1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/VectorUtils.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/CodeGenCommonISel.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/CodeGen/TargetRegisterInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/DivisionByConstantInfo.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() == ISD::AssertZext) 98 Value = Value.getOperand(0); 99 if (Value->getOpcode() != ISD::CopyFromReg) 100 return false; 101 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 102 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 103 return false; 104 } 105 return true; 106 } 107 108 /// Set CallLoweringInfo attribute flags based on a call instruction 109 /// and called function attributes. 110 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 111 unsigned ArgIdx) { 112 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 113 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 114 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 115 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 116 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 117 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 118 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 119 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 120 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 121 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 122 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 123 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 124 Alignment = Call->getParamStackAlign(ArgIdx); 125 IndirectType = nullptr; 126 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 127 "multiple ABI attributes?"); 128 if (IsByVal) { 129 IndirectType = Call->getParamByValType(ArgIdx); 130 if (!Alignment) 131 Alignment = Call->getParamAlign(ArgIdx); 132 } 133 if (IsPreallocated) 134 IndirectType = Call->getParamPreallocatedType(ArgIdx); 135 if (IsInAlloca) 136 IndirectType = Call->getParamInAllocaType(ArgIdx); 137 if (IsSRet) 138 IndirectType = Call->getParamStructRetType(ArgIdx); 139 } 140 141 /// Generate a libcall taking the given operands as arguments and returning a 142 /// result of type RetVT. 143 std::pair<SDValue, SDValue> 144 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 145 ArrayRef<SDValue> Ops, 146 MakeLibCallOptions CallOptions, 147 const SDLoc &dl, 148 SDValue InChain) const { 149 if (!InChain) 150 InChain = DAG.getEntryNode(); 151 152 TargetLowering::ArgListTy Args; 153 Args.reserve(Ops.size()); 154 155 TargetLowering::ArgListEntry Entry; 156 for (unsigned i = 0; i < Ops.size(); ++i) { 157 SDValue NewOp = Ops[i]; 158 Entry.Node = NewOp; 159 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 160 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 161 CallOptions.IsSExt); 162 Entry.IsZExt = !Entry.IsSExt; 163 164 if (CallOptions.IsSoften && 165 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 166 Entry.IsSExt = Entry.IsZExt = false; 167 } 168 Args.push_back(Entry); 169 } 170 171 if (LC == RTLIB::UNKNOWN_LIBCALL) 172 report_fatal_error("Unsupported library call operation!"); 173 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 174 getPointerTy(DAG.getDataLayout())); 175 176 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 177 TargetLowering::CallLoweringInfo CLI(DAG); 178 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 179 bool zeroExtend = !signExtend; 180 181 if (CallOptions.IsSoften && 182 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 183 signExtend = zeroExtend = false; 184 } 185 186 CLI.setDebugLoc(dl) 187 .setChain(InChain) 188 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 189 .setNoReturn(CallOptions.DoesNotReturn) 190 .setDiscardResult(!CallOptions.IsReturnValueUsed) 191 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 192 .setSExtResult(signExtend) 193 .setZExtResult(zeroExtend); 194 return LowerCallTo(CLI); 195 } 196 197 bool TargetLowering::findOptimalMemOpLowering( 198 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 199 unsigned SrcAS, const AttributeList &FuncAttributes) const { 200 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 201 Op.getSrcAlign() < Op.getDstAlign()) 202 return false; 203 204 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 205 206 if (VT == MVT::Other) { 207 // Use the largest integer type whose alignment constraints are satisfied. 208 // We only need to check DstAlign here as SrcAlign is always greater or 209 // equal to DstAlign (or zero). 210 VT = MVT::i64; 211 if (Op.isFixedDstAlign()) 212 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 213 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 214 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 215 assert(VT.isInteger()); 216 217 // Find the largest legal integer type. 218 MVT LVT = MVT::i64; 219 while (!isTypeLegal(LVT)) 220 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 221 assert(LVT.isInteger()); 222 223 // If the type we've chosen is larger than the largest legal integer type 224 // then use that instead. 225 if (VT.bitsGT(LVT)) 226 VT = LVT; 227 } 228 229 unsigned NumMemOps = 0; 230 uint64_t Size = Op.size(); 231 while (Size) { 232 unsigned VTSize = VT.getSizeInBits() / 8; 233 while (VTSize > Size) { 234 // For now, only use non-vector load / store's for the left-over pieces. 235 EVT NewVT = VT; 236 unsigned NewVTSize; 237 238 bool Found = false; 239 if (VT.isVector() || VT.isFloatingPoint()) { 240 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 241 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 242 isSafeMemOpType(NewVT.getSimpleVT())) 243 Found = true; 244 else if (NewVT == MVT::i64 && 245 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 246 isSafeMemOpType(MVT::f64)) { 247 // i64 is usually not legal on 32-bit targets, but f64 may be. 248 NewVT = MVT::f64; 249 Found = true; 250 } 251 } 252 253 if (!Found) { 254 do { 255 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 256 if (NewVT == MVT::i8) 257 break; 258 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 259 } 260 NewVTSize = NewVT.getSizeInBits() / 8; 261 262 // If the new VT cannot cover all of the remaining bits, then consider 263 // issuing a (or a pair of) unaligned and overlapping load / store. 264 unsigned Fast; 265 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 266 allowsMisalignedMemoryAccesses( 267 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 268 MachineMemOperand::MONone, &Fast) && 269 Fast) 270 VTSize = Size; 271 else { 272 VT = NewVT; 273 VTSize = NewVTSize; 274 } 275 } 276 277 if (++NumMemOps > Limit) 278 return false; 279 280 MemOps.push_back(VT); 281 Size -= VTSize; 282 } 283 284 return true; 285 } 286 287 /// Soften the operands of a comparison. This code is shared among BR_CC, 288 /// SELECT_CC, and SETCC handlers. 289 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 290 SDValue &NewLHS, SDValue &NewRHS, 291 ISD::CondCode &CCCode, 292 const SDLoc &dl, const SDValue OldLHS, 293 const SDValue OldRHS) const { 294 SDValue Chain; 295 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 296 OldRHS, Chain); 297 } 298 299 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 300 SDValue &NewLHS, SDValue &NewRHS, 301 ISD::CondCode &CCCode, 302 const SDLoc &dl, const SDValue OldLHS, 303 const SDValue OldRHS, 304 SDValue &Chain, 305 bool IsSignaling) const { 306 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 307 // not supporting it. We can update this code when libgcc provides such 308 // functions. 309 310 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 311 && "Unsupported setcc type!"); 312 313 // Expand into one or more soft-fp libcall(s). 314 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 315 bool ShouldInvertCC = false; 316 switch (CCCode) { 317 case ISD::SETEQ: 318 case ISD::SETOEQ: 319 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 320 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 321 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 322 break; 323 case ISD::SETNE: 324 case ISD::SETUNE: 325 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 326 (VT == MVT::f64) ? RTLIB::UNE_F64 : 327 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 328 break; 329 case ISD::SETGE: 330 case ISD::SETOGE: 331 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 332 (VT == MVT::f64) ? RTLIB::OGE_F64 : 333 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 334 break; 335 case ISD::SETLT: 336 case ISD::SETOLT: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 338 (VT == MVT::f64) ? RTLIB::OLT_F64 : 339 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 340 break; 341 case ISD::SETLE: 342 case ISD::SETOLE: 343 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 344 (VT == MVT::f64) ? RTLIB::OLE_F64 : 345 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 346 break; 347 case ISD::SETGT: 348 case ISD::SETOGT: 349 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 350 (VT == MVT::f64) ? RTLIB::OGT_F64 : 351 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 352 break; 353 case ISD::SETO: 354 ShouldInvertCC = true; 355 [[fallthrough]]; 356 case ISD::SETUO: 357 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 358 (VT == MVT::f64) ? RTLIB::UO_F64 : 359 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 360 break; 361 case ISD::SETONE: 362 // SETONE = O && UNE 363 ShouldInvertCC = true; 364 [[fallthrough]]; 365 case ISD::SETUEQ: 366 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 367 (VT == MVT::f64) ? RTLIB::UO_F64 : 368 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 369 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 370 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 371 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 372 break; 373 default: 374 // Invert CC for unordered comparisons 375 ShouldInvertCC = true; 376 switch (CCCode) { 377 case ISD::SETULT: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 379 (VT == MVT::f64) ? RTLIB::OGE_F64 : 380 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 381 break; 382 case ISD::SETULE: 383 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 384 (VT == MVT::f64) ? RTLIB::OGT_F64 : 385 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 386 break; 387 case ISD::SETUGT: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 389 (VT == MVT::f64) ? RTLIB::OLE_F64 : 390 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 391 break; 392 case ISD::SETUGE: 393 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 394 (VT == MVT::f64) ? RTLIB::OLT_F64 : 395 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 396 break; 397 default: llvm_unreachable("Do not know how to soften this setcc!"); 398 } 399 } 400 401 // Use the target specific return value for comparison lib calls. 402 EVT RetVT = getCmpLibcallReturnType(); 403 SDValue Ops[2] = {NewLHS, NewRHS}; 404 TargetLowering::MakeLibCallOptions CallOptions; 405 EVT OpsVT[2] = { OldLHS.getValueType(), 406 OldRHS.getValueType() }; 407 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 408 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 409 NewLHS = Call.first; 410 NewRHS = DAG.getConstant(0, dl, RetVT); 411 412 CCCode = getCmpLibcallCC(LC1); 413 if (ShouldInvertCC) { 414 assert(RetVT.isInteger()); 415 CCCode = getSetCCInverse(CCCode, RetVT); 416 } 417 418 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 419 // Update Chain. 420 Chain = Call.second; 421 } else { 422 EVT SetCCVT = 423 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 424 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 425 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 426 CCCode = getCmpLibcallCC(LC2); 427 if (ShouldInvertCC) 428 CCCode = getSetCCInverse(CCCode, RetVT); 429 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 430 if (Chain) 431 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 432 Call2.second); 433 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 434 Tmp.getValueType(), Tmp, NewLHS); 435 NewRHS = SDValue(); 436 } 437 } 438 439 /// Return the entry encoding for a jump table in the current function. The 440 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 441 unsigned TargetLowering::getJumpTableEncoding() const { 442 // In non-pic modes, just use the address of a block. 443 if (!isPositionIndependent()) 444 return MachineJumpTableInfo::EK_BlockAddress; 445 446 // In PIC mode, if the target supports a GPRel32 directive, use it. 447 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 448 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 449 450 // Otherwise, use a label difference. 451 return MachineJumpTableInfo::EK_LabelDifference32; 452 } 453 454 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 455 SelectionDAG &DAG) const { 456 // If our PIC model is GP relative, use the global offset table as the base. 457 unsigned JTEncoding = getJumpTableEncoding(); 458 459 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 460 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 461 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 462 463 return Table; 464 } 465 466 /// This returns the relocation base for the given PIC jumptable, the same as 467 /// getPICJumpTableRelocBase, but as an MCExpr. 468 const MCExpr * 469 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 470 unsigned JTI,MCContext &Ctx) const{ 471 // The normal PIC reloc base is the label at the start of the jump table. 472 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 473 } 474 475 bool 476 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 477 const TargetMachine &TM = getTargetMachine(); 478 const GlobalValue *GV = GA->getGlobal(); 479 480 // If the address is not even local to this DSO we will have to load it from 481 // a got and then add the offset. 482 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 483 return false; 484 485 // If the code is position independent we will have to add a base register. 486 if (isPositionIndependent()) 487 return false; 488 489 // Otherwise we can do it. 490 return true; 491 } 492 493 //===----------------------------------------------------------------------===// 494 // Optimization Methods 495 //===----------------------------------------------------------------------===// 496 497 /// If the specified instruction has a constant integer operand and there are 498 /// bits set in that constant that are not demanded, then clear those bits and 499 /// return true. 500 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 501 const APInt &DemandedBits, 502 const APInt &DemandedElts, 503 TargetLoweringOpt &TLO) const { 504 SDLoc DL(Op); 505 unsigned Opcode = Op.getOpcode(); 506 507 // Do target-specific constant optimization. 508 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 509 return TLO.New.getNode(); 510 511 // FIXME: ISD::SELECT, ISD::SELECT_CC 512 switch (Opcode) { 513 default: 514 break; 515 case ISD::XOR: 516 case ISD::AND: 517 case ISD::OR: { 518 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 519 if (!Op1C || Op1C->isOpaque()) 520 return false; 521 522 // If this is a 'not' op, don't touch it because that's a canonical form. 523 const APInt &C = Op1C->getAPIntValue(); 524 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 525 return false; 526 527 if (!C.isSubsetOf(DemandedBits)) { 528 EVT VT = Op.getValueType(); 529 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 530 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 531 return TLO.CombineTo(Op, NewOp); 532 } 533 534 break; 535 } 536 } 537 538 return false; 539 } 540 541 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 542 const APInt &DemandedBits, 543 TargetLoweringOpt &TLO) const { 544 EVT VT = Op.getValueType(); 545 APInt DemandedElts = VT.isVector() 546 ? APInt::getAllOnes(VT.getVectorNumElements()) 547 : APInt(1, 1); 548 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 549 } 550 551 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 552 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 553 /// generalized for targets with other types of implicit widening casts. 554 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 555 const APInt &Demanded, 556 TargetLoweringOpt &TLO) const { 557 assert(Op.getNumOperands() == 2 && 558 "ShrinkDemandedOp only supports binary operators!"); 559 assert(Op.getNode()->getNumValues() == 1 && 560 "ShrinkDemandedOp only supports nodes with one result!"); 561 562 SelectionDAG &DAG = TLO.DAG; 563 SDLoc dl(Op); 564 565 // Early return, as this function cannot handle vector types. 566 if (Op.getValueType().isVector()) 567 return false; 568 569 // Don't do this if the node has another user, which may require the 570 // full value. 571 if (!Op.getNode()->hasOneUse()) 572 return false; 573 574 // Search for the smallest integer type with free casts to and from 575 // Op's type. For expedience, just check power-of-2 integer types. 576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 577 unsigned DemandedSize = Demanded.getActiveBits(); 578 unsigned SmallVTBits = DemandedSize; 579 if (!isPowerOf2_32(SmallVTBits)) 580 SmallVTBits = NextPowerOf2(SmallVTBits); 581 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 582 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 583 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 584 TLI.isZExtFree(SmallVT, Op.getValueType())) { 585 // We found a type with free casts. 586 SDValue X = DAG.getNode( 587 Op.getOpcode(), dl, SmallVT, 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 589 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 590 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 591 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 592 return TLO.CombineTo(Op, Z); 593 } 594 } 595 return false; 596 } 597 598 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 599 DAGCombinerInfo &DCI) const { 600 SelectionDAG &DAG = DCI.DAG; 601 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 602 !DCI.isBeforeLegalizeOps()); 603 KnownBits Known; 604 605 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 606 if (Simplified) { 607 DCI.AddToWorklist(Op.getNode()); 608 DCI.CommitTargetLoweringOpt(TLO); 609 } 610 return Simplified; 611 } 612 613 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 614 const APInt &DemandedElts, 615 DAGCombinerInfo &DCI) const { 616 SelectionDAG &DAG = DCI.DAG; 617 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 618 !DCI.isBeforeLegalizeOps()); 619 KnownBits Known; 620 621 bool Simplified = 622 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 623 if (Simplified) { 624 DCI.AddToWorklist(Op.getNode()); 625 DCI.CommitTargetLoweringOpt(TLO); 626 } 627 return Simplified; 628 } 629 630 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 631 KnownBits &Known, 632 TargetLoweringOpt &TLO, 633 unsigned Depth, 634 bool AssumeSingleUse) const { 635 EVT VT = Op.getValueType(); 636 637 // Since the number of lanes in a scalable vector is unknown at compile time, 638 // we track one bit which is implicitly broadcast to all lanes. This means 639 // that all lanes in a scalable vector are considered demanded. 640 APInt DemandedElts = VT.isFixedLengthVector() 641 ? APInt::getAllOnes(VT.getVectorNumElements()) 642 : APInt(1, 1); 643 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 644 AssumeSingleUse); 645 } 646 647 // TODO: Under what circumstances can we create nodes? Constant folding? 648 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 649 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 650 SelectionDAG &DAG, unsigned Depth) const { 651 EVT VT = Op.getValueType(); 652 653 // Limit search depth. 654 if (Depth >= SelectionDAG::MaxRecursionDepth) 655 return SDValue(); 656 657 // Ignore UNDEFs. 658 if (Op.isUndef()) 659 return SDValue(); 660 661 // Not demanding any bits/elts from Op. 662 if (DemandedBits == 0 || DemandedElts == 0) 663 return DAG.getUNDEF(VT); 664 665 bool IsLE = DAG.getDataLayout().isLittleEndian(); 666 unsigned NumElts = DemandedElts.getBitWidth(); 667 unsigned BitWidth = DemandedBits.getBitWidth(); 668 KnownBits LHSKnown, RHSKnown; 669 switch (Op.getOpcode()) { 670 case ISD::BITCAST: { 671 if (VT.isScalableVector()) 672 return SDValue(); 673 674 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 675 EVT SrcVT = Src.getValueType(); 676 EVT DstVT = Op.getValueType(); 677 if (SrcVT == DstVT) 678 return Src; 679 680 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 681 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 682 if (NumSrcEltBits == NumDstEltBits) 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 687 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 688 unsigned Scale = NumDstEltBits / NumSrcEltBits; 689 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 690 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 691 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 692 for (unsigned i = 0; i != Scale; ++i) { 693 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 694 unsigned BitOffset = EltOffset * NumSrcEltBits; 695 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 696 if (!Sub.isZero()) { 697 DemandedSrcBits |= Sub; 698 for (unsigned j = 0; j != NumElts; ++j) 699 if (DemandedElts[j]) 700 DemandedSrcElts.setBit((j * Scale) + i); 701 } 702 } 703 704 if (SDValue V = SimplifyMultipleUseDemandedBits( 705 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 706 return DAG.getBitcast(DstVT, V); 707 } 708 709 // TODO - bigendian once we have test coverage. 710 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 711 unsigned Scale = NumSrcEltBits / NumDstEltBits; 712 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 713 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 714 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 715 for (unsigned i = 0; i != NumElts; ++i) 716 if (DemandedElts[i]) { 717 unsigned Offset = (i % Scale) * NumDstEltBits; 718 DemandedSrcBits.insertBits(DemandedBits, Offset); 719 DemandedSrcElts.setBit(i / Scale); 720 } 721 722 if (SDValue V = SimplifyMultipleUseDemandedBits( 723 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 724 return DAG.getBitcast(DstVT, V); 725 } 726 727 break; 728 } 729 case ISD::AND: { 730 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 731 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 732 733 // If all of the demanded bits are known 1 on one side, return the other. 734 // These bits cannot contribute to the result of the 'and' in this 735 // context. 736 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 737 return Op.getOperand(0); 738 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 739 return Op.getOperand(1); 740 break; 741 } 742 case ISD::OR: { 743 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 744 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 745 746 // If all of the demanded bits are known zero on one side, return the 747 // other. These bits cannot contribute to the result of the 'or' in this 748 // context. 749 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 750 return Op.getOperand(0); 751 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 752 return Op.getOperand(1); 753 break; 754 } 755 case ISD::XOR: { 756 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 757 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 758 759 // If all of the demanded bits are known zero on one side, return the 760 // other. 761 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 762 return Op.getOperand(0); 763 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 764 return Op.getOperand(1); 765 break; 766 } 767 case ISD::SHL: { 768 // If we are only demanding sign bits then we can use the shift source 769 // directly. 770 if (const APInt *MaxSA = 771 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 772 SDValue Op0 = Op.getOperand(0); 773 unsigned ShAmt = MaxSA->getZExtValue(); 774 unsigned NumSignBits = 775 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 776 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 777 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 778 return Op0; 779 } 780 break; 781 } 782 case ISD::SETCC: { 783 SDValue Op0 = Op.getOperand(0); 784 SDValue Op1 = Op.getOperand(1); 785 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 786 // If (1) we only need the sign-bit, (2) the setcc operands are the same 787 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 788 // -1, we may be able to bypass the setcc. 789 if (DemandedBits.isSignMask() && 790 Op0.getScalarValueSizeInBits() == BitWidth && 791 getBooleanContents(Op0.getValueType()) == 792 BooleanContent::ZeroOrNegativeOneBooleanContent) { 793 // If we're testing X < 0, then this compare isn't needed - just use X! 794 // FIXME: We're limiting to integer types here, but this should also work 795 // if we don't care about FP signed-zero. The use of SETLT with FP means 796 // that we don't care about NaNs. 797 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 798 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 799 return Op0; 800 } 801 break; 802 } 803 case ISD::SIGN_EXTEND_INREG: { 804 // If none of the extended bits are demanded, eliminate the sextinreg. 805 SDValue Op0 = Op.getOperand(0); 806 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 807 unsigned ExBits = ExVT.getScalarSizeInBits(); 808 if (DemandedBits.getActiveBits() <= ExBits) 809 return Op0; 810 // If the input is already sign extended, just drop the extension. 811 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 812 if (NumSignBits >= (BitWidth - ExBits + 1)) 813 return Op0; 814 break; 815 } 816 case ISD::ANY_EXTEND_VECTOR_INREG: 817 case ISD::SIGN_EXTEND_VECTOR_INREG: 818 case ISD::ZERO_EXTEND_VECTOR_INREG: { 819 if (VT.isScalableVector()) 820 return SDValue(); 821 822 // If we only want the lowest element and none of extended bits, then we can 823 // return the bitcasted source vector. 824 SDValue Src = Op.getOperand(0); 825 EVT SrcVT = Src.getValueType(); 826 EVT DstVT = Op.getValueType(); 827 if (IsLE && DemandedElts == 1 && 828 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 829 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 830 return DAG.getBitcast(DstVT, Src); 831 } 832 break; 833 } 834 case ISD::INSERT_VECTOR_ELT: { 835 if (VT.isScalableVector()) 836 return SDValue(); 837 838 // If we don't demand the inserted element, return the base vector. 839 SDValue Vec = Op.getOperand(0); 840 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 841 EVT VecVT = Vec.getValueType(); 842 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 843 !DemandedElts[CIdx->getZExtValue()]) 844 return Vec; 845 break; 846 } 847 case ISD::INSERT_SUBVECTOR: { 848 if (VT.isScalableVector()) 849 return SDValue(); 850 851 SDValue Vec = Op.getOperand(0); 852 SDValue Sub = Op.getOperand(1); 853 uint64_t Idx = Op.getConstantOperandVal(2); 854 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 855 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 856 // If we don't demand the inserted subvector, return the base vector. 857 if (DemandedSubElts == 0) 858 return Vec; 859 // If this simply widens the lowest subvector, see if we can do it earlier. 860 // TODO: REMOVE ME - SimplifyMultipleUseDemandedBits shouldn't be creating 861 // general nodes like this. 862 if (Idx == 0 && Vec.isUndef()) { 863 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 864 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 865 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 866 Op.getOperand(0), NewSub, Op.getOperand(2)); 867 } 868 break; 869 } 870 case ISD::VECTOR_SHUFFLE: { 871 assert(!VT.isScalableVector()); 872 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 873 874 // If all the demanded elts are from one operand and are inline, 875 // then we can use the operand directly. 876 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 877 for (unsigned i = 0; i != NumElts; ++i) { 878 int M = ShuffleMask[i]; 879 if (M < 0 || !DemandedElts[i]) 880 continue; 881 AllUndef = false; 882 IdentityLHS &= (M == (int)i); 883 IdentityRHS &= ((M - NumElts) == i); 884 } 885 886 if (AllUndef) 887 return DAG.getUNDEF(Op.getValueType()); 888 if (IdentityLHS) 889 return Op.getOperand(0); 890 if (IdentityRHS) 891 return Op.getOperand(1); 892 break; 893 } 894 default: 895 // TODO: Probably okay to remove after audit; here to reduce change size 896 // in initial enablement patch for scalable vectors 897 if (VT.isScalableVector()) 898 return SDValue(); 899 900 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 901 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 902 Op, DemandedBits, DemandedElts, DAG, Depth)) 903 return V; 904 break; 905 } 906 return SDValue(); 907 } 908 909 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 910 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 911 unsigned Depth) const { 912 EVT VT = Op.getValueType(); 913 // Since the number of lanes in a scalable vector is unknown at compile time, 914 // we track one bit which is implicitly broadcast to all lanes. This means 915 // that all lanes in a scalable vector are considered demanded. 916 APInt DemandedElts = VT.isFixedLengthVector() 917 ? APInt::getAllOnes(VT.getVectorNumElements()) 918 : APInt(1, 1); 919 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 920 Depth); 921 } 922 923 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 924 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 925 unsigned Depth) const { 926 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 927 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 928 Depth); 929 } 930 931 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 932 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 933 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 934 const TargetLowering &TLI, 935 const APInt &DemandedBits, 936 const APInt &DemandedElts, 937 unsigned Depth) { 938 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 939 "SRL or SRA node is required here!"); 940 // Is the right shift using an immediate value of 1? 941 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 942 if (!N1C || !N1C->isOne()) 943 return SDValue(); 944 945 // We are looking for an avgfloor 946 // add(ext, ext) 947 // or one of these as a avgceil 948 // add(add(ext, ext), 1) 949 // add(add(ext, 1), ext) 950 // add(ext, add(ext, 1)) 951 SDValue Add = Op.getOperand(0); 952 if (Add.getOpcode() != ISD::ADD) 953 return SDValue(); 954 955 SDValue ExtOpA = Add.getOperand(0); 956 SDValue ExtOpB = Add.getOperand(1); 957 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 958 ConstantSDNode *ConstOp; 959 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 960 ConstOp->isOne()) { 961 ExtOpA = Op2; 962 ExtOpB = Op3; 963 return true; 964 } 965 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 966 ConstOp->isOne()) { 967 ExtOpA = Op1; 968 ExtOpB = Op3; 969 return true; 970 } 971 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 972 ConstOp->isOne()) { 973 ExtOpA = Op1; 974 ExtOpB = Op2; 975 return true; 976 } 977 return false; 978 }; 979 bool IsCeil = 980 (ExtOpA.getOpcode() == ISD::ADD && 981 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 982 (ExtOpB.getOpcode() == ISD::ADD && 983 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 984 985 // If the shift is signed (sra): 986 // - Needs >= 2 sign bit for both operands. 987 // - Needs >= 2 zero bits. 988 // If the shift is unsigned (srl): 989 // - Needs >= 1 zero bit for both operands. 990 // - Needs 1 demanded bit zero and >= 2 sign bits. 991 unsigned ShiftOpc = Op.getOpcode(); 992 bool IsSigned = false; 993 unsigned KnownBits; 994 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 995 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 996 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 997 unsigned NumZeroA = 998 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 999 unsigned NumZeroB = 1000 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 1001 unsigned NumZero = std::min(NumZeroA, NumZeroB); 1002 1003 switch (ShiftOpc) { 1004 default: 1005 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 1006 case ISD::SRA: { 1007 if (NumZero >= 2 && NumSigned < NumZero) { 1008 IsSigned = false; 1009 KnownBits = NumZero; 1010 break; 1011 } 1012 if (NumSigned >= 1) { 1013 IsSigned = true; 1014 KnownBits = NumSigned; 1015 break; 1016 } 1017 return SDValue(); 1018 } 1019 case ISD::SRL: { 1020 if (NumZero >= 1 && NumSigned < NumZero) { 1021 IsSigned = false; 1022 KnownBits = NumZero; 1023 break; 1024 } 1025 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1026 IsSigned = true; 1027 KnownBits = NumSigned; 1028 break; 1029 } 1030 return SDValue(); 1031 } 1032 } 1033 1034 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1035 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1036 1037 // Find the smallest power-2 type that is legal for this vector size and 1038 // operation, given the original type size and the number of known sign/zero 1039 // bits. 1040 EVT VT = Op.getValueType(); 1041 unsigned MinWidth = 1042 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1043 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1044 if (VT.isVector()) 1045 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1046 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1047 return SDValue(); 1048 1049 SDLoc DL(Op); 1050 SDValue ResultAVG = 1051 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1052 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1053 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1054 ResultAVG); 1055 } 1056 1057 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1058 /// result of Op are ever used downstream. If we can use this information to 1059 /// simplify Op, create a new simplified DAG node and return true, returning the 1060 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1061 /// return a mask of Known bits for the expression (used to simplify the 1062 /// caller). The Known bits may only be accurate for those bits in the 1063 /// OriginalDemandedBits and OriginalDemandedElts. 1064 bool TargetLowering::SimplifyDemandedBits( 1065 SDValue Op, const APInt &OriginalDemandedBits, 1066 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1067 unsigned Depth, bool AssumeSingleUse) const { 1068 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1069 assert(Op.getScalarValueSizeInBits() == BitWidth && 1070 "Mask size mismatches value type size!"); 1071 1072 // Don't know anything. 1073 Known = KnownBits(BitWidth); 1074 1075 EVT VT = Op.getValueType(); 1076 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1077 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1078 assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && 1079 "Unexpected vector size"); 1080 1081 APInt DemandedBits = OriginalDemandedBits; 1082 APInt DemandedElts = OriginalDemandedElts; 1083 SDLoc dl(Op); 1084 auto &DL = TLO.DAG.getDataLayout(); 1085 1086 // Undef operand. 1087 if (Op.isUndef()) 1088 return false; 1089 1090 // We can't simplify target constants. 1091 if (Op.getOpcode() == ISD::TargetConstant) 1092 return false; 1093 1094 if (Op.getOpcode() == ISD::Constant) { 1095 // We know all of the bits for a constant! 1096 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1097 return false; 1098 } 1099 1100 if (Op.getOpcode() == ISD::ConstantFP) { 1101 // We know all of the bits for a floating point constant! 1102 Known = KnownBits::makeConstant( 1103 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1104 return false; 1105 } 1106 1107 // Other users may use these bits. 1108 bool HasMultiUse = false; 1109 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { 1110 if (Depth >= SelectionDAG::MaxRecursionDepth) { 1111 // Limit search depth. 1112 return false; 1113 } 1114 // Allow multiple uses, just set the DemandedBits/Elts to all bits. 1115 DemandedBits = APInt::getAllOnes(BitWidth); 1116 DemandedElts = APInt::getAllOnes(NumElts); 1117 HasMultiUse = true; 1118 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1119 // Not demanding any bits/elts from Op. 1120 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1121 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1122 // Limit search depth. 1123 return false; 1124 } 1125 1126 KnownBits Known2; 1127 switch (Op.getOpcode()) { 1128 case ISD::SCALAR_TO_VECTOR: { 1129 if (VT.isScalableVector()) 1130 return false; 1131 if (!DemandedElts[0]) 1132 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1133 1134 KnownBits SrcKnown; 1135 SDValue Src = Op.getOperand(0); 1136 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1137 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1138 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1139 return true; 1140 1141 // Upper elements are undef, so only get the knownbits if we just demand 1142 // the bottom element. 1143 if (DemandedElts == 1) 1144 Known = SrcKnown.anyextOrTrunc(BitWidth); 1145 break; 1146 } 1147 case ISD::BUILD_VECTOR: 1148 // Collect the known bits that are shared by every demanded element. 1149 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1150 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1151 return false; // Don't fall through, will infinitely loop. 1152 case ISD::LOAD: { 1153 auto *LD = cast<LoadSDNode>(Op); 1154 if (getTargetConstantFromLoad(LD)) { 1155 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1156 return false; // Don't fall through, will infinitely loop. 1157 } 1158 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1159 // If this is a ZEXTLoad and we are looking at the loaded value. 1160 EVT MemVT = LD->getMemoryVT(); 1161 unsigned MemBits = MemVT.getScalarSizeInBits(); 1162 Known.Zero.setBitsFrom(MemBits); 1163 return false; // Don't fall through, will infinitely loop. 1164 } 1165 break; 1166 } 1167 case ISD::INSERT_VECTOR_ELT: { 1168 if (VT.isScalableVector()) 1169 return false; 1170 SDValue Vec = Op.getOperand(0); 1171 SDValue Scl = Op.getOperand(1); 1172 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1173 EVT VecVT = Vec.getValueType(); 1174 1175 // If index isn't constant, assume we need all vector elements AND the 1176 // inserted element. 1177 APInt DemandedVecElts(DemandedElts); 1178 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1179 unsigned Idx = CIdx->getZExtValue(); 1180 DemandedVecElts.clearBit(Idx); 1181 1182 // Inserted element is not required. 1183 if (!DemandedElts[Idx]) 1184 return TLO.CombineTo(Op, Vec); 1185 } 1186 1187 KnownBits KnownScl; 1188 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1189 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1190 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1191 return true; 1192 1193 Known = KnownScl.anyextOrTrunc(BitWidth); 1194 1195 KnownBits KnownVec; 1196 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1197 Depth + 1)) 1198 return true; 1199 1200 if (!!DemandedVecElts) 1201 Known = KnownBits::commonBits(Known, KnownVec); 1202 1203 return false; 1204 } 1205 case ISD::INSERT_SUBVECTOR: { 1206 if (VT.isScalableVector()) 1207 return false; 1208 // Demand any elements from the subvector and the remainder from the src its 1209 // inserted into. 1210 SDValue Src = Op.getOperand(0); 1211 SDValue Sub = Op.getOperand(1); 1212 uint64_t Idx = Op.getConstantOperandVal(2); 1213 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1214 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1215 APInt DemandedSrcElts = DemandedElts; 1216 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1217 1218 KnownBits KnownSub, KnownSrc; 1219 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1220 Depth + 1)) 1221 return true; 1222 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1223 Depth + 1)) 1224 return true; 1225 1226 Known.Zero.setAllBits(); 1227 Known.One.setAllBits(); 1228 if (!!DemandedSubElts) 1229 Known = KnownBits::commonBits(Known, KnownSub); 1230 if (!!DemandedSrcElts) 1231 Known = KnownBits::commonBits(Known, KnownSrc); 1232 1233 // Attempt to avoid multi-use src if we don't need anything from it. 1234 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1235 !DemandedSrcElts.isAllOnes()) { 1236 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1237 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1238 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1239 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1240 if (NewSub || NewSrc) { 1241 NewSub = NewSub ? NewSub : Sub; 1242 NewSrc = NewSrc ? NewSrc : Src; 1243 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1244 Op.getOperand(2)); 1245 return TLO.CombineTo(Op, NewOp); 1246 } 1247 } 1248 break; 1249 } 1250 case ISD::EXTRACT_SUBVECTOR: { 1251 if (VT.isScalableVector()) 1252 return false; 1253 // Offset the demanded elts by the subvector index. 1254 SDValue Src = Op.getOperand(0); 1255 if (Src.getValueType().isScalableVector()) 1256 break; 1257 uint64_t Idx = Op.getConstantOperandVal(1); 1258 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1259 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1260 1261 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1262 Depth + 1)) 1263 return true; 1264 1265 // Attempt to avoid multi-use src if we don't need anything from it. 1266 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1267 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1268 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1269 if (DemandedSrc) { 1270 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1271 Op.getOperand(1)); 1272 return TLO.CombineTo(Op, NewOp); 1273 } 1274 } 1275 break; 1276 } 1277 case ISD::CONCAT_VECTORS: { 1278 if (VT.isScalableVector()) 1279 return false; 1280 Known.Zero.setAllBits(); 1281 Known.One.setAllBits(); 1282 EVT SubVT = Op.getOperand(0).getValueType(); 1283 unsigned NumSubVecs = Op.getNumOperands(); 1284 unsigned NumSubElts = SubVT.getVectorNumElements(); 1285 for (unsigned i = 0; i != NumSubVecs; ++i) { 1286 APInt DemandedSubElts = 1287 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1288 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1289 Known2, TLO, Depth + 1)) 1290 return true; 1291 // Known bits are shared by every demanded subvector element. 1292 if (!!DemandedSubElts) 1293 Known = KnownBits::commonBits(Known, Known2); 1294 } 1295 break; 1296 } 1297 case ISD::VECTOR_SHUFFLE: { 1298 assert(!VT.isScalableVector()); 1299 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1300 1301 // Collect demanded elements from shuffle operands.. 1302 APInt DemandedLHS, DemandedRHS; 1303 if (!getShuffleDemandedElts(NumElts, ShuffleMask, DemandedElts, DemandedLHS, 1304 DemandedRHS)) 1305 break; 1306 1307 if (!!DemandedLHS || !!DemandedRHS) { 1308 SDValue Op0 = Op.getOperand(0); 1309 SDValue Op1 = Op.getOperand(1); 1310 1311 Known.Zero.setAllBits(); 1312 Known.One.setAllBits(); 1313 if (!!DemandedLHS) { 1314 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1315 Depth + 1)) 1316 return true; 1317 Known = KnownBits::commonBits(Known, Known2); 1318 } 1319 if (!!DemandedRHS) { 1320 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1321 Depth + 1)) 1322 return true; 1323 Known = KnownBits::commonBits(Known, Known2); 1324 } 1325 1326 // Attempt to avoid multi-use ops if we don't need anything from them. 1327 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1328 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1329 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1330 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1331 if (DemandedOp0 || DemandedOp1) { 1332 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1333 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1334 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1335 return TLO.CombineTo(Op, NewOp); 1336 } 1337 } 1338 break; 1339 } 1340 case ISD::AND: { 1341 SDValue Op0 = Op.getOperand(0); 1342 SDValue Op1 = Op.getOperand(1); 1343 1344 // If the RHS is a constant, check to see if the LHS would be zero without 1345 // using the bits from the RHS. Below, we use knowledge about the RHS to 1346 // simplify the LHS, here we're using information from the LHS to simplify 1347 // the RHS. 1348 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1349 // Do not increment Depth here; that can cause an infinite loop. 1350 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1351 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1352 if ((LHSKnown.Zero & DemandedBits) == 1353 (~RHSC->getAPIntValue() & DemandedBits)) 1354 return TLO.CombineTo(Op, Op0); 1355 1356 // If any of the set bits in the RHS are known zero on the LHS, shrink 1357 // the constant. 1358 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1359 DemandedElts, TLO)) 1360 return true; 1361 1362 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1363 // constant, but if this 'and' is only clearing bits that were just set by 1364 // the xor, then this 'and' can be eliminated by shrinking the mask of 1365 // the xor. For example, for a 32-bit X: 1366 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1367 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1368 LHSKnown.One == ~RHSC->getAPIntValue()) { 1369 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1370 return TLO.CombineTo(Op, Xor); 1371 } 1372 } 1373 1374 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1375 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1376 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && 1377 (Op0.getOperand(0).isUndef() || 1378 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1379 Op0->hasOneUse()) { 1380 unsigned NumSubElts = 1381 Op0.getOperand(1).getValueType().getVectorNumElements(); 1382 unsigned SubIdx = Op0.getConstantOperandVal(2); 1383 APInt DemandedSub = 1384 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1385 KnownBits KnownSubMask = 1386 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1387 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1388 SDValue NewAnd = 1389 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1390 SDValue NewInsert = 1391 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1392 Op0.getOperand(1), Op0.getOperand(2)); 1393 return TLO.CombineTo(Op, NewInsert); 1394 } 1395 } 1396 1397 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1398 Depth + 1)) 1399 return true; 1400 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1401 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1402 Known2, TLO, Depth + 1)) 1403 return true; 1404 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1405 1406 // If all of the demanded bits are known one on one side, return the other. 1407 // These bits cannot contribute to the result of the 'and'. 1408 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1409 return TLO.CombineTo(Op, Op0); 1410 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1411 return TLO.CombineTo(Op, Op1); 1412 // If all of the demanded bits in the inputs are known zeros, return zero. 1413 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1414 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1415 // If the RHS is a constant, see if we can simplify it. 1416 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1417 TLO)) 1418 return true; 1419 // If the operation can be done in a smaller type, do so. 1420 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1421 return true; 1422 1423 // Attempt to avoid multi-use ops if we don't need anything from them. 1424 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1425 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1426 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1427 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1428 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1429 if (DemandedOp0 || DemandedOp1) { 1430 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1431 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1432 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1433 return TLO.CombineTo(Op, NewOp); 1434 } 1435 } 1436 1437 Known &= Known2; 1438 break; 1439 } 1440 case ISD::OR: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 1444 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1445 Depth + 1)) 1446 return true; 1447 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1448 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1449 Known2, TLO, Depth + 1)) 1450 return true; 1451 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1452 1453 // If all of the demanded bits are known zero on one side, return the other. 1454 // These bits cannot contribute to the result of the 'or'. 1455 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1456 return TLO.CombineTo(Op, Op0); 1457 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1458 return TLO.CombineTo(Op, Op1); 1459 // If the RHS is a constant, see if we can simplify it. 1460 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1461 return true; 1462 // If the operation can be done in a smaller type, do so. 1463 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1464 return true; 1465 1466 // Attempt to avoid multi-use ops if we don't need anything from them. 1467 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1468 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1469 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1470 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1471 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1472 if (DemandedOp0 || DemandedOp1) { 1473 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1474 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1475 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1476 return TLO.CombineTo(Op, NewOp); 1477 } 1478 } 1479 1480 // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) 1481 // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. 