xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   bool IsLE = DAG.getDataLayout().isLittleEndian();
649   unsigned NumElts = DemandedElts.getBitWidth();
650   unsigned BitWidth = DemandedBits.getBitWidth();
651   KnownBits LHSKnown, RHSKnown;
652   switch (Op.getOpcode()) {
653   case ISD::BITCAST: {
654     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
655     EVT SrcVT = Src.getValueType();
656     EVT DstVT = Op.getValueType();
657     if (SrcVT == DstVT)
658       return Src;
659 
660     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
661     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
662     if (NumSrcEltBits == NumDstEltBits)
663       if (SDValue V = SimplifyMultipleUseDemandedBits(
664               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
665         return DAG.getBitcast(DstVT, V);
666 
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
674         unsigned BitOffset = EltOffset * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (IsLE && DemandedElts == 1 &&
805         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809     APInt DemandedSrcBits = DemandedBits.byteSwap();
1810     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1811                              Depth + 1))
1812       return true;
1813     Known.One = Known2.One.byteSwap();
1814     Known.Zero = Known2.Zero.byteSwap();
1815     break;
1816   }
1817   case ISD::CTPOP: {
1818     // If only 1 bit is demanded, replace with PARITY as long as we're before
1819     // op legalization.
1820     // FIXME: Limit to scalars for now.
1821     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1822       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1823                                                Op.getOperand(0)));
1824 
1825     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1826     break;
1827   }
1828   case ISD::SIGN_EXTEND_INREG: {
1829     SDValue Op0 = Op.getOperand(0);
1830     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1831     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1832 
1833     // If we only care about the highest bit, don't bother shifting right.
1834     if (DemandedBits.isSignMask()) {
1835       unsigned MinSignedBits =
1836           TLO.DAG.ComputeMinSignedBits(Op0, DemandedElts, Depth + 1);
1837       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1838       // However if the input is already sign extended we expect the sign
1839       // extension to be dropped altogether later and do not simplify.
1840       if (!AlreadySignExtended) {
1841         // Compute the correct shift amount type, which must be getShiftAmountTy
1842         // for scalar types after legalization.
1843         EVT ShiftAmtTy = VT;
1844         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1845           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1846 
1847         SDValue ShiftAmt =
1848             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1849         return TLO.CombineTo(Op,
1850                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1851       }
1852     }
1853 
1854     // If none of the extended bits are demanded, eliminate the sextinreg.
1855     if (DemandedBits.getActiveBits() <= ExVTBits)
1856       return TLO.CombineTo(Op, Op0);
1857 
1858     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1859 
1860     // Since the sign extended bits are demanded, we know that the sign
1861     // bit is demanded.
1862     InputDemandedBits.setBit(ExVTBits - 1);
1863 
1864     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1865       return true;
1866     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1867 
1868     // If the sign bit of the input is known set or clear, then we know the
1869     // top bits of the result.
1870 
1871     // If the input sign bit is known zero, convert this into a zero extension.
1872     if (Known.Zero[ExVTBits - 1])
1873       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1874 
1875     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1876     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1877       Known.One.setBitsFrom(ExVTBits);
1878       Known.Zero &= Mask;
1879     } else { // Input sign bit unknown
1880       Known.Zero &= Mask;
1881       Known.One &= Mask;
1882     }
1883     break;
1884   }
1885   case ISD::BUILD_PAIR: {
1886     EVT HalfVT = Op.getOperand(0).getValueType();
1887     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1888 
1889     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1890     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1891 
1892     KnownBits KnownLo, KnownHi;
1893 
1894     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1895       return true;
1896 
1897     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1898       return true;
1899 
1900     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1901                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1902 
1903     Known.One = KnownLo.One.zext(BitWidth) |
1904                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1905     break;
1906   }
1907   case ISD::ZERO_EXTEND:
1908   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1909     SDValue Src = Op.getOperand(0);
1910     EVT SrcVT = Src.getValueType();
1911     unsigned InBits = SrcVT.getScalarSizeInBits();
1912     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1913     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1914 
1915     // If none of the top bits are demanded, convert this into an any_extend.
1916     if (DemandedBits.getActiveBits() <= InBits) {
1917       // If we only need the non-extended bits of the bottom element
1918       // then we can just bitcast to the result.
1919       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1920           VT.getSizeInBits() == SrcVT.getSizeInBits())
1921         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1922 
1923       unsigned Opc =
1924           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1925       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1926         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1927     }
1928 
1929     APInt InDemandedBits = DemandedBits.trunc(InBits);
1930     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1931     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1932                              Depth + 1))
1933       return true;
1934     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1935     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1936     Known = Known.zext(BitWidth);
1937 
1938     // Attempt to avoid multi-use ops if we don't need anything from them.
1939     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1940             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1941       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1942     break;
1943   }
1944   case ISD::SIGN_EXTEND:
1945   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1946     SDValue Src = Op.getOperand(0);
1947     EVT SrcVT = Src.getValueType();
1948     unsigned InBits = SrcVT.getScalarSizeInBits();
1949     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1950     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1951 
1952     // If none of the top bits are demanded, convert this into an any_extend.
1953     if (DemandedBits.getActiveBits() <= InBits) {
1954       // If we only need the non-extended bits of the bottom element
1955       // then we can just bitcast to the result.
1956       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1957           VT.getSizeInBits() == SrcVT.getSizeInBits())
1958         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1959 
1960       unsigned Opc =
1961           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1962       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1963         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1964     }
1965 
1966     APInt InDemandedBits = DemandedBits.trunc(InBits);
1967     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1968 
1969     // Since some of the sign extended bits are demanded, we know that the sign
1970     // bit is demanded.
1971     InDemandedBits.setBit(InBits - 1);
1972 
1973     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1974                              Depth + 1))
1975       return true;
1976     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1977     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1978 
1979     // If the sign bit is known one, the top bits match.
1980     Known = Known.sext(BitWidth);
1981 
1982     // If the sign bit is known zero, convert this to a zero extend.
1983     if (Known.isNonNegative()) {
1984       unsigned Opc =
1985           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1986       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1987         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1988     }
1989 
1990     // Attempt to avoid multi-use ops if we don't need anything from them.
1991     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1992             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1993       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1994     break;
1995   }
1996   case ISD::ANY_EXTEND:
1997   case ISD::ANY_EXTEND_VECTOR_INREG: {
1998     SDValue Src = Op.getOperand(0);
1999     EVT SrcVT = Src.getValueType();
2000     unsigned InBits = SrcVT.getScalarSizeInBits();
2001     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2002     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2003 
2004     // If we only need the bottom element then we can just bitcast.
2005     // TODO: Handle ANY_EXTEND?
2006     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2007         VT.getSizeInBits() == SrcVT.getSizeInBits())
2008       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2009 
2010     APInt InDemandedBits = DemandedBits.trunc(InBits);
2011     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2012     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2013                              Depth + 1))
2014       return true;
2015     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2016     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2017     Known = Known.anyext(BitWidth);
2018 
2019     // Attempt to avoid multi-use ops if we don't need anything from them.
2020     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2021             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2022       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2023     break;
2024   }
2025   case ISD::TRUNCATE: {
2026     SDValue Src = Op.getOperand(0);
2027 
2028     // Simplify the input, using demanded bit information, and compute the known
2029     // zero/one bits live out.
2030     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2031     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2032     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2033                              Depth + 1))
2034       return true;
2035     Known = Known.trunc(BitWidth);
2036 
2037     // Attempt to avoid multi-use ops if we don't need anything from them.
2038     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2039             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2040       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2041 
2042     // If the input is only used by this truncate, see if we can shrink it based
2043     // on the known demanded bits.
2044     if (Src.getNode()->hasOneUse()) {
2045       switch (Src.getOpcode()) {
2046       default:
2047         break;
2048       case ISD::SRL:
2049         // Shrink SRL by a constant if none of the high bits shifted in are
2050         // demanded.
2051         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2052           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2053           // undesirable.
2054           break;
2055 
2056         const APInt *ShAmtC =
2057             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2058         if (!ShAmtC || ShAmtC->uge(BitWidth))
2059           break;
2060         uint64_t ShVal = ShAmtC->getZExtValue();
2061 
2062         APInt HighBits =
2063             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2064         HighBits.lshrInPlace(ShVal);
2065         HighBits = HighBits.trunc(BitWidth);
2066 
2067         if (!(HighBits & DemandedBits)) {
2068           // None of the shifted in bits are needed.  Add a truncate of the
2069           // shift input, then shift it.
2070           SDValue NewShAmt = TLO.DAG.getConstant(
2071               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2072           SDValue NewTrunc =
2073               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2074           return TLO.CombineTo(
2075               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2076         }
2077         break;
2078       }
2079     }
2080 
2081     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2082     break;
2083   }
2084   case ISD::AssertZext: {
2085     // AssertZext demands all of the high bits, plus any of the low bits
2086     // demanded by its users.
2087     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2088     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2089     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2090                              TLO, Depth + 1))
2091       return true;
2092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2093 
2094     Known.Zero |= ~InMask;
2095     break;
2096   }
2097   case ISD::EXTRACT_VECTOR_ELT: {
2098     SDValue Src = Op.getOperand(0);
2099     SDValue Idx = Op.getOperand(1);
2100     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2101     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2102 
2103     if (SrcEltCnt.isScalable())
2104       return false;
2105 
2106     // Demand the bits from every vector element without a constant index.
2107     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2108     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2109     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2110       if (CIdx->getAPIntValue().ult(NumSrcElts))
2111         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2112 
2113     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2114     // anything about the extended bits.
2115     APInt DemandedSrcBits = DemandedBits;
2116     if (BitWidth > EltBitWidth)
2117       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2118 
2119     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2120                              Depth + 1))
2121       return true;
2122 
2123     // Attempt to avoid multi-use ops if we don't need anything from them.
2124     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2125       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2126               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2127         SDValue NewOp =
2128             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2129         return TLO.CombineTo(Op, NewOp);
2130       }
2131     }
2132 
2133     Known = Known2;
2134     if (BitWidth > EltBitWidth)
2135       Known = Known.anyext(BitWidth);
2136     break;
2137   }
2138   case ISD::BITCAST: {
2139     SDValue Src = Op.getOperand(0);
2140     EVT SrcVT = Src.getValueType();
2141     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2142 
2143     // If this is an FP->Int bitcast and if the sign bit is the only
2144     // thing demanded, turn this into a FGETSIGN.
2145     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2146         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2147         SrcVT.isFloatingPoint()) {
2148       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2149       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2150       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2151           SrcVT != MVT::f128) {
2152         // Cannot eliminate/lower SHL for f128 yet.
2153         EVT Ty = OpVTLegal ? VT : MVT::i32;
2154         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2155         // place.  We expect the SHL to be eliminated by other optimizations.
2156         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2157         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2158         if (!OpVTLegal && OpVTSizeInBits > 32)
2159           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2160         unsigned ShVal = Op.getValueSizeInBits() - 1;
2161         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2162         return TLO.CombineTo(Op,
2163                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2164       }
2165     }
2166 
2167     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2168     // Demand the elt/bit if any of the original elts/bits are demanded.
2169     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2170       unsigned Scale = BitWidth / NumSrcEltBits;
2171       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2172       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2173       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2174       for (unsigned i = 0; i != Scale; ++i) {
2175         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2176         unsigned BitOffset = EltOffset * NumSrcEltBits;
2177         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2178         if (!Sub.isZero()) {
2179           DemandedSrcBits |= Sub;
2180           for (unsigned j = 0; j != NumElts; ++j)
2181             if (DemandedElts[j])
2182               DemandedSrcElts.setBit((j * Scale) + i);
2183         }
2184       }
2185 
2186       APInt KnownSrcUndef, KnownSrcZero;
2187       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2188                                      KnownSrcZero, TLO, Depth + 1))
2189         return true;
2190 
2191       KnownBits KnownSrcBits;
2192       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2193                                KnownSrcBits, TLO, Depth + 1))
2194         return true;
2195     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2196       // TODO - bigendian once we have test coverage.
2197       unsigned Scale = NumSrcEltBits / BitWidth;
2198       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2199       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2200       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2201       for (unsigned i = 0; i != NumElts; ++i)
2202         if (DemandedElts[i]) {
2203           unsigned Offset = (i % Scale) * BitWidth;
2204           DemandedSrcBits.insertBits(DemandedBits, Offset);
2205           DemandedSrcElts.setBit(i / Scale);
2206         }
2207 
2208       if (SrcVT.isVector()) {
2209         APInt KnownSrcUndef, KnownSrcZero;
2210         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2211                                        KnownSrcZero, TLO, Depth + 1))
2212           return true;
2213       }
2214 
2215       KnownBits KnownSrcBits;
2216       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2217                                KnownSrcBits, TLO, Depth + 1))
2218         return true;
2219     }
2220 
2221     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2222     // recursive call where Known may be useful to the caller.
2223     if (Depth > 0) {
2224       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2225       return false;
2226     }
2227     break;
2228   }
2229   case ISD::ADD:
2230   case ISD::MUL:
2231   case ISD::SUB: {
2232     // Add, Sub, and Mul don't demand any bits in positions beyond that
2233     // of the highest bit demanded of them.
2234     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2235     SDNodeFlags Flags = Op.getNode()->getFlags();
2236     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2237     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2238     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2239                              Depth + 1) ||
2240         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2241                              Depth + 1) ||
2242         // See if the operation should be performed at a smaller bit width.
2243         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2244       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2245         // Disable the nsw and nuw flags. We can no longer guarantee that we
2246         // won't wrap after simplification.
2247         Flags.setNoSignedWrap(false);
2248         Flags.setNoUnsignedWrap(false);
2249         SDValue NewOp =
2250             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2251         return TLO.CombineTo(Op, NewOp);
2252       }
2253       return true;
2254     }
2255 
2256     // Attempt to avoid multi-use ops if we don't need anything from them.
2257     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2258       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2259           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2260       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2261           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2262       if (DemandedOp0 || DemandedOp1) {
2263         Flags.setNoSignedWrap(false);
2264         Flags.setNoUnsignedWrap(false);
2265         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2266         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2267         SDValue NewOp =
2268             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2269         return TLO.CombineTo(Op, NewOp);
2270       }
2271     }
2272 
2273     // If we have a constant operand, we may be able to turn it into -1 if we
2274     // do not demand the high bits. This can make the constant smaller to
2275     // encode, allow more general folding, or match specialized instruction
2276     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2277     // is probably not useful (and could be detrimental).
2278     ConstantSDNode *C = isConstOrConstSplat(Op1);
2279     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2280     if (C && !C->isAllOnes() && !C->isOne() &&
2281         (C->getAPIntValue() | HighMask).isAllOnes()) {
2282       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2283       // Disable the nsw and nuw flags. We can no longer guarantee that we
2284       // won't wrap after simplification.
2285       Flags.setNoSignedWrap(false);
2286       Flags.setNoUnsignedWrap(false);
2287       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2288       return TLO.CombineTo(Op, NewOp);
2289     }
2290 
2291     LLVM_FALLTHROUGH;
2292   }
2293   default:
2294     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2295       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2296                                             Known, TLO, Depth))
2297         return true;
2298       break;
2299     }
2300 
2301     // Just use computeKnownBits to compute output bits.
2302     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2303     break;
2304   }
2305 
2306   // If we know the value of all of the demanded bits, return this as a
2307   // constant.
2308   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2309     // Avoid folding to a constant if any OpaqueConstant is involved.
2310     const SDNode *N = Op.getNode();
2311     for (SDNode *Op :
2312          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2313       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2314         if (C->isOpaque())
2315           return false;
2316     }
2317     if (VT.isInteger())
2318       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2319     if (VT.isFloatingPoint())
2320       return TLO.CombineTo(
2321           Op,
2322           TLO.DAG.getConstantFP(
2323               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2324   }
2325 
2326   return false;
2327 }
2328 
2329 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2330                                                 const APInt &DemandedElts,
2331                                                 APInt &KnownUndef,
2332                                                 APInt &KnownZero,
2333                                                 DAGCombinerInfo &DCI) const {
2334   SelectionDAG &DAG = DCI.DAG;
2335   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2336                         !DCI.isBeforeLegalizeOps());
2337 
2338   bool Simplified =
2339       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2340   if (Simplified) {
2341     DCI.AddToWorklist(Op.getNode());
2342     DCI.CommitTargetLoweringOpt(TLO);
2343   }
2344 
2345   return Simplified;
2346 }
2347 
2348 /// Given a vector binary operation and known undefined elements for each input
2349 /// operand, compute whether each element of the output is undefined.
2350 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2351                                          const APInt &UndefOp0,
2352                                          const APInt &UndefOp1) {
2353   EVT VT = BO.getValueType();
2354   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2355          "Vector binop only");
2356 
2357   EVT EltVT = VT.getVectorElementType();
2358   unsigned NumElts = VT.getVectorNumElements();
2359   assert(UndefOp0.getBitWidth() == NumElts &&
2360          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2361 
2362   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2363                                    const APInt &UndefVals) {
2364     if (UndefVals[Index])
2365       return DAG.getUNDEF(EltVT);
2366 
2367     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2368       // Try hard to make sure that the getNode() call is not creating temporary
2369       // nodes. Ignore opaque integers because they do not constant fold.
2370       SDValue Elt = BV->getOperand(Index);
2371       auto *C = dyn_cast<ConstantSDNode>(Elt);
2372       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2373         return Elt;
2374     }
2375 
2376     return SDValue();
2377   };
2378 
2379   APInt KnownUndef = APInt::getZero(NumElts);
2380   for (unsigned i = 0; i != NumElts; ++i) {
2381     // If both inputs for this element are either constant or undef and match
2382     // the element type, compute the constant/undef result for this element of
2383     // the vector.
2384     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2385     // not handle FP constants. The code within getNode() should be refactored
2386     // to avoid the danger of creating a bogus temporary node here.
2387     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2388     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2389     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2390       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2391         KnownUndef.setBit(i);
2392   }
2393   return KnownUndef;
2394 }
2395 
2396 bool TargetLowering::SimplifyDemandedVectorElts(
2397     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2398     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2399     bool AssumeSingleUse) const {
2400   EVT VT = Op.getValueType();
2401   unsigned Opcode = Op.getOpcode();
2402   APInt DemandedElts = OriginalDemandedElts;
2403   unsigned NumElts = DemandedElts.getBitWidth();
2404   assert(VT.isVector() && "Expected vector op");
2405 
2406   KnownUndef = KnownZero = APInt::getZero(NumElts);
2407 
2408   // TODO: For now we assume we know nothing about scalable vectors.
2409   if (VT.isScalableVector())
2410     return false;
2411 
2412   assert(VT.getVectorNumElements() == NumElts &&
2413          "Mask size mismatches value type element count!");
2414 
2415   // Undef operand.
2416   if (Op.isUndef()) {
2417     KnownUndef.setAllBits();
2418     return false;
2419   }
2420 
2421   // If Op has other users, assume that all elements are needed.
2422   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2423     DemandedElts.setAllBits();
2424 
2425   // Not demanding any elements from Op.
2426   if (DemandedElts == 0) {
2427     KnownUndef.setAllBits();
2428     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2429   }
2430 
2431   // Limit search depth.
2432   if (Depth >= SelectionDAG::MaxRecursionDepth)
2433     return false;
2434 
2435   SDLoc DL(Op);
2436   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2437   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2438 
2439   // Helper for demanding the specified elements and all the bits of both binary
2440   // operands.
2441   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2442     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2443                                                            TLO.DAG, Depth + 1);
2444     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2445                                                            TLO.DAG, Depth + 1);
2446     if (NewOp0 || NewOp1) {
2447       SDValue NewOp = TLO.DAG.getNode(
2448           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2449       return TLO.CombineTo(Op, NewOp);
2450     }
2451     return false;
2452   };
2453 
2454   switch (Opcode) {
2455   case ISD::SCALAR_TO_VECTOR: {
2456     if (!DemandedElts[0]) {
2457       KnownUndef.setAllBits();
2458       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2459     }
2460     SDValue ScalarSrc = Op.getOperand(0);
2461     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2462       SDValue Src = ScalarSrc.getOperand(0);
2463       SDValue Idx = ScalarSrc.getOperand(1);
2464       EVT SrcVT = Src.getValueType();
2465 
2466       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2467 
2468       if (SrcEltCnt.isScalable())
2469         return false;
2470 
2471       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2472       if (isNullConstant(Idx)) {
2473         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2474         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2475         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2476         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2477                                        TLO, Depth + 1))
2478           return true;
2479       }
2480     }
2481     KnownUndef.setHighBits(NumElts - 1);
2482     break;
2483   }
2484   case ISD::BITCAST: {
2485     SDValue Src = Op.getOperand(0);
2486     EVT SrcVT = Src.getValueType();
2487 
2488     // We only handle vectors here.
2489     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2490     if (!SrcVT.isVector())
2491       break;
2492 
2493     // Fast handling of 'identity' bitcasts.
2494     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2495     if (NumSrcElts == NumElts)
2496       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2497                                         KnownZero, TLO, Depth + 1);
2498 
2499     APInt SrcDemandedElts, SrcZero, SrcUndef;
2500 
2501     // Bitcast from 'large element' src vector to 'small element' vector, we
2502     // must demand a source element if any DemandedElt maps to it.
2503     if ((NumElts % NumSrcElts) == 0) {
2504       unsigned Scale = NumElts / NumSrcElts;
2505       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2506       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2507                                      TLO, Depth + 1))
2508         return true;
2509 
2510       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2511       // of the large element.
2512       // TODO - bigendian once we have test coverage.
2513       if (IsLE) {
2514         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2515         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2516         for (unsigned i = 0; i != NumElts; ++i)
2517           if (DemandedElts[i]) {
2518             unsigned Ofs = (i % Scale) * EltSizeInBits;
2519             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2520           }
2521 
2522         KnownBits Known;
2523         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2524                                  TLO, Depth + 1))
2525           return true;
2526       }
2527 
2528       // If the src element is zero/undef then all the output elements will be -
2529       // only demanded elements are guaranteed to be correct.
2530       for (unsigned i = 0; i != NumSrcElts; ++i) {
2531         if (SrcDemandedElts[i]) {
2532           if (SrcZero[i])
2533             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2534           if (SrcUndef[i])
2535             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2536         }
2537       }
2538     }
2539 
2540     // Bitcast from 'small element' src vector to 'large element' vector, we
2541     // demand all smaller source elements covered by the larger demanded element
2542     // of this vector.
2543     if ((NumSrcElts % NumElts) == 0) {
2544       unsigned Scale = NumSrcElts / NumElts;
2545       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2546       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2547                                      TLO, Depth + 1))
2548         return true;
2549 
2550       // If all the src elements covering an output element are zero/undef, then
2551       // the output element will be as well, assuming it was demanded.
2552       for (unsigned i = 0; i != NumElts; ++i) {
2553         if (DemandedElts[i]) {
2554           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2555             KnownZero.setBit(i);
2556           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2557             KnownUndef.setBit(i);
2558         }
2559       }
2560     }
2561     break;
2562   }
2563   case ISD::BUILD_VECTOR: {
2564     // Check all elements and simplify any unused elements with UNDEF.
2565     if (!DemandedElts.isAllOnes()) {
2566       // Don't simplify BROADCASTS.
2567       if (llvm::any_of(Op->op_values(),
2568                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2569         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2570         bool Updated = false;
2571         for (unsigned i = 0; i != NumElts; ++i) {
2572           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2573             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2574             KnownUndef.setBit(i);
2575             Updated = true;
2576           }
2577         }
2578         if (Updated)
2579           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2580       }
2581     }
2582     for (unsigned i = 0; i != NumElts; ++i) {
2583       SDValue SrcOp = Op.getOperand(i);
2584       if (SrcOp.isUndef()) {
2585         KnownUndef.setBit(i);
2586       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2587                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2588         KnownZero.setBit(i);
2589       }
2590     }
2591     break;
2592   }
2593   case ISD::CONCAT_VECTORS: {
2594     EVT SubVT = Op.getOperand(0).getValueType();
2595     unsigned NumSubVecs = Op.getNumOperands();
2596     unsigned NumSubElts = SubVT.getVectorNumElements();
2597     for (unsigned i = 0; i != NumSubVecs; ++i) {
2598       SDValue SubOp = Op.getOperand(i);
2599       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2600       APInt SubUndef, SubZero;
2601       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2602                                      Depth + 1))
2603         return true;
2604       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2605       KnownZero.insertBits(SubZero, i * NumSubElts);
2606     }
2607     break;
2608   }
2609   case ISD::INSERT_SUBVECTOR: {
2610     // Demand any elements from the subvector and the remainder from the src its
2611     // inserted into.
2612     SDValue Src = Op.getOperand(0);
2613     SDValue Sub = Op.getOperand(1);
2614     uint64_t Idx = Op.getConstantOperandVal(2);
2615     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2616     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2617     APInt DemandedSrcElts = DemandedElts;
2618     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2619 
2620     APInt SubUndef, SubZero;
2621     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2622                                    Depth + 1))
2623       return true;
2624 
2625     // If none of the src operand elements are demanded, replace it with undef.
2626     if (!DemandedSrcElts && !Src.isUndef())
2627       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2628                                                TLO.DAG.getUNDEF(VT), Sub,
2629                                                Op.getOperand(2)));
2630 
2631     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2632                                    TLO, Depth + 1))
2633       return true;
2634     KnownUndef.insertBits(SubUndef, Idx);
2635     KnownZero.insertBits(SubZero, Idx);
2636 
2637     // Attempt to avoid multi-use ops if we don't need anything from them.
2638     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2639       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2640           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2641       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2642           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2643       if (NewSrc || NewSub) {
2644         NewSrc = NewSrc ? NewSrc : Src;
2645         NewSub = NewSub ? NewSub : Sub;
2646         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2647                                         NewSub, Op.getOperand(2));
2648         return TLO.CombineTo(Op, NewOp);
2649       }
2650     }
2651     break;
2652   }
2653   case ISD::EXTRACT_SUBVECTOR: {
2654     // Offset the demanded elts by the subvector index.
2655     SDValue Src = Op.getOperand(0);
2656     if (Src.getValueType().isScalableVector())
2657       break;
2658     uint64_t Idx = Op.getConstantOperandVal(1);
2659     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2660     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2661 
2662     APInt SrcUndef, SrcZero;
2663     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2664                                    Depth + 1))
2665       return true;
2666     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2667     KnownZero = SrcZero.extractBits(NumElts, Idx);
2668 
2669     // Attempt to avoid multi-use ops if we don't need anything from them.
