93 continue; 94 // Check that we pass the value used for the caller. 95 // (We look for a CopyFromReg reading a virtual register that is used 96 // for the function live-in value of register Reg) 97 SDValue Value = OutVals[I]; 98 if (Value->getOpcode() == ISD::AssertZext) 99 Value = Value.getOperand(0); 100 if (Value->getOpcode() != ISD::CopyFromReg) 101 return false; 102 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 103 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 104 return false; 105 } 106 return true; 107 } 108 109 /// Set CallLoweringInfo attribute flags based on a call instruction 110 /// and called function attributes. 111 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 112 unsigned ArgIdx) { 113 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 114 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 115 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 116 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 117 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 118 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 119 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 120 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 121 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 122 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 123 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 124 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 125 Alignment = Call->getParamStackAlign(ArgIdx); 126 IndirectType = nullptr; 127 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 128 "multiple ABI attributes?"); 129 if (IsByVal) { 130 IndirectType = Call->getParamByValType(ArgIdx); 131 if (!Alignment) 132 Alignment = Call->getParamAlign(ArgIdx); 133 } 134 if (IsPreallocated) 135 IndirectType = Call->getParamPreallocatedType(ArgIdx); 136 if (IsInAlloca) 137 IndirectType = Call->getParamInAllocaType(ArgIdx); 138 if (IsSRet) 139 IndirectType = Call->getParamStructRetType(ArgIdx); 140 } 141 142 /// Generate a libcall taking the given operands as arguments and returning a 143 /// result of type RetVT. 144 std::pair<SDValue, SDValue> 145 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 146 ArrayRef<SDValue> Ops, 147 MakeLibCallOptions CallOptions, 148 const SDLoc &dl, 149 SDValue InChain) const { 150 if (!InChain) 151 InChain = DAG.getEntryNode(); 152 153 TargetLowering::ArgListTy Args; 154 Args.reserve(Ops.size()); 155 156 TargetLowering::ArgListEntry Entry; 157 for (unsigned i = 0; i < Ops.size(); ++i) { 158 SDValue NewOp = Ops[i]; 159 Entry.Node = NewOp; 160 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 161 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 162 CallOptions.IsSExt); 163 Entry.IsZExt = !Entry.IsSExt; 164 165 if (CallOptions.IsSoften && 166 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 167 Entry.IsSExt = Entry.IsZExt = false; 168 } 169 Args.push_back(Entry); 170 } 171 172 if (LC == RTLIB::UNKNOWN_LIBCALL) 173 report_fatal_error("Unsupported library call operation!"); 174 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 175 getPointerTy(DAG.getDataLayout())); 176 177 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 178 TargetLowering::CallLoweringInfo CLI(DAG); 179 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 180 bool zeroExtend = !signExtend; 181 182 if (CallOptions.IsSoften && 183 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 184 signExtend = zeroExtend = false; 185 } 186 187 CLI.setDebugLoc(dl) 188 .setChain(InChain) 189 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 190 .setNoReturn(CallOptions.DoesNotReturn) 191 .setDiscardResult(!CallOptions.IsReturnValueUsed) 192 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 193 .setSExtResult(signExtend) 194 .setZExtResult(zeroExtend); 195 return LowerCallTo(CLI); 196 } 197 198 bool TargetLowering::findOptimalMemOpLowering( 199 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 200 unsigned SrcAS, const AttributeList &FuncAttributes) const { 201 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 202 Op.getSrcAlign() < Op.getDstAlign()) 203 return false; 204 205 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 206 207 if (VT == MVT::Other) { 208 // Use the largest integer type whose alignment constraints are satisfied. 209 // We only need to check DstAlign here as SrcAlign is always greater or 210 // equal to DstAlign (or zero). 211 VT = MVT::i64; 212 if (Op.isFixedDstAlign()) 213 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 214 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 215 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 216 assert(VT.isInteger()); 217 218 // Find the largest legal integer type. 219 MVT LVT = MVT::i64; 220 while (!isTypeLegal(LVT)) 221 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 222 assert(LVT.isInteger()); 223 224 // If the type we've chosen is larger than the largest legal integer type 225 // then use that instead. 226 if (VT.bitsGT(LVT)) 227 VT = LVT; 228 } 229 230 unsigned NumMemOps = 0; 231 uint64_t Size = Op.size(); 232 while (Size) { 233 unsigned VTSize = VT.getSizeInBits() / 8; 234 while (VTSize > Size) { 235 // For now, only use non-vector load / store's for the left-over pieces. 236 EVT NewVT = VT; 237 unsigned NewVTSize; 238 239 bool Found = false; 240 if (VT.isVector() || VT.isFloatingPoint()) { 241 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 242 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 243 isSafeMemOpType(NewVT.getSimpleVT())) 244 Found = true; 245 else if (NewVT == MVT::i64 && 246 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 247 isSafeMemOpType(MVT::f64)) { 248 // i64 is usually not legal on 32-bit targets, but f64 may be. 249 NewVT = MVT::f64; 250 Found = true; 251 } 252 } 253 254 if (!Found) { 255 do { 256 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 257 if (NewVT == MVT::i8) 258 break; 259 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 260 } 261 NewVTSize = NewVT.getSizeInBits() / 8; 262 263 // If the new VT cannot cover all of the remaining bits, then consider 264 // issuing a (or a pair of) unaligned and overlapping load / store. 265 unsigned Fast; 266 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 267 allowsMisalignedMemoryAccesses( 268 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 269 MachineMemOperand::MONone, &Fast) && 270 Fast) 271 VTSize = Size; 272 else { 273 VT = NewVT; 274 VTSize = NewVTSize; 275 } 276 } 277 278 if (++NumMemOps > Limit) 279 return false; 280 281 MemOps.push_back(VT); 282 Size -= VTSize; 283 } 284 285 return true; 286 } 287 288 /// Soften the operands of a comparison. This code is shared among BR_CC, 289 /// SELECT_CC, and SETCC handlers. 290 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 291 SDValue &NewLHS, SDValue &NewRHS, 292 ISD::CondCode &CCCode, 293 const SDLoc &dl, const SDValue OldLHS, 294 const SDValue OldRHS) const { 295 SDValue Chain; 296 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 297 OldRHS, Chain); 298 } 299 300 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 301 SDValue &NewLHS, SDValue &NewRHS, 302 ISD::CondCode &CCCode, 303 const SDLoc &dl, const SDValue OldLHS, 304 const SDValue OldRHS, 305 SDValue &Chain, 306 bool IsSignaling) const { 307 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 308 // not supporting it. We can update this code when libgcc provides such 309 // functions. 310 311 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 312 && "Unsupported setcc type!"); 313 314 // Expand into one or more soft-fp libcall(s). 315 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 316 bool ShouldInvertCC = false; 317 switch (CCCode) { 318 case ISD::SETEQ: 319 case ISD::SETOEQ: 320 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 321 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 322 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 323 break; 324 case ISD::SETNE: 325 case ISD::SETUNE: 326 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 327 (VT == MVT::f64) ? RTLIB::UNE_F64 : 328 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 329 break; 330 case ISD::SETGE: 331 case ISD::SETOGE: 332 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 333 (VT == MVT::f64) ? RTLIB::OGE_F64 : 334 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 335 break; 336 case ISD::SETLT: 337 case ISD::SETOLT: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 339 (VT == MVT::f64) ? RTLIB::OLT_F64 : 340 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 341 break; 342 case ISD::SETLE: 343 case ISD::SETOLE: 344 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 345 (VT == MVT::f64) ? RTLIB::OLE_F64 : 346 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 347 break; 348 case ISD::SETGT: 349 case ISD::SETOGT: 350 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 351 (VT == MVT::f64) ? RTLIB::OGT_F64 : 352 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 353 break; 354 case ISD::SETO: 355 ShouldInvertCC = true; 356 [[fallthrough]]; 357 case ISD::SETUO: 358 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 359 (VT == MVT::f64) ? RTLIB::UO_F64 : 360 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 361 break; 362 case ISD::SETONE: 363 // SETONE = O && UNE 364 ShouldInvertCC = true; 365 [[fallthrough]]; 366 case ISD::SETUEQ: 367 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 368 (VT == MVT::f64) ? RTLIB::UO_F64 : 369 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 370 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 371 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 372 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 373 break; 374 default: 375 // Invert CC for unordered comparisons 376 ShouldInvertCC = true; 377 switch (CCCode) { 378 case ISD::SETULT: 379 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 380 (VT == MVT::f64) ? RTLIB::OGE_F64 : 381 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 382 break; 383 case ISD::SETULE: 384 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 385 (VT == MVT::f64) ? RTLIB::OGT_F64 : 386 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 387 break; 388 case ISD::SETUGT: 389 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 390 (VT == MVT::f64) ? RTLIB::OLE_F64 : 391 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 392 break; 393 case ISD::SETUGE: 394 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 395 (VT == MVT::f64) ? RTLIB::OLT_F64 : 396 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 397 break; 398 default: llvm_unreachable("Do not know how to soften this setcc!"); 399 } 400 } 401 402 // Use the target specific return value for comparison lib calls. 403 EVT RetVT = getCmpLibcallReturnType(); 404 SDValue Ops[2] = {NewLHS, NewRHS}; 405 TargetLowering::MakeLibCallOptions CallOptions; 406 EVT OpsVT[2] = { OldLHS.getValueType(), 407 OldRHS.getValueType() }; 408 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 409 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 410 NewLHS = Call.first; 411 NewRHS = DAG.getConstant(0, dl, RetVT); 412 413 CCCode = getCmpLibcallCC(LC1); 414 if (ShouldInvertCC) { 415 assert(RetVT.isInteger()); 416 CCCode = getSetCCInverse(CCCode, RetVT); 417 } 418 419 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 420 // Update Chain. 421 Chain = Call.second; 422 } else { 423 EVT SetCCVT = 424 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 425 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 426 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 427 CCCode = getCmpLibcallCC(LC2); 428 if (ShouldInvertCC) 429 CCCode = getSetCCInverse(CCCode, RetVT); 430 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 431 if (Chain) 432 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 433 Call2.second); 434 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 435 Tmp.getValueType(), Tmp, NewLHS); 436 NewRHS = SDValue(); 437 } 438 } 439 440 /// Return the entry encoding for a jump table in the current function. The 441 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 442 unsigned TargetLowering::getJumpTableEncoding() const { 443 // In non-pic modes, just use the address of a block. 444 if (!isPositionIndependent()) 445 return MachineJumpTableInfo::EK_BlockAddress; 446 447 // In PIC mode, if the target supports a GPRel32 directive, use it. 448 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 449 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 450 451 // Otherwise, use a label difference. 452 return MachineJumpTableInfo::EK_LabelDifference32; 453 } 454 455 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 456 SelectionDAG &DAG) const { 457 // If our PIC model is GP relative, use the global offset table as the base. 458 unsigned JTEncoding = getJumpTableEncoding(); 459 460 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 461 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 462 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 463 464 return Table; 465 } 466 467 /// This returns the relocation base for the given PIC jumptable, the same as 468 /// getPICJumpTableRelocBase, but as an MCExpr. 469 const MCExpr * 470 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 471 unsigned JTI,MCContext &Ctx) const{ 472 // The normal PIC reloc base is the label at the start of the jump table. 473 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 474 } 475 476 SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, 477 SDValue Addr, int JTI, 478 SelectionDAG &DAG) const { 479 SDValue Chain = Value; 480 // Jump table debug info is only needed if CodeView is enabled. 481 if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { 482 Chain = DAG.getJumpTableDebugInfo(JTI, Chain, dl); 483 } 484 return DAG.getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr); 485 } 486 487 bool 488 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 489 const TargetMachine &TM = getTargetMachine(); 490 const GlobalValue *GV = GA->getGlobal(); 491 492 // If the address is not even local to this DSO we will have to load it from 493 // a got and then add the offset. 494 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 495 return false; 496 497 // If the code is position independent we will have to add a base register. 498 if (isPositionIndependent()) 499 return false; 500 501 // Otherwise we can do it. 502 return true; 503 } 504 505 //===----------------------------------------------------------------------===// 506 // Optimization Methods 507 //===----------------------------------------------------------------------===// 508 509 /// If the specified instruction has a constant integer operand and there are 510 /// bits set in that constant that are not demanded, then clear those bits and 511 /// return true. 512 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 513 const APInt &DemandedBits, 514 const APInt &DemandedElts, 515 TargetLoweringOpt &TLO) const { 516 SDLoc DL(Op); 517 unsigned Opcode = Op.getOpcode(); 518 519 // Early-out if we've ended up calling an undemanded node, leave this to 520 // constant folding. 521 if (DemandedBits.isZero() || DemandedElts.isZero()) 522 return false; 523 524 // Do target-specific constant optimization. 525 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 526 return TLO.New.getNode(); 527 528 // FIXME: ISD::SELECT, ISD::SELECT_CC 529 switch (Opcode) { 530 default: 531 break; 532 case ISD::XOR: 533 case ISD::AND: 534 case ISD::OR: { 535 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 536 if (!Op1C || Op1C->isOpaque()) 537 return false; 538 539 // If this is a 'not' op, don't touch it because that's a canonical form. 540 const APInt &C = Op1C->getAPIntValue(); 541 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 542 return false; 543 544 if (!C.isSubsetOf(DemandedBits)) { 545 EVT VT = Op.getValueType(); 546 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 547 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 548 return TLO.CombineTo(Op, NewOp); 549 } 550 551 break; 552 } 553 } 554 555 return false; 556 } 557 558 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 559 const APInt &DemandedBits, 560 TargetLoweringOpt &TLO) const { 561 EVT VT = Op.getValueType(); 562 APInt DemandedElts = VT.isVector() 563 ? APInt::getAllOnes(VT.getVectorNumElements()) 564 : APInt(1, 1); 565 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 566 } 567 568 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 569 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, 570 /// but it could be generalized for targets with other types of implicit 571 /// widening casts. 572 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 573 const APInt &DemandedBits, 574 TargetLoweringOpt &TLO) const { 575 assert(Op.getNumOperands() == 2 && 576 "ShrinkDemandedOp only supports binary operators!"); 577 assert(Op.getNode()->getNumValues() == 1 && 578 "ShrinkDemandedOp only supports nodes with one result!"); 579 580 EVT VT = Op.getValueType(); 581 SelectionDAG &DAG = TLO.DAG; 582 SDLoc dl(Op); 583 584 // Early return, as this function cannot handle vector types. 585 if (VT.isVector()) 586 return false; 587 588 // Don't do this if the node has another user, which may require the 589 // full value. 590 if (!Op.getNode()->hasOneUse()) 591 return false; 592 593 // Search for the smallest integer type with free casts to and from 594 // Op's type. For expedience, just check power-of-2 integer types. 595 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 596 unsigned DemandedSize = DemandedBits.getActiveBits(); 597 for (unsigned SmallVTBits = llvm::bit_ceil(DemandedSize); 598 SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 599 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 600 if (TLI.isTruncateFree(VT, SmallVT) && TLI.isZExtFree(SmallVT, VT)) { 601 // We found a type with free casts. 602 SDValue X = DAG.getNode( 603 Op.getOpcode(), dl, SmallVT, 604 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 605 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 606 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 607 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, VT, X); 608 return TLO.CombineTo(Op, Z); 609 } 610 } 611 return false; 612 } 613 614 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 615 DAGCombinerInfo &DCI) const { 616 SelectionDAG &DAG = DCI.DAG; 617 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 618 !DCI.isBeforeLegalizeOps()); 619 KnownBits Known; 620 621 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 const APInt &DemandedElts, 631 DAGCombinerInfo &DCI) const { 632 SelectionDAG &DAG = DCI.DAG; 633 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 634 !DCI.isBeforeLegalizeOps()); 635 KnownBits Known; 636 637 bool Simplified = 638 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 639 if (Simplified) { 640 DCI.AddToWorklist(Op.getNode()); 641 DCI.CommitTargetLoweringOpt(TLO); 642 } 643 return Simplified; 644 } 645 646 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 647 KnownBits &Known, 648 TargetLoweringOpt &TLO, 649 unsigned Depth, 650 bool AssumeSingleUse) const { 651 EVT VT = Op.getValueType(); 652 653 // Since the number of lanes in a scalable vector is unknown at compile time, 654 // we track one bit which is implicitly broadcast to all lanes. This means 655 // that all lanes in a scalable vector are considered demanded. 656 APInt DemandedElts = VT.isFixedLengthVector() 657 ? APInt::getAllOnes(VT.getVectorNumElements()) 658 : APInt(1, 1); 659 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 660 AssumeSingleUse); 661 } 662 663 // TODO: Under what circumstances can we create nodes? Constant folding? 664 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 665 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 666 SelectionDAG &DAG, unsigned Depth) const { 667 EVT VT = Op.getValueType(); 668 669 // Limit search depth. 670 if (Depth >= SelectionDAG::MaxRecursionDepth) 671 return SDValue(); 672 673 // Ignore UNDEFs. 674 if (Op.isUndef()) 675 return SDValue(); 676 677 // Not demanding any bits/elts from Op. 678 if (DemandedBits == 0 || DemandedElts == 0) 679 return DAG.getUNDEF(VT); 680 681 bool IsLE = DAG.getDataLayout().isLittleEndian(); 682 unsigned NumElts = DemandedElts.getBitWidth(); 683 unsigned BitWidth = DemandedBits.getBitWidth(); 684 KnownBits LHSKnown, RHSKnown; 685 switch (Op.getOpcode()) { 686 case ISD::BITCAST: { 687 if (VT.isScalableVector()) 688 return SDValue(); 689 690 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 691 EVT SrcVT = Src.getValueType(); 692 EVT DstVT = Op.getValueType(); 693 if (SrcVT == DstVT) 694 return Src; 695 696 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 697 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 698 if (NumSrcEltBits == NumDstEltBits) 699 if (SDValue V = SimplifyMultipleUseDemandedBits( 700 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 701 return DAG.getBitcast(DstVT, V); 702 703 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 704 unsigned Scale = NumDstEltBits / NumSrcEltBits; 705 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 706 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 707 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 708 for (unsigned i = 0; i != Scale; ++i) { 709 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 710 unsigned BitOffset = EltOffset * NumSrcEltBits; 711 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 712 if (!Sub.isZero()) { 713 DemandedSrcBits |= Sub; 714 for (unsigned j = 0; j != NumElts; ++j) 715 if (DemandedElts[j]) 716 DemandedSrcElts.setBit((j * Scale) + i); 717 } 718 } 719 720 if (SDValue V = SimplifyMultipleUseDemandedBits( 721 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 722 return DAG.getBitcast(DstVT, V); 723 } 724 725 // TODO - bigendian once we have test coverage. 726 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 727 unsigned Scale = NumSrcEltBits / NumDstEltBits; 728 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 729 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 730 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 731 for (unsigned i = 0; i != NumElts; ++i) 732 if (DemandedElts[i]) { 733 unsigned Offset = (i % Scale) * NumDstEltBits; 734 DemandedSrcBits.insertBits(DemandedBits, Offset); 735 DemandedSrcElts.setBit(i / Scale); 736 } 737 738 if (SDValue V = SimplifyMultipleUseDemandedBits( 739 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 740 return DAG.getBitcast(DstVT, V); 741 } 742 743 break; 744 } 745 case ISD::AND: { 746 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 747 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 748 749 // If all of the demanded bits are known 1 on one side, return the other. 750 // These bits cannot contribute to the result of the 'and' in this 751 // context. 752 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 753 return Op.getOperand(0); 754 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 755 return Op.getOperand(1); 756 break; 757 } 758 case ISD::OR: { 759 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 760 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 761 762 // If all of the demanded bits are known zero on one side, return the 763 // other. These bits cannot contribute to the result of the 'or' in this 764 // context. 765 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 766 return Op.getOperand(0); 767 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 768 return Op.getOperand(1); 769 break; 770 } 771 case ISD::XOR: { 772 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 773 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 774 775 // If all of the demanded bits are known zero on one side, return the 776 // other. 777 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 778 return Op.getOperand(0); 779 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 780 return Op.getOperand(1); 781 break; 782 } 783 case ISD::SHL: { 784 // If we are only demanding sign bits then we can use the shift source 785 // directly. 786 if (const APInt *MaxSA = 787 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 788 SDValue Op0 = Op.getOperand(0); 789 unsigned ShAmt = MaxSA->getZExtValue(); 790 unsigned NumSignBits = 791 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 793 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 794 return Op0; 795 } 796 break; 797 } 798 case ISD::SETCC: { 799 SDValue Op0 = Op.getOperand(0); 800 SDValue Op1 = Op.getOperand(1); 801 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 802 // If (1) we only need the sign-bit, (2) the setcc operands are the same 803 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 804 // -1, we may be able to bypass the setcc. 805 if (DemandedBits.isSignMask() && 806 Op0.getScalarValueSizeInBits() == BitWidth && 807 getBooleanContents(Op0.getValueType()) == 808 BooleanContent::ZeroOrNegativeOneBooleanContent) { 809 // If we're testing X < 0, then this compare isn't needed - just use X! 810 // FIXME: We're limiting to integer types here, but this should also work 811 // if we don't care about FP signed-zero. The use of SETLT with FP means 812 // that we don't care about NaNs. 813 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 814 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 815 return Op0; 816 } 817 break; 818 } 819 case ISD::SIGN_EXTEND_INREG: { 820 // If none of the extended bits are demanded, eliminate the sextinreg. 821 SDValue Op0 = Op.getOperand(0); 822 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 823 unsigned ExBits = ExVT.getScalarSizeInBits(); 824 if (DemandedBits.getActiveBits() <= ExBits && 825 shouldRemoveRedundantExtend(Op)) 826 return Op0; 827 // If the input is already sign extended, just drop the extension. 828 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 829 if (NumSignBits >= (BitWidth - ExBits + 1)) 830 return Op0; 831 break; 832 } 833 case ISD::ANY_EXTEND_VECTOR_INREG: 834 case ISD::SIGN_EXTEND_VECTOR_INREG: 835 case ISD::ZERO_EXTEND_VECTOR_INREG: { 836 if (VT.isScalableVector()) 837 return SDValue(); 838 839 // If we only want the lowest element and none of extended bits, then we can 840 // return the bitcasted source vector. 841 SDValue Src = Op.getOperand(0); 842 EVT SrcVT = Src.getValueType(); 843 EVT DstVT = Op.getValueType(); 844 if (IsLE && DemandedElts == 1 && 845 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 846 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 847 return DAG.getBitcast(DstVT, Src); 848 } 849 break; 850 } 851 case ISD::INSERT_VECTOR_ELT: { 852 if (VT.isScalableVector()) 853 return SDValue(); 854 855 // If we don't demand the inserted element, return the base vector. 856 SDValue Vec = Op.getOperand(0); 857 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 858 EVT VecVT = Vec.getValueType(); 859 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 860 !DemandedElts[CIdx->getZExtValue()]) 861 return Vec; 862 break; 863 } 864 case ISD::INSERT_SUBVECTOR: { 865 if (VT.isScalableVector()) 866 return SDValue(); 867 868 SDValue Vec = Op.getOperand(0); 869 SDValue Sub = Op.getOperand(1); 870 uint64_t Idx = Op.getConstantOperandVal(2); 871 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 872 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 873 // If we don't demand the inserted subvector, return the base vector. 874 if (DemandedSubElts == 0) 875 return Vec; 876 break; 877 } 878 case ISD::VECTOR_SHUFFLE: { 879 assert(!VT.isScalableVector()); 880 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 881 882 // If all the demanded elts are from one operand and are inline, 883 // then we can use the operand directly. 884 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 885 for (unsigned i = 0; i != NumElts; ++i) { 886 int M = ShuffleMask[i]; 887 if (M < 0 || !DemandedElts[i]) 888 continue; 889 AllUndef = false; 890 IdentityLHS &= (M == (int)i); 891 IdentityRHS &= ((M - NumElts) == i); 892 } 893 894 if (AllUndef) 895 return DAG.getUNDEF(Op.getValueType()); 896 if (IdentityLHS) 897 return Op.getOperand(0); 898 if (IdentityRHS) 899 return Op.getOperand(1); 900 break; 901 } 902 default: 903 // TODO: Probably okay to remove after audit; here to reduce change size 904 // in initial enablement patch for scalable vectors 905 if (VT.isScalableVector()) 906 return SDValue(); 907 908 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 909 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 910 Op, DemandedBits, DemandedElts, DAG, Depth)) 911 return V; 912 break; 913 } 914 return SDValue(); 915 } 916 917 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 918 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 919 unsigned Depth) const { 920 EVT VT = Op.getValueType(); 921 // Since the number of lanes in a scalable vector is unknown at compile time, 922 // we track one bit which is implicitly broadcast to all lanes. This means 923 // that all lanes in a scalable vector are considered demanded. 924 APInt DemandedElts = VT.isFixedLengthVector() 925 ? APInt::getAllOnes(VT.getVectorNumElements()) 926 : APInt(1, 1); 927 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 928 Depth); 929 } 930 931 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 932 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 933 unsigned Depth) const { 934 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 935 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 936 Depth); 937 } 938 939 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 940 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 941 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 942 const TargetLowering &TLI, 943 const APInt &DemandedBits, 944 const APInt &DemandedElts, 945 unsigned Depth) { 946 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 947 "SRL or SRA node is required here!"); 948 // Is the right shift using an immediate value of 1? 949 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 950 if (!N1C || !N1C->isOne()) 951 return SDValue(); 952 953 // We are looking for an avgfloor 954 // add(ext, ext) 955 // or one of these as a avgceil 956 // add(add(ext, ext), 1) 957 // add(add(ext, 1), ext) 958 // add(ext, add(ext, 1)) 959 SDValue Add = Op.getOperand(0); 960 if (Add.getOpcode() != ISD::ADD) 961 return SDValue(); 962 963 SDValue ExtOpA = Add.getOperand(0); 964 SDValue ExtOpB = Add.getOperand(1); 965 SDValue Add2; 966 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { 967 ConstantSDNode *ConstOp; 968 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 969 ConstOp->isOne()) { 970 ExtOpA = Op1; 971 ExtOpB = Op3; 972 Add2 = A; 973 return true; 974 } 975 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 976 ConstOp->isOne()) { 977 ExtOpA = Op1; 978 ExtOpB = Op2; 979 Add2 = A; 980 return true; 981 } 982 return false; 983 }; 984 bool IsCeil = 985 (ExtOpA.getOpcode() == ISD::ADD && 986 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB, ExtOpA)) || 987 (ExtOpB.getOpcode() == ISD::ADD && 988 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA, ExtOpB)); 989 990 // If the shift is signed (sra): 991 // - Needs >= 2 sign bit for both operands. 992 // - Needs >= 2 zero bits. 993 // If the shift is unsigned (srl): 994 // - Needs >= 1 zero bit for both operands. 995 // - Needs 1 demanded bit zero and >= 2 sign bits. 996 unsigned ShiftOpc = Op.getOpcode(); 997 bool IsSigned = false; 998 unsigned KnownBits; 999 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 1000 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 1001 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 1002 unsigned NumZeroA = 1003 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 1004 unsigned NumZeroB = 1005 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1006 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1007 1008 switch (ShiftOpc) { 1009 default: 1010 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1011 case ISD::SRA: { 1012 if (NumZero >= 2 && NumSigned < NumZero) { 1013 IsSigned = false; 1014 KnownBits = NumZero; 1015 break; 1016 } 1017 if (NumSigned >= 1) { 1018 IsSigned = true; 1019 KnownBits = NumSigned; 1020 break; 1021 } 1022 return SDValue(); 1023 } 1024 case ISD::SRL: { 1025 if (NumZero >= 1 && NumSigned < NumZero) { 1026 IsSigned = false; 1027 KnownBits = NumZero; 1028 break; 1029 } 1030 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1031 IsSigned = true; 1032 KnownBits = NumSigned; 1033 break; 1034 } 1035 return SDValue(); 1036 } 1037 } 1038 1039 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1040 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1041 1042 // Find the smallest power-2 type that is legal for this vector size and 1043 // operation, given the original type size and the number of known sign/zero 1044 // bits. 1045 EVT VT = Op.getValueType(); 1046 unsigned MinWidth = 1047 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1048 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_ceil(MinWidth)); 1049 if (VT.isVector()) 1050 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1051 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) { 1052 // If we could not transform, and (both) adds are nuw/nsw, we can use the 1053 // larger type size to do the transform. 1054 if (!TLI.isOperationLegalOrCustom(AVGOpc, VT)) 1055 return SDValue(); 1056 if (DAG.willNotOverflowAdd(IsSigned, Add.getOperand(0), 1057 Add.getOperand(1)) && 1058 (!Add2 || DAG.willNotOverflowAdd(IsSigned, Add2.getOperand(0), 1059 Add2.getOperand(1)))) 1060 NVT = VT; 1061 else 1062 return SDValue(); 1063 } 1064 1065 SDLoc DL(Op); 1066 SDValue ResultAVG = 1067 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1068 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1069 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1070 ResultAVG); 1071 } 1072 1073 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1074 /// result of Op are ever used downstream. If we can use this information to 1075 /// simplify Op, create a new simplified DAG node and return true, returning the 1076 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1077 /// return a mask of Known bits for the expression (used to simplify the 1078 /// caller). The Known bits may only be accurate for those bits in the 1079 /// OriginalDemandedBits and OriginalDemandedElts. 1080 bool TargetLowering::SimplifyDemandedBits( 1081 SDValue Op, const APInt &OriginalDemandedBits, 1082 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1083 unsigned Depth, bool AssumeSingleUse) const { 1084 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1085 assert(Op.getScalarValueSizeInBits() == BitWidth && 1086 "Mask size mismatches value type size!"); 1087 1088 // Don't know anything. 1089 Known = KnownBits(BitWidth); 1090 1091 EVT VT = Op.getValueType(); 1092 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1093 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1094 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1095 "Unexpected vector size"); 1096 1097 APInt DemandedBits = OriginalDemandedBits; 1098 APInt DemandedElts = OriginalDemandedElts; 1099 SDLoc dl(Op); 1100 auto &DL = TLO.DAG.getDataLayout(); 1101 1102 // Undef operand. 1103 if (Op.isUndef()) 1104 return false; 1105 1106 // We can't simplify target constants. 1107 if (Op.getOpcode() == ISD::TargetConstant) 1108 return false; 1109 1110 if (Op.getOpcode() == ISD::Constant) { 1111 // We know all of the bits for a constant! 1112 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1113 return false; 1114 } 1115 1116 if (Op.getOpcode() == ISD::ConstantFP) { 1117 // We know all of the bits for a floating point constant! 1118 Known = KnownBits::makeConstant( 1119 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1120 return false; 1121 } 1122 1123 // Other users may use these bits. 1124 bool HasMultiUse = false; 1125 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1126 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1127 // Limit search depth. 1128 return false; 1129 } 1130 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1131 DemandedBits = APInt::getAllOnes(BitWidth); 1132 DemandedElts = APInt::getAllOnes(NumElts); 1133 HasMultiUse = true; 1134 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1135 // Not demanding any bits/elts from Op. 1136 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1137 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1138 // Limit search depth. 1139 return false; 1140 } 1141 1142 KnownBits Known2; 1143 switch (Op.getOpcode()) { 1144 case ISD::SCALAR_TO_VECTOR: { 1145 if (VT.isScalableVector()) 1146 return false; 1147 if (!DemandedElts[0]) 1148 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1149 1150 KnownBits SrcKnown; 1151 SDValue Src = Op.getOperand(0); 1152 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1153 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1154 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1155 return true; 1156 1157 // Upper elements are undef, so only get the knownbits if we just demand 1158 // the bottom element. 1159 if (DemandedElts == 1) 1160 Known = SrcKnown.anyextOrTrunc(BitWidth); 1161 break; 1162 } 1163 case ISD::BUILD_VECTOR: 1164 // Collect the known bits that are shared by every demanded element. 1165 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1166 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1167 return false; // Don't fall through, will infinitely loop. 1168 case ISD::SPLAT_VECTOR: { 1169 SDValue Scl = Op.getOperand(0); 1170 APInt DemandedSclBits = DemandedBits.zextOrTrunc(Scl.getValueSizeInBits()); 1171 KnownBits KnownScl; 1172 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1173 return true; 1174 1175 // Implicitly truncate the bits to match the official semantics of 1176 // SPLAT_VECTOR. 1177 Known = KnownScl.trunc(BitWidth); 1178 break; 1179 } 1180 case ISD::LOAD: { 1181 auto *LD = cast<LoadSDNode>(Op); 1182 if (getTargetConstantFromLoad(LD)) { 1183 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1184 return false; // Don't fall through, will infinitely loop. 1185 } 1186 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1187 // If this is a ZEXTLoad and we are looking at the loaded value. 1188 EVT MemVT = LD->getMemoryVT(); 1189 unsigned MemBits = MemVT.getScalarSizeInBits(); 1190 Known.Zero.setBitsFrom(MemBits); 1191 return false; // Don't fall through, will infinitely loop. 1192 } 1193 break; 1194 } 1195 case ISD::INSERT_VECTOR_ELT: { 1196 if (VT.isScalableVector()) 1197 return false; 1198 SDValue Vec = Op.getOperand(0); 1199 SDValue Scl = Op.getOperand(1); 1200 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1201 EVT VecVT = Vec.getValueType(); 1202 1203 // If index isn't constant, assume we need all vector elements AND the 1204 // inserted element. 1205 APInt DemandedVecElts(DemandedElts); 1206 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1207 unsigned Idx = CIdx->getZExtValue(); 1208 DemandedVecElts.clearBit(Idx); 1209 1210 // Inserted element is not required. 1211 if (!DemandedElts[Idx]) 1212 return TLO.CombineTo(Op, Vec); 1213 } 1214 1215 KnownBits KnownScl; 1216 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1217 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1218 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1219 return true; 1220 1221 Known = KnownScl.anyextOrTrunc(BitWidth); 1222 1223 KnownBits KnownVec; 1224 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1225 Depth + 1)) 1226 return true; 1227 1228 if (!!DemandedVecElts) 1229 Known = Known.intersectWith(KnownVec); 1230 1231 return false; 1232 } 1233 case ISD::INSERT_SUBVECTOR: { 1234 if (VT.isScalableVector()) 1235 return false; 1236 // Demand any elements from the subvector and the remainder from the src its 1237 // inserted into. 1238 SDValue Src = Op.getOperand(0); 1239 SDValue Sub = Op.getOperand(1); 1240 uint64_t Idx = Op.getConstantOperandVal(2); 1241 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1242 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1243 APInt DemandedSrcElts = DemandedElts; 1244 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1245 1246 KnownBits KnownSub, KnownSrc; 1247 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1248 Depth + 1)) 1249 return true; 1250 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1251 Depth + 1)) 1252 return true; 1253 1254 Known.Zero.setAllBits(); 1255 Known.One.setAllBits(); 1256 if (!!DemandedSubElts) 1257 Known = Known.intersectWith(KnownSub); 1258 if (!!DemandedSrcElts) 1259 Known = Known.intersectWith(KnownSrc); 1260 1261 // Attempt to avoid multi-use src if we don't need anything from it. 1262 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1263 !DemandedSrcElts.isAllOnes()) { 1264 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1265 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1266 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1267 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1268 if (NewSub || NewSrc) { 1269 NewSub = NewSub ? NewSub : Sub; 1270 NewSrc = NewSrc ? NewSrc : Src; 1271 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1272 Op.getOperand(2)); 1273 return TLO.CombineTo(Op, NewOp); 1274 } 1275 } 1276 break; 1277 } 1278 case ISD::EXTRACT_SUBVECTOR: { 1279 if (VT.isScalableVector()) 1280 return false; 1281 // Offset the demanded elts by the subvector index. 1282 SDValue Src = Op.getOperand(0); 1283 if (Src.getValueType().isScalableVector()) 1284 break; 1285 uint64_t Idx = Op.getConstantOperandVal(1); 1286 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1287 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1288 1289 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1290 Depth + 1)) 1291 return true; 1292 1293 // Attempt to avoid multi-use src if we don't need anything from it. 1294 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1295 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1296 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1297 if (DemandedSrc) { 1298 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1299 Op.getOperand(1)); 1300 return TLO.CombineTo(Op, NewOp); 1301 } 1302 } 1303 break; 1304 } 1305 case ISD::CONCAT_VECTORS: { 1306 if (VT.isScalableVector()) 1307 return false; 1308 Known.Zero.setAllBits(); 1309 Known.One.setAllBits(); 1310 EVT SubVT = Op.getOperand(0).getValueType(); 1311 unsigned NumSubVecs = Op.getNumOperands(); 1312 unsigned NumSubElts = SubVT.getVectorNumElements(); 1313 for (unsigned i = 0; i != NumSubVecs; ++i) { 1314 APInt DemandedSubElts = 1315 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1316 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1317 Known2, TLO, Depth + 1)) 1318 return true; 1319 // Known bits are shared by every demanded subvector element. 1320 if (!!DemandedSubElts) 1321 Known = Known.intersectWith(Known2); 1322 } 1323 break; 1324 } 1325 case ISD::VECTOR_SHUFFLE: { 1326 assert(!VT.isScalableVector()); 1327 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1328 1329 // Collect demanded elements from shuffle operands.. 1330 APInt DemandedLHS, DemandedRHS; 1331 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1332 DemandedRHS)) 1333 break; 1334 1335 if (!!DemandedLHS || !!DemandedRHS) { 1336 SDValue Op0 = Op.getOperand(0); 1337 SDValue Op1 = Op.getOperand(1); 1338 1339 Known.Zero.setAllBits(); 1340 Known.One.setAllBits(); 1341 if (!!DemandedLHS) { 1342 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1343 Depth + 1)) 1344 return true; 1345 Known = Known.intersectWith(Known2); 1346 } 1347 if (!!DemandedRHS) { 1348 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1349 Depth + 1)) 1350 return true; 1351 Known = Known.intersectWith(Known2); 1352 } 1353 1354 // Attempt to avoid multi-use ops if we don't need anything from them. 1355 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1356 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1357 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1358 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1359 if (DemandedOp0 || DemandedOp1) { 1360 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1361 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1362 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1363 return TLO.CombineTo(Op, NewOp); 1364 } 1365 } 1366 break; 1367 } 1368 case ISD::AND: { 1369 SDValue Op0 = Op.getOperand(0); 1370 SDValue Op1 = Op.getOperand(1); 1371 1372 // If the RHS is a constant, check to see if the LHS would be zero without 1373 // using the bits from the RHS. Below, we use knowledge about the RHS to 1374 // simplify the LHS, here we're using information from the LHS to simplify 1375 // the RHS. 1376 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1377 // Do not increment Depth here; that can cause an infinite loop. 1378 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1379 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1380 if ((LHSKnown.Zero & DemandedBits) == 1381 (~RHSC->getAPIntValue() & DemandedBits)) 1382 return TLO.CombineTo(Op, Op0); 1383 1384 // If any of the set bits in the RHS are known zero on the LHS, shrink 1385 // the constant. 1386 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1387 DemandedElts, TLO)) 1388 return true; 1389 1390 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1391 // constant, but if this 'and' is only clearing bits that were just set by 1392 // the xor, then this 'and' can be eliminated by shrinking the mask of 1393 // the xor. For example, for a 32-bit X: 1394 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1395 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1396 LHSKnown.One == ~RHSC->getAPIntValue()) { 1397 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1398 return TLO.CombineTo(Op, Xor); 1399 } 1400 } 1401 1402 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1403 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1404 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1405 (Op0.getOperand(0).isUndef() || 1406 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1407 Op0->hasOneUse()) { 1408 unsigned NumSubElts = 1409 Op0.getOperand(1).getValueType().getVectorNumElements(); 1410 unsigned SubIdx = Op0.getConstantOperandVal(2); 1411 APInt DemandedSub = 1412 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1413 KnownBits KnownSubMask = 1414 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1415 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1416 SDValue NewAnd = 1417 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1418 SDValue NewInsert = 1419 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1420 Op0.getOperand(1), Op0.getOperand(2)); 1421 return TLO.CombineTo(Op, NewInsert); 1422 } 1423 } 1424 1425 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1426 Depth + 1)) 1427 return true; 1428 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1429 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1430 Known2, TLO, Depth + 1)) 1431 return true; 1432 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1433 1434 // If all of the demanded bits are known one on one side, return the other. 1435 // These bits cannot contribute to the result of the 'and'. 1436 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1437 return TLO.CombineTo(Op, Op0); 1438 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1439 return TLO.CombineTo(Op, Op1); 1440 // If all of the demanded bits in the inputs are known zeros, return zero. 1441 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1442 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1443 // If the RHS is a constant, see if we can simplify it. 1444 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1445 TLO)) 1446 return true; 1447 // If the operation can be done in a smaller type, do so. 1448 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1449 return true; 1450 1451 // Attempt to avoid multi-use ops if we don't need anything from them. 1452 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1453 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1454 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1455 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1456 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1457 if (DemandedOp0 || DemandedOp1) { 1458 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1459 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1460 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1461 return TLO.CombineTo(Op, NewOp); 1462 } 1463 } 1464 1465 Known &= Known2; 1466 break; 1467 } 1468 case ISD::OR: { 1469 SDValue Op0 = Op.getOperand(0); 1470 SDValue Op1 = Op.getOperand(1); 1471 1472 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1473 Depth + 1)) 1474 return true; 1475 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1476 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1477 Known2, TLO, Depth + 1)) 1478 return true; 1479 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1480 1481 // If all of the demanded bits are known zero on one side, return the other. 1482 // These bits cannot contribute to the result of the 'or'. 1483 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1484 return TLO.CombineTo(Op, Op0); 1485 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1486 return TLO.CombineTo(Op, Op1); 1487 // If the RHS is a constant, see if we can simplify it. 1488 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1489 return true; 1490 // If the operation can be done in a smaller type, do so. 1491 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1492 return true; 1493 1494 // Attempt to avoid multi-use ops if we don't need anything from them. 1495 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1496 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1497 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1498 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1499 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1500 if (DemandedOp0 || DemandedOp1) { 1501 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1502 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1503 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1504 return TLO.CombineTo(Op, NewOp); 1505 } 1506 } 1507 1508 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1509 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1510 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1511 Op0->hasOneUse() && Op1->hasOneUse()) { 1512 // Attempt to match all commutations - m_c_Or would've been useful! 1513 for (int I = 0; I != 2; ++I) { 1514 SDValue X = Op.getOperand(I).getOperand(0); 1515 SDValue C1 = Op.getOperand(I).getOperand(1); 1516 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1517 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1518 if (Alt.getOpcode() == ISD::OR) { 1519 for (int J = 0; J != 2; ++J) { 1520 if (X == Alt.getOperand(J)) { 1521 SDValue Y = Alt.getOperand(1 - J); 1522 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1523 {C1, C2})) { 1524 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1525 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1526 return TLO.CombineTo( 1527 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1528 } 1529 } 1530 } 1531 } 1532 } 1533 } 1534 1535 Known |= Known2; 1536 break; 1537 } 1538 case ISD::XOR: { 1539 SDValue Op0 = Op.getOperand(0); 1540 SDValue Op1 = Op.getOperand(1); 1541 1542 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1543 Depth + 1)) 1544 return true; 1545 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1546 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1547 Depth + 1)) 1548 return true; 1549 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1550 1551 // If all of the demanded bits are known zero on one side, return the other. 