1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 } 136 137 /// Generate a libcall taking the given operands as arguments and returning a 138 /// result of type RetVT. 139 std::pair<SDValue, SDValue> 140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 141 ArrayRef<SDValue> Ops, 142 MakeLibCallOptions CallOptions, 143 const SDLoc &dl, 144 SDValue InChain) const { 145 if (!InChain) 146 InChain = DAG.getEntryNode(); 147 148 TargetLowering::ArgListTy Args; 149 Args.reserve(Ops.size()); 150 151 TargetLowering::ArgListEntry Entry; 152 for (unsigned i = 0; i < Ops.size(); ++i) { 153 SDValue NewOp = Ops[i]; 154 Entry.Node = NewOp; 155 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 156 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 157 CallOptions.IsSExt); 158 Entry.IsZExt = !Entry.IsSExt; 159 160 if (CallOptions.IsSoften && 161 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 162 Entry.IsSExt = Entry.IsZExt = false; 163 } 164 Args.push_back(Entry); 165 } 166 167 if (LC == RTLIB::UNKNOWN_LIBCALL) 168 report_fatal_error("Unsupported library call operation!"); 169 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 170 getPointerTy(DAG.getDataLayout())); 171 172 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 173 TargetLowering::CallLoweringInfo CLI(DAG); 174 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 175 bool zeroExtend = !signExtend; 176 177 if (CallOptions.IsSoften && 178 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 179 signExtend = zeroExtend = false; 180 } 181 182 CLI.setDebugLoc(dl) 183 .setChain(InChain) 184 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 185 .setNoReturn(CallOptions.DoesNotReturn) 186 .setDiscardResult(!CallOptions.IsReturnValueUsed) 187 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 188 .setSExtResult(signExtend) 189 .setZExtResult(zeroExtend); 190 return LowerCallTo(CLI); 191 } 192 193 bool TargetLowering::findOptimalMemOpLowering( 194 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 195 unsigned SrcAS, const AttributeList &FuncAttributes) const { 196 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 197 return false; 198 199 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 200 201 if (VT == MVT::Other) { 202 // Use the largest integer type whose alignment constraints are satisfied. 203 // We only need to check DstAlign here as SrcAlign is always greater or 204 // equal to DstAlign (or zero). 205 VT = MVT::i64; 206 if (Op.isFixedDstAlign()) 207 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 208 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 209 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 210 assert(VT.isInteger()); 211 212 // Find the largest legal integer type. 213 MVT LVT = MVT::i64; 214 while (!isTypeLegal(LVT)) 215 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 216 assert(LVT.isInteger()); 217 218 // If the type we've chosen is larger than the largest legal integer type 219 // then use that instead. 220 if (VT.bitsGT(LVT)) 221 VT = LVT; 222 } 223 224 unsigned NumMemOps = 0; 225 uint64_t Size = Op.size(); 226 while (Size) { 227 unsigned VTSize = VT.getSizeInBits() / 8; 228 while (VTSize > Size) { 229 // For now, only use non-vector load / store's for the left-over pieces. 230 EVT NewVT = VT; 231 unsigned NewVTSize; 232 233 bool Found = false; 234 if (VT.isVector() || VT.isFloatingPoint()) { 235 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 236 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 237 isSafeMemOpType(NewVT.getSimpleVT())) 238 Found = true; 239 else if (NewVT == MVT::i64 && 240 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 241 isSafeMemOpType(MVT::f64)) { 242 // i64 is usually not legal on 32-bit targets, but f64 may be. 243 NewVT = MVT::f64; 244 Found = true; 245 } 246 } 247 248 if (!Found) { 249 do { 250 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 251 if (NewVT == MVT::i8) 252 break; 253 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 254 } 255 NewVTSize = NewVT.getSizeInBits() / 8; 256 257 // If the new VT cannot cover all of the remaining bits, then consider 258 // issuing a (or a pair of) unaligned and overlapping load / store. 259 bool Fast; 260 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 261 allowsMisalignedMemoryAccesses( 262 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 263 MachineMemOperand::MONone, &Fast) && 264 Fast) 265 VTSize = Size; 266 else { 267 VT = NewVT; 268 VTSize = NewVTSize; 269 } 270 } 271 272 if (++NumMemOps > Limit) 273 return false; 274 275 MemOps.push_back(VT); 276 Size -= VTSize; 277 } 278 279 return true; 280 } 281 282 /// Soften the operands of a comparison. This code is shared among BR_CC, 283 /// SELECT_CC, and SETCC handlers. 284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 285 SDValue &NewLHS, SDValue &NewRHS, 286 ISD::CondCode &CCCode, 287 const SDLoc &dl, const SDValue OldLHS, 288 const SDValue OldRHS) const { 289 SDValue Chain; 290 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 291 OldRHS, Chain); 292 } 293 294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 295 SDValue &NewLHS, SDValue &NewRHS, 296 ISD::CondCode &CCCode, 297 const SDLoc &dl, const SDValue OldLHS, 298 const SDValue OldRHS, 299 SDValue &Chain, 300 bool IsSignaling) const { 301 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 302 // not supporting it. We can update this code when libgcc provides such 303 // functions. 304 305 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 306 && "Unsupported setcc type!"); 307 308 // Expand into one or more soft-fp libcall(s). 309 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 310 bool ShouldInvertCC = false; 311 switch (CCCode) { 312 case ISD::SETEQ: 313 case ISD::SETOEQ: 314 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 315 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 316 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 317 break; 318 case ISD::SETNE: 319 case ISD::SETUNE: 320 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 321 (VT == MVT::f64) ? RTLIB::UNE_F64 : 322 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 323 break; 324 case ISD::SETGE: 325 case ISD::SETOGE: 326 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 327 (VT == MVT::f64) ? RTLIB::OGE_F64 : 328 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 329 break; 330 case ISD::SETLT: 331 case ISD::SETOLT: 332 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 333 (VT == MVT::f64) ? RTLIB::OLT_F64 : 334 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 335 break; 336 case ISD::SETLE: 337 case ISD::SETOLE: 338 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 339 (VT == MVT::f64) ? RTLIB::OLE_F64 : 340 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 341 break; 342 case ISD::SETGT: 343 case ISD::SETOGT: 344 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 345 (VT == MVT::f64) ? RTLIB::OGT_F64 : 346 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 347 break; 348 case ISD::SETO: 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUO: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 break; 356 case ISD::SETONE: 357 // SETONE = O && UNE 358 ShouldInvertCC = true; 359 LLVM_FALLTHROUGH; 360 case ISD::SETUEQ: 361 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 362 (VT == MVT::f64) ? RTLIB::UO_F64 : 363 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 364 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 365 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 366 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 367 break; 368 default: 369 // Invert CC for unordered comparisons 370 ShouldInvertCC = true; 371 switch (CCCode) { 372 case ISD::SETULT: 373 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 374 (VT == MVT::f64) ? RTLIB::OGE_F64 : 375 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 376 break; 377 case ISD::SETULE: 378 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 379 (VT == MVT::f64) ? RTLIB::OGT_F64 : 380 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 381 break; 382 case ISD::SETUGT: 383 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 384 (VT == MVT::f64) ? RTLIB::OLE_F64 : 385 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 386 break; 387 case ISD::SETUGE: 388 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 389 (VT == MVT::f64) ? RTLIB::OLT_F64 : 390 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 391 break; 392 default: llvm_unreachable("Do not know how to soften this setcc!"); 393 } 394 } 395 396 // Use the target specific return value for comparions lib calls. 397 EVT RetVT = getCmpLibcallReturnType(); 398 SDValue Ops[2] = {NewLHS, NewRHS}; 399 TargetLowering::MakeLibCallOptions CallOptions; 400 EVT OpsVT[2] = { OldLHS.getValueType(), 401 OldRHS.getValueType() }; 402 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 403 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 404 NewLHS = Call.first; 405 NewRHS = DAG.getConstant(0, dl, RetVT); 406 407 CCCode = getCmpLibcallCC(LC1); 408 if (ShouldInvertCC) { 409 assert(RetVT.isInteger()); 410 CCCode = getSetCCInverse(CCCode, RetVT); 411 } 412 413 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 414 // Update Chain. 415 Chain = Call.second; 416 } else { 417 EVT SetCCVT = 418 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 419 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 420 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 421 CCCode = getCmpLibcallCC(LC2); 422 if (ShouldInvertCC) 423 CCCode = getSetCCInverse(CCCode, RetVT); 424 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 425 if (Chain) 426 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 427 Call2.second); 428 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 429 Tmp.getValueType(), Tmp, NewLHS); 430 NewRHS = SDValue(); 431 } 432 } 433 434 /// Return the entry encoding for a jump table in the current function. The 435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 436 unsigned TargetLowering::getJumpTableEncoding() const { 437 // In non-pic modes, just use the address of a block. 438 if (!isPositionIndependent()) 439 return MachineJumpTableInfo::EK_BlockAddress; 440 441 // In PIC mode, if the target supports a GPRel32 directive, use it. 442 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 443 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 444 445 // Otherwise, use a label difference. 446 return MachineJumpTableInfo::EK_LabelDifference32; 447 } 448 449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 450 SelectionDAG &DAG) const { 451 // If our PIC model is GP relative, use the global offset table as the base. 452 unsigned JTEncoding = getJumpTableEncoding(); 453 454 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 455 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 456 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 457 458 return Table; 459 } 460 461 /// This returns the relocation base for the given PIC jumptable, the same as 462 /// getPICJumpTableRelocBase, but as an MCExpr. 463 const MCExpr * 464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 465 unsigned JTI,MCContext &Ctx) const{ 466 // The normal PIC reloc base is the label at the start of the jump table. 467 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 468 } 469 470 bool 471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 472 const TargetMachine &TM = getTargetMachine(); 473 const GlobalValue *GV = GA->getGlobal(); 474 475 // If the address is not even local to this DSO we will have to load it from 476 // a got and then add the offset. 477 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 478 return false; 479 480 // If the code is position independent we will have to add a base register. 481 if (isPositionIndependent()) 482 return false; 483 484 // Otherwise we can do it. 485 return true; 486 } 487 488 //===----------------------------------------------------------------------===// 489 // Optimization Methods 490 //===----------------------------------------------------------------------===// 491 492 /// If the specified instruction has a constant integer operand and there are 493 /// bits set in that constant that are not demanded, then clear those bits and 494 /// return true. 495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 496 const APInt &DemandedBits, 497 const APInt &DemandedElts, 498 TargetLoweringOpt &TLO) const { 499 SDLoc DL(Op); 500 unsigned Opcode = Op.getOpcode(); 501 502 // Do target-specific constant optimization. 503 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 504 return TLO.New.getNode(); 505 506 // FIXME: ISD::SELECT, ISD::SELECT_CC 507 switch (Opcode) { 508 default: 509 break; 510 case ISD::XOR: 511 case ISD::AND: 512 case ISD::OR: { 513 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 514 if (!Op1C || Op1C->isOpaque()) 515 return false; 516 517 // If this is a 'not' op, don't touch it because that's a canonical form. 518 const APInt &C = Op1C->getAPIntValue(); 519 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 520 return false; 521 522 if (!C.isSubsetOf(DemandedBits)) { 523 EVT VT = Op.getValueType(); 524 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 525 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 526 return TLO.CombineTo(Op, NewOp); 527 } 528 529 break; 530 } 531 } 532 533 return false; 534 } 535 536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 537 const APInt &DemandedBits, 538 TargetLoweringOpt &TLO) const { 539 EVT VT = Op.getValueType(); 540 APInt DemandedElts = VT.isVector() 541 ? APInt::getAllOnes(VT.getVectorNumElements()) 542 : APInt(1, 1); 543 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 544 } 545 546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 548 /// generalized for targets with other types of implicit widening casts. 549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 550 const APInt &Demanded, 551 TargetLoweringOpt &TLO) const { 552 assert(Op.getNumOperands() == 2 && 553 "ShrinkDemandedOp only supports binary operators!"); 554 assert(Op.getNode()->getNumValues() == 1 && 555 "ShrinkDemandedOp only supports nodes with one result!"); 556 557 SelectionDAG &DAG = TLO.DAG; 558 SDLoc dl(Op); 559 560 // Early return, as this function cannot handle vector types. 561 if (Op.getValueType().isVector()) 562 return false; 563 564 // Don't do this if the node has another user, which may require the 565 // full value. 566 if (!Op.getNode()->hasOneUse()) 567 return false; 568 569 // Search for the smallest integer type with free casts to and from 570 // Op's type. For expedience, just check power-of-2 integer types. 571 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 572 unsigned DemandedSize = Demanded.getActiveBits(); 573 unsigned SmallVTBits = DemandedSize; 574 if (!isPowerOf2_32(SmallVTBits)) 575 SmallVTBits = NextPowerOf2(SmallVTBits); 576 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 577 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 578 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 579 TLI.isZExtFree(SmallVT, Op.getValueType())) { 580 // We found a type with free casts. 581 SDValue X = DAG.getNode( 582 Op.getOpcode(), dl, SmallVT, 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 584 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 585 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 586 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 587 return TLO.CombineTo(Op, Z); 588 } 589 } 590 return false; 591 } 592 593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 594 DAGCombinerInfo &DCI) const { 595 SelectionDAG &DAG = DCI.DAG; 596 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 597 !DCI.isBeforeLegalizeOps()); 598 KnownBits Known; 599 600 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 601 if (Simplified) { 602 DCI.AddToWorklist(Op.getNode()); 603 DCI.CommitTargetLoweringOpt(TLO); 604 } 605 return Simplified; 606 } 607 608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 609 KnownBits &Known, 610 TargetLoweringOpt &TLO, 611 unsigned Depth, 612 bool AssumeSingleUse) const { 613 EVT VT = Op.getValueType(); 614 615 // TODO: We can probably do more work on calculating the known bits and 616 // simplifying the operations for scalable vectors, but for now we just 617 // bail out. 618 if (VT.isScalableVector()) { 619 // Pretend we don't know anything for now. 620 Known = KnownBits(DemandedBits.getBitWidth()); 621 return false; 622 } 623 624 APInt DemandedElts = VT.isVector() 625 ? APInt::getAllOnes(VT.getVectorNumElements()) 626 : APInt(1, 1); 627 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 628 AssumeSingleUse); 629 } 630 631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 632 // TODO: Under what circumstances can we create nodes? Constant folding? 633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 634 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 635 SelectionDAG &DAG, unsigned Depth) const { 636 // Limit search depth. 637 if (Depth >= SelectionDAG::MaxRecursionDepth) 638 return SDValue(); 639 640 // Ignore UNDEFs. 641 if (Op.isUndef()) 642 return SDValue(); 643 644 // Not demanding any bits/elts from Op. 645 if (DemandedBits == 0 || DemandedElts == 0) 646 return DAG.getUNDEF(Op.getValueType()); 647 648 unsigned NumElts = DemandedElts.getBitWidth(); 649 unsigned BitWidth = DemandedBits.getBitWidth(); 650 KnownBits LHSKnown, RHSKnown; 651 switch (Op.getOpcode()) { 652 case ISD::BITCAST: { 653 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 654 EVT SrcVT = Src.getValueType(); 655 EVT DstVT = Op.getValueType(); 656 if (SrcVT == DstVT) 657 return Src; 658 659 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 660 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 661 if (NumSrcEltBits == NumDstEltBits) 662 if (SDValue V = SimplifyMultipleUseDemandedBits( 663 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 664 return DAG.getBitcast(DstVT, V); 665 666 // TODO - bigendian once we have test coverage. 667 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 668 DAG.getDataLayout().isLittleEndian()) { 669 unsigned Scale = NumDstEltBits / NumSrcEltBits; 670 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 671 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 672 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 673 for (unsigned i = 0; i != Scale; ++i) { 674 unsigned Offset = i * NumSrcEltBits; 675 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 676 if (!Sub.isZero()) { 677 DemandedSrcBits |= Sub; 678 for (unsigned j = 0; j != NumElts; ++j) 679 if (DemandedElts[j]) 680 DemandedSrcElts.setBit((j * Scale) + i); 681 } 682 } 683 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 } 688 689 // TODO - bigendian once we have test coverage. 690 if ((NumSrcEltBits % NumDstEltBits) == 0 && 691 DAG.getDataLayout().isLittleEndian()) { 692 unsigned Scale = NumSrcEltBits / NumDstEltBits; 693 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 694 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 695 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 696 for (unsigned i = 0; i != NumElts; ++i) 697 if (DemandedElts[i]) { 698 unsigned Offset = (i % Scale) * NumDstEltBits; 699 DemandedSrcBits.insertBits(DemandedBits, Offset); 700 DemandedSrcElts.setBit(i / Scale); 701 } 702 703 if (SDValue V = SimplifyMultipleUseDemandedBits( 704 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 705 return DAG.getBitcast(DstVT, V); 706 } 707 708 break; 709 } 710 case ISD::AND: { 711 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 712 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 713 714 // If all of the demanded bits are known 1 on one side, return the other. 715 // These bits cannot contribute to the result of the 'and' in this 716 // context. 717 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 718 return Op.getOperand(0); 719 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 720 return Op.getOperand(1); 721 break; 722 } 723 case ISD::OR: { 724 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 725 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 726 727 // If all of the demanded bits are known zero on one side, return the 728 // other. These bits cannot contribute to the result of the 'or' in this 729 // context. 730 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 731 return Op.getOperand(0); 732 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 733 return Op.getOperand(1); 734 break; 735 } 736 case ISD::XOR: { 737 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 738 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 739 740 // If all of the demanded bits are known zero on one side, return the 741 // other. 742 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 743 return Op.getOperand(0); 744 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 745 return Op.getOperand(1); 746 break; 747 } 748 case ISD::SHL: { 749 // If we are only demanding sign bits then we can use the shift source 750 // directly. 751 if (const APInt *MaxSA = 752 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 753 SDValue Op0 = Op.getOperand(0); 754 unsigned ShAmt = MaxSA->getZExtValue(); 755 unsigned NumSignBits = 756 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 757 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 758 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 759 return Op0; 760 } 761 break; 762 } 763 case ISD::SETCC: { 764 SDValue Op0 = Op.getOperand(0); 765 SDValue Op1 = Op.getOperand(1); 766 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 767 // If (1) we only need the sign-bit, (2) the setcc operands are the same 768 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 769 // -1, we may be able to bypass the setcc. 770 if (DemandedBits.isSignMask() && 771 Op0.getScalarValueSizeInBits() == BitWidth && 772 getBooleanContents(Op0.getValueType()) == 773 BooleanContent::ZeroOrNegativeOneBooleanContent) { 774 // If we're testing X < 0, then this compare isn't needed - just use X! 775 // FIXME: We're limiting to integer types here, but this should also work 776 // if we don't care about FP signed-zero. The use of SETLT with FP means 777 // that we don't care about NaNs. 778 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 779 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 780 return Op0; 781 } 782 break; 783 } 784 case ISD::SIGN_EXTEND_INREG: { 785 // If none of the extended bits are demanded, eliminate the sextinreg. 786 SDValue Op0 = Op.getOperand(0); 787 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 788 unsigned ExBits = ExVT.getScalarSizeInBits(); 789 if (DemandedBits.getActiveBits() <= ExBits) 790 return Op0; 791 // If the input is already sign extended, just drop the extension. 792 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 793 if (NumSignBits >= (BitWidth - ExBits + 1)) 794 return Op0; 795 break; 796 } 797 case ISD::ANY_EXTEND_VECTOR_INREG: 798 case ISD::SIGN_EXTEND_VECTOR_INREG: 799 case ISD::ZERO_EXTEND_VECTOR_INREG: { 800 // If we only want the lowest element and none of extended bits, then we can 801 // return the bitcasted source vector. 802 SDValue Src = Op.getOperand(0); 803 EVT SrcVT = Src.getValueType(); 804 EVT DstVT = Op.getValueType(); 805 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 806 DAG.getDataLayout().isLittleEndian() && 807 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 808 return DAG.getBitcast(DstVT, Src); 809 } 810 break; 811 } 812 case ISD::INSERT_VECTOR_ELT: { 813 // If we don't demand the inserted element, return the base vector. 814 SDValue Vec = Op.getOperand(0); 815 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 816 EVT VecVT = Vec.getValueType(); 817 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 818 !DemandedElts[CIdx->getZExtValue()]) 819 return Vec; 820 break; 821 } 822 case ISD::INSERT_SUBVECTOR: { 823 SDValue Vec = Op.getOperand(0); 824 SDValue Sub = Op.getOperand(1); 825 uint64_t Idx = Op.getConstantOperandVal(2); 826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 827 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 828 // If we don't demand the inserted subvector, return the base vector. 829 if (DemandedSubElts == 0) 830 return Vec; 831 // If this simply widens the lowest subvector, see if we can do it earlier. 832 if (Idx == 0 && Vec.isUndef()) { 833 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 834 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 835 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 836 Op.getOperand(0), NewSub, Op.getOperand(2)); 837 } 838 break; 839 } 840 case ISD::VECTOR_SHUFFLE: { 841 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 842 843 // If all the demanded elts are from one operand and are inline, 844 // then we can use the operand directly. 845 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 846 for (unsigned i = 0; i != NumElts; ++i) { 847 int M = ShuffleMask[i]; 848 if (M < 0 || !DemandedElts[i]) 849 continue; 850 AllUndef = false; 851 IdentityLHS &= (M == (int)i); 852 IdentityRHS &= ((M - NumElts) == i); 853 } 854 855 if (AllUndef) 856 return DAG.getUNDEF(Op.getValueType()); 857 if (IdentityLHS) 858 return Op.getOperand(0); 859 if (IdentityRHS) 860 return Op.getOperand(1); 861 break; 862 } 863 default: 864 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 865 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 866 Op, DemandedBits, DemandedElts, DAG, Depth)) 867 return V; 868 break; 869 } 870 return SDValue(); 871 } 872 873 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 874 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 875 unsigned Depth) const { 876 EVT VT = Op.getValueType(); 877 APInt DemandedElts = VT.isVector() 878 ? APInt::getAllOnes(VT.getVectorNumElements()) 879 : APInt(1, 1); 880 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 881 Depth); 882 } 883 884 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 885 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 886 unsigned Depth) const { 887 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 888 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 889 Depth); 890 } 891 892 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 893 /// result of Op are ever used downstream. If we can use this information to 894 /// simplify Op, create a new simplified DAG node and return true, returning the 895 /// original and new nodes in Old and New. Otherwise, analyze the expression and 896 /// return a mask of Known bits for the expression (used to simplify the 897 /// caller). The Known bits may only be accurate for those bits in the 898 /// OriginalDemandedBits and OriginalDemandedElts. 899 bool TargetLowering::SimplifyDemandedBits( 900 SDValue Op, const APInt &OriginalDemandedBits, 901 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 902 unsigned Depth, bool AssumeSingleUse) const { 903 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 904 assert(Op.getScalarValueSizeInBits() == BitWidth && 905 "Mask size mismatches value type size!"); 906 907 // Don't know anything. 908 Known = KnownBits(BitWidth); 909 910 // TODO: We can probably do more work on calculating the known bits and 911 // simplifying the operations for scalable vectors, but for now we just 912 // bail out. 913 if (Op.getValueType().isScalableVector()) 914 return false; 915 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnes(BitWidth); 955 DemandedElts = APInt::getAllOnes(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1069 !DemandedSrcElts.isAllOnes()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1364 // We're flipping all demanded bits. Flip the undemanded bits too. 1365 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1366 return TLO.CombineTo(Op, New); 1367 } 1368 } 1369 1370 // If we can't turn this into a 'not', try to shrink the constant. 1371 if (!C || !C->isAllOnes()) 1372 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1373 return true; 1374 1375 Known ^= Known2; 1376 break; 1377 } 1378 case ISD::SELECT: 1379 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1380 Depth + 1)) 1381 return true; 1382 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1383 Depth + 1)) 1384 return true; 1385 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1386 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1387 1388 // If the operands are constants, see if we can simplify them. 1389 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1390 return true; 1391 1392 // Only known if known in both the LHS and RHS. 1393 Known = KnownBits::commonBits(Known, Known2); 1394 break; 1395 case ISD::SELECT_CC: 1396 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1397 Depth + 1)) 1398 return true; 1399 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1404 1405 // If the operands are constants, see if we can simplify them. 1406 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1407 return true; 1408 1409 // Only known if known in both the LHS and RHS. 1410 Known = KnownBits::commonBits(Known, Known2); 1411 break; 1412 case ISD::SETCC: { 1413 SDValue Op0 = Op.getOperand(0); 1414 SDValue Op1 = Op.getOperand(1); 1415 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1416 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1417 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1418 // -1, we may be able to bypass the setcc. 1419 if (DemandedBits.isSignMask() && 1420 Op0.getScalarValueSizeInBits() == BitWidth && 1421 getBooleanContents(Op0.getValueType()) == 1422 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1423 // If we're testing X < 0, then this compare isn't needed - just use X! 1424 // FIXME: We're limiting to integer types here, but this should also work 1425 // if we don't care about FP signed-zero. The use of SETLT with FP means 1426 // that we don't care about NaNs. 1427 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1428 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1429 return TLO.CombineTo(Op, Op0); 1430 1431 // TODO: Should we check for other forms of sign-bit comparisons? 1432 // Examples: X <= -1, X >= 0 1433 } 1434 if (getBooleanContents(Op0.getValueType()) == 1435 TargetLowering::ZeroOrOneBooleanContent && 1436 BitWidth > 1) 1437 Known.Zero.setBitsFrom(1); 1438 break; 1439 } 1440 case ISD::SHL: { 1441 SDValue Op0 = Op.getOperand(0); 1442 SDValue Op1 = Op.getOperand(1); 1443 EVT ShiftVT = Op1.getValueType(); 1444 1445 if (const APInt *SA = 1446 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1447 unsigned ShAmt = SA->getZExtValue(); 1448 if (ShAmt == 0) 1449 return TLO.CombineTo(Op, Op0); 1450 1451 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1452 // single shift. We can do this if the bottom bits (which are shifted 1453 // out) are never demanded. 1454 // TODO - support non-uniform vector amounts. 1455 if (Op0.getOpcode() == ISD::SRL) { 1456 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1457 if (const APInt *SA2 = 1458 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1459 unsigned C1 = SA2->getZExtValue(); 1460 unsigned Opc = ISD::SHL; 1461 int Diff = ShAmt - C1; 1462 if (Diff < 0) { 1463 Diff = -Diff; 1464 Opc = ISD::SRL; 1465 } 1466 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1467 return TLO.CombineTo( 1468 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1469 } 1470 } 1471 } 1472 1473 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1474 // are not demanded. This will likely allow the anyext to be folded away. 1475 // TODO - support non-uniform vector amounts. 1476 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1477 SDValue InnerOp = Op0.getOperand(0); 1478 EVT InnerVT = InnerOp.getValueType(); 1479 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1480 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1481 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1482 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1483 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1484 ShTy = InnerVT; 1485 SDValue NarrowShl = 1486 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1487 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1488 return TLO.CombineTo( 1489 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1490 } 1491 1492 // Repeat the SHL optimization above in cases where an extension 1493 // intervenes: (shl (anyext (shr x, c1)), c2) to 1494 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1495 // aren't demanded (as above) and that the shifted upper c1 bits of 1496 // x aren't demanded. 1497 // TODO - support non-uniform vector amounts. 1498 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1499 InnerOp.hasOneUse()) { 1500 if (const APInt *SA2 = 1501 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1502 unsigned InnerShAmt = SA2->getZExtValue(); 1503 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1504 DemandedBits.getActiveBits() <= 1505 (InnerBits - InnerShAmt + ShAmt) && 1506 DemandedBits.countTrailingZeros() >= ShAmt) { 1507 SDValue NewSA = 1508 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1509 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1510 InnerOp.getOperand(0)); 1511 return TLO.CombineTo( 1512 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1513 } 1514 } 1515 } 1516 } 1517 1518 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1519 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1520 Depth + 1)) 1521 return true; 1522 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1523 Known.Zero <<= ShAmt; 1524 Known.One <<= ShAmt; 1525 // low bits known zero. 1526 Known.Zero.setLowBits(ShAmt); 1527 1528 // Try shrinking the operation as long as the shift amount will still be 1529 // in range. 1530 if ((ShAmt < DemandedBits.getActiveBits()) && 1531 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1532 return true; 1533 } 1534 1535 // If we are only demanding sign bits then we can use the shift source 1536 // directly. 1537 if (const APInt *MaxSA = 1538 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1539 unsigned ShAmt = MaxSA->getZExtValue(); 1540 unsigned NumSignBits = 1541 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1542 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1543 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1544 return TLO.CombineTo(Op, Op0); 1545 } 1546 break; 1547 } 1548 case ISD::SRL: { 1549 SDValue Op0 = Op.getOperand(0); 1550 SDValue Op1 = Op.getOperand(1); 1551 EVT ShiftVT = Op1.getValueType(); 1552 1553 if (const APInt *SA = 1554 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1555 unsigned ShAmt = SA->getZExtValue(); 1556 if (ShAmt == 0) 1557 return TLO.CombineTo(Op, Op0); 1558 1559 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1560 // single shift. We can do this if the top bits (which are shifted out) 1561 // are never demanded. 1562 // TODO - support non-uniform vector amounts. 1563 if (Op0.getOpcode() == ISD::SHL) { 1564 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1565 if (const APInt *SA2 = 1566 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1567 unsigned C1 = SA2->getZExtValue(); 1568 unsigned Opc = ISD::SRL; 1569 int Diff = ShAmt - C1; 1570 if (Diff < 0) { 1571 Diff = -Diff; 1572 Opc = ISD::SHL; 1573 } 1574 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1575 return TLO.CombineTo( 1576 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1577 } 1578 } 1579 } 1580 1581 APInt InDemandedMask = (DemandedBits << ShAmt); 1582 1583 // If the shift is exact, then it does demand the low bits (and knows that 1584 // they are zero). 1585 if (Op->getFlags().hasExact()) 1586 InDemandedMask.setLowBits(ShAmt); 1587 1588 // Compute the new bits that are at the top now. 1589 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1590 Depth + 1)) 1591 return true; 1592 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1593 Known.Zero.lshrInPlace(ShAmt); 1594 Known.One.lshrInPlace(ShAmt); 1595 // High bits known zero. 1596 Known.Zero.setHighBits(ShAmt); 1597 } 1598 break; 1599 } 1600 case ISD::SRA: { 1601 SDValue Op0 = Op.getOperand(0); 1602 SDValue Op1 = Op.getOperand(1); 1603 EVT ShiftVT = Op1.getValueType(); 1604 1605 // If we only want bits that already match the signbit then we don't need 1606 // to shift. 1607 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1608 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1609 NumHiDemandedBits) 1610 return TLO.CombineTo(Op, Op0); 1611 1612 // If this is an arithmetic shift right and only the low-bit is set, we can 1613 // always convert this into a logical shr, even if the shift amount is 1614 // variable. The low bit of the shift cannot be an input sign bit unless 1615 // the shift amount is >= the size of the datatype, which is undefined. 1616 if (DemandedBits.isOne()) 1617 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1618 1619 if (const APInt *SA = 1620 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1621 unsigned ShAmt = SA->getZExtValue(); 1622 if (ShAmt == 0) 1623 return TLO.CombineTo(Op, Op0); 1624 1625 APInt InDemandedMask = (DemandedBits << ShAmt); 1626 1627 // If the shift is exact, then it does demand the low bits (and knows that 1628 // they are zero). 1629 if (Op->getFlags().hasExact()) 1630 InDemandedMask.setLowBits(ShAmt); 1631 1632 // If any of the demanded bits are produced by the sign extension, we also 1633 // demand the input sign bit. 1634 if (DemandedBits.countLeadingZeros() < ShAmt) 1635 InDemandedMask.setSignBit(); 1636 1637 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1638 Depth + 1)) 1639 return true; 1640 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1641 Known.Zero.lshrInPlace(ShAmt); 1642 Known.One.lshrInPlace(ShAmt); 1643 1644 // If the input sign bit is known to be zero, or if none of the top bits 1645 // are demanded, turn this into an unsigned shift right. 