2670     if (!DemandedElts.isAllOnes()) {
2671       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2672           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2673       if (NewSrc) {
2674         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2675                                         Op.getOperand(1));
2676         return TLO.CombineTo(Op, NewOp);
2677       }
2678     }
2679     break;
2680   }
2681   case ISD::INSERT_VECTOR_ELT: {
2682     SDValue Vec = Op.getOperand(0);
2683     SDValue Scl = Op.getOperand(1);
2684     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2685 
2686     // For a legal, constant insertion index, if we don't need this insertion
2687     // then strip it, else remove it from the demanded elts.
2688     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2689       unsigned Idx = CIdx->getZExtValue();
2690       if (!DemandedElts[Idx])
2691         return TLO.CombineTo(Op, Vec);
2692 
2693       APInt DemandedVecElts(DemandedElts);
2694       DemandedVecElts.clearBit(Idx);
2695       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2696                                      KnownZero, TLO, Depth + 1))
2697         return true;
2698 
2699       KnownUndef.setBitVal(Idx, Scl.isUndef());
2700 
2701       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2702       break;
2703     }
2704 
2705     APInt VecUndef, VecZero;
2706     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2707                                    Depth + 1))
2708       return true;
2709     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2710     break;
2711   }
2712   case ISD::VSELECT: {
2713     // Try to transform the select condition based on the current demanded
2714     // elements.
2715     // TODO: If a condition element is undef, we can choose from one arm of the
2716     //       select (and if one arm is undef, then we can propagate that to the
2717     //       result).
2718     // TODO - add support for constant vselect masks (see IR version of this).
2719     APInt UnusedUndef, UnusedZero;
2720     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2721                                    UnusedZero, TLO, Depth + 1))
2722       return true;
2723 
2724     // See if we can simplify either vselect operand.
2725     APInt DemandedLHS(DemandedElts);
2726     APInt DemandedRHS(DemandedElts);
2727     APInt UndefLHS, ZeroLHS;
2728     APInt UndefRHS, ZeroRHS;
2729     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2730                                    ZeroLHS, TLO, Depth + 1))
2731       return true;
2732     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2733                                    ZeroRHS, TLO, Depth + 1))
2734       return true;
2735 
2736     KnownUndef = UndefLHS & UndefRHS;
2737     KnownZero = ZeroLHS & ZeroRHS;
2738     break;
2739   }
2740   case ISD::VECTOR_SHUFFLE: {
2741     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2742 
2743     // Collect demanded elements from shuffle operands..
2744     APInt DemandedLHS(NumElts, 0);
2745     APInt DemandedRHS(NumElts, 0);
2746     for (unsigned i = 0; i != NumElts; ++i) {
2747       int M = ShuffleMask[i];
2748       if (M < 0 || !DemandedElts[i])
2749         continue;
2750       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2751       if (M < (int)NumElts)
2752         DemandedLHS.setBit(M);
2753       else
2754         DemandedRHS.setBit(M - NumElts);
2755     }
2756 
2757     // See if we can simplify either shuffle operand.
2758     APInt UndefLHS, ZeroLHS;
2759     APInt UndefRHS, ZeroRHS;
2760     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2761                                    ZeroLHS, TLO, Depth + 1))
2762       return true;
2763     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2764                                    ZeroRHS, TLO, Depth + 1))
2765       return true;
2766 
2767     // Simplify mask using undef elements from LHS/RHS.
2768     bool Updated = false;
2769     bool IdentityLHS = true, IdentityRHS = true;
2770     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2771     for (unsigned i = 0; i != NumElts; ++i) {
2772       int &M = NewMask[i];
2773       if (M < 0)
2774         continue;
2775       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2776           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2777         Updated = true;
2778         M = -1;
2779       }
2780       IdentityLHS &= (M < 0) || (M == (int)i);
2781       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2782     }
2783 
2784     // Update legal shuffle masks based on demanded elements if it won't reduce
2785     // to Identity which can cause premature removal of the shuffle mask.
2786     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2787       SDValue LegalShuffle =
2788           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2789                                   NewMask, TLO.DAG);
2790       if (LegalShuffle)
2791         return TLO.CombineTo(Op, LegalShuffle);
2792     }
2793 
2794     // Propagate undef/zero elements from LHS/RHS.
2795     for (unsigned i = 0; i != NumElts; ++i) {
2796       int M = ShuffleMask[i];
2797       if (M < 0) {
2798         KnownUndef.setBit(i);
2799       } else if (M < (int)NumElts) {
2800         if (UndefLHS[M])
2801           KnownUndef.setBit(i);
2802         if (ZeroLHS[M])
2803           KnownZero.setBit(i);
2804       } else {
2805         if (UndefRHS[M - NumElts])
2806           KnownUndef.setBit(i);
2807         if (ZeroRHS[M - NumElts])
2808           KnownZero.setBit(i);
2809       }
2810     }
2811     break;
2812   }
2813   case ISD::ANY_EXTEND_VECTOR_INREG:
2814   case ISD::SIGN_EXTEND_VECTOR_INREG:
2815   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2816     APInt SrcUndef, SrcZero;
2817     SDValue Src = Op.getOperand(0);
2818     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2819     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2820     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2821                                    Depth + 1))
2822       return true;
2823     KnownZero = SrcZero.zextOrTrunc(NumElts);
2824     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2825 
2826     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2827         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2828         DemandedSrcElts == 1) {
2829       // aext - if we just need the bottom element then we can bitcast.
2830       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2831     }
2832 
2833     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2834       // zext(undef) upper bits are guaranteed to be zero.
2835       if (DemandedElts.isSubsetOf(KnownUndef))
2836         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2837       KnownUndef.clearAllBits();
2838 
2839       // zext - if we just need the bottom element then we can mask:
2840       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2841       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2842           Op->isOnlyUserOf(Src.getNode()) &&
2843           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2844         SDLoc DL(Op);
2845         EVT SrcVT = Src.getValueType();
2846         EVT SrcSVT = SrcVT.getScalarType();
2847         SmallVector<SDValue> MaskElts;
2848         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2849         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2850         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2851         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2852                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2853           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2854           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2855         }
2856       }
2857     }
2858     break;
2859   }
2860 
2861   // TODO: There are more binop opcodes that could be handled here - MIN,
2862   // MAX, saturated math, etc.
2863   case ISD::ADD: {
2864     SDValue Op0 = Op.getOperand(0);
2865     SDValue Op1 = Op.getOperand(1);
2866     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2867       APInt UndefLHS, ZeroLHS;
2868       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2869                                      Depth + 1, /*AssumeSingleUse*/ true))
2870         return true;
2871     }
2872     LLVM_FALLTHROUGH;
2873   }
2874   case ISD::OR:
2875   case ISD::XOR:
2876   case ISD::SUB:
2877   case ISD::FADD:
2878   case ISD::FSUB:
2879   case ISD::FMUL:
2880   case ISD::FDIV:
2881   case ISD::FREM: {
2882     SDValue Op0 = Op.getOperand(0);
2883     SDValue Op1 = Op.getOperand(1);
2884 
2885     APInt UndefRHS, ZeroRHS;
2886     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2887                                    Depth + 1))
2888       return true;
2889     APInt UndefLHS, ZeroLHS;
2890     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2891                                    Depth + 1))
2892       return true;
2893 
2894     KnownZero = ZeroLHS & ZeroRHS;
2895     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2896 
2897     // Attempt to avoid multi-use ops if we don't need anything from them.
2898     // TODO - use KnownUndef to relax the demandedelts?
2899     if (!DemandedElts.isAllOnes())
2900       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2901         return true;
2902     break;
2903   }
2904   case ISD::SHL:
2905   case ISD::SRL:
2906   case ISD::SRA:
2907   case ISD::ROTL:
2908   case ISD::ROTR: {
2909     SDValue Op0 = Op.getOperand(0);
2910     SDValue Op1 = Op.getOperand(1);
2911 
2912     APInt UndefRHS, ZeroRHS;
2913     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2914                                    Depth + 1))
2915       return true;
2916     APInt UndefLHS, ZeroLHS;
2917     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2918                                    Depth + 1))
2919       return true;
2920 
2921     KnownZero = ZeroLHS;
2922     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2923 
2924     // Attempt to avoid multi-use ops if we don't need anything from them.
2925     // TODO - use KnownUndef to relax the demandedelts?
2926     if (!DemandedElts.isAllOnes())
2927       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2928         return true;
2929     break;
2930   }
2931   case ISD::MUL:
2932   case ISD::AND: {
2933     SDValue Op0 = Op.getOperand(0);
2934     SDValue Op1 = Op.getOperand(1);
2935 
2936     APInt SrcUndef, SrcZero;
2937     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2938                                    Depth + 1))
2939       return true;
2940     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2941                                    TLO, Depth + 1))
2942       return true;
2943 
2944     // If either side has a zero element, then the result element is zero, even
2945     // if the other is an UNDEF.
2946     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2947     // and then handle 'and' nodes with the rest of the binop opcodes.
2948     KnownZero |= SrcZero;
2949     KnownUndef &= SrcUndef;
2950     KnownUndef &= ~KnownZero;
2951 
2952     // Attempt to avoid multi-use ops if we don't need anything from them.
2953     // TODO - use KnownUndef to relax the demandedelts?
2954     if (!DemandedElts.isAllOnes())
2955       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2956         return true;
2957     break;
2958   }
2959   case ISD::TRUNCATE:
2960   case ISD::SIGN_EXTEND:
2961   case ISD::ZERO_EXTEND:
2962     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2963                                    KnownZero, TLO, Depth + 1))
2964       return true;
2965 
2966     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2967       // zext(undef) upper bits are guaranteed to be zero.
2968       if (DemandedElts.isSubsetOf(KnownUndef))
2969         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2970       KnownUndef.clearAllBits();
2971     }
2972     break;
2973   default: {
2974     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2975       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2976                                                   KnownZero, TLO, Depth))
2977         return true;
2978     } else {
2979       KnownBits Known;
2980       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2981       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2982                                TLO, Depth, AssumeSingleUse))
2983         return true;
2984     }
2985     break;
2986   }
2987   }
2988   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2989 
2990   // Constant fold all undef cases.
2991   // TODO: Handle zero cases as well.
2992   if (DemandedElts.isSubsetOf(KnownUndef))
2993     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2994 
2995   return false;
2996 }
2997 
2998 /// Determine which of the bits specified in Mask are known to be either zero or
2999 /// one and return them in the Known.
3000 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3001                                                    KnownBits &Known,
3002                                                    const APInt &DemandedElts,
3003                                                    const SelectionDAG &DAG,
3004                                                    unsigned Depth) const {
3005   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3006           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3007           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3008           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3009          "Should use MaskedValueIsZero if you don't know whether Op"
3010          " is a target node!");
3011   Known.resetAll();
3012 }
3013 
3014 void TargetLowering::computeKnownBitsForTargetInstr(
3015     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3016     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3017     unsigned Depth) const {
3018   Known.resetAll();
3019 }
3020 
3021 void TargetLowering::computeKnownBitsForFrameIndex(
3022   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3023   // The low bits are known zero if the pointer is aligned.
3024   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3025 }
3026 
3027 Align TargetLowering::computeKnownAlignForTargetInstr(
3028   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3029   unsigned Depth) const {
3030   return Align(1);
3031 }
3032 
3033 /// This method can be implemented by targets that want to expose additional
3034 /// information about sign bits to the DAG Combiner.
3035 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3036                                                          const APInt &,
3037                                                          const SelectionDAG &,
3038                                                          unsigned Depth) const {
3039   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3040           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3041           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3042           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3043          "Should use ComputeNumSignBits if you don't know whether Op"
3044          " is a target node!");
3045   return 1;
3046 }
3047 
3048 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3049   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3050   const MachineRegisterInfo &MRI, unsigned Depth) const {
3051   return 1;
3052 }
3053 
3054 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3055     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3056     TargetLoweringOpt &TLO, unsigned Depth) const {
3057   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3058           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3059           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3060           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3061          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3062          " is a target node!");
3063   return false;
3064 }
3065 
3066 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3067     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3068     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3069   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3070           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3071           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3072           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3073          "Should use SimplifyDemandedBits if you don't know whether Op"
3074          " is a target node!");
3075   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3076   return false;
3077 }
3078 
3079 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3080     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3081     SelectionDAG &DAG, unsigned Depth) const {
3082   assert(
3083       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3084        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3085        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3086        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3087       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3088       " is a target node!");
3089   return SDValue();
3090 }
3091 
3092 SDValue
3093 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3094                                         SDValue N1, MutableArrayRef<int> Mask,
3095                                         SelectionDAG &DAG) const {
3096   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3097   if (!LegalMask) {
3098     std::swap(N0, N1);
3099     ShuffleVectorSDNode::commuteMask(Mask);
3100     LegalMask = isShuffleMaskLegal(Mask, VT);
3101   }
3102 
3103   if (!LegalMask)
3104     return SDValue();
3105 
3106   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3107 }
3108 
3109 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3110   return nullptr;
3111 }
3112 
3113 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3114     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3115     bool PoisonOnly, unsigned Depth) const {
3116   assert(
3117       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3118        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3119        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3120        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3121       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3122       " is a target node!");
3123   return false;
3124 }
3125 
3126 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3127                                                   const SelectionDAG &DAG,
3128                                                   bool SNaN,
3129                                                   unsigned Depth) const {
3130   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3131           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3132           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3133           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3134          "Should use isKnownNeverNaN if you don't know whether Op"
3135          " is a target node!");
3136   return false;
3137 }
3138 
3139 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3140                                                const APInt &DemandedElts,
3141                                                APInt &UndefElts,
3142                                                unsigned Depth) const {
3143   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3144           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3145           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3146           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3147          "Should use isSplatValue if you don't know whether Op"
3148          " is a target node!");
3149   return false;
3150 }
3151 
3152 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3153 // work with truncating build vectors and vectors with elements of less than
3154 // 8 bits.
3155 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3156   if (!N)
3157     return false;
3158 
3159   APInt CVal;
3160   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3161     CVal = CN->getAPIntValue();
3162   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3163     auto *CN = BV->getConstantSplatNode();
3164     if (!CN)
3165       return false;
3166 
3167     // If this is a truncating build vector, truncate the splat value.
3168     // Otherwise, we may fail to match the expected values below.
3169     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3170     CVal = CN->getAPIntValue();
3171     if (BVEltWidth < CVal.getBitWidth())
3172       CVal = CVal.trunc(BVEltWidth);
3173   } else {
3174     return false;
3175   }
3176 
3177   switch (getBooleanContents(N->getValueType(0))) {
3178   case UndefinedBooleanContent:
3179     return CVal[0];
3180   case ZeroOrOneBooleanContent:
3181     return CVal.isOne();
3182   case ZeroOrNegativeOneBooleanContent:
3183     return CVal.isAllOnes();
3184   }
3185 
3186   llvm_unreachable("Invalid boolean contents");
3187 }
3188 
3189 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3190   if (!N)
3191     return false;
3192 
3193   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3194   if (!CN) {
3195     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3196     if (!BV)
3197       return false;
3198 
3199     // Only interested in constant splats, we don't care about undef
3200     // elements in identifying boolean constants and getConstantSplatNode
3201     // returns NULL if all ops are undef;
3202     CN = BV->getConstantSplatNode();
3203     if (!CN)
3204       return false;
3205   }
3206 
3207   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3208     return !CN->getAPIntValue()[0];
3209 
3210   return CN->isZero();
3211 }
3212 
3213 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3214                                        bool SExt) const {
3215   if (VT == MVT::i1)
3216     return N->isOne();
3217 
3218   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3219   switch (Cnt) {
3220   case TargetLowering::ZeroOrOneBooleanContent:
3221     // An extended value of 1 is always true, unless its original type is i1,
3222     // in which case it will be sign extended to -1.
3223     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3224   case TargetLowering::UndefinedBooleanContent:
3225   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3226     return N->isAllOnes() && SExt;
3227   }
3228   llvm_unreachable("Unexpected enumeration.");
3229 }
3230 
3231 /// This helper function of SimplifySetCC tries to optimize the comparison when
3232 /// either operand of the SetCC node is a bitwise-and instruction.
3233 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3234                                          ISD::CondCode Cond, const SDLoc &DL,
3235                                          DAGCombinerInfo &DCI) const {
3236   // Match these patterns in any of their permutations:
3237   // (X & Y) == Y
3238   // (X & Y) != Y
3239   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3240     std::swap(N0, N1);
3241 
3242   EVT OpVT = N0.getValueType();
3243   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3244       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3245     return SDValue();
3246 
3247   SDValue X, Y;
3248   if (N0.getOperand(0) == N1) {
3249     X = N0.getOperand(1);
3250     Y = N0.getOperand(0);
3251   } else if (N0.getOperand(1) == N1) {
3252     X = N0.getOperand(0);
3253     Y = N0.getOperand(1);
3254   } else {
3255     return SDValue();
3256   }
3257 
3258   SelectionDAG &DAG = DCI.DAG;
3259   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3260   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3261     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3262     // Note that where Y is variable and is known to have at most one bit set
3263     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3264     // equivalent when Y == 0.
3265     assert(OpVT.isInteger());
3266     Cond = ISD::getSetCCInverse(Cond, OpVT);
3267     if (DCI.isBeforeLegalizeOps() ||
3268         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3269       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3270   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3271     // If the target supports an 'and-not' or 'and-complement' logic operation,
3272     // try to use that to make a comparison operation more efficient.
3273     // But don't do this transform if the mask is a single bit because there are
3274     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3275     // 'rlwinm' on PPC).
3276 
3277     // Bail out if the compare operand that we want to turn into a zero is
3278     // already a zero (otherwise, infinite loop).
3279     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3280     if (YConst && YConst->isZero())
3281       return SDValue();
3282 
3283     // Transform this into: ~X & Y == 0.
3284     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3285     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3286     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3287   }
3288 
3289   return SDValue();
3290 }
3291 
3292 /// There are multiple IR patterns that could be checking whether certain
3293 /// truncation of a signed number would be lossy or not. The pattern which is
3294 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3295 /// We are looking for the following pattern: (KeptBits is a constant)
3296 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3297 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3298 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3299 /// We will unfold it into the natural trunc+sext pattern:
3300 ///   ((%x << C) a>> C) dstcond %x
3301 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3302 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3303     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3304     const SDLoc &DL) const {
3305   // We must be comparing with a constant.
3306   ConstantSDNode *C1;
3307   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3308     return SDValue();
3309 
3310   // N0 should be:  add %x, (1 << (KeptBits-1))
3311   if (N0->getOpcode() != ISD::ADD)
3312     return SDValue();
3313 
3314   // And we must be 'add'ing a constant.
3315   ConstantSDNode *C01;
3316   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3317     return SDValue();
3318 
3319   SDValue X = N0->getOperand(0);
3320   EVT XVT = X.getValueType();
3321 
3322   // Validate constants ...
3323 
3324   APInt I1 = C1->getAPIntValue();
3325 
3326   ISD::CondCode NewCond;
3327   if (Cond == ISD::CondCode::SETULT) {
3328     NewCond = ISD::CondCode::SETEQ;
3329   } else if (Cond == ISD::CondCode::SETULE) {
3330     NewCond = ISD::CondCode::SETEQ;
3331     // But need to 'canonicalize' the constant.
3332     I1 += 1;
3333   } else if (Cond == ISD::CondCode::SETUGT) {
3334     NewCond = ISD::CondCode::SETNE;
3335     // But need to 'canonicalize' the constant.
3336     I1 += 1;
3337   } else if (Cond == ISD::CondCode::SETUGE) {
3338     NewCond = ISD::CondCode::SETNE;
3339   } else
3340     return SDValue();
3341 
3342   APInt I01 = C01->getAPIntValue();
3343 
3344   auto checkConstants = [&I1, &I01]() -> bool {
3345     // Both of them must be power-of-two, and the constant from setcc is bigger.
3346     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3347   };
3348 
3349   if (checkConstants()) {
3350     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3351   } else {
3352     // What if we invert constants? (and the target predicate)
3353     I1.negate();
3354     I01.negate();
3355     assert(XVT.isInteger());
3356     NewCond = getSetCCInverse(NewCond, XVT);
3357     if (!checkConstants())
3358       return SDValue();
3359     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3360   }
3361 
3362   // They are power-of-two, so which bit is set?
3363   const unsigned KeptBits = I1.logBase2();
3364   const unsigned KeptBitsMinusOne = I01.logBase2();
3365 
3366   // Magic!
3367   if (KeptBits != (KeptBitsMinusOne + 1))
3368     return SDValue();
3369   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3370 
3371   // We don't want to do this in every single case.
3372   SelectionDAG &DAG = DCI.DAG;
3373   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3374           XVT, KeptBits))
3375     return SDValue();
3376 
3377   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3378   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3379 
3380   // Unfold into:  ((%x << C) a>> C) cond %x
3381   // Where 'cond' will be either 'eq' or 'ne'.
3382   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3383   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3384   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3385   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3386 
3387   return T2;
3388 }
3389 
3390 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3391 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3392     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3393     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3394   assert(isConstOrConstSplat(N1C) &&
3395          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3396          "Should be a comparison with 0.");
3397   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3398          "Valid only for [in]equality comparisons.");
3399 
3400   unsigned NewShiftOpcode;
3401   SDValue X, C, Y;
3402 
3403   SelectionDAG &DAG = DCI.DAG;
3404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405 
3406   // Look for '(C l>>/<< Y)'.
3407   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3408     // The shift should be one-use.
3409     if (!V.hasOneUse())
3410       return false;
3411     unsigned OldShiftOpcode = V.getOpcode();
3412     switch (OldShiftOpcode) {
3413     case ISD::SHL:
3414       NewShiftOpcode = ISD::SRL;
3415       break;
3416     case ISD::SRL:
3417       NewShiftOpcode = ISD::SHL;
3418       break;
3419     default:
3420       return false; // must be a logical shift.
3421     }
3422     // We should be shifting a constant.
3423     // FIXME: best to use isConstantOrConstantVector().
3424     C = V.getOperand(0);
3425     ConstantSDNode *CC =
3426         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3427     if (!CC)
3428       return false;
3429     Y = V.getOperand(1);
3430 
3431     ConstantSDNode *XC =
3432         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3433     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3434         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3435   };
3436 
3437   // LHS of comparison should be an one-use 'and'.
3438   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3439     return SDValue();
3440 
3441   X = N0.getOperand(0);
3442   SDValue Mask = N0.getOperand(1);
3443 
3444   // 'and' is commutative!
3445   if (!Match(Mask)) {
3446     std::swap(X, Mask);
3447     if (!Match(Mask))
3448       return SDValue();
3449   }
3450 
3451   EVT VT = X.getValueType();
3452 
3453   // Produce:
3454   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3455   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3456   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3457   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3458   return T2;
3459 }
3460 
3461 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3462 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3463 /// handle the commuted versions of these patterns.
3464 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3465                                            ISD::CondCode Cond, const SDLoc &DL,
3466                                            DAGCombinerInfo &DCI) const {
3467   unsigned BOpcode = N0.getOpcode();
3468   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3469          "Unexpected binop");
3470   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3471 
3472   // (X + Y) == X --> Y == 0
3473   // (X - Y) == X --> Y == 0
3474   // (X ^ Y) == X --> Y == 0
3475   SelectionDAG &DAG = DCI.DAG;
3476   EVT OpVT = N0.getValueType();
3477   SDValue X = N0.getOperand(0);
3478   SDValue Y = N0.getOperand(1);
3479   if (X == N1)
3480     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3481 
3482   if (Y != N1)
3483     return SDValue();
3484 
3485   // (X + Y) == Y --> X == 0
3486   // (X ^ Y) == Y --> X == 0
3487   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3488     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3489 
3490   // The shift would not be valid if the operands are boolean (i1).
3491   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3492     return SDValue();
3493 
3494   // (X - Y) == Y --> X == Y << 1
3495   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3496                                  !DCI.isBeforeLegalize());
3497   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3498   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3499   if (!DCI.isCalledByLegalizer())
3500     DCI.AddToWorklist(YShl1.getNode());
3501   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3502 }
3503 
3504 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3505                                       SDValue N0, const APInt &C1,
3506                                       ISD::CondCode Cond, const SDLoc &dl,
3507                                       SelectionDAG &DAG) {
3508   // Look through truncs that don't change the value of a ctpop.
3509   // FIXME: Add vector support? Need to be careful with setcc result type below.
3510   SDValue CTPOP = N0;
3511   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3512       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3513     CTPOP = N0.getOperand(0);
3514 
3515   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3516     return SDValue();
3517 
3518   EVT CTVT = CTPOP.getValueType();
3519   SDValue CTOp = CTPOP.getOperand(0);
3520 
3521   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3522   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3523   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3524     return SDValue();
3525 
3526   // (ctpop x) u< 2 -> (x & x-1) == 0
3527   // (ctpop x) u> 1 -> (x & x-1) != 0
3528   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3529     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3530     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3531       return SDValue();
3532     if (C1 == 0 && (Cond == ISD::SETULT))
3533       return SDValue(); // This is handled elsewhere.
3534 
3535     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3536 
3537     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3538     SDValue Result = CTOp;
3539     for (unsigned i = 0; i < Passes; i++) {
3540       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3541       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3542     }
3543     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3544     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3545   }
3546 
3547   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3548   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3549     // For scalars, keep CTPOP if it is legal or custom.
3550     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3551       return SDValue();
3552     // This is based on X86's custom lowering for CTPOP which produces more
3553     // instructions than the expansion here.
3554 
3555     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3556     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3557     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3558     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3559     assert(CTVT.isInteger());
3560     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3561     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3562     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3563     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3564     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3565     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3566     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3567   }
3568 
3569   return SDValue();
3570 }
3571 
3572 /// Try to simplify a setcc built with the specified operands and cc. If it is
3573 /// unable to simplify it, return a null SDValue.
3574 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3575                                       ISD::CondCode Cond, bool foldBooleans,
3576                                       DAGCombinerInfo &DCI,
3577                                       const SDLoc &dl) const {
3578   SelectionDAG &DAG = DCI.DAG;
3579   const DataLayout &Layout = DAG.getDataLayout();
3580   EVT OpVT = N0.getValueType();
3581 
3582   // Constant fold or commute setcc.