1552 // These bits cannot contribute to the result of the 'xor'. 1553 if (DemandedBits.isSubsetOf(Known.Zero)) 1554 return TLO.CombineTo(Op, Op0); 1555 if (DemandedBits.isSubsetOf(Known2.Zero)) 1556 return TLO.CombineTo(Op, Op1); 1557 // If the operation can be done in a smaller type, do so. 1558 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1559 return true; 1560 1561 // If all of the unknown bits are known to be zero on one side or the other 1562 // turn this into an *inclusive* or. 1563 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1564 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1565 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1566 1567 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1568 if (C) { 1569 // If one side is a constant, and all of the set bits in the constant are 1570 // also known set on the other side, turn this into an AND, as we know 1571 // the bits will be cleared. 1572 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1573 // NB: it is okay if more bits are known than are requested 1574 if (C->getAPIntValue() == Known2.One) { 1575 SDValue ANDC = 1576 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1577 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1578 } 1579 1580 // If the RHS is a constant, see if we can change it. Don't alter a -1 1581 // constant because that's a 'not' op, and that is better for combining 1582 // and codegen. 1583 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1584 // We're flipping all demanded bits. Flip the undemanded bits too. 1585 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1586 return TLO.CombineTo(Op, New); 1587 } 1588 1589 unsigned Op0Opcode = Op0.getOpcode(); 1590 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1591 if (ConstantSDNode *ShiftC = 1592 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1593 // Don't crash on an oversized shift. We can not guarantee that a 1594 // bogus shift has been simplified to undef. 1595 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1596 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1597 APInt Ones = APInt::getAllOnes(BitWidth); 1598 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1599 : Ones.lshr(ShiftAmt); 1600 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 1601 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1602 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { 1603 // If the xor constant is a demanded mask, do a 'not' before the 1604 // shift: 1605 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1606 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1607 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1608 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1609 Op0.getOperand(1))); 1610 } 1611 } 1612 } 1613 } 1614 } 1615 1616 // If we can't turn this into a 'not', try to shrink the constant. 1617 if (!C || !C->isAllOnes()) 1618 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1619 return true; 1620 1621 // Attempt to avoid multi-use ops if we don't need anything from them. 1622 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1623 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1624 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1625 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1626 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1627 if (DemandedOp0 || DemandedOp1) { 1628 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1629 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1630 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1631 return TLO.CombineTo(Op, NewOp); 1632 } 1633 } 1634 1635 Known ^= Known2; 1636 break; 1637 } 1638 case ISD::SELECT: 1639 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1640 Depth + 1)) 1641 return true; 1642 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1643 Depth + 1)) 1644 return true; 1645 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1646 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1647 1648 // If the operands are constants, see if we can simplify them. 1649 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1650 return true; 1651 1652 // Only known if known in both the LHS and RHS. 1653 Known = Known.intersectWith(Known2); 1654 break; 1655 case ISD::VSELECT: 1656 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1657 Known, TLO, Depth + 1)) 1658 return true; 1659 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1660 Known2, TLO, Depth + 1)) 1661 return true; 1662 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1663 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1664 1665 // Only known if known in both the LHS and RHS. 1666 Known = Known.intersectWith(Known2); 1667 break; 1668 case ISD::SELECT_CC: 1669 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1670 Depth + 1)) 1671 return true; 1672 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1673 Depth + 1)) 1674 return true; 1675 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1676 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1677 1678 // If the operands are constants, see if we can simplify them. 1679 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1680 return true; 1681 1682 // Only known if known in both the LHS and RHS. 1683 Known = Known.intersectWith(Known2); 1684 break; 1685 case ISD::SETCC: { 1686 SDValue Op0 = Op.getOperand(0); 1687 SDValue Op1 = Op.getOperand(1); 1688 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1689 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1690 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1691 // -1, we may be able to bypass the setcc. 1692 if (DemandedBits.isSignMask() && 1693 Op0.getScalarValueSizeInBits() == BitWidth && 1694 getBooleanContents(Op0.getValueType()) == 1695 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1696 // If we're testing X < 0, then this compare isn't needed - just use X! 1697 // FIXME: We're limiting to integer types here, but this should also work 1698 // if we don't care about FP signed-zero. The use of SETLT with FP means 1699 // that we don't care about NaNs. 1700 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1701 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1702 return TLO.CombineTo(Op, Op0); 1703 1704 // TODO: Should we check for other forms of sign-bit comparisons? 1705 // Examples: X <= -1, X >= 0 1706 } 1707 if (getBooleanContents(Op0.getValueType()) == 1708 TargetLowering::ZeroOrOneBooleanContent && 1709 BitWidth > 1) 1710 Known.Zero.setBitsFrom(1); 1711 break; 1712 } 1713 case ISD::SHL: { 1714 SDValue Op0 = Op.getOperand(0); 1715 SDValue Op1 = Op.getOperand(1); 1716 EVT ShiftVT = Op1.getValueType(); 1717 1718 if (const APInt *SA = 1719 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1720 unsigned ShAmt = SA->getZExtValue(); 1721 if (ShAmt == 0) 1722 return TLO.CombineTo(Op, Op0); 1723 1724 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1725 // single shift. We can do this if the bottom bits (which are shifted 1726 // out) are never demanded. 1727 // TODO - support non-uniform vector amounts. 1728 if (Op0.getOpcode() == ISD::SRL) { 1729 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1730 if (const APInt *SA2 = 1731 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1732 unsigned C1 = SA2->getZExtValue(); 1733 unsigned Opc = ISD::SHL; 1734 int Diff = ShAmt - C1; 1735 if (Diff < 0) { 1736 Diff = -Diff; 1737 Opc = ISD::SRL; 1738 } 1739 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1740 return TLO.CombineTo( 1741 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1742 } 1743 } 1744 } 1745 1746 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1747 // are not demanded. This will likely allow the anyext to be folded away. 1748 // TODO - support non-uniform vector amounts. 1749 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1750 SDValue InnerOp = Op0.getOperand(0); 1751 EVT InnerVT = InnerOp.getValueType(); 1752 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1753 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1754 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1755 SDValue NarrowShl = TLO.DAG.getNode( 1756 ISD::SHL, dl, InnerVT, InnerOp, 1757 TLO.DAG.getShiftAmountConstant(ShAmt, InnerVT, dl)); 1758 return TLO.CombineTo( 1759 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1760 } 1761 1762 // Repeat the SHL optimization above in cases where an extension 1763 // intervenes: (shl (anyext (shr x, c1)), c2) to 1764 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1765 // aren't demanded (as above) and that the shifted upper c1 bits of 1766 // x aren't demanded. 1767 // TODO - support non-uniform vector amounts. 1768 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1769 InnerOp.hasOneUse()) { 1770 if (const APInt *SA2 = 1771 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1772 unsigned InnerShAmt = SA2->getZExtValue(); 1773 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1774 DemandedBits.getActiveBits() <= 1775 (InnerBits - InnerShAmt + ShAmt) && 1776 DemandedBits.countr_zero() >= ShAmt) { 1777 SDValue NewSA = 1778 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1779 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1780 InnerOp.getOperand(0)); 1781 return TLO.CombineTo( 1782 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1783 } 1784 } 1785 } 1786 } 1787 1788 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1789 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1790 Depth + 1)) { 1791 SDNodeFlags Flags = Op.getNode()->getFlags(); 1792 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1793 // Disable the nsw and nuw flags. We can no longer guarantee that we 1794 // won't wrap after simplification. 1795 Flags.setNoSignedWrap(false); 1796 Flags.setNoUnsignedWrap(false); 1797 Op->setFlags(Flags); 1798 } 1799 return true; 1800 } 1801 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1802 Known.Zero <<= ShAmt; 1803 Known.One <<= ShAmt; 1804 // low bits known zero. 1805 Known.Zero.setLowBits(ShAmt); 1806 1807 // Attempt to avoid multi-use ops if we don't need anything from them. 1808 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1809 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1810 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1811 if (DemandedOp0) { 1812 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1813 return TLO.CombineTo(Op, NewOp); 1814 } 1815 } 1816 1817 // Try shrinking the operation as long as the shift amount will still be 1818 // in range. 1819 if ((ShAmt < DemandedBits.getActiveBits()) && 1820 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1821 return true; 1822 1823 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1824 // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) 1825 // Only do this if we demand the upper half so the knownbits are correct. 1826 unsigned HalfWidth = BitWidth / 2; 1827 if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && 1828 DemandedBits.countLeadingOnes() >= HalfWidth) { 1829 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), HalfWidth); 1830 if (isNarrowingProfitable(VT, HalfVT) && 1831 isTypeDesirableForOp(ISD::SHL, HalfVT) && 1832 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1833 (!TLO.LegalOperations() || isOperationLegal(ISD::SHL, HalfVT))) { 1834 // If we're demanding the upper bits at all, we must ensure 1835 // that the upper bits of the shift result are known to be zero, 1836 // which is equivalent to the narrow shift being NUW. 1837 if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { 1838 bool IsNSW = Known.countMinSignBits() > HalfWidth; 1839 SDNodeFlags Flags; 1840 Flags.setNoSignedWrap(IsNSW); 1841 Flags.setNoUnsignedWrap(IsNUW); 1842 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1843 SDValue NewShiftAmt = TLO.DAG.getShiftAmountConstant( 1844 ShAmt, HalfVT, dl, TLO.LegalTypes()); 1845 SDValue NewShift = TLO.DAG.getNode(ISD::SHL, dl, HalfVT, NewOp, 1846 NewShiftAmt, Flags); 1847 SDValue NewExt = 1848 TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift); 1849 return TLO.CombineTo(Op, NewExt); 1850 } 1851 } 1852 } 1853 } else { 1854 // This is a variable shift, so we can't shift the demand mask by a known 1855 // amount. But if we are not demanding high bits, then we are not 1856 // demanding those bits from the pre-shifted operand either. 1857 if (unsigned CTLZ = DemandedBits.countl_zero()) { 1858 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1859 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1860 Depth + 1)) { 1861 SDNodeFlags Flags = Op.getNode()->getFlags(); 1862 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1863 // Disable the nsw and nuw flags. We can no longer guarantee that we 1864 // won't wrap after simplification. 1865 Flags.setNoSignedWrap(false); 1866 Flags.setNoUnsignedWrap(false); 1867 Op->setFlags(Flags); 1868 } 1869 return true; 1870 } 1871 Known.resetAll(); 1872 } 1873 } 1874 1875 // If we are only demanding sign bits then we can use the shift source 1876 // directly. 1877 if (const APInt *MaxSA = 1878 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1879 unsigned ShAmt = MaxSA->getZExtValue(); 1880 unsigned NumSignBits = 1881 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1882 unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); 1883 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1884 return TLO.CombineTo(Op, Op0); 1885 } 1886 break; 1887 } 1888 case ISD::SRL: { 1889 SDValue Op0 = Op.getOperand(0); 1890 SDValue Op1 = Op.getOperand(1); 1891 EVT ShiftVT = Op1.getValueType(); 1892 1893 // Try to match AVG patterns. 1894 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1895 DemandedElts, Depth + 1)) 1896 return TLO.CombineTo(Op, AVG); 1897 1898 if (const APInt *SA = 1899 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1900 unsigned ShAmt = SA->getZExtValue(); 1901 if (ShAmt == 0) 1902 return TLO.CombineTo(Op, Op0); 1903 1904 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1905 // single shift. We can do this if the top bits (which are shifted out) 1906 // are never demanded. 1907 // TODO - support non-uniform vector amounts. 1908 if (Op0.getOpcode() == ISD::SHL) { 1909 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1910 if (const APInt *SA2 = 1911 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1912 unsigned C1 = SA2->getZExtValue(); 1913 unsigned Opc = ISD::SRL; 1914 int Diff = ShAmt - C1; 1915 if (Diff < 0) { 1916 Diff = -Diff; 1917 Opc = ISD::SHL; 1918 } 1919 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1920 return TLO.CombineTo( 1921 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1922 } 1923 } 1924 } 1925 1926 APInt InDemandedMask = (DemandedBits << ShAmt); 1927 1928 // If the shift is exact, then it does demand the low bits (and knows that 1929 // they are zero). 1930 if (Op->getFlags().hasExact()) 1931 InDemandedMask.setLowBits(ShAmt); 1932 1933 // Narrow shift to lower half - similar to ShrinkDemandedOp. 1934 // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) 1935 if ((BitWidth % 2) == 0 && !VT.isVector()) { 1936 APInt HiBits = APInt::getHighBitsSet(BitWidth, BitWidth / 2); 1937 EVT HalfVT = EVT::getIntegerVT(*TLO.DAG.getContext(), BitWidth / 2); 1938 if (isNarrowingProfitable(VT, HalfVT) && 1939 isTypeDesirableForOp(ISD::SRL, HalfVT) && 1940 isTruncateFree(VT, HalfVT) && isZExtFree(HalfVT, VT) && 1941 (!TLO.LegalOperations() || isOperationLegal(ISD::SRL, HalfVT)) && 1942 ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || 1943 TLO.DAG.MaskedValueIsZero(Op0, HiBits))) { 1944 SDValue NewOp = TLO.DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Op0); 1945 SDValue NewShiftAmt = TLO.DAG.getShiftAmountConstant( 1946 ShAmt, HalfVT, dl, TLO.LegalTypes()); 1947 SDValue NewShift = 1948 TLO.DAG.getNode(ISD::SRL, dl, HalfVT, NewOp, NewShiftAmt); 1949 return TLO.CombineTo( 1950 Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, NewShift)); 1951 } 1952 } 1953 1954 // Compute the new bits that are at the top now. 1955 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1956 Depth + 1)) 1957 return true; 1958 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1959 Known.Zero.lshrInPlace(ShAmt); 1960 Known.One.lshrInPlace(ShAmt); 1961 // High bits known zero. 1962 Known.Zero.setHighBits(ShAmt); 1963 1964 // Attempt to avoid multi-use ops if we don't need anything from them. 1965 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1966 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1967 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1968 if (DemandedOp0) { 1969 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 1970 return TLO.CombineTo(Op, NewOp); 1971 } 1972 } 1973 } else { 1974 // Use generic knownbits computation as it has support for non-uniform 1975 // shift amounts. 1976 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1977 } 1978 break; 1979 } 1980 case ISD::SRA: { 1981 SDValue Op0 = Op.getOperand(0); 1982 SDValue Op1 = Op.getOperand(1); 1983 EVT ShiftVT = Op1.getValueType(); 1984 1985 // If we only want bits that already match the signbit then we don't need 1986 // to shift. 1987 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); 1988 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1989 NumHiDemandedBits) 1990 return TLO.CombineTo(Op, Op0); 1991 1992 // If this is an arithmetic shift right and only the low-bit is set, we can 1993 // always convert this into a logical shr, even if the shift amount is 1994 // variable. The low bit of the shift cannot be an input sign bit unless 1995 // the shift amount is >= the size of the datatype, which is undefined. 1996 if (DemandedBits.isOne()) 1997 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1998 1999 // Try to match AVG patterns. 2000 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 2001 DemandedElts, Depth + 1)) 2002 return TLO.CombineTo(Op, AVG); 2003 2004 if (const APInt *SA = 2005 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 2006 unsigned ShAmt = SA->getZExtValue(); 2007 if (ShAmt == 0) 2008 return TLO.CombineTo(Op, Op0); 2009 2010 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target 2011 // supports sext_inreg. 2012 if (Op0.getOpcode() == ISD::SHL) { 2013 if (const APInt *InnerSA = 2014 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 2015 unsigned LowBits = BitWidth - ShAmt; 2016 EVT ExtVT = EVT::getIntegerVT(*TLO.DAG.getContext(), LowBits); 2017 if (VT.isVector()) 2018 ExtVT = EVT::getVectorVT(*TLO.DAG.getContext(), ExtVT, 2019 VT.getVectorElementCount()); 2020 2021 if (*InnerSA == ShAmt) { 2022 if (!TLO.LegalOperations() || 2023 getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == Legal) 2024 return TLO.CombineTo( 2025 Op, TLO.DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 2026 Op0.getOperand(0), 2027 TLO.DAG.getValueType(ExtVT))); 2028 2029 // Even if we can't convert to sext_inreg, we might be able to 2030 // remove this shift pair if the input is already sign extended. 2031 unsigned NumSignBits = 2032 TLO.DAG.ComputeNumSignBits(Op0.getOperand(0), DemandedElts); 2033 if (NumSignBits > ShAmt) 2034 return TLO.CombineTo(Op, Op0.getOperand(0)); 2035 } 2036 } 2037 } 2038 2039 APInt InDemandedMask = (DemandedBits << ShAmt); 2040 2041 // If the shift is exact, then it does demand the low bits (and knows that 2042 // they are zero). 2043 if (Op->getFlags().hasExact()) 2044 InDemandedMask.setLowBits(ShAmt); 2045 2046 // If any of the demanded bits are produced by the sign extension, we also 2047 // demand the input sign bit. 2048 if (DemandedBits.countl_zero() < ShAmt) 2049 InDemandedMask.setSignBit(); 2050 2051 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 2052 Depth + 1)) 2053 return true; 2054 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2055 Known.Zero.lshrInPlace(ShAmt); 2056 Known.One.lshrInPlace(ShAmt); 2057 2058 // If the input sign bit is known to be zero, or if none of the top bits 2059 // are demanded, turn this into an unsigned shift right. 2060 if (Known.Zero[BitWidth - ShAmt - 1] || 2061 DemandedBits.countl_zero() >= ShAmt) { 2062 SDNodeFlags Flags; 2063 Flags.setExact(Op->getFlags().hasExact()); 2064 return TLO.CombineTo( 2065 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 2066 } 2067 2068 int Log2 = DemandedBits.exactLogBase2(); 2069 if (Log2 >= 0) { 2070 // The bit must come from the sign. 2071 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 2072 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 2073 } 2074 2075 if (Known.One[BitWidth - ShAmt - 1]) 2076 // New bits are known one. 2077 Known.One.setHighBits(ShAmt); 2078 2079 // Attempt to avoid multi-use ops if we don't need anything from them. 2080 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2081 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2082 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 2083 if (DemandedOp0) { 2084 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 2085 return TLO.CombineTo(Op, NewOp); 2086 } 2087 } 2088 } 2089 break; 2090 } 2091 case ISD::FSHL: 2092 case ISD::FSHR: { 2093 SDValue Op0 = Op.getOperand(0); 2094 SDValue Op1 = Op.getOperand(1); 2095 SDValue Op2 = Op.getOperand(2); 2096 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 2097 2098 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 2099 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2100 2101 // For fshl, 0-shift returns the 1st arg. 2102 // For fshr, 0-shift returns the 2nd arg. 2103 if (Amt == 0) { 2104 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 2105 Known, TLO, Depth + 1)) 2106 return true; 2107 break; 2108 } 2109 2110 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 2111 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 2112 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 2113 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 2114 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2115 Depth + 1)) 2116 return true; 2117 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 2118 Depth + 1)) 2119 return true; 2120 2121 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2122 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2123 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2124 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2125 Known = Known.unionWith(Known2); 2126 2127 // Attempt to avoid multi-use ops if we don't need anything from them. 2128 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2129 !DemandedElts.isAllOnes()) { 2130 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2131 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2132 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2133 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2134 if (DemandedOp0 || DemandedOp1) { 2135 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2136 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2137 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2138 DemandedOp1, Op2); 2139 return TLO.CombineTo(Op, NewOp); 2140 } 2141 } 2142 } 2143 2144 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2145 if (isPowerOf2_32(BitWidth)) { 2146 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2147 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2148 Known2, TLO, Depth + 1)) 2149 return true; 2150 } 2151 break; 2152 } 2153 case ISD::ROTL: 2154 case ISD::ROTR: { 2155 SDValue Op0 = Op.getOperand(0); 2156 SDValue Op1 = Op.getOperand(1); 2157 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2158 2159 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2160 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2161 return TLO.CombineTo(Op, Op0); 2162 2163 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2164 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2165 unsigned RevAmt = BitWidth - Amt; 2166 2167 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2168 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2169 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2170 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2171 Depth + 1)) 2172 return true; 2173 2174 // rot*(x, 0) --> x 2175 if (Amt == 0) 2176 return TLO.CombineTo(Op, Op0); 2177 2178 // See if we don't demand either half of the rotated bits. 2179 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2180 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { 2181 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2182 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2183 } 2184 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2185 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { 2186 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2187 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2188 } 2189 } 2190 2191 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2192 if (isPowerOf2_32(BitWidth)) { 2193 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2194 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2195 Depth + 1)) 2196 return true; 2197 } 2198 break; 2199 } 2200 case ISD::SMIN: 2201 case ISD::SMAX: 2202 case ISD::UMIN: 2203 case ISD::UMAX: { 2204 unsigned Opc = Op.getOpcode(); 2205 SDValue Op0 = Op.getOperand(0); 2206 SDValue Op1 = Op.getOperand(1); 2207 2208 // If we're only demanding signbits, then we can simplify to OR/AND node. 2209 unsigned BitOp = 2210 (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; 2211 unsigned NumSignBits = 2212 std::min(TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1), 2213 TLO.DAG.ComputeNumSignBits(Op1, DemandedElts, Depth + 1)); 2214 unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); 2215 if (NumSignBits >= NumDemandedUpperBits) 2216 return TLO.CombineTo(Op, TLO.DAG.getNode(BitOp, SDLoc(Op), VT, Op0, Op1)); 2217 2218 // Check if one arg is always less/greater than (or equal) to the other arg. 2219 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2220 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2221 switch (Opc) { 2222 case ISD::SMIN: 2223 if (std::optional<bool> IsSLE = KnownBits::sle(Known0, Known1)) 2224 return TLO.CombineTo(Op, *IsSLE ? Op0 : Op1); 2225 if (std::optional<bool> IsSLT = KnownBits::slt(Known0, Known1)) 2226 return TLO.CombineTo(Op, *IsSLT ? Op0 : Op1); 2227 Known = KnownBits::smin(Known0, Known1); 2228 break; 2229 case ISD::SMAX: 2230 if (std::optional<bool> IsSGE = KnownBits::sge(Known0, Known1)) 2231 return TLO.CombineTo(Op, *IsSGE ? Op0 : Op1); 2232 if (std::optional<bool> IsSGT = KnownBits::sgt(Known0, Known1)) 2233 return TLO.CombineTo(Op, *IsSGT ? Op0 : Op1); 2234 Known = KnownBits::smax(Known0, Known1); 2235 break; 2236 case ISD::UMIN: 2237 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2238 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2239 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2240 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2241 Known = KnownBits::umin(Known0, Known1); 2242 break; 2243 case ISD::UMAX: 2244 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2245 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2246 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2247 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2248 Known = KnownBits::umax(Known0, Known1); 2249 break; 2250 } 2251 break; 2252 } 2253 case ISD::BITREVERSE: { 2254 SDValue Src = Op.getOperand(0); 2255 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2256 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2257 Depth + 1)) 2258 return true; 2259 Known.One = Known2.One.reverseBits(); 2260 Known.Zero = Known2.Zero.reverseBits(); 2261 break; 2262 } 2263 case ISD::BSWAP: { 2264 SDValue Src = Op.getOperand(0); 2265 2266 // If the only bits demanded come from one byte of the bswap result, 2267 // just shift the input byte into position to eliminate the bswap. 2268 unsigned NLZ = DemandedBits.countl_zero(); 2269 unsigned NTZ = DemandedBits.countr_zero(); 2270 2271 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2272 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2273 // have 14 leading zeros, round to 8. 2274 NLZ = alignDown(NLZ, 8); 2275 NTZ = alignDown(NTZ, 8); 2276 // If we need exactly one byte, we can do this transformation. 2277 if (BitWidth - NLZ - NTZ == 8) { 2278 // Replace this with either a left or right shift to get the byte into 2279 // the right place. 2280 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2281 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2282 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2283 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2284 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2285 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2286 return TLO.CombineTo(Op, NewOp); 2287 } 2288 } 2289 2290 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2291 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2292 Depth + 1)) 2293 return true; 2294 Known.One = Known2.One.byteSwap(); 2295 Known.Zero = Known2.Zero.byteSwap(); 2296 break; 2297 } 2298 case ISD::CTPOP: { 2299 // If only 1 bit is demanded, replace with PARITY as long as we're before 2300 // op legalization. 2301 // FIXME: Limit to scalars for now. 2302 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2303 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2304 Op.getOperand(0))); 2305 2306 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2307 break; 2308 } 2309 case ISD::SIGN_EXTEND_INREG: { 2310 SDValue Op0 = Op.getOperand(0); 2311 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2312 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2313 2314 // If we only care about the highest bit, don't bother shifting right. 2315 if (DemandedBits.isSignMask()) { 2316 unsigned MinSignedBits = 2317 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2318 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2319 // However if the input is already sign extended we expect the sign 2320 // extension to be dropped altogether later and do not simplify. 2321 if (!AlreadySignExtended) { 2322 // Compute the correct shift amount type, which must be getShiftAmountTy 2323 // for scalar types after legalization. 2324 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2325 getShiftAmountTy(VT, DL)); 2326 return TLO.CombineTo(Op, 2327 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2328 } 2329 } 2330 2331 // If none of the extended bits are demanded, eliminate the sextinreg. 2332 if (DemandedBits.getActiveBits() <= ExVTBits) 2333 return TLO.CombineTo(Op, Op0); 2334 2335 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2336 2337 // Since the sign extended bits are demanded, we know that the sign 2338 // bit is demanded. 2339 InputDemandedBits.setBit(ExVTBits - 1); 2340 2341 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2342 Depth + 1)) 2343 return true; 2344 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2345 2346 // If the sign bit of the input is known set or clear, then we know the 2347 // top bits of the result. 2348 2349 // If the input sign bit is known zero, convert this into a zero extension. 2350 if (Known.Zero[ExVTBits - 1]) 2351 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2352 2353 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2354 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2355 Known.One.setBitsFrom(ExVTBits); 2356 Known.Zero &= Mask; 2357 } else { // Input sign bit unknown 2358 Known.Zero &= Mask; 2359 Known.One &= Mask; 2360 } 2361 break; 2362 } 2363 case ISD::BUILD_PAIR: { 2364 EVT HalfVT = Op.getOperand(0).getValueType(); 2365 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2366 2367 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2368 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2369 2370 KnownBits KnownLo, KnownHi; 2371 2372 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2373 return true; 2374 2375 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2376 return true; 2377 2378 Known = KnownHi.concat(KnownLo); 2379 break; 2380 } 2381 case ISD::ZERO_EXTEND_VECTOR_INREG: 2382 if (VT.isScalableVector()) 2383 return false; 2384 [[fallthrough]]; 2385 case ISD::ZERO_EXTEND: { 2386 SDValue Src = Op.getOperand(0); 2387 EVT SrcVT = Src.getValueType(); 2388 unsigned InBits = SrcVT.getScalarSizeInBits(); 2389 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2390 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2391 2392 // If none of the top bits are demanded, convert this into an any_extend. 2393 if (DemandedBits.getActiveBits() <= InBits) { 2394 // If we only need the non-extended bits of the bottom element 2395 // then we can just bitcast to the result. 2396 if (IsLE && IsVecInReg && DemandedElts == 1 && 2397 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2398 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2399 2400 unsigned Opc = 2401 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2402 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2403 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2404 } 2405 2406 SDNodeFlags Flags = Op->getFlags(); 2407 APInt InDemandedBits = DemandedBits.trunc(InBits); 2408 APInt InDemandedElts = DemandedElts.zext(InElts); 2409 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2410 Depth + 1)) { 2411 if (Flags.hasNonNeg()) { 2412 Flags.setNonNeg(false); 2413 Op->setFlags(Flags); 2414 } 2415 return true; 2416 } 2417 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2418 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2419 Known = Known.zext(BitWidth); 2420 2421 // Attempt to avoid multi-use ops if we don't need anything from them. 2422 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2423 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2424 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2425 break; 2426 } 2427 case ISD::SIGN_EXTEND_VECTOR_INREG: 2428 if (VT.isScalableVector()) 2429 return false; 2430 [[fallthrough]]; 2431 case ISD::SIGN_EXTEND: { 2432 SDValue Src = Op.getOperand(0); 2433 EVT SrcVT = Src.getValueType(); 2434 unsigned InBits = SrcVT.getScalarSizeInBits(); 2435 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2436 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2437 2438 // If none of the top bits are demanded, convert this into an any_extend. 2439 if (DemandedBits.getActiveBits() <= InBits) { 2440 // If we only need the non-extended bits of the bottom element 2441 // then we can just bitcast to the result. 2442 if (IsLE && IsVecInReg && DemandedElts == 1 && 2443 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2444 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2445 2446 unsigned Opc = 2447 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2448 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2449 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2450 } 2451 2452 APInt InDemandedBits = DemandedBits.trunc(InBits); 2453 APInt InDemandedElts = DemandedElts.zext(InElts); 2454 2455 // Since some of the sign extended bits are demanded, we know that the sign 2456 // bit is demanded. 2457 InDemandedBits.setBit(InBits - 1); 2458 2459 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2460 Depth + 1)) 2461 return true; 2462 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2463 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2464 2465 // If the sign bit is known one, the top bits match. 2466 Known = Known.sext(BitWidth); 2467 2468 // If the sign bit is known zero, convert this to a zero extend. 2469 if (Known.isNonNegative()) { 2470 unsigned Opc = 2471 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2472 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2473 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2474 } 2475 2476 // Attempt to avoid multi-use ops if we don't need anything from them. 2477 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2478 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2479 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2480 break; 2481 } 2482 case ISD::ANY_EXTEND_VECTOR_INREG: 2483 if (VT.isScalableVector()) 2484 return false; 2485 [[fallthrough]]; 2486 case ISD::ANY_EXTEND: { 2487 SDValue Src = Op.getOperand(0); 2488 EVT SrcVT = Src.getValueType(); 2489 unsigned InBits = SrcVT.getScalarSizeInBits(); 2490 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2491 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2492 2493 // If we only need the bottom element then we can just bitcast. 2494 // TODO: Handle ANY_EXTEND? 2495 if (IsLE && IsVecInReg && DemandedElts == 1 && 2496 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2497 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2498 2499 APInt InDemandedBits = DemandedBits.trunc(InBits); 2500 APInt InDemandedElts = DemandedElts.zext(InElts); 2501 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2502 Depth + 1)) 2503 return true; 2504 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2505 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2506 Known = Known.anyext(BitWidth); 2507 2508 // Attempt to avoid multi-use ops if we don't need anything from them. 2509 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2510 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2511 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2512 break; 2513 } 2514 case ISD::TRUNCATE: { 2515 SDValue Src = Op.getOperand(0); 2516 2517 // Simplify the input, using demanded bit information, and compute the known 2518 // zero/one bits live out. 2519 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2520 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2521 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2522 Depth + 1)) 2523 return true; 2524 Known = Known.trunc(BitWidth); 2525 2526 // Attempt to avoid multi-use ops if we don't need anything from them. 2527 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2528 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2529 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2530 2531 // If the input is only used by this truncate, see if we can shrink it based 2532 // on the known demanded bits. 2533 switch (Src.getOpcode()) { 2534 default: 2535 break; 2536 case ISD::SRL: 2537 // Shrink SRL by a constant if none of the high bits shifted in are 2538 // demanded. 2539 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2540 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2541 // undesirable. 2542 break; 2543 2544 if (Src.getNode()->hasOneUse()) { 2545 const APInt *ShAmtC = 2546 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2547 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2548 break; 2549 uint64_t ShVal = ShAmtC->getZExtValue(); 2550 2551 APInt HighBits = 2552 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2553 HighBits.lshrInPlace(ShVal); 2554 HighBits = HighBits.trunc(BitWidth); 2555 2556 if (!(HighBits & DemandedBits)) { 2557 // None of the shifted in bits are needed. Add a truncate of the 2558 // shift input, then shift it. 2559 SDValue NewShAmt = TLO.DAG.getConstant( 2560 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2561 SDValue NewTrunc = 2562 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2563 return TLO.CombineTo( 2564 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2565 } 2566 } 2567 break; 2568 } 2569 2570 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2571 break; 2572 } 2573 case ISD::AssertZext: { 2574 // AssertZext demands all of the high bits, plus any of the low bits 2575 // demanded by its users. 2576 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2577 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2578 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2579 TLO, Depth + 1)) 2580 return true; 2581 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2582 2583 Known.Zero |= ~InMask; 2584 Known.One &= (~Known.Zero); 2585 break; 2586 } 2587 case ISD::EXTRACT_VECTOR_ELT: { 2588 SDValue Src = Op.getOperand(0); 2589 SDValue Idx = Op.getOperand(1); 2590 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2591 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2592 2593 if (SrcEltCnt.isScalable()) 2594 return false; 2595 2596 // Demand the bits from every vector element without a constant index. 2597 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2598 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2599 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2600 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2601 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2602 2603 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2604 // anything about the extended bits. 2605 APInt DemandedSrcBits = DemandedBits; 2606 if (BitWidth > EltBitWidth) 2607 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2608 2609 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2610 Depth + 1)) 2611 return true; 2612 2613 // Attempt to avoid multi-use ops if we don't need anything from them. 2614 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2615 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2616 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2617 SDValue NewOp = 2618 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2619 return TLO.CombineTo(Op, NewOp); 2620 } 2621 } 2622 2623 Known = Known2; 2624 if (BitWidth > EltBitWidth) 2625 Known = Known.anyext(BitWidth); 2626 break; 2627 } 2628 case ISD::BITCAST: { 2629 if (VT.isScalableVector()) 2630 return false; 2631 SDValue Src = Op.getOperand(0); 2632 EVT SrcVT = Src.getValueType(); 2633 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2634 2635 // If this is an FP->Int bitcast and if the sign bit is the only 2636 // thing demanded, turn this into a FGETSIGN. 2637 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2638 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2639 SrcVT.isFloatingPoint()) { 2640 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2641 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2642 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2643 SrcVT != MVT::f128) { 2644 // Cannot eliminate/lower SHL for f128 yet. 2645 EVT Ty = OpVTLegal ? VT : MVT::i32; 2646 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2647 // place. We expect the SHL to be eliminated by other optimizations. 2648 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2649 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2650 if (!OpVTLegal && OpVTSizeInBits > 32) 2651 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2652 unsigned ShVal = Op.getValueSizeInBits() - 1; 2653 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2654 return TLO.CombineTo(Op, 2655 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2656 } 2657 } 2658 2659 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2660 // Demand the elt/bit if any of the original elts/bits are demanded. 2661 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2662 unsigned Scale = BitWidth / NumSrcEltBits; 2663 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2664 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2665 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2666 for (unsigned i = 0; i != Scale; ++i) { 2667 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2668 unsigned BitOffset = EltOffset * NumSrcEltBits; 2669 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2670 if (!Sub.isZero()) { 2671 DemandedSrcBits |= Sub; 2672 for (unsigned j = 0; j != NumElts; ++j) 2673 if (DemandedElts[j]) 2674 DemandedSrcElts.setBit((j * Scale) + i); 2675 } 2676 } 2677 2678 APInt KnownSrcUndef, KnownSrcZero; 2679 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2680 KnownSrcZero, TLO, Depth + 1)) 2681 return true; 2682 2683 KnownBits KnownSrcBits; 2684 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2685 KnownSrcBits, TLO, Depth + 1)) 2686 return true; 2687 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2688 // TODO - bigendian once we have test coverage. 2689 unsigned Scale = NumSrcEltBits / BitWidth; 2690 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2693 for (unsigned i = 0; i != NumElts; ++i) 2694 if (DemandedElts[i]) { 2695 unsigned Offset = (i % Scale) * BitWidth; 2696 DemandedSrcBits.insertBits(DemandedBits, Offset); 2697 DemandedSrcElts.setBit(i / Scale); 2698 } 2699 2700 if (SrcVT.isVector()) { 2701 APInt KnownSrcUndef, KnownSrcZero; 2702 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2703 KnownSrcZero, TLO, Depth + 1)) 2704 return true; 2705 } 2706 2707 KnownBits KnownSrcBits; 2708 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2709 KnownSrcBits, TLO, Depth + 1)) 2710 return true; 2711 2712 // Attempt to avoid multi-use ops if we don't need anything from them. 2713 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2714 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2715 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2716 SDValue NewOp = TLO.DAG.getBitcast(VT, DemandedSrc); 2717 return TLO.CombineTo(Op, NewOp); 2718 } 2719 } 2720 } 2721 2722 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2723 // recursive call where Known may be useful to the caller. 2724 if (Depth > 0) { 2725 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2726 return false; 2727 } 2728 break; 2729 } 2730 case ISD::MUL: 2731 if (DemandedBits.isPowerOf2()) { 2732 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2733 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2734 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2735 unsigned CTZ = DemandedBits.countr_zero(); 2736 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2737 if (C && C->getAPIntValue().countr_zero() == CTZ) { 2738 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2739 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2740 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2741 return TLO.CombineTo(Op, Shl); 2742 } 2743 } 2744 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2745 // X * X is odd iff X is odd. 2746 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2747 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2748 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2749 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2750 return TLO.CombineTo(Op, And1); 2751 } 2752 [[fallthrough]]; 2753 case ISD::ADD: 2754 case ISD::SUB: { 2755 // Add, Sub, and Mul don't demand any bits in positions beyond that 2756 // of the highest bit demanded of them. 2757 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2758 SDNodeFlags Flags = Op.getNode()->getFlags(); 2759 unsigned DemandedBitsLZ = DemandedBits.countl_zero(); 2760 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2761 KnownBits KnownOp0, KnownOp1; 2762 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, KnownOp0, TLO, 2763 Depth + 1) || 2764 SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO, 2765 Depth + 1) || 2766 // See if the operation should be performed at a smaller bit width. 2767 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2768 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2769 // Disable the nsw and nuw flags. We can no longer guarantee that we 2770 // won't wrap after simplification. 2771 Flags.setNoSignedWrap(false); 2772 Flags.setNoUnsignedWrap(false); 2773 Op->setFlags(Flags); 2774 } 2775 return true; 2776 } 2777 2778 // neg x with only low bit demanded is simply x. 2779 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2780 isNullConstant(Op0)) 2781 return TLO.CombineTo(Op, Op1); 2782 2783 // Attempt to avoid multi-use ops if we don't need anything from them. 2784 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2785 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2786 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2787 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2788 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2789 if (DemandedOp0 || DemandedOp1) { 2790 Flags.setNoSignedWrap(false); 2791 Flags.setNoUnsignedWrap(false); 2792 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2793 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2794 SDValue NewOp = 2795 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2796 return TLO.CombineTo(Op, NewOp); 2797 } 2798 } 2799 2800 // If we have a constant operand, we may be able to turn it into -1 if we 2801 // do not demand the high bits. This can make the constant smaller to 2802 // encode, allow more general folding, or match specialized instruction 2803 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2804 // is probably not useful (and could be detrimental). 2805 ConstantSDNode *C = isConstOrConstSplat(Op1); 2806 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2807 if (C && !C->isAllOnes() && !C->isOne() && 2808 (C->getAPIntValue() | HighMask).isAllOnes()) { 2809 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2810 // Disable the nsw and nuw flags. We can no longer guarantee that we 2811 // won't wrap after simplification. 2812 Flags.setNoSignedWrap(false); 2813 Flags.setNoUnsignedWrap(false); 2814 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2815 return TLO.CombineTo(Op, NewOp); 2816 } 2817 2818 // Match a multiply with a disguised negated-power-of-2 and convert to a 2819 // an equivalent shift-left amount. 2820 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2821 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2822 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2823 return 0; 2824 2825 // Don't touch opaque constants. Also, ignore zero and power-of-2 2826 // multiplies. Those will get folded later. 2827 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2828 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2829 !MulC->getAPIntValue().isPowerOf2()) { 2830 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2831 if (UnmaskedC.isNegatedPowerOf2()) 2832 return (-UnmaskedC).logBase2(); 2833 } 2834 return 0; 2835 }; 2836 2837 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2838 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2839 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2840 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2841 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2842 return TLO.CombineTo(Op, Res); 2843 }; 2844 2845 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2846 if (Op.getOpcode() == ISD::ADD) { 2847 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2848 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2849 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2850 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2851 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2852 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2853 } 2854 if (Op.getOpcode() == ISD::SUB) { 2855 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2856 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2857 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2858 } 2859 } 2860 2861 if (Op.getOpcode() == ISD::MUL) { 2862 Known = KnownBits::mul(KnownOp0, KnownOp1); 2863 } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. 2864 Known = KnownBits::computeForAddSub(Op.getOpcode() == ISD::ADD, 2865 Flags.hasNoSignedWrap(), KnownOp0, 2866 KnownOp1); 2867 } 2868 break; 2869 } 2870 default: 2871 // We also ask the target about intrinsics (which could be specific to it). 2872 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2873 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2874 // TODO: Probably okay to remove after audit; here to reduce change size 2875 // in initial enablement patch for scalable vectors 2876 if (Op.getValueType().isScalableVector()) 2877 break; 2878 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2879 Known, TLO, Depth)) 2880 return true; 2881 break; 2882 } 2883 2884 // Just use computeKnownBits to compute output bits. 2885 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2886 break; 2887 } 2888 2889 // If we know the value of all of the demanded bits, return this as a 2890 // constant. 