xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/DiagnosticInfo.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/InlineAsm.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/IntrinsicsAArch64.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/MC/MCSymbol.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <cstddef>
105 #include <cstring>
106 #include <iterator>
107 #include <limits>
108 #include <numeric>
109 #include <tuple>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 using namespace SwitchCG;
114 
115 #define DEBUG_TYPE "isel"
116 
117 /// LimitFloatPrecision - Generate low-precision inline sequences for
118 /// some float libcalls (6, 8 or 12 bits).
119 static unsigned LimitFloatPrecision;
120 
121 static cl::opt<bool>
122     InsertAssertAlign("insert-assert-align", cl::init(true),
123                       cl::desc("Insert the experimental `assertalign` node."),
124                       cl::ReallyHidden);
125 
126 static cl::opt<unsigned, true>
127     LimitFPPrecision("limit-float-precision",
128                      cl::desc("Generate low-precision inline sequences "
129                               "for some float libcalls"),
130                      cl::location(LimitFloatPrecision), cl::Hidden,
131                      cl::init(0));
132 
133 static cl::opt<unsigned> SwitchPeelThreshold(
134     "switch-peel-threshold", cl::Hidden, cl::init(66),
135     cl::desc("Set the case probability threshold for peeling the case from a "
136              "switch statement. A value greater than 100 will void this "
137              "optimization"));
138 
139 // Limit the width of DAG chains. This is important in general to prevent
140 // DAG-based analysis from blowing up. For example, alias analysis and
141 // load clustering may not complete in reasonable time. It is difficult to
142 // recognize and avoid this situation within each individual analysis, and
143 // future analyses are likely to have the same behavior. Limiting DAG width is
144 // the safe approach and will be especially important with global DAGs.
145 //
146 // MaxParallelChains default is arbitrarily high to avoid affecting
147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
148 // sequence over this should have been converted to llvm.memcpy by the
149 // frontend. It is easy to induce this behavior with .ll code such as:
150 // %buffer = alloca [4096 x i8]
151 // %data = load [4096 x i8]* %argPtr
152 // store [4096 x i8] %data, [4096 x i8]* %buffer
153 static const unsigned MaxParallelChains = 64;
154 
155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
156                                       const SDValue *Parts, unsigned NumParts,
157                                       MVT PartVT, EVT ValueVT, const Value *V,
158                                       Optional<CallingConv::ID> CC);
159 
160 /// getCopyFromParts - Create a value that contains the specified legal parts
161 /// combined into the value they represent.  If the parts combine to a type
162 /// larger than ValueVT then AssertOp can be used to specify whether the extra
163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164 /// (ISD::AssertSext).
165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
166                                 const SDValue *Parts, unsigned NumParts,
167                                 MVT PartVT, EVT ValueVT, const Value *V,
168                                 Optional<CallingConv::ID> CC = None,
169                                 Optional<ISD::NodeType> AssertOp = None) {
170   // Let the target assemble the parts if it wants to
171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
172   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
173                                                    PartVT, ValueVT, CC))
174     return Val;
175 
176   if (ValueVT.isVector())
177     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
178                                   CC);
179 
180   assert(NumParts > 0 && "No parts to assemble!");
181   SDValue Val = Parts[0];
182 
183   if (NumParts > 1) {
184     // Assemble the value from multiple parts.
185     if (ValueVT.isInteger()) {
186       unsigned PartBits = PartVT.getSizeInBits();
187       unsigned ValueBits = ValueVT.getSizeInBits();
188 
189       // Assemble the power of 2 part.
190       unsigned RoundParts =
191           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
192       unsigned RoundBits = PartBits * RoundParts;
193       EVT RoundVT = RoundBits == ValueBits ?
194         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195       SDValue Lo, Hi;
196 
197       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198 
199       if (RoundParts > 2) {
200         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
201                               PartVT, HalfVT, V);
202         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
203                               RoundParts / 2, PartVT, HalfVT, V);
204       } else {
205         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207       }
208 
209       if (DAG.getDataLayout().isBigEndian())
210         std::swap(Lo, Hi);
211 
212       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213 
214       if (RoundParts < NumParts) {
215         // Assemble the trailing non-power-of-2 part.
216         unsigned OddParts = NumParts - RoundParts;
217         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219                               OddVT, V, CC);
220 
221         // Combine the round and odd parts.
222         Lo = Val;
223         if (DAG.getDataLayout().isBigEndian())
224           std::swap(Lo, Hi);
225         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227         Hi =
228             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
229                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
230                                         TLI.getPointerTy(DAG.getDataLayout())));
231         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
232         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
233       }
234     } else if (PartVT.isFloatingPoint()) {
235       // FP split into multiple FP parts (for ppcf128)
236       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
237              "Unexpected split");
238       SDValue Lo, Hi;
239       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
240       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
241       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
242         std::swap(Lo, Hi);
243       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
244     } else {
245       // FP split into integer parts (soft fp)
246       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
247              !PartVT.isVector() && "Unexpected split");
248       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
249       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
250     }
251   }
252 
253   // There is now one part, held in Val.  Correct it to match ValueVT.
254   // PartEVT is the type of the register class that holds the value.
255   // ValueVT is the type of the inline asm operation.
256   EVT PartEVT = Val.getValueType();
257 
258   if (PartEVT == ValueVT)
259     return Val;
260 
261   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262       ValueVT.bitsLT(PartEVT)) {
263     // For an FP value in an integer part, we need to truncate to the right
264     // width first.
265     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
266     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267   }
268 
269   // Handle types that have the same size.
270   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 
273   // Handle types with different sizes.
274   if (PartEVT.isInteger() && ValueVT.isInteger()) {
275     if (ValueVT.bitsLT(PartEVT)) {
276       // For a truncate, see if we have any information to
277       // indicate whether the truncated bits will always be
278       // zero or sign-extension.
279       if (AssertOp.hasValue())
280         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281                           DAG.getValueType(ValueVT));
282       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283     }
284     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285   }
286 
287   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288     // FP_ROUND's are always exact here.
289     if (ValueVT.bitsLT(Val.getValueType()))
290       return DAG.getNode(
291           ISD::FP_ROUND, DL, ValueVT, Val,
292           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
293 
294     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
295   }
296 
297   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
298   // then truncating.
299   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
300       ValueVT.bitsLT(PartEVT)) {
301     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
302     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
303   }
304 
305   report_fatal_error("Unknown mismatch in getCopyFromParts!");
306 }
307 
308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
309                                               const Twine &ErrMsg) {
310   const Instruction *I = dyn_cast_or_null<Instruction>(V);
311   if (!V)
312     return Ctx.emitError(ErrMsg);
313 
314   const char *AsmError = ", possible invalid constraint for vector type";
315   if (const CallInst *CI = dyn_cast<CallInst>(I))
316     if (CI->isInlineAsm())
317       return Ctx.emitError(I, ErrMsg + AsmError);
318 
319   return Ctx.emitError(I, ErrMsg);
320 }
321 
322 /// getCopyFromPartsVector - Create a value that contains the specified legal
323 /// parts combined into the value they represent.  If the parts combine to a
324 /// type larger than ValueVT then AssertOp can be used to specify whether the
325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
326 /// ValueVT (ISD::AssertSext).
327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
328                                       const SDValue *Parts, unsigned NumParts,
329                                       MVT PartVT, EVT ValueVT, const Value *V,
330                                       Optional<CallingConv::ID> CallConv) {
331   assert(ValueVT.isVector() && "Not a vector value");
332   assert(NumParts > 0 && "No parts to assemble!");
333   const bool IsABIRegCopy = CallConv.hasValue();
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   SDValue Val = Parts[0];
337 
338   // Handle a multi-element vector.
339   if (NumParts > 1) {
340     EVT IntermediateVT;
341     MVT RegisterVT;
342     unsigned NumIntermediates;
343     unsigned NumRegs;
344 
345     if (IsABIRegCopy) {
346       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
347           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
348           NumIntermediates, RegisterVT);
349     } else {
350       NumRegs =
351           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
352                                      NumIntermediates, RegisterVT);
353     }
354 
355     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
356     NumParts = NumRegs; // Silence a compiler warning.
357     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
358     assert(RegisterVT.getSizeInBits() ==
359            Parts[0].getSimpleValueType().getSizeInBits() &&
360            "Part type sizes don't match!");
361 
362     // Assemble the parts into intermediate operands.
363     SmallVector<SDValue, 8> Ops(NumIntermediates);
364     if (NumIntermediates == NumParts) {
365       // If the register was not expanded, truncate or copy the value,
366       // as appropriate.
367       for (unsigned i = 0; i != NumParts; ++i)
368         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
369                                   PartVT, IntermediateVT, V, CallConv);
370     } else if (NumParts > 0) {
371       // If the intermediate type was expanded, build the intermediate
372       // operands from the parts.
373       assert(NumParts % NumIntermediates == 0 &&
374              "Must expand into a divisible number of parts!");
375       unsigned Factor = NumParts / NumIntermediates;
376       for (unsigned i = 0; i != NumIntermediates; ++i)
377         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
378                                   PartVT, IntermediateVT, V, CallConv);
379     }
380 
381     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
382     // intermediate operands.
383     EVT BuiltVectorTy =
384         IntermediateVT.isVector()
385             ? EVT::getVectorVT(
386                   *DAG.getContext(), IntermediateVT.getScalarType(),
387                   IntermediateVT.getVectorElementCount() * NumParts)
388             : EVT::getVectorVT(*DAG.getContext(),
389                                IntermediateVT.getScalarType(),
390                                NumIntermediates);
391     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
392                                                 : ISD::BUILD_VECTOR,
393                       DL, BuiltVectorTy, Ops);
394   }
395 
396   // There is now one part, held in Val.  Correct it to match ValueVT.
397   EVT PartEVT = Val.getValueType();
398 
399   if (PartEVT == ValueVT)
400     return Val;
401 
402   if (PartEVT.isVector()) {
403     // Vector/Vector bitcast.
404     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
405       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
406 
407     // If the element type of the source/dest vectors are the same, but the
408     // parts vector has more elements than the value vector, then we have a
409     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
410     // elements we want.
411     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
412       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
413               ValueVT.getVectorElementCount().getKnownMinValue()) &&
414              (PartEVT.getVectorElementCount().isScalable() ==
415               ValueVT.getVectorElementCount().isScalable()) &&
416              "Cannot narrow, it would be a lossy transformation");
417       PartEVT =
418           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
419                            ValueVT.getVectorElementCount());
420       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
421                         DAG.getVectorIdxConstant(0, DL));
422       if (PartEVT == ValueVT)
423         return Val;
424     }
425 
426     // Promoted vector extract
427     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
428   }
429 
430   // Trivial bitcast if the types are the same size and the destination
431   // vector type is legal.
432   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
433       TLI.isTypeLegal(ValueVT))
434     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436   if (ValueVT.getVectorNumElements() != 1) {
437      // Certain ABIs require that vectors are passed as integers. For vectors
438      // are the same size, this is an obvious bitcast.
439      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
440        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441      } else if (ValueVT.bitsLT(PartEVT)) {
442        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
443        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
444        // Drop the extra bits.
445        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
446        return DAG.getBitcast(ValueVT, Val);
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
614                                      const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   ElementCount PartNumElts = PartVT.getVectorElementCount();
620   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
621 
622   // We only support widening vectors with equivalent element types and
623   // fixed/scalable properties. If a target needs to widen a fixed-length type
624   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
625   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
626       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
627       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
628     return SDValue();
629 
630   // Widening a scalable vector to another scalable vector is done by inserting
631   // the vector into a larger undef one.
632   if (PartNumElts.isScalable())
633     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
634                        Val, DAG.getVectorIdxConstant(0, DL));
635 
636   EVT ElementVT = PartVT.getVectorElementType();
637   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
638   // undef elements.
639   SmallVector<SDValue, 16> Ops;
640   DAG.ExtractVectorElements(Val, Ops);
641   SDValue EltUndef = DAG.getUNDEF(ElementVT);
642   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
643 
644   // FIXME: Use CONCAT for 2x -> 4x.
645   return DAG.getBuildVector(PartVT, DL, Ops);
646 }
647 
648 /// getCopyToPartsVector - Create a series of nodes that contain the specified
649 /// value split into legal parts.
650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
651                                  SDValue Val, SDValue *Parts, unsigned NumParts,
652                                  MVT PartVT, const Value *V,
653                                  Optional<CallingConv::ID> CallConv) {
654   EVT ValueVT = Val.getValueType();
655   assert(ValueVT.isVector() && "Not a vector");
656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
657   const bool IsABIRegCopy = CallConv.hasValue();
658 
659   if (NumParts == 1) {
660     EVT PartEVT = PartVT;
661     if (PartEVT == ValueVT) {
662       // Nothing to do.
663     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
664       // Bitconvert vector->vector case.
665       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
666     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
667       Val = Widened;
668     } else if (PartVT.isVector() &&
669                PartEVT.getVectorElementType().bitsGE(
670                    ValueVT.getVectorElementType()) &&
671                PartEVT.getVectorElementCount() ==
672                    ValueVT.getVectorElementCount()) {
673 
674       // Promoted vector extract
675       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
676     } else if (PartEVT.isVector() &&
677                PartEVT.getVectorElementType() !=
678                    ValueVT.getVectorElementType() &&
679                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
680                    TargetLowering::TypeWidenVector) {
681       // Combination of widening and promotion.
682       EVT WidenVT =
683           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
684                            PartVT.getVectorElementCount());
685       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
686       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
687     } else {
688       if (ValueVT.getVectorElementCount().isScalar()) {
689         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
690                           DAG.getVectorIdxConstant(0, DL));
691       } else {
692         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
693         assert(PartVT.getFixedSizeInBits() > ValueSize &&
694                "lossy conversion of vector to scalar type");
695         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
696         Val = DAG.getBitcast(IntermediateType, Val);
697         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
698       }
699     }
700 
701     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
702     Parts[0] = Val;
703     return;
704   }
705 
706   // Handle a multi-element vector.
707   EVT IntermediateVT;
708   MVT RegisterVT;
709   unsigned NumIntermediates;
710   unsigned NumRegs;
711   if (IsABIRegCopy) {
712     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
713         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
714         NumIntermediates, RegisterVT);
715   } else {
716     NumRegs =
717         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
718                                    NumIntermediates, RegisterVT);
719   }
720 
721   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
722   NumParts = NumRegs; // Silence a compiler warning.
723   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
724 
725   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
726          "Mixing scalable and fixed vectors when copying in parts");
727 
728   Optional<ElementCount> DestEltCnt;
729 
730   if (IntermediateVT.isVector())
731     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
732   else
733     DestEltCnt = ElementCount::getFixed(NumIntermediates);
734 
735   EVT BuiltVectorTy = EVT::getVectorVT(
736       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
737 
738   if (ValueVT == BuiltVectorTy) {
739     // Nothing to do.
740   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
741     // Bitconvert vector->vector case.
742     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
743   } else {
744     if (BuiltVectorTy.getVectorElementType().bitsGT(
745             ValueVT.getVectorElementType())) {
746       // Integer promotion.
747       ValueVT = EVT::getVectorVT(*DAG.getContext(),
748                                  BuiltVectorTy.getVectorElementType(),
749                                  ValueVT.getVectorElementCount());
750       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
751     }
752 
753     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
754       Val = Widened;
755     }
756   }
757 
758   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
759 
760   // Split the vector into intermediate operands.
761   SmallVector<SDValue, 8> Ops(NumIntermediates);
762   for (unsigned i = 0; i != NumIntermediates; ++i) {
763     if (IntermediateVT.isVector()) {
764       // This does something sensible for scalable vectors - see the
765       // definition of EXTRACT_SUBVECTOR for further details.
766       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
767       Ops[i] =
768           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
769                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
770     } else {
771       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
772                            DAG.getVectorIdxConstant(i, DL));
773     }
774   }
775 
776   // Split the intermediate operands into legal parts.
777   if (NumParts == NumIntermediates) {
778     // If the register was not expanded, promote or copy the value,
779     // as appropriate.
780     for (unsigned i = 0; i != NumParts; ++i)
781       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
782   } else if (NumParts > 0) {
783     // If the intermediate type was expanded, split each the value into
784     // legal parts.
785     assert(NumIntermediates != 0 && "division by zero");
786     assert(NumParts % NumIntermediates == 0 &&
787            "Must expand into a divisible number of parts!");
788     unsigned Factor = NumParts / NumIntermediates;
789     for (unsigned i = 0; i != NumIntermediates; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
791                      CallConv);
792   }
793 }
794 
795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
796                            EVT valuevt, Optional<CallingConv::ID> CC)
797     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
798       RegCount(1, regs.size()), CallConv(CC) {}
799 
800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
801                            const DataLayout &DL, unsigned Reg, Type *Ty,
802                            Optional<CallingConv::ID> CC) {
803   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
804 
805   CallConv = CC;
806 
807   for (EVT ValueVT : ValueVTs) {
808     unsigned NumRegs =
809         isABIMangled()
810             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
811             : TLI.getNumRegisters(Context, ValueVT);
812     MVT RegisterVT =
813         isABIMangled()
814             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
815             : TLI.getRegisterType(Context, ValueVT);
816     for (unsigned i = 0; i != NumRegs; ++i)
817       Regs.push_back(Reg + i);
818     RegVTs.push_back(RegisterVT);
819     RegCount.push_back(NumRegs);
820     Reg += NumRegs;
821   }
822 }
823 
824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
825                                       FunctionLoweringInfo &FuncInfo,
826                                       const SDLoc &dl, SDValue &Chain,
827                                       SDValue *Flag, const Value *V) const {
828   // A Value with type {} or [0 x %t] needs no registers.
829   if (ValueVTs.empty())
830     return SDValue();
831 
832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
833 
834   // Assemble the legal parts into the final values.
835   SmallVector<SDValue, 4> Values(ValueVTs.size());
836   SmallVector<SDValue, 8> Parts;
837   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
838     // Copy the legal parts from the registers.
839     EVT ValueVT = ValueVTs[Value];
840     unsigned NumRegs = RegCount[Value];
841     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
842                                           *DAG.getContext(),
843                                           CallConv.getValue(), RegVTs[Value])
844                                     : RegVTs[Value];
845 
846     Parts.resize(NumRegs);
847     for (unsigned i = 0; i != NumRegs; ++i) {
848       SDValue P;
849       if (!Flag) {
850         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
851       } else {
852         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
853         *Flag = P.getValue(2);
854       }
855 
856       Chain = P.getValue(1);
857       Parts[i] = P;
858 
859       // If the source register was virtual and if we know something about it,
860       // add an assert node.
861       if (!Register::isVirtualRegister(Regs[Part + i]) ||
862           !RegisterVT.isInteger())
863         continue;
864 
865       const FunctionLoweringInfo::LiveOutInfo *LOI =
866         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
867       if (!LOI)
868         continue;
869 
870       unsigned RegSize = RegisterVT.getScalarSizeInBits();
871       unsigned NumSignBits = LOI->NumSignBits;
872       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
873 
874       if (NumZeroBits == RegSize) {
875         // The current value is a zero.
876         // Explicitly express that as it would be easier for
877         // optimizations to kick in.
878         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
879         continue;
880       }
881 
882       // FIXME: We capture more information than the dag can represent.  For
883       // now, just use the tightest assertzext/assertsext possible.
884       bool isSExt;
885       EVT FromVT(MVT::Other);
886       if (NumZeroBits) {
887         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
888         isSExt = false;
889       } else if (NumSignBits > 1) {
890         FromVT =
891             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
892         isSExt = true;
893       } else {
894         continue;
895       }
896       // Add an assertion node.
897       assert(FromVT != MVT::Other);
898       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
899                              RegisterVT, P, DAG.getValueType(FromVT));
900     }
901 
902     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
903                                      RegisterVT, ValueVT, V, CallConv);
904     Part += NumRegs;
905     Parts.clear();
906   }
907 
908   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
909 }
910 
911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
912                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
913                                  const Value *V,
914                                  ISD::NodeType PreferredExtendType) const {
915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
916   ISD::NodeType ExtendKind = PreferredExtendType;
917 
918   // Get the list of the values's legal parts.
919   unsigned NumRegs = Regs.size();
920   SmallVector<SDValue, 8> Parts(NumRegs);
921   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
922     unsigned NumParts = RegCount[Value];
923 
924     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
925                                           *DAG.getContext(),
926                                           CallConv.getValue(), RegVTs[Value])
927                                     : RegVTs[Value];
928 
929     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
930       ExtendKind = ISD::ZERO_EXTEND;
931 
932     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
933                    NumParts, RegisterVT, V, CallConv, ExtendKind);
934     Part += NumParts;
935   }
936 
937   // Copy the parts into the registers.
938   SmallVector<SDValue, 8> Chains(NumRegs);
939   for (unsigned i = 0; i != NumRegs; ++i) {
940     SDValue Part;
941     if (!Flag) {
942       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
943     } else {
944       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
945       *Flag = Part.getValue(1);
946     }
947 
948     Chains[i] = Part.getValue(0);
949   }
950 
951   if (NumRegs == 1 || Flag)
952     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
953     // flagged to it. That is the CopyToReg nodes and the user are considered
954     // a single scheduling unit. If we create a TokenFactor and return it as
955     // chain, then the TokenFactor is both a predecessor (operand) of the
956     // user as well as a successor (the TF operands are flagged to the user).
957     // c1, f1 = CopyToReg
958     // c2, f2 = CopyToReg
959     // c3     = TokenFactor c1, c2
960     // ...
961     //        = op c3, ..., f2
962     Chain = Chains[NumRegs-1];
963   else
964     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
965 }
966 
967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
968                                         unsigned MatchingIdx, const SDLoc &dl,
969                                         SelectionDAG &DAG,
970                                         std::vector<SDValue> &Ops) const {
971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
972 
973   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
974   if (HasMatching)
975     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
976   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
977     // Put the register class of the virtual registers in the flag word.  That
978     // way, later passes can recompute register class constraints for inline
979     // assembly as well as normal instructions.
980     // Don't do this for tied operands that can use the regclass information
981     // from the def.
982     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
983     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
984     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
985   }
986 
987   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
988   Ops.push_back(Res);
989 
990   if (Code == InlineAsm::Kind_Clobber) {
991     // Clobbers should always have a 1:1 mapping with registers, and may
992     // reference registers that have illegal (e.g. vector) types. Hence, we
993     // shouldn't try to apply any sort of splitting logic to them.
994     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
995            "No 1:1 mapping from clobbers to regs?");
996     Register SP = TLI.getStackPointerRegisterToSaveRestore();
997     (void)SP;
998     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
999       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1000       assert(
1001           (Regs[I] != SP ||
1002            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1003           "If we clobbered the stack pointer, MFI should know about it.");
1004     }
1005     return;
1006   }
1007 
1008   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1009     MVT RegisterVT = RegVTs[Value];
1010     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1011                                            RegisterVT);
1012     for (unsigned i = 0; i != NumRegs; ++i) {
1013       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1014       unsigned TheReg = Regs[Reg++];
1015       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1016     }
1017   }
1018 }
1019 
1020 SmallVector<std::pair<unsigned, TypeSize>, 4>
1021 RegsForValue::getRegsAndSizes() const {
1022   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1023   unsigned I = 0;
1024   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1025     unsigned RegCount = std::get<0>(CountAndVT);
1026     MVT RegisterVT = std::get<1>(CountAndVT);
1027     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1028     for (unsigned E = I + RegCount; I != E; ++I)
1029       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1030   }
1031   return OutVec;
1032 }
1033 
1034 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1035                                const TargetLibraryInfo *li) {
1036   AA = aa;
1037   GFI = gfi;
1038   LibInfo = li;
1039   Context = DAG.getContext();
1040   LPadToCallSiteMap.clear();
1041   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1042 }
1043 
1044 void SelectionDAGBuilder::clear() {
1045   NodeMap.clear();
1046   UnusedArgNodeMap.clear();
1047   PendingLoads.clear();
1048   PendingExports.clear();
1049   PendingConstrainedFP.clear();
1050   PendingConstrainedFPStrict.clear();
1051   CurInst = nullptr;
1052   HasTailCall = false;
1053   SDNodeOrder = LowestSDNodeOrder;
1054   StatepointLowering.clear();
1055 }
1056 
1057 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1058   DanglingDebugInfoMap.clear();
1059 }
1060 
1061 // Update DAG root to include dependencies on Pending chains.
1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1063   SDValue Root = DAG.getRoot();
1064 
1065   if (Pending.empty())
1066     return Root;
1067 
1068   // Add current root to PendingChains, unless we already indirectly
1069   // depend on it.
1070   if (Root.getOpcode() != ISD::EntryToken) {
1071     unsigned i = 0, e = Pending.size();
1072     for (; i != e; ++i) {
1073       assert(Pending[i].getNode()->getNumOperands() > 1);
1074       if (Pending[i].getNode()->getOperand(0) == Root)
1075         break;  // Don't add the root if we already indirectly depend on it.
1076     }
1077 
1078     if (i == e)
1079       Pending.push_back(Root);
1080   }
1081 
1082   if (Pending.size() == 1)
1083     Root = Pending[0];
1084   else
1085     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1086 
1087   DAG.setRoot(Root);
1088   Pending.clear();
1089   return Root;
1090 }
1091 
1092 SDValue SelectionDAGBuilder::getMemoryRoot() {
1093   return updateRoot(PendingLoads);
1094 }
1095 
1096 SDValue SelectionDAGBuilder::getRoot() {
1097   // Chain up all pending constrained intrinsics together with all
1098   // pending loads, by simply appending them to PendingLoads and
1099   // then calling getMemoryRoot().
1100   PendingLoads.reserve(PendingLoads.size() +
1101                        PendingConstrainedFP.size() +
1102                        PendingConstrainedFPStrict.size());
1103   PendingLoads.append(PendingConstrainedFP.begin(),
1104                       PendingConstrainedFP.end());
1105   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1106                       PendingConstrainedFPStrict.end());
1107   PendingConstrainedFP.clear();
1108   PendingConstrainedFPStrict.clear();
1109   return getMemoryRoot();
1110 }
1111 
1112 SDValue SelectionDAGBuilder::getControlRoot() {
1113   // We need to emit pending fpexcept.strict constrained intrinsics,
1114   // so append them to the PendingExports list.
1115   PendingExports.append(PendingConstrainedFPStrict.begin(),
1116                         PendingConstrainedFPStrict.end());
1117   PendingConstrainedFPStrict.clear();
1118   return updateRoot(PendingExports);
1119 }
1120 
1121 void SelectionDAGBuilder::visit(const Instruction &I) {
1122   // Set up outgoing PHI node register values before emitting the terminator.
1123   if (I.isTerminator()) {
1124     HandlePHINodesInSuccessorBlocks(I.getParent());
1125   }
1126 
1127   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1128   if (!isa<DbgInfoIntrinsic>(I))
1129     ++SDNodeOrder;
1130 
1131   CurInst = &I;
1132 
1133   visit(I.getOpcode(), I);
1134 
1135   if (!I.isTerminator() && !HasTailCall &&
1136       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1137     CopyToExportRegsIfNeeded(&I);
1138 
1139   CurInst = nullptr;
1140 }
1141 
1142 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1143   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1144 }
1145 
1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1147   // Note: this doesn't use InstVisitor, because it has to work with
1148   // ConstantExpr's in addition to instructions.
1149   switch (Opcode) {
1150   default: llvm_unreachable("Unknown instruction type encountered!");
1151     // Build the switch statement using the Instruction.def file.
1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1153     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1154 #include "llvm/IR/Instruction.def"
1155   }
1156 }
1157 
1158 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1159                                                DebugLoc DL, unsigned Order) {
1160   // We treat variadic dbg_values differently at this stage.
1161   if (DI->hasArgList()) {
1162     // For variadic dbg_values we will now insert an undef.
1163     // FIXME: We can potentially recover these!
1164     SmallVector<SDDbgOperand, 2> Locs;
1165     for (const Value *V : DI->getValues()) {
1166       auto Undef = UndefValue::get(V->getType());
1167       Locs.push_back(SDDbgOperand::fromConst(Undef));
1168     }
1169     SDDbgValue *SDV = DAG.getDbgValueList(
1170         DI->getVariable(), DI->getExpression(), Locs, {},
1171         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1172     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1173   } else {
1174     // TODO: Dangling debug info will eventually either be resolved or produce
1175     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1176     // between the original dbg.value location and its resolved DBG_VALUE,
1177     // which we should ideally fill with an extra Undef DBG_VALUE.
1178     assert(DI->getNumVariableLocationOps() == 1 &&
1179            "DbgValueInst without an ArgList should have a single location "
1180            "operand.");
1181     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1182   }
1183 }
1184 
1185 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1186                                                 const DIExpression *Expr) {
1187   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1188     const DbgValueInst *DI = DDI.getDI();
1189     DIVariable *DanglingVariable = DI->getVariable();
1190     DIExpression *DanglingExpr = DI->getExpression();
1191     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1192       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1193       return true;
1194     }
1195     return false;
1196   };
1197 
1198   for (auto &DDIMI : DanglingDebugInfoMap) {
1199     DanglingDebugInfoVector &DDIV = DDIMI.second;
1200 
1201     // If debug info is to be dropped, run it through final checks to see
1202     // whether it can be salvaged.
1203     for (auto &DDI : DDIV)
1204       if (isMatchingDbgValue(DDI))
1205         salvageUnresolvedDbgValue(DDI);
1206 
1207     erase_if(DDIV, isMatchingDbgValue);
1208   }
1209 }
1210 
1211 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1212 // generate the debug data structures now that we've seen its definition.
1213 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1214                                                    SDValue Val) {
1215   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1216   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1217     return;
1218 
1219   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1220   for (auto &DDI : DDIV) {
1221     const DbgValueInst *DI = DDI.getDI();
1222     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1223     assert(DI && "Ill-formed DanglingDebugInfo");
1224     DebugLoc dl = DDI.getdl();
1225     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1226     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1227     DILocalVariable *Variable = DI->getVariable();
1228     DIExpression *Expr = DI->getExpression();
1229     assert(Variable->isValidLocationForIntrinsic(dl) &&
1230            "Expected inlined-at fields to agree");
1231     SDDbgValue *SDV;
1232     if (Val.getNode()) {
1233       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1234       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1235       // we couldn't resolve it directly when examining the DbgValue intrinsic
1236       // in the first place we should not be more successful here). Unless we
1237       // have some test case that prove this to be correct we should avoid
1238       // calling EmitFuncArgumentDbgValue here.
1239       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1240         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1241                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1242         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1243         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1244         // inserted after the definition of Val when emitting the instructions
1245         // after ISel. An alternative could be to teach
1246         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1247         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1248                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1249                    << ValSDNodeOrder << "\n");
1250         SDV = getDbgValue(Val, Variable, Expr, dl,
1251                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1252         DAG.AddDbgValue(SDV, false);
1253       } else
1254         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1255                           << "in EmitFuncArgumentDbgValue\n");
1256     } else {
1257       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1258       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1259       auto SDV =
1260           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1261       DAG.AddDbgValue(SDV, false);
1262     }
1263   }
1264   DDIV.clear();
1265 }
1266 
1267 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1268   // TODO: For the variadic implementation, instead of only checking the fail
1269   // state of `handleDebugValue`, we need know specifically which values were
1270   // invalid, so that we attempt to salvage only those values when processing
1271   // a DIArgList.
1272   assert(!DDI.getDI()->hasArgList() &&
1273          "Not implemented for variadic dbg_values");
1274   Value *V = DDI.getDI()->getValue(0);
1275   DILocalVariable *Var = DDI.getDI()->getVariable();
1276   DIExpression *Expr = DDI.getDI()->getExpression();
1277   DebugLoc DL = DDI.getdl();
1278   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1279   unsigned SDOrder = DDI.getSDNodeOrder();
1280   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1281   // that DW_OP_stack_value is desired.
1282   assert(isa<DbgValueInst>(DDI.getDI()));
1283   bool StackValue = true;
1284 
1285   // Can this Value can be encoded without any further work?
1286   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1287     return;
1288 
1289   // Attempt to salvage back through as many instructions as possible. Bail if
1290   // a non-instruction is seen, such as a constant expression or global
1291   // variable. FIXME: Further work could recover those too.
1292   while (isa<Instruction>(V)) {
1293     Instruction &VAsInst = *cast<Instruction>(V);
1294     // Temporary "0", awaiting real implementation.
1295     SmallVector<uint64_t, 16> Ops;
1296     SmallVector<Value *, 4> AdditionalValues;
1297     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1298                              AdditionalValues);
1299     // If we cannot salvage any further, and haven't yet found a suitable debug
1300     // expression, bail out.
1301     if (!V)
1302       break;
1303 
1304     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1305     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1306     // here for variadic dbg_values, remove that condition.
1307     if (!AdditionalValues.empty())
1308       break;
1309 
1310     // New value and expr now represent this debuginfo.
1311     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1312 
1313     // Some kind of simplification occurred: check whether the operand of the
1314     // salvaged debug expression can be encoded in this DAG.
1315     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1316                          /*IsVariadic=*/false)) {
1317       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1318                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1319       return;
1320     }
1321   }
1322 
1323   // This was the final opportunity to salvage this debug information, and it
1324   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1325   // any earlier variable location.
1326   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1327   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1328   DAG.AddDbgValue(SDV, false);
1329 
1330   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1331                     << "\n");
1332   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1333                     << "\n");
1334 }
1335 
1336 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1337                                            DILocalVariable *Var,
1338                                            DIExpression *Expr, DebugLoc dl,
1339                                            DebugLoc InstDL, unsigned Order,
1340                                            bool IsVariadic) {
1341   if (Values.empty())
1342     return true;
1343   SmallVector<SDDbgOperand> LocationOps;
1344   SmallVector<SDNode *> Dependencies;
1345   for (const Value *V : Values) {
1346     // Constant value.
1347     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1348         isa<ConstantPointerNull>(V)) {
1349       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1350       continue;
1351     }
1352 
1353     // If the Value is a frame index, we can create a FrameIndex debug value
1354     // without relying on the DAG at all.
1355     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1356       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1357       if (SI != FuncInfo.StaticAllocaMap.end()) {
1358         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1359         continue;
1360       }
1361     }
1362 
1363     // Do not use getValue() in here; we don't want to generate code at
1364     // this point if it hasn't been done yet.
1365     SDValue N = NodeMap[V];
1366     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1367       N = UnusedArgNodeMap[V];
1368     if (N.getNode()) {
1369       // Only emit func arg dbg value for non-variadic dbg.values for now.
1370       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1371         return true;
1372       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1373         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1374         // describe stack slot locations.
1375         //
1376         // Consider "int x = 0; int *px = &x;". There are two kinds of
1377         // interesting debug values here after optimization:
1378         //
1379         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1380         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1381         //
1382         // Both describe the direct values of their associated variables.
1383         Dependencies.push_back(N.getNode());
1384         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1385         continue;
1386       }
1387       LocationOps.emplace_back(
1388           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1389       continue;
1390     }
1391 
1392     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1393     // Special rules apply for the first dbg.values of parameter variables in a
1394     // function. Identify them by the fact they reference Argument Values, that
1395     // they're parameters, and they are parameters of the current function. We
1396     // need to let them dangle until they get an SDNode.
1397     bool IsParamOfFunc =
1398         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1399     if (IsParamOfFunc)
1400       return false;
1401 
1402     // The value is not used in this block yet (or it would have an SDNode).
1403     // We still want the value to appear for the user if possible -- if it has
1404     // an associated VReg, we can refer to that instead.
1405     auto VMI = FuncInfo.ValueMap.find(V);
1406     if (VMI != FuncInfo.ValueMap.end()) {
1407       unsigned Reg = VMI->second;
1408       // If this is a PHI node, it may be split up into several MI PHI nodes
1409       // (in FunctionLoweringInfo::set).
1410       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1411                        V->getType(), None);
1412       if (RFV.occupiesMultipleRegs()) {
1413         // FIXME: We could potentially support variadic dbg_values here.
1414         if (IsVariadic)
1415           return false;
1416         unsigned Offset = 0;
1417         unsigned BitsToDescribe = 0;
1418         if (auto VarSize = Var->getSizeInBits())
1419           BitsToDescribe = *VarSize;
1420         if (auto Fragment = Expr->getFragmentInfo())
1421           BitsToDescribe = Fragment->SizeInBits;
1422         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1423           // Bail out if all bits are described already.
1424           if (Offset >= BitsToDescribe)
1425             break;
1426           // TODO: handle scalable vectors.
1427           unsigned RegisterSize = RegAndSize.second;
1428           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1429                                       ? BitsToDescribe - Offset
1430                                       : RegisterSize;
1431           auto FragmentExpr = DIExpression::createFragmentExpression(
1432               Expr, Offset, FragmentSize);
1433           if (!FragmentExpr)
1434             continue;
1435           SDDbgValue *SDV = DAG.getVRegDbgValue(
1436               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1437           DAG.AddDbgValue(SDV, false);
1438           Offset += RegisterSize;
1439         }
1440         return true;
1441       }
1442       // We can use simple vreg locations for variadic dbg_values as well.
1443       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1444       continue;
1445     }
1446     // We failed to create a SDDbgOperand for V.
1447     return false;
1448   }
1449 
1450   // We have created a SDDbgOperand for each Value in Values.
1451   // Should use Order instead of SDNodeOrder?
1452   assert(!LocationOps.empty());
1453   SDDbgValue *SDV =
1454       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1455                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1456   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1457   return true;
1458 }
1459 
1460 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1461   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1462   for (auto &Pair : DanglingDebugInfoMap)
1463     for (auto &DDI : Pair.second)
1464       salvageUnresolvedDbgValue(DDI);
1465   clearDanglingDebugInfo();
1466 }
1467 
1468 /// getCopyFromRegs - If there was virtual register allocated for the value V
1469 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1470 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1471   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1472   SDValue Result;
1473 
1474   if (It != FuncInfo.ValueMap.end()) {
1475     Register InReg = It->second;
1476 
1477     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1478                      DAG.getDataLayout(), InReg, Ty,
1479                      None); // This is not an ABI copy.
1480     SDValue Chain = DAG.getEntryNode();
1481     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1482                                  V);
1483     resolveDanglingDebugInfo(V, Result);
1484   }
1485 
1486   return Result;
1487 }
1488 
1489 /// getValue - Return an SDValue for the given Value.
1490 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1491   // If we already have an SDValue for this value, use it. It's important
1492   // to do this first, so that we don't create a CopyFromReg if we already
1493   // have a regular SDValue.
1494   SDValue &N = NodeMap[V];
1495   if (N.getNode()) return N;
1496 
1497   // If there's a virtual register allocated and initialized for this
1498   // value, use it.
1499   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1500     return copyFromReg;
1501 
1502   // Otherwise create a new SDValue and remember it.
1503   SDValue Val = getValueImpl(V);
1504   NodeMap[V] = Val;
1505   resolveDanglingDebugInfo(V, Val);
1506   return Val;
1507 }
1508 
1509 /// getNonRegisterValue - Return an SDValue for the given Value, but
1510 /// don't look in FuncInfo.ValueMap for a virtual register.
1511 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1512   // If we already have an SDValue for this value, use it.