1482 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && 1483 Op0->hasOneUse() && Op1->hasOneUse()) { 1484 // Attempt to match all commutations - m_c_Or would've been useful! 1485 for (int I = 0; I != 2; ++I) { 1486 SDValue X = Op.getOperand(I).getOperand(0); 1487 SDValue C1 = Op.getOperand(I).getOperand(1); 1488 SDValue Alt = Op.getOperand(1 - I).getOperand(0); 1489 SDValue C2 = Op.getOperand(1 - I).getOperand(1); 1490 if (Alt.getOpcode() == ISD::OR) { 1491 for (int J = 0; J != 2; ++J) { 1492 if (X == Alt.getOperand(J)) { 1493 SDValue Y = Alt.getOperand(1 - J); 1494 if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(ISD::OR, dl, VT, 1495 {C1, C2})) { 1496 SDValue MaskX = TLO.DAG.getNode(ISD::AND, dl, VT, X, C12); 1497 SDValue MaskY = TLO.DAG.getNode(ISD::AND, dl, VT, Y, C2); 1498 return TLO.CombineTo( 1499 Op, TLO.DAG.getNode(ISD::OR, dl, VT, MaskX, MaskY)); 1500 } 1501 } 1502 } 1503 } 1504 } 1505 } 1506 1507 Known |= Known2; 1508 break; 1509 } 1510 case ISD::XOR: { 1511 SDValue Op0 = Op.getOperand(0); 1512 SDValue Op1 = Op.getOperand(1); 1513 1514 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1515 Depth + 1)) 1516 return true; 1517 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1518 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1519 Depth + 1)) 1520 return true; 1521 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1522 1523 // If all of the demanded bits are known zero on one side, return the other. 1524 // These bits cannot contribute to the result of the 'xor'. 1525 if (DemandedBits.isSubsetOf(Known.Zero)) 1526 return TLO.CombineTo(Op, Op0); 1527 if (DemandedBits.isSubsetOf(Known2.Zero)) 1528 return TLO.CombineTo(Op, Op1); 1529 // If the operation can be done in a smaller type, do so. 1530 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1531 return true; 1532 1533 // If all of the unknown bits are known to be zero on one side or the other 1534 // turn this into an *inclusive* or. 1535 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1536 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1537 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1538 1539 ConstantSDNode *C = isConstOrConstSplat(Op1, DemandedElts); 1540 if (C) { 1541 // If one side is a constant, and all of the set bits in the constant are 1542 // also known set on the other side, turn this into an AND, as we know 1543 // the bits will be cleared. 1544 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1545 // NB: it is okay if more bits are known than are requested 1546 if (C->getAPIntValue() == Known2.One) { 1547 SDValue ANDC = 1548 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1549 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1550 } 1551 1552 // If the RHS is a constant, see if we can change it. Don't alter a -1 1553 // constant because that's a 'not' op, and that is better for combining 1554 // and codegen. 1555 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1556 // We're flipping all demanded bits. Flip the undemanded bits too. 1557 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1558 return TLO.CombineTo(Op, New); 1559 } 1560 1561 unsigned Op0Opcode = Op0.getOpcode(); 1562 if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { 1563 if (ConstantSDNode *ShiftC = 1564 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1565 // Don't crash on an oversized shift. We can not guarantee that a 1566 // bogus shift has been simplified to undef. 1567 if (ShiftC->getAPIntValue().ult(BitWidth)) { 1568 uint64_t ShiftAmt = ShiftC->getZExtValue(); 1569 APInt Ones = APInt::getAllOnes(BitWidth); 1570 Ones = Op0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) 1571 : Ones.lshr(ShiftAmt); 1572 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 1573 if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && 1574 TLI.isDesirableToCommuteXorWithShift(Op.getNode())) { 1575 // If the xor constant is a demanded mask, do a 'not' before the 1576 // shift: 1577 // xor (X << ShiftC), XorC --> (not X) << ShiftC 1578 // xor (X >> ShiftC), XorC --> (not X) >> ShiftC 1579 SDValue Not = TLO.DAG.getNOT(dl, Op0.getOperand(0), VT); 1580 return TLO.CombineTo(Op, TLO.DAG.getNode(Op0Opcode, dl, VT, Not, 1581 Op0.getOperand(1))); 1582 } 1583 } 1584 } 1585 } 1586 } 1587 1588 // If we can't turn this into a 'not', try to shrink the constant. 1589 if (!C || !C->isAllOnes()) 1590 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1591 return true; 1592 1593 // Attempt to avoid multi-use ops if we don't need anything from them. 1594 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1595 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1596 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1597 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1598 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1599 if (DemandedOp0 || DemandedOp1) { 1600 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1601 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1602 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1603 return TLO.CombineTo(Op, NewOp); 1604 } 1605 } 1606 1607 Known ^= Known2; 1608 break; 1609 } 1610 case ISD::SELECT: 1611 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1612 Depth + 1)) 1613 return true; 1614 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1615 Depth + 1)) 1616 return true; 1617 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1618 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1619 1620 // If the operands are constants, see if we can simplify them. 1621 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1622 return true; 1623 1624 // Only known if known in both the LHS and RHS. 1625 Known = KnownBits::commonBits(Known, Known2); 1626 break; 1627 case ISD::VSELECT: 1628 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1629 Known, TLO, Depth + 1)) 1630 return true; 1631 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1632 Known2, TLO, Depth + 1)) 1633 return true; 1634 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1635 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1636 1637 // Only known if known in both the LHS and RHS. 1638 Known = KnownBits::commonBits(Known, Known2); 1639 break; 1640 case ISD::SELECT_CC: 1641 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1642 Depth + 1)) 1643 return true; 1644 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1645 Depth + 1)) 1646 return true; 1647 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1648 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1649 1650 // If the operands are constants, see if we can simplify them. 1651 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1652 return true; 1653 1654 // Only known if known in both the LHS and RHS. 1655 Known = KnownBits::commonBits(Known, Known2); 1656 break; 1657 case ISD::SETCC: { 1658 SDValue Op0 = Op.getOperand(0); 1659 SDValue Op1 = Op.getOperand(1); 1660 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1661 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1662 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1663 // -1, we may be able to bypass the setcc. 1664 if (DemandedBits.isSignMask() && 1665 Op0.getScalarValueSizeInBits() == BitWidth && 1666 getBooleanContents(Op0.getValueType()) == 1667 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1668 // If we're testing X < 0, then this compare isn't needed - just use X! 1669 // FIXME: We're limiting to integer types here, but this should also work 1670 // if we don't care about FP signed-zero. The use of SETLT with FP means 1671 // that we don't care about NaNs. 1672 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1673 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1674 return TLO.CombineTo(Op, Op0); 1675 1676 // TODO: Should we check for other forms of sign-bit comparisons? 1677 // Examples: X <= -1, X >= 0 1678 } 1679 if (getBooleanContents(Op0.getValueType()) == 1680 TargetLowering::ZeroOrOneBooleanContent && 1681 BitWidth > 1) 1682 Known.Zero.setBitsFrom(1); 1683 break; 1684 } 1685 case ISD::SHL: { 1686 SDValue Op0 = Op.getOperand(0); 1687 SDValue Op1 = Op.getOperand(1); 1688 EVT ShiftVT = Op1.getValueType(); 1689 1690 if (const APInt *SA = 1691 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1692 unsigned ShAmt = SA->getZExtValue(); 1693 if (ShAmt == 0) 1694 return TLO.CombineTo(Op, Op0); 1695 1696 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1697 // single shift. We can do this if the bottom bits (which are shifted 1698 // out) are never demanded. 1699 // TODO - support non-uniform vector amounts. 1700 if (Op0.getOpcode() == ISD::SRL) { 1701 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1702 if (const APInt *SA2 = 1703 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1704 unsigned C1 = SA2->getZExtValue(); 1705 unsigned Opc = ISD::SHL; 1706 int Diff = ShAmt - C1; 1707 if (Diff < 0) { 1708 Diff = -Diff; 1709 Opc = ISD::SRL; 1710 } 1711 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1712 return TLO.CombineTo( 1713 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1714 } 1715 } 1716 } 1717 1718 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1719 // are not demanded. This will likely allow the anyext to be folded away. 1720 // TODO - support non-uniform vector amounts. 1721 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1722 SDValue InnerOp = Op0.getOperand(0); 1723 EVT InnerVT = InnerOp.getValueType(); 1724 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1725 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1726 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1727 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1728 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1729 ShTy = InnerVT; 1730 SDValue NarrowShl = 1731 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1732 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1733 return TLO.CombineTo( 1734 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1735 } 1736 1737 // Repeat the SHL optimization above in cases where an extension 1738 // intervenes: (shl (anyext (shr x, c1)), c2) to 1739 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1740 // aren't demanded (as above) and that the shifted upper c1 bits of 1741 // x aren't demanded. 1742 // TODO - support non-uniform vector amounts. 1743 if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && 1744 InnerOp.hasOneUse()) { 1745 if (const APInt *SA2 = 1746 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1747 unsigned InnerShAmt = SA2->getZExtValue(); 1748 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1749 DemandedBits.getActiveBits() <= 1750 (InnerBits - InnerShAmt + ShAmt) && 1751 DemandedBits.countTrailingZeros() >= ShAmt) { 1752 SDValue NewSA = 1753 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1754 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1755 InnerOp.getOperand(0)); 1756 return TLO.CombineTo( 1757 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1758 } 1759 } 1760 } 1761 } 1762 1763 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1764 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1765 Depth + 1)) 1766 return true; 1767 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1768 Known.Zero <<= ShAmt; 1769 Known.One <<= ShAmt; 1770 // low bits known zero. 1771 Known.Zero.setLowBits(ShAmt); 1772 1773 // Attempt to avoid multi-use ops if we don't need anything from them. 1774 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1775 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1776 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1777 if (DemandedOp0) { 1778 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1779 return TLO.CombineTo(Op, NewOp); 1780 } 1781 } 1782 1783 // Try shrinking the operation as long as the shift amount will still be 1784 // in range. 1785 if ((ShAmt < DemandedBits.getActiveBits()) && 1786 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1787 return true; 1788 } else { 1789 // This is a variable shift, so we can't shift the demand mask by a known 1790 // amount. But if we are not demanding high bits, then we are not 1791 // demanding those bits from the pre-shifted operand either. 1792 if (unsigned CTLZ = DemandedBits.countLeadingZeros()) { 1793 APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); 1794 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO, 1795 Depth + 1)) { 1796 SDNodeFlags Flags = Op.getNode()->getFlags(); 1797 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1798 // Disable the nsw and nuw flags. We can no longer guarantee that we 1799 // won't wrap after simplification. 1800 Flags.setNoSignedWrap(false); 1801 Flags.setNoUnsignedWrap(false); 1802 Op->setFlags(Flags); 1803 } 1804 return true; 1805 } 1806 Known.resetAll(); 1807 } 1808 } 1809 1810 // If we are only demanding sign bits then we can use the shift source 1811 // directly. 1812 if (const APInt *MaxSA = 1813 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1814 unsigned ShAmt = MaxSA->getZExtValue(); 1815 unsigned NumSignBits = 1816 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1817 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1818 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1819 return TLO.CombineTo(Op, Op0); 1820 } 1821 break; 1822 } 1823 case ISD::SRL: { 1824 SDValue Op0 = Op.getOperand(0); 1825 SDValue Op1 = Op.getOperand(1); 1826 EVT ShiftVT = Op1.getValueType(); 1827 1828 // Try to match AVG patterns. 1829 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1830 DemandedElts, Depth + 1)) 1831 return TLO.CombineTo(Op, AVG); 1832 1833 if (const APInt *SA = 1834 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1835 unsigned ShAmt = SA->getZExtValue(); 1836 if (ShAmt == 0) 1837 return TLO.CombineTo(Op, Op0); 1838 1839 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1840 // single shift. We can do this if the top bits (which are shifted out) 1841 // are never demanded. 1842 // TODO - support non-uniform vector amounts. 1843 if (Op0.getOpcode() == ISD::SHL) { 1844 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1845 if (const APInt *SA2 = 1846 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1847 unsigned C1 = SA2->getZExtValue(); 1848 unsigned Opc = ISD::SRL; 1849 int Diff = ShAmt - C1; 1850 if (Diff < 0) { 1851 Diff = -Diff; 1852 Opc = ISD::SHL; 1853 } 1854 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1855 return TLO.CombineTo( 1856 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1857 } 1858 } 1859 } 1860 1861 APInt InDemandedMask = (DemandedBits << ShAmt); 1862 1863 // If the shift is exact, then it does demand the low bits (and knows that 1864 // they are zero). 1865 if (Op->getFlags().hasExact()) 1866 InDemandedMask.setLowBits(ShAmt); 1867 1868 // Compute the new bits that are at the top now. 1869 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1870 Depth + 1)) 1871 return true; 1872 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1873 Known.Zero.lshrInPlace(ShAmt); 1874 Known.One.lshrInPlace(ShAmt); 1875 // High bits known zero. 1876 Known.Zero.setHighBits(ShAmt); 1877 1878 // Attempt to avoid multi-use ops if we don't need anything from them. 1879 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1880 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1881 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1882 if (DemandedOp0) { 1883 SDValue NewOp = TLO.DAG.getNode(ISD::SRL, dl, VT, DemandedOp0, Op1); 1884 return TLO.CombineTo(Op, NewOp); 1885 } 1886 } 1887 } 1888 break; 1889 } 1890 case ISD::SRA: { 1891 SDValue Op0 = Op.getOperand(0); 1892 SDValue Op1 = Op.getOperand(1); 1893 EVT ShiftVT = Op1.getValueType(); 1894 1895 // If we only want bits that already match the signbit then we don't need 1896 // to shift. 1897 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1898 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1899 NumHiDemandedBits) 1900 return TLO.CombineTo(Op, Op0); 1901 1902 // If this is an arithmetic shift right and only the low-bit is set, we can 1903 // always convert this into a logical shr, even if the shift amount is 1904 // variable. The low bit of the shift cannot be an input sign bit unless 1905 // the shift amount is >= the size of the datatype, which is undefined. 1906 if (DemandedBits.isOne()) 1907 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1908 1909 // Try to match AVG patterns. 1910 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1911 DemandedElts, Depth + 1)) 1912 return TLO.CombineTo(Op, AVG); 1913 1914 if (const APInt *SA = 1915 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1916 unsigned ShAmt = SA->getZExtValue(); 1917 if (ShAmt == 0) 1918 return TLO.CombineTo(Op, Op0); 1919 1920 APInt InDemandedMask = (DemandedBits << ShAmt); 1921 1922 // If the shift is exact, then it does demand the low bits (and knows that 1923 // they are zero). 1924 if (Op->getFlags().hasExact()) 1925 InDemandedMask.setLowBits(ShAmt); 1926 1927 // If any of the demanded bits are produced by the sign extension, we also 1928 // demand the input sign bit. 1929 if (DemandedBits.countLeadingZeros() < ShAmt) 1930 InDemandedMask.setSignBit(); 1931 1932 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1933 Depth + 1)) 1934 return true; 1935 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1936 Known.Zero.lshrInPlace(ShAmt); 1937 Known.One.lshrInPlace(ShAmt); 1938 1939 // If the input sign bit is known to be zero, or if none of the top bits 1940 // are demanded, turn this into an unsigned shift right. 1941 if (Known.Zero[BitWidth - ShAmt - 1] || 1942 DemandedBits.countLeadingZeros() >= ShAmt) { 1943 SDNodeFlags Flags; 1944 Flags.setExact(Op->getFlags().hasExact()); 1945 return TLO.CombineTo( 1946 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1947 } 1948 1949 int Log2 = DemandedBits.exactLogBase2(); 1950 if (Log2 >= 0) { 1951 // The bit must come from the sign. 1952 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1953 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1954 } 1955 1956 if (Known.One[BitWidth - ShAmt - 1]) 1957 // New bits are known one. 1958 Known.One.setHighBits(ShAmt); 1959 1960 // Attempt to avoid multi-use ops if we don't need anything from them. 1961 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1962 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1963 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1964 if (DemandedOp0) { 1965 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1966 return TLO.CombineTo(Op, NewOp); 1967 } 1968 } 1969 } 1970 break; 1971 } 1972 case ISD::FSHL: 1973 case ISD::FSHR: { 1974 SDValue Op0 = Op.getOperand(0); 1975 SDValue Op1 = Op.getOperand(1); 1976 SDValue Op2 = Op.getOperand(2); 1977 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1978 1979 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1980 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1981 1982 // For fshl, 0-shift returns the 1st arg. 1983 // For fshr, 0-shift returns the 2nd arg. 1984 if (Amt == 0) { 1985 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1986 Known, TLO, Depth + 1)) 1987 return true; 1988 break; 1989 } 1990 1991 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1992 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1993 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1994 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1995 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1996 Depth + 1)) 1997 return true; 1998 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1999 Depth + 1)) 2000 return true; 2001 2002 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2003 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 2004 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2005 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 2006 Known.One |= Known2.One; 2007 Known.Zero |= Known2.Zero; 2008 2009 // Attempt to avoid multi-use ops if we don't need anything from them. 2010 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 2011 !DemandedElts.isAllOnes()) { 2012 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2013 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 2014 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2015 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 2016 if (DemandedOp0 || DemandedOp1) { 2017 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 2018 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 2019 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 2020 DemandedOp1, Op2); 2021 return TLO.CombineTo(Op, NewOp); 2022 } 2023 } 2024 } 2025 2026 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2027 if (isPowerOf2_32(BitWidth)) { 2028 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 2029 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 2030 Known2, TLO, Depth + 1)) 2031 return true; 2032 } 2033 break; 2034 } 2035 case ISD::ROTL: 2036 case ISD::ROTR: { 2037 SDValue Op0 = Op.getOperand(0); 2038 SDValue Op1 = Op.getOperand(1); 2039 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 2040 2041 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 2042 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 2043 return TLO.CombineTo(Op, Op0); 2044 2045 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 2046 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 2047 unsigned RevAmt = BitWidth - Amt; 2048 2049 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 2050 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 2051 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 2052 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 2053 Depth + 1)) 2054 return true; 2055 2056 // rot*(x, 0) --> x 2057 if (Amt == 0) 2058 return TLO.CombineTo(Op, Op0); 2059 2060 // See if we don't demand either half of the rotated bits. 2061 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 2062 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 2063 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 2064 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 2065 } 2066 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 2067 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 2068 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 2069 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 2070 } 2071 } 2072 2073 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 2074 if (isPowerOf2_32(BitWidth)) { 2075 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 2076 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 2077 Depth + 1)) 2078 return true; 2079 } 2080 break; 2081 } 2082 case ISD::UMIN: { 2083 // Check if one arg is always less than (or equal) to the other arg. 2084 SDValue Op0 = Op.getOperand(0); 2085 SDValue Op1 = Op.getOperand(1); 2086 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2087 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2088 Known = KnownBits::umin(Known0, Known1); 2089 if (std::optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 2090 return TLO.CombineTo(Op, *IsULE ? Op0 : Op1); 2091 if (std::optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2092 return TLO.CombineTo(Op, *IsULT ? Op0 : Op1); 2093 break; 2094 } 2095 case ISD::UMAX: { 2096 // Check if one arg is always greater than (or equal) to the other arg. 2097 SDValue Op0 = Op.getOperand(0); 2098 SDValue Op1 = Op.getOperand(1); 2099 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2100 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2101 Known = KnownBits::umax(Known0, Known1); 2102 if (std::optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2103 return TLO.CombineTo(Op, *IsUGE ? Op0 : Op1); 2104 if (std::optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2105 return TLO.CombineTo(Op, *IsUGT ? Op0 : Op1); 2106 break; 2107 } 2108 case ISD::BITREVERSE: { 2109 SDValue Src = Op.getOperand(0); 2110 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2111 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2112 Depth + 1)) 2113 return true; 2114 Known.One = Known2.One.reverseBits(); 2115 Known.Zero = Known2.Zero.reverseBits(); 2116 break; 2117 } 2118 case ISD::BSWAP: { 2119 SDValue Src = Op.getOperand(0); 2120 2121 // If the only bits demanded come from one byte of the bswap result, 2122 // just shift the input byte into position to eliminate the bswap. 2123 unsigned NLZ = DemandedBits.countLeadingZeros(); 2124 unsigned NTZ = DemandedBits.countTrailingZeros(); 2125 2126 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2127 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2128 // have 14 leading zeros, round to 8. 2129 NLZ = alignDown(NLZ, 8); 2130 NTZ = alignDown(NTZ, 8); 2131 // If we need exactly one byte, we can do this transformation. 2132 if (BitWidth - NLZ - NTZ == 8) { 2133 // Replace this with either a left or right shift to get the byte into 2134 // the right place. 2135 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2136 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2137 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2138 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2139 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2140 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2141 return TLO.CombineTo(Op, NewOp); 2142 } 2143 } 2144 2145 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2146 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2147 Depth + 1)) 2148 return true; 2149 Known.One = Known2.One.byteSwap(); 2150 Known.Zero = Known2.Zero.byteSwap(); 2151 break; 2152 } 2153 case ISD::CTPOP: { 2154 // If only 1 bit is demanded, replace with PARITY as long as we're before 2155 // op legalization. 2156 // FIXME: Limit to scalars for now. 2157 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2158 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2159 Op.getOperand(0))); 2160 2161 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2162 break; 2163 } 2164 case ISD::SIGN_EXTEND_INREG: { 2165 SDValue Op0 = Op.getOperand(0); 2166 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2167 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2168 2169 // If we only care about the highest bit, don't bother shifting right. 2170 if (DemandedBits.isSignMask()) { 2171 unsigned MinSignedBits = 2172 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2173 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2174 // However if the input is already sign extended we expect the sign 2175 // extension to be dropped altogether later and do not simplify. 2176 if (!AlreadySignExtended) { 2177 // Compute the correct shift amount type, which must be getShiftAmountTy 2178 // for scalar types after legalization. 2179 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2180 getShiftAmountTy(VT, DL)); 2181 return TLO.CombineTo(Op, 2182 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2183 } 2184 } 2185 2186 // If none of the extended bits are demanded, eliminate the sextinreg. 2187 if (DemandedBits.getActiveBits() <= ExVTBits) 2188 return TLO.CombineTo(Op, Op0); 2189 2190 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2191 2192 // Since the sign extended bits are demanded, we know that the sign 2193 // bit is demanded. 2194 InputDemandedBits.setBit(ExVTBits - 1); 2195 2196 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2197 Depth + 1)) 2198 return true; 2199 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2200 2201 // If the sign bit of the input is known set or clear, then we know the 2202 // top bits of the result. 2203 2204 // If the input sign bit is known zero, convert this into a zero extension. 2205 if (Known.Zero[ExVTBits - 1]) 2206 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2207 2208 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2209 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2210 Known.One.setBitsFrom(ExVTBits); 2211 Known.Zero &= Mask; 2212 } else { // Input sign bit unknown 2213 Known.Zero &= Mask; 2214 Known.One &= Mask; 2215 } 2216 break; 2217 } 2218 case ISD::BUILD_PAIR: { 2219 EVT HalfVT = Op.getOperand(0).getValueType(); 2220 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2221 2222 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2223 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2224 2225 KnownBits KnownLo, KnownHi; 2226 2227 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2228 return true; 2229 2230 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2231 return true; 2232 2233 Known = KnownHi.concat(KnownLo); 2234 break; 2235 } 2236 case ISD::ZERO_EXTEND_VECTOR_INREG: 2237 if (VT.isScalableVector()) 2238 return false; 2239 [[fallthrough]]; 2240 case ISD::ZERO_EXTEND: { 2241 SDValue Src = Op.getOperand(0); 2242 EVT SrcVT = Src.getValueType(); 2243 unsigned InBits = SrcVT.getScalarSizeInBits(); 2244 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2245 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2246 2247 // If none of the top bits are demanded, convert this into an any_extend. 2248 if (DemandedBits.getActiveBits() <= InBits) { 2249 // If we only need the non-extended bits of the bottom element 2250 // then we can just bitcast to the result. 2251 if (IsLE && IsVecInReg && DemandedElts == 1 && 2252 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2253 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2254 2255 unsigned Opc = 2256 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2257 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2258 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2259 } 2260 2261 APInt InDemandedBits = DemandedBits.trunc(InBits); 2262 APInt InDemandedElts = DemandedElts.zext(InElts); 2263 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2264 Depth + 1)) 2265 return true; 2266 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2267 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2268 Known = Known.zext(BitWidth); 2269 2270 // Attempt to avoid multi-use ops if we don't need anything from them. 2271 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2272 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2273 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2274 break; 2275 } 2276 case ISD::SIGN_EXTEND_VECTOR_INREG: 2277 if (VT.isScalableVector()) 2278 return false; 2279 [[fallthrough]]; 2280 case ISD::SIGN_EXTEND: { 2281 SDValue Src = Op.getOperand(0); 2282 EVT SrcVT = Src.getValueType(); 2283 unsigned InBits = SrcVT.getScalarSizeInBits(); 2284 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2285 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2286 2287 // If none of the top bits are demanded, convert this into an any_extend. 2288 if (DemandedBits.getActiveBits() <= InBits) { 2289 // If we only need the non-extended bits of the bottom element 2290 // then we can just bitcast to the result. 2291 if (IsLE && IsVecInReg && DemandedElts == 1 && 2292 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2293 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2294 2295 unsigned Opc = 2296 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2297 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2298 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2299 } 2300 2301 APInt InDemandedBits = DemandedBits.trunc(InBits); 2302 APInt InDemandedElts = DemandedElts.zext(InElts); 2303 2304 // Since some of the sign extended bits are demanded, we know that the sign 2305 // bit is demanded. 2306 InDemandedBits.setBit(InBits - 1); 2307 2308 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2309 Depth + 1)) 2310 return true; 2311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2312 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2313 2314 // If the sign bit is known one, the top bits match. 2315 Known = Known.sext(BitWidth); 2316 2317 // If the sign bit is known zero, convert this to a zero extend. 2318 if (Known.isNonNegative()) { 2319 unsigned Opc = 2320 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2321 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2322 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2323 } 2324 2325 // Attempt to avoid multi-use ops if we don't need anything from them. 2326 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2327 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2328 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2329 break; 2330 } 2331 case ISD::ANY_EXTEND_VECTOR_INREG: 2332 if (VT.isScalableVector()) 2333 return false; 2334 [[fallthrough]]; 2335 case ISD::ANY_EXTEND: { 2336 SDValue Src = Op.getOperand(0); 2337 EVT SrcVT = Src.getValueType(); 2338 unsigned InBits = SrcVT.getScalarSizeInBits(); 2339 unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; 2340 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2341 2342 // If we only need the bottom element then we can just bitcast. 2343 // TODO: Handle ANY_EXTEND? 2344 if (IsLE && IsVecInReg && DemandedElts == 1 && 2345 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2346 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2347 2348 APInt InDemandedBits = DemandedBits.trunc(InBits); 2349 APInt InDemandedElts = DemandedElts.zext(InElts); 2350 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2351 Depth + 1)) 2352 return true; 2353 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2354 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2355 Known = Known.anyext(BitWidth); 2356 2357 // Attempt to avoid multi-use ops if we don't need anything from them. 2358 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2359 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2360 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2361 break; 2362 } 2363 case ISD::TRUNCATE: { 2364 SDValue Src = Op.getOperand(0); 2365 2366 // Simplify the input, using demanded bit information, and compute the known 2367 // zero/one bits live out. 2368 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2369 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2370 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2371 Depth + 1)) 2372 return true; 2373 Known = Known.trunc(BitWidth); 2374 2375 // Attempt to avoid multi-use ops if we don't need anything from them. 2376 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2377 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2378 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2379 2380 // If the input is only used by this truncate, see if we can shrink it based 2381 // on the known demanded bits. 2382 switch (Src.getOpcode()) { 2383 default: 2384 break; 2385 case ISD::SRL: 2386 // Shrink SRL by a constant if none of the high bits shifted in are 2387 // demanded. 2388 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2389 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2390 // undesirable. 2391 break; 2392 2393 if (Src.getNode()->hasOneUse()) { 2394 const APInt *ShAmtC = 2395 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2396 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2397 break; 2398 uint64_t ShVal = ShAmtC->getZExtValue(); 2399 2400 APInt HighBits = 2401 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2402 HighBits.lshrInPlace(ShVal); 2403 HighBits = HighBits.trunc(BitWidth); 2404 2405 if (!(HighBits & DemandedBits)) { 2406 // None of the shifted in bits are needed. Add a truncate of the 2407 // shift input, then shift it. 2408 SDValue NewShAmt = TLO.DAG.getConstant( 2409 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2410 SDValue NewTrunc = 2411 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2412 return TLO.CombineTo( 2413 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2414 } 2415 } 2416 break; 2417 } 2418 2419 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2420 break; 2421 } 2422 case ISD::AssertZext: { 2423 // AssertZext demands all of the high bits, plus any of the low bits 2424 // demanded by its users. 2425 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2426 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2427 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2428 TLO, Depth + 1)) 2429 return true; 2430 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2431 2432 Known.Zero |= ~InMask; 2433 Known.One &= (~Known.Zero); 2434 break; 2435 } 2436 case ISD::EXTRACT_VECTOR_ELT: { 2437 SDValue Src = Op.getOperand(0); 2438 SDValue Idx = Op.getOperand(1); 2439 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2440 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2441 2442 if (SrcEltCnt.isScalable()) 2443 return false; 2444 2445 // Demand the bits from every vector element without a constant index. 2446 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2447 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2448 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2449 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2450 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2451 2452 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2453 // anything about the extended bits. 2454 APInt DemandedSrcBits = DemandedBits; 2455 if (BitWidth > EltBitWidth) 2456 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2457 2458 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2459 Depth + 1)) 2460 return true; 2461 2462 // Attempt to avoid multi-use ops if we don't need anything from them. 2463 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2464 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2465 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2466 SDValue NewOp = 2467 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2468 return TLO.CombineTo(Op, NewOp); 2469 } 2470 } 2471 2472 Known = Known2; 2473 if (BitWidth > EltBitWidth) 2474 Known = Known.anyext(BitWidth); 2475 break; 2476 } 2477 case ISD::BITCAST: { 2478 if (VT.isScalableVector()) 2479 return false; 2480 SDValue Src = Op.getOperand(0); 2481 EVT SrcVT = Src.getValueType(); 2482 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2483 2484 // If this is an FP->Int bitcast and if the sign bit is the only 2485 // thing demanded, turn this into a FGETSIGN. 2486 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2487 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2488 SrcVT.isFloatingPoint()) { 2489 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2490 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2491 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2492 SrcVT != MVT::f128) { 2493 // Cannot eliminate/lower SHL for f128 yet. 2494 EVT Ty = OpVTLegal ? VT : MVT::i32; 2495 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2496 // place. We expect the SHL to be eliminated by other optimizations. 2497 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2498 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2499 if (!OpVTLegal && OpVTSizeInBits > 32) 2500 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2501 unsigned ShVal = Op.getValueSizeInBits() - 1; 2502 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2503 return TLO.CombineTo(Op, 2504 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2505 } 2506 } 2507 2508 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2509 // Demand the elt/bit if any of the original elts/bits are demanded. 2510 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2511 unsigned Scale = BitWidth / NumSrcEltBits; 2512 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2513 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2514 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2515 for (unsigned i = 0; i != Scale; ++i) { 2516 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2517 unsigned BitOffset = EltOffset * NumSrcEltBits; 2518 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2519 if (!Sub.isZero()) { 2520 DemandedSrcBits |= Sub; 2521 for (unsigned j = 0; j != NumElts; ++j) 2522 if (DemandedElts[j]) 2523 DemandedSrcElts.setBit((j * Scale) + i); 2524 } 2525 } 2526 2527 APInt KnownSrcUndef, KnownSrcZero; 2528 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2529 KnownSrcZero, TLO, Depth + 1)) 2530 return true; 2531 2532 KnownBits KnownSrcBits; 2533 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2534 KnownSrcBits, TLO, Depth + 1)) 2535 return true; 2536 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2537 // TODO - bigendian once we have test coverage. 2538 unsigned Scale = NumSrcEltBits / BitWidth; 2539 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2540 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2541 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2542 for (unsigned i = 0; i != NumElts; ++i) 2543 if (DemandedElts[i]) { 2544 unsigned Offset = (i % Scale) * BitWidth; 2545 DemandedSrcBits.insertBits(DemandedBits, Offset); 2546 DemandedSrcElts.setBit(i / Scale); 2547 } 2548 2549 if (SrcVT.isVector()) { 2550 APInt KnownSrcUndef, KnownSrcZero; 2551 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2552 KnownSrcZero, TLO, Depth + 1)) 2553 return true; 2554 } 2555 2556 KnownBits KnownSrcBits; 2557 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2558 KnownSrcBits, TLO, Depth + 1)) 2559 return true; 2560 } 2561 2562 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2563 // recursive call where Known may be useful to the caller. 2564 if (Depth > 0) { 2565 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2566 return false; 2567 } 2568 break; 2569 } 2570 case ISD::MUL: 2571 if (DemandedBits.isPowerOf2()) { 2572 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2573 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2574 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2575 unsigned CTZ = DemandedBits.countTrailingZeros(); 2576 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2577 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2578 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2579 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2580 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2581 return TLO.CombineTo(Op, Shl); 2582 } 2583 } 2584 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2585 // X * X is odd iff X is odd. 2586 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2587 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2588 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2589 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2590 return TLO.CombineTo(Op, And1); 2591 } 2592 [[fallthrough]]; 2593 case ISD::ADD: 2594 case ISD::SUB: { 2595 // Add, Sub, and Mul don't demand any bits in positions beyond that 2596 // of the highest bit demanded of them. 2597 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2598 SDNodeFlags Flags = Op.getNode()->getFlags(); 2599 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2600 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2601 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2602 Depth + 1) || 2603 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2604 Depth + 1) || 2605 // See if the operation should be performed at a smaller bit width. 2606 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2607 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2608 // Disable the nsw and nuw flags. We can no longer guarantee that we 2609 // won't wrap after simplification. 2610 Flags.setNoSignedWrap(false); 2611 Flags.setNoUnsignedWrap(false); 2612 Op->setFlags(Flags); 2613 } 2614 return true; 2615 } 2616 2617 // neg x with only low bit demanded is simply x. 2618 if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && 2619 isa<ConstantSDNode>(Op0) && cast<ConstantSDNode>(Op0)->isZero()) 2620 return TLO.CombineTo(Op, Op1); 2621 2622 // Attempt to avoid multi-use ops if we don't need anything from them. 2623 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2624 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2625 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2626 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2627 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2628 if (DemandedOp0 || DemandedOp1) { 2629 Flags.setNoSignedWrap(false); 2630 Flags.setNoUnsignedWrap(false); 2631 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2632 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2633 SDValue NewOp = 2634 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2635 return TLO.CombineTo(Op, NewOp); 2636 } 2637 } 2638 2639 // If we have a constant operand, we may be able to turn it into -1 if we 2640 // do not demand the high bits. This can make the constant smaller to 2641 // encode, allow more general folding, or match specialized instruction 2642 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2643 // is probably not useful (and could be detrimental). 2644 ConstantSDNode *C = isConstOrConstSplat(Op1); 2645 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2646 if (C && !C->isAllOnes() && !C->isOne() && 2647 (C->getAPIntValue() | HighMask).isAllOnes()) { 2648 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2649 // Disable the nsw and nuw flags. We can no longer guarantee that we 2650 // won't wrap after simplification. 2651 Flags.setNoSignedWrap(false); 2652 Flags.setNoUnsignedWrap(false); 2653 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2654 return TLO.CombineTo(Op, NewOp); 2655 } 2656 2657 // Match a multiply with a disguised negated-power-of-2 and convert to a 2658 // an equivalent shift-left amount. 2659 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2660 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2661 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2662 return 0; 2663 2664 // Don't touch opaque constants. Also, ignore zero and power-of-2 2665 // multiplies. Those will get folded later. 2666 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2667 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2668 !MulC->getAPIntValue().isPowerOf2()) { 2669 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2670 if (UnmaskedC.isNegatedPowerOf2()) 2671 return (-UnmaskedC).logBase2(); 2672 } 2673 return 0; 2674 }; 2675 2676 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2677 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2678 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2679 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2680 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2681 return TLO.CombineTo(Op, Res); 2682 }; 2683 2684 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2685 if (Op.getOpcode() == ISD::ADD) { 2686 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2687 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2688 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2689 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2690 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2691 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2692 } 2693 if (Op.getOpcode() == ISD::SUB) { 2694 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2695 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2696 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2697 } 2698 } 2699 2700 [[fallthrough]]; 2701 } 2702 default: 2703 // We also ask the target about intrinsics (which could be specific to it). 2704 if (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2705 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 2706 // TODO: Probably okay to remove after audit; here to reduce change size 2707 // in initial enablement patch for scalable vectors 2708 if (Op.getValueType().isScalableVector()) 2709 break; 2710 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2711 Known, TLO, Depth)) 2712 return true; 2713 break; 2714 } 2715 2716 // Just use computeKnownBits to compute output bits. 2717 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2718 break; 2719 } 2720 2721 // If we know the value of all of the demanded bits, return this as a 2722 // constant. 2723 if (!isTargetCanonicalConstantNode(Op) && 2724 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2725 // Avoid folding to a constant if any OpaqueConstant is involved. 2726 const SDNode *N = Op.getNode(); 2727 for (SDNode *Op : 2728 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2729 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2730 if (C->isOpaque()) 2731 return false; 2732 } 2733 if (VT.isInteger()) 2734 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2735 if (VT.isFloatingPoint()) 2736 return TLO.CombineTo( 2737 Op, 2738 TLO.DAG.getConstantFP( 2739 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2740 } 2741 2742 // A multi use 'all demanded elts' simplify failed to find any knownbits. 2743 // Try again just for the original demanded elts. 2744 // Ensure we do this AFTER constant folding above. 