3583   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3584     return Fold;
3585 
3586   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3587   // TODO: Handle non-splat vector constants. All undef causes trouble.
3588   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3589   // infinite loop here when we encounter one.
3590   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3591   if (isConstOrConstSplat(N0) &&
3592       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3593       (DCI.isBeforeLegalizeOps() ||
3594        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3595     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3596 
3597   // If we have a subtract with the same 2 non-constant operands as this setcc
3598   // -- but in reverse order -- then try to commute the operands of this setcc
3599   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3600   // instruction on some targets.
3601   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3602       (DCI.isBeforeLegalizeOps() ||
3603        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3604       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3605       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3606     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3607 
3608   if (auto *N1C = isConstOrConstSplat(N1)) {
3609     const APInt &C1 = N1C->getAPIntValue();
3610 
3611     // Optimize some CTPOP cases.
3612     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3613       return V;
3614 
3615     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3616     // equality comparison, then we're just comparing whether X itself is
3617     // zero.
3618     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3619         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3620         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3621       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3622         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3623             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3624           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3625             // (srl (ctlz x), 5) == 0  -> X != 0
3626             // (srl (ctlz x), 5) != 1  -> X != 0
3627             Cond = ISD::SETNE;
3628           } else {
3629             // (srl (ctlz x), 5) != 0  -> X == 0
3630             // (srl (ctlz x), 5) == 1  -> X == 0
3631             Cond = ISD::SETEQ;
3632           }
3633           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3634           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3635                               Cond);
3636         }
3637       }
3638     }
3639   }
3640 
3641   // FIXME: Support vectors.
3642   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3643     const APInt &C1 = N1C->getAPIntValue();
3644 
3645     // (zext x) == C --> x == (trunc C)
3646     // (sext x) == C --> x == (trunc C)
3647     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3648         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3649       unsigned MinBits = N0.getValueSizeInBits();
3650       SDValue PreExt;
3651       bool Signed = false;
3652       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3653         // ZExt
3654         MinBits = N0->getOperand(0).getValueSizeInBits();
3655         PreExt = N0->getOperand(0);
3656       } else if (N0->getOpcode() == ISD::AND) {
3657         // DAGCombine turns costly ZExts into ANDs
3658         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3659           if ((C->getAPIntValue()+1).isPowerOf2()) {
3660             MinBits = C->getAPIntValue().countTrailingOnes();
3661             PreExt = N0->getOperand(0);
3662           }
3663       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3664         // SExt
3665         MinBits = N0->getOperand(0).getValueSizeInBits();
3666         PreExt = N0->getOperand(0);
3667         Signed = true;
3668       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3669         // ZEXTLOAD / SEXTLOAD
3670         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3671           MinBits = LN0->getMemoryVT().getSizeInBits();
3672           PreExt = N0;
3673         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3674           Signed = true;
3675           MinBits = LN0->getMemoryVT().getSizeInBits();
3676           PreExt = N0;
3677         }
3678       }
3679 
3680       // Figure out how many bits we need to preserve this constant.
3681       unsigned ReqdBits = Signed ?
3682         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3683         C1.getActiveBits();
3684 
3685       // Make sure we're not losing bits from the constant.
3686       if (MinBits > 0 &&
3687           MinBits < C1.getBitWidth() &&
3688           MinBits >= ReqdBits) {
3689         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3690         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3691           // Will get folded away.
3692           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3693           if (MinBits == 1 && C1 == 1)
3694             // Invert the condition.
3695             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3696                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3697           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3698           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3699         }
3700 
3701         // If truncating the setcc operands is not desirable, we can still
3702         // simplify the expression in some cases:
3703         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3704         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3705         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3706         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3707         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3708         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3709         SDValue TopSetCC = N0->getOperand(0);
3710         unsigned N0Opc = N0->getOpcode();
3711         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3712         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3713             TopSetCC.getOpcode() == ISD::SETCC &&
3714             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3715             (isConstFalseVal(N1C) ||
3716              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3717 
3718           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3719                          (!N1C->isZero() && Cond == ISD::SETNE);
3720 
3721           if (!Inverse)
3722             return TopSetCC;
3723 
3724           ISD::CondCode InvCond = ISD::getSetCCInverse(
3725               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3726               TopSetCC.getOperand(0).getValueType());
3727           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3728                                       TopSetCC.getOperand(1),
3729                                       InvCond);
3730         }
3731       }
3732     }
3733 
3734     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3735     // equality or unsigned, and all 1 bits of the const are in the same
3736     // partial word, see if we can shorten the load.
3737     if (DCI.isBeforeLegalize() &&
3738         !ISD::isSignedIntSetCC(Cond) &&
3739         N0.getOpcode() == ISD::AND && C1 == 0 &&
3740         N0.getNode()->hasOneUse() &&
3741         isa<LoadSDNode>(N0.getOperand(0)) &&
3742         N0.getOperand(0).getNode()->hasOneUse() &&
3743         isa<ConstantSDNode>(N0.getOperand(1))) {
3744       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3745       APInt bestMask;
3746       unsigned bestWidth = 0, bestOffset = 0;
3747       if (Lod->isSimple() && Lod->isUnindexed()) {
3748         unsigned origWidth = N0.getValueSizeInBits();
3749         unsigned maskWidth = origWidth;
3750         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3751         // 8 bits, but have to be careful...
3752         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3753           origWidth = Lod->getMemoryVT().getSizeInBits();
3754         const APInt &Mask = N0.getConstantOperandAPInt(1);
3755         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3756           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3757           for (unsigned offset=0; offset<origWidth/width; offset++) {
3758             if (Mask.isSubsetOf(newMask)) {
3759               if (Layout.isLittleEndian())
3760                 bestOffset = (uint64_t)offset * (width/8);
3761               else
3762                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3763               bestMask = Mask.lshr(offset * (width/8) * 8);
3764               bestWidth = width;
3765               break;
3766             }
3767             newMask <<= width;
3768           }
3769         }
3770       }
3771       if (bestWidth) {
3772         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3773         if (newVT.isRound() &&
3774             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3775           SDValue Ptr = Lod->getBasePtr();
3776           if (bestOffset != 0)
3777             Ptr =
3778                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3779           SDValue NewLoad =
3780               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3781                           Lod->getPointerInfo().getWithOffset(bestOffset),
3782                           Lod->getOriginalAlign());
3783           return DAG.getSetCC(dl, VT,
3784                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3785                                       DAG.getConstant(bestMask.trunc(bestWidth),
3786                                                       dl, newVT)),
3787                               DAG.getConstant(0LL, dl, newVT), Cond);
3788         }
3789       }
3790     }
3791 
3792     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3793     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3794       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3795 
3796       // If the comparison constant has bits in the upper part, the
3797       // zero-extended value could never match.
3798       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3799                                               C1.getBitWidth() - InSize))) {
3800         switch (Cond) {
3801         case ISD::SETUGT:
3802         case ISD::SETUGE:
3803         case ISD::SETEQ:
3804           return DAG.getConstant(0, dl, VT);
3805         case ISD::SETULT:
3806         case ISD::SETULE:
3807         case ISD::SETNE:
3808           return DAG.getConstant(1, dl, VT);
3809         case ISD::SETGT:
3810         case ISD::SETGE:
3811           // True if the sign bit of C1 is set.
3812           return DAG.getConstant(C1.isNegative(), dl, VT);
3813         case ISD::SETLT:
3814         case ISD::SETLE:
3815           // True if the sign bit of C1 isn't set.
3816           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3817         default:
3818           break;
3819         }
3820       }
3821 
3822       // Otherwise, we can perform the comparison with the low bits.
3823       switch (Cond) {
3824       case ISD::SETEQ:
3825       case ISD::SETNE:
3826       case ISD::SETUGT:
3827       case ISD::SETUGE:
3828       case ISD::SETULT:
3829       case ISD::SETULE: {
3830         EVT newVT = N0.getOperand(0).getValueType();
3831         if (DCI.isBeforeLegalizeOps() ||
3832             (isOperationLegal(ISD::SETCC, newVT) &&
3833              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3834           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3835           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3836 
3837           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3838                                           NewConst, Cond);
3839           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3840         }
3841         break;
3842       }
3843       default:
3844         break; // todo, be more careful with signed comparisons
3845       }
3846     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3847                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3848                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3849                                       OpVT)) {
3850       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3851       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3852       EVT ExtDstTy = N0.getValueType();
3853       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3854 
3855       // If the constant doesn't fit into the number of bits for the source of
3856       // the sign extension, it is impossible for both sides to be equal.
3857       if (C1.getMinSignedBits() > ExtSrcTyBits)
3858         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3859 
3860       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3861              ExtDstTy != ExtSrcTy && "Unexpected types!");
3862       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3863       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3864                                    DAG.getConstant(Imm, dl, ExtDstTy));
3865       if (!DCI.isCalledByLegalizer())
3866         DCI.AddToWorklist(ZextOp.getNode());
3867       // Otherwise, make this a use of a zext.
3868       return DAG.getSetCC(dl, VT, ZextOp,
3869                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3870     } else if ((N1C->isZero() || N1C->isOne()) &&
3871                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3872       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3873       if (N0.getOpcode() == ISD::SETCC &&
3874           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3875           (N0.getValueType() == MVT::i1 ||
3876            getBooleanContents(N0.getOperand(0).getValueType()) ==
3877                        ZeroOrOneBooleanContent)) {
3878         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3879         if (TrueWhenTrue)
3880           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3881         // Invert the condition.
3882         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3883         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3884         if (DCI.isBeforeLegalizeOps() ||
3885             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3886           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3887       }
3888 
3889       if ((N0.getOpcode() == ISD::XOR ||
3890            (N0.getOpcode() == ISD::AND &&
3891             N0.getOperand(0).getOpcode() == ISD::XOR &&
3892             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3893           isOneConstant(N0.getOperand(1))) {
3894         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3895         // can only do this if the top bits are known zero.
3896         unsigned BitWidth = N0.getValueSizeInBits();
3897         if (DAG.MaskedValueIsZero(N0,
3898                                   APInt::getHighBitsSet(BitWidth,
3899                                                         BitWidth-1))) {
3900           // Okay, get the un-inverted input value.
3901           SDValue Val;
3902           if (N0.getOpcode() == ISD::XOR) {
3903             Val = N0.getOperand(0);
3904           } else {
3905             assert(N0.getOpcode() == ISD::AND &&
3906                     N0.getOperand(0).getOpcode() == ISD::XOR);
3907             // ((X^1)&1)^1 -> X & 1
3908             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3909                               N0.getOperand(0).getOperand(0),
3910                               N0.getOperand(1));
3911           }
3912 
3913           return DAG.getSetCC(dl, VT, Val, N1,
3914                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3915         }
3916       } else if (N1C->isOne()) {
3917         SDValue Op0 = N0;
3918         if (Op0.getOpcode() == ISD::TRUNCATE)
3919           Op0 = Op0.getOperand(0);
3920 
3921         if ((Op0.getOpcode() == ISD::XOR) &&
3922             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3923             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3924           SDValue XorLHS = Op0.getOperand(0);
3925           SDValue XorRHS = Op0.getOperand(1);
3926           // Ensure that the input setccs return an i1 type or 0/1 value.
3927           if (Op0.getValueType() == MVT::i1 ||
3928               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3929                       ZeroOrOneBooleanContent &&
3930                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3931                         ZeroOrOneBooleanContent)) {
3932             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3933             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3934             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3935           }
3936         }
3937         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3938           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3939           if (Op0.getValueType().bitsGT(VT))
3940             Op0 = DAG.getNode(ISD::AND, dl, VT,
3941                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3942                           DAG.getConstant(1, dl, VT));
3943           else if (Op0.getValueType().bitsLT(VT))
3944             Op0 = DAG.getNode(ISD::AND, dl, VT,
3945                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3946                         DAG.getConstant(1, dl, VT));
3947 
3948           return DAG.getSetCC(dl, VT, Op0,
3949                               DAG.getConstant(0, dl, Op0.getValueType()),
3950                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3951         }
3952         if (Op0.getOpcode() == ISD::AssertZext &&
3953             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3954           return DAG.getSetCC(dl, VT, Op0,
3955                               DAG.getConstant(0, dl, Op0.getValueType()),
3956                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3957       }
3958     }
3959 
3960     // Given:
3961     //   icmp eq/ne (urem %x, %y), 0
3962     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3963     //   icmp eq/ne %x, 0
3964     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3965         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3966       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3967       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3968       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3969         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3970     }
3971 
3972     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3973     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3974     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3975         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3976         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3977         N1C && N1C->isAllOnes()) {
3978       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3979                           DAG.getConstant(0, dl, OpVT),
3980                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3981     }
3982 
3983     if (SDValue V =
3984             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3985       return V;
3986   }
3987 
3988   // These simplifications apply to splat vectors as well.
3989   // TODO: Handle more splat vector cases.
3990   if (auto *N1C = isConstOrConstSplat(N1)) {
3991     const APInt &C1 = N1C->getAPIntValue();
3992 
3993     APInt MinVal, MaxVal;
3994     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3995     if (ISD::isSignedIntSetCC(Cond)) {
3996       MinVal = APInt::getSignedMinValue(OperandBitSize);
3997       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3998     } else {
3999       MinVal = APInt::getMinValue(OperandBitSize);
4000       MaxVal = APInt::getMaxValue(OperandBitSize);
4001     }
4002 
4003     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4004     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4005       // X >= MIN --> true
4006       if (C1 == MinVal)
4007         return DAG.getBoolConstant(true, dl, VT, OpVT);
4008 
4009       if (!VT.isVector()) { // TODO: Support this for vectors.
4010         // X >= C0 --> X > (C0 - 1)
4011         APInt C = C1 - 1;
4012         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4013         if ((DCI.isBeforeLegalizeOps() ||
4014              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4015             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4016                                   isLegalICmpImmediate(C.getSExtValue())))) {
4017           return DAG.getSetCC(dl, VT, N0,
4018                               DAG.getConstant(C, dl, N1.getValueType()),
4019                               NewCC);
4020         }
4021       }
4022     }
4023 
4024     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4025       // X <= MAX --> true
4026       if (C1 == MaxVal)
4027         return DAG.getBoolConstant(true, dl, VT, OpVT);
4028 
4029       // X <= C0 --> X < (C0 + 1)
4030       if (!VT.isVector()) { // TODO: Support this for vectors.
4031         APInt C = C1 + 1;
4032         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4033         if ((DCI.isBeforeLegalizeOps() ||
4034              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4035             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4036                                   isLegalICmpImmediate(C.getSExtValue())))) {
4037           return DAG.getSetCC(dl, VT, N0,
4038                               DAG.getConstant(C, dl, N1.getValueType()),
4039                               NewCC);
4040         }
4041       }
4042     }
4043 
4044     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4045       if (C1 == MinVal)
4046         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4047 
4048       // TODO: Support this for vectors after legalize ops.
4049       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4050         // Canonicalize setlt X, Max --> setne X, Max
4051         if (C1 == MaxVal)
4052           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4053 
4054         // If we have setult X, 1, turn it into seteq X, 0
4055         if (C1 == MinVal+1)
4056           return DAG.getSetCC(dl, VT, N0,
4057                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4058                               ISD::SETEQ);
4059       }
4060     }
4061 
4062     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4063       if (C1 == MaxVal)
4064         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4065 
4066       // TODO: Support this for vectors after legalize ops.
4067       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4068         // Canonicalize setgt X, Min --> setne X, Min
4069         if (C1 == MinVal)
4070           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4071 
4072         // If we have setugt X, Max-1, turn it into seteq X, Max
4073         if (C1 == MaxVal-1)
4074           return DAG.getSetCC(dl, VT, N0,
4075                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4076                               ISD::SETEQ);
4077       }
4078     }
4079 
4080     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4081       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4082       if (C1.isZero())
4083         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4084                 VT, N0, N1, Cond, DCI, dl))
4085           return CC;
4086 
4087       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4088       // For example, when high 32-bits of i64 X are known clear:
4089       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4090       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4091       bool CmpZero = N1C->getAPIntValue().isZero();
4092       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4093       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4094         // Match or(lo,shl(hi,bw/2)) pattern.
4095         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4096           unsigned EltBits = V.getScalarValueSizeInBits();
4097           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4098             return false;
4099           SDValue LHS = V.getOperand(0);
4100           SDValue RHS = V.getOperand(1);
4101           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4102           // Unshifted element must have zero upperbits.
4103           if (RHS.getOpcode() == ISD::SHL &&
4104               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4105               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4106               DAG.MaskedValueIsZero(LHS, HiBits)) {
4107             Lo = LHS;
4108             Hi = RHS.getOperand(0);
4109             return true;
4110           }
4111           if (LHS.getOpcode() == ISD::SHL &&
4112               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4113               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4114               DAG.MaskedValueIsZero(RHS, HiBits)) {
4115             Lo = RHS;
4116             Hi = LHS.getOperand(0);
4117             return true;
4118           }
4119           return false;
4120         };
4121 
4122         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4123           unsigned EltBits = N0.getScalarValueSizeInBits();
4124           unsigned HalfBits = EltBits / 2;
4125           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4126           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4127           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4128           SDValue NewN0 =
4129               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4130           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4131           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4132         };
4133 
4134         SDValue Lo, Hi;
4135         if (IsConcat(N0, Lo, Hi))
4136           return MergeConcat(Lo, Hi);
4137 
4138         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4139           SDValue Lo0, Lo1, Hi0, Hi1;
4140           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4141               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4142             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4143                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4144           }
4145         }
4146       }
4147     }
4148 
4149     // If we have "setcc X, C0", check to see if we can shrink the immediate
4150     // by changing cc.
4151     // TODO: Support this for vectors after legalize ops.
4152     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4153       // SETUGT X, SINTMAX  -> SETLT X, 0
4154       // SETUGE X, SINTMIN -> SETLT X, 0
4155       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4156           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4157         return DAG.getSetCC(dl, VT, N0,
4158                             DAG.getConstant(0, dl, N1.getValueType()),
4159                             ISD::SETLT);
4160 
4161       // SETULT X, SINTMIN  -> SETGT X, -1
4162       // SETULE X, SINTMAX  -> SETGT X, -1
4163       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4164           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4165         return DAG.getSetCC(dl, VT, N0,
4166                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4167                             ISD::SETGT);
4168     }
4169   }
4170 
4171   // Back to non-vector simplifications.
4172   // TODO: Can we do these for vector splats?
4173   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4174     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4175     const APInt &C1 = N1C->getAPIntValue();
4176     EVT ShValTy = N0.getValueType();
4177 
4178     // Fold bit comparisons when we can. This will result in an
4179     // incorrect value when boolean false is negative one, unless
4180     // the bitsize is 1 in which case the false value is the same
4181     // in practice regardless of the representation.
4182     if ((VT.getSizeInBits() == 1 ||
4183          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4184         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4185         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4186         N0.getOpcode() == ISD::AND) {
4187       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4188         EVT ShiftTy =
4189             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4190         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4191           // Perform the xform if the AND RHS is a single bit.
4192           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4193           if (AndRHS->getAPIntValue().isPowerOf2() &&
4194               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4195             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4196                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4197                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4198           }
4199         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4200           // (X & 8) == 8  -->  (X & 8) >> 3
4201           // Perform the xform if C1 is a single bit.
4202           unsigned ShCt = C1.logBase2();
4203           if (C1.isPowerOf2() &&
4204               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4205             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4206                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4207                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4208           }
4209         }
4210       }
4211     }
4212 
4213     if (C1.getMinSignedBits() <= 64 &&
4214         !isLegalICmpImmediate(C1.getSExtValue())) {
4215       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4216       // (X & -256) == 256 -> (X >> 8) == 1
4217       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4218           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4219         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4220           const APInt &AndRHSC = AndRHS->getAPIntValue();
4221           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4222             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4223             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4224               SDValue Shift =
4225                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4226                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4227               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4228               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4229             }
4230           }
4231         }
4232       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4233                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4234         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4235         // X <  0x100000000 -> (X >> 32) <  1
4236         // X >= 0x100000000 -> (X >> 32) >= 1
4237         // X <= 0x0ffffffff -> (X >> 32) <  1
4238         // X >  0x0ffffffff -> (X >> 32) >= 1
4239         unsigned ShiftBits;
4240         APInt NewC = C1;
4241         ISD::CondCode NewCond = Cond;
4242         if (AdjOne) {
4243           ShiftBits = C1.countTrailingOnes();
4244           NewC = NewC + 1;
4245           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4246         } else {
4247           ShiftBits = C1.countTrailingZeros();
4248         }
4249         NewC.lshrInPlace(ShiftBits);
4250         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4251             isLegalICmpImmediate(NewC.getSExtValue()) &&
4252             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4253           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4254                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4255           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4256           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4257         }
4258       }
4259     }
4260   }
4261 
4262   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4263     auto *CFP = cast<ConstantFPSDNode>(N1);
4264     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4265 
4266     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4267     // constant if knowing that the operand is non-nan is enough.  We prefer to
4268     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4269     // materialize 0.0.
4270     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4271       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4272 
4273     // setcc (fneg x), C -> setcc swap(pred) x, -C
4274     if (N0.getOpcode() == ISD::FNEG) {
4275       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4276       if (DCI.isBeforeLegalizeOps() ||
4277           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4278         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4279         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4280       }
4281     }
4282 
4283     // If the condition is not legal, see if we can find an equivalent one
4284     // which is legal.
4285     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4286       // If the comparison was an awkward floating-point == or != and one of
4287       // the comparison operands is infinity or negative infinity, convert the
4288       // condition to a less-awkward <= or >=.
4289       if (CFP->getValueAPF().isInfinity()) {
4290         bool IsNegInf = CFP->getValueAPF().isNegative();
4291         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4292         switch (Cond) {
4293         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4294         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4295         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4296         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4297         default: break;
4298         }
4299         if (NewCond != ISD::SETCC_INVALID &&
4300             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4301           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4302       }
4303     }
4304   }
4305 
4306   if (N0 == N1) {
4307     // The sext(setcc()) => setcc() optimization relies on the appropriate
4308     // constant being emitted.
4309     assert(!N0.getValueType().isInteger() &&
4310            "Integer types should be handled by FoldSetCC");
4311 
4312     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4313     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4314     if (UOF == 2) // FP operators that are undefined on NaNs.
4315       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4316     if (UOF == unsigned(EqTrue))
4317       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4318     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4319     // if it is not already.
4320     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4321     if (NewCond != Cond &&
4322         (DCI.isBeforeLegalizeOps() ||
4323                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4324       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4325   }
4326 
4327   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4328       N0.getValueType().isInteger()) {
4329     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4330         N0.getOpcode() == ISD::XOR) {
4331       // Simplify (X+Y) == (X+Z) -->  Y == Z
4332       if (N0.getOpcode() == N1.getOpcode()) {
4333         if (N0.getOperand(0) == N1.getOperand(0))
4334           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4335         if (N0.getOperand(1) == N1.getOperand(1))
4336           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4337         if (isCommutativeBinOp(N0.getOpcode())) {
4338           // If X op Y == Y op X, try other combinations.
4339           if (N0.getOperand(0) == N1.getOperand(1))
4340             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4341                                 Cond);
4342           if (N0.getOperand(1) == N1.getOperand(0))
4343             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4344                                 Cond);
4345         }
4346       }
4347 
4348       // If RHS is a legal immediate value for a compare instruction, we need
4349       // to be careful about increasing register pressure needlessly.
4350       bool LegalRHSImm = false;
4351 
4352       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4353         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4354           // Turn (X+C1) == C2 --> X == C2-C1
4355           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4356             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4357                                 DAG.getConstant(RHSC->getAPIntValue()-
4358                                                 LHSR->getAPIntValue(),
4359                                 dl, N0.getValueType()), Cond);
4360           }
4361 
4362           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4363           if (N0.getOpcode() == ISD::XOR)
4364             // If we know that all of the inverted bits are zero, don't bother
4365             // performing the inversion.
4366             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4367               return
4368                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4369                              DAG.getConstant(LHSR->getAPIntValue() ^
4370                                                RHSC->getAPIntValue(),
4371                                              dl, N0.getValueType()),
4372                              Cond);
4373         }
4374 
4375         // Turn (C1-X) == C2 --> X == C1-C2
4376         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4377           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4378             return
4379               DAG.getSetCC(dl, VT, N0.getOperand(1),
4380                            DAG.getConstant(SUBC->getAPIntValue() -
4381                                              RHSC->getAPIntValue(),
4382                                            dl, N0.getValueType()),
4383                            Cond);
4384           }
4385         }
4386 
4387         // Could RHSC fold directly into a compare?
4388         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4389           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4390       }
4391 
4392       // (X+Y) == X --> Y == 0 and similar folds.
4393       // Don't do this if X is an immediate that can fold into a cmp
4394       // instruction and X+Y has other uses. It could be an induction variable
4395       // chain, and the transform would increase register pressure.
4396       if (!LegalRHSImm || N0.hasOneUse())
4397         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4398           return V;
4399     }
4400 
4401     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4402         N1.getOpcode() == ISD::XOR)
4403       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4404         return V;
4405 
4406     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4407       return V;
4408   }
4409 
4410   // Fold remainder of division by a constant.
4411   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4412       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4413     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4414 
4415     // When division is cheap or optimizing for minimum size,
4416     // fall through to DIVREM creation by skipping this fold.
4417     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4418       if (N0.getOpcode() == ISD::UREM) {
4419         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4420           return Folded;
4421       } else if (N0.getOpcode() == ISD::SREM) {
4422         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4423           return Folded;
4424       }
4425     }
4426   }
4427 
4428   // Fold away ALL boolean setcc's.