1513   SDValue &N = NodeMap[V];
1514   if (N.getNode()) {
1515     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1516       // Remove the debug location from the node as the node is about to be used
1517       // in a location which may differ from the original debug location.  This
1518       // is relevant to Constant and ConstantFP nodes because they can appear
1519       // as constant expressions inside PHI nodes.
1520       N->setDebugLoc(DebugLoc());
1521     }
1522     return N;
1523   }
1524 
1525   // Otherwise create a new SDValue and remember it.
1526   SDValue Val = getValueImpl(V);
1527   NodeMap[V] = Val;
1528   resolveDanglingDebugInfo(V, Val);
1529   return Val;
1530 }
1531 
1532 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1533 /// Create an SDValue for the given value.
1534 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1536 
1537   if (const Constant *C = dyn_cast<Constant>(V)) {
1538     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1539 
1540     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1541       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1542 
1543     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1544       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1545 
1546     if (isa<ConstantPointerNull>(C)) {
1547       unsigned AS = V->getType()->getPointerAddressSpace();
1548       return DAG.getConstant(0, getCurSDLoc(),
1549                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1550     }
1551 
1552     if (match(C, m_VScale(DAG.getDataLayout())))
1553       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1554 
1555     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1556       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1557 
1558     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1559       return DAG.getUNDEF(VT);
1560 
1561     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1562       visit(CE->getOpcode(), *CE);
1563       SDValue N1 = NodeMap[V];
1564       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1565       return N1;
1566     }
1567 
1568     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1569       SmallVector<SDValue, 4> Constants;
1570       for (const Use &U : C->operands()) {
1571         SDNode *Val = getValue(U).getNode();
1572         // If the operand is an empty aggregate, there are no values.
1573         if (!Val) continue;
1574         // Add each leaf value from the operand to the Constants list
1575         // to form a flattened list of all the values.
1576         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1577           Constants.push_back(SDValue(Val, i));
1578       }
1579 
1580       return DAG.getMergeValues(Constants, getCurSDLoc());
1581     }
1582 
1583     if (const ConstantDataSequential *CDS =
1584           dyn_cast<ConstantDataSequential>(C)) {
1585       SmallVector<SDValue, 4> Ops;
1586       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1587         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1588         // Add each leaf value from the operand to the Constants list
1589         // to form a flattened list of all the values.
1590         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1591           Ops.push_back(SDValue(Val, i));
1592       }
1593 
1594       if (isa<ArrayType>(CDS->getType()))
1595         return DAG.getMergeValues(Ops, getCurSDLoc());
1596       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1597     }
1598 
1599     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1600       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1601              "Unknown struct or array constant!");
1602 
1603       SmallVector<EVT, 4> ValueVTs;
1604       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1605       unsigned NumElts = ValueVTs.size();
1606       if (NumElts == 0)
1607         return SDValue(); // empty struct
1608       SmallVector<SDValue, 4> Constants(NumElts);
1609       for (unsigned i = 0; i != NumElts; ++i) {
1610         EVT EltVT = ValueVTs[i];
1611         if (isa<UndefValue>(C))
1612           Constants[i] = DAG.getUNDEF(EltVT);
1613         else if (EltVT.isFloatingPoint())
1614           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1615         else
1616           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1617       }
1618 
1619       return DAG.getMergeValues(Constants, getCurSDLoc());
1620     }
1621 
1622     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1623       return DAG.getBlockAddress(BA, VT);
1624 
1625     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1626       return getValue(Equiv->getGlobalValue());
1627 
1628     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1629       return getValue(NC->getGlobalValue());
1630 
1631     VectorType *VecTy = cast<VectorType>(V->getType());
1632 
1633     // Now that we know the number and type of the elements, get that number of
1634     // elements into the Ops array based on what kind of constant it is.
1635     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1636       SmallVector<SDValue, 16> Ops;
1637       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1638       for (unsigned i = 0; i != NumElements; ++i)
1639         Ops.push_back(getValue(CV->getOperand(i)));
1640 
1641       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1642     } else if (isa<ConstantAggregateZero>(C)) {
1643       EVT EltVT =
1644           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1645 
1646       SDValue Op;
1647       if (EltVT.isFloatingPoint())
1648         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1649       else
1650         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1651 
1652       if (isa<ScalableVectorType>(VecTy))
1653         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1654       else {
1655         SmallVector<SDValue, 16> Ops;
1656         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1657         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1658       }
1659     }
1660     llvm_unreachable("Unknown vector constant");
1661   }
1662 
1663   // If this is a static alloca, generate it as the frameindex instead of
1664   // computation.
1665   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1666     DenseMap<const AllocaInst*, int>::iterator SI =
1667       FuncInfo.StaticAllocaMap.find(AI);
1668     if (SI != FuncInfo.StaticAllocaMap.end())
1669       return DAG.getFrameIndex(SI->second,
1670                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1671   }
1672 
1673   // If this is an instruction which fast-isel has deferred, select it now.
1674   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1675     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1676 
1677     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1678                      Inst->getType(), None);
1679     SDValue Chain = DAG.getEntryNode();
1680     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1681   }
1682 
1683   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1684     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1685   }
1686   if (const auto *BB = dyn_cast<BasicBlock>(V))
1687     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1688   llvm_unreachable("Can't get register for value!");
1689 }
1690 
1691 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1692   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1693   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1694   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1695   bool IsSEH = isAsynchronousEHPersonality(Pers);
1696   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1697   if (!IsSEH)
1698     CatchPadMBB->setIsEHScopeEntry();
1699   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1700   if (IsMSVCCXX || IsCoreCLR)
1701     CatchPadMBB->setIsEHFuncletEntry();
1702 }
1703 
1704 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1705   // Update machine-CFG edge.
1706   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1707   FuncInfo.MBB->addSuccessor(TargetMBB);
1708   TargetMBB->setIsEHCatchretTarget(true);
1709   DAG.getMachineFunction().setHasEHCatchret(true);
1710 
1711   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1712   bool IsSEH = isAsynchronousEHPersonality(Pers);
1713   if (IsSEH) {
1714     // If this is not a fall-through branch or optimizations are switched off,
1715     // emit the branch.
1716     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1717         TM.getOptLevel() == CodeGenOpt::None)
1718       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1719                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1720     return;
1721   }
1722 
1723   // Figure out the funclet membership for the catchret's successor.
1724   // This will be used by the FuncletLayout pass to determine how to order the
1725   // BB's.
1726   // A 'catchret' returns to the outer scope's color.
1727   Value *ParentPad = I.getCatchSwitchParentPad();
1728   const BasicBlock *SuccessorColor;
1729   if (isa<ConstantTokenNone>(ParentPad))
1730     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1731   else
1732     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1733   assert(SuccessorColor && "No parent funclet for catchret!");
1734   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1735   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1736 
1737   // Create the terminator node.
1738   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1739                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1740                             DAG.getBasicBlock(SuccessorColorMBB));
1741   DAG.setRoot(Ret);
1742 }
1743 
1744 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1745   // Don't emit any special code for the cleanuppad instruction. It just marks
1746   // the start of an EH scope/funclet.
1747   FuncInfo.MBB->setIsEHScopeEntry();
1748   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1749   if (Pers != EHPersonality::Wasm_CXX) {
1750     FuncInfo.MBB->setIsEHFuncletEntry();
1751     FuncInfo.MBB->setIsCleanupFuncletEntry();
1752   }
1753 }
1754 
1755 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1756 // not match, it is OK to add only the first unwind destination catchpad to the
1757 // successors, because there will be at least one invoke instruction within the
1758 // catch scope that points to the next unwind destination, if one exists, so
1759 // CFGSort cannot mess up with BB sorting order.
1760 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1761 // call within them, and catchpads only consisting of 'catch (...)' have a
1762 // '__cxa_end_catch' call within them, both of which generate invokes in case
1763 // the next unwind destination exists, i.e., the next unwind destination is not
1764 // the caller.)
1765 //
1766 // Having at most one EH pad successor is also simpler and helps later
1767 // transformations.
1768 //
1769 // For example,
1770 // current:
1771 //   invoke void @foo to ... unwind label %catch.dispatch
1772 // catch.dispatch:
1773 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1774 // catch.start:
1775 //   ...
1776 //   ... in this BB or some other child BB dominated by this BB there will be an
1777 //   invoke that points to 'next' BB as an unwind destination
1778 //
1779 // next: ; We don't need to add this to 'current' BB's successor
1780 //   ...
1781 static void findWasmUnwindDestinations(
1782     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1783     BranchProbability Prob,
1784     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1785         &UnwindDests) {
1786   while (EHPadBB) {
1787     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1788     if (isa<CleanupPadInst>(Pad)) {
1789       // Stop on cleanup pads.
1790       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1791       UnwindDests.back().first->setIsEHScopeEntry();
1792       break;
1793     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1794       // Add the catchpad handlers to the possible destinations. We don't
1795       // continue to the unwind destination of the catchswitch for wasm.
1796       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1797         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1798         UnwindDests.back().first->setIsEHScopeEntry();
1799       }
1800       break;
1801     } else {
1802       continue;
1803     }
1804   }
1805 }
1806 
1807 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1808 /// many places it could ultimately go. In the IR, we have a single unwind
1809 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1810 /// This function skips over imaginary basic blocks that hold catchswitch
1811 /// instructions, and finds all the "real" machine
1812 /// basic block destinations. As those destinations may not be successors of
1813 /// EHPadBB, here we also calculate the edge probability to those destinations.
1814 /// The passed-in Prob is the edge probability to EHPadBB.
1815 static void findUnwindDestinations(
1816     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1817     BranchProbability Prob,
1818     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1819         &UnwindDests) {
1820   EHPersonality Personality =
1821     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1822   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1823   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1824   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1825   bool IsSEH = isAsynchronousEHPersonality(Personality);
1826 
1827   if (IsWasmCXX) {
1828     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1829     assert(UnwindDests.size() <= 1 &&
1830            "There should be at most one unwind destination for wasm");
1831     return;
1832   }
1833 
1834   while (EHPadBB) {
1835     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1836     BasicBlock *NewEHPadBB = nullptr;
1837     if (isa<LandingPadInst>(Pad)) {
1838       // Stop on landingpads. They are not funclets.
1839       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1840       break;
1841     } else if (isa<CleanupPadInst>(Pad)) {
1842       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1843       // personalities.
1844       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1845       UnwindDests.back().first->setIsEHScopeEntry();
1846       UnwindDests.back().first->setIsEHFuncletEntry();
1847       break;
1848     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1849       // Add the catchpad handlers to the possible destinations.
1850       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1851         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1852         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1853         if (IsMSVCCXX || IsCoreCLR)
1854           UnwindDests.back().first->setIsEHFuncletEntry();
1855         if (!IsSEH)
1856           UnwindDests.back().first->setIsEHScopeEntry();
1857       }
1858       NewEHPadBB = CatchSwitch->getUnwindDest();
1859     } else {
1860       continue;
1861     }
1862 
1863     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1864     if (BPI && NewEHPadBB)
1865       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1866     EHPadBB = NewEHPadBB;
1867   }
1868 }
1869 
1870 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1871   // Update successor info.
1872   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1873   auto UnwindDest = I.getUnwindDest();
1874   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1875   BranchProbability UnwindDestProb =
1876       (BPI && UnwindDest)
1877           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1878           : BranchProbability::getZero();
1879   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1880   for (auto &UnwindDest : UnwindDests) {
1881     UnwindDest.first->setIsEHPad();
1882     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1883   }
1884   FuncInfo.MBB->normalizeSuccProbs();
1885 
1886   // Create the terminator node.
1887   SDValue Ret =
1888       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1889   DAG.setRoot(Ret);
1890 }
1891 
1892 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1893   report_fatal_error("visitCatchSwitch not yet implemented!");
1894 }
1895 
1896 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1898   auto &DL = DAG.getDataLayout();
1899   SDValue Chain = getControlRoot();
1900   SmallVector<ISD::OutputArg, 8> Outs;
1901   SmallVector<SDValue, 8> OutVals;
1902 
1903   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1904   // lower
1905   //
1906   //   %val = call <ty> @llvm.experimental.deoptimize()
1907   //   ret <ty> %val
1908   //
1909   // differently.
1910   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1911     LowerDeoptimizingReturn();
1912     return;
1913   }
1914 
1915   if (!FuncInfo.CanLowerReturn) {
1916     unsigned DemoteReg = FuncInfo.DemoteRegister;
1917     const Function *F = I.getParent()->getParent();
1918 
1919     // Emit a store of the return value through the virtual register.
1920     // Leave Outs empty so that LowerReturn won't try to load return
1921     // registers the usual way.
1922     SmallVector<EVT, 1> PtrValueVTs;
1923     ComputeValueVTs(TLI, DL,
1924                     F->getReturnType()->getPointerTo(
1925                         DAG.getDataLayout().getAllocaAddrSpace()),
1926                     PtrValueVTs);
1927 
1928     SDValue RetPtr =
1929         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1930     SDValue RetOp = getValue(I.getOperand(0));
1931 
1932     SmallVector<EVT, 4> ValueVTs, MemVTs;
1933     SmallVector<uint64_t, 4> Offsets;
1934     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1935                     &Offsets);
1936     unsigned NumValues = ValueVTs.size();
1937 
1938     SmallVector<SDValue, 4> Chains(NumValues);
1939     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1940     for (unsigned i = 0; i != NumValues; ++i) {
1941       // An aggregate return value cannot wrap around the address space, so
1942       // offsets to its parts don't wrap either.
1943       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1944                                            TypeSize::Fixed(Offsets[i]));
1945 
1946       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1947       if (MemVTs[i] != ValueVTs[i])
1948         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1949       Chains[i] = DAG.getStore(
1950           Chain, getCurSDLoc(), Val,
1951           // FIXME: better loc info would be nice.
1952           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1953           commonAlignment(BaseAlign, Offsets[i]));
1954     }
1955 
1956     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1957                         MVT::Other, Chains);
1958   } else if (I.getNumOperands() != 0) {
1959     SmallVector<EVT, 4> ValueVTs;
1960     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1961     unsigned NumValues = ValueVTs.size();
1962     if (NumValues) {
1963       SDValue RetOp = getValue(I.getOperand(0));
1964 
1965       const Function *F = I.getParent()->getParent();
1966 
1967       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1968           I.getOperand(0)->getType(), F->getCallingConv(),
1969           /*IsVarArg*/ false, DL);
1970 
1971       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1972       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1973         ExtendKind = ISD::SIGN_EXTEND;
1974       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1975         ExtendKind = ISD::ZERO_EXTEND;
1976 
1977       LLVMContext &Context = F->getContext();
1978       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1979 
1980       for (unsigned j = 0; j != NumValues; ++j) {
1981         EVT VT = ValueVTs[j];
1982 
1983         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1984           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1985 
1986         CallingConv::ID CC = F->getCallingConv();
1987 
1988         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1989         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1990         SmallVector<SDValue, 4> Parts(NumParts);
1991         getCopyToParts(DAG, getCurSDLoc(),
1992                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1993                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1994 
1995         // 'inreg' on function refers to return value
1996         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1997         if (RetInReg)
1998           Flags.setInReg();
1999 
2000         if (I.getOperand(0)->getType()->isPointerTy()) {
2001           Flags.setPointer();
2002           Flags.setPointerAddrSpace(
2003               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2004         }
2005 
2006         if (NeedsRegBlock) {
2007           Flags.setInConsecutiveRegs();
2008           if (j == NumValues - 1)
2009             Flags.setInConsecutiveRegsLast();
2010         }
2011 
2012         // Propagate extension type if any
2013         if (ExtendKind == ISD::SIGN_EXTEND)
2014           Flags.setSExt();
2015         else if (ExtendKind == ISD::ZERO_EXTEND)
2016           Flags.setZExt();
2017 
2018         for (unsigned i = 0; i < NumParts; ++i) {
2019           Outs.push_back(ISD::OutputArg(Flags,
2020                                         Parts[i].getValueType().getSimpleVT(),
2021                                         VT, /*isfixed=*/true, 0, 0));
2022           OutVals.push_back(Parts[i]);
2023         }
2024       }
2025     }
2026   }
2027 
2028   // Push in swifterror virtual register as the last element of Outs. This makes
2029   // sure swifterror virtual register will be returned in the swifterror
2030   // physical register.
2031   const Function *F = I.getParent()->getParent();
2032   if (TLI.supportSwiftError() &&
2033       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2034     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2035     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2036     Flags.setSwiftError();
2037     Outs.push_back(ISD::OutputArg(
2038         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2039         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2040     // Create SDNode for the swifterror virtual register.
2041     OutVals.push_back(
2042         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2043                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2044                         EVT(TLI.getPointerTy(DL))));
2045   }
2046 
2047   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2048   CallingConv::ID CallConv =
2049     DAG.getMachineFunction().getFunction().getCallingConv();
2050   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2051       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2052 
2053   // Verify that the target's LowerReturn behaved as expected.
2054   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2055          "LowerReturn didn't return a valid chain!");
2056 
2057   // Update the DAG with the new chain value resulting from return lowering.
2058   DAG.setRoot(Chain);
2059 }
2060 
2061 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2062 /// created for it, emit nodes to copy the value into the virtual
2063 /// registers.
2064 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2065   // Skip empty types
2066   if (V->getType()->isEmptyTy())
2067     return;
2068 
2069   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2070   if (VMI != FuncInfo.ValueMap.end()) {
2071     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2072     CopyValueToVirtualRegister(V, VMI->second);
2073   }
2074 }
2075 
2076 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2077 /// the current basic block, add it to ValueMap now so that we'll get a
2078 /// CopyTo/FromReg.
2079 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2080   // No need to export constants.
2081   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2082 
2083   // Already exported?
2084   if (FuncInfo.isExportedInst(V)) return;
2085 
2086   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2087   CopyValueToVirtualRegister(V, Reg);
2088 }
2089 
2090 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2091                                                      const BasicBlock *FromBB) {
2092   // The operands of the setcc have to be in this block.  We don't know
2093   // how to export them from some other block.
2094   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2095     // Can export from current BB.
2096     if (VI->getParent() == FromBB)
2097       return true;
2098 
2099     // Is already exported, noop.
2100     return FuncInfo.isExportedInst(V);
2101   }
2102 
2103   // If this is an argument, we can export it if the BB is the entry block or
2104   // if it is already exported.
2105   if (isa<Argument>(V)) {
2106     if (FromBB->isEntryBlock())
2107       return true;
2108 
2109     // Otherwise, can only export this if it is already exported.
2110     return FuncInfo.isExportedInst(V);
2111   }
2112 
2113   // Otherwise, constants can always be exported.
2114   return true;
2115 }
2116 
2117 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2118 BranchProbability
2119 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2120                                         const MachineBasicBlock *Dst) const {
2121   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2122   const BasicBlock *SrcBB = Src->getBasicBlock();
2123   const BasicBlock *DstBB = Dst->getBasicBlock();
2124   if (!BPI) {
2125     // If BPI is not available, set the default probability as 1 / N, where N is
2126     // the number of successors.
2127     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2128     return BranchProbability(1, SuccSize);
2129   }
2130   return BPI->getEdgeProbability(SrcBB, DstBB);
2131 }
2132 
2133 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2134                                                MachineBasicBlock *Dst,
2135                                                BranchProbability Prob) {
2136   if (!FuncInfo.BPI)
2137     Src->addSuccessorWithoutProb(Dst);
2138   else {
2139     if (Prob.isUnknown())
2140       Prob = getEdgeProbability(Src, Dst);
2141     Src->addSuccessor(Dst, Prob);
2142   }
2143 }
2144 
2145 static bool InBlock(const Value *V, const BasicBlock *BB) {
2146   if (const Instruction *I = dyn_cast<Instruction>(V))
2147     return I->getParent() == BB;
2148   return true;
2149 }
2150 
2151 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2152 /// This function emits a branch and is used at the leaves of an OR or an
2153 /// AND operator tree.
2154 void
2155 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2156                                                   MachineBasicBlock *TBB,
2157                                                   MachineBasicBlock *FBB,
2158                                                   MachineBasicBlock *CurBB,
2159                                                   MachineBasicBlock *SwitchBB,
2160                                                   BranchProbability TProb,
2161                                                   BranchProbability FProb,
2162                                                   bool InvertCond) {
2163   const BasicBlock *BB = CurBB->getBasicBlock();
2164 
2165   // If the leaf of the tree is a comparison, merge the condition into
2166   // the caseblock.
2167   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2168     // The operands of the cmp have to be in this block.  We don't know
2169     // how to export them from some other block.  If this is the first block
2170     // of the sequence, no exporting is needed.
2171     if (CurBB == SwitchBB ||
2172         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2173          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2174       ISD::CondCode Condition;
2175       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2176         ICmpInst::Predicate Pred =
2177             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2178         Condition = getICmpCondCode(Pred);
2179       } else {
2180         const FCmpInst *FC = cast<FCmpInst>(Cond);
2181         FCmpInst::Predicate Pred =
2182             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2183         Condition = getFCmpCondCode(Pred);
2184         if (TM.Options.NoNaNsFPMath)
2185           Condition = getFCmpCodeWithoutNaN(Condition);
2186       }
2187 
2188       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2189                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2190       SL->SwitchCases.push_back(CB);
2191       return;
2192     }
2193   }
2194 
2195   // Create a CaseBlock record representing this branch.
2196   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2197   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2198                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2199   SL->SwitchCases.push_back(CB);
2200 }
2201 
2202 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2203                                                MachineBasicBlock *TBB,
2204                                                MachineBasicBlock *FBB,
2205                                                MachineBasicBlock *CurBB,
2206                                                MachineBasicBlock *SwitchBB,
2207                                                Instruction::BinaryOps Opc,
2208                                                BranchProbability TProb,
2209                                                BranchProbability FProb,
2210                                                bool InvertCond) {
2211   // Skip over not part of the tree and remember to invert op and operands at
2212   // next level.
2213   Value *NotCond;
2214   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2215       InBlock(NotCond, CurBB->getBasicBlock())) {
2216     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2217                          !InvertCond);
2218     return;
2219   }
2220 
2221   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2222   const Value *BOpOp0, *BOpOp1;
2223   // Compute the effective opcode for Cond, taking into account whether it needs
2224   // to be inverted, e.g.
2225   //   and (not (or A, B)), C
2226   // gets lowered as
2227   //   and (and (not A, not B), C)
2228   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2229   if (BOp) {
2230     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2231                ? Instruction::And
2232                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2233                       ? Instruction::Or
2234                       : (Instruction::BinaryOps)0);
2235     if (InvertCond) {
2236       if (BOpc == Instruction::And)
2237         BOpc = Instruction::Or;
2238       else if (BOpc == Instruction::Or)
2239         BOpc = Instruction::And;
2240     }
2241   }
2242 
2243   // If this node is not part of the or/and tree, emit it as a branch.
2244   // Note that all nodes in the tree should have same opcode.
2245   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2246   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2247       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2248       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2249     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2250                                  TProb, FProb, InvertCond);
2251     return;
2252   }
2253 
2254   //  Create TmpBB after CurBB.
2255   MachineFunction::iterator BBI(CurBB);
2256   MachineFunction &MF = DAG.getMachineFunction();
2257   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2258   CurBB->getParent()->insert(++BBI, TmpBB);
2259 
2260   if (Opc == Instruction::Or) {
2261     // Codegen X | Y as:
2262     // BB1:
2263     //   jmp_if_X TBB
2264     //   jmp TmpBB
2265     // TmpBB:
2266     //   jmp_if_Y TBB
2267     //   jmp FBB
2268     //
2269 
2270     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2271     // The requirement is that
2272     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2273     //     = TrueProb for original BB.
2274     // Assuming the original probabilities are A and B, one choice is to set
2275     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2276     // A/(1+B) and 2B/(1+B). This choice assumes that
2277     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2278     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2279     // TmpBB, but the math is more complicated.
2280 
2281     auto NewTrueProb = TProb / 2;
2282     auto NewFalseProb = TProb / 2 + FProb;
2283     // Emit the LHS condition.
2284     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2285                          NewFalseProb, InvertCond);
2286 
2287     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2288     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2289     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2290     // Emit the RHS condition into TmpBB.
2291     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2292                          Probs[1], InvertCond);
2293   } else {
2294     assert(Opc == Instruction::And && "Unknown merge op!");
2295     // Codegen X & Y as:
2296     // BB1:
2297     //   jmp_if_X TmpBB
2298     //   jmp FBB
2299     // TmpBB:
2300     //   jmp_if_Y TBB
2301     //   jmp FBB
2302     //
2303     //  This requires creation of TmpBB after CurBB.
2304 
2305     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2306     // The requirement is that
2307     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2308     //     = FalseProb for original BB.
2309     // Assuming the original probabilities are A and B, one choice is to set
2310     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2311     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2312     // TrueProb for BB1 * FalseProb for TmpBB.
2313 
2314     auto NewTrueProb = TProb + FProb / 2;
2315     auto NewFalseProb = FProb / 2;
2316     // Emit the LHS condition.
2317     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2318                          NewFalseProb, InvertCond);
2319 
2320     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2321     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2322     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2323     // Emit the RHS condition into TmpBB.
2324     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2325                          Probs[1], InvertCond);
2326   }
2327 }
2328 
2329 /// If the set of cases should be emitted as a series of branches, return true.
2330 /// If we should emit this as a bunch of and/or'd together conditions, return
2331 /// false.
2332 bool
2333 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2334   if (Cases.size() != 2) return true;
2335 
2336   // If this is two comparisons of the same values or'd or and'd together, they
2337   // will get folded into a single comparison, so don't emit two blocks.
2338   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2339        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2340       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2341        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2342     return false;
2343   }
2344 
2345   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2346   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2347   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2348       Cases[0].CC == Cases[1].CC &&
2349       isa<Constant>(Cases[0].CmpRHS) &&
2350       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2351     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2352       return false;
2353     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2354       return false;
2355   }
2356 
2357   return true;
2358 }
2359 
2360 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2361   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2362 
2363   // Update machine-CFG edges.
2364   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2365 
2366   if (I.isUnconditional()) {
2367     // Update machine-CFG edges.
2368     BrMBB->addSuccessor(Succ0MBB);
2369 
2370     // If this is not a fall-through branch or optimizations are switched off,
2371     // emit the branch.
2372     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2373       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2374                               MVT::Other, getControlRoot(),
2375                               DAG.getBasicBlock(Succ0MBB)));
2376 
2377     return;
2378   }
2379 
2380   // If this condition is one of the special cases we handle, do special stuff
2381   // now.
2382   const Value *CondVal = I.getCondition();
2383   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2384 
2385   // If this is a series of conditions that are or'd or and'd together, emit
2386   // this as a sequence of branches instead of setcc's with and/or operations.
2387   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2388   // unpredictable branches, and vector extracts because those jumps are likely
2389   // expensive for any target), this should improve performance.
2390   // For example, instead of something like:
2391   //     cmp A, B
2392   //     C = seteq
2393   //     cmp D, E
2394   //     F = setle
2395   //     or C, F
2396   //     jnz foo
2397   // Emit:
2398   //     cmp A, B
2399   //     je foo
2400   //     cmp D, E
2401   //     jle foo
2402   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2403   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2404       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2405     Value *Vec;
2406     const Value *BOp0, *BOp1;
2407     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2408     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2409       Opcode = Instruction::And;
2410     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2411       Opcode = Instruction::Or;
2412 
2413     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2414                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2415       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2416                            getEdgeProbability(BrMBB, Succ0MBB),
2417                            getEdgeProbability(BrMBB, Succ1MBB),
2418                            /*InvertCond=*/false);
2419       // If the compares in later blocks need to use values not currently
2420       // exported from this block, export them now.  This block should always
2421       // be the first entry.
2422       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2423 
2424       // Allow some cases to be rejected.
2425       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2426         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2427           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2428           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2429         }
2430 
2431         // Emit the branch for this block.
2432         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2433         SL->SwitchCases.erase(SL->SwitchCases.begin());
2434         return;
2435       }
2436 
2437       // Okay, we decided not to do this, remove any inserted MBB's and clear
2438       // SwitchCases.
2439       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2440         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2441 
2442       SL->SwitchCases.clear();
2443     }
2444   }
2445 
2446   // Create a CaseBlock record representing this branch.
2447   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2448                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2449 
2450   // Use visitSwitchCase to actually insert the fast branch sequence for this
2451   // cond branch.
2452   visitSwitchCase(CB, BrMBB);
2453 }
2454 
2455 /// visitSwitchCase - Emits the necessary code to represent a single node in
2456 /// the binary search tree resulting from lowering a switch instruction.
2457 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2458                                           MachineBasicBlock *SwitchBB) {
2459   SDValue Cond;
2460   SDValue CondLHS = getValue(CB.CmpLHS);
2461   SDLoc dl = CB.DL;
2462 
2463   if (CB.CC == ISD::SETTRUE) {
2464     // Branch or fall through to TrueBB.
2465     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2466     SwitchBB->normalizeSuccProbs();
2467     if (CB.TrueBB != NextBlock(SwitchBB)) {
2468       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2469                               DAG.getBasicBlock(CB.TrueBB)));
2470     }
2471     return;
2472   }
2473 
2474   auto &TLI = DAG.getTargetLoweringInfo();
2475   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2476 
2477   // Build the setcc now.
2478   if (!CB.CmpMHS) {
2479     // Fold "(X == true)" to X and "(X == false)" to !X to
2480     // handle common cases produced by branch lowering.
2481     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2482         CB.CC == ISD::SETEQ)
2483       Cond = CondLHS;
2484     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2485              CB.CC == ISD::SETEQ) {
2486       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2487       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2488     } else {
2489       SDValue CondRHS = getValue(CB.CmpRHS);
2490 
2491       // If a pointer's DAG type is larger than its memory type then the DAG
2492       // values are zero-extended. This breaks signed comparisons so truncate
2493       // back to the underlying type before doing the compare.
2494       if (CondLHS.getValueType() != MemVT) {
2495         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2496         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2497       }
2498       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2499     }
2500   } else {
2501     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2502 
2503     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2504     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2505 
2506     SDValue CmpOp = getValue(CB.CmpMHS);
2507     EVT VT = CmpOp.getValueType();
2508 
2509     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2510       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2511                           ISD::SETLE);
2512     } else {
2513       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2514                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2515       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2516                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2517     }
2518   }
2519 
2520   // Update successor info
2521   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2522   // TrueBB and FalseBB are always different unless the incoming IR is
2523   // degenerate. This only happens when running llc on weird IR.
2524   if (CB.TrueBB != CB.FalseBB)
2525     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2526   SwitchBB->normalizeSuccProbs();
2527 
2528   // If the lhs block is the next block, invert the condition so that we can
2529   // fall through to the lhs instead of the rhs block.
2530   if (CB.TrueBB == NextBlock(SwitchBB)) {
2531     std::swap(CB.TrueBB, CB.FalseBB);
2532     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2533     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2534   }
2535 
2536   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2537                                MVT::Other, getControlRoot(), Cond,
2538                                DAG.getBasicBlock(CB.TrueBB));
2539 
2540   // Insert the false branch. Do this even if it's a fall through branch,
2541   // this makes it easier to do DAG optimizations which require inverting
2542   // the branch condition.
2543   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2544                        DAG.getBasicBlock(CB.FalseBB));
2545 
2546   DAG.setRoot(BrCond);
2547 }
2548 
2549 /// visitJumpTable - Emit JumpTable node in the current MBB
2550 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2551   // Emit the code for the jump table
2552   assert(JT.Reg != -1U && "Should lower JT Header first!");
2553   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2554   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2555                                      JT.Reg, PTy);
2556   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2557   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2558                                     MVT::Other, Index.getValue(1),
2559                                     Table, Index);
2560   DAG.setRoot(BrJumpTable);
2561 }
2562 
2563 /// visitJumpTableHeader - This function emits necessary code to produce index
2564 /// in the JumpTable from switch case.
2565 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2566                                                JumpTableHeader &JTH,
2567                                                MachineBasicBlock *SwitchBB) {
2568   SDLoc dl = getCurSDLoc();
2569 
2570   // Subtract the lowest switch case value from the value being switched on.
2571   SDValue SwitchOp = getValue(JTH.SValue);
2572   EVT VT = SwitchOp.getValueType();
2573   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2574                             DAG.getConstant(JTH.First, dl, VT));
2575 
2576   // The SDNode we just created, which holds the value being switched on minus
2577   // the smallest case value, needs to be copied to a virtual register so it
2578   // can be used as an index into the jump table in a subsequent basic block.
2579   // This value may be smaller or larger than the target's pointer type, and
2580   // therefore require extension or truncating.
2581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2582   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2583 
2584   unsigned JumpTableReg =
2585       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2586   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2587                                     JumpTableReg, SwitchOp);
2588   JT.Reg = JumpTableReg;
2589 
2590   if (!JTH.FallthroughUnreachable) {
2591     // Emit the range check for the jump table, and branch to the default block
2592     // for the switch statement if the value being switched on exceeds the
2593     // largest case in the switch.
2594     SDValue CMP = DAG.getSetCC(
2595         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2596                                    Sub.getValueType()),
2597         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2598 
2599     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2600                                  MVT::Other, CopyTo, CMP,
2601                                  DAG.getBasicBlock(JT.Default));
2602 
2603     // Avoid emitting unnecessary branches to the next block.
2604     if (JT.MBB != NextBlock(SwitchBB))
2605       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2606                            DAG.getBasicBlock(JT.MBB));
2607 
2608     DAG.setRoot(BrCond);
2609   } else {
2610     // Avoid emitting unnecessary branches to the next block.
2611     if (JT.MBB != NextBlock(SwitchBB))
2612       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2613                               DAG.getBasicBlock(JT.MBB)));
2614     else
2615       DAG.setRoot(CopyTo);
2616   }
2617 }
2618 
2619 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2620 /// variable if there exists one.
2621 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2622                                  SDValue &Chain) {
2623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2624   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2625   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2626   MachineFunction &MF = DAG.getMachineFunction();
2627   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2628   MachineSDNode *Node =
2629       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2630   if (Global) {
2631     MachinePointerInfo MPInfo(Global);
2632     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2633                  MachineMemOperand::MODereferenceable;
2634     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2635         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2636     DAG.setNodeMemRefs(Node, {MemRef});
2637   }
2638   if (PtrTy != PtrMemTy)
2639     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2640   return SDValue(Node, 0);
2641 }
2642 
2643 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2644 /// tail spliced into a stack protector check success bb.
2645 ///
2646 /// For a high level explanation of how this fits into the stack protector
2647 /// generation see the comment on the declaration of class
2648 /// StackProtectorDescriptor.
2649 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2650                                                   MachineBasicBlock *ParentBB) {
2651 
2652   // First create the loads to the guard/stack slot for the comparison.
2653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2654   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2655   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2656 
2657   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2658   int FI = MFI.getStackProtectorIndex();
2659 
2660   SDValue Guard;
2661   SDLoc dl = getCurSDLoc();
2662   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2663   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2664   Align Align =
2665       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2666 
2667   // Generate code to load the content of the guard slot.
2668   SDValue GuardVal = DAG.getLoad(
2669       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2670       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2671       MachineMemOperand::MOVolatile);
2672 
2673   if (TLI.useStackGuardXorFP())
2674     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2675 
2676   // Retrieve guard check function, nullptr if instrumentation is inlined.
2677   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2678     // The target provides a guard check function to validate the guard value.
2679     // Generate a call to that function with the content of the guard slot as
2680     // argument.
2681     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2682     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2683 
2684     TargetLowering::ArgListTy Args;
2685     TargetLowering::ArgListEntry Entry;
2686     Entry.Node = GuardVal;
2687     Entry.Ty = FnTy->getParamType(0);
2688     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2689       Entry.IsInReg = true;
2690     Args.push_back(Entry);
2691 
2692     TargetLowering::CallLoweringInfo CLI(DAG);
2693     CLI.setDebugLoc(getCurSDLoc())
2694         .setChain(DAG.getEntryNode())
2695         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2696                    getValue(GuardCheckFn), std::move(Args));
2697 
2698     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2699     DAG.setRoot(Result.second);
2700     return;
2701   }
2702 
2703   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2704   // Otherwise, emit a volatile load to retrieve the stack guard value.
2705   SDValue Chain = DAG.getEntryNode();
2706   if (TLI.useLoadStackGuardNode()) {
2707     Guard = getLoadStackGuard(DAG, dl, Chain);
2708   } else {
2709     const Value *IRGuard = TLI.getSDagStackGuard(M);
2710     SDValue GuardPtr = getValue(IRGuard);
2711 
2712     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2713                         MachinePointerInfo(IRGuard, 0), Align,
2714                         MachineMemOperand::MOVolatile);
2715   }
2716 
2717   // Perform the comparison via a getsetcc.
2718   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2719                                                         *DAG.getContext(),
2720                                                         Guard.getValueType()),
2721                              Guard, GuardVal, ISD::SETNE);
2722 
2723   // If the guard/stackslot do not equal, branch to failure MBB.
2724   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2725                                MVT::Other, GuardVal.getOperand(0),
2726                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2727   // Otherwise branch to success MBB.
2728   SDValue Br = DAG.getNode(ISD::BR, dl,
2729                            MVT::Other, BrCond,
2730                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2731 
2732   DAG.setRoot(Br);
2733 }
2734 
2735 /// Codegen the failure basic block for a stack protector check.
2736 ///
2737 /// A failure stack protector machine basic block consists simply of a call to
2738 /// __stack_chk_fail().
2739 ///
2740 /// For a high level explanation of how this fits into the stack protector
2741 /// generation see the comment on the declaration of class
2742 /// StackProtectorDescriptor.
2743 void
2744 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2746   TargetLowering::MakeLibCallOptions CallOptions;
2747   CallOptions.setDiscardResult(true);
2748   SDValue Chain =
2749       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2750                       None, CallOptions, getCurSDLoc()).second;
2751   // On PS4, the "return address" must still be within the calling function,
2752   // even if it's at the very end, so emit an explicit TRAP here.
2753   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2754   if (TM.getTargetTriple().isPS4CPU())
2755     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2756   // WebAssembly needs an unreachable instruction after a non-returning call,
2757   // because the function return type can be different from __stack_chk_fail's
2758   // return type (void).
2759   if (TM.getTargetTriple().isWasm())
2760     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2761 
2762   DAG.setRoot(Chain);
2763 }
2764 
2765 /// visitBitTestHeader - This function emits necessary code to produce value
2766 /// suitable for "bit tests"
2767 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2768                                              MachineBasicBlock *SwitchBB) {
2769   SDLoc dl = getCurSDLoc();
2770 
2771   // Subtract the minimum value.
2772   SDValue SwitchOp = getValue(B.SValue);
2773   EVT VT = SwitchOp.getValueType();
2774   SDValue RangeSub =
2775       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2776 
2777   // Determine the type of the test operands.
2778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2779   bool UsePtrType = false;
2780   if (!TLI.isTypeLegal(VT)) {
2781     UsePtrType = true;
2782   } else {
2783     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2784       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2785         // Switch table case range are encoded into series of masks.
2786         // Just use pointer type, it's guaranteed to fit.