2891 if (!isTargetCanonicalConstantNode(Op) && 2892 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2893 // Avoid folding to a constant if any OpaqueConstant is involved. 2894 const SDNode *N = Op.getNode(); 2895 for (SDNode *Op : 2896 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2897 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2898 if (C->isOpaque()) 2899 return false; 2900 } 2901 if (VT.isInteger()) 2902 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2903 if (VT.isFloatingPoint()) 2904 return TLO.CombineTo( 2905 Op, 2906 TLO.DAG.getConstantFP( 2907 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2908 } 2909 2910 // A multi use 'all demanded elts' simplify failed to find any knownbits. 2911 // Try again just for the original demanded elts. 2912 // Ensure we do this AFTER constant folding above. 2913 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 2914 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 2915 2916 return false; 2917 } 2918 2919 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2920 const APInt &DemandedElts, 2921 DAGCombinerInfo &DCI) const { 2922 SelectionDAG &DAG = DCI.DAG; 2923 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2924 !DCI.isBeforeLegalizeOps()); 2925 2926 APInt KnownUndef, KnownZero; 2927 bool Simplified = 2928 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2929 if (Simplified) { 2930 DCI.AddToWorklist(Op.getNode()); 2931 DCI.CommitTargetLoweringOpt(TLO); 2932 } 2933 2934 return Simplified; 2935 } 2936 2937 /// Given a vector binary operation and known undefined elements for each input 2938 /// operand, compute whether each element of the output is undefined. 2939 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2940 const APInt &UndefOp0, 2941 const APInt &UndefOp1) { 2942 EVT VT = BO.getValueType(); 2943 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2944 "Vector binop only"); 2945 2946 EVT EltVT = VT.getVectorElementType(); 2947 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 2948 assert(UndefOp0.getBitWidth() == NumElts && 2949 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2950 2951 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2952 const APInt &UndefVals) { 2953 if (UndefVals[Index]) 2954 return DAG.getUNDEF(EltVT); 2955 2956 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2957 // Try hard to make sure that the getNode() call is not creating temporary 2958 // nodes. Ignore opaque integers because they do not constant fold. 2959 SDValue Elt = BV->getOperand(Index); 2960 auto *C = dyn_cast<ConstantSDNode>(Elt); 2961 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2962 return Elt; 2963 } 2964 2965 return SDValue(); 2966 }; 2967 2968 APInt KnownUndef = APInt::getZero(NumElts); 2969 for (unsigned i = 0; i != NumElts; ++i) { 2970 // If both inputs for this element are either constant or undef and match 2971 // the element type, compute the constant/undef result for this element of 2972 // the vector. 2973 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2974 // not handle FP constants. The code within getNode() should be refactored 2975 // to avoid the danger of creating a bogus temporary node here. 2976 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2977 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2978 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2979 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2980 KnownUndef.setBit(i); 2981 } 2982 return KnownUndef; 2983 } 2984 2985 bool TargetLowering::SimplifyDemandedVectorElts( 2986 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2987 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2988 bool AssumeSingleUse) const { 2989 EVT VT = Op.getValueType(); 2990 unsigned Opcode = Op.getOpcode(); 2991 APInt DemandedElts = OriginalDemandedElts; 2992 unsigned NumElts = DemandedElts.getBitWidth(); 2993 assert(VT.isVector() && "Expected vector op"); 2994 2995 KnownUndef = KnownZero = APInt::getZero(NumElts); 2996 2997 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2998 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2999 return false; 3000 3001 // TODO: For now we assume we know nothing about scalable vectors. 3002 if (VT.isScalableVector()) 3003 return false; 3004 3005 assert(VT.getVectorNumElements() == NumElts && 3006 "Mask size mismatches value type element count!"); 3007 3008 // Undef operand. 3009 if (Op.isUndef()) { 3010 KnownUndef.setAllBits(); 3011 return false; 3012 } 3013 3014 // If Op has other users, assume that all elements are needed. 3015 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 3016 DemandedElts.setAllBits(); 3017 3018 // Not demanding any elements from Op. 3019 if (DemandedElts == 0) { 3020 KnownUndef.setAllBits(); 3021 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3022 } 3023 3024 // Limit search depth. 3025 if (Depth >= SelectionDAG::MaxRecursionDepth) 3026 return false; 3027 3028 SDLoc DL(Op); 3029 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 3030 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 3031 3032 // Helper for demanding the specified elements and all the bits of both binary 3033 // operands. 3034 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 3035 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 3036 TLO.DAG, Depth + 1); 3037 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 3038 TLO.DAG, Depth + 1); 3039 if (NewOp0 || NewOp1) { 3040 SDValue NewOp = 3041 TLO.DAG.getNode(Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, 3042 NewOp1 ? NewOp1 : Op1, Op->getFlags()); 3043 return TLO.CombineTo(Op, NewOp); 3044 } 3045 return false; 3046 }; 3047 3048 switch (Opcode) { 3049 case ISD::SCALAR_TO_VECTOR: { 3050 if (!DemandedElts[0]) { 3051 KnownUndef.setAllBits(); 3052 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3053 } 3054 SDValue ScalarSrc = Op.getOperand(0); 3055 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 3056 SDValue Src = ScalarSrc.getOperand(0); 3057 SDValue Idx = ScalarSrc.getOperand(1); 3058 EVT SrcVT = Src.getValueType(); 3059 3060 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 3061 3062 if (SrcEltCnt.isScalable()) 3063 return false; 3064 3065 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 3066 if (isNullConstant(Idx)) { 3067 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 3068 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 3069 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 3070 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3071 TLO, Depth + 1)) 3072 return true; 3073 } 3074 } 3075 KnownUndef.setHighBits(NumElts - 1); 3076 break; 3077 } 3078 case ISD::BITCAST: { 3079 SDValue Src = Op.getOperand(0); 3080 EVT SrcVT = Src.getValueType(); 3081 3082 // We only handle vectors here. 3083 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 3084 if (!SrcVT.isVector()) 3085 break; 3086 3087 // Fast handling of 'identity' bitcasts. 3088 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 3089 if (NumSrcElts == NumElts) 3090 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 3091 KnownZero, TLO, Depth + 1); 3092 3093 APInt SrcDemandedElts, SrcZero, SrcUndef; 3094 3095 // Bitcast from 'large element' src vector to 'small element' vector, we 3096 // must demand a source element if any DemandedElt maps to it. 3097 if ((NumElts % NumSrcElts) == 0) { 3098 unsigned Scale = NumElts / NumSrcElts; 3099 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3100 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3101 TLO, Depth + 1)) 3102 return true; 3103 3104 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 3105 // of the large element. 3106 // TODO - bigendian once we have test coverage. 3107 if (IsLE) { 3108 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 3109 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 3110 for (unsigned i = 0; i != NumElts; ++i) 3111 if (DemandedElts[i]) { 3112 unsigned Ofs = (i % Scale) * EltSizeInBits; 3113 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 3114 } 3115 3116 KnownBits Known; 3117 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 3118 TLO, Depth + 1)) 3119 return true; 3120 3121 // The bitcast has split each wide element into a number of 3122 // narrow subelements. We have just computed the Known bits 3123 // for wide elements. See if element splitting results in 3124 // some subelements being zero. Only for demanded elements! 3125 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 3126 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 3127 .isAllOnes()) 3128 continue; 3129 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 3130 unsigned Elt = Scale * SrcElt + SubElt; 3131 if (DemandedElts[Elt]) 3132 KnownZero.setBit(Elt); 3133 } 3134 } 3135 } 3136 3137 // If the src element is zero/undef then all the output elements will be - 3138 // only demanded elements are guaranteed to be correct. 3139 for (unsigned i = 0; i != NumSrcElts; ++i) { 3140 if (SrcDemandedElts[i]) { 3141 if (SrcZero[i]) 3142 KnownZero.setBits(i * Scale, (i + 1) * Scale); 3143 if (SrcUndef[i]) 3144 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 3145 } 3146 } 3147 } 3148 3149 // Bitcast from 'small element' src vector to 'large element' vector, we 3150 // demand all smaller source elements covered by the larger demanded element 3151 // of this vector. 3152 if ((NumSrcElts % NumElts) == 0) { 3153 unsigned Scale = NumSrcElts / NumElts; 3154 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 3155 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 3156 TLO, Depth + 1)) 3157 return true; 3158 3159 // If all the src elements covering an output element are zero/undef, then 3160 // the output element will be as well, assuming it was demanded. 3161 for (unsigned i = 0; i != NumElts; ++i) { 3162 if (DemandedElts[i]) { 3163 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 3164 KnownZero.setBit(i); 3165 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 3166 KnownUndef.setBit(i); 3167 } 3168 } 3169 } 3170 break; 3171 } 3172 case ISD::BUILD_VECTOR: { 3173 // Check all elements and simplify any unused elements with UNDEF. 3174 if (!DemandedElts.isAllOnes()) { 3175 // Don't simplify BROADCASTS. 3176 if (llvm::any_of(Op->op_values(), 3177 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3178 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 3179 bool Updated = false; 3180 for (unsigned i = 0; i != NumElts; ++i) { 3181 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3182 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3183 KnownUndef.setBit(i); 3184 Updated = true; 3185 } 3186 } 3187 if (Updated) 3188 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3189 } 3190 } 3191 for (unsigned i = 0; i != NumElts; ++i) { 3192 SDValue SrcOp = Op.getOperand(i); 3193 if (SrcOp.isUndef()) { 3194 KnownUndef.setBit(i); 3195 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3196 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3197 KnownZero.setBit(i); 3198 } 3199 } 3200 break; 3201 } 3202 case ISD::CONCAT_VECTORS: { 3203 EVT SubVT = Op.getOperand(0).getValueType(); 3204 unsigned NumSubVecs = Op.getNumOperands(); 3205 unsigned NumSubElts = SubVT.getVectorNumElements(); 3206 for (unsigned i = 0; i != NumSubVecs; ++i) { 3207 SDValue SubOp = Op.getOperand(i); 3208 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3209 APInt SubUndef, SubZero; 3210 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3211 Depth + 1)) 3212 return true; 3213 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3214 KnownZero.insertBits(SubZero, i * NumSubElts); 3215 } 3216 3217 // Attempt to avoid multi-use ops if we don't need anything from them. 3218 if (!DemandedElts.isAllOnes()) { 3219 bool FoundNewSub = false; 3220 SmallVector<SDValue, 2> DemandedSubOps; 3221 for (unsigned i = 0; i != NumSubVecs; ++i) { 3222 SDValue SubOp = Op.getOperand(i); 3223 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3224 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3225 SubOp, SubElts, TLO.DAG, Depth + 1); 3226 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3227 FoundNewSub = NewSubOp ? true : FoundNewSub; 3228 } 3229 if (FoundNewSub) { 3230 SDValue NewOp = 3231 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3232 return TLO.CombineTo(Op, NewOp); 3233 } 3234 } 3235 break; 3236 } 3237 case ISD::INSERT_SUBVECTOR: { 3238 // Demand any elements from the subvector and the remainder from the src its 3239 // inserted into. 3240 SDValue Src = Op.getOperand(0); 3241 SDValue Sub = Op.getOperand(1); 3242 uint64_t Idx = Op.getConstantOperandVal(2); 3243 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3244 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3245 APInt DemandedSrcElts = DemandedElts; 3246 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3247 3248 APInt SubUndef, SubZero; 3249 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3250 Depth + 1)) 3251 return true; 3252 3253 // If none of the src operand elements are demanded, replace it with undef. 3254 if (!DemandedSrcElts && !Src.isUndef()) 3255 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3256 TLO.DAG.getUNDEF(VT), Sub, 3257 Op.getOperand(2))); 3258 3259 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3260 TLO, Depth + 1)) 3261 return true; 3262 KnownUndef.insertBits(SubUndef, Idx); 3263 KnownZero.insertBits(SubZero, Idx); 3264 3265 // Attempt to avoid multi-use ops if we don't need anything from them. 3266 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3267 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3268 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3269 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3270 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3271 if (NewSrc || NewSub) { 3272 NewSrc = NewSrc ? NewSrc : Src; 3273 NewSub = NewSub ? NewSub : Sub; 3274 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3275 NewSub, Op.getOperand(2)); 3276 return TLO.CombineTo(Op, NewOp); 3277 } 3278 } 3279 break; 3280 } 3281 case ISD::EXTRACT_SUBVECTOR: { 3282 // Offset the demanded elts by the subvector index. 3283 SDValue Src = Op.getOperand(0); 3284 if (Src.getValueType().isScalableVector()) 3285 break; 3286 uint64_t Idx = Op.getConstantOperandVal(1); 3287 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3288 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3289 3290 APInt SrcUndef, SrcZero; 3291 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3292 Depth + 1)) 3293 return true; 3294 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3295 KnownZero = SrcZero.extractBits(NumElts, Idx); 3296 3297 // Attempt to avoid multi-use ops if we don't need anything from them. 3298 if (!DemandedElts.isAllOnes()) { 3299 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3300 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3301 if (NewSrc) { 3302 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3303 Op.getOperand(1)); 3304 return TLO.CombineTo(Op, NewOp); 3305 } 3306 } 3307 break; 3308 } 3309 case ISD::INSERT_VECTOR_ELT: { 3310 SDValue Vec = Op.getOperand(0); 3311 SDValue Scl = Op.getOperand(1); 3312 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3313 3314 // For a legal, constant insertion index, if we don't need this insertion 3315 // then strip it, else remove it from the demanded elts. 3316 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3317 unsigned Idx = CIdx->getZExtValue(); 3318 if (!DemandedElts[Idx]) 3319 return TLO.CombineTo(Op, Vec); 3320 3321 APInt DemandedVecElts(DemandedElts); 3322 DemandedVecElts.clearBit(Idx); 3323 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3324 KnownZero, TLO, Depth + 1)) 3325 return true; 3326 3327 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3328 3329 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3330 break; 3331 } 3332 3333 APInt VecUndef, VecZero; 3334 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3335 Depth + 1)) 3336 return true; 3337 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3338 break; 3339 } 3340 case ISD::VSELECT: { 3341 SDValue Sel = Op.getOperand(0); 3342 SDValue LHS = Op.getOperand(1); 3343 SDValue RHS = Op.getOperand(2); 3344 3345 // Try to transform the select condition based on the current demanded 3346 // elements. 3347 APInt UndefSel, UndefZero; 3348 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO, 3349 Depth + 1)) 3350 return true; 3351 3352 // See if we can simplify either vselect operand. 3353 APInt DemandedLHS(DemandedElts); 3354 APInt DemandedRHS(DemandedElts); 3355 APInt UndefLHS, ZeroLHS; 3356 APInt UndefRHS, ZeroRHS; 3357 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3358 Depth + 1)) 3359 return true; 3360 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3361 Depth + 1)) 3362 return true; 3363 3364 KnownUndef = UndefLHS & UndefRHS; 3365 KnownZero = ZeroLHS & ZeroRHS; 3366 3367 // If we know that the selected element is always zero, we don't need the 3368 // select value element. 3369 APInt DemandedSel = DemandedElts & ~KnownZero; 3370 if (DemandedSel != DemandedElts) 3371 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO, 3372 Depth + 1)) 3373 return true; 3374 3375 break; 3376 } 3377 case ISD::VECTOR_SHUFFLE: { 3378 SDValue LHS = Op.getOperand(0); 3379 SDValue RHS = Op.getOperand(1); 3380 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3381 3382 // Collect demanded elements from shuffle operands.. 3383 APInt DemandedLHS(NumElts, 0); 3384 APInt DemandedRHS(NumElts, 0); 3385 for (unsigned i = 0; i != NumElts; ++i) { 3386 int M = ShuffleMask[i]; 3387 if (M < 0 || !DemandedElts[i]) 3388 continue; 3389 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3390 if (M < (int)NumElts) 3391 DemandedLHS.setBit(M); 3392 else 3393 DemandedRHS.setBit(M - NumElts); 3394 } 3395 3396 // See if we can simplify either shuffle operand. 3397 APInt UndefLHS, ZeroLHS; 3398 APInt UndefRHS, ZeroRHS; 3399 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3400 Depth + 1)) 3401 return true; 3402 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3403 Depth + 1)) 3404 return true; 3405 3406 // Simplify mask using undef elements from LHS/RHS. 3407 bool Updated = false; 3408 bool IdentityLHS = true, IdentityRHS = true; 3409 SmallVector<int, 32> NewMask(ShuffleMask); 3410 for (unsigned i = 0; i != NumElts; ++i) { 3411 int &M = NewMask[i]; 3412 if (M < 0) 3413 continue; 3414 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3415 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3416 Updated = true; 3417 M = -1; 3418 } 3419 IdentityLHS &= (M < 0) || (M == (int)i); 3420 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3421 } 3422 3423 // Update legal shuffle masks based on demanded elements if it won't reduce 3424 // to Identity which can cause premature removal of the shuffle mask. 3425 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3426 SDValue LegalShuffle = 3427 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3428 if (LegalShuffle) 3429 return TLO.CombineTo(Op, LegalShuffle); 3430 } 3431 3432 // Propagate undef/zero elements from LHS/RHS. 3433 for (unsigned i = 0; i != NumElts; ++i) { 3434 int M = ShuffleMask[i]; 3435 if (M < 0) { 3436 KnownUndef.setBit(i); 3437 } else if (M < (int)NumElts) { 3438 if (UndefLHS[M]) 3439 KnownUndef.setBit(i); 3440 if (ZeroLHS[M]) 3441 KnownZero.setBit(i); 3442 } else { 3443 if (UndefRHS[M - NumElts]) 3444 KnownUndef.setBit(i); 3445 if (ZeroRHS[M - NumElts]) 3446 KnownZero.setBit(i); 3447 } 3448 } 3449 break; 3450 } 3451 case ISD::ANY_EXTEND_VECTOR_INREG: 3452 case ISD::SIGN_EXTEND_VECTOR_INREG: 3453 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3454 APInt SrcUndef, SrcZero; 3455 SDValue Src = Op.getOperand(0); 3456 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3457 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3458 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3459 Depth + 1)) 3460 return true; 3461 KnownZero = SrcZero.zextOrTrunc(NumElts); 3462 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3463 3464 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3465 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3466 DemandedSrcElts == 1) { 3467 // aext - if we just need the bottom element then we can bitcast. 3468 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3469 } 3470 3471 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3472 // zext(undef) upper bits are guaranteed to be zero. 3473 if (DemandedElts.isSubsetOf(KnownUndef)) 3474 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3475 KnownUndef.clearAllBits(); 3476 3477 // zext - if we just need the bottom element then we can mask: 3478 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3479 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3480 Op->isOnlyUserOf(Src.getNode()) && 3481 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3482 SDLoc DL(Op); 3483 EVT SrcVT = Src.getValueType(); 3484 EVT SrcSVT = SrcVT.getScalarType(); 3485 SmallVector<SDValue> MaskElts; 3486 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3487 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3488 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3489 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3490 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3491 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3492 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3493 } 3494 } 3495 } 3496 break; 3497 } 3498 3499 // TODO: There are more binop opcodes that could be handled here - MIN, 3500 // MAX, saturated math, etc. 3501 case ISD::ADD: { 3502 SDValue Op0 = Op.getOperand(0); 3503 SDValue Op1 = Op.getOperand(1); 3504 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3505 APInt UndefLHS, ZeroLHS; 3506 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3507 Depth + 1, /*AssumeSingleUse*/ true)) 3508 return true; 3509 } 3510 [[fallthrough]]; 3511 } 3512 case ISD::OR: 3513 case ISD::XOR: 3514 case ISD::SUB: 3515 case ISD::FADD: 3516 case ISD::FSUB: 3517 case ISD::FMUL: 3518 case ISD::FDIV: 3519 case ISD::FREM: { 3520 SDValue Op0 = Op.getOperand(0); 3521 SDValue Op1 = Op.getOperand(1); 3522 3523 APInt UndefRHS, ZeroRHS; 3524 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3525 Depth + 1)) 3526 return true; 3527 APInt UndefLHS, ZeroLHS; 3528 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3529 Depth + 1)) 3530 return true; 3531 3532 KnownZero = ZeroLHS & ZeroRHS; 3533 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3534 3535 // Attempt to avoid multi-use ops if we don't need anything from them. 3536 // TODO - use KnownUndef to relax the demandedelts? 3537 if (!DemandedElts.isAllOnes()) 3538 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3539 return true; 3540 break; 3541 } 3542 case ISD::SHL: 3543 case ISD::SRL: 3544 case ISD::SRA: 3545 case ISD::ROTL: 3546 case ISD::ROTR: { 3547 SDValue Op0 = Op.getOperand(0); 3548 SDValue Op1 = Op.getOperand(1); 3549 3550 APInt UndefRHS, ZeroRHS; 3551 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3552 Depth + 1)) 3553 return true; 3554 APInt UndefLHS, ZeroLHS; 3555 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3556 Depth + 1)) 3557 return true; 3558 3559 KnownZero = ZeroLHS; 3560 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3561 3562 // Attempt to avoid multi-use ops if we don't need anything from them. 3563 // TODO - use KnownUndef to relax the demandedelts? 3564 if (!DemandedElts.isAllOnes()) 3565 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3566 return true; 3567 break; 3568 } 3569 case ISD::MUL: 3570 case ISD::MULHU: 3571 case ISD::MULHS: 3572 case ISD::AND: { 3573 SDValue Op0 = Op.getOperand(0); 3574 SDValue Op1 = Op.getOperand(1); 3575 3576 APInt SrcUndef, SrcZero; 3577 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3578 Depth + 1)) 3579 return true; 3580 // If we know that a demanded element was zero in Op1 we don't need to 3581 // demand it in Op0 - its guaranteed to be zero. 3582 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3583 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3584 TLO, Depth + 1)) 3585 return true; 3586 3587 KnownUndef &= DemandedElts0; 3588 KnownZero &= DemandedElts0; 3589 3590 // If every element pair has a zero/undef then just fold to zero. 3591 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3592 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3593 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3594 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3595 3596 // If either side has a zero element, then the result element is zero, even 3597 // if the other is an UNDEF. 3598 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3599 // and then handle 'and' nodes with the rest of the binop opcodes. 3600 KnownZero |= SrcZero; 3601 KnownUndef &= SrcUndef; 3602 KnownUndef &= ~KnownZero; 3603 3604 // Attempt to avoid multi-use ops if we don't need anything from them. 3605 if (!DemandedElts.isAllOnes()) 3606 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3607 return true; 3608 break; 3609 } 3610 case ISD::TRUNCATE: 3611 case ISD::SIGN_EXTEND: 3612 case ISD::ZERO_EXTEND: 3613 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3614 KnownZero, TLO, Depth + 1)) 3615 return true; 3616 3617 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3618 // zext(undef) upper bits are guaranteed to be zero. 3619 if (DemandedElts.isSubsetOf(KnownUndef)) 3620 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3621 KnownUndef.clearAllBits(); 3622 } 3623 break; 3624 default: { 3625 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3626 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3627 KnownZero, TLO, Depth)) 3628 return true; 3629 } else { 3630 KnownBits Known; 3631 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3632 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3633 TLO, Depth, AssumeSingleUse)) 3634 return true; 3635 } 3636 break; 3637 } 3638 } 3639 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3640 3641 // Constant fold all undef cases. 3642 // TODO: Handle zero cases as well. 3643 if (DemandedElts.isSubsetOf(KnownUndef)) 3644 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3645 3646 return false; 3647 } 3648 3649 /// Determine which of the bits specified in Mask are known to be either zero or 3650 /// one and return them in the Known. 3651 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3652 KnownBits &Known, 3653 const APInt &DemandedElts, 3654 const SelectionDAG &DAG, 3655 unsigned Depth) const { 3656 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3657 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3658 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3659 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3660 "Should use MaskedValueIsZero if you don't know whether Op" 3661 " is a target node!"); 3662 Known.resetAll(); 3663 } 3664 3665 void TargetLowering::computeKnownBitsForTargetInstr( 3666 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3667 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3668 unsigned Depth) const { 3669 Known.resetAll(); 3670 } 3671 3672 void TargetLowering::computeKnownBitsForFrameIndex( 3673 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3674 // The low bits are known zero if the pointer is aligned. 3675 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3676 } 3677 3678 Align TargetLowering::computeKnownAlignForTargetInstr( 3679 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3680 unsigned Depth) const { 3681 return Align(1); 3682 } 3683 3684 /// This method can be implemented by targets that want to expose additional 3685 /// information about sign bits to the DAG Combiner. 3686 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3687 const APInt &, 3688 const SelectionDAG &, 3689 unsigned Depth) const { 3690 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3691 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3692 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3693 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3694 "Should use ComputeNumSignBits if you don't know whether Op" 3695 " is a target node!"); 3696 return 1; 3697 } 3698 3699 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3700 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3701 const MachineRegisterInfo &MRI, unsigned Depth) const { 3702 return 1; 3703 } 3704 3705 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3706 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3707 TargetLoweringOpt &TLO, unsigned Depth) const { 3708 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3709 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3710 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3711 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3712 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3713 " is a target node!"); 3714 return false; 3715 } 3716 3717 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3718 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3719 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3720 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3721 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3722 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3723 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3724 "Should use SimplifyDemandedBits if you don't know whether Op" 3725 " is a target node!"); 3726 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3727 return false; 3728 } 3729 3730 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3731 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3732 SelectionDAG &DAG, unsigned Depth) const { 3733 assert( 3734 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3735 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3736 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3737 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3738 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3739 " is a target node!"); 3740 return SDValue(); 3741 } 3742 3743 SDValue 3744 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3745 SDValue N1, MutableArrayRef<int> Mask, 3746 SelectionDAG &DAG) const { 3747 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3748 if (!LegalMask) { 3749 std::swap(N0, N1); 3750 ShuffleVectorSDNode::commuteMask(Mask); 3751 LegalMask = isShuffleMaskLegal(Mask, VT); 3752 } 3753 3754 if (!LegalMask) 3755 return SDValue(); 3756 3757 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3758 } 3759 3760 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3761 return nullptr; 3762 } 3763 3764 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3765 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3766 bool PoisonOnly, unsigned Depth) const { 3767 assert( 3768 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3769 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3770 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3771 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3772 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3773 " is a target node!"); 3774 return false; 3775 } 3776 3777 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3778 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3779 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3780 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3781 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3782 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3783 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3784 "Should use canCreateUndefOrPoison if you don't know whether Op" 3785 " is a target node!"); 3786 // Be conservative and return true. 3787 return true; 3788 } 3789 3790 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3791 const SelectionDAG &DAG, 3792 bool SNaN, 3793 unsigned Depth) const { 3794 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3795 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3796 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3797 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3798 "Should use isKnownNeverNaN if you don't know whether Op" 3799 " is a target node!"); 3800 return false; 3801 } 3802 3803 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3804 const APInt &DemandedElts, 3805 APInt &UndefElts, 3806 const SelectionDAG &DAG, 3807 unsigned Depth) const { 3808 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3809 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3810 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3811 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3812 "Should use isSplatValue if you don't know whether Op" 3813 " is a target node!"); 3814 return false; 3815 } 3816 3817 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3818 // work with truncating build vectors and vectors with elements of less than 3819 // 8 bits. 3820 bool TargetLowering::isConstTrueVal(SDValue N) const { 3821 if (!N) 3822 return false; 3823 3824 unsigned EltWidth; 3825 APInt CVal; 3826 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3827 /*AllowTruncation=*/true)) { 3828 CVal = CN->getAPIntValue(); 3829 EltWidth = N.getValueType().getScalarSizeInBits(); 3830 } else 3831 return false; 3832 3833 // If this is a truncating splat, truncate the splat value. 3834 // Otherwise, we may fail to match the expected values below. 3835 if (EltWidth < CVal.getBitWidth()) 3836 CVal = CVal.trunc(EltWidth); 3837 3838 switch (getBooleanContents(N.getValueType())) { 3839 case UndefinedBooleanContent: 3840 return CVal[0]; 3841 case ZeroOrOneBooleanContent: 3842 return CVal.isOne(); 3843 case ZeroOrNegativeOneBooleanContent: 3844 return CVal.isAllOnes(); 3845 } 3846 3847 llvm_unreachable("Invalid boolean contents"); 3848 } 3849 3850 bool TargetLowering::isConstFalseVal(SDValue N) const { 3851 if (!N) 3852 return false; 3853 3854 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3855 if (!CN) { 3856 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3857 if (!BV) 3858 return false; 3859 3860 // Only interested in constant splats, we don't care about undef 3861 // elements in identifying boolean constants and getConstantSplatNode 3862 // returns NULL if all ops are undef; 3863 CN = BV->getConstantSplatNode(); 3864 if (!CN) 3865 return false; 3866 } 3867 3868 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3869 return !CN->getAPIntValue()[0]; 3870 3871 return CN->isZero(); 3872 } 3873 3874 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3875 bool SExt) const { 3876 if (VT == MVT::i1) 3877 return N->isOne(); 3878 3879 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3880 switch (Cnt) { 3881 case TargetLowering::ZeroOrOneBooleanContent: 3882 // An extended value of 1 is always true, unless its original type is i1, 3883 // in which case it will be sign extended to -1. 3884 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3885 case TargetLowering::UndefinedBooleanContent: 3886 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3887 return N->isAllOnes() && SExt; 3888 } 3889 llvm_unreachable("Unexpected enumeration."); 3890 } 3891 3892 /// This helper function of SimplifySetCC tries to optimize the comparison when 3893 /// either operand of the SetCC node is a bitwise-and instruction. 3894 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3895 ISD::CondCode Cond, const SDLoc &DL, 3896 DAGCombinerInfo &DCI) const { 3897 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3898 std::swap(N0, N1); 3899 3900 SelectionDAG &DAG = DCI.DAG; 3901 EVT OpVT = N0.getValueType(); 3902 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3903 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3904 return SDValue(); 3905 3906 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3907 // iff everything but LSB is known zero: 3908 if (Cond == ISD::SETNE && isNullConstant(N1) && 3909 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3910 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3911 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3912 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3913 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3914 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3915 } 3916 3917 // Try to eliminate a power-of-2 mask constant by converting to a signbit 3918 // test in a narrow type that we can truncate to with no cost. Examples: 3919 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 3920 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 3921 // TODO: This conservatively checks for type legality on the source and 3922 // destination types. That may inhibit optimizations, but it also 3923 // allows setcc->shift transforms that may be more beneficial. 3924 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3925 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 3926 isTypeLegal(OpVT) && N0.hasOneUse()) { 3927 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 3928 AndC->getAPIntValue().getActiveBits()); 3929 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 3930 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 3931 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 3932 return DAG.getSetCC(DL, VT, Trunc, Zero, 3933 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 3934 } 3935 } 3936 3937 // Match these patterns in any of their permutations: 3938 // (X & Y) == Y 3939 // (X & Y) != Y 3940 SDValue X, Y; 3941 if (N0.getOperand(0) == N1) { 3942 X = N0.getOperand(1); 3943 Y = N0.getOperand(0); 3944 } else if (N0.getOperand(1) == N1) { 3945 X = N0.getOperand(0); 3946 Y = N0.getOperand(1); 3947 } else { 3948 return SDValue(); 3949 } 3950 3951 // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if 3952 // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as 3953 // its liable to create and infinite loop. 3954 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3955 if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && 3956 DAG.isKnownToBeAPowerOfTwo(Y)) { 3957 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3958 // Note that where Y is variable and is known to have at most one bit set 3959 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3960 // equivalent when Y == 0. 3961 assert(OpVT.isInteger()); 3962 Cond = ISD::getSetCCInverse(Cond, OpVT); 3963 if (DCI.isBeforeLegalizeOps() || 3964 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3965 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3966 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3967 // If the target supports an 'and-not' or 'and-complement' logic operation, 3968 // try to use that to make a comparison operation more efficient. 3969 // But don't do this transform if the mask is a single bit because there are 3970 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3971 // 'rlwinm' on PPC). 3972 3973 // Bail out if the compare operand that we want to turn into a zero is 3974 // already a zero (otherwise, infinite loop). 3975 if (isNullConstant(Y)) 3976 return SDValue(); 3977 3978 // Transform this into: ~X & Y == 0. 3979 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3980 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3981 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3982 } 3983 3984 return SDValue(); 3985 } 3986 3987 /// There are multiple IR patterns that could be checking whether certain 3988 /// truncation of a signed number would be lossy or not. The pattern which is 3989 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3990 /// We are looking for the following pattern: (KeptBits is a constant) 3991 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3992 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3993 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3994 /// We will unfold it into the natural trunc+sext pattern: 3995 /// ((%x << C) a>> C) dstcond %x 3996 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3997 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3998 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3999 const SDLoc &DL) const { 4000 // We must be comparing with a constant. 4001 ConstantSDNode *C1; 4002 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 4003 return SDValue(); 4004 4005 // N0 should be: add %x, (1 << (KeptBits-1)) 4006 if (N0->getOpcode() != ISD::ADD) 4007 return SDValue(); 4008 4009 // And we must be 'add'ing a constant. 4010 ConstantSDNode *C01; 4011 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 4012 return SDValue(); 4013 4014 SDValue X = N0->getOperand(0); 4015 EVT XVT = X.getValueType(); 4016 4017 // Validate constants ... 4018 4019 APInt I1 = C1->getAPIntValue(); 4020 4021 ISD::CondCode NewCond; 4022 if (Cond == ISD::CondCode::SETULT) { 4023 NewCond = ISD::CondCode::SETEQ; 4024 } else if (Cond == ISD::CondCode::SETULE) { 4025 NewCond = ISD::CondCode::SETEQ; 4026 // But need to 'canonicalize' the constant. 4027 I1 += 1; 4028 } else if (Cond == ISD::CondCode::SETUGT) { 4029 NewCond = ISD::CondCode::SETNE; 4030 // But need to 'canonicalize' the constant. 4031 I1 += 1; 4032 } else if (Cond == ISD::CondCode::SETUGE) { 4033 NewCond = ISD::CondCode::SETNE; 4034 } else 4035 return SDValue(); 4036 4037 APInt I01 = C01->getAPIntValue(); 4038 4039 auto checkConstants = [&I1, &I01]() -> bool { 4040 // Both of them must be power-of-two, and the constant from setcc is bigger. 4041 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 4042 }; 4043 4044 if (checkConstants()) { 4045 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 4046 } else { 4047 // What if we invert constants? (and the target predicate) 4048 I1.negate(); 4049 I01.negate(); 4050 assert(XVT.isInteger()); 4051 NewCond = getSetCCInverse(NewCond, XVT); 4052 if (!checkConstants()) 4053 return SDValue(); 4054 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 4055 } 4056 4057 // They are power-of-two, so which bit is set? 4058 const unsigned KeptBits = I1.logBase2(); 4059 const unsigned KeptBitsMinusOne = I01.logBase2(); 4060 4061 // Magic! 4062 if (KeptBits != (KeptBitsMinusOne + 1)) 4063 return SDValue(); 4064 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 4065 4066 // We don't want to do this in every single case. 4067 SelectionDAG &DAG = DCI.DAG; 4068 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 4069 XVT, KeptBits)) 4070 return SDValue(); 4071 4072 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 4073 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 4074 4075 // Unfold into: ((%x << C) a>> C) cond %x 4076 // Where 'cond' will be either 'eq' or 'ne'. 4077 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 4078 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 4079 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 4080 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 4081 4082 return T2; 4083 } 4084 4085 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4086 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 4087 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 4088 DAGCombinerInfo &DCI, const SDLoc &DL) const { 4089 assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && 4090 "Should be a comparison with 0."); 4091 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4092 "Valid only for [in]equality comparisons."); 4093 4094 unsigned NewShiftOpcode; 4095 SDValue X, C, Y; 4096 4097 SelectionDAG &DAG = DCI.DAG; 4098 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4099 4100 // Look for '(C l>>/<< Y)'. 4101 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 4102 // The shift should be one-use. 4103 if (!V.hasOneUse()) 4104 return false; 4105 unsigned OldShiftOpcode = V.getOpcode(); 4106 switch (OldShiftOpcode) { 4107 case ISD::SHL: 4108 NewShiftOpcode = ISD::SRL; 4109 break; 4110 case ISD::SRL: 4111 NewShiftOpcode = ISD::SHL; 4112 break; 4113 default: 4114 return false; // must be a logical shift. 4115 } 4116 // We should be shifting a constant. 4117 // FIXME: best to use isConstantOrConstantVector(). 4118 C = V.getOperand(0); 4119 ConstantSDNode *CC = 4120 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4121 if (!CC) 4122 return false; 4123 Y = V.getOperand(1); 4124 4125 ConstantSDNode *XC = 4126 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 4127 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 4128 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 4129 }; 4130 4131 // LHS of comparison should be an one-use 'and'. 4132 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 4133 return SDValue(); 4134 4135 X = N0.getOperand(0); 4136 SDValue Mask = N0.getOperand(1); 4137 4138 // 'and' is commutative! 4139 if (!Match(Mask)) { 4140 std::swap(X, Mask); 4141 if (!Match(Mask)) 4142 return SDValue(); 4143 } 4144 4145 EVT VT = X.getValueType(); 4146 4147 // Produce: 4148 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 4149 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 4150 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 4151 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 4152 return T2; 4153 } 4154 4155 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 4156 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 4157 /// handle the commuted versions of these patterns. 4158 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 4159 ISD::CondCode Cond, const SDLoc &DL, 4160 DAGCombinerInfo &DCI) const { 4161 unsigned BOpcode = N0.getOpcode(); 4162 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 4163 "Unexpected binop"); 4164 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 4165 4166 // (X + Y) == X --> Y == 0 4167 // (X - Y) == X --> Y == 0 4168 // (X ^ Y) == X --> Y == 0 4169 SelectionDAG &DAG = DCI.DAG; 4170 EVT OpVT = N0.getValueType(); 4171 SDValue X = N0.getOperand(0); 4172 SDValue Y = N0.getOperand(1); 4173 if (X == N1) 4174 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4175 4176 if (Y != N1) 4177 return SDValue(); 4178 4179 // (X + Y) == Y --> X == 0 4180 // (X ^ Y) == Y --> X == 0 4181 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4182 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4183 4184 // The shift would not be valid if the operands are boolean (i1). 4185 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4186 return SDValue(); 4187 4188 // (X - Y) == Y --> X == Y << 1 4189 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 4190 !DCI.isBeforeLegalize()); 4191 SDValue One = DAG.getConstant(1, DL, ShiftVT); 4192 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4193 if (!DCI.isCalledByLegalizer()) 4194 DCI.AddToWorklist(YShl1.getNode()); 4195 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4196 } 4197 4198 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4199 SDValue N0, const APInt &C1, 4200 ISD::CondCode Cond, const SDLoc &dl, 4201 SelectionDAG &DAG) { 4202 // Look through truncs that don't change the value of a ctpop. 4203 // FIXME: Add vector support? Need to be careful with setcc result type below. 4204 SDValue CTPOP = N0; 4205 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4206 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4207 CTPOP = N0.getOperand(0); 4208 4209 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4210 return SDValue(); 4211 4212 EVT CTVT = CTPOP.getValueType(); 4213 SDValue CTOp = CTPOP.getOperand(0); 4214 4215 // Expand a power-of-2-or-zero comparison based on ctpop: 4216 // (ctpop x) u< 2 -> (x & x-1) == 0 4217 // (ctpop x) u> 1 -> (x & x-1) != 0 4218 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4219 // Keep the CTPOP if it is a cheap vector op. 4220 if (CTVT.isVector() && TLI.isCtpopFast(CTVT)) 4221 return SDValue(); 4222 4223 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4224 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4225 return SDValue(); 4226 if (C1 == 0 && (Cond == ISD::SETULT)) 4227 return SDValue(); // This is handled elsewhere. 4228 4229 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4230 4231 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4232 SDValue Result = CTOp; 4233 for (unsigned i = 0; i < Passes; i++) { 4234 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4235 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4236 } 4237 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4238 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4239 } 4240 4241 // Expand a power-of-2 comparison based on ctpop 4242 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4243 // Keep the CTPOP if it is cheap. 4244 if (TLI.isCtpopFast(CTVT)) 4245 return SDValue(); 4246 4247 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4248 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4249 assert(CTVT.isInteger()); 4250 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4251 4252 // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so 4253 // check before emitting a potentially unnecessary op. 4254 if (DAG.isKnownNeverZero(CTOp)) { 4255 // (ctpop x) == 1 --> (x & x-1) == 0 4256 // (ctpop x) != 1 --> (x & x-1) != 0 4257 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4258 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4259 return RHS; 4260 } 4261 4262 // (ctpop x) == 1 --> (x ^ x-1) > x-1 4263 // (ctpop x) != 1 --> (x ^ x-1) <= x-1 4264 SDValue Xor = DAG.getNode(ISD::XOR, dl, CTVT, CTOp, Add); 4265 ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; 4266 return DAG.getSetCC(dl, VT, Xor, Add, CmpCond); 4267 } 4268 4269 return SDValue(); 4270 } 4271 4272 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4273 ISD::CondCode Cond, const SDLoc &dl, 4274 SelectionDAG &DAG) { 4275 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4276 return SDValue(); 4277 4278 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4279 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4280 return SDValue(); 4281 4282 auto getRotateSource = [](SDValue X) { 4283 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4284 return X.getOperand(0); 4285 return SDValue(); 4286 }; 4287 4288 // Peek through a rotated value compared against 0 or -1: 4289 // (rot X, Y) == 0/-1 --> X == 0/-1 4290 // (rot X, Y) != 0/-1 --> X != 0/-1 4291 if (SDValue R = getRotateSource(N0)) 4292 return DAG.getSetCC(dl, VT, R, N1, Cond); 4293 4294 // Peek through an 'or' of a rotated value compared against 0: 4295 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4296 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4297 // 4298 // TODO: Add the 'and' with -1 sibling. 4299 // TODO: Recurse through a series of 'or' ops to find the rotate. 4300 EVT OpVT = N0.getValueType(); 4301 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4302 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4303 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4304 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4305 } 4306 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4307 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4308 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4309 } 4310 } 4311 4312 return SDValue(); 4313 } 4314 4315 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4316 ISD::CondCode Cond, const SDLoc &dl, 4317 SelectionDAG &DAG) { 4318 // If we are testing for all-bits-clear, we might be able to do that with 4319 // less shifting since bit-order does not matter. 