4429   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4430     SDValue Temp;
4431     switch (Cond) {
4432     default: llvm_unreachable("Unknown integer setcc!");
4433     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4434       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4435       N0 = DAG.getNOT(dl, Temp, OpVT);
4436       if (!DCI.isCalledByLegalizer())
4437         DCI.AddToWorklist(Temp.getNode());
4438       break;
4439     case ISD::SETNE:  // X != Y   -->  (X^Y)
4440       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4441       break;
4442     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4443     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4444       Temp = DAG.getNOT(dl, N0, OpVT);
4445       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4446       if (!DCI.isCalledByLegalizer())
4447         DCI.AddToWorklist(Temp.getNode());
4448       break;
4449     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4450     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4451       Temp = DAG.getNOT(dl, N1, OpVT);
4452       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4453       if (!DCI.isCalledByLegalizer())
4454         DCI.AddToWorklist(Temp.getNode());
4455       break;
4456     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4457     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4458       Temp = DAG.getNOT(dl, N0, OpVT);
4459       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4460       if (!DCI.isCalledByLegalizer())
4461         DCI.AddToWorklist(Temp.getNode());
4462       break;
4463     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4464     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4465       Temp = DAG.getNOT(dl, N1, OpVT);
4466       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4467       break;
4468     }
4469     if (VT.getScalarType() != MVT::i1) {
4470       if (!DCI.isCalledByLegalizer())
4471         DCI.AddToWorklist(N0.getNode());
4472       // FIXME: If running after legalize, we probably can't do this.
4473       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4474       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4475     }
4476     return N0;
4477   }
4478 
4479   // Could not fold it.
4480   return SDValue();
4481 }
4482 
4483 /// Returns true (and the GlobalValue and the offset) if the node is a
4484 /// GlobalAddress + offset.
4485 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4486                                     int64_t &Offset) const {
4487 
4488   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4489 
4490   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4491     GA = GASD->getGlobal();
4492     Offset += GASD->getOffset();
4493     return true;
4494   }
4495 
4496   if (N->getOpcode() == ISD::ADD) {
4497     SDValue N1 = N->getOperand(0);
4498     SDValue N2 = N->getOperand(1);
4499     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4500       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4501         Offset += V->getSExtValue();
4502         return true;
4503       }
4504     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4505       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4506         Offset += V->getSExtValue();
4507         return true;
4508       }
4509     }
4510   }
4511 
4512   return false;
4513 }
4514 
4515 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4516                                           DAGCombinerInfo &DCI) const {
4517   // Default implementation: no optimization.
4518   return SDValue();
4519 }
4520 
4521 //===----------------------------------------------------------------------===//
4522 //  Inline Assembler Implementation Methods
4523 //===----------------------------------------------------------------------===//
4524 
4525 TargetLowering::ConstraintType
4526 TargetLowering::getConstraintType(StringRef Constraint) const {
4527   unsigned S = Constraint.size();
4528 
4529   if (S == 1) {
4530     switch (Constraint[0]) {
4531     default: break;
4532     case 'r':
4533       return C_RegisterClass;
4534     case 'm': // memory
4535     case 'o': // offsetable
4536     case 'V': // not offsetable
4537       return C_Memory;
4538     case 'n': // Simple Integer
4539     case 'E': // Floating Point Constant
4540     case 'F': // Floating Point Constant
4541       return C_Immediate;
4542     case 'i': // Simple Integer or Relocatable Constant
4543     case 's': // Relocatable Constant
4544     case 'p': // Address.
4545     case 'X': // Allow ANY value.
4546     case 'I': // Target registers.
4547     case 'J':
4548     case 'K':
4549     case 'L':
4550     case 'M':
4551     case 'N':
4552     case 'O':
4553     case 'P':
4554     case '<':
4555     case '>':
4556       return C_Other;
4557     }
4558   }
4559 
4560   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4561     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4562       return C_Memory;
4563     return C_Register;
4564   }
4565   return C_Unknown;
4566 }
4567 
4568 /// Try to replace an X constraint, which matches anything, with another that
4569 /// has more specific requirements based on the type of the corresponding
4570 /// operand.
4571 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4572   if (ConstraintVT.isInteger())
4573     return "r";
4574   if (ConstraintVT.isFloatingPoint())
4575     return "f"; // works for many targets
4576   return nullptr;
4577 }
4578 
4579 SDValue TargetLowering::LowerAsmOutputForConstraint(
4580     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4581     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4582   return SDValue();
4583 }
4584 
4585 /// Lower the specified operand into the Ops vector.
4586 /// If it is invalid, don't add anything to Ops.
4587 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4588                                                   std::string &Constraint,
4589                                                   std::vector<SDValue> &Ops,
4590                                                   SelectionDAG &DAG) const {
4591 
4592   if (Constraint.length() > 1) return;
4593 
4594   char ConstraintLetter = Constraint[0];
4595   switch (ConstraintLetter) {
4596   default: break;
4597   case 'X':     // Allows any operand; labels (basic block) use this.
4598     if (Op.getOpcode() == ISD::BasicBlock ||
4599         Op.getOpcode() == ISD::TargetBlockAddress) {
4600       Ops.push_back(Op);
4601       return;
4602     }
4603     LLVM_FALLTHROUGH;
4604   case 'i':    // Simple Integer or Relocatable Constant
4605   case 'n':    // Simple Integer
4606   case 's': {  // Relocatable Constant
4607 
4608     GlobalAddressSDNode *GA;
4609     ConstantSDNode *C;
4610     BlockAddressSDNode *BA;
4611     uint64_t Offset = 0;
4612 
4613     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4614     // etc., since getelementpointer is variadic. We can't use
4615     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4616     // while in this case the GA may be furthest from the root node which is
4617     // likely an ISD::ADD.
4618     while (1) {
4619       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4620         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4621                                                  GA->getValueType(0),
4622                                                  Offset + GA->getOffset()));
4623         return;
4624       }
4625       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4626         // gcc prints these as sign extended.  Sign extend value to 64 bits
4627         // now; without this it would get ZExt'd later in
4628         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4629         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4630         BooleanContent BCont = getBooleanContents(MVT::i64);
4631         ISD::NodeType ExtOpc =
4632             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4633         int64_t ExtVal =
4634             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4635         Ops.push_back(
4636             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4637         return;
4638       }
4639       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4640         Ops.push_back(DAG.getTargetBlockAddress(
4641             BA->getBlockAddress(), BA->getValueType(0),
4642             Offset + BA->getOffset(), BA->getTargetFlags()));
4643         return;
4644       }
4645       const unsigned OpCode = Op.getOpcode();
4646       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4647         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4648           Op = Op.getOperand(1);
4649         // Subtraction is not commutative.
4650         else if (OpCode == ISD::ADD &&
4651                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4652           Op = Op.getOperand(0);
4653         else
4654           return;
4655         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4656         continue;
4657       }
4658       return;
4659     }
4660     break;
4661   }
4662   }
4663 }
4664 
4665 std::pair<unsigned, const TargetRegisterClass *>
4666 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4667                                              StringRef Constraint,
4668                                              MVT VT) const {
4669   if (Constraint.empty() || Constraint[0] != '{')
4670     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4671   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4672 
4673   // Remove the braces from around the name.
4674   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4675 
4676   std::pair<unsigned, const TargetRegisterClass *> R =
4677       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4678 
4679   // Figure out which register class contains this reg.
4680   for (const TargetRegisterClass *RC : RI->regclasses()) {
4681     // If none of the value types for this register class are valid, we
4682     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4683     if (!isLegalRC(*RI, *RC))
4684       continue;
4685 
4686     for (const MCPhysReg &PR : *RC) {
4687       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4688         std::pair<unsigned, const TargetRegisterClass *> S =
4689             std::make_pair(PR, RC);
4690 
4691         // If this register class has the requested value type, return it,
4692         // otherwise keep searching and return the first class found
4693         // if no other is found which explicitly has the requested type.
4694         if (RI->isTypeLegalForClass(*RC, VT))
4695           return S;
4696         if (!R.second)
4697           R = S;
4698       }
4699     }
4700   }
4701 
4702   return R;
4703 }
4704 
4705 //===----------------------------------------------------------------------===//
4706 // Constraint Selection.
4707 
4708 /// Return true of this is an input operand that is a matching constraint like
4709 /// "4".
4710 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4711   assert(!ConstraintCode.empty() && "No known constraint!");
4712   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4713 }
4714 
4715 /// If this is an input matching constraint, this method returns the output
4716 /// operand it matches.
4717 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4718   assert(!ConstraintCode.empty() && "No known constraint!");
4719   return atoi(ConstraintCode.c_str());
4720 }
4721 
4722 /// Split up the constraint string from the inline assembly value into the
4723 /// specific constraints and their prefixes, and also tie in the associated
4724 /// operand values.
4725 /// If this returns an empty vector, and if the constraint string itself
4726 /// isn't empty, there was an error parsing.
4727 TargetLowering::AsmOperandInfoVector
4728 TargetLowering::ParseConstraints(const DataLayout &DL,
4729                                  const TargetRegisterInfo *TRI,
4730                                  const CallBase &Call) const {
4731   /// Information about all of the constraints.
4732   AsmOperandInfoVector ConstraintOperands;
4733   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4734   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4735 
4736   // Do a prepass over the constraints, canonicalizing them, and building up the
4737   // ConstraintOperands list.
4738   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4739   unsigned ResNo = 0; // ResNo - The result number of the next output.
4740 
4741   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4742     ConstraintOperands.emplace_back(std::move(CI));
4743     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4744 
4745     // Update multiple alternative constraint count.
4746     if (OpInfo.multipleAlternatives.size() > maCount)
4747       maCount = OpInfo.multipleAlternatives.size();
4748 
4749     OpInfo.ConstraintVT = MVT::Other;
4750 
4751     // Compute the value type for each operand.
4752     switch (OpInfo.Type) {
4753     case InlineAsm::isOutput:
4754       // Indirect outputs just consume an argument.
4755       if (OpInfo.isIndirect) {
4756         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4757         break;
4758       }
4759 
4760       // The return value of the call is this value.  As such, there is no
4761       // corresponding argument.
4762       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4763       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4764         OpInfo.ConstraintVT =
4765             getSimpleValueType(DL, STy->getElementType(ResNo));
4766       } else {
4767         assert(ResNo == 0 && "Asm only has one result!");
4768         OpInfo.ConstraintVT =
4769             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4770       }
4771       ++ResNo;
4772       break;
4773     case InlineAsm::isInput:
4774       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4775       break;
4776     case InlineAsm::isClobber:
4777       // Nothing to do.
4778       break;
4779     }
4780 
4781     if (OpInfo.CallOperandVal) {
4782       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4783       if (OpInfo.isIndirect) {
4784         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4785         if (!PtrTy)
4786           report_fatal_error("Indirect operand for inline asm not a pointer!");
4787         OpTy = PtrTy->getElementType();
4788       }
4789 
4790       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4791       if (StructType *STy = dyn_cast<StructType>(OpTy))
4792         if (STy->getNumElements() == 1)
4793           OpTy = STy->getElementType(0);
4794 
4795       // If OpTy is not a single value, it may be a struct/union that we
4796       // can tile with integers.
4797       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4798         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4799         switch (BitSize) {
4800         default: break;
4801         case 1:
4802         case 8:
4803         case 16:
4804         case 32:
4805         case 64:
4806         case 128:
4807           OpInfo.ConstraintVT =
4808               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4809           break;
4810         }
4811       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4812         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4813         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4814       } else {
4815         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4816       }
4817     }
4818   }
4819 
4820   // If we have multiple alternative constraints, select the best alternative.
4821   if (!ConstraintOperands.empty()) {
4822     if (maCount) {
4823       unsigned bestMAIndex = 0;
4824       int bestWeight = -1;
4825       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4826       int weight = -1;
4827       unsigned maIndex;
4828       // Compute the sums of the weights for each alternative, keeping track
4829       // of the best (highest weight) one so far.
4830       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4831         int weightSum = 0;
4832         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4833              cIndex != eIndex; ++cIndex) {
4834           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4835           if (OpInfo.Type == InlineAsm::isClobber)
4836             continue;
4837 
4838           // If this is an output operand with a matching input operand,
4839           // look up the matching input. If their types mismatch, e.g. one
4840           // is an integer, the other is floating point, or their sizes are
4841           // different, flag it as an maCantMatch.
4842           if (OpInfo.hasMatchingInput()) {
4843             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4844             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4845               if ((OpInfo.ConstraintVT.isInteger() !=
4846                    Input.ConstraintVT.isInteger()) ||
4847                   (OpInfo.ConstraintVT.getSizeInBits() !=
4848                    Input.ConstraintVT.getSizeInBits())) {
4849                 weightSum = -1; // Can't match.
4850                 break;
4851               }
4852             }
4853           }
4854           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4855           if (weight == -1) {
4856             weightSum = -1;
4857             break;
4858           }
4859           weightSum += weight;
4860         }
4861         // Update best.
4862         if (weightSum > bestWeight) {
4863           bestWeight = weightSum;
4864           bestMAIndex = maIndex;
4865         }
4866       }
4867 
4868       // Now select chosen alternative in each constraint.
4869       for (AsmOperandInfo &cInfo : ConstraintOperands)
4870         if (cInfo.Type != InlineAsm::isClobber)
4871           cInfo.selectAlternative(bestMAIndex);
4872     }
4873   }
4874 
4875   // Check and hook up tied operands, choose constraint code to use.
4876   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4877        cIndex != eIndex; ++cIndex) {
4878     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4879 
4880     // If this is an output operand with a matching input operand, look up the
4881     // matching input. If their types mismatch, e.g. one is an integer, the
4882     // other is floating point, or their sizes are different, flag it as an
4883     // error.
4884     if (OpInfo.hasMatchingInput()) {
4885       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4886 
4887       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4888         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4889             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4890                                          OpInfo.ConstraintVT);
4891         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4892             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4893                                          Input.ConstraintVT);
4894         if ((OpInfo.ConstraintVT.isInteger() !=
4895              Input.ConstraintVT.isInteger()) ||
4896             (MatchRC.second != InputRC.second)) {
4897           report_fatal_error("Unsupported asm: input constraint"
4898                              " with a matching output constraint of"
4899                              " incompatible type!");
4900         }
4901       }
4902     }
4903   }
4904 
4905   return ConstraintOperands;
4906 }
4907 
4908 /// Return an integer indicating how general CT is.
4909 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4910   switch (CT) {
4911   case TargetLowering::C_Immediate:
4912   case TargetLowering::C_Other:
4913   case TargetLowering::C_Unknown:
4914     return 0;
4915   case TargetLowering::C_Register:
4916     return 1;
4917   case TargetLowering::C_RegisterClass:
4918     return 2;
4919   case TargetLowering::C_Memory:
4920     return 3;
4921   }
4922   llvm_unreachable("Invalid constraint type");
4923 }
4924 
4925 /// Examine constraint type and operand type and determine a weight value.
4926 /// This object must already have been set up with the operand type
4927 /// and the current alternative constraint selected.
4928 TargetLowering::ConstraintWeight
4929   TargetLowering::getMultipleConstraintMatchWeight(
4930     AsmOperandInfo &info, int maIndex) const {
4931   InlineAsm::ConstraintCodeVector *rCodes;
4932   if (maIndex >= (int)info.multipleAlternatives.size())
4933     rCodes = &info.Codes;
4934   else
4935     rCodes = &info.multipleAlternatives[maIndex].Codes;
4936   ConstraintWeight BestWeight = CW_Invalid;
4937 
4938   // Loop over the options, keeping track of the most general one.
4939   for (const std::string &rCode : *rCodes) {
4940     ConstraintWeight weight =
4941         getSingleConstraintMatchWeight(info, rCode.c_str());
4942     if (weight > BestWeight)
4943       BestWeight = weight;
4944   }
4945 
4946   return BestWeight;
4947 }
4948 
4949 /// Examine constraint type and operand type and determine a weight value.
4950 /// This object must already have been set up with the operand type
4951 /// and the current alternative constraint selected.
4952 TargetLowering::ConstraintWeight
4953   TargetLowering::getSingleConstraintMatchWeight(
4954     AsmOperandInfo &info, const char *constraint) const {
4955   ConstraintWeight weight = CW_Invalid;
4956   Value *CallOperandVal = info.CallOperandVal;
4957     // If we don't have a value, we can't do a match,
4958     // but allow it at the lowest weight.
4959   if (!CallOperandVal)
4960     return CW_Default;
4961   // Look at the constraint type.
4962   switch (*constraint) {
4963     case 'i': // immediate integer.
4964     case 'n': // immediate integer with a known value.
4965       if (isa<ConstantInt>(CallOperandVal))
4966         weight = CW_Constant;
4967       break;
4968     case 's': // non-explicit intregal immediate.
4969       if (isa<GlobalValue>(CallOperandVal))
4970         weight = CW_Constant;
4971       break;
4972     case 'E': // immediate float if host format.
4973     case 'F': // immediate float.
4974       if (isa<ConstantFP>(CallOperandVal))
4975         weight = CW_Constant;
4976       break;
4977     case '<': // memory operand with autodecrement.
4978     case '>': // memory operand with autoincrement.
4979     case 'm': // memory operand.
4980     case 'o': // offsettable memory operand
4981     case 'V': // non-offsettable memory operand
4982       weight = CW_Memory;
4983       break;
4984     case 'r': // general register.
4985     case 'g': // general register, memory operand or immediate integer.
4986               // note: Clang converts "g" to "imr".
4987       if (CallOperandVal->getType()->isIntegerTy())
4988         weight = CW_Register;
4989       break;
4990     case 'X': // any operand.
4991   default:
4992     weight = CW_Default;
4993     break;
4994   }
4995   return weight;
4996 }
4997 
4998 /// If there are multiple different constraints that we could pick for this
4999 /// operand (e.g. "imr") try to pick the 'best' one.
5000 /// This is somewhat tricky: constraints fall into four classes:
5001 ///    Other         -> immediates and magic values
5002 ///    Register      -> one specific register
5003 ///    RegisterClass -> a group of regs
5004 ///    Memory        -> memory
5005 /// Ideally, we would pick the most specific constraint possible: if we have
5006 /// something that fits into a register, we would pick it.  The problem here
5007 /// is that if we have something that could either be in a register or in
5008 /// memory that use of the register could cause selection of *other*
5009 /// operands to fail: they might only succeed if we pick memory.  Because of
5010 /// this the heuristic we use is:
5011 ///
5012 ///  1) If there is an 'other' constraint, and if the operand is valid for
5013 ///     that constraint, use it.  This makes us take advantage of 'i'
5014 ///     constraints when available.
5015 ///  2) Otherwise, pick the most general constraint present.  This prefers
5016 ///     'm' over 'r', for example.
5017 ///
5018 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5019                              const TargetLowering &TLI,
5020                              SDValue Op, SelectionDAG *DAG) {
5021   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5022   unsigned BestIdx = 0;
5023   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5024   int BestGenerality = -1;
5025 
5026   // Loop over the options, keeping track of the most general one.
5027   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5028     TargetLowering::ConstraintType CType =
5029       TLI.getConstraintType(OpInfo.Codes[i]);
5030 
5031     // Indirect 'other' or 'immediate' constraints are not allowed.
5032     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5033                                CType == TargetLowering::C_Register ||
5034                                CType == TargetLowering::C_RegisterClass))
5035       continue;
5036 
5037     // If this is an 'other' or 'immediate' constraint, see if the operand is
5038     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5039     // the operand is an integer in the range [0..31] we want to use I (saving a
5040     // load of a register), otherwise we must use 'r'.
5041     if ((CType == TargetLowering::C_Other ||
5042          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5043       assert(OpInfo.Codes[i].size() == 1 &&
5044              "Unhandled multi-letter 'other' constraint");
5045       std::vector<SDValue> ResultOps;
5046       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5047                                        ResultOps, *DAG);
5048       if (!ResultOps.empty()) {
5049         BestType = CType;
5050         BestIdx = i;
5051         break;
5052       }
5053     }
5054 
5055     // Things with matching constraints can only be registers, per gcc
5056     // documentation.  This mainly affects "g" constraints.
5057     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5058       continue;
5059 
5060     // This constraint letter is more general than the previous one, use it.
5061     int Generality = getConstraintGenerality(CType);
5062     if (Generality > BestGenerality) {
5063       BestType = CType;
5064       BestIdx = i;
5065       BestGenerality = Generality;
5066     }
5067   }
5068 
5069   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5070   OpInfo.ConstraintType = BestType;
5071 }
5072 
5073 /// Determines the constraint code and constraint type to use for the specific
5074 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5075 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5076                                             SDValue Op,
5077                                             SelectionDAG *DAG) const {
5078   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5079 
5080   // Single-letter constraints ('r') are very common.
5081   if (OpInfo.Codes.size() == 1) {
5082     OpInfo.ConstraintCode = OpInfo.Codes[0];
5083     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5084   } else {
5085     ChooseConstraint(OpInfo, *this, Op, DAG);
5086   }
5087 
5088   // 'X' matches anything.
5089   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5090     // Labels and constants are handled elsewhere ('X' is the only thing
5091     // that matches labels).  For Functions, the type here is the type of
5092     // the result, which is not what we want to look at; leave them alone.
5093     Value *v = OpInfo.CallOperandVal;
5094     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5095       OpInfo.CallOperandVal = v;
5096       return;
5097     }
5098 
5099     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5100       return;
5101 
5102     // Otherwise, try to resolve it to something we know about by looking at
5103     // the actual operand type.
5104     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5105       OpInfo.ConstraintCode = Repl;
5106       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5107     }
5108   }
5109 }
5110 
5111 /// Given an exact SDIV by a constant, create a multiplication
5112 /// with the multiplicative inverse of the constant.
5113 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5114                               const SDLoc &dl, SelectionDAG &DAG,
5115                               SmallVectorImpl<SDNode *> &Created) {
5116   SDValue Op0 = N->getOperand(0);
5117   SDValue Op1 = N->getOperand(1);
5118   EVT VT = N->getValueType(0);
5119   EVT SVT = VT.getScalarType();
5120   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5121   EVT ShSVT = ShVT.getScalarType();
5122 
5123   bool UseSRA = false;
5124   SmallVector<SDValue, 16> Shifts, Factors;
5125 
5126   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5127     if (C->isZero())
5128       return false;
5129     APInt Divisor = C->getAPIntValue();
5130     unsigned Shift = Divisor.countTrailingZeros();
5131     if (Shift) {
5132       Divisor.ashrInPlace(Shift);
5133       UseSRA = true;
5134     }
5135     // Calculate the multiplicative inverse, using Newton's method.
5136     APInt t;
5137     APInt Factor = Divisor;
5138     while ((t = Divisor * Factor) != 1)
5139       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5140     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5141     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5142     return true;
5143   };
5144 
5145   // Collect all magic values from the build vector.
5146   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5147     return SDValue();
5148 
5149   SDValue Shift, Factor;
5150   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5151     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5152     Factor = DAG.getBuildVector(VT, dl, Factors);
5153   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5154     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5155            "Expected matchUnaryPredicate to return one element for scalable "
5156            "vectors");
5157     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5158     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5159   } else {
5160     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5161     Shift = Shifts[0];
5162     Factor = Factors[0];
5163   }
5164 
5165   SDValue Res = Op0;
5166 
5167   // Shift the value upfront if it is even, so the LSB is one.
5168   if (UseSRA) {
5169     // TODO: For UDIV use SRL instead of SRA.
5170     SDNodeFlags Flags;
5171     Flags.setExact(true);
5172     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5173     Created.push_back(Res.getNode());
5174   }
5175 
5176   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5177 }
5178 
5179 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5180                               SelectionDAG &DAG,
5181                               SmallVectorImpl<SDNode *> &Created) const {
5182   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5184   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5185     return SDValue(N, 0); // Lower SDIV as SDIV
5186   return SDValue();
5187 }
5188 
5189 /// Given an ISD::SDIV node expressing a divide by constant,
5190 /// return a DAG expression to select that will generate the same value by
5191 /// multiplying by a magic number.
5192 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5193 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5194                                   bool IsAfterLegalization,
5195                                   SmallVectorImpl<SDNode *> &Created) const {
5196   SDLoc dl(N);
5197   EVT VT = N->getValueType(0);
5198   EVT SVT = VT.getScalarType();
5199   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5200   EVT ShSVT = ShVT.getScalarType();
5201   unsigned EltBits = VT.getScalarSizeInBits();
5202   EVT MulVT;
5203 
5204   // Check to see if we can do this.
5205   // FIXME: We should be more aggressive here.
5206   if (!isTypeLegal(VT)) {
5207     // Limit this to simple scalars for now.
5208     if (VT.isVector() || !VT.isSimple())
5209       return SDValue();
5210 
5211     // If this type will be promoted to a large enough type with a legal
5212     // multiply operation, we can go ahead and do this transform.
5213     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5214       return SDValue();
5215 
5216     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5217     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5218         !isOperationLegal(ISD::MUL, MulVT))
5219       return SDValue();
5220   }
5221 
5222   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5223   if (N->getFlags().hasExact())
5224     return BuildExactSDIV(*this, N, dl, DAG, Created);
5225 
5226   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5227 
5228   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5229     if (C->isZero())
5230       return false;
5231 
5232     const APInt &Divisor = C->getAPIntValue();
5233     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5234     int NumeratorFactor = 0;
5235     int ShiftMask = -1;
5236 
5237     if (Divisor.isOne() || Divisor.isAllOnes()) {
5238       // If d is +1/-1, we just multiply the numerator by +1/-1.
5239       NumeratorFactor = Divisor.getSExtValue();
5240       magics.Magic = 0;
5241       magics.ShiftAmount = 0;
5242       ShiftMask = 0;
5243     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5244       // If d > 0 and m < 0, add the numerator.
5245       NumeratorFactor = 1;
5246     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5247       // If d < 0 and m > 0, subtract the numerator.
5248       NumeratorFactor = -1;
5249     }
5250 
5251     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5252     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5253     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5254     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5255     return true;
5256   };
5257 
5258   SDValue N0 = N->getOperand(0);
5259   SDValue N1 = N->getOperand(1);
5260 
5261   // Collect the shifts / magic values from each element.
5262   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5263     return SDValue();
5264 
5265   SDValue MagicFactor, Factor, Shift, ShiftMask;
5266   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5267     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5268     Factor = DAG.getBuildVector(VT, dl, Factors);
5269     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5270     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5271   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5272     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5273            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5274            "Expected matchUnaryPredicate to return one element for scalable "
5275            "vectors");
5276     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5277     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5278     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5279     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5280   } else {
5281     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5282     MagicFactor = MagicFactors[0];
5283     Factor = Factors[0];
5284     Shift = Shifts[0];
5285     ShiftMask = ShiftMasks[0];
5286   }
5287 
5288   // Multiply the numerator (operand 0) by the magic value.
5289   // FIXME: We should support doing a MUL in a wider type.