2787         UsePtrType = true;
2788         break;
2789       }
2790   }
2791   SDValue Sub = RangeSub;
2792   if (UsePtrType) {
2793     VT = TLI.getPointerTy(DAG.getDataLayout());
2794     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2795   }
2796 
2797   B.RegVT = VT.getSimpleVT();
2798   B.Reg = FuncInfo.CreateReg(B.RegVT);
2799   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2800 
2801   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2802 
2803   if (!B.FallthroughUnreachable)
2804     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2805   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2806   SwitchBB->normalizeSuccProbs();
2807 
2808   SDValue Root = CopyTo;
2809   if (!B.FallthroughUnreachable) {
2810     // Conditional branch to the default block.
2811     SDValue RangeCmp = DAG.getSetCC(dl,
2812         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2813                                RangeSub.getValueType()),
2814         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2815         ISD::SETUGT);
2816 
2817     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2818                        DAG.getBasicBlock(B.Default));
2819   }
2820 
2821   // Avoid emitting unnecessary branches to the next block.
2822   if (MBB != NextBlock(SwitchBB))
2823     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2824 
2825   DAG.setRoot(Root);
2826 }
2827 
2828 /// visitBitTestCase - this function produces one "bit test"
2829 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2830                                            MachineBasicBlock* NextMBB,
2831                                            BranchProbability BranchProbToNext,
2832                                            unsigned Reg,
2833                                            BitTestCase &B,
2834                                            MachineBasicBlock *SwitchBB) {
2835   SDLoc dl = getCurSDLoc();
2836   MVT VT = BB.RegVT;
2837   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2838   SDValue Cmp;
2839   unsigned PopCount = countPopulation(B.Mask);
2840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2841   if (PopCount == 1) {
2842     // Testing for a single bit; just compare the shift count with what it
2843     // would need to be to shift a 1 bit in that position.
2844     Cmp = DAG.getSetCC(
2845         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2846         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2847         ISD::SETEQ);
2848   } else if (PopCount == BB.Range) {
2849     // There is only one zero bit in the range, test for it directly.
2850     Cmp = DAG.getSetCC(
2851         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2852         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2853         ISD::SETNE);
2854   } else {
2855     // Make desired shift
2856     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2857                                     DAG.getConstant(1, dl, VT), ShiftOp);
2858 
2859     // Emit bit tests and jumps
2860     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2861                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2862     Cmp = DAG.getSetCC(
2863         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2864         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2865   }
2866 
2867   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2868   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2869   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2870   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2871   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2872   // one as they are relative probabilities (and thus work more like weights),
2873   // and hence we need to normalize them to let the sum of them become one.
2874   SwitchBB->normalizeSuccProbs();
2875 
2876   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2877                               MVT::Other, getControlRoot(),
2878                               Cmp, DAG.getBasicBlock(B.TargetBB));
2879 
2880   // Avoid emitting unnecessary branches to the next block.
2881   if (NextMBB != NextBlock(SwitchBB))
2882     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2883                         DAG.getBasicBlock(NextMBB));
2884 
2885   DAG.setRoot(BrAnd);
2886 }
2887 
2888 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2889   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2890 
2891   // Retrieve successors. Look through artificial IR level blocks like
2892   // catchswitch for successors.
2893   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2894   const BasicBlock *EHPadBB = I.getSuccessor(1);
2895 
2896   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2897   // have to do anything here to lower funclet bundles.
2898   assert(!I.hasOperandBundlesOtherThan(
2899              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2900               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2901               LLVMContext::OB_cfguardtarget,
2902               LLVMContext::OB_clang_arc_attachedcall}) &&
2903          "Cannot lower invokes with arbitrary operand bundles yet!");
2904 
2905   const Value *Callee(I.getCalledOperand());
2906   const Function *Fn = dyn_cast<Function>(Callee);
2907   if (isa<InlineAsm>(Callee))
2908     visitInlineAsm(I, EHPadBB);
2909   else if (Fn && Fn->isIntrinsic()) {
2910     switch (Fn->getIntrinsicID()) {
2911     default:
2912       llvm_unreachable("Cannot invoke this intrinsic");
2913     case Intrinsic::donothing:
2914       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2915     case Intrinsic::seh_try_begin:
2916     case Intrinsic::seh_scope_begin:
2917     case Intrinsic::seh_try_end:
2918     case Intrinsic::seh_scope_end:
2919       break;
2920     case Intrinsic::experimental_patchpoint_void:
2921     case Intrinsic::experimental_patchpoint_i64:
2922       visitPatchpoint(I, EHPadBB);
2923       break;
2924     case Intrinsic::experimental_gc_statepoint:
2925       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2926       break;
2927     case Intrinsic::wasm_rethrow: {
2928       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2929       // special because it can be invoked, so we manually lower it to a DAG
2930       // node here.
2931       SmallVector<SDValue, 8> Ops;
2932       Ops.push_back(getRoot()); // inchain
2933       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2934       Ops.push_back(
2935           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2936                                 TLI.getPointerTy(DAG.getDataLayout())));
2937       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2938       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2939       break;
2940     }
2941     }
2942   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2943     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2944     // Eventually we will support lowering the @llvm.experimental.deoptimize
2945     // intrinsic, and right now there are no plans to support other intrinsics
2946     // with deopt state.
2947     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2948   } else {
2949     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2950   }
2951 
2952   // If the value of the invoke is used outside of its defining block, make it
2953   // available as a virtual register.
2954   // We already took care of the exported value for the statepoint instruction
2955   // during call to the LowerStatepoint.
2956   if (!isa<GCStatepointInst>(I)) {
2957     CopyToExportRegsIfNeeded(&I);
2958   }
2959 
2960   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2961   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2962   BranchProbability EHPadBBProb =
2963       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2964           : BranchProbability::getZero();
2965   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2966 
2967   // Update successor info.
2968   addSuccessorWithProb(InvokeMBB, Return);
2969   for (auto &UnwindDest : UnwindDests) {
2970     UnwindDest.first->setIsEHPad();
2971     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2972   }
2973   InvokeMBB->normalizeSuccProbs();
2974 
2975   // Drop into normal successor.
2976   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2977                           DAG.getBasicBlock(Return)));
2978 }
2979 
2980 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2981   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2982 
2983   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2984   // have to do anything here to lower funclet bundles.
2985   assert(!I.hasOperandBundlesOtherThan(
2986              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2987          "Cannot lower callbrs with arbitrary operand bundles yet!");
2988 
2989   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2990   visitInlineAsm(I);
2991   CopyToExportRegsIfNeeded(&I);
2992 
2993   // Retrieve successors.
2994   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2995 
2996   // Update successor info.
2997   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2998   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2999     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
3000     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3001     Target->setIsInlineAsmBrIndirectTarget();
3002   }
3003   CallBrMBB->normalizeSuccProbs();
3004 
3005   // Drop into default successor.
3006   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3007                           MVT::Other, getControlRoot(),
3008                           DAG.getBasicBlock(Return)));
3009 }
3010 
3011 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3012   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3013 }
3014 
3015 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3016   assert(FuncInfo.MBB->isEHPad() &&
3017          "Call to landingpad not in landing pad!");
3018 
3019   // If there aren't registers to copy the values into (e.g., during SjLj
3020   // exceptions), then don't bother to create these DAG nodes.
3021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3022   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3023   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3024       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3025     return;
3026 
3027   // If landingpad's return type is token type, we don't create DAG nodes
3028   // for its exception pointer and selector value. The extraction of exception
3029   // pointer or selector value from token type landingpads is not currently
3030   // supported.
3031   if (LP.getType()->isTokenTy())
3032     return;
3033 
3034   SmallVector<EVT, 2> ValueVTs;
3035   SDLoc dl = getCurSDLoc();
3036   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3037   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3038 
3039   // Get the two live-in registers as SDValues. The physregs have already been
3040   // copied into virtual registers.
3041   SDValue Ops[2];
3042   if (FuncInfo.ExceptionPointerVirtReg) {
3043     Ops[0] = DAG.getZExtOrTrunc(
3044         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3045                            FuncInfo.ExceptionPointerVirtReg,
3046                            TLI.getPointerTy(DAG.getDataLayout())),
3047         dl, ValueVTs[0]);
3048   } else {
3049     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3050   }
3051   Ops[1] = DAG.getZExtOrTrunc(
3052       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3053                          FuncInfo.ExceptionSelectorVirtReg,
3054                          TLI.getPointerTy(DAG.getDataLayout())),
3055       dl, ValueVTs[1]);
3056 
3057   // Merge into one.
3058   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3059                             DAG.getVTList(ValueVTs), Ops);
3060   setValue(&LP, Res);
3061 }
3062 
3063 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3064                                            MachineBasicBlock *Last) {
3065   // Update JTCases.
3066   for (JumpTableBlock &JTB : SL->JTCases)
3067     if (JTB.first.HeaderBB == First)
3068       JTB.first.HeaderBB = Last;
3069 
3070   // Update BitTestCases.
3071   for (BitTestBlock &BTB : SL->BitTestCases)
3072     if (BTB.Parent == First)
3073       BTB.Parent = Last;
3074 }
3075 
3076 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3077   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3078 
3079   // Update machine-CFG edges with unique successors.
3080   SmallSet<BasicBlock*, 32> Done;
3081   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3082     BasicBlock *BB = I.getSuccessor(i);
3083     bool Inserted = Done.insert(BB).second;
3084     if (!Inserted)
3085         continue;
3086 
3087     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3088     addSuccessorWithProb(IndirectBrMBB, Succ);
3089   }
3090   IndirectBrMBB->normalizeSuccProbs();
3091 
3092   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3093                           MVT::Other, getControlRoot(),
3094                           getValue(I.getAddress())));
3095 }
3096 
3097 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3098   if (!DAG.getTarget().Options.TrapUnreachable)
3099     return;
3100 
3101   // We may be able to ignore unreachable behind a noreturn call.
3102   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3103     const BasicBlock &BB = *I.getParent();
3104     if (&I != &BB.front()) {
3105       BasicBlock::const_iterator PredI =
3106         std::prev(BasicBlock::const_iterator(&I));
3107       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3108         if (Call->doesNotReturn())
3109           return;
3110       }
3111     }
3112   }
3113 
3114   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3115 }
3116 
3117 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3118   SDNodeFlags Flags;
3119   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3120     Flags.copyFMF(*FPOp);
3121 
3122   SDValue Op = getValue(I.getOperand(0));
3123   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3124                                     Op, Flags);
3125   setValue(&I, UnNodeValue);
3126 }
3127 
3128 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3129   SDNodeFlags Flags;
3130   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3131     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3132     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3133   }
3134   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3135     Flags.setExact(ExactOp->isExact());
3136   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3137     Flags.copyFMF(*FPOp);
3138 
3139   SDValue Op1 = getValue(I.getOperand(0));
3140   SDValue Op2 = getValue(I.getOperand(1));
3141   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3142                                      Op1, Op2, Flags);
3143   setValue(&I, BinNodeValue);
3144 }
3145 
3146 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3147   SDValue Op1 = getValue(I.getOperand(0));
3148   SDValue Op2 = getValue(I.getOperand(1));
3149 
3150   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3151       Op1.getValueType(), DAG.getDataLayout());
3152 
3153   // Coerce the shift amount to the right type if we can.
3154   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3155     unsigned ShiftSize = ShiftTy.getSizeInBits();
3156     unsigned Op2Size = Op2.getValueSizeInBits();
3157     SDLoc DL = getCurSDLoc();
3158 
3159     // If the operand is smaller than the shift count type, promote it.
3160     if (ShiftSize > Op2Size)
3161       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3162 
3163     // If the operand is larger than the shift count type but the shift
3164     // count type has enough bits to represent any shift value, truncate
3165     // it now. This is a common case and it exposes the truncate to
3166     // optimization early.
3167     else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits()))
3168       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3169     // Otherwise we'll need to temporarily settle for some other convenient
3170     // type.  Type legalization will make adjustments once the shiftee is split.
3171     else
3172       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3173   }
3174 
3175   bool nuw = false;
3176   bool nsw = false;
3177   bool exact = false;
3178 
3179   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3180 
3181     if (const OverflowingBinaryOperator *OFBinOp =
3182             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3183       nuw = OFBinOp->hasNoUnsignedWrap();
3184       nsw = OFBinOp->hasNoSignedWrap();
3185     }
3186     if (const PossiblyExactOperator *ExactOp =
3187             dyn_cast<const PossiblyExactOperator>(&I))
3188       exact = ExactOp->isExact();
3189   }
3190   SDNodeFlags Flags;
3191   Flags.setExact(exact);
3192   Flags.setNoSignedWrap(nsw);
3193   Flags.setNoUnsignedWrap(nuw);
3194   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3195                             Flags);
3196   setValue(&I, Res);
3197 }
3198 
3199 void SelectionDAGBuilder::visitSDiv(const User &I) {
3200   SDValue Op1 = getValue(I.getOperand(0));
3201   SDValue Op2 = getValue(I.getOperand(1));
3202 
3203   SDNodeFlags Flags;
3204   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3205                  cast<PossiblyExactOperator>(&I)->isExact());
3206   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3207                            Op2, Flags));
3208 }
3209 
3210 void SelectionDAGBuilder::visitICmp(const User &I) {
3211   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3212   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3213     predicate = IC->getPredicate();
3214   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3215     predicate = ICmpInst::Predicate(IC->getPredicate());
3216   SDValue Op1 = getValue(I.getOperand(0));
3217   SDValue Op2 = getValue(I.getOperand(1));
3218   ISD::CondCode Opcode = getICmpCondCode(predicate);
3219 
3220   auto &TLI = DAG.getTargetLoweringInfo();
3221   EVT MemVT =
3222       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3223 
3224   // If a pointer's DAG type is larger than its memory type then the DAG values
3225   // are zero-extended. This breaks signed comparisons so truncate back to the
3226   // underlying type before doing the compare.
3227   if (Op1.getValueType() != MemVT) {
3228     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3229     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3230   }
3231 
3232   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3233                                                         I.getType());
3234   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3235 }
3236 
3237 void SelectionDAGBuilder::visitFCmp(const User &I) {
3238   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3239   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3240     predicate = FC->getPredicate();
3241   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3242     predicate = FCmpInst::Predicate(FC->getPredicate());
3243   SDValue Op1 = getValue(I.getOperand(0));
3244   SDValue Op2 = getValue(I.getOperand(1));
3245 
3246   ISD::CondCode Condition = getFCmpCondCode(predicate);
3247   auto *FPMO = cast<FPMathOperator>(&I);
3248   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3249     Condition = getFCmpCodeWithoutNaN(Condition);
3250 
3251   SDNodeFlags Flags;
3252   Flags.copyFMF(*FPMO);
3253   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3254 
3255   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3256                                                         I.getType());
3257   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3258 }
3259 
3260 // Check if the condition of the select has one use or two users that are both
3261 // selects with the same condition.
3262 static bool hasOnlySelectUsers(const Value *Cond) {
3263   return llvm::all_of(Cond->users(), [](const Value *V) {
3264     return isa<SelectInst>(V);
3265   });
3266 }
3267 
3268 void SelectionDAGBuilder::visitSelect(const User &I) {
3269   SmallVector<EVT, 4> ValueVTs;
3270   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3271                   ValueVTs);
3272   unsigned NumValues = ValueVTs.size();
3273   if (NumValues == 0) return;
3274 
3275   SmallVector<SDValue, 4> Values(NumValues);
3276   SDValue Cond     = getValue(I.getOperand(0));
3277   SDValue LHSVal   = getValue(I.getOperand(1));
3278   SDValue RHSVal   = getValue(I.getOperand(2));
3279   SmallVector<SDValue, 1> BaseOps(1, Cond);
3280   ISD::NodeType OpCode =
3281       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3282 
3283   bool IsUnaryAbs = false;
3284   bool Negate = false;
3285 
3286   SDNodeFlags Flags;
3287   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3288     Flags.copyFMF(*FPOp);
3289 
3290   // Min/max matching is only viable if all output VTs are the same.
3291   if (is_splat(ValueVTs)) {
3292     EVT VT = ValueVTs[0];
3293     LLVMContext &Ctx = *DAG.getContext();
3294     auto &TLI = DAG.getTargetLoweringInfo();
3295 
3296     // We care about the legality of the operation after it has been type
3297     // legalized.
3298     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3299       VT = TLI.getTypeToTransformTo(Ctx, VT);
3300 
3301     // If the vselect is legal, assume we want to leave this as a vector setcc +
3302     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3303     // min/max is legal on the scalar type.
3304     bool UseScalarMinMax = VT.isVector() &&
3305       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3306 
3307     Value *LHS, *RHS;
3308     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3309     ISD::NodeType Opc = ISD::DELETED_NODE;
3310     switch (SPR.Flavor) {
3311     case SPF_UMAX:    Opc = ISD::UMAX; break;
3312     case SPF_UMIN:    Opc = ISD::UMIN; break;
3313     case SPF_SMAX:    Opc = ISD::SMAX; break;
3314     case SPF_SMIN:    Opc = ISD::SMIN; break;
3315     case SPF_FMINNUM:
3316       switch (SPR.NaNBehavior) {
3317       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3318       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3319       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3320       case SPNB_RETURNS_ANY: {
3321         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3322           Opc = ISD::FMINNUM;
3323         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3324           Opc = ISD::FMINIMUM;
3325         else if (UseScalarMinMax)
3326           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3327             ISD::FMINNUM : ISD::FMINIMUM;
3328         break;
3329       }
3330       }
3331       break;
3332     case SPF_FMAXNUM:
3333       switch (SPR.NaNBehavior) {
3334       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3335       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3336       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3337       case SPNB_RETURNS_ANY:
3338 
3339         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3340           Opc = ISD::FMAXNUM;
3341         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3342           Opc = ISD::FMAXIMUM;
3343         else if (UseScalarMinMax)
3344           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3345             ISD::FMAXNUM : ISD::FMAXIMUM;
3346         break;
3347       }
3348       break;
3349     case SPF_NABS:
3350       Negate = true;
3351       LLVM_FALLTHROUGH;
3352     case SPF_ABS:
3353       IsUnaryAbs = true;
3354       Opc = ISD::ABS;
3355       break;
3356     default: break;
3357     }
3358 
3359     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3360         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3361          (UseScalarMinMax &&
3362           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3363         // If the underlying comparison instruction is used by any other
3364         // instruction, the consumed instructions won't be destroyed, so it is
3365         // not profitable to convert to a min/max.
3366         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3367       OpCode = Opc;
3368       LHSVal = getValue(LHS);
3369       RHSVal = getValue(RHS);
3370       BaseOps.clear();
3371     }
3372 
3373     if (IsUnaryAbs) {
3374       OpCode = Opc;
3375       LHSVal = getValue(LHS);
3376       BaseOps.clear();
3377     }
3378   }
3379 
3380   if (IsUnaryAbs) {
3381     for (unsigned i = 0; i != NumValues; ++i) {
3382       SDLoc dl = getCurSDLoc();
3383       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3384       Values[i] =
3385           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3386       if (Negate)
3387         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3388                                 Values[i]);
3389     }
3390   } else {
3391     for (unsigned i = 0; i != NumValues; ++i) {
3392       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3393       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3394       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3395       Values[i] = DAG.getNode(
3396           OpCode, getCurSDLoc(),
3397           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3398     }
3399   }
3400 
3401   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3402                            DAG.getVTList(ValueVTs), Values));
3403 }
3404 
3405 void SelectionDAGBuilder::visitTrunc(const User &I) {
3406   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3407   SDValue N = getValue(I.getOperand(0));
3408   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3409                                                         I.getType());
3410   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3411 }
3412 
3413 void SelectionDAGBuilder::visitZExt(const User &I) {
3414   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3415   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3416   SDValue N = getValue(I.getOperand(0));
3417   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3418                                                         I.getType());
3419   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3420 }
3421 
3422 void SelectionDAGBuilder::visitSExt(const User &I) {
3423   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3424   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3425   SDValue N = getValue(I.getOperand(0));
3426   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3427                                                         I.getType());
3428   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3429 }
3430 
3431 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3432   // FPTrunc is never a no-op cast, no need to check
3433   SDValue N = getValue(I.getOperand(0));
3434   SDLoc dl = getCurSDLoc();
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3437   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3438                            DAG.getTargetConstant(
3439                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3440 }
3441 
3442 void SelectionDAGBuilder::visitFPExt(const User &I) {
3443   // FPExt is never a no-op cast, no need to check
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3451   // FPToUI is never a no-op cast, no need to check
3452   SDValue N = getValue(I.getOperand(0));
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3456 }
3457 
3458 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3459   // FPToSI is never a no-op cast, no need to check
3460   SDValue N = getValue(I.getOperand(0));
3461   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3462                                                         I.getType());
3463   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3464 }
3465 
3466 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3467   // UIToFP is never a no-op cast, no need to check
3468   SDValue N = getValue(I.getOperand(0));
3469   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3470                                                         I.getType());
3471   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3472 }
3473 
3474 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3475   // SIToFP is never a no-op cast, no need to check
3476   SDValue N = getValue(I.getOperand(0));
3477   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3478                                                         I.getType());
3479   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3480 }
3481 
3482 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3483   // What to do depends on the size of the integer and the size of the pointer.
3484   // We can either truncate, zero extend, or no-op, accordingly.
3485   SDValue N = getValue(I.getOperand(0));
3486   auto &TLI = DAG.getTargetLoweringInfo();
3487   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3488                                                         I.getType());
3489   EVT PtrMemVT =
3490       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3491   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3492   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3493   setValue(&I, N);
3494 }
3495 
3496 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3497   // What to do depends on the size of the integer and the size of the pointer.
3498   // We can either truncate, zero extend, or no-op, accordingly.
3499   SDValue N = getValue(I.getOperand(0));
3500   auto &TLI = DAG.getTargetLoweringInfo();
3501   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3502   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3503   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3504   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3505   setValue(&I, N);
3506 }
3507 
3508 void SelectionDAGBuilder::visitBitCast(const User &I) {
3509   SDValue N = getValue(I.getOperand(0));
3510   SDLoc dl = getCurSDLoc();
3511   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3512                                                         I.getType());
3513 
3514   // BitCast assures us that source and destination are the same size so this is
3515   // either a BITCAST or a no-op.
3516   if (DestVT != N.getValueType())
3517     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3518                              DestVT, N)); // convert types.
3519   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3520   // might fold any kind of constant expression to an integer constant and that
3521   // is not what we are looking for. Only recognize a bitcast of a genuine
3522   // constant integer as an opaque constant.
3523   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3524     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3525                                  /*isOpaque*/true));
3526   else
3527     setValue(&I, N);            // noop cast.
3528 }
3529 
3530 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3532   const Value *SV = I.getOperand(0);
3533   SDValue N = getValue(SV);
3534   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3535 
3536   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3537   unsigned DestAS = I.getType()->getPointerAddressSpace();
3538 
3539   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3540     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3541 
3542   setValue(&I, N);
3543 }
3544 
3545 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3547   SDValue InVec = getValue(I.getOperand(0));
3548   SDValue InVal = getValue(I.getOperand(1));
3549   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3550                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3551   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3552                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3553                            InVec, InVal, InIdx));
3554 }
3555 
3556 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3558   SDValue InVec = getValue(I.getOperand(0));
3559   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3560                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3561   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3562                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3563                            InVec, InIdx));
3564 }
3565 
3566 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3567   SDValue Src1 = getValue(I.getOperand(0));
3568   SDValue Src2 = getValue(I.getOperand(1));
3569   ArrayRef<int> Mask;
3570   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3571     Mask = SVI->getShuffleMask();
3572   else
3573     Mask = cast<ConstantExpr>(I).getShuffleMask();
3574   SDLoc DL = getCurSDLoc();
3575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3576   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3577   EVT SrcVT = Src1.getValueType();
3578 
3579   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3580       VT.isScalableVector()) {
3581     // Canonical splat form of first element of first input vector.
3582     SDValue FirstElt =
3583         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3584                     DAG.getVectorIdxConstant(0, DL));
3585     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3586     return;
3587   }
3588 
3589   // For now, we only handle splats for scalable vectors.
3590   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3591   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3592   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3593 
3594   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3595   unsigned MaskNumElts = Mask.size();
3596 
3597   if (SrcNumElts == MaskNumElts) {
3598     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3599     return;
3600   }
3601 
3602   // Normalize the shuffle vector since mask and vector length don't match.
3603   if (SrcNumElts < MaskNumElts) {
3604     // Mask is longer than the source vectors. We can use concatenate vector to
3605     // make the mask and vectors lengths match.
3606 
3607     if (MaskNumElts % SrcNumElts == 0) {
3608       // Mask length is a multiple of the source vector length.
3609       // Check if the shuffle is some kind of concatenation of the input
3610       // vectors.
3611       unsigned NumConcat = MaskNumElts / SrcNumElts;
3612       bool IsConcat = true;
3613       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3614       for (unsigned i = 0; i != MaskNumElts; ++i) {
3615         int Idx = Mask[i];
3616         if (Idx < 0)
3617           continue;
3618         // Ensure the indices in each SrcVT sized piece are sequential and that
3619         // the same source is used for the whole piece.
3620         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3621             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3622              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3623           IsConcat = false;
3624           break;
3625         }
3626         // Remember which source this index came from.
3627         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3628       }
3629 
3630       // The shuffle is concatenating multiple vectors together. Just emit
3631       // a CONCAT_VECTORS operation.
3632       if (IsConcat) {
3633         SmallVector<SDValue, 8> ConcatOps;
3634         for (auto Src : ConcatSrcs) {
3635           if (Src < 0)
3636             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3637           else if (Src == 0)
3638             ConcatOps.push_back(Src1);
3639           else
3640             ConcatOps.push_back(Src2);
3641         }
3642         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3643         return;
3644       }
3645     }
3646 
3647     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3648     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3649     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3650                                     PaddedMaskNumElts);
3651 
3652     // Pad both vectors with undefs to make them the same length as the mask.
3653     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3654 
3655     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3656     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3657     MOps1[0] = Src1;
3658     MOps2[0] = Src2;
3659 
3660     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3661     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3662 
3663     // Readjust mask for new input vector length.
3664     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3665     for (unsigned i = 0; i != MaskNumElts; ++i) {
3666       int Idx = Mask[i];
3667       if (Idx >= (int)SrcNumElts)
3668         Idx -= SrcNumElts - PaddedMaskNumElts;
3669       MappedOps[i] = Idx;
3670     }
3671 
3672     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3673 
3674     // If the concatenated vector was padded, extract a subvector with the
3675     // correct number of elements.
3676     if (MaskNumElts != PaddedMaskNumElts)
3677       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3678                            DAG.getVectorIdxConstant(0, DL));
3679 
3680     setValue(&I, Result);
3681     return;
3682   }
3683 
3684   if (SrcNumElts > MaskNumElts) {
3685     // Analyze the access pattern of the vector to see if we can extract
3686     // two subvectors and do the shuffle.
3687     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3688     bool CanExtract = true;
3689     for (int Idx : Mask) {
3690       unsigned Input = 0;
3691       if (Idx < 0)
3692         continue;
3693 
3694       if (Idx >= (int)SrcNumElts) {
3695         Input = 1;
3696         Idx -= SrcNumElts;
3697       }
3698 
3699       // If all the indices come from the same MaskNumElts sized portion of
3700       // the sources we can use extract. Also make sure the extract wouldn't
3701       // extract past the end of the source.
3702       int NewStartIdx = alignDown(Idx, MaskNumElts);
3703       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3704           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3705         CanExtract = false;
3706       // Make sure we always update StartIdx as we use it to track if all
3707       // elements are undef.
3708       StartIdx[Input] = NewStartIdx;
3709     }
3710 
3711     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3712       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3713       return;
3714     }
3715     if (CanExtract) {
3716       // Extract appropriate subvector and generate a vector shuffle
3717       for (unsigned Input = 0; Input < 2; ++Input) {
3718         SDValue &Src = Input == 0 ? Src1 : Src2;
3719         if (StartIdx[Input] < 0)
3720           Src = DAG.getUNDEF(VT);
3721         else {
3722           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3723                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3724         }
3725       }
3726 
3727       // Calculate new mask.
3728       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3729       for (int &Idx : MappedOps) {
3730         if (Idx >= (int)SrcNumElts)
3731           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3732         else if (Idx >= 0)
3733           Idx -= StartIdx[0];
3734       }
3735 
3736       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3737       return;
3738     }
3739   }
3740 
3741   // We can't use either concat vectors or extract subvectors so fall back to
3742   // replacing the shuffle with extract and build vector.
3743   // to insert and build vector.
3744   EVT EltVT = VT.getVectorElementType();
3745   SmallVector<SDValue,8> Ops;
3746   for (int Idx : Mask) {
3747     SDValue Res;
3748 
3749     if (Idx < 0) {
3750       Res = DAG.getUNDEF(EltVT);
3751     } else {
3752       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3753       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3754 
3755       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3756                         DAG.getVectorIdxConstant(Idx, DL));
3757     }
3758 
3759     Ops.push_back(Res);
3760   }
3761 
3762   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3763 }
3764 
3765 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3766   ArrayRef<unsigned> Indices;
3767   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3768     Indices = IV->getIndices();
3769   else
3770     Indices = cast<ConstantExpr>(&I)->getIndices();
3771 
3772   const Value *Op0 = I.getOperand(0);
3773   const Value *Op1 = I.getOperand(1);
3774   Type *AggTy = I.getType();
3775   Type *ValTy = Op1->getType();
3776   bool IntoUndef = isa<UndefValue>(Op0);
3777   bool FromUndef = isa<UndefValue>(Op1);
3778 
3779   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3780 
3781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3782   SmallVector<EVT, 4> AggValueVTs;
3783   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3784   SmallVector<EVT, 4> ValValueVTs;
3785   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3786 
3787   unsigned NumAggValues = AggValueVTs.size();
3788   unsigned NumValValues = ValValueVTs.size();
3789   SmallVector<SDValue, 4> Values(NumAggValues);
3790 
3791   // Ignore an insertvalue that produces an empty object
3792   if (!NumAggValues) {
3793     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3794     return;
3795   }
3796 
3797   SDValue Agg = getValue(Op0);
3798   unsigned i = 0;
3799   // Copy the beginning value(s) from the original aggregate.
3800   for (; i != LinearIndex; ++i)
3801     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3802                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3803   // Copy values from the inserted value(s).
3804   if (NumValValues) {
3805     SDValue Val = getValue(Op1);
3806     for (; i != LinearIndex + NumValValues; ++i)
3807       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3808                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3809   }
3810   // Copy remaining value(s) from the original aggregate.
3811   for (; i != NumAggValues; ++i)
3812     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3813                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3814 
3815   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3816                            DAG.getVTList(AggValueVTs), Values));
3817 }
3818 
3819 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3820   ArrayRef<unsigned> Indices;
3821   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3822     Indices = EV->getIndices();
3823   else
3824     Indices = cast<ConstantExpr>(&I)->getIndices();
3825 
3826   const Value *Op0 = I.getOperand(0);
3827   Type *AggTy = Op0->getType();
3828   Type *ValTy = I.getType();
3829   bool OutOfUndef = isa<UndefValue>(Op0);
3830 
3831   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3832 
3833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3834   SmallVector<EVT, 4> ValValueVTs;
3835   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3836 
3837   unsigned NumValValues = ValValueVTs.size();
3838 
3839   // Ignore a extractvalue that produces an empty object
3840   if (!NumValValues) {
3841     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3842     return;
3843   }
3844 
3845   SmallVector<SDValue, 4> Values(NumValValues);
3846 
3847   SDValue Agg = getValue(Op0);
3848   // Copy out the selected value(s).
3849   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3850     Values[i - LinearIndex] =
3851       OutOfUndef ?
3852         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3853         SDValue(Agg.getNode(), Agg.getResNo() + i);
3854 
3855   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3856                            DAG.getVTList(ValValueVTs), Values));
3857 }
3858 
3859 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3860   Value *Op0 = I.getOperand(0);
3861   // Note that the pointer operand may be a vector of pointers. Take the scalar
3862   // element which holds a pointer.
3863   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3864   SDValue N = getValue(Op0);
3865   SDLoc dl = getCurSDLoc();
3866   auto &TLI = DAG.getTargetLoweringInfo();
3867 
3868   // Normalize Vector GEP - all scalar operands should be converted to the
3869   // splat vector.
3870   bool IsVectorGEP = I.getType()->isVectorTy();
3871   ElementCount VectorElementCount =
3872       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3873                   : ElementCount::getFixed(0);
3874 
3875   if (IsVectorGEP && !N.getValueType().isVector()) {
3876     LLVMContext &Context = *DAG.getContext();
3877     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3878     if (VectorElementCount.isScalable())
3879       N = DAG.getSplatVector(VT, dl, N);
3880     else
3881       N = DAG.getSplatBuildVector(VT, dl, N);
3882   }
3883 
3884   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3885        GTI != E; ++GTI) {
3886     const Value *Idx = GTI.getOperand();
3887     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3888       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3889       if (Field) {
3890         // N = N + Offset
3891         uint64_t Offset =
3892             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3893 
3894         // In an inbounds GEP with an offset that is nonnegative even when
3895         // interpreted as signed, assume there is no unsigned overflow.
3896         SDNodeFlags Flags;
3897         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3898           Flags.setNoUnsignedWrap(true);
3899 
3900         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3901                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3902       }
3903     } else {
3904       // IdxSize is the width of the arithmetic according to IR semantics.
3905       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3906       // (and fix up the result later).
3907       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3908       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3909       TypeSize ElementSize =
3910           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3911       // We intentionally mask away the high bits here; ElementSize may not
3912       // fit in IdxTy.
3913       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3914       bool ElementScalable = ElementSize.isScalable();
3915 
3916       // If this is a scalar constant or a splat vector of constants,
3917       // handle it quickly.
3918       const auto *C = dyn_cast<Constant>(Idx);
3919       if (C && isa<VectorType>(C->getType()))
3920         C = C->getSplatValue();
3921 
3922       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3923       if (CI && CI->isZero())
3924         continue;
3925       if (CI && !ElementScalable) {
3926         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3927         LLVMContext &Context = *DAG.getContext();
3928         SDValue OffsVal;
3929         if (IsVectorGEP)
3930           OffsVal = DAG.getConstant(
3931               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3932         else
3933           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3934 
3935         // In an inbounds GEP with an offset that is nonnegative even when
3936         // interpreted as signed, assume there is no unsigned overflow.
3937         SDNodeFlags Flags;
3938         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3939           Flags.setNoUnsignedWrap(true);
3940 
3941         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3942 
3943         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3944         continue;
3945       }
3946 
3947       // N = N + Idx * ElementMul;
3948       SDValue IdxN = getValue(Idx);
3949 
3950       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3951         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3952                                   VectorElementCount);
3953         if (VectorElementCount.isScalable())
3954           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3955         else
3956           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3957       }
3958 
3959       // If the index is smaller or larger than intptr_t, truncate or extend
3960       // it.
3961       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3962 
3963       if (ElementScalable) {
3964         EVT VScaleTy = N.getValueType().getScalarType();
3965         SDValue VScale = DAG.getNode(
3966             ISD::VSCALE, dl, VScaleTy,
3967             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3968         if (IsVectorGEP)
3969           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3970         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3971       } else {
3972         // If this is a multiply by a power of two, turn it into a shl
3973         // immediately.  This is a very common case.
3974         if (ElementMul != 1) {
3975           if (ElementMul.isPowerOf2()) {
3976             unsigned Amt = ElementMul.logBase2();
3977             IdxN = DAG.getNode(ISD::SHL, dl,
3978                                N.getValueType(), IdxN,
3979                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3980           } else {
3981             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3982                                             IdxN.getValueType());
3983             IdxN = DAG.getNode(ISD::MUL, dl,
3984                                N.getValueType(), IdxN, Scale);
3985           }
3986         }
3987       }
3988 
3989       N = DAG.getNode(ISD::ADD, dl,
3990                       N.getValueType(), N, IdxN);
3991     }
3992   }
3993 
3994   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3995   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3996   if (IsVectorGEP) {
3997     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3998     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3999   }
4000 
4001   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4002     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4003 
4004   setValue(&I, N);
4005 }
4006 
4007 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4008   // If this is a fixed sized alloca in the entry block of the function,
4009   // allocate it statically on the stack.
4010   if (FuncInfo.StaticAllocaMap.count(&I))
4011     return;   // getValue will auto-populate this.
4012 
4013   SDLoc dl = getCurSDLoc();
4014   Type *Ty = I.getAllocatedType();
4015   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4016   auto &DL = DAG.getDataLayout();
4017   uint64_t TySize = DL.getTypeAllocSize(Ty);
4018   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4019 
4020   SDValue AllocSize = getValue(I.getArraySize());
4021 
4022   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4023   if (AllocSize.getValueType() != IntPtr)
4024     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4025 
4026   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4027                           AllocSize,
4028                           DAG.getConstant(TySize, dl, IntPtr));
4029 
4030   // Handle alignment.  If the requested alignment is less than or equal to
4031   // the stack alignment, ignore it.  If the size is greater than or equal to
4032   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4033   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4034   if (*Alignment <= StackAlign)
4035     Alignment = None;
4036 
4037   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4038   // Round the size of the allocation up to the stack alignment size
4039   // by add SA-1 to the size. This doesn't overflow because we're computing
4040   // an address inside an alloca.
4041   SDNodeFlags Flags;
4042   Flags.setNoUnsignedWrap(true);
4043   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4044                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4045 
4046   // Mask out the low bits for alignment purposes.
4047   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4048                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4049 
4050   SDValue Ops[] = {
4051       getRoot(), AllocSize,
4052       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4053   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4054   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4055   setValue(&I, DSA);
4056   DAG.setRoot(DSA.getValue(1));
4057 
4058   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4059 }
4060 
4061 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4062   if (I.isAtomic())
4063     return visitAtomicLoad(I);
4064 
4065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4066   const Value *SV = I.getOperand(0);
4067   if (TLI.supportSwiftError()) {
4068     // Swifterror values can come from either a function parameter with
4069     // swifterror attribute or an alloca with swifterror attribute.
4070     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4071       if (Arg->hasSwiftErrorAttr())
4072         return visitLoadFromSwiftError(I);
4073     }
4074 
4075     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4076       if (Alloca->isSwiftError())
4077         return visitLoadFromSwiftError(I);
4078     }
4079   }
4080 
4081   SDValue Ptr = getValue(SV);
4082 
4083   Type *Ty = I.getType();
4084   Align Alignment = I.getAlign();
4085 
4086   AAMDNodes AAInfo = I.getAAMetadata();
4087   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4088 
4089   SmallVector<EVT, 4> ValueVTs, MemVTs;
4090   SmallVector<uint64_t, 4> Offsets;
4091   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4092   unsigned NumValues = ValueVTs.size();
4093   if (NumValues == 0)
4094     return;
4095 
4096   bool isVolatile = I.isVolatile();
4097 
4098   SDValue Root;
4099   bool ConstantMemory = false;
4100   if (isVolatile)
4101     // Serialize volatile loads with other side effects.
4102     Root = getRoot();
4103   else if (NumValues > MaxParallelChains)
4104     Root = getMemoryRoot();
4105   else if (AA &&
4106            AA->pointsToConstantMemory(MemoryLocation(
4107                SV,
4108                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4109                AAInfo))) {
4110     // Do not serialize (non-volatile) loads of constant memory with anything.