1646 if (Known.Zero[BitWidth - ShAmt - 1] || 1647 DemandedBits.countLeadingZeros() >= ShAmt) { 1648 SDNodeFlags Flags; 1649 Flags.setExact(Op->getFlags().hasExact()); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1652 } 1653 1654 int Log2 = DemandedBits.exactLogBase2(); 1655 if (Log2 >= 0) { 1656 // The bit must come from the sign. 1657 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1658 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1659 } 1660 1661 if (Known.One[BitWidth - ShAmt - 1]) 1662 // New bits are known one. 1663 Known.One.setHighBits(ShAmt); 1664 1665 // Attempt to avoid multi-use ops if we don't need anything from them. 1666 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1667 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1668 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1669 if (DemandedOp0) { 1670 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1671 return TLO.CombineTo(Op, NewOp); 1672 } 1673 } 1674 } 1675 break; 1676 } 1677 case ISD::FSHL: 1678 case ISD::FSHR: { 1679 SDValue Op0 = Op.getOperand(0); 1680 SDValue Op1 = Op.getOperand(1); 1681 SDValue Op2 = Op.getOperand(2); 1682 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1683 1684 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1685 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1686 1687 // For fshl, 0-shift returns the 1st arg. 1688 // For fshr, 0-shift returns the 2nd arg. 1689 if (Amt == 0) { 1690 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1691 Known, TLO, Depth + 1)) 1692 return true; 1693 break; 1694 } 1695 1696 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1697 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1698 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1699 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1700 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1701 Depth + 1)) 1702 return true; 1703 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1704 Depth + 1)) 1705 return true; 1706 1707 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1708 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1710 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.One |= Known2.One; 1712 Known.Zero |= Known2.Zero; 1713 } 1714 1715 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1716 if (isPowerOf2_32(BitWidth)) { 1717 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1718 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1719 Known2, TLO, Depth + 1)) 1720 return true; 1721 } 1722 break; 1723 } 1724 case ISD::ROTL: 1725 case ISD::ROTR: { 1726 SDValue Op0 = Op.getOperand(0); 1727 SDValue Op1 = Op.getOperand(1); 1728 1729 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1730 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1731 return TLO.CombineTo(Op, Op0); 1732 1733 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1734 if (isPowerOf2_32(BitWidth)) { 1735 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1736 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1737 Depth + 1)) 1738 return true; 1739 } 1740 break; 1741 } 1742 case ISD::UMIN: { 1743 // Check if one arg is always less than (or equal) to the other arg. 1744 SDValue Op0 = Op.getOperand(0); 1745 SDValue Op1 = Op.getOperand(1); 1746 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1747 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1748 Known = KnownBits::umin(Known0, Known1); 1749 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1750 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1751 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1752 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1753 break; 1754 } 1755 case ISD::UMAX: { 1756 // Check if one arg is always greater than (or equal) to the other arg. 1757 SDValue Op0 = Op.getOperand(0); 1758 SDValue Op1 = Op.getOperand(1); 1759 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1760 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1761 Known = KnownBits::umax(Known0, Known1); 1762 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1763 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1764 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1765 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1766 break; 1767 } 1768 case ISD::BITREVERSE: { 1769 SDValue Src = Op.getOperand(0); 1770 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1771 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1772 Depth + 1)) 1773 return true; 1774 Known.One = Known2.One.reverseBits(); 1775 Known.Zero = Known2.Zero.reverseBits(); 1776 break; 1777 } 1778 case ISD::BSWAP: { 1779 SDValue Src = Op.getOperand(0); 1780 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1781 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1782 Depth + 1)) 1783 return true; 1784 Known.One = Known2.One.byteSwap(); 1785 Known.Zero = Known2.Zero.byteSwap(); 1786 break; 1787 } 1788 case ISD::CTPOP: { 1789 // If only 1 bit is demanded, replace with PARITY as long as we're before 1790 // op legalization. 1791 // FIXME: Limit to scalars for now. 1792 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 1793 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1794 Op.getOperand(0))); 1795 1796 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1797 break; 1798 } 1799 case ISD::SIGN_EXTEND_INREG: { 1800 SDValue Op0 = Op.getOperand(0); 1801 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1802 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1803 1804 // If we only care about the highest bit, don't bother shifting right. 1805 if (DemandedBits.isSignMask()) { 1806 unsigned MinSignedBits = 1807 TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1); 1808 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 1809 // However if the input is already sign extended we expect the sign 1810 // extension to be dropped altogether later and do not simplify. 1811 if (!AlreadySignExtended) { 1812 // Compute the correct shift amount type, which must be getShiftAmountTy 1813 // for scalar types after legalization. 1814 EVT ShiftAmtTy = VT; 1815 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1816 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1817 1818 SDValue ShiftAmt = 1819 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1820 return TLO.CombineTo(Op, 1821 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1822 } 1823 } 1824 1825 // If none of the extended bits are demanded, eliminate the sextinreg. 1826 if (DemandedBits.getActiveBits() <= ExVTBits) 1827 return TLO.CombineTo(Op, Op0); 1828 1829 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1830 1831 // Since the sign extended bits are demanded, we know that the sign 1832 // bit is demanded. 1833 InputDemandedBits.setBit(ExVTBits - 1); 1834 1835 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1836 return true; 1837 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1838 1839 // If the sign bit of the input is known set or clear, then we know the 1840 // top bits of the result. 1841 1842 // If the input sign bit is known zero, convert this into a zero extension. 1843 if (Known.Zero[ExVTBits - 1]) 1844 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1845 1846 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1847 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1848 Known.One.setBitsFrom(ExVTBits); 1849 Known.Zero &= Mask; 1850 } else { // Input sign bit unknown 1851 Known.Zero &= Mask; 1852 Known.One &= Mask; 1853 } 1854 break; 1855 } 1856 case ISD::BUILD_PAIR: { 1857 EVT HalfVT = Op.getOperand(0).getValueType(); 1858 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1859 1860 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1861 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1862 1863 KnownBits KnownLo, KnownHi; 1864 1865 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1866 return true; 1867 1868 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1869 return true; 1870 1871 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1872 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1873 1874 Known.One = KnownLo.One.zext(BitWidth) | 1875 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1876 break; 1877 } 1878 case ISD::ZERO_EXTEND: 1879 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1880 SDValue Src = Op.getOperand(0); 1881 EVT SrcVT = Src.getValueType(); 1882 unsigned InBits = SrcVT.getScalarSizeInBits(); 1883 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1884 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1885 1886 // If none of the top bits are demanded, convert this into an any_extend. 1887 if (DemandedBits.getActiveBits() <= InBits) { 1888 // If we only need the non-extended bits of the bottom element 1889 // then we can just bitcast to the result. 1890 if (IsVecInReg && DemandedElts == 1 && 1891 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1892 TLO.DAG.getDataLayout().isLittleEndian()) 1893 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1894 1895 unsigned Opc = 1896 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1897 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1898 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1899 } 1900 1901 APInt InDemandedBits = DemandedBits.trunc(InBits); 1902 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1903 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1904 Depth + 1)) 1905 return true; 1906 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1907 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1908 Known = Known.zext(BitWidth); 1909 1910 // Attempt to avoid multi-use ops if we don't need anything from them. 1911 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1912 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1914 break; 1915 } 1916 case ISD::SIGN_EXTEND: 1917 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1918 SDValue Src = Op.getOperand(0); 1919 EVT SrcVT = Src.getValueType(); 1920 unsigned InBits = SrcVT.getScalarSizeInBits(); 1921 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1922 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1923 1924 // If none of the top bits are demanded, convert this into an any_extend. 1925 if (DemandedBits.getActiveBits() <= InBits) { 1926 // If we only need the non-extended bits of the bottom element 1927 // then we can just bitcast to the result. 1928 if (IsVecInReg && DemandedElts == 1 && 1929 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1930 TLO.DAG.getDataLayout().isLittleEndian()) 1931 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1932 1933 unsigned Opc = 1934 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1935 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1937 } 1938 1939 APInt InDemandedBits = DemandedBits.trunc(InBits); 1940 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1941 1942 // Since some of the sign extended bits are demanded, we know that the sign 1943 // bit is demanded. 1944 InDemandedBits.setBit(InBits - 1); 1945 1946 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1947 Depth + 1)) 1948 return true; 1949 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1950 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1951 1952 // If the sign bit is known one, the top bits match. 1953 Known = Known.sext(BitWidth); 1954 1955 // If the sign bit is known zero, convert this to a zero extend. 1956 if (Known.isNonNegative()) { 1957 unsigned Opc = 1958 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1959 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1960 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1961 } 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::ANY_EXTEND: 1970 case ISD::ANY_EXTEND_VECTOR_INREG: { 1971 SDValue Src = Op.getOperand(0); 1972 EVT SrcVT = Src.getValueType(); 1973 unsigned InBits = SrcVT.getScalarSizeInBits(); 1974 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1975 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1976 1977 // If we only need the bottom element then we can just bitcast. 1978 // TODO: Handle ANY_EXTEND? 1979 if (IsVecInReg && DemandedElts == 1 && 1980 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1981 TLO.DAG.getDataLayout().isLittleEndian()) 1982 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1983 1984 APInt InDemandedBits = DemandedBits.trunc(InBits); 1985 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1986 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1987 Depth + 1)) 1988 return true; 1989 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1990 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1991 Known = Known.anyext(BitWidth); 1992 1993 // Attempt to avoid multi-use ops if we don't need anything from them. 1994 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1995 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1996 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1997 break; 1998 } 1999 case ISD::TRUNCATE: { 2000 SDValue Src = Op.getOperand(0); 2001 2002 // Simplify the input, using demanded bit information, and compute the known 2003 // zero/one bits live out. 2004 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2005 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2006 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2007 Depth + 1)) 2008 return true; 2009 Known = Known.trunc(BitWidth); 2010 2011 // Attempt to avoid multi-use ops if we don't need anything from them. 2012 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2013 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2014 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2015 2016 // If the input is only used by this truncate, see if we can shrink it based 2017 // on the known demanded bits. 2018 if (Src.getNode()->hasOneUse()) { 2019 switch (Src.getOpcode()) { 2020 default: 2021 break; 2022 case ISD::SRL: 2023 // Shrink SRL by a constant if none of the high bits shifted in are 2024 // demanded. 2025 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2026 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2027 // undesirable. 2028 break; 2029 2030 const APInt *ShAmtC = 2031 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2032 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2033 break; 2034 uint64_t ShVal = ShAmtC->getZExtValue(); 2035 2036 APInt HighBits = 2037 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2038 HighBits.lshrInPlace(ShVal); 2039 HighBits = HighBits.trunc(BitWidth); 2040 2041 if (!(HighBits & DemandedBits)) { 2042 // None of the shifted in bits are needed. Add a truncate of the 2043 // shift input, then shift it. 2044 SDValue NewShAmt = TLO.DAG.getConstant( 2045 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2046 SDValue NewTrunc = 2047 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2048 return TLO.CombineTo( 2049 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2050 } 2051 break; 2052 } 2053 } 2054 2055 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2056 break; 2057 } 2058 case ISD::AssertZext: { 2059 // AssertZext demands all of the high bits, plus any of the low bits 2060 // demanded by its users. 2061 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2062 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2063 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2064 TLO, Depth + 1)) 2065 return true; 2066 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2067 2068 Known.Zero |= ~InMask; 2069 break; 2070 } 2071 case ISD::EXTRACT_VECTOR_ELT: { 2072 SDValue Src = Op.getOperand(0); 2073 SDValue Idx = Op.getOperand(1); 2074 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2075 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2076 2077 if (SrcEltCnt.isScalable()) 2078 return false; 2079 2080 // Demand the bits from every vector element without a constant index. 2081 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2082 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2083 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2084 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2085 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2086 2087 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2088 // anything about the extended bits. 2089 APInt DemandedSrcBits = DemandedBits; 2090 if (BitWidth > EltBitWidth) 2091 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2092 2093 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2094 Depth + 1)) 2095 return true; 2096 2097 // Attempt to avoid multi-use ops if we don't need anything from them. 2098 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2099 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2100 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2101 SDValue NewOp = 2102 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2103 return TLO.CombineTo(Op, NewOp); 2104 } 2105 } 2106 2107 Known = Known2; 2108 if (BitWidth > EltBitWidth) 2109 Known = Known.anyext(BitWidth); 2110 break; 2111 } 2112 case ISD::BITCAST: { 2113 SDValue Src = Op.getOperand(0); 2114 EVT SrcVT = Src.getValueType(); 2115 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2116 2117 // If this is an FP->Int bitcast and if the sign bit is the only 2118 // thing demanded, turn this into a FGETSIGN. 2119 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2120 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2121 SrcVT.isFloatingPoint()) { 2122 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2123 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2124 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2125 SrcVT != MVT::f128) { 2126 // Cannot eliminate/lower SHL for f128 yet. 2127 EVT Ty = OpVTLegal ? VT : MVT::i32; 2128 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2129 // place. We expect the SHL to be eliminated by other optimizations. 2130 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2131 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2132 if (!OpVTLegal && OpVTSizeInBits > 32) 2133 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2134 unsigned ShVal = Op.getValueSizeInBits() - 1; 2135 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2136 return TLO.CombineTo(Op, 2137 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2138 } 2139 } 2140 2141 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2142 // Demand the elt/bit if any of the original elts/bits are demanded. 2143 // TODO - bigendian once we have test coverage. 2144 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2145 TLO.DAG.getDataLayout().isLittleEndian()) { 2146 unsigned Scale = BitWidth / NumSrcEltBits; 2147 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2148 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2149 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2150 for (unsigned i = 0; i != Scale; ++i) { 2151 unsigned Offset = i * NumSrcEltBits; 2152 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2153 if (!Sub.isZero()) { 2154 DemandedSrcBits |= Sub; 2155 for (unsigned j = 0; j != NumElts; ++j) 2156 if (DemandedElts[j]) 2157 DemandedSrcElts.setBit((j * Scale) + i); 2158 } 2159 } 2160 2161 APInt KnownSrcUndef, KnownSrcZero; 2162 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2163 KnownSrcZero, TLO, Depth + 1)) 2164 return true; 2165 2166 KnownBits KnownSrcBits; 2167 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2168 KnownSrcBits, TLO, Depth + 1)) 2169 return true; 2170 } else if ((NumSrcEltBits % BitWidth) == 0 && 2171 TLO.DAG.getDataLayout().isLittleEndian()) { 2172 unsigned Scale = NumSrcEltBits / BitWidth; 2173 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2174 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2175 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2176 for (unsigned i = 0; i != NumElts; ++i) 2177 if (DemandedElts[i]) { 2178 unsigned Offset = (i % Scale) * BitWidth; 2179 DemandedSrcBits.insertBits(DemandedBits, Offset); 2180 DemandedSrcElts.setBit(i / Scale); 2181 } 2182 2183 if (SrcVT.isVector()) { 2184 APInt KnownSrcUndef, KnownSrcZero; 2185 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2186 KnownSrcZero, TLO, Depth + 1)) 2187 return true; 2188 } 2189 2190 KnownBits KnownSrcBits; 2191 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2192 KnownSrcBits, TLO, Depth + 1)) 2193 return true; 2194 } 2195 2196 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2197 // recursive call where Known may be useful to the caller. 2198 if (Depth > 0) { 2199 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2200 return false; 2201 } 2202 break; 2203 } 2204 case ISD::ADD: 2205 case ISD::MUL: 2206 case ISD::SUB: { 2207 // Add, Sub, and Mul don't demand any bits in positions beyond that 2208 // of the highest bit demanded of them. 2209 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2210 SDNodeFlags Flags = Op.getNode()->getFlags(); 2211 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2212 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2213 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2214 Depth + 1) || 2215 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2216 Depth + 1) || 2217 // See if the operation should be performed at a smaller bit width. 2218 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2219 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2220 // Disable the nsw and nuw flags. We can no longer guarantee that we 2221 // won't wrap after simplification. 2222 Flags.setNoSignedWrap(false); 2223 Flags.setNoUnsignedWrap(false); 2224 SDValue NewOp = 2225 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2226 return TLO.CombineTo(Op, NewOp); 2227 } 2228 return true; 2229 } 2230 2231 // Attempt to avoid multi-use ops if we don't need anything from them. 2232 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2233 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2234 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2235 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2236 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2237 if (DemandedOp0 || DemandedOp1) { 2238 Flags.setNoSignedWrap(false); 2239 Flags.setNoUnsignedWrap(false); 2240 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2241 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2242 SDValue NewOp = 2243 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2244 return TLO.CombineTo(Op, NewOp); 2245 } 2246 } 2247 2248 // If we have a constant operand, we may be able to turn it into -1 if we 2249 // do not demand the high bits. This can make the constant smaller to 2250 // encode, allow more general folding, or match specialized instruction 2251 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2252 // is probably not useful (and could be detrimental). 2253 ConstantSDNode *C = isConstOrConstSplat(Op1); 2254 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2255 if (C && !C->isAllOnes() && !C->isOne() && 2256 (C->getAPIntValue() | HighMask).isAllOnes()) { 2257 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2258 // Disable the nsw and nuw flags. We can no longer guarantee that we 2259 // won't wrap after simplification. 2260 Flags.setNoSignedWrap(false); 2261 Flags.setNoUnsignedWrap(false); 2262 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2263 return TLO.CombineTo(Op, NewOp); 2264 } 2265 2266 LLVM_FALLTHROUGH; 2267 } 2268 default: 2269 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2270 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2271 Known, TLO, Depth)) 2272 return true; 2273 break; 2274 } 2275 2276 // Just use computeKnownBits to compute output bits. 2277 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2278 break; 2279 } 2280 2281 // If we know the value of all of the demanded bits, return this as a 2282 // constant. 2283 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2284 // Avoid folding to a constant if any OpaqueConstant is involved. 2285 const SDNode *N = Op.getNode(); 2286 for (SDNode *Op : 2287 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2288 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2289 if (C->isOpaque()) 2290 return false; 2291 } 2292 if (VT.isInteger()) 2293 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2294 if (VT.isFloatingPoint()) 2295 return TLO.CombineTo( 2296 Op, 2297 TLO.DAG.getConstantFP( 2298 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2299 } 2300 2301 return false; 2302 } 2303 2304 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2305 const APInt &DemandedElts, 2306 APInt &KnownUndef, 2307 APInt &KnownZero, 2308 DAGCombinerInfo &DCI) const { 2309 SelectionDAG &DAG = DCI.DAG; 2310 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2311 !DCI.isBeforeLegalizeOps()); 2312 2313 bool Simplified = 2314 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2315 if (Simplified) { 2316 DCI.AddToWorklist(Op.getNode()); 2317 DCI.CommitTargetLoweringOpt(TLO); 2318 } 2319 2320 return Simplified; 2321 } 2322 2323 /// Given a vector binary operation and known undefined elements for each input 2324 /// operand, compute whether each element of the output is undefined. 2325 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2326 const APInt &UndefOp0, 2327 const APInt &UndefOp1) { 2328 EVT VT = BO.getValueType(); 2329 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2330 "Vector binop only"); 2331 2332 EVT EltVT = VT.getVectorElementType(); 2333 unsigned NumElts = VT.getVectorNumElements(); 2334 assert(UndefOp0.getBitWidth() == NumElts && 2335 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2336 2337 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2338 const APInt &UndefVals) { 2339 if (UndefVals[Index]) 2340 return DAG.getUNDEF(EltVT); 2341 2342 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2343 // Try hard to make sure that the getNode() call is not creating temporary 2344 // nodes. Ignore opaque integers because they do not constant fold. 2345 SDValue Elt = BV->getOperand(Index); 2346 auto *C = dyn_cast<ConstantSDNode>(Elt); 2347 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2348 return Elt; 2349 } 2350 2351 return SDValue(); 2352 }; 2353 2354 APInt KnownUndef = APInt::getZero(NumElts); 2355 for (unsigned i = 0; i != NumElts; ++i) { 2356 // If both inputs for this element are either constant or undef and match 2357 // the element type, compute the constant/undef result for this element of 2358 // the vector. 2359 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2360 // not handle FP constants. The code within getNode() should be refactored 2361 // to avoid the danger of creating a bogus temporary node here. 2362 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2363 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2364 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2365 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2366 KnownUndef.setBit(i); 2367 } 2368 return KnownUndef; 2369 } 2370 2371 bool TargetLowering::SimplifyDemandedVectorElts( 2372 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2373 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2374 bool AssumeSingleUse) const { 2375 EVT VT = Op.getValueType(); 2376 unsigned Opcode = Op.getOpcode(); 2377 APInt DemandedElts = OriginalDemandedElts; 2378 unsigned NumElts = DemandedElts.getBitWidth(); 2379 assert(VT.isVector() && "Expected vector op"); 2380 2381 KnownUndef = KnownZero = APInt::getZero(NumElts); 2382 2383 // TODO: For now we assume we know nothing about scalable vectors. 2384 if (VT.isScalableVector()) 2385 return false; 2386 2387 assert(VT.getVectorNumElements() == NumElts && 2388 "Mask size mismatches value type element count!"); 2389 2390 // Undef operand. 2391 if (Op.isUndef()) { 2392 KnownUndef.setAllBits(); 2393 return false; 2394 } 2395 2396 // If Op has other users, assume that all elements are needed. 2397 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2398 DemandedElts.setAllBits(); 2399 2400 // Not demanding any elements from Op. 2401 if (DemandedElts == 0) { 2402 KnownUndef.setAllBits(); 2403 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2404 } 2405 2406 // Limit search depth. 2407 if (Depth >= SelectionDAG::MaxRecursionDepth) 2408 return false; 2409 2410 SDLoc DL(Op); 2411 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2412 2413 // Helper for demanding the specified elements and all the bits of both binary 2414 // operands. 2415 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2416 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2417 TLO.DAG, Depth + 1); 2418 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2419 TLO.DAG, Depth + 1); 2420 if (NewOp0 || NewOp1) { 2421 SDValue NewOp = TLO.DAG.getNode( 2422 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2423 return TLO.CombineTo(Op, NewOp); 2424 } 2425 return false; 2426 }; 2427 2428 switch (Opcode) { 2429 case ISD::SCALAR_TO_VECTOR: { 2430 if (!DemandedElts[0]) { 2431 KnownUndef.setAllBits(); 2432 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2433 } 2434 SDValue ScalarSrc = Op.getOperand(0); 2435 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2436 SDValue Src = ScalarSrc.getOperand(0); 2437 SDValue Idx = ScalarSrc.getOperand(1); 2438 EVT SrcVT = Src.getValueType(); 2439 2440 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2441 2442 if (SrcEltCnt.isScalable()) 2443 return false; 2444 2445 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2446 if (isNullConstant(Idx)) { 2447 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2448 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2449 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2450 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2451 TLO, Depth + 1)) 2452 return true; 2453 } 2454 } 2455 KnownUndef.setHighBits(NumElts - 1); 2456 break; 2457 } 2458 case ISD::BITCAST: { 2459 SDValue Src = Op.getOperand(0); 2460 EVT SrcVT = Src.getValueType(); 2461 2462 // We only handle vectors here. 2463 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2464 if (!SrcVT.isVector()) 2465 break; 2466 2467 // Fast handling of 'identity' bitcasts. 2468 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2469 if (NumSrcElts == NumElts) 2470 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2471 KnownZero, TLO, Depth + 1); 2472 2473 APInt SrcDemandedElts, SrcZero, SrcUndef; 2474 2475 // Bitcast from 'large element' src vector to 'small element' vector, we 2476 // must demand a source element if any DemandedElt maps to it. 2477 if ((NumElts % NumSrcElts) == 0) { 2478 unsigned Scale = NumElts / NumSrcElts; 2479 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2480 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2481 TLO, Depth + 1)) 2482 return true; 2483 2484 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2485 // of the large element. 2486 // TODO - bigendian once we have test coverage. 2487 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2488 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2489 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2490 for (unsigned i = 0; i != NumElts; ++i) 2491 if (DemandedElts[i]) { 2492 unsigned Ofs = (i % Scale) * EltSizeInBits; 2493 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2494 } 2495 2496 KnownBits Known; 2497 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2498 TLO, Depth + 1)) 2499 return true; 2500 } 2501 2502 // If the src element is zero/undef then all the output elements will be - 2503 // only demanded elements are guaranteed to be correct. 2504 for (unsigned i = 0; i != NumSrcElts; ++i) { 2505 if (SrcDemandedElts[i]) { 2506 if (SrcZero[i]) 2507 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2508 if (SrcUndef[i]) 2509 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2510 } 2511 } 2512 } 2513 2514 // Bitcast from 'small element' src vector to 'large element' vector, we 2515 // demand all smaller source elements covered by the larger demanded element 2516 // of this vector. 2517 if ((NumSrcElts % NumElts) == 0) { 2518 unsigned Scale = NumSrcElts / NumElts; 2519 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2520 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2521 TLO, Depth + 1)) 2522 return true; 2523 2524 // If all the src elements covering an output element are zero/undef, then 2525 // the output element will be as well, assuming it was demanded. 2526 for (unsigned i = 0; i != NumElts; ++i) { 2527 if (DemandedElts[i]) { 2528 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2529 KnownZero.setBit(i); 2530 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2531 KnownUndef.setBit(i); 2532 } 2533 } 2534 } 2535 break; 2536 } 2537 case ISD::BUILD_VECTOR: { 2538 // Check all elements and simplify any unused elements with UNDEF. 2539 if (!DemandedElts.isAllOnes()) { 2540 // Don't simplify BROADCASTS. 2541 if (llvm::any_of(Op->op_values(), 2542 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2543 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2544 bool Updated = false; 2545 for (unsigned i = 0; i != NumElts; ++i) { 2546 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2547 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2548 KnownUndef.setBit(i); 2549 Updated = true; 2550 } 2551 } 2552 if (Updated) 2553 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2554 } 2555 } 2556 for (unsigned i = 0; i != NumElts; ++i) { 2557 SDValue SrcOp = Op.getOperand(i); 2558 if (SrcOp.isUndef()) { 2559 KnownUndef.setBit(i); 2560 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2561 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2562 KnownZero.setBit(i); 2563 } 2564 } 2565 break; 2566 } 2567 case ISD::CONCAT_VECTORS: { 2568 EVT SubVT = Op.getOperand(0).getValueType(); 2569 unsigned NumSubVecs = Op.getNumOperands(); 2570 unsigned NumSubElts = SubVT.getVectorNumElements(); 2571 for (unsigned i = 0; i != NumSubVecs; ++i) { 2572 SDValue SubOp = Op.getOperand(i); 2573 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2574 APInt SubUndef, SubZero; 2575 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2576 Depth + 1)) 2577 return true; 2578 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2579 KnownZero.insertBits(SubZero, i * NumSubElts); 2580 } 2581 break; 2582 } 2583 case ISD::INSERT_SUBVECTOR: { 2584 // Demand any elements from the subvector and the remainder from the src its 2585 // inserted into. 2586 SDValue Src = Op.getOperand(0); 2587 SDValue Sub = Op.getOperand(1); 2588 uint64_t Idx = Op.getConstantOperandVal(2); 2589 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2590 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2591 APInt DemandedSrcElts = DemandedElts; 2592 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2593 2594 APInt SubUndef, SubZero; 2595 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2596 Depth + 1)) 2597 return true; 2598 2599 // If none of the src operand elements are demanded, replace it with undef. 2600 if (!DemandedSrcElts && !Src.isUndef()) 2601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2602 TLO.DAG.getUNDEF(VT), Sub, 2603 Op.getOperand(2))); 2604 2605 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2606 TLO, Depth + 1)) 2607 return true; 2608 KnownUndef.insertBits(SubUndef, Idx); 2609 KnownZero.insertBits(SubZero, Idx); 2610 2611 // Attempt to avoid multi-use ops if we don't need anything from them. 2612 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2613 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2614 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2615 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2616 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2617 if (NewSrc || NewSub) { 2618 NewSrc = NewSrc ? NewSrc : Src; 2619 NewSub = NewSub ? NewSub : Sub; 2620 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2621 NewSub, Op.getOperand(2)); 2622 return TLO.CombineTo(Op, NewOp); 2623 } 2624 } 2625 break; 2626 } 2627 case ISD::EXTRACT_SUBVECTOR: { 2628 // Offset the demanded elts by the subvector index. 2629 SDValue Src = Op.getOperand(0); 2630 if (Src.getValueType().isScalableVector()) 2631 break; 2632 uint64_t Idx = Op.getConstantOperandVal(1); 2633 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2635 2636 APInt SrcUndef, SrcZero; 2637 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2638 Depth + 1)) 2639 return true; 2640 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2641 KnownZero = SrcZero.extractBits(NumElts, Idx); 2642 2643 // Attempt to avoid multi-use ops if we don't need anything from them. 2644 if (!DemandedElts.isAllOnes()) { 2645 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2646 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2647 if (NewSrc) { 2648 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2649 Op.getOperand(1)); 2650 return TLO.CombineTo(Op, NewOp); 2651 } 2652 } 2653 break; 2654 } 2655 case ISD::INSERT_VECTOR_ELT: { 2656 SDValue Vec = Op.getOperand(0); 2657 SDValue Scl = Op.getOperand(1); 2658 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2659 2660 // For a legal, constant insertion index, if we don't need this insertion 2661 // then strip it, else remove it from the demanded elts. 2662 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2663 unsigned Idx = CIdx->getZExtValue(); 2664 if (!DemandedElts[Idx]) 2665 return TLO.CombineTo(Op, Vec); 2666 2667 APInt DemandedVecElts(DemandedElts); 2668 DemandedVecElts.clearBit(Idx); 2669 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2670 KnownZero, TLO, Depth + 1)) 2671 return true; 2672 2673 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2674 2675 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2676 break; 2677 } 2678 2679 APInt VecUndef, VecZero; 2680 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2681 Depth + 1)) 2682 return true; 2683 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2684 break; 2685 } 2686 case ISD::VSELECT: { 2687 // Try to transform the select condition based on the current demanded 2688 // elements. 2689 // TODO: If a condition element is undef, we can choose from one arm of the 2690 // select (and if one arm is undef, then we can propagate that to the 2691 // result). 2692 // TODO - add support for constant vselect masks (see IR version of this). 2693 APInt UnusedUndef, UnusedZero; 2694 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2695 UnusedZero, TLO, Depth + 1)) 2696 return true; 2697 2698 // See if we can simplify either vselect operand. 2699 APInt DemandedLHS(DemandedElts); 2700 APInt DemandedRHS(DemandedElts); 2701 APInt UndefLHS, ZeroLHS; 2702 APInt UndefRHS, ZeroRHS; 2703 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2704 ZeroLHS, TLO, Depth + 1)) 2705 return true; 2706 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2707 ZeroRHS, TLO, Depth + 1)) 2708 return true; 2709 2710 KnownUndef = UndefLHS & UndefRHS; 2711 KnownZero = ZeroLHS & ZeroRHS; 2712 break; 2713 } 2714 case ISD::VECTOR_SHUFFLE: { 2715 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2716 2717 // Collect demanded elements from shuffle operands.. 2718 APInt DemandedLHS(NumElts, 0); 2719 APInt DemandedRHS(NumElts, 0); 2720 for (unsigned i = 0; i != NumElts; ++i) { 2721 int M = ShuffleMask[i]; 2722 if (M < 0 || !DemandedElts[i]) 2723 continue; 2724 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2725 if (M < (int)NumElts) 2726 DemandedLHS.setBit(M); 2727 else 2728 DemandedRHS.setBit(M - NumElts); 2729 } 2730 2731 // See if we can simplify either shuffle operand. 