2745 if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) 2746 Known = TLO.DAG.computeKnownBits(Op, OriginalDemandedElts, Depth); 2747 2748 return false; 2749 } 2750 2751 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2752 const APInt &DemandedElts, 2753 DAGCombinerInfo &DCI) const { 2754 SelectionDAG &DAG = DCI.DAG; 2755 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2756 !DCI.isBeforeLegalizeOps()); 2757 2758 APInt KnownUndef, KnownZero; 2759 bool Simplified = 2760 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2761 if (Simplified) { 2762 DCI.AddToWorklist(Op.getNode()); 2763 DCI.CommitTargetLoweringOpt(TLO); 2764 } 2765 2766 return Simplified; 2767 } 2768 2769 /// Given a vector binary operation and known undefined elements for each input 2770 /// operand, compute whether each element of the output is undefined. 2771 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2772 const APInt &UndefOp0, 2773 const APInt &UndefOp1) { 2774 EVT VT = BO.getValueType(); 2775 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2776 "Vector binop only"); 2777 2778 EVT EltVT = VT.getVectorElementType(); 2779 unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; 2780 assert(UndefOp0.getBitWidth() == NumElts && 2781 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2782 2783 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2784 const APInt &UndefVals) { 2785 if (UndefVals[Index]) 2786 return DAG.getUNDEF(EltVT); 2787 2788 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2789 // Try hard to make sure that the getNode() call is not creating temporary 2790 // nodes. Ignore opaque integers because they do not constant fold. 2791 SDValue Elt = BV->getOperand(Index); 2792 auto *C = dyn_cast<ConstantSDNode>(Elt); 2793 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2794 return Elt; 2795 } 2796 2797 return SDValue(); 2798 }; 2799 2800 APInt KnownUndef = APInt::getZero(NumElts); 2801 for (unsigned i = 0; i != NumElts; ++i) { 2802 // If both inputs for this element are either constant or undef and match 2803 // the element type, compute the constant/undef result for this element of 2804 // the vector. 2805 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2806 // not handle FP constants. The code within getNode() should be refactored 2807 // to avoid the danger of creating a bogus temporary node here. 2808 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2809 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2810 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2811 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2812 KnownUndef.setBit(i); 2813 } 2814 return KnownUndef; 2815 } 2816 2817 bool TargetLowering::SimplifyDemandedVectorElts( 2818 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2819 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2820 bool AssumeSingleUse) const { 2821 EVT VT = Op.getValueType(); 2822 unsigned Opcode = Op.getOpcode(); 2823 APInt DemandedElts = OriginalDemandedElts; 2824 unsigned NumElts = DemandedElts.getBitWidth(); 2825 assert(VT.isVector() && "Expected vector op"); 2826 2827 KnownUndef = KnownZero = APInt::getZero(NumElts); 2828 2829 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2830 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2831 return false; 2832 2833 // TODO: For now we assume we know nothing about scalable vectors. 2834 if (VT.isScalableVector()) 2835 return false; 2836 2837 assert(VT.getVectorNumElements() == NumElts && 2838 "Mask size mismatches value type element count!"); 2839 2840 // Undef operand. 2841 if (Op.isUndef()) { 2842 KnownUndef.setAllBits(); 2843 return false; 2844 } 2845 2846 // If Op has other users, assume that all elements are needed. 2847 if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) 2848 DemandedElts.setAllBits(); 2849 2850 // Not demanding any elements from Op. 2851 if (DemandedElts == 0) { 2852 KnownUndef.setAllBits(); 2853 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2854 } 2855 2856 // Limit search depth. 2857 if (Depth >= SelectionDAG::MaxRecursionDepth) 2858 return false; 2859 2860 SDLoc DL(Op); 2861 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2862 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2863 2864 // Helper for demanding the specified elements and all the bits of both binary 2865 // operands. 2866 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2867 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2868 TLO.DAG, Depth + 1); 2869 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2870 TLO.DAG, Depth + 1); 2871 if (NewOp0 || NewOp1) { 2872 SDValue NewOp = TLO.DAG.getNode( 2873 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2874 return TLO.CombineTo(Op, NewOp); 2875 } 2876 return false; 2877 }; 2878 2879 switch (Opcode) { 2880 case ISD::SCALAR_TO_VECTOR: { 2881 if (!DemandedElts[0]) { 2882 KnownUndef.setAllBits(); 2883 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2884 } 2885 SDValue ScalarSrc = Op.getOperand(0); 2886 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2887 SDValue Src = ScalarSrc.getOperand(0); 2888 SDValue Idx = ScalarSrc.getOperand(1); 2889 EVT SrcVT = Src.getValueType(); 2890 2891 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2892 2893 if (SrcEltCnt.isScalable()) 2894 return false; 2895 2896 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2897 if (isNullConstant(Idx)) { 2898 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2899 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2900 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2901 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2902 TLO, Depth + 1)) 2903 return true; 2904 } 2905 } 2906 KnownUndef.setHighBits(NumElts - 1); 2907 break; 2908 } 2909 case ISD::BITCAST: { 2910 SDValue Src = Op.getOperand(0); 2911 EVT SrcVT = Src.getValueType(); 2912 2913 // We only handle vectors here. 2914 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2915 if (!SrcVT.isVector()) 2916 break; 2917 2918 // Fast handling of 'identity' bitcasts. 2919 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2920 if (NumSrcElts == NumElts) 2921 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2922 KnownZero, TLO, Depth + 1); 2923 2924 APInt SrcDemandedElts, SrcZero, SrcUndef; 2925 2926 // Bitcast from 'large element' src vector to 'small element' vector, we 2927 // must demand a source element if any DemandedElt maps to it. 2928 if ((NumElts % NumSrcElts) == 0) { 2929 unsigned Scale = NumElts / NumSrcElts; 2930 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2931 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2932 TLO, Depth + 1)) 2933 return true; 2934 2935 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2936 // of the large element. 2937 // TODO - bigendian once we have test coverage. 2938 if (IsLE) { 2939 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2940 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2941 for (unsigned i = 0; i != NumElts; ++i) 2942 if (DemandedElts[i]) { 2943 unsigned Ofs = (i % Scale) * EltSizeInBits; 2944 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2945 } 2946 2947 KnownBits Known; 2948 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2949 TLO, Depth + 1)) 2950 return true; 2951 2952 // The bitcast has split each wide element into a number of 2953 // narrow subelements. We have just computed the Known bits 2954 // for wide elements. See if element splitting results in 2955 // some subelements being zero. Only for demanded elements! 2956 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2957 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2958 .isAllOnes()) 2959 continue; 2960 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2961 unsigned Elt = Scale * SrcElt + SubElt; 2962 if (DemandedElts[Elt]) 2963 KnownZero.setBit(Elt); 2964 } 2965 } 2966 } 2967 2968 // If the src element is zero/undef then all the output elements will be - 2969 // only demanded elements are guaranteed to be correct. 2970 for (unsigned i = 0; i != NumSrcElts; ++i) { 2971 if (SrcDemandedElts[i]) { 2972 if (SrcZero[i]) 2973 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2974 if (SrcUndef[i]) 2975 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2976 } 2977 } 2978 } 2979 2980 // Bitcast from 'small element' src vector to 'large element' vector, we 2981 // demand all smaller source elements covered by the larger demanded element 2982 // of this vector. 2983 if ((NumSrcElts % NumElts) == 0) { 2984 unsigned Scale = NumSrcElts / NumElts; 2985 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2986 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2987 TLO, Depth + 1)) 2988 return true; 2989 2990 // If all the src elements covering an output element are zero/undef, then 2991 // the output element will be as well, assuming it was demanded. 2992 for (unsigned i = 0; i != NumElts; ++i) { 2993 if (DemandedElts[i]) { 2994 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2995 KnownZero.setBit(i); 2996 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2997 KnownUndef.setBit(i); 2998 } 2999 } 3000 } 3001 break; 3002 } 3003 case ISD::BUILD_VECTOR: { 3004 // Check all elements and simplify any unused elements with UNDEF. 3005 if (!DemandedElts.isAllOnes()) { 3006 // Don't simplify BROADCASTS. 3007 if (llvm::any_of(Op->op_values(), 3008 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 3009 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 3010 bool Updated = false; 3011 for (unsigned i = 0; i != NumElts; ++i) { 3012 if (!DemandedElts[i] && !Ops[i].isUndef()) { 3013 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 3014 KnownUndef.setBit(i); 3015 Updated = true; 3016 } 3017 } 3018 if (Updated) 3019 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 3020 } 3021 } 3022 for (unsigned i = 0; i != NumElts; ++i) { 3023 SDValue SrcOp = Op.getOperand(i); 3024 if (SrcOp.isUndef()) { 3025 KnownUndef.setBit(i); 3026 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 3027 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 3028 KnownZero.setBit(i); 3029 } 3030 } 3031 break; 3032 } 3033 case ISD::CONCAT_VECTORS: { 3034 EVT SubVT = Op.getOperand(0).getValueType(); 3035 unsigned NumSubVecs = Op.getNumOperands(); 3036 unsigned NumSubElts = SubVT.getVectorNumElements(); 3037 for (unsigned i = 0; i != NumSubVecs; ++i) { 3038 SDValue SubOp = Op.getOperand(i); 3039 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3040 APInt SubUndef, SubZero; 3041 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 3042 Depth + 1)) 3043 return true; 3044 KnownUndef.insertBits(SubUndef, i * NumSubElts); 3045 KnownZero.insertBits(SubZero, i * NumSubElts); 3046 } 3047 3048 // Attempt to avoid multi-use ops if we don't need anything from them. 3049 if (!DemandedElts.isAllOnes()) { 3050 bool FoundNewSub = false; 3051 SmallVector<SDValue, 2> DemandedSubOps; 3052 for (unsigned i = 0; i != NumSubVecs; ++i) { 3053 SDValue SubOp = Op.getOperand(i); 3054 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 3055 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 3056 SubOp, SubElts, TLO.DAG, Depth + 1); 3057 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 3058 FoundNewSub = NewSubOp ? true : FoundNewSub; 3059 } 3060 if (FoundNewSub) { 3061 SDValue NewOp = 3062 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 3063 return TLO.CombineTo(Op, NewOp); 3064 } 3065 } 3066 break; 3067 } 3068 case ISD::INSERT_SUBVECTOR: { 3069 // Demand any elements from the subvector and the remainder from the src its 3070 // inserted into. 3071 SDValue Src = Op.getOperand(0); 3072 SDValue Sub = Op.getOperand(1); 3073 uint64_t Idx = Op.getConstantOperandVal(2); 3074 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3075 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3076 APInt DemandedSrcElts = DemandedElts; 3077 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3078 3079 APInt SubUndef, SubZero; 3080 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 3081 Depth + 1)) 3082 return true; 3083 3084 // If none of the src operand elements are demanded, replace it with undef. 3085 if (!DemandedSrcElts && !Src.isUndef()) 3086 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 3087 TLO.DAG.getUNDEF(VT), Sub, 3088 Op.getOperand(2))); 3089 3090 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 3091 TLO, Depth + 1)) 3092 return true; 3093 KnownUndef.insertBits(SubUndef, Idx); 3094 KnownZero.insertBits(SubZero, Idx); 3095 3096 // Attempt to avoid multi-use ops if we don't need anything from them. 3097 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 3098 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3099 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3100 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 3101 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 3102 if (NewSrc || NewSub) { 3103 NewSrc = NewSrc ? NewSrc : Src; 3104 NewSub = NewSub ? NewSub : Sub; 3105 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3106 NewSub, Op.getOperand(2)); 3107 return TLO.CombineTo(Op, NewOp); 3108 } 3109 } 3110 break; 3111 } 3112 case ISD::EXTRACT_SUBVECTOR: { 3113 // Offset the demanded elts by the subvector index. 3114 SDValue Src = Op.getOperand(0); 3115 if (Src.getValueType().isScalableVector()) 3116 break; 3117 uint64_t Idx = Op.getConstantOperandVal(1); 3118 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3119 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3120 3121 APInt SrcUndef, SrcZero; 3122 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3123 Depth + 1)) 3124 return true; 3125 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3126 KnownZero = SrcZero.extractBits(NumElts, Idx); 3127 3128 // Attempt to avoid multi-use ops if we don't need anything from them. 3129 if (!DemandedElts.isAllOnes()) { 3130 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3131 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3132 if (NewSrc) { 3133 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3134 Op.getOperand(1)); 3135 return TLO.CombineTo(Op, NewOp); 3136 } 3137 } 3138 break; 3139 } 3140 case ISD::INSERT_VECTOR_ELT: { 3141 SDValue Vec = Op.getOperand(0); 3142 SDValue Scl = Op.getOperand(1); 3143 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3144 3145 // For a legal, constant insertion index, if we don't need this insertion 3146 // then strip it, else remove it from the demanded elts. 3147 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3148 unsigned Idx = CIdx->getZExtValue(); 3149 if (!DemandedElts[Idx]) 3150 return TLO.CombineTo(Op, Vec); 3151 3152 APInt DemandedVecElts(DemandedElts); 3153 DemandedVecElts.clearBit(Idx); 3154 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3155 KnownZero, TLO, Depth + 1)) 3156 return true; 3157 3158 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3159 3160 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3161 break; 3162 } 3163 3164 APInt VecUndef, VecZero; 3165 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3166 Depth + 1)) 3167 return true; 3168 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3169 break; 3170 } 3171 case ISD::VSELECT: { 3172 SDValue Sel = Op.getOperand(0); 3173 SDValue LHS = Op.getOperand(1); 3174 SDValue RHS = Op.getOperand(2); 3175 3176 // Try to transform the select condition based on the current demanded 3177 // elements. 3178 APInt UndefSel, UndefZero; 3179 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, UndefZero, TLO, 3180 Depth + 1)) 3181 return true; 3182 3183 // See if we can simplify either vselect operand. 3184 APInt DemandedLHS(DemandedElts); 3185 APInt DemandedRHS(DemandedElts); 3186 APInt UndefLHS, ZeroLHS; 3187 APInt UndefRHS, ZeroRHS; 3188 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3189 Depth + 1)) 3190 return true; 3191 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3192 Depth + 1)) 3193 return true; 3194 3195 KnownUndef = UndefLHS & UndefRHS; 3196 KnownZero = ZeroLHS & ZeroRHS; 3197 3198 // If we know that the selected element is always zero, we don't need the 3199 // select value element. 3200 APInt DemandedSel = DemandedElts & ~KnownZero; 3201 if (DemandedSel != DemandedElts) 3202 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, UndefZero, TLO, 3203 Depth + 1)) 3204 return true; 3205 3206 break; 3207 } 3208 case ISD::VECTOR_SHUFFLE: { 3209 SDValue LHS = Op.getOperand(0); 3210 SDValue RHS = Op.getOperand(1); 3211 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3212 3213 // Collect demanded elements from shuffle operands.. 3214 APInt DemandedLHS(NumElts, 0); 3215 APInt DemandedRHS(NumElts, 0); 3216 for (unsigned i = 0; i != NumElts; ++i) { 3217 int M = ShuffleMask[i]; 3218 if (M < 0 || !DemandedElts[i]) 3219 continue; 3220 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3221 if (M < (int)NumElts) 3222 DemandedLHS.setBit(M); 3223 else 3224 DemandedRHS.setBit(M - NumElts); 3225 } 3226 3227 // See if we can simplify either shuffle operand. 3228 APInt UndefLHS, ZeroLHS; 3229 APInt UndefRHS, ZeroRHS; 3230 if (SimplifyDemandedVectorElts(LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO, 3231 Depth + 1)) 3232 return true; 3233 if (SimplifyDemandedVectorElts(RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO, 3234 Depth + 1)) 3235 return true; 3236 3237 // Simplify mask using undef elements from LHS/RHS. 3238 bool Updated = false; 3239 bool IdentityLHS = true, IdentityRHS = true; 3240 SmallVector<int, 32> NewMask(ShuffleMask); 3241 for (unsigned i = 0; i != NumElts; ++i) { 3242 int &M = NewMask[i]; 3243 if (M < 0) 3244 continue; 3245 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3246 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3247 Updated = true; 3248 M = -1; 3249 } 3250 IdentityLHS &= (M < 0) || (M == (int)i); 3251 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3252 } 3253 3254 // Update legal shuffle masks based on demanded elements if it won't reduce 3255 // to Identity which can cause premature removal of the shuffle mask. 3256 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3257 SDValue LegalShuffle = 3258 buildLegalVectorShuffle(VT, DL, LHS, RHS, NewMask, TLO.DAG); 3259 if (LegalShuffle) 3260 return TLO.CombineTo(Op, LegalShuffle); 3261 } 3262 3263 // Propagate undef/zero elements from LHS/RHS. 3264 for (unsigned i = 0; i != NumElts; ++i) { 3265 int M = ShuffleMask[i]; 3266 if (M < 0) { 3267 KnownUndef.setBit(i); 3268 } else if (M < (int)NumElts) { 3269 if (UndefLHS[M]) 3270 KnownUndef.setBit(i); 3271 if (ZeroLHS[M]) 3272 KnownZero.setBit(i); 3273 } else { 3274 if (UndefRHS[M - NumElts]) 3275 KnownUndef.setBit(i); 3276 if (ZeroRHS[M - NumElts]) 3277 KnownZero.setBit(i); 3278 } 3279 } 3280 break; 3281 } 3282 case ISD::ANY_EXTEND_VECTOR_INREG: 3283 case ISD::SIGN_EXTEND_VECTOR_INREG: 3284 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3285 APInt SrcUndef, SrcZero; 3286 SDValue Src = Op.getOperand(0); 3287 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3288 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3289 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3290 Depth + 1)) 3291 return true; 3292 KnownZero = SrcZero.zextOrTrunc(NumElts); 3293 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3294 3295 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3296 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3297 DemandedSrcElts == 1) { 3298 // aext - if we just need the bottom element then we can bitcast. 3299 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3300 } 3301 3302 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3303 // zext(undef) upper bits are guaranteed to be zero. 3304 if (DemandedElts.isSubsetOf(KnownUndef)) 3305 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3306 KnownUndef.clearAllBits(); 3307 3308 // zext - if we just need the bottom element then we can mask: 3309 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3310 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3311 Op->isOnlyUserOf(Src.getNode()) && 3312 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3313 SDLoc DL(Op); 3314 EVT SrcVT = Src.getValueType(); 3315 EVT SrcSVT = SrcVT.getScalarType(); 3316 SmallVector<SDValue> MaskElts; 3317 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3318 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3319 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3320 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3321 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3322 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3323 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3324 } 3325 } 3326 } 3327 break; 3328 } 3329 3330 // TODO: There are more binop opcodes that could be handled here - MIN, 3331 // MAX, saturated math, etc. 3332 case ISD::ADD: { 3333 SDValue Op0 = Op.getOperand(0); 3334 SDValue Op1 = Op.getOperand(1); 3335 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3336 APInt UndefLHS, ZeroLHS; 3337 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3338 Depth + 1, /*AssumeSingleUse*/ true)) 3339 return true; 3340 } 3341 [[fallthrough]]; 3342 } 3343 case ISD::OR: 3344 case ISD::XOR: 3345 case ISD::SUB: 3346 case ISD::FADD: 3347 case ISD::FSUB: 3348 case ISD::FMUL: 3349 case ISD::FDIV: 3350 case ISD::FREM: { 3351 SDValue Op0 = Op.getOperand(0); 3352 SDValue Op1 = Op.getOperand(1); 3353 3354 APInt UndefRHS, ZeroRHS; 3355 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3356 Depth + 1)) 3357 return true; 3358 APInt UndefLHS, ZeroLHS; 3359 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3360 Depth + 1)) 3361 return true; 3362 3363 KnownZero = ZeroLHS & ZeroRHS; 3364 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3365 3366 // Attempt to avoid multi-use ops if we don't need anything from them. 3367 // TODO - use KnownUndef to relax the demandedelts? 3368 if (!DemandedElts.isAllOnes()) 3369 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3370 return true; 3371 break; 3372 } 3373 case ISD::SHL: 3374 case ISD::SRL: 3375 case ISD::SRA: 3376 case ISD::ROTL: 3377 case ISD::ROTR: { 3378 SDValue Op0 = Op.getOperand(0); 3379 SDValue Op1 = Op.getOperand(1); 3380 3381 APInt UndefRHS, ZeroRHS; 3382 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3383 Depth + 1)) 3384 return true; 3385 APInt UndefLHS, ZeroLHS; 3386 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3387 Depth + 1)) 3388 return true; 3389 3390 KnownZero = ZeroLHS; 3391 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3392 3393 // Attempt to avoid multi-use ops if we don't need anything from them. 3394 // TODO - use KnownUndef to relax the demandedelts? 3395 if (!DemandedElts.isAllOnes()) 3396 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3397 return true; 3398 break; 3399 } 3400 case ISD::MUL: 3401 case ISD::MULHU: 3402 case ISD::MULHS: 3403 case ISD::AND: { 3404 SDValue Op0 = Op.getOperand(0); 3405 SDValue Op1 = Op.getOperand(1); 3406 3407 APInt SrcUndef, SrcZero; 3408 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3409 Depth + 1)) 3410 return true; 3411 // If we know that a demanded element was zero in Op1 we don't need to 3412 // demand it in Op0 - its guaranteed to be zero. 3413 APInt DemandedElts0 = DemandedElts & ~SrcZero; 3414 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero, 3415 TLO, Depth + 1)) 3416 return true; 3417 3418 KnownUndef &= DemandedElts0; 3419 KnownZero &= DemandedElts0; 3420 3421 // If every element pair has a zero/undef then just fold to zero. 3422 // fold (and x, undef) -> 0 / (and x, 0) -> 0 3423 // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 3424 if (DemandedElts.isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef)) 3425 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3426 3427 // If either side has a zero element, then the result element is zero, even 3428 // if the other is an UNDEF. 3429 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3430 // and then handle 'and' nodes with the rest of the binop opcodes. 3431 KnownZero |= SrcZero; 3432 KnownUndef &= SrcUndef; 3433 KnownUndef &= ~KnownZero; 3434 3435 // Attempt to avoid multi-use ops if we don't need anything from them. 3436 if (!DemandedElts.isAllOnes()) 3437 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3438 return true; 3439 break; 3440 } 3441 case ISD::TRUNCATE: 3442 case ISD::SIGN_EXTEND: 3443 case ISD::ZERO_EXTEND: 3444 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3445 KnownZero, TLO, Depth + 1)) 3446 return true; 3447 3448 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3449 // zext(undef) upper bits are guaranteed to be zero. 3450 if (DemandedElts.isSubsetOf(KnownUndef)) 3451 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3452 KnownUndef.clearAllBits(); 3453 } 3454 break; 3455 default: { 3456 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3457 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3458 KnownZero, TLO, Depth)) 3459 return true; 3460 } else { 3461 KnownBits Known; 3462 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3463 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3464 TLO, Depth, AssumeSingleUse)) 3465 return true; 3466 } 3467 break; 3468 } 3469 } 3470 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3471 3472 // Constant fold all undef cases. 3473 // TODO: Handle zero cases as well. 3474 if (DemandedElts.isSubsetOf(KnownUndef)) 3475 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3476 3477 return false; 3478 } 3479 3480 /// Determine which of the bits specified in Mask are known to be either zero or 3481 /// one and return them in the Known. 3482 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3483 KnownBits &Known, 3484 const APInt &DemandedElts, 3485 const SelectionDAG &DAG, 3486 unsigned Depth) const { 3487 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3488 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3489 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3490 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3491 "Should use MaskedValueIsZero if you don't know whether Op" 3492 " is a target node!"); 3493 Known.resetAll(); 3494 } 3495 3496 void TargetLowering::computeKnownBitsForTargetInstr( 3497 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3498 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3499 unsigned Depth) const { 3500 Known.resetAll(); 3501 } 3502 3503 void TargetLowering::computeKnownBitsForFrameIndex( 3504 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3505 // The low bits are known zero if the pointer is aligned. 3506 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3507 } 3508 3509 Align TargetLowering::computeKnownAlignForTargetInstr( 3510 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3511 unsigned Depth) const { 3512 return Align(1); 3513 } 3514 3515 /// This method can be implemented by targets that want to expose additional 3516 /// information about sign bits to the DAG Combiner. 3517 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3518 const APInt &, 3519 const SelectionDAG &, 3520 unsigned Depth) const { 3521 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3522 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3523 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3524 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3525 "Should use ComputeNumSignBits if you don't know whether Op" 3526 " is a target node!"); 3527 return 1; 3528 } 3529 3530 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3531 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3532 const MachineRegisterInfo &MRI, unsigned Depth) const { 3533 return 1; 3534 } 3535 3536 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3537 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3538 TargetLoweringOpt &TLO, unsigned Depth) const { 3539 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3540 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3541 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3542 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3543 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3544 " is a target node!"); 3545 return false; 3546 } 3547 3548 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3549 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3550 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3551 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3552 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3553 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3554 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3555 "Should use SimplifyDemandedBits if you don't know whether Op" 3556 " is a target node!"); 3557 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3558 return false; 3559 } 3560 3561 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3562 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3563 SelectionDAG &DAG, unsigned Depth) const { 3564 assert( 3565 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3566 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3567 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3568 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3569 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3570 " is a target node!"); 3571 return SDValue(); 3572 } 3573 3574 SDValue 3575 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3576 SDValue N1, MutableArrayRef<int> Mask, 3577 SelectionDAG &DAG) const { 3578 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3579 if (!LegalMask) { 3580 std::swap(N0, N1); 3581 ShuffleVectorSDNode::commuteMask(Mask); 3582 LegalMask = isShuffleMaskLegal(Mask, VT); 3583 } 3584 3585 if (!LegalMask) 3586 return SDValue(); 3587 3588 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3589 } 3590 3591 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3592 return nullptr; 3593 } 3594 3595 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3596 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3597 bool PoisonOnly, unsigned Depth) const { 3598 assert( 3599 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3600 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3601 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3602 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3603 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3604 " is a target node!"); 3605 return false; 3606 } 3607 3608 bool TargetLowering::canCreateUndefOrPoisonForTargetNode( 3609 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3610 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { 3611 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3612 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3613 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3614 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3615 "Should use canCreateUndefOrPoison if you don't know whether Op" 3616 " is a target node!"); 3617 // Be conservative and return true. 3618 return true; 3619 } 3620 3621 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3622 const SelectionDAG &DAG, 3623 bool SNaN, 3624 unsigned Depth) const { 3625 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3626 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3627 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3628 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3629 "Should use isKnownNeverNaN if you don't know whether Op" 3630 " is a target node!"); 3631 return false; 3632 } 3633 3634 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3635 const APInt &DemandedElts, 3636 APInt &UndefElts, 3637 const SelectionDAG &DAG, 3638 unsigned Depth) const { 3639 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3640 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3641 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3642 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3643 "Should use isSplatValue if you don't know whether Op" 3644 " is a target node!"); 3645 return false; 3646 } 3647 3648 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3649 // work with truncating build vectors and vectors with elements of less than 3650 // 8 bits. 3651 bool TargetLowering::isConstTrueVal(SDValue N) const { 3652 if (!N) 3653 return false; 3654 3655 unsigned EltWidth; 3656 APInt CVal; 3657 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3658 /*AllowTruncation=*/true)) { 3659 CVal = CN->getAPIntValue(); 3660 EltWidth = N.getValueType().getScalarSizeInBits(); 3661 } else 3662 return false; 3663 3664 // If this is a truncating splat, truncate the splat value. 3665 // Otherwise, we may fail to match the expected values below. 3666 if (EltWidth < CVal.getBitWidth()) 3667 CVal = CVal.trunc(EltWidth); 3668 3669 switch (getBooleanContents(N.getValueType())) { 3670 case UndefinedBooleanContent: 3671 return CVal[0]; 3672 case ZeroOrOneBooleanContent: 3673 return CVal.isOne(); 3674 case ZeroOrNegativeOneBooleanContent: 3675 return CVal.isAllOnes(); 3676 } 3677 3678 llvm_unreachable("Invalid boolean contents"); 3679 } 3680 3681 bool TargetLowering::isConstFalseVal(SDValue N) const { 3682 if (!N) 3683 return false; 3684 3685 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3686 if (!CN) { 3687 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3688 if (!BV) 3689 return false; 3690 3691 // Only interested in constant splats, we don't care about undef 3692 // elements in identifying boolean constants and getConstantSplatNode 3693 // returns NULL if all ops are undef; 3694 CN = BV->getConstantSplatNode(); 3695 if (!CN) 3696 return false; 3697 } 3698 3699 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3700 return !CN->getAPIntValue()[0]; 3701 3702 return CN->isZero(); 3703 } 3704 3705 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3706 bool SExt) const { 3707 if (VT == MVT::i1) 3708 return N->isOne(); 3709 3710 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3711 switch (Cnt) { 3712 case TargetLowering::ZeroOrOneBooleanContent: 3713 // An extended value of 1 is always true, unless its original type is i1, 3714 // in which case it will be sign extended to -1. 3715 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3716 case TargetLowering::UndefinedBooleanContent: 3717 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3718 return N->isAllOnes() && SExt; 3719 } 3720 llvm_unreachable("Unexpected enumeration."); 3721 } 3722 3723 /// This helper function of SimplifySetCC tries to optimize the comparison when 3724 /// either operand of the SetCC node is a bitwise-and instruction. 3725 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3726 ISD::CondCode Cond, const SDLoc &DL, 3727 DAGCombinerInfo &DCI) const { 3728 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3729 std::swap(N0, N1); 3730 3731 SelectionDAG &DAG = DCI.DAG; 3732 EVT OpVT = N0.getValueType(); 3733 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3734 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3735 return SDValue(); 3736 3737 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3738 // iff everything but LSB is known zero: 3739 if (Cond == ISD::SETNE && isNullConstant(N1) && 3740 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3741 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3742 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3743 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3744 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3745 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3746 } 3747 3748 // Try to eliminate a power-of-2 mask constant by converting to a signbit 3749 // test in a narrow type that we can truncate to with no cost. Examples: 3750 // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 3751 // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 3752 // TODO: This conservatively checks for type legality on the source and 3753 // destination types. That may inhibit optimizations, but it also 3754 // allows setcc->shift transforms that may be more beneficial. 3755 auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 3756 if (AndC && isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() && 3757 isTypeLegal(OpVT) && N0.hasOneUse()) { 3758 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), 3759 AndC->getAPIntValue().getActiveBits()); 3760 if (isTruncateFree(OpVT, NarrowVT) && isTypeLegal(NarrowVT)) { 3761 SDValue Trunc = DAG.getZExtOrTrunc(N0.getOperand(0), DL, NarrowVT); 3762 SDValue Zero = DAG.getConstant(0, DL, NarrowVT); 3763 return DAG.getSetCC(DL, VT, Trunc, Zero, 3764 Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); 3765 } 3766 } 3767 3768 // Match these patterns in any of their permutations: 3769 // (X & Y) == Y 3770 // (X & Y) != Y 3771 SDValue X, Y; 3772 if (N0.getOperand(0) == N1) { 3773 X = N0.getOperand(1); 3774 Y = N0.getOperand(0); 3775 } else if (N0.getOperand(1) == N1) { 3776 X = N0.getOperand(0); 3777 Y = N0.getOperand(1); 3778 } else { 3779 return SDValue(); 3780 } 3781 3782 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3783 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3784 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3785 // Note that where Y is variable and is known to have at most one bit set 3786 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3787 // equivalent when Y == 0. 3788 assert(OpVT.isInteger()); 3789 Cond = ISD::getSetCCInverse(Cond, OpVT); 3790 if (DCI.isBeforeLegalizeOps() || 3791 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3792 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3793 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3794 // If the target supports an 'and-not' or 'and-complement' logic operation, 3795 // try to use that to make a comparison operation more efficient. 3796 // But don't do this transform if the mask is a single bit because there are 3797 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3798 // 'rlwinm' on PPC). 3799 3800 // Bail out if the compare operand that we want to turn into a zero is 3801 // already a zero (otherwise, infinite loop). 3802 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3803 if (YConst && YConst->isZero()) 3804 return SDValue(); 3805 3806 // Transform this into: ~X & Y == 0. 3807 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3808 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3809 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3810 } 3811 3812 return SDValue(); 3813 } 3814 3815 /// There are multiple IR patterns that could be checking whether certain 3816 /// truncation of a signed number would be lossy or not. The pattern which is 3817 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3818 /// We are looking for the following pattern: (KeptBits is a constant) 3819 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3820 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3821 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3822 /// We will unfold it into the natural trunc+sext pattern: 3823 /// ((%x << C) a>> C) dstcond %x 3824 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3825 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3826 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3827 const SDLoc &DL) const { 3828 // We must be comparing with a constant. 3829 ConstantSDNode *C1; 3830 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3831 return SDValue(); 3832 3833 // N0 should be: add %x, (1 << (KeptBits-1)) 3834 if (N0->getOpcode() != ISD::ADD) 3835 return SDValue(); 3836 3837 // And we must be 'add'ing a constant. 3838 ConstantSDNode *C01; 3839 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3840 return SDValue(); 3841 3842 SDValue X = N0->getOperand(0); 3843 EVT XVT = X.getValueType(); 3844 3845 // Validate constants ... 3846 3847 APInt I1 = C1->getAPIntValue(); 3848 3849 ISD::CondCode NewCond; 3850 if (Cond == ISD::CondCode::SETULT) { 3851 NewCond = ISD::CondCode::SETEQ; 3852 } else if (Cond == ISD::CondCode::SETULE) { 3853 NewCond = ISD::CondCode::SETEQ; 3854 // But need to 'canonicalize' the constant. 3855 I1 += 1; 3856 } else if (Cond == ISD::CondCode::SETUGT) { 3857 NewCond = ISD::CondCode::SETNE; 3858 // But need to 'canonicalize' the constant. 3859 I1 += 1; 3860 } else if (Cond == ISD::CondCode::SETUGE) { 3861 NewCond = ISD::CondCode::SETNE; 3862 } else 3863 return SDValue(); 3864 3865 APInt I01 = C01->getAPIntValue(); 3866 3867 auto checkConstants = [&I1, &I01]() -> bool { 3868 // Both of them must be power-of-two, and the constant from setcc is bigger. 3869 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3870 }; 3871 3872 if (checkConstants()) { 3873 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3874 } else { 3875 // What if we invert constants? (and the target predicate) 3876 I1.negate(); 3877 I01.negate(); 3878 assert(XVT.isInteger()); 3879 NewCond = getSetCCInverse(NewCond, XVT); 3880 if (!checkConstants()) 3881 return SDValue(); 3882 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3883 } 3884 3885 // They are power-of-two, so which bit is set? 3886 const unsigned KeptBits = I1.logBase2(); 3887 const unsigned KeptBitsMinusOne = I01.logBase2(); 3888 3889 // Magic! 3890 if (KeptBits != (KeptBitsMinusOne + 1)) 3891 return SDValue(); 3892 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3893 3894 // We don't want to do this in every single case. 3895 SelectionDAG &DAG = DCI.DAG; 3896 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3897 XVT, KeptBits)) 3898 return SDValue(); 3899 3900 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3901 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3902 3903 // Unfold into: ((%x << C) a>> C) cond %x 3904 // Where 'cond' will be either 'eq' or 'ne'. 3905 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3906 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3907 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3908 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3909 3910 return T2; 3911 } 3912 3913 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3914 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3915 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3916 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3917 assert(isConstOrConstSplat(N1C) && 3918 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3919 "Should be a comparison with 0."); 3920 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3921 "Valid only for [in]equality comparisons."); 3922 3923 unsigned NewShiftOpcode; 3924 SDValue X, C, Y; 3925 3926 SelectionDAG &DAG = DCI.DAG; 3927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3928 3929 // Look for '(C l>>/<< Y)'. 3930 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3931 // The shift should be one-use. 3932 if (!V.hasOneUse()) 3933 return false; 3934 unsigned OldShiftOpcode = V.getOpcode(); 3935 switch (OldShiftOpcode) { 3936 case ISD::SHL: 3937 NewShiftOpcode = ISD::SRL; 3938 break; 3939 case ISD::SRL: 3940 NewShiftOpcode = ISD::SHL; 3941 break; 3942 default: 3943 return false; // must be a logical shift. 3944 } 3945 // We should be shifting a constant. 3946 // FIXME: best to use isConstantOrConstantVector(). 3947 C = V.getOperand(0); 3948 ConstantSDNode *CC = 3949 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3950 if (!CC) 3951 return false; 3952 Y = V.getOperand(1); 3953 3954 ConstantSDNode *XC = 3955 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3956 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3957 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3958 }; 3959 3960 // LHS of comparison should be an one-use 'and'. 3961 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3962 return SDValue(); 3963 3964 X = N0.getOperand(0); 3965 SDValue Mask = N0.getOperand(1); 3966 3967 // 'and' is commutative! 3968 if (!Match(Mask)) { 3969 std::swap(X, Mask); 3970 if (!Match(Mask)) 3971 return SDValue(); 3972 } 3973 3974 EVT VT = X.getValueType(); 3975 3976 // Produce: 3977 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3978 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3979 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3980 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3981 return T2; 3982 } 3983 3984 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3985 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3986 /// handle the commuted versions of these patterns. 3987 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3988 ISD::CondCode Cond, const SDLoc &DL, 3989 DAGCombinerInfo &DCI) const { 3990 unsigned BOpcode = N0.getOpcode(); 3991 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3992 "Unexpected binop"); 3993 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3994 3995 // (X + Y) == X --> Y == 0 3996 // (X - Y) == X --> Y == 0 3997 // (X ^ Y) == X --> Y == 0 3998 SelectionDAG &DAG = DCI.DAG; 3999 EVT OpVT = N0.getValueType(); 4000 SDValue X = N0.getOperand(0); 4001 SDValue Y = N0.getOperand(1); 4002 if (X == N1) 4003 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 4004 4005 if (Y != N1) 4006 return SDValue(); 4007 4008 // (X + Y) == Y --> X == 0 4009 // (X ^ Y) == Y --> X == 0 4010 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 4011 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 4012 4013 // The shift would not be valid if the operands are boolean (i1). 4014 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 4015 return SDValue(); 4016 4017 // (X - Y) == Y --> X == Y << 1 4018 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 4019 !DCI.isBeforeLegalize()); 4020 SDValue One = DAG.getConstant(1, DL, ShiftVT); 4021 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 4022 if (!DCI.isCalledByLegalizer()) 4023 DCI.AddToWorklist(YShl1.getNode()); 4024 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 4025 } 4026 4027 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 4028 SDValue N0, const APInt &C1, 4029 ISD::CondCode Cond, const SDLoc &dl, 4030 SelectionDAG &DAG) { 4031 // Look through truncs that don't change the value of a ctpop. 4032 // FIXME: Add vector support? Need to be careful with setcc result type below. 4033 SDValue CTPOP = N0; 4034 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 4035 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 4036 CTPOP = N0.getOperand(0); 4037 4038 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 4039 return SDValue(); 4040 4041 EVT CTVT = CTPOP.getValueType(); 4042 SDValue CTOp = CTPOP.getOperand(0); 4043 4044 // Expand a power-of-2-or-zero comparison based on ctpop: 4045 // (ctpop x) u< 2 -> (x & x-1) == 0 4046 // (ctpop x) u> 1 -> (x & x-1) != 0 4047 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 4048 // Keep the CTPOP if it is a legal vector op. 4049 if (CTVT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 4050 return SDValue(); 4051 4052 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 4053 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 4054 return SDValue(); 4055 if (C1 == 0 && (Cond == ISD::SETULT)) 4056 return SDValue(); // This is handled elsewhere. 4057 4058 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 4059 4060 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4061 SDValue Result = CTOp; 4062 for (unsigned i = 0; i < Passes; i++) { 4063 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 4064 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 4065 } 4066 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 4067 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 4068 } 4069 4070 // Expand a power-of-2 comparison based on ctpop: 4071 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 4072 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 4073 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 4074 // Keep the CTPOP if it is legal. 4075 if (TLI.isOperationLegal(ISD::CTPOP, CTVT)) 4076 return SDValue(); 4077 4078 SDValue Zero = DAG.getConstant(0, dl, CTVT); 4079 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 4080 assert(CTVT.isInteger()); 4081 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 4082 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 4083 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 4084 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 4085 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 4086 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 4087 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 4088 } 4089 4090 return SDValue(); 4091 } 4092 4093 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 4094 ISD::CondCode Cond, const SDLoc &dl, 4095 SelectionDAG &DAG) { 4096 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4097 return SDValue(); 4098 4099 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4100 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 4101 return SDValue(); 4102 4103 auto getRotateSource = [](SDValue X) { 4104 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 4105 return X.getOperand(0); 4106 return SDValue(); 4107 }; 4108 4109 // Peek through a rotated value compared against 0 or -1: 4110 // (rot X, Y) == 0/-1 --> X == 0/-1 4111 // (rot X, Y) != 0/-1 --> X != 0/-1 4112 if (SDValue R = getRotateSource(N0)) 4113 return DAG.getSetCC(dl, VT, R, N1, Cond); 4114 4115 // Peek through an 'or' of a rotated value compared against 0: 4116 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 4117 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 4118 // 4119 // TODO: Add the 'and' with -1 sibling. 4120 // TODO: Recurse through a series of 'or' ops to find the rotate. 