4111     Root = DAG.getEntryNode();
4112     ConstantMemory = true;
4113   } else {
4114     // Do not serialize non-volatile loads against each other.
4115     Root = DAG.getRoot();
4116   }
4117 
4118   SDLoc dl = getCurSDLoc();
4119 
4120   if (isVolatile)
4121     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4122 
4123   // An aggregate load cannot wrap around the address space, so offsets to its
4124   // parts don't wrap either.
4125   SDNodeFlags Flags;
4126   Flags.setNoUnsignedWrap(true);
4127 
4128   SmallVector<SDValue, 4> Values(NumValues);
4129   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4130   EVT PtrVT = Ptr.getValueType();
4131 
4132   MachineMemOperand::Flags MMOFlags
4133     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4134 
4135   unsigned ChainI = 0;
4136   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4137     // Serializing loads here may result in excessive register pressure, and
4138     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4139     // could recover a bit by hoisting nodes upward in the chain by recognizing
4140     // they are side-effect free or do not alias. The optimizer should really
4141     // avoid this case by converting large object/array copies to llvm.memcpy
4142     // (MaxParallelChains should always remain as failsafe).
4143     if (ChainI == MaxParallelChains) {
4144       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4145       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4146                                   makeArrayRef(Chains.data(), ChainI));
4147       Root = Chain;
4148       ChainI = 0;
4149     }
4150     SDValue A = DAG.getNode(ISD::ADD, dl,
4151                             PtrVT, Ptr,
4152                             DAG.getConstant(Offsets[i], dl, PtrVT),
4153                             Flags);
4154 
4155     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4156                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4157                             MMOFlags, AAInfo, Ranges);
4158     Chains[ChainI] = L.getValue(1);
4159 
4160     if (MemVTs[i] != ValueVTs[i])
4161       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4162 
4163     Values[i] = L;
4164   }
4165 
4166   if (!ConstantMemory) {
4167     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4168                                 makeArrayRef(Chains.data(), ChainI));
4169     if (isVolatile)
4170       DAG.setRoot(Chain);
4171     else
4172       PendingLoads.push_back(Chain);
4173   }
4174 
4175   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4176                            DAG.getVTList(ValueVTs), Values));
4177 }
4178 
4179 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4180   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4181          "call visitStoreToSwiftError when backend supports swifterror");
4182 
4183   SmallVector<EVT, 4> ValueVTs;
4184   SmallVector<uint64_t, 4> Offsets;
4185   const Value *SrcV = I.getOperand(0);
4186   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4187                   SrcV->getType(), ValueVTs, &Offsets);
4188   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4189          "expect a single EVT for swifterror");
4190 
4191   SDValue Src = getValue(SrcV);
4192   // Create a virtual register, then update the virtual register.
4193   Register VReg =
4194       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4195   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4196   // Chain can be getRoot or getControlRoot.
4197   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4198                                       SDValue(Src.getNode(), Src.getResNo()));
4199   DAG.setRoot(CopyNode);
4200 }
4201 
4202 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4203   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4204          "call visitLoadFromSwiftError when backend supports swifterror");
4205 
4206   assert(!I.isVolatile() &&
4207          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4208          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4209          "Support volatile, non temporal, invariant for load_from_swift_error");
4210 
4211   const Value *SV = I.getOperand(0);
4212   Type *Ty = I.getType();
4213   assert(
4214       (!AA ||
4215        !AA->pointsToConstantMemory(MemoryLocation(
4216            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4217            I.getAAMetadata()))) &&
4218       "load_from_swift_error should not be constant memory");
4219 
4220   SmallVector<EVT, 4> ValueVTs;
4221   SmallVector<uint64_t, 4> Offsets;
4222   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4223                   ValueVTs, &Offsets);
4224   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4225          "expect a single EVT for swifterror");
4226 
4227   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4228   SDValue L = DAG.getCopyFromReg(
4229       getRoot(), getCurSDLoc(),
4230       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4231 
4232   setValue(&I, L);
4233 }
4234 
4235 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4236   if (I.isAtomic())
4237     return visitAtomicStore(I);
4238 
4239   const Value *SrcV = I.getOperand(0);
4240   const Value *PtrV = I.getOperand(1);
4241 
4242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4243   if (TLI.supportSwiftError()) {
4244     // Swifterror values can come from either a function parameter with
4245     // swifterror attribute or an alloca with swifterror attribute.
4246     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4247       if (Arg->hasSwiftErrorAttr())
4248         return visitStoreToSwiftError(I);
4249     }
4250 
4251     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4252       if (Alloca->isSwiftError())
4253         return visitStoreToSwiftError(I);
4254     }
4255   }
4256 
4257   SmallVector<EVT, 4> ValueVTs, MemVTs;
4258   SmallVector<uint64_t, 4> Offsets;
4259   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4260                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4261   unsigned NumValues = ValueVTs.size();
4262   if (NumValues == 0)
4263     return;
4264 
4265   // Get the lowered operands. Note that we do this after
4266   // checking if NumResults is zero, because with zero results
4267   // the operands won't have values in the map.
4268   SDValue Src = getValue(SrcV);
4269   SDValue Ptr = getValue(PtrV);
4270 
4271   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4272   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4273   SDLoc dl = getCurSDLoc();
4274   Align Alignment = I.getAlign();
4275   AAMDNodes AAInfo = I.getAAMetadata();
4276 
4277   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4278 
4279   // An aggregate load cannot wrap around the address space, so offsets to its
4280   // parts don't wrap either.
4281   SDNodeFlags Flags;
4282   Flags.setNoUnsignedWrap(true);
4283 
4284   unsigned ChainI = 0;
4285   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4286     // See visitLoad comments.
4287     if (ChainI == MaxParallelChains) {
4288       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4289                                   makeArrayRef(Chains.data(), ChainI));
4290       Root = Chain;
4291       ChainI = 0;
4292     }
4293     SDValue Add =
4294         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4295     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4296     if (MemVTs[i] != ValueVTs[i])
4297       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4298     SDValue St =
4299         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4300                      Alignment, MMOFlags, AAInfo);
4301     Chains[ChainI] = St;
4302   }
4303 
4304   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4305                                   makeArrayRef(Chains.data(), ChainI));
4306   DAG.setRoot(StoreNode);
4307 }
4308 
4309 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4310                                            bool IsCompressing) {
4311   SDLoc sdl = getCurSDLoc();
4312 
4313   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4314                                MaybeAlign &Alignment) {
4315     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4316     Src0 = I.getArgOperand(0);
4317     Ptr = I.getArgOperand(1);
4318     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4319     Mask = I.getArgOperand(3);
4320   };
4321   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4322                                     MaybeAlign &Alignment) {
4323     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4324     Src0 = I.getArgOperand(0);
4325     Ptr = I.getArgOperand(1);
4326     Mask = I.getArgOperand(2);
4327     Alignment = None;
4328   };
4329 
4330   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4331   MaybeAlign Alignment;
4332   if (IsCompressing)
4333     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4334   else
4335     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4336 
4337   SDValue Ptr = getValue(PtrOperand);
4338   SDValue Src0 = getValue(Src0Operand);
4339   SDValue Mask = getValue(MaskOperand);
4340   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4341 
4342   EVT VT = Src0.getValueType();
4343   if (!Alignment)
4344     Alignment = DAG.getEVTAlign(VT);
4345 
4346   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4347       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4348       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4349   SDValue StoreNode =
4350       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4351                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4352   DAG.setRoot(StoreNode);
4353   setValue(&I, StoreNode);
4354 }
4355 
4356 // Get a uniform base for the Gather/Scatter intrinsic.
4357 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4358 // We try to represent it as a base pointer + vector of indices.
4359 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4360 // The first operand of the GEP may be a single pointer or a vector of pointers
4361 // Example:
4362 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4363 //  or
4364 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4365 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4366 //
4367 // When the first GEP operand is a single pointer - it is the uniform base we
4368 // are looking for. If first operand of the GEP is a splat vector - we
4369 // extract the splat value and use it as a uniform base.
4370 // In all other cases the function returns 'false'.
4371 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4372                            ISD::MemIndexType &IndexType, SDValue &Scale,
4373                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4374   SelectionDAG& DAG = SDB->DAG;
4375   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4376   const DataLayout &DL = DAG.getDataLayout();
4377 
4378   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4379 
4380   // Handle splat constant pointer.
4381   if (auto *C = dyn_cast<Constant>(Ptr)) {
4382     C = C->getSplatValue();
4383     if (!C)
4384       return false;
4385 
4386     Base = SDB->getValue(C);
4387 
4388     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4389     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4390     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4391     IndexType = ISD::SIGNED_SCALED;
4392     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4393     return true;
4394   }
4395 
4396   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4397   if (!GEP || GEP->getParent() != CurBB)
4398     return false;
4399 
4400   if (GEP->getNumOperands() != 2)
4401     return false;
4402 
4403   const Value *BasePtr = GEP->getPointerOperand();
4404   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4405 
4406   // Make sure the base is scalar and the index is a vector.
4407   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4408     return false;
4409 
4410   Base = SDB->getValue(BasePtr);
4411   Index = SDB->getValue(IndexVal);
4412   IndexType = ISD::SIGNED_SCALED;
4413   Scale = DAG.getTargetConstant(
4414               DL.getTypeAllocSize(GEP->getResultElementType()),
4415               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4416   return true;
4417 }
4418 
4419 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4420   SDLoc sdl = getCurSDLoc();
4421 
4422   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4423   const Value *Ptr = I.getArgOperand(1);
4424   SDValue Src0 = getValue(I.getArgOperand(0));
4425   SDValue Mask = getValue(I.getArgOperand(3));
4426   EVT VT = Src0.getValueType();
4427   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4428                         ->getMaybeAlignValue()
4429                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4431 
4432   SDValue Base;
4433   SDValue Index;
4434   ISD::MemIndexType IndexType;
4435   SDValue Scale;
4436   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4437                                     I.getParent());
4438 
4439   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4440   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4441       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4442       // TODO: Make MachineMemOperands aware of scalable
4443       // vectors.
4444       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4445   if (!UniformBase) {
4446     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4447     Index = getValue(Ptr);
4448     IndexType = ISD::SIGNED_UNSCALED;
4449     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4450   }
4451 
4452   EVT IdxVT = Index.getValueType();
4453   EVT EltTy = IdxVT.getVectorElementType();
4454   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4455     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4456     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4457   }
4458 
4459   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4460   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4461                                          Ops, MMO, IndexType, false);
4462   DAG.setRoot(Scatter);
4463   setValue(&I, Scatter);
4464 }
4465 
4466 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4467   SDLoc sdl = getCurSDLoc();
4468 
4469   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4470                               MaybeAlign &Alignment) {
4471     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4472     Ptr = I.getArgOperand(0);
4473     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4474     Mask = I.getArgOperand(2);
4475     Src0 = I.getArgOperand(3);
4476   };
4477   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4478                                  MaybeAlign &Alignment) {
4479     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4480     Ptr = I.getArgOperand(0);
4481     Alignment = None;
4482     Mask = I.getArgOperand(1);
4483     Src0 = I.getArgOperand(2);
4484   };
4485 
4486   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4487   MaybeAlign Alignment;
4488   if (IsExpanding)
4489     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4490   else
4491     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4492 
4493   SDValue Ptr = getValue(PtrOperand);
4494   SDValue Src0 = getValue(Src0Operand);
4495   SDValue Mask = getValue(MaskOperand);
4496   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4497 
4498   EVT VT = Src0.getValueType();
4499   if (!Alignment)
4500     Alignment = DAG.getEVTAlign(VT);
4501 
4502   AAMDNodes AAInfo = I.getAAMetadata();
4503   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4504 
4505   // Do not serialize masked loads of constant memory with anything.
4506   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4507   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4508 
4509   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4510 
4511   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4512       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4513       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4514 
4515   SDValue Load =
4516       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4517                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4518   if (AddToChain)
4519     PendingLoads.push_back(Load.getValue(1));
4520   setValue(&I, Load);
4521 }
4522 
4523 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4524   SDLoc sdl = getCurSDLoc();
4525 
4526   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4527   const Value *Ptr = I.getArgOperand(0);
4528   SDValue Src0 = getValue(I.getArgOperand(3));
4529   SDValue Mask = getValue(I.getArgOperand(2));
4530 
4531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4532   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4533   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4534                         ->getMaybeAlignValue()
4535                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4536 
4537   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4538 
4539   SDValue Root = DAG.getRoot();
4540   SDValue Base;
4541   SDValue Index;
4542   ISD::MemIndexType IndexType;
4543   SDValue Scale;
4544   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4545                                     I.getParent());
4546   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4547   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4548       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4549       // TODO: Make MachineMemOperands aware of scalable
4550       // vectors.
4551       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4552 
4553   if (!UniformBase) {
4554     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4555     Index = getValue(Ptr);
4556     IndexType = ISD::SIGNED_UNSCALED;
4557     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4558   }
4559 
4560   EVT IdxVT = Index.getValueType();
4561   EVT EltTy = IdxVT.getVectorElementType();
4562   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4563     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4564     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4565   }
4566 
4567   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4568   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4569                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4570 
4571   PendingLoads.push_back(Gather.getValue(1));
4572   setValue(&I, Gather);
4573 }
4574 
4575 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4576   SDLoc dl = getCurSDLoc();
4577   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4578   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4579   SyncScope::ID SSID = I.getSyncScopeID();
4580 
4581   SDValue InChain = getRoot();
4582 
4583   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4584   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4585 
4586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4587   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4588 
4589   MachineFunction &MF = DAG.getMachineFunction();
4590   MachineMemOperand *MMO = MF.getMachineMemOperand(
4591       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4592       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4593       FailureOrdering);
4594 
4595   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4596                                    dl, MemVT, VTs, InChain,
4597                                    getValue(I.getPointerOperand()),
4598                                    getValue(I.getCompareOperand()),
4599                                    getValue(I.getNewValOperand()), MMO);
4600 
4601   SDValue OutChain = L.getValue(2);
4602 
4603   setValue(&I, L);
4604   DAG.setRoot(OutChain);
4605 }
4606 
4607 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4608   SDLoc dl = getCurSDLoc();
4609   ISD::NodeType NT;
4610   switch (I.getOperation()) {
4611   default: llvm_unreachable("Unknown atomicrmw operation");
4612   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4613   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4614   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4615   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4616   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4617   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4618   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4619   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4620   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4621   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4622   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4623   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4624   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4625   }
4626   AtomicOrdering Ordering = I.getOrdering();
4627   SyncScope::ID SSID = I.getSyncScopeID();
4628 
4629   SDValue InChain = getRoot();
4630 
4631   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4633   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4634 
4635   MachineFunction &MF = DAG.getMachineFunction();
4636   MachineMemOperand *MMO = MF.getMachineMemOperand(
4637       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4638       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4639 
4640   SDValue L =
4641     DAG.getAtomic(NT, dl, MemVT, InChain,
4642                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4643                   MMO);
4644 
4645   SDValue OutChain = L.getValue(1);
4646 
4647   setValue(&I, L);
4648   DAG.setRoot(OutChain);
4649 }
4650 
4651 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4652   SDLoc dl = getCurSDLoc();
4653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4654   SDValue Ops[3];
4655   Ops[0] = getRoot();
4656   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4657                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4658   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4659                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4660   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4661 }
4662 
4663 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4664   SDLoc dl = getCurSDLoc();
4665   AtomicOrdering Order = I.getOrdering();
4666   SyncScope::ID SSID = I.getSyncScopeID();
4667 
4668   SDValue InChain = getRoot();
4669 
4670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4671   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4672   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4673 
4674   if (!TLI.supportsUnalignedAtomics() &&
4675       I.getAlignment() < MemVT.getSizeInBits() / 8)
4676     report_fatal_error("Cannot generate unaligned atomic load");
4677 
4678   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4679 
4680   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4681       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4682       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4683 
4684   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4685 
4686   SDValue Ptr = getValue(I.getPointerOperand());
4687 
4688   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4689     // TODO: Once this is better exercised by tests, it should be merged with
4690     // the normal path for loads to prevent future divergence.
4691     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4692     if (MemVT != VT)
4693       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4694 
4695     setValue(&I, L);
4696     SDValue OutChain = L.getValue(1);
4697     if (!I.isUnordered())
4698       DAG.setRoot(OutChain);
4699     else
4700       PendingLoads.push_back(OutChain);
4701     return;
4702   }
4703 
4704   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4705                             Ptr, MMO);
4706 
4707   SDValue OutChain = L.getValue(1);
4708   if (MemVT != VT)
4709     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4710 
4711   setValue(&I, L);
4712   DAG.setRoot(OutChain);
4713 }
4714 
4715 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4716   SDLoc dl = getCurSDLoc();
4717 
4718   AtomicOrdering Ordering = I.getOrdering();
4719   SyncScope::ID SSID = I.getSyncScopeID();
4720 
4721   SDValue InChain = getRoot();
4722 
4723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4724   EVT MemVT =
4725       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4726 
4727   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4728     report_fatal_error("Cannot generate unaligned atomic store");
4729 
4730   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4731 
4732   MachineFunction &MF = DAG.getMachineFunction();
4733   MachineMemOperand *MMO = MF.getMachineMemOperand(
4734       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4735       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4736 
4737   SDValue Val = getValue(I.getValueOperand());
4738   if (Val.getValueType() != MemVT)
4739     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4740   SDValue Ptr = getValue(I.getPointerOperand());
4741 
4742   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4743     // TODO: Once this is better exercised by tests, it should be merged with
4744     // the normal path for stores to prevent future divergence.
4745     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4746     DAG.setRoot(S);
4747     return;
4748   }
4749   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4750                                    Ptr, Val, MMO);
4751 
4752 
4753   DAG.setRoot(OutChain);
4754 }
4755 
4756 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4757 /// node.
4758 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4759                                                unsigned Intrinsic) {
4760   // Ignore the callsite's attributes. A specific call site may be marked with
4761   // readnone, but the lowering code will expect the chain based on the
4762   // definition.
4763   const Function *F = I.getCalledFunction();
4764   bool HasChain = !F->doesNotAccessMemory();
4765   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4766 
4767   // Build the operand list.
4768   SmallVector<SDValue, 8> Ops;
4769   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4770     if (OnlyLoad) {
4771       // We don't need to serialize loads against other loads.
4772       Ops.push_back(DAG.getRoot());
4773     } else {
4774       Ops.push_back(getRoot());
4775     }
4776   }
4777 
4778   // Info is set by getTgtMemInstrinsic
4779   TargetLowering::IntrinsicInfo Info;
4780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4781   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4782                                                DAG.getMachineFunction(),
4783                                                Intrinsic);
4784 
4785   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4786   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4787       Info.opc == ISD::INTRINSIC_W_CHAIN)
4788     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4789                                         TLI.getPointerTy(DAG.getDataLayout())));
4790 
4791   // Add all operands of the call to the operand list.
4792   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4793     const Value *Arg = I.getArgOperand(i);
4794     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4795       Ops.push_back(getValue(Arg));
4796       continue;
4797     }
4798 
4799     // Use TargetConstant instead of a regular constant for immarg.
4800     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4801     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4802       assert(CI->getBitWidth() <= 64 &&
4803              "large intrinsic immediates not handled");
4804       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4805     } else {
4806       Ops.push_back(
4807           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4808     }
4809   }
4810 
4811   SmallVector<EVT, 4> ValueVTs;
4812   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4813 
4814   if (HasChain)
4815     ValueVTs.push_back(MVT::Other);
4816 
4817   SDVTList VTs = DAG.getVTList(ValueVTs);
4818 
4819   // Propagate fast-math-flags from IR to node(s).
4820   SDNodeFlags Flags;
4821   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4822     Flags.copyFMF(*FPMO);
4823   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4824 
4825   // Create the node.
4826   SDValue Result;
4827   if (IsTgtIntrinsic) {
4828     // This is target intrinsic that touches memory
4829     Result =
4830         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4831                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4832                                 Info.align, Info.flags, Info.size,
4833                                 I.getAAMetadata());
4834   } else if (!HasChain) {
4835     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4836   } else if (!I.getType()->isVoidTy()) {
4837     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4838   } else {
4839     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4840   }
4841 
4842   if (HasChain) {
4843     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4844     if (OnlyLoad)
4845       PendingLoads.push_back(Chain);
4846     else
4847       DAG.setRoot(Chain);
4848   }
4849 
4850   if (!I.getType()->isVoidTy()) {
4851     if (!isa<VectorType>(I.getType()))
4852       Result = lowerRangeToAssertZExt(DAG, I, Result);
4853 
4854     MaybeAlign Alignment = I.getRetAlign();
4855     if (!Alignment)
4856       Alignment = F->getAttributes().getRetAlignment();
4857     // Insert `assertalign` node if there's an alignment.
4858     if (InsertAssertAlign && Alignment) {
4859       Result =
4860           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4861     }
4862 
4863     setValue(&I, Result);
4864   }
4865 }
4866 
4867 /// GetSignificand - Get the significand and build it into a floating-point
4868 /// number with exponent of 1:
4869 ///
4870 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4871 ///
4872 /// where Op is the hexadecimal representation of floating point value.
4873 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4874   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4875                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4876   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4877                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4878   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4879 }
4880 
4881 /// GetExponent - Get the exponent:
4882 ///
4883 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4884 ///
4885 /// where Op is the hexadecimal representation of floating point value.
4886 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4887                            const TargetLowering &TLI, const SDLoc &dl) {
4888   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4889                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4890   SDValue t1 = DAG.getNode(
4891       ISD::SRL, dl, MVT::i32, t0,
4892       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4893   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4894                            DAG.getConstant(127, dl, MVT::i32));
4895   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4896 }
4897 
4898 /// getF32Constant - Get 32-bit floating point constant.
4899 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4900                               const SDLoc &dl) {
4901   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4902                            MVT::f32);
4903 }
4904 
4905 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4906                                        SelectionDAG &DAG) {
4907   // TODO: What fast-math-flags should be set on the floating-point nodes?
4908 
4909   //   IntegerPartOfX = ((int32_t)(t0);
4910   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4911 
4912   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4913   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4914   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4915 
4916   //   IntegerPartOfX <<= 23;
4917   IntegerPartOfX = DAG.getNode(
4918       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4919       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4920                                   DAG.getDataLayout())));
4921 
4922   SDValue TwoToFractionalPartOfX;
4923   if (LimitFloatPrecision <= 6) {
4924     // For floating-point precision of 6:
4925     //
4926     //   TwoToFractionalPartOfX =
4927     //     0.997535578f +
4928     //       (0.735607626f + 0.252464424f * x) * x;
4929     //
4930     // error 0.0144103317, which is 6 bits
4931     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4932                              getF32Constant(DAG, 0x3e814304, dl));
4933     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4934                              getF32Constant(DAG, 0x3f3c50c8, dl));
4935     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4936     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4937                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4938   } else if (LimitFloatPrecision <= 12) {
4939     // For floating-point precision of 12:
4940     //
4941     //   TwoToFractionalPartOfX =
4942     //     0.999892986f +
4943     //       (0.696457318f +
4944     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4945     //
4946     // error 0.000107046256, which is 13 to 14 bits
4947     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4948                              getF32Constant(DAG, 0x3da235e3, dl));
4949     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4950                              getF32Constant(DAG, 0x3e65b8f3, dl));
4951     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4952     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4953                              getF32Constant(DAG, 0x3f324b07, dl));
4954     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4955     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4956                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4957   } else { // LimitFloatPrecision <= 18
4958     // For floating-point precision of 18:
4959     //
4960     //   TwoToFractionalPartOfX =
4961     //     0.999999982f +
4962     //       (0.693148872f +
4963     //         (0.240227044f +
4964     //           (0.554906021e-1f +
4965     //             (0.961591928e-2f +
4966     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4967     // error 2.47208000*10^(-7), which is better than 18 bits
4968     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4969                              getF32Constant(DAG, 0x3924b03e, dl));
4970     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4971                              getF32Constant(DAG, 0x3ab24b87, dl));
4972     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4973     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4974                              getF32Constant(DAG, 0x3c1d8c17, dl));
4975     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4976     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4977                              getF32Constant(DAG, 0x3d634a1d, dl));
4978     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4979     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4980                              getF32Constant(DAG, 0x3e75fe14, dl));
4981     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4982     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4983                               getF32Constant(DAG, 0x3f317234, dl));
4984     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4985     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4986                                          getF32Constant(DAG, 0x3f800000, dl));
4987   }
4988 
4989   // Add the exponent into the result in integer domain.
4990   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4991   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4992                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4993 }
4994 
4995 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4996 /// limited-precision mode.
4997 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4998                          const TargetLowering &TLI, SDNodeFlags Flags) {
4999   if (Op.getValueType() == MVT::f32 &&
5000       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5001 
5002     // Put the exponent in the right bit position for later addition to the
5003     // final result:
5004     //
5005     // t0 = Op * log2(e)
5006 
5007     // TODO: What fast-math-flags should be set here?
5008     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5009                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5010     return getLimitedPrecisionExp2(t0, dl, DAG);
5011   }
5012 
5013   // No special expansion.
5014   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5015 }
5016 
5017 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5018 /// limited-precision mode.
5019 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5020                          const TargetLowering &TLI, SDNodeFlags Flags) {
5021   // TODO: What fast-math-flags should be set on the floating-point nodes?
5022 
5023   if (Op.getValueType() == MVT::f32 &&
5024       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5025     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5026 
5027     // Scale the exponent by log(2).
5028     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5029     SDValue LogOfExponent =
5030         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5031                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5032 
5033     // Get the significand and build it into a floating-point number with
5034     // exponent of 1.
5035     SDValue X = GetSignificand(DAG, Op1, dl);
5036 
5037     SDValue LogOfMantissa;
5038     if (LimitFloatPrecision <= 6) {
5039       // For floating-point precision of 6:
5040       //
5041       //   LogofMantissa =
5042       //     -1.1609546f +
5043       //       (1.4034025f - 0.23903021f * x) * x;
5044       //
5045       // error 0.0034276066, which is better than 8 bits
5046       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5047                                getF32Constant(DAG, 0xbe74c456, dl));
5048       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5049                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5050       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5051       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5052                                   getF32Constant(DAG, 0x3f949a29, dl));
5053     } else if (LimitFloatPrecision <= 12) {
5054       // For floating-point precision of 12:
5055       //
5056       //   LogOfMantissa =
5057       //     -1.7417939f +
5058       //       (2.8212026f +
5059       //         (-1.4699568f +
5060       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5061       //
5062       // error 0.000061011436, which is 14 bits
5063       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5064                                getF32Constant(DAG, 0xbd67b6d6, dl));
5065       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5066                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5067       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5068       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5069                                getF32Constant(DAG, 0x3fbc278b, dl));
5070       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5071       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5072                                getF32Constant(DAG, 0x40348e95, dl));
5073       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5074       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5075                                   getF32Constant(DAG, 0x3fdef31a, dl));
5076     } else { // LimitFloatPrecision <= 18
5077       // For floating-point precision of 18:
5078       //
5079       //   LogOfMantissa =
5080       //     -2.1072184f +
5081       //       (4.2372794f +
5082       //         (-3.7029485f +
5083       //           (2.2781945f +
5084       //             (-0.87823314f +
5085       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5086       //
5087       // error 0.0000023660568, which is better than 18 bits
5088       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5089                                getF32Constant(DAG, 0xbc91e5ac, dl));
5090       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5091                                getF32Constant(DAG, 0x3e4350aa, dl));
5092       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5093       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5094                                getF32Constant(DAG, 0x3f60d3e3, dl));
5095       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5096       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5097                                getF32Constant(DAG, 0x4011cdf0, dl));
5098       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5099       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5100                                getF32Constant(DAG, 0x406cfd1c, dl));
5101       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5102       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5103                                getF32Constant(DAG, 0x408797cb, dl));
5104       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5105       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5106                                   getF32Constant(DAG, 0x4006dcab, dl));
5107     }
5108 
5109     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5110   }
5111 
5112   // No special expansion.
5113   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5114 }
5115 
5116 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5117 /// limited-precision mode.
5118 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5119                           const TargetLowering &TLI, SDNodeFlags Flags) {
5120   // TODO: What fast-math-flags should be set on the floating-point nodes?
5121 
5122   if (Op.getValueType() == MVT::f32 &&
5123       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5124     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5125 
5126     // Get the exponent.
5127     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5128 
5129     // Get the significand and build it into a floating-point number with
5130     // exponent of 1.
5131     SDValue X = GetSignificand(DAG, Op1, dl);
5132 
5133     // Different possible minimax approximations of significand in
5134     // floating-point for various degrees of accuracy over [1,2].
5135     SDValue Log2ofMantissa;
5136     if (LimitFloatPrecision <= 6) {
5137       // For floating-point precision of 6:
5138       //
5139       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5140       //
5141       // error 0.0049451742, which is more than 7 bits
5142       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5143                                getF32Constant(DAG, 0xbeb08fe0, dl));
5144       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5145                                getF32Constant(DAG, 0x40019463, dl));
5146       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5147       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5148                                    getF32Constant(DAG, 0x3fd6633d, dl));
5149     } else if (LimitFloatPrecision <= 12) {
5150       // For floating-point precision of 12:
5151       //
5152       //   Log2ofMantissa =
5153       //     -2.51285454f +
5154       //       (4.07009056f +
5155       //         (-2.12067489f +
5156       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5157       //
5158       // error 0.0000876136000, which is better than 13 bits
5159       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5160                                getF32Constant(DAG, 0xbda7262e, dl));
5161       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5162                                getF32Constant(DAG, 0x3f25280b, dl));
5163       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5164       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5165                                getF32Constant(DAG, 0x4007b923, dl));
5166       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5167       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5168                                getF32Constant(DAG, 0x40823e2f, dl));
5169       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5170       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5171                                    getF32Constant(DAG, 0x4020d29c, dl));
5172     } else { // LimitFloatPrecision <= 18
5173       // For floating-point precision of 18:
5174       //
5175       //   Log2ofMantissa =
5176       //     -3.0400495f +
5177       //       (6.1129976f +
5178       //         (-5.3420409f +
5179       //           (3.2865683f +
5180       //             (-1.2669343f +
5181       //               (0.27515199f -
5182       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5183       //
5184       // error 0.0000018516, which is better than 18 bits
5185       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5186                                getF32Constant(DAG, 0xbcd2769e, dl));
5187       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5188                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5189       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5190       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5191                                getF32Constant(DAG, 0x3fa22ae7, dl));
5192       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5193       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5194                                getF32Constant(DAG, 0x40525723, dl));
5195       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5196       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5197                                getF32Constant(DAG, 0x40aaf200, dl));
5198       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5199       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5200                                getF32Constant(DAG, 0x40c39dad, dl));
5201       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5202       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5203                                    getF32Constant(DAG, 0x4042902c, dl));
5204     }
5205 
5206     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5207   }
5208 
5209   // No special expansion.
5210   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5211 }
5212 
5213 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5214 /// limited-precision mode.
5215 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5216                            const TargetLowering &TLI, SDNodeFlags Flags) {
5217   // TODO: What fast-math-flags should be set on the floating-point nodes?
5218 
5219   if (Op.getValueType() == MVT::f32 &&
5220       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5221     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5222 
5223     // Scale the exponent by log10(2) [0.30102999f].
5224     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5225     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5226                                         getF32Constant(DAG, 0x3e9a209a, dl));
5227 
5228     // Get the significand and build it into a floating-point number with
5229     // exponent of 1.
5230     SDValue X = GetSignificand(DAG, Op1, dl);
5231 
5232     SDValue Log10ofMantissa;
5233     if (LimitFloatPrecision <= 6) {
5234       // For floating-point precision of 6:
5235       //
5236       //   Log10ofMantissa =
5237       //     -0.50419619f +
5238       //       (0.60948995f - 0.10380950f * x) * x;
5239       //
5240       // error 0.0014886165, which is 6 bits
5241       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5242                                getF32Constant(DAG, 0xbdd49a13, dl));
5243       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5244                                getF32Constant(DAG, 0x3f1c0789, dl));
5245       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5246       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5247                                     getF32Constant(DAG, 0x3f011300, dl));
5248     } else if (LimitFloatPrecision <= 12) {
5249       // For floating-point precision of 12:
5250       //
5251       //   Log10ofMantissa =
5252       //     -0.64831180f +
5253       //       (0.91751397f +
5254       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5255       //
5256       // error 0.00019228036, which is better than 12 bits
5257       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5258                                getF32Constant(DAG, 0x3d431f31, dl));
5259       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5260                                getF32Constant(DAG, 0x3ea21fb2, dl));
5261       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5262       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5263                                getF32Constant(DAG, 0x3f6ae232, dl));
5264       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5265       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5266                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5267     } else { // LimitFloatPrecision <= 18
5268       // For floating-point precision of 18:
5269       //
5270       //   Log10ofMantissa =
5271       //     -0.84299375f +
5272       //       (1.5327582f +
5273       //         (-1.0688956f +
5274       //           (0.49102474f +
5275       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5276       //
5277       // error 0.0000037995730, which is better than 18 bits
5278       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5279                                getF32Constant(DAG, 0x3c5d51ce, dl));
5280       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5281                                getF32Constant(DAG, 0x3e00685a, dl));
5282       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5283       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5284                                getF32Constant(DAG, 0x3efb6798, dl));
5285       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5286       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5287                                getF32Constant(DAG, 0x3f88d192, dl));
5288       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5289       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5290                                getF32Constant(DAG, 0x3fc4316c, dl));
5291       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5292       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5293                                     getF32Constant(DAG, 0x3f57ce70, dl));
5294     }
5295 
5296     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5297   }
5298 
5299   // No special expansion.
5300   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5301 }
5302 
5303 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5304 /// limited-precision mode.
5305 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5306                           const TargetLowering &TLI, SDNodeFlags Flags) {
5307   if (Op.getValueType() == MVT::f32 &&
5308       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5309     return getLimitedPrecisionExp2(Op, dl, DAG);
5310 
5311   // No special expansion.
5312   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5313 }
5314 
5315 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5316 /// limited-precision mode with x == 10.0f.
5317 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5318                          SelectionDAG &DAG, const TargetLowering &TLI,
5319                          SDNodeFlags Flags) {
5320   bool IsExp10 = false;
5321   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5322       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5323     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5324       APFloat Ten(10.0f);
5325       IsExp10 = LHSC->isExactlyValue(Ten);
5326     }
5327   }
5328 
5329   // TODO: What fast-math-flags should be set on the FMUL node?
5330   if (IsExp10) {
5331     // Put the exponent in the right bit position for later addition to the
5332     // final result:
5333     //
5334     //   #define LOG2OF10 3.3219281f
5335     //   t0 = Op * LOG2OF10;
5336     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5337                              getF32Constant(DAG, 0x40549a78, dl));
5338     return getLimitedPrecisionExp2(t0, dl, DAG);
5339   }
5340 
5341   // No special expansion.
5342   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5343 }
5344 
5345 /// ExpandPowI - Expand a llvm.powi intrinsic.
5346 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5347                           SelectionDAG &DAG) {
5348   // If RHS is a constant, we can expand this out to a multiplication tree,
5349   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5350   // optimizing for size, we only want to do this if the expansion would produce
5351   // a small number of multiplies, otherwise we do the full expansion.
5352   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5353     // Get the exponent as a positive value.
5354     unsigned Val = RHSC->getSExtValue();
5355     if ((int)Val < 0) Val = -Val;
5356 
5357     // powi(x, 0) -> 1.0
5358     if (Val == 0)
5359       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5360 
5361     bool OptForSize = DAG.shouldOptForSize();
5362     if (!OptForSize ||
5363         // If optimizing for size, don't insert too many multiplies.
5364         // This inserts up to 5 multiplies.
5365         countPopulation(Val) + Log2_32(Val) < 7) {
5366       // We use the simple binary decomposition method to generate the multiply
5367       // sequence.  There are more optimal ways to do this (for example,
5368       // powi(x,15) generates one more multiply than it should), but this has
5369       // the benefit of being both really simple and much better than a libcall.
5370       SDValue Res;  // Logically starts equal to 1.0
5371       SDValue CurSquare = LHS;
5372       // TODO: Intrinsics should have fast-math-flags that propagate to these
5373       // nodes.
5374       while (Val) {
5375         if (Val & 1) {
5376           if (Res.getNode())
5377             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5378           else
5379             Res = CurSquare;  // 1.0*CurSquare.
5380         }
5381 
5382         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5383                                 CurSquare, CurSquare);
5384         Val >>= 1;
5385       }
5386 
5387       // If the original was negative, invert the result, producing 1/(x*x*x).
5388       if (RHSC->getSExtValue() < 0)
5389         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5390                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5391       return Res;
5392     }
5393   }
5394 
5395   // Otherwise, expand to a libcall.
5396   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5397 }
5398 
5399 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5400                             SDValue LHS, SDValue RHS, SDValue Scale,
5401                             SelectionDAG &DAG, const TargetLowering &TLI) {
5402   EVT VT = LHS.getValueType();
5403   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5404   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5405   LLVMContext &Ctx = *DAG.getContext();
5406 
5407   // If the type is legal but the operation isn't, this node might survive all
5408   // the way to operation legalization. If we end up there and we do not have
5409   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5410   // node.
5411 
5412   // Coax the legalizer into expanding the node during type legalization instead
5413   // by bumping the size by one bit. This will force it to Promote, enabling the
5414   // early expansion and avoiding the need to expand later.
5415 
5416   // We don't have to do this if Scale is 0; that can always be expanded, unless
5417   // it's a saturating signed operation. Those can experience true integer
5418   // division overflow, a case which we must avoid.
5419 
5420   // FIXME: We wouldn't have to do this (or any of the early
5421   // expansion/promotion) if it was possible to expand a libcall of an
5422   // illegal type during operation legalization. But it's not, so things
5423   // get a bit hacky.
5424   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5425   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5426       (TLI.isTypeLegal(VT) ||
5427        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5428     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5429         Opcode, VT, ScaleInt);
5430     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5431       EVT PromVT;
5432       if (VT.isScalarInteger())
5433         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5434       else if (VT.isVector()) {
5435         PromVT = VT.getVectorElementType();
5436         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5437         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5438       } else
5439         llvm_unreachable("Wrong VT for DIVFIX?");
5440       if (Signed) {
5441         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5442         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5443       } else {
5444         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5445         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5446       }
5447       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5448       // For saturating operations, we need to shift up the LHS to get the
5449       // proper saturation width, and then shift down again afterwards.