2732 APInt UndefLHS, ZeroLHS; 2733 APInt UndefRHS, ZeroRHS; 2734 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2735 ZeroLHS, TLO, Depth + 1)) 2736 return true; 2737 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2738 ZeroRHS, TLO, Depth + 1)) 2739 return true; 2740 2741 // Simplify mask using undef elements from LHS/RHS. 2742 bool Updated = false; 2743 bool IdentityLHS = true, IdentityRHS = true; 2744 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2745 for (unsigned i = 0; i != NumElts; ++i) { 2746 int &M = NewMask[i]; 2747 if (M < 0) 2748 continue; 2749 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2750 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2751 Updated = true; 2752 M = -1; 2753 } 2754 IdentityLHS &= (M < 0) || (M == (int)i); 2755 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2756 } 2757 2758 // Update legal shuffle masks based on demanded elements if it won't reduce 2759 // to Identity which can cause premature removal of the shuffle mask. 2760 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2761 SDValue LegalShuffle = 2762 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2763 NewMask, TLO.DAG); 2764 if (LegalShuffle) 2765 return TLO.CombineTo(Op, LegalShuffle); 2766 } 2767 2768 // Propagate undef/zero elements from LHS/RHS. 2769 for (unsigned i = 0; i != NumElts; ++i) { 2770 int M = ShuffleMask[i]; 2771 if (M < 0) { 2772 KnownUndef.setBit(i); 2773 } else if (M < (int)NumElts) { 2774 if (UndefLHS[M]) 2775 KnownUndef.setBit(i); 2776 if (ZeroLHS[M]) 2777 KnownZero.setBit(i); 2778 } else { 2779 if (UndefRHS[M - NumElts]) 2780 KnownUndef.setBit(i); 2781 if (ZeroRHS[M - NumElts]) 2782 KnownZero.setBit(i); 2783 } 2784 } 2785 break; 2786 } 2787 case ISD::ANY_EXTEND_VECTOR_INREG: 2788 case ISD::SIGN_EXTEND_VECTOR_INREG: 2789 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2790 APInt SrcUndef, SrcZero; 2791 SDValue Src = Op.getOperand(0); 2792 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2793 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2794 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2795 Depth + 1)) 2796 return true; 2797 KnownZero = SrcZero.zextOrTrunc(NumElts); 2798 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2799 2800 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2801 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2802 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2803 // aext - if we just need the bottom element then we can bitcast. 2804 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2805 } 2806 2807 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2808 // zext(undef) upper bits are guaranteed to be zero. 2809 if (DemandedElts.isSubsetOf(KnownUndef)) 2810 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2811 KnownUndef.clearAllBits(); 2812 2813 // zext - if we just need the bottom element then we can mask: 2814 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 2815 if (DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian() && 2816 Src.getOpcode() == ISD::AND && Op->isOnlyUserOf(Src.getNode()) && 2817 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 2818 SDLoc DL(Op); 2819 EVT SrcVT = Src.getValueType(); 2820 EVT SrcSVT = SrcVT.getScalarType(); 2821 SmallVector<SDValue> MaskElts; 2822 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 2823 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 2824 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 2825 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 2826 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 2827 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 2828 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 2829 } 2830 } 2831 } 2832 break; 2833 } 2834 2835 // TODO: There are more binop opcodes that could be handled here - MIN, 2836 // MAX, saturated math, etc. 2837 case ISD::OR: 2838 case ISD::XOR: 2839 case ISD::ADD: 2840 case ISD::SUB: 2841 case ISD::FADD: 2842 case ISD::FSUB: 2843 case ISD::FMUL: 2844 case ISD::FDIV: 2845 case ISD::FREM: { 2846 SDValue Op0 = Op.getOperand(0); 2847 SDValue Op1 = Op.getOperand(1); 2848 2849 APInt UndefRHS, ZeroRHS; 2850 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2851 Depth + 1)) 2852 return true; 2853 APInt UndefLHS, ZeroLHS; 2854 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2855 Depth + 1)) 2856 return true; 2857 2858 KnownZero = ZeroLHS & ZeroRHS; 2859 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2860 2861 // Attempt to avoid multi-use ops if we don't need anything from them. 2862 // TODO - use KnownUndef to relax the demandedelts? 2863 if (!DemandedElts.isAllOnes()) 2864 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2865 return true; 2866 break; 2867 } 2868 case ISD::SHL: 2869 case ISD::SRL: 2870 case ISD::SRA: 2871 case ISD::ROTL: 2872 case ISD::ROTR: { 2873 SDValue Op0 = Op.getOperand(0); 2874 SDValue Op1 = Op.getOperand(1); 2875 2876 APInt UndefRHS, ZeroRHS; 2877 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2878 Depth + 1)) 2879 return true; 2880 APInt UndefLHS, ZeroLHS; 2881 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2882 Depth + 1)) 2883 return true; 2884 2885 KnownZero = ZeroLHS; 2886 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2887 2888 // Attempt to avoid multi-use ops if we don't need anything from them. 2889 // TODO - use KnownUndef to relax the demandedelts? 2890 if (!DemandedElts.isAllOnes()) 2891 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2892 return true; 2893 break; 2894 } 2895 case ISD::MUL: 2896 case ISD::AND: { 2897 SDValue Op0 = Op.getOperand(0); 2898 SDValue Op1 = Op.getOperand(1); 2899 2900 APInt SrcUndef, SrcZero; 2901 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2902 Depth + 1)) 2903 return true; 2904 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2905 TLO, Depth + 1)) 2906 return true; 2907 2908 // If either side has a zero element, then the result element is zero, even 2909 // if the other is an UNDEF. 2910 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2911 // and then handle 'and' nodes with the rest of the binop opcodes. 2912 KnownZero |= SrcZero; 2913 KnownUndef &= SrcUndef; 2914 KnownUndef &= ~KnownZero; 2915 2916 // Attempt to avoid multi-use ops if we don't need anything from them. 2917 // TODO - use KnownUndef to relax the demandedelts? 2918 if (!DemandedElts.isAllOnes()) 2919 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2920 return true; 2921 break; 2922 } 2923 case ISD::TRUNCATE: 2924 case ISD::SIGN_EXTEND: 2925 case ISD::ZERO_EXTEND: 2926 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2927 KnownZero, TLO, Depth + 1)) 2928 return true; 2929 2930 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2931 // zext(undef) upper bits are guaranteed to be zero. 2932 if (DemandedElts.isSubsetOf(KnownUndef)) 2933 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2934 KnownUndef.clearAllBits(); 2935 } 2936 break; 2937 default: { 2938 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2939 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2940 KnownZero, TLO, Depth)) 2941 return true; 2942 } else { 2943 KnownBits Known; 2944 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 2945 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2946 TLO, Depth, AssumeSingleUse)) 2947 return true; 2948 } 2949 break; 2950 } 2951 } 2952 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2953 2954 // Constant fold all undef cases. 2955 // TODO: Handle zero cases as well. 2956 if (DemandedElts.isSubsetOf(KnownUndef)) 2957 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2958 2959 return false; 2960 } 2961 2962 /// Determine which of the bits specified in Mask are known to be either zero or 2963 /// one and return them in the Known. 2964 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2965 KnownBits &Known, 2966 const APInt &DemandedElts, 2967 const SelectionDAG &DAG, 2968 unsigned Depth) const { 2969 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2970 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2971 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2972 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2973 "Should use MaskedValueIsZero if you don't know whether Op" 2974 " is a target node!"); 2975 Known.resetAll(); 2976 } 2977 2978 void TargetLowering::computeKnownBitsForTargetInstr( 2979 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2980 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2981 unsigned Depth) const { 2982 Known.resetAll(); 2983 } 2984 2985 void TargetLowering::computeKnownBitsForFrameIndex( 2986 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2987 // The low bits are known zero if the pointer is aligned. 2988 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2989 } 2990 2991 Align TargetLowering::computeKnownAlignForTargetInstr( 2992 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2993 unsigned Depth) const { 2994 return Align(1); 2995 } 2996 2997 /// This method can be implemented by targets that want to expose additional 2998 /// information about sign bits to the DAG Combiner. 2999 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3000 const APInt &, 3001 const SelectionDAG &, 3002 unsigned Depth) const { 3003 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3004 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3005 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3006 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3007 "Should use ComputeNumSignBits if you don't know whether Op" 3008 " is a target node!"); 3009 return 1; 3010 } 3011 3012 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3013 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3014 const MachineRegisterInfo &MRI, unsigned Depth) const { 3015 return 1; 3016 } 3017 3018 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3019 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3020 TargetLoweringOpt &TLO, unsigned Depth) const { 3021 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3022 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3023 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3024 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3025 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3026 " is a target node!"); 3027 return false; 3028 } 3029 3030 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3031 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3032 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3033 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3034 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3035 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3036 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3037 "Should use SimplifyDemandedBits if you don't know whether Op" 3038 " is a target node!"); 3039 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3040 return false; 3041 } 3042 3043 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3044 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3045 SelectionDAG &DAG, unsigned Depth) const { 3046 assert( 3047 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3048 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3049 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3050 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3051 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3052 " is a target node!"); 3053 return SDValue(); 3054 } 3055 3056 SDValue 3057 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3058 SDValue N1, MutableArrayRef<int> Mask, 3059 SelectionDAG &DAG) const { 3060 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3061 if (!LegalMask) { 3062 std::swap(N0, N1); 3063 ShuffleVectorSDNode::commuteMask(Mask); 3064 LegalMask = isShuffleMaskLegal(Mask, VT); 3065 } 3066 3067 if (!LegalMask) 3068 return SDValue(); 3069 3070 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3071 } 3072 3073 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3074 return nullptr; 3075 } 3076 3077 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3078 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3079 bool PoisonOnly, unsigned Depth) const { 3080 assert( 3081 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3082 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3083 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3084 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3085 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3086 " is a target node!"); 3087 return false; 3088 } 3089 3090 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3091 const SelectionDAG &DAG, 3092 bool SNaN, 3093 unsigned Depth) const { 3094 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3095 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3096 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3097 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3098 "Should use isKnownNeverNaN if you don't know whether Op" 3099 " is a target node!"); 3100 return false; 3101 } 3102 3103 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3104 // work with truncating build vectors and vectors with elements of less than 3105 // 8 bits. 3106 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3107 if (!N) 3108 return false; 3109 3110 APInt CVal; 3111 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3112 CVal = CN->getAPIntValue(); 3113 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3114 auto *CN = BV->getConstantSplatNode(); 3115 if (!CN) 3116 return false; 3117 3118 // If this is a truncating build vector, truncate the splat value. 3119 // Otherwise, we may fail to match the expected values below. 3120 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3121 CVal = CN->getAPIntValue(); 3122 if (BVEltWidth < CVal.getBitWidth()) 3123 CVal = CVal.trunc(BVEltWidth); 3124 } else { 3125 return false; 3126 } 3127 3128 switch (getBooleanContents(N->getValueType(0))) { 3129 case UndefinedBooleanContent: 3130 return CVal[0]; 3131 case ZeroOrOneBooleanContent: 3132 return CVal.isOne(); 3133 case ZeroOrNegativeOneBooleanContent: 3134 return CVal.isAllOnes(); 3135 } 3136 3137 llvm_unreachable("Invalid boolean contents"); 3138 } 3139 3140 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3141 if (!N) 3142 return false; 3143 3144 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3145 if (!CN) { 3146 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3147 if (!BV) 3148 return false; 3149 3150 // Only interested in constant splats, we don't care about undef 3151 // elements in identifying boolean constants and getConstantSplatNode 3152 // returns NULL if all ops are undef; 3153 CN = BV->getConstantSplatNode(); 3154 if (!CN) 3155 return false; 3156 } 3157 3158 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3159 return !CN->getAPIntValue()[0]; 3160 3161 return CN->isZero(); 3162 } 3163 3164 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3165 bool SExt) const { 3166 if (VT == MVT::i1) 3167 return N->isOne(); 3168 3169 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3170 switch (Cnt) { 3171 case TargetLowering::ZeroOrOneBooleanContent: 3172 // An extended value of 1 is always true, unless its original type is i1, 3173 // in which case it will be sign extended to -1. 3174 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3175 case TargetLowering::UndefinedBooleanContent: 3176 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3177 return N->isAllOnes() && SExt; 3178 } 3179 llvm_unreachable("Unexpected enumeration."); 3180 } 3181 3182 /// This helper function of SimplifySetCC tries to optimize the comparison when 3183 /// either operand of the SetCC node is a bitwise-and instruction. 3184 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3185 ISD::CondCode Cond, const SDLoc &DL, 3186 DAGCombinerInfo &DCI) const { 3187 // Match these patterns in any of their permutations: 3188 // (X & Y) == Y 3189 // (X & Y) != Y 3190 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3191 std::swap(N0, N1); 3192 3193 EVT OpVT = N0.getValueType(); 3194 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3195 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3196 return SDValue(); 3197 3198 SDValue X, Y; 3199 if (N0.getOperand(0) == N1) { 3200 X = N0.getOperand(1); 3201 Y = N0.getOperand(0); 3202 } else if (N0.getOperand(1) == N1) { 3203 X = N0.getOperand(0); 3204 Y = N0.getOperand(1); 3205 } else { 3206 return SDValue(); 3207 } 3208 3209 SelectionDAG &DAG = DCI.DAG; 3210 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3211 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3212 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3213 // Note that where Y is variable and is known to have at most one bit set 3214 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3215 // equivalent when Y == 0. 3216 assert(OpVT.isInteger()); 3217 Cond = ISD::getSetCCInverse(Cond, OpVT); 3218 if (DCI.isBeforeLegalizeOps() || 3219 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3220 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3221 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3222 // If the target supports an 'and-not' or 'and-complement' logic operation, 3223 // try to use that to make a comparison operation more efficient. 3224 // But don't do this transform if the mask is a single bit because there are 3225 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3226 // 'rlwinm' on PPC). 3227 3228 // Bail out if the compare operand that we want to turn into a zero is 3229 // already a zero (otherwise, infinite loop). 3230 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3231 if (YConst && YConst->isZero()) 3232 return SDValue(); 3233 3234 // Transform this into: ~X & Y == 0. 3235 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3236 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3237 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3238 } 3239 3240 return SDValue(); 3241 } 3242 3243 /// There are multiple IR patterns that could be checking whether certain 3244 /// truncation of a signed number would be lossy or not. The pattern which is 3245 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3246 /// We are looking for the following pattern: (KeptBits is a constant) 3247 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3248 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3249 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3250 /// We will unfold it into the natural trunc+sext pattern: 3251 /// ((%x << C) a>> C) dstcond %x 3252 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3253 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3254 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3255 const SDLoc &DL) const { 3256 // We must be comparing with a constant. 3257 ConstantSDNode *C1; 3258 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3259 return SDValue(); 3260 3261 // N0 should be: add %x, (1 << (KeptBits-1)) 3262 if (N0->getOpcode() != ISD::ADD) 3263 return SDValue(); 3264 3265 // And we must be 'add'ing a constant. 3266 ConstantSDNode *C01; 3267 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3268 return SDValue(); 3269 3270 SDValue X = N0->getOperand(0); 3271 EVT XVT = X.getValueType(); 3272 3273 // Validate constants ... 3274 3275 APInt I1 = C1->getAPIntValue(); 3276 3277 ISD::CondCode NewCond; 3278 if (Cond == ISD::CondCode::SETULT) { 3279 NewCond = ISD::CondCode::SETEQ; 3280 } else if (Cond == ISD::CondCode::SETULE) { 3281 NewCond = ISD::CondCode::SETEQ; 3282 // But need to 'canonicalize' the constant. 3283 I1 += 1; 3284 } else if (Cond == ISD::CondCode::SETUGT) { 3285 NewCond = ISD::CondCode::SETNE; 3286 // But need to 'canonicalize' the constant. 3287 I1 += 1; 3288 } else if (Cond == ISD::CondCode::SETUGE) { 3289 NewCond = ISD::CondCode::SETNE; 3290 } else 3291 return SDValue(); 3292 3293 APInt I01 = C01->getAPIntValue(); 3294 3295 auto checkConstants = [&I1, &I01]() -> bool { 3296 // Both of them must be power-of-two, and the constant from setcc is bigger. 3297 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3298 }; 3299 3300 if (checkConstants()) { 3301 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3302 } else { 3303 // What if we invert constants? (and the target predicate) 3304 I1.negate(); 3305 I01.negate(); 3306 assert(XVT.isInteger()); 3307 NewCond = getSetCCInverse(NewCond, XVT); 3308 if (!checkConstants()) 3309 return SDValue(); 3310 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3311 } 3312 3313 // They are power-of-two, so which bit is set? 3314 const unsigned KeptBits = I1.logBase2(); 3315 const unsigned KeptBitsMinusOne = I01.logBase2(); 3316 3317 // Magic! 3318 if (KeptBits != (KeptBitsMinusOne + 1)) 3319 return SDValue(); 3320 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3321 3322 // We don't want to do this in every single case. 3323 SelectionDAG &DAG = DCI.DAG; 3324 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3325 XVT, KeptBits)) 3326 return SDValue(); 3327 3328 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3329 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3330 3331 // Unfold into: ((%x << C) a>> C) cond %x 3332 // Where 'cond' will be either 'eq' or 'ne'. 3333 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3334 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3335 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3336 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3337 3338 return T2; 3339 } 3340 3341 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3342 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3343 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3344 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3345 assert(isConstOrConstSplat(N1C) && 3346 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3347 "Should be a comparison with 0."); 3348 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3349 "Valid only for [in]equality comparisons."); 3350 3351 unsigned NewShiftOpcode; 3352 SDValue X, C, Y; 3353 3354 SelectionDAG &DAG = DCI.DAG; 3355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3356 3357 // Look for '(C l>>/<< Y)'. 3358 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3359 // The shift should be one-use. 3360 if (!V.hasOneUse()) 3361 return false; 3362 unsigned OldShiftOpcode = V.getOpcode(); 3363 switch (OldShiftOpcode) { 3364 case ISD::SHL: 3365 NewShiftOpcode = ISD::SRL; 3366 break; 3367 case ISD::SRL: 3368 NewShiftOpcode = ISD::SHL; 3369 break; 3370 default: 3371 return false; // must be a logical shift. 3372 } 3373 // We should be shifting a constant. 3374 // FIXME: best to use isConstantOrConstantVector(). 3375 C = V.getOperand(0); 3376 ConstantSDNode *CC = 3377 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3378 if (!CC) 3379 return false; 3380 Y = V.getOperand(1); 3381 3382 ConstantSDNode *XC = 3383 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3384 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3385 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3386 }; 3387 3388 // LHS of comparison should be an one-use 'and'. 3389 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3390 return SDValue(); 3391 3392 X = N0.getOperand(0); 3393 SDValue Mask = N0.getOperand(1); 3394 3395 // 'and' is commutative! 3396 if (!Match(Mask)) { 3397 std::swap(X, Mask); 3398 if (!Match(Mask)) 3399 return SDValue(); 3400 } 3401 3402 EVT VT = X.getValueType(); 3403 3404 // Produce: 3405 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3406 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3407 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3408 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3409 return T2; 3410 } 3411 3412 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3413 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3414 /// handle the commuted versions of these patterns. 3415 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3416 ISD::CondCode Cond, const SDLoc &DL, 3417 DAGCombinerInfo &DCI) const { 3418 unsigned BOpcode = N0.getOpcode(); 3419 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3420 "Unexpected binop"); 3421 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3422 3423 // (X + Y) == X --> Y == 0 3424 // (X - Y) == X --> Y == 0 3425 // (X ^ Y) == X --> Y == 0 3426 SelectionDAG &DAG = DCI.DAG; 3427 EVT OpVT = N0.getValueType(); 3428 SDValue X = N0.getOperand(0); 3429 SDValue Y = N0.getOperand(1); 3430 if (X == N1) 3431 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3432 3433 if (Y != N1) 3434 return SDValue(); 3435 3436 // (X + Y) == Y --> X == 0 3437 // (X ^ Y) == Y --> X == 0 3438 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3439 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3440 3441 // The shift would not be valid if the operands are boolean (i1). 3442 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3443 return SDValue(); 3444 3445 // (X - Y) == Y --> X == Y << 1 3446 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3447 !DCI.isBeforeLegalize()); 3448 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3449 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3450 if (!DCI.isCalledByLegalizer()) 3451 DCI.AddToWorklist(YShl1.getNode()); 3452 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3453 } 3454 3455 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3456 SDValue N0, const APInt &C1, 3457 ISD::CondCode Cond, const SDLoc &dl, 3458 SelectionDAG &DAG) { 3459 // Look through truncs that don't change the value of a ctpop. 3460 // FIXME: Add vector support? Need to be careful with setcc result type below. 3461 SDValue CTPOP = N0; 3462 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3463 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3464 CTPOP = N0.getOperand(0); 3465 3466 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3467 return SDValue(); 3468 3469 EVT CTVT = CTPOP.getValueType(); 3470 SDValue CTOp = CTPOP.getOperand(0); 3471 3472 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3473 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3474 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3475 return SDValue(); 3476 3477 // (ctpop x) u< 2 -> (x & x-1) == 0 3478 // (ctpop x) u> 1 -> (x & x-1) != 0 3479 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3480 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3481 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3482 return SDValue(); 3483 if (C1 == 0 && (Cond == ISD::SETULT)) 3484 return SDValue(); // This is handled elsewhere. 3485 3486 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3487 3488 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3489 SDValue Result = CTOp; 3490 for (unsigned i = 0; i < Passes; i++) { 3491 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3492 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3493 } 3494 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3495 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3496 } 3497 3498 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3499 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3500 // For scalars, keep CTPOP if it is legal or custom. 3501 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3502 return SDValue(); 3503 // This is based on X86's custom lowering for CTPOP which produces more 3504 // instructions than the expansion here. 3505 3506 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3507 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3508 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3509 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3510 assert(CTVT.isInteger()); 3511 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3512 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3513 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3514 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3515 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3516 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3517 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3518 } 3519 3520 return SDValue(); 3521 } 3522 3523 /// Try to simplify a setcc built with the specified operands and cc. If it is 3524 /// unable to simplify it, return a null SDValue. 3525 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3526 ISD::CondCode Cond, bool foldBooleans, 3527 DAGCombinerInfo &DCI, 3528 const SDLoc &dl) const { 3529 SelectionDAG &DAG = DCI.DAG; 3530 const DataLayout &Layout = DAG.getDataLayout(); 3531 EVT OpVT = N0.getValueType(); 3532 3533 // Constant fold or commute setcc. 3534 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3535 return Fold; 3536 3537 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3538 // TODO: Handle non-splat vector constants. All undef causes trouble. 3539 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3540 // infinite loop here when we encounter one. 3541 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3542 if (isConstOrConstSplat(N0) && 3543 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3544 (DCI.isBeforeLegalizeOps() || 3545 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3546 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3547 3548 // If we have a subtract with the same 2 non-constant operands as this setcc 3549 // -- but in reverse order -- then try to commute the operands of this setcc 3550 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3551 // instruction on some targets. 3552 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3553 (DCI.isBeforeLegalizeOps() || 3554 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3555 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3556 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3557 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3558 3559 if (auto *N1C = isConstOrConstSplat(N1)) { 3560 const APInt &C1 = N1C->getAPIntValue(); 3561 3562 // Optimize some CTPOP cases. 3563 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3564 return V; 3565 3566 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3567 // equality comparison, then we're just comparing whether X itself is 3568 // zero. 3569 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3570 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3571 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3572 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3573 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3574 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3575 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3576 // (srl (ctlz x), 5) == 0 -> X != 0 3577 // (srl (ctlz x), 5) != 1 -> X != 0 3578 Cond = ISD::SETNE; 3579 } else { 3580 // (srl (ctlz x), 5) != 0 -> X == 0 3581 // (srl (ctlz x), 5) == 1 -> X == 0 3582 Cond = ISD::SETEQ; 3583 } 3584 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3585 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3586 Cond); 3587 } 3588 } 3589 } 3590 } 3591 3592 // FIXME: Support vectors. 3593 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3594 const APInt &C1 = N1C->getAPIntValue(); 3595 3596 // (zext x) == C --> x == (trunc C) 3597 // (sext x) == C --> x == (trunc C) 3598 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3599 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3600 unsigned MinBits = N0.getValueSizeInBits(); 3601 SDValue PreExt; 3602 bool Signed = false; 3603 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3604 // ZExt 3605 MinBits = N0->getOperand(0).getValueSizeInBits(); 3606 PreExt = N0->getOperand(0); 3607 } else if (N0->getOpcode() == ISD::AND) { 3608 // DAGCombine turns costly ZExts into ANDs 3609 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3610 if ((C->getAPIntValue()+1).isPowerOf2()) { 3611 MinBits = C->getAPIntValue().countTrailingOnes(); 3612 PreExt = N0->getOperand(0); 3613 } 3614 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3615 // SExt 3616 MinBits = N0->getOperand(0).getValueSizeInBits(); 3617 PreExt = N0->getOperand(0); 3618 Signed = true; 3619 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3620 // ZEXTLOAD / SEXTLOAD 3621 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3622 MinBits = LN0->getMemoryVT().getSizeInBits(); 3623 PreExt = N0; 3624 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3625 Signed = true; 3626 MinBits = LN0->getMemoryVT().getSizeInBits(); 3627 PreExt = N0; 3628 } 3629 } 3630 3631 // Figure out how many bits we need to preserve this constant. 3632 unsigned ReqdBits = Signed ? 3633 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3634 C1.getActiveBits(); 3635 3636 // Make sure we're not losing bits from the constant. 3637 if (MinBits > 0 && 3638 MinBits < C1.getBitWidth() && 3639 MinBits >= ReqdBits) { 3640 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3641 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3642 // Will get folded away. 3643 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3644 if (MinBits == 1 && C1 == 1) 3645 // Invert the condition. 3646 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3647 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3648 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3649 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3650 } 3651 3652 // If truncating the setcc operands is not desirable, we can still 3653 // simplify the expression in some cases: 3654 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3655 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3656 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3657 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3658 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3659 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3660 SDValue TopSetCC = N0->getOperand(0); 3661 unsigned N0Opc = N0->getOpcode(); 3662 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3663 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3664 TopSetCC.getOpcode() == ISD::SETCC && 3665 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3666 (isConstFalseVal(N1C) || 3667 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3668 3669 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3670 (!N1C->isZero() && Cond == ISD::SETNE); 3671 3672 if (!Inverse) 3673 return TopSetCC; 3674 3675 ISD::CondCode InvCond = ISD::getSetCCInverse( 3676 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3677 TopSetCC.getOperand(0).getValueType()); 3678 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3679 TopSetCC.getOperand(1), 3680 InvCond); 3681 } 3682 } 3683 } 3684 3685 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3686 // equality or unsigned, and all 1 bits of the const are in the same 3687 // partial word, see if we can shorten the load. 3688 if (DCI.isBeforeLegalize() && 3689 !ISD::isSignedIntSetCC(Cond) && 3690 N0.getOpcode() == ISD::AND && C1 == 0 && 3691 N0.getNode()->hasOneUse() && 3692 isa<LoadSDNode>(N0.getOperand(0)) && 3693 N0.getOperand(0).getNode()->hasOneUse() && 3694 isa<ConstantSDNode>(N0.getOperand(1))) { 3695 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3696 APInt bestMask; 3697 unsigned bestWidth = 0, bestOffset = 0; 3698 if (Lod->isSimple() && Lod->isUnindexed()) { 3699 unsigned origWidth = N0.getValueSizeInBits(); 3700 unsigned maskWidth = origWidth; 3701 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3702 // 8 bits, but have to be careful... 3703 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3704 origWidth = Lod->getMemoryVT().getSizeInBits(); 3705 const APInt &Mask = N0.getConstantOperandAPInt(1); 3706 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3707 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3708 for (unsigned offset=0; offset<origWidth/width; offset++) { 3709 if (Mask.isSubsetOf(newMask)) { 3710 if (Layout.isLittleEndian()) 3711 bestOffset = (uint64_t)offset * (width/8); 3712 else 3713 bestOffset = (origWidth/width - offset - 1) * (width/8); 3714 bestMask = Mask.lshr(offset * (width/8) * 8); 3715 bestWidth = width; 3716 break; 3717 } 3718 newMask <<= width; 3719 } 3720 } 3721 } 3722 if (bestWidth) { 3723 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3724 if (newVT.isRound() && 3725 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3726 SDValue Ptr = Lod->getBasePtr(); 3727 if (bestOffset != 0) 3728 Ptr = 3729 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3730 SDValue NewLoad = 3731 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3732 Lod->getPointerInfo().getWithOffset(bestOffset), 3733 Lod->getOriginalAlign()); 3734 return DAG.getSetCC(dl, VT, 3735 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3736 DAG.getConstant(bestMask.trunc(bestWidth), 3737 dl, newVT)), 3738 DAG.getConstant(0LL, dl, newVT), Cond); 3739 } 3740 } 3741 } 3742 3743 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3744 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3745 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3746 3747 // If the comparison constant has bits in the upper part, the 3748 // zero-extended value could never match. 3749 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3750 C1.getBitWidth() - InSize))) { 3751 switch (Cond) { 3752 case ISD::SETUGT: 3753 case ISD::SETUGE: 3754 case ISD::SETEQ: 3755 return DAG.getConstant(0, dl, VT); 3756 case ISD::SETULT: 3757 case ISD::SETULE: 3758 case ISD::SETNE: 3759 return DAG.getConstant(1, dl, VT); 3760 case ISD::SETGT: 3761 case ISD::SETGE: 3762 // True if the sign bit of C1 is set. 3763 return DAG.getConstant(C1.isNegative(), dl, VT); 3764 case ISD::SETLT: 3765 case ISD::SETLE: 3766 // True if the sign bit of C1 isn't set. 3767 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3768 default: 3769 break; 3770 } 3771 } 3772 3773 // Otherwise, we can perform the comparison with the low bits. 3774 switch (Cond) { 3775 case ISD::SETEQ: 3776 case ISD::SETNE: 3777 case ISD::SETUGT: 3778 case ISD::SETUGE: 3779 case ISD::SETULT: 3780 case ISD::SETULE: { 3781 EVT newVT = N0.getOperand(0).getValueType(); 3782 if (DCI.isBeforeLegalizeOps() || 3783 (isOperationLegal(ISD::SETCC, newVT) && 3784 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3785 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3786 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3787 3788 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3789 NewConst, Cond); 3790 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3791 } 3792 break; 3793 } 3794 default: 3795 break; // todo, be more careful with signed comparisons 3796 } 3797 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3798 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3799 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3800 OpVT)) { 3801 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3802 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3803 EVT ExtDstTy = N0.getValueType(); 3804 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3805 3806 // If the constant doesn't fit into the number of bits for the source of 3807 // the sign extension, it is impossible for both sides to be equal. 3808 if (C1.getMinSignedBits() > ExtSrcTyBits) 3809 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3810 3811 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3812 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3813 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3814 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3815 DAG.getConstant(Imm, dl, ExtDstTy)); 3816 if (!DCI.isCalledByLegalizer()) 3817 DCI.AddToWorklist(ZextOp.getNode()); 3818 // Otherwise, make this a use of a zext. 3819 return DAG.getSetCC(dl, VT, ZextOp, 3820 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3821 } else if ((N1C->isZero() || N1C->isOne()) && 3822 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3823 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3824 if (N0.getOpcode() == ISD::SETCC && 3825 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3826 (N0.getValueType() == MVT::i1 || 3827 getBooleanContents(N0.getOperand(0).getValueType()) == 3828 ZeroOrOneBooleanContent)) { 3829 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3830 if (TrueWhenTrue) 3831 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3832 // Invert the condition. 