4320 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4321 return SDValue(); 4322 4323 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4324 if (!C1 || !C1->isZero()) 4325 return SDValue(); 4326 4327 if (!N0.hasOneUse() || 4328 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4329 return SDValue(); 4330 4331 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4332 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4333 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4334 return SDValue(); 4335 4336 // Canonicalize fshr as fshl to reduce pattern-matching. 4337 unsigned ShAmt = ShAmtC->getZExtValue(); 4338 if (N0.getOpcode() == ISD::FSHR) 4339 ShAmt = BitWidth - ShAmt; 4340 4341 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4342 SDValue X, Y; 4343 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4344 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4345 return false; 4346 if (Or.getOperand(0) == Other) { 4347 X = Or.getOperand(0); 4348 Y = Or.getOperand(1); 4349 return true; 4350 } 4351 if (Or.getOperand(1) == Other) { 4352 X = Or.getOperand(1); 4353 Y = Or.getOperand(0); 4354 return true; 4355 } 4356 return false; 4357 }; 4358 4359 EVT OpVT = N0.getValueType(); 4360 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4361 SDValue F0 = N0.getOperand(0); 4362 SDValue F1 = N0.getOperand(1); 4363 if (matchOr(F0, F1)) { 4364 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4365 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4366 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4367 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4368 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4369 } 4370 if (matchOr(F1, F0)) { 4371 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4372 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4373 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4374 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4375 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4376 } 4377 4378 return SDValue(); 4379 } 4380 4381 /// Try to simplify a setcc built with the specified operands and cc. If it is 4382 /// unable to simplify it, return a null SDValue. 4383 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4384 ISD::CondCode Cond, bool foldBooleans, 4385 DAGCombinerInfo &DCI, 4386 const SDLoc &dl) const { 4387 SelectionDAG &DAG = DCI.DAG; 4388 const DataLayout &Layout = DAG.getDataLayout(); 4389 EVT OpVT = N0.getValueType(); 4390 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4391 4392 // Constant fold or commute setcc. 4393 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4394 return Fold; 4395 4396 bool N0ConstOrSplat = 4397 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4398 bool N1ConstOrSplat = 4399 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4400 4401 // Canonicalize toward having the constant on the RHS. 4402 // TODO: Handle non-splat vector constants. All undef causes trouble. 4403 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4404 // infinite loop here when we encounter one. 4405 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4406 if (N0ConstOrSplat && !N1ConstOrSplat && 4407 (DCI.isBeforeLegalizeOps() || 4408 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4409 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4410 4411 // If we have a subtract with the same 2 non-constant operands as this setcc 4412 // -- but in reverse order -- then try to commute the operands of this setcc 4413 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4414 // instruction on some targets. 4415 if (!N0ConstOrSplat && !N1ConstOrSplat && 4416 (DCI.isBeforeLegalizeOps() || 4417 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4418 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4419 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4420 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4421 4422 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4423 return V; 4424 4425 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4426 return V; 4427 4428 if (auto *N1C = isConstOrConstSplat(N1)) { 4429 const APInt &C1 = N1C->getAPIntValue(); 4430 4431 // Optimize some CTPOP cases. 4432 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4433 return V; 4434 4435 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4436 // X * Y == 0 --> (X == 0) || (Y == 0) 4437 // X * Y != 0 --> (X != 0) && (Y != 0) 4438 // TODO: This bails out if minsize is set, but if the target doesn't have a 4439 // single instruction multiply for this type, it would likely be 4440 // smaller to decompose. 4441 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4442 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4443 (N0->getFlags().hasNoUnsignedWrap() || 4444 N0->getFlags().hasNoSignedWrap()) && 4445 !Attr.hasFnAttr(Attribute::MinSize)) { 4446 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4447 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4448 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4449 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4450 } 4451 4452 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4453 // equality comparison, then we're just comparing whether X itself is 4454 // zero. 4455 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4456 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4457 llvm::has_single_bit<uint32_t>(N0.getScalarValueSizeInBits())) { 4458 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4459 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4460 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4461 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4462 // (srl (ctlz x), 5) == 0 -> X != 0 4463 // (srl (ctlz x), 5) != 1 -> X != 0 4464 Cond = ISD::SETNE; 4465 } else { 4466 // (srl (ctlz x), 5) != 0 -> X == 0 4467 // (srl (ctlz x), 5) == 1 -> X == 0 4468 Cond = ISD::SETEQ; 4469 } 4470 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4471 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4472 Cond); 4473 } 4474 } 4475 } 4476 } 4477 4478 // FIXME: Support vectors. 4479 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4480 const APInt &C1 = N1C->getAPIntValue(); 4481 4482 // (zext x) == C --> x == (trunc C) 4483 // (sext x) == C --> x == (trunc C) 4484 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4485 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4486 unsigned MinBits = N0.getValueSizeInBits(); 4487 SDValue PreExt; 4488 bool Signed = false; 4489 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4490 // ZExt 4491 MinBits = N0->getOperand(0).getValueSizeInBits(); 4492 PreExt = N0->getOperand(0); 4493 } else if (N0->getOpcode() == ISD::AND) { 4494 // DAGCombine turns costly ZExts into ANDs 4495 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4496 if ((C->getAPIntValue()+1).isPowerOf2()) { 4497 MinBits = C->getAPIntValue().countr_one(); 4498 PreExt = N0->getOperand(0); 4499 } 4500 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4501 // SExt 4502 MinBits = N0->getOperand(0).getValueSizeInBits(); 4503 PreExt = N0->getOperand(0); 4504 Signed = true; 4505 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4506 // ZEXTLOAD / SEXTLOAD 4507 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4508 MinBits = LN0->getMemoryVT().getSizeInBits(); 4509 PreExt = N0; 4510 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4511 Signed = true; 4512 MinBits = LN0->getMemoryVT().getSizeInBits(); 4513 PreExt = N0; 4514 } 4515 } 4516 4517 // Figure out how many bits we need to preserve this constant. 4518 unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); 4519 4520 // Make sure we're not losing bits from the constant. 4521 if (MinBits > 0 && 4522 MinBits < C1.getBitWidth() && 4523 MinBits >= ReqdBits) { 4524 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4525 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4526 // Will get folded away. 4527 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4528 if (MinBits == 1 && C1 == 1) 4529 // Invert the condition. 4530 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4531 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4532 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4533 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4534 } 4535 4536 // If truncating the setcc operands is not desirable, we can still 4537 // simplify the expression in some cases: 4538 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4539 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4540 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4541 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4542 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4543 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4544 SDValue TopSetCC = N0->getOperand(0); 4545 unsigned N0Opc = N0->getOpcode(); 4546 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4547 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4548 TopSetCC.getOpcode() == ISD::SETCC && 4549 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4550 (isConstFalseVal(N1) || 4551 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4552 4553 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4554 (!N1C->isZero() && Cond == ISD::SETNE); 4555 4556 if (!Inverse) 4557 return TopSetCC; 4558 4559 ISD::CondCode InvCond = ISD::getSetCCInverse( 4560 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4561 TopSetCC.getOperand(0).getValueType()); 4562 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4563 TopSetCC.getOperand(1), 4564 InvCond); 4565 } 4566 } 4567 } 4568 4569 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4570 // equality or unsigned, and all 1 bits of the const are in the same 4571 // partial word, see if we can shorten the load. 4572 if (DCI.isBeforeLegalize() && 4573 !ISD::isSignedIntSetCC(Cond) && 4574 N0.getOpcode() == ISD::AND && C1 == 0 && 4575 N0.getNode()->hasOneUse() && 4576 isa<LoadSDNode>(N0.getOperand(0)) && 4577 N0.getOperand(0).getNode()->hasOneUse() && 4578 isa<ConstantSDNode>(N0.getOperand(1))) { 4579 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4580 APInt bestMask; 4581 unsigned bestWidth = 0, bestOffset = 0; 4582 if (Lod->isSimple() && Lod->isUnindexed()) { 4583 unsigned origWidth = N0.getValueSizeInBits(); 4584 unsigned maskWidth = origWidth; 4585 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4586 // 8 bits, but have to be careful... 4587 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4588 origWidth = Lod->getMemoryVT().getSizeInBits(); 4589 const APInt &Mask = N0.getConstantOperandAPInt(1); 4590 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4591 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4592 for (unsigned offset=0; offset<origWidth/width; offset++) { 4593 if (Mask.isSubsetOf(newMask)) { 4594 if (Layout.isLittleEndian()) 4595 bestOffset = (uint64_t)offset * (width/8); 4596 else 4597 bestOffset = (origWidth/width - offset - 1) * (width/8); 4598 bestMask = Mask.lshr(offset * (width/8) * 8); 4599 bestWidth = width; 4600 break; 4601 } 4602 newMask <<= width; 4603 } 4604 } 4605 } 4606 if (bestWidth) { 4607 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4608 if (newVT.isRound() && 4609 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4610 SDValue Ptr = Lod->getBasePtr(); 4611 if (bestOffset != 0) 4612 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(bestOffset), 4613 dl); 4614 SDValue NewLoad = 4615 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4616 Lod->getPointerInfo().getWithOffset(bestOffset), 4617 Lod->getOriginalAlign()); 4618 return DAG.getSetCC(dl, VT, 4619 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4620 DAG.getConstant(bestMask.trunc(bestWidth), 4621 dl, newVT)), 4622 DAG.getConstant(0LL, dl, newVT), Cond); 4623 } 4624 } 4625 } 4626 4627 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4628 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4629 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4630 4631 // If the comparison constant has bits in the upper part, the 4632 // zero-extended value could never match. 4633 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4634 C1.getBitWidth() - InSize))) { 4635 switch (Cond) { 4636 case ISD::SETUGT: 4637 case ISD::SETUGE: 4638 case ISD::SETEQ: 4639 return DAG.getConstant(0, dl, VT); 4640 case ISD::SETULT: 4641 case ISD::SETULE: 4642 case ISD::SETNE: 4643 return DAG.getConstant(1, dl, VT); 4644 case ISD::SETGT: 4645 case ISD::SETGE: 4646 // True if the sign bit of C1 is set. 4647 return DAG.getConstant(C1.isNegative(), dl, VT); 4648 case ISD::SETLT: 4649 case ISD::SETLE: 4650 // True if the sign bit of C1 isn't set. 4651 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4652 default: 4653 break; 4654 } 4655 } 4656 4657 // Otherwise, we can perform the comparison with the low bits. 4658 switch (Cond) { 4659 case ISD::SETEQ: 4660 case ISD::SETNE: 4661 case ISD::SETUGT: 4662 case ISD::SETUGE: 4663 case ISD::SETULT: 4664 case ISD::SETULE: { 4665 EVT newVT = N0.getOperand(0).getValueType(); 4666 if (DCI.isBeforeLegalizeOps() || 4667 (isOperationLegal(ISD::SETCC, newVT) && 4668 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4669 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4670 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4671 4672 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4673 NewConst, Cond); 4674 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4675 } 4676 break; 4677 } 4678 default: 4679 break; // todo, be more careful with signed comparisons 4680 } 4681 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4682 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4683 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4684 OpVT)) { 4685 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4686 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4687 EVT ExtDstTy = N0.getValueType(); 4688 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4689 4690 // If the constant doesn't fit into the number of bits for the source of 4691 // the sign extension, it is impossible for both sides to be equal. 4692 if (C1.getSignificantBits() > ExtSrcTyBits) 4693 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4694 4695 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4696 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4697 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4698 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4699 DAG.getConstant(Imm, dl, ExtDstTy)); 4700 if (!DCI.isCalledByLegalizer()) 4701 DCI.AddToWorklist(ZextOp.getNode()); 4702 // Otherwise, make this a use of a zext. 4703 return DAG.getSetCC(dl, VT, ZextOp, 4704 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4705 } else if ((N1C->isZero() || N1C->isOne()) && 4706 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4707 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4708 if (N0.getOpcode() == ISD::SETCC && 4709 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4710 (N0.getValueType() == MVT::i1 || 4711 getBooleanContents(N0.getOperand(0).getValueType()) == 4712 ZeroOrOneBooleanContent)) { 4713 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4714 if (TrueWhenTrue) 4715 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4716 // Invert the condition. 4717 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4718 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4719 if (DCI.isBeforeLegalizeOps() || 4720 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4721 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4722 } 4723 4724 if ((N0.getOpcode() == ISD::XOR || 4725 (N0.getOpcode() == ISD::AND && 4726 N0.getOperand(0).getOpcode() == ISD::XOR && 4727 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4728 isOneConstant(N0.getOperand(1))) { 4729 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4730 // can only do this if the top bits are known zero. 4731 unsigned BitWidth = N0.getValueSizeInBits(); 4732 if (DAG.MaskedValueIsZero(N0, 4733 APInt::getHighBitsSet(BitWidth, 4734 BitWidth-1))) { 4735 // Okay, get the un-inverted input value. 4736 SDValue Val; 4737 if (N0.getOpcode() == ISD::XOR) { 4738 Val = N0.getOperand(0); 4739 } else { 4740 assert(N0.getOpcode() == ISD::AND && 4741 N0.getOperand(0).getOpcode() == ISD::XOR); 4742 // ((X^1)&1)^1 -> X & 1 4743 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4744 N0.getOperand(0).getOperand(0), 4745 N0.getOperand(1)); 4746 } 4747 4748 return DAG.getSetCC(dl, VT, Val, N1, 4749 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4750 } 4751 } else if (N1C->isOne()) { 4752 SDValue Op0 = N0; 4753 if (Op0.getOpcode() == ISD::TRUNCATE) 4754 Op0 = Op0.getOperand(0); 4755 4756 if ((Op0.getOpcode() == ISD::XOR) && 4757 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4758 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4759 SDValue XorLHS = Op0.getOperand(0); 4760 SDValue XorRHS = Op0.getOperand(1); 4761 // Ensure that the input setccs return an i1 type or 0/1 value. 4762 if (Op0.getValueType() == MVT::i1 || 4763 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4764 ZeroOrOneBooleanContent && 4765 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4766 ZeroOrOneBooleanContent)) { 4767 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4768 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4769 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4770 } 4771 } 4772 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4773 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4774 if (Op0.getValueType().bitsGT(VT)) 4775 Op0 = DAG.getNode(ISD::AND, dl, VT, 4776 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4777 DAG.getConstant(1, dl, VT)); 4778 else if (Op0.getValueType().bitsLT(VT)) 4779 Op0 = DAG.getNode(ISD::AND, dl, VT, 4780 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4781 DAG.getConstant(1, dl, VT)); 4782 4783 return DAG.getSetCC(dl, VT, Op0, 4784 DAG.getConstant(0, dl, Op0.getValueType()), 4785 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4786 } 4787 if (Op0.getOpcode() == ISD::AssertZext && 4788 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4789 return DAG.getSetCC(dl, VT, Op0, 4790 DAG.getConstant(0, dl, Op0.getValueType()), 4791 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4792 } 4793 } 4794 4795 // Given: 4796 // icmp eq/ne (urem %x, %y), 0 4797 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4798 // icmp eq/ne %x, 0 4799 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4800 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4801 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4802 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4803 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4804 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4805 } 4806 4807 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4808 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4809 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4810 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4811 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4812 N1C && N1C->isAllOnes()) { 4813 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4814 DAG.getConstant(0, dl, OpVT), 4815 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4816 } 4817 4818 if (SDValue V = 4819 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4820 return V; 4821 } 4822 4823 // These simplifications apply to splat vectors as well. 4824 // TODO: Handle more splat vector cases. 4825 if (auto *N1C = isConstOrConstSplat(N1)) { 4826 const APInt &C1 = N1C->getAPIntValue(); 4827 4828 APInt MinVal, MaxVal; 4829 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4830 if (ISD::isSignedIntSetCC(Cond)) { 4831 MinVal = APInt::getSignedMinValue(OperandBitSize); 4832 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4833 } else { 4834 MinVal = APInt::getMinValue(OperandBitSize); 4835 MaxVal = APInt::getMaxValue(OperandBitSize); 4836 } 4837 4838 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4839 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4840 // X >= MIN --> true 4841 if (C1 == MinVal) 4842 return DAG.getBoolConstant(true, dl, VT, OpVT); 4843 4844 if (!VT.isVector()) { // TODO: Support this for vectors. 4845 // X >= C0 --> X > (C0 - 1) 4846 APInt C = C1 - 1; 4847 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4848 if ((DCI.isBeforeLegalizeOps() || 4849 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4850 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4851 isLegalICmpImmediate(C.getSExtValue())))) { 4852 return DAG.getSetCC(dl, VT, N0, 4853 DAG.getConstant(C, dl, N1.getValueType()), 4854 NewCC); 4855 } 4856 } 4857 } 4858 4859 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4860 // X <= MAX --> true 4861 if (C1 == MaxVal) 4862 return DAG.getBoolConstant(true, dl, VT, OpVT); 4863 4864 // X <= C0 --> X < (C0 + 1) 4865 if (!VT.isVector()) { // TODO: Support this for vectors. 4866 APInt C = C1 + 1; 4867 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4868 if ((DCI.isBeforeLegalizeOps() || 4869 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4870 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4871 isLegalICmpImmediate(C.getSExtValue())))) { 4872 return DAG.getSetCC(dl, VT, N0, 4873 DAG.getConstant(C, dl, N1.getValueType()), 4874 NewCC); 4875 } 4876 } 4877 } 4878 4879 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4880 if (C1 == MinVal) 4881 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4882 4883 // TODO: Support this for vectors after legalize ops. 4884 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4885 // Canonicalize setlt X, Max --> setne X, Max 4886 if (C1 == MaxVal) 4887 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4888 4889 // If we have setult X, 1, turn it into seteq X, 0 4890 if (C1 == MinVal+1) 4891 return DAG.getSetCC(dl, VT, N0, 4892 DAG.getConstant(MinVal, dl, N0.getValueType()), 4893 ISD::SETEQ); 4894 } 4895 } 4896 4897 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4898 if (C1 == MaxVal) 4899 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4900 4901 // TODO: Support this for vectors after legalize ops. 4902 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4903 // Canonicalize setgt X, Min --> setne X, Min 4904 if (C1 == MinVal) 4905 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4906 4907 // If we have setugt X, Max-1, turn it into seteq X, Max 4908 if (C1 == MaxVal-1) 4909 return DAG.getSetCC(dl, VT, N0, 4910 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4911 ISD::SETEQ); 4912 } 4913 } 4914 4915 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4916 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4917 if (C1.isZero()) 4918 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4919 VT, N0, N1, Cond, DCI, dl)) 4920 return CC; 4921 4922 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4923 // For example, when high 32-bits of i64 X are known clear: 4924 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4925 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4926 bool CmpZero = N1C->isZero(); 4927 bool CmpNegOne = N1C->isAllOnes(); 4928 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4929 // Match or(lo,shl(hi,bw/2)) pattern. 4930 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4931 unsigned EltBits = V.getScalarValueSizeInBits(); 4932 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4933 return false; 4934 SDValue LHS = V.getOperand(0); 4935 SDValue RHS = V.getOperand(1); 4936 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4937 // Unshifted element must have zero upperbits. 4938 if (RHS.getOpcode() == ISD::SHL && 4939 isa<ConstantSDNode>(RHS.getOperand(1)) && 4940 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4941 DAG.MaskedValueIsZero(LHS, HiBits)) { 4942 Lo = LHS; 4943 Hi = RHS.getOperand(0); 4944 return true; 4945 } 4946 if (LHS.getOpcode() == ISD::SHL && 4947 isa<ConstantSDNode>(LHS.getOperand(1)) && 4948 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4949 DAG.MaskedValueIsZero(RHS, HiBits)) { 4950 Lo = RHS; 4951 Hi = LHS.getOperand(0); 4952 return true; 4953 } 4954 return false; 4955 }; 4956 4957 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4958 unsigned EltBits = N0.getScalarValueSizeInBits(); 4959 unsigned HalfBits = EltBits / 2; 4960 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4961 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4962 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4963 SDValue NewN0 = 4964 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4965 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4966 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4967 }; 4968 4969 SDValue Lo, Hi; 4970 if (IsConcat(N0, Lo, Hi)) 4971 return MergeConcat(Lo, Hi); 4972 4973 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4974 SDValue Lo0, Lo1, Hi0, Hi1; 4975 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4976 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4977 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4978 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4979 } 4980 } 4981 } 4982 } 4983 4984 // If we have "setcc X, C0", check to see if we can shrink the immediate 4985 // by changing cc. 4986 // TODO: Support this for vectors after legalize ops. 4987 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4988 // SETUGT X, SINTMAX -> SETLT X, 0 4989 // SETUGE X, SINTMIN -> SETLT X, 0 4990 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4991 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4992 return DAG.getSetCC(dl, VT, N0, 4993 DAG.getConstant(0, dl, N1.getValueType()), 4994 ISD::SETLT); 4995 4996 // SETULT X, SINTMIN -> SETGT X, -1 4997 // SETULE X, SINTMAX -> SETGT X, -1 4998 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4999 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 5000 return DAG.getSetCC(dl, VT, N0, 5001 DAG.getAllOnesConstant(dl, N1.getValueType()), 5002 ISD::SETGT); 5003 } 5004 } 5005 5006 // Back to non-vector simplifications. 5007 // TODO: Can we do these for vector splats? 5008 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 5009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5010 const APInt &C1 = N1C->getAPIntValue(); 5011 EVT ShValTy = N0.getValueType(); 5012 5013 // Fold bit comparisons when we can. This will result in an 5014 // incorrect value when boolean false is negative one, unless 5015 // the bitsize is 1 in which case the false value is the same 5016 // in practice regardless of the representation. 5017 if ((VT.getSizeInBits() == 1 || 5018 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 5019 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5020 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 5021 N0.getOpcode() == ISD::AND) { 5022 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5023 EVT ShiftTy = 5024 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 5025 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 5026 // Perform the xform if the AND RHS is a single bit. 5027 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 5028 if (AndRHS->getAPIntValue().isPowerOf2() && 5029 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 5030 return DAG.getNode(ISD::TRUNCATE, dl, VT, 5031 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5032 DAG.getConstant(ShCt, dl, ShiftTy))); 5033 } 5034 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 5035 // (X & 8) == 8 --> (X & 8) >> 3 5036 // Perform the xform if C1 is a single bit. 5037 unsigned ShCt = C1.logBase2(); 5038 if (C1.isPowerOf2() && 5039 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 5040 return DAG.getNode(ISD::TRUNCATE, dl, VT, 5041 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5042 DAG.getConstant(ShCt, dl, ShiftTy))); 5043 } 5044 } 5045 } 5046 } 5047 5048 if (C1.getSignificantBits() <= 64 && 5049 !isLegalICmpImmediate(C1.getSExtValue())) { 5050 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 5051 // (X & -256) == 256 -> (X >> 8) == 1 5052 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5053 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5054 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5055 const APInt &AndRHSC = AndRHS->getAPIntValue(); 5056 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 5057 unsigned ShiftBits = AndRHSC.countr_zero(); 5058 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5059 SDValue Shift = 5060 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 5061 DAG.getConstant(ShiftBits, dl, ShiftTy)); 5062 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 5063 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 5064 } 5065 } 5066 } 5067 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 5068 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 5069 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 5070 // X < 0x100000000 -> (X >> 32) < 1 5071 // X >= 0x100000000 -> (X >> 32) >= 1 5072 // X <= 0x0ffffffff -> (X >> 32) < 1 5073 // X > 0x0ffffffff -> (X >> 32) >= 1 5074 unsigned ShiftBits; 5075 APInt NewC = C1; 5076 ISD::CondCode NewCond = Cond; 5077 if (AdjOne) { 5078 ShiftBits = C1.countr_one(); 5079 NewC = NewC + 1; 5080 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 5081 } else { 5082 ShiftBits = C1.countr_zero(); 5083 } 5084 NewC.lshrInPlace(ShiftBits); 5085 if (ShiftBits && NewC.getSignificantBits() <= 64 && 5086 isLegalICmpImmediate(NewC.getSExtValue()) && 5087 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 5088 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 5089 DAG.getConstant(ShiftBits, dl, ShiftTy)); 5090 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 5091 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 5092 } 5093 } 5094 } 5095 } 5096 5097 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 5098 auto *CFP = cast<ConstantFPSDNode>(N1); 5099 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 5100 5101 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 5102 // constant if knowing that the operand is non-nan is enough. We prefer to 5103 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 5104 // materialize 0.0. 5105 if (Cond == ISD::SETO || Cond == ISD::SETUO) 5106 return DAG.getSetCC(dl, VT, N0, N0, Cond); 5107 5108 // setcc (fneg x), C -> setcc swap(pred) x, -C 5109 if (N0.getOpcode() == ISD::FNEG) { 5110 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 5111 if (DCI.isBeforeLegalizeOps() || 5112 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 5113 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 5114 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 5115 } 5116 } 5117 5118 // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf 5119 if (isOperationLegalOrCustom(ISD::IS_FPCLASS, N0.getValueType()) && 5120 !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) { 5121 bool IsFabs = N0.getOpcode() == ISD::FABS; 5122 SDValue Op = IsFabs ? N0.getOperand(0) : N0; 5123 if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { 5124 FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) 5125 : (IsFabs ? fcInf : fcPosInf); 5126 if (Cond == ISD::SETUEQ) 5127 Flag |= fcNan; 5128 return DAG.getNode(ISD::IS_FPCLASS, dl, VT, Op, 5129 DAG.getTargetConstant(Flag, dl, MVT::i32)); 5130 } 5131 } 5132 5133 // If the condition is not legal, see if we can find an equivalent one 5134 // which is legal. 5135 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 5136 // If the comparison was an awkward floating-point == or != and one of 5137 // the comparison operands is infinity or negative infinity, convert the 5138 // condition to a less-awkward <= or >=. 5139 if (CFP->getValueAPF().isInfinity()) { 5140 bool IsNegInf = CFP->getValueAPF().isNegative(); 5141 ISD::CondCode NewCond = ISD::SETCC_INVALID; 5142 switch (Cond) { 5143 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 5144 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 5145 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 5146 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 5147 default: break; 5148 } 5149 if (NewCond != ISD::SETCC_INVALID && 5150 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 5151 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5152 } 5153 } 5154 } 5155 5156 if (N0 == N1) { 5157 // The sext(setcc()) => setcc() optimization relies on the appropriate 5158 // constant being emitted. 5159 assert(!N0.getValueType().isInteger() && 5160 "Integer types should be handled by FoldSetCC"); 5161 5162 bool EqTrue = ISD::isTrueWhenEqual(Cond); 5163 unsigned UOF = ISD::getUnorderedFlavor(Cond); 5164 if (UOF == 2) // FP operators that are undefined on NaNs. 5165 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5166 if (UOF == unsigned(EqTrue)) 5167 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 5168 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 5169 // if it is not already. 5170 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 5171 if (NewCond != Cond && 5172 (DCI.isBeforeLegalizeOps() || 5173 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 5174 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 5175 } 5176 5177 // ~X > ~Y --> Y > X 5178 // ~X < ~Y --> Y < X 5179 // ~X < C --> X > ~C 5180 // ~X > C --> X < ~C 5181 if ((isSignedIntSetCC(Cond) || isUnsignedIntSetCC(Cond)) && 5182 N0.getValueType().isInteger()) { 5183 if (isBitwiseNot(N0)) { 5184 if (isBitwiseNot(N1)) 5185 return DAG.getSetCC(dl, VT, N1.getOperand(0), N0.getOperand(0), Cond); 5186 5187 if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && 5188 !DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(0))) { 5189 SDValue Not = DAG.getNOT(dl, N1, OpVT); 5190 return DAG.getSetCC(dl, VT, Not, N0.getOperand(0), Cond); 5191 } 5192 } 5193 } 5194 5195 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5196 N0.getValueType().isInteger()) { 5197 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 5198 N0.getOpcode() == ISD::XOR) { 5199 // Simplify (X+Y) == (X+Z) --> Y == Z 5200 if (N0.getOpcode() == N1.getOpcode()) { 5201 if (N0.getOperand(0) == N1.getOperand(0)) 5202 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 5203 if (N0.getOperand(1) == N1.getOperand(1)) 5204 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 5205 if (isCommutativeBinOp(N0.getOpcode())) { 5206 // If X op Y == Y op X, try other combinations. 5207 if (N0.getOperand(0) == N1.getOperand(1)) 5208 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 5209 Cond); 5210 if (N0.getOperand(1) == N1.getOperand(0)) 5211 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5212 Cond); 5213 } 5214 } 5215 5216 // If RHS is a legal immediate value for a compare instruction, we need 5217 // to be careful about increasing register pressure needlessly. 5218 bool LegalRHSImm = false; 5219 5220 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5221 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5222 // Turn (X+C1) == C2 --> X == C2-C1 5223 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5224 return DAG.getSetCC( 5225 dl, VT, N0.getOperand(0), 5226 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5227 dl, N0.getValueType()), 5228 Cond); 5229 5230 // Turn (X^C1) == C2 --> X == C1^C2 5231 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5232 return DAG.getSetCC( 5233 dl, VT, N0.getOperand(0), 5234 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5235 dl, N0.getValueType()), 5236 Cond); 5237 } 5238 5239 // Turn (C1-X) == C2 --> X == C1-C2 5240 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5241 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5242 return DAG.getSetCC( 5243 dl, VT, N0.getOperand(1), 5244 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5245 dl, N0.getValueType()), 5246 Cond); 5247 5248 // Could RHSC fold directly into a compare? 5249 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5250 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5251 } 5252 5253 // (X+Y) == X --> Y == 0 and similar folds. 5254 // Don't do this if X is an immediate that can fold into a cmp 5255 // instruction and X+Y has other uses. It could be an induction variable 5256 // chain, and the transform would increase register pressure. 5257 if (!LegalRHSImm || N0.hasOneUse()) 5258 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5259 return V; 5260 } 5261 5262 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5263 N1.getOpcode() == ISD::XOR) 5264 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5265 return V; 5266 5267 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5268 return V; 5269 } 5270 5271 // Fold remainder of division by a constant. 5272 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5273 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5274 // When division is cheap or optimizing for minimum size, 5275 // fall through to DIVREM creation by skipping this fold. 5276 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5277 if (N0.getOpcode() == ISD::UREM) { 5278 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5279 return Folded; 5280 } else if (N0.getOpcode() == ISD::SREM) { 5281 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5282 return Folded; 5283 } 5284 } 5285 } 5286 5287 // Fold away ALL boolean setcc's. 5288 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5289 SDValue Temp; 5290 switch (Cond) { 5291 default: llvm_unreachable("Unknown integer setcc!"); 5292 case ISD::SETEQ: // X == Y -> ~(X^Y) 5293 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5294 N0 = DAG.getNOT(dl, Temp, OpVT); 5295 if (!DCI.isCalledByLegalizer()) 5296 DCI.AddToWorklist(Temp.getNode()); 5297 break; 5298 case ISD::SETNE: // X != Y --> (X^Y) 5299 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5300 break; 5301 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5302 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5303 Temp = DAG.getNOT(dl, N0, OpVT); 5304 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5305 if (!DCI.isCalledByLegalizer()) 5306 DCI.AddToWorklist(Temp.getNode()); 5307 break; 5308 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5309 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5310 Temp = DAG.getNOT(dl, N1, OpVT); 5311 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5312 if (!DCI.isCalledByLegalizer()) 5313 DCI.AddToWorklist(Temp.getNode()); 5314 break; 5315 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5316 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5317 Temp = DAG.getNOT(dl, N0, OpVT); 5318 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5319 if (!DCI.isCalledByLegalizer()) 5320 DCI.AddToWorklist(Temp.getNode()); 5321 break; 5322 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5323 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5324 Temp = DAG.getNOT(dl, N1, OpVT); 5325 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5326 break; 5327 } 5328 if (VT.getScalarType() != MVT::i1) { 5329 if (!DCI.isCalledByLegalizer()) 5330 DCI.AddToWorklist(N0.getNode()); 5331 // FIXME: If running after legalize, we probably can't do this. 5332 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5333 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5334 } 5335 return N0; 5336 } 5337 5338 // Could not fold it. 5339 return SDValue(); 5340 } 5341 5342 /// Returns true (and the GlobalValue and the offset) if the node is a 5343 /// GlobalAddress + offset. 5344 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5345 int64_t &Offset) const { 5346 5347 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5348 5349 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5350 GA = GASD->getGlobal(); 5351 Offset += GASD->getOffset(); 5352 return true; 5353 } 5354 5355 if (N->getOpcode() == ISD::ADD) { 5356 SDValue N1 = N->getOperand(0); 5357 SDValue N2 = N->getOperand(1); 5358 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5359 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5360 Offset += V->getSExtValue(); 5361 return true; 5362 } 5363 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5364 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5365 Offset += V->getSExtValue(); 5366 return true; 5367 } 5368 } 5369 } 5370 5371 return false; 5372 } 5373 5374 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5375 DAGCombinerInfo &DCI) const { 5376 // Default implementation: no optimization. 5377 return SDValue(); 5378 } 5379 5380 //===----------------------------------------------------------------------===// 5381 // Inline Assembler Implementation Methods 5382 //===----------------------------------------------------------------------===// 5383 5384 TargetLowering::ConstraintType 5385 TargetLowering::getConstraintType(StringRef Constraint) const { 5386 unsigned S = Constraint.size(); 5387 5388 if (S == 1) { 5389 switch (Constraint[0]) { 5390 default: break; 5391 case 'r': 5392 return C_RegisterClass; 5393 case 'm': // memory 5394 case 'o': // offsetable 5395 case 'V': // not offsetable 5396 return C_Memory; 5397 case 'p': // Address. 5398 return C_Address; 5399 case 'n': // Simple Integer 5400 case 'E': // Floating Point Constant 5401 case 'F': // Floating Point Constant 5402 return C_Immediate; 5403 case 'i': // Simple Integer or Relocatable Constant 5404 case 's': // Relocatable Constant 5405 case 'X': // Allow ANY value. 5406 case 'I': // Target registers. 5407 case 'J': 5408 case 'K': 5409 case 'L': 5410 case 'M': 5411 case 'N': 5412 case 'O': 5413 case 'P': 5414 case '<': 5415 case '>': 5416 return C_Other; 5417 } 5418 } 5419 5420 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5421 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5422 return C_Memory; 5423 return C_Register; 5424 } 5425 return C_Unknown; 5426 } 5427 5428 /// Try to replace an X constraint, which matches anything, with another that 5429 /// has more specific requirements based on the type of the corresponding 5430 /// operand. 5431 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5432 if (ConstraintVT.isInteger()) 5433 return "r"; 5434 if (ConstraintVT.isFloatingPoint()) 5435 return "f"; // works for many targets 5436 return nullptr; 5437 } 5438 5439 SDValue TargetLowering::LowerAsmOutputForConstraint( 5440 SDValue &Chain, SDValue &Glue, const SDLoc &DL, 5441 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5442 return SDValue(); 5443 } 5444 5445 /// Lower the specified operand into the Ops vector. 5446 /// If it is invalid, don't add anything to Ops. 5447 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5448 StringRef Constraint, 5449 std::vector<SDValue> &Ops, 5450 SelectionDAG &DAG) const { 5451 5452 if (Constraint.size() > 1) 5453 return; 5454 5455 char ConstraintLetter = Constraint[0]; 5456 switch (ConstraintLetter) { 5457 default: break; 5458 case 'X': // Allows any operand 5459 case 'i': // Simple Integer or Relocatable Constant 5460 case 'n': // Simple Integer 5461 case 's': { // Relocatable Constant 5462 5463 ConstantSDNode *C; 5464 uint64_t Offset = 0; 5465 5466 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5467 // etc., since getelementpointer is variadic. We can't use 5468 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5469 // while in this case the GA may be furthest from the root node which is 5470 // likely an ISD::ADD. 5471 while (true) { 5472 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5473 // gcc prints these as sign extended. Sign extend value to 64 bits 5474 // now; without this it would get ZExt'd later in 5475 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5476 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5477 BooleanContent BCont = getBooleanContents(MVT::i64); 5478 ISD::NodeType ExtOpc = 5479 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5480 int64_t ExtVal = 5481 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5482 Ops.push_back( 5483 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5484 return; 5485 } 5486 if (ConstraintLetter != 'n') { 5487 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5488 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5489 GA->getValueType(0), 5490 Offset + GA->getOffset())); 5491 return; 5492 } 5493 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5494 Ops.push_back(DAG.getTargetBlockAddress( 5495 BA->getBlockAddress(), BA->getValueType(0), 5496 Offset + BA->getOffset(), BA->getTargetFlags())); 5497 return; 5498 } 5499 if (isa<BasicBlockSDNode>(Op)) { 5500 Ops.push_back(Op); 5501 return; 5502 } 5503 } 5504 const unsigned OpCode = Op.getOpcode(); 5505 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5506 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5507 Op = Op.getOperand(1); 5508 // Subtraction is not commutative. 5509 else if (OpCode == ISD::ADD && 5510 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5511 Op = Op.getOperand(0); 5512 else 5513 return; 5514 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5515 continue; 5516 } 5517 return; 5518 } 5519 break; 5520 } 5521 } 5522 } 5523 5524 void TargetLowering::CollectTargetIntrinsicOperands( 5525 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { 5526 } 5527 5528 std::pair<unsigned, const TargetRegisterClass *> 5529 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5530 StringRef Constraint, 5531 MVT VT) const { 5532 if (Constraint.empty() || Constraint[0] != '{') 5533 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5534 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5535 5536 // Remove the braces from around the name. 5537 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5538 5539 std::pair<unsigned, const TargetRegisterClass *> R = 5540 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5541 5542 // Figure out which register class contains this reg. 5543 for (const TargetRegisterClass *RC : RI->regclasses()) { 5544 // If none of the value types for this register class are valid, we 5545 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5546 if (!isLegalRC(*RI, *RC)) 5547 continue; 5548 5549 for (const MCPhysReg &PR : *RC) { 5550 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5551 std::pair<unsigned, const TargetRegisterClass *> S = 5552 std::make_pair(PR, RC); 5553 5554 // If this register class has the requested value type, return it, 5555 // otherwise keep searching and return the first class found 5556 // if no other is found which explicitly has the requested type. 5557 if (RI->isTypeLegalForClass(*RC, VT)) 5558 return S; 5559 if (!R.second) 5560 R = S; 5561 } 5562 } 5563 } 5564 5565 return R; 5566 } 5567 5568 //===----------------------------------------------------------------------===// 5569 // Constraint Selection. 5570 5571 /// Return true of this is an input operand that is a matching constraint like 5572 /// "4". 5573 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5574 assert(!ConstraintCode.empty() && "No known constraint!"); 5575 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5576 } 5577 5578 /// If this is an input matching constraint, this method returns the output 5579 /// operand it matches. 5580 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5581 assert(!ConstraintCode.empty() && "No known constraint!"); 5582 return atoi(ConstraintCode.c_str()); 5583 } 5584 5585 /// Split up the constraint string from the inline assembly value into the 5586 /// specific constraints and their prefixes, and also tie in the associated 5587 /// operand values. 5588 /// If this returns an empty vector, and if the constraint string itself 5589 /// isn't empty, there was an error parsing. 5590 TargetLowering::AsmOperandInfoVector 5591 TargetLowering::ParseConstraints(const DataLayout &DL, 5592 const TargetRegisterInfo *TRI, 5593 const CallBase &Call) const { 5594 /// Information about all of the constraints. 5595 AsmOperandInfoVector ConstraintOperands; 5596 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5597 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5598 5599 // Do a prepass over the constraints, canonicalizing them, and building up the 5600 // ConstraintOperands list. 5601 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5602 unsigned ResNo = 0; // ResNo - The result number of the next output. 5603 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5604 5605 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5606 ConstraintOperands.emplace_back(std::move(CI)); 5607 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5608 5609 // Update multiple alternative constraint count. 5610 if (OpInfo.multipleAlternatives.size() > maCount) 5611 maCount = OpInfo.multipleAlternatives.size(); 5612 5613 OpInfo.ConstraintVT = MVT::Other; 5614 5615 // Compute the value type for each operand. 5616 switch (OpInfo.Type) { 5617 case InlineAsm::isOutput: 5618 // Indirect outputs just consume an argument. 5619 if (OpInfo.isIndirect) { 5620 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5621 break; 5622 } 5623 5624 // The return value of the call is this value. As such, there is no 5625 // corresponding argument. 5626 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5627 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5628 OpInfo.ConstraintVT = 5629 getSimpleValueType(DL, STy->getElementType(ResNo)); 5630 } else { 5631 assert(ResNo == 0 && "Asm only has one result!"); 5632 OpInfo.ConstraintVT = 5633 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5634 } 5635 ++ResNo; 5636 break; 5637 case InlineAsm::isInput: 5638 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5639 break; 5640 case InlineAsm::isLabel: 5641 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5642 ++LabelNo; 5643 continue; 5644 case InlineAsm::isClobber: 5645 // Nothing to do. 5646 break; 5647 } 5648 5649 if (OpInfo.CallOperandVal) { 5650 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5651 if (OpInfo.isIndirect) { 5652 OpTy = Call.getParamElementType(ArgNo); 5653 assert(OpTy && "Indirect operand must have elementtype attribute"); 5654 } 5655 5656 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5657 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5658 if (STy->getNumElements() == 1) 5659 OpTy = STy->getElementType(0); 5660 5661 // If OpTy is not a single value, it may be a struct/union that we 5662 // can tile with integers. 5663 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5664 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5665 switch (BitSize) { 5666 default: break; 5667 case 1: 5668 case 8: 5669 case 16: 5670 case 32: 5671 case 64: 5672 case 128: 5673 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5674 break; 5675 } 5676 } 5677 5678 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5679 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5680 ArgNo++; 5681 } 5682 } 5683 5684 // If we have multiple alternative constraints, select the best alternative. 5685 if (!ConstraintOperands.empty()) { 5686 if (maCount) { 5687 unsigned bestMAIndex = 0; 5688 int bestWeight = -1; 5689 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5690 int weight = -1; 5691 unsigned maIndex; 5692 // Compute the sums of the weights for each alternative, keeping track 5693 // of the best (highest weight) one so far. 5694 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5695 int weightSum = 0; 5696 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5697 cIndex != eIndex; ++cIndex) { 5698 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5699 if (OpInfo.Type == InlineAsm::isClobber) 5700 continue; 5701 5702 // If this is an output operand with a matching input operand, 5703 // look up the matching input. If their types mismatch, e.g. one 5704 // is an integer, the other is floating point, or their sizes are 5705 // different, flag it as an maCantMatch. 