5450       if (Saturating)
5451         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5452                           DAG.getConstant(1, DL, ShiftTy));
5453       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5454       if (Saturating)
5455         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5456                           DAG.getConstant(1, DL, ShiftTy));
5457       return DAG.getZExtOrTrunc(Res, DL, VT);
5458     }
5459   }
5460 
5461   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5462 }
5463 
5464 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5465 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5466 static void
5467 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5468                      const SDValue &N) {
5469   switch (N.getOpcode()) {
5470   case ISD::CopyFromReg: {
5471     SDValue Op = N.getOperand(1);
5472     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5473                       Op.getValueType().getSizeInBits());
5474     return;
5475   }
5476   case ISD::BITCAST:
5477   case ISD::AssertZext:
5478   case ISD::AssertSext:
5479   case ISD::TRUNCATE:
5480     getUnderlyingArgRegs(Regs, N.getOperand(0));
5481     return;
5482   case ISD::BUILD_PAIR:
5483   case ISD::BUILD_VECTOR:
5484   case ISD::CONCAT_VECTORS:
5485     for (SDValue Op : N->op_values())
5486       getUnderlyingArgRegs(Regs, Op);
5487     return;
5488   default:
5489     return;
5490   }
5491 }
5492 
5493 /// If the DbgValueInst is a dbg_value of a function argument, create the
5494 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5495 /// instruction selection, they will be inserted to the entry BB.
5496 /// We don't currently support this for variadic dbg_values, as they shouldn't
5497 /// appear for function arguments or in the prologue.
5498 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5499     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5500     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5501   const Argument *Arg = dyn_cast<Argument>(V);
5502   if (!Arg)
5503     return false;
5504 
5505   MachineFunction &MF = DAG.getMachineFunction();
5506   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5507 
5508   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5509   // we've been asked to pursue.
5510   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5511                               bool Indirect) {
5512     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5513       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5514       // pointing at the VReg, which will be patched up later.
5515       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5516       auto MIB = BuildMI(MF, DL, Inst);
5517       MIB.addReg(Reg);
5518       MIB.addImm(0);
5519       MIB.addMetadata(Variable);
5520       auto *NewDIExpr = FragExpr;
5521       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5522       // the DIExpression.
5523       if (Indirect)
5524         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5525       MIB.addMetadata(NewDIExpr);
5526       return MIB;
5527     } else {
5528       // Create a completely standard DBG_VALUE.
5529       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5530       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5531     }
5532   };
5533 
5534   if (!IsDbgDeclare) {
5535     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5536     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5537     // the entry block.
5538     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5539     if (!IsInEntryBlock)
5540       return false;
5541 
5542     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5543     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5544     // variable that also is a param.
5545     //
5546     // Although, if we are at the top of the entry block already, we can still
5547     // emit using ArgDbgValue. This might catch some situations when the
5548     // dbg.value refers to an argument that isn't used in the entry block, so
5549     // any CopyToReg node would be optimized out and the only way to express
5550     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5551     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5552     // we should only emit as ArgDbgValue if the Variable is an argument to the
5553     // current function, and the dbg.value intrinsic is found in the entry
5554     // block.
5555     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5556         !DL->getInlinedAt();
5557     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5558     if (!IsInPrologue && !VariableIsFunctionInputArg)
5559       return false;
5560 
5561     // Here we assume that a function argument on IR level only can be used to
5562     // describe one input parameter on source level. If we for example have
5563     // source code like this
5564     //
5565     //    struct A { long x, y; };
5566     //    void foo(struct A a, long b) {
5567     //      ...
5568     //      b = a.x;
5569     //      ...
5570     //    }
5571     //
5572     // and IR like this
5573     //
5574     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5575     //  entry:
5576     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5577     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5578     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5579     //    ...
5580     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5581     //    ...
5582     //
5583     // then the last dbg.value is describing a parameter "b" using a value that
5584     // is an argument. But since we already has used %a1 to describe a parameter
5585     // we should not handle that last dbg.value here (that would result in an
5586     // incorrect hoisting of the DBG_VALUE to the function entry).
5587     // Notice that we allow one dbg.value per IR level argument, to accommodate
5588     // for the situation with fragments above.
5589     if (VariableIsFunctionInputArg) {
5590       unsigned ArgNo = Arg->getArgNo();
5591       if (ArgNo >= FuncInfo.DescribedArgs.size())
5592         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5593       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5594         return false;
5595       FuncInfo.DescribedArgs.set(ArgNo);
5596     }
5597   }
5598 
5599   bool IsIndirect = false;
5600   Optional<MachineOperand> Op;
5601   // Some arguments' frame index is recorded during argument lowering.
5602   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5603   if (FI != std::numeric_limits<int>::max())
5604     Op = MachineOperand::CreateFI(FI);
5605 
5606   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5607   if (!Op && N.getNode()) {
5608     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5609     Register Reg;
5610     if (ArgRegsAndSizes.size() == 1)
5611       Reg = ArgRegsAndSizes.front().first;
5612 
5613     if (Reg && Reg.isVirtual()) {
5614       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5615       Register PR = RegInfo.getLiveInPhysReg(Reg);
5616       if (PR)
5617         Reg = PR;
5618     }
5619     if (Reg) {
5620       Op = MachineOperand::CreateReg(Reg, false);
5621       IsIndirect = IsDbgDeclare;
5622     }
5623   }
5624 
5625   if (!Op && N.getNode()) {
5626     // Check if frame index is available.
5627     SDValue LCandidate = peekThroughBitcasts(N);
5628     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5629       if (FrameIndexSDNode *FINode =
5630           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5631         Op = MachineOperand::CreateFI(FINode->getIndex());
5632   }
5633 
5634   if (!Op) {
5635     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5636     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5637                                          SplitRegs) {
5638       unsigned Offset = 0;
5639       for (const auto &RegAndSize : SplitRegs) {
5640         // If the expression is already a fragment, the current register
5641         // offset+size might extend beyond the fragment. In this case, only
5642         // the register bits that are inside the fragment are relevant.
5643         int RegFragmentSizeInBits = RegAndSize.second;
5644         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5645           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5646           // The register is entirely outside the expression fragment,
5647           // so is irrelevant for debug info.
5648           if (Offset >= ExprFragmentSizeInBits)
5649             break;
5650           // The register is partially outside the expression fragment, only
5651           // the low bits within the fragment are relevant for debug info.
5652           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5653             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5654           }
5655         }
5656 
5657         auto FragmentExpr = DIExpression::createFragmentExpression(
5658             Expr, Offset, RegFragmentSizeInBits);
5659         Offset += RegAndSize.second;
5660         // If a valid fragment expression cannot be created, the variable's
5661         // correct value cannot be determined and so it is set as Undef.
5662         if (!FragmentExpr) {
5663           SDDbgValue *SDV = DAG.getConstantDbgValue(
5664               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5665           DAG.AddDbgValue(SDV, false);
5666           continue;
5667         }
5668         MachineInstr *NewMI =
5669             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare);
5670         FuncInfo.ArgDbgValues.push_back(NewMI);
5671       }
5672     };
5673 
5674     // Check if ValueMap has reg number.
5675     DenseMap<const Value *, Register>::const_iterator
5676       VMI = FuncInfo.ValueMap.find(V);
5677     if (VMI != FuncInfo.ValueMap.end()) {
5678       const auto &TLI = DAG.getTargetLoweringInfo();
5679       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5680                        V->getType(), None);
5681       if (RFV.occupiesMultipleRegs()) {
5682         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5683         return true;
5684       }
5685 
5686       Op = MachineOperand::CreateReg(VMI->second, false);
5687       IsIndirect = IsDbgDeclare;
5688     } else if (ArgRegsAndSizes.size() > 1) {
5689       // This was split due to the calling convention, and no virtual register
5690       // mapping exists for the value.
5691       splitMultiRegDbgValue(ArgRegsAndSizes);
5692       return true;
5693     }
5694   }
5695 
5696   if (!Op)
5697     return false;
5698 
5699   assert(Variable->isValidLocationForIntrinsic(DL) &&
5700          "Expected inlined-at fields to agree");
5701   MachineInstr *NewMI = nullptr;
5702 
5703   if (Op->isReg())
5704     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5705   else
5706     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5707                     Variable, Expr);
5708 
5709   FuncInfo.ArgDbgValues.push_back(NewMI);
5710   return true;
5711 }
5712 
5713 /// Return the appropriate SDDbgValue based on N.
5714 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5715                                              DILocalVariable *Variable,
5716                                              DIExpression *Expr,
5717                                              const DebugLoc &dl,
5718                                              unsigned DbgSDNodeOrder) {
5719   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5720     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5721     // stack slot locations.
5722     //
5723     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5724     // debug values here after optimization:
5725     //
5726     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5727     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5728     //
5729     // Both describe the direct values of their associated variables.
5730     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5731                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5732   }
5733   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5734                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5735 }
5736 
5737 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5738   switch (Intrinsic) {
5739   case Intrinsic::smul_fix:
5740     return ISD::SMULFIX;
5741   case Intrinsic::umul_fix:
5742     return ISD::UMULFIX;
5743   case Intrinsic::smul_fix_sat:
5744     return ISD::SMULFIXSAT;
5745   case Intrinsic::umul_fix_sat:
5746     return ISD::UMULFIXSAT;
5747   case Intrinsic::sdiv_fix:
5748     return ISD::SDIVFIX;
5749   case Intrinsic::udiv_fix:
5750     return ISD::UDIVFIX;
5751   case Intrinsic::sdiv_fix_sat:
5752     return ISD::SDIVFIXSAT;
5753   case Intrinsic::udiv_fix_sat:
5754     return ISD::UDIVFIXSAT;
5755   default:
5756     llvm_unreachable("Unhandled fixed point intrinsic");
5757   }
5758 }
5759 
5760 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5761                                            const char *FunctionName) {
5762   assert(FunctionName && "FunctionName must not be nullptr");
5763   SDValue Callee = DAG.getExternalSymbol(
5764       FunctionName,
5765       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5766   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5767 }
5768 
5769 /// Given a @llvm.call.preallocated.setup, return the corresponding
5770 /// preallocated call.
5771 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5772   assert(cast<CallBase>(PreallocatedSetup)
5773                  ->getCalledFunction()
5774                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5775          "expected call_preallocated_setup Value");
5776   for (auto *U : PreallocatedSetup->users()) {
5777     auto *UseCall = cast<CallBase>(U);
5778     const Function *Fn = UseCall->getCalledFunction();
5779     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5780       return UseCall;
5781     }
5782   }
5783   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5784 }
5785 
5786 /// Lower the call to the specified intrinsic function.
5787 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5788                                              unsigned Intrinsic) {
5789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5790   SDLoc sdl = getCurSDLoc();
5791   DebugLoc dl = getCurDebugLoc();
5792   SDValue Res;
5793 
5794   SDNodeFlags Flags;
5795   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5796     Flags.copyFMF(*FPOp);
5797 
5798   switch (Intrinsic) {
5799   default:
5800     // By default, turn this into a target intrinsic node.
5801     visitTargetIntrinsic(I, Intrinsic);
5802     return;
5803   case Intrinsic::vscale: {
5804     match(&I, m_VScale(DAG.getDataLayout()));
5805     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5806     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5807     return;
5808   }
5809   case Intrinsic::vastart:  visitVAStart(I); return;
5810   case Intrinsic::vaend:    visitVAEnd(I); return;
5811   case Intrinsic::vacopy:   visitVACopy(I); return;
5812   case Intrinsic::returnaddress:
5813     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5814                              TLI.getPointerTy(DAG.getDataLayout()),
5815                              getValue(I.getArgOperand(0))));
5816     return;
5817   case Intrinsic::addressofreturnaddress:
5818     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5819                              TLI.getPointerTy(DAG.getDataLayout())));
5820     return;
5821   case Intrinsic::sponentry:
5822     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5823                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5824     return;
5825   case Intrinsic::frameaddress:
5826     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5827                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5828                              getValue(I.getArgOperand(0))));
5829     return;
5830   case Intrinsic::read_volatile_register:
5831   case Intrinsic::read_register: {
5832     Value *Reg = I.getArgOperand(0);
5833     SDValue Chain = getRoot();
5834     SDValue RegName =
5835         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5836     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5837     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5838       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5839     setValue(&I, Res);
5840     DAG.setRoot(Res.getValue(1));
5841     return;
5842   }
5843   case Intrinsic::write_register: {
5844     Value *Reg = I.getArgOperand(0);
5845     Value *RegValue = I.getArgOperand(1);
5846     SDValue Chain = getRoot();
5847     SDValue RegName =
5848         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5849     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5850                             RegName, getValue(RegValue)));
5851     return;
5852   }
5853   case Intrinsic::memcpy: {
5854     const auto &MCI = cast<MemCpyInst>(I);
5855     SDValue Op1 = getValue(I.getArgOperand(0));
5856     SDValue Op2 = getValue(I.getArgOperand(1));
5857     SDValue Op3 = getValue(I.getArgOperand(2));
5858     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5859     Align DstAlign = MCI.getDestAlign().valueOrOne();
5860     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5861     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5862     bool isVol = MCI.isVolatile();
5863     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5864     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5865     // node.
5866     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5867     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5868                                /* AlwaysInline */ false, isTC,
5869                                MachinePointerInfo(I.getArgOperand(0)),
5870                                MachinePointerInfo(I.getArgOperand(1)),
5871                                I.getAAMetadata());
5872     updateDAGForMaybeTailCall(MC);
5873     return;
5874   }
5875   case Intrinsic::memcpy_inline: {
5876     const auto &MCI = cast<MemCpyInlineInst>(I);
5877     SDValue Dst = getValue(I.getArgOperand(0));
5878     SDValue Src = getValue(I.getArgOperand(1));
5879     SDValue Size = getValue(I.getArgOperand(2));
5880     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5881     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5882     Align DstAlign = MCI.getDestAlign().valueOrOne();
5883     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5884     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5885     bool isVol = MCI.isVolatile();
5886     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5887     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5888     // node.
5889     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5890                                /* AlwaysInline */ true, isTC,
5891                                MachinePointerInfo(I.getArgOperand(0)),
5892                                MachinePointerInfo(I.getArgOperand(1)),
5893                                I.getAAMetadata());
5894     updateDAGForMaybeTailCall(MC);
5895     return;
5896   }
5897   case Intrinsic::memset: {
5898     const auto &MSI = cast<MemSetInst>(I);
5899     SDValue Op1 = getValue(I.getArgOperand(0));
5900     SDValue Op2 = getValue(I.getArgOperand(1));
5901     SDValue Op3 = getValue(I.getArgOperand(2));
5902     // @llvm.memset defines 0 and 1 to both mean no alignment.
5903     Align Alignment = MSI.getDestAlign().valueOrOne();
5904     bool isVol = MSI.isVolatile();
5905     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5906     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5907     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5908                                MachinePointerInfo(I.getArgOperand(0)),
5909                                I.getAAMetadata());
5910     updateDAGForMaybeTailCall(MS);
5911     return;
5912   }
5913   case Intrinsic::memmove: {
5914     const auto &MMI = cast<MemMoveInst>(I);
5915     SDValue Op1 = getValue(I.getArgOperand(0));
5916     SDValue Op2 = getValue(I.getArgOperand(1));
5917     SDValue Op3 = getValue(I.getArgOperand(2));
5918     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5919     Align DstAlign = MMI.getDestAlign().valueOrOne();
5920     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5921     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5922     bool isVol = MMI.isVolatile();
5923     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5924     // FIXME: Support passing different dest/src alignments to the memmove DAG
5925     // node.
5926     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5927     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5928                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5929                                 MachinePointerInfo(I.getArgOperand(1)),
5930                                 I.getAAMetadata());
5931     updateDAGForMaybeTailCall(MM);
5932     return;
5933   }
5934   case Intrinsic::memcpy_element_unordered_atomic: {
5935     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5936     SDValue Dst = getValue(MI.getRawDest());
5937     SDValue Src = getValue(MI.getRawSource());
5938     SDValue Length = getValue(MI.getLength());
5939 
5940     unsigned DstAlign = MI.getDestAlignment();
5941     unsigned SrcAlign = MI.getSourceAlignment();
5942     Type *LengthTy = MI.getLength()->getType();
5943     unsigned ElemSz = MI.getElementSizeInBytes();
5944     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5945     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5946                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5947                                      MachinePointerInfo(MI.getRawDest()),
5948                                      MachinePointerInfo(MI.getRawSource()));
5949     updateDAGForMaybeTailCall(MC);
5950     return;
5951   }
5952   case Intrinsic::memmove_element_unordered_atomic: {
5953     auto &MI = cast<AtomicMemMoveInst>(I);
5954     SDValue Dst = getValue(MI.getRawDest());
5955     SDValue Src = getValue(MI.getRawSource());
5956     SDValue Length = getValue(MI.getLength());
5957 
5958     unsigned DstAlign = MI.getDestAlignment();
5959     unsigned SrcAlign = MI.getSourceAlignment();
5960     Type *LengthTy = MI.getLength()->getType();
5961     unsigned ElemSz = MI.getElementSizeInBytes();
5962     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5963     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5964                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5965                                       MachinePointerInfo(MI.getRawDest()),
5966                                       MachinePointerInfo(MI.getRawSource()));
5967     updateDAGForMaybeTailCall(MC);
5968     return;
5969   }
5970   case Intrinsic::memset_element_unordered_atomic: {
5971     auto &MI = cast<AtomicMemSetInst>(I);
5972     SDValue Dst = getValue(MI.getRawDest());
5973     SDValue Val = getValue(MI.getValue());
5974     SDValue Length = getValue(MI.getLength());
5975 
5976     unsigned DstAlign = MI.getDestAlignment();
5977     Type *LengthTy = MI.getLength()->getType();
5978     unsigned ElemSz = MI.getElementSizeInBytes();
5979     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5980     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5981                                      LengthTy, ElemSz, isTC,
5982                                      MachinePointerInfo(MI.getRawDest()));
5983     updateDAGForMaybeTailCall(MC);
5984     return;
5985   }
5986   case Intrinsic::call_preallocated_setup: {
5987     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5988     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5989     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5990                               getRoot(), SrcValue);
5991     setValue(&I, Res);
5992     DAG.setRoot(Res);
5993     return;
5994   }
5995   case Intrinsic::call_preallocated_arg: {
5996     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5997     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5998     SDValue Ops[3];
5999     Ops[0] = getRoot();
6000     Ops[1] = SrcValue;
6001     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6002                                    MVT::i32); // arg index
6003     SDValue Res = DAG.getNode(
6004         ISD::PREALLOCATED_ARG, sdl,
6005         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6006     setValue(&I, Res);
6007     DAG.setRoot(Res.getValue(1));
6008     return;
6009   }
6010   case Intrinsic::dbg_addr:
6011   case Intrinsic::dbg_declare: {
6012     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6013     // they are non-variadic.
6014     const auto &DI = cast<DbgVariableIntrinsic>(I);
6015     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6016     DILocalVariable *Variable = DI.getVariable();
6017     DIExpression *Expression = DI.getExpression();
6018     dropDanglingDebugInfo(Variable, Expression);
6019     assert(Variable && "Missing variable");
6020     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6021                       << "\n");
6022     // Check if address has undef value.
6023     const Value *Address = DI.getVariableLocationOp(0);
6024     if (!Address || isa<UndefValue>(Address) ||
6025         (Address->use_empty() && !isa<Argument>(Address))) {
6026       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6027                         << " (bad/undef/unused-arg address)\n");
6028       return;
6029     }
6030 
6031     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6032 
6033     // Check if this variable can be described by a frame index, typically
6034     // either as a static alloca or a byval parameter.
6035     int FI = std::numeric_limits<int>::max();
6036     if (const auto *AI =
6037             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6038       if (AI->isStaticAlloca()) {
6039         auto I = FuncInfo.StaticAllocaMap.find(AI);
6040         if (I != FuncInfo.StaticAllocaMap.end())
6041           FI = I->second;
6042       }
6043     } else if (const auto *Arg = dyn_cast<Argument>(
6044                    Address->stripInBoundsConstantOffsets())) {
6045       FI = FuncInfo.getArgumentFrameIndex(Arg);
6046     }
6047 
6048     // llvm.dbg.addr is control dependent and always generates indirect
6049     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6050     // the MachineFunction variable table.
6051     if (FI != std::numeric_limits<int>::max()) {
6052       if (Intrinsic == Intrinsic::dbg_addr) {
6053         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6054             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6055             dl, SDNodeOrder);
6056         DAG.AddDbgValue(SDV, isParameter);
6057       } else {
6058         LLVM_DEBUG(dbgs() << "Skipping " << DI
6059                           << " (variable info stashed in MF side table)\n");
6060       }
6061       return;
6062     }
6063 
6064     SDValue &N = NodeMap[Address];
6065     if (!N.getNode() && isa<Argument>(Address))
6066       // Check unused arguments map.
6067       N = UnusedArgNodeMap[Address];
6068     SDDbgValue *SDV;
6069     if (N.getNode()) {
6070       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6071         Address = BCI->getOperand(0);
6072       // Parameters are handled specially.
6073       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6074       if (isParameter && FINode) {
6075         // Byval parameter. We have a frame index at this point.
6076         SDV =
6077             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6078                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6079       } else if (isa<Argument>(Address)) {
6080         // Address is an argument, so try to emit its dbg value using
6081         // virtual register info from the FuncInfo.ValueMap.
6082         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6083         return;
6084       } else {
6085         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6086                               true, dl, SDNodeOrder);
6087       }
6088       DAG.AddDbgValue(SDV, isParameter);
6089     } else {
6090       // If Address is an argument then try to emit its dbg value using
6091       // virtual register info from the FuncInfo.ValueMap.
6092       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6093                                     N)) {
6094         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6095                           << " (could not emit func-arg dbg_value)\n");
6096       }
6097     }
6098     return;
6099   }
6100   case Intrinsic::dbg_label: {
6101     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6102     DILabel *Label = DI.getLabel();
6103     assert(Label && "Missing label");
6104 
6105     SDDbgLabel *SDV;
6106     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6107     DAG.AddDbgLabel(SDV);
6108     return;
6109   }
6110   case Intrinsic::dbg_value: {
6111     const DbgValueInst &DI = cast<DbgValueInst>(I);
6112     assert(DI.getVariable() && "Missing variable");
6113 
6114     DILocalVariable *Variable = DI.getVariable();
6115     DIExpression *Expression = DI.getExpression();
6116     dropDanglingDebugInfo(Variable, Expression);
6117     SmallVector<Value *, 4> Values(DI.getValues());
6118     if (Values.empty())
6119       return;
6120 
6121     if (llvm::is_contained(Values, nullptr))
6122       return;
6123 
6124     bool IsVariadic = DI.hasArgList();
6125     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6126                           SDNodeOrder, IsVariadic))
6127       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6128     return;
6129   }
6130 
6131   case Intrinsic::eh_typeid_for: {
6132     // Find the type id for the given typeinfo.
6133     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6134     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6135     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6136     setValue(&I, Res);
6137     return;
6138   }
6139 
6140   case Intrinsic::eh_return_i32:
6141   case Intrinsic::eh_return_i64:
6142     DAG.getMachineFunction().setCallsEHReturn(true);
6143     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6144                             MVT::Other,
6145                             getControlRoot(),
6146                             getValue(I.getArgOperand(0)),
6147                             getValue(I.getArgOperand(1))));
6148     return;
6149   case Intrinsic::eh_unwind_init:
6150     DAG.getMachineFunction().setCallsUnwindInit(true);
6151     return;
6152   case Intrinsic::eh_dwarf_cfa:
6153     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6154                              TLI.getPointerTy(DAG.getDataLayout()),
6155                              getValue(I.getArgOperand(0))));
6156     return;
6157   case Intrinsic::eh_sjlj_callsite: {
6158     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6159     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6160     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6161     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6162 
6163     MMI.setCurrentCallSite(CI->getZExtValue());
6164     return;
6165   }
6166   case Intrinsic::eh_sjlj_functioncontext: {
6167     // Get and store the index of the function context.
6168     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6169     AllocaInst *FnCtx =
6170       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6171     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6172     MFI.setFunctionContextIndex(FI);
6173     return;
6174   }
6175   case Intrinsic::eh_sjlj_setjmp: {
6176     SDValue Ops[2];
6177     Ops[0] = getRoot();
6178     Ops[1] = getValue(I.getArgOperand(0));
6179     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6180                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6181     setValue(&I, Op.getValue(0));
6182     DAG.setRoot(Op.getValue(1));
6183     return;
6184   }
6185   case Intrinsic::eh_sjlj_longjmp:
6186     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6187                             getRoot(), getValue(I.getArgOperand(0))));
6188     return;
6189   case Intrinsic::eh_sjlj_setup_dispatch:
6190     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6191                             getRoot()));
6192     return;
6193   case Intrinsic::masked_gather:
6194     visitMaskedGather(I);
6195     return;
6196   case Intrinsic::masked_load:
6197     visitMaskedLoad(I);
6198     return;
6199   case Intrinsic::masked_scatter:
6200     visitMaskedScatter(I);
6201     return;
6202   case Intrinsic::masked_store:
6203     visitMaskedStore(I);
6204     return;
6205   case Intrinsic::masked_expandload:
6206     visitMaskedLoad(I, true /* IsExpanding */);
6207     return;
6208   case Intrinsic::masked_compressstore:
6209     visitMaskedStore(I, true /* IsCompressing */);
6210     return;
6211   case Intrinsic::powi:
6212     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6213                             getValue(I.getArgOperand(1)), DAG));
6214     return;
6215   case Intrinsic::log:
6216     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6217     return;
6218   case Intrinsic::log2:
6219     setValue(&I,
6220              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6221     return;
6222   case Intrinsic::log10:
6223     setValue(&I,
6224              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6225     return;
6226   case Intrinsic::exp:
6227     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6228     return;
6229   case Intrinsic::exp2:
6230     setValue(&I,
6231              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6232     return;
6233   case Intrinsic::pow:
6234     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6235                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6236     return;
6237   case Intrinsic::sqrt:
6238   case Intrinsic::fabs:
6239   case Intrinsic::sin:
6240   case Intrinsic::cos:
6241   case Intrinsic::floor:
6242   case Intrinsic::ceil:
6243   case Intrinsic::trunc:
6244   case Intrinsic::rint:
6245   case Intrinsic::nearbyint:
6246   case Intrinsic::round:
6247   case Intrinsic::roundeven:
6248   case Intrinsic::canonicalize: {
6249     unsigned Opcode;
6250     switch (Intrinsic) {
6251     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6252     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6253     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6254     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6255     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6256     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6257     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6258     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6259     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6260     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6261     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6262     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6263     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6264     }
6265 
6266     setValue(&I, DAG.getNode(Opcode, sdl,
6267                              getValue(I.getArgOperand(0)).getValueType(),
6268                              getValue(I.getArgOperand(0)), Flags));
6269     return;
6270   }
6271   case Intrinsic::lround:
6272   case Intrinsic::llround:
6273   case Intrinsic::lrint:
6274   case Intrinsic::llrint: {
6275     unsigned Opcode;
6276     switch (Intrinsic) {
6277     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6278     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6279     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6280     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6281     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6282     }
6283 
6284     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6285     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6286                              getValue(I.getArgOperand(0))));
6287     return;
6288   }
6289   case Intrinsic::minnum:
6290     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6291                              getValue(I.getArgOperand(0)).getValueType(),
6292                              getValue(I.getArgOperand(0)),
6293                              getValue(I.getArgOperand(1)), Flags));
6294     return;
6295   case Intrinsic::maxnum:
6296     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6297                              getValue(I.getArgOperand(0)).getValueType(),
6298                              getValue(I.getArgOperand(0)),
6299                              getValue(I.getArgOperand(1)), Flags));
6300     return;
6301   case Intrinsic::minimum:
6302     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6303                              getValue(I.getArgOperand(0)).getValueType(),
6304                              getValue(I.getArgOperand(0)),
6305                              getValue(I.getArgOperand(1)), Flags));
6306     return;
6307   case Intrinsic::maximum:
6308     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6309                              getValue(I.getArgOperand(0)).getValueType(),
6310                              getValue(I.getArgOperand(0)),
6311                              getValue(I.getArgOperand(1)), Flags));
6312     return;
6313   case Intrinsic::copysign:
6314     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6315                              getValue(I.getArgOperand(0)).getValueType(),
6316                              getValue(I.getArgOperand(0)),
6317                              getValue(I.getArgOperand(1)), Flags));
6318     return;
6319   case Intrinsic::arithmetic_fence: {
6320     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6321                              getValue(I.getArgOperand(0)).getValueType(),
6322                              getValue(I.getArgOperand(0)), Flags));
6323     return;
6324   }
6325   case Intrinsic::fma:
6326     setValue(&I, DAG.getNode(
6327                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6328                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6329                      getValue(I.getArgOperand(2)), Flags));
6330     return;
6331 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6332   case Intrinsic::INTRINSIC:
6333 #include "llvm/IR/ConstrainedOps.def"
6334     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6335     return;
6336 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6337 #include "llvm/IR/VPIntrinsics.def"
6338     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6339     return;
6340   case Intrinsic::fmuladd: {
6341     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6342     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6343         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6344       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6345                                getValue(I.getArgOperand(0)).getValueType(),
6346                                getValue(I.getArgOperand(0)),
6347                                getValue(I.getArgOperand(1)),
6348                                getValue(I.getArgOperand(2)), Flags));
6349     } else {
6350       // TODO: Intrinsic calls should have fast-math-flags.
6351       SDValue Mul = DAG.getNode(
6352           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6353           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6354       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6355                                 getValue(I.getArgOperand(0)).getValueType(),
6356                                 Mul, getValue(I.getArgOperand(2)), Flags);
6357       setValue(&I, Add);
6358     }
6359     return;
6360   }
6361   case Intrinsic::convert_to_fp16:
6362     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6363                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6364                                          getValue(I.getArgOperand(0)),
6365                                          DAG.getTargetConstant(0, sdl,
6366                                                                MVT::i32))));
6367     return;
6368   case Intrinsic::convert_from_fp16:
6369     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6370                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6371                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6372                                          getValue(I.getArgOperand(0)))));
6373     return;
6374   case Intrinsic::fptosi_sat: {
6375     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6376     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6377                              getValue(I.getArgOperand(0)),
6378                              DAG.getValueType(VT.getScalarType())));
6379     return;
6380   }
6381   case Intrinsic::fptoui_sat: {
6382     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6383     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6384                              getValue(I.getArgOperand(0)),
6385                              DAG.getValueType(VT.getScalarType())));
6386     return;
6387   }
6388   case Intrinsic::set_rounding:
6389     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6390                       {getRoot(), getValue(I.getArgOperand(0))});
6391     setValue(&I, Res);
6392     DAG.setRoot(Res.getValue(0));
6393     return;
6394   case Intrinsic::pcmarker: {
6395     SDValue Tmp = getValue(I.getArgOperand(0));
6396     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6397     return;
6398   }
6399   case Intrinsic::readcyclecounter: {
6400     SDValue Op = getRoot();
6401     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6402                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6403     setValue(&I, Res);
6404     DAG.setRoot(Res.getValue(1));
6405     return;
6406   }
6407   case Intrinsic::bitreverse:
6408     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6409                              getValue(I.getArgOperand(0)).getValueType(),
6410                              getValue(I.getArgOperand(0))));
6411     return;
6412   case Intrinsic::bswap:
6413     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6414                              getValue(I.getArgOperand(0)).getValueType(),
6415                              getValue(I.getArgOperand(0))));
6416     return;
6417   case Intrinsic::cttz: {
6418     SDValue Arg = getValue(I.getArgOperand(0));
6419     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6420     EVT Ty = Arg.getValueType();
6421     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6422                              sdl, Ty, Arg));
6423     return;
6424   }
6425   case Intrinsic::ctlz: {
6426     SDValue Arg = getValue(I.getArgOperand(0));
6427     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6428     EVT Ty = Arg.getValueType();
6429     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6430                              sdl, Ty, Arg));
6431     return;
6432   }
6433   case Intrinsic::ctpop: {
6434     SDValue Arg = getValue(I.getArgOperand(0));
6435     EVT Ty = Arg.getValueType();
6436     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6437     return;
6438   }
6439   case Intrinsic::fshl:
6440   case Intrinsic::fshr: {
6441     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6442     SDValue X = getValue(I.getArgOperand(0));
6443     SDValue Y = getValue(I.getArgOperand(1));
6444     SDValue Z = getValue(I.getArgOperand(2));
6445     EVT VT = X.getValueType();
6446 
6447     if (X == Y) {
6448       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6449       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6450     } else {
6451       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6452       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6453     }
6454     return;
6455   }
6456   case Intrinsic::sadd_sat: {
6457     SDValue Op1 = getValue(I.getArgOperand(0));
6458     SDValue Op2 = getValue(I.getArgOperand(1));
6459     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6460     return;
6461   }
6462   case Intrinsic::uadd_sat: {
6463     SDValue Op1 = getValue(I.getArgOperand(0));
6464     SDValue Op2 = getValue(I.getArgOperand(1));
6465     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6466     return;
6467   }
6468   case Intrinsic::ssub_sat: {
6469     SDValue Op1 = getValue(I.getArgOperand(0));
6470     SDValue Op2 = getValue(I.getArgOperand(1));
6471     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6472     return;
6473   }
6474   case Intrinsic::usub_sat: {
6475     SDValue Op1 = getValue(I.getArgOperand(0));
6476     SDValue Op2 = getValue(I.getArgOperand(1));
6477     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6478     return;
6479   }
6480   case Intrinsic::sshl_sat: {
6481     SDValue Op1 = getValue(I.getArgOperand(0));
6482     SDValue Op2 = getValue(I.getArgOperand(1));
6483     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6484     return;
6485   }
6486   case Intrinsic::ushl_sat: {
6487     SDValue Op1 = getValue(I.getArgOperand(0));
6488     SDValue Op2 = getValue(I.getArgOperand(1));
6489     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6490     return;
6491   }
6492   case Intrinsic::smul_fix:
6493   case Intrinsic::umul_fix:
6494   case Intrinsic::smul_fix_sat:
6495   case Intrinsic::umul_fix_sat: {
6496     SDValue Op1 = getValue(I.getArgOperand(0));
6497     SDValue Op2 = getValue(I.getArgOperand(1));
6498     SDValue Op3 = getValue(I.getArgOperand(2));
6499     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6500                              Op1.getValueType(), Op1, Op2, Op3));
6501     return;
6502   }
6503   case Intrinsic::sdiv_fix:
6504   case Intrinsic::udiv_fix:
6505   case Intrinsic::sdiv_fix_sat:
6506   case Intrinsic::udiv_fix_sat: {
6507     SDValue Op1 = getValue(I.getArgOperand(0));
6508     SDValue Op2 = getValue(I.getArgOperand(1));
6509     SDValue Op3 = getValue(I.getArgOperand(2));
6510     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6511                               Op1, Op2, Op3, DAG, TLI));
6512     return;
6513   }
6514   case Intrinsic::smax: {
6515     SDValue Op1 = getValue(I.getArgOperand(0));
6516     SDValue Op2 = getValue(I.getArgOperand(1));
6517     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6518     return;
6519   }
6520   case Intrinsic::smin: {
6521     SDValue Op1 = getValue(I.getArgOperand(0));
6522     SDValue Op2 = getValue(I.getArgOperand(1));
6523     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6524     return;
6525   }
6526   case Intrinsic::umax: {
6527     SDValue Op1 = getValue(I.getArgOperand(0));
6528     SDValue Op2 = getValue(I.getArgOperand(1));
6529     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6530     return;
6531   }
6532   case Intrinsic::umin: {
6533     SDValue Op1 = getValue(I.getArgOperand(0));
6534     SDValue Op2 = getValue(I.getArgOperand(1));
6535     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6536     return;
6537   }
6538   case Intrinsic::abs: {
6539     // TODO: Preserve "int min is poison" arg in SDAG?
6540     SDValue Op1 = getValue(I.getArgOperand(0));
6541     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6542     return;
6543   }
6544   case Intrinsic::stacksave: {
6545     SDValue Op = getRoot();
6546     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6547     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6548     setValue(&I, Res);
6549     DAG.setRoot(Res.getValue(1));
6550     return;
6551   }
6552   case Intrinsic::stackrestore:
6553     Res = getValue(I.getArgOperand(0));
6554     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6555     return;
6556   case Intrinsic::get_dynamic_area_offset: {
6557     SDValue Op = getRoot();
6558     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6559     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6560     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6561     // target.
6562     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6563       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6564                          " intrinsic!");
6565     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6566                       Op);
6567     DAG.setRoot(Op);
6568     setValue(&I, Res);
6569     return;
6570   }
6571   case Intrinsic::stackguard: {
6572     MachineFunction &MF = DAG.getMachineFunction();
6573     const Module &M = *MF.getFunction().getParent();
6574     SDValue Chain = getRoot();
6575     if (TLI.useLoadStackGuardNode()) {
6576       Res = getLoadStackGuard(DAG, sdl, Chain);
6577     } else {
6578       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6579       const Value *Global = TLI.getSDagStackGuard(M);
6580       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6581       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6582                         MachinePointerInfo(Global, 0), Align,
6583                         MachineMemOperand::MOVolatile);
6584     }
6585     if (TLI.useStackGuardXorFP())
6586       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6587     DAG.setRoot(Chain);
6588     setValue(&I, Res);
6589     return;
6590   }
6591   case Intrinsic::stackprotector: {
6592     // Emit code into the DAG to store the stack guard onto the stack.
6593     MachineFunction &MF = DAG.getMachineFunction();
6594     MachineFrameInfo &MFI = MF.getFrameInfo();
6595     SDValue Src, Chain = getRoot();
6596 
6597     if (TLI.useLoadStackGuardNode())
6598       Src = getLoadStackGuard(DAG, sdl, Chain);
6599     else
6600       Src = getValue(I.getArgOperand(0));   // The guard's value.
6601 
6602     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6603 
6604     int FI = FuncInfo.StaticAllocaMap[Slot];
6605     MFI.setStackProtectorIndex(FI);
6606     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6607 
6608     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6609 
6610     // Store the stack protector onto the stack.
6611     Res = DAG.getStore(
6612         Chain, sdl, Src, FIN,
6613         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6614         MaybeAlign(), MachineMemOperand::MOVolatile);
6615     setValue(&I, Res);
6616     DAG.setRoot(Res);
6617     return;
6618   }
6619   case Intrinsic::objectsize:
6620     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6621 
6622   case Intrinsic::is_constant:
6623     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6624 
6625   case Intrinsic::annotation:
6626   case Intrinsic::ptr_annotation:
6627   case Intrinsic::launder_invariant_group:
6628   case Intrinsic::strip_invariant_group:
6629     // Drop the intrinsic, but forward the value
6630     setValue(&I, getValue(I.getOperand(0)));
6631     return;
6632 
6633   case Intrinsic::assume:
6634   case Intrinsic::experimental_noalias_scope_decl:
6635   case Intrinsic::var_annotation:
6636   case Intrinsic::sideeffect:
6637     // Discard annotate attributes, noalias scope declarations, assumptions, and
6638     // artificial side-effects.
6639     return;
6640 
6641   case Intrinsic::codeview_annotation: {
6642     // Emit a label associated with this metadata.