3833 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3834 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3835 if (DCI.isBeforeLegalizeOps() || 3836 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3837 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3838 } 3839 3840 if ((N0.getOpcode() == ISD::XOR || 3841 (N0.getOpcode() == ISD::AND && 3842 N0.getOperand(0).getOpcode() == ISD::XOR && 3843 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3844 isOneConstant(N0.getOperand(1))) { 3845 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3846 // can only do this if the top bits are known zero. 3847 unsigned BitWidth = N0.getValueSizeInBits(); 3848 if (DAG.MaskedValueIsZero(N0, 3849 APInt::getHighBitsSet(BitWidth, 3850 BitWidth-1))) { 3851 // Okay, get the un-inverted input value. 3852 SDValue Val; 3853 if (N0.getOpcode() == ISD::XOR) { 3854 Val = N0.getOperand(0); 3855 } else { 3856 assert(N0.getOpcode() == ISD::AND && 3857 N0.getOperand(0).getOpcode() == ISD::XOR); 3858 // ((X^1)&1)^1 -> X & 1 3859 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3860 N0.getOperand(0).getOperand(0), 3861 N0.getOperand(1)); 3862 } 3863 3864 return DAG.getSetCC(dl, VT, Val, N1, 3865 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3866 } 3867 } else if (N1C->isOne()) { 3868 SDValue Op0 = N0; 3869 if (Op0.getOpcode() == ISD::TRUNCATE) 3870 Op0 = Op0.getOperand(0); 3871 3872 if ((Op0.getOpcode() == ISD::XOR) && 3873 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3874 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3875 SDValue XorLHS = Op0.getOperand(0); 3876 SDValue XorRHS = Op0.getOperand(1); 3877 // Ensure that the input setccs return an i1 type or 0/1 value. 3878 if (Op0.getValueType() == MVT::i1 || 3879 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3880 ZeroOrOneBooleanContent && 3881 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3882 ZeroOrOneBooleanContent)) { 3883 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3884 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3885 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3886 } 3887 } 3888 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3889 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3890 if (Op0.getValueType().bitsGT(VT)) 3891 Op0 = DAG.getNode(ISD::AND, dl, VT, 3892 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3893 DAG.getConstant(1, dl, VT)); 3894 else if (Op0.getValueType().bitsLT(VT)) 3895 Op0 = DAG.getNode(ISD::AND, dl, VT, 3896 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3897 DAG.getConstant(1, dl, VT)); 3898 3899 return DAG.getSetCC(dl, VT, Op0, 3900 DAG.getConstant(0, dl, Op0.getValueType()), 3901 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3902 } 3903 if (Op0.getOpcode() == ISD::AssertZext && 3904 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3905 return DAG.getSetCC(dl, VT, Op0, 3906 DAG.getConstant(0, dl, Op0.getValueType()), 3907 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3908 } 3909 } 3910 3911 // Given: 3912 // icmp eq/ne (urem %x, %y), 0 3913 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3914 // icmp eq/ne %x, 0 3915 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 3916 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3917 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3918 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3919 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3920 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3921 } 3922 3923 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 3924 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 3925 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3926 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 3927 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 3928 N1C && N1C->isAllOnes()) { 3929 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3930 DAG.getConstant(0, dl, OpVT), 3931 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 3932 } 3933 3934 if (SDValue V = 3935 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3936 return V; 3937 } 3938 3939 // These simplifications apply to splat vectors as well. 3940 // TODO: Handle more splat vector cases. 3941 if (auto *N1C = isConstOrConstSplat(N1)) { 3942 const APInt &C1 = N1C->getAPIntValue(); 3943 3944 APInt MinVal, MaxVal; 3945 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3946 if (ISD::isSignedIntSetCC(Cond)) { 3947 MinVal = APInt::getSignedMinValue(OperandBitSize); 3948 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3949 } else { 3950 MinVal = APInt::getMinValue(OperandBitSize); 3951 MaxVal = APInt::getMaxValue(OperandBitSize); 3952 } 3953 3954 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3955 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3956 // X >= MIN --> true 3957 if (C1 == MinVal) 3958 return DAG.getBoolConstant(true, dl, VT, OpVT); 3959 3960 if (!VT.isVector()) { // TODO: Support this for vectors. 3961 // X >= C0 --> X > (C0 - 1) 3962 APInt C = C1 - 1; 3963 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3964 if ((DCI.isBeforeLegalizeOps() || 3965 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3966 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3967 isLegalICmpImmediate(C.getSExtValue())))) { 3968 return DAG.getSetCC(dl, VT, N0, 3969 DAG.getConstant(C, dl, N1.getValueType()), 3970 NewCC); 3971 } 3972 } 3973 } 3974 3975 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3976 // X <= MAX --> true 3977 if (C1 == MaxVal) 3978 return DAG.getBoolConstant(true, dl, VT, OpVT); 3979 3980 // X <= C0 --> X < (C0 + 1) 3981 if (!VT.isVector()) { // TODO: Support this for vectors. 3982 APInt C = C1 + 1; 3983 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3984 if ((DCI.isBeforeLegalizeOps() || 3985 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3986 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3987 isLegalICmpImmediate(C.getSExtValue())))) { 3988 return DAG.getSetCC(dl, VT, N0, 3989 DAG.getConstant(C, dl, N1.getValueType()), 3990 NewCC); 3991 } 3992 } 3993 } 3994 3995 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3996 if (C1 == MinVal) 3997 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3998 3999 // TODO: Support this for vectors after legalize ops. 4000 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4001 // Canonicalize setlt X, Max --> setne X, Max 4002 if (C1 == MaxVal) 4003 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4004 4005 // If we have setult X, 1, turn it into seteq X, 0 4006 if (C1 == MinVal+1) 4007 return DAG.getSetCC(dl, VT, N0, 4008 DAG.getConstant(MinVal, dl, N0.getValueType()), 4009 ISD::SETEQ); 4010 } 4011 } 4012 4013 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4014 if (C1 == MaxVal) 4015 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4016 4017 // TODO: Support this for vectors after legalize ops. 4018 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4019 // Canonicalize setgt X, Min --> setne X, Min 4020 if (C1 == MinVal) 4021 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4022 4023 // If we have setugt X, Max-1, turn it into seteq X, Max 4024 if (C1 == MaxVal-1) 4025 return DAG.getSetCC(dl, VT, N0, 4026 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4027 ISD::SETEQ); 4028 } 4029 } 4030 4031 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4032 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4033 if (C1.isZero()) 4034 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4035 VT, N0, N1, Cond, DCI, dl)) 4036 return CC; 4037 4038 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4039 // For example, when high 32-bits of i64 X are known clear: 4040 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4041 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4042 bool CmpZero = N1C->getAPIntValue().isZero(); 4043 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4044 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4045 // Match or(lo,shl(hi,bw/2)) pattern. 4046 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4047 unsigned EltBits = V.getScalarValueSizeInBits(); 4048 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4049 return false; 4050 SDValue LHS = V.getOperand(0); 4051 SDValue RHS = V.getOperand(1); 4052 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4053 // Unshifted element must have zero upperbits. 4054 if (RHS.getOpcode() == ISD::SHL && 4055 isa<ConstantSDNode>(RHS.getOperand(1)) && 4056 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4057 DAG.MaskedValueIsZero(LHS, HiBits)) { 4058 Lo = LHS; 4059 Hi = RHS.getOperand(0); 4060 return true; 4061 } 4062 if (LHS.getOpcode() == ISD::SHL && 4063 isa<ConstantSDNode>(LHS.getOperand(1)) && 4064 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4065 DAG.MaskedValueIsZero(RHS, HiBits)) { 4066 Lo = RHS; 4067 Hi = LHS.getOperand(0); 4068 return true; 4069 } 4070 return false; 4071 }; 4072 4073 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4074 unsigned EltBits = N0.getScalarValueSizeInBits(); 4075 unsigned HalfBits = EltBits / 2; 4076 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4077 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4078 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4079 SDValue NewN0 = 4080 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4081 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4082 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4083 }; 4084 4085 SDValue Lo, Hi; 4086 if (IsConcat(N0, Lo, Hi)) 4087 return MergeConcat(Lo, Hi); 4088 4089 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4090 SDValue Lo0, Lo1, Hi0, Hi1; 4091 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4092 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4093 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4094 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4095 } 4096 } 4097 } 4098 } 4099 4100 // If we have "setcc X, C0", check to see if we can shrink the immediate 4101 // by changing cc. 4102 // TODO: Support this for vectors after legalize ops. 4103 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4104 // SETUGT X, SINTMAX -> SETLT X, 0 4105 // SETUGE X, SINTMIN -> SETLT X, 0 4106 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4107 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4108 return DAG.getSetCC(dl, VT, N0, 4109 DAG.getConstant(0, dl, N1.getValueType()), 4110 ISD::SETLT); 4111 4112 // SETULT X, SINTMIN -> SETGT X, -1 4113 // SETULE X, SINTMAX -> SETGT X, -1 4114 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4115 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4116 return DAG.getSetCC(dl, VT, N0, 4117 DAG.getAllOnesConstant(dl, N1.getValueType()), 4118 ISD::SETGT); 4119 } 4120 } 4121 4122 // Back to non-vector simplifications. 4123 // TODO: Can we do these for vector splats? 4124 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4126 const APInt &C1 = N1C->getAPIntValue(); 4127 EVT ShValTy = N0.getValueType(); 4128 4129 // Fold bit comparisons when we can. This will result in an 4130 // incorrect value when boolean false is negative one, unless 4131 // the bitsize is 1 in which case the false value is the same 4132 // in practice regardless of the representation. 4133 if ((VT.getSizeInBits() == 1 || 4134 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4135 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4136 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4137 N0.getOpcode() == ISD::AND) { 4138 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4139 EVT ShiftTy = 4140 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4141 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4142 // Perform the xform if the AND RHS is a single bit. 4143 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4144 if (AndRHS->getAPIntValue().isPowerOf2() && 4145 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4146 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4147 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4148 DAG.getConstant(ShCt, dl, ShiftTy))); 4149 } 4150 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4151 // (X & 8) == 8 --> (X & 8) >> 3 4152 // Perform the xform if C1 is a single bit. 4153 unsigned ShCt = C1.logBase2(); 4154 if (C1.isPowerOf2() && 4155 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4156 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4157 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4158 DAG.getConstant(ShCt, dl, ShiftTy))); 4159 } 4160 } 4161 } 4162 } 4163 4164 if (C1.getMinSignedBits() <= 64 && 4165 !isLegalICmpImmediate(C1.getSExtValue())) { 4166 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4167 // (X & -256) == 256 -> (X >> 8) == 1 4168 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4169 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4170 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4171 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4172 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4173 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4174 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4175 SDValue Shift = 4176 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4177 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4178 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4179 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4180 } 4181 } 4182 } 4183 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4184 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4185 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4186 // X < 0x100000000 -> (X >> 32) < 1 4187 // X >= 0x100000000 -> (X >> 32) >= 1 4188 // X <= 0x0ffffffff -> (X >> 32) < 1 4189 // X > 0x0ffffffff -> (X >> 32) >= 1 4190 unsigned ShiftBits; 4191 APInt NewC = C1; 4192 ISD::CondCode NewCond = Cond; 4193 if (AdjOne) { 4194 ShiftBits = C1.countTrailingOnes(); 4195 NewC = NewC + 1; 4196 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4197 } else { 4198 ShiftBits = C1.countTrailingZeros(); 4199 } 4200 NewC.lshrInPlace(ShiftBits); 4201 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4202 isLegalICmpImmediate(NewC.getSExtValue()) && 4203 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4204 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4205 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4206 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4207 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4208 } 4209 } 4210 } 4211 } 4212 4213 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4214 auto *CFP = cast<ConstantFPSDNode>(N1); 4215 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4216 4217 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4218 // constant if knowing that the operand is non-nan is enough. We prefer to 4219 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4220 // materialize 0.0. 4221 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4222 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4223 4224 // setcc (fneg x), C -> setcc swap(pred) x, -C 4225 if (N0.getOpcode() == ISD::FNEG) { 4226 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4227 if (DCI.isBeforeLegalizeOps() || 4228 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4229 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4230 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4231 } 4232 } 4233 4234 // If the condition is not legal, see if we can find an equivalent one 4235 // which is legal. 4236 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4237 // If the comparison was an awkward floating-point == or != and one of 4238 // the comparison operands is infinity or negative infinity, convert the 4239 // condition to a less-awkward <= or >=. 4240 if (CFP->getValueAPF().isInfinity()) { 4241 bool IsNegInf = CFP->getValueAPF().isNegative(); 4242 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4243 switch (Cond) { 4244 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4245 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4246 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4247 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4248 default: break; 4249 } 4250 if (NewCond != ISD::SETCC_INVALID && 4251 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4252 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4253 } 4254 } 4255 } 4256 4257 if (N0 == N1) { 4258 // The sext(setcc()) => setcc() optimization relies on the appropriate 4259 // constant being emitted. 4260 assert(!N0.getValueType().isInteger() && 4261 "Integer types should be handled by FoldSetCC"); 4262 4263 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4264 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4265 if (UOF == 2) // FP operators that are undefined on NaNs. 4266 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4267 if (UOF == unsigned(EqTrue)) 4268 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4269 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4270 // if it is not already. 4271 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4272 if (NewCond != Cond && 4273 (DCI.isBeforeLegalizeOps() || 4274 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4275 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4276 } 4277 4278 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4279 N0.getValueType().isInteger()) { 4280 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4281 N0.getOpcode() == ISD::XOR) { 4282 // Simplify (X+Y) == (X+Z) --> Y == Z 4283 if (N0.getOpcode() == N1.getOpcode()) { 4284 if (N0.getOperand(0) == N1.getOperand(0)) 4285 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4286 if (N0.getOperand(1) == N1.getOperand(1)) 4287 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4288 if (isCommutativeBinOp(N0.getOpcode())) { 4289 // If X op Y == Y op X, try other combinations. 4290 if (N0.getOperand(0) == N1.getOperand(1)) 4291 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4292 Cond); 4293 if (N0.getOperand(1) == N1.getOperand(0)) 4294 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4295 Cond); 4296 } 4297 } 4298 4299 // If RHS is a legal immediate value for a compare instruction, we need 4300 // to be careful about increasing register pressure needlessly. 4301 bool LegalRHSImm = false; 4302 4303 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4304 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4305 // Turn (X+C1) == C2 --> X == C2-C1 4306 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4307 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4308 DAG.getConstant(RHSC->getAPIntValue()- 4309 LHSR->getAPIntValue(), 4310 dl, N0.getValueType()), Cond); 4311 } 4312 4313 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4314 if (N0.getOpcode() == ISD::XOR) 4315 // If we know that all of the inverted bits are zero, don't bother 4316 // performing the inversion. 4317 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4318 return 4319 DAG.getSetCC(dl, VT, N0.getOperand(0), 4320 DAG.getConstant(LHSR->getAPIntValue() ^ 4321 RHSC->getAPIntValue(), 4322 dl, N0.getValueType()), 4323 Cond); 4324 } 4325 4326 // Turn (C1-X) == C2 --> X == C1-C2 4327 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4328 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4329 return 4330 DAG.getSetCC(dl, VT, N0.getOperand(1), 4331 DAG.getConstant(SUBC->getAPIntValue() - 4332 RHSC->getAPIntValue(), 4333 dl, N0.getValueType()), 4334 Cond); 4335 } 4336 } 4337 4338 // Could RHSC fold directly into a compare? 4339 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4340 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4341 } 4342 4343 // (X+Y) == X --> Y == 0 and similar folds. 4344 // Don't do this if X is an immediate that can fold into a cmp 4345 // instruction and X+Y has other uses. It could be an induction variable 4346 // chain, and the transform would increase register pressure. 4347 if (!LegalRHSImm || N0.hasOneUse()) 4348 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4349 return V; 4350 } 4351 4352 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4353 N1.getOpcode() == ISD::XOR) 4354 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4355 return V; 4356 4357 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4358 return V; 4359 } 4360 4361 // Fold remainder of division by a constant. 4362 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4363 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4364 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4365 4366 // When division is cheap or optimizing for minimum size, 4367 // fall through to DIVREM creation by skipping this fold. 4368 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4369 if (N0.getOpcode() == ISD::UREM) { 4370 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4371 return Folded; 4372 } else if (N0.getOpcode() == ISD::SREM) { 4373 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4374 return Folded; 4375 } 4376 } 4377 } 4378 4379 // Fold away ALL boolean setcc's. 4380 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4381 SDValue Temp; 4382 switch (Cond) { 4383 default: llvm_unreachable("Unknown integer setcc!"); 4384 case ISD::SETEQ: // X == Y -> ~(X^Y) 4385 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4386 N0 = DAG.getNOT(dl, Temp, OpVT); 4387 if (!DCI.isCalledByLegalizer()) 4388 DCI.AddToWorklist(Temp.getNode()); 4389 break; 4390 case ISD::SETNE: // X != Y --> (X^Y) 4391 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4392 break; 4393 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4394 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4395 Temp = DAG.getNOT(dl, N0, OpVT); 4396 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4397 if (!DCI.isCalledByLegalizer()) 4398 DCI.AddToWorklist(Temp.getNode()); 4399 break; 4400 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4401 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4402 Temp = DAG.getNOT(dl, N1, OpVT); 4403 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4404 if (!DCI.isCalledByLegalizer()) 4405 DCI.AddToWorklist(Temp.getNode()); 4406 break; 4407 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4408 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4409 Temp = DAG.getNOT(dl, N0, OpVT); 4410 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4411 if (!DCI.isCalledByLegalizer()) 4412 DCI.AddToWorklist(Temp.getNode()); 4413 break; 4414 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4415 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4416 Temp = DAG.getNOT(dl, N1, OpVT); 4417 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4418 break; 4419 } 4420 if (VT.getScalarType() != MVT::i1) { 4421 if (!DCI.isCalledByLegalizer()) 4422 DCI.AddToWorklist(N0.getNode()); 4423 // FIXME: If running after legalize, we probably can't do this. 4424 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4425 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4426 } 4427 return N0; 4428 } 4429 4430 // Could not fold it. 4431 return SDValue(); 4432 } 4433 4434 /// Returns true (and the GlobalValue and the offset) if the node is a 4435 /// GlobalAddress + offset. 4436 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4437 int64_t &Offset) const { 4438 4439 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4440 4441 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4442 GA = GASD->getGlobal(); 4443 Offset += GASD->getOffset(); 4444 return true; 4445 } 4446 4447 if (N->getOpcode() == ISD::ADD) { 4448 SDValue N1 = N->getOperand(0); 4449 SDValue N2 = N->getOperand(1); 4450 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4451 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4452 Offset += V->getSExtValue(); 4453 return true; 4454 } 4455 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4456 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4457 Offset += V->getSExtValue(); 4458 return true; 4459 } 4460 } 4461 } 4462 4463 return false; 4464 } 4465 4466 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4467 DAGCombinerInfo &DCI) const { 4468 // Default implementation: no optimization. 4469 return SDValue(); 4470 } 4471 4472 //===----------------------------------------------------------------------===// 4473 // Inline Assembler Implementation Methods 4474 //===----------------------------------------------------------------------===// 4475 4476 TargetLowering::ConstraintType 4477 TargetLowering::getConstraintType(StringRef Constraint) const { 4478 unsigned S = Constraint.size(); 4479 4480 if (S == 1) { 4481 switch (Constraint[0]) { 4482 default: break; 4483 case 'r': 4484 return C_RegisterClass; 4485 case 'm': // memory 4486 case 'o': // offsetable 4487 case 'V': // not offsetable 4488 return C_Memory; 4489 case 'n': // Simple Integer 4490 case 'E': // Floating Point Constant 4491 case 'F': // Floating Point Constant 4492 return C_Immediate; 4493 case 'i': // Simple Integer or Relocatable Constant 4494 case 's': // Relocatable Constant 4495 case 'p': // Address. 4496 case 'X': // Allow ANY value. 4497 case 'I': // Target registers. 4498 case 'J': 4499 case 'K': 4500 case 'L': 4501 case 'M': 4502 case 'N': 4503 case 'O': 4504 case 'P': 4505 case '<': 4506 case '>': 4507 return C_Other; 4508 } 4509 } 4510 4511 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4512 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4513 return C_Memory; 4514 return C_Register; 4515 } 4516 return C_Unknown; 4517 } 4518 4519 /// Try to replace an X constraint, which matches anything, with another that 4520 /// has more specific requirements based on the type of the corresponding 4521 /// operand. 4522 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4523 if (ConstraintVT.isInteger()) 4524 return "r"; 4525 if (ConstraintVT.isFloatingPoint()) 4526 return "f"; // works for many targets 4527 return nullptr; 4528 } 4529 4530 SDValue TargetLowering::LowerAsmOutputForConstraint( 4531 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4532 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4533 return SDValue(); 4534 } 4535 4536 /// Lower the specified operand into the Ops vector. 4537 /// If it is invalid, don't add anything to Ops. 4538 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4539 std::string &Constraint, 4540 std::vector<SDValue> &Ops, 4541 SelectionDAG &DAG) const { 4542 4543 if (Constraint.length() > 1) return; 4544 4545 char ConstraintLetter = Constraint[0]; 4546 switch (ConstraintLetter) { 4547 default: break; 4548 case 'X': // Allows any operand; labels (basic block) use this. 4549 if (Op.getOpcode() == ISD::BasicBlock || 4550 Op.getOpcode() == ISD::TargetBlockAddress) { 4551 Ops.push_back(Op); 4552 return; 4553 } 4554 LLVM_FALLTHROUGH; 4555 case 'i': // Simple Integer or Relocatable Constant 4556 case 'n': // Simple Integer 4557 case 's': { // Relocatable Constant 4558 4559 GlobalAddressSDNode *GA; 4560 ConstantSDNode *C; 4561 BlockAddressSDNode *BA; 4562 uint64_t Offset = 0; 4563 4564 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4565 // etc., since getelementpointer is variadic. We can't use 4566 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4567 // while in this case the GA may be furthest from the root node which is 4568 // likely an ISD::ADD. 4569 while (1) { 4570 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4571 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4572 GA->getValueType(0), 4573 Offset + GA->getOffset())); 4574 return; 4575 } 4576 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4577 // gcc prints these as sign extended. Sign extend value to 64 bits 4578 // now; without this it would get ZExt'd later in 4579 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4580 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4581 BooleanContent BCont = getBooleanContents(MVT::i64); 4582 ISD::NodeType ExtOpc = 4583 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4584 int64_t ExtVal = 4585 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4586 Ops.push_back( 4587 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4588 return; 4589 } 4590 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4591 Ops.push_back(DAG.getTargetBlockAddress( 4592 BA->getBlockAddress(), BA->getValueType(0), 4593 Offset + BA->getOffset(), BA->getTargetFlags())); 4594 return; 4595 } 4596 const unsigned OpCode = Op.getOpcode(); 4597 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4598 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4599 Op = Op.getOperand(1); 4600 // Subtraction is not commutative. 4601 else if (OpCode == ISD::ADD && 4602 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4603 Op = Op.getOperand(0); 4604 else 4605 return; 4606 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4607 continue; 4608 } 4609 return; 4610 } 4611 break; 4612 } 4613 } 4614 } 4615 4616 std::pair<unsigned, const TargetRegisterClass *> 4617 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4618 StringRef Constraint, 4619 MVT VT) const { 4620 if (Constraint.empty() || Constraint[0] != '{') 4621 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4622 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4623 4624 // Remove the braces from around the name. 4625 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4626 4627 std::pair<unsigned, const TargetRegisterClass *> R = 4628 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4629 4630 // Figure out which register class contains this reg. 4631 for (const TargetRegisterClass *RC : RI->regclasses()) { 4632 // If none of the value types for this register class are valid, we 4633 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4634 if (!isLegalRC(*RI, *RC)) 4635 continue; 4636 4637 for (const MCPhysReg &PR : *RC) { 4638 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4639 std::pair<unsigned, const TargetRegisterClass *> S = 4640 std::make_pair(PR, RC); 4641 4642 // If this register class has the requested value type, return it, 4643 // otherwise keep searching and return the first class found 4644 // if no other is found which explicitly has the requested type. 4645 if (RI->isTypeLegalForClass(*RC, VT)) 4646 return S; 4647 if (!R.second) 4648 R = S; 4649 } 4650 } 4651 } 4652 4653 return R; 4654 } 4655 4656 //===----------------------------------------------------------------------===// 4657 // Constraint Selection. 4658 4659 /// Return true of this is an input operand that is a matching constraint like 4660 /// "4". 4661 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4662 assert(!ConstraintCode.empty() && "No known constraint!"); 4663 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4664 } 4665 4666 /// If this is an input matching constraint, this method returns the output 4667 /// operand it matches. 4668 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4669 assert(!ConstraintCode.empty() && "No known constraint!"); 4670 return atoi(ConstraintCode.c_str()); 4671 } 4672 4673 /// Split up the constraint string from the inline assembly value into the 4674 /// specific constraints and their prefixes, and also tie in the associated 4675 /// operand values. 4676 /// If this returns an empty vector, and if the constraint string itself 4677 /// isn't empty, there was an error parsing. 4678 TargetLowering::AsmOperandInfoVector 4679 TargetLowering::ParseConstraints(const DataLayout &DL, 4680 const TargetRegisterInfo *TRI, 4681 const CallBase &Call) const { 4682 /// Information about all of the constraints. 4683 AsmOperandInfoVector ConstraintOperands; 4684 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4685 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4686 4687 // Do a prepass over the constraints, canonicalizing them, and building up the 4688 // ConstraintOperands list. 4689 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4690 unsigned ResNo = 0; // ResNo - The result number of the next output. 4691 4692 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4693 ConstraintOperands.emplace_back(std::move(CI)); 4694 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4695 4696 // Update multiple alternative constraint count. 4697 if (OpInfo.multipleAlternatives.size() > maCount) 4698 maCount = OpInfo.multipleAlternatives.size(); 4699 4700 OpInfo.ConstraintVT = MVT::Other; 4701 4702 // Compute the value type for each operand. 4703 switch (OpInfo.Type) { 4704 case InlineAsm::isOutput: 4705 // Indirect outputs just consume an argument. 4706 if (OpInfo.isIndirect) { 4707 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4708 break; 4709 } 4710 4711 // The return value of the call is this value. As such, there is no 4712 // corresponding argument. 4713 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4714 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4715 OpInfo.ConstraintVT = 4716 getSimpleValueType(DL, STy->getElementType(ResNo)); 4717 } else { 4718 assert(ResNo == 0 && "Asm only has one result!"); 4719 OpInfo.ConstraintVT = 4720 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4721 } 4722 ++ResNo; 4723 break; 4724 case InlineAsm::isInput: 4725 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4726 break; 4727 case InlineAsm::isClobber: 4728 // Nothing to do. 4729 break; 4730 } 4731 4732 if (OpInfo.CallOperandVal) { 4733 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4734 if (OpInfo.isIndirect) { 4735 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4736 if (!PtrTy) 4737 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4738 OpTy = PtrTy->getElementType(); 4739 } 4740 4741 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4742 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4743 if (STy->getNumElements() == 1) 4744 OpTy = STy->getElementType(0); 4745 4746 // If OpTy is not a single value, it may be a struct/union that we 4747 // can tile with integers. 4748 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4749 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4750 switch (BitSize) { 4751 default: break; 4752 case 1: 4753 case 8: 4754 case 16: 4755 case 32: 4756 case 64: 4757 case 128: 4758 OpInfo.ConstraintVT = 4759 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4760 break; 4761 } 4762 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4763 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4764 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4765 } else { 4766 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4767 } 4768 } 4769 } 4770 4771 // If we have multiple alternative constraints, select the best alternative. 4772 if (!ConstraintOperands.empty()) { 4773 if (maCount) { 4774 unsigned bestMAIndex = 0; 4775 int bestWeight = -1; 4776 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4777 int weight = -1; 4778 unsigned maIndex; 4779 // Compute the sums of the weights for each alternative, keeping track 4780 // of the best (highest weight) one so far. 4781 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4782 int weightSum = 0; 4783 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4784 cIndex != eIndex; ++cIndex) { 4785 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4786 if (OpInfo.Type == InlineAsm::isClobber) 4787 continue; 4788 4789 // If this is an output operand with a matching input operand, 4790 // look up the matching input. If their types mismatch, e.g. one 4791 // is an integer, the other is floating point, or their sizes are 4792 // different, flag it as an maCantMatch. 4793 if (OpInfo.hasMatchingInput()) { 4794 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4795 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4796 if ((OpInfo.ConstraintVT.isInteger() != 4797 Input.ConstraintVT.isInteger()) || 4798 (OpInfo.ConstraintVT.getSizeInBits() != 4799 Input.ConstraintVT.getSizeInBits())) { 4800 weightSum = -1; // Can't match. 4801 break; 4802 } 4803 } 4804 } 4805 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4806 if (weight == -1) { 4807 weightSum = -1; 4808 break; 4809 } 4810 weightSum += weight; 4811 } 4812 // Update best. 4813 if (weightSum > bestWeight) { 4814 bestWeight = weightSum; 4815 bestMAIndex = maIndex; 4816 } 4817 } 4818 4819 // Now select chosen alternative in each constraint. 4820 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4821 cIndex != eIndex; ++cIndex) { 4822 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4823 if (cInfo.Type == InlineAsm::isClobber) 4824 continue; 4825 cInfo.selectAlternative(bestMAIndex); 4826 } 4827 } 4828 } 4829 4830 // Check and hook up tied operands, choose constraint code to use. 4831 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4832 cIndex != eIndex; ++cIndex) { 4833 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4834 4835 // If this is an output operand with a matching input operand, look up the 4836 // matching input. If their types mismatch, e.g. one is an integer, the 4837 // other is floating point, or their sizes are different, flag it as an 4838 // error. 4839 if (OpInfo.hasMatchingInput()) { 4840 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4841 4842 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4843 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4844 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4845 OpInfo.ConstraintVT); 4846 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4847 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4848 Input.ConstraintVT); 4849 if ((OpInfo.ConstraintVT.isInteger() != 4850 Input.ConstraintVT.isInteger()) || 4851 (MatchRC.second != InputRC.second)) { 4852 report_fatal_error("Unsupported asm: input constraint" 4853 " with a matching output constraint of" 4854 " incompatible type!"); 4855 } 4856 } 4857 } 4858 } 4859 4860 return ConstraintOperands; 4861 } 4862 4863 /// Return an integer indicating how general CT is. 4864 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4865 switch (CT) { 4866 case TargetLowering::C_Immediate: 4867 case TargetLowering::C_Other: 4868 case TargetLowering::C_Unknown: 4869 return 0; 4870 case TargetLowering::C_Register: 4871 return 1; 4872 case TargetLowering::C_RegisterClass: 4873 return 2; 4874 case TargetLowering::C_Memory: 4875 return 3; 4876 } 4877 llvm_unreachable("Invalid constraint type"); 4878 } 4879 4880 /// Examine constraint type and operand type and determine a weight value. 4881 /// This object must already have been set up with the operand type 4882 /// and the current alternative constraint selected. 4883 TargetLowering::ConstraintWeight 4884 TargetLowering::getMultipleConstraintMatchWeight( 4885 AsmOperandInfo &info, int maIndex) const { 4886 InlineAsm::ConstraintCodeVector *rCodes; 4887 if (maIndex >= (int)info.multipleAlternatives.size()) 4888 rCodes = &info.Codes; 4889 else 4890 rCodes = &info.multipleAlternatives[maIndex].Codes; 4891 ConstraintWeight BestWeight = CW_Invalid; 4892 4893 // Loop over the options, keeping track of the most general one. 4894 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4895 ConstraintWeight weight = 4896 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4897 if (weight > BestWeight) 4898 BestWeight = weight; 4899 } 4900 4901 return BestWeight; 4902 } 4903 4904 /// Examine constraint type and operand type and determine a weight value. 