5706 if (OpInfo.hasMatchingInput()) { 5707 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5708 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5709 if ((OpInfo.ConstraintVT.isInteger() != 5710 Input.ConstraintVT.isInteger()) || 5711 (OpInfo.ConstraintVT.getSizeInBits() != 5712 Input.ConstraintVT.getSizeInBits())) { 5713 weightSum = -1; // Can't match. 5714 break; 5715 } 5716 } 5717 } 5718 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5719 if (weight == -1) { 5720 weightSum = -1; 5721 break; 5722 } 5723 weightSum += weight; 5724 } 5725 // Update best. 5726 if (weightSum > bestWeight) { 5727 bestWeight = weightSum; 5728 bestMAIndex = maIndex; 5729 } 5730 } 5731 5732 // Now select chosen alternative in each constraint. 5733 for (AsmOperandInfo &cInfo : ConstraintOperands) 5734 if (cInfo.Type != InlineAsm::isClobber) 5735 cInfo.selectAlternative(bestMAIndex); 5736 } 5737 } 5738 5739 // Check and hook up tied operands, choose constraint code to use. 5740 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5741 cIndex != eIndex; ++cIndex) { 5742 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5743 5744 // If this is an output operand with a matching input operand, look up the 5745 // matching input. If their types mismatch, e.g. one is an integer, the 5746 // other is floating point, or their sizes are different, flag it as an 5747 // error. 5748 if (OpInfo.hasMatchingInput()) { 5749 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5750 5751 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5752 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5753 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5754 OpInfo.ConstraintVT); 5755 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5756 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5757 Input.ConstraintVT); 5758 if ((OpInfo.ConstraintVT.isInteger() != 5759 Input.ConstraintVT.isInteger()) || 5760 (MatchRC.second != InputRC.second)) { 5761 report_fatal_error("Unsupported asm: input constraint" 5762 " with a matching output constraint of" 5763 " incompatible type!"); 5764 } 5765 } 5766 } 5767 } 5768 5769 return ConstraintOperands; 5770 } 5771 5772 /// Return a number indicating our preference for chosing a type of constraint 5773 /// over another, for the purpose of sorting them. Immediates are almost always 5774 /// preferrable (when they can be emitted). A higher return value means a 5775 /// stronger preference for one constraint type relative to another. 5776 /// FIXME: We should prefer registers over memory but doing so may lead to 5777 /// unrecoverable register exhaustion later. 5778 /// https://github.com/llvm/llvm-project/issues/20571 5779 static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { 5780 switch (CT) { 5781 case TargetLowering::C_Immediate: 5782 case TargetLowering::C_Other: 5783 return 4; 5784 case TargetLowering::C_Memory: 5785 case TargetLowering::C_Address: 5786 return 3; 5787 case TargetLowering::C_RegisterClass: 5788 return 2; 5789 case TargetLowering::C_Register: 5790 return 1; 5791 case TargetLowering::C_Unknown: 5792 return 0; 5793 } 5794 llvm_unreachable("Invalid constraint type"); 5795 } 5796 5797 /// Examine constraint type and operand type and determine a weight value. 5798 /// This object must already have been set up with the operand type 5799 /// and the current alternative constraint selected. 5800 TargetLowering::ConstraintWeight 5801 TargetLowering::getMultipleConstraintMatchWeight( 5802 AsmOperandInfo &info, int maIndex) const { 5803 InlineAsm::ConstraintCodeVector *rCodes; 5804 if (maIndex >= (int)info.multipleAlternatives.size()) 5805 rCodes = &info.Codes; 5806 else 5807 rCodes = &info.multipleAlternatives[maIndex].Codes; 5808 ConstraintWeight BestWeight = CW_Invalid; 5809 5810 // Loop over the options, keeping track of the most general one. 5811 for (const std::string &rCode : *rCodes) { 5812 ConstraintWeight weight = 5813 getSingleConstraintMatchWeight(info, rCode.c_str()); 5814 if (weight > BestWeight) 5815 BestWeight = weight; 5816 } 5817 5818 return BestWeight; 5819 } 5820 5821 /// Examine constraint type and operand type and determine a weight value. 5822 /// This object must already have been set up with the operand type 5823 /// and the current alternative constraint selected. 5824 TargetLowering::ConstraintWeight 5825 TargetLowering::getSingleConstraintMatchWeight( 5826 AsmOperandInfo &info, const char *constraint) const { 5827 ConstraintWeight weight = CW_Invalid; 5828 Value *CallOperandVal = info.CallOperandVal; 5829 // If we don't have a value, we can't do a match, 5830 // but allow it at the lowest weight. 5831 if (!CallOperandVal) 5832 return CW_Default; 5833 // Look at the constraint type. 5834 switch (*constraint) { 5835 case 'i': // immediate integer. 5836 case 'n': // immediate integer with a known value. 5837 if (isa<ConstantInt>(CallOperandVal)) 5838 weight = CW_Constant; 5839 break; 5840 case 's': // non-explicit intregal immediate. 5841 if (isa<GlobalValue>(CallOperandVal)) 5842 weight = CW_Constant; 5843 break; 5844 case 'E': // immediate float if host format. 5845 case 'F': // immediate float. 5846 if (isa<ConstantFP>(CallOperandVal)) 5847 weight = CW_Constant; 5848 break; 5849 case '<': // memory operand with autodecrement. 5850 case '>': // memory operand with autoincrement. 5851 case 'm': // memory operand. 5852 case 'o': // offsettable memory operand 5853 case 'V': // non-offsettable memory operand 5854 weight = CW_Memory; 5855 break; 5856 case 'r': // general register. 5857 case 'g': // general register, memory operand or immediate integer. 5858 // note: Clang converts "g" to "imr". 5859 if (CallOperandVal->getType()->isIntegerTy()) 5860 weight = CW_Register; 5861 break; 5862 case 'X': // any operand. 5863 default: 5864 weight = CW_Default; 5865 break; 5866 } 5867 return weight; 5868 } 5869 5870 /// If there are multiple different constraints that we could pick for this 5871 /// operand (e.g. "imr") try to pick the 'best' one. 5872 /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall 5873 /// into seven classes: 5874 /// Register -> one specific register 5875 /// RegisterClass -> a group of regs 5876 /// Memory -> memory 5877 /// Address -> a symbolic memory reference 5878 /// Immediate -> immediate values 5879 /// Other -> magic values (such as "Flag Output Operands") 5880 /// Unknown -> something we don't recognize yet and can't handle 5881 /// Ideally, we would pick the most specific constraint possible: if we have 5882 /// something that fits into a register, we would pick it. The problem here 5883 /// is that if we have something that could either be in a register or in 5884 /// memory that use of the register could cause selection of *other* 5885 /// operands to fail: they might only succeed if we pick memory. Because of 5886 /// this the heuristic we use is: 5887 /// 5888 /// 1) If there is an 'other' constraint, and if the operand is valid for 5889 /// that constraint, use it. This makes us take advantage of 'i' 5890 /// constraints when available. 5891 /// 2) Otherwise, pick the most general constraint present. This prefers 5892 /// 'm' over 'r', for example. 5893 /// 5894 TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( 5895 TargetLowering::AsmOperandInfo &OpInfo) const { 5896 ConstraintGroup Ret; 5897 5898 Ret.reserve(OpInfo.Codes.size()); 5899 for (StringRef Code : OpInfo.Codes) { 5900 TargetLowering::ConstraintType CType = getConstraintType(Code); 5901 5902 // Indirect 'other' or 'immediate' constraints are not allowed. 5903 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5904 CType == TargetLowering::C_Register || 5905 CType == TargetLowering::C_RegisterClass)) 5906 continue; 5907 5908 // Things with matching constraints can only be registers, per gcc 5909 // documentation. This mainly affects "g" constraints. 5910 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5911 continue; 5912 5913 Ret.emplace_back(Code, CType); 5914 } 5915 5916 std::stable_sort( 5917 Ret.begin(), Ret.end(), [](ConstraintPair a, ConstraintPair b) { 5918 return getConstraintPiority(a.second) > getConstraintPiority(b.second); 5919 }); 5920 5921 return Ret; 5922 } 5923 5924 /// If we have an immediate, see if we can lower it. Return true if we can, 5925 /// false otherwise. 5926 static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, 5927 SDValue Op, SelectionDAG *DAG, 5928 const TargetLowering &TLI) { 5929 5930 assert((P.second == TargetLowering::C_Other || 5931 P.second == TargetLowering::C_Immediate) && 5932 "need immediate or other"); 5933 5934 if (!Op.getNode()) 5935 return false; 5936 5937 std::vector<SDValue> ResultOps; 5938 TLI.LowerAsmOperandForConstraint(Op, P.first, ResultOps, *DAG); 5939 return !ResultOps.empty(); 5940 } 5941 5942 /// Determines the constraint code and constraint type to use for the specific 5943 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5944 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5945 SDValue Op, 5946 SelectionDAG *DAG) const { 5947 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5948 5949 // Single-letter constraints ('r') are very common. 5950 if (OpInfo.Codes.size() == 1) { 5951 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5952 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5953 } else { 5954 ConstraintGroup G = getConstraintPreferences(OpInfo); 5955 if (G.empty()) 5956 return; 5957 5958 unsigned BestIdx = 0; 5959 for (const unsigned E = G.size(); 5960 BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || 5961 G[BestIdx].second == TargetLowering::C_Immediate); 5962 ++BestIdx) { 5963 if (lowerImmediateIfPossible(G[BestIdx], Op, DAG, *this)) 5964 break; 5965 // If we're out of constraints, just pick the first one. 5966 if (BestIdx + 1 == E) { 5967 BestIdx = 0; 5968 break; 5969 } 5970 } 5971 5972 OpInfo.ConstraintCode = G[BestIdx].first; 5973 OpInfo.ConstraintType = G[BestIdx].second; 5974 } 5975 5976 // 'X' matches anything. 5977 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5978 // Constants are handled elsewhere. For Functions, the type here is the 5979 // type of the result, which is not what we want to look at; leave them 5980 // alone. 5981 Value *v = OpInfo.CallOperandVal; 5982 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5983 return; 5984 } 5985 5986 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5987 OpInfo.ConstraintCode = "i"; 5988 return; 5989 } 5990 5991 // Otherwise, try to resolve it to something we know about by looking at 5992 // the actual operand type. 5993 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5994 OpInfo.ConstraintCode = Repl; 5995 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5996 } 5997 } 5998 } 5999 6000 /// Given an exact SDIV by a constant, create a multiplication 6001 /// with the multiplicative inverse of the constant. 6002 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 6003 const SDLoc &dl, SelectionDAG &DAG, 6004 SmallVectorImpl<SDNode *> &Created) { 6005 SDValue Op0 = N->getOperand(0); 6006 SDValue Op1 = N->getOperand(1); 6007 EVT VT = N->getValueType(0); 6008 EVT SVT = VT.getScalarType(); 6009 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 6010 EVT ShSVT = ShVT.getScalarType(); 6011 6012 bool UseSRA = false; 6013 SmallVector<SDValue, 16> Shifts, Factors; 6014 6015 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6016 if (C->isZero()) 6017 return false; 6018 APInt Divisor = C->getAPIntValue(); 6019 unsigned Shift = Divisor.countr_zero(); 6020 if (Shift) { 6021 Divisor.ashrInPlace(Shift); 6022 UseSRA = true; 6023 } 6024 // Calculate the multiplicative inverse, using Newton's method. 6025 APInt t; 6026 APInt Factor = Divisor; 6027 while ((t = Divisor * Factor) != 1) 6028 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 6029 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 6030 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 6031 return true; 6032 }; 6033 6034 // Collect all magic values from the build vector. 6035 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 6036 return SDValue(); 6037 6038 SDValue Shift, Factor; 6039 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 6040 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6041 Factor = DAG.getBuildVector(VT, dl, Factors); 6042 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 6043 assert(Shifts.size() == 1 && Factors.size() == 1 && 6044 "Expected matchUnaryPredicate to return one element for scalable " 6045 "vectors"); 6046 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6047 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6048 } else { 6049 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 6050 Shift = Shifts[0]; 6051 Factor = Factors[0]; 6052 } 6053 6054 SDValue Res = Op0; 6055 6056 // Shift the value upfront if it is even, so the LSB is one. 6057 if (UseSRA) { 6058 // TODO: For UDIV use SRL instead of SRA. 6059 SDNodeFlags Flags; 6060 Flags.setExact(true); 6061 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 6062 Created.push_back(Res.getNode()); 6063 } 6064 6065 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 6066 } 6067 6068 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 6069 SelectionDAG &DAG, 6070 SmallVectorImpl<SDNode *> &Created) const { 6071 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6073 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 6074 return SDValue(N, 0); // Lower SDIV as SDIV 6075 return SDValue(); 6076 } 6077 6078 SDValue 6079 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 6080 SelectionDAG &DAG, 6081 SmallVectorImpl<SDNode *> &Created) const { 6082 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 6083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6084 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 6085 return SDValue(N, 0); // Lower SREM as SREM 6086 return SDValue(); 6087 } 6088 6089 /// Build sdiv by power-of-2 with conditional move instructions 6090 /// Ref: "Hacker's Delight" by Henry Warren 10-1 6091 /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: 6092 /// bgez x, label 6093 /// add x, x, 2**k-1 6094 /// label: 6095 /// sra res, x, k 6096 /// neg res, res (when the divisor is negative) 6097 SDValue TargetLowering::buildSDIVPow2WithCMov( 6098 SDNode *N, const APInt &Divisor, SelectionDAG &DAG, 6099 SmallVectorImpl<SDNode *> &Created) const { 6100 unsigned Lg2 = Divisor.countr_zero(); 6101 EVT VT = N->getValueType(0); 6102 6103 SDLoc DL(N); 6104 SDValue N0 = N->getOperand(0); 6105 SDValue Zero = DAG.getConstant(0, DL, VT); 6106 APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2); 6107 SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT); 6108 6109 // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. 6110 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6111 SDValue Cmp = DAG.getSetCC(DL, CCVT, N0, Zero, ISD::SETLT); 6112 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 6113 SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0); 6114 6115 Created.push_back(Cmp.getNode()); 6116 Created.push_back(Add.getNode()); 6117 Created.push_back(CMov.getNode()); 6118 6119 // Divide by pow2. 6120 SDValue SRA = 6121 DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, VT)); 6122 6123 // If we're dividing by a positive value, we're done. Otherwise, we must 6124 // negate the result. 6125 if (Divisor.isNonNegative()) 6126 return SRA; 6127 6128 Created.push_back(SRA.getNode()); 6129 return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA); 6130 } 6131 6132 /// Given an ISD::SDIV node expressing a divide by constant, 6133 /// return a DAG expression to select that will generate the same value by 6134 /// multiplying by a magic number. 6135 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6136 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 6137 bool IsAfterLegalization, 6138 SmallVectorImpl<SDNode *> &Created) const { 6139 SDLoc dl(N); 6140 EVT VT = N->getValueType(0); 6141 EVT SVT = VT.getScalarType(); 6142 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6143 EVT ShSVT = ShVT.getScalarType(); 6144 unsigned EltBits = VT.getScalarSizeInBits(); 6145 EVT MulVT; 6146 6147 // Check to see if we can do this. 6148 // FIXME: We should be more aggressive here. 6149 if (!isTypeLegal(VT)) { 6150 // Limit this to simple scalars for now. 6151 if (VT.isVector() || !VT.isSimple()) 6152 return SDValue(); 6153 6154 // If this type will be promoted to a large enough type with a legal 6155 // multiply operation, we can go ahead and do this transform. 6156 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6157 return SDValue(); 6158 6159 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6160 if (MulVT.getSizeInBits() < (2 * EltBits) || 6161 !isOperationLegal(ISD::MUL, MulVT)) 6162 return SDValue(); 6163 } 6164 6165 // If the sdiv has an 'exact' bit we can use a simpler lowering. 6166 if (N->getFlags().hasExact()) 6167 return BuildExactSDIV(*this, N, dl, DAG, Created); 6168 6169 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 6170 6171 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 6172 if (C->isZero()) 6173 return false; 6174 6175 const APInt &Divisor = C->getAPIntValue(); 6176 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 6177 int NumeratorFactor = 0; 6178 int ShiftMask = -1; 6179 6180 if (Divisor.isOne() || Divisor.isAllOnes()) { 6181 // If d is +1/-1, we just multiply the numerator by +1/-1. 6182 NumeratorFactor = Divisor.getSExtValue(); 6183 magics.Magic = 0; 6184 magics.ShiftAmount = 0; 6185 ShiftMask = 0; 6186 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 6187 // If d > 0 and m < 0, add the numerator. 6188 NumeratorFactor = 1; 6189 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 6190 // If d < 0 and m > 0, subtract the numerator. 6191 NumeratorFactor = -1; 6192 } 6193 6194 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 6195 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 6196 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 6197 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 6198 return true; 6199 }; 6200 6201 SDValue N0 = N->getOperand(0); 6202 SDValue N1 = N->getOperand(1); 6203 6204 // Collect the shifts / magic values from each element. 6205 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 6206 return SDValue(); 6207 6208 SDValue MagicFactor, Factor, Shift, ShiftMask; 6209 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6210 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6211 Factor = DAG.getBuildVector(VT, dl, Factors); 6212 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 6213 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 6214 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6215 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 6216 Shifts.size() == 1 && ShiftMasks.size() == 1 && 6217 "Expected matchUnaryPredicate to return one element for scalable " 6218 "vectors"); 6219 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6220 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 6221 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 6222 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 6223 } else { 6224 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6225 MagicFactor = MagicFactors[0]; 6226 Factor = Factors[0]; 6227 Shift = Shifts[0]; 6228 ShiftMask = ShiftMasks[0]; 6229 } 6230 6231 // Multiply the numerator (operand 0) by the magic value. 6232 // FIXME: We should support doing a MUL in a wider type. 6233 auto GetMULHS = [&](SDValue X, SDValue Y) { 6234 // If the type isn't legal, use a wider mul of the type calculated 6235 // earlier. 6236 if (!isTypeLegal(VT)) { 6237 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 6238 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 6239 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6240 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6241 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6242 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6243 } 6244 6245 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 6246 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 6247 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 6248 SDValue LoHi = 6249 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6250 return SDValue(LoHi.getNode(), 1); 6251 } 6252 // If type twice as wide legal, widen and use a mul plus a shift. 6253 unsigned Size = VT.getScalarSizeInBits(); 6254 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6255 if (VT.isVector()) 6256 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6257 VT.getVectorElementCount()); 6258 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6259 X = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, X); 6260 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, WideVT, Y); 6261 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6262 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6263 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6264 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6265 } 6266 return SDValue(); 6267 }; 6268 6269 SDValue Q = GetMULHS(N0, MagicFactor); 6270 if (!Q) 6271 return SDValue(); 6272 6273 Created.push_back(Q.getNode()); 6274 6275 // (Optionally) Add/subtract the numerator using Factor. 6276 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 6277 Created.push_back(Factor.getNode()); 6278 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 6279 Created.push_back(Q.getNode()); 6280 6281 // Shift right algebraic by shift value. 6282 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 6283 Created.push_back(Q.getNode()); 6284 6285 // Extract the sign bit, mask it and add it to the quotient. 6286 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 6287 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 6288 Created.push_back(T.getNode()); 6289 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 6290 Created.push_back(T.getNode()); 6291 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6292 } 6293 6294 /// Given an ISD::UDIV node expressing a divide by constant, 6295 /// return a DAG expression to select that will generate the same value by 6296 /// multiplying by a magic number. 6297 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6298 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6299 bool IsAfterLegalization, 6300 SmallVectorImpl<SDNode *> &Created) const { 6301 SDLoc dl(N); 6302 EVT VT = N->getValueType(0); 6303 EVT SVT = VT.getScalarType(); 6304 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6305 EVT ShSVT = ShVT.getScalarType(); 6306 unsigned EltBits = VT.getScalarSizeInBits(); 6307 EVT MulVT; 6308 6309 // Check to see if we can do this. 6310 // FIXME: We should be more aggressive here. 6311 if (!isTypeLegal(VT)) { 6312 // Limit this to simple scalars for now. 6313 if (VT.isVector() || !VT.isSimple()) 6314 return SDValue(); 6315 6316 // If this type will be promoted to a large enough type with a legal 6317 // multiply operation, we can go ahead and do this transform. 6318 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6319 return SDValue(); 6320 6321 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6322 if (MulVT.getSizeInBits() < (2 * EltBits) || 6323 !isOperationLegal(ISD::MUL, MulVT)) 6324 return SDValue(); 6325 } 6326 6327 SDValue N0 = N->getOperand(0); 6328 SDValue N1 = N->getOperand(1); 6329 6330 // Try to use leading zeros of the dividend to reduce the multiplier and 6331 // avoid expensive fixups. 6332 // TODO: Support vectors. 6333 unsigned LeadingZeros = 0; 6334 if (!VT.isVector() && isa<ConstantSDNode>(N1)) { 6335 assert(!isOneConstant(N1) && "Unexpected divisor"); 6336 LeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6337 // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros in 6338 // the dividend exceeds the leading zeros for the divisor. 6339 LeadingZeros = std::min( 6340 LeadingZeros, cast<ConstantSDNode>(N1)->getAPIntValue().countl_zero()); 6341 } 6342 6343 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6344 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6345 6346 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6347 if (C->isZero()) 6348 return false; 6349 const APInt& Divisor = C->getAPIntValue(); 6350 6351 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6352 6353 // Magic algorithm doesn't work for division by 1. We need to emit a select 6354 // at the end. 6355 if (Divisor.isOne()) { 6356 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6357 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6358 } else { 6359 UnsignedDivisionByConstantInfo magics = 6360 UnsignedDivisionByConstantInfo::get(Divisor, LeadingZeros); 6361 6362 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6363 6364 assert(magics.PreShift < Divisor.getBitWidth() && 6365 "We shouldn't generate an undefined shift!"); 6366 assert(magics.PostShift < Divisor.getBitWidth() && 6367 "We shouldn't generate an undefined shift!"); 6368 assert((!magics.IsAdd || magics.PreShift == 0) && 6369 "Unexpected pre-shift"); 6370 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6371 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6372 NPQFactor = DAG.getConstant( 6373 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6374 : APInt::getZero(EltBits), 6375 dl, SVT); 6376 UseNPQ |= magics.IsAdd; 6377 UsePreShift |= magics.PreShift != 0; 6378 UsePostShift |= magics.PostShift != 0; 6379 } 6380 6381 PreShifts.push_back(PreShift); 6382 MagicFactors.push_back(MagicFactor); 6383 NPQFactors.push_back(NPQFactor); 6384 PostShifts.push_back(PostShift); 6385 return true; 6386 }; 6387 6388 // Collect the shifts/magic values from each element. 6389 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6390 return SDValue(); 6391 6392 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6393 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6394 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6395 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6396 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6397 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6398 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6399 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6400 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6401 "Expected matchUnaryPredicate to return one for scalable vectors"); 6402 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6403 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6404 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6405 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6406 } else { 6407 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6408 PreShift = PreShifts[0]; 6409 MagicFactor = MagicFactors[0]; 6410 PostShift = PostShifts[0]; 6411 } 6412 6413 SDValue Q = N0; 6414 if (UsePreShift) { 6415 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6416 Created.push_back(Q.getNode()); 6417 } 6418 6419 // FIXME: We should support doing a MUL in a wider type. 6420 auto GetMULHU = [&](SDValue X, SDValue Y) { 6421 // If the type isn't legal, use a wider mul of the type calculated 6422 // earlier. 6423 if (!isTypeLegal(VT)) { 6424 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6425 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6426 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6427 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6428 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6429 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6430 } 6431 6432 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6433 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6434 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6435 SDValue LoHi = 6436 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6437 return SDValue(LoHi.getNode(), 1); 6438 } 6439 // If type twice as wide legal, widen and use a mul plus a shift. 6440 unsigned Size = VT.getScalarSizeInBits(); 6441 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), Size * 2); 6442 if (VT.isVector()) 6443 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6444 VT.getVectorElementCount()); 6445 if (isOperationLegalOrCustom(ISD::MUL, WideVT)) { 6446 X = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, X); 6447 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, WideVT, Y); 6448 Y = DAG.getNode(ISD::MUL, dl, WideVT, X, Y); 6449 Y = DAG.getNode(ISD::SRL, dl, WideVT, Y, 6450 DAG.getShiftAmountConstant(EltBits, WideVT, dl)); 6451 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6452 } 6453 return SDValue(); // No mulhu or equivalent 6454 }; 6455 6456 // Multiply the numerator (operand 0) by the magic value. 6457 Q = GetMULHU(Q, MagicFactor); 6458 if (!Q) 6459 return SDValue(); 6460 6461 Created.push_back(Q.getNode()); 6462 6463 if (UseNPQ) { 6464 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6465 Created.push_back(NPQ.getNode()); 6466 6467 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6468 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6469 if (VT.isVector()) 6470 NPQ = GetMULHU(NPQ, NPQFactor); 6471 else 6472 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6473 6474 Created.push_back(NPQ.getNode()); 6475 6476 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6477 Created.push_back(Q.getNode()); 6478 } 6479 6480 if (UsePostShift) { 6481 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6482 Created.push_back(Q.getNode()); 6483 } 6484 6485 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6486 6487 SDValue One = DAG.getConstant(1, dl, VT); 6488 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6489 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6490 } 6491 6492 /// If all values in Values that *don't* match the predicate are same 'splat' 6493 /// value, then replace all values with that splat value. 6494 /// Else, if AlternativeReplacement was provided, then replace all values that 6495 /// do match predicate with AlternativeReplacement value. 6496 static void 6497 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6498 std::function<bool(SDValue)> Predicate, 6499 SDValue AlternativeReplacement = SDValue()) { 6500 SDValue Replacement; 6501 // Is there a value for which the Predicate does *NOT* match? What is it? 6502 auto SplatValue = llvm::find_if_not(Values, Predicate); 6503 if (SplatValue != Values.end()) { 6504 // Does Values consist only of SplatValue's and values matching Predicate? 6505 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6506 return Value == *SplatValue || Predicate(Value); 6507 })) // Then we shall replace values matching predicate with SplatValue. 6508 Replacement = *SplatValue; 6509 } 6510 if (!Replacement) { 6511 // Oops, we did not find the "baseline" splat value. 6512 if (!AlternativeReplacement) 6513 return; // Nothing to do. 6514 // Let's replace with provided value then. 6515 Replacement = AlternativeReplacement; 6516 } 6517 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6518 } 6519 6520 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6521 /// where the divisor is constant and the comparison target is zero, 6522 /// return a DAG expression that will generate the same comparison result 6523 /// using only multiplications, additions and shifts/rotations. 6524 /// Ref: "Hacker's Delight" 10-17. 6525 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6526 SDValue CompTargetNode, 6527 ISD::CondCode Cond, 6528 DAGCombinerInfo &DCI, 6529 const SDLoc &DL) const { 6530 SmallVector<SDNode *, 5> Built; 6531 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6532 DCI, DL, Built)) { 6533 for (SDNode *N : Built) 6534 DCI.AddToWorklist(N); 6535 return Folded; 6536 } 6537 6538 return SDValue(); 6539 } 6540 6541 SDValue 6542 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6543 SDValue CompTargetNode, ISD::CondCode Cond, 6544 DAGCombinerInfo &DCI, const SDLoc &DL, 6545 SmallVectorImpl<SDNode *> &Created) const { 6546 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6547 // - D must be constant, with D = D0 * 2^K where D0 is odd 6548 // - P is the multiplicative inverse of D0 modulo 2^W 6549 // - Q = floor(((2^W) - 1) / D) 6550 // where W is the width of the common type of N and D. 6551 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6552 "Only applicable for (in)equality comparisons."); 6553 6554 SelectionDAG &DAG = DCI.DAG; 6555 6556 EVT VT = REMNode.getValueType(); 6557 EVT SVT = VT.getScalarType(); 6558 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6559 EVT ShSVT = ShVT.getScalarType(); 6560 6561 // If MUL is unavailable, we cannot proceed in any case. 6562 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6563 return SDValue(); 6564 6565 bool ComparingWithAllZeros = true; 6566 bool AllComparisonsWithNonZerosAreTautological = true; 6567 bool HadTautologicalLanes = false; 6568 bool AllLanesAreTautological = true; 6569 bool HadEvenDivisor = false; 6570 bool AllDivisorsArePowerOfTwo = true; 6571 bool HadTautologicalInvertedLanes = false; 6572 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6573 6574 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6575 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6576 if (CDiv->isZero()) 6577 return false; 6578 6579 const APInt &D = CDiv->getAPIntValue(); 6580 const APInt &Cmp = CCmp->getAPIntValue(); 6581 6582 ComparingWithAllZeros &= Cmp.isZero(); 6583 6584 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6585 // if C2 is not less than C1, the comparison is always false. 6586 // But we will only be able to produce the comparison that will give the 6587 // opposive tautological answer. So this lane would need to be fixed up. 6588 bool TautologicalInvertedLane = D.ule(Cmp); 6589 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6590 6591 // If all lanes are tautological (either all divisors are ones, or divisor 6592 // is not greater than the constant we are comparing with), 6593 // we will prefer to avoid the fold. 6594 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6595 HadTautologicalLanes |= TautologicalLane; 6596 AllLanesAreTautological &= TautologicalLane; 6597 6598 // If we are comparing with non-zero, we need'll need to subtract said 6599 // comparison value from the LHS. But there is no point in doing that if 6600 // every lane where we are comparing with non-zero is tautological.. 6601 if (!Cmp.isZero()) 6602 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6603 6604 // Decompose D into D0 * 2^K 6605 unsigned K = D.countr_zero(); 6606 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6607 APInt D0 = D.lshr(K); 6608 6609 // D is even if it has trailing zeros. 6610 HadEvenDivisor |= (K != 0); 6611 // D is a power-of-two if D0 is one. 6612 // If all divisors are power-of-two, we will prefer to avoid the fold. 6613 AllDivisorsArePowerOfTwo &= D0.isOne(); 6614 6615 // P = inv(D0, 2^W) 6616 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6617 unsigned W = D.getBitWidth(); 6618 APInt P = D0.zext(W + 1) 6619 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6620 .trunc(W); 6621 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6622 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6623 6624 // Q = floor((2^W - 1) u/ D) 6625 // R = ((2^W - 1) u% D) 6626 APInt Q, R; 6627 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6628 6629 // If we are comparing with zero, then that comparison constant is okay, 6630 // else it may need to be one less than that. 6631 if (Cmp.ugt(R)) 6632 Q -= 1; 6633 6634 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6635 "We are expecting that K is always less than all-ones for ShSVT"); 6636 6637 // If the lane is tautological the result can be constant-folded. 6638 if (TautologicalLane) { 6639 // Set P and K amount to a bogus values so we can try to splat them. 6640 P = 0; 6641 K = -1; 6642 // And ensure that comparison constant is tautological, 6643 // it will always compare true/false. 6644 Q = -1; 6645 } 6646 6647 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6648 KAmts.push_back( 6649 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6650 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6651 return true; 6652 }; 6653 6654 SDValue N = REMNode.getOperand(0); 6655 SDValue D = REMNode.getOperand(1); 6656 6657 // Collect the values from each element. 6658 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6659 return SDValue(); 6660 6661 // If all lanes are tautological, the result can be constant-folded. 6662 if (AllLanesAreTautological) 6663 return SDValue(); 6664 6665 // If this is a urem by a powers-of-two, avoid the fold since it can be 6666 // best implemented as a bit test. 6667 if (AllDivisorsArePowerOfTwo) 6668 return SDValue(); 6669 6670 SDValue PVal, KVal, QVal; 6671 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6672 if (HadTautologicalLanes) { 6673 // Try to turn PAmts into a splat, since we don't care about the values 6674 // that are currently '0'. If we can't, just keep '0'`s. 6675 turnVectorIntoSplatVector(PAmts, isNullConstant); 6676 // Try to turn KAmts into a splat, since we don't care about the values 6677 // that are currently '-1'. If we can't, change them to '0'`s. 6678 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6679 DAG.getConstant(0, DL, ShSVT)); 6680 } 6681 6682 PVal = DAG.getBuildVector(VT, DL, PAmts); 6683 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6684 QVal = DAG.getBuildVector(VT, DL, QAmts); 6685 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6686 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6687 "Expected matchBinaryPredicate to return one element for " 6688 "SPLAT_VECTORs"); 6689 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6690 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6691 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6692 } else { 6693 PVal = PAmts[0]; 6694 KVal = KAmts[0]; 6695 QVal = QAmts[0]; 6696 } 6697 6698 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6699 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6700 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6701 assert(CompTargetNode.getValueType() == N.getValueType() && 6702 "Expecting that the types on LHS and RHS of comparisons match."); 6703 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6704 } 6705 6706 // (mul N, P) 6707 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6708 Created.push_back(Op0.getNode()); 6709 6710 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6711 // divisors as a performance improvement, since rotating by 0 is a no-op. 6712 if (HadEvenDivisor) { 6713 // We need ROTR to do this. 6714 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6715 return SDValue(); 6716 // UREM: (rotr (mul N, P), K) 6717 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6718 Created.push_back(Op0.getNode()); 6719 } 6720 6721 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6722 SDValue NewCC = 6723 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6724 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6725 if (!HadTautologicalInvertedLanes) 6726 return NewCC; 6727 6728 // If any lanes previously compared always-false, the NewCC will give 6729 // always-true result for them, so we need to fixup those lanes. 6730 // Or the other way around for inequality predicate. 6731 assert(VT.isVector() && "Can/should only get here for vectors."); 6732 Created.push_back(NewCC.getNode()); 6733 6734 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6735 // if C2 is not less than C1, the comparison is always false. 6736 // But we have produced the comparison that will give the 6737 // opposive tautological answer. So these lanes would need to be fixed up. 6738 SDValue TautologicalInvertedChannels = 6739 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6740 Created.push_back(TautologicalInvertedChannels.getNode()); 6741 6742 // NOTE: we avoid letting illegal types through even if we're before legalize 6743 // ops – legalization has a hard time producing good code for this. 6744 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6745 // If we have a vector select, let's replace the comparison results in the 6746 // affected lanes with the correct tautological result. 6747 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6748 DL, SETCCVT, SETCCVT); 6749 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6750 Replacement, NewCC); 6751 } 6752 6753 // Else, we can just invert the comparison result in the appropriate lanes. 6754 // 6755 // NOTE: see the note above VSELECT above. 6756 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6757 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6758 TautologicalInvertedChannels); 6759 6760 return SDValue(); // Don't know how to lower. 6761 } 6762 6763 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6764 /// where the divisor is constant and the comparison target is zero, 6765 /// return a DAG expression that will generate the same comparison result 6766 /// using only multiplications, additions and shifts/rotations. 6767 /// Ref: "Hacker's Delight" 10-17. 6768 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6769 SDValue CompTargetNode, 6770 ISD::CondCode Cond, 6771 DAGCombinerInfo &DCI, 6772 const SDLoc &DL) const { 6773 SmallVector<SDNode *, 7> Built; 6774 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6775 DCI, DL, Built)) { 6776 assert(Built.size() <= 7 && "Max size prediction failed."); 6777 for (SDNode *N : Built) 6778 DCI.AddToWorklist(N); 6779 return Folded; 6780 } 6781 6782 return SDValue(); 6783 } 6784 6785 SDValue 6786 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6787 SDValue CompTargetNode, ISD::CondCode Cond, 6788 DAGCombinerInfo &DCI, const SDLoc &DL, 6789 SmallVectorImpl<SDNode *> &Created) const { 6790 // Fold: 6791 // (seteq/ne (srem N, D), 0) 6792 // To: 6793 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6794 // 6795 // - D must be constant, with D = D0 * 2^K where D0 is odd 6796 // - P is the multiplicative inverse of D0 modulo 2^W 6797 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6798 // - Q = floor((2 * A) / (2^K)) 6799 // where W is the width of the common type of N and D. 6800 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6801 "Only applicable for (in)equality comparisons."); 6802 6803 SelectionDAG &DAG = DCI.DAG; 6804 6805 EVT VT = REMNode.getValueType(); 6806 EVT SVT = VT.getScalarType(); 6807 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6808 EVT ShSVT = ShVT.getScalarType(); 6809 6810 // If we are after ops legalization, and MUL is unavailable, we can not 6811 // proceed. 6812 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6813 return SDValue(); 6814 6815 // TODO: Could support comparing with non-zero too. 6816 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6817 if (!CompTarget || !CompTarget->isZero()) 6818 return SDValue(); 6819 6820 bool HadIntMinDivisor = false; 6821 bool HadOneDivisor = false; 6822 bool AllDivisorsAreOnes = true; 6823 bool HadEvenDivisor = false; 6824 bool NeedToApplyOffset = false; 6825 bool AllDivisorsArePowerOfTwo = true; 6826 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6827 6828 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6829 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6830 if (C->isZero()) 6831 return false; 6832 6833 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6834 6835 // WARNING: this fold is only valid for positive divisors! 6836 APInt D = C->getAPIntValue(); 6837 if (D.isNegative()) 6838 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6839 6840 HadIntMinDivisor |= D.isMinSignedValue(); 6841 6842 // If all divisors are ones, we will prefer to avoid the fold. 6843 HadOneDivisor |= D.isOne(); 6844 AllDivisorsAreOnes &= D.isOne(); 6845 6846 // Decompose D into D0 * 2^K 6847 unsigned K = D.countr_zero(); 6848 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6849 APInt D0 = D.lshr(K); 6850 6851 if (!D.isMinSignedValue()) { 6852 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6853 // we don't care about this lane in this fold, we'll special-handle it. 6854 HadEvenDivisor |= (K != 0); 6855 } 6856 6857 // D is a power-of-two if D0 is one. This includes INT_MIN. 6858 // If all divisors are power-of-two, we will prefer to avoid the fold. 6859 AllDivisorsArePowerOfTwo &= D0.isOne(); 6860 6861 // P = inv(D0, 2^W) 6862 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6863 unsigned W = D.getBitWidth(); 6864 APInt P = D0.zext(W + 1) 6865 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6866 .trunc(W); 6867 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6868 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6869 6870 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6871 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6872 A.clearLowBits(K); 6873 6874 if (!D.isMinSignedValue()) { 6875 // If divisor INT_MIN, then we don't care about this lane in this fold, 6876 // we'll special-handle it. 6877 NeedToApplyOffset |= A != 0; 6878 } 6879 6880 // Q = floor((2 * A) / (2^K)) 6881 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6882 6883 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6884 "We are expecting that A is always less than all-ones for SVT"); 6885 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6886 "We are expecting that K is always less than all-ones for ShSVT"); 6887 6888 // If the divisor is 1 the result can be constant-folded. Likewise, we 6889 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6890 if (D.isOne()) { 6891 // Set P, A and K to a bogus values so we can try to splat them. 6892 P = 0; 6893 A = -1; 6894 K = -1; 6895 6896 // x ?% 1 == 0 <--> true <--> x u<= -1 6897 Q = -1; 6898 } 6899 6900 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6901 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6902 KAmts.push_back( 6903 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6904 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6905 return true; 6906 }; 6907 6908 SDValue N = REMNode.getOperand(0); 6909 SDValue D = REMNode.getOperand(1); 6910 6911 // Collect the values from each element. 6912 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6913 return SDValue(); 6914 6915 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6916 if (AllDivisorsAreOnes) 6917 return SDValue(); 6918 6919 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6920 // since it can be best implemented as a bit test. 6921 if (AllDivisorsArePowerOfTwo) 6922 return SDValue(); 6923 6924 SDValue PVal, AVal, KVal, QVal; 6925 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6926 if (HadOneDivisor) { 6927 // Try to turn PAmts into a splat, since we don't care about the values 6928 // that are currently '0'. If we can't, just keep '0'`s. 6929 turnVectorIntoSplatVector(PAmts, isNullConstant); 6930 // Try to turn AAmts into a splat, since we don't care about the 6931 // values that are currently '-1'. If we can't, change them to '0'`s. 6932 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6933 DAG.getConstant(0, DL, SVT)); 6934 // Try to turn KAmts into a splat, since we don't care about the values 6935 // that are currently '-1'. If we can't, change them to '0'`s. 6936 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6937 DAG.getConstant(0, DL, ShSVT)); 6938 } 6939 6940 PVal = DAG.getBuildVector(VT, DL, PAmts); 6941 AVal = DAG.getBuildVector(VT, DL, AAmts); 6942 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6943 QVal = DAG.getBuildVector(VT, DL, QAmts); 6944 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6945 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6946 QAmts.size() == 1 && 6947 "Expected matchUnaryPredicate to return one element for scalable " 6948 "vectors"); 6949 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6950 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6951 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6952 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6953 } else { 6954 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6955 PVal = PAmts[0]; 6956 AVal = AAmts[0]; 6957 KVal = KAmts[0]; 6958 QVal = QAmts[0]; 6959 } 6960 6961 // (mul N, P) 6962 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6963 Created.push_back(Op0.getNode()); 6964 6965 if (NeedToApplyOffset) { 6966 // We need ADD to do this. 6967 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6968 return SDValue(); 6969 6970 // (add (mul N, P), A) 6971 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6972 Created.push_back(Op0.getNode()); 6973 } 6974 6975 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6976 // divisors as a performance improvement, since rotating by 0 is a no-op. 6977 if (HadEvenDivisor) { 6978 // We need ROTR to do this. 6979 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6980 return SDValue(); 6981 // SREM: (rotr (add (mul N, P), A), K) 6982 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6983 Created.push_back(Op0.getNode()); 6984 } 6985 6986 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6987 SDValue Fold = 6988 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6989 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6990 6991 // If we didn't have lanes with INT_MIN divisor, then we're done. 6992 if (!HadIntMinDivisor) 6993 return Fold; 6994 6995 // That fold is only valid for positive divisors. Which effectively means, 6996 // it is invalid for INT_MIN divisors. So if we have such a lane, 6997 // we must fix-up results for said lanes. 6998 assert(VT.isVector() && "Can/should only get here for vectors."); 6999 7000 // NOTE: we avoid letting illegal types through even if we're before legalize 7001 // ops – legalization has a hard time producing good code for the code that 7002 // follows. 7003 if (!isOperationLegalOrCustom(ISD::SETCC, SETCCVT) || 7004 !isOperationLegalOrCustom(ISD::AND, VT) || 7005 !isCondCodeLegalOrCustom(Cond, VT.getSimpleVT()) || 7006 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 7007 return SDValue(); 7008 7009 Created.push_back(Fold.getNode()); 7010 7011 SDValue IntMin = DAG.getConstant( 7012 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 7013 SDValue IntMax = DAG.getConstant( 7014 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 7015 SDValue Zero = 7016 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 7017 7018 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 7019 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 7020 Created.push_back(DivisorIsIntMin.getNode()); 7021 7022 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 7023 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 7024 Created.push_back(Masked.getNode()); 7025 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 7026 Created.push_back(MaskedIsZero.getNode()); 7027 7028 // To produce final result we need to blend 2 vectors: 'SetCC' and 7029 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 7030 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 7031 // constant-folded, select can get lowered to a shuffle with constant mask. 7032 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 7033 MaskedIsZero, Fold); 7034 7035 return Blended; 7036 } 7037 7038 bool TargetLowering:: 7039 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 7040 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 7041 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 7042 "be a constant integer"); 7043 return true; 7044 } 7045 7046 return false; 7047 } 7048 7049 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 7050 const DenormalMode &Mode) const { 7051 SDLoc DL(Op); 7052 EVT VT = Op.getValueType(); 7053 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7054 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 7055 7056 // This is specifically a check for the handling of denormal inputs, not the 7057 // result. 