6643     MachineFunction &MF = DAG.getMachineFunction();
6644     MCSymbol *Label =
6645         MF.getMMI().getContext().createTempSymbol("annotation", true);
6646     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6647     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6648     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6649     DAG.setRoot(Res);
6650     return;
6651   }
6652 
6653   case Intrinsic::init_trampoline: {
6654     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6655 
6656     SDValue Ops[6];
6657     Ops[0] = getRoot();
6658     Ops[1] = getValue(I.getArgOperand(0));
6659     Ops[2] = getValue(I.getArgOperand(1));
6660     Ops[3] = getValue(I.getArgOperand(2));
6661     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6662     Ops[5] = DAG.getSrcValue(F);
6663 
6664     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6665 
6666     DAG.setRoot(Res);
6667     return;
6668   }
6669   case Intrinsic::adjust_trampoline:
6670     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6671                              TLI.getPointerTy(DAG.getDataLayout()),
6672                              getValue(I.getArgOperand(0))));
6673     return;
6674   case Intrinsic::gcroot: {
6675     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6676            "only valid in functions with gc specified, enforced by Verifier");
6677     assert(GFI && "implied by previous");
6678     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6679     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6680 
6681     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6682     GFI->addStackRoot(FI->getIndex(), TypeMap);
6683     return;
6684   }
6685   case Intrinsic::gcread:
6686   case Intrinsic::gcwrite:
6687     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6688   case Intrinsic::flt_rounds:
6689     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6690     setValue(&I, Res);
6691     DAG.setRoot(Res.getValue(1));
6692     return;
6693 
6694   case Intrinsic::expect:
6695     // Just replace __builtin_expect(exp, c) with EXP.
6696     setValue(&I, getValue(I.getArgOperand(0)));
6697     return;
6698 
6699   case Intrinsic::ubsantrap:
6700   case Intrinsic::debugtrap:
6701   case Intrinsic::trap: {
6702     StringRef TrapFuncName =
6703         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6704     if (TrapFuncName.empty()) {
6705       switch (Intrinsic) {
6706       case Intrinsic::trap:
6707         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6708         break;
6709       case Intrinsic::debugtrap:
6710         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6711         break;
6712       case Intrinsic::ubsantrap:
6713         DAG.setRoot(DAG.getNode(
6714             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6715             DAG.getTargetConstant(
6716                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6717                 MVT::i32)));
6718         break;
6719       default: llvm_unreachable("unknown trap intrinsic");
6720       }
6721       return;
6722     }
6723     TargetLowering::ArgListTy Args;
6724     if (Intrinsic == Intrinsic::ubsantrap) {
6725       Args.push_back(TargetLoweringBase::ArgListEntry());
6726       Args[0].Val = I.getArgOperand(0);
6727       Args[0].Node = getValue(Args[0].Val);
6728       Args[0].Ty = Args[0].Val->getType();
6729     }
6730 
6731     TargetLowering::CallLoweringInfo CLI(DAG);
6732     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6733         CallingConv::C, I.getType(),
6734         DAG.getExternalSymbol(TrapFuncName.data(),
6735                               TLI.getPointerTy(DAG.getDataLayout())),
6736         std::move(Args));
6737 
6738     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6739     DAG.setRoot(Result.second);
6740     return;
6741   }
6742 
6743   case Intrinsic::uadd_with_overflow:
6744   case Intrinsic::sadd_with_overflow:
6745   case Intrinsic::usub_with_overflow:
6746   case Intrinsic::ssub_with_overflow:
6747   case Intrinsic::umul_with_overflow:
6748   case Intrinsic::smul_with_overflow: {
6749     ISD::NodeType Op;
6750     switch (Intrinsic) {
6751     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6752     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6753     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6754     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6755     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6756     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6757     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6758     }
6759     SDValue Op1 = getValue(I.getArgOperand(0));
6760     SDValue Op2 = getValue(I.getArgOperand(1));
6761 
6762     EVT ResultVT = Op1.getValueType();
6763     EVT OverflowVT = MVT::i1;
6764     if (ResultVT.isVector())
6765       OverflowVT = EVT::getVectorVT(
6766           *Context, OverflowVT, ResultVT.getVectorElementCount());
6767 
6768     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6769     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6770     return;
6771   }
6772   case Intrinsic::prefetch: {
6773     SDValue Ops[5];
6774     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6775     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6776     Ops[0] = DAG.getRoot();
6777     Ops[1] = getValue(I.getArgOperand(0));
6778     Ops[2] = getValue(I.getArgOperand(1));
6779     Ops[3] = getValue(I.getArgOperand(2));
6780     Ops[4] = getValue(I.getArgOperand(3));
6781     SDValue Result = DAG.getMemIntrinsicNode(
6782         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6783         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6784         /* align */ None, Flags);
6785 
6786     // Chain the prefetch in parallell with any pending loads, to stay out of
6787     // the way of later optimizations.
6788     PendingLoads.push_back(Result);
6789     Result = getRoot();
6790     DAG.setRoot(Result);
6791     return;
6792   }
6793   case Intrinsic::lifetime_start:
6794   case Intrinsic::lifetime_end: {
6795     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6796     // Stack coloring is not enabled in O0, discard region information.
6797     if (TM.getOptLevel() == CodeGenOpt::None)
6798       return;
6799 
6800     const int64_t ObjectSize =
6801         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6802     Value *const ObjectPtr = I.getArgOperand(1);
6803     SmallVector<const Value *, 4> Allocas;
6804     getUnderlyingObjects(ObjectPtr, Allocas);
6805 
6806     for (const Value *Alloca : Allocas) {
6807       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6808 
6809       // Could not find an Alloca.
6810       if (!LifetimeObject)
6811         continue;
6812 
6813       // First check that the Alloca is static, otherwise it won't have a
6814       // valid frame index.
6815       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6816       if (SI == FuncInfo.StaticAllocaMap.end())
6817         return;
6818 
6819       const int FrameIndex = SI->second;
6820       int64_t Offset;
6821       if (GetPointerBaseWithConstantOffset(
6822               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6823         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6824       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6825                                 Offset);
6826       DAG.setRoot(Res);
6827     }
6828     return;
6829   }
6830   case Intrinsic::pseudoprobe: {
6831     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6832     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6833     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6834     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6835     DAG.setRoot(Res);
6836     return;
6837   }
6838   case Intrinsic::invariant_start:
6839     // Discard region information.
6840     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6841     return;
6842   case Intrinsic::invariant_end:
6843     // Discard region information.
6844     return;
6845   case Intrinsic::clear_cache:
6846     /// FunctionName may be null.
6847     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6848       lowerCallToExternalSymbol(I, FunctionName);
6849     return;
6850   case Intrinsic::donothing:
6851   case Intrinsic::seh_try_begin:
6852   case Intrinsic::seh_scope_begin:
6853   case Intrinsic::seh_try_end:
6854   case Intrinsic::seh_scope_end:
6855     // ignore
6856     return;
6857   case Intrinsic::experimental_stackmap:
6858     visitStackmap(I);
6859     return;
6860   case Intrinsic::experimental_patchpoint_void:
6861   case Intrinsic::experimental_patchpoint_i64:
6862     visitPatchpoint(I);
6863     return;
6864   case Intrinsic::experimental_gc_statepoint:
6865     LowerStatepoint(cast<GCStatepointInst>(I));
6866     return;
6867   case Intrinsic::experimental_gc_result:
6868     visitGCResult(cast<GCResultInst>(I));
6869     return;
6870   case Intrinsic::experimental_gc_relocate:
6871     visitGCRelocate(cast<GCRelocateInst>(I));
6872     return;
6873   case Intrinsic::instrprof_increment:
6874     llvm_unreachable("instrprof failed to lower an increment");
6875   case Intrinsic::instrprof_value_profile:
6876     llvm_unreachable("instrprof failed to lower a value profiling call");
6877   case Intrinsic::localescape: {
6878     MachineFunction &MF = DAG.getMachineFunction();
6879     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6880 
6881     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6882     // is the same on all targets.
6883     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6884       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6885       if (isa<ConstantPointerNull>(Arg))
6886         continue; // Skip null pointers. They represent a hole in index space.
6887       AllocaInst *Slot = cast<AllocaInst>(Arg);
6888       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6889              "can only escape static allocas");
6890       int FI = FuncInfo.StaticAllocaMap[Slot];
6891       MCSymbol *FrameAllocSym =
6892           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6893               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6894       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6895               TII->get(TargetOpcode::LOCAL_ESCAPE))
6896           .addSym(FrameAllocSym)
6897           .addFrameIndex(FI);
6898     }
6899 
6900     return;
6901   }
6902 
6903   case Intrinsic::localrecover: {
6904     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6905     MachineFunction &MF = DAG.getMachineFunction();
6906 
6907     // Get the symbol that defines the frame offset.
6908     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6909     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6910     unsigned IdxVal =
6911         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6912     MCSymbol *FrameAllocSym =
6913         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6914             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6915 
6916     Value *FP = I.getArgOperand(1);
6917     SDValue FPVal = getValue(FP);
6918     EVT PtrVT = FPVal.getValueType();
6919 
6920     // Create a MCSymbol for the label to avoid any target lowering
6921     // that would make this PC relative.
6922     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6923     SDValue OffsetVal =
6924         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6925 
6926     // Add the offset to the FP.
6927     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6928     setValue(&I, Add);
6929 
6930     return;
6931   }
6932 
6933   case Intrinsic::eh_exceptionpointer:
6934   case Intrinsic::eh_exceptioncode: {
6935     // Get the exception pointer vreg, copy from it, and resize it to fit.
6936     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6937     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6938     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6939     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6940     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
6941     if (Intrinsic == Intrinsic::eh_exceptioncode)
6942       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
6943     setValue(&I, N);
6944     return;
6945   }
6946   case Intrinsic::xray_customevent: {
6947     // Here we want to make sure that the intrinsic behaves as if it has a
6948     // specific calling convention, and only for x86_64.
6949     // FIXME: Support other platforms later.
6950     const auto &Triple = DAG.getTarget().getTargetTriple();
6951     if (Triple.getArch() != Triple::x86_64)
6952       return;
6953 
6954     SmallVector<SDValue, 8> Ops;
6955 
6956     // We want to say that we always want the arguments in registers.
6957     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6958     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6959     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6960     SDValue Chain = getRoot();
6961     Ops.push_back(LogEntryVal);
6962     Ops.push_back(StrSizeVal);
6963     Ops.push_back(Chain);
6964 
6965     // We need to enforce the calling convention for the callsite, so that
6966     // argument ordering is enforced correctly, and that register allocation can
6967     // see that some registers may be assumed clobbered and have to preserve
6968     // them across calls to the intrinsic.
6969     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6970                                            sdl, NodeTys, Ops);
6971     SDValue patchableNode = SDValue(MN, 0);
6972     DAG.setRoot(patchableNode);
6973     setValue(&I, patchableNode);
6974     return;
6975   }
6976   case Intrinsic::xray_typedevent: {
6977     // Here we want to make sure that the intrinsic behaves as if it has a
6978     // specific calling convention, and only for x86_64.
6979     // FIXME: Support other platforms later.
6980     const auto &Triple = DAG.getTarget().getTargetTriple();
6981     if (Triple.getArch() != Triple::x86_64)
6982       return;
6983 
6984     SmallVector<SDValue, 8> Ops;
6985 
6986     // We want to say that we always want the arguments in registers.
6987     // It's unclear to me how manipulating the selection DAG here forces callers
6988     // to provide arguments in registers instead of on the stack.
6989     SDValue LogTypeId = getValue(I.getArgOperand(0));
6990     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6991     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6992     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6993     SDValue Chain = getRoot();
6994     Ops.push_back(LogTypeId);
6995     Ops.push_back(LogEntryVal);
6996     Ops.push_back(StrSizeVal);
6997     Ops.push_back(Chain);
6998 
6999     // We need to enforce the calling convention for the callsite, so that
7000     // argument ordering is enforced correctly, and that register allocation can
7001     // see that some registers may be assumed clobbered and have to preserve
7002     // them across calls to the intrinsic.
7003     MachineSDNode *MN = DAG.getMachineNode(
7004         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7005     SDValue patchableNode = SDValue(MN, 0);
7006     DAG.setRoot(patchableNode);
7007     setValue(&I, patchableNode);
7008     return;
7009   }
7010   case Intrinsic::experimental_deoptimize:
7011     LowerDeoptimizeCall(&I);
7012     return;
7013   case Intrinsic::experimental_stepvector:
7014     visitStepVector(I);
7015     return;
7016   case Intrinsic::vector_reduce_fadd:
7017   case Intrinsic::vector_reduce_fmul:
7018   case Intrinsic::vector_reduce_add:
7019   case Intrinsic::vector_reduce_mul:
7020   case Intrinsic::vector_reduce_and:
7021   case Intrinsic::vector_reduce_or:
7022   case Intrinsic::vector_reduce_xor:
7023   case Intrinsic::vector_reduce_smax:
7024   case Intrinsic::vector_reduce_smin:
7025   case Intrinsic::vector_reduce_umax:
7026   case Intrinsic::vector_reduce_umin:
7027   case Intrinsic::vector_reduce_fmax:
7028   case Intrinsic::vector_reduce_fmin:
7029     visitVectorReduce(I, Intrinsic);
7030     return;
7031 
7032   case Intrinsic::icall_branch_funnel: {
7033     SmallVector<SDValue, 16> Ops;
7034     Ops.push_back(getValue(I.getArgOperand(0)));
7035 
7036     int64_t Offset;
7037     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7038         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7039     if (!Base)
7040       report_fatal_error(
7041           "llvm.icall.branch.funnel operand must be a GlobalValue");
7042     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7043 
7044     struct BranchFunnelTarget {
7045       int64_t Offset;
7046       SDValue Target;
7047     };
7048     SmallVector<BranchFunnelTarget, 8> Targets;
7049 
7050     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7051       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7052           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7053       if (ElemBase != Base)
7054         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7055                            "to the same GlobalValue");
7056 
7057       SDValue Val = getValue(I.getArgOperand(Op + 1));
7058       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7059       if (!GA)
7060         report_fatal_error(
7061             "llvm.icall.branch.funnel operand must be a GlobalValue");
7062       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7063                                      GA->getGlobal(), sdl, Val.getValueType(),
7064                                      GA->getOffset())});
7065     }
7066     llvm::sort(Targets,
7067                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7068                  return T1.Offset < T2.Offset;
7069                });
7070 
7071     for (auto &T : Targets) {
7072       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7073       Ops.push_back(T.Target);
7074     }
7075 
7076     Ops.push_back(DAG.getRoot()); // Chain
7077     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7078                                  MVT::Other, Ops),
7079               0);
7080     DAG.setRoot(N);
7081     setValue(&I, N);
7082     HasTailCall = true;
7083     return;
7084   }
7085 
7086   case Intrinsic::wasm_landingpad_index:
7087     // Information this intrinsic contained has been transferred to
7088     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7089     // delete it now.
7090     return;
7091 
7092   case Intrinsic::aarch64_settag:
7093   case Intrinsic::aarch64_settag_zero: {
7094     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7095     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7096     SDValue Val = TSI.EmitTargetCodeForSetTag(
7097         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7098         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7099         ZeroMemory);
7100     DAG.setRoot(Val);
7101     setValue(&I, Val);
7102     return;
7103   }
7104   case Intrinsic::ptrmask: {
7105     SDValue Ptr = getValue(I.getOperand(0));
7106     SDValue Const = getValue(I.getOperand(1));
7107 
7108     EVT PtrVT = Ptr.getValueType();
7109     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7110                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7111     return;
7112   }
7113   case Intrinsic::get_active_lane_mask: {
7114     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7115     SDValue Index = getValue(I.getOperand(0));
7116     EVT ElementVT = Index.getValueType();
7117 
7118     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7119       visitTargetIntrinsic(I, Intrinsic);
7120       return;
7121     }
7122 
7123     SDValue TripCount = getValue(I.getOperand(1));
7124     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7125 
7126     SDValue VectorIndex, VectorTripCount;
7127     if (VecTy.isScalableVector()) {
7128       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7129       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7130     } else {
7131       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7132       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7133     }
7134     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7135     SDValue VectorInduction = DAG.getNode(
7136         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7137     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7138                                  VectorTripCount, ISD::CondCode::SETULT);
7139     setValue(&I, SetCC);
7140     return;
7141   }
7142   case Intrinsic::experimental_vector_insert: {
7143     SDValue Vec = getValue(I.getOperand(0));
7144     SDValue SubVec = getValue(I.getOperand(1));
7145     SDValue Index = getValue(I.getOperand(2));
7146 
7147     // The intrinsic's index type is i64, but the SDNode requires an index type
7148     // suitable for the target. Convert the index as required.
7149     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7150     if (Index.getValueType() != VectorIdxTy)
7151       Index = DAG.getVectorIdxConstant(
7152           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7153 
7154     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7155     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7156                              Index));
7157     return;
7158   }
7159   case Intrinsic::experimental_vector_extract: {
7160     SDValue Vec = getValue(I.getOperand(0));
7161     SDValue Index = getValue(I.getOperand(1));
7162     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7163 
7164     // The intrinsic's index type is i64, but the SDNode requires an index type
7165     // suitable for the target. Convert the index as required.
7166     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7167     if (Index.getValueType() != VectorIdxTy)
7168       Index = DAG.getVectorIdxConstant(
7169           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7170 
7171     setValue(&I,
7172              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7173     return;
7174   }
7175   case Intrinsic::experimental_vector_reverse:
7176     visitVectorReverse(I);
7177     return;
7178   case Intrinsic::experimental_vector_splice:
7179     visitVectorSplice(I);
7180     return;
7181   }
7182 }
7183 
7184 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7185     const ConstrainedFPIntrinsic &FPI) {
7186   SDLoc sdl = getCurSDLoc();
7187 
7188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7189   SmallVector<EVT, 4> ValueVTs;
7190   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7191   ValueVTs.push_back(MVT::Other); // Out chain
7192 
7193   // We do not need to serialize constrained FP intrinsics against
7194   // each other or against (nonvolatile) loads, so they can be
7195   // chained like loads.
7196   SDValue Chain = DAG.getRoot();
7197   SmallVector<SDValue, 4> Opers;
7198   Opers.push_back(Chain);
7199   if (FPI.isUnaryOp()) {
7200     Opers.push_back(getValue(FPI.getArgOperand(0)));
7201   } else if (FPI.isTernaryOp()) {
7202     Opers.push_back(getValue(FPI.getArgOperand(0)));
7203     Opers.push_back(getValue(FPI.getArgOperand(1)));
7204     Opers.push_back(getValue(FPI.getArgOperand(2)));
7205   } else {
7206     Opers.push_back(getValue(FPI.getArgOperand(0)));
7207     Opers.push_back(getValue(FPI.getArgOperand(1)));
7208   }
7209 
7210   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7211     assert(Result.getNode()->getNumValues() == 2);
7212 
7213     // Push node to the appropriate list so that future instructions can be
7214     // chained up correctly.
7215     SDValue OutChain = Result.getValue(1);
7216     switch (EB) {
7217     case fp::ExceptionBehavior::ebIgnore:
7218       // The only reason why ebIgnore nodes still need to be chained is that
7219       // they might depend on the current rounding mode, and therefore must
7220       // not be moved across instruction that may change that mode.
7221       LLVM_FALLTHROUGH;
7222     case fp::ExceptionBehavior::ebMayTrap:
7223       // These must not be moved across calls or instructions that may change
7224       // floating-point exception masks.
7225       PendingConstrainedFP.push_back(OutChain);
7226       break;
7227     case fp::ExceptionBehavior::ebStrict:
7228       // These must not be moved across calls or instructions that may change
7229       // floating-point exception masks or read floating-point exception flags.
7230       // In addition, they cannot be optimized out even if unused.
7231       PendingConstrainedFPStrict.push_back(OutChain);
7232       break;
7233     }
7234   };
7235 
7236   SDVTList VTs = DAG.getVTList(ValueVTs);
7237   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7238 
7239   SDNodeFlags Flags;
7240   if (EB == fp::ExceptionBehavior::ebIgnore)
7241     Flags.setNoFPExcept(true);
7242 
7243   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7244     Flags.copyFMF(*FPOp);
7245 
7246   unsigned Opcode;
7247   switch (FPI.getIntrinsicID()) {
7248   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7249 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7250   case Intrinsic::INTRINSIC:                                                   \
7251     Opcode = ISD::STRICT_##DAGN;                                               \
7252     break;
7253 #include "llvm/IR/ConstrainedOps.def"
7254   case Intrinsic::experimental_constrained_fmuladd: {
7255     Opcode = ISD::STRICT_FMA;
7256     // Break fmuladd into fmul and fadd.
7257     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7258         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7259                                         ValueVTs[0])) {
7260       Opers.pop_back();
7261       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7262       pushOutChain(Mul, EB);
7263       Opcode = ISD::STRICT_FADD;
7264       Opers.clear();
7265       Opers.push_back(Mul.getValue(1));
7266       Opers.push_back(Mul.getValue(0));
7267       Opers.push_back(getValue(FPI.getArgOperand(2)));
7268     }
7269     break;
7270   }
7271   }
7272 
7273   // A few strict DAG nodes carry additional operands that are not
7274   // set up by the default code above.
7275   switch (Opcode) {
7276   default: break;
7277   case ISD::STRICT_FP_ROUND:
7278     Opers.push_back(
7279         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7280     break;
7281   case ISD::STRICT_FSETCC:
7282   case ISD::STRICT_FSETCCS: {
7283     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7284     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7285     if (TM.Options.NoNaNsFPMath)
7286       Condition = getFCmpCodeWithoutNaN(Condition);
7287     Opers.push_back(DAG.getCondCode(Condition));
7288     break;
7289   }
7290   }
7291 
7292   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7293   pushOutChain(Result, EB);
7294 
7295   SDValue FPResult = Result.getValue(0);
7296   setValue(&FPI, FPResult);
7297 }
7298 
7299 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7300   Optional<unsigned> ResOPC;
7301   switch (VPIntrin.getIntrinsicID()) {
7302 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7303 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD;
7304 #define END_REGISTER_VP_INTRINSIC(VPID) break;
7305 #include "llvm/IR/VPIntrinsics.def"
7306   }
7307 
7308   if (!ResOPC.hasValue())
7309     llvm_unreachable(
7310         "Inconsistency: no SDNode available for this VPIntrinsic!");
7311 
7312   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7313       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7314     if (VPIntrin.getFastMathFlags().allowReassoc())
7315       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7316                                                 : ISD::VP_REDUCE_FMUL;
7317   }
7318 
7319   return ResOPC.getValue();
7320 }
7321 
7322 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7323                                             SmallVector<SDValue, 7> &OpValues,
7324                                             bool IsGather) {
7325   SDLoc DL = getCurSDLoc();
7326   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7327   Value *PtrOperand = VPIntrin.getArgOperand(0);
7328   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7329   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7330   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7331   SDValue LD;
7332   bool AddToChain = true;
7333   if (!IsGather) {
7334     // Do not serialize variable-length loads of constant memory with
7335     // anything.
7336     if (!Alignment)
7337       Alignment = DAG.getEVTAlign(VT);
7338     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7339     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7340     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7341     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7342         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7343         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7344     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7345                        MMO, false /*IsExpanding */);
7346   } else {
7347     if (!Alignment)
7348       Alignment = DAG.getEVTAlign(VT.getScalarType());
7349     unsigned AS =
7350         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7351     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7352         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7353         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7354     SDValue Base, Index, Scale;
7355     ISD::MemIndexType IndexType;
7356     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7357                                       this, VPIntrin.getParent());
7358     if (!UniformBase) {
7359       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7360       Index = getValue(PtrOperand);
7361       IndexType = ISD::SIGNED_UNSCALED;
7362       Scale =
7363           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7364     }
7365     EVT IdxVT = Index.getValueType();
7366     EVT EltTy = IdxVT.getVectorElementType();
7367     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7368       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7369       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7370     }
7371     LD = DAG.getGatherVP(
7372         DAG.getVTList(VT, MVT::Other), VT, DL,
7373         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7374         IndexType);
7375   }
7376   if (AddToChain)
7377     PendingLoads.push_back(LD.getValue(1));
7378   setValue(&VPIntrin, LD);
7379 }
7380 
7381 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7382                                               SmallVector<SDValue, 7> &OpValues,
7383                                               bool IsScatter) {
7384   SDLoc DL = getCurSDLoc();
7385   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7386   Value *PtrOperand = VPIntrin.getArgOperand(1);
7387   EVT VT = OpValues[0].getValueType();
7388   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7389   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7390   SDValue ST;
7391   if (!IsScatter) {
7392     if (!Alignment)
7393       Alignment = DAG.getEVTAlign(VT);
7394     SDValue Ptr = OpValues[1];
7395     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7396     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7397         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7398         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7399     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7400                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7401                         /* IsTruncating */ false, /*IsCompressing*/ false);
7402   } else {
7403     if (!Alignment)
7404       Alignment = DAG.getEVTAlign(VT.getScalarType());
7405     unsigned AS =
7406         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7407     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7408         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7409         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7410     SDValue Base, Index, Scale;
7411     ISD::MemIndexType IndexType;
7412     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7413                                       this, VPIntrin.getParent());
7414     if (!UniformBase) {
7415       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7416       Index = getValue(PtrOperand);
7417       IndexType = ISD::SIGNED_UNSCALED;
7418       Scale =
7419           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7420     }
7421     EVT IdxVT = Index.getValueType();
7422     EVT EltTy = IdxVT.getVectorElementType();
7423     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7424       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7425       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7426     }
7427     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7428                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7429                            OpValues[2], OpValues[3]},
7430                           MMO, IndexType);
7431   }
7432   DAG.setRoot(ST);
7433   setValue(&VPIntrin, ST);
7434 }
7435 
7436 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7437     const VPIntrinsic &VPIntrin) {
7438   SDLoc DL = getCurSDLoc();
7439   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7440 
7441   SmallVector<EVT, 4> ValueVTs;
7442   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7443   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7444   SDVTList VTs = DAG.getVTList(ValueVTs);
7445 
7446   auto EVLParamPos =
7447       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7448 
7449   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7450   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7451          "Unexpected target EVL type");
7452 
7453   // Request operands.
7454   SmallVector<SDValue, 7> OpValues;
7455   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7456     auto Op = getValue(VPIntrin.getArgOperand(I));
7457     if (I == EVLParamPos)
7458       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7459     OpValues.push_back(Op);
7460   }
7461 
7462   switch (Opcode) {
7463   default: {
7464     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7465     setValue(&VPIntrin, Result);
7466     break;
7467   }
7468   case ISD::VP_LOAD:
7469   case ISD::VP_GATHER:
7470     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7471                       Opcode == ISD::VP_GATHER);
7472     break;
7473   case ISD::VP_STORE:
7474   case ISD::VP_SCATTER:
7475     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7476     break;
7477   }
7478 }
7479 
7480 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7481                                           const BasicBlock *EHPadBB,
7482                                           MCSymbol *&BeginLabel) {
7483   MachineFunction &MF = DAG.getMachineFunction();
7484   MachineModuleInfo &MMI = MF.getMMI();
7485 
7486   // Insert a label before the invoke call to mark the try range.  This can be
7487   // used to detect deletion of the invoke via the MachineModuleInfo.
7488   BeginLabel = MMI.getContext().createTempSymbol();
7489 
7490   // For SjLj, keep track of which landing pads go with which invokes
7491   // so as to maintain the ordering of pads in the LSDA.
7492   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7493   if (CallSiteIndex) {
7494     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7495     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7496 
7497     // Now that the call site is handled, stop tracking it.
7498     MMI.setCurrentCallSite(0);
7499   }
7500 
7501   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7502 }
7503 
7504 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7505                                         const BasicBlock *EHPadBB,
7506                                         MCSymbol *BeginLabel) {
7507   assert(BeginLabel && "BeginLabel should've been set");
7508 
7509   MachineFunction &MF = DAG.getMachineFunction();
7510   MachineModuleInfo &MMI = MF.getMMI();
7511 
7512   // Insert a label at the end of the invoke call to mark the try range.  This
7513   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7514   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7515   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7516 
7517   // Inform MachineModuleInfo of range.
7518   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7519   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7520   // actually use outlined funclets and their LSDA info style.
7521   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7522     assert(II && "II should've been set");
7523     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7524     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7525   } else if (!isScopedEHPersonality(Pers)) {
7526     assert(EHPadBB);
7527     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7528   }
7529 
7530   return Chain;
7531 }
7532 
7533 std::pair<SDValue, SDValue>
7534 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7535                                     const BasicBlock *EHPadBB) {
7536   MCSymbol *BeginLabel = nullptr;
7537 
7538   if (EHPadBB) {
7539     // Both PendingLoads and PendingExports must be flushed here;
7540     // this call might not return.
7541     (void)getRoot();
7542     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7543     CLI.setChain(getRoot());
7544   }
7545 
7546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7547   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7548 
7549   assert((CLI.IsTailCall || Result.second.getNode()) &&
7550          "Non-null chain expected with non-tail call!");
7551   assert((Result.second.getNode() || !Result.first.getNode()) &&
7552          "Null value expected with tail call!");
7553 
7554   if (!Result.second.getNode()) {
7555     // As a special case, a null chain means that a tail call has been emitted
7556     // and the DAG root is already updated.
7557     HasTailCall = true;
7558 
7559     // Since there's no actual continuation from this block, nothing can be
7560     // relying on us setting vregs for them.
7561     PendingExports.clear();
7562   } else {
7563     DAG.setRoot(Result.second);
7564   }
7565 
7566   if (EHPadBB) {
7567     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7568                            BeginLabel));
7569   }
7570 
7571   return Result;
7572 }
7573 
7574 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7575                                       bool isTailCall,
7576                                       bool isMustTailCall,
7577                                       const BasicBlock *EHPadBB) {
7578   auto &DL = DAG.getDataLayout();
7579   FunctionType *FTy = CB.getFunctionType();
7580   Type *RetTy = CB.getType();
7581 
7582   TargetLowering::ArgListTy Args;
7583   Args.reserve(CB.arg_size());
7584 
7585   const Value *SwiftErrorVal = nullptr;
7586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7587 
7588   if (isTailCall) {
7589     // Avoid emitting tail calls in functions with the disable-tail-calls
7590     // attribute.
7591     auto *Caller = CB.getParent()->getParent();
7592     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7593         "true" && !isMustTailCall)
7594       isTailCall = false;
7595 
7596     // We can't tail call inside a function with a swifterror argument. Lowering
7597     // does not support this yet. It would have to move into the swifterror
7598     // register before the call.
7599     if (TLI.supportSwiftError() &&
7600         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7601       isTailCall = false;
7602   }
7603 
7604   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7605     TargetLowering::ArgListEntry Entry;
7606     const Value *V = *I;
7607 
7608     // Skip empty types
7609     if (V->getType()->isEmptyTy())
7610       continue;
7611 
7612     SDValue ArgNode = getValue(V);
7613     Entry.Node = ArgNode; Entry.Ty = V->getType();
7614 
7615     Entry.setAttributes(&CB, I - CB.arg_begin());
7616 
7617     // Use swifterror virtual register as input to the call.
7618     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7619       SwiftErrorVal = V;
7620       // We find the virtual register for the actual swifterror argument.
7621       // Instead of using the Value, we use the virtual register instead.
7622       Entry.Node =
7623           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7624                           EVT(TLI.getPointerTy(DL)));
7625     }
7626 
7627     Args.push_back(Entry);
7628 
7629     // If we have an explicit sret argument that is an Instruction, (i.e., it
7630     // might point to function-local memory), we can't meaningfully tail-call.
7631     if (Entry.IsSRet && isa<Instruction>(V))
7632       isTailCall = false;
7633   }
7634 
7635   // If call site has a cfguardtarget operand bundle, create and add an
7636   // additional ArgListEntry.
7637   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7638     TargetLowering::ArgListEntry Entry;
7639     Value *V = Bundle->Inputs[0];
7640     SDValue ArgNode = getValue(V);
7641     Entry.Node = ArgNode;
7642     Entry.Ty = V->getType();
7643     Entry.IsCFGuardTarget = true;
7644     Args.push_back(Entry);
7645   }
7646 
7647   // Check if target-independent constraints permit a tail call here.
7648   // Target-dependent constraints are checked within TLI->LowerCallTo.
7649   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7650     isTailCall = false;
7651 
7652   // Disable tail calls if there is an swifterror argument. Targets have not
7653   // been updated to support tail calls.
7654   if (TLI.supportSwiftError() && SwiftErrorVal)
7655     isTailCall = false;
7656 
7657   TargetLowering::CallLoweringInfo CLI(DAG);
7658   CLI.setDebugLoc(getCurSDLoc())
7659       .setChain(getRoot())
7660       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7661       .setTailCall(isTailCall)
7662       .setConvergent(CB.isConvergent())
7663       .setIsPreallocated(
7664           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7665   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7666 
7667   if (Result.first.getNode()) {
7668     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7669     setValue(&CB, Result.first);
7670   }
7671 
7672   // The last element of CLI.InVals has the SDValue for swifterror return.
7673   // Here we copy it to a virtual register and update SwiftErrorMap for
7674   // book-keeping.
7675   if (SwiftErrorVal && TLI.supportSwiftError()) {
7676     // Get the last element of InVals.
7677     SDValue Src = CLI.InVals.back();
7678     Register VReg =
7679         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7680     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7681     DAG.setRoot(CopyNode);
7682   }
7683 }
7684 
7685 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7686                              SelectionDAGBuilder &Builder) {
7687   // Check to see if this load can be trivially constant folded, e.g. if the
7688   // input is from a string literal.
7689   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7690     // Cast pointer to the type we really want to load.
7691     Type *LoadTy =
7692         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7693     if (LoadVT.isVector())
7694       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7695 
7696     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7697                                          PointerType::getUnqual(LoadTy));
7698 
7699     if (const Constant *LoadCst =
7700             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7701                                          LoadTy, Builder.DAG.getDataLayout()))
7702       return Builder.getValue(LoadCst);
7703   }
7704 
7705   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7706   // still constant memory, the input chain can be the entry node.
7707   SDValue Root;
7708   bool ConstantMemory = false;
7709 
7710   // Do not serialize (non-volatile) loads of constant memory with anything.
7711   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7712     Root = Builder.DAG.getEntryNode();
7713     ConstantMemory = true;
7714   } else {
7715     // Do not serialize non-volatile loads against each other.
7716     Root = Builder.DAG.getRoot();
7717   }
7718 
7719   SDValue Ptr = Builder.getValue(PtrVal);
7720   SDValue LoadVal =
7721       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7722                           MachinePointerInfo(PtrVal), Align(1));
7723 
7724   if (!ConstantMemory)
7725     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7726   return LoadVal;
7727 }
7728 
7729 /// Record the value for an instruction that produces an integer result,
7730 /// converting the type where necessary.
7731 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7732                                                   SDValue Value,
7733                                                   bool IsSigned) {
7734   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7735                                                     I.getType(), true);
7736   if (IsSigned)
7737     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7738   else
7739     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7740   setValue(&I, Value);
7741 }
7742 
7743 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7744 /// true and lower it. Otherwise return false, and it will be lowered like a
7745 /// normal call.
7746 /// The caller already checked that \p I calls the appropriate LibFunc with a
7747 /// correct prototype.
7748 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7749   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7750   const Value *Size = I.getArgOperand(2);
7751   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7752   if (CSize && CSize->getZExtValue() == 0) {
7753     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7754                                                           I.getType(), true);
7755     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7756     return true;
7757   }
7758 
7759   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7760   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7761       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7762       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7763   if (Res.first.getNode()) {
7764     processIntegerCallValue(I, Res.first, true);
7765     PendingLoads.push_back(Res.second);
7766     return true;
7767   }
7768 
7769   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7770   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7771   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7772     return false;
7773 
7774   // If the target has a fast compare for the given size, it will return a
7775   // preferred load type for that size. Require that the load VT is legal and
7776   // that the target supports unaligned loads of that type. Otherwise, return
7777   // INVALID.
7778   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7779     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7780     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7781     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7782       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7783       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7784       // TODO: Check alignment of src and dest ptrs.
7785       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7786       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7787       if (!TLI.isTypeLegal(LVT) ||
7788           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7789           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7790         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7791     }
7792 
7793     return LVT;
7794   };
7795 
7796   // This turns into unaligned loads. We only do this if the target natively
7797   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7798   // we'll only produce a small number of byte loads.
7799   MVT LoadVT;
7800   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7801   switch (NumBitsToCompare) {
7802   default:
7803     return false;
7804   case 16:
7805     LoadVT = MVT::i16;
7806     break;
7807   case 32:
7808     LoadVT = MVT::i32;
7809     break;
7810   case 64:
7811   case 128:
7812   case 256:
7813     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7814     break;
7815   }
7816 
7817   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7818     return false;
7819 
7820   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7821   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7822 
7823   // Bitcast to a wide integer type if the loads are vectors.
7824   if (LoadVT.isVector()) {
7825     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7826     LoadL = DAG.getBitcast(CmpVT, LoadL);
7827     LoadR = DAG.getBitcast(CmpVT, LoadR);
7828   }
7829 
7830   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7831   processIntegerCallValue(I, Cmp, false);
7832   return true;
7833 }
7834 
7835 /// See if we can lower a memchr call into an optimized form. If so, return
7836 /// true and lower it. Otherwise return false, and it will be lowered like a
7837 /// normal call.
7838 /// The caller already checked that \p I calls the appropriate LibFunc with a
7839 /// correct prototype.
7840 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7841   const Value *Src = I.getArgOperand(0);
7842   const Value *Char = I.getArgOperand(1);
7843   const Value *Length = I.getArgOperand(2);
7844 
7845   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7846   std::pair<SDValue, SDValue> Res =
7847     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7848                                 getValue(Src), getValue(Char), getValue(Length),
7849                                 MachinePointerInfo(Src));
7850   if (Res.first.getNode()) {
7851     setValue(&I, Res.first);
7852     PendingLoads.push_back(Res.second);
7853     return true;
7854   }
7855 
7856   return false;
7857 }
7858 
7859 /// See if we can lower a mempcpy call into an optimized form. If so, return
7860 /// true and lower it. Otherwise return false, and it will be lowered like a
7861 /// normal call.
7862 /// The caller already checked that \p I calls the appropriate LibFunc with a
7863 /// correct prototype.
7864 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7865   SDValue Dst = getValue(I.getArgOperand(0));
7866   SDValue Src = getValue(I.getArgOperand(1));
7867   SDValue Size = getValue(I.getArgOperand(2));
7868 
7869   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7870   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7871   // DAG::getMemcpy needs Alignment to be defined.
7872   Align Alignment = std::min(DstAlign, SrcAlign);
7873 
7874   bool isVol = false;
7875   SDLoc sdl = getCurSDLoc();
7876 
7877   // In the mempcpy context we need to pass in a false value for isTailCall
7878   // because the return pointer needs to be adjusted by the size of
7879   // the copied memory.
7880   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7881   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7882                              /*isTailCall=*/false,
7883                              MachinePointerInfo(I.getArgOperand(0)),
7884                              MachinePointerInfo(I.getArgOperand(1)),
7885                              I.getAAMetadata());
7886   assert(MC.getNode() != nullptr &&
7887          "** memcpy should not be lowered as TailCall in mempcpy context **");
7888   DAG.setRoot(MC);
7889 
7890   // Check if Size needs to be truncated or extended.
7891   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7892 
7893   // Adjust return pointer to point just past the last dst byte.