5290   auto GetMULHS = [&](SDValue X, SDValue Y) {
5291     // If the type isn't legal, use a wider mul of the the type calculated
5292     // earlier.
5293     if (!isTypeLegal(VT)) {
5294       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5295       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5296       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5297       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5298                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5299       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5300     }
5301 
5302     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5303       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5304     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5305       SDValue LoHi =
5306           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5307       return SDValue(LoHi.getNode(), 1);
5308     }
5309     return SDValue();
5310   };
5311 
5312   SDValue Q = GetMULHS(N0, MagicFactor);
5313   if (!Q)
5314     return SDValue();
5315 
5316   Created.push_back(Q.getNode());
5317 
5318   // (Optionally) Add/subtract the numerator using Factor.
5319   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5320   Created.push_back(Factor.getNode());
5321   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5322   Created.push_back(Q.getNode());
5323 
5324   // Shift right algebraic by shift value.
5325   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5326   Created.push_back(Q.getNode());
5327 
5328   // Extract the sign bit, mask it and add it to the quotient.
5329   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5330   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5331   Created.push_back(T.getNode());
5332   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5333   Created.push_back(T.getNode());
5334   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5335 }
5336 
5337 /// Given an ISD::UDIV node expressing a divide by constant,
5338 /// return a DAG expression to select that will generate the same value by
5339 /// multiplying by a magic number.
5340 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5341 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5342                                   bool IsAfterLegalization,
5343                                   SmallVectorImpl<SDNode *> &Created) const {
5344   SDLoc dl(N);
5345   EVT VT = N->getValueType(0);
5346   EVT SVT = VT.getScalarType();
5347   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5348   EVT ShSVT = ShVT.getScalarType();
5349   unsigned EltBits = VT.getScalarSizeInBits();
5350   EVT MulVT;
5351 
5352   // Check to see if we can do this.
5353   // FIXME: We should be more aggressive here.
5354   if (!isTypeLegal(VT)) {
5355     // Limit this to simple scalars for now.
5356     if (VT.isVector() || !VT.isSimple())
5357       return SDValue();
5358 
5359     // If this type will be promoted to a large enough type with a legal
5360     // multiply operation, we can go ahead and do this transform.
5361     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5362       return SDValue();
5363 
5364     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5365     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5366         !isOperationLegal(ISD::MUL, MulVT))
5367       return SDValue();
5368   }
5369 
5370   bool UseNPQ = false;
5371   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5372 
5373   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5374     if (C->isZero())
5375       return false;
5376     // FIXME: We should use a narrower constant when the upper
5377     // bits are known to be zero.
5378     const APInt& Divisor = C->getAPIntValue();
5379     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5380     unsigned PreShift = 0, PostShift = 0;
5381 
5382     // If the divisor is even, we can avoid using the expensive fixup by
5383     // shifting the divided value upfront.
5384     if (magics.IsAdd != 0 && !Divisor[0]) {
5385       PreShift = Divisor.countTrailingZeros();
5386       // Get magic number for the shifted divisor.
5387       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5388       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5389     }
5390 
5391     APInt Magic = magics.Magic;
5392 
5393     unsigned SelNPQ;
5394     if (magics.IsAdd == 0 || Divisor.isOne()) {
5395       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5396              "We shouldn't generate an undefined shift!");
5397       PostShift = magics.ShiftAmount;
5398       SelNPQ = false;
5399     } else {
5400       PostShift = magics.ShiftAmount - 1;
5401       SelNPQ = true;
5402     }
5403 
5404     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5405     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5406     NPQFactors.push_back(
5407         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5408                                : APInt::getZero(EltBits),
5409                         dl, SVT));
5410     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5411     UseNPQ |= SelNPQ;
5412     return true;
5413   };
5414 
5415   SDValue N0 = N->getOperand(0);
5416   SDValue N1 = N->getOperand(1);
5417 
5418   // Collect the shifts/magic values from each element.
5419   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5420     return SDValue();
5421 
5422   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5423   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5424     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5425     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5426     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5427     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5428   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5429     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5430            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5431            "Expected matchUnaryPredicate to return one for scalable vectors");
5432     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5433     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5434     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5435     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5436   } else {
5437     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5438     PreShift = PreShifts[0];
5439     MagicFactor = MagicFactors[0];
5440     PostShift = PostShifts[0];
5441   }
5442 
5443   SDValue Q = N0;
5444   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5445   Created.push_back(Q.getNode());
5446 
5447   // FIXME: We should support doing a MUL in a wider type.
5448   auto GetMULHU = [&](SDValue X, SDValue Y) {
5449     // If the type isn't legal, use a wider mul of the the type calculated
5450     // earlier.
5451     if (!isTypeLegal(VT)) {
5452       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5453       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5454       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5455       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5456                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5457       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5458     }
5459 
5460     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5461       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5462     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5463       SDValue LoHi =
5464           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5465       return SDValue(LoHi.getNode(), 1);
5466     }
5467     return SDValue(); // No mulhu or equivalent
5468   };
5469 
5470   // Multiply the numerator (operand 0) by the magic value.
5471   Q = GetMULHU(Q, MagicFactor);
5472   if (!Q)
5473     return SDValue();
5474 
5475   Created.push_back(Q.getNode());
5476 
5477   if (UseNPQ) {
5478     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5479     Created.push_back(NPQ.getNode());
5480 
5481     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5482     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5483     if (VT.isVector())
5484       NPQ = GetMULHU(NPQ, NPQFactor);
5485     else
5486       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5487 
5488     Created.push_back(NPQ.getNode());
5489 
5490     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5491     Created.push_back(Q.getNode());
5492   }
5493 
5494   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5495   Created.push_back(Q.getNode());
5496 
5497   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5498 
5499   SDValue One = DAG.getConstant(1, dl, VT);
5500   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5501   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5502 }
5503 
5504 /// If all values in Values that *don't* match the predicate are same 'splat'
5505 /// value, then replace all values with that splat value.
5506 /// Else, if AlternativeReplacement was provided, then replace all values that
5507 /// do match predicate with AlternativeReplacement value.
5508 static void
5509 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5510                           std::function<bool(SDValue)> Predicate,
5511                           SDValue AlternativeReplacement = SDValue()) {
5512   SDValue Replacement;
5513   // Is there a value for which the Predicate does *NOT* match? What is it?
5514   auto SplatValue = llvm::find_if_not(Values, Predicate);
5515   if (SplatValue != Values.end()) {
5516     // Does Values consist only of SplatValue's and values matching Predicate?
5517     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5518           return Value == *SplatValue || Predicate(Value);
5519         })) // Then we shall replace values matching predicate with SplatValue.
5520       Replacement = *SplatValue;
5521   }
5522   if (!Replacement) {
5523     // Oops, we did not find the "baseline" splat value.
5524     if (!AlternativeReplacement)
5525       return; // Nothing to do.
5526     // Let's replace with provided value then.
5527     Replacement = AlternativeReplacement;
5528   }
5529   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5530 }
5531 
5532 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5533 /// where the divisor is constant and the comparison target is zero,
5534 /// return a DAG expression that will generate the same comparison result
5535 /// using only multiplications, additions and shifts/rotations.
5536 /// Ref: "Hacker's Delight" 10-17.
5537 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5538                                         SDValue CompTargetNode,
5539                                         ISD::CondCode Cond,
5540                                         DAGCombinerInfo &DCI,
5541                                         const SDLoc &DL) const {
5542   SmallVector<SDNode *, 5> Built;
5543   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5544                                          DCI, DL, Built)) {
5545     for (SDNode *N : Built)
5546       DCI.AddToWorklist(N);
5547     return Folded;
5548   }
5549 
5550   return SDValue();
5551 }
5552 
5553 SDValue
5554 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5555                                   SDValue CompTargetNode, ISD::CondCode Cond,
5556                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5557                                   SmallVectorImpl<SDNode *> &Created) const {
5558   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5559   // - D must be constant, with D = D0 * 2^K where D0 is odd
5560   // - P is the multiplicative inverse of D0 modulo 2^W
5561   // - Q = floor(((2^W) - 1) / D)
5562   // where W is the width of the common type of N and D.
5563   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5564          "Only applicable for (in)equality comparisons.");
5565 
5566   SelectionDAG &DAG = DCI.DAG;
5567 
5568   EVT VT = REMNode.getValueType();
5569   EVT SVT = VT.getScalarType();
5570   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5571   EVT ShSVT = ShVT.getScalarType();
5572 
5573   // If MUL is unavailable, we cannot proceed in any case.
5574   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5575     return SDValue();
5576 
5577   bool ComparingWithAllZeros = true;
5578   bool AllComparisonsWithNonZerosAreTautological = true;
5579   bool HadTautologicalLanes = false;
5580   bool AllLanesAreTautological = true;
5581   bool HadEvenDivisor = false;
5582   bool AllDivisorsArePowerOfTwo = true;
5583   bool HadTautologicalInvertedLanes = false;
5584   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5585 
5586   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5587     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5588     if (CDiv->isZero())
5589       return false;
5590 
5591     const APInt &D = CDiv->getAPIntValue();
5592     const APInt &Cmp = CCmp->getAPIntValue();
5593 
5594     ComparingWithAllZeros &= Cmp.isZero();
5595 
5596     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5597     // if C2 is not less than C1, the comparison is always false.
5598     // But we will only be able to produce the comparison that will give the
5599     // opposive tautological answer. So this lane would need to be fixed up.
5600     bool TautologicalInvertedLane = D.ule(Cmp);
5601     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5602 
5603     // If all lanes are tautological (either all divisors are ones, or divisor
5604     // is not greater than the constant we are comparing with),
5605     // we will prefer to avoid the fold.
5606     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5607     HadTautologicalLanes |= TautologicalLane;
5608     AllLanesAreTautological &= TautologicalLane;
5609 
5610     // If we are comparing with non-zero, we need'll need  to subtract said
5611     // comparison value from the LHS. But there is no point in doing that if
5612     // every lane where we are comparing with non-zero is tautological..
5613     if (!Cmp.isZero())
5614       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5615 
5616     // Decompose D into D0 * 2^K
5617     unsigned K = D.countTrailingZeros();
5618     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5619     APInt D0 = D.lshr(K);
5620 
5621     // D is even if it has trailing zeros.
5622     HadEvenDivisor |= (K != 0);
5623     // D is a power-of-two if D0 is one.
5624     // If all divisors are power-of-two, we will prefer to avoid the fold.
5625     AllDivisorsArePowerOfTwo &= D0.isOne();
5626 
5627     // P = inv(D0, 2^W)
5628     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5629     unsigned W = D.getBitWidth();
5630     APInt P = D0.zext(W + 1)
5631                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5632                   .trunc(W);
5633     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5634     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5635 
5636     // Q = floor((2^W - 1) u/ D)
5637     // R = ((2^W - 1) u% D)
5638     APInt Q, R;
5639     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5640 
5641     // If we are comparing with zero, then that comparison constant is okay,
5642     // else it may need to be one less than that.
5643     if (Cmp.ugt(R))
5644       Q -= 1;
5645 
5646     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5647            "We are expecting that K is always less than all-ones for ShSVT");
5648 
5649     // If the lane is tautological the result can be constant-folded.
5650     if (TautologicalLane) {
5651       // Set P and K amount to a bogus values so we can try to splat them.
5652       P = 0;
5653       K = -1;
5654       // And ensure that comparison constant is tautological,
5655       // it will always compare true/false.
5656       Q = -1;
5657     }
5658 
5659     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5660     KAmts.push_back(
5661         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5662     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5663     return true;
5664   };
5665 
5666   SDValue N = REMNode.getOperand(0);
5667   SDValue D = REMNode.getOperand(1);
5668 
5669   // Collect the values from each element.
5670   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5671     return SDValue();
5672 
5673   // If all lanes are tautological, the result can be constant-folded.
5674   if (AllLanesAreTautological)
5675     return SDValue();
5676 
5677   // If this is a urem by a powers-of-two, avoid the fold since it can be
5678   // best implemented as a bit test.
5679   if (AllDivisorsArePowerOfTwo)
5680     return SDValue();
5681 
5682   SDValue PVal, KVal, QVal;
5683   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5684     if (HadTautologicalLanes) {
5685       // Try to turn PAmts into a splat, since we don't care about the values
5686       // that are currently '0'. If we can't, just keep '0'`s.
5687       turnVectorIntoSplatVector(PAmts, isNullConstant);
5688       // Try to turn KAmts into a splat, since we don't care about the values
5689       // that are currently '-1'. If we can't, change them to '0'`s.
5690       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5691                                 DAG.getConstant(0, DL, ShSVT));
5692     }
5693 
5694     PVal = DAG.getBuildVector(VT, DL, PAmts);
5695     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5696     QVal = DAG.getBuildVector(VT, DL, QAmts);
5697   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5698     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5699            "Expected matchBinaryPredicate to return one element for "
5700            "SPLAT_VECTORs");
5701     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5702     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5703     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5704   } else {
5705     PVal = PAmts[0];
5706     KVal = KAmts[0];
5707     QVal = QAmts[0];
5708   }
5709 
5710   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5711     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5712       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5713     assert(CompTargetNode.getValueType() == N.getValueType() &&
5714            "Expecting that the types on LHS and RHS of comparisons match.");
5715     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5716   }
5717 
5718   // (mul N, P)
5719   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5720   Created.push_back(Op0.getNode());
5721 
5722   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5723   // divisors as a performance improvement, since rotating by 0 is a no-op.
5724   if (HadEvenDivisor) {
5725     // We need ROTR to do this.
5726     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5727       return SDValue();
5728     // UREM: (rotr (mul N, P), K)
5729     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5730     Created.push_back(Op0.getNode());
5731   }
5732 
5733   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5734   SDValue NewCC =
5735       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5736                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5737   if (!HadTautologicalInvertedLanes)
5738     return NewCC;
5739 
5740   // If any lanes previously compared always-false, the NewCC will give
5741   // always-true result for them, so we need to fixup those lanes.
5742   // Or the other way around for inequality predicate.
5743   assert(VT.isVector() && "Can/should only get here for vectors.");
5744   Created.push_back(NewCC.getNode());
5745 
5746   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5747   // if C2 is not less than C1, the comparison is always false.
5748   // But we have produced the comparison that will give the
5749   // opposive tautological answer. So these lanes would need to be fixed up.
5750   SDValue TautologicalInvertedChannels =
5751       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5752   Created.push_back(TautologicalInvertedChannels.getNode());
5753 
5754   // NOTE: we avoid letting illegal types through even if we're before legalize
5755   // ops – legalization has a hard time producing good code for this.
5756   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5757     // If we have a vector select, let's replace the comparison results in the
5758     // affected lanes with the correct tautological result.
5759     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5760                                               DL, SETCCVT, SETCCVT);
5761     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5762                        Replacement, NewCC);
5763   }
5764 
5765   // Else, we can just invert the comparison result in the appropriate lanes.
5766   //
5767   // NOTE: see the note above VSELECT above.
5768   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5769     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5770                        TautologicalInvertedChannels);
5771 
5772   return SDValue(); // Don't know how to lower.
5773 }
5774 
5775 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5776 /// where the divisor is constant and the comparison target is zero,
5777 /// return a DAG expression that will generate the same comparison result
5778 /// using only multiplications, additions and shifts/rotations.
5779 /// Ref: "Hacker's Delight" 10-17.
5780 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5781                                         SDValue CompTargetNode,
5782                                         ISD::CondCode Cond,
5783                                         DAGCombinerInfo &DCI,
5784                                         const SDLoc &DL) const {
5785   SmallVector<SDNode *, 7> Built;
5786   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5787                                          DCI, DL, Built)) {
5788     assert(Built.size() <= 7 && "Max size prediction failed.");
5789     for (SDNode *N : Built)
5790       DCI.AddToWorklist(N);
5791     return Folded;
5792   }
5793 
5794   return SDValue();
5795 }
5796 
5797 SDValue
5798 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5799                                   SDValue CompTargetNode, ISD::CondCode Cond,
5800                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5801                                   SmallVectorImpl<SDNode *> &Created) const {
5802   // Fold:
5803   //   (seteq/ne (srem N, D), 0)
5804   // To:
5805   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5806   //
5807   // - D must be constant, with D = D0 * 2^K where D0 is odd
5808   // - P is the multiplicative inverse of D0 modulo 2^W
5809   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5810   // - Q = floor((2 * A) / (2^K))
5811   // where W is the width of the common type of N and D.
5812   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5813          "Only applicable for (in)equality comparisons.");
5814 
5815   SelectionDAG &DAG = DCI.DAG;
5816 
5817   EVT VT = REMNode.getValueType();
5818   EVT SVT = VT.getScalarType();
5819   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5820   EVT ShSVT = ShVT.getScalarType();
5821 
5822   // If we are after ops legalization, and MUL is unavailable, we can not
5823   // proceed.
5824   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5825     return SDValue();
5826 
5827   // TODO: Could support comparing with non-zero too.
5828   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5829   if (!CompTarget || !CompTarget->isZero())
5830     return SDValue();
5831 
5832   bool HadIntMinDivisor = false;
5833   bool HadOneDivisor = false;
5834   bool AllDivisorsAreOnes = true;
5835   bool HadEvenDivisor = false;
5836   bool NeedToApplyOffset = false;
5837   bool AllDivisorsArePowerOfTwo = true;
5838   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5839 
5840   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5841     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5842     if (C->isZero())
5843       return false;
5844 
5845     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5846 
5847     // WARNING: this fold is only valid for positive divisors!
5848     APInt D = C->getAPIntValue();
5849     if (D.isNegative())
5850       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5851 
5852     HadIntMinDivisor |= D.isMinSignedValue();
5853 
5854     // If all divisors are ones, we will prefer to avoid the fold.
5855     HadOneDivisor |= D.isOne();
5856     AllDivisorsAreOnes &= D.isOne();
5857 
5858     // Decompose D into D0 * 2^K
5859     unsigned K = D.countTrailingZeros();
5860     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5861     APInt D0 = D.lshr(K);
5862 
5863     if (!D.isMinSignedValue()) {
5864       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5865       // we don't care about this lane in this fold, we'll special-handle it.
5866       HadEvenDivisor |= (K != 0);
5867     }
5868 
5869     // D is a power-of-two if D0 is one. This includes INT_MIN.
5870     // If all divisors are power-of-two, we will prefer to avoid the fold.
5871     AllDivisorsArePowerOfTwo &= D0.isOne();
5872 
5873     // P = inv(D0, 2^W)
5874     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5875     unsigned W = D.getBitWidth();
5876     APInt P = D0.zext(W + 1)
5877                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5878                   .trunc(W);
5879     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5880     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5881 
5882     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5883     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5884     A.clearLowBits(K);
5885 
5886     if (!D.isMinSignedValue()) {
5887       // If divisor INT_MIN, then we don't care about this lane in this fold,
5888       // we'll special-handle it.
5889       NeedToApplyOffset |= A != 0;
5890     }
5891 
5892     // Q = floor((2 * A) / (2^K))
5893     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5894 
5895     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5896            "We are expecting that A is always less than all-ones for SVT");
5897     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5898            "We are expecting that K is always less than all-ones for ShSVT");
5899 
5900     // If the divisor is 1 the result can be constant-folded. Likewise, we
5901     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5902     if (D.isOne()) {
5903       // Set P, A and K to a bogus values so we can try to splat them.
5904       P = 0;
5905       A = -1;
5906       K = -1;
5907 
5908       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5909       Q = -1;
5910     }
5911 
5912     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5913     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5914     KAmts.push_back(
5915         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5916     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5917     return true;
5918   };
5919 
5920   SDValue N = REMNode.getOperand(0);
5921   SDValue D = REMNode.getOperand(1);
5922 
5923   // Collect the values from each element.
5924   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5925     return SDValue();
5926 
5927   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5928   if (AllDivisorsAreOnes)
5929     return SDValue();
5930 
5931   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5932   // since it can be best implemented as a bit test.
5933   if (AllDivisorsArePowerOfTwo)
5934     return SDValue();
5935 
5936   SDValue PVal, AVal, KVal, QVal;
5937   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5938     if (HadOneDivisor) {
5939       // Try to turn PAmts into a splat, since we don't care about the values
5940       // that are currently '0'. If we can't, just keep '0'`s.
5941       turnVectorIntoSplatVector(PAmts, isNullConstant);
5942       // Try to turn AAmts into a splat, since we don't care about the
5943       // values that are currently '-1'. If we can't, change them to '0'`s.
5944       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5945                                 DAG.getConstant(0, DL, SVT));
5946       // Try to turn KAmts into a splat, since we don't care about the values
5947       // that are currently '-1'. If we can't, change them to '0'`s.
5948       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5949                                 DAG.getConstant(0, DL, ShSVT));
5950     }
5951 
5952     PVal = DAG.getBuildVector(VT, DL, PAmts);
5953     AVal = DAG.getBuildVector(VT, DL, AAmts);
5954     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5955     QVal = DAG.getBuildVector(VT, DL, QAmts);
5956   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5957     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5958            QAmts.size() == 1 &&
5959            "Expected matchUnaryPredicate to return one element for scalable "
5960            "vectors");
5961     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5962     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5963     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5964     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5965   } else {
5966     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5967     PVal = PAmts[0];
5968     AVal = AAmts[0];
5969     KVal = KAmts[0];
5970     QVal = QAmts[0];
5971   }
5972 
5973   // (mul N, P)
5974   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5975   Created.push_back(Op0.getNode());
5976 
5977   if (NeedToApplyOffset) {
5978     // We need ADD to do this.
5979     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5980       return SDValue();
5981 
5982     // (add (mul N, P), A)
5983     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5984     Created.push_back(Op0.getNode());
5985   }
5986 
5987   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5988   // divisors as a performance improvement, since rotating by 0 is a no-op.
5989   if (HadEvenDivisor) {
5990     // We need ROTR to do this.
5991     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5992       return SDValue();
5993     // SREM: (rotr (add (mul N, P), A), K)
5994     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5995     Created.push_back(Op0.getNode());
5996   }
5997 
5998   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5999   SDValue Fold =
6000       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6001                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6002 
6003   // If we didn't have lanes with INT_MIN divisor, then we're done.
6004   if (!HadIntMinDivisor)
6005     return Fold;
6006 
6007   // That fold is only valid for positive divisors. Which effectively means,
6008   // it is invalid for INT_MIN divisors. So if we have such a lane,
6009   // we must fix-up results for said lanes.
6010   assert(VT.isVector() && "Can/should only get here for vectors.");
6011 
6012   // NOTE: we avoid letting illegal types through even if we're before legalize
6013   // ops – legalization has a hard time producing good code for the code that
6014   // follows.
6015   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6016       !isOperationLegalOrCustom(ISD::AND, VT) ||
6017       !isOperationLegalOrCustom(Cond, VT) ||
6018       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6019     return SDValue();
6020 
6021   Created.push_back(Fold.getNode());
6022 
6023   SDValue IntMin = DAG.getConstant(
6024       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6025   SDValue IntMax = DAG.getConstant(
6026       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6027   SDValue Zero =
6028       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6029 
6030   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6031   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6032   Created.push_back(DivisorIsIntMin.getNode());
6033 
6034   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6035   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6036   Created.push_back(Masked.getNode());
6037   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6038   Created.push_back(MaskedIsZero.getNode());
6039 
6040   // To produce final result we need to blend 2 vectors: 'SetCC' and
6041   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6042   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6043   // constant-folded, select can get lowered to a shuffle with constant mask.
6044   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6045                                 MaskedIsZero, Fold);
6046 
6047   return Blended;
6048 }
6049 
6050 bool TargetLowering::
6051 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6052   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6053     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6054                                 "be a constant integer");
6055     return true;
6056   }
6057 
6058   return false;
6059 }
6060 
6061 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6062                                          const DenormalMode &Mode) const {
6063   SDLoc DL(Op);
6064   EVT VT = Op.getValueType();
6065   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6066   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6067   // Testing it with denormal inputs to avoid wrong estimate.
6068   if (Mode.Input == DenormalMode::IEEE) {
6069     // This is specifically a check for the handling of denormal inputs,
6070     // not the result.
6071 
6072     // Test = fabs(X) < SmallestNormal
6073     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6074     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6075     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6076     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6077     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6078   }
6079   // Test = X == 0.0
6080   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6081 }
6082 
6083 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6084                                              bool LegalOps, bool OptForSize,
6085                                              NegatibleCost &Cost,
6086                                              unsigned Depth) const {
6087   // fneg is removable even if it has multiple uses.
6088   if (Op.getOpcode() == ISD::FNEG) {
6089     Cost = NegatibleCost::Cheaper;
6090     return Op.getOperand(0);
6091   }
6092 
6093   // Don't recurse exponentially.
6094   if (Depth > SelectionDAG::MaxRecursionDepth)
6095     return SDValue();
6096 
6097   // Pre-increment recursion depth for use in recursive calls.
6098   ++Depth;
6099   const SDNodeFlags Flags = Op->getFlags();
6100   const TargetOptions &Options = DAG.getTarget().Options;
6101   EVT VT = Op.getValueType();
6102   unsigned Opcode = Op.getOpcode();
6103 
6104   // Don't allow anything with multiple uses unless we know it is free.
6105   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6106     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6107                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6108     if (!IsFreeExtend)
6109       return SDValue();
6110   }
6111 
6112   auto RemoveDeadNode = [&](SDValue N) {
6113     if (N && N.getNode()->use_empty())
6114       DAG.RemoveDeadNode(N.getNode());
6115   };
6116 
6117   SDLoc DL(Op);
6118 
6119   // Because getNegatedExpression can delete nodes we need a handle to keep
6120   // temporary nodes alive in case the recursion manages to create an identical
6121   // node.
6122   std::list<HandleSDNode> Handles;
6123 
6124   switch (Opcode) {
6125   case ISD::ConstantFP: {
6126     // Don't invert constant FP values after legalization unless the target says
6127     // the negated constant is legal.
6128     bool IsOpLegal =
6129         isOperationLegal(ISD::ConstantFP, VT) ||
6130         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6131                      OptForSize);
6132 
6133     if (LegalOps && !IsOpLegal)
6134       break;
6135 
6136     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6137     V.changeSign();
6138     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6139 
6140     // If we already have the use of the negated floating constant, it is free
6141     // to negate it even it has multiple uses.