7058 if (Mode.Input == DenormalMode::PreserveSign || 7059 Mode.Input == DenormalMode::PositiveZero) { 7060 // Test = X == 0.0 7061 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 7062 } 7063 7064 // Testing it with denormal inputs to avoid wrong estimate. 7065 // 7066 // Test = fabs(X) < SmallestNormal 7067 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 7068 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 7069 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 7070 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 7071 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 7072 } 7073 7074 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 7075 bool LegalOps, bool OptForSize, 7076 NegatibleCost &Cost, 7077 unsigned Depth) const { 7078 // fneg is removable even if it has multiple uses. 7079 if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { 7080 Cost = NegatibleCost::Cheaper; 7081 return Op.getOperand(0); 7082 } 7083 7084 // Don't recurse exponentially. 7085 if (Depth > SelectionDAG::MaxRecursionDepth) 7086 return SDValue(); 7087 7088 // Pre-increment recursion depth for use in recursive calls. 7089 ++Depth; 7090 const SDNodeFlags Flags = Op->getFlags(); 7091 const TargetOptions &Options = DAG.getTarget().Options; 7092 EVT VT = Op.getValueType(); 7093 unsigned Opcode = Op.getOpcode(); 7094 7095 // Don't allow anything with multiple uses unless we know it is free. 7096 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 7097 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 7098 isFPExtFree(VT, Op.getOperand(0).getValueType()); 7099 if (!IsFreeExtend) 7100 return SDValue(); 7101 } 7102 7103 auto RemoveDeadNode = [&](SDValue N) { 7104 if (N && N.getNode()->use_empty()) 7105 DAG.RemoveDeadNode(N.getNode()); 7106 }; 7107 7108 SDLoc DL(Op); 7109 7110 // Because getNegatedExpression can delete nodes we need a handle to keep 7111 // temporary nodes alive in case the recursion manages to create an identical 7112 // node. 7113 std::list<HandleSDNode> Handles; 7114 7115 switch (Opcode) { 7116 case ISD::ConstantFP: { 7117 // Don't invert constant FP values after legalization unless the target says 7118 // the negated constant is legal. 7119 bool IsOpLegal = 7120 isOperationLegal(ISD::ConstantFP, VT) || 7121 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 7122 OptForSize); 7123 7124 if (LegalOps && !IsOpLegal) 7125 break; 7126 7127 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 7128 V.changeSign(); 7129 SDValue CFP = DAG.getConstantFP(V, DL, VT); 7130 7131 // If we already have the use of the negated floating constant, it is free 7132 // to negate it even it has multiple uses. 7133 if (!Op.hasOneUse() && CFP.use_empty()) 7134 break; 7135 Cost = NegatibleCost::Neutral; 7136 return CFP; 7137 } 7138 case ISD::BUILD_VECTOR: { 7139 // Only permit BUILD_VECTOR of constants. 7140 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 7141 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 7142 })) 7143 break; 7144 7145 bool IsOpLegal = 7146 (isOperationLegal(ISD::ConstantFP, VT) && 7147 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 7148 llvm::all_of(Op->op_values(), [&](SDValue N) { 7149 return N.isUndef() || 7150 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 7151 OptForSize); 7152 }); 7153 7154 if (LegalOps && !IsOpLegal) 7155 break; 7156 7157 SmallVector<SDValue, 4> Ops; 7158 for (SDValue C : Op->op_values()) { 7159 if (C.isUndef()) { 7160 Ops.push_back(C); 7161 continue; 7162 } 7163 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 7164 V.changeSign(); 7165 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 7166 } 7167 Cost = NegatibleCost::Neutral; 7168 return DAG.getBuildVector(VT, DL, Ops); 7169 } 7170 case ISD::FADD: { 7171 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7172 break; 7173 7174 // After operation legalization, it might not be legal to create new FSUBs. 7175 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 7176 break; 7177 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7178 7179 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 7180 NegatibleCost CostX = NegatibleCost::Expensive; 7181 SDValue NegX = 7182 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7183 // Prevent this node from being deleted by the next call. 7184 if (NegX) 7185 Handles.emplace_back(NegX); 7186 7187 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 7188 NegatibleCost CostY = NegatibleCost::Expensive; 7189 SDValue NegY = 7190 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7191 7192 // We're done with the handles. 7193 Handles.clear(); 7194 7195 // Negate the X if its cost is less or equal than Y. 7196 if (NegX && (CostX <= CostY)) { 7197 Cost = CostX; 7198 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 7199 if (NegY != N) 7200 RemoveDeadNode(NegY); 7201 return N; 7202 } 7203 7204 // Negate the Y if it is not expensive. 7205 if (NegY) { 7206 Cost = CostY; 7207 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 7208 if (NegX != N) 7209 RemoveDeadNode(NegX); 7210 return N; 7211 } 7212 break; 7213 } 7214 case ISD::FSUB: { 7215 // We can't turn -(A-B) into B-A when we honor signed zeros. 7216 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7217 break; 7218 7219 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7220 // fold (fneg (fsub 0, Y)) -> Y 7221 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 7222 if (C->isZero()) { 7223 Cost = NegatibleCost::Cheaper; 7224 return Y; 7225 } 7226 7227 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 7228 Cost = NegatibleCost::Neutral; 7229 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 7230 } 7231 case ISD::FMUL: 7232 case ISD::FDIV: { 7233 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 7234 7235 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 7236 NegatibleCost CostX = NegatibleCost::Expensive; 7237 SDValue NegX = 7238 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7239 // Prevent this node from being deleted by the next call. 7240 if (NegX) 7241 Handles.emplace_back(NegX); 7242 7243 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 7244 NegatibleCost CostY = NegatibleCost::Expensive; 7245 SDValue NegY = 7246 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7247 7248 // We're done with the handles. 7249 Handles.clear(); 7250 7251 // Negate the X if its cost is less or equal than Y. 7252 if (NegX && (CostX <= CostY)) { 7253 Cost = CostX; 7254 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 7255 if (NegY != N) 7256 RemoveDeadNode(NegY); 7257 return N; 7258 } 7259 7260 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 7261 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 7262 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 7263 break; 7264 7265 // Negate the Y if it is not expensive. 7266 if (NegY) { 7267 Cost = CostY; 7268 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 7269 if (NegX != N) 7270 RemoveDeadNode(NegX); 7271 return N; 7272 } 7273 break; 7274 } 7275 case ISD::FMA: 7276 case ISD::FMAD: { 7277 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 7278 break; 7279 7280 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 7281 NegatibleCost CostZ = NegatibleCost::Expensive; 7282 SDValue NegZ = 7283 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 7284 // Give up if fail to negate the Z. 7285 if (!NegZ) 7286 break; 7287 7288 // Prevent this node from being deleted by the next two calls. 7289 Handles.emplace_back(NegZ); 7290 7291 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 7292 NegatibleCost CostX = NegatibleCost::Expensive; 7293 SDValue NegX = 7294 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 7295 // Prevent this node from being deleted by the next call. 7296 if (NegX) 7297 Handles.emplace_back(NegX); 7298 7299 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 7300 NegatibleCost CostY = NegatibleCost::Expensive; 7301 SDValue NegY = 7302 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 7303 7304 // We're done with the handles. 7305 Handles.clear(); 7306 7307 // Negate the X if its cost is less or equal than Y. 7308 if (NegX && (CostX <= CostY)) { 7309 Cost = std::min(CostX, CostZ); 7310 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7311 if (NegY != N) 7312 RemoveDeadNode(NegY); 7313 return N; 7314 } 7315 7316 // Negate the Y if it is not expensive. 7317 if (NegY) { 7318 Cost = std::min(CostY, CostZ); 7319 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7320 if (NegX != N) 7321 RemoveDeadNode(NegX); 7322 return N; 7323 } 7324 break; 7325 } 7326 7327 case ISD::FP_EXTEND: 7328 case ISD::FSIN: 7329 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7330 OptForSize, Cost, Depth)) 7331 return DAG.getNode(Opcode, DL, VT, NegV); 7332 break; 7333 case ISD::FP_ROUND: 7334 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7335 OptForSize, Cost, Depth)) 7336 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7337 break; 7338 case ISD::SELECT: 7339 case ISD::VSELECT: { 7340 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7341 // iff at least one cost is cheaper and the other is neutral/cheaper 7342 SDValue LHS = Op.getOperand(1); 7343 NegatibleCost CostLHS = NegatibleCost::Expensive; 7344 SDValue NegLHS = 7345 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7346 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7347 RemoveDeadNode(NegLHS); 7348 break; 7349 } 7350 7351 // Prevent this node from being deleted by the next call. 7352 Handles.emplace_back(NegLHS); 7353 7354 SDValue RHS = Op.getOperand(2); 7355 NegatibleCost CostRHS = NegatibleCost::Expensive; 7356 SDValue NegRHS = 7357 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7358 7359 // We're done with the handles. 7360 Handles.clear(); 7361 7362 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7363 (CostLHS != NegatibleCost::Cheaper && 7364 CostRHS != NegatibleCost::Cheaper)) { 7365 RemoveDeadNode(NegLHS); 7366 RemoveDeadNode(NegRHS); 7367 break; 7368 } 7369 7370 Cost = std::min(CostLHS, CostRHS); 7371 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7372 } 7373 } 7374 7375 return SDValue(); 7376 } 7377 7378 //===----------------------------------------------------------------------===// 7379 // Legalization Utilities 7380 //===----------------------------------------------------------------------===// 7381 7382 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7383 SDValue LHS, SDValue RHS, 7384 SmallVectorImpl<SDValue> &Result, 7385 EVT HiLoVT, SelectionDAG &DAG, 7386 MulExpansionKind Kind, SDValue LL, 7387 SDValue LH, SDValue RL, SDValue RH) const { 7388 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7389 Opcode == ISD::SMUL_LOHI); 7390 7391 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7392 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7393 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7394 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7395 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7396 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7397 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7398 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7399 7400 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7401 return false; 7402 7403 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7404 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7405 7406 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7407 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7408 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7409 7410 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7411 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7412 bool Signed) -> bool { 7413 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7414 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7415 Hi = SDValue(Lo.getNode(), 1); 7416 return true; 7417 } 7418 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7419 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7420 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7421 return true; 7422 } 7423 return false; 7424 }; 7425 7426 SDValue Lo, Hi; 7427 7428 if (!LL.getNode() && !RL.getNode() && 7429 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7430 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7431 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7432 } 7433 7434 if (!LL.getNode()) 7435 return false; 7436 7437 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7438 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7439 DAG.MaskedValueIsZero(RHS, HighMask)) { 7440 // The inputs are both zero-extended. 7441 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7442 Result.push_back(Lo); 7443 Result.push_back(Hi); 7444 if (Opcode != ISD::MUL) { 7445 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7446 Result.push_back(Zero); 7447 Result.push_back(Zero); 7448 } 7449 return true; 7450 } 7451 } 7452 7453 if (!VT.isVector() && Opcode == ISD::MUL && 7454 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7455 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7456 // The input values are both sign-extended. 7457 // TODO non-MUL case? 7458 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7459 Result.push_back(Lo); 7460 Result.push_back(Hi); 7461 return true; 7462 } 7463 } 7464 7465 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7466 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7467 7468 if (!LH.getNode() && !RH.getNode() && 7469 isOperationLegalOrCustom(ISD::SRL, VT) && 7470 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7471 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7472 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7473 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7474 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7475 } 7476 7477 if (!LH.getNode()) 7478 return false; 7479 7480 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7481 return false; 7482 7483 Result.push_back(Lo); 7484 7485 if (Opcode == ISD::MUL) { 7486 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7487 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7488 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7489 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7490 Result.push_back(Hi); 7491 return true; 7492 } 7493 7494 // Compute the full width result. 7495 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7496 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7497 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7498 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7499 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7500 }; 7501 7502 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7503 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7504 return false; 7505 7506 // This is effectively the add part of a multiply-add of half-sized operands, 7507 // so it cannot overflow. 7508 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7509 7510 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7511 return false; 7512 7513 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7514 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7515 7516 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7517 isOperationLegalOrCustom(ISD::ADDE, VT)); 7518 if (UseGlue) 7519 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7520 Merge(Lo, Hi)); 7521 else 7522 Next = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(VT, BoolType), Next, 7523 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7524 7525 SDValue Carry = Next.getValue(1); 7526 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7527 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7528 7529 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7530 return false; 7531 7532 if (UseGlue) 7533 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7534 Carry); 7535 else 7536 Hi = DAG.getNode(ISD::UADDO_CARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7537 Zero, Carry); 7538 7539 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7540 7541 if (Opcode == ISD::SMUL_LOHI) { 7542 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7543 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7544 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7545 7546 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7547 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7548 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7549 } 7550 7551 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7552 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7553 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7554 return true; 7555 } 7556 7557 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7558 SelectionDAG &DAG, MulExpansionKind Kind, 7559 SDValue LL, SDValue LH, SDValue RL, 7560 SDValue RH) const { 7561 SmallVector<SDValue, 2> Result; 7562 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7563 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7564 DAG, Kind, LL, LH, RL, RH); 7565 if (Ok) { 7566 assert(Result.size() == 2); 7567 Lo = Result[0]; 7568 Hi = Result[1]; 7569 } 7570 return Ok; 7571 } 7572 7573 // Optimize unsigned division or remainder by constants for types twice as large 7574 // as a legal VT. 7575 // 7576 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7577 // can be computed 7578 // as: 7579 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7580 // Remainder = Sum % Constant 7581 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7582 // 7583 // For division, we can compute the remainder using the algorithm described 7584 // above, subtract it from the dividend to get an exact multiple of Constant. 7585 // Then multiply that extact multiply by the multiplicative inverse modulo 7586 // (1 << (BitWidth / 2)) to get the quotient. 7587 7588 // If Constant is even, we can shift right the dividend and the divisor by the 7589 // number of trailing zeros in Constant before applying the remainder algorithm. 7590 // If we're after the quotient, we can subtract this value from the shifted 7591 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7592 // If we want the remainder, we shift the value left by the number of trailing 7593 // zeros and add the bits that were shifted out of the dividend. 7594 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7595 SmallVectorImpl<SDValue> &Result, 7596 EVT HiLoVT, SelectionDAG &DAG, 7597 SDValue LL, SDValue LH) const { 7598 unsigned Opcode = N->getOpcode(); 7599 EVT VT = N->getValueType(0); 7600 7601 // TODO: Support signed division/remainder. 7602 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7603 return false; 7604 assert( 7605 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7606 "Unexpected opcode"); 7607 7608 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7609 if (!CN) 7610 return false; 7611 7612 APInt Divisor = CN->getAPIntValue(); 7613 unsigned BitWidth = Divisor.getBitWidth(); 7614 unsigned HBitWidth = BitWidth / 2; 7615 assert(VT.getScalarSizeInBits() == BitWidth && 7616 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7617 7618 // Divisor needs to less than (1 << HBitWidth). 7619 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7620 if (Divisor.uge(HalfMaxPlus1)) 7621 return false; 7622 7623 // We depend on the UREM by constant optimization in DAGCombiner that requires 7624 // high multiply. 7625 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7626 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7627 return false; 7628 7629 // Don't expand if optimizing for size. 7630 if (DAG.shouldOptForSize()) 7631 return false; 7632 7633 // Early out for 0 or 1 divisors. 7634 if (Divisor.ule(1)) 7635 return false; 7636 7637 // If the divisor is even, shift it until it becomes odd. 7638 unsigned TrailingZeros = 0; 7639 if (!Divisor[0]) { 7640 TrailingZeros = Divisor.countr_zero(); 7641 Divisor.lshrInPlace(TrailingZeros); 7642 } 7643 7644 SDLoc dl(N); 7645 SDValue Sum; 7646 SDValue PartialRem; 7647 7648 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7649 // then add in the carry. 7650 // TODO: If we can't split it in half, we might be able to split into 3 or 7651 // more pieces using a smaller bit width. 7652 if (HalfMaxPlus1.urem(Divisor).isOne()) { 7653 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7654 if (!LL) 7655 std::tie(LL, LH) = DAG.SplitScalar(N->getOperand(0), dl, HiLoVT, HiLoVT); 7656 7657 // Shift the input by the number of TrailingZeros in the divisor. The 7658 // shifted out bits will be added to the remainder later. 7659 if (TrailingZeros) { 7660 // Save the shifted off bits if we need the remainder. 7661 if (Opcode != ISD::UDIV) { 7662 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7663 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7664 DAG.getConstant(Mask, dl, HiLoVT)); 7665 } 7666 7667 LL = DAG.getNode( 7668 ISD::OR, dl, HiLoVT, 7669 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7670 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7671 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7672 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7673 HiLoVT, dl))); 7674 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7675 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7676 } 7677 7678 // Use uaddo_carry if we can, otherwise use a compare to detect overflow. 7679 EVT SetCCType = 7680 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7681 if (isOperationLegalOrCustom(ISD::UADDO_CARRY, HiLoVT)) { 7682 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7683 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7684 Sum = DAG.getNode(ISD::UADDO_CARRY, dl, VTList, Sum, 7685 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7686 } else { 7687 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7688 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7689 // If the boolean for the target is 0 or 1, we can add the setcc result 7690 // directly. 7691 if (getBooleanContents(HiLoVT) == 7692 TargetLoweringBase::ZeroOrOneBooleanContent) 7693 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7694 else 7695 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7696 DAG.getConstant(0, dl, HiLoVT)); 7697 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7698 } 7699 } 7700 7701 // If we didn't find a sum, we can't do the expansion. 7702 if (!Sum) 7703 return false; 7704 7705 // Perform a HiLoVT urem on the Sum using truncated divisor. 7706 SDValue RemL = 7707 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7708 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7709 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7710 7711 if (Opcode != ISD::UREM) { 7712 // Subtract the remainder from the shifted dividend. 7713 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7714 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7715 7716 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7717 7718 // Multiply by the multiplicative inverse of the divisor modulo 7719 // (1 << BitWidth). 7720 APInt Mod = APInt::getSignedMinValue(BitWidth + 1); 7721 APInt MulFactor = Divisor.zext(BitWidth + 1); 7722 MulFactor = MulFactor.multiplicativeInverse(Mod); 7723 MulFactor = MulFactor.trunc(BitWidth); 7724 7725 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7726 DAG.getConstant(MulFactor, dl, VT)); 7727 7728 // Split the quotient into low and high parts. 7729 SDValue QuotL, QuotH; 7730 std::tie(QuotL, QuotH) = DAG.SplitScalar(Quotient, dl, HiLoVT, HiLoVT); 7731 Result.push_back(QuotL); 7732 Result.push_back(QuotH); 7733 } 7734 7735 if (Opcode != ISD::UDIV) { 7736 // If we shifted the input, shift the remainder left and add the bits we 7737 // shifted off the input. 7738 if (TrailingZeros) { 7739 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7740 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7741 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7742 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7743 } 7744 Result.push_back(RemL); 7745 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7746 } 7747 7748 return true; 7749 } 7750 7751 // Check that (every element of) Z is undef or not an exact multiple of BW. 7752 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7753 return ISD::matchUnaryPredicate( 7754 Z, 7755 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7756 true); 7757 } 7758 7759 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7760 EVT VT = Node->getValueType(0); 7761 SDValue ShX, ShY; 7762 SDValue ShAmt, InvShAmt; 7763 SDValue X = Node->getOperand(0); 7764 SDValue Y = Node->getOperand(1); 7765 SDValue Z = Node->getOperand(2); 7766 SDValue Mask = Node->getOperand(3); 7767 SDValue VL = Node->getOperand(4); 7768 7769 unsigned BW = VT.getScalarSizeInBits(); 7770 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7771 SDLoc DL(SDValue(Node, 0)); 7772 7773 EVT ShVT = Z.getValueType(); 7774 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7775 // fshl: X << C | Y >> (BW - C) 7776 // fshr: X << (BW - C) | Y >> C 7777 // where C = Z % BW is not zero 7778 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7779 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7780 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7781 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7782 VL); 7783 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7784 VL); 7785 } else { 7786 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7787 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7788 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7789 if (isPowerOf2_32(BW)) { 7790 // Z % BW -> Z & (BW - 1) 7791 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7792 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7793 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7794 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7795 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 7796 } else { 7797 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7798 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7799 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 7800 } 7801 7802 SDValue One = DAG.getConstant(1, DL, ShVT); 7803 if (IsFSHL) { 7804 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 7805 SDValue ShY1 = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, One, Mask, VL); 7806 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, ShY1, InvShAmt, Mask, VL); 7807 } else { 7808 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 7809 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 7810 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, ShAmt, Mask, VL); 7811 } 7812 } 7813 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 7814 } 7815 7816 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7817 SelectionDAG &DAG) const { 7818 if (Node->isVPOpcode()) 7819 return expandVPFunnelShift(Node, DAG); 7820 7821 EVT VT = Node->getValueType(0); 7822 7823 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7824 !isOperationLegalOrCustom(ISD::SRL, VT) || 7825 !isOperationLegalOrCustom(ISD::SUB, VT) || 7826 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7827 return SDValue(); 7828 7829 SDValue X = Node->getOperand(0); 7830 SDValue Y = Node->getOperand(1); 7831 SDValue Z = Node->getOperand(2); 7832 7833 unsigned BW = VT.getScalarSizeInBits(); 7834 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7835 SDLoc DL(SDValue(Node, 0)); 7836 7837 EVT ShVT = Z.getValueType(); 7838 7839 // If a funnel shift in the other direction is more supported, use it. 7840 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7841 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7842 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7843 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7844 // fshl X, Y, Z -> fshr X, Y, -Z 7845 // fshr X, Y, Z -> fshl X, Y, -Z 7846 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7847 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7848 } else { 7849 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7850 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7851 SDValue One = DAG.getConstant(1, DL, ShVT); 7852 if (IsFSHL) { 7853 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7854 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7855 } else { 7856 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7857 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7858 } 7859 Z = DAG.getNOT(DL, Z, ShVT); 7860 } 7861 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7862 } 7863 7864 SDValue ShX, ShY; 7865 SDValue ShAmt, InvShAmt; 7866 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7867 // fshl: X << C | Y >> (BW - C) 7868 // fshr: X << (BW - C) | Y >> C 7869 // where C = Z % BW is not zero 7870 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7871 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7872 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7873 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7874 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7875 } else { 7876 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7877 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7878 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7879 if (isPowerOf2_32(BW)) { 7880 // Z % BW -> Z & (BW - 1) 7881 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7882 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7883 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7884 } else { 7885 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7886 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7887 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7888 } 7889 7890 SDValue One = DAG.getConstant(1, DL, ShVT); 7891 if (IsFSHL) { 7892 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7893 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7894 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7895 } else { 7896 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7897 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7898 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7899 } 7900 } 7901 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7902 } 7903 7904 // TODO: Merge with expandFunnelShift. 7905 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7906 SelectionDAG &DAG) const { 7907 EVT VT = Node->getValueType(0); 7908 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7909 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7910 SDValue Op0 = Node->getOperand(0); 7911 SDValue Op1 = Node->getOperand(1); 7912 SDLoc DL(SDValue(Node, 0)); 7913 7914 EVT ShVT = Op1.getValueType(); 7915 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7916 7917 // If a rotate in the other direction is more supported, use it. 7918 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7919 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7920 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7921 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7922 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7923 } 7924 7925 if (!AllowVectorOps && VT.isVector() && 7926 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7927 !isOperationLegalOrCustom(ISD::SRL, VT) || 7928 !isOperationLegalOrCustom(ISD::SUB, VT) || 7929 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7930 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7931 return SDValue(); 7932 7933 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7934 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7935 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7936 SDValue ShVal; 7937 SDValue HsVal; 7938 if (isPowerOf2_32(EltSizeInBits)) { 7939 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7940 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7941 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7942 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7943 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7944 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7945 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7946 } else { 7947 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7948 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7949 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7950 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7951 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7952 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7953 SDValue One = DAG.getConstant(1, DL, ShVT); 7954 HsVal = 7955 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7956 } 7957 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7958 } 7959 7960 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7961 SelectionDAG &DAG) const { 7962 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7963 EVT VT = Node->getValueType(0); 7964 unsigned VTBits = VT.getScalarSizeInBits(); 7965 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7966 7967 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7968 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7969 SDValue ShOpLo = Node->getOperand(0); 7970 SDValue ShOpHi = Node->getOperand(1); 7971 SDValue ShAmt = Node->getOperand(2); 7972 EVT ShAmtVT = ShAmt.getValueType(); 7973 EVT ShAmtCCVT = 7974 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7975 SDLoc dl(Node); 7976 7977 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7978 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7979 // away during isel. 7980 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7981 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7982 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7983 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7984 : DAG.getConstant(0, dl, VT); 7985 7986 SDValue Tmp2, Tmp3; 7987 if (IsSHL) { 7988 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7989 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7990 } else { 7991 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7992 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7993 } 7994 7995 // If the shift amount is larger or equal than the width of a part we don't 7996 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7997 // values for large shift amounts. 7998 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7999 DAG.getConstant(VTBits, dl, ShAmtVT)); 8000 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 8001 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 8002 8003 if (IsSHL) { 8004 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8005 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8006 } else { 8007 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 8008 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 8009 } 8010 } 8011 8012 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 8013 SelectionDAG &DAG) const { 8014 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8015 SDValue Src = Node->getOperand(OpNo); 8016 EVT SrcVT = Src.getValueType(); 8017 EVT DstVT = Node->getValueType(0); 8018 SDLoc dl(SDValue(Node, 0)); 8019 8020 // FIXME: Only f32 to i64 conversions are supported. 8021 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 8022 return false; 8023 8024 if (Node->isStrictFPOpcode()) 8025 // When a NaN is converted to an integer a trap is allowed. We can't 8026 // use this expansion here because it would eliminate that trap. Other 8027 // traps are also allowed and cannot be eliminated. See 8028 // IEEE 754-2008 sec 5.8. 8029 return false; 8030 8031 // Expand f32 -> i64 conversion 8032 // This algorithm comes from compiler-rt's implementation of fixsfdi: 8033 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 8034 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 8035 EVT IntVT = SrcVT.changeTypeToInteger(); 8036 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 8037 8038 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 8039 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 8040 SDValue Bias = DAG.getConstant(127, dl, IntVT); 8041 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 8042 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 8043 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 8044 8045 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 8046 8047 SDValue ExponentBits = DAG.getNode( 8048 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 8049 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 8050 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 8051 8052 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 8053 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 8054 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 8055 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 8056 8057 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 8058 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 8059 DAG.getConstant(0x00800000, dl, IntVT)); 8060 8061 R = DAG.getZExtOrTrunc(R, dl, DstVT); 8062 8063 R = DAG.getSelectCC( 8064 dl, Exponent, ExponentLoBit, 8065 DAG.getNode(ISD::SHL, dl, DstVT, R, 8066 DAG.getZExtOrTrunc( 8067 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 8068 dl, IntShVT)), 8069 DAG.getNode(ISD::SRL, dl, DstVT, R, 8070 DAG.getZExtOrTrunc( 8071 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 8072 dl, IntShVT)), 8073 ISD::SETGT); 8074 8075 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 8076 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 8077 8078 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 8079 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 8080 return true; 8081 } 8082 8083 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 8084 SDValue &Chain, 8085 SelectionDAG &DAG) const { 8086 SDLoc dl(SDValue(Node, 0)); 8087 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 8088 SDValue Src = Node->getOperand(OpNo); 8089 8090 EVT SrcVT = Src.getValueType(); 8091 EVT DstVT = Node->getValueType(0); 8092 EVT SetCCVT = 8093 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8094 EVT DstSetCCVT = 8095 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8096 8097 // Only expand vector types if we have the appropriate vector bit operations. 8098 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 8099 ISD::FP_TO_SINT; 8100 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 8101 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 8102 return false; 8103 8104 // If the maximum float value is smaller then the signed integer range, 8105 // the destination signmask can't be represented by the float, so we can 8106 // just use FP_TO_SINT directly. 8107 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 8108 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 8109 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 8110 if (APFloat::opOverflow & 8111 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 8112 if (Node->isStrictFPOpcode()) { 8113 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8114 { Node->getOperand(0), Src }); 8115 Chain = Result.getValue(1); 8116 } else 8117 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8118 return true; 8119 } 8120 8121 // Don't expand it if there isn't cheap fsub instruction. 8122 if (!isOperationLegalOrCustom( 8123 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 8124 return false; 8125 8126 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8127 SDValue Sel; 8128 8129 if (Node->isStrictFPOpcode()) { 8130 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8131 Node->getOperand(0), /*IsSignaling*/ true); 8132 Chain = Sel.getValue(1); 8133 } else { 8134 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 8135 } 8136 8137 bool Strict = Node->isStrictFPOpcode() || 8138 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 8139 8140 if (Strict) { 8141 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 8142 // signmask then offset (the result of which should be fully representable). 8143 // Sel = Src < 0x8000000000000000 8144 // FltOfs = select Sel, 0, 0x8000000000000000 8145 // IntOfs = select Sel, 0, 0x8000000000000000 8146 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8147 8148 // TODO: Should any fast-math-flags be set for the FSUB? 8149 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 8150 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8151 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8152 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 8153 DAG.getConstant(0, dl, DstVT), 8154 DAG.getConstant(SignMask, dl, DstVT)); 8155 SDValue SInt; 8156 if (Node->isStrictFPOpcode()) { 8157 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 8158 { Chain, Src, FltOfs }); 8159 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 8160 { Val.getValue(1), Val }); 8161 Chain = SInt.getValue(1); 8162 } else { 8163 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 8164 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 8165 } 8166 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8167 } else { 8168 // Expand based on maximum range of FP_TO_SINT: 8169 // True = fp_to_sint(Src) 8170 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 8171 // Result = select (Src < 0x8000000000000000), True, False 8172 8173 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 8174 // TODO: Should any fast-math-flags be set for the FSUB? 8175 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 8176 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 8177 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 8178 DAG.getConstant(SignMask, dl, DstVT)); 8179 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8180 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 8181 } 8182 return true; 8183 } 8184 8185 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 8186 SDValue &Chain, 8187 SelectionDAG &DAG) const { 8188 // This transform is not correct for converting 0 when rounding mode is set 8189 // to round toward negative infinity which will produce -0.0. So disable under 8190 // strictfp. 8191 if (Node->isStrictFPOpcode()) 8192 return false; 8193 8194 SDValue Src = Node->getOperand(0); 8195 EVT SrcVT = Src.getValueType(); 8196 EVT DstVT = Node->getValueType(0); 8197 8198 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 8199 return false; 8200 8201 // Only expand vector types if we have the appropriate vector bit operations. 8202 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 8203 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 8204 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 8205 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 8206 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 8207 return false; 8208 8209 SDLoc dl(SDValue(Node, 0)); 8210 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 8211 8212 // Implementation of unsigned i64 to f64 following the algorithm in 8213 // __floatundidf in compiler_rt. This implementation performs rounding 8214 // correctly in all rounding modes with the exception of converting 0 8215 // when rounding toward negative infinity. In that case the fsub will produce 8216 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 8217 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 8218 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 8219 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT); 8220 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 8221 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 8222 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 8223 8224 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 8225 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 8226 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 8227 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 8228 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 8229 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 8230 SDValue HiSub = 8231 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 8232 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 8233 return true; 8234 } 8235 8236 SDValue 8237 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 8238 SelectionDAG &DAG) const { 8239 unsigned Opcode = Node->getOpcode(); 8240 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 8241 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 8242 "Wrong opcode"); 8243 8244 if (Node->getFlags().hasNoNaNs()) { 8245 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 8246 SDValue Op1 = Node->getOperand(0); 8247 SDValue Op2 = Node->getOperand(1); 8248 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 8249 // Copy FMF flags, but always set the no-signed-zeros flag 8250 // as this is implied by the FMINNUM/FMAXNUM semantics. 8251 SDNodeFlags Flags = Node->getFlags(); 8252 Flags.setNoSignedZeros(true); 8253 SelCC->setFlags(Flags); 8254 return SelCC; 8255 } 8256 8257 return SDValue(); 8258 } 8259 8260 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 8261 SelectionDAG &DAG) const { 8262 SDLoc dl(Node); 8263 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 8264 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 8265 EVT VT = Node->getValueType(0); 8266 8267 if (VT.isScalableVector()) 8268 report_fatal_error( 8269 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 8270 8271 if (isOperationLegalOrCustom(NewOp, VT)) { 8272 SDValue Quiet0 = Node->getOperand(0); 8273 SDValue Quiet1 = Node->getOperand(1); 8274 8275 if (!Node->getFlags().hasNoNaNs()) { 8276 // Insert canonicalizes if it's possible we need to quiet to get correct 8277 // sNaN behavior. 8278 if (!DAG.isKnownNeverSNaN(Quiet0)) { 8279 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 8280 Node->getFlags()); 8281 } 8282 if (!DAG.isKnownNeverSNaN(Quiet1)) { 8283 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 8284 Node->getFlags()); 8285 } 8286 } 8287 8288 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 8289 } 8290 8291 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 8292 // instead if there are no NaNs and there can't be an incompatible zero 8293 // compare: at least one operand isn't +/-0, or there are no signed-zeros. 8294 if ((Node->getFlags().hasNoNaNs() || 8295 (DAG.isKnownNeverNaN(Node->getOperand(0)) && 8296 DAG.isKnownNeverNaN(Node->getOperand(1)))) && 8297 (Node->getFlags().hasNoSignedZeros() || 8298 DAG.isKnownNeverZeroFloat(Node->getOperand(0)) || 8299 DAG.isKnownNeverZeroFloat(Node->getOperand(1)))) { 8300 unsigned IEEE2018Op = 8301 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 8302 if (isOperationLegalOrCustom(IEEE2018Op, VT)) 8303 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 8304 Node->getOperand(1), Node->getFlags()); 8305 } 8306 8307 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8308 return SelCC; 8309 8310 return SDValue(); 8311 } 8312 8313 /// Returns a true value if if this FPClassTest can be performed with an ordered 8314 /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns 8315 /// std::nullopt if it cannot be performed as a compare with 0. 8316 static std::optional<bool> isFCmpEqualZero(FPClassTest Test, 8317 const fltSemantics &Semantics, 8318 const MachineFunction &MF) { 8319 FPClassTest OrderedMask = Test & ~fcNan; 8320 FPClassTest NanTest = Test & fcNan; 8321 bool IsOrdered = NanTest == fcNone; 8322 bool IsUnordered = NanTest == fcNan; 8323 8324 // Skip cases that are testing for only a qnan or snan. 8325 if (!IsOrdered && !IsUnordered) 8326 return std::nullopt; 8327 8328 if (OrderedMask == fcZero && 8329 MF.getDenormalMode(Semantics).Input == DenormalMode::IEEE) 8330 return IsOrdered; 8331 if (OrderedMask == (fcZero | fcSubnormal) && 8332 MF.getDenormalMode(Semantics).inputsAreZero()) 8333 return IsOrdered; 8334 return std::nullopt; 8335 } 8336 8337 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8338 FPClassTest Test, SDNodeFlags Flags, 8339 const SDLoc &DL, 8340 SelectionDAG &DAG) const { 8341 EVT OperandVT = Op.getValueType(); 8342 assert(OperandVT.isFloatingPoint()); 8343 8344 // Degenerated cases. 8345 if (Test == fcNone) 8346 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8347 if ((Test & fcAllFlags) == fcAllFlags) 8348 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8349 8350 // PPC double double is a pair of doubles, of which the higher part determines 8351 // the value class. 8352 if (OperandVT == MVT::ppcf128) { 8353 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8354 DAG.getConstant(1, DL, MVT::i32)); 8355 OperandVT = MVT::f64; 8356 } 8357 8358 // Some checks may be represented as inversion of simpler check, for example 8359 // "inf|normal|subnormal|zero" => !"nan". 8360 bool IsInverted = false; 8361 if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) { 8362 IsInverted = true; 8363 Test = InvertedCheck; 8364 } 8365 8366 // Floating-point type properties. 8367 EVT ScalarFloatVT = OperandVT.getScalarType(); 8368 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8369 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8370 bool IsF80 = (ScalarFloatVT == MVT::f80); 8371 8372 // Some checks can be implemented using float comparisons, if floating point 8373 // exceptions are ignored. 8374 if (Flags.hasNoFPExcept() && 8375 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8376 ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ; 8377 ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ; 8378 8379 if (std::optional<bool> IsCmp0 = 8380 isFCmpEqualZero(Test, Semantics, DAG.getMachineFunction()); 8381 IsCmp0 && (isCondCodeLegalOrCustom( 8382 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, 8383 OperandVT.getScalarType().getSimpleVT()))) { 8384 8385 // If denormals could be implicitly treated as 0, this is not equivalent 8386 // to a compare with 0 since it will also be true for denormals. 8387 return DAG.getSetCC(DL, ResultVT, Op, 8388 DAG.getConstantFP(0.0, DL, OperandVT), 8389 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); 8390 } 8391 8392 if (Test == fcNan && 8393 isCondCodeLegalOrCustom(IsInverted ? ISD::SETO : ISD::SETUO, 8394 OperandVT.getScalarType().getSimpleVT())) { 8395 return DAG.getSetCC(DL, ResultVT, Op, Op, 8396 IsInverted ? ISD::SETO : ISD::SETUO); 8397 } 8398 8399 if (Test == fcInf && 8400 isCondCodeLegalOrCustom(IsInverted ? ISD::SETUNE : ISD::SETOEQ, 8401 OperandVT.getScalarType().getSimpleVT()) && 8402 isOperationLegalOrCustom(ISD::FABS, OperandVT.getScalarType())) { 8403 // isinf(x) --> fabs(x) == inf 8404 SDValue Abs = DAG.getNode(ISD::FABS, DL, OperandVT, Op); 8405 SDValue Inf = 8406 DAG.getConstantFP(APFloat::getInf(Semantics), DL, OperandVT); 8407 return DAG.getSetCC(DL, ResultVT, Abs, Inf, 8408 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 8409 } 8410 } 8411 8412 // In the general case use integer operations. 8413 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8414 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8415 if (OperandVT.isVector()) 8416 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8417 OperandVT.getVectorElementCount()); 8418 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8419 8420 // Various masks. 