4905 /// This object must already have been set up with the operand type 4906 /// and the current alternative constraint selected. 4907 TargetLowering::ConstraintWeight 4908 TargetLowering::getSingleConstraintMatchWeight( 4909 AsmOperandInfo &info, const char *constraint) const { 4910 ConstraintWeight weight = CW_Invalid; 4911 Value *CallOperandVal = info.CallOperandVal; 4912 // If we don't have a value, we can't do a match, 4913 // but allow it at the lowest weight. 4914 if (!CallOperandVal) 4915 return CW_Default; 4916 // Look at the constraint type. 4917 switch (*constraint) { 4918 case 'i': // immediate integer. 4919 case 'n': // immediate integer with a known value. 4920 if (isa<ConstantInt>(CallOperandVal)) 4921 weight = CW_Constant; 4922 break; 4923 case 's': // non-explicit intregal immediate. 4924 if (isa<GlobalValue>(CallOperandVal)) 4925 weight = CW_Constant; 4926 break; 4927 case 'E': // immediate float if host format. 4928 case 'F': // immediate float. 4929 if (isa<ConstantFP>(CallOperandVal)) 4930 weight = CW_Constant; 4931 break; 4932 case '<': // memory operand with autodecrement. 4933 case '>': // memory operand with autoincrement. 4934 case 'm': // memory operand. 4935 case 'o': // offsettable memory operand 4936 case 'V': // non-offsettable memory operand 4937 weight = CW_Memory; 4938 break; 4939 case 'r': // general register. 4940 case 'g': // general register, memory operand or immediate integer. 4941 // note: Clang converts "g" to "imr". 4942 if (CallOperandVal->getType()->isIntegerTy()) 4943 weight = CW_Register; 4944 break; 4945 case 'X': // any operand. 4946 default: 4947 weight = CW_Default; 4948 break; 4949 } 4950 return weight; 4951 } 4952 4953 /// If there are multiple different constraints that we could pick for this 4954 /// operand (e.g. "imr") try to pick the 'best' one. 4955 /// This is somewhat tricky: constraints fall into four classes: 4956 /// Other -> immediates and magic values 4957 /// Register -> one specific register 4958 /// RegisterClass -> a group of regs 4959 /// Memory -> memory 4960 /// Ideally, we would pick the most specific constraint possible: if we have 4961 /// something that fits into a register, we would pick it. The problem here 4962 /// is that if we have something that could either be in a register or in 4963 /// memory that use of the register could cause selection of *other* 4964 /// operands to fail: they might only succeed if we pick memory. Because of 4965 /// this the heuristic we use is: 4966 /// 4967 /// 1) If there is an 'other' constraint, and if the operand is valid for 4968 /// that constraint, use it. This makes us take advantage of 'i' 4969 /// constraints when available. 4970 /// 2) Otherwise, pick the most general constraint present. This prefers 4971 /// 'm' over 'r', for example. 4972 /// 4973 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4974 const TargetLowering &TLI, 4975 SDValue Op, SelectionDAG *DAG) { 4976 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4977 unsigned BestIdx = 0; 4978 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4979 int BestGenerality = -1; 4980 4981 // Loop over the options, keeping track of the most general one. 4982 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4983 TargetLowering::ConstraintType CType = 4984 TLI.getConstraintType(OpInfo.Codes[i]); 4985 4986 // Indirect 'other' or 'immediate' constraints are not allowed. 4987 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4988 CType == TargetLowering::C_Register || 4989 CType == TargetLowering::C_RegisterClass)) 4990 continue; 4991 4992 // If this is an 'other' or 'immediate' constraint, see if the operand is 4993 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4994 // the operand is an integer in the range [0..31] we want to use I (saving a 4995 // load of a register), otherwise we must use 'r'. 4996 if ((CType == TargetLowering::C_Other || 4997 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4998 assert(OpInfo.Codes[i].size() == 1 && 4999 "Unhandled multi-letter 'other' constraint"); 5000 std::vector<SDValue> ResultOps; 5001 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5002 ResultOps, *DAG); 5003 if (!ResultOps.empty()) { 5004 BestType = CType; 5005 BestIdx = i; 5006 break; 5007 } 5008 } 5009 5010 // Things with matching constraints can only be registers, per gcc 5011 // documentation. This mainly affects "g" constraints. 5012 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5013 continue; 5014 5015 // This constraint letter is more general than the previous one, use it. 5016 int Generality = getConstraintGenerality(CType); 5017 if (Generality > BestGenerality) { 5018 BestType = CType; 5019 BestIdx = i; 5020 BestGenerality = Generality; 5021 } 5022 } 5023 5024 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5025 OpInfo.ConstraintType = BestType; 5026 } 5027 5028 /// Determines the constraint code and constraint type to use for the specific 5029 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5030 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5031 SDValue Op, 5032 SelectionDAG *DAG) const { 5033 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5034 5035 // Single-letter constraints ('r') are very common. 5036 if (OpInfo.Codes.size() == 1) { 5037 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5038 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5039 } else { 5040 ChooseConstraint(OpInfo, *this, Op, DAG); 5041 } 5042 5043 // 'X' matches anything. 5044 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5045 // Labels and constants are handled elsewhere ('X' is the only thing 5046 // that matches labels). For Functions, the type here is the type of 5047 // the result, which is not what we want to look at; leave them alone. 5048 Value *v = OpInfo.CallOperandVal; 5049 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 5050 OpInfo.CallOperandVal = v; 5051 return; 5052 } 5053 5054 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5055 return; 5056 5057 // Otherwise, try to resolve it to something we know about by looking at 5058 // the actual operand type. 5059 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5060 OpInfo.ConstraintCode = Repl; 5061 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5062 } 5063 } 5064 } 5065 5066 /// Given an exact SDIV by a constant, create a multiplication 5067 /// with the multiplicative inverse of the constant. 5068 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5069 const SDLoc &dl, SelectionDAG &DAG, 5070 SmallVectorImpl<SDNode *> &Created) { 5071 SDValue Op0 = N->getOperand(0); 5072 SDValue Op1 = N->getOperand(1); 5073 EVT VT = N->getValueType(0); 5074 EVT SVT = VT.getScalarType(); 5075 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5076 EVT ShSVT = ShVT.getScalarType(); 5077 5078 bool UseSRA = false; 5079 SmallVector<SDValue, 16> Shifts, Factors; 5080 5081 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5082 if (C->isZero()) 5083 return false; 5084 APInt Divisor = C->getAPIntValue(); 5085 unsigned Shift = Divisor.countTrailingZeros(); 5086 if (Shift) { 5087 Divisor.ashrInPlace(Shift); 5088 UseSRA = true; 5089 } 5090 // Calculate the multiplicative inverse, using Newton's method. 5091 APInt t; 5092 APInt Factor = Divisor; 5093 while ((t = Divisor * Factor) != 1) 5094 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5095 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5096 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5097 return true; 5098 }; 5099 5100 // Collect all magic values from the build vector. 5101 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5102 return SDValue(); 5103 5104 SDValue Shift, Factor; 5105 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5106 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5107 Factor = DAG.getBuildVector(VT, dl, Factors); 5108 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5109 assert(Shifts.size() == 1 && Factors.size() == 1 && 5110 "Expected matchUnaryPredicate to return one element for scalable " 5111 "vectors"); 5112 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5113 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5114 } else { 5115 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5116 Shift = Shifts[0]; 5117 Factor = Factors[0]; 5118 } 5119 5120 SDValue Res = Op0; 5121 5122 // Shift the value upfront if it is even, so the LSB is one. 5123 if (UseSRA) { 5124 // TODO: For UDIV use SRL instead of SRA. 5125 SDNodeFlags Flags; 5126 Flags.setExact(true); 5127 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5128 Created.push_back(Res.getNode()); 5129 } 5130 5131 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5132 } 5133 5134 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5135 SelectionDAG &DAG, 5136 SmallVectorImpl<SDNode *> &Created) const { 5137 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5138 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5139 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5140 return SDValue(N, 0); // Lower SDIV as SDIV 5141 return SDValue(); 5142 } 5143 5144 /// Given an ISD::SDIV node expressing a divide by constant, 5145 /// return a DAG expression to select that will generate the same value by 5146 /// multiplying by a magic number. 5147 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5148 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5149 bool IsAfterLegalization, 5150 SmallVectorImpl<SDNode *> &Created) const { 5151 SDLoc dl(N); 5152 EVT VT = N->getValueType(0); 5153 EVT SVT = VT.getScalarType(); 5154 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5155 EVT ShSVT = ShVT.getScalarType(); 5156 unsigned EltBits = VT.getScalarSizeInBits(); 5157 EVT MulVT; 5158 5159 // Check to see if we can do this. 5160 // FIXME: We should be more aggressive here. 5161 if (!isTypeLegal(VT)) { 5162 // Limit this to simple scalars for now. 5163 if (VT.isVector() || !VT.isSimple()) 5164 return SDValue(); 5165 5166 // If this type will be promoted to a large enough type with a legal 5167 // multiply operation, we can go ahead and do this transform. 5168 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5169 return SDValue(); 5170 5171 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5172 if (MulVT.getSizeInBits() < (2 * EltBits) || 5173 !isOperationLegal(ISD::MUL, MulVT)) 5174 return SDValue(); 5175 } 5176 5177 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5178 if (N->getFlags().hasExact()) 5179 return BuildExactSDIV(*this, N, dl, DAG, Created); 5180 5181 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5182 5183 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5184 if (C->isZero()) 5185 return false; 5186 5187 const APInt &Divisor = C->getAPIntValue(); 5188 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5189 int NumeratorFactor = 0; 5190 int ShiftMask = -1; 5191 5192 if (Divisor.isOne() || Divisor.isAllOnes()) { 5193 // If d is +1/-1, we just multiply the numerator by +1/-1. 5194 NumeratorFactor = Divisor.getSExtValue(); 5195 magics.Magic = 0; 5196 magics.ShiftAmount = 0; 5197 ShiftMask = 0; 5198 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5199 // If d > 0 and m < 0, add the numerator. 5200 NumeratorFactor = 1; 5201 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5202 // If d < 0 and m > 0, subtract the numerator. 5203 NumeratorFactor = -1; 5204 } 5205 5206 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5207 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5208 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5209 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5210 return true; 5211 }; 5212 5213 SDValue N0 = N->getOperand(0); 5214 SDValue N1 = N->getOperand(1); 5215 5216 // Collect the shifts / magic values from each element. 5217 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5218 return SDValue(); 5219 5220 SDValue MagicFactor, Factor, Shift, ShiftMask; 5221 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5222 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5223 Factor = DAG.getBuildVector(VT, dl, Factors); 5224 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5225 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5226 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5227 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5228 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5229 "Expected matchUnaryPredicate to return one element for scalable " 5230 "vectors"); 5231 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5232 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5233 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5234 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5235 } else { 5236 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5237 MagicFactor = MagicFactors[0]; 5238 Factor = Factors[0]; 5239 Shift = Shifts[0]; 5240 ShiftMask = ShiftMasks[0]; 5241 } 5242 5243 // Multiply the numerator (operand 0) by the magic value. 5244 // FIXME: We should support doing a MUL in a wider type. 5245 auto GetMULHS = [&](SDValue X, SDValue Y) { 5246 // If the type isn't legal, use a wider mul of the the type calculated 5247 // earlier. 5248 if (!isTypeLegal(VT)) { 5249 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5250 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5251 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5252 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5253 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5254 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5255 } 5256 5257 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5258 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5259 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5260 SDValue LoHi = 5261 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5262 return SDValue(LoHi.getNode(), 1); 5263 } 5264 return SDValue(); 5265 }; 5266 5267 SDValue Q = GetMULHS(N0, MagicFactor); 5268 if (!Q) 5269 return SDValue(); 5270 5271 Created.push_back(Q.getNode()); 5272 5273 // (Optionally) Add/subtract the numerator using Factor. 5274 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5275 Created.push_back(Factor.getNode()); 5276 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5277 Created.push_back(Q.getNode()); 5278 5279 // Shift right algebraic by shift value. 5280 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5281 Created.push_back(Q.getNode()); 5282 5283 // Extract the sign bit, mask it and add it to the quotient. 5284 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5285 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5286 Created.push_back(T.getNode()); 5287 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5288 Created.push_back(T.getNode()); 5289 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5290 } 5291 5292 /// Given an ISD::UDIV node expressing a divide by constant, 5293 /// return a DAG expression to select that will generate the same value by 5294 /// multiplying by a magic number. 5295 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5296 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5297 bool IsAfterLegalization, 5298 SmallVectorImpl<SDNode *> &Created) const { 5299 SDLoc dl(N); 5300 EVT VT = N->getValueType(0); 5301 EVT SVT = VT.getScalarType(); 5302 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5303 EVT ShSVT = ShVT.getScalarType(); 5304 unsigned EltBits = VT.getScalarSizeInBits(); 5305 EVT MulVT; 5306 5307 // Check to see if we can do this. 5308 // FIXME: We should be more aggressive here. 5309 if (!isTypeLegal(VT)) { 5310 // Limit this to simple scalars for now. 5311 if (VT.isVector() || !VT.isSimple()) 5312 return SDValue(); 5313 5314 // If this type will be promoted to a large enough type with a legal 5315 // multiply operation, we can go ahead and do this transform. 5316 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5317 return SDValue(); 5318 5319 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5320 if (MulVT.getSizeInBits() < (2 * EltBits) || 5321 !isOperationLegal(ISD::MUL, MulVT)) 5322 return SDValue(); 5323 } 5324 5325 bool UseNPQ = false; 5326 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5327 5328 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5329 if (C->isZero()) 5330 return false; 5331 // FIXME: We should use a narrower constant when the upper 5332 // bits are known to be zero. 5333 const APInt& Divisor = C->getAPIntValue(); 5334 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5335 unsigned PreShift = 0, PostShift = 0; 5336 5337 // If the divisor is even, we can avoid using the expensive fixup by 5338 // shifting the divided value upfront. 5339 if (magics.IsAdd != 0 && !Divisor[0]) { 5340 PreShift = Divisor.countTrailingZeros(); 5341 // Get magic number for the shifted divisor. 5342 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5343 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5344 } 5345 5346 APInt Magic = magics.Magic; 5347 5348 unsigned SelNPQ; 5349 if (magics.IsAdd == 0 || Divisor.isOne()) { 5350 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5351 "We shouldn't generate an undefined shift!"); 5352 PostShift = magics.ShiftAmount; 5353 SelNPQ = false; 5354 } else { 5355 PostShift = magics.ShiftAmount - 1; 5356 SelNPQ = true; 5357 } 5358 5359 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5360 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5361 NPQFactors.push_back( 5362 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5363 : APInt::getZero(EltBits), 5364 dl, SVT)); 5365 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5366 UseNPQ |= SelNPQ; 5367 return true; 5368 }; 5369 5370 SDValue N0 = N->getOperand(0); 5371 SDValue N1 = N->getOperand(1); 5372 5373 // Collect the shifts/magic values from each element. 5374 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5375 return SDValue(); 5376 5377 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5378 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5379 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5380 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5381 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5382 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5383 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5384 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5385 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5386 "Expected matchUnaryPredicate to return one for scalable vectors"); 5387 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5388 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5389 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5390 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5391 } else { 5392 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5393 PreShift = PreShifts[0]; 5394 MagicFactor = MagicFactors[0]; 5395 PostShift = PostShifts[0]; 5396 } 5397 5398 SDValue Q = N0; 5399 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5400 Created.push_back(Q.getNode()); 5401 5402 // FIXME: We should support doing a MUL in a wider type. 5403 auto GetMULHU = [&](SDValue X, SDValue Y) { 5404 // If the type isn't legal, use a wider mul of the the type calculated 5405 // earlier. 5406 if (!isTypeLegal(VT)) { 5407 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5408 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5409 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5410 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5411 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5412 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5413 } 5414 5415 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5416 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5417 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5418 SDValue LoHi = 5419 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5420 return SDValue(LoHi.getNode(), 1); 5421 } 5422 return SDValue(); // No mulhu or equivalent 5423 }; 5424 5425 // Multiply the numerator (operand 0) by the magic value. 5426 Q = GetMULHU(Q, MagicFactor); 5427 if (!Q) 5428 return SDValue(); 5429 5430 Created.push_back(Q.getNode()); 5431 5432 if (UseNPQ) { 5433 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5434 Created.push_back(NPQ.getNode()); 5435 5436 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5437 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5438 if (VT.isVector()) 5439 NPQ = GetMULHU(NPQ, NPQFactor); 5440 else 5441 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5442 5443 Created.push_back(NPQ.getNode()); 5444 5445 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5446 Created.push_back(Q.getNode()); 5447 } 5448 5449 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5450 Created.push_back(Q.getNode()); 5451 5452 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5453 5454 SDValue One = DAG.getConstant(1, dl, VT); 5455 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5456 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5457 } 5458 5459 /// If all values in Values that *don't* match the predicate are same 'splat' 5460 /// value, then replace all values with that splat value. 5461 /// Else, if AlternativeReplacement was provided, then replace all values that 5462 /// do match predicate with AlternativeReplacement value. 5463 static void 5464 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5465 std::function<bool(SDValue)> Predicate, 5466 SDValue AlternativeReplacement = SDValue()) { 5467 SDValue Replacement; 5468 // Is there a value for which the Predicate does *NOT* match? What is it? 5469 auto SplatValue = llvm::find_if_not(Values, Predicate); 5470 if (SplatValue != Values.end()) { 5471 // Does Values consist only of SplatValue's and values matching Predicate? 5472 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5473 return Value == *SplatValue || Predicate(Value); 5474 })) // Then we shall replace values matching predicate with SplatValue. 5475 Replacement = *SplatValue; 5476 } 5477 if (!Replacement) { 5478 // Oops, we did not find the "baseline" splat value. 5479 if (!AlternativeReplacement) 5480 return; // Nothing to do. 5481 // Let's replace with provided value then. 5482 Replacement = AlternativeReplacement; 5483 } 5484 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5485 } 5486 5487 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5488 /// where the divisor is constant and the comparison target is zero, 5489 /// return a DAG expression that will generate the same comparison result 5490 /// using only multiplications, additions and shifts/rotations. 5491 /// Ref: "Hacker's Delight" 10-17. 5492 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5493 SDValue CompTargetNode, 5494 ISD::CondCode Cond, 5495 DAGCombinerInfo &DCI, 5496 const SDLoc &DL) const { 5497 SmallVector<SDNode *, 5> Built; 5498 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5499 DCI, DL, Built)) { 5500 for (SDNode *N : Built) 5501 DCI.AddToWorklist(N); 5502 return Folded; 5503 } 5504 5505 return SDValue(); 5506 } 5507 5508 SDValue 5509 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5510 SDValue CompTargetNode, ISD::CondCode Cond, 5511 DAGCombinerInfo &DCI, const SDLoc &DL, 5512 SmallVectorImpl<SDNode *> &Created) const { 5513 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5514 // - D must be constant, with D = D0 * 2^K where D0 is odd 5515 // - P is the multiplicative inverse of D0 modulo 2^W 5516 // - Q = floor(((2^W) - 1) / D) 5517 // where W is the width of the common type of N and D. 5518 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5519 "Only applicable for (in)equality comparisons."); 5520 5521 SelectionDAG &DAG = DCI.DAG; 5522 5523 EVT VT = REMNode.getValueType(); 5524 EVT SVT = VT.getScalarType(); 5525 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5526 EVT ShSVT = ShVT.getScalarType(); 5527 5528 // If MUL is unavailable, we cannot proceed in any case. 5529 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5530 return SDValue(); 5531 5532 bool ComparingWithAllZeros = true; 5533 bool AllComparisonsWithNonZerosAreTautological = true; 5534 bool HadTautologicalLanes = false; 5535 bool AllLanesAreTautological = true; 5536 bool HadEvenDivisor = false; 5537 bool AllDivisorsArePowerOfTwo = true; 5538 bool HadTautologicalInvertedLanes = false; 5539 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5540 5541 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5542 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5543 if (CDiv->isZero()) 5544 return false; 5545 5546 const APInt &D = CDiv->getAPIntValue(); 5547 const APInt &Cmp = CCmp->getAPIntValue(); 5548 5549 ComparingWithAllZeros &= Cmp.isZero(); 5550 5551 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5552 // if C2 is not less than C1, the comparison is always false. 5553 // But we will only be able to produce the comparison that will give the 5554 // opposive tautological answer. So this lane would need to be fixed up. 5555 bool TautologicalInvertedLane = D.ule(Cmp); 5556 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5557 5558 // If all lanes are tautological (either all divisors are ones, or divisor 5559 // is not greater than the constant we are comparing with), 5560 // we will prefer to avoid the fold. 5561 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5562 HadTautologicalLanes |= TautologicalLane; 5563 AllLanesAreTautological &= TautologicalLane; 5564 5565 // If we are comparing with non-zero, we need'll need to subtract said 5566 // comparison value from the LHS. But there is no point in doing that if 5567 // every lane where we are comparing with non-zero is tautological.. 5568 if (!Cmp.isZero()) 5569 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5570 5571 // Decompose D into D0 * 2^K 5572 unsigned K = D.countTrailingZeros(); 5573 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5574 APInt D0 = D.lshr(K); 5575 5576 // D is even if it has trailing zeros. 5577 HadEvenDivisor |= (K != 0); 5578 // D is a power-of-two if D0 is one. 5579 // If all divisors are power-of-two, we will prefer to avoid the fold. 5580 AllDivisorsArePowerOfTwo &= D0.isOne(); 5581 5582 // P = inv(D0, 2^W) 5583 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5584 unsigned W = D.getBitWidth(); 5585 APInt P = D0.zext(W + 1) 5586 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5587 .trunc(W); 5588 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5589 assert((D0 * P).isOne() && "Multiplicative inverse sanity check."); 5590 5591 // Q = floor((2^W - 1) u/ D) 5592 // R = ((2^W - 1) u% D) 5593 APInt Q, R; 5594 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5595 5596 // If we are comparing with zero, then that comparison constant is okay, 5597 // else it may need to be one less than that. 5598 if (Cmp.ugt(R)) 5599 Q -= 1; 5600 5601 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5602 "We are expecting that K is always less than all-ones for ShSVT"); 5603 5604 // If the lane is tautological the result can be constant-folded. 5605 if (TautologicalLane) { 5606 // Set P and K amount to a bogus values so we can try to splat them. 5607 P = 0; 5608 K = -1; 5609 // And ensure that comparison constant is tautological, 5610 // it will always compare true/false. 5611 Q = -1; 5612 } 5613 5614 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5615 KAmts.push_back( 5616 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5617 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5618 return true; 5619 }; 5620 5621 SDValue N = REMNode.getOperand(0); 5622 SDValue D = REMNode.getOperand(1); 5623 5624 // Collect the values from each element. 5625 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5626 return SDValue(); 5627 5628 // If all lanes are tautological, the result can be constant-folded. 5629 if (AllLanesAreTautological) 5630 return SDValue(); 5631 5632 // If this is a urem by a powers-of-two, avoid the fold since it can be 5633 // best implemented as a bit test. 5634 if (AllDivisorsArePowerOfTwo) 5635 return SDValue(); 5636 5637 SDValue PVal, KVal, QVal; 5638 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5639 if (HadTautologicalLanes) { 5640 // Try to turn PAmts into a splat, since we don't care about the values 5641 // that are currently '0'. If we can't, just keep '0'`s. 5642 turnVectorIntoSplatVector(PAmts, isNullConstant); 5643 // Try to turn KAmts into a splat, since we don't care about the values 5644 // that are currently '-1'. If we can't, change them to '0'`s. 5645 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5646 DAG.getConstant(0, DL, ShSVT)); 5647 } 5648 5649 PVal = DAG.getBuildVector(VT, DL, PAmts); 5650 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5651 QVal = DAG.getBuildVector(VT, DL, QAmts); 5652 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5653 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5654 "Expected matchBinaryPredicate to return one element for " 5655 "SPLAT_VECTORs"); 5656 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5657 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5658 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5659 } else { 5660 PVal = PAmts[0]; 5661 KVal = KAmts[0]; 5662 QVal = QAmts[0]; 5663 } 5664 5665 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5666 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5667 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5668 assert(CompTargetNode.getValueType() == N.getValueType() && 5669 "Expecting that the types on LHS and RHS of comparisons match."); 5670 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5671 } 5672 5673 // (mul N, P) 5674 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5675 Created.push_back(Op0.getNode()); 5676 5677 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5678 // divisors as a performance improvement, since rotating by 0 is a no-op. 5679 if (HadEvenDivisor) { 5680 // We need ROTR to do this. 5681 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5682 return SDValue(); 5683 // UREM: (rotr (mul N, P), K) 5684 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5685 Created.push_back(Op0.getNode()); 5686 } 5687 5688 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5689 SDValue NewCC = 5690 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5691 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5692 if (!HadTautologicalInvertedLanes) 5693 return NewCC; 5694 5695 // If any lanes previously compared always-false, the NewCC will give 5696 // always-true result for them, so we need to fixup those lanes. 5697 // Or the other way around for inequality predicate. 5698 assert(VT.isVector() && "Can/should only get here for vectors."); 5699 Created.push_back(NewCC.getNode()); 5700 5701 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5702 // if C2 is not less than C1, the comparison is always false. 5703 // But we have produced the comparison that will give the 5704 // opposive tautological answer. So these lanes would need to be fixed up. 5705 SDValue TautologicalInvertedChannels = 5706 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5707 Created.push_back(TautologicalInvertedChannels.getNode()); 5708 5709 // NOTE: we avoid letting illegal types through even if we're before legalize 5710 // ops – legalization has a hard time producing good code for this. 5711 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5712 // If we have a vector select, let's replace the comparison results in the 5713 // affected lanes with the correct tautological result. 5714 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5715 DL, SETCCVT, SETCCVT); 5716 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5717 Replacement, NewCC); 5718 } 5719 5720 // Else, we can just invert the comparison result in the appropriate lanes. 5721 // 5722 // NOTE: see the note above VSELECT above. 5723 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5724 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5725 TautologicalInvertedChannels); 5726 5727 return SDValue(); // Don't know how to lower. 5728 } 5729 5730 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5731 /// where the divisor is constant and the comparison target is zero, 5732 /// return a DAG expression that will generate the same comparison result 5733 /// using only multiplications, additions and shifts/rotations. 5734 /// Ref: "Hacker's Delight" 10-17. 5735 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5736 SDValue CompTargetNode, 5737 ISD::CondCode Cond, 5738 DAGCombinerInfo &DCI, 5739 const SDLoc &DL) const { 5740 SmallVector<SDNode *, 7> Built; 5741 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5742 DCI, DL, Built)) { 5743 assert(Built.size() <= 7 && "Max size prediction failed."); 5744 for (SDNode *N : Built) 5745 DCI.AddToWorklist(N); 5746 return Folded; 5747 } 5748 5749 return SDValue(); 5750 } 5751 5752 SDValue 5753 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5754 SDValue CompTargetNode, ISD::CondCode Cond, 5755 DAGCombinerInfo &DCI, const SDLoc &DL, 5756 SmallVectorImpl<SDNode *> &Created) const { 5757 // Fold: 5758 // (seteq/ne (srem N, D), 0) 5759 // To: 5760 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5761 // 5762 // - D must be constant, with D = D0 * 2^K where D0 is odd 5763 // - P is the multiplicative inverse of D0 modulo 2^W 5764 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5765 // - Q = floor((2 * A) / (2^K)) 5766 // where W is the width of the common type of N and D. 5767 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5768 "Only applicable for (in)equality comparisons."); 5769 5770 SelectionDAG &DAG = DCI.DAG; 5771 5772 EVT VT = REMNode.getValueType(); 5773 EVT SVT = VT.getScalarType(); 5774 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5775 EVT ShSVT = ShVT.getScalarType(); 5776 5777 // If we are after ops legalization, and MUL is unavailable, we can not 5778 // proceed. 5779 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5780 return SDValue(); 5781 5782 // TODO: Could support comparing with non-zero too. 5783 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5784 if (!CompTarget || !CompTarget->isZero()) 5785 return SDValue(); 5786 5787 bool HadIntMinDivisor = false; 5788 bool HadOneDivisor = false; 5789 bool AllDivisorsAreOnes = true; 5790 bool HadEvenDivisor = false; 5791 bool NeedToApplyOffset = false; 5792 bool AllDivisorsArePowerOfTwo = true; 5793 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5794 5795 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5796 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5797 if (C->isZero()) 5798 return false; 5799 5800 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5801 5802 // WARNING: this fold is only valid for positive divisors! 5803 APInt D = C->getAPIntValue(); 5804 if (D.isNegative()) 5805 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5806 5807 HadIntMinDivisor |= D.isMinSignedValue(); 5808 5809 // If all divisors are ones, we will prefer to avoid the fold. 5810 HadOneDivisor |= D.isOne(); 5811 AllDivisorsAreOnes &= D.isOne(); 5812 5813 // Decompose D into D0 * 2^K 5814 unsigned K = D.countTrailingZeros(); 5815 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5816 APInt D0 = D.lshr(K); 5817 5818 if (!D.isMinSignedValue()) { 5819 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5820 // we don't care about this lane in this fold, we'll special-handle it. 5821 HadEvenDivisor |= (K != 0); 5822 } 5823 5824 // D is a power-of-two if D0 is one. This includes INT_MIN. 5825 // If all divisors are power-of-two, we will prefer to avoid the fold. 5826 AllDivisorsArePowerOfTwo &= D0.isOne(); 5827 5828 // P = inv(D0, 2^W) 5829 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5830 unsigned W = D.getBitWidth(); 5831 APInt P = D0.zext(W + 1) 5832 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5833 .trunc(W); 5834 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5835 assert((D0 * P).isOne() && "Multiplicative inverse sanity check."); 5836 5837 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5838 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5839 A.clearLowBits(K); 5840 5841 if (!D.isMinSignedValue()) { 5842 // If divisor INT_MIN, then we don't care about this lane in this fold, 5843 // we'll special-handle it. 5844 NeedToApplyOffset |= A != 0; 5845 } 5846 5847 // Q = floor((2 * A) / (2^K)) 5848 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5849 5850 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 5851 "We are expecting that A is always less than all-ones for SVT"); 5852 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5853 "We are expecting that K is always less than all-ones for ShSVT"); 5854 5855 // If the divisor is 1 the result can be constant-folded. Likewise, we 5856 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5857 if (D.isOne()) { 5858 // Set P, A and K to a bogus values so we can try to splat them. 5859 P = 0; 5860 A = -1; 5861 K = -1; 5862 5863 // x ?% 1 == 0 <--> true <--> x u<= -1 5864 Q = -1; 5865 } 5866 5867 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5868 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5869 KAmts.push_back( 5870 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5871 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5872 return true; 5873 }; 5874 5875 SDValue N = REMNode.getOperand(0); 5876 SDValue D = REMNode.getOperand(1); 5877 5878 // Collect the values from each element. 