4121 EVT OpVT = N0.getValueType(); 4122 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 4123 if (SDValue R = getRotateSource(N0.getOperand(0))) { 4124 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 4125 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4126 } 4127 if (SDValue R = getRotateSource(N0.getOperand(1))) { 4128 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 4129 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4130 } 4131 } 4132 4133 return SDValue(); 4134 } 4135 4136 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 4137 ISD::CondCode Cond, const SDLoc &dl, 4138 SelectionDAG &DAG) { 4139 // If we are testing for all-bits-clear, we might be able to do that with 4140 // less shifting since bit-order does not matter. 4141 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 4142 return SDValue(); 4143 4144 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 4145 if (!C1 || !C1->isZero()) 4146 return SDValue(); 4147 4148 if (!N0.hasOneUse() || 4149 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 4150 return SDValue(); 4151 4152 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4153 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 4154 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 4155 return SDValue(); 4156 4157 // Canonicalize fshr as fshl to reduce pattern-matching. 4158 unsigned ShAmt = ShAmtC->getZExtValue(); 4159 if (N0.getOpcode() == ISD::FSHR) 4160 ShAmt = BitWidth - ShAmt; 4161 4162 // Match an 'or' with a specific operand 'Other' in either commuted variant. 4163 SDValue X, Y; 4164 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 4165 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 4166 return false; 4167 if (Or.getOperand(0) == Other) { 4168 X = Or.getOperand(0); 4169 Y = Or.getOperand(1); 4170 return true; 4171 } 4172 if (Or.getOperand(1) == Other) { 4173 X = Or.getOperand(1); 4174 Y = Or.getOperand(0); 4175 return true; 4176 } 4177 return false; 4178 }; 4179 4180 EVT OpVT = N0.getValueType(); 4181 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4182 SDValue F0 = N0.getOperand(0); 4183 SDValue F1 = N0.getOperand(1); 4184 if (matchOr(F0, F1)) { 4185 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4186 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4187 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4188 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4189 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4190 } 4191 if (matchOr(F1, F0)) { 4192 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4193 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4194 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4195 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4196 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4197 } 4198 4199 return SDValue(); 4200 } 4201 4202 /// Try to simplify a setcc built with the specified operands and cc. If it is 4203 /// unable to simplify it, return a null SDValue. 4204 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4205 ISD::CondCode Cond, bool foldBooleans, 4206 DAGCombinerInfo &DCI, 4207 const SDLoc &dl) const { 4208 SelectionDAG &DAG = DCI.DAG; 4209 const DataLayout &Layout = DAG.getDataLayout(); 4210 EVT OpVT = N0.getValueType(); 4211 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4212 4213 // Constant fold or commute setcc. 4214 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4215 return Fold; 4216 4217 bool N0ConstOrSplat = 4218 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4219 bool N1ConstOrSplat = 4220 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4221 4222 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4223 // TODO: Handle non-splat vector constants. All undef causes trouble. 4224 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4225 // infinite loop here when we encounter one. 4226 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4227 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4228 (DCI.isBeforeLegalizeOps() || 4229 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4230 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4231 4232 // If we have a subtract with the same 2 non-constant operands as this setcc 4233 // -- but in reverse order -- then try to commute the operands of this setcc 4234 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4235 // instruction on some targets. 4236 if (!N0ConstOrSplat && !N1ConstOrSplat && 4237 (DCI.isBeforeLegalizeOps() || 4238 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4239 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4240 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4241 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4242 4243 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4244 return V; 4245 4246 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4247 return V; 4248 4249 if (auto *N1C = isConstOrConstSplat(N1)) { 4250 const APInt &C1 = N1C->getAPIntValue(); 4251 4252 // Optimize some CTPOP cases. 4253 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4254 return V; 4255 4256 // For equality to 0 of a no-wrap multiply, decompose and test each op: 4257 // X * Y == 0 --> (X == 0) || (Y == 0) 4258 // X * Y != 0 --> (X != 0) && (Y != 0) 4259 // TODO: This bails out if minsize is set, but if the target doesn't have a 4260 // single instruction multiply for this type, it would likely be 4261 // smaller to decompose. 4262 if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4263 N0.getOpcode() == ISD::MUL && N0.hasOneUse() && 4264 (N0->getFlags().hasNoUnsignedWrap() || 4265 N0->getFlags().hasNoSignedWrap()) && 4266 !Attr.hasFnAttr(Attribute::MinSize)) { 4267 SDValue IsXZero = DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4268 SDValue IsYZero = DAG.getSetCC(dl, VT, N0.getOperand(1), N1, Cond); 4269 unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; 4270 return DAG.getNode(LogicOp, dl, VT, IsXZero, IsYZero); 4271 } 4272 4273 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4274 // equality comparison, then we're just comparing whether X itself is 4275 // zero. 4276 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4277 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4278 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4279 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4280 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4281 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4282 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4283 // (srl (ctlz x), 5) == 0 -> X != 0 4284 // (srl (ctlz x), 5) != 1 -> X != 0 4285 Cond = ISD::SETNE; 4286 } else { 4287 // (srl (ctlz x), 5) != 0 -> X == 0 4288 // (srl (ctlz x), 5) == 1 -> X == 0 4289 Cond = ISD::SETEQ; 4290 } 4291 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4292 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4293 Cond); 4294 } 4295 } 4296 } 4297 } 4298 4299 // FIXME: Support vectors. 4300 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4301 const APInt &C1 = N1C->getAPIntValue(); 4302 4303 // (zext x) == C --> x == (trunc C) 4304 // (sext x) == C --> x == (trunc C) 4305 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4306 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4307 unsigned MinBits = N0.getValueSizeInBits(); 4308 SDValue PreExt; 4309 bool Signed = false; 4310 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4311 // ZExt 4312 MinBits = N0->getOperand(0).getValueSizeInBits(); 4313 PreExt = N0->getOperand(0); 4314 } else if (N0->getOpcode() == ISD::AND) { 4315 // DAGCombine turns costly ZExts into ANDs 4316 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4317 if ((C->getAPIntValue()+1).isPowerOf2()) { 4318 MinBits = C->getAPIntValue().countTrailingOnes(); 4319 PreExt = N0->getOperand(0); 4320 } 4321 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4322 // SExt 4323 MinBits = N0->getOperand(0).getValueSizeInBits(); 4324 PreExt = N0->getOperand(0); 4325 Signed = true; 4326 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4327 // ZEXTLOAD / SEXTLOAD 4328 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4329 MinBits = LN0->getMemoryVT().getSizeInBits(); 4330 PreExt = N0; 4331 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4332 Signed = true; 4333 MinBits = LN0->getMemoryVT().getSizeInBits(); 4334 PreExt = N0; 4335 } 4336 } 4337 4338 // Figure out how many bits we need to preserve this constant. 4339 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4340 4341 // Make sure we're not losing bits from the constant. 4342 if (MinBits > 0 && 4343 MinBits < C1.getBitWidth() && 4344 MinBits >= ReqdBits) { 4345 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4346 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4347 // Will get folded away. 4348 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4349 if (MinBits == 1 && C1 == 1) 4350 // Invert the condition. 4351 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4352 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4353 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4354 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4355 } 4356 4357 // If truncating the setcc operands is not desirable, we can still 4358 // simplify the expression in some cases: 4359 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4360 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4361 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4362 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4363 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4364 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4365 SDValue TopSetCC = N0->getOperand(0); 4366 unsigned N0Opc = N0->getOpcode(); 4367 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4368 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4369 TopSetCC.getOpcode() == ISD::SETCC && 4370 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4371 (isConstFalseVal(N1) || 4372 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4373 4374 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4375 (!N1C->isZero() && Cond == ISD::SETNE); 4376 4377 if (!Inverse) 4378 return TopSetCC; 4379 4380 ISD::CondCode InvCond = ISD::getSetCCInverse( 4381 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4382 TopSetCC.getOperand(0).getValueType()); 4383 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4384 TopSetCC.getOperand(1), 4385 InvCond); 4386 } 4387 } 4388 } 4389 4390 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4391 // equality or unsigned, and all 1 bits of the const are in the same 4392 // partial word, see if we can shorten the load. 4393 if (DCI.isBeforeLegalize() && 4394 !ISD::isSignedIntSetCC(Cond) && 4395 N0.getOpcode() == ISD::AND && C1 == 0 && 4396 N0.getNode()->hasOneUse() && 4397 isa<LoadSDNode>(N0.getOperand(0)) && 4398 N0.getOperand(0).getNode()->hasOneUse() && 4399 isa<ConstantSDNode>(N0.getOperand(1))) { 4400 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4401 APInt bestMask; 4402 unsigned bestWidth = 0, bestOffset = 0; 4403 if (Lod->isSimple() && Lod->isUnindexed()) { 4404 unsigned origWidth = N0.getValueSizeInBits(); 4405 unsigned maskWidth = origWidth; 4406 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4407 // 8 bits, but have to be careful... 4408 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4409 origWidth = Lod->getMemoryVT().getSizeInBits(); 4410 const APInt &Mask = N0.getConstantOperandAPInt(1); 4411 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4412 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4413 for (unsigned offset=0; offset<origWidth/width; offset++) { 4414 if (Mask.isSubsetOf(newMask)) { 4415 if (Layout.isLittleEndian()) 4416 bestOffset = (uint64_t)offset * (width/8); 4417 else 4418 bestOffset = (origWidth/width - offset - 1) * (width/8); 4419 bestMask = Mask.lshr(offset * (width/8) * 8); 4420 bestWidth = width; 4421 break; 4422 } 4423 newMask <<= width; 4424 } 4425 } 4426 } 4427 if (bestWidth) { 4428 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4429 if (newVT.isRound() && 4430 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4431 SDValue Ptr = Lod->getBasePtr(); 4432 if (bestOffset != 0) 4433 Ptr = 4434 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4435 SDValue NewLoad = 4436 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4437 Lod->getPointerInfo().getWithOffset(bestOffset), 4438 Lod->getOriginalAlign()); 4439 return DAG.getSetCC(dl, VT, 4440 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4441 DAG.getConstant(bestMask.trunc(bestWidth), 4442 dl, newVT)), 4443 DAG.getConstant(0LL, dl, newVT), Cond); 4444 } 4445 } 4446 } 4447 4448 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4449 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4450 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4451 4452 // If the comparison constant has bits in the upper part, the 4453 // zero-extended value could never match. 4454 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4455 C1.getBitWidth() - InSize))) { 4456 switch (Cond) { 4457 case ISD::SETUGT: 4458 case ISD::SETUGE: 4459 case ISD::SETEQ: 4460 return DAG.getConstant(0, dl, VT); 4461 case ISD::SETULT: 4462 case ISD::SETULE: 4463 case ISD::SETNE: 4464 return DAG.getConstant(1, dl, VT); 4465 case ISD::SETGT: 4466 case ISD::SETGE: 4467 // True if the sign bit of C1 is set. 4468 return DAG.getConstant(C1.isNegative(), dl, VT); 4469 case ISD::SETLT: 4470 case ISD::SETLE: 4471 // True if the sign bit of C1 isn't set. 4472 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4473 default: 4474 break; 4475 } 4476 } 4477 4478 // Otherwise, we can perform the comparison with the low bits. 4479 switch (Cond) { 4480 case ISD::SETEQ: 4481 case ISD::SETNE: 4482 case ISD::SETUGT: 4483 case ISD::SETUGE: 4484 case ISD::SETULT: 4485 case ISD::SETULE: { 4486 EVT newVT = N0.getOperand(0).getValueType(); 4487 if (DCI.isBeforeLegalizeOps() || 4488 (isOperationLegal(ISD::SETCC, newVT) && 4489 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4490 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4491 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4492 4493 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4494 NewConst, Cond); 4495 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4496 } 4497 break; 4498 } 4499 default: 4500 break; // todo, be more careful with signed comparisons 4501 } 4502 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4503 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4504 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4505 OpVT)) { 4506 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4507 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4508 EVT ExtDstTy = N0.getValueType(); 4509 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4510 4511 // If the constant doesn't fit into the number of bits for the source of 4512 // the sign extension, it is impossible for both sides to be equal. 4513 if (C1.getMinSignedBits() > ExtSrcTyBits) 4514 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4515 4516 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4517 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4518 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4519 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4520 DAG.getConstant(Imm, dl, ExtDstTy)); 4521 if (!DCI.isCalledByLegalizer()) 4522 DCI.AddToWorklist(ZextOp.getNode()); 4523 // Otherwise, make this a use of a zext. 4524 return DAG.getSetCC(dl, VT, ZextOp, 4525 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4526 } else if ((N1C->isZero() || N1C->isOne()) && 4527 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4528 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4529 if (N0.getOpcode() == ISD::SETCC && 4530 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4531 (N0.getValueType() == MVT::i1 || 4532 getBooleanContents(N0.getOperand(0).getValueType()) == 4533 ZeroOrOneBooleanContent)) { 4534 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4535 if (TrueWhenTrue) 4536 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4537 // Invert the condition. 4538 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4539 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4540 if (DCI.isBeforeLegalizeOps() || 4541 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4542 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4543 } 4544 4545 if ((N0.getOpcode() == ISD::XOR || 4546 (N0.getOpcode() == ISD::AND && 4547 N0.getOperand(0).getOpcode() == ISD::XOR && 4548 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4549 isOneConstant(N0.getOperand(1))) { 4550 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4551 // can only do this if the top bits are known zero. 4552 unsigned BitWidth = N0.getValueSizeInBits(); 4553 if (DAG.MaskedValueIsZero(N0, 4554 APInt::getHighBitsSet(BitWidth, 4555 BitWidth-1))) { 4556 // Okay, get the un-inverted input value. 4557 SDValue Val; 4558 if (N0.getOpcode() == ISD::XOR) { 4559 Val = N0.getOperand(0); 4560 } else { 4561 assert(N0.getOpcode() == ISD::AND && 4562 N0.getOperand(0).getOpcode() == ISD::XOR); 4563 // ((X^1)&1)^1 -> X & 1 4564 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4565 N0.getOperand(0).getOperand(0), 4566 N0.getOperand(1)); 4567 } 4568 4569 return DAG.getSetCC(dl, VT, Val, N1, 4570 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4571 } 4572 } else if (N1C->isOne()) { 4573 SDValue Op0 = N0; 4574 if (Op0.getOpcode() == ISD::TRUNCATE) 4575 Op0 = Op0.getOperand(0); 4576 4577 if ((Op0.getOpcode() == ISD::XOR) && 4578 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4579 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4580 SDValue XorLHS = Op0.getOperand(0); 4581 SDValue XorRHS = Op0.getOperand(1); 4582 // Ensure that the input setccs return an i1 type or 0/1 value. 4583 if (Op0.getValueType() == MVT::i1 || 4584 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4585 ZeroOrOneBooleanContent && 4586 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4587 ZeroOrOneBooleanContent)) { 4588 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4589 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4590 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4591 } 4592 } 4593 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4594 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4595 if (Op0.getValueType().bitsGT(VT)) 4596 Op0 = DAG.getNode(ISD::AND, dl, VT, 4597 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4598 DAG.getConstant(1, dl, VT)); 4599 else if (Op0.getValueType().bitsLT(VT)) 4600 Op0 = DAG.getNode(ISD::AND, dl, VT, 4601 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4602 DAG.getConstant(1, dl, VT)); 4603 4604 return DAG.getSetCC(dl, VT, Op0, 4605 DAG.getConstant(0, dl, Op0.getValueType()), 4606 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4607 } 4608 if (Op0.getOpcode() == ISD::AssertZext && 4609 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4610 return DAG.getSetCC(dl, VT, Op0, 4611 DAG.getConstant(0, dl, Op0.getValueType()), 4612 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4613 } 4614 } 4615 4616 // Given: 4617 // icmp eq/ne (urem %x, %y), 0 4618 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4619 // icmp eq/ne %x, 0 4620 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4621 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4622 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4623 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4624 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4625 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4626 } 4627 4628 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4629 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4630 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4631 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4632 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4633 N1C && N1C->isAllOnes()) { 4634 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4635 DAG.getConstant(0, dl, OpVT), 4636 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4637 } 4638 4639 if (SDValue V = 4640 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4641 return V; 4642 } 4643 4644 // These simplifications apply to splat vectors as well. 4645 // TODO: Handle more splat vector cases. 4646 if (auto *N1C = isConstOrConstSplat(N1)) { 4647 const APInt &C1 = N1C->getAPIntValue(); 4648 4649 APInt MinVal, MaxVal; 4650 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4651 if (ISD::isSignedIntSetCC(Cond)) { 4652 MinVal = APInt::getSignedMinValue(OperandBitSize); 4653 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4654 } else { 4655 MinVal = APInt::getMinValue(OperandBitSize); 4656 MaxVal = APInt::getMaxValue(OperandBitSize); 4657 } 4658 4659 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4660 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4661 // X >= MIN --> true 4662 if (C1 == MinVal) 4663 return DAG.getBoolConstant(true, dl, VT, OpVT); 4664 4665 if (!VT.isVector()) { // TODO: Support this for vectors. 4666 // X >= C0 --> X > (C0 - 1) 4667 APInt C = C1 - 1; 4668 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4669 if ((DCI.isBeforeLegalizeOps() || 4670 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4671 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4672 isLegalICmpImmediate(C.getSExtValue())))) { 4673 return DAG.getSetCC(dl, VT, N0, 4674 DAG.getConstant(C, dl, N1.getValueType()), 4675 NewCC); 4676 } 4677 } 4678 } 4679 4680 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4681 // X <= MAX --> true 4682 if (C1 == MaxVal) 4683 return DAG.getBoolConstant(true, dl, VT, OpVT); 4684 4685 // X <= C0 --> X < (C0 + 1) 4686 if (!VT.isVector()) { // TODO: Support this for vectors. 4687 APInt C = C1 + 1; 4688 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4689 if ((DCI.isBeforeLegalizeOps() || 4690 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4691 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4692 isLegalICmpImmediate(C.getSExtValue())))) { 4693 return DAG.getSetCC(dl, VT, N0, 4694 DAG.getConstant(C, dl, N1.getValueType()), 4695 NewCC); 4696 } 4697 } 4698 } 4699 4700 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4701 if (C1 == MinVal) 4702 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4703 4704 // TODO: Support this for vectors after legalize ops. 4705 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4706 // Canonicalize setlt X, Max --> setne X, Max 4707 if (C1 == MaxVal) 4708 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4709 4710 // If we have setult X, 1, turn it into seteq X, 0 4711 if (C1 == MinVal+1) 4712 return DAG.getSetCC(dl, VT, N0, 4713 DAG.getConstant(MinVal, dl, N0.getValueType()), 4714 ISD::SETEQ); 4715 } 4716 } 4717 4718 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4719 if (C1 == MaxVal) 4720 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4721 4722 // TODO: Support this for vectors after legalize ops. 4723 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4724 // Canonicalize setgt X, Min --> setne X, Min 4725 if (C1 == MinVal) 4726 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4727 4728 // If we have setugt X, Max-1, turn it into seteq X, Max 4729 if (C1 == MaxVal-1) 4730 return DAG.getSetCC(dl, VT, N0, 4731 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4732 ISD::SETEQ); 4733 } 4734 } 4735 4736 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4737 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4738 if (C1.isZero()) 4739 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4740 VT, N0, N1, Cond, DCI, dl)) 4741 return CC; 4742 4743 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4744 // For example, when high 32-bits of i64 X are known clear: 4745 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4746 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4747 bool CmpZero = N1C->getAPIntValue().isZero(); 4748 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4749 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4750 // Match or(lo,shl(hi,bw/2)) pattern. 4751 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4752 unsigned EltBits = V.getScalarValueSizeInBits(); 4753 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4754 return false; 4755 SDValue LHS = V.getOperand(0); 4756 SDValue RHS = V.getOperand(1); 4757 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4758 // Unshifted element must have zero upperbits. 4759 if (RHS.getOpcode() == ISD::SHL && 4760 isa<ConstantSDNode>(RHS.getOperand(1)) && 4761 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4762 DAG.MaskedValueIsZero(LHS, HiBits)) { 4763 Lo = LHS; 4764 Hi = RHS.getOperand(0); 4765 return true; 4766 } 4767 if (LHS.getOpcode() == ISD::SHL && 4768 isa<ConstantSDNode>(LHS.getOperand(1)) && 4769 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4770 DAG.MaskedValueIsZero(RHS, HiBits)) { 4771 Lo = RHS; 4772 Hi = LHS.getOperand(0); 4773 return true; 4774 } 4775 return false; 4776 }; 4777 4778 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4779 unsigned EltBits = N0.getScalarValueSizeInBits(); 4780 unsigned HalfBits = EltBits / 2; 4781 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4782 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4783 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4784 SDValue NewN0 = 4785 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4786 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4787 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4788 }; 4789 4790 SDValue Lo, Hi; 4791 if (IsConcat(N0, Lo, Hi)) 4792 return MergeConcat(Lo, Hi); 4793 4794 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4795 SDValue Lo0, Lo1, Hi0, Hi1; 4796 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4797 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4798 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4799 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4800 } 4801 } 4802 } 4803 } 4804 4805 // If we have "setcc X, C0", check to see if we can shrink the immediate 4806 // by changing cc. 4807 // TODO: Support this for vectors after legalize ops. 4808 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4809 // SETUGT X, SINTMAX -> SETLT X, 0 4810 // SETUGE X, SINTMIN -> SETLT X, 0 4811 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4812 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4813 return DAG.getSetCC(dl, VT, N0, 4814 DAG.getConstant(0, dl, N1.getValueType()), 4815 ISD::SETLT); 4816 4817 // SETULT X, SINTMIN -> SETGT X, -1 4818 // SETULE X, SINTMAX -> SETGT X, -1 4819 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4820 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4821 return DAG.getSetCC(dl, VT, N0, 4822 DAG.getAllOnesConstant(dl, N1.getValueType()), 4823 ISD::SETGT); 4824 } 4825 } 4826 4827 // Back to non-vector simplifications. 4828 // TODO: Can we do these for vector splats? 4829 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4831 const APInt &C1 = N1C->getAPIntValue(); 4832 EVT ShValTy = N0.getValueType(); 4833 4834 // Fold bit comparisons when we can. This will result in an 4835 // incorrect value when boolean false is negative one, unless 4836 // the bitsize is 1 in which case the false value is the same 4837 // in practice regardless of the representation. 4838 if ((VT.getSizeInBits() == 1 || 4839 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4840 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4841 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4842 N0.getOpcode() == ISD::AND) { 4843 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4844 EVT ShiftTy = 4845 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4846 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4847 // Perform the xform if the AND RHS is a single bit. 4848 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4849 if (AndRHS->getAPIntValue().isPowerOf2() && 4850 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4851 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4852 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4853 DAG.getConstant(ShCt, dl, ShiftTy))); 4854 } 4855 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4856 // (X & 8) == 8 --> (X & 8) >> 3 4857 // Perform the xform if C1 is a single bit. 4858 unsigned ShCt = C1.logBase2(); 4859 if (C1.isPowerOf2() && 4860 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4861 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4862 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4863 DAG.getConstant(ShCt, dl, ShiftTy))); 4864 } 4865 } 4866 } 4867 } 4868 4869 if (C1.getMinSignedBits() <= 64 && 4870 !isLegalICmpImmediate(C1.getSExtValue())) { 4871 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4872 // (X & -256) == 256 -> (X >> 8) == 1 4873 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4874 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4875 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4876 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4877 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4878 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4879 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4880 SDValue Shift = 4881 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4882 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4883 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4884 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4885 } 4886 } 4887 } 4888 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4889 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4890 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4891 // X < 0x100000000 -> (X >> 32) < 1 4892 // X >= 0x100000000 -> (X >> 32) >= 1 4893 // X <= 0x0ffffffff -> (X >> 32) < 1 4894 // X > 0x0ffffffff -> (X >> 32) >= 1 4895 unsigned ShiftBits; 4896 APInt NewC = C1; 4897 ISD::CondCode NewCond = Cond; 4898 if (AdjOne) { 4899 ShiftBits = C1.countTrailingOnes(); 4900 NewC = NewC + 1; 4901 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4902 } else { 4903 ShiftBits = C1.countTrailingZeros(); 4904 } 4905 NewC.lshrInPlace(ShiftBits); 4906 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4907 isLegalICmpImmediate(NewC.getSExtValue()) && 4908 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4909 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4910 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4911 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4912 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4913 } 4914 } 4915 } 4916 } 4917 4918 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4919 auto *CFP = cast<ConstantFPSDNode>(N1); 4920 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4921 4922 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4923 // constant if knowing that the operand is non-nan is enough. We prefer to 4924 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4925 // materialize 0.0. 4926 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4927 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4928 4929 // setcc (fneg x), C -> setcc swap(pred) x, -C 4930 if (N0.getOpcode() == ISD::FNEG) { 4931 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4932 if (DCI.isBeforeLegalizeOps() || 4933 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4934 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4935 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4936 } 4937 } 4938 4939 // If the condition is not legal, see if we can find an equivalent one 4940 // which is legal. 4941 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4942 // If the comparison was an awkward floating-point == or != and one of 4943 // the comparison operands is infinity or negative infinity, convert the 4944 // condition to a less-awkward <= or >=. 4945 if (CFP->getValueAPF().isInfinity()) { 4946 bool IsNegInf = CFP->getValueAPF().isNegative(); 4947 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4948 switch (Cond) { 4949 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4950 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4951 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4952 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4953 default: break; 4954 } 4955 if (NewCond != ISD::SETCC_INVALID && 4956 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4957 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4958 } 4959 } 4960 } 4961 4962 if (N0 == N1) { 4963 // The sext(setcc()) => setcc() optimization relies on the appropriate 4964 // constant being emitted. 4965 assert(!N0.getValueType().isInteger() && 4966 "Integer types should be handled by FoldSetCC"); 4967 4968 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4969 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4970 if (UOF == 2) // FP operators that are undefined on NaNs. 4971 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4972 if (UOF == unsigned(EqTrue)) 4973 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4974 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4975 // if it is not already. 4976 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4977 if (NewCond != Cond && 4978 (DCI.isBeforeLegalizeOps() || 4979 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4980 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4981 } 4982 4983 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4984 N0.getValueType().isInteger()) { 4985 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4986 N0.getOpcode() == ISD::XOR) { 4987 // Simplify (X+Y) == (X+Z) --> Y == Z 4988 if (N0.getOpcode() == N1.getOpcode()) { 4989 if (N0.getOperand(0) == N1.getOperand(0)) 4990 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4991 if (N0.getOperand(1) == N1.getOperand(1)) 4992 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4993 if (isCommutativeBinOp(N0.getOpcode())) { 4994 // If X op Y == Y op X, try other combinations. 4995 if (N0.getOperand(0) == N1.getOperand(1)) 4996 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4997 Cond); 4998 if (N0.getOperand(1) == N1.getOperand(0)) 4999 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 5000 Cond); 5001 } 5002 } 5003 5004 // If RHS is a legal immediate value for a compare instruction, we need 5005 // to be careful about increasing register pressure needlessly. 5006 bool LegalRHSImm = false; 5007 5008 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 5009 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 5010 // Turn (X+C1) == C2 --> X == C2-C1 5011 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 5012 return DAG.getSetCC( 5013 dl, VT, N0.getOperand(0), 5014 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 5015 dl, N0.getValueType()), 5016 Cond); 5017 5018 // Turn (X^C1) == C2 --> X == C1^C2 5019 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 5020 return DAG.getSetCC( 5021 dl, VT, N0.getOperand(0), 5022 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 5023 dl, N0.getValueType()), 5024 Cond); 5025 } 5026 5027 // Turn (C1-X) == C2 --> X == C1-C2 5028 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 5029 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 5030 return DAG.getSetCC( 5031 dl, VT, N0.getOperand(1), 5032 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 5033 dl, N0.getValueType()), 5034 Cond); 5035 5036 // Could RHSC fold directly into a compare? 5037 if (RHSC->getValueType(0).getSizeInBits() <= 64) 5038 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 5039 } 5040 5041 // (X+Y) == X --> Y == 0 and similar folds. 5042 // Don't do this if X is an immediate that can fold into a cmp 5043 // instruction and X+Y has other uses. It could be an induction variable 5044 // chain, and the transform would increase register pressure. 5045 if (!LegalRHSImm || N0.hasOneUse()) 5046 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 5047 return V; 5048 } 5049 5050 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 5051 N1.getOpcode() == ISD::XOR) 5052 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 5053 return V; 5054 5055 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 5056 return V; 5057 } 5058 5059 // Fold remainder of division by a constant. 5060 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 5061 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 5062 // When division is cheap or optimizing for minimum size, 5063 // fall through to DIVREM creation by skipping this fold. 5064 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 5065 if (N0.getOpcode() == ISD::UREM) { 5066 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5067 return Folded; 5068 } else if (N0.getOpcode() == ISD::SREM) { 5069 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 5070 return Folded; 5071 } 5072 } 5073 } 5074 5075 // Fold away ALL boolean setcc's. 5076 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 5077 SDValue Temp; 5078 switch (Cond) { 5079 default: llvm_unreachable("Unknown integer setcc!"); 5080 case ISD::SETEQ: // X == Y -> ~(X^Y) 5081 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5082 N0 = DAG.getNOT(dl, Temp, OpVT); 5083 if (!DCI.isCalledByLegalizer()) 5084 DCI.AddToWorklist(Temp.getNode()); 5085 break; 5086 case ISD::SETNE: // X != Y --> (X^Y) 5087 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 5088 break; 5089 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 5090 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 5091 Temp = DAG.getNOT(dl, N0, OpVT); 5092 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 5093 if (!DCI.isCalledByLegalizer()) 5094 DCI.AddToWorklist(Temp.getNode()); 5095 break; 5096 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 5097 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 5098 Temp = DAG.getNOT(dl, N1, OpVT); 5099 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 5100 if (!DCI.isCalledByLegalizer()) 5101 DCI.AddToWorklist(Temp.getNode()); 5102 break; 5103 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 5104 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 5105 Temp = DAG.getNOT(dl, N0, OpVT); 5106 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 5107 if (!DCI.isCalledByLegalizer()) 5108 DCI.AddToWorklist(Temp.getNode()); 5109 break; 5110 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 5111 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 5112 Temp = DAG.getNOT(dl, N1, OpVT); 5113 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 5114 break; 5115 } 5116 if (VT.getScalarType() != MVT::i1) { 5117 if (!DCI.isCalledByLegalizer()) 5118 DCI.AddToWorklist(N0.getNode()); 5119 // FIXME: If running after legalize, we probably can't do this. 5120 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 5121 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 5122 } 5123 return N0; 5124 } 5125 5126 // Could not fold it. 5127 return SDValue(); 5128 } 5129 5130 /// Returns true (and the GlobalValue and the offset) if the node is a 5131 /// GlobalAddress + offset. 5132 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 5133 int64_t &Offset) const { 5134 5135 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 5136 5137 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 5138 GA = GASD->getGlobal(); 5139 Offset += GASD->getOffset(); 5140 return true; 5141 } 5142 5143 if (N->getOpcode() == ISD::ADD) { 5144 SDValue N1 = N->getOperand(0); 5145 SDValue N2 = N->getOperand(1); 5146 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 5147 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 5148 Offset += V->getSExtValue(); 5149 return true; 5150 } 5151 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 5152 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 5153 Offset += V->getSExtValue(); 5154 return true; 5155 } 5156 } 5157 } 5158 5159 return false; 5160 } 5161 5162 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 5163 DAGCombinerInfo &DCI) const { 5164 // Default implementation: no optimization. 5165 return SDValue(); 5166 } 5167 5168 //===----------------------------------------------------------------------===// 5169 // Inline Assembler Implementation Methods 5170 //===----------------------------------------------------------------------===// 5171 5172 TargetLowering::ConstraintType 5173 TargetLowering::getConstraintType(StringRef Constraint) const { 5174 unsigned S = Constraint.size(); 5175 5176 if (S == 1) { 5177 switch (Constraint[0]) { 5178 default: break; 5179 case 'r': 5180 return C_RegisterClass; 5181 case 'm': // memory 5182 case 'o': // offsetable 5183 case 'V': // not offsetable 5184 return C_Memory; 5185 case 'p': // Address. 5186 return C_Address; 5187 case 'n': // Simple Integer 5188 case 'E': // Floating Point Constant 5189 case 'F': // Floating Point Constant 5190 return C_Immediate; 5191 case 'i': // Simple Integer or Relocatable Constant 5192 case 's': // Relocatable Constant 5193 case 'X': // Allow ANY value. 5194 case 'I': // Target registers. 5195 case 'J': 5196 case 'K': 5197 case 'L': 5198 case 'M': 5199 case 'N': 5200 case 'O': 5201 case 'P': 5202 case '<': 5203 case '>': 5204 return C_Other; 5205 } 5206 } 5207 5208 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5209 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5210 return C_Memory; 5211 return C_Register; 5212 } 5213 return C_Unknown; 5214 } 5215 5216 /// Try to replace an X constraint, which matches anything, with another that 5217 /// has more specific requirements based on the type of the corresponding 5218 /// operand. 5219 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5220 if (ConstraintVT.isInteger()) 5221 return "r"; 5222 if (ConstraintVT.isFloatingPoint()) 5223 return "f"; // works for many targets 5224 return nullptr; 5225 } 5226 5227 SDValue TargetLowering::LowerAsmOutputForConstraint( 5228 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5229 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5230 return SDValue(); 5231 } 5232 5233 /// Lower the specified operand into the Ops vector. 5234 /// If it is invalid, don't add anything to Ops. 5235 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5236 std::string &Constraint, 5237 std::vector<SDValue> &Ops, 5238 SelectionDAG &DAG) const { 5239 5240 if (Constraint.length() > 1) return; 5241 5242 char ConstraintLetter = Constraint[0]; 5243 switch (ConstraintLetter) { 5244 default: break; 5245 case 'X': // Allows any operand 5246 case 'i': // Simple Integer or Relocatable Constant 5247 case 'n': // Simple Integer 5248 case 's': { // Relocatable Constant 5249 5250 ConstantSDNode *C; 5251 uint64_t Offset = 0; 5252 5253 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5254 // etc., since getelementpointer is variadic. We can't use 5255 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5256 // while in this case the GA may be furthest from the root node which is 5257 // likely an ISD::ADD. 5258 while (true) { 5259 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5260 // gcc prints these as sign extended. Sign extend value to 64 bits 5261 // now; without this it would get ZExt'd later in 5262 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5263 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5264 BooleanContent BCont = getBooleanContents(MVT::i64); 5265 ISD::NodeType ExtOpc = 5266 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5267 int64_t ExtVal = 5268 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5269 Ops.push_back( 5270 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5271 return; 5272 } 5273 if (ConstraintLetter != 'n') { 5274 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5275 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5276 GA->getValueType(0), 5277 Offset + GA->getOffset())); 5278 return; 5279 } 5280 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5281 Ops.push_back(DAG.getTargetBlockAddress( 5282 BA->getBlockAddress(), BA->getValueType(0), 5283 Offset + BA->getOffset(), BA->getTargetFlags())); 5284 return; 5285 } 5286 if (isa<BasicBlockSDNode>(Op)) { 5287 Ops.push_back(Op); 5288 return; 5289 } 5290 } 5291 const unsigned OpCode = Op.getOpcode(); 5292 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5293 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5294 Op = Op.getOperand(1); 5295 // Subtraction is not commutative. 5296 else if (OpCode == ISD::ADD && 5297 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5298 Op = Op.getOperand(0); 5299 else 5300 return; 5301 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5302 continue; 5303 } 5304 return; 5305 } 5306 break; 5307 } 5308 } 5309 } 5310 5311 void TargetLowering::CollectTargetIntrinsicOperands(const CallInst &I, 5312 SmallVectorImpl<SDValue> &Ops, 5313 SelectionDAG &DAG) const { 5314 return; 5315 } 5316 5317 std::pair<unsigned, const TargetRegisterClass *> 5318 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5319 StringRef Constraint, 5320 MVT VT) const { 5321 if (Constraint.empty() || Constraint[0] != '{') 5322 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5323 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5324 5325 // Remove the braces from around the name. 5326 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5327 5328 std::pair<unsigned, const TargetRegisterClass *> R = 5329 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5330 5331 // Figure out which register class contains this reg. 5332 for (const TargetRegisterClass *RC : RI->regclasses()) { 5333 // If none of the value types for this register class are valid, we 5334 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5335 if (!isLegalRC(*RI, *RC)) 5336 continue; 5337 5338 for (const MCPhysReg &PR : *RC) { 5339 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5340 std::pair<unsigned, const TargetRegisterClass *> S = 5341 std::make_pair(PR, RC); 5342 5343 // If this register class has the requested value type, return it, 5344 // otherwise keep searching and return the first class found 5345 // if no other is found which explicitly has the requested type. 5346 if (RI->isTypeLegalForClass(*RC, VT)) 5347 return S; 5348 if (!R.second) 5349 R = S; 5350 } 5351 } 5352 } 5353 5354 return R; 5355 } 5356 5357 //===----------------------------------------------------------------------===// 5358 // Constraint Selection. 5359 5360 /// Return true of this is an input operand that is a matching constraint like 5361 /// "4". 5362 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5363 assert(!ConstraintCode.empty() && "No known constraint!"); 5364 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5365 } 5366 5367 /// If this is an input matching constraint, this method returns the output 5368 /// operand it matches. 5369 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5370 assert(!ConstraintCode.empty() && "No known constraint!"); 5371 return atoi(ConstraintCode.c_str()); 5372 } 5373 5374 /// Split up the constraint string from the inline assembly value into the 5375 /// specific constraints and their prefixes, and also tie in the associated 5376 /// operand values. 5377 /// If this returns an empty vector, and if the constraint string itself 5378 /// isn't empty, there was an error parsing. 5379 TargetLowering::AsmOperandInfoVector 5380 TargetLowering::ParseConstraints(const DataLayout &DL, 5381 const TargetRegisterInfo *TRI, 5382 const CallBase &Call) const { 5383 /// Information about all of the constraints. 5384 AsmOperandInfoVector ConstraintOperands; 5385 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5386 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5387 5388 // Do a prepass over the constraints, canonicalizing them, and building up the 5389 // ConstraintOperands list. 5390 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5391 unsigned ResNo = 0; // ResNo - The result number of the next output. 5392 unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. 5393 5394 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5395 ConstraintOperands.emplace_back(std::move(CI)); 5396 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5397 5398 // Update multiple alternative constraint count. 5399 if (OpInfo.multipleAlternatives.size() > maCount) 5400 maCount = OpInfo.multipleAlternatives.size(); 5401 5402 OpInfo.ConstraintVT = MVT::Other; 5403 5404 // Compute the value type for each operand. 5405 switch (OpInfo.Type) { 5406 case InlineAsm::isOutput: 5407 // Indirect outputs just consume an argument. 5408 if (OpInfo.isIndirect) { 5409 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5410 break; 5411 } 5412 5413 // The return value of the call is this value. As such, there is no 5414 // corresponding argument. 5415 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5416 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5417 OpInfo.ConstraintVT = 5418 getSimpleValueType(DL, STy->getElementType(ResNo)); 5419 } else { 5420 assert(ResNo == 0 && "Asm only has one result!"); 5421 OpInfo.ConstraintVT = 5422 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5423 } 5424 ++ResNo; 5425 break; 5426 case InlineAsm::isInput: 5427 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5428 break; 5429 case InlineAsm::isLabel: 5430 OpInfo.CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo); 5431 ++LabelNo; 5432 continue; 5433 case InlineAsm::isClobber: 5434 // Nothing to do. 5435 break; 5436 } 5437 5438 if (OpInfo.CallOperandVal) { 5439 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5440 if (OpInfo.isIndirect) { 5441 OpTy = Call.getParamElementType(ArgNo); 5442 assert(OpTy && "Indirect operand must have elementtype attribute"); 5443 } 5444 5445 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5446 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5447 if (STy->getNumElements() == 1) 5448 OpTy = STy->getElementType(0); 5449 5450 // If OpTy is not a single value, it may be a struct/union that we 5451 // can tile with integers. 