8421 APInt SignBit = APInt::getSignMask(BitSize); 8422 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8423 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8424 const unsigned ExplicitIntBitInF80 = 63; 8425 APInt ExpMask = Inf; 8426 if (IsF80) 8427 ExpMask.clearBit(ExplicitIntBitInF80); 8428 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8429 APInt QNaNBitMask = 8430 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8431 APInt InvertionMask = APInt::getAllOnes(ResultVT.getScalarSizeInBits()); 8432 8433 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8434 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8435 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8436 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8437 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8438 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8439 8440 SDValue Res; 8441 const auto appendResult = [&](SDValue PartialRes) { 8442 if (PartialRes) { 8443 if (Res) 8444 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8445 else 8446 Res = PartialRes; 8447 } 8448 }; 8449 8450 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8451 const auto getIntBitIsSet = [&]() -> SDValue { 8452 if (!IntBitIsSetV) { 8453 APInt IntBitMask(BitSize, 0); 8454 IntBitMask.setBit(ExplicitIntBitInF80); 8455 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8456 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8457 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8458 } 8459 return IntBitIsSetV; 8460 }; 8461 8462 // Split the value into sign bit and absolute value. 8463 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8464 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8465 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 8466 8467 // Tests that involve more than one class should be processed first. 8468 SDValue PartialRes; 8469 8470 if (IsF80) 8471 ; // Detect finite numbers of f80 by checking individual classes because 8472 // they have different settings of the explicit integer bit. 8473 else if ((Test & fcFinite) == fcFinite) { 8474 // finite(V) ==> abs(V) < exp_mask 8475 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8476 Test &= ~fcFinite; 8477 } else if ((Test & fcFinite) == fcPosFinite) { 8478 // finite(V) && V > 0 ==> V < exp_mask 8479 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8480 Test &= ~fcPosFinite; 8481 } else if ((Test & fcFinite) == fcNegFinite) { 8482 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8483 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8484 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8485 Test &= ~fcNegFinite; 8486 } 8487 appendResult(PartialRes); 8488 8489 if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { 8490 // fcZero | fcSubnormal => test all exponent bits are 0 8491 // TODO: Handle sign bit specific cases 8492 if (PartialCheck == (fcZero | fcSubnormal)) { 8493 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ExpMaskV); 8494 SDValue ExpIsZero = 8495 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8496 appendResult(ExpIsZero); 8497 Test &= ~PartialCheck & fcAllFlags; 8498 } 8499 } 8500 8501 // Check for individual classes. 8502 8503 if (unsigned PartialCheck = Test & fcZero) { 8504 if (PartialCheck == fcPosZero) 8505 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8506 else if (PartialCheck == fcZero) 8507 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8508 else // ISD::fcNegZero 8509 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8510 appendResult(PartialRes); 8511 } 8512 8513 if (unsigned PartialCheck = Test & fcSubnormal) { 8514 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8515 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8516 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8517 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8518 SDValue VMinusOneV = 8519 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8520 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8521 if (PartialCheck == fcNegSubnormal) 8522 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8523 appendResult(PartialRes); 8524 } 8525 8526 if (unsigned PartialCheck = Test & fcInf) { 8527 if (PartialCheck == fcPosInf) 8528 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8529 else if (PartialCheck == fcInf) 8530 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8531 else { // ISD::fcNegInf 8532 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8533 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8534 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8535 } 8536 appendResult(PartialRes); 8537 } 8538 8539 if (unsigned PartialCheck = Test & fcNan) { 8540 APInt InfWithQnanBit = Inf | QNaNBitMask; 8541 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 8542 if (PartialCheck == fcNan) { 8543 // isnan(V) ==> abs(V) > int(inf) 8544 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8545 if (IsF80) { 8546 // Recognize unsupported values as NaNs for compatibility with glibc. 8547 // In them (exp(V)==0) == int_bit. 8548 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 8549 SDValue ExpIsZero = 8550 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8551 SDValue IsPseudo = 8552 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 8553 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 8554 } 8555 } else if (PartialCheck == fcQNan) { 8556 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 8557 PartialRes = 8558 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 8559 } else { // ISD::fcSNan 8560 // issignaling(V) ==> abs(V) > unsigned(Inf) && 8561 // abs(V) < (unsigned(Inf) | quiet_bit) 8562 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8563 SDValue IsNotQnan = 8564 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 8565 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 8566 } 8567 appendResult(PartialRes); 8568 } 8569 8570 if (unsigned PartialCheck = Test & fcNormal) { 8571 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 8572 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 8573 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 8574 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 8575 APInt ExpLimit = ExpMask - ExpLSB; 8576 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 8577 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 8578 if (PartialCheck == fcNegNormal) 8579 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8580 else if (PartialCheck == fcPosNormal) { 8581 SDValue PosSignV = 8582 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 8583 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 8584 } 8585 if (IsF80) 8586 PartialRes = 8587 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 8588 appendResult(PartialRes); 8589 } 8590 8591 if (!Res) 8592 return DAG.getConstant(IsInverted, DL, ResultVT); 8593 if (IsInverted) 8594 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 8595 return Res; 8596 } 8597 8598 // Only expand vector types if we have the appropriate vector bit operations. 8599 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 8600 assert(VT.isVector() && "Expected vector type"); 8601 unsigned Len = VT.getScalarSizeInBits(); 8602 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 8603 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 8604 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 8605 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 8606 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 8607 } 8608 8609 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8610 SDLoc dl(Node); 8611 EVT VT = Node->getValueType(0); 8612 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8613 SDValue Op = Node->getOperand(0); 8614 unsigned Len = VT.getScalarSizeInBits(); 8615 assert(VT.isInteger() && "CTPOP not implemented for this type."); 8616 8617 // TODO: Add support for irregular type lengths. 8618 if (!(Len <= 128 && Len % 8 == 0)) 8619 return SDValue(); 8620 8621 // Only expand vector types if we have the appropriate vector bit operations. 8622 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 8623 return SDValue(); 8624 8625 // This is the "best" algorithm from 8626 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8627 SDValue Mask55 = 8628 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8629 SDValue Mask33 = 8630 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8631 SDValue Mask0F = 8632 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8633 8634 // v = v - ((v >> 1) & 0x55555555...) 8635 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 8636 DAG.getNode(ISD::AND, dl, VT, 8637 DAG.getNode(ISD::SRL, dl, VT, Op, 8638 DAG.getConstant(1, dl, ShVT)), 8639 Mask55)); 8640 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8641 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 8642 DAG.getNode(ISD::AND, dl, VT, 8643 DAG.getNode(ISD::SRL, dl, VT, Op, 8644 DAG.getConstant(2, dl, ShVT)), 8645 Mask33)); 8646 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8647 Op = DAG.getNode(ISD::AND, dl, VT, 8648 DAG.getNode(ISD::ADD, dl, VT, Op, 8649 DAG.getNode(ISD::SRL, dl, VT, Op, 8650 DAG.getConstant(4, dl, ShVT))), 8651 Mask0F); 8652 8653 if (Len <= 8) 8654 return Op; 8655 8656 // Avoid the multiply if we only have 2 bytes to add. 8657 // TODO: Only doing this for scalars because vectors weren't as obviously 8658 // improved. 8659 if (Len == 16 && !VT.isVector()) { 8660 // v = (v + (v >> 8)) & 0x00FF; 8661 return DAG.getNode(ISD::AND, dl, VT, 8662 DAG.getNode(ISD::ADD, dl, VT, Op, 8663 DAG.getNode(ISD::SRL, dl, VT, Op, 8664 DAG.getConstant(8, dl, ShVT))), 8665 DAG.getConstant(0xFF, dl, VT)); 8666 } 8667 8668 // v = (v * 0x01010101...) >> (Len - 8) 8669 SDValue Mask01 = 8670 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8671 return DAG.getNode(ISD::SRL, dl, VT, 8672 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 8673 DAG.getConstant(Len - 8, dl, ShVT)); 8674 } 8675 8676 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8677 SDLoc dl(Node); 8678 EVT VT = Node->getValueType(0); 8679 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8680 SDValue Op = Node->getOperand(0); 8681 SDValue Mask = Node->getOperand(1); 8682 SDValue VL = Node->getOperand(2); 8683 unsigned Len = VT.getScalarSizeInBits(); 8684 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 8685 8686 // TODO: Add support for irregular type lengths. 8687 if (!(Len <= 128 && Len % 8 == 0)) 8688 return SDValue(); 8689 8690 // This is same algorithm of expandCTPOP from 8691 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8692 SDValue Mask55 = 8693 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8694 SDValue Mask33 = 8695 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8696 SDValue Mask0F = 8697 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8698 8699 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 8700 8701 // v = v - ((v >> 1) & 0x55555555...) 8702 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 8703 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8704 DAG.getConstant(1, dl, ShVT), Mask, VL), 8705 Mask55, Mask, VL); 8706 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 8707 8708 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8709 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 8710 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 8711 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8712 DAG.getConstant(2, dl, ShVT), Mask, VL), 8713 Mask33, Mask, VL); 8714 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 8715 8716 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8717 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 8718 Mask, VL), 8719 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 8720 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 8721 8722 if (Len <= 8) 8723 return Op; 8724 8725 // v = (v * 0x01010101...) >> (Len - 8) 8726 SDValue Mask01 = 8727 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8728 return DAG.getNode(ISD::VP_LSHR, dl, VT, 8729 DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL), 8730 DAG.getConstant(Len - 8, dl, ShVT), Mask, VL); 8731 } 8732 8733 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8734 SDLoc dl(Node); 8735 EVT VT = Node->getValueType(0); 8736 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8737 SDValue Op = Node->getOperand(0); 8738 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8739 8740 // If the non-ZERO_UNDEF version is supported we can use that instead. 8741 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 8742 isOperationLegalOrCustom(ISD::CTLZ, VT)) 8743 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 8744 8745 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8746 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 8747 EVT SetCCVT = 8748 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8749 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 8750 SDValue Zero = DAG.getConstant(0, dl, VT); 8751 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8752 return DAG.getSelect(dl, VT, SrcIsZero, 8753 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 8754 } 8755 8756 // Only expand vector types if we have the appropriate vector bit operations. 8757 // This includes the operations needed to expand CTPOP if it isn't supported. 8758 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8759 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8760 !canExpandVectorCTPOP(*this, VT)) || 8761 !isOperationLegalOrCustom(ISD::SRL, VT) || 8762 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 8763 return SDValue(); 8764 8765 // for now, we do this: 8766 // x = x | (x >> 1); 8767 // x = x | (x >> 2); 8768 // ... 8769 // x = x | (x >>16); 8770 // x = x | (x >>32); // for 64-bit input 8771 // return popcount(~x); 8772 // 8773 // Ref: "Hacker's Delight" by Henry Warren 8774 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8775 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8776 Op = DAG.getNode(ISD::OR, dl, VT, Op, 8777 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 8778 } 8779 Op = DAG.getNOT(dl, Op, VT); 8780 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 8781 } 8782 8783 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8784 SDLoc dl(Node); 8785 EVT VT = Node->getValueType(0); 8786 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8787 SDValue Op = Node->getOperand(0); 8788 SDValue Mask = Node->getOperand(1); 8789 SDValue VL = Node->getOperand(2); 8790 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8791 8792 // do this: 8793 // x = x | (x >> 1); 8794 // x = x | (x >> 2); 8795 // ... 8796 // x = x | (x >>16); 8797 // x = x | (x >>32); // for 64-bit input 8798 // return popcount(~x); 8799 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8800 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8801 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 8802 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, Tmp, Mask, VL), Mask, 8803 VL); 8804 } 8805 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask, 8806 VL); 8807 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 8808 } 8809 8810 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 8811 const SDLoc &DL, EVT VT, SDValue Op, 8812 unsigned BitWidth) const { 8813 if (BitWidth != 32 && BitWidth != 64) 8814 return SDValue(); 8815 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 8816 : APInt(64, 0x0218A392CD3D5DBFULL); 8817 const DataLayout &TD = DAG.getDataLayout(); 8818 MachinePointerInfo PtrInfo = 8819 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 8820 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 8821 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 8822 SDValue Lookup = DAG.getNode( 8823 ISD::SRL, DL, VT, 8824 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 8825 DAG.getConstant(DeBruijn, DL, VT)), 8826 DAG.getConstant(ShiftAmt, DL, VT)); 8827 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 8828 8829 SmallVector<uint8_t> Table(BitWidth, 0); 8830 for (unsigned i = 0; i < BitWidth; i++) { 8831 APInt Shl = DeBruijn.shl(i); 8832 APInt Lshr = Shl.lshr(ShiftAmt); 8833 Table[Lshr.getZExtValue()] = i; 8834 } 8835 8836 // Create a ConstantArray in Constant Pool 8837 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 8838 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 8839 TD.getPrefTypeAlign(CA->getType())); 8840 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 8841 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 8842 PtrInfo, MVT::i8); 8843 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 8844 return ExtLoad; 8845 8846 EVT SetCCVT = 8847 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8848 SDValue Zero = DAG.getConstant(0, DL, VT); 8849 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 8850 return DAG.getSelect(DL, VT, SrcIsZero, 8851 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 8852 } 8853 8854 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8855 SDLoc dl(Node); 8856 EVT VT = Node->getValueType(0); 8857 SDValue Op = Node->getOperand(0); 8858 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8859 8860 // If the non-ZERO_UNDEF version is supported we can use that instead. 8861 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 8862 isOperationLegalOrCustom(ISD::CTTZ, VT)) 8863 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 8864 8865 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8866 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 8867 EVT SetCCVT = 8868 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8869 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 8870 SDValue Zero = DAG.getConstant(0, dl, VT); 8871 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8872 return DAG.getSelect(dl, VT, SrcIsZero, 8873 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 8874 } 8875 8876 // Only expand vector types if we have the appropriate vector bit operations. 8877 // This includes the operations needed to expand CTPOP if it isn't supported. 8878 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8879 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8880 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 8881 !canExpandVectorCTPOP(*this, VT)) || 8882 !isOperationLegalOrCustom(ISD::SUB, VT) || 8883 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 8884 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8885 return SDValue(); 8886 8887 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 8888 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 8889 !isOperationLegal(ISD::CTLZ, VT)) 8890 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 8891 return V; 8892 8893 // for now, we use: { return popcount(~x & (x - 1)); } 8894 // unless the target has ctlz but not ctpop, in which case we use: 8895 // { return 32 - nlz(~x & (x-1)); } 8896 // Ref: "Hacker's Delight" by Henry Warren 8897 SDValue Tmp = DAG.getNode( 8898 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 8899 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 8900 8901 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 8902 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 8903 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 8904 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 8905 } 8906 8907 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 8908 } 8909 8910 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8911 SDValue Op = Node->getOperand(0); 8912 SDValue Mask = Node->getOperand(1); 8913 SDValue VL = Node->getOperand(2); 8914 SDLoc dl(Node); 8915 EVT VT = Node->getValueType(0); 8916 8917 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 8918 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 8919 DAG.getConstant(-1, dl, VT), Mask, VL); 8920 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 8921 DAG.getConstant(1, dl, VT), Mask, VL); 8922 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 8923 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 8924 } 8925 8926 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 8927 bool IsNegative) const { 8928 SDLoc dl(N); 8929 EVT VT = N->getValueType(0); 8930 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8931 SDValue Op = N->getOperand(0); 8932 8933 // abs(x) -> smax(x,sub(0,x)) 8934 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8935 isOperationLegal(ISD::SMAX, VT)) { 8936 SDValue Zero = DAG.getConstant(0, dl, VT); 8937 return DAG.getNode(ISD::SMAX, dl, VT, Op, 8938 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8939 } 8940 8941 // abs(x) -> umin(x,sub(0,x)) 8942 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8943 isOperationLegal(ISD::UMIN, VT)) { 8944 SDValue Zero = DAG.getConstant(0, dl, VT); 8945 Op = DAG.getFreeze(Op); 8946 return DAG.getNode(ISD::UMIN, dl, VT, Op, 8947 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8948 } 8949 8950 // 0 - abs(x) -> smin(x, sub(0,x)) 8951 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 8952 isOperationLegal(ISD::SMIN, VT)) { 8953 Op = DAG.getFreeze(Op); 8954 SDValue Zero = DAG.getConstant(0, dl, VT); 8955 return DAG.getNode(ISD::SMIN, dl, VT, Op, 8956 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8957 } 8958 8959 // Only expand vector types if we have the appropriate vector operations. 8960 if (VT.isVector() && 8961 (!isOperationLegalOrCustom(ISD::SRA, VT) || 8962 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 8963 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 8964 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8965 return SDValue(); 8966 8967 Op = DAG.getFreeze(Op); 8968 SDValue Shift = 8969 DAG.getNode(ISD::SRA, dl, VT, Op, 8970 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 8971 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 8972 8973 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 8974 if (!IsNegative) 8975 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 8976 8977 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 8978 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 8979 } 8980 8981 SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { 8982 SDLoc dl(N); 8983 EVT VT = N->getValueType(0); 8984 SDValue LHS = DAG.getFreeze(N->getOperand(0)); 8985 SDValue RHS = DAG.getFreeze(N->getOperand(1)); 8986 bool IsSigned = N->getOpcode() == ISD::ABDS; 8987 8988 // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) 8989 // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) 8990 unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; 8991 unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; 8992 if (isOperationLegal(MaxOpc, VT) && isOperationLegal(MinOpc, VT)) { 8993 SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS); 8994 SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS); 8995 return DAG.getNode(ISD::SUB, dl, VT, Max, Min); 8996 } 8997 8998 // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) 8999 if (!IsSigned && isOperationLegal(ISD::USUBSAT, VT)) 9000 return DAG.getNode(ISD::OR, dl, VT, 9001 DAG.getNode(ISD::USUBSAT, dl, VT, LHS, RHS), 9002 DAG.getNode(ISD::USUBSAT, dl, VT, RHS, LHS)); 9003 9004 // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9005 // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) 9006 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9007 ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; 9008 SDValue Cmp = DAG.getSetCC(dl, CCVT, LHS, RHS, CC); 9009 return DAG.getSelect(dl, VT, Cmp, DAG.getNode(ISD::SUB, dl, VT, LHS, RHS), 9010 DAG.getNode(ISD::SUB, dl, VT, RHS, LHS)); 9011 } 9012 9013 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 9014 SDLoc dl(N); 9015 EVT VT = N->getValueType(0); 9016 SDValue Op = N->getOperand(0); 9017 9018 if (!VT.isSimple()) 9019 return SDValue(); 9020 9021 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9022 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9023 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9024 default: 9025 return SDValue(); 9026 case MVT::i16: 9027 // Use a rotate by 8. This can be further expanded if necessary. 9028 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9029 case MVT::i32: 9030 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9031 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 9032 DAG.getConstant(0xFF00, dl, VT)); 9033 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 9034 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9035 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 9036 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9037 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9038 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9039 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9040 case MVT::i64: 9041 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9042 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 9043 DAG.getConstant(255ULL<<8, dl, VT)); 9044 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 9045 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 9046 DAG.getConstant(255ULL<<16, dl, VT)); 9047 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 9048 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 9049 DAG.getConstant(255ULL<<24, dl, VT)); 9050 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 9051 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 9052 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 9053 DAG.getConstant(255ULL<<24, dl, VT)); 9054 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 9055 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 9056 DAG.getConstant(255ULL<<16, dl, VT)); 9057 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 9058 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 9059 DAG.getConstant(255ULL<<8, dl, VT)); 9060 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 9061 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 9062 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 9063 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 9064 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 9065 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 9066 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 9067 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 9068 } 9069 } 9070 9071 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 9072 SDLoc dl(N); 9073 EVT VT = N->getValueType(0); 9074 SDValue Op = N->getOperand(0); 9075 SDValue Mask = N->getOperand(1); 9076 SDValue EVL = N->getOperand(2); 9077 9078 if (!VT.isSimple()) 9079 return SDValue(); 9080 9081 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9082 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 9083 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 9084 default: 9085 return SDValue(); 9086 case MVT::i16: 9087 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9088 Mask, EVL); 9089 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9090 Mask, EVL); 9091 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 9092 case MVT::i32: 9093 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9094 Mask, EVL); 9095 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 9096 Mask, EVL); 9097 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 9098 Mask, EVL); 9099 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9100 Mask, EVL); 9101 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9102 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 9103 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9104 Mask, EVL); 9105 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9106 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9107 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9108 case MVT::i64: 9109 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9110 Mask, EVL); 9111 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9112 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9113 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 9114 Mask, EVL); 9115 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9116 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9117 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 9118 Mask, EVL); 9119 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 9120 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9121 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 9122 Mask, EVL); 9123 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 9124 Mask, EVL); 9125 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 9126 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 9127 Tmp3 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 9128 Mask, EVL); 9129 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 9130 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 9131 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 9132 Mask, EVL); 9133 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9134 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 9135 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 9136 Mask, EVL); 9137 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 9138 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 9139 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 9140 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 9141 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 9142 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 9143 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 9144 } 9145 } 9146 9147 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9148 SDLoc dl(N); 9149 EVT VT = N->getValueType(0); 9150 SDValue Op = N->getOperand(0); 9151 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9152 unsigned Sz = VT.getScalarSizeInBits(); 9153 9154 SDValue Tmp, Tmp2, Tmp3; 9155 9156 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9157 // and finally the i1 pairs. 9158 // TODO: We can easily support i4/i2 legal types if any target ever does. 9159 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9160 // Create the masks - repeating the pattern every byte. 9161 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9162 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9163 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9164 9165 // BSWAP if the type is wider than a single byte. 9166 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 9167 9168 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9169 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 9170 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 9171 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 9172 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 9173 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9174 9175 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9176 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 9177 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 9178 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 9179 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 9180 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9181 9182 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9183 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 9184 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 9185 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 9186 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 9187 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 9188 return Tmp; 9189 } 9190 9191 Tmp = DAG.getConstant(0, dl, VT); 9192 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 9193 if (I < J) 9194 Tmp2 = 9195 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 9196 else 9197 Tmp2 = 9198 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 9199 9200 APInt Shift = APInt::getOneBitSet(Sz, J); 9201 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 9202 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 9203 } 9204 9205 return Tmp; 9206 } 9207 9208 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 9209 assert(N->getOpcode() == ISD::VP_BITREVERSE); 9210 9211 SDLoc dl(N); 9212 EVT VT = N->getValueType(0); 9213 SDValue Op = N->getOperand(0); 9214 SDValue Mask = N->getOperand(1); 9215 SDValue EVL = N->getOperand(2); 9216 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 9217 unsigned Sz = VT.getScalarSizeInBits(); 9218 9219 SDValue Tmp, Tmp2, Tmp3; 9220 9221 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 9222 // and finally the i1 pairs. 9223 // TODO: We can easily support i4/i2 legal types if any target ever does. 9224 if (Sz >= 8 && isPowerOf2_32(Sz)) { 9225 // Create the masks - repeating the pattern every byte. 9226 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 9227 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 9228 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 9229 9230 // BSWAP if the type is wider than a single byte. 9231 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 9232 9233 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 9234 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 9235 Mask, EVL); 9236 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9237 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 9238 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 9239 Mask, EVL); 9240 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 9241 Mask, EVL); 9242 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9243 9244 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 9245 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 9246 Mask, EVL); 9247 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9248 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 9249 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 9250 Mask, EVL); 9251 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 9252 Mask, EVL); 9253 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9254 9255 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 9256 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 9257 Mask, EVL); 9258 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 9259 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 9260 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 9261 Mask, EVL); 9262 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 9263 Mask, EVL); 9264 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 9265 return Tmp; 9266 } 9267 return SDValue(); 9268 } 9269 9270 std::pair<SDValue, SDValue> 9271 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 9272 SelectionDAG &DAG) const { 9273 SDLoc SL(LD); 9274 SDValue Chain = LD->getChain(); 9275 SDValue BasePTR = LD->getBasePtr(); 9276 EVT SrcVT = LD->getMemoryVT(); 9277 EVT DstVT = LD->getValueType(0); 9278 ISD::LoadExtType ExtType = LD->getExtensionType(); 9279 9280 if (SrcVT.isScalableVector()) 9281 report_fatal_error("Cannot scalarize scalable vector loads"); 9282 9283 unsigned NumElem = SrcVT.getVectorNumElements(); 9284 9285 EVT SrcEltVT = SrcVT.getScalarType(); 9286 EVT DstEltVT = DstVT.getScalarType(); 9287 9288 // A vector must always be stored in memory as-is, i.e. without any padding 9289 // between the elements, since various code depend on it, e.g. in the 9290 // handling of a bitcast of a vector type to int, which may be done with a 9291 // vector store followed by an integer load. A vector that does not have 9292 // elements that are byte-sized must therefore be stored as an integer 9293 // built out of the extracted vector elements. 9294 if (!SrcEltVT.isByteSized()) { 9295 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 9296 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 9297 9298 unsigned NumSrcBits = SrcVT.getSizeInBits(); 9299 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 9300 9301 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 9302 SDValue SrcEltBitMask = DAG.getConstant( 9303 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 9304 9305 // Load the whole vector and avoid masking off the top bits as it makes 9306 // the codegen worse. 9307 SDValue Load = 9308 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 9309 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 9310 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9311 9312 SmallVector<SDValue, 8> Vals; 9313 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9314 unsigned ShiftIntoIdx = 9315 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9316 SDValue ShiftAmount = 9317 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 9318 LoadVT, SL, /*LegalTypes=*/false); 9319 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 9320 SDValue Elt = 9321 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 9322 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 9323 9324 if (ExtType != ISD::NON_EXTLOAD) { 9325 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 9326 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 9327 } 9328 9329 Vals.push_back(Scalar); 9330 } 9331 9332 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9333 return std::make_pair(Value, Load.getValue(1)); 9334 } 9335 9336 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 9337 assert(SrcEltVT.isByteSized()); 9338 9339 SmallVector<SDValue, 8> Vals; 9340 SmallVector<SDValue, 8> LoadChains; 9341 9342 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9343 SDValue ScalarLoad = 9344 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 9345 LD->getPointerInfo().getWithOffset(Idx * Stride), 9346 SrcEltVT, LD->getOriginalAlign(), 9347 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 9348 9349 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::getFixed(Stride)); 9350 9351 Vals.push_back(ScalarLoad.getValue(0)); 9352 LoadChains.push_back(ScalarLoad.getValue(1)); 9353 } 9354 9355 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 9356 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 9357 9358 return std::make_pair(Value, NewChain); 9359 } 9360 9361 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 9362 SelectionDAG &DAG) const { 9363 SDLoc SL(ST); 9364 9365 SDValue Chain = ST->getChain(); 9366 SDValue BasePtr = ST->getBasePtr(); 9367 SDValue Value = ST->getValue(); 9368 EVT StVT = ST->getMemoryVT(); 9369 9370 if (StVT.isScalableVector()) 9371 report_fatal_error("Cannot scalarize scalable vector stores"); 9372 9373 // The type of the data we want to save 9374 EVT RegVT = Value.getValueType(); 9375 EVT RegSclVT = RegVT.getScalarType(); 9376 9377 // The type of data as saved in memory. 9378 EVT MemSclVT = StVT.getScalarType(); 9379 9380 unsigned NumElem = StVT.getVectorNumElements(); 9381 9382 // A vector must always be stored in memory as-is, i.e. without any padding 9383 // between the elements, since various code depend on it, e.g. in the 9384 // handling of a bitcast of a vector type to int, which may be done with a 9385 // vector store followed by an integer load. A vector that does not have 9386 // elements that are byte-sized must therefore be stored as an integer 9387 // built out of the extracted vector elements. 9388 if (!MemSclVT.isByteSized()) { 9389 unsigned NumBits = StVT.getSizeInBits(); 9390 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 9391 9392 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 9393 9394 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9395 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9396 DAG.getVectorIdxConstant(Idx, SL)); 9397 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 9398 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 9399 unsigned ShiftIntoIdx = 9400 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9401 SDValue ShiftAmount = 9402 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 9403 SDValue ShiftedElt = 9404 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 9405 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 9406 } 9407 9408 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 9409 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9410 ST->getAAInfo()); 9411 } 9412 9413 // Store Stride in bytes 9414 unsigned Stride = MemSclVT.getSizeInBits() / 8; 9415 assert(Stride && "Zero stride!"); 9416 // Extract each of the elements from the original vector and save them into 9417 // memory individually. 9418 SmallVector<SDValue, 8> Stores; 9419 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9420 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9421 DAG.getVectorIdxConstant(Idx, SL)); 9422 9423 SDValue Ptr = 9424 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Idx * Stride)); 9425 9426 // This scalar TruncStore may be illegal, but we legalize it later. 9427 SDValue Store = DAG.getTruncStore( 9428 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 9429 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9430 ST->getAAInfo()); 9431 9432 Stores.push_back(Store); 9433 } 9434 9435 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 9436 } 9437 9438 std::pair<SDValue, SDValue> 9439 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 9440 assert(LD->getAddressingMode() == ISD::UNINDEXED && 9441 "unaligned indexed loads not implemented!"); 9442 SDValue Chain = LD->getChain(); 9443 SDValue Ptr = LD->getBasePtr(); 9444 EVT VT = LD->getValueType(0); 9445 EVT LoadedVT = LD->getMemoryVT(); 9446 SDLoc dl(LD); 9447 auto &MF = DAG.getMachineFunction(); 9448 9449 if (VT.isFloatingPoint() || VT.isVector()) { 9450 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 9451 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 9452 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 9453 LoadedVT.isVector()) { 9454 // Scalarize the load and let the individual components be handled. 9455 return scalarizeVectorLoad(LD, DAG); 9456 } 9457 9458 // Expand to a (misaligned) integer load of the same size, 9459 // then bitconvert to floating point or vector. 9460 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 9461 LD->getMemOperand()); 9462 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 9463 if (LoadedVT != VT) 9464 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 9465 ISD::ANY_EXTEND, dl, VT, Result); 9466 9467 return std::make_pair(Result, newLoad.getValue(1)); 9468 } 9469 9470 // Copy the value to a (aligned) stack slot using (unaligned) integer 9471 // loads and stores, then do a (aligned) load from the stack slot. 9472 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 9473 unsigned LoadedBytes = LoadedVT.getStoreSize(); 9474 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9475 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 9476 9477 // Make sure the stack slot is also aligned for the register type. 9478 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 9479 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 9480 SmallVector<SDValue, 8> Stores; 9481 SDValue StackPtr = StackBase; 9482 unsigned Offset = 0; 9483 9484 EVT PtrVT = Ptr.getValueType(); 9485 EVT StackPtrVT = StackPtr.getValueType(); 9486 9487 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9488 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9489 9490 // Do all but one copies using the full register width. 9491 for (unsigned i = 1; i < NumRegs; i++) { 9492 // Load one integer register's worth from the original location. 9493 SDValue Load = DAG.getLoad( 9494 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 9495 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9496 LD->getAAInfo()); 9497 // Follow the load with a store to the stack slot. Remember the store. 9498 Stores.push_back(DAG.getStore( 9499 Load.getValue(1), dl, Load, StackPtr, 9500 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 9501 // Increment the pointers. 9502 Offset += RegBytes; 9503 9504 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9505 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9506 } 9507 9508 // The last copy may be partial. Do an extending load. 9509 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 9510 8 * (LoadedBytes - Offset)); 9511 SDValue Load = 9512 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 9513 LD->getPointerInfo().getWithOffset(Offset), MemVT, 9514 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9515 LD->getAAInfo()); 9516 // Follow the load with a store to the stack slot. Remember the store. 9517 // On big-endian machines this requires a truncating store to ensure 9518 // that the bits end up in the right place. 9519 Stores.push_back(DAG.getTruncStore( 9520 Load.getValue(1), dl, Load, StackPtr, 9521 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 9522 9523 // The order of the stores doesn't matter - say it with a TokenFactor. 9524 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9525 9526 // Finally, perform the original load only redirected to the stack slot. 9527 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 9528 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 9529 LoadedVT); 9530 9531 // Callers expect a MERGE_VALUES node. 9532 return std::make_pair(Load, TF); 9533 } 9534 9535 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 9536 "Unaligned load of unsupported type."); 9537 9538 // Compute the new VT that is half the size of the old one. This is an 9539 // integer MVT. 9540 unsigned NumBits = LoadedVT.getSizeInBits(); 9541 EVT NewLoadedVT; 9542 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 9543 NumBits >>= 1; 9544 9545 Align Alignment = LD->getOriginalAlign(); 9546 unsigned IncrementSize = NumBits / 8; 9547 ISD::LoadExtType HiExtType = LD->getExtensionType(); 9548 9549 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 9550 if (HiExtType == ISD::NON_EXTLOAD) 9551 HiExtType = ISD::ZEXTLOAD; 9552 9553 // Load the value in two parts 9554 SDValue Lo, Hi; 9555 if (DAG.getDataLayout().isLittleEndian()) { 9556 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9557 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9558 LD->getAAInfo()); 9559 9560 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9561 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 9562 LD->getPointerInfo().getWithOffset(IncrementSize), 9563 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9564 LD->getAAInfo()); 9565 } else { 9566 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9567 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9568 LD->getAAInfo()); 9569 9570 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9571 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 9572 LD->getPointerInfo().getWithOffset(IncrementSize), 9573 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9574 LD->getAAInfo()); 9575 } 9576 9577 // aggregate the two parts 9578 SDValue ShiftAmount = 9579 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 9580 DAG.getDataLayout())); 9581 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 9582 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 9583 9584 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 9585 Hi.getValue(1)); 9586 9587 return std::make_pair(Result, TF); 9588 } 9589 9590 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 9591 SelectionDAG &DAG) const { 9592 assert(ST->getAddressingMode() == ISD::UNINDEXED && 9593 "unaligned indexed stores not implemented!"); 9594 SDValue Chain = ST->getChain(); 9595 SDValue Ptr = ST->getBasePtr(); 9596 SDValue Val = ST->getValue(); 9597 EVT VT = Val.getValueType(); 9598 Align Alignment = ST->getOriginalAlign(); 9599 auto &MF = DAG.getMachineFunction(); 9600 EVT StoreMemVT = ST->getMemoryVT(); 9601 9602 SDLoc dl(ST); 9603 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 9604 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 9605 if (isTypeLegal(intVT)) { 9606 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 9607 StoreMemVT.isVector()) { 9608 // Scalarize the store and let the individual components be handled. 9609 SDValue Result = scalarizeVectorStore(ST, DAG); 9610 return Result; 9611 } 9612 // Expand to a bitconvert of the value to the integer type of the 9613 // same size, then a (misaligned) int store. 9614 // FIXME: Does not handle truncating floating point stores! 9615 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 9616 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 9617 Alignment, ST->getMemOperand()->getFlags()); 9618 return Result; 9619 } 9620 // Do a (aligned) store to a stack slot, then copy from the stack slot 9621 // to the final destination using (unaligned) integer loads and stores. 9622 MVT RegVT = getRegisterType( 9623 *DAG.getContext(), 9624 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 9625 EVT PtrVT = Ptr.getValueType(); 9626 unsigned StoredBytes = StoreMemVT.getStoreSize(); 9627 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9628 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 9629 9630 // Make sure the stack slot is also aligned for the register type. 9631 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 9632 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9633 9634 // Perform the original store, only redirected to the stack slot. 9635 SDValue Store = DAG.getTruncStore( 9636 Chain, dl, Val, StackPtr, 9637 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 9638 9639 EVT StackPtrVT = StackPtr.getValueType(); 9640 9641 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9642 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9643 SmallVector<SDValue, 8> Stores; 9644 unsigned Offset = 0; 9645 9646 // Do all but one copies using the full register width. 9647 for (unsigned i = 1; i < NumRegs; i++) { 9648 // Load one integer register's worth from the stack slot. 9649 SDValue Load = DAG.getLoad( 9650 RegVT, dl, Store, StackPtr, 9651 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 9652 // Store it to the final location. Remember the store. 9653 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 9654 ST->getPointerInfo().getWithOffset(Offset), 9655 ST->getOriginalAlign(), 9656 ST->getMemOperand()->getFlags())); 9657 // Increment the pointers. 9658 Offset += RegBytes; 9659 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9660 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9661 } 9662 9663 // The last store may be partial. Do a truncating store. On big-endian 9664 // machines this requires an extending load from the stack slot to ensure 9665 // that the bits are in the right place. 9666 EVT LoadMemVT = 9667 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 9668 9669 // Load from the stack slot. 9670 SDValue Load = DAG.getExtLoad( 9671 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 9672 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 9673 9674 Stores.push_back( 9675 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 9676 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 9677 ST->getOriginalAlign(), 9678 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 9679 // The order of the stores doesn't matter - say it with a TokenFactor. 9680 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9681 return Result; 9682 } 9683 9684 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 9685 "Unaligned store of unknown type."); 9686 // Get the half-size VT 9687 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 9688 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 9689 unsigned IncrementSize = NumBits / 8; 9690 9691 // Divide the stored value in two parts. 9692 SDValue ShiftAmount = DAG.getConstant( 9693 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 9694 SDValue Lo = Val; 9695 // If Val is a constant, replace the upper bits with 0. The SRL will constant 9696 // fold and not use the upper bits. A smaller constant may be easier to 9697 // materialize. 