5879 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5880 return SDValue(); 5881 5882 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5883 if (AllDivisorsAreOnes) 5884 return SDValue(); 5885 5886 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5887 // since it can be best implemented as a bit test. 5888 if (AllDivisorsArePowerOfTwo) 5889 return SDValue(); 5890 5891 SDValue PVal, AVal, KVal, QVal; 5892 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5893 if (HadOneDivisor) { 5894 // Try to turn PAmts into a splat, since we don't care about the values 5895 // that are currently '0'. If we can't, just keep '0'`s. 5896 turnVectorIntoSplatVector(PAmts, isNullConstant); 5897 // Try to turn AAmts into a splat, since we don't care about the 5898 // values that are currently '-1'. If we can't, change them to '0'`s. 5899 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5900 DAG.getConstant(0, DL, SVT)); 5901 // Try to turn KAmts into a splat, since we don't care about the values 5902 // that are currently '-1'. If we can't, change them to '0'`s. 5903 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5904 DAG.getConstant(0, DL, ShSVT)); 5905 } 5906 5907 PVal = DAG.getBuildVector(VT, DL, PAmts); 5908 AVal = DAG.getBuildVector(VT, DL, AAmts); 5909 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5910 QVal = DAG.getBuildVector(VT, DL, QAmts); 5911 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5912 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5913 QAmts.size() == 1 && 5914 "Expected matchUnaryPredicate to return one element for scalable " 5915 "vectors"); 5916 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5917 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5918 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5919 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5920 } else { 5921 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5922 PVal = PAmts[0]; 5923 AVal = AAmts[0]; 5924 KVal = KAmts[0]; 5925 QVal = QAmts[0]; 5926 } 5927 5928 // (mul N, P) 5929 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5930 Created.push_back(Op0.getNode()); 5931 5932 if (NeedToApplyOffset) { 5933 // We need ADD to do this. 5934 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5935 return SDValue(); 5936 5937 // (add (mul N, P), A) 5938 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5939 Created.push_back(Op0.getNode()); 5940 } 5941 5942 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5943 // divisors as a performance improvement, since rotating by 0 is a no-op. 5944 if (HadEvenDivisor) { 5945 // We need ROTR to do this. 5946 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5947 return SDValue(); 5948 // SREM: (rotr (add (mul N, P), A), K) 5949 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5950 Created.push_back(Op0.getNode()); 5951 } 5952 5953 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5954 SDValue Fold = 5955 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5956 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5957 5958 // If we didn't have lanes with INT_MIN divisor, then we're done. 5959 if (!HadIntMinDivisor) 5960 return Fold; 5961 5962 // That fold is only valid for positive divisors. Which effectively means, 5963 // it is invalid for INT_MIN divisors. So if we have such a lane, 5964 // we must fix-up results for said lanes. 5965 assert(VT.isVector() && "Can/should only get here for vectors."); 5966 5967 // NOTE: we avoid letting illegal types through even if we're before legalize 5968 // ops – legalization has a hard time producing good code for the code that 5969 // follows. 5970 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5971 !isOperationLegalOrCustom(ISD::AND, VT) || 5972 !isOperationLegalOrCustom(Cond, VT) || 5973 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 5974 return SDValue(); 5975 5976 Created.push_back(Fold.getNode()); 5977 5978 SDValue IntMin = DAG.getConstant( 5979 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5980 SDValue IntMax = DAG.getConstant( 5981 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5982 SDValue Zero = 5983 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 5984 5985 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5986 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5987 Created.push_back(DivisorIsIntMin.getNode()); 5988 5989 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5990 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5991 Created.push_back(Masked.getNode()); 5992 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5993 Created.push_back(MaskedIsZero.getNode()); 5994 5995 // To produce final result we need to blend 2 vectors: 'SetCC' and 5996 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5997 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5998 // constant-folded, select can get lowered to a shuffle with constant mask. 5999 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6000 MaskedIsZero, Fold); 6001 6002 return Blended; 6003 } 6004 6005 bool TargetLowering:: 6006 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6007 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6008 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6009 "be a constant integer"); 6010 return true; 6011 } 6012 6013 return false; 6014 } 6015 6016 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6017 const DenormalMode &Mode) const { 6018 SDLoc DL(Op); 6019 EVT VT = Op.getValueType(); 6020 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6021 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6022 // Testing it with denormal inputs to avoid wrong estimate. 6023 if (Mode.Input == DenormalMode::IEEE) { 6024 // This is specifically a check for the handling of denormal inputs, 6025 // not the result. 6026 6027 // Test = fabs(X) < SmallestNormal 6028 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6029 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6030 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6031 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6032 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6033 } 6034 // Test = X == 0.0 6035 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6036 } 6037 6038 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6039 bool LegalOps, bool OptForSize, 6040 NegatibleCost &Cost, 6041 unsigned Depth) const { 6042 // fneg is removable even if it has multiple uses. 6043 if (Op.getOpcode() == ISD::FNEG) { 6044 Cost = NegatibleCost::Cheaper; 6045 return Op.getOperand(0); 6046 } 6047 6048 // Don't recurse exponentially. 6049 if (Depth > SelectionDAG::MaxRecursionDepth) 6050 return SDValue(); 6051 6052 // Pre-increment recursion depth for use in recursive calls. 6053 ++Depth; 6054 const SDNodeFlags Flags = Op->getFlags(); 6055 const TargetOptions &Options = DAG.getTarget().Options; 6056 EVT VT = Op.getValueType(); 6057 unsigned Opcode = Op.getOpcode(); 6058 6059 // Don't allow anything with multiple uses unless we know it is free. 6060 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6061 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6062 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6063 if (!IsFreeExtend) 6064 return SDValue(); 6065 } 6066 6067 auto RemoveDeadNode = [&](SDValue N) { 6068 if (N && N.getNode()->use_empty()) 6069 DAG.RemoveDeadNode(N.getNode()); 6070 }; 6071 6072 SDLoc DL(Op); 6073 6074 // Because getNegatedExpression can delete nodes we need a handle to keep 6075 // temporary nodes alive in case the recursion manages to create an identical 6076 // node. 6077 std::list<HandleSDNode> Handles; 6078 6079 switch (Opcode) { 6080 case ISD::ConstantFP: { 6081 // Don't invert constant FP values after legalization unless the target says 6082 // the negated constant is legal. 6083 bool IsOpLegal = 6084 isOperationLegal(ISD::ConstantFP, VT) || 6085 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6086 OptForSize); 6087 6088 if (LegalOps && !IsOpLegal) 6089 break; 6090 6091 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6092 V.changeSign(); 6093 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6094 6095 // If we already have the use of the negated floating constant, it is free 6096 // to negate it even it has multiple uses. 6097 if (!Op.hasOneUse() && CFP.use_empty()) 6098 break; 6099 Cost = NegatibleCost::Neutral; 6100 return CFP; 6101 } 6102 case ISD::BUILD_VECTOR: { 6103 // Only permit BUILD_VECTOR of constants. 6104 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6105 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6106 })) 6107 break; 6108 6109 bool IsOpLegal = 6110 (isOperationLegal(ISD::ConstantFP, VT) && 6111 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6112 llvm::all_of(Op->op_values(), [&](SDValue N) { 6113 return N.isUndef() || 6114 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6115 OptForSize); 6116 }); 6117 6118 if (LegalOps && !IsOpLegal) 6119 break; 6120 6121 SmallVector<SDValue, 4> Ops; 6122 for (SDValue C : Op->op_values()) { 6123 if (C.isUndef()) { 6124 Ops.push_back(C); 6125 continue; 6126 } 6127 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6128 V.changeSign(); 6129 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6130 } 6131 Cost = NegatibleCost::Neutral; 6132 return DAG.getBuildVector(VT, DL, Ops); 6133 } 6134 case ISD::FADD: { 6135 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6136 break; 6137 6138 // After operation legalization, it might not be legal to create new FSUBs. 6139 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6140 break; 6141 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6142 6143 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6144 NegatibleCost CostX = NegatibleCost::Expensive; 6145 SDValue NegX = 6146 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6147 // Prevent this node from being deleted by the next call. 6148 if (NegX) 6149 Handles.emplace_back(NegX); 6150 6151 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6152 NegatibleCost CostY = NegatibleCost::Expensive; 6153 SDValue NegY = 6154 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6155 6156 // We're done with the handles. 6157 Handles.clear(); 6158 6159 // Negate the X if its cost is less or equal than Y. 6160 if (NegX && (CostX <= CostY)) { 6161 Cost = CostX; 6162 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6163 if (NegY != N) 6164 RemoveDeadNode(NegY); 6165 return N; 6166 } 6167 6168 // Negate the Y if it is not expensive. 6169 if (NegY) { 6170 Cost = CostY; 6171 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6172 if (NegX != N) 6173 RemoveDeadNode(NegX); 6174 return N; 6175 } 6176 break; 6177 } 6178 case ISD::FSUB: { 6179 // We can't turn -(A-B) into B-A when we honor signed zeros. 6180 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6181 break; 6182 6183 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6184 // fold (fneg (fsub 0, Y)) -> Y 6185 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6186 if (C->isZero()) { 6187 Cost = NegatibleCost::Cheaper; 6188 return Y; 6189 } 6190 6191 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6192 Cost = NegatibleCost::Neutral; 6193 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6194 } 6195 case ISD::FMUL: 6196 case ISD::FDIV: { 6197 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6198 6199 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6200 NegatibleCost CostX = NegatibleCost::Expensive; 6201 SDValue NegX = 6202 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6203 // Prevent this node from being deleted by the next call. 6204 if (NegX) 6205 Handles.emplace_back(NegX); 6206 6207 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6208 NegatibleCost CostY = NegatibleCost::Expensive; 6209 SDValue NegY = 6210 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6211 6212 // We're done with the handles. 6213 Handles.clear(); 6214 6215 // Negate the X if its cost is less or equal than Y. 6216 if (NegX && (CostX <= CostY)) { 6217 Cost = CostX; 6218 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6219 if (NegY != N) 6220 RemoveDeadNode(NegY); 6221 return N; 6222 } 6223 6224 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6225 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6226 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6227 break; 6228 6229 // Negate the Y if it is not expensive. 6230 if (NegY) { 6231 Cost = CostY; 6232 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6233 if (NegX != N) 6234 RemoveDeadNode(NegX); 6235 return N; 6236 } 6237 break; 6238 } 6239 case ISD::FMA: 6240 case ISD::FMAD: { 6241 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6242 break; 6243 6244 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6245 NegatibleCost CostZ = NegatibleCost::Expensive; 6246 SDValue NegZ = 6247 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6248 // Give up if fail to negate the Z. 6249 if (!NegZ) 6250 break; 6251 6252 // Prevent this node from being deleted by the next two calls. 6253 Handles.emplace_back(NegZ); 6254 6255 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6256 NegatibleCost CostX = NegatibleCost::Expensive; 6257 SDValue NegX = 6258 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6259 // Prevent this node from being deleted by the next call. 6260 if (NegX) 6261 Handles.emplace_back(NegX); 6262 6263 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6264 NegatibleCost CostY = NegatibleCost::Expensive; 6265 SDValue NegY = 6266 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6267 6268 // We're done with the handles. 6269 Handles.clear(); 6270 6271 // Negate the X if its cost is less or equal than Y. 6272 if (NegX && (CostX <= CostY)) { 6273 Cost = std::min(CostX, CostZ); 6274 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6275 if (NegY != N) 6276 RemoveDeadNode(NegY); 6277 return N; 6278 } 6279 6280 // Negate the Y if it is not expensive. 6281 if (NegY) { 6282 Cost = std::min(CostY, CostZ); 6283 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6284 if (NegX != N) 6285 RemoveDeadNode(NegX); 6286 return N; 6287 } 6288 break; 6289 } 6290 6291 case ISD::FP_EXTEND: 6292 case ISD::FSIN: 6293 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6294 OptForSize, Cost, Depth)) 6295 return DAG.getNode(Opcode, DL, VT, NegV); 6296 break; 6297 case ISD::FP_ROUND: 6298 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6299 OptForSize, Cost, Depth)) 6300 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6301 break; 6302 } 6303 6304 return SDValue(); 6305 } 6306 6307 //===----------------------------------------------------------------------===// 6308 // Legalization Utilities 6309 //===----------------------------------------------------------------------===// 6310 6311 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6312 SDValue LHS, SDValue RHS, 6313 SmallVectorImpl<SDValue> &Result, 6314 EVT HiLoVT, SelectionDAG &DAG, 6315 MulExpansionKind Kind, SDValue LL, 6316 SDValue LH, SDValue RL, SDValue RH) const { 6317 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6318 Opcode == ISD::SMUL_LOHI); 6319 6320 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6321 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6322 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6323 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6324 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6325 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6326 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6327 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6328 6329 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6330 return false; 6331 6332 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6333 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6334 6335 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6336 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6337 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6338 6339 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6340 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6341 bool Signed) -> bool { 6342 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6343 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6344 Hi = SDValue(Lo.getNode(), 1); 6345 return true; 6346 } 6347 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6348 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6349 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6350 return true; 6351 } 6352 return false; 6353 }; 6354 6355 SDValue Lo, Hi; 6356 6357 if (!LL.getNode() && !RL.getNode() && 6358 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6359 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6360 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6361 } 6362 6363 if (!LL.getNode()) 6364 return false; 6365 6366 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6367 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6368 DAG.MaskedValueIsZero(RHS, HighMask)) { 6369 // The inputs are both zero-extended. 6370 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6371 Result.push_back(Lo); 6372 Result.push_back(Hi); 6373 if (Opcode != ISD::MUL) { 6374 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6375 Result.push_back(Zero); 6376 Result.push_back(Zero); 6377 } 6378 return true; 6379 } 6380 } 6381 6382 if (!VT.isVector() && Opcode == ISD::MUL && 6383 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6384 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6385 // The input values are both sign-extended. 6386 // TODO non-MUL case? 6387 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6388 Result.push_back(Lo); 6389 Result.push_back(Hi); 6390 return true; 6391 } 6392 } 6393 6394 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6395 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6396 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6397 // FIXME getShiftAmountTy does not always return a sensible result when VT 6398 // is an illegal type, and so the type may be too small to fit the shift 6399 // amount. Override it with i32. The shift will have to be legalized. 6400 ShiftAmountTy = MVT::i32; 6401 } 6402 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6403 6404 if (!LH.getNode() && !RH.getNode() && 6405 isOperationLegalOrCustom(ISD::SRL, VT) && 6406 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6407 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6408 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6409 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6410 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6411 } 6412 6413 if (!LH.getNode()) 6414 return false; 6415 6416 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6417 return false; 6418 6419 Result.push_back(Lo); 6420 6421 if (Opcode == ISD::MUL) { 6422 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6423 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6424 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6425 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6426 Result.push_back(Hi); 6427 return true; 6428 } 6429 6430 // Compute the full width result. 6431 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6432 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6433 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6434 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6435 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6436 }; 6437 6438 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6439 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6440 return false; 6441 6442 // This is effectively the add part of a multiply-add of half-sized operands, 6443 // so it cannot overflow. 6444 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6445 6446 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6447 return false; 6448 6449 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6450 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6451 6452 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6453 isOperationLegalOrCustom(ISD::ADDE, VT)); 6454 if (UseGlue) 6455 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6456 Merge(Lo, Hi)); 6457 else 6458 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6459 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6460 6461 SDValue Carry = Next.getValue(1); 6462 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6463 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6464 6465 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6466 return false; 6467 6468 if (UseGlue) 6469 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6470 Carry); 6471 else 6472 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6473 Zero, Carry); 6474 6475 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6476 6477 if (Opcode == ISD::SMUL_LOHI) { 6478 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6479 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6480 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6481 6482 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6483 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6484 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6485 } 6486 6487 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6488 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6489 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6490 return true; 6491 } 6492 6493 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6494 SelectionDAG &DAG, MulExpansionKind Kind, 6495 SDValue LL, SDValue LH, SDValue RL, 6496 SDValue RH) const { 6497 SmallVector<SDValue, 2> Result; 6498 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6499 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6500 DAG, Kind, LL, LH, RL, RH); 6501 if (Ok) { 6502 assert(Result.size() == 2); 6503 Lo = Result[0]; 6504 Hi = Result[1]; 6505 } 6506 return Ok; 6507 } 6508 6509 // Check that (every element of) Z is undef or not an exact multiple of BW. 6510 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6511 return ISD::matchUnaryPredicate( 6512 Z, 6513 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6514 true); 6515 } 6516 6517 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6518 SelectionDAG &DAG) const { 6519 EVT VT = Node->getValueType(0); 6520 6521 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6522 !isOperationLegalOrCustom(ISD::SRL, VT) || 6523 !isOperationLegalOrCustom(ISD::SUB, VT) || 6524 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6525 return false; 6526 6527 SDValue X = Node->getOperand(0); 6528 SDValue Y = Node->getOperand(1); 6529 SDValue Z = Node->getOperand(2); 6530 6531 unsigned BW = VT.getScalarSizeInBits(); 6532 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6533 SDLoc DL(SDValue(Node, 0)); 6534 6535 EVT ShVT = Z.getValueType(); 6536 6537 // If a funnel shift in the other direction is more supported, use it. 6538 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6539 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6540 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6541 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6542 // fshl X, Y, Z -> fshr X, Y, -Z 6543 // fshr X, Y, Z -> fshl X, Y, -Z 6544 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6545 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6546 } else { 6547 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6548 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6549 SDValue One = DAG.getConstant(1, DL, ShVT); 6550 if (IsFSHL) { 6551 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6552 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6553 } else { 6554 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6555 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6556 } 6557 Z = DAG.getNOT(DL, Z, ShVT); 6558 } 6559 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6560 return true; 6561 } 6562 6563 SDValue ShX, ShY; 6564 SDValue ShAmt, InvShAmt; 6565 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6566 // fshl: X << C | Y >> (BW - C) 6567 // fshr: X << (BW - C) | Y >> C 6568 // where C = Z % BW is not zero 6569 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6570 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6571 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6572 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6573 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6574 } else { 6575 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6576 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6577 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6578 if (isPowerOf2_32(BW)) { 6579 // Z % BW -> Z & (BW - 1) 6580 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6581 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6582 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6583 } else { 6584 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6585 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6586 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6587 } 6588 6589 SDValue One = DAG.getConstant(1, DL, ShVT); 6590 if (IsFSHL) { 6591 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6592 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6593 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6594 } else { 6595 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6596 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6597 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6598 } 6599 } 6600 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6601 return true; 6602 } 6603 6604 // TODO: Merge with expandFunnelShift. 6605 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6606 SDValue &Result, SelectionDAG &DAG) const { 6607 EVT VT = Node->getValueType(0); 6608 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6609 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6610 SDValue Op0 = Node->getOperand(0); 6611 SDValue Op1 = Node->getOperand(1); 6612 SDLoc DL(SDValue(Node, 0)); 6613 6614 EVT ShVT = Op1.getValueType(); 6615 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6616 6617 // If a rotate in the other direction is supported, use it. 6618 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6619 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6620 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6621 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6622 return true; 6623 } 6624 6625 if (!AllowVectorOps && VT.isVector() && 6626 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6627 !isOperationLegalOrCustom(ISD::SRL, VT) || 6628 !isOperationLegalOrCustom(ISD::SUB, VT) || 6629 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6630 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6631 return false; 6632 6633 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6634 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6635 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6636 SDValue ShVal; 6637 SDValue HsVal; 6638 if (isPowerOf2_32(EltSizeInBits)) { 6639 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6640 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6641 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6642 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6643 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6644 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6645 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6646 } else { 6647 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6648 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6649 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6650 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6651 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6652 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6653 SDValue One = DAG.getConstant(1, DL, ShVT); 6654 HsVal = 6655 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6656 } 6657 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6658 return true; 6659 } 6660 6661 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6662 SelectionDAG &DAG) const { 6663 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6664 EVT VT = Node->getValueType(0); 6665 unsigned VTBits = VT.getScalarSizeInBits(); 6666 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6667 6668 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6669 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6670 SDValue ShOpLo = Node->getOperand(0); 6671 SDValue ShOpHi = Node->getOperand(1); 6672 SDValue ShAmt = Node->getOperand(2); 6673 EVT ShAmtVT = ShAmt.getValueType(); 6674 EVT ShAmtCCVT = 6675 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6676 SDLoc dl(Node); 6677 6678 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6679 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6680 // away during isel. 6681 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6682 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6683 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6684 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6685 : DAG.getConstant(0, dl, VT); 6686 6687 SDValue Tmp2, Tmp3; 6688 if (IsSHL) { 6689 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6690 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6691 } else { 6692 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6693 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6694 } 6695 6696 // If the shift amount is larger or equal than the width of a part we don't 6697 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6698 // values for large shift amounts. 6699 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6700 DAG.getConstant(VTBits, dl, ShAmtVT)); 6701 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6702 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6703 6704 if (IsSHL) { 6705 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6706 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6707 } else { 6708 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6709 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6710 } 6711 } 6712 6713 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6714 SelectionDAG &DAG) const { 6715 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6716 SDValue Src = Node->getOperand(OpNo); 6717 EVT SrcVT = Src.getValueType(); 6718 EVT DstVT = Node->getValueType(0); 6719 SDLoc dl(SDValue(Node, 0)); 6720 6721 // FIXME: Only f32 to i64 conversions are supported. 6722 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6723 return false; 6724 6725 if (Node->isStrictFPOpcode()) 6726 // When a NaN is converted to an integer a trap is allowed. We can't 6727 // use this expansion here because it would eliminate that trap. Other 6728 // traps are also allowed and cannot be eliminated. See 6729 // IEEE 754-2008 sec 5.8. 6730 return false; 6731 6732 // Expand f32 -> i64 conversion 6733 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6734 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6735 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6736 EVT IntVT = SrcVT.changeTypeToInteger(); 6737 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6738 6739 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6740 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6741 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6742 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6743 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6744 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6745 6746 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6747 6748 SDValue ExponentBits = DAG.getNode( 6749 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6750 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6751 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6752 6753 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6754 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6755 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6756 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6757 6758 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6759 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6760 DAG.getConstant(0x00800000, dl, IntVT)); 6761 6762 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6763 6764 R = DAG.getSelectCC( 6765 dl, Exponent, ExponentLoBit, 6766 DAG.getNode(ISD::SHL, dl, DstVT, R, 6767 DAG.getZExtOrTrunc( 6768 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6769 dl, IntShVT)), 6770 DAG.getNode(ISD::SRL, dl, DstVT, R, 6771 DAG.getZExtOrTrunc( 6772 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6773 dl, IntShVT)), 6774 ISD::SETGT); 6775 6776 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6777 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6778 6779 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6780 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6781 return true; 6782 } 6783 6784 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6785 SDValue &Chain, 6786 SelectionDAG &DAG) const { 6787 SDLoc dl(SDValue(Node, 0)); 6788 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6789 SDValue Src = Node->getOperand(OpNo); 6790 6791 EVT SrcVT = Src.getValueType(); 6792 EVT DstVT = Node->getValueType(0); 6793 EVT SetCCVT = 6794 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6795 EVT DstSetCCVT = 6796 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6797 6798 // Only expand vector types if we have the appropriate vector bit operations. 6799 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6800 ISD::FP_TO_SINT; 6801 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6802 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6803 return false; 6804 6805 // If the maximum float value is smaller then the signed integer range, 6806 // the destination signmask can't be represented by the float, so we can 6807 // just use FP_TO_SINT directly. 6808 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6809 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 6810 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6811 if (APFloat::opOverflow & 6812 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6813 if (Node->isStrictFPOpcode()) { 6814 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6815 { Node->getOperand(0), Src }); 6816 Chain = Result.getValue(1); 6817 } else 6818 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6819 return true; 6820 } 6821 6822 // Don't expand it if there isn't cheap fsub instruction. 6823 if (!isOperationLegalOrCustom( 6824 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6825 return false; 6826 6827 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6828 SDValue Sel; 6829 6830 if (Node->isStrictFPOpcode()) { 6831 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6832 Node->getOperand(0), /*IsSignaling*/ true); 6833 Chain = Sel.getValue(1); 6834 } else { 6835 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6836 } 6837 6838 bool Strict = Node->isStrictFPOpcode() || 6839 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6840 6841 if (Strict) { 6842 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6843 // signmask then offset (the result of which should be fully representable). 6844 // Sel = Src < 0x8000000000000000 6845 // FltOfs = select Sel, 0, 0x8000000000000000 6846 // IntOfs = select Sel, 0, 0x8000000000000000 6847 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6848 6849 // TODO: Should any fast-math-flags be set for the FSUB? 6850 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6851 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6852 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6853 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6854 DAG.getConstant(0, dl, DstVT), 6855 DAG.getConstant(SignMask, dl, DstVT)); 6856 SDValue SInt; 6857 if (Node->isStrictFPOpcode()) { 6858 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6859 { Chain, Src, FltOfs }); 6860 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6861 { Val.getValue(1), Val }); 6862 Chain = SInt.getValue(1); 6863 } else { 6864 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6865 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6866 } 6867 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6868 } else { 6869 // Expand based on maximum range of FP_TO_SINT: 6870 // True = fp_to_sint(Src) 6871 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6872 // Result = select (Src < 0x8000000000000000), True, False 6873 6874 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6875 // TODO: Should any fast-math-flags be set for the FSUB? 6876 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6877 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6878 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6879 DAG.getConstant(SignMask, dl, DstVT)); 6880 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6881 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6882 } 6883 return true; 6884 } 6885 6886 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6887 SDValue &Chain, 6888 SelectionDAG &DAG) const { 6889 // This transform is not correct for converting 0 when rounding mode is set 6890 // to round toward negative infinity which will produce -0.0. So disable under 6891 // strictfp. 6892 if (Node->isStrictFPOpcode()) 6893 return false; 6894 6895 SDValue Src = Node->getOperand(0); 6896 EVT SrcVT = Src.getValueType(); 6897 EVT DstVT = Node->getValueType(0); 6898 6899 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6900 return false; 6901 6902 // Only expand vector types if we have the appropriate vector bit operations. 6903 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6904 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6905 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6906 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6907 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6908 return false; 6909 6910 SDLoc dl(SDValue(Node, 0)); 6911 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6912 6913 // Implementation of unsigned i64 to f64 following the algorithm in 6914 // __floatundidf in compiler_rt. This implementation performs rounding 6915 // correctly in all rounding modes with the exception of converting 0 6916 // when rounding toward negative infinity. In that case the fsub will produce 6917 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6918 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6919 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6920 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6921 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6922 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6923 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6924 6925 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6926 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6927 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6928 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6929 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6930 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6931 SDValue HiSub = 6932 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6933 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6934 return true; 6935 } 6936 6937 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6938 SelectionDAG &DAG) const { 6939 SDLoc dl(Node); 6940 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6941 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6942 EVT VT = Node->getValueType(0); 6943 6944 if (VT.isScalableVector()) 6945 report_fatal_error( 6946 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6947 6948 if (isOperationLegalOrCustom(NewOp, VT)) { 6949 SDValue Quiet0 = Node->getOperand(0); 6950 SDValue Quiet1 = Node->getOperand(1); 6951 6952 if (!Node->getFlags().hasNoNaNs()) { 6953 // Insert canonicalizes if it's possible we need to quiet to get correct 6954 // sNaN behavior. 