5452 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5453 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5454 switch (BitSize) { 5455 default: break; 5456 case 1: 5457 case 8: 5458 case 16: 5459 case 32: 5460 case 64: 5461 case 128: 5462 OpTy = IntegerType::get(OpTy->getContext(), BitSize); 5463 break; 5464 } 5465 } 5466 5467 EVT VT = getAsmOperandValueType(DL, OpTy, true); 5468 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 5469 ArgNo++; 5470 } 5471 } 5472 5473 // If we have multiple alternative constraints, select the best alternative. 5474 if (!ConstraintOperands.empty()) { 5475 if (maCount) { 5476 unsigned bestMAIndex = 0; 5477 int bestWeight = -1; 5478 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5479 int weight = -1; 5480 unsigned maIndex; 5481 // Compute the sums of the weights for each alternative, keeping track 5482 // of the best (highest weight) one so far. 5483 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5484 int weightSum = 0; 5485 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5486 cIndex != eIndex; ++cIndex) { 5487 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5488 if (OpInfo.Type == InlineAsm::isClobber) 5489 continue; 5490 5491 // If this is an output operand with a matching input operand, 5492 // look up the matching input. If their types mismatch, e.g. one 5493 // is an integer, the other is floating point, or their sizes are 5494 // different, flag it as an maCantMatch. 5495 if (OpInfo.hasMatchingInput()) { 5496 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5497 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5498 if ((OpInfo.ConstraintVT.isInteger() != 5499 Input.ConstraintVT.isInteger()) || 5500 (OpInfo.ConstraintVT.getSizeInBits() != 5501 Input.ConstraintVT.getSizeInBits())) { 5502 weightSum = -1; // Can't match. 5503 break; 5504 } 5505 } 5506 } 5507 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5508 if (weight == -1) { 5509 weightSum = -1; 5510 break; 5511 } 5512 weightSum += weight; 5513 } 5514 // Update best. 5515 if (weightSum > bestWeight) { 5516 bestWeight = weightSum; 5517 bestMAIndex = maIndex; 5518 } 5519 } 5520 5521 // Now select chosen alternative in each constraint. 5522 for (AsmOperandInfo &cInfo : ConstraintOperands) 5523 if (cInfo.Type != InlineAsm::isClobber) 5524 cInfo.selectAlternative(bestMAIndex); 5525 } 5526 } 5527 5528 // Check and hook up tied operands, choose constraint code to use. 5529 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5530 cIndex != eIndex; ++cIndex) { 5531 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5532 5533 // If this is an output operand with a matching input operand, look up the 5534 // matching input. If their types mismatch, e.g. one is an integer, the 5535 // other is floating point, or their sizes are different, flag it as an 5536 // error. 5537 if (OpInfo.hasMatchingInput()) { 5538 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5539 5540 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5541 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5542 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5543 OpInfo.ConstraintVT); 5544 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5545 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5546 Input.ConstraintVT); 5547 if ((OpInfo.ConstraintVT.isInteger() != 5548 Input.ConstraintVT.isInteger()) || 5549 (MatchRC.second != InputRC.second)) { 5550 report_fatal_error("Unsupported asm: input constraint" 5551 " with a matching output constraint of" 5552 " incompatible type!"); 5553 } 5554 } 5555 } 5556 } 5557 5558 return ConstraintOperands; 5559 } 5560 5561 /// Return an integer indicating how general CT is. 5562 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5563 switch (CT) { 5564 case TargetLowering::C_Immediate: 5565 case TargetLowering::C_Other: 5566 case TargetLowering::C_Unknown: 5567 return 0; 5568 case TargetLowering::C_Register: 5569 return 1; 5570 case TargetLowering::C_RegisterClass: 5571 return 2; 5572 case TargetLowering::C_Memory: 5573 case TargetLowering::C_Address: 5574 return 3; 5575 } 5576 llvm_unreachable("Invalid constraint type"); 5577 } 5578 5579 /// Examine constraint type and operand type and determine a weight value. 5580 /// This object must already have been set up with the operand type 5581 /// and the current alternative constraint selected. 5582 TargetLowering::ConstraintWeight 5583 TargetLowering::getMultipleConstraintMatchWeight( 5584 AsmOperandInfo &info, int maIndex) const { 5585 InlineAsm::ConstraintCodeVector *rCodes; 5586 if (maIndex >= (int)info.multipleAlternatives.size()) 5587 rCodes = &info.Codes; 5588 else 5589 rCodes = &info.multipleAlternatives[maIndex].Codes; 5590 ConstraintWeight BestWeight = CW_Invalid; 5591 5592 // Loop over the options, keeping track of the most general one. 5593 for (const std::string &rCode : *rCodes) { 5594 ConstraintWeight weight = 5595 getSingleConstraintMatchWeight(info, rCode.c_str()); 5596 if (weight > BestWeight) 5597 BestWeight = weight; 5598 } 5599 5600 return BestWeight; 5601 } 5602 5603 /// Examine constraint type and operand type and determine a weight value. 5604 /// This object must already have been set up with the operand type 5605 /// and the current alternative constraint selected. 5606 TargetLowering::ConstraintWeight 5607 TargetLowering::getSingleConstraintMatchWeight( 5608 AsmOperandInfo &info, const char *constraint) const { 5609 ConstraintWeight weight = CW_Invalid; 5610 Value *CallOperandVal = info.CallOperandVal; 5611 // If we don't have a value, we can't do a match, 5612 // but allow it at the lowest weight. 5613 if (!CallOperandVal) 5614 return CW_Default; 5615 // Look at the constraint type. 5616 switch (*constraint) { 5617 case 'i': // immediate integer. 5618 case 'n': // immediate integer with a known value. 5619 if (isa<ConstantInt>(CallOperandVal)) 5620 weight = CW_Constant; 5621 break; 5622 case 's': // non-explicit intregal immediate. 5623 if (isa<GlobalValue>(CallOperandVal)) 5624 weight = CW_Constant; 5625 break; 5626 case 'E': // immediate float if host format. 5627 case 'F': // immediate float. 5628 if (isa<ConstantFP>(CallOperandVal)) 5629 weight = CW_Constant; 5630 break; 5631 case '<': // memory operand with autodecrement. 5632 case '>': // memory operand with autoincrement. 5633 case 'm': // memory operand. 5634 case 'o': // offsettable memory operand 5635 case 'V': // non-offsettable memory operand 5636 weight = CW_Memory; 5637 break; 5638 case 'r': // general register. 5639 case 'g': // general register, memory operand or immediate integer. 5640 // note: Clang converts "g" to "imr". 5641 if (CallOperandVal->getType()->isIntegerTy()) 5642 weight = CW_Register; 5643 break; 5644 case 'X': // any operand. 5645 default: 5646 weight = CW_Default; 5647 break; 5648 } 5649 return weight; 5650 } 5651 5652 /// If there are multiple different constraints that we could pick for this 5653 /// operand (e.g. "imr") try to pick the 'best' one. 5654 /// This is somewhat tricky: constraints fall into four classes: 5655 /// Other -> immediates and magic values 5656 /// Register -> one specific register 5657 /// RegisterClass -> a group of regs 5658 /// Memory -> memory 5659 /// Ideally, we would pick the most specific constraint possible: if we have 5660 /// something that fits into a register, we would pick it. The problem here 5661 /// is that if we have something that could either be in a register or in 5662 /// memory that use of the register could cause selection of *other* 5663 /// operands to fail: they might only succeed if we pick memory. Because of 5664 /// this the heuristic we use is: 5665 /// 5666 /// 1) If there is an 'other' constraint, and if the operand is valid for 5667 /// that constraint, use it. This makes us take advantage of 'i' 5668 /// constraints when available. 5669 /// 2) Otherwise, pick the most general constraint present. This prefers 5670 /// 'm' over 'r', for example. 5671 /// 5672 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5673 const TargetLowering &TLI, 5674 SDValue Op, SelectionDAG *DAG) { 5675 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5676 unsigned BestIdx = 0; 5677 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5678 int BestGenerality = -1; 5679 5680 // Loop over the options, keeping track of the most general one. 5681 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5682 TargetLowering::ConstraintType CType = 5683 TLI.getConstraintType(OpInfo.Codes[i]); 5684 5685 // Indirect 'other' or 'immediate' constraints are not allowed. 5686 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5687 CType == TargetLowering::C_Register || 5688 CType == TargetLowering::C_RegisterClass)) 5689 continue; 5690 5691 // If this is an 'other' or 'immediate' constraint, see if the operand is 5692 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5693 // the operand is an integer in the range [0..31] we want to use I (saving a 5694 // load of a register), otherwise we must use 'r'. 5695 if ((CType == TargetLowering::C_Other || 5696 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5697 assert(OpInfo.Codes[i].size() == 1 && 5698 "Unhandled multi-letter 'other' constraint"); 5699 std::vector<SDValue> ResultOps; 5700 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5701 ResultOps, *DAG); 5702 if (!ResultOps.empty()) { 5703 BestType = CType; 5704 BestIdx = i; 5705 break; 5706 } 5707 } 5708 5709 // Things with matching constraints can only be registers, per gcc 5710 // documentation. This mainly affects "g" constraints. 5711 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5712 continue; 5713 5714 // This constraint letter is more general than the previous one, use it. 5715 int Generality = getConstraintGenerality(CType); 5716 if (Generality > BestGenerality) { 5717 BestType = CType; 5718 BestIdx = i; 5719 BestGenerality = Generality; 5720 } 5721 } 5722 5723 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5724 OpInfo.ConstraintType = BestType; 5725 } 5726 5727 /// Determines the constraint code and constraint type to use for the specific 5728 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5729 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5730 SDValue Op, 5731 SelectionDAG *DAG) const { 5732 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5733 5734 // Single-letter constraints ('r') are very common. 5735 if (OpInfo.Codes.size() == 1) { 5736 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5737 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5738 } else { 5739 ChooseConstraint(OpInfo, *this, Op, DAG); 5740 } 5741 5742 // 'X' matches anything. 5743 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5744 // Constants are handled elsewhere. For Functions, the type here is the 5745 // type of the result, which is not what we want to look at; leave them 5746 // alone. 5747 Value *v = OpInfo.CallOperandVal; 5748 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5749 return; 5750 } 5751 5752 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5753 OpInfo.ConstraintCode = "i"; 5754 return; 5755 } 5756 5757 // Otherwise, try to resolve it to something we know about by looking at 5758 // the actual operand type. 5759 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5760 OpInfo.ConstraintCode = Repl; 5761 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5762 } 5763 } 5764 } 5765 5766 /// Given an exact SDIV by a constant, create a multiplication 5767 /// with the multiplicative inverse of the constant. 5768 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5769 const SDLoc &dl, SelectionDAG &DAG, 5770 SmallVectorImpl<SDNode *> &Created) { 5771 SDValue Op0 = N->getOperand(0); 5772 SDValue Op1 = N->getOperand(1); 5773 EVT VT = N->getValueType(0); 5774 EVT SVT = VT.getScalarType(); 5775 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5776 EVT ShSVT = ShVT.getScalarType(); 5777 5778 bool UseSRA = false; 5779 SmallVector<SDValue, 16> Shifts, Factors; 5780 5781 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5782 if (C->isZero()) 5783 return false; 5784 APInt Divisor = C->getAPIntValue(); 5785 unsigned Shift = Divisor.countTrailingZeros(); 5786 if (Shift) { 5787 Divisor.ashrInPlace(Shift); 5788 UseSRA = true; 5789 } 5790 // Calculate the multiplicative inverse, using Newton's method. 5791 APInt t; 5792 APInt Factor = Divisor; 5793 while ((t = Divisor * Factor) != 1) 5794 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5795 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5796 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5797 return true; 5798 }; 5799 5800 // Collect all magic values from the build vector. 5801 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5802 return SDValue(); 5803 5804 SDValue Shift, Factor; 5805 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5806 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5807 Factor = DAG.getBuildVector(VT, dl, Factors); 5808 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5809 assert(Shifts.size() == 1 && Factors.size() == 1 && 5810 "Expected matchUnaryPredicate to return one element for scalable " 5811 "vectors"); 5812 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5813 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5814 } else { 5815 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5816 Shift = Shifts[0]; 5817 Factor = Factors[0]; 5818 } 5819 5820 SDValue Res = Op0; 5821 5822 // Shift the value upfront if it is even, so the LSB is one. 5823 if (UseSRA) { 5824 // TODO: For UDIV use SRL instead of SRA. 5825 SDNodeFlags Flags; 5826 Flags.setExact(true); 5827 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5828 Created.push_back(Res.getNode()); 5829 } 5830 5831 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5832 } 5833 5834 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5835 SelectionDAG &DAG, 5836 SmallVectorImpl<SDNode *> &Created) const { 5837 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5839 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5840 return SDValue(N, 0); // Lower SDIV as SDIV 5841 return SDValue(); 5842 } 5843 5844 SDValue 5845 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5846 SelectionDAG &DAG, 5847 SmallVectorImpl<SDNode *> &Created) const { 5848 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5849 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5850 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5851 return SDValue(N, 0); // Lower SREM as SREM 5852 return SDValue(); 5853 } 5854 5855 /// Given an ISD::SDIV node expressing a divide by constant, 5856 /// return a DAG expression to select that will generate the same value by 5857 /// multiplying by a magic number. 5858 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5859 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5860 bool IsAfterLegalization, 5861 SmallVectorImpl<SDNode *> &Created) const { 5862 SDLoc dl(N); 5863 EVT VT = N->getValueType(0); 5864 EVT SVT = VT.getScalarType(); 5865 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5866 EVT ShSVT = ShVT.getScalarType(); 5867 unsigned EltBits = VT.getScalarSizeInBits(); 5868 EVT MulVT; 5869 5870 // Check to see if we can do this. 5871 // FIXME: We should be more aggressive here. 5872 if (!isTypeLegal(VT)) { 5873 // Limit this to simple scalars for now. 5874 if (VT.isVector() || !VT.isSimple()) 5875 return SDValue(); 5876 5877 // If this type will be promoted to a large enough type with a legal 5878 // multiply operation, we can go ahead and do this transform. 5879 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5880 return SDValue(); 5881 5882 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5883 if (MulVT.getSizeInBits() < (2 * EltBits) || 5884 !isOperationLegal(ISD::MUL, MulVT)) 5885 return SDValue(); 5886 } 5887 5888 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5889 if (N->getFlags().hasExact()) 5890 return BuildExactSDIV(*this, N, dl, DAG, Created); 5891 5892 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5893 5894 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5895 if (C->isZero()) 5896 return false; 5897 5898 const APInt &Divisor = C->getAPIntValue(); 5899 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5900 int NumeratorFactor = 0; 5901 int ShiftMask = -1; 5902 5903 if (Divisor.isOne() || Divisor.isAllOnes()) { 5904 // If d is +1/-1, we just multiply the numerator by +1/-1. 5905 NumeratorFactor = Divisor.getSExtValue(); 5906 magics.Magic = 0; 5907 magics.ShiftAmount = 0; 5908 ShiftMask = 0; 5909 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5910 // If d > 0 and m < 0, add the numerator. 5911 NumeratorFactor = 1; 5912 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5913 // If d < 0 and m > 0, subtract the numerator. 5914 NumeratorFactor = -1; 5915 } 5916 5917 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5918 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5919 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5920 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5921 return true; 5922 }; 5923 5924 SDValue N0 = N->getOperand(0); 5925 SDValue N1 = N->getOperand(1); 5926 5927 // Collect the shifts / magic values from each element. 5928 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5929 return SDValue(); 5930 5931 SDValue MagicFactor, Factor, Shift, ShiftMask; 5932 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5933 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5934 Factor = DAG.getBuildVector(VT, dl, Factors); 5935 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5936 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5937 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5938 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5939 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5940 "Expected matchUnaryPredicate to return one element for scalable " 5941 "vectors"); 5942 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5943 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5944 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5945 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5946 } else { 5947 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5948 MagicFactor = MagicFactors[0]; 5949 Factor = Factors[0]; 5950 Shift = Shifts[0]; 5951 ShiftMask = ShiftMasks[0]; 5952 } 5953 5954 // Multiply the numerator (operand 0) by the magic value. 5955 // FIXME: We should support doing a MUL in a wider type. 5956 auto GetMULHS = [&](SDValue X, SDValue Y) { 5957 // If the type isn't legal, use a wider mul of the the type calculated 5958 // earlier. 5959 if (!isTypeLegal(VT)) { 5960 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5961 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5962 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5963 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5964 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5965 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5966 } 5967 5968 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5969 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5970 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5971 SDValue LoHi = 5972 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5973 return SDValue(LoHi.getNode(), 1); 5974 } 5975 return SDValue(); 5976 }; 5977 5978 SDValue Q = GetMULHS(N0, MagicFactor); 5979 if (!Q) 5980 return SDValue(); 5981 5982 Created.push_back(Q.getNode()); 5983 5984 // (Optionally) Add/subtract the numerator using Factor. 5985 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5986 Created.push_back(Factor.getNode()); 5987 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5988 Created.push_back(Q.getNode()); 5989 5990 // Shift right algebraic by shift value. 5991 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5992 Created.push_back(Q.getNode()); 5993 5994 // Extract the sign bit, mask it and add it to the quotient. 5995 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5996 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5997 Created.push_back(T.getNode()); 5998 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5999 Created.push_back(T.getNode()); 6000 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 6001 } 6002 6003 /// Given an ISD::UDIV node expressing a divide by constant, 6004 /// return a DAG expression to select that will generate the same value by 6005 /// multiplying by a magic number. 6006 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 6007 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 6008 bool IsAfterLegalization, 6009 SmallVectorImpl<SDNode *> &Created) const { 6010 SDLoc dl(N); 6011 EVT VT = N->getValueType(0); 6012 EVT SVT = VT.getScalarType(); 6013 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6014 EVT ShSVT = ShVT.getScalarType(); 6015 unsigned EltBits = VT.getScalarSizeInBits(); 6016 EVT MulVT; 6017 6018 // Check to see if we can do this. 6019 // FIXME: We should be more aggressive here. 6020 if (!isTypeLegal(VT)) { 6021 // Limit this to simple scalars for now. 6022 if (VT.isVector() || !VT.isSimple()) 6023 return SDValue(); 6024 6025 // If this type will be promoted to a large enough type with a legal 6026 // multiply operation, we can go ahead and do this transform. 6027 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 6028 return SDValue(); 6029 6030 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 6031 if (MulVT.getSizeInBits() < (2 * EltBits) || 6032 !isOperationLegal(ISD::MUL, MulVT)) 6033 return SDValue(); 6034 } 6035 6036 SDValue N0 = N->getOperand(0); 6037 SDValue N1 = N->getOperand(1); 6038 6039 // Try to use leading zeros of the dividend to reduce the multiplier and 6040 // avoid expensive fixups. 6041 // TODO: Support vectors. 6042 unsigned LeadingZeros = 0; 6043 if (!VT.isVector() && isa<ConstantSDNode>(N1)) { 6044 assert(!isOneConstant(N1) && "Unexpected divisor"); 6045 LeadingZeros = DAG.computeKnownBits(N0).countMinLeadingZeros(); 6046 // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros in 6047 // the dividend exceeds the leading zeros for the divisor. 6048 LeadingZeros = 6049 std::min(LeadingZeros, 6050 cast<ConstantSDNode>(N1)->getAPIntValue().countLeadingZeros()); 6051 } 6052 6053 bool UseNPQ = false, UsePreShift = false, UsePostShift = false; 6054 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 6055 6056 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 6057 if (C->isZero()) 6058 return false; 6059 const APInt& Divisor = C->getAPIntValue(); 6060 6061 SDValue PreShift, MagicFactor, NPQFactor, PostShift; 6062 6063 // Magic algorithm doesn't work for division by 1. We need to emit a select 6064 // at the end. 6065 if (Divisor.isOne()) { 6066 PreShift = PostShift = DAG.getUNDEF(ShSVT); 6067 MagicFactor = NPQFactor = DAG.getUNDEF(SVT); 6068 } else { 6069 UnsignedDivisionByConstantInfo magics = 6070 UnsignedDivisionByConstantInfo::get(Divisor, LeadingZeros); 6071 6072 MagicFactor = DAG.getConstant(magics.Magic, dl, SVT); 6073 6074 assert(magics.PreShift < Divisor.getBitWidth() && 6075 "We shouldn't generate an undefined shift!"); 6076 assert(magics.PostShift < Divisor.getBitWidth() && 6077 "We shouldn't generate an undefined shift!"); 6078 assert((!magics.IsAdd || magics.PreShift == 0) && 6079 "Unexpected pre-shift"); 6080 PreShift = DAG.getConstant(magics.PreShift, dl, ShSVT); 6081 PostShift = DAG.getConstant(magics.PostShift, dl, ShSVT); 6082 NPQFactor = DAG.getConstant( 6083 magics.IsAdd ? APInt::getOneBitSet(EltBits, EltBits - 1) 6084 : APInt::getZero(EltBits), 6085 dl, SVT); 6086 UseNPQ |= magics.IsAdd; 6087 UsePreShift |= magics.PreShift != 0; 6088 UsePostShift |= magics.PostShift != 0; 6089 } 6090 6091 PreShifts.push_back(PreShift); 6092 MagicFactors.push_back(MagicFactor); 6093 NPQFactors.push_back(NPQFactor); 6094 PostShifts.push_back(PostShift); 6095 return true; 6096 }; 6097 6098 // Collect the shifts/magic values from each element. 6099 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 6100 return SDValue(); 6101 6102 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 6103 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 6104 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 6105 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 6106 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 6107 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 6108 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 6109 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 6110 NPQFactors.size() == 1 && PostShifts.size() == 1 && 6111 "Expected matchUnaryPredicate to return one for scalable vectors"); 6112 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 6113 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 6114 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 6115 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 6116 } else { 6117 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 6118 PreShift = PreShifts[0]; 6119 MagicFactor = MagicFactors[0]; 6120 PostShift = PostShifts[0]; 6121 } 6122 6123 SDValue Q = N0; 6124 if (UsePreShift) { 6125 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 6126 Created.push_back(Q.getNode()); 6127 } 6128 6129 // FIXME: We should support doing a MUL in a wider type. 6130 auto GetMULHU = [&](SDValue X, SDValue Y) { 6131 // If the type isn't legal, use a wider mul of the the type calculated 6132 // earlier. 6133 if (!isTypeLegal(VT)) { 6134 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 6135 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 6136 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 6137 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 6138 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 6139 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 6140 } 6141 6142 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 6143 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 6144 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 6145 SDValue LoHi = 6146 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 6147 return SDValue(LoHi.getNode(), 1); 6148 } 6149 return SDValue(); // No mulhu or equivalent 6150 }; 6151 6152 // Multiply the numerator (operand 0) by the magic value. 6153 Q = GetMULHU(Q, MagicFactor); 6154 if (!Q) 6155 return SDValue(); 6156 6157 Created.push_back(Q.getNode()); 6158 6159 if (UseNPQ) { 6160 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 6161 Created.push_back(NPQ.getNode()); 6162 6163 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 6164 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 6165 if (VT.isVector()) 6166 NPQ = GetMULHU(NPQ, NPQFactor); 6167 else 6168 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 6169 6170 Created.push_back(NPQ.getNode()); 6171 6172 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 6173 Created.push_back(Q.getNode()); 6174 } 6175 6176 if (UsePostShift) { 6177 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 6178 Created.push_back(Q.getNode()); 6179 } 6180 6181 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6182 6183 SDValue One = DAG.getConstant(1, dl, VT); 6184 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 6185 return DAG.getSelect(dl, VT, IsOne, N0, Q); 6186 } 6187 6188 /// If all values in Values that *don't* match the predicate are same 'splat' 6189 /// value, then replace all values with that splat value. 6190 /// Else, if AlternativeReplacement was provided, then replace all values that 6191 /// do match predicate with AlternativeReplacement value. 6192 static void 6193 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 6194 std::function<bool(SDValue)> Predicate, 6195 SDValue AlternativeReplacement = SDValue()) { 6196 SDValue Replacement; 6197 // Is there a value for which the Predicate does *NOT* match? What is it? 6198 auto SplatValue = llvm::find_if_not(Values, Predicate); 6199 if (SplatValue != Values.end()) { 6200 // Does Values consist only of SplatValue's and values matching Predicate? 6201 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 6202 return Value == *SplatValue || Predicate(Value); 6203 })) // Then we shall replace values matching predicate with SplatValue. 6204 Replacement = *SplatValue; 6205 } 6206 if (!Replacement) { 6207 // Oops, we did not find the "baseline" splat value. 6208 if (!AlternativeReplacement) 6209 return; // Nothing to do. 6210 // Let's replace with provided value then. 6211 Replacement = AlternativeReplacement; 6212 } 6213 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6214 } 6215 6216 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6217 /// where the divisor is constant and the comparison target is zero, 6218 /// return a DAG expression that will generate the same comparison result 6219 /// using only multiplications, additions and shifts/rotations. 6220 /// Ref: "Hacker's Delight" 10-17. 6221 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6222 SDValue CompTargetNode, 6223 ISD::CondCode Cond, 6224 DAGCombinerInfo &DCI, 6225 const SDLoc &DL) const { 6226 SmallVector<SDNode *, 5> Built; 6227 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6228 DCI, DL, Built)) { 6229 for (SDNode *N : Built) 6230 DCI.AddToWorklist(N); 6231 return Folded; 6232 } 6233 6234 return SDValue(); 6235 } 6236 6237 SDValue 6238 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6239 SDValue CompTargetNode, ISD::CondCode Cond, 6240 DAGCombinerInfo &DCI, const SDLoc &DL, 6241 SmallVectorImpl<SDNode *> &Created) const { 6242 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6243 // - D must be constant, with D = D0 * 2^K where D0 is odd 6244 // - P is the multiplicative inverse of D0 modulo 2^W 6245 // - Q = floor(((2^W) - 1) / D) 6246 // where W is the width of the common type of N and D. 6247 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6248 "Only applicable for (in)equality comparisons."); 6249 6250 SelectionDAG &DAG = DCI.DAG; 6251 6252 EVT VT = REMNode.getValueType(); 6253 EVT SVT = VT.getScalarType(); 6254 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6255 EVT ShSVT = ShVT.getScalarType(); 6256 6257 // If MUL is unavailable, we cannot proceed in any case. 6258 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6259 return SDValue(); 6260 6261 bool ComparingWithAllZeros = true; 6262 bool AllComparisonsWithNonZerosAreTautological = true; 6263 bool HadTautologicalLanes = false; 6264 bool AllLanesAreTautological = true; 6265 bool HadEvenDivisor = false; 6266 bool AllDivisorsArePowerOfTwo = true; 6267 bool HadTautologicalInvertedLanes = false; 6268 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6269 6270 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6271 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6272 if (CDiv->isZero()) 6273 return false; 6274 6275 const APInt &D = CDiv->getAPIntValue(); 6276 const APInt &Cmp = CCmp->getAPIntValue(); 6277 6278 ComparingWithAllZeros &= Cmp.isZero(); 6279 6280 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6281 // if C2 is not less than C1, the comparison is always false. 6282 // But we will only be able to produce the comparison that will give the 6283 // opposive tautological answer. So this lane would need to be fixed up. 6284 bool TautologicalInvertedLane = D.ule(Cmp); 6285 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6286 6287 // If all lanes are tautological (either all divisors are ones, or divisor 6288 // is not greater than the constant we are comparing with), 6289 // we will prefer to avoid the fold. 6290 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6291 HadTautologicalLanes |= TautologicalLane; 6292 AllLanesAreTautological &= TautologicalLane; 6293 6294 // If we are comparing with non-zero, we need'll need to subtract said 6295 // comparison value from the LHS. But there is no point in doing that if 6296 // every lane where we are comparing with non-zero is tautological.. 6297 if (!Cmp.isZero()) 6298 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6299 6300 // Decompose D into D0 * 2^K 6301 unsigned K = D.countTrailingZeros(); 6302 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6303 APInt D0 = D.lshr(K); 6304 6305 // D is even if it has trailing zeros. 6306 HadEvenDivisor |= (K != 0); 6307 // D is a power-of-two if D0 is one. 6308 // If all divisors are power-of-two, we will prefer to avoid the fold. 6309 AllDivisorsArePowerOfTwo &= D0.isOne(); 6310 6311 // P = inv(D0, 2^W) 6312 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6313 unsigned W = D.getBitWidth(); 6314 APInt P = D0.zext(W + 1) 6315 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6316 .trunc(W); 6317 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6318 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6319 6320 // Q = floor((2^W - 1) u/ D) 6321 // R = ((2^W - 1) u% D) 6322 APInt Q, R; 6323 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6324 6325 // If we are comparing with zero, then that comparison constant is okay, 6326 // else it may need to be one less than that. 6327 if (Cmp.ugt(R)) 6328 Q -= 1; 6329 6330 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6331 "We are expecting that K is always less than all-ones for ShSVT"); 6332 6333 // If the lane is tautological the result can be constant-folded. 6334 if (TautologicalLane) { 6335 // Set P and K amount to a bogus values so we can try to splat them. 6336 P = 0; 6337 K = -1; 6338 // And ensure that comparison constant is tautological, 6339 // it will always compare true/false. 6340 Q = -1; 6341 } 6342 6343 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6344 KAmts.push_back( 6345 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6346 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6347 return true; 6348 }; 6349 6350 SDValue N = REMNode.getOperand(0); 6351 SDValue D = REMNode.getOperand(1); 6352 6353 // Collect the values from each element. 6354 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6355 return SDValue(); 6356 6357 // If all lanes are tautological, the result can be constant-folded. 6358 if (AllLanesAreTautological) 6359 return SDValue(); 6360 6361 // If this is a urem by a powers-of-two, avoid the fold since it can be 6362 // best implemented as a bit test. 6363 if (AllDivisorsArePowerOfTwo) 6364 return SDValue(); 6365 6366 SDValue PVal, KVal, QVal; 6367 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6368 if (HadTautologicalLanes) { 6369 // Try to turn PAmts into a splat, since we don't care about the values 6370 // that are currently '0'. If we can't, just keep '0'`s. 6371 turnVectorIntoSplatVector(PAmts, isNullConstant); 6372 // Try to turn KAmts into a splat, since we don't care about the values 6373 // that are currently '-1'. If we can't, change them to '0'`s. 6374 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6375 DAG.getConstant(0, DL, ShSVT)); 6376 } 6377 6378 PVal = DAG.getBuildVector(VT, DL, PAmts); 6379 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6380 QVal = DAG.getBuildVector(VT, DL, QAmts); 6381 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6382 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6383 "Expected matchBinaryPredicate to return one element for " 6384 "SPLAT_VECTORs"); 6385 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6386 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6387 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6388 } else { 6389 PVal = PAmts[0]; 6390 KVal = KAmts[0]; 6391 QVal = QAmts[0]; 6392 } 6393 6394 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6395 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6396 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6397 assert(CompTargetNode.getValueType() == N.getValueType() && 6398 "Expecting that the types on LHS and RHS of comparisons match."); 6399 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6400 } 6401 6402 // (mul N, P) 6403 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6404 Created.push_back(Op0.getNode()); 6405 6406 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6407 // divisors as a performance improvement, since rotating by 0 is a no-op. 6408 if (HadEvenDivisor) { 6409 // We need ROTR to do this. 6410 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6411 return SDValue(); 6412 // UREM: (rotr (mul N, P), K) 6413 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6414 Created.push_back(Op0.getNode()); 6415 } 6416 6417 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6418 SDValue NewCC = 6419 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6420 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6421 if (!HadTautologicalInvertedLanes) 6422 return NewCC; 6423 6424 // If any lanes previously compared always-false, the NewCC will give 6425 // always-true result for them, so we need to fixup those lanes. 6426 // Or the other way around for inequality predicate. 6427 assert(VT.isVector() && "Can/should only get here for vectors."); 6428 Created.push_back(NewCC.getNode()); 6429 6430 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6431 // if C2 is not less than C1, the comparison is always false. 6432 // But we have produced the comparison that will give the 6433 // opposive tautological answer. So these lanes would need to be fixed up. 6434 SDValue TautologicalInvertedChannels = 6435 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6436 Created.push_back(TautologicalInvertedChannels.getNode()); 6437 6438 // NOTE: we avoid letting illegal types through even if we're before legalize 6439 // ops – legalization has a hard time producing good code for this. 6440 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6441 // If we have a vector select, let's replace the comparison results in the 6442 // affected lanes with the correct tautological result. 6443 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6444 DL, SETCCVT, SETCCVT); 6445 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6446 Replacement, NewCC); 6447 } 6448 6449 // Else, we can just invert the comparison result in the appropriate lanes. 6450 // 6451 // NOTE: see the note above VSELECT above. 6452 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6453 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6454 TautologicalInvertedChannels); 6455 6456 return SDValue(); // Don't know how to lower. 6457 } 6458 6459 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6460 /// where the divisor is constant and the comparison target is zero, 6461 /// return a DAG expression that will generate the same comparison result 6462 /// using only multiplications, additions and shifts/rotations. 6463 /// Ref: "Hacker's Delight" 10-17. 6464 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6465 SDValue CompTargetNode, 6466 ISD::CondCode Cond, 6467 DAGCombinerInfo &DCI, 6468 const SDLoc &DL) const { 6469 SmallVector<SDNode *, 7> Built; 6470 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6471 DCI, DL, Built)) { 6472 assert(Built.size() <= 7 && "Max size prediction failed."); 6473 for (SDNode *N : Built) 6474 DCI.AddToWorklist(N); 6475 return Folded; 6476 } 6477 6478 return SDValue(); 6479 } 6480 6481 SDValue 6482 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6483 SDValue CompTargetNode, ISD::CondCode Cond, 6484 DAGCombinerInfo &DCI, const SDLoc &DL, 6485 SmallVectorImpl<SDNode *> &Created) const { 6486 // Fold: 6487 // (seteq/ne (srem N, D), 0) 6488 // To: 6489 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6490 // 6491 // - D must be constant, with D = D0 * 2^K where D0 is odd 6492 // - P is the multiplicative inverse of D0 modulo 2^W 6493 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6494 // - Q = floor((2 * A) / (2^K)) 6495 // where W is the width of the common type of N and D. 6496 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6497 "Only applicable for (in)equality comparisons."); 6498 6499 SelectionDAG &DAG = DCI.DAG; 6500 6501 EVT VT = REMNode.getValueType(); 6502 EVT SVT = VT.getScalarType(); 6503 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6504 EVT ShSVT = ShVT.getScalarType(); 6505 6506 // If we are after ops legalization, and MUL is unavailable, we can not 6507 // proceed. 6508 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6509 return SDValue(); 6510 6511 // TODO: Could support comparing with non-zero too. 6512 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6513 if (!CompTarget || !CompTarget->isZero()) 6514 return SDValue(); 6515 6516 bool HadIntMinDivisor = false; 6517 bool HadOneDivisor = false; 6518 bool AllDivisorsAreOnes = true; 6519 bool HadEvenDivisor = false; 6520 bool NeedToApplyOffset = false; 6521 bool AllDivisorsArePowerOfTwo = true; 6522 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6523 6524 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6525 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6526 if (C->isZero()) 6527 return false; 6528 6529 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6530 6531 // WARNING: this fold is only valid for positive divisors! 6532 APInt D = C->getAPIntValue(); 6533 if (D.isNegative()) 6534 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6535 6536 HadIntMinDivisor |= D.isMinSignedValue(); 6537 6538 // If all divisors are ones, we will prefer to avoid the fold. 6539 HadOneDivisor |= D.isOne(); 6540 AllDivisorsAreOnes &= D.isOne(); 6541 6542 // Decompose D into D0 * 2^K 6543 unsigned K = D.countTrailingZeros(); 6544 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6545 APInt D0 = D.lshr(K); 6546 6547 if (!D.isMinSignedValue()) { 6548 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6549 // we don't care about this lane in this fold, we'll special-handle it. 6550 HadEvenDivisor |= (K != 0); 6551 } 6552 6553 // D is a power-of-two if D0 is one. This includes INT_MIN. 6554 // If all divisors are power-of-two, we will prefer to avoid the fold. 6555 AllDivisorsArePowerOfTwo &= D0.isOne(); 6556 6557 // P = inv(D0, 2^W) 6558 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6559 unsigned W = D.getBitWidth(); 6560 APInt P = D0.zext(W + 1) 6561 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6562 .trunc(W); 6563 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6564 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6565 6566 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6567 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6568 A.clearLowBits(K); 6569 6570 if (!D.isMinSignedValue()) { 6571 // If divisor INT_MIN, then we don't care about this lane in this fold, 6572 // we'll special-handle it. 6573 NeedToApplyOffset |= A != 0; 6574 } 6575 6576 // Q = floor((2 * A) / (2^K)) 6577 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6578 6579 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6580 "We are expecting that A is always less than all-ones for SVT"); 6581 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6582 "We are expecting that K is always less than all-ones for ShSVT"); 6583 6584 // If the divisor is 1 the result can be constant-folded. Likewise, we 6585 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6586 if (D.isOne()) { 6587 // Set P, A and K to a bogus values so we can try to splat them. 6588 P = 0; 6589 A = -1; 6590 K = -1; 6591 6592 // x ?% 1 == 0 <--> true <--> x u<= -1 6593 Q = -1; 6594 } 6595 6596 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6597 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6598 KAmts.push_back( 6599 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6600 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6601 return true; 6602 }; 6603 6604 SDValue N = REMNode.getOperand(0); 6605 SDValue D = REMNode.getOperand(1); 6606 6607 // Collect the values from each element. 6608 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6609 return SDValue(); 6610 6611 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6612 if (AllDivisorsAreOnes) 6613 return SDValue(); 6614 6615 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6616 // since it can be best implemented as a bit test. 6617 if (AllDivisorsArePowerOfTwo) 6618 return SDValue(); 6619 6620 SDValue PVal, AVal, KVal, QVal; 6621 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6622 if (HadOneDivisor) { 6623 // Try to turn PAmts into a splat, since we don't care about the values 6624 // that are currently '0'. If we can't, just keep '0'`s. 6625 turnVectorIntoSplatVector(PAmts, isNullConstant); 6626 // Try to turn AAmts into a splat, since we don't care about the 6627 // values that are currently '-1'. If we can't, change them to '0'`s. 6628 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6629 DAG.getConstant(0, DL, SVT)); 6630 // Try to turn KAmts into a splat, since we don't care about the values 6631 // that are currently '-1'. If we can't, change them to '0'`s. 6632 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6633 DAG.getConstant(0, DL, ShSVT)); 6634 } 6635 6636 PVal = DAG.getBuildVector(VT, DL, PAmts); 6637 AVal = DAG.getBuildVector(VT, DL, AAmts); 6638 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6639 QVal = DAG.getBuildVector(VT, DL, QAmts); 6640 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6641 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6642 QAmts.size() == 1 && 6643 "Expected matchUnaryPredicate to return one element for scalable " 6644 "vectors"); 6645 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6646 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6647 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6648 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6649 } else { 6650 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6651 PVal = PAmts[0]; 6652 AVal = AAmts[0]; 6653 KVal = KAmts[0]; 6654 QVal = QAmts[0]; 6655 } 6656 6657 // (mul N, P) 6658 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6659 Created.push_back(Op0.getNode()); 6660 6661 if (NeedToApplyOffset) { 6662 // We need ADD to do this. 6663 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6664 return SDValue(); 6665 6666 // (add (mul N, P), A) 6667 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6668 Created.push_back(Op0.getNode()); 6669 } 6670 6671 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6672 // divisors as a performance improvement, since rotating by 0 is a no-op. 6673 if (HadEvenDivisor) { 6674 // We need ROTR to do this. 6675 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6676 return SDValue(); 6677 // SREM: (rotr (add (mul N, P), A), K) 6678 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6679 Created.push_back(Op0.getNode()); 6680 } 6681 6682 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6683 SDValue Fold = 6684 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6685 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6686 6687 // If we didn't have lanes with INT_MIN divisor, then we're done. 6688 if (!HadIntMinDivisor) 6689 return Fold; 6690 6691 // That fold is only valid for positive divisors. Which effectively means, 6692 // it is invalid for INT_MIN divisors. So if we have such a lane, 6693 // we must fix-up results for said lanes. 6694 assert(VT.isVector() && "Can/should only get here for vectors."); 6695 6696 // NOTE: we avoid letting illegal types through even if we're before legalize 6697 // ops – legalization has a hard time producing good code for the code that 6698 // follows. 6699 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6700 !isOperationLegalOrCustom(ISD::AND, VT) || 6701 !isOperationLegalOrCustom(Cond, VT) || 6702 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6703 return SDValue(); 6704 6705 Created.push_back(Fold.getNode()); 6706 6707 SDValue IntMin = DAG.getConstant( 6708 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6709 SDValue IntMax = DAG.getConstant( 6710 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6711 SDValue Zero = 6712 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6713 6714 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6715 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6716 Created.push_back(DivisorIsIntMin.getNode()); 6717 6718 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6719 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6720 Created.push_back(Masked.getNode()); 6721 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6722 Created.push_back(MaskedIsZero.getNode()); 6723 6724 // To produce final result we need to blend 2 vectors: 'SetCC' and 6725 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6726 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6727 // constant-folded, select can get lowered to a shuffle with constant mask. 6728 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6729 MaskedIsZero, Fold); 6730 6731 return Blended; 6732 } 6733 6734 bool TargetLowering:: 6735 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6736 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6737 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6738 "be a constant integer"); 6739 return true; 6740 } 6741 6742 return false; 6743 } 6744 6745 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6746 const DenormalMode &Mode) const { 6747 SDLoc DL(Op); 6748 EVT VT = Op.getValueType(); 6749 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6750 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6751 // Testing it with denormal inputs to avoid wrong estimate. 