6142     if (!Op.hasOneUse() && CFP.use_empty())
6143       break;
6144     Cost = NegatibleCost::Neutral;
6145     return CFP;
6146   }
6147   case ISD::BUILD_VECTOR: {
6148     // Only permit BUILD_VECTOR of constants.
6149     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6150           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6151         }))
6152       break;
6153 
6154     bool IsOpLegal =
6155         (isOperationLegal(ISD::ConstantFP, VT) &&
6156          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6157         llvm::all_of(Op->op_values(), [&](SDValue N) {
6158           return N.isUndef() ||
6159                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6160                               OptForSize);
6161         });
6162 
6163     if (LegalOps && !IsOpLegal)
6164       break;
6165 
6166     SmallVector<SDValue, 4> Ops;
6167     for (SDValue C : Op->op_values()) {
6168       if (C.isUndef()) {
6169         Ops.push_back(C);
6170         continue;
6171       }
6172       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6173       V.changeSign();
6174       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6175     }
6176     Cost = NegatibleCost::Neutral;
6177     return DAG.getBuildVector(VT, DL, Ops);
6178   }
6179   case ISD::FADD: {
6180     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6181       break;
6182 
6183     // After operation legalization, it might not be legal to create new FSUBs.
6184     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6185       break;
6186     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6187 
6188     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6189     NegatibleCost CostX = NegatibleCost::Expensive;
6190     SDValue NegX =
6191         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6192     // Prevent this node from being deleted by the next call.
6193     if (NegX)
6194       Handles.emplace_back(NegX);
6195 
6196     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6197     NegatibleCost CostY = NegatibleCost::Expensive;
6198     SDValue NegY =
6199         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6200 
6201     // We're done with the handles.
6202     Handles.clear();
6203 
6204     // Negate the X if its cost is less or equal than Y.
6205     if (NegX && (CostX <= CostY)) {
6206       Cost = CostX;
6207       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6208       if (NegY != N)
6209         RemoveDeadNode(NegY);
6210       return N;
6211     }
6212 
6213     // Negate the Y if it is not expensive.
6214     if (NegY) {
6215       Cost = CostY;
6216       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6217       if (NegX != N)
6218         RemoveDeadNode(NegX);
6219       return N;
6220     }
6221     break;
6222   }
6223   case ISD::FSUB: {
6224     // We can't turn -(A-B) into B-A when we honor signed zeros.
6225     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6226       break;
6227 
6228     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6229     // fold (fneg (fsub 0, Y)) -> Y
6230     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6231       if (C->isZero()) {
6232         Cost = NegatibleCost::Cheaper;
6233         return Y;
6234       }
6235 
6236     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6237     Cost = NegatibleCost::Neutral;
6238     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6239   }
6240   case ISD::FMUL:
6241   case ISD::FDIV: {
6242     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6243 
6244     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6245     NegatibleCost CostX = NegatibleCost::Expensive;
6246     SDValue NegX =
6247         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6248     // Prevent this node from being deleted by the next call.
6249     if (NegX)
6250       Handles.emplace_back(NegX);
6251 
6252     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6253     NegatibleCost CostY = NegatibleCost::Expensive;
6254     SDValue NegY =
6255         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6256 
6257     // We're done with the handles.
6258     Handles.clear();
6259 
6260     // Negate the X if its cost is less or equal than Y.
6261     if (NegX && (CostX <= CostY)) {
6262       Cost = CostX;
6263       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6264       if (NegY != N)
6265         RemoveDeadNode(NegY);
6266       return N;
6267     }
6268 
6269     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6270     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6271       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6272         break;
6273 
6274     // Negate the Y if it is not expensive.
6275     if (NegY) {
6276       Cost = CostY;
6277       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6278       if (NegX != N)
6279         RemoveDeadNode(NegX);
6280       return N;
6281     }
6282     break;
6283   }
6284   case ISD::FMA:
6285   case ISD::FMAD: {
6286     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6287       break;
6288 
6289     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6290     NegatibleCost CostZ = NegatibleCost::Expensive;
6291     SDValue NegZ =
6292         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6293     // Give up if fail to negate the Z.
6294     if (!NegZ)
6295       break;
6296 
6297     // Prevent this node from being deleted by the next two calls.
6298     Handles.emplace_back(NegZ);
6299 
6300     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6301     NegatibleCost CostX = NegatibleCost::Expensive;
6302     SDValue NegX =
6303         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6304     // Prevent this node from being deleted by the next call.
6305     if (NegX)
6306       Handles.emplace_back(NegX);
6307 
6308     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6309     NegatibleCost CostY = NegatibleCost::Expensive;
6310     SDValue NegY =
6311         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6312 
6313     // We're done with the handles.
6314     Handles.clear();
6315 
6316     // Negate the X if its cost is less or equal than Y.
6317     if (NegX && (CostX <= CostY)) {
6318       Cost = std::min(CostX, CostZ);
6319       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6320       if (NegY != N)
6321         RemoveDeadNode(NegY);
6322       return N;
6323     }
6324 
6325     // Negate the Y if it is not expensive.
6326     if (NegY) {
6327       Cost = std::min(CostY, CostZ);
6328       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6329       if (NegX != N)
6330         RemoveDeadNode(NegX);
6331       return N;
6332     }
6333     break;
6334   }
6335 
6336   case ISD::FP_EXTEND:
6337   case ISD::FSIN:
6338     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6339                                             OptForSize, Cost, Depth))
6340       return DAG.getNode(Opcode, DL, VT, NegV);
6341     break;
6342   case ISD::FP_ROUND:
6343     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6344                                             OptForSize, Cost, Depth))
6345       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6346     break;
6347   }
6348 
6349   return SDValue();
6350 }
6351 
6352 //===----------------------------------------------------------------------===//
6353 // Legalization Utilities
6354 //===----------------------------------------------------------------------===//
6355 
6356 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6357                                     SDValue LHS, SDValue RHS,
6358                                     SmallVectorImpl<SDValue> &Result,
6359                                     EVT HiLoVT, SelectionDAG &DAG,
6360                                     MulExpansionKind Kind, SDValue LL,
6361                                     SDValue LH, SDValue RL, SDValue RH) const {
6362   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6363          Opcode == ISD::SMUL_LOHI);
6364 
6365   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6366                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6367   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6368                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6369   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6370                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6371   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6372                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6373 
6374   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6375     return false;
6376 
6377   unsigned OuterBitSize = VT.getScalarSizeInBits();
6378   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6379 
6380   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6381   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6382          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6383 
6384   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6385   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6386                           bool Signed) -> bool {
6387     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6388       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6389       Hi = SDValue(Lo.getNode(), 1);
6390       return true;
6391     }
6392     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6393       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6394       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6395       return true;
6396     }
6397     return false;
6398   };
6399 
6400   SDValue Lo, Hi;
6401 
6402   if (!LL.getNode() && !RL.getNode() &&
6403       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6404     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6405     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6406   }
6407 
6408   if (!LL.getNode())
6409     return false;
6410 
6411   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6412   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6413       DAG.MaskedValueIsZero(RHS, HighMask)) {
6414     // The inputs are both zero-extended.
6415     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6416       Result.push_back(Lo);
6417       Result.push_back(Hi);
6418       if (Opcode != ISD::MUL) {
6419         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6420         Result.push_back(Zero);
6421         Result.push_back(Zero);
6422       }
6423       return true;
6424     }
6425   }
6426 
6427   if (!VT.isVector() && Opcode == ISD::MUL &&
6428       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6429       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6430     // The input values are both sign-extended.
6431     // TODO non-MUL case?
6432     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6433       Result.push_back(Lo);
6434       Result.push_back(Hi);
6435       return true;
6436     }
6437   }
6438 
6439   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6440   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6441   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6442     // FIXME getShiftAmountTy does not always return a sensible result when VT
6443     // is an illegal type, and so the type may be too small to fit the shift
6444     // amount. Override it with i32. The shift will have to be legalized.
6445     ShiftAmountTy = MVT::i32;
6446   }
6447   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6448 
6449   if (!LH.getNode() && !RH.getNode() &&
6450       isOperationLegalOrCustom(ISD::SRL, VT) &&
6451       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6452     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6453     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6454     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6455     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6456   }
6457 
6458   if (!LH.getNode())
6459     return false;
6460 
6461   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6462     return false;
6463 
6464   Result.push_back(Lo);
6465 
6466   if (Opcode == ISD::MUL) {
6467     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6468     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6469     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6470     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6471     Result.push_back(Hi);
6472     return true;
6473   }
6474 
6475   // Compute the full width result.
6476   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6477     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6478     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6479     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6480     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6481   };
6482 
6483   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6484   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6485     return false;
6486 
6487   // This is effectively the add part of a multiply-add of half-sized operands,
6488   // so it cannot overflow.
6489   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6490 
6491   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6492     return false;
6493 
6494   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6495   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6496 
6497   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6498                   isOperationLegalOrCustom(ISD::ADDE, VT));
6499   if (UseGlue)
6500     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6501                        Merge(Lo, Hi));
6502   else
6503     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6504                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6505 
6506   SDValue Carry = Next.getValue(1);
6507   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6508   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6509 
6510   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6511     return false;
6512 
6513   if (UseGlue)
6514     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6515                      Carry);
6516   else
6517     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6518                      Zero, Carry);
6519 
6520   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6521 
6522   if (Opcode == ISD::SMUL_LOHI) {
6523     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6524                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6525     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6526 
6527     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6528                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6529     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6530   }
6531 
6532   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6533   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6534   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6535   return true;
6536 }
6537 
6538 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6539                                SelectionDAG &DAG, MulExpansionKind Kind,
6540                                SDValue LL, SDValue LH, SDValue RL,
6541                                SDValue RH) const {
6542   SmallVector<SDValue, 2> Result;
6543   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6544                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6545                            DAG, Kind, LL, LH, RL, RH);
6546   if (Ok) {
6547     assert(Result.size() == 2);
6548     Lo = Result[0];
6549     Hi = Result[1];
6550   }
6551   return Ok;
6552 }
6553 
6554 // Check that (every element of) Z is undef or not an exact multiple of BW.
6555 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6556   return ISD::matchUnaryPredicate(
6557       Z,
6558       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6559       true);
6560 }
6561 
6562 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6563                                           SelectionDAG &DAG) const {
6564   EVT VT = Node->getValueType(0);
6565 
6566   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6567                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6568                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6569                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6570     return SDValue();
6571 
6572   SDValue X = Node->getOperand(0);
6573   SDValue Y = Node->getOperand(1);
6574   SDValue Z = Node->getOperand(2);
6575 
6576   unsigned BW = VT.getScalarSizeInBits();
6577   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6578   SDLoc DL(SDValue(Node, 0));
6579 
6580   EVT ShVT = Z.getValueType();
6581 
6582   // If a funnel shift in the other direction is more supported, use it.
6583   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6584   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6585       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6586     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6587       // fshl X, Y, Z -> fshr X, Y, -Z
6588       // fshr X, Y, Z -> fshl X, Y, -Z
6589       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6590       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6591     } else {
6592       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6593       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6594       SDValue One = DAG.getConstant(1, DL, ShVT);
6595       if (IsFSHL) {
6596         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6597         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6598       } else {
6599         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6600         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6601       }
6602       Z = DAG.getNOT(DL, Z, ShVT);
6603     }
6604     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6605   }
6606 
6607   SDValue ShX, ShY;
6608   SDValue ShAmt, InvShAmt;
6609   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6610     // fshl: X << C | Y >> (BW - C)
6611     // fshr: X << (BW - C) | Y >> C
6612     // where C = Z % BW is not zero
6613     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6614     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6615     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6616     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6617     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6618   } else {
6619     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6620     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6621     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6622     if (isPowerOf2_32(BW)) {
6623       // Z % BW -> Z & (BW - 1)
6624       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6625       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6626       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6627     } else {
6628       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6629       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6630       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6631     }
6632 
6633     SDValue One = DAG.getConstant(1, DL, ShVT);
6634     if (IsFSHL) {
6635       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6636       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6637       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6638     } else {
6639       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6640       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6641       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6642     }
6643   }
6644   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6645 }
6646 
6647 // TODO: Merge with expandFunnelShift.
6648 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6649                                   SelectionDAG &DAG) const {
6650   EVT VT = Node->getValueType(0);
6651   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6652   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6653   SDValue Op0 = Node->getOperand(0);
6654   SDValue Op1 = Node->getOperand(1);
6655   SDLoc DL(SDValue(Node, 0));
6656 
6657   EVT ShVT = Op1.getValueType();
6658   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6659 
6660   // If a rotate in the other direction is more supported, use it.
6661   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6662   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6663       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6664     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6665     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6666   }
6667 
6668   if (!AllowVectorOps && VT.isVector() &&
6669       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6670        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6671        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6672        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6673        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6674     return SDValue();
6675 
6676   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6677   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6678   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6679   SDValue ShVal;
6680   SDValue HsVal;
6681   if (isPowerOf2_32(EltSizeInBits)) {
6682     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6683     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6684     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6685     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6686     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6687     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6688     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6689   } else {
6690     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6691     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6692     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6693     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6694     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6695     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6696     SDValue One = DAG.getConstant(1, DL, ShVT);
6697     HsVal =
6698         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6699   }
6700   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6701 }
6702 
6703 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6704                                       SelectionDAG &DAG) const {
6705   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6706   EVT VT = Node->getValueType(0);
6707   unsigned VTBits = VT.getScalarSizeInBits();
6708   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6709 
6710   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6711   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6712   SDValue ShOpLo = Node->getOperand(0);
6713   SDValue ShOpHi = Node->getOperand(1);
6714   SDValue ShAmt = Node->getOperand(2);
6715   EVT ShAmtVT = ShAmt.getValueType();
6716   EVT ShAmtCCVT =
6717       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6718   SDLoc dl(Node);
6719 
6720   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6721   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6722   // away during isel.
6723   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6724                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6725   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6726                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6727                        : DAG.getConstant(0, dl, VT);
6728 
6729   SDValue Tmp2, Tmp3;
6730   if (IsSHL) {
6731     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6732     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6733   } else {
6734     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6735     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6736   }
6737 
6738   // If the shift amount is larger or equal than the width of a part we don't
6739   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6740   // values for large shift amounts.
6741   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6742                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6743   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6744                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6745 
6746   if (IsSHL) {
6747     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6748     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6749   } else {
6750     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6751     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6752   }
6753 }
6754 
6755 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6756                                       SelectionDAG &DAG) const {
6757   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6758   SDValue Src = Node->getOperand(OpNo);
6759   EVT SrcVT = Src.getValueType();
6760   EVT DstVT = Node->getValueType(0);
6761   SDLoc dl(SDValue(Node, 0));
6762 
6763   // FIXME: Only f32 to i64 conversions are supported.
6764   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6765     return false;
6766 
6767   if (Node->isStrictFPOpcode())
6768     // When a NaN is converted to an integer a trap is allowed. We can't
6769     // use this expansion here because it would eliminate that trap. Other
6770     // traps are also allowed and cannot be eliminated. See
6771     // IEEE 754-2008 sec 5.8.
6772     return false;
6773 
6774   // Expand f32 -> i64 conversion
6775   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6776   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6777   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6778   EVT IntVT = SrcVT.changeTypeToInteger();
6779   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6780 
6781   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6782   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6783   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6784   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6785   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6786   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6787 
6788   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6789 
6790   SDValue ExponentBits = DAG.getNode(
6791       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6792       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6793   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6794 
6795   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6796                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6797                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6798   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6799 
6800   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6801                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6802                           DAG.getConstant(0x00800000, dl, IntVT));
6803 
6804   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6805 
6806   R = DAG.getSelectCC(
6807       dl, Exponent, ExponentLoBit,
6808       DAG.getNode(ISD::SHL, dl, DstVT, R,
6809                   DAG.getZExtOrTrunc(
6810                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6811                       dl, IntShVT)),
6812       DAG.getNode(ISD::SRL, dl, DstVT, R,
6813                   DAG.getZExtOrTrunc(
6814                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6815                       dl, IntShVT)),
6816       ISD::SETGT);
6817 
6818   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6819                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6820 
6821   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6822                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6823   return true;
6824 }
6825 
6826 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6827                                       SDValue &Chain,
6828                                       SelectionDAG &DAG) const {
6829   SDLoc dl(SDValue(Node, 0));
6830   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6831   SDValue Src = Node->getOperand(OpNo);
6832 
6833   EVT SrcVT = Src.getValueType();
6834   EVT DstVT = Node->getValueType(0);
6835   EVT SetCCVT =
6836       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6837   EVT DstSetCCVT =
6838       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6839 
6840   // Only expand vector types if we have the appropriate vector bit operations.
6841   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6842                                                    ISD::FP_TO_SINT;
6843   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6844                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6845     return false;
6846 
6847   // If the maximum float value is smaller then the signed integer range,
6848   // the destination signmask can't be represented by the float, so we can
6849   // just use FP_TO_SINT directly.
6850   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6851   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6852   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6853   if (APFloat::opOverflow &
6854       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6855     if (Node->isStrictFPOpcode()) {
6856       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6857                            { Node->getOperand(0), Src });
6858       Chain = Result.getValue(1);
6859     } else
6860       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6861     return true;
6862   }
6863 
6864   // Don't expand it if there isn't cheap fsub instruction.
6865   if (!isOperationLegalOrCustom(
6866           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6867     return false;
6868 
6869   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6870   SDValue Sel;
6871 
6872   if (Node->isStrictFPOpcode()) {
6873     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6874                        Node->getOperand(0), /*IsSignaling*/ true);
6875     Chain = Sel.getValue(1);
6876   } else {
6877     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6878   }
6879 
6880   bool Strict = Node->isStrictFPOpcode() ||
6881                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6882 
6883   if (Strict) {
6884     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6885     // signmask then offset (the result of which should be fully representable).
6886     // Sel = Src < 0x8000000000000000
6887     // FltOfs = select Sel, 0, 0x8000000000000000
6888     // IntOfs = select Sel, 0, 0x8000000000000000
6889     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6890 
6891     // TODO: Should any fast-math-flags be set for the FSUB?
6892     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6893                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6894     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6895     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6896                                    DAG.getConstant(0, dl, DstVT),
6897                                    DAG.getConstant(SignMask, dl, DstVT));
6898     SDValue SInt;
6899     if (Node->isStrictFPOpcode()) {
6900       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6901                                 { Chain, Src, FltOfs });
6902       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6903                          { Val.getValue(1), Val });
6904       Chain = SInt.getValue(1);
6905     } else {
6906       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6907       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6908     }
6909     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6910   } else {
6911     // Expand based on maximum range of FP_TO_SINT:
6912     // True = fp_to_sint(Src)
6913     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6914     // Result = select (Src < 0x8000000000000000), True, False
6915 
6916     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6917     // TODO: Should any fast-math-flags be set for the FSUB?
6918     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6919                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6920     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6921                         DAG.getConstant(SignMask, dl, DstVT));
6922     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6923     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6924   }
6925   return true;
6926 }
6927 
6928 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6929                                       SDValue &Chain,
6930                                       SelectionDAG &DAG) const {
6931   // This transform is not correct for converting 0 when rounding mode is set
6932   // to round toward negative infinity which will produce -0.0. So disable under
6933   // strictfp.
6934   if (Node->isStrictFPOpcode())
6935     return false;
6936 
6937   SDValue Src = Node->getOperand(0);
6938   EVT SrcVT = Src.getValueType();
6939   EVT DstVT = Node->getValueType(0);
6940 
6941   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6942     return false;
6943 
6944   // Only expand vector types if we have the appropriate vector bit operations.
6945   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6946                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6947                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6948                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6949                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6950     return false;
6951 
6952   SDLoc dl(SDValue(Node, 0));
6953   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6954 
6955   // Implementation of unsigned i64 to f64 following the algorithm in
6956   // __floatundidf in compiler_rt.  This implementation performs rounding
6957   // correctly in all rounding modes with the exception of converting 0
6958   // when rounding toward negative infinity. In that case the fsub will produce
6959   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6960   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6961   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6962       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6963   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6964   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6965   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6966 
6967   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6968   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6969   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6970   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6971   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6972   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6973   SDValue HiSub =
6974       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6975   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6976   return true;
6977 }
6978 
6979 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6980                                               SelectionDAG &DAG) const {
6981   SDLoc dl(Node);
6982   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6983     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6984   EVT VT = Node->getValueType(0);
6985 
6986   if (VT.isScalableVector())
6987     report_fatal_error(
6988         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6989 
6990   if (isOperationLegalOrCustom(NewOp, VT)) {
6991     SDValue Quiet0 = Node->getOperand(0);
6992     SDValue Quiet1 = Node->getOperand(1);
6993 
6994     if (!Node->getFlags().hasNoNaNs()) {
6995       // Insert canonicalizes if it's possible we need to quiet to get correct
6996       // sNaN behavior.
6997       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6998         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6999                              Node->getFlags());
7000       }
7001       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7002         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7003                              Node->getFlags());
7004       }
7005     }
7006 
7007     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7008   }
7009 
7010   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7011   // instead if there are no NaNs.
7012   if (Node->getFlags().hasNoNaNs()) {
7013     unsigned IEEE2018Op =
7014         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7015     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7016       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7017                          Node->getOperand(1), Node->getFlags());
7018     }
7019   }
7020 
7021   // If none of the above worked, but there are no NaNs, then expand to
7022   // a compare/select sequence.  This is required for correctness since
7023   // InstCombine might have canonicalized a fcmp+select sequence to a
7024   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7025   // expansion to libcall, we might introduce a link-time dependency
7026   // on libm into a file that originally did not have one.
7027   if (Node->getFlags().hasNoNaNs()) {
7028     ISD::CondCode Pred =
7029         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7030     SDValue Op1 = Node->getOperand(0);
7031     SDValue Op2 = Node->getOperand(1);
7032     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7033     // Copy FMF flags, but always set the no-signed-zeros flag
7034     // as this is implied by the FMINNUM/FMAXNUM semantics.
7035     SDNodeFlags Flags = Node->getFlags();
7036     Flags.setNoSignedZeros(true);
7037     SelCC->setFlags(Flags);
7038     return SelCC;
7039   }
7040 
7041   return SDValue();
7042 }
7043 
7044 // Only expand vector types if we have the appropriate vector bit operations.
7045 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7046   assert(VT.isVector() && "Expected vector type");
7047   unsigned Len = VT.getScalarSizeInBits();
7048   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7049          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7050          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7051          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7052          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7053 }
7054 
7055 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7056   SDLoc dl(Node);
7057   EVT VT = Node->getValueType(0);
7058   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7059   SDValue Op = Node->getOperand(0);
7060   unsigned Len = VT.getScalarSizeInBits();
7061   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7062 
7063   // TODO: Add support for irregular type lengths.
7064   if (!(Len <= 128 && Len % 8 == 0))
7065     return SDValue();
7066 
7067   // Only expand vector types if we have the appropriate vector bit operations.
7068   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7069     return SDValue();
7070 
7071   // This is the "best" algorithm from
7072   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7073   SDValue Mask55 =
7074       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7075   SDValue Mask33 =
7076       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7077   SDValue Mask0F =
7078       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7079   SDValue Mask01 =
7080       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7081 
7082   // v = v - ((v >> 1) & 0x55555555...)
7083   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7084                    DAG.getNode(ISD::AND, dl, VT,
7085                                DAG.getNode(ISD::SRL, dl, VT, Op,
7086                                            DAG.getConstant(1, dl, ShVT)),
7087                                Mask55));
7088   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7089   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7090                    DAG.getNode(ISD::AND, dl, VT,
7091                                DAG.getNode(ISD::SRL, dl, VT, Op,
7092                                            DAG.getConstant(2, dl, ShVT)),
7093                                Mask33));
7094   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7095   Op = DAG.getNode(ISD::AND, dl, VT,
7096                    DAG.getNode(ISD::ADD, dl, VT, Op,
7097                                DAG.getNode(ISD::SRL, dl, VT, Op,
7098                                            DAG.getConstant(4, dl, ShVT))),
7099                    Mask0F);
7100   // v = (v * 0x01010101...) >> (Len - 8)
7101   if (Len > 8)
7102     Op =
7103         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7104                     DAG.getConstant(Len - 8, dl, ShVT));
7105 
7106   return Op;
7107 }
7108 
7109 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7110   SDLoc dl(Node);
7111   EVT VT = Node->getValueType(0);
7112   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7113   SDValue Op = Node->getOperand(0);
7114   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7115 
7116   // If the non-ZERO_UNDEF version is supported we can use that instead.
7117   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7118       isOperationLegalOrCustom(ISD::CTLZ, VT))
7119     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7120 
7121   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7122   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7123     EVT SetCCVT =
7124         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7125     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7126     SDValue Zero = DAG.getConstant(0, dl, VT);
7127     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7128     return DAG.getSelect(dl, VT, SrcIsZero,
7129                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7130   }
7131 
7132   // Only expand vector types if we have the appropriate vector bit operations.
7133   // This includes the operations needed to expand CTPOP if it isn't supported.
7134   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7135                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7136                          !canExpandVectorCTPOP(*this, VT)) ||
7137                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7138                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7139     return SDValue();
7140 
7141   // for now, we do this:
7142   // x = x | (x >> 1);
7143   // x = x | (x >> 2);
7144   // ...
7145   // x = x | (x >>16);
7146   // x = x | (x >>32); // for 64-bit input
7147   // return popcount(~x);
7148   //
7149   // Ref: "Hacker's Delight" by Henry Warren
7150   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7151     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7152     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7153                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7154   }
7155   Op = DAG.getNOT(dl, Op, VT);
7156   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7157 }
7158 
7159 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7160   SDLoc dl(Node);
7161   EVT VT = Node->getValueType(0);
7162   SDValue Op = Node->getOperand(0);
7163   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7164 
7165   // If the non-ZERO_UNDEF version is supported we can use that instead.
7166   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7167       isOperationLegalOrCustom(ISD::CTTZ, VT))
7168     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7169 
7170   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7171   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7172     EVT SetCCVT =
7173         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7174     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7175     SDValue Zero = DAG.getConstant(0, dl, VT);
7176     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7177     return DAG.getSelect(dl, VT, SrcIsZero,
7178                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7179   }
7180 
7181   // Only expand vector types if we have the appropriate vector bit operations.
7182   // This includes the operations needed to expand CTPOP if it isn't supported.