6955 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6956 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6957 Node->getFlags()); 6958 } 6959 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6960 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6961 Node->getFlags()); 6962 } 6963 } 6964 6965 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6966 } 6967 6968 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6969 // instead if there are no NaNs. 6970 if (Node->getFlags().hasNoNaNs()) { 6971 unsigned IEEE2018Op = 6972 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6973 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6974 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6975 Node->getOperand(1), Node->getFlags()); 6976 } 6977 } 6978 6979 // If none of the above worked, but there are no NaNs, then expand to 6980 // a compare/select sequence. This is required for correctness since 6981 // InstCombine might have canonicalized a fcmp+select sequence to a 6982 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6983 // expansion to libcall, we might introduce a link-time dependency 6984 // on libm into a file that originally did not have one. 6985 if (Node->getFlags().hasNoNaNs()) { 6986 ISD::CondCode Pred = 6987 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6988 SDValue Op1 = Node->getOperand(0); 6989 SDValue Op2 = Node->getOperand(1); 6990 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6991 // Copy FMF flags, but always set the no-signed-zeros flag 6992 // as this is implied by the FMINNUM/FMAXNUM semantics. 6993 SDNodeFlags Flags = Node->getFlags(); 6994 Flags.setNoSignedZeros(true); 6995 SelCC->setFlags(Flags); 6996 return SelCC; 6997 } 6998 6999 return SDValue(); 7000 } 7001 7002 // Only expand vector types if we have the appropriate vector bit operations. 7003 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7004 assert(VT.isVector() && "Expected vector type"); 7005 unsigned Len = VT.getScalarSizeInBits(); 7006 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7007 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7008 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7009 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7010 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7011 } 7012 7013 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7014 SDLoc dl(Node); 7015 EVT VT = Node->getValueType(0); 7016 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7017 SDValue Op = Node->getOperand(0); 7018 unsigned Len = VT.getScalarSizeInBits(); 7019 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7020 7021 // TODO: Add support for irregular type lengths. 7022 if (!(Len <= 128 && Len % 8 == 0)) 7023 return SDValue(); 7024 7025 // Only expand vector types if we have the appropriate vector bit operations. 7026 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7027 return SDValue(); 7028 7029 // This is the "best" algorithm from 7030 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7031 SDValue Mask55 = 7032 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7033 SDValue Mask33 = 7034 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7035 SDValue Mask0F = 7036 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7037 SDValue Mask01 = 7038 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7039 7040 // v = v - ((v >> 1) & 0x55555555...) 7041 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7042 DAG.getNode(ISD::AND, dl, VT, 7043 DAG.getNode(ISD::SRL, dl, VT, Op, 7044 DAG.getConstant(1, dl, ShVT)), 7045 Mask55)); 7046 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7047 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7048 DAG.getNode(ISD::AND, dl, VT, 7049 DAG.getNode(ISD::SRL, dl, VT, Op, 7050 DAG.getConstant(2, dl, ShVT)), 7051 Mask33)); 7052 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7053 Op = DAG.getNode(ISD::AND, dl, VT, 7054 DAG.getNode(ISD::ADD, dl, VT, Op, 7055 DAG.getNode(ISD::SRL, dl, VT, Op, 7056 DAG.getConstant(4, dl, ShVT))), 7057 Mask0F); 7058 // v = (v * 0x01010101...) >> (Len - 8) 7059 if (Len > 8) 7060 Op = 7061 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7062 DAG.getConstant(Len - 8, dl, ShVT)); 7063 7064 return Op; 7065 } 7066 7067 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7068 SDLoc dl(Node); 7069 EVT VT = Node->getValueType(0); 7070 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7071 SDValue Op = Node->getOperand(0); 7072 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7073 7074 // If the non-ZERO_UNDEF version is supported we can use that instead. 7075 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7076 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7077 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7078 7079 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7080 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7081 EVT SetCCVT = 7082 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7083 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7084 SDValue Zero = DAG.getConstant(0, dl, VT); 7085 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7086 return DAG.getSelect(dl, VT, SrcIsZero, 7087 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7088 } 7089 7090 // Only expand vector types if we have the appropriate vector bit operations. 7091 // This includes the operations needed to expand CTPOP if it isn't supported. 7092 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7093 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7094 !canExpandVectorCTPOP(*this, VT)) || 7095 !isOperationLegalOrCustom(ISD::SRL, VT) || 7096 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7097 return SDValue(); 7098 7099 // for now, we do this: 7100 // x = x | (x >> 1); 7101 // x = x | (x >> 2); 7102 // ... 7103 // x = x | (x >>16); 7104 // x = x | (x >>32); // for 64-bit input 7105 // return popcount(~x); 7106 // 7107 // Ref: "Hacker's Delight" by Henry Warren 7108 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7109 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7110 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7111 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7112 } 7113 Op = DAG.getNOT(dl, Op, VT); 7114 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7115 } 7116 7117 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7118 SDLoc dl(Node); 7119 EVT VT = Node->getValueType(0); 7120 SDValue Op = Node->getOperand(0); 7121 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7122 7123 // If the non-ZERO_UNDEF version is supported we can use that instead. 7124 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7125 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7126 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7127 7128 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7129 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7130 EVT SetCCVT = 7131 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7132 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7133 SDValue Zero = DAG.getConstant(0, dl, VT); 7134 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7135 return DAG.getSelect(dl, VT, SrcIsZero, 7136 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7137 } 7138 7139 // Only expand vector types if we have the appropriate vector bit operations. 7140 // This includes the operations needed to expand CTPOP if it isn't supported. 7141 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7142 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7143 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7144 !canExpandVectorCTPOP(*this, VT)) || 7145 !isOperationLegalOrCustom(ISD::SUB, VT) || 7146 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7147 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7148 return SDValue(); 7149 7150 // for now, we use: { return popcount(~x & (x - 1)); } 7151 // unless the target has ctlz but not ctpop, in which case we use: 7152 // { return 32 - nlz(~x & (x-1)); } 7153 // Ref: "Hacker's Delight" by Henry Warren 7154 SDValue Tmp = DAG.getNode( 7155 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7156 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7157 7158 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7159 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7160 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7161 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7162 } 7163 7164 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7165 } 7166 7167 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7168 bool IsNegative) const { 7169 SDLoc dl(N); 7170 EVT VT = N->getValueType(0); 7171 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7172 SDValue Op = N->getOperand(0); 7173 7174 // abs(x) -> smax(x,sub(0,x)) 7175 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7176 isOperationLegal(ISD::SMAX, VT)) { 7177 SDValue Zero = DAG.getConstant(0, dl, VT); 7178 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7179 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7180 } 7181 7182 // abs(x) -> umin(x,sub(0,x)) 7183 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7184 isOperationLegal(ISD::UMIN, VT)) { 7185 SDValue Zero = DAG.getConstant(0, dl, VT); 7186 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7187 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7188 } 7189 7190 // 0 - abs(x) -> smin(x, sub(0,x)) 7191 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7192 isOperationLegal(ISD::SMIN, VT)) { 7193 SDValue Zero = DAG.getConstant(0, dl, VT); 7194 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7195 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7196 } 7197 7198 // Only expand vector types if we have the appropriate vector operations. 7199 if (VT.isVector() && 7200 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7201 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7202 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7203 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7204 return SDValue(); 7205 7206 SDValue Shift = 7207 DAG.getNode(ISD::SRA, dl, VT, Op, 7208 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7209 if (!IsNegative) { 7210 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7211 return DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7212 } 7213 7214 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7215 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7216 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7217 } 7218 7219 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7220 SDLoc dl(N); 7221 EVT VT = N->getValueType(0); 7222 SDValue Op = N->getOperand(0); 7223 7224 if (!VT.isSimple()) 7225 return SDValue(); 7226 7227 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7228 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7229 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7230 default: 7231 return SDValue(); 7232 case MVT::i16: 7233 // Use a rotate by 8. This can be further expanded if necessary. 7234 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7235 case MVT::i32: 7236 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7237 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7238 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7239 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7240 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7241 DAG.getConstant(0xFF0000, dl, VT)); 7242 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7243 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7244 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7245 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7246 case MVT::i64: 7247 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7248 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7249 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7250 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7251 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7252 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7253 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7254 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7255 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7256 DAG.getConstant(255ULL<<48, dl, VT)); 7257 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7258 DAG.getConstant(255ULL<<40, dl, VT)); 7259 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7260 DAG.getConstant(255ULL<<32, dl, VT)); 7261 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7262 DAG.getConstant(255ULL<<24, dl, VT)); 7263 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7264 DAG.getConstant(255ULL<<16, dl, VT)); 7265 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7266 DAG.getConstant(255ULL<<8 , dl, VT)); 7267 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7268 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7269 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7270 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7271 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7272 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7273 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7274 } 7275 } 7276 7277 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7278 SDLoc dl(N); 7279 EVT VT = N->getValueType(0); 7280 SDValue Op = N->getOperand(0); 7281 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7282 unsigned Sz = VT.getScalarSizeInBits(); 7283 7284 SDValue Tmp, Tmp2, Tmp3; 7285 7286 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7287 // and finally the i1 pairs. 7288 // TODO: We can easily support i4/i2 legal types if any target ever does. 7289 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7290 // Create the masks - repeating the pattern every byte. 7291 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7292 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7293 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7294 7295 // BSWAP if the type is wider than a single byte. 7296 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7297 7298 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7299 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7300 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7301 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7302 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7303 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7304 7305 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7306 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7307 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7308 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7309 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7310 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7311 7312 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7313 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7314 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7315 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7316 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7317 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7318 return Tmp; 7319 } 7320 7321 Tmp = DAG.getConstant(0, dl, VT); 7322 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7323 if (I < J) 7324 Tmp2 = 7325 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7326 else 7327 Tmp2 = 7328 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7329 7330 APInt Shift(Sz, 1); 7331 Shift <<= J; 7332 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7333 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7334 } 7335 7336 return Tmp; 7337 } 7338 7339 std::pair<SDValue, SDValue> 7340 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7341 SelectionDAG &DAG) const { 7342 SDLoc SL(LD); 7343 SDValue Chain = LD->getChain(); 7344 SDValue BasePTR = LD->getBasePtr(); 7345 EVT SrcVT = LD->getMemoryVT(); 7346 EVT DstVT = LD->getValueType(0); 7347 ISD::LoadExtType ExtType = LD->getExtensionType(); 7348 7349 if (SrcVT.isScalableVector()) 7350 report_fatal_error("Cannot scalarize scalable vector loads"); 7351 7352 unsigned NumElem = SrcVT.getVectorNumElements(); 7353 7354 EVT SrcEltVT = SrcVT.getScalarType(); 7355 EVT DstEltVT = DstVT.getScalarType(); 7356 7357 // A vector must always be stored in memory as-is, i.e. without any padding 7358 // between the elements, since various code depend on it, e.g. in the 7359 // handling of a bitcast of a vector type to int, which may be done with a 7360 // vector store followed by an integer load. A vector that does not have 7361 // elements that are byte-sized must therefore be stored as an integer 7362 // built out of the extracted vector elements. 7363 if (!SrcEltVT.isByteSized()) { 7364 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7365 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7366 7367 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7368 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7369 7370 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7371 SDValue SrcEltBitMask = DAG.getConstant( 7372 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7373 7374 // Load the whole vector and avoid masking off the top bits as it makes 7375 // the codegen worse. 7376 SDValue Load = 7377 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7378 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7379 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7380 7381 SmallVector<SDValue, 8> Vals; 7382 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7383 unsigned ShiftIntoIdx = 7384 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7385 SDValue ShiftAmount = 7386 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7387 LoadVT, SL, /*LegalTypes=*/false); 7388 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7389 SDValue Elt = 7390 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7391 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7392 7393 if (ExtType != ISD::NON_EXTLOAD) { 7394 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7395 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7396 } 7397 7398 Vals.push_back(Scalar); 7399 } 7400 7401 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7402 return std::make_pair(Value, Load.getValue(1)); 7403 } 7404 7405 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7406 assert(SrcEltVT.isByteSized()); 7407 7408 SmallVector<SDValue, 8> Vals; 7409 SmallVector<SDValue, 8> LoadChains; 7410 7411 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7412 SDValue ScalarLoad = 7413 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7414 LD->getPointerInfo().getWithOffset(Idx * Stride), 7415 SrcEltVT, LD->getOriginalAlign(), 7416 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7417 7418 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7419 7420 Vals.push_back(ScalarLoad.getValue(0)); 7421 LoadChains.push_back(ScalarLoad.getValue(1)); 7422 } 7423 7424 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7425 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7426 7427 return std::make_pair(Value, NewChain); 7428 } 7429 7430 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7431 SelectionDAG &DAG) const { 7432 SDLoc SL(ST); 7433 7434 SDValue Chain = ST->getChain(); 7435 SDValue BasePtr = ST->getBasePtr(); 7436 SDValue Value = ST->getValue(); 7437 EVT StVT = ST->getMemoryVT(); 7438 7439 if (StVT.isScalableVector()) 7440 report_fatal_error("Cannot scalarize scalable vector stores"); 7441 7442 // The type of the data we want to save 7443 EVT RegVT = Value.getValueType(); 7444 EVT RegSclVT = RegVT.getScalarType(); 7445 7446 // The type of data as saved in memory. 7447 EVT MemSclVT = StVT.getScalarType(); 7448 7449 unsigned NumElem = StVT.getVectorNumElements(); 7450 7451 // A vector must always be stored in memory as-is, i.e. without any padding 7452 // between the elements, since various code depend on it, e.g. in the 7453 // handling of a bitcast of a vector type to int, which may be done with a 7454 // vector store followed by an integer load. A vector that does not have 7455 // elements that are byte-sized must therefore be stored as an integer 7456 // built out of the extracted vector elements. 7457 if (!MemSclVT.isByteSized()) { 7458 unsigned NumBits = StVT.getSizeInBits(); 7459 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7460 7461 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7462 7463 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7464 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7465 DAG.getVectorIdxConstant(Idx, SL)); 7466 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7467 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7468 unsigned ShiftIntoIdx = 7469 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7470 SDValue ShiftAmount = 7471 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7472 SDValue ShiftedElt = 7473 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7474 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7475 } 7476 7477 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7478 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7479 ST->getAAInfo()); 7480 } 7481 7482 // Store Stride in bytes 7483 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7484 assert(Stride && "Zero stride!"); 7485 // Extract each of the elements from the original vector and save them into 7486 // memory individually. 7487 SmallVector<SDValue, 8> Stores; 7488 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7489 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7490 DAG.getVectorIdxConstant(Idx, SL)); 7491 7492 SDValue Ptr = 7493 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7494 7495 // This scalar TruncStore may be illegal, but we legalize it later. 7496 SDValue Store = DAG.getTruncStore( 7497 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7498 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7499 ST->getAAInfo()); 7500 7501 Stores.push_back(Store); 7502 } 7503 7504 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7505 } 7506 7507 std::pair<SDValue, SDValue> 7508 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7509 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7510 "unaligned indexed loads not implemented!"); 7511 SDValue Chain = LD->getChain(); 7512 SDValue Ptr = LD->getBasePtr(); 7513 EVT VT = LD->getValueType(0); 7514 EVT LoadedVT = LD->getMemoryVT(); 7515 SDLoc dl(LD); 7516 auto &MF = DAG.getMachineFunction(); 7517 7518 if (VT.isFloatingPoint() || VT.isVector()) { 7519 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7520 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7521 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7522 LoadedVT.isVector()) { 7523 // Scalarize the load and let the individual components be handled. 7524 return scalarizeVectorLoad(LD, DAG); 7525 } 7526 7527 // Expand to a (misaligned) integer load of the same size, 7528 // then bitconvert to floating point or vector. 7529 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7530 LD->getMemOperand()); 7531 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7532 if (LoadedVT != VT) 7533 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7534 ISD::ANY_EXTEND, dl, VT, Result); 7535 7536 return std::make_pair(Result, newLoad.getValue(1)); 7537 } 7538 7539 // Copy the value to a (aligned) stack slot using (unaligned) integer 7540 // loads and stores, then do a (aligned) load from the stack slot. 7541 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7542 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7543 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7544 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7545 7546 // Make sure the stack slot is also aligned for the register type. 7547 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7548 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7549 SmallVector<SDValue, 8> Stores; 7550 SDValue StackPtr = StackBase; 7551 unsigned Offset = 0; 7552 7553 EVT PtrVT = Ptr.getValueType(); 7554 EVT StackPtrVT = StackPtr.getValueType(); 7555 7556 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7557 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7558 7559 // Do all but one copies using the full register width. 7560 for (unsigned i = 1; i < NumRegs; i++) { 7561 // Load one integer register's worth from the original location. 7562 SDValue Load = DAG.getLoad( 7563 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7564 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7565 LD->getAAInfo()); 7566 // Follow the load with a store to the stack slot. Remember the store. 7567 Stores.push_back(DAG.getStore( 7568 Load.getValue(1), dl, Load, StackPtr, 7569 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7570 // Increment the pointers. 7571 Offset += RegBytes; 7572 7573 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7574 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7575 } 7576 7577 // The last copy may be partial. Do an extending load. 7578 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7579 8 * (LoadedBytes - Offset)); 7580 SDValue Load = 7581 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7582 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7583 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7584 LD->getAAInfo()); 7585 // Follow the load with a store to the stack slot. Remember the store. 7586 // On big-endian machines this requires a truncating store to ensure 7587 // that the bits end up in the right place. 7588 Stores.push_back(DAG.getTruncStore( 7589 Load.getValue(1), dl, Load, StackPtr, 7590 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7591 7592 // The order of the stores doesn't matter - say it with a TokenFactor. 7593 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7594 7595 // Finally, perform the original load only redirected to the stack slot. 7596 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7597 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7598 LoadedVT); 7599 7600 // Callers expect a MERGE_VALUES node. 7601 return std::make_pair(Load, TF); 7602 } 7603 7604 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7605 "Unaligned load of unsupported type."); 7606 7607 // Compute the new VT that is half the size of the old one. This is an 7608 // integer MVT. 7609 unsigned NumBits = LoadedVT.getSizeInBits(); 7610 EVT NewLoadedVT; 7611 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7612 NumBits >>= 1; 7613 7614 Align Alignment = LD->getOriginalAlign(); 7615 unsigned IncrementSize = NumBits / 8; 7616 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7617 7618 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7619 if (HiExtType == ISD::NON_EXTLOAD) 7620 HiExtType = ISD::ZEXTLOAD; 7621 7622 // Load the value in two parts 7623 SDValue Lo, Hi; 7624 if (DAG.getDataLayout().isLittleEndian()) { 7625 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7626 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7627 LD->getAAInfo()); 7628 7629 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7630 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7631 LD->getPointerInfo().getWithOffset(IncrementSize), 7632 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7633 LD->getAAInfo()); 7634 } else { 7635 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7636 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7637 LD->getAAInfo()); 7638 7639 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7640 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7641 LD->getPointerInfo().getWithOffset(IncrementSize), 7642 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7643 LD->getAAInfo()); 7644 } 7645 7646 // aggregate the two parts 7647 SDValue ShiftAmount = 7648 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7649 DAG.getDataLayout())); 7650 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7651 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7652 7653 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7654 Hi.getValue(1)); 7655 7656 return std::make_pair(Result, TF); 7657 } 7658 7659 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7660 SelectionDAG &DAG) const { 7661 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7662 "unaligned indexed stores not implemented!"); 7663 SDValue Chain = ST->getChain(); 7664 SDValue Ptr = ST->getBasePtr(); 7665 SDValue Val = ST->getValue(); 7666 EVT VT = Val.getValueType(); 7667 Align Alignment = ST->getOriginalAlign(); 7668 auto &MF = DAG.getMachineFunction(); 7669 EVT StoreMemVT = ST->getMemoryVT(); 7670 7671 SDLoc dl(ST); 7672 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7673 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7674 if (isTypeLegal(intVT)) { 7675 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7676 StoreMemVT.isVector()) { 7677 // Scalarize the store and let the individual components be handled. 7678 SDValue Result = scalarizeVectorStore(ST, DAG); 7679 return Result; 7680 } 7681 // Expand to a bitconvert of the value to the integer type of the 7682 // same size, then a (misaligned) int store. 7683 // FIXME: Does not handle truncating floating point stores! 7684 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7685 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7686 Alignment, ST->getMemOperand()->getFlags()); 7687 return Result; 7688 } 7689 // Do a (aligned) store to a stack slot, then copy from the stack slot 7690 // to the final destination using (unaligned) integer loads and stores. 7691 MVT RegVT = getRegisterType( 7692 *DAG.getContext(), 7693 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7694 EVT PtrVT = Ptr.getValueType(); 7695 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7696 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7697 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7698 7699 // Make sure the stack slot is also aligned for the register type. 7700 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7701 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7702 7703 // Perform the original store, only redirected to the stack slot. 7704 SDValue Store = DAG.getTruncStore( 7705 Chain, dl, Val, StackPtr, 7706 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7707 7708 EVT StackPtrVT = StackPtr.getValueType(); 7709 7710 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7711 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7712 SmallVector<SDValue, 8> Stores; 7713 unsigned Offset = 0; 7714 7715 // Do all but one copies using the full register width. 7716 for (unsigned i = 1; i < NumRegs; i++) { 7717 // Load one integer register's worth from the stack slot. 7718 SDValue Load = DAG.getLoad( 7719 RegVT, dl, Store, StackPtr, 7720 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7721 // Store it to the final location. Remember the store. 7722 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7723 ST->getPointerInfo().getWithOffset(Offset), 7724 ST->getOriginalAlign(), 7725 ST->getMemOperand()->getFlags())); 7726 // Increment the pointers. 7727 Offset += RegBytes; 7728 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7729 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7730 } 7731 7732 // The last store may be partial. Do a truncating store. On big-endian 7733 // machines this requires an extending load from the stack slot to ensure 7734 // that the bits are in the right place. 7735 EVT LoadMemVT = 7736 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7737 7738 // Load from the stack slot. 7739 SDValue Load = DAG.getExtLoad( 7740 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7741 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7742 7743 Stores.push_back( 7744 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7745 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7746 ST->getOriginalAlign(), 7747 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7748 // The order of the stores doesn't matter - say it with a TokenFactor. 7749 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7750 return Result; 7751 } 7752 7753 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7754 "Unaligned store of unknown type."); 7755 // Get the half-size VT 7756 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7757 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7758 unsigned IncrementSize = NumBits / 8; 7759 7760 // Divide the stored value in two parts. 7761 SDValue ShiftAmount = DAG.getConstant( 7762 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7763 SDValue Lo = Val; 7764 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7765 7766 // Store the two parts 7767 SDValue Store1, Store2; 7768 Store1 = DAG.getTruncStore(Chain, dl, 7769 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7770 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7771 ST->getMemOperand()->getFlags()); 7772 7773 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7774 Store2 = DAG.getTruncStore( 7775 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7776 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7777 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7778 7779 SDValue Result = 7780 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7781 return Result; 7782 } 7783 7784 SDValue 7785 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7786 const SDLoc &DL, EVT DataVT, 7787 SelectionDAG &DAG, 7788 bool IsCompressedMemory) const { 7789 SDValue Increment; 7790 EVT AddrVT = Addr.getValueType(); 7791 EVT MaskVT = Mask.getValueType(); 7792 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7793 "Incompatible types of Data and Mask"); 7794 if (IsCompressedMemory) { 7795 if (DataVT.isScalableVector()) 7796 report_fatal_error( 7797 "Cannot currently handle compressed memory with scalable vectors"); 7798 // Incrementing the pointer according to number of '1's in the mask. 7799 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7800 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7801 if (MaskIntVT.getSizeInBits() < 32) { 7802 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7803 MaskIntVT = MVT::i32; 7804 } 7805 7806 // Count '1's with POPCNT. 7807 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7808 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7809 // Scale is an element size in bytes. 7810 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7811 AddrVT); 7812 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7813 } else if (DataVT.isScalableVector()) { 7814 Increment = DAG.getVScale(DL, AddrVT, 7815 APInt(AddrVT.getFixedSizeInBits(), 7816 DataVT.getStoreSize().getKnownMinSize())); 7817 } else 7818 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7819 7820 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7821 } 7822 7823 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 7824 EVT VecVT, const SDLoc &dl, 7825 ElementCount SubEC) { 7826 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 7827 "Cannot index a scalable vector within a fixed-width vector"); 7828 7829 unsigned NElts = VecVT.getVectorMinNumElements(); 7830 unsigned NumSubElts = SubEC.getKnownMinValue(); 7831 EVT IdxVT = Idx.getValueType(); 7832 7833 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 7834 // If this is a constant index and we know the value plus the number of the 7835 // elements in the subvector minus one is less than the minimum number of 7836 // elements then it's safe to return Idx. 7837 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7838 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 7839 return Idx; 7840 SDValue VS = 7841 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7842 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 7843 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 7844 DAG.getConstant(NumSubElts, dl, IdxVT)); 7845 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7846 } 7847 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 7848 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7849 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7850 DAG.getConstant(Imm, dl, IdxVT)); 7851 } 7852 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 7853 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7854 DAG.getConstant(MaxIndex, dl, IdxVT)); 7855 } 7856 7857 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7858 SDValue VecPtr, EVT VecVT, 7859 SDValue Index) const { 7860 return getVectorSubVecPointer( 7861 DAG, VecPtr, VecVT, 7862 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 7863 Index); 7864 } 7865 7866 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 7867 SDValue VecPtr, EVT VecVT, 7868 EVT SubVecVT, 7869 SDValue Index) const { 7870 SDLoc dl(Index); 7871 // Make sure the index type is big enough to compute in. 7872 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7873 7874 EVT EltVT = VecVT.getVectorElementType(); 7875 7876 // Calculate the element offset and add it to the pointer. 7877 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7878 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7879 "Converting bits to bytes lost precision"); 7880 assert(SubVecVT.getVectorElementType() == EltVT && 7881 "Sub-vector must be a vector with matching element type"); 7882 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 7883 SubVecVT.getVectorElementCount()); 7884 7885 EVT IdxVT = Index.getValueType(); 7886 if (SubVecVT.isScalableVector()) 7887 Index = 7888 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7889 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 7890 7891 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7892 DAG.getConstant(EltSize, dl, IdxVT)); 7893 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7894 } 7895 7896 //===----------------------------------------------------------------------===// 7897 // Implementation of Emulated TLS Model 7898 //===----------------------------------------------------------------------===// 7899 7900 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7901 SelectionDAG &DAG) const { 7902 // Access to address of TLS varialbe xyz is lowered to a function call: 7903 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7904 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7905 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7906 SDLoc dl(GA); 7907 7908 ArgListTy Args; 7909 ArgListEntry Entry; 7910 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7911 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7912 StringRef EmuTlsVarName(NameString); 7913 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7914 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7915 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7916 Entry.Ty = VoidPtrType; 7917 Args.push_back(Entry); 7918 7919 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7920 7921 TargetLowering::CallLoweringInfo CLI(DAG); 7922 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7923 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7924 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7925 7926 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7927 // At last for X86 targets, maybe good for other targets too? 7928 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7929 MFI.setAdjustsStack(true); // Is this only for X86 target? 