6752 if (Mode.Input == DenormalMode::IEEE) { 6753 // This is specifically a check for the handling of denormal inputs, 6754 // not the result. 6755 6756 // Test = fabs(X) < SmallestNormal 6757 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6758 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6759 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6760 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6761 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6762 } 6763 // Test = X == 0.0 6764 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6765 } 6766 6767 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6768 bool LegalOps, bool OptForSize, 6769 NegatibleCost &Cost, 6770 unsigned Depth) const { 6771 // fneg is removable even if it has multiple uses. 6772 if (Op.getOpcode() == ISD::FNEG) { 6773 Cost = NegatibleCost::Cheaper; 6774 return Op.getOperand(0); 6775 } 6776 6777 // Don't recurse exponentially. 6778 if (Depth > SelectionDAG::MaxRecursionDepth) 6779 return SDValue(); 6780 6781 // Pre-increment recursion depth for use in recursive calls. 6782 ++Depth; 6783 const SDNodeFlags Flags = Op->getFlags(); 6784 const TargetOptions &Options = DAG.getTarget().Options; 6785 EVT VT = Op.getValueType(); 6786 unsigned Opcode = Op.getOpcode(); 6787 6788 // Don't allow anything with multiple uses unless we know it is free. 6789 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6790 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6791 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6792 if (!IsFreeExtend) 6793 return SDValue(); 6794 } 6795 6796 auto RemoveDeadNode = [&](SDValue N) { 6797 if (N && N.getNode()->use_empty()) 6798 DAG.RemoveDeadNode(N.getNode()); 6799 }; 6800 6801 SDLoc DL(Op); 6802 6803 // Because getNegatedExpression can delete nodes we need a handle to keep 6804 // temporary nodes alive in case the recursion manages to create an identical 6805 // node. 6806 std::list<HandleSDNode> Handles; 6807 6808 switch (Opcode) { 6809 case ISD::ConstantFP: { 6810 // Don't invert constant FP values after legalization unless the target says 6811 // the negated constant is legal. 6812 bool IsOpLegal = 6813 isOperationLegal(ISD::ConstantFP, VT) || 6814 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6815 OptForSize); 6816 6817 if (LegalOps && !IsOpLegal) 6818 break; 6819 6820 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6821 V.changeSign(); 6822 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6823 6824 // If we already have the use of the negated floating constant, it is free 6825 // to negate it even it has multiple uses. 6826 if (!Op.hasOneUse() && CFP.use_empty()) 6827 break; 6828 Cost = NegatibleCost::Neutral; 6829 return CFP; 6830 } 6831 case ISD::BUILD_VECTOR: { 6832 // Only permit BUILD_VECTOR of constants. 6833 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6834 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6835 })) 6836 break; 6837 6838 bool IsOpLegal = 6839 (isOperationLegal(ISD::ConstantFP, VT) && 6840 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6841 llvm::all_of(Op->op_values(), [&](SDValue N) { 6842 return N.isUndef() || 6843 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6844 OptForSize); 6845 }); 6846 6847 if (LegalOps && !IsOpLegal) 6848 break; 6849 6850 SmallVector<SDValue, 4> Ops; 6851 for (SDValue C : Op->op_values()) { 6852 if (C.isUndef()) { 6853 Ops.push_back(C); 6854 continue; 6855 } 6856 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6857 V.changeSign(); 6858 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6859 } 6860 Cost = NegatibleCost::Neutral; 6861 return DAG.getBuildVector(VT, DL, Ops); 6862 } 6863 case ISD::FADD: { 6864 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6865 break; 6866 6867 // After operation legalization, it might not be legal to create new FSUBs. 6868 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6869 break; 6870 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6871 6872 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6873 NegatibleCost CostX = NegatibleCost::Expensive; 6874 SDValue NegX = 6875 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6876 // Prevent this node from being deleted by the next call. 6877 if (NegX) 6878 Handles.emplace_back(NegX); 6879 6880 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6881 NegatibleCost CostY = NegatibleCost::Expensive; 6882 SDValue NegY = 6883 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6884 6885 // We're done with the handles. 6886 Handles.clear(); 6887 6888 // Negate the X if its cost is less or equal than Y. 6889 if (NegX && (CostX <= CostY)) { 6890 Cost = CostX; 6891 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6892 if (NegY != N) 6893 RemoveDeadNode(NegY); 6894 return N; 6895 } 6896 6897 // Negate the Y if it is not expensive. 6898 if (NegY) { 6899 Cost = CostY; 6900 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6901 if (NegX != N) 6902 RemoveDeadNode(NegX); 6903 return N; 6904 } 6905 break; 6906 } 6907 case ISD::FSUB: { 6908 // We can't turn -(A-B) into B-A when we honor signed zeros. 6909 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6910 break; 6911 6912 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6913 // fold (fneg (fsub 0, Y)) -> Y 6914 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6915 if (C->isZero()) { 6916 Cost = NegatibleCost::Cheaper; 6917 return Y; 6918 } 6919 6920 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6921 Cost = NegatibleCost::Neutral; 6922 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6923 } 6924 case ISD::FMUL: 6925 case ISD::FDIV: { 6926 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6927 6928 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6929 NegatibleCost CostX = NegatibleCost::Expensive; 6930 SDValue NegX = 6931 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6932 // Prevent this node from being deleted by the next call. 6933 if (NegX) 6934 Handles.emplace_back(NegX); 6935 6936 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6937 NegatibleCost CostY = NegatibleCost::Expensive; 6938 SDValue NegY = 6939 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6940 6941 // We're done with the handles. 6942 Handles.clear(); 6943 6944 // Negate the X if its cost is less or equal than Y. 6945 if (NegX && (CostX <= CostY)) { 6946 Cost = CostX; 6947 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6948 if (NegY != N) 6949 RemoveDeadNode(NegY); 6950 return N; 6951 } 6952 6953 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6954 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6955 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6956 break; 6957 6958 // Negate the Y if it is not expensive. 6959 if (NegY) { 6960 Cost = CostY; 6961 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6962 if (NegX != N) 6963 RemoveDeadNode(NegX); 6964 return N; 6965 } 6966 break; 6967 } 6968 case ISD::FMA: 6969 case ISD::FMAD: { 6970 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6971 break; 6972 6973 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6974 NegatibleCost CostZ = NegatibleCost::Expensive; 6975 SDValue NegZ = 6976 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6977 // Give up if fail to negate the Z. 6978 if (!NegZ) 6979 break; 6980 6981 // Prevent this node from being deleted by the next two calls. 6982 Handles.emplace_back(NegZ); 6983 6984 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6985 NegatibleCost CostX = NegatibleCost::Expensive; 6986 SDValue NegX = 6987 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6988 // Prevent this node from being deleted by the next call. 6989 if (NegX) 6990 Handles.emplace_back(NegX); 6991 6992 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6993 NegatibleCost CostY = NegatibleCost::Expensive; 6994 SDValue NegY = 6995 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6996 6997 // We're done with the handles. 6998 Handles.clear(); 6999 7000 // Negate the X if its cost is less or equal than Y. 7001 if (NegX && (CostX <= CostY)) { 7002 Cost = std::min(CostX, CostZ); 7003 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 7004 if (NegY != N) 7005 RemoveDeadNode(NegY); 7006 return N; 7007 } 7008 7009 // Negate the Y if it is not expensive. 7010 if (NegY) { 7011 Cost = std::min(CostY, CostZ); 7012 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 7013 if (NegX != N) 7014 RemoveDeadNode(NegX); 7015 return N; 7016 } 7017 break; 7018 } 7019 7020 case ISD::FP_EXTEND: 7021 case ISD::FSIN: 7022 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7023 OptForSize, Cost, Depth)) 7024 return DAG.getNode(Opcode, DL, VT, NegV); 7025 break; 7026 case ISD::FP_ROUND: 7027 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 7028 OptForSize, Cost, Depth)) 7029 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 7030 break; 7031 case ISD::SELECT: 7032 case ISD::VSELECT: { 7033 // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) 7034 // iff at least one cost is cheaper and the other is neutral/cheaper 7035 SDValue LHS = Op.getOperand(1); 7036 NegatibleCost CostLHS = NegatibleCost::Expensive; 7037 SDValue NegLHS = 7038 getNegatedExpression(LHS, DAG, LegalOps, OptForSize, CostLHS, Depth); 7039 if (!NegLHS || CostLHS > NegatibleCost::Neutral) { 7040 RemoveDeadNode(NegLHS); 7041 break; 7042 } 7043 7044 // Prevent this node from being deleted by the next call. 7045 Handles.emplace_back(NegLHS); 7046 7047 SDValue RHS = Op.getOperand(2); 7048 NegatibleCost CostRHS = NegatibleCost::Expensive; 7049 SDValue NegRHS = 7050 getNegatedExpression(RHS, DAG, LegalOps, OptForSize, CostRHS, Depth); 7051 7052 // We're done with the handles. 7053 Handles.clear(); 7054 7055 if (!NegRHS || CostRHS > NegatibleCost::Neutral || 7056 (CostLHS != NegatibleCost::Cheaper && 7057 CostRHS != NegatibleCost::Cheaper)) { 7058 RemoveDeadNode(NegLHS); 7059 RemoveDeadNode(NegRHS); 7060 break; 7061 } 7062 7063 Cost = std::min(CostLHS, CostRHS); 7064 return DAG.getSelect(DL, VT, Op.getOperand(0), NegLHS, NegRHS); 7065 } 7066 } 7067 7068 return SDValue(); 7069 } 7070 7071 //===----------------------------------------------------------------------===// 7072 // Legalization Utilities 7073 //===----------------------------------------------------------------------===// 7074 7075 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 7076 SDValue LHS, SDValue RHS, 7077 SmallVectorImpl<SDValue> &Result, 7078 EVT HiLoVT, SelectionDAG &DAG, 7079 MulExpansionKind Kind, SDValue LL, 7080 SDValue LH, SDValue RL, SDValue RH) const { 7081 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 7082 Opcode == ISD::SMUL_LOHI); 7083 7084 bool HasMULHS = (Kind == MulExpansionKind::Always) || 7085 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 7086 bool HasMULHU = (Kind == MulExpansionKind::Always) || 7087 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 7088 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 7089 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 7090 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 7091 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 7092 7093 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 7094 return false; 7095 7096 unsigned OuterBitSize = VT.getScalarSizeInBits(); 7097 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 7098 7099 // LL, LH, RL, and RH must be either all NULL or all set to a value. 7100 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 7101 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 7102 7103 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 7104 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 7105 bool Signed) -> bool { 7106 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 7107 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 7108 Hi = SDValue(Lo.getNode(), 1); 7109 return true; 7110 } 7111 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 7112 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 7113 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 7114 return true; 7115 } 7116 return false; 7117 }; 7118 7119 SDValue Lo, Hi; 7120 7121 if (!LL.getNode() && !RL.getNode() && 7122 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7123 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 7124 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 7125 } 7126 7127 if (!LL.getNode()) 7128 return false; 7129 7130 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 7131 if (DAG.MaskedValueIsZero(LHS, HighMask) && 7132 DAG.MaskedValueIsZero(RHS, HighMask)) { 7133 // The inputs are both zero-extended. 7134 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 7135 Result.push_back(Lo); 7136 Result.push_back(Hi); 7137 if (Opcode != ISD::MUL) { 7138 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7139 Result.push_back(Zero); 7140 Result.push_back(Zero); 7141 } 7142 return true; 7143 } 7144 } 7145 7146 if (!VT.isVector() && Opcode == ISD::MUL && 7147 DAG.ComputeMaxSignificantBits(LHS) <= InnerBitSize && 7148 DAG.ComputeMaxSignificantBits(RHS) <= InnerBitSize) { 7149 // The input values are both sign-extended. 7150 // TODO non-MUL case? 7151 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 7152 Result.push_back(Lo); 7153 Result.push_back(Hi); 7154 return true; 7155 } 7156 } 7157 7158 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 7159 SDValue Shift = DAG.getShiftAmountConstant(ShiftAmount, VT, dl); 7160 7161 if (!LH.getNode() && !RH.getNode() && 7162 isOperationLegalOrCustom(ISD::SRL, VT) && 7163 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 7164 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 7165 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 7166 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 7167 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 7168 } 7169 7170 if (!LH.getNode()) 7171 return false; 7172 7173 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 7174 return false; 7175 7176 Result.push_back(Lo); 7177 7178 if (Opcode == ISD::MUL) { 7179 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 7180 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 7181 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 7182 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 7183 Result.push_back(Hi); 7184 return true; 7185 } 7186 7187 // Compute the full width result. 7188 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 7189 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 7190 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7191 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 7192 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 7193 }; 7194 7195 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 7196 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 7197 return false; 7198 7199 // This is effectively the add part of a multiply-add of half-sized operands, 7200 // so it cannot overflow. 7201 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7202 7203 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 7204 return false; 7205 7206 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 7207 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7208 7209 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 7210 isOperationLegalOrCustom(ISD::ADDE, VT)); 7211 if (UseGlue) 7212 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 7213 Merge(Lo, Hi)); 7214 else 7215 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 7216 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 7217 7218 SDValue Carry = Next.getValue(1); 7219 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7220 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7221 7222 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 7223 return false; 7224 7225 if (UseGlue) 7226 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 7227 Carry); 7228 else 7229 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 7230 Zero, Carry); 7231 7232 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 7233 7234 if (Opcode == ISD::SMUL_LOHI) { 7235 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7236 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 7237 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 7238 7239 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 7240 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 7241 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 7242 } 7243 7244 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7245 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7246 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7247 return true; 7248 } 7249 7250 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7251 SelectionDAG &DAG, MulExpansionKind Kind, 7252 SDValue LL, SDValue LH, SDValue RL, 7253 SDValue RH) const { 7254 SmallVector<SDValue, 2> Result; 7255 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7256 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7257 DAG, Kind, LL, LH, RL, RH); 7258 if (Ok) { 7259 assert(Result.size() == 2); 7260 Lo = Result[0]; 7261 Hi = Result[1]; 7262 } 7263 return Ok; 7264 } 7265 7266 // Optimize unsigned division or remainder by constants for types twice as large 7267 // as a legal VT. 7268 // 7269 // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder 7270 // can be computed 7271 // as: 7272 // Sum += __builtin_uadd_overflow(Lo, High, &Sum); 7273 // Remainder = Sum % Constant 7274 // This is based on "Remainder by Summing Digits" from Hacker's Delight. 7275 // 7276 // For division, we can compute the remainder using the algorithm described 7277 // above, subtract it from the dividend to get an exact multiple of Constant. 7278 // Then multiply that extact multiply by the multiplicative inverse modulo 7279 // (1 << (BitWidth / 2)) to get the quotient. 7280 7281 // If Constant is even, we can shift right the dividend and the divisor by the 7282 // number of trailing zeros in Constant before applying the remainder algorithm. 7283 // If we're after the quotient, we can subtract this value from the shifted 7284 // dividend and multiply by the multiplicative inverse of the shifted divisor. 7285 // If we want the remainder, we shift the value left by the number of trailing 7286 // zeros and add the bits that were shifted out of the dividend. 7287 bool TargetLowering::expandDIVREMByConstant(SDNode *N, 7288 SmallVectorImpl<SDValue> &Result, 7289 EVT HiLoVT, SelectionDAG &DAG, 7290 SDValue LL, SDValue LH) const { 7291 unsigned Opcode = N->getOpcode(); 7292 EVT VT = N->getValueType(0); 7293 7294 // TODO: Support signed division/remainder. 7295 if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) 7296 return false; 7297 assert( 7298 (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && 7299 "Unexpected opcode"); 7300 7301 auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7302 if (!CN) 7303 return false; 7304 7305 APInt Divisor = CN->getAPIntValue(); 7306 unsigned BitWidth = Divisor.getBitWidth(); 7307 unsigned HBitWidth = BitWidth / 2; 7308 assert(VT.getScalarSizeInBits() == BitWidth && 7309 HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs"); 7310 7311 // Divisor needs to less than (1 << HBitWidth). 7312 APInt HalfMaxPlus1 = APInt::getOneBitSet(BitWidth, HBitWidth); 7313 if (Divisor.uge(HalfMaxPlus1)) 7314 return false; 7315 7316 // We depend on the UREM by constant optimization in DAGCombiner that requires 7317 // high multiply. 7318 if (!isOperationLegalOrCustom(ISD::MULHU, HiLoVT) && 7319 !isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT)) 7320 return false; 7321 7322 // Don't expand if optimizing for size. 7323 if (DAG.shouldOptForSize()) 7324 return false; 7325 7326 // Early out for 0 or 1 divisors. 7327 if (Divisor.ule(1)) 7328 return false; 7329 7330 // If the divisor is even, shift it until it becomes odd. 7331 unsigned TrailingZeros = 0; 7332 if (!Divisor[0]) { 7333 TrailingZeros = Divisor.countTrailingZeros(); 7334 Divisor.lshrInPlace(TrailingZeros); 7335 } 7336 7337 SDLoc dl(N); 7338 SDValue Sum; 7339 SDValue PartialRem; 7340 7341 // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and 7342 // then add in the carry. 7343 // TODO: If we can't split it in half, we might be able to split into 3 or 7344 // more pieces using a smaller bit width. 7345 if (HalfMaxPlus1.urem(Divisor).isOneValue()) { 7346 assert(!LL == !LH && "Expected both input halves or no input halves!"); 7347 if (!LL) { 7348 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0), 7349 DAG.getIntPtrConstant(0, dl)); 7350 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, N->getOperand(0), 7351 DAG.getIntPtrConstant(1, dl)); 7352 } 7353 7354 // Shift the input by the number of TrailingZeros in the divisor. The 7355 // shifted out bits will be added to the remainder later. 7356 if (TrailingZeros) { 7357 // Save the shifted off bits if we need the remainder. 7358 if (Opcode != ISD::UDIV) { 7359 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7360 PartialRem = DAG.getNode(ISD::AND, dl, HiLoVT, LL, 7361 DAG.getConstant(Mask, dl, HiLoVT)); 7362 } 7363 7364 LL = DAG.getNode( 7365 ISD::OR, dl, HiLoVT, 7366 DAG.getNode(ISD::SRL, dl, HiLoVT, LL, 7367 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)), 7368 DAG.getNode(ISD::SHL, dl, HiLoVT, LH, 7369 DAG.getShiftAmountConstant(HBitWidth - TrailingZeros, 7370 HiLoVT, dl))); 7371 LH = DAG.getNode(ISD::SRL, dl, HiLoVT, LH, 7372 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7373 } 7374 7375 // Use addcarry if we can, otherwise use a compare to detect overflow. 7376 EVT SetCCType = 7377 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), HiLoVT); 7378 if (isOperationLegalOrCustom(ISD::ADDCARRY, HiLoVT)) { 7379 SDVTList VTList = DAG.getVTList(HiLoVT, SetCCType); 7380 Sum = DAG.getNode(ISD::UADDO, dl, VTList, LL, LH); 7381 Sum = DAG.getNode(ISD::ADDCARRY, dl, VTList, Sum, 7382 DAG.getConstant(0, dl, HiLoVT), Sum.getValue(1)); 7383 } else { 7384 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, LL, LH); 7385 SDValue Carry = DAG.getSetCC(dl, SetCCType, Sum, LL, ISD::SETULT); 7386 // If the boolean for the target is 0 or 1, we can add the setcc result 7387 // directly. 7388 if (getBooleanContents(HiLoVT) == 7389 TargetLoweringBase::ZeroOrOneBooleanContent) 7390 Carry = DAG.getZExtOrTrunc(Carry, dl, HiLoVT); 7391 else 7392 Carry = DAG.getSelect(dl, HiLoVT, Carry, DAG.getConstant(1, dl, HiLoVT), 7393 DAG.getConstant(0, dl, HiLoVT)); 7394 Sum = DAG.getNode(ISD::ADD, dl, HiLoVT, Sum, Carry); 7395 } 7396 } 7397 7398 // If we didn't find a sum, we can't do the expansion. 7399 if (!Sum) 7400 return false; 7401 7402 // Perform a HiLoVT urem on the Sum using truncated divisor. 7403 SDValue RemL = 7404 DAG.getNode(ISD::UREM, dl, HiLoVT, Sum, 7405 DAG.getConstant(Divisor.trunc(HBitWidth), dl, HiLoVT)); 7406 SDValue RemH = DAG.getConstant(0, dl, HiLoVT); 7407 7408 if (Opcode != ISD::UREM) { 7409 // Subtract the remainder from the shifted dividend. 7410 SDValue Dividend = DAG.getNode(ISD::BUILD_PAIR, dl, VT, LL, LH); 7411 SDValue Rem = DAG.getNode(ISD::BUILD_PAIR, dl, VT, RemL, RemH); 7412 7413 Dividend = DAG.getNode(ISD::SUB, dl, VT, Dividend, Rem); 7414 7415 // Multiply by the multiplicative inverse of the divisor modulo 7416 // (1 << BitWidth). 7417 APInt Mod = APInt::getSignedMinValue(BitWidth + 1); 7418 APInt MulFactor = Divisor.zext(BitWidth + 1); 7419 MulFactor = MulFactor.multiplicativeInverse(Mod); 7420 MulFactor = MulFactor.trunc(BitWidth); 7421 7422 SDValue Quotient = DAG.getNode(ISD::MUL, dl, VT, Dividend, 7423 DAG.getConstant(MulFactor, dl, VT)); 7424 7425 // Split the quotient into low and high parts. 7426 SDValue QuotL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient, 7427 DAG.getIntPtrConstant(0, dl)); 7428 SDValue QuotH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HiLoVT, Quotient, 7429 DAG.getIntPtrConstant(1, dl)); 7430 Result.push_back(QuotL); 7431 Result.push_back(QuotH); 7432 } 7433 7434 if (Opcode != ISD::UDIV) { 7435 // If we shifted the input, shift the remainder left and add the bits we 7436 // shifted off the input. 7437 if (TrailingZeros) { 7438 APInt Mask = APInt::getLowBitsSet(HBitWidth, TrailingZeros); 7439 RemL = DAG.getNode(ISD::SHL, dl, HiLoVT, RemL, 7440 DAG.getShiftAmountConstant(TrailingZeros, HiLoVT, dl)); 7441 RemL = DAG.getNode(ISD::ADD, dl, HiLoVT, RemL, PartialRem); 7442 } 7443 Result.push_back(RemL); 7444 Result.push_back(DAG.getConstant(0, dl, HiLoVT)); 7445 } 7446 7447 return true; 7448 } 7449 7450 // Check that (every element of) Z is undef or not an exact multiple of BW. 7451 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7452 return ISD::matchUnaryPredicate( 7453 Z, 7454 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7455 true); 7456 } 7457 7458 static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { 7459 EVT VT = Node->getValueType(0); 7460 SDValue ShX, ShY; 7461 SDValue ShAmt, InvShAmt; 7462 SDValue X = Node->getOperand(0); 7463 SDValue Y = Node->getOperand(1); 7464 SDValue Z = Node->getOperand(2); 7465 SDValue Mask = Node->getOperand(3); 7466 SDValue VL = Node->getOperand(4); 7467 7468 unsigned BW = VT.getScalarSizeInBits(); 7469 bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; 7470 SDLoc DL(SDValue(Node, 0)); 7471 7472 EVT ShVT = Z.getValueType(); 7473 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7474 // fshl: X << C | Y >> (BW - C) 7475 // fshr: X << (BW - C) | Y >> C 7476 // where C = Z % BW is not zero 7477 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7478 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7479 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitWidthC, ShAmt, Mask, VL); 7480 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt, Mask, 7481 VL); 7482 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt, Mask, 7483 VL); 7484 } else { 7485 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7486 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7487 SDValue BitMask = DAG.getConstant(BW - 1, DL, ShVT); 7488 if (isPowerOf2_32(BW)) { 7489 // Z % BW -> Z & (BW - 1) 7490 ShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, Z, BitMask, Mask, VL); 7491 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7492 SDValue NotZ = DAG.getNode(ISD::VP_XOR, DL, ShVT, Z, 7493 DAG.getAllOnesConstant(DL, ShVT), Mask, VL); 7494 InvShAmt = DAG.getNode(ISD::VP_AND, DL, ShVT, NotZ, BitMask, Mask, VL); 7495 } else { 7496 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7497 ShAmt = DAG.getNode(ISD::VP_UREM, DL, ShVT, Z, BitWidthC, Mask, VL); 7498 InvShAmt = DAG.getNode(ISD::VP_SUB, DL, ShVT, BitMask, ShAmt, Mask, VL); 7499 } 7500 7501 SDValue One = DAG.getConstant(1, DL, ShVT); 7502 if (IsFSHL) { 7503 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, X, ShAmt, Mask, VL); 7504 SDValue ShY1 = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, One, Mask, VL); 7505 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, ShY1, InvShAmt, Mask, VL); 7506 } else { 7507 SDValue ShX1 = DAG.getNode(ISD::VP_SHL, DL, VT, X, One, Mask, VL); 7508 ShX = DAG.getNode(ISD::VP_SHL, DL, VT, ShX1, InvShAmt, Mask, VL); 7509 ShY = DAG.getNode(ISD::VP_LSHR, DL, VT, Y, ShAmt, Mask, VL); 7510 } 7511 } 7512 return DAG.getNode(ISD::VP_OR, DL, VT, ShX, ShY, Mask, VL); 7513 } 7514 7515 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7516 SelectionDAG &DAG) const { 7517 if (Node->isVPOpcode()) 7518 return expandVPFunnelShift(Node, DAG); 7519 7520 EVT VT = Node->getValueType(0); 7521 7522 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7523 !isOperationLegalOrCustom(ISD::SRL, VT) || 7524 !isOperationLegalOrCustom(ISD::SUB, VT) || 7525 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7526 return SDValue(); 7527 7528 SDValue X = Node->getOperand(0); 7529 SDValue Y = Node->getOperand(1); 7530 SDValue Z = Node->getOperand(2); 7531 7532 unsigned BW = VT.getScalarSizeInBits(); 7533 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7534 SDLoc DL(SDValue(Node, 0)); 7535 7536 EVT ShVT = Z.getValueType(); 7537 7538 // If a funnel shift in the other direction is more supported, use it. 7539 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7540 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7541 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7542 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7543 // fshl X, Y, Z -> fshr X, Y, -Z 7544 // fshr X, Y, Z -> fshl X, Y, -Z 7545 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7546 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7547 } else { 7548 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7549 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7550 SDValue One = DAG.getConstant(1, DL, ShVT); 7551 if (IsFSHL) { 7552 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7553 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7554 } else { 7555 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7556 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7557 } 7558 Z = DAG.getNOT(DL, Z, ShVT); 7559 } 7560 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7561 } 7562 7563 SDValue ShX, ShY; 7564 SDValue ShAmt, InvShAmt; 7565 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7566 // fshl: X << C | Y >> (BW - C) 7567 // fshr: X << (BW - C) | Y >> C 7568 // where C = Z % BW is not zero 7569 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7570 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7571 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7572 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7573 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7574 } else { 7575 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7576 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7577 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7578 if (isPowerOf2_32(BW)) { 7579 // Z % BW -> Z & (BW - 1) 7580 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7581 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7582 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7583 } else { 7584 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7585 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7586 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7587 } 7588 7589 SDValue One = DAG.getConstant(1, DL, ShVT); 7590 if (IsFSHL) { 7591 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7592 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7593 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7594 } else { 7595 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7596 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7597 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7598 } 7599 } 7600 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7601 } 7602 7603 // TODO: Merge with expandFunnelShift. 7604 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7605 SelectionDAG &DAG) const { 7606 EVT VT = Node->getValueType(0); 7607 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7608 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7609 SDValue Op0 = Node->getOperand(0); 7610 SDValue Op1 = Node->getOperand(1); 7611 SDLoc DL(SDValue(Node, 0)); 7612 7613 EVT ShVT = Op1.getValueType(); 7614 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7615 7616 // If a rotate in the other direction is more supported, use it. 7617 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7618 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7619 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7620 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7621 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7622 } 7623 7624 if (!AllowVectorOps && VT.isVector() && 7625 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7626 !isOperationLegalOrCustom(ISD::SRL, VT) || 7627 !isOperationLegalOrCustom(ISD::SUB, VT) || 7628 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7629 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7630 return SDValue(); 7631 7632 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7633 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7634 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7635 SDValue ShVal; 7636 SDValue HsVal; 7637 if (isPowerOf2_32(EltSizeInBits)) { 7638 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7639 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7640 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7641 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7642 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7643 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7644 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7645 } else { 7646 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7647 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7648 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7649 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7650 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7651 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7652 SDValue One = DAG.getConstant(1, DL, ShVT); 7653 HsVal = 7654 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7655 } 7656 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7657 } 7658 7659 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7660 SelectionDAG &DAG) const { 7661 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7662 EVT VT = Node->getValueType(0); 7663 unsigned VTBits = VT.getScalarSizeInBits(); 7664 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7665 7666 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7667 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7668 SDValue ShOpLo = Node->getOperand(0); 7669 SDValue ShOpHi = Node->getOperand(1); 7670 SDValue ShAmt = Node->getOperand(2); 7671 EVT ShAmtVT = ShAmt.getValueType(); 7672 EVT ShAmtCCVT = 7673 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7674 SDLoc dl(Node); 7675 7676 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7677 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7678 // away during isel. 7679 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7680 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7681 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7682 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7683 : DAG.getConstant(0, dl, VT); 7684 7685 SDValue Tmp2, Tmp3; 7686 if (IsSHL) { 7687 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7688 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7689 } else { 7690 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7691 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7692 } 7693 7694 // If the shift amount is larger or equal than the width of a part we don't 7695 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7696 // values for large shift amounts. 7697 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7698 DAG.getConstant(VTBits, dl, ShAmtVT)); 7699 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7700 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7701 7702 if (IsSHL) { 7703 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7704 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7705 } else { 7706 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7707 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7708 } 7709 } 7710 7711 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7712 SelectionDAG &DAG) const { 7713 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7714 SDValue Src = Node->getOperand(OpNo); 7715 EVT SrcVT = Src.getValueType(); 7716 EVT DstVT = Node->getValueType(0); 7717 SDLoc dl(SDValue(Node, 0)); 7718 7719 // FIXME: Only f32 to i64 conversions are supported. 7720 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7721 return false; 7722 7723 if (Node->isStrictFPOpcode()) 7724 // When a NaN is converted to an integer a trap is allowed. We can't 7725 // use this expansion here because it would eliminate that trap. Other 7726 // traps are also allowed and cannot be eliminated. See 7727 // IEEE 754-2008 sec 5.8. 7728 return false; 7729 7730 // Expand f32 -> i64 conversion 7731 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7732 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7733 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7734 EVT IntVT = SrcVT.changeTypeToInteger(); 7735 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7736 7737 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7738 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7739 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7740 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7741 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7742 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7743 7744 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7745 7746 SDValue ExponentBits = DAG.getNode( 7747 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7748 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7749 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7750 7751 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7752 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7753 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7754 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7755 7756 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7757 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7758 DAG.getConstant(0x00800000, dl, IntVT)); 7759 7760 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7761 7762 R = DAG.getSelectCC( 7763 dl, Exponent, ExponentLoBit, 7764 DAG.getNode(ISD::SHL, dl, DstVT, R, 7765 DAG.getZExtOrTrunc( 7766 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7767 dl, IntShVT)), 7768 DAG.getNode(ISD::SRL, dl, DstVT, R, 7769 DAG.getZExtOrTrunc( 7770 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7771 dl, IntShVT)), 7772 ISD::SETGT); 7773 7774 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7775 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7776 7777 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7778 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7779 return true; 7780 } 7781 7782 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7783 SDValue &Chain, 7784 SelectionDAG &DAG) const { 7785 SDLoc dl(SDValue(Node, 0)); 7786 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7787 SDValue Src = Node->getOperand(OpNo); 7788 7789 EVT SrcVT = Src.getValueType(); 7790 EVT DstVT = Node->getValueType(0); 7791 EVT SetCCVT = 7792 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7793 EVT DstSetCCVT = 7794 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7795 7796 // Only expand vector types if we have the appropriate vector bit operations. 7797 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7798 ISD::FP_TO_SINT; 7799 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7800 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7801 return false; 7802 7803 // If the maximum float value is smaller then the signed integer range, 7804 // the destination signmask can't be represented by the float, so we can 7805 // just use FP_TO_SINT directly. 7806 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7807 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7808 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7809 if (APFloat::opOverflow & 7810 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7811 if (Node->isStrictFPOpcode()) { 7812 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7813 { Node->getOperand(0), Src }); 7814 Chain = Result.getValue(1); 7815 } else 7816 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7817 return true; 7818 } 7819 7820 // Don't expand it if there isn't cheap fsub instruction. 7821 if (!isOperationLegalOrCustom( 7822 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7823 return false; 7824 7825 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7826 SDValue Sel; 7827 7828 if (Node->isStrictFPOpcode()) { 7829 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7830 Node->getOperand(0), /*IsSignaling*/ true); 7831 Chain = Sel.getValue(1); 7832 } else { 7833 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7834 } 7835 7836 bool Strict = Node->isStrictFPOpcode() || 7837 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7838 7839 if (Strict) { 7840 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7841 // signmask then offset (the result of which should be fully representable). 7842 // Sel = Src < 0x8000000000000000 7843 // FltOfs = select Sel, 0, 0x8000000000000000 7844 // IntOfs = select Sel, 0, 0x8000000000000000 7845 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7846 7847 // TODO: Should any fast-math-flags be set for the FSUB? 7848 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7849 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7850 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7851 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7852 DAG.getConstant(0, dl, DstVT), 7853 DAG.getConstant(SignMask, dl, DstVT)); 7854 SDValue SInt; 7855 if (Node->isStrictFPOpcode()) { 7856 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7857 { Chain, Src, FltOfs }); 7858 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7859 { Val.getValue(1), Val }); 7860 Chain = SInt.getValue(1); 7861 } else { 7862 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7863 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7864 } 7865 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7866 } else { 7867 // Expand based on maximum range of FP_TO_SINT: 7868 // True = fp_to_sint(Src) 7869 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7870 // Result = select (Src < 0x8000000000000000), True, False 7871 7872 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7873 // TODO: Should any fast-math-flags be set for the FSUB? 7874 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7875 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7876 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7877 DAG.getConstant(SignMask, dl, DstVT)); 7878 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7879 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7880 } 7881 return true; 7882 } 7883 7884 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7885 SDValue &Chain, 7886 SelectionDAG &DAG) const { 7887 // This transform is not correct for converting 0 when rounding mode is set 7888 // to round toward negative infinity which will produce -0.0. So disable under 7889 // strictfp. 7890 if (Node->isStrictFPOpcode()) 7891 return false; 7892 7893 SDValue Src = Node->getOperand(0); 7894 EVT SrcVT = Src.getValueType(); 7895 EVT DstVT = Node->getValueType(0); 7896 7897 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7898 return false; 7899 7900 // Only expand vector types if we have the appropriate vector bit operations. 7901 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7902 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7903 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7904 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7905 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7906 return false; 7907 7908 SDLoc dl(SDValue(Node, 0)); 7909 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7910 7911 // Implementation of unsigned i64 to f64 following the algorithm in 7912 // __floatundidf in compiler_rt. This implementation performs rounding 7913 // correctly in all rounding modes with the exception of converting 0 7914 // when rounding toward negative infinity. In that case the fsub will produce 7915 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7916 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7917 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7918 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7919 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7920 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7921 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7922 7923 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7924 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7925 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7926 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7927 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7928 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7929 SDValue HiSub = 7930 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7931 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7932 return true; 7933 } 7934 7935 SDValue 7936 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7937 SelectionDAG &DAG) const { 7938 unsigned Opcode = Node->getOpcode(); 7939 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7940 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7941 "Wrong opcode"); 7942 7943 if (Node->getFlags().hasNoNaNs()) { 7944 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7945 SDValue Op1 = Node->getOperand(0); 7946 SDValue Op2 = Node->getOperand(1); 7947 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7948 // Copy FMF flags, but always set the no-signed-zeros flag 7949 // as this is implied by the FMINNUM/FMAXNUM semantics. 7950 SDNodeFlags Flags = Node->getFlags(); 7951 Flags.setNoSignedZeros(true); 7952 SelCC->setFlags(Flags); 7953 return SelCC; 7954 } 7955 7956 return SDValue(); 7957 } 7958 7959 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7960 SelectionDAG &DAG) const { 7961 SDLoc dl(Node); 7962 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7963 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7964 EVT VT = Node->getValueType(0); 7965 7966 if (VT.isScalableVector()) 7967 report_fatal_error( 7968 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7969 7970 if (isOperationLegalOrCustom(NewOp, VT)) { 7971 SDValue Quiet0 = Node->getOperand(0); 7972 SDValue Quiet1 = Node->getOperand(1); 7973 7974 if (!Node->getFlags().hasNoNaNs()) { 7975 // Insert canonicalizes if it's possible we need to quiet to get correct 7976 // sNaN behavior. 7977 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7978 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7979 Node->getFlags()); 7980 } 7981 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7982 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7983 Node->getFlags()); 7984 } 7985 } 7986 7987 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7988 } 7989 7990 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7991 // instead if there are no NaNs. 7992 if (Node->getFlags().hasNoNaNs()) { 7993 unsigned IEEE2018Op = 7994 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7995 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7996 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7997 Node->getOperand(1), Node->getFlags()); 7998 } 7999 } 8000 8001 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 8002 return SelCC; 8003 8004 return SDValue(); 8005 } 8006 8007 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 8008 unsigned Test, SDNodeFlags Flags, 8009 const SDLoc &DL, 8010 SelectionDAG &DAG) const { 8011 EVT OperandVT = Op.getValueType(); 8012 assert(OperandVT.isFloatingPoint()); 8013 8014 // Degenerated cases. 8015 if (Test == 0) 8016 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 8017 if ((Test & fcAllFlags) == fcAllFlags) 8018 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 8019 8020 // PPC double double is a pair of doubles, of which the higher part determines 8021 // the value class. 8022 if (OperandVT == MVT::ppcf128) { 8023 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 8024 DAG.getConstant(1, DL, MVT::i32)); 8025 OperandVT = MVT::f64; 8026 } 8027 8028 // Some checks may be represented as inversion of simpler check, for example 8029 // "inf|normal|subnormal|zero" => !"nan". 8030 bool IsInverted = false; 8031 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 8032 IsInverted = true; 8033 Test = InvertedCheck; 8034 } 8035 8036 // Floating-point type properties. 8037 EVT ScalarFloatVT = OperandVT.getScalarType(); 8038 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 8039 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 8040 bool IsF80 = (ScalarFloatVT == MVT::f80); 8041 8042 // Some checks can be implemented using float comparisons, if floating point 8043 // exceptions are ignored. 8044 if (Flags.hasNoFPExcept() && 8045 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 8046 if (Test == fcZero) 8047 return DAG.getSetCC(DL, ResultVT, Op, 8048 DAG.getConstantFP(0.0, DL, OperandVT), 8049 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 8050 if (Test == fcNan) 8051 return DAG.getSetCC(DL, ResultVT, Op, Op, 8052 IsInverted ? ISD::SETO : ISD::SETUO); 8053 } 8054 8055 // In the general case use integer operations. 