7183   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7184                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7185                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7186                          !canExpandVectorCTPOP(*this, VT)) ||
7187                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7188                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7189                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7190     return SDValue();
7191 
7192   // for now, we use: { return popcount(~x & (x - 1)); }
7193   // unless the target has ctlz but not ctpop, in which case we use:
7194   // { return 32 - nlz(~x & (x-1)); }
7195   // Ref: "Hacker's Delight" by Henry Warren
7196   SDValue Tmp = DAG.getNode(
7197       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7198       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7199 
7200   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7201   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7202     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7203                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7204   }
7205 
7206   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7207 }
7208 
7209 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7210                                   bool IsNegative) const {
7211   SDLoc dl(N);
7212   EVT VT = N->getValueType(0);
7213   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7214   SDValue Op = N->getOperand(0);
7215 
7216   // abs(x) -> smax(x,sub(0,x))
7217   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7218       isOperationLegal(ISD::SMAX, VT)) {
7219     SDValue Zero = DAG.getConstant(0, dl, VT);
7220     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7221                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7222   }
7223 
7224   // abs(x) -> umin(x,sub(0,x))
7225   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7226       isOperationLegal(ISD::UMIN, VT)) {
7227     SDValue Zero = DAG.getConstant(0, dl, VT);
7228     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7229                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7230   }
7231 
7232   // 0 - abs(x) -> smin(x, sub(0,x))
7233   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7234       isOperationLegal(ISD::SMIN, VT)) {
7235     SDValue Zero = DAG.getConstant(0, dl, VT);
7236     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7237                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7238   }
7239 
7240   // Only expand vector types if we have the appropriate vector operations.
7241   if (VT.isVector() &&
7242       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7243        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7244        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7245        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7246     return SDValue();
7247 
7248   SDValue Shift =
7249       DAG.getNode(ISD::SRA, dl, VT, Op,
7250                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7251   if (!IsNegative) {
7252     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7253     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7254   }
7255 
7256   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7257   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7258   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7259 }
7260 
7261 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7262   SDLoc dl(N);
7263   EVT VT = N->getValueType(0);
7264   SDValue Op = N->getOperand(0);
7265 
7266   if (!VT.isSimple())
7267     return SDValue();
7268 
7269   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7270   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7271   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7272   default:
7273     return SDValue();
7274   case MVT::i16:
7275     // Use a rotate by 8. This can be further expanded if necessary.
7276     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7277   case MVT::i32:
7278     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7279     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7280     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7281     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7282     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7283                        DAG.getConstant(0xFF0000, dl, VT));
7284     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7285     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7286     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7287     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7288   case MVT::i64:
7289     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7290     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7291     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7292     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7293     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7294     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7295     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7296     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7297     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7298                        DAG.getConstant(255ULL<<48, dl, VT));
7299     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7300                        DAG.getConstant(255ULL<<40, dl, VT));
7301     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7302                        DAG.getConstant(255ULL<<32, dl, VT));
7303     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7304                        DAG.getConstant(255ULL<<24, dl, VT));
7305     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7306                        DAG.getConstant(255ULL<<16, dl, VT));
7307     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7308                        DAG.getConstant(255ULL<<8 , dl, VT));
7309     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7310     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7311     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7312     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7313     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7314     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7315     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7316   }
7317 }
7318 
7319 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7320   SDLoc dl(N);
7321   EVT VT = N->getValueType(0);
7322   SDValue Op = N->getOperand(0);
7323   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7324   unsigned Sz = VT.getScalarSizeInBits();
7325 
7326   SDValue Tmp, Tmp2, Tmp3;
7327 
7328   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7329   // and finally the i1 pairs.
7330   // TODO: We can easily support i4/i2 legal types if any target ever does.
7331   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7332     // Create the masks - repeating the pattern every byte.
7333     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7334     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7335     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7336 
7337     // BSWAP if the type is wider than a single byte.
7338     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7339 
7340     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7341     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7342     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7343     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7344     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7345     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7346 
7347     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7348     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7349     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7350     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7351     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7352     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7353 
7354     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7355     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7356     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7357     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7358     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7359     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7360     return Tmp;
7361   }
7362 
7363   Tmp = DAG.getConstant(0, dl, VT);
7364   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7365     if (I < J)
7366       Tmp2 =
7367           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7368     else
7369       Tmp2 =
7370           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7371 
7372     APInt Shift(Sz, 1);
7373     Shift <<= J;
7374     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7375     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7376   }
7377 
7378   return Tmp;
7379 }
7380 
7381 std::pair<SDValue, SDValue>
7382 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7383                                     SelectionDAG &DAG) const {
7384   SDLoc SL(LD);
7385   SDValue Chain = LD->getChain();
7386   SDValue BasePTR = LD->getBasePtr();
7387   EVT SrcVT = LD->getMemoryVT();
7388   EVT DstVT = LD->getValueType(0);
7389   ISD::LoadExtType ExtType = LD->getExtensionType();
7390 
7391   if (SrcVT.isScalableVector())
7392     report_fatal_error("Cannot scalarize scalable vector loads");
7393 
7394   unsigned NumElem = SrcVT.getVectorNumElements();
7395 
7396   EVT SrcEltVT = SrcVT.getScalarType();
7397   EVT DstEltVT = DstVT.getScalarType();
7398 
7399   // A vector must always be stored in memory as-is, i.e. without any padding
7400   // between the elements, since various code depend on it, e.g. in the
7401   // handling of a bitcast of a vector type to int, which may be done with a
7402   // vector store followed by an integer load. A vector that does not have
7403   // elements that are byte-sized must therefore be stored as an integer
7404   // built out of the extracted vector elements.
7405   if (!SrcEltVT.isByteSized()) {
7406     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7407     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7408 
7409     unsigned NumSrcBits = SrcVT.getSizeInBits();
7410     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7411 
7412     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7413     SDValue SrcEltBitMask = DAG.getConstant(
7414         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7415 
7416     // Load the whole vector and avoid masking off the top bits as it makes
7417     // the codegen worse.
7418     SDValue Load =
7419         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7420                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7421                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7422 
7423     SmallVector<SDValue, 8> Vals;
7424     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7425       unsigned ShiftIntoIdx =
7426           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7427       SDValue ShiftAmount =
7428           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7429                                      LoadVT, SL, /*LegalTypes=*/false);
7430       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7431       SDValue Elt =
7432           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7433       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7434 
7435       if (ExtType != ISD::NON_EXTLOAD) {
7436         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7437         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7438       }
7439 
7440       Vals.push_back(Scalar);
7441     }
7442 
7443     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7444     return std::make_pair(Value, Load.getValue(1));
7445   }
7446 
7447   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7448   assert(SrcEltVT.isByteSized());
7449 
7450   SmallVector<SDValue, 8> Vals;
7451   SmallVector<SDValue, 8> LoadChains;
7452 
7453   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7454     SDValue ScalarLoad =
7455         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7456                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7457                        SrcEltVT, LD->getOriginalAlign(),
7458                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7459 
7460     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7461 
7462     Vals.push_back(ScalarLoad.getValue(0));
7463     LoadChains.push_back(ScalarLoad.getValue(1));
7464   }
7465 
7466   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7467   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7468 
7469   return std::make_pair(Value, NewChain);
7470 }
7471 
7472 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7473                                              SelectionDAG &DAG) const {
7474   SDLoc SL(ST);
7475 
7476   SDValue Chain = ST->getChain();
7477   SDValue BasePtr = ST->getBasePtr();
7478   SDValue Value = ST->getValue();
7479   EVT StVT = ST->getMemoryVT();
7480 
7481   if (StVT.isScalableVector())
7482     report_fatal_error("Cannot scalarize scalable vector stores");
7483 
7484   // The type of the data we want to save
7485   EVT RegVT = Value.getValueType();
7486   EVT RegSclVT = RegVT.getScalarType();
7487 
7488   // The type of data as saved in memory.
7489   EVT MemSclVT = StVT.getScalarType();
7490 
7491   unsigned NumElem = StVT.getVectorNumElements();
7492 
7493   // A vector must always be stored in memory as-is, i.e. without any padding
7494   // between the elements, since various code depend on it, e.g. in the
7495   // handling of a bitcast of a vector type to int, which may be done with a
7496   // vector store followed by an integer load. A vector that does not have
7497   // elements that are byte-sized must therefore be stored as an integer
7498   // built out of the extracted vector elements.
7499   if (!MemSclVT.isByteSized()) {
7500     unsigned NumBits = StVT.getSizeInBits();
7501     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7502 
7503     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7504 
7505     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7506       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7507                                 DAG.getVectorIdxConstant(Idx, SL));
7508       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7509       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7510       unsigned ShiftIntoIdx =
7511           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7512       SDValue ShiftAmount =
7513           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7514       SDValue ShiftedElt =
7515           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7516       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7517     }
7518 
7519     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7520                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7521                         ST->getAAInfo());
7522   }
7523 
7524   // Store Stride in bytes
7525   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7526   assert(Stride && "Zero stride!");
7527   // Extract each of the elements from the original vector and save them into
7528   // memory individually.
7529   SmallVector<SDValue, 8> Stores;
7530   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7531     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7532                               DAG.getVectorIdxConstant(Idx, SL));
7533 
7534     SDValue Ptr =
7535         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7536 
7537     // This scalar TruncStore may be illegal, but we legalize it later.
7538     SDValue Store = DAG.getTruncStore(
7539         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7540         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7541         ST->getAAInfo());
7542 
7543     Stores.push_back(Store);
7544   }
7545 
7546   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7547 }
7548 
7549 std::pair<SDValue, SDValue>
7550 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7551   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7552          "unaligned indexed loads not implemented!");
7553   SDValue Chain = LD->getChain();
7554   SDValue Ptr = LD->getBasePtr();
7555   EVT VT = LD->getValueType(0);
7556   EVT LoadedVT = LD->getMemoryVT();
7557   SDLoc dl(LD);
7558   auto &MF = DAG.getMachineFunction();
7559 
7560   if (VT.isFloatingPoint() || VT.isVector()) {
7561     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7562     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7563       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7564           LoadedVT.isVector()) {
7565         // Scalarize the load and let the individual components be handled.
7566         return scalarizeVectorLoad(LD, DAG);
7567       }
7568 
7569       // Expand to a (misaligned) integer load of the same size,
7570       // then bitconvert to floating point or vector.
7571       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7572                                     LD->getMemOperand());
7573       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7574       if (LoadedVT != VT)
7575         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7576                              ISD::ANY_EXTEND, dl, VT, Result);
7577 
7578       return std::make_pair(Result, newLoad.getValue(1));
7579     }
7580 
7581     // Copy the value to a (aligned) stack slot using (unaligned) integer
7582     // loads and stores, then do a (aligned) load from the stack slot.
7583     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7584     unsigned LoadedBytes = LoadedVT.getStoreSize();
7585     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7586     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7587 
7588     // Make sure the stack slot is also aligned for the register type.
7589     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7590     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7591     SmallVector<SDValue, 8> Stores;
7592     SDValue StackPtr = StackBase;
7593     unsigned Offset = 0;
7594 
7595     EVT PtrVT = Ptr.getValueType();
7596     EVT StackPtrVT = StackPtr.getValueType();
7597 
7598     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7599     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7600 
7601     // Do all but one copies using the full register width.
7602     for (unsigned i = 1; i < NumRegs; i++) {
7603       // Load one integer register's worth from the original location.
7604       SDValue Load = DAG.getLoad(
7605           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7606           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7607           LD->getAAInfo());
7608       // Follow the load with a store to the stack slot.  Remember the store.
7609       Stores.push_back(DAG.getStore(
7610           Load.getValue(1), dl, Load, StackPtr,
7611           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7612       // Increment the pointers.
7613       Offset += RegBytes;
7614 
7615       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7616       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7617     }
7618 
7619     // The last copy may be partial.  Do an extending load.
7620     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7621                                   8 * (LoadedBytes - Offset));
7622     SDValue Load =
7623         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7624                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7625                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7626                        LD->getAAInfo());
7627     // Follow the load with a store to the stack slot.  Remember the store.
7628     // On big-endian machines this requires a truncating store to ensure
7629     // that the bits end up in the right place.
7630     Stores.push_back(DAG.getTruncStore(
7631         Load.getValue(1), dl, Load, StackPtr,
7632         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7633 
7634     // The order of the stores doesn't matter - say it with a TokenFactor.
7635     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7636 
7637     // Finally, perform the original load only redirected to the stack slot.
7638     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7639                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7640                           LoadedVT);
7641 
7642     // Callers expect a MERGE_VALUES node.
7643     return std::make_pair(Load, TF);
7644   }
7645 
7646   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7647          "Unaligned load of unsupported type.");
7648 
7649   // Compute the new VT that is half the size of the old one.  This is an
7650   // integer MVT.
7651   unsigned NumBits = LoadedVT.getSizeInBits();
7652   EVT NewLoadedVT;
7653   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7654   NumBits >>= 1;
7655 
7656   Align Alignment = LD->getOriginalAlign();
7657   unsigned IncrementSize = NumBits / 8;
7658   ISD::LoadExtType HiExtType = LD->getExtensionType();
7659 
7660   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7661   if (HiExtType == ISD::NON_EXTLOAD)
7662     HiExtType = ISD::ZEXTLOAD;
7663 
7664   // Load the value in two parts
7665   SDValue Lo, Hi;
7666   if (DAG.getDataLayout().isLittleEndian()) {
7667     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7668                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7669                         LD->getAAInfo());
7670 
7671     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7672     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7673                         LD->getPointerInfo().getWithOffset(IncrementSize),
7674                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7675                         LD->getAAInfo());
7676   } else {
7677     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7678                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7679                         LD->getAAInfo());
7680 
7681     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7682     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7683                         LD->getPointerInfo().getWithOffset(IncrementSize),
7684                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7685                         LD->getAAInfo());
7686   }
7687 
7688   // aggregate the two parts
7689   SDValue ShiftAmount =
7690       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7691                                                     DAG.getDataLayout()));
7692   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7693   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7694 
7695   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7696                              Hi.getValue(1));
7697 
7698   return std::make_pair(Result, TF);
7699 }
7700 
7701 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7702                                              SelectionDAG &DAG) const {
7703   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7704          "unaligned indexed stores not implemented!");
7705   SDValue Chain = ST->getChain();
7706   SDValue Ptr = ST->getBasePtr();
7707   SDValue Val = ST->getValue();
7708   EVT VT = Val.getValueType();
7709   Align Alignment = ST->getOriginalAlign();
7710   auto &MF = DAG.getMachineFunction();
7711   EVT StoreMemVT = ST->getMemoryVT();
7712 
7713   SDLoc dl(ST);
7714   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7715     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7716     if (isTypeLegal(intVT)) {
7717       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7718           StoreMemVT.isVector()) {
7719         // Scalarize the store and let the individual components be handled.
7720         SDValue Result = scalarizeVectorStore(ST, DAG);
7721         return Result;
7722       }
7723       // Expand to a bitconvert of the value to the integer type of the
7724       // same size, then a (misaligned) int store.
7725       // FIXME: Does not handle truncating floating point stores!
7726       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7727       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7728                             Alignment, ST->getMemOperand()->getFlags());
7729       return Result;
7730     }
7731     // Do a (aligned) store to a stack slot, then copy from the stack slot
7732     // to the final destination using (unaligned) integer loads and stores.
7733     MVT RegVT = getRegisterType(
7734         *DAG.getContext(),
7735         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7736     EVT PtrVT = Ptr.getValueType();
7737     unsigned StoredBytes = StoreMemVT.getStoreSize();
7738     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7739     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7740 
7741     // Make sure the stack slot is also aligned for the register type.
7742     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7743     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7744 
7745     // Perform the original store, only redirected to the stack slot.
7746     SDValue Store = DAG.getTruncStore(
7747         Chain, dl, Val, StackPtr,
7748         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7749 
7750     EVT StackPtrVT = StackPtr.getValueType();
7751 
7752     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7753     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7754     SmallVector<SDValue, 8> Stores;
7755     unsigned Offset = 0;
7756 
7757     // Do all but one copies using the full register width.
7758     for (unsigned i = 1; i < NumRegs; i++) {
7759       // Load one integer register's worth from the stack slot.
7760       SDValue Load = DAG.getLoad(
7761           RegVT, dl, Store, StackPtr,
7762           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7763       // Store it to the final location.  Remember the store.
7764       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7765                                     ST->getPointerInfo().getWithOffset(Offset),
7766                                     ST->getOriginalAlign(),
7767                                     ST->getMemOperand()->getFlags()));
7768       // Increment the pointers.
7769       Offset += RegBytes;
7770       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7771       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7772     }
7773 
7774     // The last store may be partial.  Do a truncating store.  On big-endian
7775     // machines this requires an extending load from the stack slot to ensure
7776     // that the bits are in the right place.
7777     EVT LoadMemVT =
7778         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7779 
7780     // Load from the stack slot.
7781     SDValue Load = DAG.getExtLoad(
7782         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7783         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7784 
7785     Stores.push_back(
7786         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7787                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7788                           ST->getOriginalAlign(),
7789                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7790     // The order of the stores doesn't matter - say it with a TokenFactor.
7791     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7792     return Result;
7793   }
7794 
7795   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7796          "Unaligned store of unknown type.");
7797   // Get the half-size VT
7798   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7799   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7800   unsigned IncrementSize = NumBits / 8;
7801 
7802   // Divide the stored value in two parts.
7803   SDValue ShiftAmount = DAG.getConstant(
7804       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7805   SDValue Lo = Val;
7806   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7807 
7808   // Store the two parts
7809   SDValue Store1, Store2;
7810   Store1 = DAG.getTruncStore(Chain, dl,
7811                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7812                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7813                              ST->getMemOperand()->getFlags());
7814 
7815   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7816   Store2 = DAG.getTruncStore(
7817       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7818       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7819       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7820 
7821   SDValue Result =
7822       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7823   return Result;
7824 }
7825 
7826 SDValue
7827 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7828                                        const SDLoc &DL, EVT DataVT,
7829                                        SelectionDAG &DAG,
7830                                        bool IsCompressedMemory) const {
7831   SDValue Increment;
7832   EVT AddrVT = Addr.getValueType();
7833   EVT MaskVT = Mask.getValueType();
7834   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7835          "Incompatible types of Data and Mask");
7836   if (IsCompressedMemory) {
7837     if (DataVT.isScalableVector())
7838       report_fatal_error(
7839           "Cannot currently handle compressed memory with scalable vectors");
7840     // Incrementing the pointer according to number of '1's in the mask.
7841     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7842     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7843     if (MaskIntVT.getSizeInBits() < 32) {
7844       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7845       MaskIntVT = MVT::i32;
7846     }
7847 
7848     // Count '1's with POPCNT.
7849     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7850     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7851     // Scale is an element size in bytes.
7852     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7853                                     AddrVT);
7854     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7855   } else if (DataVT.isScalableVector()) {
7856     Increment = DAG.getVScale(DL, AddrVT,
7857                               APInt(AddrVT.getFixedSizeInBits(),
7858                                     DataVT.getStoreSize().getKnownMinSize()));
7859   } else
7860     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7861 
7862   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7863 }
7864 
7865 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7866                                        EVT VecVT, const SDLoc &dl,
7867                                        ElementCount SubEC) {
7868   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7869          "Cannot index a scalable vector within a fixed-width vector");
7870 
7871   unsigned NElts = VecVT.getVectorMinNumElements();
7872   unsigned NumSubElts = SubEC.getKnownMinValue();
7873   EVT IdxVT = Idx.getValueType();
7874 
7875   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7876     // If this is a constant index and we know the value plus the number of the
7877     // elements in the subvector minus one is less than the minimum number of
7878     // elements then it's safe to return Idx.
7879     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7880       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7881         return Idx;
7882     SDValue VS =
7883         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7884     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7885     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7886                               DAG.getConstant(NumSubElts, dl, IdxVT));
7887     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7888   }
7889   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7890     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7891     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7892                        DAG.getConstant(Imm, dl, IdxVT));
7893   }
7894   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7895   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7896                      DAG.getConstant(MaxIndex, dl, IdxVT));
7897 }
7898 
7899 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7900                                                 SDValue VecPtr, EVT VecVT,
7901                                                 SDValue Index) const {
7902   return getVectorSubVecPointer(
7903       DAG, VecPtr, VecVT,
7904       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7905       Index);
7906 }
7907 
7908 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7909                                                SDValue VecPtr, EVT VecVT,
7910                                                EVT SubVecVT,
7911                                                SDValue Index) const {
7912   SDLoc dl(Index);
7913   // Make sure the index type is big enough to compute in.
7914   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7915 
7916   EVT EltVT = VecVT.getVectorElementType();
7917 
7918   // Calculate the element offset and add it to the pointer.
7919   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7920   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7921          "Converting bits to bytes lost precision");
7922   assert(SubVecVT.getVectorElementType() == EltVT &&
7923          "Sub-vector must be a vector with matching element type");
7924   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7925                                   SubVecVT.getVectorElementCount());
7926 
7927   EVT IdxVT = Index.getValueType();
7928   if (SubVecVT.isScalableVector())
7929     Index =
7930         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7931                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7932 
7933   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7934                       DAG.getConstant(EltSize, dl, IdxVT));
7935   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7936 }
7937 
7938 //===----------------------------------------------------------------------===//
7939 // Implementation of Emulated TLS Model
7940 //===----------------------------------------------------------------------===//
7941 
7942 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7943                                                 SelectionDAG &DAG) const {
7944   // Access to address of TLS varialbe xyz is lowered to a function call:
7945   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7946   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7947   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7948   SDLoc dl(GA);
7949 
7950   ArgListTy Args;
7951   ArgListEntry Entry;
7952   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7953   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7954   StringRef EmuTlsVarName(NameString);
7955   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7956   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7957   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7958   Entry.Ty = VoidPtrType;
7959   Args.push_back(Entry);
7960 
7961   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7962 
7963   TargetLowering::CallLoweringInfo CLI(DAG);
7964   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7965   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7966   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7967 
7968   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7969   // At last for X86 targets, maybe good for other targets too?
7970   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7971   MFI.setAdjustsStack(true); // Is this only for X86 target?
7972   MFI.setHasCalls(true);
7973 
7974   assert((GA->getOffset() == 0) &&
7975          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7976   return CallResult.first;
7977 }
7978 
7979 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7980                                                 SelectionDAG &DAG) const {
7981   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7982   if (!isCtlzFast())
7983     return SDValue();
7984   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7985   SDLoc dl(Op);
7986   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7987     if (C->isZero() && CC == ISD::SETEQ) {
7988       EVT VT = Op.getOperand(0).getValueType();
7989       SDValue Zext = Op.getOperand(0);
7990       if (VT.bitsLT(MVT::i32)) {
7991         VT = MVT::i32;
7992         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7993       }
7994       unsigned Log2b = Log2_32(VT.getSizeInBits());
7995       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7996       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7997                                 DAG.getConstant(Log2b, dl, MVT::i32));
7998       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7999     }
8000   }
8001   return SDValue();
8002 }
8003 
8004 // Convert redundant addressing modes (e.g. scaling is redundant
8005 // when accessing bytes).
8006 ISD::MemIndexType
8007 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8008                                       SDValue Offsets) const {
8009   bool IsScaledIndex =
8010       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8011   bool IsSignedIndex =
8012       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8013 
8014   // Scaling is unimportant for bytes, canonicalize to unscaled.
8015   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8016     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8017 
8018   return IndexType;
8019 }
8020 
8021 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8022   SDValue Op0 = Node->getOperand(0);
8023   SDValue Op1 = Node->getOperand(1);
8024   EVT VT = Op0.getValueType();
8025   unsigned Opcode = Node->getOpcode();
8026   SDLoc DL(Node);
8027 
8028   // umin(x,y) -> sub(x,usubsat(x,y))
8029   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8030       isOperationLegal(ISD::USUBSAT, VT)) {
8031     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8032                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8033   }
8034 
8035   // umax(x,y) -> add(x,usubsat(y,x))
8036   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8037       isOperationLegal(ISD::USUBSAT, VT)) {
8038     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8039                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8040   }
8041 
8042   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8043   ISD::CondCode CC;
8044   switch (Opcode) {
8045   default: llvm_unreachable("How did we get here?");
8046   case ISD::SMAX: CC = ISD::SETGT; break;
8047   case ISD::SMIN: CC = ISD::SETLT; break;
8048   case ISD::UMAX: CC = ISD::SETUGT; break;
8049   case ISD::UMIN: CC = ISD::SETULT; break;
8050   }
8051 
8052   // FIXME: Should really try to split the vector in case it's legal on a
8053   // subvector.
8054   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8055     return DAG.UnrollVectorOp(Node);
8056 
8057   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8058   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8059   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8060 }
8061 
8062 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8063   unsigned Opcode = Node->getOpcode();
8064   SDValue LHS = Node->getOperand(0);
8065   SDValue RHS = Node->getOperand(1);
8066   EVT VT = LHS.getValueType();
8067   SDLoc dl(Node);
8068 
8069   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8070   assert(VT.isInteger() && "Expected operands to be integers");
8071 
8072   // usub.sat(a, b) -> umax(a, b) - b
8073   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8074     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8075     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8076   }
8077 
8078   // uadd.sat(a, b) -> umin(a, ~b) + b
8079   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8080     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8081     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8082     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8083   }
8084 
8085   unsigned OverflowOp;
8086   switch (Opcode) {
8087   case ISD::SADDSAT:
8088     OverflowOp = ISD::SADDO;
8089     break;
8090   case ISD::UADDSAT:
8091     OverflowOp = ISD::UADDO;
8092     break;
8093   case ISD::SSUBSAT:
8094     OverflowOp = ISD::SSUBO;
8095     break;
8096   case ISD::USUBSAT:
8097     OverflowOp = ISD::USUBO;
8098     break;
8099   default:
8100     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8101                      "addition or subtraction node.");
8102   }
8103 
8104   // FIXME: Should really try to split the vector in case it's legal on a
8105   // subvector.