7930 MFI.setHasCalls(true); 7931 7932 assert((GA->getOffset() == 0) && 7933 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7934 return CallResult.first; 7935 } 7936 7937 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7938 SelectionDAG &DAG) const { 7939 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7940 if (!isCtlzFast()) 7941 return SDValue(); 7942 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7943 SDLoc dl(Op); 7944 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7945 if (C->isZero() && CC == ISD::SETEQ) { 7946 EVT VT = Op.getOperand(0).getValueType(); 7947 SDValue Zext = Op.getOperand(0); 7948 if (VT.bitsLT(MVT::i32)) { 7949 VT = MVT::i32; 7950 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7951 } 7952 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7953 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7954 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7955 DAG.getConstant(Log2b, dl, MVT::i32)); 7956 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7957 } 7958 } 7959 return SDValue(); 7960 } 7961 7962 // Convert redundant addressing modes (e.g. scaling is redundant 7963 // when accessing bytes). 7964 ISD::MemIndexType 7965 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7966 SDValue Offsets) const { 7967 bool IsScaledIndex = 7968 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7969 bool IsSignedIndex = 7970 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7971 7972 // Scaling is unimportant for bytes, canonicalize to unscaled. 7973 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 7974 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7975 7976 return IndexType; 7977 } 7978 7979 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7980 SDValue Op0 = Node->getOperand(0); 7981 SDValue Op1 = Node->getOperand(1); 7982 EVT VT = Op0.getValueType(); 7983 unsigned Opcode = Node->getOpcode(); 7984 SDLoc DL(Node); 7985 7986 // umin(x,y) -> sub(x,usubsat(x,y)) 7987 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7988 isOperationLegal(ISD::USUBSAT, VT)) { 7989 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7990 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7991 } 7992 7993 // umax(x,y) -> add(x,usubsat(y,x)) 7994 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7995 isOperationLegal(ISD::USUBSAT, VT)) { 7996 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7997 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7998 } 7999 8000 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8001 ISD::CondCode CC; 8002 switch (Opcode) { 8003 default: llvm_unreachable("How did we get here?"); 8004 case ISD::SMAX: CC = ISD::SETGT; break; 8005 case ISD::SMIN: CC = ISD::SETLT; break; 8006 case ISD::UMAX: CC = ISD::SETUGT; break; 8007 case ISD::UMIN: CC = ISD::SETULT; break; 8008 } 8009 8010 // FIXME: Should really try to split the vector in case it's legal on a 8011 // subvector. 8012 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8013 return DAG.UnrollVectorOp(Node); 8014 8015 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 8016 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8017 } 8018 8019 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8020 unsigned Opcode = Node->getOpcode(); 8021 SDValue LHS = Node->getOperand(0); 8022 SDValue RHS = Node->getOperand(1); 8023 EVT VT = LHS.getValueType(); 8024 SDLoc dl(Node); 8025 8026 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8027 assert(VT.isInteger() && "Expected operands to be integers"); 8028 8029 // usub.sat(a, b) -> umax(a, b) - b 8030 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8031 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8032 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8033 } 8034 8035 // uadd.sat(a, b) -> umin(a, ~b) + b 8036 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8037 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8038 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8039 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8040 } 8041 8042 unsigned OverflowOp; 8043 switch (Opcode) { 8044 case ISD::SADDSAT: 8045 OverflowOp = ISD::SADDO; 8046 break; 8047 case ISD::UADDSAT: 8048 OverflowOp = ISD::UADDO; 8049 break; 8050 case ISD::SSUBSAT: 8051 OverflowOp = ISD::SSUBO; 8052 break; 8053 case ISD::USUBSAT: 8054 OverflowOp = ISD::USUBO; 8055 break; 8056 default: 8057 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8058 "addition or subtraction node."); 8059 } 8060 8061 // FIXME: Should really try to split the vector in case it's legal on a 8062 // subvector. 8063 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8064 return DAG.UnrollVectorOp(Node); 8065 8066 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8067 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8068 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8069 SDValue SumDiff = Result.getValue(0); 8070 SDValue Overflow = Result.getValue(1); 8071 SDValue Zero = DAG.getConstant(0, dl, VT); 8072 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8073 8074 if (Opcode == ISD::UADDSAT) { 8075 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8076 // (LHS + RHS) | OverflowMask 8077 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8078 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8079 } 8080 // Overflow ? 0xffff.... : (LHS + RHS) 8081 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8082 } 8083 8084 if (Opcode == ISD::USUBSAT) { 8085 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8086 // (LHS - RHS) & ~OverflowMask 8087 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8088 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8089 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8090 } 8091 // Overflow ? 0 : (LHS - RHS) 8092 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8093 } 8094 8095 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8096 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8097 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8098 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8099 DAG.getConstant(BitWidth - 1, dl, VT)); 8100 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8101 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8102 } 8103 8104 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8105 unsigned Opcode = Node->getOpcode(); 8106 bool IsSigned = Opcode == ISD::SSHLSAT; 8107 SDValue LHS = Node->getOperand(0); 8108 SDValue RHS = Node->getOperand(1); 8109 EVT VT = LHS.getValueType(); 8110 SDLoc dl(Node); 8111 8112 assert((Node->getOpcode() == ISD::SSHLSAT || 8113 Node->getOpcode() == ISD::USHLSAT) && 8114 "Expected a SHLSAT opcode"); 8115 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8116 assert(VT.isInteger() && "Expected operands to be integers"); 8117 8118 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8119 8120 unsigned BW = VT.getScalarSizeInBits(); 8121 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8122 SDValue Orig = 8123 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8124 8125 SDValue SatVal; 8126 if (IsSigned) { 8127 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8128 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8129 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8130 SatMin, SatMax, ISD::SETLT); 8131 } else { 8132 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8133 } 8134 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8135 8136 return Result; 8137 } 8138 8139 SDValue 8140 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8141 assert((Node->getOpcode() == ISD::SMULFIX || 8142 Node->getOpcode() == ISD::UMULFIX || 8143 Node->getOpcode() == ISD::SMULFIXSAT || 8144 Node->getOpcode() == ISD::UMULFIXSAT) && 8145 "Expected a fixed point multiplication opcode"); 8146 8147 SDLoc dl(Node); 8148 SDValue LHS = Node->getOperand(0); 8149 SDValue RHS = Node->getOperand(1); 8150 EVT VT = LHS.getValueType(); 8151 unsigned Scale = Node->getConstantOperandVal(2); 8152 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8153 Node->getOpcode() == ISD::UMULFIXSAT); 8154 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8155 Node->getOpcode() == ISD::SMULFIXSAT); 8156 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8157 unsigned VTSize = VT.getScalarSizeInBits(); 8158 8159 if (!Scale) { 8160 // [us]mul.fix(a, b, 0) -> mul(a, b) 8161 if (!Saturating) { 8162 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8163 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8164 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8165 SDValue Result = 8166 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8167 SDValue Product = Result.getValue(0); 8168 SDValue Overflow = Result.getValue(1); 8169 SDValue Zero = DAG.getConstant(0, dl, VT); 8170 8171 APInt MinVal = APInt::getSignedMinValue(VTSize); 8172 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8173 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8174 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8175 // Xor the inputs, if resulting sign bit is 0 the product will be 8176 // positive, else negative. 8177 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8178 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8179 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8180 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8181 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8182 SDValue Result = 8183 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8184 SDValue Product = Result.getValue(0); 8185 SDValue Overflow = Result.getValue(1); 8186 8187 APInt MaxVal = APInt::getMaxValue(VTSize); 8188 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8189 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8190 } 8191 } 8192 8193 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8194 "Expected scale to be less than the number of bits if signed or at " 8195 "most the number of bits if unsigned."); 8196 assert(LHS.getValueType() == RHS.getValueType() && 8197 "Expected both operands to be the same type"); 8198 8199 // Get the upper and lower bits of the result. 8200 SDValue Lo, Hi; 8201 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8202 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8203 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8204 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8205 Lo = Result.getValue(0); 8206 Hi = Result.getValue(1); 8207 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8208 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8209 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8210 } else if (VT.isVector()) { 8211 return SDValue(); 8212 } else { 8213 report_fatal_error("Unable to expand fixed point multiplication."); 8214 } 8215 8216 if (Scale == VTSize) 8217 // Result is just the top half since we'd be shifting by the width of the 8218 // operand. Overflow impossible so this works for both UMULFIX and 8219 // UMULFIXSAT. 8220 return Hi; 8221 8222 // The result will need to be shifted right by the scale since both operands 8223 // are scaled. The result is given to us in 2 halves, so we only want part of 8224 // both in the result. 8225 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8226 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8227 DAG.getConstant(Scale, dl, ShiftTy)); 8228 if (!Saturating) 8229 return Result; 8230 8231 if (!Signed) { 8232 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8233 // widened multiplication) aren't all zeroes. 8234 8235 // Saturate to max if ((Hi >> Scale) != 0), 8236 // which is the same as if (Hi > ((1 << Scale) - 1)) 8237 APInt MaxVal = APInt::getMaxValue(VTSize); 8238 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8239 dl, VT); 8240 Result = DAG.getSelectCC(dl, Hi, LowMask, 8241 DAG.getConstant(MaxVal, dl, VT), Result, 8242 ISD::SETUGT); 8243 8244 return Result; 8245 } 8246 8247 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8248 // widened multiplication) aren't all ones or all zeroes. 8249 8250 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8251 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8252 8253 if (Scale == 0) { 8254 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8255 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8256 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8257 // Saturated to SatMin if wide product is negative, and SatMax if wide 8258 // product is positive ... 8259 SDValue Zero = DAG.getConstant(0, dl, VT); 8260 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8261 ISD::SETLT); 8262 // ... but only if we overflowed. 8263 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8264 } 8265 8266 // We handled Scale==0 above so all the bits to examine is in Hi. 8267 8268 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8269 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8270 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8271 dl, VT); 8272 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8273 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8274 // which is the same as if (HI < (-1 << (Scale - 1)) 8275 SDValue HighMask = 8276 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8277 dl, VT); 8278 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8279 return Result; 8280 } 8281 8282 SDValue 8283 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8284 SDValue LHS, SDValue RHS, 8285 unsigned Scale, SelectionDAG &DAG) const { 8286 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8287 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8288 "Expected a fixed point division opcode"); 8289 8290 EVT VT = LHS.getValueType(); 8291 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8292 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8293 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8294 8295 // If there is enough room in the type to upscale the LHS or downscale the 8296 // RHS before the division, we can perform it in this type without having to 8297 // resize. For signed operations, the LHS headroom is the number of 8298 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8299 // The headroom for the RHS is the number of trailing zeroes. 8300 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8301 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8302 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8303 8304 // For signed saturating operations, we need to be able to detect true integer 8305 // division overflow; that is, when you have MIN / -EPS. However, this 8306 // is undefined behavior and if we emit divisions that could take such 8307 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8308 // example). 8309 // Avoid this by requiring an extra bit so that we never get this case. 8310 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8311 // signed saturating division, we need to emit a whopping 32-bit division. 8312 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8313 return SDValue(); 8314 8315 unsigned LHSShift = std::min(LHSLead, Scale); 8316 unsigned RHSShift = Scale - LHSShift; 8317 8318 // At this point, we know that if we shift the LHS up by LHSShift and the 8319 // RHS down by RHSShift, we can emit a regular division with a final scaling 8320 // factor of Scale. 8321 8322 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8323 if (LHSShift) 8324 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8325 DAG.getConstant(LHSShift, dl, ShiftTy)); 8326 if (RHSShift) 8327 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8328 DAG.getConstant(RHSShift, dl, ShiftTy)); 8329 8330 SDValue Quot; 8331 if (Signed) { 8332 // For signed operations, if the resulting quotient is negative and the 8333 // remainder is nonzero, subtract 1 from the quotient to round towards 8334 // negative infinity. 8335 SDValue Rem; 8336 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8337 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8338 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8339 if (isTypeLegal(VT) && 8340 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8341 Quot = DAG.getNode(ISD::SDIVREM, dl, 8342 DAG.getVTList(VT, VT), 8343 LHS, RHS); 8344 Rem = Quot.getValue(1); 8345 Quot = Quot.getValue(0); 8346 } else { 8347 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8348 LHS, RHS); 8349 Rem = DAG.getNode(ISD::SREM, dl, VT, 8350 LHS, RHS); 8351 } 8352 SDValue Zero = DAG.getConstant(0, dl, VT); 8353 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8354 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8355 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8356 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8357 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8358 DAG.getConstant(1, dl, VT)); 8359 Quot = DAG.getSelect(dl, VT, 8360 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8361 Sub1, Quot); 8362 } else 8363 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8364 LHS, RHS); 8365 8366 return Quot; 8367 } 8368 8369 void TargetLowering::expandUADDSUBO( 8370 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8371 SDLoc dl(Node); 8372 SDValue LHS = Node->getOperand(0); 8373 SDValue RHS = Node->getOperand(1); 8374 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8375 8376 // If ADD/SUBCARRY is legal, use that instead. 8377 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8378 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8379 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8380 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8381 { LHS, RHS, CarryIn }); 8382 Result = SDValue(NodeCarry.getNode(), 0); 8383 Overflow = SDValue(NodeCarry.getNode(), 1); 8384 return; 8385 } 8386 8387 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8388 LHS.getValueType(), LHS, RHS); 8389 8390 EVT ResultType = Node->getValueType(1); 8391 EVT SetCCType = getSetCCResultType( 8392 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8393 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8394 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8395 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8396 } 8397 8398 void TargetLowering::expandSADDSUBO( 8399 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8400 SDLoc dl(Node); 8401 SDValue LHS = Node->getOperand(0); 8402 SDValue RHS = Node->getOperand(1); 8403 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8404 8405 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8406 LHS.getValueType(), LHS, RHS); 8407 8408 EVT ResultType = Node->getValueType(1); 8409 EVT OType = getSetCCResultType( 8410 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8411 8412 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8413 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8414 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8415 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8416 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8417 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8418 return; 8419 } 8420 8421 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8422 8423 // For an addition, the result should be less than one of the operands (LHS) 8424 // if and only if the other operand (RHS) is negative, otherwise there will 8425 // be overflow. 8426 // For a subtraction, the result should be less than one of the operands 8427 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8428 // otherwise there will be overflow. 8429 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8430 SDValue ConditionRHS = 8431 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8432 8433 Overflow = DAG.getBoolExtOrTrunc( 8434 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8435 ResultType, ResultType); 8436 } 8437 8438 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8439 SDValue &Overflow, SelectionDAG &DAG) const { 8440 SDLoc dl(Node); 8441 EVT VT = Node->getValueType(0); 8442 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8443 SDValue LHS = Node->getOperand(0); 8444 SDValue RHS = Node->getOperand(1); 8445 bool isSigned = Node->getOpcode() == ISD::SMULO; 8446 8447 // For power-of-two multiplications we can use a simpler shift expansion. 8448 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8449 const APInt &C = RHSC->getAPIntValue(); 8450 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8451 if (C.isPowerOf2()) { 8452 // smulo(x, signed_min) is same as umulo(x, signed_min). 8453 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8454 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8455 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8456 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8457 Overflow = DAG.getSetCC(dl, SetCCVT, 8458 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8459 dl, VT, Result, ShiftAmt), 8460 LHS, ISD::SETNE); 8461 return true; 8462 } 8463 } 8464 8465 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8466 if (VT.isVector()) 8467 WideVT = 8468 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8469 8470 SDValue BottomHalf; 8471 SDValue TopHalf; 8472 static const unsigned Ops[2][3] = 8473 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8474 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8475 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8476 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8477 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8478 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8479 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8480 RHS); 8481 TopHalf = BottomHalf.getValue(1); 8482 } else if (isTypeLegal(WideVT)) { 8483 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8484 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8485 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8486 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8487 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8488 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8489 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8490 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8491 } else { 8492 if (VT.isVector()) 8493 return false; 8494 8495 // We can fall back to a libcall with an illegal type for the MUL if we 8496 // have a libcall big enough. 8497 // Also, we can fall back to a division in some cases, but that's a big 8498 // performance hit in the general case. 8499 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8500 if (WideVT == MVT::i16) 8501 LC = RTLIB::MUL_I16; 8502 else if (WideVT == MVT::i32) 8503 LC = RTLIB::MUL_I32; 8504 else if (WideVT == MVT::i64) 8505 LC = RTLIB::MUL_I64; 8506 else if (WideVT == MVT::i128) 8507 LC = RTLIB::MUL_I128; 8508 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8509 8510 SDValue HiLHS; 8511 SDValue HiRHS; 8512 if (isSigned) { 8513 // The high part is obtained by SRA'ing all but one of the bits of low 8514 // part. 8515 unsigned LoSize = VT.getFixedSizeInBits(); 8516 HiLHS = 8517 DAG.getNode(ISD::SRA, dl, VT, LHS, 8518 DAG.getConstant(LoSize - 1, dl, 8519 getPointerTy(DAG.getDataLayout()))); 8520 HiRHS = 8521 DAG.getNode(ISD::SRA, dl, VT, RHS, 8522 DAG.getConstant(LoSize - 1, dl, 8523 getPointerTy(DAG.getDataLayout()))); 8524 } else { 8525 HiLHS = DAG.getConstant(0, dl, VT); 8526 HiRHS = DAG.getConstant(0, dl, VT); 8527 } 8528 8529 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8530 // pre-lowered to the correct types. This all depends upon WideVT not 8531 // being a legal type for the architecture and thus has to be split to 8532 // two arguments. 8533 SDValue Ret; 8534 TargetLowering::MakeLibCallOptions CallOptions; 8535 CallOptions.setSExt(isSigned); 8536 CallOptions.setIsPostTypeLegalization(true); 8537 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8538 // Halves of WideVT are packed into registers in different order 8539 // depending on platform endianness. This is usually handled by 8540 // the C calling convention, but we can't defer to it in 8541 // the legalizer. 8542 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8543 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8544 } else { 8545 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8546 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8547 } 8548 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8549 "Ret value is a collection of constituent nodes holding result."); 8550 if (DAG.getDataLayout().isLittleEndian()) { 8551 // Same as above. 8552 BottomHalf = Ret.getOperand(0); 8553 TopHalf = Ret.getOperand(1); 8554 } else { 8555 BottomHalf = Ret.getOperand(1); 8556 TopHalf = Ret.getOperand(0); 8557 } 8558 } 8559 8560 Result = BottomHalf; 8561 if (isSigned) { 8562 SDValue ShiftAmt = DAG.getConstant( 8563 VT.getScalarSizeInBits() - 1, dl, 8564 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8565 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8566 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8567 } else { 8568 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8569 DAG.getConstant(0, dl, VT), ISD::SETNE); 8570 } 8571 8572 // Truncate the result if SetCC returns a larger type than needed. 8573 EVT RType = Node->getValueType(1); 8574 if (RType.bitsLT(Overflow.getValueType())) 8575 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8576 8577 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8578 "Unexpected result type for S/UMULO legalization"); 8579 return true; 8580 } 8581 8582 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8583 SDLoc dl(Node); 8584 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8585 SDValue Op = Node->getOperand(0); 8586 EVT VT = Op.getValueType(); 8587 8588 if (VT.isScalableVector()) 8589 report_fatal_error( 8590 "Expanding reductions for scalable vectors is undefined."); 8591 8592 // Try to use a shuffle reduction for power of two vectors. 8593 if (VT.isPow2VectorType()) { 8594 while (VT.getVectorNumElements() > 1) { 8595 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8596 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8597 break; 8598 8599 SDValue Lo, Hi; 8600 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8601 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8602 VT = HalfVT; 8603 } 8604 } 8605 8606 EVT EltVT = VT.getVectorElementType(); 8607 unsigned NumElts = VT.getVectorNumElements(); 8608 8609 SmallVector<SDValue, 8> Ops; 8610 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8611 8612 SDValue Res = Ops[0]; 8613 for (unsigned i = 1; i < NumElts; i++) 8614 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8615 8616 // Result type may be wider than element type. 8617 if (EltVT != Node->getValueType(0)) 8618 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8619 return Res; 8620 } 8621 8622 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8623 SDLoc dl(Node); 8624 SDValue AccOp = Node->getOperand(0); 8625 SDValue VecOp = Node->getOperand(1); 8626 SDNodeFlags Flags = Node->getFlags(); 8627 8628 EVT VT = VecOp.getValueType(); 8629 EVT EltVT = VT.getVectorElementType(); 8630 8631 if (VT.isScalableVector()) 8632 report_fatal_error( 8633 "Expanding reductions for scalable vectors is undefined."); 8634 8635 unsigned NumElts = VT.getVectorNumElements(); 8636 8637 SmallVector<SDValue, 8> Ops; 8638 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8639 8640 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8641 8642 SDValue Res = AccOp; 8643 for (unsigned i = 0; i < NumElts; i++) 8644 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8645 8646 return Res; 8647 } 8648 8649 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8650 SelectionDAG &DAG) const { 8651 EVT VT = Node->getValueType(0); 8652 SDLoc dl(Node); 8653 bool isSigned = Node->getOpcode() == ISD::SREM; 8654 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8655 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8656 SDValue Dividend = Node->getOperand(0); 8657 SDValue Divisor = Node->getOperand(1); 8658 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8659 SDVTList VTs = DAG.getVTList(VT, VT); 8660 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8661 return true; 8662 } 8663 if (isOperationLegalOrCustom(DivOpc, VT)) { 8664 // X % Y -> X-X/Y*Y 8665 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8666 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8667 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8668 return true; 8669 } 8670 return false; 8671 } 8672 8673 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8674 SelectionDAG &DAG) const { 8675 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8676 SDLoc dl(SDValue(Node, 0)); 8677 SDValue Src = Node->getOperand(0); 8678 8679 // DstVT is the result type, while SatVT is the size to which we saturate 8680 EVT SrcVT = Src.getValueType(); 8681 EVT DstVT = Node->getValueType(0); 8682 8683 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8684 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8685 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8686 assert(SatWidth <= DstWidth && 8687 "Expected saturation width smaller than result width"); 8688 8689 // Determine minimum and maximum integer values and their corresponding 8690 // floating-point values. 8691 APInt MinInt, MaxInt; 8692 if (IsSigned) { 8693 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8694 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8695 } else { 8696 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8697 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8698 } 8699 8700 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8701 // libcall emission cannot handle this. Large result types will fail. 8702 if (SrcVT == MVT::f16) { 8703 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8704 SrcVT = Src.getValueType(); 8705 } 8706 8707 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8708 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8709 8710 APFloat::opStatus MinStatus = 8711 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8712 APFloat::opStatus MaxStatus = 8713 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8714 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8715 !(MaxStatus & APFloat::opStatus::opInexact); 8716 8717 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8718 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8719 8720 // If the integer bounds are exactly representable as floats and min/max are 8721 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8722 // of comparisons and selects. 8723 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8724 isOperationLegal(ISD::FMAXNUM, SrcVT); 8725 if (AreExactFloatBounds && MinMaxLegal) { 8726 SDValue Clamped = Src; 8727 8728 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8729 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8730 // Clamp by MaxFloat from above. NaN cannot occur. 8731 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8732 // Convert clamped value to integer. 8733 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8734 dl, DstVT, Clamped); 8735 8736 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8737 // which will cast to zero. 8738 if (!IsSigned) 8739 return FpToInt; 8740 8741 // Otherwise, select 0 if Src is NaN. 8742 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8743 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8744 ISD::CondCode::SETUO); 8745 } 8746 8747 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8748 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8749 8750 // Result of direct conversion. The assumption here is that the operation is 8751 // non-trapping and it's fine to apply it to an out-of-range value if we 8752 // select it away later. 8753 SDValue FpToInt = 8754 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8755 8756 SDValue Select = FpToInt; 8757 8758 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8759 // MinInt if Src is NaN. 8760 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8761 ISD::CondCode::SETULT); 8762 // If Src OGT MaxFloat, select MaxInt. 8763 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8764 ISD::CondCode::SETOGT); 8765 8766 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8767 // is already zero. 8768 if (!IsSigned) 8769 return Select; 8770 8771 // Otherwise, select 0 if Src is NaN. 8772 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8773 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8774 } 8775 8776 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8777 SelectionDAG &DAG) const { 8778 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8779 assert(Node->getValueType(0).isScalableVector() && 8780 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8781 8782 EVT VT = Node->getValueType(0); 8783 SDValue V1 = Node->getOperand(0); 8784 SDValue V2 = Node->getOperand(1); 8785 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8786 SDLoc DL(Node); 8787 8788 // Expand through memory thusly: 8789 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8790 // Store V1, Ptr 8791 // Store V2, Ptr + sizeof(V1) 8792 // If (Imm < 0) 8793 // TrailingElts = -Imm 8794 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8795 // else 8796 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8797 // Res = Load Ptr 8798 8799 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8800 8801 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8802 VT.getVectorElementCount() * 2); 8803 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8804 EVT PtrVT = StackPtr.getValueType(); 8805 auto &MF = DAG.getMachineFunction(); 8806 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8807 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8808 8809 // Store the lo part of CONCAT_VECTORS(V1, V2) 8810 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8811 // Store the hi part of CONCAT_VECTORS(V1, V2) 8812 SDValue OffsetToV2 = DAG.getVScale( 8813 DL, PtrVT, 8814 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8815 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8816 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8817 8818 if (Imm >= 0) { 8819 // Load back the required element. getVectorElementPointer takes care of 8820 // clamping the index if it's out-of-bounds. 8821 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8822 // Load the spliced result 8823 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8824 MachinePointerInfo::getUnknownStack(MF)); 8825 } 8826 8827 uint64_t TrailingElts = -Imm; 8828 8829 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8830 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8831 SDValue TrailingBytes = 8832 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8833 8834 if (TrailingElts > VT.getVectorMinNumElements()) { 8835 SDValue VLBytes = DAG.getVScale( 8836 DL, PtrVT, 8837 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8838 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8839 } 8840 8841 // Calculate the start address of the spliced result. 8842 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8843 8844 // Load the spliced result 8845 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8846 MachinePointerInfo::getUnknownStack(MF)); 8847 } 8848 8849 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8850 SDValue &LHS, SDValue &RHS, 8851 SDValue &CC, bool &NeedInvert, 8852 const SDLoc &dl, SDValue &Chain, 8853 bool IsSignaling) const { 8854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8855 MVT OpVT = LHS.getSimpleValueType(); 8856 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8857 NeedInvert = false; 8858 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8859 default: 8860 llvm_unreachable("Unknown condition code action!"); 8861 case TargetLowering::Legal: 8862 // Nothing to do. 8863 break; 8864 case TargetLowering::Expand: { 8865 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8866 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8867 std::swap(LHS, RHS); 8868 CC = DAG.getCondCode(InvCC); 8869 return true; 8870 } 8871 // Swapping operands didn't work. Try inverting the condition. 8872 bool NeedSwap = false; 8873 InvCC = getSetCCInverse(CCCode, OpVT); 8874 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8875 // If inverting the condition is not enough, try swapping operands 8876 // on top of it. 8877 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8878 NeedSwap = true; 8879 } 8880 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8881 CC = DAG.getCondCode(InvCC); 8882 NeedInvert = true; 8883 if (NeedSwap) 8884 std::swap(LHS, RHS); 8885 return true; 8886 } 8887 8888 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8889 unsigned Opc = 0; 8890 switch (CCCode) { 8891 default: 8892 llvm_unreachable("Don't know how to expand this condition!"); 8893 case ISD::SETUO: 8894 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8895 CC1 = ISD::SETUNE; 8896 CC2 = ISD::SETUNE; 8897 Opc = ISD::OR; 8898 break; 8899 } 8900 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8901 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8902 NeedInvert = true; 8903 LLVM_FALLTHROUGH; 8904 case ISD::SETO: 8905 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8906 "If SETO is expanded, SETOEQ must be legal!"); 8907 CC1 = ISD::SETOEQ; 8908 CC2 = ISD::SETOEQ; 8909 Opc = ISD::AND; 8910 break; 8911 case ISD::SETONE: 8912 case ISD::SETUEQ: 8913 // If the SETUO or SETO CC isn't legal, we might be able to use 8914 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8915 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8916 // the operands. 8917 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8918 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8919 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8920 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8921 CC1 = ISD::SETOGT; 8922 CC2 = ISD::SETOLT; 8923 Opc = ISD::OR; 8924 NeedInvert = ((unsigned)CCCode & 0x8U); 8925 break; 8926 } 8927 LLVM_FALLTHROUGH; 8928 case ISD::SETOEQ: 8929 case ISD::SETOGT: 8930 case ISD::SETOGE: 8931 case ISD::SETOLT: 8932 case ISD::SETOLE: 8933 case ISD::SETUNE: 8934 case ISD::SETUGT: 8935 case ISD::SETUGE: 8936 case ISD::SETULT: 8937 case ISD::SETULE: 8938 // If we are floating point, assign and break, otherwise fall through. 8939 if (!OpVT.isInteger()) { 8940 // We can use the 4th bit to tell if we are the unordered 8941 // or ordered version of the opcode. 8942 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8943 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8944 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8945 break; 8946 } 8947 // Fallthrough if we are unsigned integer. 8948 LLVM_FALLTHROUGH; 8949 case ISD::SETLE: 8950 case ISD::SETGT: 8951 case ISD::SETGE: 8952 case ISD::SETLT: 8953 case ISD::SETNE: 8954 case ISD::SETEQ: 8955 // If all combinations of inverting the condition and swapping operands 8956 // didn't work then we have no means to expand the condition. 8957 llvm_unreachable("Don't know how to expand this condition!"); 8958 } 8959 8960 SDValue SetCC1, SetCC2; 8961 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8962 // If we aren't the ordered or unorder operation, 8963 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8964 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8965 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8966 } else { 8967 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8968 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8969 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8970 } 8971 if (Chain) 8972 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8973 SetCC2.getValue(1)); 8974 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8975 RHS = SDValue(); 8976 CC = SDValue(); 8977 return true; 8978 } 8979 } 8980 return false; 8981 } 8982