8056 unsigned BitSize = OperandVT.getScalarSizeInBits(); 8057 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 8058 if (OperandVT.isVector()) 8059 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 8060 OperandVT.getVectorElementCount()); 8061 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 8062 8063 // Various masks. 8064 APInt SignBit = APInt::getSignMask(BitSize); 8065 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 8066 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 8067 const unsigned ExplicitIntBitInF80 = 63; 8068 APInt ExpMask = Inf; 8069 if (IsF80) 8070 ExpMask.clearBit(ExplicitIntBitInF80); 8071 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 8072 APInt QNaNBitMask = 8073 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 8074 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 8075 8076 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 8077 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 8078 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 8079 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 8080 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 8081 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 8082 8083 SDValue Res; 8084 const auto appendResult = [&](SDValue PartialRes) { 8085 if (PartialRes) { 8086 if (Res) 8087 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 8088 else 8089 Res = PartialRes; 8090 } 8091 }; 8092 8093 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 8094 const auto getIntBitIsSet = [&]() -> SDValue { 8095 if (!IntBitIsSetV) { 8096 APInt IntBitMask(BitSize, 0); 8097 IntBitMask.setBit(ExplicitIntBitInF80); 8098 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 8099 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 8100 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 8101 } 8102 return IntBitIsSetV; 8103 }; 8104 8105 // Split the value into sign bit and absolute value. 8106 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 8107 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 8108 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 8109 8110 // Tests that involve more than one class should be processed first. 8111 SDValue PartialRes; 8112 8113 if (IsF80) 8114 ; // Detect finite numbers of f80 by checking individual classes because 8115 // they have different settings of the explicit integer bit. 8116 else if ((Test & fcFinite) == fcFinite) { 8117 // finite(V) ==> abs(V) < exp_mask 8118 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8119 Test &= ~fcFinite; 8120 } else if ((Test & fcFinite) == fcPosFinite) { 8121 // finite(V) && V > 0 ==> V < exp_mask 8122 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 8123 Test &= ~fcPosFinite; 8124 } else if ((Test & fcFinite) == fcNegFinite) { 8125 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 8126 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 8127 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8128 Test &= ~fcNegFinite; 8129 } 8130 appendResult(PartialRes); 8131 8132 // Check for individual classes. 8133 8134 if (unsigned PartialCheck = Test & fcZero) { 8135 if (PartialCheck == fcPosZero) 8136 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 8137 else if (PartialCheck == fcZero) 8138 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 8139 else // ISD::fcNegZero 8140 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 8141 appendResult(PartialRes); 8142 } 8143 8144 if (unsigned PartialCheck = Test & fcInf) { 8145 if (PartialCheck == fcPosInf) 8146 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 8147 else if (PartialCheck == fcInf) 8148 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 8149 else { // ISD::fcNegInf 8150 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 8151 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 8152 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 8153 } 8154 appendResult(PartialRes); 8155 } 8156 8157 if (unsigned PartialCheck = Test & fcNan) { 8158 APInt InfWithQnanBit = Inf | QNaNBitMask; 8159 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 8160 if (PartialCheck == fcNan) { 8161 // isnan(V) ==> abs(V) > int(inf) 8162 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8163 if (IsF80) { 8164 // Recognize unsupported values as NaNs for compatibility with glibc. 8165 // In them (exp(V)==0) == int_bit. 8166 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 8167 SDValue ExpIsZero = 8168 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 8169 SDValue IsPseudo = 8170 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 8171 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 8172 } 8173 } else if (PartialCheck == fcQNan) { 8174 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 8175 PartialRes = 8176 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 8177 } else { // ISD::fcSNan 8178 // issignaling(V) ==> abs(V) > unsigned(Inf) && 8179 // abs(V) < (unsigned(Inf) | quiet_bit) 8180 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 8181 SDValue IsNotQnan = 8182 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 8183 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 8184 } 8185 appendResult(PartialRes); 8186 } 8187 8188 if (unsigned PartialCheck = Test & fcSubnormal) { 8189 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 8190 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 8191 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 8192 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 8193 SDValue VMinusOneV = 8194 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 8195 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 8196 if (PartialCheck == fcNegSubnormal) 8197 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8198 appendResult(PartialRes); 8199 } 8200 8201 if (unsigned PartialCheck = Test & fcNormal) { 8202 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 8203 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 8204 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 8205 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 8206 APInt ExpLimit = ExpMask - ExpLSB; 8207 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 8208 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 8209 if (PartialCheck == fcNegNormal) 8210 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 8211 else if (PartialCheck == fcPosNormal) { 8212 SDValue PosSignV = 8213 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 8214 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 8215 } 8216 if (IsF80) 8217 PartialRes = 8218 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 8219 appendResult(PartialRes); 8220 } 8221 8222 if (!Res) 8223 return DAG.getConstant(IsInverted, DL, ResultVT); 8224 if (IsInverted) 8225 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 8226 return Res; 8227 } 8228 8229 // Only expand vector types if we have the appropriate vector bit operations. 8230 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 8231 assert(VT.isVector() && "Expected vector type"); 8232 unsigned Len = VT.getScalarSizeInBits(); 8233 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 8234 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 8235 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 8236 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 8237 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 8238 } 8239 8240 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8241 SDLoc dl(Node); 8242 EVT VT = Node->getValueType(0); 8243 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8244 SDValue Op = Node->getOperand(0); 8245 unsigned Len = VT.getScalarSizeInBits(); 8246 assert(VT.isInteger() && "CTPOP not implemented for this type."); 8247 8248 // TODO: Add support for irregular type lengths. 8249 if (!(Len <= 128 && Len % 8 == 0)) 8250 return SDValue(); 8251 8252 // Only expand vector types if we have the appropriate vector bit operations. 8253 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 8254 return SDValue(); 8255 8256 // This is the "best" algorithm from 8257 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8258 SDValue Mask55 = 8259 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8260 SDValue Mask33 = 8261 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8262 SDValue Mask0F = 8263 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8264 8265 // v = v - ((v >> 1) & 0x55555555...) 8266 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 8267 DAG.getNode(ISD::AND, dl, VT, 8268 DAG.getNode(ISD::SRL, dl, VT, Op, 8269 DAG.getConstant(1, dl, ShVT)), 8270 Mask55)); 8271 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8272 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 8273 DAG.getNode(ISD::AND, dl, VT, 8274 DAG.getNode(ISD::SRL, dl, VT, Op, 8275 DAG.getConstant(2, dl, ShVT)), 8276 Mask33)); 8277 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8278 Op = DAG.getNode(ISD::AND, dl, VT, 8279 DAG.getNode(ISD::ADD, dl, VT, Op, 8280 DAG.getNode(ISD::SRL, dl, VT, Op, 8281 DAG.getConstant(4, dl, ShVT))), 8282 Mask0F); 8283 8284 if (Len <= 8) 8285 return Op; 8286 8287 // Avoid the multiply if we only have 2 bytes to add. 8288 // TODO: Only doing this for scalars because vectors weren't as obviously 8289 // improved. 8290 if (Len == 16 && !VT.isVector()) { 8291 // v = (v + (v >> 8)) & 0x00FF; 8292 return DAG.getNode(ISD::AND, dl, VT, 8293 DAG.getNode(ISD::ADD, dl, VT, Op, 8294 DAG.getNode(ISD::SRL, dl, VT, Op, 8295 DAG.getConstant(8, dl, ShVT))), 8296 DAG.getConstant(0xFF, dl, VT)); 8297 } 8298 8299 // v = (v * 0x01010101...) >> (Len - 8) 8300 SDValue Mask01 = 8301 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8302 return DAG.getNode(ISD::SRL, dl, VT, 8303 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 8304 DAG.getConstant(Len - 8, dl, ShVT)); 8305 } 8306 8307 SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { 8308 SDLoc dl(Node); 8309 EVT VT = Node->getValueType(0); 8310 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8311 SDValue Op = Node->getOperand(0); 8312 SDValue Mask = Node->getOperand(1); 8313 SDValue VL = Node->getOperand(2); 8314 unsigned Len = VT.getScalarSizeInBits(); 8315 assert(VT.isInteger() && "VP_CTPOP not implemented for this type."); 8316 8317 // TODO: Add support for irregular type lengths. 8318 if (!(Len <= 128 && Len % 8 == 0)) 8319 return SDValue(); 8320 8321 // This is same algorithm of expandCTPOP from 8322 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 8323 SDValue Mask55 = 8324 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 8325 SDValue Mask33 = 8326 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 8327 SDValue Mask0F = 8328 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 8329 8330 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; 8331 8332 // v = v - ((v >> 1) & 0x55555555...) 8333 Tmp1 = DAG.getNode(ISD::VP_AND, dl, VT, 8334 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8335 DAG.getConstant(1, dl, ShVT), Mask, VL), 8336 Mask55, Mask, VL); 8337 Op = DAG.getNode(ISD::VP_SUB, dl, VT, Op, Tmp1, Mask, VL); 8338 8339 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 8340 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Op, Mask33, Mask, VL); 8341 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, 8342 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, 8343 DAG.getConstant(2, dl, ShVT), Mask, VL), 8344 Mask33, Mask, VL); 8345 Op = DAG.getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL); 8346 8347 // v = (v + (v >> 4)) & 0x0F0F0F0F... 8348 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(4, dl, ShVT), 8349 Mask, VL), 8350 Tmp5 = DAG.getNode(ISD::VP_ADD, dl, VT, Op, Tmp4, Mask, VL); 8351 Op = DAG.getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL); 8352 8353 if (Len <= 8) 8354 return Op; 8355 8356 // v = (v * 0x01010101...) >> (Len - 8) 8357 SDValue Mask01 = 8358 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 8359 return DAG.getNode(ISD::VP_LSHR, dl, VT, 8360 DAG.getNode(ISD::VP_MUL, dl, VT, Op, Mask01, Mask, VL), 8361 DAG.getConstant(Len - 8, dl, ShVT), Mask, VL); 8362 } 8363 8364 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8365 SDLoc dl(Node); 8366 EVT VT = Node->getValueType(0); 8367 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8368 SDValue Op = Node->getOperand(0); 8369 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8370 8371 // If the non-ZERO_UNDEF version is supported we can use that instead. 8372 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 8373 isOperationLegalOrCustom(ISD::CTLZ, VT)) 8374 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 8375 8376 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8377 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 8378 EVT SetCCVT = 8379 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8380 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 8381 SDValue Zero = DAG.getConstant(0, dl, VT); 8382 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8383 return DAG.getSelect(dl, VT, SrcIsZero, 8384 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 8385 } 8386 8387 // Only expand vector types if we have the appropriate vector bit operations. 8388 // This includes the operations needed to expand CTPOP if it isn't supported. 8389 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8390 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8391 !canExpandVectorCTPOP(*this, VT)) || 8392 !isOperationLegalOrCustom(ISD::SRL, VT) || 8393 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 8394 return SDValue(); 8395 8396 // for now, we do this: 8397 // x = x | (x >> 1); 8398 // x = x | (x >> 2); 8399 // ... 8400 // x = x | (x >>16); 8401 // x = x | (x >>32); // for 64-bit input 8402 // return popcount(~x); 8403 // 8404 // Ref: "Hacker's Delight" by Henry Warren 8405 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8406 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8407 Op = DAG.getNode(ISD::OR, dl, VT, Op, 8408 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 8409 } 8410 Op = DAG.getNOT(dl, Op, VT); 8411 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 8412 } 8413 8414 SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { 8415 SDLoc dl(Node); 8416 EVT VT = Node->getValueType(0); 8417 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8418 SDValue Op = Node->getOperand(0); 8419 SDValue Mask = Node->getOperand(1); 8420 SDValue VL = Node->getOperand(2); 8421 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8422 8423 // do this: 8424 // x = x | (x >> 1); 8425 // x = x | (x >> 2); 8426 // ... 8427 // x = x | (x >>16); 8428 // x = x | (x >>32); // for 64-bit input 8429 // return popcount(~x); 8430 for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { 8431 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 8432 Op = DAG.getNode(ISD::VP_OR, dl, VT, Op, 8433 DAG.getNode(ISD::VP_LSHR, dl, VT, Op, Tmp, Mask, VL), Mask, 8434 VL); 8435 } 8436 Op = DAG.getNode(ISD::VP_XOR, dl, VT, Op, DAG.getConstant(-1, dl, VT), Mask, 8437 VL); 8438 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Op, Mask, VL); 8439 } 8440 8441 SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, 8442 const SDLoc &DL, EVT VT, SDValue Op, 8443 unsigned BitWidth) const { 8444 if (BitWidth != 32 && BitWidth != 64) 8445 return SDValue(); 8446 APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) 8447 : APInt(64, 0x0218A392CD3D5DBFULL); 8448 const DataLayout &TD = DAG.getDataLayout(); 8449 MachinePointerInfo PtrInfo = 8450 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()); 8451 unsigned ShiftAmt = BitWidth - Log2_32(BitWidth); 8452 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 8453 SDValue Lookup = DAG.getNode( 8454 ISD::SRL, DL, VT, 8455 DAG.getNode(ISD::MUL, DL, VT, DAG.getNode(ISD::AND, DL, VT, Op, Neg), 8456 DAG.getConstant(DeBruijn, DL, VT)), 8457 DAG.getConstant(ShiftAmt, DL, VT)); 8458 Lookup = DAG.getSExtOrTrunc(Lookup, DL, getPointerTy(TD)); 8459 8460 SmallVector<uint8_t> Table(BitWidth, 0); 8461 for (unsigned i = 0; i < BitWidth; i++) { 8462 APInt Shl = DeBruijn.shl(i); 8463 APInt Lshr = Shl.lshr(ShiftAmt); 8464 Table[Lshr.getZExtValue()] = i; 8465 } 8466 8467 // Create a ConstantArray in Constant Pool 8468 auto *CA = ConstantDataArray::get(*DAG.getContext(), Table); 8469 SDValue CPIdx = DAG.getConstantPool(CA, getPointerTy(TD), 8470 TD.getPrefTypeAlign(CA->getType())); 8471 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, VT, DAG.getEntryNode(), 8472 DAG.getMemBasePlusOffset(CPIdx, Lookup, DL), 8473 PtrInfo, MVT::i8); 8474 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 8475 return ExtLoad; 8476 8477 EVT SetCCVT = 8478 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8479 SDValue Zero = DAG.getConstant(0, DL, VT); 8480 SDValue SrcIsZero = DAG.getSetCC(DL, SetCCVT, Op, Zero, ISD::SETEQ); 8481 return DAG.getSelect(DL, VT, SrcIsZero, 8482 DAG.getConstant(BitWidth, DL, VT), ExtLoad); 8483 } 8484 8485 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8486 SDLoc dl(Node); 8487 EVT VT = Node->getValueType(0); 8488 SDValue Op = Node->getOperand(0); 8489 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 8490 8491 // If the non-ZERO_UNDEF version is supported we can use that instead. 8492 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 8493 isOperationLegalOrCustom(ISD::CTTZ, VT)) 8494 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 8495 8496 // If the ZERO_UNDEF version is supported use that and handle the zero case. 8497 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 8498 EVT SetCCVT = 8499 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8500 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 8501 SDValue Zero = DAG.getConstant(0, dl, VT); 8502 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 8503 return DAG.getSelect(dl, VT, SrcIsZero, 8504 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 8505 } 8506 8507 // Only expand vector types if we have the appropriate vector bit operations. 8508 // This includes the operations needed to expand CTPOP if it isn't supported. 8509 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 8510 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 8511 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 8512 !canExpandVectorCTPOP(*this, VT)) || 8513 !isOperationLegalOrCustom(ISD::SUB, VT) || 8514 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 8515 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8516 return SDValue(); 8517 8518 // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. 8519 if (!VT.isVector() && isOperationExpand(ISD::CTPOP, VT) && 8520 !isOperationLegal(ISD::CTLZ, VT)) 8521 if (SDValue V = CTTZTableLookup(Node, DAG, dl, VT, Op, NumBitsPerElt)) 8522 return V; 8523 8524 // for now, we use: { return popcount(~x & (x - 1)); } 8525 // unless the target has ctlz but not ctpop, in which case we use: 8526 // { return 32 - nlz(~x & (x-1)); } 8527 // Ref: "Hacker's Delight" by Henry Warren 8528 SDValue Tmp = DAG.getNode( 8529 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 8530 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 8531 8532 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 8533 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 8534 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 8535 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 8536 } 8537 8538 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 8539 } 8540 8541 SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { 8542 SDValue Op = Node->getOperand(0); 8543 SDValue Mask = Node->getOperand(1); 8544 SDValue VL = Node->getOperand(2); 8545 SDLoc dl(Node); 8546 EVT VT = Node->getValueType(0); 8547 8548 // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) 8549 SDValue Not = DAG.getNode(ISD::VP_XOR, dl, VT, Op, 8550 DAG.getConstant(-1, dl, VT), Mask, VL); 8551 SDValue MinusOne = DAG.getNode(ISD::VP_SUB, dl, VT, Op, 8552 DAG.getConstant(1, dl, VT), Mask, VL); 8553 SDValue Tmp = DAG.getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL); 8554 return DAG.getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL); 8555 } 8556 8557 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 8558 bool IsNegative) const { 8559 SDLoc dl(N); 8560 EVT VT = N->getValueType(0); 8561 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8562 SDValue Op = N->getOperand(0); 8563 8564 // abs(x) -> smax(x,sub(0,x)) 8565 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8566 isOperationLegal(ISD::SMAX, VT)) { 8567 SDValue Zero = DAG.getConstant(0, dl, VT); 8568 return DAG.getNode(ISD::SMAX, dl, VT, Op, 8569 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8570 } 8571 8572 // abs(x) -> umin(x,sub(0,x)) 8573 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 8574 isOperationLegal(ISD::UMIN, VT)) { 8575 SDValue Zero = DAG.getConstant(0, dl, VT); 8576 Op = DAG.getFreeze(Op); 8577 return DAG.getNode(ISD::UMIN, dl, VT, Op, 8578 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8579 } 8580 8581 // 0 - abs(x) -> smin(x, sub(0,x)) 8582 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 8583 isOperationLegal(ISD::SMIN, VT)) { 8584 Op = DAG.getFreeze(Op); 8585 SDValue Zero = DAG.getConstant(0, dl, VT); 8586 return DAG.getNode(ISD::SMIN, dl, VT, Op, 8587 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 8588 } 8589 8590 // Only expand vector types if we have the appropriate vector operations. 8591 if (VT.isVector() && 8592 (!isOperationLegalOrCustom(ISD::SRA, VT) || 8593 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 8594 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 8595 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 8596 return SDValue(); 8597 8598 Op = DAG.getFreeze(Op); 8599 SDValue Shift = 8600 DAG.getNode(ISD::SRA, dl, VT, Op, 8601 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 8602 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 8603 8604 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 8605 if (!IsNegative) 8606 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 8607 8608 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 8609 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 8610 } 8611 8612 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 8613 SDLoc dl(N); 8614 EVT VT = N->getValueType(0); 8615 SDValue Op = N->getOperand(0); 8616 8617 if (!VT.isSimple()) 8618 return SDValue(); 8619 8620 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8621 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 8622 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 8623 default: 8624 return SDValue(); 8625 case MVT::i16: 8626 // Use a rotate by 8. This can be further expanded if necessary. 8627 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8628 case MVT::i32: 8629 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8630 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Op, 8631 DAG.getConstant(0xFF00, dl, VT)); 8632 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT)); 8633 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8634 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 8635 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8636 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8637 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8638 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8639 case MVT::i64: 8640 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8641 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Op, 8642 DAG.getConstant(255ULL<<8, dl, VT)); 8643 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT)); 8644 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Op, 8645 DAG.getConstant(255ULL<<16, dl, VT)); 8646 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT)); 8647 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Op, 8648 DAG.getConstant(255ULL<<24, dl, VT)); 8649 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT)); 8650 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8651 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 8652 DAG.getConstant(255ULL<<24, dl, VT)); 8653 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8654 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8655 DAG.getConstant(255ULL<<16, dl, VT)); 8656 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8657 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 8658 DAG.getConstant(255ULL<<8, dl, VT)); 8659 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8660 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 8661 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 8662 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8663 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8664 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8665 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8666 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8667 } 8668 } 8669 8670 SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { 8671 SDLoc dl(N); 8672 EVT VT = N->getValueType(0); 8673 SDValue Op = N->getOperand(0); 8674 SDValue Mask = N->getOperand(1); 8675 SDValue EVL = N->getOperand(2); 8676 8677 if (!VT.isSimple()) 8678 return SDValue(); 8679 8680 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8681 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 8682 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 8683 default: 8684 return SDValue(); 8685 case MVT::i16: 8686 Tmp1 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8687 Mask, EVL); 8688 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8689 Mask, EVL); 8690 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL); 8691 case MVT::i32: 8692 Tmp4 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 8693 Mask, EVL); 8694 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Op, DAG.getConstant(0xFF00, dl, VT), 8695 Mask, EVL); 8696 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(8, dl, SHVT), 8697 Mask, EVL); 8698 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8699 Mask, EVL); 8700 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8701 DAG.getConstant(0xFF00, dl, VT), Mask, EVL); 8702 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 8703 Mask, EVL); 8704 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 8705 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 8706 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 8707 case MVT::i64: 8708 Tmp8 = DAG.getNode(ISD::VP_SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 8709 Mask, EVL); 8710 Tmp7 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 8711 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 8712 Tmp7 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp7, DAG.getConstant(40, dl, SHVT), 8713 Mask, EVL); 8714 Tmp6 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 8715 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 8716 Tmp6 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp6, DAG.getConstant(24, dl, SHVT), 8717 Mask, EVL); 8718 Tmp5 = DAG.getNode(ISD::VP_AND, dl, VT, Op, 8719 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 8720 Tmp5 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp5, DAG.getConstant(8, dl, SHVT), 8721 Mask, EVL); 8722 Tmp4 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(8, dl, SHVT), 8723 Mask, EVL); 8724 Tmp4 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp4, 8725 DAG.getConstant(255ULL << 24, dl, VT), Mask, EVL); 8726 Tmp3 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(24, dl, SHVT), 8727 Mask, EVL); 8728 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp3, 8729 DAG.getConstant(255ULL << 16, dl, VT), Mask, EVL); 8730 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(40, dl, SHVT), 8731 Mask, EVL); 8732 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8733 DAG.getConstant(255ULL << 8, dl, VT), Mask, EVL); 8734 Tmp1 = DAG.getNode(ISD::VP_LSHR, dl, VT, Op, DAG.getConstant(56, dl, SHVT), 8735 Mask, EVL); 8736 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL); 8737 Tmp6 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL); 8738 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL); 8739 Tmp2 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL); 8740 Tmp8 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL); 8741 Tmp4 = DAG.getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL); 8742 return DAG.getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL); 8743 } 8744 } 8745 8746 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8747 SDLoc dl(N); 8748 EVT VT = N->getValueType(0); 8749 SDValue Op = N->getOperand(0); 8750 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8751 unsigned Sz = VT.getScalarSizeInBits(); 8752 8753 SDValue Tmp, Tmp2, Tmp3; 8754 8755 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8756 // and finally the i1 pairs. 8757 // TODO: We can easily support i4/i2 legal types if any target ever does. 8758 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8759 // Create the masks - repeating the pattern every byte. 8760 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8761 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8762 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8763 8764 // BSWAP if the type is wider than a single byte. 8765 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8766 8767 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8768 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8769 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8770 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8771 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8772 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8773 8774 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8775 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8776 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8777 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8778 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8779 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8780 8781 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8782 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8783 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8784 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8785 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8786 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8787 return Tmp; 8788 } 8789 8790 Tmp = DAG.getConstant(0, dl, VT); 8791 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8792 if (I < J) 8793 Tmp2 = 8794 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8795 else 8796 Tmp2 = 8797 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8798 8799 APInt Shift(Sz, 1); 8800 Shift <<= J; 8801 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8802 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8803 } 8804 8805 return Tmp; 8806 } 8807 8808 SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8809 assert(N->getOpcode() == ISD::VP_BITREVERSE); 8810 8811 SDLoc dl(N); 8812 EVT VT = N->getValueType(0); 8813 SDValue Op = N->getOperand(0); 8814 SDValue Mask = N->getOperand(1); 8815 SDValue EVL = N->getOperand(2); 8816 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8817 unsigned Sz = VT.getScalarSizeInBits(); 8818 8819 SDValue Tmp, Tmp2, Tmp3; 8820 8821 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8822 // and finally the i1 pairs. 8823 // TODO: We can easily support i4/i2 legal types if any target ever does. 8824 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8825 // Create the masks - repeating the pattern every byte. 8826 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8827 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8828 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8829 8830 // BSWAP if the type is wider than a single byte. 8831 Tmp = (Sz > 8 ? DAG.getNode(ISD::VP_BSWAP, dl, VT, Op, Mask, EVL) : Op); 8832 8833 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8834 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT), 8835 Mask, EVL); 8836 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8837 DAG.getConstant(Mask4, dl, VT), Mask, EVL); 8838 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT), 8839 Mask, EVL); 8840 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT), 8841 Mask, EVL); 8842 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 8843 8844 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8845 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT), 8846 Mask, EVL); 8847 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8848 DAG.getConstant(Mask2, dl, VT), Mask, EVL); 8849 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT), 8850 Mask, EVL); 8851 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT), 8852 Mask, EVL); 8853 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 8854 8855 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8856 Tmp2 = DAG.getNode(ISD::VP_LSHR, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT), 8857 Mask, EVL); 8858 Tmp2 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp2, 8859 DAG.getConstant(Mask1, dl, VT), Mask, EVL); 8860 Tmp3 = DAG.getNode(ISD::VP_AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT), 8861 Mask, EVL); 8862 Tmp3 = DAG.getNode(ISD::VP_SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT), 8863 Mask, EVL); 8864 Tmp = DAG.getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL); 8865 return Tmp; 8866 } 8867 return SDValue(); 8868 } 8869 8870 std::pair<SDValue, SDValue> 8871 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8872 SelectionDAG &DAG) const { 8873 SDLoc SL(LD); 8874 SDValue Chain = LD->getChain(); 8875 SDValue BasePTR = LD->getBasePtr(); 8876 EVT SrcVT = LD->getMemoryVT(); 8877 EVT DstVT = LD->getValueType(0); 8878 ISD::LoadExtType ExtType = LD->getExtensionType(); 8879 8880 if (SrcVT.isScalableVector()) 8881 report_fatal_error("Cannot scalarize scalable vector loads"); 8882 8883 unsigned NumElem = SrcVT.getVectorNumElements(); 8884 8885 EVT SrcEltVT = SrcVT.getScalarType(); 8886 EVT DstEltVT = DstVT.getScalarType(); 8887 8888 // A vector must always be stored in memory as-is, i.e. without any padding 8889 // between the elements, since various code depend on it, e.g. in the 8890 // handling of a bitcast of a vector type to int, which may be done with a 8891 // vector store followed by an integer load. A vector that does not have 8892 // elements that are byte-sized must therefore be stored as an integer 8893 // built out of the extracted vector elements. 8894 if (!SrcEltVT.isByteSized()) { 8895 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8896 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8897 8898 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8899 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8900 8901 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8902 SDValue SrcEltBitMask = DAG.getConstant( 8903 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8904 8905 // Load the whole vector and avoid masking off the top bits as it makes 8906 // the codegen worse. 8907 SDValue Load = 8908 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8909 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8910 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8911 8912 SmallVector<SDValue, 8> Vals; 8913 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8914 unsigned ShiftIntoIdx = 8915 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8916 SDValue ShiftAmount = 8917 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8918 LoadVT, SL, /*LegalTypes=*/false); 8919 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8920 SDValue Elt = 8921 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8922 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8923 8924 if (ExtType != ISD::NON_EXTLOAD) { 8925 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8926 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8927 } 8928 8929 Vals.push_back(Scalar); 8930 } 8931 8932 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8933 return std::make_pair(Value, Load.getValue(1)); 8934 } 8935 8936 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8937 assert(SrcEltVT.isByteSized()); 8938 8939 SmallVector<SDValue, 8> Vals; 8940 SmallVector<SDValue, 8> LoadChains; 8941 8942 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8943 SDValue ScalarLoad = 8944 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8945 LD->getPointerInfo().getWithOffset(Idx * Stride), 8946 SrcEltVT, LD->getOriginalAlign(), 8947 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8948 8949 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8950 8951 Vals.push_back(ScalarLoad.getValue(0)); 8952 LoadChains.push_back(ScalarLoad.getValue(1)); 8953 } 8954 8955 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8956 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8957 8958 return std::make_pair(Value, NewChain); 8959 } 8960 8961 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8962 SelectionDAG &DAG) const { 8963 SDLoc SL(ST); 8964 8965 SDValue Chain = ST->getChain(); 8966 SDValue BasePtr = ST->getBasePtr(); 8967 SDValue Value = ST->getValue(); 8968 EVT StVT = ST->getMemoryVT(); 8969 8970 if (StVT.isScalableVector()) 8971 report_fatal_error("Cannot scalarize scalable vector stores"); 8972 8973 // The type of the data we want to save 8974 EVT RegVT = Value.getValueType(); 8975 EVT RegSclVT = RegVT.getScalarType(); 8976 8977 // The type of data as saved in memory. 8978 EVT MemSclVT = StVT.getScalarType(); 8979 8980 unsigned NumElem = StVT.getVectorNumElements(); 8981 8982 // A vector must always be stored in memory as-is, i.e. without any padding 8983 // between the elements, since various code depend on it, e.g. in the 8984 // handling of a bitcast of a vector type to int, which may be done with a 8985 // vector store followed by an integer load. A vector that does not have 8986 // elements that are byte-sized must therefore be stored as an integer 8987 // built out of the extracted vector elements. 8988 if (!MemSclVT.isByteSized()) { 8989 unsigned NumBits = StVT.getSizeInBits(); 8990 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8991 8992 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8993 8994 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8995 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8996 DAG.getVectorIdxConstant(Idx, SL)); 8997 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8998 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8999 unsigned ShiftIntoIdx = 9000 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 9001 SDValue ShiftAmount = 9002 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 9003 SDValue ShiftedElt = 9004 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 9005 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 9006 } 9007 9008 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 9009 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9010 ST->getAAInfo()); 9011 } 9012 9013 // Store Stride in bytes 9014 unsigned Stride = MemSclVT.getSizeInBits() / 8; 9015 assert(Stride && "Zero stride!"); 9016 // Extract each of the elements from the original vector and save them into 9017 // memory individually. 9018 SmallVector<SDValue, 8> Stores; 9019 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 9020 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 9021 DAG.getVectorIdxConstant(Idx, SL)); 9022 9023 SDValue Ptr = 9024 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 9025 9026 // This scalar TruncStore may be illegal, but we legalize it later. 9027 SDValue Store = DAG.getTruncStore( 9028 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 9029 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 9030 ST->getAAInfo()); 9031 9032 Stores.push_back(Store); 9033 } 9034 9035 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 9036 } 9037 9038 std::pair<SDValue, SDValue> 9039 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 9040 assert(LD->getAddressingMode() == ISD::UNINDEXED && 9041 "unaligned indexed loads not implemented!"); 9042 SDValue Chain = LD->getChain(); 9043 SDValue Ptr = LD->getBasePtr(); 9044 EVT VT = LD->getValueType(0); 9045 EVT LoadedVT = LD->getMemoryVT(); 9046 SDLoc dl(LD); 9047 auto &MF = DAG.getMachineFunction(); 9048 9049 if (VT.isFloatingPoint() || VT.isVector()) { 9050 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 9051 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 9052 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 9053 LoadedVT.isVector()) { 9054 // Scalarize the load and let the individual components be handled. 9055 return scalarizeVectorLoad(LD, DAG); 9056 } 9057 9058 // Expand to a (misaligned) integer load of the same size, 9059 // then bitconvert to floating point or vector. 9060 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 9061 LD->getMemOperand()); 9062 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 9063 if (LoadedVT != VT) 9064 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 9065 ISD::ANY_EXTEND, dl, VT, Result); 9066 9067 return std::make_pair(Result, newLoad.getValue(1)); 9068 } 9069 9070 // Copy the value to a (aligned) stack slot using (unaligned) integer 9071 // loads and stores, then do a (aligned) load from the stack slot. 9072 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 9073 unsigned LoadedBytes = LoadedVT.getStoreSize(); 9074 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9075 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 9076 9077 // Make sure the stack slot is also aligned for the register type. 9078 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 9079 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 9080 SmallVector<SDValue, 8> Stores; 9081 SDValue StackPtr = StackBase; 9082 unsigned Offset = 0; 9083 9084 EVT PtrVT = Ptr.getValueType(); 9085 EVT StackPtrVT = StackPtr.getValueType(); 9086 9087 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9088 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9089 9090 // Do all but one copies using the full register width. 9091 for (unsigned i = 1; i < NumRegs; i++) { 9092 // Load one integer register's worth from the original location. 9093 SDValue Load = DAG.getLoad( 9094 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 9095 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9096 LD->getAAInfo()); 9097 // Follow the load with a store to the stack slot. Remember the store. 9098 Stores.push_back(DAG.getStore( 9099 Load.getValue(1), dl, Load, StackPtr, 9100 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 9101 // Increment the pointers. 9102 Offset += RegBytes; 9103 9104 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9105 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9106 } 9107 9108 // The last copy may be partial. Do an extending load. 9109 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 9110 8 * (LoadedBytes - Offset)); 9111 SDValue Load = 9112 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 9113 LD->getPointerInfo().getWithOffset(Offset), MemVT, 9114 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 9115 LD->getAAInfo()); 9116 // Follow the load with a store to the stack slot. Remember the store. 9117 // On big-endian machines this requires a truncating store to ensure 9118 // that the bits end up in the right place. 9119 Stores.push_back(DAG.getTruncStore( 9120 Load.getValue(1), dl, Load, StackPtr, 9121 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 9122 9123 // The order of the stores doesn't matter - say it with a TokenFactor. 9124 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9125 9126 // Finally, perform the original load only redirected to the stack slot. 9127 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 9128 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 9129 LoadedVT); 9130 9131 // Callers expect a MERGE_VALUES node. 9132 return std::make_pair(Load, TF); 9133 } 9134 9135 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 9136 "Unaligned load of unsupported type."); 9137 9138 // Compute the new VT that is half the size of the old one. This is an 9139 // integer MVT. 9140 unsigned NumBits = LoadedVT.getSizeInBits(); 9141 EVT NewLoadedVT; 9142 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 9143 NumBits >>= 1; 9144 9145 Align Alignment = LD->getOriginalAlign(); 9146 unsigned IncrementSize = NumBits / 8; 9147 ISD::LoadExtType HiExtType = LD->getExtensionType(); 9148 9149 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 9150 if (HiExtType == ISD::NON_EXTLOAD) 9151 HiExtType = ISD::ZEXTLOAD; 9152 9153 // Load the value in two parts 9154 SDValue Lo, Hi; 9155 if (DAG.getDataLayout().isLittleEndian()) { 9156 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9157 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9158 LD->getAAInfo()); 9159 9160 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 9161 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 9162 LD->getPointerInfo().getWithOffset(IncrementSize), 9163 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9164 LD->getAAInfo()); 9165 } else { 9166 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 9167 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9168 LD->getAAInfo()); 9169 9170 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 9171 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 9172 LD->getPointerInfo().getWithOffset(IncrementSize), 9173 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 9174 LD->getAAInfo()); 9175 } 9176 9177 // aggregate the two parts 9178 SDValue ShiftAmount = 9179 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 9180 DAG.getDataLayout())); 9181 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 9182 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 9183 9184 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 9185 Hi.getValue(1)); 9186 9187 return std::make_pair(Result, TF); 9188 } 9189 9190 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 9191 SelectionDAG &DAG) const { 9192 assert(ST->getAddressingMode() == ISD::UNINDEXED && 9193 "unaligned indexed stores not implemented!"); 9194 SDValue Chain = ST->getChain(); 9195 SDValue Ptr = ST->getBasePtr(); 9196 SDValue Val = ST->getValue(); 9197 EVT VT = Val.getValueType(); 9198 Align Alignment = ST->getOriginalAlign(); 9199 auto &MF = DAG.getMachineFunction(); 9200 EVT StoreMemVT = ST->getMemoryVT(); 9201 9202 SDLoc dl(ST); 9203 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 9204 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 9205 if (isTypeLegal(intVT)) { 9206 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 9207 StoreMemVT.isVector()) { 9208 // Scalarize the store and let the individual components be handled. 9209 SDValue Result = scalarizeVectorStore(ST, DAG); 9210 return Result; 9211 } 9212 // Expand to a bitconvert of the value to the integer type of the 9213 // same size, then a (misaligned) int store. 9214 // FIXME: Does not handle truncating floating point stores! 9215 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 9216 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 9217 Alignment, ST->getMemOperand()->getFlags()); 9218 return Result; 9219 } 9220 // Do a (aligned) store to a stack slot, then copy from the stack slot 9221 // to the final destination using (unaligned) integer loads and stores. 9222 MVT RegVT = getRegisterType( 9223 *DAG.getContext(), 9224 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 9225 EVT PtrVT = Ptr.getValueType(); 9226 unsigned StoredBytes = StoreMemVT.getStoreSize(); 9227 unsigned RegBytes = RegVT.getSizeInBits() / 8; 9228 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 9229 9230 // Make sure the stack slot is also aligned for the register type. 9231 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 9232 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9233 9234 // Perform the original store, only redirected to the stack slot. 9235 SDValue Store = DAG.getTruncStore( 9236 Chain, dl, Val, StackPtr, 9237 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 9238 9239 EVT StackPtrVT = StackPtr.getValueType(); 9240 9241 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 9242 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 9243 SmallVector<SDValue, 8> Stores; 9244 unsigned Offset = 0; 9245 9246 // Do all but one copies using the full register width. 9247 for (unsigned i = 1; i < NumRegs; i++) { 9248 // Load one integer register's worth from the stack slot. 9249 SDValue Load = DAG.getLoad( 9250 RegVT, dl, Store, StackPtr, 9251 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 9252 // Store it to the final location. Remember the store. 9253 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 9254 ST->getPointerInfo().getWithOffset(Offset), 9255 ST->getOriginalAlign(), 9256 ST->getMemOperand()->getFlags())); 9257 // Increment the pointers. 9258 Offset += RegBytes; 9259 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 9260 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 9261 } 9262 9263 // The last store may be partial. Do a truncating store. On big-endian 9264 // machines this requires an extending load from the stack slot to ensure 9265 // that the bits are in the right place. 