9698 if (auto *C = dyn_cast<ConstantSDNode>(Lo); C && !C->isOpaque()) 9699 Lo = DAG.getNode( 9700 ISD::AND, dl, VT, Lo, 9701 DAG.getConstant(APInt::getLowBitsSet(VT.getSizeInBits(), NumBits), dl, 9702 VT)); 9703 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 9704 9705 // Store the two parts 9706 SDValue Store1, Store2; 9707 Store1 = DAG.getTruncStore(Chain, dl, 9708 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 9709 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 9710 ST->getMemOperand()->getFlags()); 9711 9712 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::getFixed(IncrementSize)); 9713 Store2 = DAG.getTruncStore( 9714 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 9715 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 9716 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 9717 9718 SDValue Result = 9719 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 9720 return Result; 9721 } 9722 9723 SDValue 9724 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 9725 const SDLoc &DL, EVT DataVT, 9726 SelectionDAG &DAG, 9727 bool IsCompressedMemory) const { 9728 SDValue Increment; 9729 EVT AddrVT = Addr.getValueType(); 9730 EVT MaskVT = Mask.getValueType(); 9731 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 9732 "Incompatible types of Data and Mask"); 9733 if (IsCompressedMemory) { 9734 if (DataVT.isScalableVector()) 9735 report_fatal_error( 9736 "Cannot currently handle compressed memory with scalable vectors"); 9737 // Incrementing the pointer according to number of '1's in the mask. 9738 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 9739 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 9740 if (MaskIntVT.getSizeInBits() < 32) { 9741 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 9742 MaskIntVT = MVT::i32; 9743 } 9744 9745 // Count '1's with POPCNT. 9746 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 9747 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 9748 // Scale is an element size in bytes. 9749 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 9750 AddrVT); 9751 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 9752 } else if (DataVT.isScalableVector()) { 9753 Increment = DAG.getVScale(DL, AddrVT, 9754 APInt(AddrVT.getFixedSizeInBits(), 9755 DataVT.getStoreSize().getKnownMinValue())); 9756 } else 9757 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 9758 9759 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 9760 } 9761 9762 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 9763 EVT VecVT, const SDLoc &dl, 9764 ElementCount SubEC) { 9765 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 9766 "Cannot index a scalable vector within a fixed-width vector"); 9767 9768 unsigned NElts = VecVT.getVectorMinNumElements(); 9769 unsigned NumSubElts = SubEC.getKnownMinValue(); 9770 EVT IdxVT = Idx.getValueType(); 9771 9772 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 9773 // If this is a constant index and we know the value plus the number of the 9774 // elements in the subvector minus one is less than the minimum number of 9775 // elements then it's safe to return Idx. 9776 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 9777 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 9778 return Idx; 9779 SDValue VS = 9780 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 9781 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 9782 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 9783 DAG.getConstant(NumSubElts, dl, IdxVT)); 9784 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 9785 } 9786 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 9787 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 9788 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 9789 DAG.getConstant(Imm, dl, IdxVT)); 9790 } 9791 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 9792 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 9793 DAG.getConstant(MaxIndex, dl, IdxVT)); 9794 } 9795 9796 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 9797 SDValue VecPtr, EVT VecVT, 9798 SDValue Index) const { 9799 return getVectorSubVecPointer( 9800 DAG, VecPtr, VecVT, 9801 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 9802 Index); 9803 } 9804 9805 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 9806 SDValue VecPtr, EVT VecVT, 9807 EVT SubVecVT, 9808 SDValue Index) const { 9809 SDLoc dl(Index); 9810 // Make sure the index type is big enough to compute in. 9811 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 9812 9813 EVT EltVT = VecVT.getVectorElementType(); 9814 9815 // Calculate the element offset and add it to the pointer. 9816 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 9817 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 9818 "Converting bits to bytes lost precision"); 9819 assert(SubVecVT.getVectorElementType() == EltVT && 9820 "Sub-vector must be a vector with matching element type"); 9821 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 9822 SubVecVT.getVectorElementCount()); 9823 9824 EVT IdxVT = Index.getValueType(); 9825 if (SubVecVT.isScalableVector()) 9826 Index = 9827 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9828 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 9829 9830 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9831 DAG.getConstant(EltSize, dl, IdxVT)); 9832 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 9833 } 9834 9835 //===----------------------------------------------------------------------===// 9836 // Implementation of Emulated TLS Model 9837 //===----------------------------------------------------------------------===// 9838 9839 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 9840 SelectionDAG &DAG) const { 9841 // Access to address of TLS varialbe xyz is lowered to a function call: 9842 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 9843 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9844 PointerType *VoidPtrType = PointerType::get(*DAG.getContext(), 0); 9845 SDLoc dl(GA); 9846 9847 ArgListTy Args; 9848 ArgListEntry Entry; 9849 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 9850 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 9851 StringRef EmuTlsVarName(NameString); 9852 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 9853 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 9854 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 9855 Entry.Ty = VoidPtrType; 9856 Args.push_back(Entry); 9857 9858 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 9859 9860 TargetLowering::CallLoweringInfo CLI(DAG); 9861 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 9862 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 9863 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 9864 9865 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 9866 // At last for X86 targets, maybe good for other targets too? 9867 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9868 MFI.setAdjustsStack(true); // Is this only for X86 target? 9869 MFI.setHasCalls(true); 9870 9871 assert((GA->getOffset() == 0) && 9872 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 9873 return CallResult.first; 9874 } 9875 9876 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 9877 SelectionDAG &DAG) const { 9878 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 9879 if (!isCtlzFast()) 9880 return SDValue(); 9881 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 9882 SDLoc dl(Op); 9883 if (isNullConstant(Op.getOperand(1)) && CC == ISD::SETEQ) { 9884 EVT VT = Op.getOperand(0).getValueType(); 9885 SDValue Zext = Op.getOperand(0); 9886 if (VT.bitsLT(MVT::i32)) { 9887 VT = MVT::i32; 9888 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 9889 } 9890 unsigned Log2b = Log2_32(VT.getSizeInBits()); 9891 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 9892 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 9893 DAG.getConstant(Log2b, dl, MVT::i32)); 9894 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 9895 } 9896 return SDValue(); 9897 } 9898 9899 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 9900 SDValue Op0 = Node->getOperand(0); 9901 SDValue Op1 = Node->getOperand(1); 9902 EVT VT = Op0.getValueType(); 9903 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9904 unsigned Opcode = Node->getOpcode(); 9905 SDLoc DL(Node); 9906 9907 // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits 9908 if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(Op1, true) && BoolVT == VT && 9909 getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9910 Op0 = DAG.getFreeze(Op0); 9911 SDValue Zero = DAG.getConstant(0, DL, VT); 9912 return DAG.getNode(ISD::SUB, DL, VT, Op0, 9913 DAG.getSetCC(DL, VT, Op0, Zero, ISD::SETEQ)); 9914 } 9915 9916 // umin(x,y) -> sub(x,usubsat(x,y)) 9917 // TODO: Missing freeze(Op0)? 9918 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 9919 isOperationLegal(ISD::USUBSAT, VT)) { 9920 return DAG.getNode(ISD::SUB, DL, VT, Op0, 9921 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 9922 } 9923 9924 // umax(x,y) -> add(x,usubsat(y,x)) 9925 // TODO: Missing freeze(Op0)? 9926 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 9927 isOperationLegal(ISD::USUBSAT, VT)) { 9928 return DAG.getNode(ISD::ADD, DL, VT, Op0, 9929 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 9930 } 9931 9932 // FIXME: Should really try to split the vector in case it's legal on a 9933 // subvector. 9934 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9935 return DAG.UnrollVectorOp(Node); 9936 9937 // Attempt to find an existing SETCC node that we can reuse. 9938 // TODO: Do we need a generic doesSETCCNodeExist? 9939 // TODO: Missing freeze(Op0)/freeze(Op1)? 9940 auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, 9941 ISD::CondCode PrefCommuteCC, 9942 ISD::CondCode AltCommuteCC) { 9943 SDVTList BoolVTList = DAG.getVTList(BoolVT); 9944 for (ISD::CondCode CC : {PrefCC, AltCC}) { 9945 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 9946 {Op0, Op1, DAG.getCondCode(CC)})) { 9947 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 9948 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 9949 } 9950 } 9951 for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { 9952 if (DAG.doesNodeExist(ISD::SETCC, BoolVTList, 9953 {Op0, Op1, DAG.getCondCode(CC)})) { 9954 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 9955 return DAG.getSelect(DL, VT, Cond, Op1, Op0); 9956 } 9957 } 9958 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, PrefCC); 9959 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 9960 }; 9961 9962 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 9963 // -> Y = (A < B) ? B : A 9964 // -> Y = (A >= B) ? A : B 9965 // -> Y = (A <= B) ? B : A 9966 switch (Opcode) { 9967 case ISD::SMAX: 9968 return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); 9969 case ISD::SMIN: 9970 return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); 9971 case ISD::UMAX: 9972 return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); 9973 case ISD::UMIN: 9974 return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); 9975 } 9976 9977 llvm_unreachable("How did we get here?"); 9978 } 9979 9980 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 9981 unsigned Opcode = Node->getOpcode(); 9982 SDValue LHS = Node->getOperand(0); 9983 SDValue RHS = Node->getOperand(1); 9984 EVT VT = LHS.getValueType(); 9985 SDLoc dl(Node); 9986 9987 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 9988 assert(VT.isInteger() && "Expected operands to be integers"); 9989 9990 // usub.sat(a, b) -> umax(a, b) - b 9991 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 9992 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 9993 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 9994 } 9995 9996 // uadd.sat(a, b) -> umin(a, ~b) + b 9997 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 9998 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 9999 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 10000 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 10001 } 10002 10003 unsigned OverflowOp; 10004 switch (Opcode) { 10005 case ISD::SADDSAT: 10006 OverflowOp = ISD::SADDO; 10007 break; 10008 case ISD::UADDSAT: 10009 OverflowOp = ISD::UADDO; 10010 break; 10011 case ISD::SSUBSAT: 10012 OverflowOp = ISD::SSUBO; 10013 break; 10014 case ISD::USUBSAT: 10015 OverflowOp = ISD::USUBO; 10016 break; 10017 default: 10018 llvm_unreachable("Expected method to receive signed or unsigned saturation " 10019 "addition or subtraction node."); 10020 } 10021 10022 // FIXME: Should really try to split the vector in case it's legal on a 10023 // subvector. 10024 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10025 return DAG.UnrollVectorOp(Node); 10026 10027 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 10028 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10029 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10030 SDValue SumDiff = Result.getValue(0); 10031 SDValue Overflow = Result.getValue(1); 10032 SDValue Zero = DAG.getConstant(0, dl, VT); 10033 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 10034 10035 if (Opcode == ISD::UADDSAT) { 10036 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10037 // (LHS + RHS) | OverflowMask 10038 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10039 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 10040 } 10041 // Overflow ? 0xffff.... : (LHS + RHS) 10042 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 10043 } 10044 10045 if (Opcode == ISD::USUBSAT) { 10046 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 10047 // (LHS - RHS) & ~OverflowMask 10048 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 10049 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 10050 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 10051 } 10052 // Overflow ? 0 : (LHS - RHS) 10053 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 10054 } 10055 10056 if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { 10057 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10058 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 10059 10060 KnownBits KnownLHS = DAG.computeKnownBits(LHS); 10061 KnownBits KnownRHS = DAG.computeKnownBits(RHS); 10062 10063 // If either of the operand signs are known, then they are guaranteed to 10064 // only saturate in one direction. If non-negative they will saturate 10065 // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. 10066 // 10067 // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the 10068 // sign of 'y' has to be flipped. 10069 10070 bool LHSIsNonNegative = KnownLHS.isNonNegative(); 10071 bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() 10072 : KnownRHS.isNegative(); 10073 if (LHSIsNonNegative || RHSIsNonNegative) { 10074 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10075 return DAG.getSelect(dl, VT, Overflow, SatMax, SumDiff); 10076 } 10077 10078 bool LHSIsNegative = KnownLHS.isNegative(); 10079 bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() 10080 : KnownRHS.isNonNegative(); 10081 if (LHSIsNegative || RHSIsNegative) { 10082 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10083 return DAG.getSelect(dl, VT, Overflow, SatMin, SumDiff); 10084 } 10085 } 10086 10087 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 10088 APInt MinVal = APInt::getSignedMinValue(BitWidth); 10089 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10090 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 10091 DAG.getConstant(BitWidth - 1, dl, VT)); 10092 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 10093 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 10094 } 10095 10096 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 10097 unsigned Opcode = Node->getOpcode(); 10098 bool IsSigned = Opcode == ISD::SSHLSAT; 10099 SDValue LHS = Node->getOperand(0); 10100 SDValue RHS = Node->getOperand(1); 10101 EVT VT = LHS.getValueType(); 10102 SDLoc dl(Node); 10103 10104 assert((Node->getOpcode() == ISD::SSHLSAT || 10105 Node->getOpcode() == ISD::USHLSAT) && 10106 "Expected a SHLSAT opcode"); 10107 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 10108 assert(VT.isInteger() && "Expected operands to be integers"); 10109 10110 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 10111 return DAG.UnrollVectorOp(Node); 10112 10113 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 10114 10115 unsigned BW = VT.getScalarSizeInBits(); 10116 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10117 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 10118 SDValue Orig = 10119 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 10120 10121 SDValue SatVal; 10122 if (IsSigned) { 10123 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 10124 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 10125 SDValue Cond = 10126 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 10127 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 10128 } else { 10129 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 10130 } 10131 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 10132 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 10133 } 10134 10135 SDValue 10136 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 10137 assert((Node->getOpcode() == ISD::SMULFIX || 10138 Node->getOpcode() == ISD::UMULFIX || 10139 Node->getOpcode() == ISD::SMULFIXSAT || 10140 Node->getOpcode() == ISD::UMULFIXSAT) && 10141 "Expected a fixed point multiplication opcode"); 10142 10143 SDLoc dl(Node); 10144 SDValue LHS = Node->getOperand(0); 10145 SDValue RHS = Node->getOperand(1); 10146 EVT VT = LHS.getValueType(); 10147 unsigned Scale = Node->getConstantOperandVal(2); 10148 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 10149 Node->getOpcode() == ISD::UMULFIXSAT); 10150 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 10151 Node->getOpcode() == ISD::SMULFIXSAT); 10152 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10153 unsigned VTSize = VT.getScalarSizeInBits(); 10154 10155 if (!Scale) { 10156 // [us]mul.fix(a, b, 0) -> mul(a, b) 10157 if (!Saturating) { 10158 if (isOperationLegalOrCustom(ISD::MUL, VT)) 10159 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10160 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 10161 SDValue Result = 10162 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10163 SDValue Product = Result.getValue(0); 10164 SDValue Overflow = Result.getValue(1); 10165 SDValue Zero = DAG.getConstant(0, dl, VT); 10166 10167 APInt MinVal = APInt::getSignedMinValue(VTSize); 10168 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 10169 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 10170 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10171 // Xor the inputs, if resulting sign bit is 0 the product will be 10172 // positive, else negative. 10173 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 10174 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 10175 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 10176 return DAG.getSelect(dl, VT, Overflow, Result, Product); 10177 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 10178 SDValue Result = 10179 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 10180 SDValue Product = Result.getValue(0); 10181 SDValue Overflow = Result.getValue(1); 10182 10183 APInt MaxVal = APInt::getMaxValue(VTSize); 10184 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 10185 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 10186 } 10187 } 10188 10189 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 10190 "Expected scale to be less than the number of bits if signed or at " 10191 "most the number of bits if unsigned."); 10192 assert(LHS.getValueType() == RHS.getValueType() && 10193 "Expected both operands to be the same type"); 10194 10195 // Get the upper and lower bits of the result. 10196 SDValue Lo, Hi; 10197 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 10198 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 10199 if (isOperationLegalOrCustom(LoHiOp, VT)) { 10200 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 10201 Lo = Result.getValue(0); 10202 Hi = Result.getValue(1); 10203 } else if (isOperationLegalOrCustom(HiOp, VT)) { 10204 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10205 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 10206 } else if (VT.isVector()) { 10207 return SDValue(); 10208 } else { 10209 report_fatal_error("Unable to expand fixed point multiplication."); 10210 } 10211 10212 if (Scale == VTSize) 10213 // Result is just the top half since we'd be shifting by the width of the 10214 // operand. Overflow impossible so this works for both UMULFIX and 10215 // UMULFIXSAT. 10216 return Hi; 10217 10218 // The result will need to be shifted right by the scale since both operands 10219 // are scaled. The result is given to us in 2 halves, so we only want part of 10220 // both in the result. 10221 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 10222 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 10223 DAG.getConstant(Scale, dl, ShiftTy)); 10224 if (!Saturating) 10225 return Result; 10226 10227 if (!Signed) { 10228 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 10229 // widened multiplication) aren't all zeroes. 10230 10231 // Saturate to max if ((Hi >> Scale) != 0), 10232 // which is the same as if (Hi > ((1 << Scale) - 1)) 10233 APInt MaxVal = APInt::getMaxValue(VTSize); 10234 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 10235 dl, VT); 10236 Result = DAG.getSelectCC(dl, Hi, LowMask, 10237 DAG.getConstant(MaxVal, dl, VT), Result, 10238 ISD::SETUGT); 10239 10240 return Result; 10241 } 10242 10243 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 10244 // widened multiplication) aren't all ones or all zeroes. 10245 10246 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 10247 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 10248 10249 if (Scale == 0) { 10250 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 10251 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 10252 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 10253 // Saturated to SatMin if wide product is negative, and SatMax if wide 10254 // product is positive ... 10255 SDValue Zero = DAG.getConstant(0, dl, VT); 10256 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 10257 ISD::SETLT); 10258 // ... but only if we overflowed. 10259 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 10260 } 10261 10262 // We handled Scale==0 above so all the bits to examine is in Hi. 10263 10264 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 10265 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 10266 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 10267 dl, VT); 10268 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 10269 // Saturate to min if (Hi >> (Scale - 1)) < -1), 10270 // which is the same as if (HI < (-1 << (Scale - 1)) 10271 SDValue HighMask = 10272 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 10273 dl, VT); 10274 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 10275 return Result; 10276 } 10277 10278 SDValue 10279 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 10280 SDValue LHS, SDValue RHS, 10281 unsigned Scale, SelectionDAG &DAG) const { 10282 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 10283 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 10284 "Expected a fixed point division opcode"); 10285 10286 EVT VT = LHS.getValueType(); 10287 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 10288 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 10289 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10290 10291 // If there is enough room in the type to upscale the LHS or downscale the 10292 // RHS before the division, we can perform it in this type without having to 10293 // resize. For signed operations, the LHS headroom is the number of 10294 // redundant sign bits, and for unsigned ones it is the number of zeroes. 10295 // The headroom for the RHS is the number of trailing zeroes. 10296 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 10297 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 10298 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 10299 10300 // For signed saturating operations, we need to be able to detect true integer 10301 // division overflow; that is, when you have MIN / -EPS. However, this 10302 // is undefined behavior and if we emit divisions that could take such 10303 // values it may cause undesired behavior (arithmetic exceptions on x86, for 10304 // example). 10305 // Avoid this by requiring an extra bit so that we never get this case. 10306 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 10307 // signed saturating division, we need to emit a whopping 32-bit division. 10308 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 10309 return SDValue(); 10310 10311 unsigned LHSShift = std::min(LHSLead, Scale); 10312 unsigned RHSShift = Scale - LHSShift; 10313 10314 // At this point, we know that if we shift the LHS up by LHSShift and the 10315 // RHS down by RHSShift, we can emit a regular division with a final scaling 10316 // factor of Scale. 10317 10318 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 10319 if (LHSShift) 10320 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 10321 DAG.getConstant(LHSShift, dl, ShiftTy)); 10322 if (RHSShift) 10323 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 10324 DAG.getConstant(RHSShift, dl, ShiftTy)); 10325 10326 SDValue Quot; 10327 if (Signed) { 10328 // For signed operations, if the resulting quotient is negative and the 10329 // remainder is nonzero, subtract 1 from the quotient to round towards 10330 // negative infinity. 10331 SDValue Rem; 10332 // FIXME: Ideally we would always produce an SDIVREM here, but if the 10333 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 10334 // we couldn't just form a libcall, but the type legalizer doesn't do it. 10335 if (isTypeLegal(VT) && 10336 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 10337 Quot = DAG.getNode(ISD::SDIVREM, dl, 10338 DAG.getVTList(VT, VT), 10339 LHS, RHS); 10340 Rem = Quot.getValue(1); 10341 Quot = Quot.getValue(0); 10342 } else { 10343 Quot = DAG.getNode(ISD::SDIV, dl, VT, 10344 LHS, RHS); 10345 Rem = DAG.getNode(ISD::SREM, dl, VT, 10346 LHS, RHS); 10347 } 10348 SDValue Zero = DAG.getConstant(0, dl, VT); 10349 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 10350 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 10351 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 10352 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 10353 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 10354 DAG.getConstant(1, dl, VT)); 10355 Quot = DAG.getSelect(dl, VT, 10356 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 10357 Sub1, Quot); 10358 } else 10359 Quot = DAG.getNode(ISD::UDIV, dl, VT, 10360 LHS, RHS); 10361 10362 return Quot; 10363 } 10364 10365 void TargetLowering::expandUADDSUBO( 10366 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 10367 SDLoc dl(Node); 10368 SDValue LHS = Node->getOperand(0); 10369 SDValue RHS = Node->getOperand(1); 10370 bool IsAdd = Node->getOpcode() == ISD::UADDO; 10371 10372 // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. 10373 unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; 10374 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 10375 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 10376 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 10377 { LHS, RHS, CarryIn }); 10378 Result = SDValue(NodeCarry.getNode(), 0); 10379 Overflow = SDValue(NodeCarry.getNode(), 1); 10380 return; 10381 } 10382 10383 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 10384 LHS.getValueType(), LHS, RHS); 10385 10386 EVT ResultType = Node->getValueType(1); 10387 EVT SetCCType = getSetCCResultType( 10388 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 10389 SDValue SetCC; 10390 if (IsAdd && isOneConstant(RHS)) { 10391 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 10392 // the live range of X. We assume comparing with 0 is cheap. 10393 // The general case (X + C) < C is not necessarily beneficial. Although we 10394 // reduce the live range of X, we may introduce the materialization of 10395 // constant C. 10396 SetCC = 10397 DAG.getSetCC(dl, SetCCType, Result, 10398 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 10399 } else if (IsAdd && isAllOnesConstant(RHS)) { 10400 // Special case: uaddo X, -1 overflows if X != 0. 10401 SetCC = 10402 DAG.getSetCC(dl, SetCCType, LHS, 10403 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETNE); 10404 } else { 10405 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 10406 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 10407 } 10408 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 10409 } 10410 10411 void TargetLowering::expandSADDSUBO( 10412 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 10413 SDLoc dl(Node); 10414 SDValue LHS = Node->getOperand(0); 10415 SDValue RHS = Node->getOperand(1); 10416 bool IsAdd = Node->getOpcode() == ISD::SADDO; 10417 10418 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 10419 LHS.getValueType(), LHS, RHS); 10420 10421 EVT ResultType = Node->getValueType(1); 10422 EVT OType = getSetCCResultType( 10423 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 10424 10425 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 10426 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 10427 if (isOperationLegal(OpcSat, LHS.getValueType())) { 10428 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 10429 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 10430 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 10431 return; 10432 } 10433 10434 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 10435 10436 // For an addition, the result should be less than one of the operands (LHS) 10437 // if and only if the other operand (RHS) is negative, otherwise there will 10438 // be overflow. 10439 // For a subtraction, the result should be less than one of the operands 10440 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 10441 // otherwise there will be overflow. 10442 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 10443 SDValue ConditionRHS = 10444 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 10445 10446 Overflow = DAG.getBoolExtOrTrunc( 10447 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 10448 ResultType, ResultType); 10449 } 10450 10451 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 10452 SDValue &Overflow, SelectionDAG &DAG) const { 10453 SDLoc dl(Node); 10454 EVT VT = Node->getValueType(0); 10455 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 10456 SDValue LHS = Node->getOperand(0); 10457 SDValue RHS = Node->getOperand(1); 10458 bool isSigned = Node->getOpcode() == ISD::SMULO; 10459 10460 // For power-of-two multiplications we can use a simpler shift expansion. 10461 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 10462 const APInt &C = RHSC->getAPIntValue(); 10463 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 10464 if (C.isPowerOf2()) { 10465 // smulo(x, signed_min) is same as umulo(x, signed_min). 10466 bool UseArithShift = isSigned && !C.isMinSignedValue(); 10467 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 10468 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 10469 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 10470 Overflow = DAG.getSetCC(dl, SetCCVT, 10471 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 10472 dl, VT, Result, ShiftAmt), 10473 LHS, ISD::SETNE); 10474 return true; 10475 } 10476 } 10477 10478 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 10479 if (VT.isVector()) 10480 WideVT = 10481 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 10482 10483 SDValue BottomHalf; 10484 SDValue TopHalf; 10485 static const unsigned Ops[2][3] = 10486 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 10487 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 10488 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 10489 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10490 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 10491 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 10492 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 10493 RHS); 10494 TopHalf = BottomHalf.getValue(1); 10495 } else if (isTypeLegal(WideVT)) { 10496 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 10497 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 10498 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 10499 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 10500 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 10501 getShiftAmountTy(WideVT, DAG.getDataLayout())); 10502 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 10503 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 10504 } else { 10505 if (VT.isVector()) 10506 return false; 10507 10508 // We can fall back to a libcall with an illegal type for the MUL if we 10509 // have a libcall big enough. 10510 // Also, we can fall back to a division in some cases, but that's a big 10511 // performance hit in the general case. 10512 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10513 if (WideVT == MVT::i16) 10514 LC = RTLIB::MUL_I16; 10515 else if (WideVT == MVT::i32) 10516 LC = RTLIB::MUL_I32; 10517 else if (WideVT == MVT::i64) 10518 LC = RTLIB::MUL_I64; 10519 else if (WideVT == MVT::i128) 10520 LC = RTLIB::MUL_I128; 10521 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 10522 10523 SDValue HiLHS; 10524 SDValue HiRHS; 10525 if (isSigned) { 10526 // The high part is obtained by SRA'ing all but one of the bits of low 10527 // part. 10528 unsigned LoSize = VT.getFixedSizeInBits(); 10529 HiLHS = 10530 DAG.getNode(ISD::SRA, dl, VT, LHS, 10531 DAG.getConstant(LoSize - 1, dl, 10532 getPointerTy(DAG.getDataLayout()))); 10533 HiRHS = 10534 DAG.getNode(ISD::SRA, dl, VT, RHS, 10535 DAG.getConstant(LoSize - 1, dl, 10536 getPointerTy(DAG.getDataLayout()))); 10537 } else { 10538 HiLHS = DAG.getConstant(0, dl, VT); 10539 HiRHS = DAG.getConstant(0, dl, VT); 10540 } 10541 10542 // Here we're passing the 2 arguments explicitly as 4 arguments that are 10543 // pre-lowered to the correct types. This all depends upon WideVT not 10544 // being a legal type for the architecture and thus has to be split to 10545 // two arguments. 10546 SDValue Ret; 10547 TargetLowering::MakeLibCallOptions CallOptions; 10548 CallOptions.setSExt(isSigned); 10549 CallOptions.setIsPostTypeLegalization(true); 10550 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10551 // Halves of WideVT are packed into registers in different order 10552 // depending on platform endianness. This is usually handled by 10553 // the C calling convention, but we can't defer to it in 10554 // the legalizer. 10555 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 10556 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10557 } else { 10558 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 10559 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10560 } 10561 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10562 "Ret value is a collection of constituent nodes holding result."); 10563 if (DAG.getDataLayout().isLittleEndian()) { 10564 // Same as above. 10565 BottomHalf = Ret.getOperand(0); 10566 TopHalf = Ret.getOperand(1); 10567 } else { 10568 BottomHalf = Ret.getOperand(1); 10569 TopHalf = Ret.getOperand(0); 10570 } 10571 } 10572 10573 Result = BottomHalf; 10574 if (isSigned) { 10575 SDValue ShiftAmt = DAG.getConstant( 10576 VT.getScalarSizeInBits() - 1, dl, 10577 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 10578 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 10579 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 10580 } else { 10581 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 10582 DAG.getConstant(0, dl, VT), ISD::SETNE); 10583 } 10584 10585 // Truncate the result if SetCC returns a larger type than needed. 10586 EVT RType = Node->getValueType(1); 10587 if (RType.bitsLT(Overflow.getValueType())) 10588 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 10589 10590 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 10591 "Unexpected result type for S/UMULO legalization"); 10592 return true; 10593 } 10594 10595 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 10596 SDLoc dl(Node); 10597 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10598 SDValue Op = Node->getOperand(0); 10599 EVT VT = Op.getValueType(); 10600 10601 if (VT.isScalableVector()) 10602 report_fatal_error( 10603 "Expanding reductions for scalable vectors is undefined."); 10604 10605 // Try to use a shuffle reduction for power of two vectors. 10606 if (VT.isPow2VectorType()) { 10607 while (VT.getVectorNumElements() > 1) { 10608 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 10609 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 10610 break; 10611 10612 SDValue Lo, Hi; 10613 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 10614 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 10615 VT = HalfVT; 10616 } 10617 } 10618 10619 EVT EltVT = VT.getVectorElementType(); 10620 unsigned NumElts = VT.getVectorNumElements(); 10621 10622 SmallVector<SDValue, 8> Ops; 10623 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 10624 10625 SDValue Res = Ops[0]; 10626 for (unsigned i = 1; i < NumElts; i++) 10627 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 10628 10629 // Result type may be wider than element type. 10630 if (EltVT != Node->getValueType(0)) 10631 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 10632 return Res; 10633 } 10634 10635 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 10636 SDLoc dl(Node); 10637 SDValue AccOp = Node->getOperand(0); 10638 SDValue VecOp = Node->getOperand(1); 10639 SDNodeFlags Flags = Node->getFlags(); 10640 10641 EVT VT = VecOp.getValueType(); 10642 EVT EltVT = VT.getVectorElementType(); 10643 10644 if (VT.isScalableVector()) 10645 report_fatal_error( 10646 "Expanding reductions for scalable vectors is undefined."); 10647 10648 unsigned NumElts = VT.getVectorNumElements(); 10649 10650 SmallVector<SDValue, 8> Ops; 10651 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 10652 10653 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10654 10655 SDValue Res = AccOp; 10656 for (unsigned i = 0; i < NumElts; i++) 10657 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 10658 10659 return Res; 10660 } 10661 10662 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 10663 SelectionDAG &DAG) const { 10664 EVT VT = Node->getValueType(0); 10665 SDLoc dl(Node); 10666 bool isSigned = Node->getOpcode() == ISD::SREM; 10667 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 10668 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 10669 SDValue Dividend = Node->getOperand(0); 10670 SDValue Divisor = Node->getOperand(1); 10671 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 10672 SDVTList VTs = DAG.getVTList(VT, VT); 10673 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 10674 return true; 10675 } 10676 if (isOperationLegalOrCustom(DivOpc, VT)) { 10677 // X % Y -> X-X/Y*Y 10678 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 10679 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 10680 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 10681 return true; 10682 } 10683 return false; 10684 } 10685 10686 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 10687 SelectionDAG &DAG) const { 10688 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 10689 SDLoc dl(SDValue(Node, 0)); 10690 SDValue Src = Node->getOperand(0); 10691 10692 // DstVT is the result type, while SatVT is the size to which we saturate 10693 EVT SrcVT = Src.getValueType(); 10694 EVT DstVT = Node->getValueType(0); 10695 10696 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 10697 unsigned SatWidth = SatVT.getScalarSizeInBits(); 10698 unsigned DstWidth = DstVT.getScalarSizeInBits(); 10699 assert(SatWidth <= DstWidth && 10700 "Expected saturation width smaller than result width"); 10701 10702 // Determine minimum and maximum integer values and their corresponding 10703 // floating-point values. 10704 APInt MinInt, MaxInt; 10705 if (IsSigned) { 10706 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 10707 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 10708 } else { 10709 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 10710 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 10711 } 10712 10713 // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as 10714 // libcall emission cannot handle this. Large result types will fail. 10715 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { 10716 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 10717 SrcVT = Src.getValueType(); 10718 } 10719 10720 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10721 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10722 10723 APFloat::opStatus MinStatus = 10724 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 10725 APFloat::opStatus MaxStatus = 10726 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 10727 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 10728 !(MaxStatus & APFloat::opStatus::opInexact); 10729 10730 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 10731 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 10732 10733 // If the integer bounds are exactly representable as floats and min/max are 10734 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 10735 // of comparisons and selects. 10736 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 10737 isOperationLegal(ISD::FMAXNUM, SrcVT); 10738 if (AreExactFloatBounds && MinMaxLegal) { 10739 SDValue Clamped = Src; 10740 10741 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 10742 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 10743 // Clamp by MaxFloat from above. NaN cannot occur. 10744 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 10745 // Convert clamped value to integer. 10746 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 10747 dl, DstVT, Clamped); 10748 10749 // In the unsigned case we're done, because we mapped NaN to MinFloat, 10750 // which will cast to zero. 10751 if (!IsSigned) 10752 return FpToInt; 10753 10754 // Otherwise, select 0 if Src is NaN. 10755 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10756 EVT SetCCVT = 10757 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 10758 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 10759 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt); 10760 } 10761 10762 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 10763 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 10764 10765 // Result of direct conversion. The assumption here is that the operation is 10766 // non-trapping and it's fine to apply it to an out-of-range value if we 10767 // select it away later. 10768 SDValue FpToInt = 10769 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 10770 10771 SDValue Select = FpToInt; 10772 10773 EVT SetCCVT = 10774 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 10775 10776 // If Src ULT MinFloat, select MinInt. In particular, this also selects 10777 // MinInt if Src is NaN. 10778 SDValue ULT = DAG.getSetCC(dl, SetCCVT, Src, MinFloatNode, ISD::SETULT); 10779 Select = DAG.getSelect(dl, DstVT, ULT, MinIntNode, Select); 10780 // If Src OGT MaxFloat, select MaxInt. 10781 SDValue OGT = DAG.getSetCC(dl, SetCCVT, Src, MaxFloatNode, ISD::SETOGT); 10782 Select = DAG.getSelect(dl, DstVT, OGT, MaxIntNode, Select); 10783 10784 // In the unsigned case we are done, because we mapped NaN to MinInt, which 10785 // is already zero. 10786 if (!IsSigned) 10787 return Select; 10788 10789 // Otherwise, select 0 if Src is NaN. 10790 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10791 SDValue IsNan = DAG.getSetCC(dl, SetCCVT, Src, Src, ISD::CondCode::SETUO); 10792 return DAG.getSelect(dl, DstVT, IsNan, ZeroInt, Select); 10793 } 10794 10795 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 10796 SelectionDAG &DAG) const { 10797 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 10798 assert(Node->getValueType(0).isScalableVector() && 10799 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 10800 10801 EVT VT = Node->getValueType(0); 10802 SDValue V1 = Node->getOperand(0); 10803 SDValue V2 = Node->getOperand(1); 10804 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 10805 SDLoc DL(Node); 10806 10807 // Expand through memory thusly: 10808 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 10809 // Store V1, Ptr 10810 // Store V2, Ptr + sizeof(V1) 10811 // If (Imm < 0) 10812 // TrailingElts = -Imm 10813 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 10814 // else 10815 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 10816 // Res = Load Ptr 10817 10818 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 10819 10820 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 10821 VT.getVectorElementCount() * 2); 10822 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 10823 EVT PtrVT = StackPtr.getValueType(); 10824 auto &MF = DAG.getMachineFunction(); 10825 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10826 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 10827 10828 // Store the lo part of CONCAT_VECTORS(V1, V2) 10829 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 10830 // Store the hi part of CONCAT_VECTORS(V1, V2) 10831 SDValue OffsetToV2 = DAG.getVScale( 10832 DL, PtrVT, 10833 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 10834 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 10835 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 10836 10837 if (Imm >= 0) { 10838 // Load back the required element. getVectorElementPointer takes care of 10839 // clamping the index if it's out-of-bounds. 10840 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 10841 // Load the spliced result 10842 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 10843 MachinePointerInfo::getUnknownStack(MF)); 10844 } 10845 10846 uint64_t TrailingElts = -Imm; 10847 10848 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 10849 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 10850 SDValue TrailingBytes = 10851 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 10852 10853 if (TrailingElts > VT.getVectorMinNumElements()) { 10854 SDValue VLBytes = 10855 DAG.getVScale(DL, PtrVT, 10856 APInt(PtrVT.getFixedSizeInBits(), 10857 VT.getStoreSize().getKnownMinValue())); 10858 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 10859 } 10860 10861 // Calculate the start address of the spliced result. 10862 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 10863 10864 // Load the spliced result 10865 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 10866 MachinePointerInfo::getUnknownStack(MF)); 10867 } 10868 10869 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 10870 SDValue &LHS, SDValue &RHS, 10871 SDValue &CC, SDValue Mask, 10872 SDValue EVL, bool &NeedInvert, 10873 const SDLoc &dl, SDValue &Chain, 10874 bool IsSignaling) const { 10875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10876 MVT OpVT = LHS.getSimpleValueType(); 10877 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 10878 NeedInvert = false; 10879 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 10880 bool IsNonVP = !EVL; 10881 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 10882 default: 10883 llvm_unreachable("Unknown condition code action!"); 10884 case TargetLowering::Legal: 10885 // Nothing to do. 10886 break; 10887 case TargetLowering::Expand: { 10888 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 10889 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10890 std::swap(LHS, RHS); 10891 CC = DAG.getCondCode(InvCC); 10892 return true; 10893 } 10894 // Swapping operands didn't work. Try inverting the condition. 10895 bool NeedSwap = false; 10896 InvCC = getSetCCInverse(CCCode, OpVT); 10897 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10898 // If inverting the condition is not enough, try swapping operands 10899 // on top of it. 10900 InvCC = ISD::getSetCCSwappedOperands(InvCC); 10901 NeedSwap = true; 10902 } 10903 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10904 CC = DAG.getCondCode(InvCC); 10905 NeedInvert = true; 10906 if (NeedSwap) 10907 std::swap(LHS, RHS); 10908 return true; 10909 } 10910 10911 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 10912 unsigned Opc = 0; 10913 switch (CCCode) { 10914 default: 10915 llvm_unreachable("Don't know how to expand this condition!"); 10916 case ISD::SETUO: 10917 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 10918 CC1 = ISD::SETUNE; 10919 CC2 = ISD::SETUNE; 10920 Opc = ISD::OR; 10921 break; 10922 } 10923 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10924 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 10925 NeedInvert = true; 10926 [[fallthrough]]; 10927 case ISD::SETO: 10928 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10929 "If SETO is expanded, SETOEQ must be legal!"); 10930 CC1 = ISD::SETOEQ; 10931 CC2 = ISD::SETOEQ; 10932 Opc = ISD::AND; 10933 break; 10934 case ISD::SETONE: 10935 case ISD::SETUEQ: 10936 // If the SETUO or SETO CC isn't legal, we might be able to use 10937 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 10938 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 10939 // the operands. 10940 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10941 if (!TLI.isCondCodeLegal(CC2, OpVT) && 10942 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 10943 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 10944 CC1 = ISD::SETOGT; 10945 CC2 = ISD::SETOLT; 10946 Opc = ISD::OR; 10947 NeedInvert = ((unsigned)CCCode & 0x8U); 10948 break; 10949 } 10950 [[fallthrough]]; 10951 case ISD::SETOEQ: 10952 case ISD::SETOGT: 10953 case ISD::SETOGE: 10954 case ISD::SETOLT: 10955 case ISD::SETOLE: 10956 case ISD::SETUNE: 10957 case ISD::SETUGT: 10958 case ISD::SETUGE: 10959 case ISD::SETULT: 10960 case ISD::SETULE: 10961 // If we are floating point, assign and break, otherwise fall through. 10962 if (!OpVT.isInteger()) { 10963 // We can use the 4th bit to tell if we are the unordered 10964 // or ordered version of the opcode. 10965 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10966 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 10967 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 10968 break; 10969 } 10970 // Fallthrough if we are unsigned integer. 10971 [[fallthrough]]; 10972 case ISD::SETLE: 10973 case ISD::SETGT: 10974 case ISD::SETGE: 10975 case ISD::SETLT: 10976 case ISD::SETNE: 10977 case ISD::SETEQ: 10978 // If all combinations of inverting the condition and swapping operands 10979 // didn't work then we have no means to expand the condition. 10980 llvm_unreachable("Don't know how to expand this condition!"); 10981 } 10982 10983 SDValue SetCC1, SetCC2; 10984 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 10985 // If we aren't the ordered or unorder operation, 10986 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 10987 if (IsNonVP) { 10988 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 10989 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 10990 } else { 10991 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 10992 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 10993 } 10994 } else { 10995 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 10996 if (IsNonVP) { 10997 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 10998 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 10999 } else { 11000 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 11001 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 11002 } 11003 } 11004 if (Chain) 11005 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 11006 SetCC2.getValue(1)); 11007 if (IsNonVP) 11008 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 11009 else { 11010 // Transform the binary opcode to the VP equivalent. 11011 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 11012 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 11013 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 11014 } 11015 RHS = SDValue(); 11016 CC = SDValue(); 11017 return true; 11018 } 11019 } 11020 return false; 11021 } 11022