7894   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7895                                     Dst, Size);
7896   setValue(&I, DstPlusSize);
7897   return true;
7898 }
7899 
7900 /// See if we can lower a strcpy call into an optimized form.  If so, return
7901 /// true and lower it, otherwise return false and it will be lowered like a
7902 /// normal call.
7903 /// The caller already checked that \p I calls the appropriate LibFunc with a
7904 /// correct prototype.
7905 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7906   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7907 
7908   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7909   std::pair<SDValue, SDValue> Res =
7910     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7911                                 getValue(Arg0), getValue(Arg1),
7912                                 MachinePointerInfo(Arg0),
7913                                 MachinePointerInfo(Arg1), isStpcpy);
7914   if (Res.first.getNode()) {
7915     setValue(&I, Res.first);
7916     DAG.setRoot(Res.second);
7917     return true;
7918   }
7919 
7920   return false;
7921 }
7922 
7923 /// See if we can lower a strcmp call into an optimized form.  If so, return
7924 /// true and lower it, otherwise return false and it will be lowered like a
7925 /// normal call.
7926 /// The caller already checked that \p I calls the appropriate LibFunc with a
7927 /// correct prototype.
7928 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7929   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7930 
7931   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7932   std::pair<SDValue, SDValue> Res =
7933     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7934                                 getValue(Arg0), getValue(Arg1),
7935                                 MachinePointerInfo(Arg0),
7936                                 MachinePointerInfo(Arg1));
7937   if (Res.first.getNode()) {
7938     processIntegerCallValue(I, Res.first, true);
7939     PendingLoads.push_back(Res.second);
7940     return true;
7941   }
7942 
7943   return false;
7944 }
7945 
7946 /// See if we can lower a strlen call into an optimized form.  If so, return
7947 /// true and lower it, otherwise return false and it will be lowered like a
7948 /// normal call.
7949 /// The caller already checked that \p I calls the appropriate LibFunc with a
7950 /// correct prototype.
7951 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7952   const Value *Arg0 = I.getArgOperand(0);
7953 
7954   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7955   std::pair<SDValue, SDValue> Res =
7956     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7957                                 getValue(Arg0), MachinePointerInfo(Arg0));
7958   if (Res.first.getNode()) {
7959     processIntegerCallValue(I, Res.first, false);
7960     PendingLoads.push_back(Res.second);
7961     return true;
7962   }
7963 
7964   return false;
7965 }
7966 
7967 /// See if we can lower a strnlen call into an optimized form.  If so, return
7968 /// true and lower it, otherwise return false and it will be lowered like a
7969 /// normal call.
7970 /// The caller already checked that \p I calls the appropriate LibFunc with a
7971 /// correct prototype.
7972 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7973   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7974 
7975   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7976   std::pair<SDValue, SDValue> Res =
7977     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7978                                  getValue(Arg0), getValue(Arg1),
7979                                  MachinePointerInfo(Arg0));
7980   if (Res.first.getNode()) {
7981     processIntegerCallValue(I, Res.first, false);
7982     PendingLoads.push_back(Res.second);
7983     return true;
7984   }
7985 
7986   return false;
7987 }
7988 
7989 /// See if we can lower a unary floating-point operation into an SDNode with
7990 /// the specified Opcode.  If so, return true and lower it, otherwise return
7991 /// false and it will be lowered like a normal call.
7992 /// The caller already checked that \p I calls the appropriate LibFunc with a
7993 /// correct prototype.
7994 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7995                                               unsigned Opcode) {
7996   // We already checked this call's prototype; verify it doesn't modify errno.
7997   if (!I.onlyReadsMemory())
7998     return false;
7999 
8000   SDNodeFlags Flags;
8001   Flags.copyFMF(cast<FPMathOperator>(I));
8002 
8003   SDValue Tmp = getValue(I.getArgOperand(0));
8004   setValue(&I,
8005            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8006   return true;
8007 }
8008 
8009 /// See if we can lower a binary floating-point operation into an SDNode with
8010 /// the specified Opcode. If so, return true and lower it. Otherwise return
8011 /// false, and it will be lowered like a normal call.
8012 /// The caller already checked that \p I calls the appropriate LibFunc with a
8013 /// correct prototype.
8014 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8015                                                unsigned Opcode) {
8016   // We already checked this call's prototype; verify it doesn't modify errno.
8017   if (!I.onlyReadsMemory())
8018     return false;
8019 
8020   SDNodeFlags Flags;
8021   Flags.copyFMF(cast<FPMathOperator>(I));
8022 
8023   SDValue Tmp0 = getValue(I.getArgOperand(0));
8024   SDValue Tmp1 = getValue(I.getArgOperand(1));
8025   EVT VT = Tmp0.getValueType();
8026   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8027   return true;
8028 }
8029 
8030 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8031   // Handle inline assembly differently.
8032   if (I.isInlineAsm()) {
8033     visitInlineAsm(I);
8034     return;
8035   }
8036 
8037   if (Function *F = I.getCalledFunction()) {
8038     diagnoseDontCall(I);
8039 
8040     if (F->isDeclaration()) {
8041       // Is this an LLVM intrinsic or a target-specific intrinsic?
8042       unsigned IID = F->getIntrinsicID();
8043       if (!IID)
8044         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8045           IID = II->getIntrinsicID(F);
8046 
8047       if (IID) {
8048         visitIntrinsicCall(I, IID);
8049         return;
8050       }
8051     }
8052 
8053     // Check for well-known libc/libm calls.  If the function is internal, it
8054     // can't be a library call.  Don't do the check if marked as nobuiltin for
8055     // some reason or the call site requires strict floating point semantics.
8056     LibFunc Func;
8057     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8058         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8059         LibInfo->hasOptimizedCodeGen(Func)) {
8060       switch (Func) {
8061       default: break;
8062       case LibFunc_bcmp:
8063         if (visitMemCmpBCmpCall(I))
8064           return;
8065         break;
8066       case LibFunc_copysign:
8067       case LibFunc_copysignf:
8068       case LibFunc_copysignl:
8069         // We already checked this call's prototype; verify it doesn't modify
8070         // errno.
8071         if (I.onlyReadsMemory()) {
8072           SDValue LHS = getValue(I.getArgOperand(0));
8073           SDValue RHS = getValue(I.getArgOperand(1));
8074           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8075                                    LHS.getValueType(), LHS, RHS));
8076           return;
8077         }
8078         break;
8079       case LibFunc_fabs:
8080       case LibFunc_fabsf:
8081       case LibFunc_fabsl:
8082         if (visitUnaryFloatCall(I, ISD::FABS))
8083           return;
8084         break;
8085       case LibFunc_fmin:
8086       case LibFunc_fminf:
8087       case LibFunc_fminl:
8088         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8089           return;
8090         break;
8091       case LibFunc_fmax:
8092       case LibFunc_fmaxf:
8093       case LibFunc_fmaxl:
8094         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8095           return;
8096         break;
8097       case LibFunc_sin:
8098       case LibFunc_sinf:
8099       case LibFunc_sinl:
8100         if (visitUnaryFloatCall(I, ISD::FSIN))
8101           return;
8102         break;
8103       case LibFunc_cos:
8104       case LibFunc_cosf:
8105       case LibFunc_cosl:
8106         if (visitUnaryFloatCall(I, ISD::FCOS))
8107           return;
8108         break;
8109       case LibFunc_sqrt:
8110       case LibFunc_sqrtf:
8111       case LibFunc_sqrtl:
8112       case LibFunc_sqrt_finite:
8113       case LibFunc_sqrtf_finite:
8114       case LibFunc_sqrtl_finite:
8115         if (visitUnaryFloatCall(I, ISD::FSQRT))
8116           return;
8117         break;
8118       case LibFunc_floor:
8119       case LibFunc_floorf:
8120       case LibFunc_floorl:
8121         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8122           return;
8123         break;
8124       case LibFunc_nearbyint:
8125       case LibFunc_nearbyintf:
8126       case LibFunc_nearbyintl:
8127         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8128           return;
8129         break;
8130       case LibFunc_ceil:
8131       case LibFunc_ceilf:
8132       case LibFunc_ceill:
8133         if (visitUnaryFloatCall(I, ISD::FCEIL))
8134           return;
8135         break;
8136       case LibFunc_rint:
8137       case LibFunc_rintf:
8138       case LibFunc_rintl:
8139         if (visitUnaryFloatCall(I, ISD::FRINT))
8140           return;
8141         break;
8142       case LibFunc_round:
8143       case LibFunc_roundf:
8144       case LibFunc_roundl:
8145         if (visitUnaryFloatCall(I, ISD::FROUND))
8146           return;
8147         break;
8148       case LibFunc_trunc:
8149       case LibFunc_truncf:
8150       case LibFunc_truncl:
8151         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8152           return;
8153         break;
8154       case LibFunc_log2:
8155       case LibFunc_log2f:
8156       case LibFunc_log2l:
8157         if (visitUnaryFloatCall(I, ISD::FLOG2))
8158           return;
8159         break;
8160       case LibFunc_exp2:
8161       case LibFunc_exp2f:
8162       case LibFunc_exp2l:
8163         if (visitUnaryFloatCall(I, ISD::FEXP2))
8164           return;
8165         break;
8166       case LibFunc_memcmp:
8167         if (visitMemCmpBCmpCall(I))
8168           return;
8169         break;
8170       case LibFunc_mempcpy:
8171         if (visitMemPCpyCall(I))
8172           return;
8173         break;
8174       case LibFunc_memchr:
8175         if (visitMemChrCall(I))
8176           return;
8177         break;
8178       case LibFunc_strcpy:
8179         if (visitStrCpyCall(I, false))
8180           return;
8181         break;
8182       case LibFunc_stpcpy:
8183         if (visitStrCpyCall(I, true))
8184           return;
8185         break;
8186       case LibFunc_strcmp:
8187         if (visitStrCmpCall(I))
8188           return;
8189         break;
8190       case LibFunc_strlen:
8191         if (visitStrLenCall(I))
8192           return;
8193         break;
8194       case LibFunc_strnlen:
8195         if (visitStrNLenCall(I))
8196           return;
8197         break;
8198       }
8199     }
8200   }
8201 
8202   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8203   // have to do anything here to lower funclet bundles.
8204   // CFGuardTarget bundles are lowered in LowerCallTo.
8205   assert(!I.hasOperandBundlesOtherThan(
8206              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8207               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8208               LLVMContext::OB_clang_arc_attachedcall}) &&
8209          "Cannot lower calls with arbitrary operand bundles!");
8210 
8211   SDValue Callee = getValue(I.getCalledOperand());
8212 
8213   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8214     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8215   else
8216     // Check if we can potentially perform a tail call. More detailed checking
8217     // is be done within LowerCallTo, after more information about the call is
8218     // known.
8219     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8220 }
8221 
8222 namespace {
8223 
8224 /// AsmOperandInfo - This contains information for each constraint that we are
8225 /// lowering.
8226 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8227 public:
8228   /// CallOperand - If this is the result output operand or a clobber
8229   /// this is null, otherwise it is the incoming operand to the CallInst.
8230   /// This gets modified as the asm is processed.
8231   SDValue CallOperand;
8232 
8233   /// AssignedRegs - If this is a register or register class operand, this
8234   /// contains the set of register corresponding to the operand.
8235   RegsForValue AssignedRegs;
8236 
8237   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8238     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8239   }
8240 
8241   /// Whether or not this operand accesses memory
8242   bool hasMemory(const TargetLowering &TLI) const {
8243     // Indirect operand accesses access memory.
8244     if (isIndirect)
8245       return true;
8246 
8247     for (const auto &Code : Codes)
8248       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8249         return true;
8250 
8251     return false;
8252   }
8253 
8254   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8255   /// corresponds to.  If there is no Value* for this operand, it returns
8256   /// MVT::Other.
8257   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8258                            const DataLayout &DL,
8259                            llvm::Type *ParamElemType) const {
8260     if (!CallOperandVal) return MVT::Other;
8261 
8262     if (isa<BasicBlock>(CallOperandVal))
8263       return TLI.getProgramPointerTy(DL);
8264 
8265     llvm::Type *OpTy = CallOperandVal->getType();
8266 
8267     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8268     // If this is an indirect operand, the operand is a pointer to the
8269     // accessed type.
8270     if (isIndirect) {
8271       OpTy = ParamElemType;
8272       assert(OpTy && "Indirect opernad must have elementtype attribute");
8273     }
8274 
8275     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8276     if (StructType *STy = dyn_cast<StructType>(OpTy))
8277       if (STy->getNumElements() == 1)
8278         OpTy = STy->getElementType(0);
8279 
8280     // If OpTy is not a single value, it may be a struct/union that we
8281     // can tile with integers.
8282     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8283       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8284       switch (BitSize) {
8285       default: break;
8286       case 1:
8287       case 8:
8288       case 16:
8289       case 32:
8290       case 64:
8291       case 128:
8292         OpTy = IntegerType::get(Context, BitSize);
8293         break;
8294       }
8295     }
8296 
8297     return TLI.getAsmOperandValueType(DL, OpTy, true);
8298   }
8299 };
8300 
8301 
8302 } // end anonymous namespace
8303 
8304 /// Make sure that the output operand \p OpInfo and its corresponding input
8305 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8306 /// out).
8307 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8308                                SDISelAsmOperandInfo &MatchingOpInfo,
8309                                SelectionDAG &DAG) {
8310   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8311     return;
8312 
8313   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8314   const auto &TLI = DAG.getTargetLoweringInfo();
8315 
8316   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8317       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8318                                        OpInfo.ConstraintVT);
8319   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8320       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8321                                        MatchingOpInfo.ConstraintVT);
8322   if ((OpInfo.ConstraintVT.isInteger() !=
8323        MatchingOpInfo.ConstraintVT.isInteger()) ||
8324       (MatchRC.second != InputRC.second)) {
8325     // FIXME: error out in a more elegant fashion
8326     report_fatal_error("Unsupported asm: input constraint"
8327                        " with a matching output constraint of"
8328                        " incompatible type!");
8329   }
8330   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8331 }
8332 
8333 /// Get a direct memory input to behave well as an indirect operand.
8334 /// This may introduce stores, hence the need for a \p Chain.
8335 /// \return The (possibly updated) chain.
8336 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8337                                         SDISelAsmOperandInfo &OpInfo,
8338                                         SelectionDAG &DAG) {
8339   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8340 
8341   // If we don't have an indirect input, put it in the constpool if we can,
8342   // otherwise spill it to a stack slot.
8343   // TODO: This isn't quite right. We need to handle these according to
8344   // the addressing mode that the constraint wants. Also, this may take
8345   // an additional register for the computation and we don't want that
8346   // either.
8347 
8348   // If the operand is a float, integer, or vector constant, spill to a
8349   // constant pool entry to get its address.
8350   const Value *OpVal = OpInfo.CallOperandVal;
8351   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8352       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8353     OpInfo.CallOperand = DAG.getConstantPool(
8354         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8355     return Chain;
8356   }
8357 
8358   // Otherwise, create a stack slot and emit a store to it before the asm.
8359   Type *Ty = OpVal->getType();
8360   auto &DL = DAG.getDataLayout();
8361   uint64_t TySize = DL.getTypeAllocSize(Ty);
8362   MachineFunction &MF = DAG.getMachineFunction();
8363   int SSFI = MF.getFrameInfo().CreateStackObject(
8364       TySize, DL.getPrefTypeAlign(Ty), false);
8365   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8366   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8367                             MachinePointerInfo::getFixedStack(MF, SSFI),
8368                             TLI.getMemValueType(DL, Ty));
8369   OpInfo.CallOperand = StackSlot;
8370 
8371   return Chain;
8372 }
8373 
8374 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8375 /// specified operand.  We prefer to assign virtual registers, to allow the
8376 /// register allocator to handle the assignment process.  However, if the asm
8377 /// uses features that we can't model on machineinstrs, we have SDISel do the
8378 /// allocation.  This produces generally horrible, but correct, code.
8379 ///
8380 ///   OpInfo describes the operand
8381 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8382 static llvm::Optional<unsigned>
8383 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8384                      SDISelAsmOperandInfo &OpInfo,
8385                      SDISelAsmOperandInfo &RefOpInfo) {
8386   LLVMContext &Context = *DAG.getContext();
8387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8388 
8389   MachineFunction &MF = DAG.getMachineFunction();
8390   SmallVector<unsigned, 4> Regs;
8391   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8392 
8393   // No work to do for memory operations.
8394   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8395     return None;
8396 
8397   // If this is a constraint for a single physreg, or a constraint for a
8398   // register class, find it.
8399   unsigned AssignedReg;
8400   const TargetRegisterClass *RC;
8401   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8402       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8403   // RC is unset only on failure. Return immediately.
8404   if (!RC)
8405     return None;
8406 
8407   // Get the actual register value type.  This is important, because the user
8408   // may have asked for (e.g.) the AX register in i32 type.  We need to
8409   // remember that AX is actually i16 to get the right extension.
8410   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8411 
8412   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8413     // If this is an FP operand in an integer register (or visa versa), or more
8414     // generally if the operand value disagrees with the register class we plan
8415     // to stick it in, fix the operand type.
8416     //
8417     // If this is an input value, the bitcast to the new type is done now.
8418     // Bitcast for output value is done at the end of visitInlineAsm().
8419     if ((OpInfo.Type == InlineAsm::isOutput ||
8420          OpInfo.Type == InlineAsm::isInput) &&
8421         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8422       // Try to convert to the first EVT that the reg class contains.  If the
8423       // types are identical size, use a bitcast to convert (e.g. two differing
8424       // vector types).  Note: output bitcast is done at the end of
8425       // visitInlineAsm().
8426       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8427         // Exclude indirect inputs while they are unsupported because the code
8428         // to perform the load is missing and thus OpInfo.CallOperand still
8429         // refers to the input address rather than the pointed-to value.
8430         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8431           OpInfo.CallOperand =
8432               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8433         OpInfo.ConstraintVT = RegVT;
8434         // If the operand is an FP value and we want it in integer registers,
8435         // use the corresponding integer type. This turns an f64 value into
8436         // i64, which can be passed with two i32 values on a 32-bit machine.
8437       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8438         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8439         if (OpInfo.Type == InlineAsm::isInput)
8440           OpInfo.CallOperand =
8441               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8442         OpInfo.ConstraintVT = VT;
8443       }
8444     }
8445   }
8446 
8447   // No need to allocate a matching input constraint since the constraint it's
8448   // matching to has already been allocated.
8449   if (OpInfo.isMatchingInputConstraint())
8450     return None;
8451 
8452   EVT ValueVT = OpInfo.ConstraintVT;
8453   if (OpInfo.ConstraintVT == MVT::Other)
8454     ValueVT = RegVT;
8455 
8456   // Initialize NumRegs.
8457   unsigned NumRegs = 1;
8458   if (OpInfo.ConstraintVT != MVT::Other)
8459     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8460 
8461   // If this is a constraint for a specific physical register, like {r17},
8462   // assign it now.
8463 
8464   // If this associated to a specific register, initialize iterator to correct
8465   // place. If virtual, make sure we have enough registers
8466 
8467   // Initialize iterator if necessary
8468   TargetRegisterClass::iterator I = RC->begin();
8469   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8470 
8471   // Do not check for single registers.
8472   if (AssignedReg) {
8473     I = std::find(I, RC->end(), AssignedReg);
8474     if (I == RC->end()) {
8475       // RC does not contain the selected register, which indicates a
8476       // mismatch between the register and the required type/bitwidth.
8477       return {AssignedReg};
8478     }
8479   }
8480 
8481   for (; NumRegs; --NumRegs, ++I) {
8482     assert(I != RC->end() && "Ran out of registers to allocate!");
8483     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8484     Regs.push_back(R);
8485   }
8486 
8487   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8488   return None;
8489 }
8490 
8491 static unsigned
8492 findMatchingInlineAsmOperand(unsigned OperandNo,
8493                              const std::vector<SDValue> &AsmNodeOperands) {
8494   // Scan until we find the definition we already emitted of this operand.
8495   unsigned CurOp = InlineAsm::Op_FirstOperand;
8496   for (; OperandNo; --OperandNo) {
8497     // Advance to the next operand.
8498     unsigned OpFlag =
8499         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8500     assert((InlineAsm::isRegDefKind(OpFlag) ||
8501             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8502             InlineAsm::isMemKind(OpFlag)) &&
8503            "Skipped past definitions?");
8504     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8505   }
8506   return CurOp;
8507 }
8508 
8509 namespace {
8510 
8511 class ExtraFlags {
8512   unsigned Flags = 0;
8513 
8514 public:
8515   explicit ExtraFlags(const CallBase &Call) {
8516     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8517     if (IA->hasSideEffects())
8518       Flags |= InlineAsm::Extra_HasSideEffects;
8519     if (IA->isAlignStack())
8520       Flags |= InlineAsm::Extra_IsAlignStack;
8521     if (Call.isConvergent())
8522       Flags |= InlineAsm::Extra_IsConvergent;
8523     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8524   }
8525 
8526   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8527     // Ideally, we would only check against memory constraints.  However, the
8528     // meaning of an Other constraint can be target-specific and we can't easily
8529     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8530     // for Other constraints as well.
8531     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8532         OpInfo.ConstraintType == TargetLowering::C_Other) {
8533       if (OpInfo.Type == InlineAsm::isInput)
8534         Flags |= InlineAsm::Extra_MayLoad;
8535       else if (OpInfo.Type == InlineAsm::isOutput)
8536         Flags |= InlineAsm::Extra_MayStore;
8537       else if (OpInfo.Type == InlineAsm::isClobber)
8538         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8539     }
8540   }
8541 
8542   unsigned get() const { return Flags; }
8543 };
8544 
8545 } // end anonymous namespace
8546 
8547 /// visitInlineAsm - Handle a call to an InlineAsm object.
8548 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8549                                          const BasicBlock *EHPadBB) {
8550   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8551 
8552   /// ConstraintOperands - Information about all of the constraints.
8553   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8554 
8555   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8556   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8557       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8558 
8559   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8560   // AsmDialect, MayLoad, MayStore).
8561   bool HasSideEffect = IA->hasSideEffects();
8562   ExtraFlags ExtraInfo(Call);
8563 
8564   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8565   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8566   for (auto &T : TargetConstraints) {
8567     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8568     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8569 
8570     // Compute the value type for each operand.
8571     if (OpInfo.hasArg()) {
8572       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8573       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8574       Type *ParamElemTy = Call.getAttributes().getParamElementType(ArgNo);
8575       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8576                                            DAG.getDataLayout(), ParamElemTy);
8577       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8578       ArgNo++;
8579     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8580       // The return value of the call is this value.  As such, there is no
8581       // corresponding argument.
8582       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8583       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8584         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8585             DAG.getDataLayout(), STy->getElementType(ResNo));
8586       } else {
8587         assert(ResNo == 0 && "Asm only has one result!");
8588         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8589             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8590       }
8591       ++ResNo;
8592     } else {
8593       OpInfo.ConstraintVT = MVT::Other;
8594     }
8595 
8596     if (!HasSideEffect)
8597       HasSideEffect = OpInfo.hasMemory(TLI);
8598 
8599     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8600     // FIXME: Could we compute this on OpInfo rather than T?
8601 
8602     // Compute the constraint code and ConstraintType to use.
8603     TLI.ComputeConstraintToUse(T, SDValue());
8604 
8605     if (T.ConstraintType == TargetLowering::C_Immediate &&
8606         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8607       // We've delayed emitting a diagnostic like the "n" constraint because
8608       // inlining could cause an integer showing up.
8609       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8610                                           "' expects an integer constant "
8611                                           "expression");
8612 
8613     ExtraInfo.update(T);
8614   }
8615 
8616   // We won't need to flush pending loads if this asm doesn't touch
8617   // memory and is nonvolatile.
8618   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8619 
8620   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8621   if (EmitEHLabels) {
8622     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8623   }
8624   bool IsCallBr = isa<CallBrInst>(Call);
8625 
8626   if (IsCallBr || EmitEHLabels) {
8627     // If this is a callbr or invoke we need to flush pending exports since
8628     // inlineasm_br and invoke are terminators.
8629     // We need to do this before nodes are glued to the inlineasm_br node.
8630     Chain = getControlRoot();
8631   }
8632 
8633   MCSymbol *BeginLabel = nullptr;
8634   if (EmitEHLabels) {
8635     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8636   }
8637 
8638   // Second pass over the constraints: compute which constraint option to use.
8639   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8640     // If this is an output operand with a matching input operand, look up the
8641     // matching input. If their types mismatch, e.g. one is an integer, the
8642     // other is floating point, or their sizes are different, flag it as an
8643     // error.
8644     if (OpInfo.hasMatchingInput()) {
8645       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8646       patchMatchingInput(OpInfo, Input, DAG);
8647     }
8648 
8649     // Compute the constraint code and ConstraintType to use.
8650     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8651 
8652     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8653         OpInfo.Type == InlineAsm::isClobber)
8654       continue;
8655 
8656     // If this is a memory input, and if the operand is not indirect, do what we
8657     // need to provide an address for the memory input.
8658     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8659         !OpInfo.isIndirect) {
8660       assert((OpInfo.isMultipleAlternative ||
8661               (OpInfo.Type == InlineAsm::isInput)) &&
8662              "Can only indirectify direct input operands!");
8663 
8664       // Memory operands really want the address of the value.
8665       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8666 
8667       // There is no longer a Value* corresponding to this operand.
8668       OpInfo.CallOperandVal = nullptr;
8669 
8670       // It is now an indirect operand.
8671       OpInfo.isIndirect = true;
8672     }
8673 
8674   }
8675 
8676   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8677   std::vector<SDValue> AsmNodeOperands;
8678   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8679   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8680       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8681 
8682   // If we have a !srcloc metadata node associated with it, we want to attach
8683   // this to the ultimately generated inline asm machineinstr.  To do this, we
8684   // pass in the third operand as this (potentially null) inline asm MDNode.
8685   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8686   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8687 
8688   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8689   // bits as operand 3.
8690   AsmNodeOperands.push_back(DAG.getTargetConstant(
8691       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8692 
8693   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8694   // this, assign virtual and physical registers for inputs and otput.
8695   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8696     // Assign Registers.
8697     SDISelAsmOperandInfo &RefOpInfo =
8698         OpInfo.isMatchingInputConstraint()
8699             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8700             : OpInfo;
8701     const auto RegError =
8702         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8703     if (RegError.hasValue()) {
8704       const MachineFunction &MF = DAG.getMachineFunction();
8705       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8706       const char *RegName = TRI.getName(RegError.getValue());
8707       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8708                                    "' allocated for constraint '" +
8709                                    Twine(OpInfo.ConstraintCode) +
8710                                    "' does not match required type");
8711       return;
8712     }
8713 
8714     auto DetectWriteToReservedRegister = [&]() {
8715       const MachineFunction &MF = DAG.getMachineFunction();
8716       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8717       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8718         if (Register::isPhysicalRegister(Reg) &&
8719             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8720           const char *RegName = TRI.getName(Reg);
8721           emitInlineAsmError(Call, "write to reserved register '" +
8722                                        Twine(RegName) + "'");
8723           return true;
8724         }
8725       }
8726       return false;
8727     };
8728 
8729     switch (OpInfo.Type) {
8730     case InlineAsm::isOutput:
8731       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8732         unsigned ConstraintID =
8733             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8734         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8735                "Failed to convert memory constraint code to constraint id.");
8736 
8737         // Add information to the INLINEASM node to know about this output.
8738         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8739         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8740         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8741                                                         MVT::i32));
8742         AsmNodeOperands.push_back(OpInfo.CallOperand);
8743       } else {
8744         // Otherwise, this outputs to a register (directly for C_Register /
8745         // C_RegisterClass, and a target-defined fashion for
8746         // C_Immediate/C_Other). Find a register that we can use.
8747         if (OpInfo.AssignedRegs.Regs.empty()) {
8748           emitInlineAsmError(
8749               Call, "couldn't allocate output register for constraint '" +
8750                         Twine(OpInfo.ConstraintCode) + "'");
8751           return;
8752         }
8753 
8754         if (DetectWriteToReservedRegister())
8755           return;
8756 
8757         // Add information to the INLINEASM node to know that this register is
8758         // set.
8759         OpInfo.AssignedRegs.AddInlineAsmOperands(
8760             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8761                                   : InlineAsm::Kind_RegDef,
8762             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8763       }
8764       break;
8765 
8766     case InlineAsm::isInput: {
8767       SDValue InOperandVal = OpInfo.CallOperand;
8768 
8769       if (OpInfo.isMatchingInputConstraint()) {
8770         // If this is required to match an output register we have already set,
8771         // just use its register.
8772         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8773                                                   AsmNodeOperands);
8774         unsigned OpFlag =
8775           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8776         if (InlineAsm::isRegDefKind(OpFlag) ||
8777             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8778           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8779           if (OpInfo.isIndirect) {
8780             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8781             emitInlineAsmError(Call, "inline asm not supported yet: "
8782                                      "don't know how to handle tied "
8783                                      "indirect register inputs");
8784             return;
8785           }
8786 
8787           SmallVector<unsigned, 4> Regs;
8788           MachineFunction &MF = DAG.getMachineFunction();
8789           MachineRegisterInfo &MRI = MF.getRegInfo();
8790           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8791           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8792           Register TiedReg = R->getReg();
8793           MVT RegVT = R->getSimpleValueType(0);
8794           const TargetRegisterClass *RC =
8795               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8796               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8797                                       : TRI.getMinimalPhysRegClass(TiedReg);
8798           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8799           for (unsigned i = 0; i != NumRegs; ++i)
8800             Regs.push_back(MRI.createVirtualRegister(RC));
8801 
8802           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8803 
8804           SDLoc dl = getCurSDLoc();
8805           // Use the produced MatchedRegs object to
8806           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8807           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8808                                            true, OpInfo.getMatchedOperand(), dl,
8809                                            DAG, AsmNodeOperands);
8810           break;
8811         }
8812 
8813         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8814         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8815                "Unexpected number of operands");
8816         // Add information to the INLINEASM node to know about this input.
8817         // See InlineAsm.h isUseOperandTiedToDef.
8818         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8819         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8820                                                     OpInfo.getMatchedOperand());
8821         AsmNodeOperands.push_back(DAG.getTargetConstant(
8822             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8823         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8824         break;
8825       }
8826 
8827       // Treat indirect 'X' constraint as memory.
8828       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8829           OpInfo.isIndirect)
8830         OpInfo.ConstraintType = TargetLowering::C_Memory;
8831 
8832       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8833           OpInfo.ConstraintType == TargetLowering::C_Other) {
8834         std::vector<SDValue> Ops;
8835         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8836                                           Ops, DAG);
8837         if (Ops.empty()) {
8838           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8839             if (isa<ConstantSDNode>(InOperandVal)) {
8840               emitInlineAsmError(Call, "value out of range for constraint '" +
8841                                            Twine(OpInfo.ConstraintCode) + "'");
8842               return;
8843             }
8844 
8845           emitInlineAsmError(Call,
8846                              "invalid operand for inline asm constraint '" +
8847                                  Twine(OpInfo.ConstraintCode) + "'");
8848           return;
8849         }
8850 
8851         // Add information to the INLINEASM node to know about this input.
8852         unsigned ResOpType =
8853           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8854         AsmNodeOperands.push_back(DAG.getTargetConstant(
8855             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8856         llvm::append_range(AsmNodeOperands, Ops);
8857         break;
8858       }
8859 
8860       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8861         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8862         assert(InOperandVal.getValueType() ==
8863                    TLI.getPointerTy(DAG.getDataLayout()) &&
8864                "Memory operands expect pointer values");
8865 
8866         unsigned ConstraintID =
8867             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8868         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8869                "Failed to convert memory constraint code to constraint id.");
8870 
8871         // Add information to the INLINEASM node to know about this input.
8872         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8873         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8874         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8875                                                         getCurSDLoc(),
8876                                                         MVT::i32));
8877         AsmNodeOperands.push_back(InOperandVal);
8878         break;
8879       }
8880 
8881       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8882               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8883              "Unknown constraint type!");
8884 
8885       // TODO: Support this.
8886       if (OpInfo.isIndirect) {
8887         emitInlineAsmError(
8888             Call, "Don't know how to handle indirect register inputs yet "
8889                   "for constraint '" +
8890                       Twine(OpInfo.ConstraintCode) + "'");
8891         return;
8892       }
8893 
8894       // Copy the input into the appropriate registers.
8895       if (OpInfo.AssignedRegs.Regs.empty()) {
8896         emitInlineAsmError(Call,
8897                            "couldn't allocate input reg for constraint '" +
8898                                Twine(OpInfo.ConstraintCode) + "'");
8899         return;
8900       }
8901 
8902       if (DetectWriteToReservedRegister())
8903         return;
8904 
8905       SDLoc dl = getCurSDLoc();
8906 
8907       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8908                                         &Call);
8909 
8910       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8911                                                dl, DAG, AsmNodeOperands);
8912       break;
8913     }
8914     case InlineAsm::isClobber:
8915       // Add the clobbered value to the operand list, so that the register
8916       // allocator is aware that the physreg got clobbered.
8917       if (!OpInfo.AssignedRegs.Regs.empty())
8918         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8919                                                  false, 0, getCurSDLoc(), DAG,
8920                                                  AsmNodeOperands);
8921       break;
8922     }
8923   }
8924 
8925   // Finish up input operands.  Set the input chain and add the flag last.
8926   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8927   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8928 
8929   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8930   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8931                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8932   Flag = Chain.getValue(1);
8933 
8934   // Do additional work to generate outputs.
8935 
8936   SmallVector<EVT, 1> ResultVTs;
8937   SmallVector<SDValue, 1> ResultValues;
8938   SmallVector<SDValue, 8> OutChains;
8939 
8940   llvm::Type *CallResultType = Call.getType();
8941   ArrayRef<Type *> ResultTypes;
8942   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8943     ResultTypes = StructResult->elements();
8944   else if (!CallResultType->isVoidTy())
8945     ResultTypes = makeArrayRef(CallResultType);
8946 
8947   auto CurResultType = ResultTypes.begin();
8948   auto handleRegAssign = [&](SDValue V) {
8949     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8950     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8951     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8952     ++CurResultType;
8953     // If the type of the inline asm call site return value is different but has
8954     // same size as the type of the asm output bitcast it.  One example of this
8955     // is for vectors with different width / number of elements.  This can
8956     // happen for register classes that can contain multiple different value
8957     // types.  The preg or vreg allocated may not have the same VT as was
8958     // expected.
8959     //
8960     // This can also happen for a return value that disagrees with the register
8961     // class it is put in, eg. a double in a general-purpose register on a
8962     // 32-bit machine.
8963     if (ResultVT != V.getValueType() &&
8964         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8965       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8966     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8967              V.getValueType().isInteger()) {
8968       // If a result value was tied to an input value, the computed result
8969       // may have a wider width than the expected result.  Extract the
8970       // relevant portion.
8971       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8972     }
8973     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8974     ResultVTs.push_back(ResultVT);
8975     ResultValues.push_back(V);
8976   };
8977 
8978   // Deal with output operands.
8979   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8980     if (OpInfo.Type == InlineAsm::isOutput) {
8981       SDValue Val;
8982       // Skip trivial output operands.
8983       if (OpInfo.AssignedRegs.Regs.empty())
8984         continue;
8985 
8986       switch (OpInfo.ConstraintType) {
8987       case TargetLowering::C_Register:
8988       case TargetLowering::C_RegisterClass:
8989         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8990                                                   Chain, &Flag, &Call);
8991         break;
8992       case TargetLowering::C_Immediate:
8993       case TargetLowering::C_Other:
8994         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8995                                               OpInfo, DAG);
8996         break;
8997       case TargetLowering::C_Memory:
8998         break; // Already handled.
8999       case TargetLowering::C_Unknown:
9000         assert(false && "Unexpected unknown constraint");
9001       }
9002 
9003       // Indirect output manifest as stores. Record output chains.
9004       if (OpInfo.isIndirect) {
9005         const Value *Ptr = OpInfo.CallOperandVal;
9006         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9007         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9008                                      MachinePointerInfo(Ptr));
9009         OutChains.push_back(Store);
9010       } else {
9011         // generate CopyFromRegs to associated registers.
9012         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9013         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9014           for (const SDValue &V : Val->op_values())
9015             handleRegAssign(V);
9016         } else
9017           handleRegAssign(Val);
9018       }
9019     }
9020   }
9021 
9022   // Set results.
9023   if (!ResultValues.empty()) {
9024     assert(CurResultType == ResultTypes.end() &&
9025            "Mismatch in number of ResultTypes");
9026     assert(ResultValues.size() == ResultTypes.size() &&
9027            "Mismatch in number of output operands in asm result");
9028 
9029     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9030                             DAG.getVTList(ResultVTs), ResultValues);
9031     setValue(&Call, V);
9032   }
9033 
9034   // Collect store chains.
9035   if (!OutChains.empty())
9036     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9037 
9038   if (EmitEHLabels) {
9039     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9040   }
9041 
9042   // Only Update Root if inline assembly has a memory effect.
9043   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9044       EmitEHLabels)
9045     DAG.setRoot(Chain);
9046 }
9047 
9048 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9049                                              const Twine &Message) {
9050   LLVMContext &Ctx = *DAG.getContext();
9051   Ctx.emitError(&Call, Message);
9052 
9053   // Make sure we leave the DAG in a valid state
9054   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9055   SmallVector<EVT, 1> ValueVTs;
9056   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9057 
9058   if (ValueVTs.empty())
9059     return;
9060 
9061   SmallVector<SDValue, 1> Ops;
9062   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9063     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9064 
9065   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9066 }
9067 
9068 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9069   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9070                           MVT::Other, getRoot(),
9071                           getValue(I.getArgOperand(0)),
9072                           DAG.getSrcValue(I.getArgOperand(0))));
9073 }
9074 
9075 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9077   const DataLayout &DL = DAG.getDataLayout();
9078   SDValue V = DAG.getVAArg(
9079       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9080       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9081       DL.getABITypeAlign(I.getType()).value());
9082   DAG.setRoot(V.getValue(1));
9083 
9084   if (I.getType()->isPointerTy())
9085     V = DAG.getPtrExtOrTrunc(
9086         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9087   setValue(&I, V);
9088 }
9089 
9090 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9091   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9092                           MVT::Other, getRoot(),
9093                           getValue(I.getArgOperand(0)),
9094                           DAG.getSrcValue(I.getArgOperand(0))));
9095 }
9096 
9097 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9098   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9099                           MVT::Other, getRoot(),
9100                           getValue(I.getArgOperand(0)),
9101                           getValue(I.getArgOperand(1)),
9102                           DAG.getSrcValue(I.getArgOperand(0)),
9103                           DAG.getSrcValue(I.getArgOperand(1))));
9104 }
9105 
9106 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9107                                                     const Instruction &I,
9108                                                     SDValue Op) {
9109   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9110   if (!Range)
9111     return Op;
9112 
9113   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9114   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9115     return Op;
9116 
9117   APInt Lo = CR.getUnsignedMin();
9118   if (!Lo.isMinValue())
9119     return Op;
9120 
9121   APInt Hi = CR.getUnsignedMax();
9122   unsigned Bits = std::max(Hi.getActiveBits(),
9123                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9124 
9125   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9126 
9127   SDLoc SL = getCurSDLoc();
9128 
9129   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9130                              DAG.getValueType(SmallVT));
9131   unsigned NumVals = Op.getNode()->getNumValues();
9132   if (NumVals == 1)
9133     return ZExt;
9134 
9135   SmallVector<SDValue, 4> Ops;
9136 
9137   Ops.push_back(ZExt);
9138   for (unsigned I = 1; I != NumVals; ++I)
9139     Ops.push_back(Op.getValue(I));
9140 
9141   return DAG.getMergeValues(Ops, SL);
9142 }
9143 
9144 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9145 /// the call being lowered.