9266 EVT LoadMemVT = 9267 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 9268 9269 // Load from the stack slot. 9270 SDValue Load = DAG.getExtLoad( 9271 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 9272 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 9273 9274 Stores.push_back( 9275 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 9276 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 9277 ST->getOriginalAlign(), 9278 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 9279 // The order of the stores doesn't matter - say it with a TokenFactor. 9280 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 9281 return Result; 9282 } 9283 9284 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 9285 "Unaligned store of unknown type."); 9286 // Get the half-size VT 9287 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 9288 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 9289 unsigned IncrementSize = NumBits / 8; 9290 9291 // Divide the stored value in two parts. 9292 SDValue ShiftAmount = DAG.getConstant( 9293 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 9294 SDValue Lo = Val; 9295 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 9296 9297 // Store the two parts 9298 SDValue Store1, Store2; 9299 Store1 = DAG.getTruncStore(Chain, dl, 9300 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 9301 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 9302 ST->getMemOperand()->getFlags()); 9303 9304 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 9305 Store2 = DAG.getTruncStore( 9306 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 9307 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 9308 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 9309 9310 SDValue Result = 9311 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 9312 return Result; 9313 } 9314 9315 SDValue 9316 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 9317 const SDLoc &DL, EVT DataVT, 9318 SelectionDAG &DAG, 9319 bool IsCompressedMemory) const { 9320 SDValue Increment; 9321 EVT AddrVT = Addr.getValueType(); 9322 EVT MaskVT = Mask.getValueType(); 9323 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 9324 "Incompatible types of Data and Mask"); 9325 if (IsCompressedMemory) { 9326 if (DataVT.isScalableVector()) 9327 report_fatal_error( 9328 "Cannot currently handle compressed memory with scalable vectors"); 9329 // Incrementing the pointer according to number of '1's in the mask. 9330 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 9331 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 9332 if (MaskIntVT.getSizeInBits() < 32) { 9333 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 9334 MaskIntVT = MVT::i32; 9335 } 9336 9337 // Count '1's with POPCNT. 9338 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 9339 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 9340 // Scale is an element size in bytes. 9341 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 9342 AddrVT); 9343 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 9344 } else if (DataVT.isScalableVector()) { 9345 Increment = DAG.getVScale(DL, AddrVT, 9346 APInt(AddrVT.getFixedSizeInBits(), 9347 DataVT.getStoreSize().getKnownMinValue())); 9348 } else 9349 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 9350 9351 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 9352 } 9353 9354 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 9355 EVT VecVT, const SDLoc &dl, 9356 ElementCount SubEC) { 9357 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 9358 "Cannot index a scalable vector within a fixed-width vector"); 9359 9360 unsigned NElts = VecVT.getVectorMinNumElements(); 9361 unsigned NumSubElts = SubEC.getKnownMinValue(); 9362 EVT IdxVT = Idx.getValueType(); 9363 9364 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 9365 // If this is a constant index and we know the value plus the number of the 9366 // elements in the subvector minus one is less than the minimum number of 9367 // elements then it's safe to return Idx. 9368 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 9369 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 9370 return Idx; 9371 SDValue VS = 9372 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 9373 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 9374 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 9375 DAG.getConstant(NumSubElts, dl, IdxVT)); 9376 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 9377 } 9378 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 9379 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 9380 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 9381 DAG.getConstant(Imm, dl, IdxVT)); 9382 } 9383 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 9384 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 9385 DAG.getConstant(MaxIndex, dl, IdxVT)); 9386 } 9387 9388 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 9389 SDValue VecPtr, EVT VecVT, 9390 SDValue Index) const { 9391 return getVectorSubVecPointer( 9392 DAG, VecPtr, VecVT, 9393 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 9394 Index); 9395 } 9396 9397 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 9398 SDValue VecPtr, EVT VecVT, 9399 EVT SubVecVT, 9400 SDValue Index) const { 9401 SDLoc dl(Index); 9402 // Make sure the index type is big enough to compute in. 9403 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 9404 9405 EVT EltVT = VecVT.getVectorElementType(); 9406 9407 // Calculate the element offset and add it to the pointer. 9408 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 9409 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 9410 "Converting bits to bytes lost precision"); 9411 assert(SubVecVT.getVectorElementType() == EltVT && 9412 "Sub-vector must be a vector with matching element type"); 9413 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 9414 SubVecVT.getVectorElementCount()); 9415 9416 EVT IdxVT = Index.getValueType(); 9417 if (SubVecVT.isScalableVector()) 9418 Index = 9419 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9420 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 9421 9422 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 9423 DAG.getConstant(EltSize, dl, IdxVT)); 9424 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 9425 } 9426 9427 //===----------------------------------------------------------------------===// 9428 // Implementation of Emulated TLS Model 9429 //===----------------------------------------------------------------------===// 9430 9431 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 9432 SelectionDAG &DAG) const { 9433 // Access to address of TLS varialbe xyz is lowered to a function call: 9434 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 9435 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9436 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 9437 SDLoc dl(GA); 9438 9439 ArgListTy Args; 9440 ArgListEntry Entry; 9441 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 9442 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 9443 StringRef EmuTlsVarName(NameString); 9444 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 9445 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 9446 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 9447 Entry.Ty = VoidPtrType; 9448 Args.push_back(Entry); 9449 9450 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 9451 9452 TargetLowering::CallLoweringInfo CLI(DAG); 9453 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 9454 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 9455 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 9456 9457 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 9458 // At last for X86 targets, maybe good for other targets too? 9459 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9460 MFI.setAdjustsStack(true); // Is this only for X86 target? 9461 MFI.setHasCalls(true); 9462 9463 assert((GA->getOffset() == 0) && 9464 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 9465 return CallResult.first; 9466 } 9467 9468 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 9469 SelectionDAG &DAG) const { 9470 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 9471 if (!isCtlzFast()) 9472 return SDValue(); 9473 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 9474 SDLoc dl(Op); 9475 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 9476 if (C->isZero() && CC == ISD::SETEQ) { 9477 EVT VT = Op.getOperand(0).getValueType(); 9478 SDValue Zext = Op.getOperand(0); 9479 if (VT.bitsLT(MVT::i32)) { 9480 VT = MVT::i32; 9481 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 9482 } 9483 unsigned Log2b = Log2_32(VT.getSizeInBits()); 9484 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 9485 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 9486 DAG.getConstant(Log2b, dl, MVT::i32)); 9487 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 9488 } 9489 } 9490 return SDValue(); 9491 } 9492 9493 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 9494 SDValue Op0 = Node->getOperand(0); 9495 SDValue Op1 = Node->getOperand(1); 9496 EVT VT = Op0.getValueType(); 9497 unsigned Opcode = Node->getOpcode(); 9498 SDLoc DL(Node); 9499 9500 // umin(x,y) -> sub(x,usubsat(x,y)) 9501 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 9502 isOperationLegal(ISD::USUBSAT, VT)) { 9503 return DAG.getNode(ISD::SUB, DL, VT, Op0, 9504 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 9505 } 9506 9507 // umax(x,y) -> add(x,usubsat(y,x)) 9508 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 9509 isOperationLegal(ISD::USUBSAT, VT)) { 9510 return DAG.getNode(ISD::ADD, DL, VT, Op0, 9511 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 9512 } 9513 9514 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 9515 ISD::CondCode CC; 9516 switch (Opcode) { 9517 default: llvm_unreachable("How did we get here?"); 9518 case ISD::SMAX: CC = ISD::SETGT; break; 9519 case ISD::SMIN: CC = ISD::SETLT; break; 9520 case ISD::UMAX: CC = ISD::SETUGT; break; 9521 case ISD::UMIN: CC = ISD::SETULT; break; 9522 } 9523 9524 // FIXME: Should really try to split the vector in case it's legal on a 9525 // subvector. 9526 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9527 return DAG.UnrollVectorOp(Node); 9528 9529 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9530 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 9531 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 9532 } 9533 9534 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 9535 unsigned Opcode = Node->getOpcode(); 9536 SDValue LHS = Node->getOperand(0); 9537 SDValue RHS = Node->getOperand(1); 9538 EVT VT = LHS.getValueType(); 9539 SDLoc dl(Node); 9540 9541 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 9542 assert(VT.isInteger() && "Expected operands to be integers"); 9543 9544 // usub.sat(a, b) -> umax(a, b) - b 9545 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 9546 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 9547 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 9548 } 9549 9550 // uadd.sat(a, b) -> umin(a, ~b) + b 9551 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 9552 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 9553 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 9554 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 9555 } 9556 9557 unsigned OverflowOp; 9558 switch (Opcode) { 9559 case ISD::SADDSAT: 9560 OverflowOp = ISD::SADDO; 9561 break; 9562 case ISD::UADDSAT: 9563 OverflowOp = ISD::UADDO; 9564 break; 9565 case ISD::SSUBSAT: 9566 OverflowOp = ISD::SSUBO; 9567 break; 9568 case ISD::USUBSAT: 9569 OverflowOp = ISD::USUBO; 9570 break; 9571 default: 9572 llvm_unreachable("Expected method to receive signed or unsigned saturation " 9573 "addition or subtraction node."); 9574 } 9575 9576 // FIXME: Should really try to split the vector in case it's legal on a 9577 // subvector. 9578 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9579 return DAG.UnrollVectorOp(Node); 9580 9581 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 9582 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9583 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 9584 SDValue SumDiff = Result.getValue(0); 9585 SDValue Overflow = Result.getValue(1); 9586 SDValue Zero = DAG.getConstant(0, dl, VT); 9587 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 9588 9589 if (Opcode == ISD::UADDSAT) { 9590 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9591 // (LHS + RHS) | OverflowMask 9592 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 9593 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 9594 } 9595 // Overflow ? 0xffff.... : (LHS + RHS) 9596 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 9597 } 9598 9599 if (Opcode == ISD::USUBSAT) { 9600 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 9601 // (LHS - RHS) & ~OverflowMask 9602 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 9603 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 9604 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 9605 } 9606 // Overflow ? 0 : (LHS - RHS) 9607 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 9608 } 9609 9610 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 9611 APInt MinVal = APInt::getSignedMinValue(BitWidth); 9612 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 9613 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 9614 DAG.getConstant(BitWidth - 1, dl, VT)); 9615 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 9616 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 9617 } 9618 9619 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 9620 unsigned Opcode = Node->getOpcode(); 9621 bool IsSigned = Opcode == ISD::SSHLSAT; 9622 SDValue LHS = Node->getOperand(0); 9623 SDValue RHS = Node->getOperand(1); 9624 EVT VT = LHS.getValueType(); 9625 SDLoc dl(Node); 9626 9627 assert((Node->getOpcode() == ISD::SSHLSAT || 9628 Node->getOpcode() == ISD::USHLSAT) && 9629 "Expected a SHLSAT opcode"); 9630 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 9631 assert(VT.isInteger() && "Expected operands to be integers"); 9632 9633 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 9634 return DAG.UnrollVectorOp(Node); 9635 9636 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 9637 9638 unsigned BW = VT.getScalarSizeInBits(); 9639 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9640 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 9641 SDValue Orig = 9642 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 9643 9644 SDValue SatVal; 9645 if (IsSigned) { 9646 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 9647 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 9648 SDValue Cond = 9649 DAG.getSetCC(dl, BoolVT, LHS, DAG.getConstant(0, dl, VT), ISD::SETLT); 9650 SatVal = DAG.getSelect(dl, VT, Cond, SatMin, SatMax); 9651 } else { 9652 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 9653 } 9654 SDValue Cond = DAG.getSetCC(dl, BoolVT, LHS, Orig, ISD::SETNE); 9655 return DAG.getSelect(dl, VT, Cond, SatVal, Result); 9656 } 9657 9658 SDValue 9659 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 9660 assert((Node->getOpcode() == ISD::SMULFIX || 9661 Node->getOpcode() == ISD::UMULFIX || 9662 Node->getOpcode() == ISD::SMULFIXSAT || 9663 Node->getOpcode() == ISD::UMULFIXSAT) && 9664 "Expected a fixed point multiplication opcode"); 9665 9666 SDLoc dl(Node); 9667 SDValue LHS = Node->getOperand(0); 9668 SDValue RHS = Node->getOperand(1); 9669 EVT VT = LHS.getValueType(); 9670 unsigned Scale = Node->getConstantOperandVal(2); 9671 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 9672 Node->getOpcode() == ISD::UMULFIXSAT); 9673 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 9674 Node->getOpcode() == ISD::SMULFIXSAT); 9675 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9676 unsigned VTSize = VT.getScalarSizeInBits(); 9677 9678 if (!Scale) { 9679 // [us]mul.fix(a, b, 0) -> mul(a, b) 9680 if (!Saturating) { 9681 if (isOperationLegalOrCustom(ISD::MUL, VT)) 9682 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9683 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 9684 SDValue Result = 9685 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 9686 SDValue Product = Result.getValue(0); 9687 SDValue Overflow = Result.getValue(1); 9688 SDValue Zero = DAG.getConstant(0, dl, VT); 9689 9690 APInt MinVal = APInt::getSignedMinValue(VTSize); 9691 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 9692 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 9693 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 9694 // Xor the inputs, if resulting sign bit is 0 the product will be 9695 // positive, else negative. 9696 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 9697 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 9698 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 9699 return DAG.getSelect(dl, VT, Overflow, Result, Product); 9700 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 9701 SDValue Result = 9702 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 9703 SDValue Product = Result.getValue(0); 9704 SDValue Overflow = Result.getValue(1); 9705 9706 APInt MaxVal = APInt::getMaxValue(VTSize); 9707 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 9708 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 9709 } 9710 } 9711 9712 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 9713 "Expected scale to be less than the number of bits if signed or at " 9714 "most the number of bits if unsigned."); 9715 assert(LHS.getValueType() == RHS.getValueType() && 9716 "Expected both operands to be the same type"); 9717 9718 // Get the upper and lower bits of the result. 9719 SDValue Lo, Hi; 9720 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 9721 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 9722 if (isOperationLegalOrCustom(LoHiOp, VT)) { 9723 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 9724 Lo = Result.getValue(0); 9725 Hi = Result.getValue(1); 9726 } else if (isOperationLegalOrCustom(HiOp, VT)) { 9727 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9728 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 9729 } else if (VT.isVector()) { 9730 return SDValue(); 9731 } else { 9732 report_fatal_error("Unable to expand fixed point multiplication."); 9733 } 9734 9735 if (Scale == VTSize) 9736 // Result is just the top half since we'd be shifting by the width of the 9737 // operand. Overflow impossible so this works for both UMULFIX and 9738 // UMULFIXSAT. 9739 return Hi; 9740 9741 // The result will need to be shifted right by the scale since both operands 9742 // are scaled. The result is given to us in 2 halves, so we only want part of 9743 // both in the result. 9744 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9745 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 9746 DAG.getConstant(Scale, dl, ShiftTy)); 9747 if (!Saturating) 9748 return Result; 9749 9750 if (!Signed) { 9751 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 9752 // widened multiplication) aren't all zeroes. 9753 9754 // Saturate to max if ((Hi >> Scale) != 0), 9755 // which is the same as if (Hi > ((1 << Scale) - 1)) 9756 APInt MaxVal = APInt::getMaxValue(VTSize); 9757 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 9758 dl, VT); 9759 Result = DAG.getSelectCC(dl, Hi, LowMask, 9760 DAG.getConstant(MaxVal, dl, VT), Result, 9761 ISD::SETUGT); 9762 9763 return Result; 9764 } 9765 9766 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 9767 // widened multiplication) aren't all ones or all zeroes. 9768 9769 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 9770 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 9771 9772 if (Scale == 0) { 9773 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 9774 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 9775 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 9776 // Saturated to SatMin if wide product is negative, and SatMax if wide 9777 // product is positive ... 9778 SDValue Zero = DAG.getConstant(0, dl, VT); 9779 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 9780 ISD::SETLT); 9781 // ... but only if we overflowed. 9782 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 9783 } 9784 9785 // We handled Scale==0 above so all the bits to examine is in Hi. 9786 9787 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 9788 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 9789 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 9790 dl, VT); 9791 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 9792 // Saturate to min if (Hi >> (Scale - 1)) < -1), 9793 // which is the same as if (HI < (-1 << (Scale - 1)) 9794 SDValue HighMask = 9795 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 9796 dl, VT); 9797 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 9798 return Result; 9799 } 9800 9801 SDValue 9802 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 9803 SDValue LHS, SDValue RHS, 9804 unsigned Scale, SelectionDAG &DAG) const { 9805 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9806 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9807 "Expected a fixed point division opcode"); 9808 9809 EVT VT = LHS.getValueType(); 9810 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9811 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9812 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9813 9814 // If there is enough room in the type to upscale the LHS or downscale the 9815 // RHS before the division, we can perform it in this type without having to 9816 // resize. For signed operations, the LHS headroom is the number of 9817 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9818 // The headroom for the RHS is the number of trailing zeroes. 9819 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9820 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9821 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9822 9823 // For signed saturating operations, we need to be able to detect true integer 9824 // division overflow; that is, when you have MIN / -EPS. However, this 9825 // is undefined behavior and if we emit divisions that could take such 9826 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9827 // example). 9828 // Avoid this by requiring an extra bit so that we never get this case. 9829 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9830 // signed saturating division, we need to emit a whopping 32-bit division. 9831 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9832 return SDValue(); 9833 9834 unsigned LHSShift = std::min(LHSLead, Scale); 9835 unsigned RHSShift = Scale - LHSShift; 9836 9837 // At this point, we know that if we shift the LHS up by LHSShift and the 9838 // RHS down by RHSShift, we can emit a regular division with a final scaling 9839 // factor of Scale. 9840 9841 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9842 if (LHSShift) 9843 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9844 DAG.getConstant(LHSShift, dl, ShiftTy)); 9845 if (RHSShift) 9846 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9847 DAG.getConstant(RHSShift, dl, ShiftTy)); 9848 9849 SDValue Quot; 9850 if (Signed) { 9851 // For signed operations, if the resulting quotient is negative and the 9852 // remainder is nonzero, subtract 1 from the quotient to round towards 9853 // negative infinity. 9854 SDValue Rem; 9855 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9856 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9857 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9858 if (isTypeLegal(VT) && 9859 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9860 Quot = DAG.getNode(ISD::SDIVREM, dl, 9861 DAG.getVTList(VT, VT), 9862 LHS, RHS); 9863 Rem = Quot.getValue(1); 9864 Quot = Quot.getValue(0); 9865 } else { 9866 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9867 LHS, RHS); 9868 Rem = DAG.getNode(ISD::SREM, dl, VT, 9869 LHS, RHS); 9870 } 9871 SDValue Zero = DAG.getConstant(0, dl, VT); 9872 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9873 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9874 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9875 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9876 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9877 DAG.getConstant(1, dl, VT)); 9878 Quot = DAG.getSelect(dl, VT, 9879 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9880 Sub1, Quot); 9881 } else 9882 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9883 LHS, RHS); 9884 9885 return Quot; 9886 } 9887 9888 void TargetLowering::expandUADDSUBO( 9889 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9890 SDLoc dl(Node); 9891 SDValue LHS = Node->getOperand(0); 9892 SDValue RHS = Node->getOperand(1); 9893 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9894 9895 // If ADD/SUBCARRY is legal, use that instead. 9896 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9897 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9898 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9899 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9900 { LHS, RHS, CarryIn }); 9901 Result = SDValue(NodeCarry.getNode(), 0); 9902 Overflow = SDValue(NodeCarry.getNode(), 1); 9903 return; 9904 } 9905 9906 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9907 LHS.getValueType(), LHS, RHS); 9908 9909 EVT ResultType = Node->getValueType(1); 9910 EVT SetCCType = getSetCCResultType( 9911 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9912 SDValue SetCC; 9913 if (IsAdd && isOneConstant(RHS)) { 9914 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9915 // the live range of X. We assume comparing with 0 is cheap. 9916 // The general case (X + C) < C is not necessarily beneficial. Although we 9917 // reduce the live range of X, we may introduce the materialization of 9918 // constant C. 9919 SetCC = 9920 DAG.getSetCC(dl, SetCCType, Result, 9921 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9922 } else { 9923 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9924 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9925 } 9926 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9927 } 9928 9929 void TargetLowering::expandSADDSUBO( 9930 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9931 SDLoc dl(Node); 9932 SDValue LHS = Node->getOperand(0); 9933 SDValue RHS = Node->getOperand(1); 9934 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9935 9936 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9937 LHS.getValueType(), LHS, RHS); 9938 9939 EVT ResultType = Node->getValueType(1); 9940 EVT OType = getSetCCResultType( 9941 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9942 9943 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9944 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9945 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9946 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9947 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9948 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9949 return; 9950 } 9951 9952 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9953 9954 // For an addition, the result should be less than one of the operands (LHS) 9955 // if and only if the other operand (RHS) is negative, otherwise there will 9956 // be overflow. 9957 // For a subtraction, the result should be less than one of the operands 9958 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9959 // otherwise there will be overflow. 9960 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9961 SDValue ConditionRHS = 9962 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9963 9964 Overflow = DAG.getBoolExtOrTrunc( 9965 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9966 ResultType, ResultType); 9967 } 9968 9969 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9970 SDValue &Overflow, SelectionDAG &DAG) const { 9971 SDLoc dl(Node); 9972 EVT VT = Node->getValueType(0); 9973 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9974 SDValue LHS = Node->getOperand(0); 9975 SDValue RHS = Node->getOperand(1); 9976 bool isSigned = Node->getOpcode() == ISD::SMULO; 9977 9978 // For power-of-two multiplications we can use a simpler shift expansion. 9979 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9980 const APInt &C = RHSC->getAPIntValue(); 9981 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9982 if (C.isPowerOf2()) { 9983 // smulo(x, signed_min) is same as umulo(x, signed_min). 9984 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9985 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9986 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9987 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9988 Overflow = DAG.getSetCC(dl, SetCCVT, 9989 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9990 dl, VT, Result, ShiftAmt), 9991 LHS, ISD::SETNE); 9992 return true; 9993 } 9994 } 9995 9996 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9997 if (VT.isVector()) 9998 WideVT = 9999 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 10000 10001 SDValue BottomHalf; 10002 SDValue TopHalf; 10003 static const unsigned Ops[2][3] = 10004 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 10005 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 10006 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 10007 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 10008 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 10009 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 10010 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 10011 RHS); 10012 TopHalf = BottomHalf.getValue(1); 10013 } else if (isTypeLegal(WideVT)) { 10014 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 10015 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 10016 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 10017 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 10018 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 10019 getShiftAmountTy(WideVT, DAG.getDataLayout())); 10020 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 10021 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 10022 } else { 10023 if (VT.isVector()) 10024 return false; 10025 10026 // We can fall back to a libcall with an illegal type for the MUL if we 10027 // have a libcall big enough. 10028 // Also, we can fall back to a division in some cases, but that's a big 10029 // performance hit in the general case. 10030 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 10031 if (WideVT == MVT::i16) 10032 LC = RTLIB::MUL_I16; 10033 else if (WideVT == MVT::i32) 10034 LC = RTLIB::MUL_I32; 10035 else if (WideVT == MVT::i64) 10036 LC = RTLIB::MUL_I64; 10037 else if (WideVT == MVT::i128) 10038 LC = RTLIB::MUL_I128; 10039 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 10040 10041 SDValue HiLHS; 10042 SDValue HiRHS; 10043 if (isSigned) { 10044 // The high part is obtained by SRA'ing all but one of the bits of low 10045 // part. 10046 unsigned LoSize = VT.getFixedSizeInBits(); 10047 HiLHS = 10048 DAG.getNode(ISD::SRA, dl, VT, LHS, 10049 DAG.getConstant(LoSize - 1, dl, 10050 getPointerTy(DAG.getDataLayout()))); 10051 HiRHS = 10052 DAG.getNode(ISD::SRA, dl, VT, RHS, 10053 DAG.getConstant(LoSize - 1, dl, 10054 getPointerTy(DAG.getDataLayout()))); 10055 } else { 10056 HiLHS = DAG.getConstant(0, dl, VT); 10057 HiRHS = DAG.getConstant(0, dl, VT); 10058 } 10059 10060 // Here we're passing the 2 arguments explicitly as 4 arguments that are 10061 // pre-lowered to the correct types. This all depends upon WideVT not 10062 // being a legal type for the architecture and thus has to be split to 10063 // two arguments. 10064 SDValue Ret; 10065 TargetLowering::MakeLibCallOptions CallOptions; 10066 CallOptions.setSExt(isSigned); 10067 CallOptions.setIsPostTypeLegalization(true); 10068 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 10069 // Halves of WideVT are packed into registers in different order 10070 // depending on platform endianness. This is usually handled by 10071 // the C calling convention, but we can't defer to it in 10072 // the legalizer. 10073 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 10074 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10075 } else { 10076 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 10077 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 10078 } 10079 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 10080 "Ret value is a collection of constituent nodes holding result."); 10081 if (DAG.getDataLayout().isLittleEndian()) { 10082 // Same as above. 10083 BottomHalf = Ret.getOperand(0); 10084 TopHalf = Ret.getOperand(1); 10085 } else { 10086 BottomHalf = Ret.getOperand(1); 10087 TopHalf = Ret.getOperand(0); 10088 } 10089 } 10090 10091 Result = BottomHalf; 10092 if (isSigned) { 10093 SDValue ShiftAmt = DAG.getConstant( 10094 VT.getScalarSizeInBits() - 1, dl, 10095 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 10096 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 10097 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 10098 } else { 10099 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 10100 DAG.getConstant(0, dl, VT), ISD::SETNE); 10101 } 10102 10103 // Truncate the result if SetCC returns a larger type than needed. 10104 EVT RType = Node->getValueType(1); 10105 if (RType.bitsLT(Overflow.getValueType())) 10106 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 10107 10108 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 10109 "Unexpected result type for S/UMULO legalization"); 10110 return true; 10111 } 10112 10113 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 10114 SDLoc dl(Node); 10115 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10116 SDValue Op = Node->getOperand(0); 10117 EVT VT = Op.getValueType(); 10118 10119 if (VT.isScalableVector()) 10120 report_fatal_error( 10121 "Expanding reductions for scalable vectors is undefined."); 10122 10123 // Try to use a shuffle reduction for power of two vectors. 10124 if (VT.isPow2VectorType()) { 10125 while (VT.getVectorNumElements() > 1) { 10126 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 10127 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 10128 break; 10129 10130 SDValue Lo, Hi; 10131 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 10132 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 10133 VT = HalfVT; 10134 } 10135 } 10136 10137 EVT EltVT = VT.getVectorElementType(); 10138 unsigned NumElts = VT.getVectorNumElements(); 10139 10140 SmallVector<SDValue, 8> Ops; 10141 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 10142 10143 SDValue Res = Ops[0]; 10144 for (unsigned i = 1; i < NumElts; i++) 10145 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 10146 10147 // Result type may be wider than element type. 10148 if (EltVT != Node->getValueType(0)) 10149 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 10150 return Res; 10151 } 10152 10153 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 10154 SDLoc dl(Node); 10155 SDValue AccOp = Node->getOperand(0); 10156 SDValue VecOp = Node->getOperand(1); 10157 SDNodeFlags Flags = Node->getFlags(); 10158 10159 EVT VT = VecOp.getValueType(); 10160 EVT EltVT = VT.getVectorElementType(); 10161 10162 if (VT.isScalableVector()) 10163 report_fatal_error( 10164 "Expanding reductions for scalable vectors is undefined."); 10165 10166 unsigned NumElts = VT.getVectorNumElements(); 10167 10168 SmallVector<SDValue, 8> Ops; 10169 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 10170 10171 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 10172 10173 SDValue Res = AccOp; 10174 for (unsigned i = 0; i < NumElts; i++) 10175 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 10176 10177 return Res; 10178 } 10179 10180 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 10181 SelectionDAG &DAG) const { 10182 EVT VT = Node->getValueType(0); 10183 SDLoc dl(Node); 10184 bool isSigned = Node->getOpcode() == ISD::SREM; 10185 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 10186 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 10187 SDValue Dividend = Node->getOperand(0); 10188 SDValue Divisor = Node->getOperand(1); 10189 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 10190 SDVTList VTs = DAG.getVTList(VT, VT); 10191 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 10192 return true; 10193 } 10194 if (isOperationLegalOrCustom(DivOpc, VT)) { 10195 // X % Y -> X-X/Y*Y 10196 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 10197 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 10198 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 10199 return true; 10200 } 10201 return false; 10202 } 10203 10204 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 10205 SelectionDAG &DAG) const { 10206 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 10207 SDLoc dl(SDValue(Node, 0)); 10208 SDValue Src = Node->getOperand(0); 10209 10210 // DstVT is the result type, while SatVT is the size to which we saturate 10211 EVT SrcVT = Src.getValueType(); 10212 EVT DstVT = Node->getValueType(0); 10213 10214 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 10215 unsigned SatWidth = SatVT.getScalarSizeInBits(); 10216 unsigned DstWidth = DstVT.getScalarSizeInBits(); 10217 assert(SatWidth <= DstWidth && 10218 "Expected saturation width smaller than result width"); 10219 10220 // Determine minimum and maximum integer values and their corresponding 10221 // floating-point values. 10222 APInt MinInt, MaxInt; 10223 if (IsSigned) { 10224 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 10225 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 10226 } else { 10227 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 10228 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 10229 } 10230 10231 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 10232 // libcall emission cannot handle this. Large result types will fail. 10233 if (SrcVT == MVT::f16) { 10234 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 10235 SrcVT = Src.getValueType(); 10236 } 10237 10238 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10239 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 10240 10241 APFloat::opStatus MinStatus = 10242 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 10243 APFloat::opStatus MaxStatus = 10244 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 10245 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 10246 !(MaxStatus & APFloat::opStatus::opInexact); 10247 10248 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 10249 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 10250 10251 // If the integer bounds are exactly representable as floats and min/max are 10252 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 10253 // of comparisons and selects. 10254 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 10255 isOperationLegal(ISD::FMAXNUM, SrcVT); 10256 if (AreExactFloatBounds && MinMaxLegal) { 10257 SDValue Clamped = Src; 10258 10259 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 10260 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 10261 // Clamp by MaxFloat from above. NaN cannot occur. 10262 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 10263 // Convert clamped value to integer. 10264 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 10265 dl, DstVT, Clamped); 10266 10267 // In the unsigned case we're done, because we mapped NaN to MinFloat, 10268 // which will cast to zero. 10269 if (!IsSigned) 10270 return FpToInt; 10271 10272 // Otherwise, select 0 if Src is NaN. 10273 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10274 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 10275 ISD::CondCode::SETUO); 10276 } 10277 10278 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 10279 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 10280 10281 // Result of direct conversion. The assumption here is that the operation is 10282 // non-trapping and it's fine to apply it to an out-of-range value if we 10283 // select it away later. 10284 SDValue FpToInt = 10285 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 10286 10287 SDValue Select = FpToInt; 10288 10289 // If Src ULT MinFloat, select MinInt. In particular, this also selects 10290 // MinInt if Src is NaN. 10291 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 10292 ISD::CondCode::SETULT); 10293 // If Src OGT MaxFloat, select MaxInt. 10294 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 10295 ISD::CondCode::SETOGT); 10296 10297 // In the unsigned case we are done, because we mapped NaN to MinInt, which 10298 // is already zero. 10299 if (!IsSigned) 10300 return Select; 10301 10302 // Otherwise, select 0 if Src is NaN. 10303 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 10304 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 10305 } 10306 10307 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 10308 SelectionDAG &DAG) const { 10309 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 10310 assert(Node->getValueType(0).isScalableVector() && 10311 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 10312 10313 EVT VT = Node->getValueType(0); 10314 SDValue V1 = Node->getOperand(0); 10315 SDValue V2 = Node->getOperand(1); 10316 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 10317 SDLoc DL(Node); 10318 10319 // Expand through memory thusly: 10320 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 10321 // Store V1, Ptr 10322 // Store V2, Ptr + sizeof(V1) 10323 // If (Imm < 0) 10324 // TrailingElts = -Imm 10325 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 10326 // else 10327 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 10328 // Res = Load Ptr 10329 10330 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 10331 10332 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 10333 VT.getVectorElementCount() * 2); 10334 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 10335 EVT PtrVT = StackPtr.getValueType(); 10336 auto &MF = DAG.getMachineFunction(); 10337 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 10338 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 10339 10340 // Store the lo part of CONCAT_VECTORS(V1, V2) 10341 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 10342 // Store the hi part of CONCAT_VECTORS(V1, V2) 10343 SDValue OffsetToV2 = DAG.getVScale( 10344 DL, PtrVT, 10345 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); 10346 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 10347 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 10348 10349 if (Imm >= 0) { 10350 // Load back the required element. getVectorElementPointer takes care of 10351 // clamping the index if it's out-of-bounds. 10352 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 10353 // Load the spliced result 10354 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 10355 MachinePointerInfo::getUnknownStack(MF)); 10356 } 10357 10358 uint64_t TrailingElts = -Imm; 10359 10360 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 10361 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 10362 SDValue TrailingBytes = 10363 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 10364 10365 if (TrailingElts > VT.getVectorMinNumElements()) { 10366 SDValue VLBytes = 10367 DAG.getVScale(DL, PtrVT, 10368 APInt(PtrVT.getFixedSizeInBits(), 10369 VT.getStoreSize().getKnownMinValue())); 10370 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 10371 } 10372 10373 // Calculate the start address of the spliced result. 10374 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 10375 10376 // Load the spliced result 10377 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 10378 MachinePointerInfo::getUnknownStack(MF)); 10379 } 10380 10381 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 10382 SDValue &LHS, SDValue &RHS, 10383 SDValue &CC, SDValue Mask, 10384 SDValue EVL, bool &NeedInvert, 10385 const SDLoc &dl, SDValue &Chain, 10386 bool IsSignaling) const { 10387 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10388 MVT OpVT = LHS.getSimpleValueType(); 10389 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 10390 NeedInvert = false; 10391 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 10392 bool IsNonVP = !EVL; 10393 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 10394 default: 10395 llvm_unreachable("Unknown condition code action!"); 10396 case TargetLowering::Legal: 10397 // Nothing to do. 10398 break; 10399 case TargetLowering::Expand: { 10400 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 10401 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10402 std::swap(LHS, RHS); 10403 CC = DAG.getCondCode(InvCC); 10404 return true; 10405 } 10406 // Swapping operands didn't work. Try inverting the condition. 10407 bool NeedSwap = false; 10408 InvCC = getSetCCInverse(CCCode, OpVT); 10409 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10410 // If inverting the condition is not enough, try swapping operands 10411 // on top of it. 10412 InvCC = ISD::getSetCCSwappedOperands(InvCC); 10413 NeedSwap = true; 10414 } 10415 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 10416 CC = DAG.getCondCode(InvCC); 10417 NeedInvert = true; 10418 if (NeedSwap) 10419 std::swap(LHS, RHS); 10420 return true; 10421 } 10422 10423 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 10424 unsigned Opc = 0; 10425 switch (CCCode) { 10426 default: 10427 llvm_unreachable("Don't know how to expand this condition!"); 10428 case ISD::SETUO: 10429 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 10430 CC1 = ISD::SETUNE; 10431 CC2 = ISD::SETUNE; 10432 Opc = ISD::OR; 10433 break; 10434 } 10435 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10436 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 10437 NeedInvert = true; 10438 [[fallthrough]]; 10439 case ISD::SETO: 10440 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 10441 "If SETO is expanded, SETOEQ must be legal!"); 10442 CC1 = ISD::SETOEQ; 10443 CC2 = ISD::SETOEQ; 10444 Opc = ISD::AND; 10445 break; 10446 case ISD::SETONE: 10447 case ISD::SETUEQ: 10448 // If the SETUO or SETO CC isn't legal, we might be able to use 10449 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 10450 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 10451 // the operands. 10452 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10453 if (!TLI.isCondCodeLegal(CC2, OpVT) && 10454 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 10455 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 10456 CC1 = ISD::SETOGT; 10457 CC2 = ISD::SETOLT; 10458 Opc = ISD::OR; 10459 NeedInvert = ((unsigned)CCCode & 0x8U); 10460 break; 10461 } 10462 [[fallthrough]]; 10463 case ISD::SETOEQ: 10464 case ISD::SETOGT: 10465 case ISD::SETOGE: 10466 case ISD::SETOLT: 10467 case ISD::SETOLE: 10468 case ISD::SETUNE: 10469 case ISD::SETUGT: 10470 case ISD::SETUGE: 10471 case ISD::SETULT: 10472 case ISD::SETULE: 10473 // If we are floating point, assign and break, otherwise fall through. 10474 if (!OpVT.isInteger()) { 10475 // We can use the 4th bit to tell if we are the unordered 10476 // or ordered version of the opcode. 10477 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 10478 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 10479 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 10480 break; 10481 } 10482 // Fallthrough if we are unsigned integer. 10483 [[fallthrough]]; 10484 case ISD::SETLE: 10485 case ISD::SETGT: 10486 case ISD::SETGE: 10487 case ISD::SETLT: 10488 case ISD::SETNE: 10489 case ISD::SETEQ: 10490 // If all combinations of inverting the condition and swapping operands 10491 // didn't work then we have no means to expand the condition. 10492 llvm_unreachable("Don't know how to expand this condition!"); 10493 } 10494 10495 SDValue SetCC1, SetCC2; 10496 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 10497 // If we aren't the ordered or unorder operation, 10498 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 10499 if (IsNonVP) { 10500 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 10501 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 10502 } else { 10503 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 10504 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 10505 } 10506 } else { 10507 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 10508 if (IsNonVP) { 10509 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 10510 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 10511 } else { 10512 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 10513 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 10514 } 10515 } 10516 if (Chain) 10517 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 10518 SetCC2.getValue(1)); 10519 if (IsNonVP) 10520 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 10521 else { 10522 // Transform the binary opcode to the VP equivalent. 10523 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 10524 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 10525 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 10526 } 10527 RHS = SDValue(); 10528 CC = SDValue(); 10529 return true; 10530 } 10531 } 10532 return false; 10533 } 10534