8106   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8107     return DAG.UnrollVectorOp(Node);
8108 
8109   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8110   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8111   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8112   SDValue SumDiff = Result.getValue(0);
8113   SDValue Overflow = Result.getValue(1);
8114   SDValue Zero = DAG.getConstant(0, dl, VT);
8115   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8116 
8117   if (Opcode == ISD::UADDSAT) {
8118     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8119       // (LHS + RHS) | OverflowMask
8120       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8121       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8122     }
8123     // Overflow ? 0xffff.... : (LHS + RHS)
8124     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8125   }
8126 
8127   if (Opcode == ISD::USUBSAT) {
8128     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8129       // (LHS - RHS) & ~OverflowMask
8130       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8131       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8132       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8133     }
8134     // Overflow ? 0 : (LHS - RHS)
8135     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8136   }
8137 
8138   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8139   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8140   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8141   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8142                               DAG.getConstant(BitWidth - 1, dl, VT));
8143   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8144   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8145 }
8146 
8147 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8148   unsigned Opcode = Node->getOpcode();
8149   bool IsSigned = Opcode == ISD::SSHLSAT;
8150   SDValue LHS = Node->getOperand(0);
8151   SDValue RHS = Node->getOperand(1);
8152   EVT VT = LHS.getValueType();
8153   SDLoc dl(Node);
8154 
8155   assert((Node->getOpcode() == ISD::SSHLSAT ||
8156           Node->getOpcode() == ISD::USHLSAT) &&
8157           "Expected a SHLSAT opcode");
8158   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8159   assert(VT.isInteger() && "Expected operands to be integers");
8160 
8161   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8162 
8163   unsigned BW = VT.getScalarSizeInBits();
8164   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8165   SDValue Orig =
8166       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8167 
8168   SDValue SatVal;
8169   if (IsSigned) {
8170     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8171     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8172     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8173                              SatMin, SatMax, ISD::SETLT);
8174   } else {
8175     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8176   }
8177   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8178 
8179   return Result;
8180 }
8181 
8182 SDValue
8183 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8184   assert((Node->getOpcode() == ISD::SMULFIX ||
8185           Node->getOpcode() == ISD::UMULFIX ||
8186           Node->getOpcode() == ISD::SMULFIXSAT ||
8187           Node->getOpcode() == ISD::UMULFIXSAT) &&
8188          "Expected a fixed point multiplication opcode");
8189 
8190   SDLoc dl(Node);
8191   SDValue LHS = Node->getOperand(0);
8192   SDValue RHS = Node->getOperand(1);
8193   EVT VT = LHS.getValueType();
8194   unsigned Scale = Node->getConstantOperandVal(2);
8195   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8196                      Node->getOpcode() == ISD::UMULFIXSAT);
8197   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8198                  Node->getOpcode() == ISD::SMULFIXSAT);
8199   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8200   unsigned VTSize = VT.getScalarSizeInBits();
8201 
8202   if (!Scale) {
8203     // [us]mul.fix(a, b, 0) -> mul(a, b)
8204     if (!Saturating) {
8205       if (isOperationLegalOrCustom(ISD::MUL, VT))
8206         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8207     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8208       SDValue Result =
8209           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8210       SDValue Product = Result.getValue(0);
8211       SDValue Overflow = Result.getValue(1);
8212       SDValue Zero = DAG.getConstant(0, dl, VT);
8213 
8214       APInt MinVal = APInt::getSignedMinValue(VTSize);
8215       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8216       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8217       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8218       // Xor the inputs, if resulting sign bit is 0 the product will be
8219       // positive, else negative.
8220       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8221       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8222       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8223       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8224     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8225       SDValue Result =
8226           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8227       SDValue Product = Result.getValue(0);
8228       SDValue Overflow = Result.getValue(1);
8229 
8230       APInt MaxVal = APInt::getMaxValue(VTSize);
8231       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8232       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8233     }
8234   }
8235 
8236   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8237          "Expected scale to be less than the number of bits if signed or at "
8238          "most the number of bits if unsigned.");
8239   assert(LHS.getValueType() == RHS.getValueType() &&
8240          "Expected both operands to be the same type");
8241 
8242   // Get the upper and lower bits of the result.
8243   SDValue Lo, Hi;
8244   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8245   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8246   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8247     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8248     Lo = Result.getValue(0);
8249     Hi = Result.getValue(1);
8250   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8251     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8252     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8253   } else if (VT.isVector()) {
8254     return SDValue();
8255   } else {
8256     report_fatal_error("Unable to expand fixed point multiplication.");
8257   }
8258 
8259   if (Scale == VTSize)
8260     // Result is just the top half since we'd be shifting by the width of the
8261     // operand. Overflow impossible so this works for both UMULFIX and
8262     // UMULFIXSAT.
8263     return Hi;
8264 
8265   // The result will need to be shifted right by the scale since both operands
8266   // are scaled. The result is given to us in 2 halves, so we only want part of
8267   // both in the result.
8268   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8269   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8270                                DAG.getConstant(Scale, dl, ShiftTy));
8271   if (!Saturating)
8272     return Result;
8273 
8274   if (!Signed) {
8275     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8276     // widened multiplication) aren't all zeroes.
8277 
8278     // Saturate to max if ((Hi >> Scale) != 0),
8279     // which is the same as if (Hi > ((1 << Scale) - 1))
8280     APInt MaxVal = APInt::getMaxValue(VTSize);
8281     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8282                                       dl, VT);
8283     Result = DAG.getSelectCC(dl, Hi, LowMask,
8284                              DAG.getConstant(MaxVal, dl, VT), Result,
8285                              ISD::SETUGT);
8286 
8287     return Result;
8288   }
8289 
8290   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8291   // widened multiplication) aren't all ones or all zeroes.
8292 
8293   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8294   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8295 
8296   if (Scale == 0) {
8297     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8298                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8299     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8300     // Saturated to SatMin if wide product is negative, and SatMax if wide
8301     // product is positive ...
8302     SDValue Zero = DAG.getConstant(0, dl, VT);
8303     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8304                                                ISD::SETLT);
8305     // ... but only if we overflowed.
8306     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8307   }
8308 
8309   //  We handled Scale==0 above so all the bits to examine is in Hi.
8310 
8311   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8312   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8313   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8314                                     dl, VT);
8315   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8316   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8317   // which is the same as if (HI < (-1 << (Scale - 1))
8318   SDValue HighMask =
8319       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8320                       dl, VT);
8321   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8322   return Result;
8323 }
8324 
8325 SDValue
8326 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8327                                     SDValue LHS, SDValue RHS,
8328                                     unsigned Scale, SelectionDAG &DAG) const {
8329   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8330           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8331          "Expected a fixed point division opcode");
8332 
8333   EVT VT = LHS.getValueType();
8334   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8335   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8336   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8337 
8338   // If there is enough room in the type to upscale the LHS or downscale the
8339   // RHS before the division, we can perform it in this type without having to
8340   // resize. For signed operations, the LHS headroom is the number of
8341   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8342   // The headroom for the RHS is the number of trailing zeroes.
8343   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8344                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8345   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8346 
8347   // For signed saturating operations, we need to be able to detect true integer
8348   // division overflow; that is, when you have MIN / -EPS. However, this
8349   // is undefined behavior and if we emit divisions that could take such
8350   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8351   // example).
8352   // Avoid this by requiring an extra bit so that we never get this case.
8353   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8354   // signed saturating division, we need to emit a whopping 32-bit division.
8355   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8356     return SDValue();
8357 
8358   unsigned LHSShift = std::min(LHSLead, Scale);
8359   unsigned RHSShift = Scale - LHSShift;
8360 
8361   // At this point, we know that if we shift the LHS up by LHSShift and the
8362   // RHS down by RHSShift, we can emit a regular division with a final scaling
8363   // factor of Scale.
8364 
8365   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8366   if (LHSShift)
8367     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8368                       DAG.getConstant(LHSShift, dl, ShiftTy));
8369   if (RHSShift)
8370     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8371                       DAG.getConstant(RHSShift, dl, ShiftTy));
8372 
8373   SDValue Quot;
8374   if (Signed) {
8375     // For signed operations, if the resulting quotient is negative and the
8376     // remainder is nonzero, subtract 1 from the quotient to round towards
8377     // negative infinity.
8378     SDValue Rem;
8379     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8380     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8381     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8382     if (isTypeLegal(VT) &&
8383         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8384       Quot = DAG.getNode(ISD::SDIVREM, dl,
8385                          DAG.getVTList(VT, VT),
8386                          LHS, RHS);
8387       Rem = Quot.getValue(1);
8388       Quot = Quot.getValue(0);
8389     } else {
8390       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8391                          LHS, RHS);
8392       Rem = DAG.getNode(ISD::SREM, dl, VT,
8393                         LHS, RHS);
8394     }
8395     SDValue Zero = DAG.getConstant(0, dl, VT);
8396     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8397     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8398     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8399     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8400     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8401                                DAG.getConstant(1, dl, VT));
8402     Quot = DAG.getSelect(dl, VT,
8403                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8404                          Sub1, Quot);
8405   } else
8406     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8407                        LHS, RHS);
8408 
8409   return Quot;
8410 }
8411 
8412 void TargetLowering::expandUADDSUBO(
8413     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8414   SDLoc dl(Node);
8415   SDValue LHS = Node->getOperand(0);
8416   SDValue RHS = Node->getOperand(1);
8417   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8418 
8419   // If ADD/SUBCARRY is legal, use that instead.
8420   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8421   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8422     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8423     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8424                                     { LHS, RHS, CarryIn });
8425     Result = SDValue(NodeCarry.getNode(), 0);
8426     Overflow = SDValue(NodeCarry.getNode(), 1);
8427     return;
8428   }
8429 
8430   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8431                             LHS.getValueType(), LHS, RHS);
8432 
8433   EVT ResultType = Node->getValueType(1);
8434   EVT SetCCType = getSetCCResultType(
8435       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8436   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8437   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8438   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8439 }
8440 
8441 void TargetLowering::expandSADDSUBO(
8442     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8443   SDLoc dl(Node);
8444   SDValue LHS = Node->getOperand(0);
8445   SDValue RHS = Node->getOperand(1);
8446   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8447 
8448   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8449                             LHS.getValueType(), LHS, RHS);
8450 
8451   EVT ResultType = Node->getValueType(1);
8452   EVT OType = getSetCCResultType(
8453       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8454 
8455   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8456   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8457   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8458     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8459     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8460     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8461     return;
8462   }
8463 
8464   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8465 
8466   // For an addition, the result should be less than one of the operands (LHS)
8467   // if and only if the other operand (RHS) is negative, otherwise there will
8468   // be overflow.
8469   // For a subtraction, the result should be less than one of the operands
8470   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8471   // otherwise there will be overflow.
8472   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8473   SDValue ConditionRHS =
8474       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8475 
8476   Overflow = DAG.getBoolExtOrTrunc(
8477       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8478       ResultType, ResultType);
8479 }
8480 
8481 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8482                                 SDValue &Overflow, SelectionDAG &DAG) const {
8483   SDLoc dl(Node);
8484   EVT VT = Node->getValueType(0);
8485   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8486   SDValue LHS = Node->getOperand(0);
8487   SDValue RHS = Node->getOperand(1);
8488   bool isSigned = Node->getOpcode() == ISD::SMULO;
8489 
8490   // For power-of-two multiplications we can use a simpler shift expansion.
8491   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8492     const APInt &C = RHSC->getAPIntValue();
8493     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8494     if (C.isPowerOf2()) {
8495       // smulo(x, signed_min) is same as umulo(x, signed_min).
8496       bool UseArithShift = isSigned && !C.isMinSignedValue();
8497       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8498       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8499       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8500       Overflow = DAG.getSetCC(dl, SetCCVT,
8501           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8502                       dl, VT, Result, ShiftAmt),
8503           LHS, ISD::SETNE);
8504       return true;
8505     }
8506   }
8507 
8508   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8509   if (VT.isVector())
8510     WideVT =
8511         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8512 
8513   SDValue BottomHalf;
8514   SDValue TopHalf;
8515   static const unsigned Ops[2][3] =
8516       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8517         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8518   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8519     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8520     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8521   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8522     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8523                              RHS);
8524     TopHalf = BottomHalf.getValue(1);
8525   } else if (isTypeLegal(WideVT)) {
8526     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8527     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8528     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8529     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8530     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8531         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8532     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8533                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8534   } else {
8535     if (VT.isVector())
8536       return false;
8537 
8538     // We can fall back to a libcall with an illegal type for the MUL if we
8539     // have a libcall big enough.
8540     // Also, we can fall back to a division in some cases, but that's a big
8541     // performance hit in the general case.
8542     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8543     if (WideVT == MVT::i16)
8544       LC = RTLIB::MUL_I16;
8545     else if (WideVT == MVT::i32)
8546       LC = RTLIB::MUL_I32;
8547     else if (WideVT == MVT::i64)
8548       LC = RTLIB::MUL_I64;
8549     else if (WideVT == MVT::i128)
8550       LC = RTLIB::MUL_I128;
8551     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8552 
8553     SDValue HiLHS;
8554     SDValue HiRHS;
8555     if (isSigned) {
8556       // The high part is obtained by SRA'ing all but one of the bits of low
8557       // part.
8558       unsigned LoSize = VT.getFixedSizeInBits();
8559       HiLHS =
8560           DAG.getNode(ISD::SRA, dl, VT, LHS,
8561                       DAG.getConstant(LoSize - 1, dl,
8562                                       getPointerTy(DAG.getDataLayout())));
8563       HiRHS =
8564           DAG.getNode(ISD::SRA, dl, VT, RHS,
8565                       DAG.getConstant(LoSize - 1, dl,
8566                                       getPointerTy(DAG.getDataLayout())));
8567     } else {
8568         HiLHS = DAG.getConstant(0, dl, VT);
8569         HiRHS = DAG.getConstant(0, dl, VT);
8570     }
8571 
8572     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8573     // pre-lowered to the correct types. This all depends upon WideVT not
8574     // being a legal type for the architecture and thus has to be split to
8575     // two arguments.
8576     SDValue Ret;
8577     TargetLowering::MakeLibCallOptions CallOptions;
8578     CallOptions.setSExt(isSigned);
8579     CallOptions.setIsPostTypeLegalization(true);
8580     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8581       // Halves of WideVT are packed into registers in different order
8582       // depending on platform endianness. This is usually handled by
8583       // the C calling convention, but we can't defer to it in
8584       // the legalizer.
8585       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8586       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8587     } else {
8588       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8589       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8590     }
8591     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8592            "Ret value is a collection of constituent nodes holding result.");
8593     if (DAG.getDataLayout().isLittleEndian()) {
8594       // Same as above.
8595       BottomHalf = Ret.getOperand(0);
8596       TopHalf = Ret.getOperand(1);
8597     } else {
8598       BottomHalf = Ret.getOperand(1);
8599       TopHalf = Ret.getOperand(0);
8600     }
8601   }
8602 
8603   Result = BottomHalf;
8604   if (isSigned) {
8605     SDValue ShiftAmt = DAG.getConstant(
8606         VT.getScalarSizeInBits() - 1, dl,
8607         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8608     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8609     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8610   } else {
8611     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8612                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8613   }
8614 
8615   // Truncate the result if SetCC returns a larger type than needed.
8616   EVT RType = Node->getValueType(1);
8617   if (RType.bitsLT(Overflow.getValueType()))
8618     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8619 
8620   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8621          "Unexpected result type for S/UMULO legalization");
8622   return true;
8623 }
8624 
8625 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8626   SDLoc dl(Node);
8627   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8628   SDValue Op = Node->getOperand(0);
8629   EVT VT = Op.getValueType();
8630 
8631   if (VT.isScalableVector())
8632     report_fatal_error(
8633         "Expanding reductions for scalable vectors is undefined.");
8634 
8635   // Try to use a shuffle reduction for power of two vectors.
8636   if (VT.isPow2VectorType()) {
8637     while (VT.getVectorNumElements() > 1) {
8638       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8639       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8640         break;
8641 
8642       SDValue Lo, Hi;
8643       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8644       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8645       VT = HalfVT;
8646     }
8647   }
8648 
8649   EVT EltVT = VT.getVectorElementType();
8650   unsigned NumElts = VT.getVectorNumElements();
8651 
8652   SmallVector<SDValue, 8> Ops;
8653   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8654 
8655   SDValue Res = Ops[0];
8656   for (unsigned i = 1; i < NumElts; i++)
8657     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8658 
8659   // Result type may be wider than element type.
8660   if (EltVT != Node->getValueType(0))
8661     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8662   return Res;
8663 }
8664 
8665 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8666   SDLoc dl(Node);
8667   SDValue AccOp = Node->getOperand(0);
8668   SDValue VecOp = Node->getOperand(1);
8669   SDNodeFlags Flags = Node->getFlags();
8670 
8671   EVT VT = VecOp.getValueType();
8672   EVT EltVT = VT.getVectorElementType();
8673 
8674   if (VT.isScalableVector())
8675     report_fatal_error(
8676         "Expanding reductions for scalable vectors is undefined.");
8677 
8678   unsigned NumElts = VT.getVectorNumElements();
8679 
8680   SmallVector<SDValue, 8> Ops;
8681   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8682 
8683   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8684 
8685   SDValue Res = AccOp;
8686   for (unsigned i = 0; i < NumElts; i++)
8687     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8688 
8689   return Res;
8690 }
8691 
8692 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8693                                SelectionDAG &DAG) const {
8694   EVT VT = Node->getValueType(0);
8695   SDLoc dl(Node);
8696   bool isSigned = Node->getOpcode() == ISD::SREM;
8697   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8698   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8699   SDValue Dividend = Node->getOperand(0);
8700   SDValue Divisor = Node->getOperand(1);
8701   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8702     SDVTList VTs = DAG.getVTList(VT, VT);
8703     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8704     return true;
8705   }
8706   if (isOperationLegalOrCustom(DivOpc, VT)) {
8707     // X % Y -> X-X/Y*Y
8708     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8709     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8710     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8711     return true;
8712   }
8713   return false;
8714 }
8715 
8716 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8717                                             SelectionDAG &DAG) const {
8718   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8719   SDLoc dl(SDValue(Node, 0));
8720   SDValue Src = Node->getOperand(0);
8721 
8722   // DstVT is the result type, while SatVT is the size to which we saturate
8723   EVT SrcVT = Src.getValueType();
8724   EVT DstVT = Node->getValueType(0);
8725 
8726   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8727   unsigned SatWidth = SatVT.getScalarSizeInBits();
8728   unsigned DstWidth = DstVT.getScalarSizeInBits();
8729   assert(SatWidth <= DstWidth &&
8730          "Expected saturation width smaller than result width");
8731 
8732   // Determine minimum and maximum integer values and their corresponding
8733   // floating-point values.
8734   APInt MinInt, MaxInt;
8735   if (IsSigned) {
8736     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8737     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8738   } else {
8739     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8740     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8741   }
8742 
8743   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8744   // libcall emission cannot handle this. Large result types will fail.
8745   if (SrcVT == MVT::f16) {
8746     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8747     SrcVT = Src.getValueType();
8748   }
8749 
8750   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8751   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8752 
8753   APFloat::opStatus MinStatus =
8754       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8755   APFloat::opStatus MaxStatus =
8756       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8757   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8758                              !(MaxStatus & APFloat::opStatus::opInexact);
8759 
8760   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8761   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8762 
8763   // If the integer bounds are exactly representable as floats and min/max are
8764   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8765   // of comparisons and selects.
8766   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8767                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8768   if (AreExactFloatBounds && MinMaxLegal) {
8769     SDValue Clamped = Src;
8770 
8771     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8772     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8773     // Clamp by MaxFloat from above. NaN cannot occur.
8774     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8775     // Convert clamped value to integer.
8776     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8777                                   dl, DstVT, Clamped);
8778 
8779     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8780     // which will cast to zero.
8781     if (!IsSigned)
8782       return FpToInt;
8783 
8784     // Otherwise, select 0 if Src is NaN.
8785     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8786     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8787                            ISD::CondCode::SETUO);
8788   }
8789 
8790   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8791   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8792 
8793   // Result of direct conversion. The assumption here is that the operation is
8794   // non-trapping and it's fine to apply it to an out-of-range value if we
8795   // select it away later.
8796   SDValue FpToInt =
8797       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8798 
8799   SDValue Select = FpToInt;
8800 
8801   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8802   // MinInt if Src is NaN.
8803   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8804                            ISD::CondCode::SETULT);
8805   // If Src OGT MaxFloat, select MaxInt.
8806   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8807                            ISD::CondCode::SETOGT);
8808 
8809   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8810   // is already zero.
8811   if (!IsSigned)
8812     return Select;
8813 
8814   // Otherwise, select 0 if Src is NaN.
8815   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8816   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8817 }
8818 
8819 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8820                                            SelectionDAG &DAG) const {
8821   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8822   assert(Node->getValueType(0).isScalableVector() &&
8823          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8824 
8825   EVT VT = Node->getValueType(0);
8826   SDValue V1 = Node->getOperand(0);
8827   SDValue V2 = Node->getOperand(1);
8828   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8829   SDLoc DL(Node);
8830 
8831   // Expand through memory thusly:
8832   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8833   //  Store V1, Ptr
8834   //  Store V2, Ptr + sizeof(V1)
8835   //  If (Imm < 0)
8836   //    TrailingElts = -Imm
8837   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8838   //  else
8839   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8840   //  Res = Load Ptr
8841 
8842   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8843 
8844   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8845                                VT.getVectorElementCount() * 2);
8846   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8847   EVT PtrVT = StackPtr.getValueType();
8848   auto &MF = DAG.getMachineFunction();
8849   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8850   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8851 
8852   // Store the lo part of CONCAT_VECTORS(V1, V2)
8853   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8854   // Store the hi part of CONCAT_VECTORS(V1, V2)
8855   SDValue OffsetToV2 = DAG.getVScale(
8856       DL, PtrVT,
8857       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8858   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8859   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8860 
8861   if (Imm >= 0) {
8862     // Load back the required element. getVectorElementPointer takes care of
8863     // clamping the index if it's out-of-bounds.
8864     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8865     // Load the spliced result
8866     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8867                        MachinePointerInfo::getUnknownStack(MF));
8868   }
8869 
8870   uint64_t TrailingElts = -Imm;
8871 
8872   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8873   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8874   SDValue TrailingBytes =
8875       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8876 
8877   if (TrailingElts > VT.getVectorMinNumElements()) {
8878     SDValue VLBytes = DAG.getVScale(
8879         DL, PtrVT,
8880         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8881     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8882   }
8883 
8884   // Calculate the start address of the spliced result.
8885   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8886 
8887   // Load the spliced result
8888   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8889                      MachinePointerInfo::getUnknownStack(MF));
8890 }
8891 
8892 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8893                                            SDValue &LHS, SDValue &RHS,
8894                                            SDValue &CC, bool &NeedInvert,
8895                                            const SDLoc &dl, SDValue &Chain,
8896                                            bool IsSignaling) const {
8897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8898   MVT OpVT = LHS.getSimpleValueType();
8899   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8900   NeedInvert = false;
8901   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8902   default:
8903     llvm_unreachable("Unknown condition code action!");
8904   case TargetLowering::Legal:
8905     // Nothing to do.
8906     break;
8907   case TargetLowering::Expand: {
8908     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8909     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8910       std::swap(LHS, RHS);
8911       CC = DAG.getCondCode(InvCC);
8912       return true;
8913     }
8914     // Swapping operands didn't work. Try inverting the condition.
8915     bool NeedSwap = false;
8916     InvCC = getSetCCInverse(CCCode, OpVT);
8917     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8918       // If inverting the condition is not enough, try swapping operands
8919       // on top of it.
8920       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8921       NeedSwap = true;
8922     }
8923     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8924       CC = DAG.getCondCode(InvCC);
8925       NeedInvert = true;
8926       if (NeedSwap)
8927         std::swap(LHS, RHS);
8928       return true;
8929     }
8930 
8931     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8932     unsigned Opc = 0;
8933     switch (CCCode) {
8934     default:
8935       llvm_unreachable("Don't know how to expand this condition!");
8936     case ISD::SETUO:
8937       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8938         CC1 = ISD::SETUNE;
8939         CC2 = ISD::SETUNE;
8940         Opc = ISD::OR;
8941         break;
8942       }
8943       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8944              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8945       NeedInvert = true;
8946       LLVM_FALLTHROUGH;
8947     case ISD::SETO:
8948       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8949              "If SETO is expanded, SETOEQ must be legal!");
8950       CC1 = ISD::SETOEQ;
8951       CC2 = ISD::SETOEQ;
8952       Opc = ISD::AND;
8953       break;
8954     case ISD::SETONE:
8955     case ISD::SETUEQ:
8956       // If the SETUO or SETO CC isn't legal, we might be able to use
8957       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8958       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8959       // the operands.
8960       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8961       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8962           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8963            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8964         CC1 = ISD::SETOGT;
8965         CC2 = ISD::SETOLT;
8966         Opc = ISD::OR;
8967         NeedInvert = ((unsigned)CCCode & 0x8U);
8968         break;
8969       }
8970       LLVM_FALLTHROUGH;
8971     case ISD::SETOEQ:
8972     case ISD::SETOGT:
8973     case ISD::SETOGE:
8974     case ISD::SETOLT:
8975     case ISD::SETOLE:
8976     case ISD::SETUNE:
8977     case ISD::SETUGT:
8978     case ISD::SETUGE:
8979     case ISD::SETULT:
8980     case ISD::SETULE:
8981       // If we are floating point, assign and break, otherwise fall through.
8982       if (!OpVT.isInteger()) {
8983         // We can use the 4th bit to tell if we are the unordered
8984         // or ordered version of the opcode.
8985         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8986         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8987         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8988         break;
8989       }
8990       // Fallthrough if we are unsigned integer.
8991       LLVM_FALLTHROUGH;
8992     case ISD::SETLE:
8993     case ISD::SETGT:
8994     case ISD::SETGE:
8995     case ISD::SETLT:
8996     case ISD::SETNE:
8997     case ISD::SETEQ:
8998       // If all combinations of inverting the condition and swapping operands
8999       // didn't work then we have no means to expand the condition.
9000       llvm_unreachable("Don't know how to expand this condition!");
9001     }
9002 
9003     SDValue SetCC1, SetCC2;
9004     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9005       // If we aren't the ordered or unorder operation,
9006       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9007       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9008       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9009     } else {
9010       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9011       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9012       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9013     }
9014     if (Chain)
9015       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9016                           SetCC2.getValue(1));
9017     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9018     RHS = SDValue();
9019     CC = SDValue();
9020     return true;
9021   }
9022   }
9023   return false;
9024 }
9025