9146 ///
9147 /// This is a helper for lowering intrinsics that follow a target calling
9148 /// convention or require stack pointer adjustment. Only a subset of the
9149 /// intrinsic's operands need to participate in the calling convention.
9150 void SelectionDAGBuilder::populateCallLoweringInfo(
9151     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9152     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9153     bool IsPatchPoint) {
9154   TargetLowering::ArgListTy Args;
9155   Args.reserve(NumArgs);
9156 
9157   // Populate the argument list.
9158   // Attributes for args start at offset 1, after the return attribute.
9159   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9160        ArgI != ArgE; ++ArgI) {
9161     const Value *V = Call->getOperand(ArgI);
9162 
9163     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9164 
9165     TargetLowering::ArgListEntry Entry;
9166     Entry.Node = getValue(V);
9167     Entry.Ty = V->getType();
9168     Entry.setAttributes(Call, ArgI);
9169     Args.push_back(Entry);
9170   }
9171 
9172   CLI.setDebugLoc(getCurSDLoc())
9173       .setChain(getRoot())
9174       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9175       .setDiscardResult(Call->use_empty())
9176       .setIsPatchPoint(IsPatchPoint)
9177       .setIsPreallocated(
9178           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9179 }
9180 
9181 /// Add a stack map intrinsic call's live variable operands to a stackmap
9182 /// or patchpoint target node's operand list.
9183 ///
9184 /// Constants are converted to TargetConstants purely as an optimization to
9185 /// avoid constant materialization and register allocation.
9186 ///
9187 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9188 /// generate addess computation nodes, and so FinalizeISel can convert the
9189 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9190 /// address materialization and register allocation, but may also be required
9191 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9192 /// alloca in the entry block, then the runtime may assume that the alloca's
9193 /// StackMap location can be read immediately after compilation and that the
9194 /// location is valid at any point during execution (this is similar to the
9195 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9196 /// only available in a register, then the runtime would need to trap when
9197 /// execution reaches the StackMap in order to read the alloca's location.
9198 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9199                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9200                                 SelectionDAGBuilder &Builder) {
9201   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9202     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9203     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9204       Ops.push_back(
9205         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9206       Ops.push_back(
9207         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9208     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9209       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9210       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9211           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9212     } else
9213       Ops.push_back(OpVal);
9214   }
9215 }
9216 
9217 /// Lower llvm.experimental.stackmap directly to its target opcode.
9218 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9219   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9220   //                                  [live variables...])
9221 
9222   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9223 
9224   SDValue Chain, InFlag, Callee, NullPtr;
9225   SmallVector<SDValue, 32> Ops;
9226 
9227   SDLoc DL = getCurSDLoc();
9228   Callee = getValue(CI.getCalledOperand());
9229   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9230 
9231   // The stackmap intrinsic only records the live variables (the arguments
9232   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9233   // intrinsic, this won't be lowered to a function call. This means we don't
9234   // have to worry about calling conventions and target specific lowering code.
9235   // Instead we perform the call lowering right here.
9236   //
9237   // chain, flag = CALLSEQ_START(chain, 0, 0)
9238   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9239   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9240   //
9241   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9242   InFlag = Chain.getValue(1);
9243 
9244   // Add the <id> and <numBytes> constants.
9245   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9246   Ops.push_back(DAG.getTargetConstant(
9247                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9248   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9249   Ops.push_back(DAG.getTargetConstant(
9250                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9251                   MVT::i32));
9252 
9253   // Push live variables for the stack map.
9254   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9255 
9256   // We are not pushing any register mask info here on the operands list,
9257   // because the stackmap doesn't clobber anything.
9258 
9259   // Push the chain and the glue flag.
9260   Ops.push_back(Chain);
9261   Ops.push_back(InFlag);
9262 
9263   // Create the STACKMAP node.
9264   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9265   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9266   Chain = SDValue(SM, 0);
9267   InFlag = Chain.getValue(1);
9268 
9269   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9270 
9271   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9272 
9273   // Set the root to the target-lowered call chain.
9274   DAG.setRoot(Chain);
9275 
9276   // Inform the Frame Information that we have a stackmap in this function.
9277   FuncInfo.MF->getFrameInfo().setHasStackMap();
9278 }
9279 
9280 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9281 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9282                                           const BasicBlock *EHPadBB) {
9283   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9284   //                                                 i32 <numBytes>,
9285   //                                                 i8* <target>,
9286   //                                                 i32 <numArgs>,
9287   //                                                 [Args...],
9288   //                                                 [live variables...])
9289 
9290   CallingConv::ID CC = CB.getCallingConv();
9291   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9292   bool HasDef = !CB.getType()->isVoidTy();
9293   SDLoc dl = getCurSDLoc();
9294   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9295 
9296   // Handle immediate and symbolic callees.
9297   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9298     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9299                                    /*isTarget=*/true);
9300   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9301     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9302                                          SDLoc(SymbolicCallee),
9303                                          SymbolicCallee->getValueType(0));
9304 
9305   // Get the real number of arguments participating in the call <numArgs>
9306   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9307   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9308 
9309   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9310   // Intrinsics include all meta-operands up to but not including CC.
9311   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9312   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9313          "Not enough arguments provided to the patchpoint intrinsic");
9314 
9315   // For AnyRegCC the arguments are lowered later on manually.
9316   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9317   Type *ReturnTy =
9318       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9319 
9320   TargetLowering::CallLoweringInfo CLI(DAG);
9321   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9322                            ReturnTy, true);
9323   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9324 
9325   SDNode *CallEnd = Result.second.getNode();
9326   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9327     CallEnd = CallEnd->getOperand(0).getNode();
9328 
9329   /// Get a call instruction from the call sequence chain.
9330   /// Tail calls are not allowed.
9331   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9332          "Expected a callseq node.");
9333   SDNode *Call = CallEnd->getOperand(0).getNode();
9334   bool HasGlue = Call->getGluedNode();
9335 
9336   // Replace the target specific call node with the patchable intrinsic.
9337   SmallVector<SDValue, 8> Ops;
9338 
9339   // Add the <id> and <numBytes> constants.
9340   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9341   Ops.push_back(DAG.getTargetConstant(
9342                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9343   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9344   Ops.push_back(DAG.getTargetConstant(
9345                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9346                   MVT::i32));
9347 
9348   // Add the callee.
9349   Ops.push_back(Callee);
9350 
9351   // Adjust <numArgs> to account for any arguments that have been passed on the
9352   // stack instead.
9353   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9354   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9355   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9356   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9357 
9358   // Add the calling convention
9359   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9360 
9361   // Add the arguments we omitted previously. The register allocator should
9362   // place these in any free register.
9363   if (IsAnyRegCC)
9364     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9365       Ops.push_back(getValue(CB.getArgOperand(i)));
9366 
9367   // Push the arguments from the call instruction up to the register mask.
9368   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9369   Ops.append(Call->op_begin() + 2, e);
9370 
9371   // Push live variables for the stack map.
9372   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9373 
9374   // Push the register mask info.
9375   if (HasGlue)
9376     Ops.push_back(*(Call->op_end()-2));
9377   else
9378     Ops.push_back(*(Call->op_end()-1));
9379 
9380   // Push the chain (this is originally the first operand of the call, but
9381   // becomes now the last or second to last operand).
9382   Ops.push_back(*(Call->op_begin()));
9383 
9384   // Push the glue flag (last operand).
9385   if (HasGlue)
9386     Ops.push_back(*(Call->op_end()-1));
9387 
9388   SDVTList NodeTys;
9389   if (IsAnyRegCC && HasDef) {
9390     // Create the return types based on the intrinsic definition
9391     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9392     SmallVector<EVT, 3> ValueVTs;
9393     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9394     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9395 
9396     // There is always a chain and a glue type at the end
9397     ValueVTs.push_back(MVT::Other);
9398     ValueVTs.push_back(MVT::Glue);
9399     NodeTys = DAG.getVTList(ValueVTs);
9400   } else
9401     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9402 
9403   // Replace the target specific call node with a PATCHPOINT node.
9404   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9405                                          dl, NodeTys, Ops);
9406 
9407   // Update the NodeMap.
9408   if (HasDef) {
9409     if (IsAnyRegCC)
9410       setValue(&CB, SDValue(MN, 0));
9411     else
9412       setValue(&CB, Result.first);
9413   }
9414 
9415   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9416   // call sequence. Furthermore the location of the chain and glue can change
9417   // when the AnyReg calling convention is used and the intrinsic returns a
9418   // value.
9419   if (IsAnyRegCC && HasDef) {
9420     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9421     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9422     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9423   } else
9424     DAG.ReplaceAllUsesWith(Call, MN);
9425   DAG.DeleteNode(Call);
9426 
9427   // Inform the Frame Information that we have a patchpoint in this function.
9428   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9429 }
9430 
9431 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9432                                             unsigned Intrinsic) {
9433   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9434   SDValue Op1 = getValue(I.getArgOperand(0));
9435   SDValue Op2;
9436   if (I.arg_size() > 1)
9437     Op2 = getValue(I.getArgOperand(1));
9438   SDLoc dl = getCurSDLoc();
9439   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9440   SDValue Res;
9441   SDNodeFlags SDFlags;
9442   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9443     SDFlags.copyFMF(*FPMO);
9444 
9445   switch (Intrinsic) {
9446   case Intrinsic::vector_reduce_fadd:
9447     if (SDFlags.hasAllowReassociation())
9448       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9449                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9450                         SDFlags);
9451     else
9452       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9453     break;
9454   case Intrinsic::vector_reduce_fmul:
9455     if (SDFlags.hasAllowReassociation())
9456       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9457                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9458                         SDFlags);
9459     else
9460       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9461     break;
9462   case Intrinsic::vector_reduce_add:
9463     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9464     break;
9465   case Intrinsic::vector_reduce_mul:
9466     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9467     break;
9468   case Intrinsic::vector_reduce_and:
9469     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9470     break;
9471   case Intrinsic::vector_reduce_or:
9472     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9473     break;
9474   case Intrinsic::vector_reduce_xor:
9475     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9476     break;
9477   case Intrinsic::vector_reduce_smax:
9478     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9479     break;
9480   case Intrinsic::vector_reduce_smin:
9481     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9482     break;
9483   case Intrinsic::vector_reduce_umax:
9484     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9485     break;
9486   case Intrinsic::vector_reduce_umin:
9487     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9488     break;
9489   case Intrinsic::vector_reduce_fmax:
9490     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9491     break;
9492   case Intrinsic::vector_reduce_fmin:
9493     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9494     break;
9495   default:
9496     llvm_unreachable("Unhandled vector reduce intrinsic");
9497   }
9498   setValue(&I, Res);
9499 }
9500 
9501 /// Returns an AttributeList representing the attributes applied to the return
9502 /// value of the given call.
9503 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9504   SmallVector<Attribute::AttrKind, 2> Attrs;
9505   if (CLI.RetSExt)
9506     Attrs.push_back(Attribute::SExt);
9507   if (CLI.RetZExt)
9508     Attrs.push_back(Attribute::ZExt);
9509   if (CLI.IsInReg)
9510     Attrs.push_back(Attribute::InReg);
9511 
9512   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9513                             Attrs);
9514 }
9515 
9516 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9517 /// implementation, which just calls LowerCall.
9518 /// FIXME: When all targets are
9519 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9520 std::pair<SDValue, SDValue>
9521 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9522   // Handle the incoming return values from the call.
9523   CLI.Ins.clear();
9524   Type *OrigRetTy = CLI.RetTy;
9525   SmallVector<EVT, 4> RetTys;
9526   SmallVector<uint64_t, 4> Offsets;
9527   auto &DL = CLI.DAG.getDataLayout();
9528   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9529 
9530   if (CLI.IsPostTypeLegalization) {
9531     // If we are lowering a libcall after legalization, split the return type.
9532     SmallVector<EVT, 4> OldRetTys;
9533     SmallVector<uint64_t, 4> OldOffsets;
9534     RetTys.swap(OldRetTys);
9535     Offsets.swap(OldOffsets);
9536 
9537     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9538       EVT RetVT = OldRetTys[i];
9539       uint64_t Offset = OldOffsets[i];
9540       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9541       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9542       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9543       RetTys.append(NumRegs, RegisterVT);
9544       for (unsigned j = 0; j != NumRegs; ++j)
9545         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9546     }
9547   }
9548 
9549   SmallVector<ISD::OutputArg, 4> Outs;
9550   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9551 
9552   bool CanLowerReturn =
9553       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9554                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9555 
9556   SDValue DemoteStackSlot;
9557   int DemoteStackIdx = -100;
9558   if (!CanLowerReturn) {
9559     // FIXME: equivalent assert?
9560     // assert(!CS.hasInAllocaArgument() &&
9561     //        "sret demotion is incompatible with inalloca");
9562     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9563     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9564     MachineFunction &MF = CLI.DAG.getMachineFunction();
9565     DemoteStackIdx =
9566         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9567     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9568                                               DL.getAllocaAddrSpace());
9569 
9570     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9571     ArgListEntry Entry;
9572     Entry.Node = DemoteStackSlot;
9573     Entry.Ty = StackSlotPtrType;
9574     Entry.IsSExt = false;
9575     Entry.IsZExt = false;
9576     Entry.IsInReg = false;
9577     Entry.IsSRet = true;
9578     Entry.IsNest = false;
9579     Entry.IsByVal = false;
9580     Entry.IsByRef = false;
9581     Entry.IsReturned = false;
9582     Entry.IsSwiftSelf = false;
9583     Entry.IsSwiftAsync = false;
9584     Entry.IsSwiftError = false;
9585     Entry.IsCFGuardTarget = false;
9586     Entry.Alignment = Alignment;
9587     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9588     CLI.NumFixedArgs += 1;
9589     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9590 
9591     // sret demotion isn't compatible with tail-calls, since the sret argument
9592     // points into the callers stack frame.
9593     CLI.IsTailCall = false;
9594   } else {
9595     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9596         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9597     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9598       ISD::ArgFlagsTy Flags;
9599       if (NeedsRegBlock) {
9600         Flags.setInConsecutiveRegs();
9601         if (I == RetTys.size() - 1)
9602           Flags.setInConsecutiveRegsLast();
9603       }
9604       EVT VT = RetTys[I];
9605       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9606                                                      CLI.CallConv, VT);
9607       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9608                                                        CLI.CallConv, VT);
9609       for (unsigned i = 0; i != NumRegs; ++i) {
9610         ISD::InputArg MyFlags;
9611         MyFlags.Flags = Flags;
9612         MyFlags.VT = RegisterVT;
9613         MyFlags.ArgVT = VT;
9614         MyFlags.Used = CLI.IsReturnValueUsed;
9615         if (CLI.RetTy->isPointerTy()) {
9616           MyFlags.Flags.setPointer();
9617           MyFlags.Flags.setPointerAddrSpace(
9618               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9619         }
9620         if (CLI.RetSExt)
9621           MyFlags.Flags.setSExt();
9622         if (CLI.RetZExt)
9623           MyFlags.Flags.setZExt();
9624         if (CLI.IsInReg)
9625           MyFlags.Flags.setInReg();
9626         CLI.Ins.push_back(MyFlags);
9627       }
9628     }
9629   }
9630 
9631   // We push in swifterror return as the last element of CLI.Ins.
9632   ArgListTy &Args = CLI.getArgs();
9633   if (supportSwiftError()) {
9634     for (const ArgListEntry &Arg : Args) {
9635       if (Arg.IsSwiftError) {
9636         ISD::InputArg MyFlags;
9637         MyFlags.VT = getPointerTy(DL);
9638         MyFlags.ArgVT = EVT(getPointerTy(DL));
9639         MyFlags.Flags.setSwiftError();
9640         CLI.Ins.push_back(MyFlags);
9641       }
9642     }
9643   }
9644 
9645   // Handle all of the outgoing arguments.
9646   CLI.Outs.clear();
9647   CLI.OutVals.clear();
9648   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9649     SmallVector<EVT, 4> ValueVTs;
9650     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9651     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9652     Type *FinalType = Args[i].Ty;
9653     if (Args[i].IsByVal)
9654       FinalType = Args[i].IndirectType;
9655     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9656         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9657     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9658          ++Value) {
9659       EVT VT = ValueVTs[Value];
9660       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9661       SDValue Op = SDValue(Args[i].Node.getNode(),
9662                            Args[i].Node.getResNo() + Value);
9663       ISD::ArgFlagsTy Flags;
9664 
9665       // Certain targets (such as MIPS), may have a different ABI alignment
9666       // for a type depending on the context. Give the target a chance to
9667       // specify the alignment it wants.
9668       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9669       Flags.setOrigAlign(OriginalAlignment);
9670 
9671       if (Args[i].Ty->isPointerTy()) {
9672         Flags.setPointer();
9673         Flags.setPointerAddrSpace(
9674             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9675       }
9676       if (Args[i].IsZExt)
9677         Flags.setZExt();
9678       if (Args[i].IsSExt)
9679         Flags.setSExt();
9680       if (Args[i].IsInReg) {
9681         // If we are using vectorcall calling convention, a structure that is
9682         // passed InReg - is surely an HVA
9683         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9684             isa<StructType>(FinalType)) {
9685           // The first value of a structure is marked
9686           if (0 == Value)
9687             Flags.setHvaStart();
9688           Flags.setHva();
9689         }
9690         // Set InReg Flag
9691         Flags.setInReg();
9692       }
9693       if (Args[i].IsSRet)
9694         Flags.setSRet();
9695       if (Args[i].IsSwiftSelf)
9696         Flags.setSwiftSelf();
9697       if (Args[i].IsSwiftAsync)
9698         Flags.setSwiftAsync();
9699       if (Args[i].IsSwiftError)
9700         Flags.setSwiftError();
9701       if (Args[i].IsCFGuardTarget)
9702         Flags.setCFGuardTarget();
9703       if (Args[i].IsByVal)
9704         Flags.setByVal();
9705       if (Args[i].IsByRef)
9706         Flags.setByRef();
9707       if (Args[i].IsPreallocated) {
9708         Flags.setPreallocated();
9709         // Set the byval flag for CCAssignFn callbacks that don't know about
9710         // preallocated.  This way we can know how many bytes we should've
9711         // allocated and how many bytes a callee cleanup function will pop.  If
9712         // we port preallocated to more targets, we'll have to add custom
9713         // preallocated handling in the various CC lowering callbacks.
9714         Flags.setByVal();
9715       }
9716       if (Args[i].IsInAlloca) {
9717         Flags.setInAlloca();
9718         // Set the byval flag for CCAssignFn callbacks that don't know about
9719         // inalloca.  This way we can know how many bytes we should've allocated
9720         // and how many bytes a callee cleanup function will pop.  If we port
9721         // inalloca to more targets, we'll have to add custom inalloca handling
9722         // in the various CC lowering callbacks.
9723         Flags.setByVal();
9724       }
9725       Align MemAlign;
9726       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9727         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9728         Flags.setByValSize(FrameSize);
9729 
9730         // info is not there but there are cases it cannot get right.
9731         if (auto MA = Args[i].Alignment)
9732           MemAlign = *MA;
9733         else
9734           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9735       } else if (auto MA = Args[i].Alignment) {
9736         MemAlign = *MA;
9737       } else {
9738         MemAlign = OriginalAlignment;
9739       }
9740       Flags.setMemAlign(MemAlign);
9741       if (Args[i].IsNest)
9742         Flags.setNest();
9743       if (NeedsRegBlock)
9744         Flags.setInConsecutiveRegs();
9745 
9746       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9747                                                  CLI.CallConv, VT);
9748       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9749                                                         CLI.CallConv, VT);
9750       SmallVector<SDValue, 4> Parts(NumParts);
9751       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9752 
9753       if (Args[i].IsSExt)
9754         ExtendKind = ISD::SIGN_EXTEND;
9755       else if (Args[i].IsZExt)
9756         ExtendKind = ISD::ZERO_EXTEND;
9757 
9758       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9759       // for now.
9760       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9761           CanLowerReturn) {
9762         assert((CLI.RetTy == Args[i].Ty ||
9763                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9764                  CLI.RetTy->getPointerAddressSpace() ==
9765                      Args[i].Ty->getPointerAddressSpace())) &&
9766                RetTys.size() == NumValues && "unexpected use of 'returned'");
9767         // Before passing 'returned' to the target lowering code, ensure that
9768         // either the register MVT and the actual EVT are the same size or that
9769         // the return value and argument are extended in the same way; in these
9770         // cases it's safe to pass the argument register value unchanged as the
9771         // return register value (although it's at the target's option whether
9772         // to do so)
9773         // TODO: allow code generation to take advantage of partially preserved
9774         // registers rather than clobbering the entire register when the
9775         // parameter extension method is not compatible with the return
9776         // extension method
9777         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9778             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9779              CLI.RetZExt == Args[i].IsZExt))
9780           Flags.setReturned();
9781       }
9782 
9783       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9784                      CLI.CallConv, ExtendKind);
9785 
9786       for (unsigned j = 0; j != NumParts; ++j) {
9787         // if it isn't first piece, alignment must be 1
9788         // For scalable vectors the scalable part is currently handled
9789         // by individual targets, so we just use the known minimum size here.
9790         ISD::OutputArg MyFlags(
9791             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9792             i < CLI.NumFixedArgs, i,
9793             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9794         if (NumParts > 1 && j == 0)
9795           MyFlags.Flags.setSplit();
9796         else if (j != 0) {
9797           MyFlags.Flags.setOrigAlign(Align(1));
9798           if (j == NumParts - 1)
9799             MyFlags.Flags.setSplitEnd();
9800         }
9801 
9802         CLI.Outs.push_back(MyFlags);
9803         CLI.OutVals.push_back(Parts[j]);
9804       }
9805 
9806       if (NeedsRegBlock && Value == NumValues - 1)
9807         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9808     }
9809   }
9810 
9811   SmallVector<SDValue, 4> InVals;
9812   CLI.Chain = LowerCall(CLI, InVals);
9813 
9814   // Update CLI.InVals to use outside of this function.
9815   CLI.InVals = InVals;
9816 
9817   // Verify that the target's LowerCall behaved as expected.
9818   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9819          "LowerCall didn't return a valid chain!");
9820   assert((!CLI.IsTailCall || InVals.empty()) &&
9821          "LowerCall emitted a return value for a tail call!");
9822   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9823          "LowerCall didn't emit the correct number of values!");
9824 
9825   // For a tail call, the return value is merely live-out and there aren't
9826   // any nodes in the DAG representing it. Return a special value to
9827   // indicate that a tail call has been emitted and no more Instructions
9828   // should be processed in the current block.
9829   if (CLI.IsTailCall) {
9830     CLI.DAG.setRoot(CLI.Chain);
9831     return std::make_pair(SDValue(), SDValue());
9832   }
9833 
9834 #ifndef NDEBUG
9835   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9836     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9837     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9838            "LowerCall emitted a value with the wrong type!");
9839   }
9840 #endif
9841 
9842   SmallVector<SDValue, 4> ReturnValues;
9843   if (!CanLowerReturn) {
9844     // The instruction result is the result of loading from the
9845     // hidden sret parameter.
9846     SmallVector<EVT, 1> PVTs;
9847     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9848 
9849     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9850     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9851     EVT PtrVT = PVTs[0];
9852 
9853     unsigned NumValues = RetTys.size();
9854     ReturnValues.resize(NumValues);
9855     SmallVector<SDValue, 4> Chains(NumValues);
9856 
9857     // An aggregate return value cannot wrap around the address space, so
9858     // offsets to its parts don't wrap either.
9859     SDNodeFlags Flags;
9860     Flags.setNoUnsignedWrap(true);
9861 
9862     MachineFunction &MF = CLI.DAG.getMachineFunction();
9863     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9864     for (unsigned i = 0; i < NumValues; ++i) {
9865       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9866                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9867                                                         PtrVT), Flags);
9868       SDValue L = CLI.DAG.getLoad(
9869           RetTys[i], CLI.DL, CLI.Chain, Add,
9870           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9871                                             DemoteStackIdx, Offsets[i]),
9872           HiddenSRetAlign);
9873       ReturnValues[i] = L;
9874       Chains[i] = L.getValue(1);
9875     }
9876 
9877     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9878   } else {
9879     // Collect the legal value parts into potentially illegal values
9880     // that correspond to the original function's return values.
9881     Optional<ISD::NodeType> AssertOp;
9882     if (CLI.RetSExt)
9883       AssertOp = ISD::AssertSext;
9884     else if (CLI.RetZExt)
9885       AssertOp = ISD::AssertZext;
9886     unsigned CurReg = 0;
9887     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9888       EVT VT = RetTys[I];
9889       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9890                                                      CLI.CallConv, VT);
9891       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9892                                                        CLI.CallConv, VT);
9893 
9894       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9895                                               NumRegs, RegisterVT, VT, nullptr,
9896                                               CLI.CallConv, AssertOp));
9897       CurReg += NumRegs;
9898     }
9899 
9900     // For a function returning void, there is no return value. We can't create
9901     // such a node, so we just return a null return value in that case. In
9902     // that case, nothing will actually look at the value.
9903     if (ReturnValues.empty())
9904       return std::make_pair(SDValue(), CLI.Chain);
9905   }
9906 
9907   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9908                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9909   return std::make_pair(Res, CLI.Chain);
9910 }
9911 
9912 /// Places new result values for the node in Results (their number
9913 /// and types must exactly match those of the original return values of
9914 /// the node), or leaves Results empty, which indicates that the node is not
9915 /// to be custom lowered after all.
9916 void TargetLowering::LowerOperationWrapper(SDNode *N,
9917                                            SmallVectorImpl<SDValue> &Results,
9918                                            SelectionDAG &DAG) const {
9919   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9920 
9921   if (!Res.getNode())
9922     return;
9923 
9924   // If the original node has one result, take the return value from
9925   // LowerOperation as is. It might not be result number 0.
9926   if (N->getNumValues() == 1) {
9927     Results.push_back(Res);
9928     return;
9929   }
9930 
9931   // If the original node has multiple results, then the return node should
9932   // have the same number of results.
9933   assert((N->getNumValues() == Res->getNumValues()) &&
9934       "Lowering returned the wrong number of results!");
9935 
9936   // Places new result values base on N result number.
9937   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9938     Results.push_back(Res.getValue(I));
9939 }
9940 
9941 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9942   llvm_unreachable("LowerOperation not implemented for this target!");
9943 }
9944 
9945 void
9946 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9947   SDValue Op = getNonRegisterValue(V);
9948   assert((Op.getOpcode() != ISD::CopyFromReg ||
9949           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9950          "Copy from a reg to the same reg!");
9951   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9952 
9953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9954   // If this is an InlineAsm we have to match the registers required, not the
9955   // notional registers required by the type.
9956 
9957   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9958                    None); // This is not an ABI copy.
9959   SDValue Chain = DAG.getEntryNode();
9960 
9961   ISD::NodeType ExtendType = ISD::ANY_EXTEND;
9962   auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
9963   if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
9964     ExtendType = PreferredExtendIt->second;
9965   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9966   PendingExports.push_back(Chain);
9967 }
9968 
9969 #include "llvm/CodeGen/SelectionDAGISel.h"
9970 
9971 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9972 /// entry block, return true.  This includes arguments used by switches, since
9973 /// the switch may expand into multiple basic blocks.
9974 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9975   // With FastISel active, we may be splitting blocks, so force creation
9976   // of virtual registers for all non-dead arguments.
9977   if (FastISel)
9978     return A->use_empty();
9979 
9980   const BasicBlock &Entry = A->getParent()->front();
9981   for (const User *U : A->users())
9982     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9983       return false;  // Use not in entry block.
9984 
9985   return true;
9986 }
9987 
9988 using ArgCopyElisionMapTy =
9989     DenseMap<const Argument *,
9990              std::pair<const AllocaInst *, const StoreInst *>>;
9991 
9992 /// Scan the entry block of the function in FuncInfo for arguments that look
9993 /// like copies into a local alloca. Record any copied arguments in
9994 /// ArgCopyElisionCandidates.
9995 static void
9996 findArgumentCopyElisionCandidates(const DataLayout &DL,
9997                                   FunctionLoweringInfo *FuncInfo,
9998                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9999   // Record the state of every static alloca used in the entry block. Argument
10000   // allocas are all used in the entry block, so we need approximately as many
10001   // entries as we have arguments.
10002   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10003   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10004   unsigned NumArgs = FuncInfo->Fn->arg_size();
10005   StaticAllocas.reserve(NumArgs * 2);
10006 
10007   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10008     if (!V)
10009       return nullptr;
10010     V = V->stripPointerCasts();
10011     const auto *AI = dyn_cast<AllocaInst>(V);
10012     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10013       return nullptr;
10014     auto Iter = StaticAllocas.insert({AI, Unknown});
10015     return &Iter.first->second;
10016   };
10017 
10018   // Look for stores of arguments to static allocas. Look through bitcasts and
10019   // GEPs to handle type coercions, as long as the alloca is fully initialized
10020   // by the store. Any non-store use of an alloca escapes it and any subsequent
10021   // unanalyzed store might write it.
10022   // FIXME: Handle structs initialized with multiple stores.
10023   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10024     // Look for stores, and handle non-store uses conservatively.
10025     const auto *SI = dyn_cast<StoreInst>(&I);
10026     if (!SI) {
10027       // We will look through cast uses, so ignore them completely.
10028       if (I.isCast())
10029         continue;
10030       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10031       // to allocas.
10032       if (I.isDebugOrPseudoInst())
10033         continue;
10034       // This is an unknown instruction. Assume it escapes or writes to all
10035       // static alloca operands.
10036       for (const Use &U : I.operands()) {
10037         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10038           *Info = StaticAllocaInfo::Clobbered;
10039       }
10040       continue;
10041     }
10042 
10043     // If the stored value is a static alloca, mark it as escaped.
10044     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10045       *Info = StaticAllocaInfo::Clobbered;
10046 
10047     // Check if the destination is a static alloca.
10048     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10049     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10050     if (!Info)
10051       continue;
10052     const AllocaInst *AI = cast<AllocaInst>(Dst);
10053 
10054     // Skip allocas that have been initialized or clobbered.
10055     if (*Info != StaticAllocaInfo::Unknown)
10056       continue;
10057 
10058     // Check if the stored value is an argument, and that this store fully
10059     // initializes the alloca.
10060     // If the argument type has padding bits we can't directly forward a pointer
10061     // as the upper bits may contain garbage.
10062     // Don't elide copies from the same argument twice.
10063     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10064     const auto *Arg = dyn_cast<Argument>(Val);
10065     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10066         Arg->getType()->isEmptyTy() ||
10067         DL.getTypeStoreSize(Arg->getType()) !=
10068             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10069         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10070         ArgCopyElisionCandidates.count(Arg)) {
10071       *Info = StaticAllocaInfo::Clobbered;
10072       continue;
10073     }
10074 
10075     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10076                       << '\n');
10077 
10078     // Mark this alloca and store for argument copy elision.
10079     *Info = StaticAllocaInfo::Elidable;
10080     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10081 
10082     // Stop scanning if we've seen all arguments. This will happen early in -O0
10083     // builds, which is useful, because -O0 builds have large entry blocks and
10084     // many allocas.
10085     if (ArgCopyElisionCandidates.size() == NumArgs)
10086       break;
10087   }
10088 }
10089 
10090 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10091 /// ArgVal is a load from a suitable fixed stack object.
10092 static void tryToElideArgumentCopy(
10093     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10094     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10095     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10096     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10097     SDValue ArgVal, bool &ArgHasUses) {
10098   // Check if this is a load from a fixed stack object.
10099   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10100   if (!LNode)
10101     return;
10102   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10103   if (!FINode)
10104     return;
10105 
10106   // Check that the fixed stack object is the right size and alignment.
10107   // Look at the alignment that the user wrote on the alloca instead of looking
10108   // at the stack object.
10109   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10110   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10111   const AllocaInst *AI = ArgCopyIter->second.first;
10112   int FixedIndex = FINode->getIndex();
10113   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10114   int OldIndex = AllocaIndex;
10115   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10116   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10117     LLVM_DEBUG(
10118         dbgs() << "  argument copy elision failed due to bad fixed stack "
10119                   "object size\n");
10120     return;
10121   }
10122   Align RequiredAlignment = AI->getAlign();
10123   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10124     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10125                          "greater than stack argument alignment ("
10126                       << DebugStr(RequiredAlignment) << " vs "
10127                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10128     return;
10129   }
10130 
10131   // Perform the elision. Delete the old stack object and replace its only use
10132   // in the variable info map. Mark the stack object as mutable.
10133   LLVM_DEBUG({
10134     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10135            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10136            << '\n';
10137   });
10138   MFI.RemoveStackObject(OldIndex);
10139   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10140   AllocaIndex = FixedIndex;
10141   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10142   Chains.push_back(ArgVal.getValue(1));
10143 
10144   // Avoid emitting code for the store implementing the copy.
10145   const StoreInst *SI = ArgCopyIter->second.second;
10146   ElidedArgCopyInstrs.insert(SI);
10147 
10148   // Check for uses of the argument again so that we can avoid exporting ArgVal
10149   // if it is't used by anything other than the store.
10150   for (const Value *U : Arg.users()) {
10151     if (U != SI) {
10152       ArgHasUses = true;
10153       break;
10154     }
10155   }
10156 }
10157 
10158 void SelectionDAGISel::LowerArguments(const Function &F) {
10159   SelectionDAG &DAG = SDB->DAG;
10160   SDLoc dl = SDB->getCurSDLoc();
10161   const DataLayout &DL = DAG.getDataLayout();
10162   SmallVector<ISD::InputArg, 16> Ins;
10163 
10164   // In Naked functions we aren't going to save any registers.
10165   if (F.hasFnAttribute(Attribute::Naked))
10166     return;
10167 
10168   if (!FuncInfo->CanLowerReturn) {
10169     // Put in an sret pointer parameter before all the other parameters.
10170     SmallVector<EVT, 1> ValueVTs;
10171     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10172                     F.getReturnType()->getPointerTo(
10173                         DAG.getDataLayout().getAllocaAddrSpace()),
10174                     ValueVTs);
10175 
10176     // NOTE: Assuming that a pointer will never break down to more than one VT
10177     // or one register.
10178     ISD::ArgFlagsTy Flags;
10179     Flags.setSRet();
10180     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10181     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10182                          ISD::InputArg::NoArgIndex, 0);
10183     Ins.push_back(RetArg);
10184   }
10185 
10186   // Look for stores of arguments to static allocas. Mark such arguments with a
10187   // flag to ask the target to give us the memory location of that argument if
10188   // available.
10189   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10190   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10191                                     ArgCopyElisionCandidates);
10192 
10193   // Set up the incoming argument description vector.
10194   for (const Argument &Arg : F.args()) {
10195     unsigned ArgNo = Arg.getArgNo();
10196     SmallVector<EVT, 4> ValueVTs;
10197     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10198     bool isArgValueUsed = !Arg.use_empty();
10199     unsigned PartBase = 0;
10200     Type *FinalType = Arg.getType();
10201     if (Arg.hasAttribute(Attribute::ByVal))
10202       FinalType = Arg.getParamByValType();
10203     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10204         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10205     for (unsigned Value = 0, NumValues = ValueVTs.size();
10206          Value != NumValues; ++Value) {
10207       EVT VT = ValueVTs[Value];
10208       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10209       ISD::ArgFlagsTy Flags;
10210 
10211 
10212       if (Arg.getType()->isPointerTy()) {
10213         Flags.setPointer();
10214         Flags.setPointerAddrSpace(
10215             cast<PointerType>(Arg.getType())->getAddressSpace());
10216       }
10217       if (Arg.hasAttribute(Attribute::ZExt))
10218         Flags.setZExt();
10219       if (Arg.hasAttribute(Attribute::SExt))
10220         Flags.setSExt();
10221       if (Arg.hasAttribute(Attribute::InReg)) {
10222         // If we are using vectorcall calling convention, a structure that is
10223         // passed InReg - is surely an HVA
10224         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10225             isa<StructType>(Arg.getType())) {
10226           // The first value of a structure is marked
10227           if (0 == Value)
10228             Flags.setHvaStart();
10229           Flags.setHva();
10230         }
10231         // Set InReg Flag
10232         Flags.setInReg();
10233       }
10234       if (Arg.hasAttribute(Attribute::StructRet))
10235         Flags.setSRet();
10236       if (Arg.hasAttribute(Attribute::SwiftSelf))
10237         Flags.setSwiftSelf();
10238       if (Arg.hasAttribute(Attribute::SwiftAsync))
10239         Flags.setSwiftAsync();
10240       if (Arg.hasAttribute(Attribute::SwiftError))
10241         Flags.setSwiftError();
10242       if (Arg.hasAttribute(Attribute::ByVal))
10243         Flags.setByVal();
10244       if (Arg.hasAttribute(Attribute::ByRef))
10245         Flags.setByRef();
10246       if (Arg.hasAttribute(Attribute::InAlloca)) {
10247         Flags.setInAlloca();
10248         // Set the byval flag for CCAssignFn callbacks that don't know about
10249         // inalloca.  This way we can know how many bytes we should've allocated
10250         // and how many bytes a callee cleanup function will pop.  If we port
10251         // inalloca to more targets, we'll have to add custom inalloca handling
10252         // in the various CC lowering callbacks.
10253         Flags.setByVal();
10254       }
10255       if (Arg.hasAttribute(Attribute::Preallocated)) {
10256         Flags.setPreallocated();
10257         // Set the byval flag for CCAssignFn callbacks that don't know about
10258         // preallocated.  This way we can know how many bytes we should've
10259         // allocated and how many bytes a callee cleanup function will pop.  If
10260         // we port preallocated to more targets, we'll have to add custom
10261         // preallocated handling in the various CC lowering callbacks.
10262         Flags.setByVal();
10263       }
10264 
10265       // Certain targets (such as MIPS), may have a different ABI alignment
10266       // for a type depending on the context. Give the target a chance to
10267       // specify the alignment it wants.
10268       const Align OriginalAlignment(
10269           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10270       Flags.setOrigAlign(OriginalAlignment);
10271 
10272       Align MemAlign;
10273       Type *ArgMemTy = nullptr;
10274       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10275           Flags.isByRef()) {
10276         if (!ArgMemTy)
10277           ArgMemTy = Arg.getPointeeInMemoryValueType();
10278 
10279         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10280 
10281         // For in-memory arguments, size and alignment should be passed from FE.
10282         // BE will guess if this info is not there but there are cases it cannot
10283         // get right.
10284         if (auto ParamAlign = Arg.getParamStackAlign())
10285           MemAlign = *ParamAlign;
10286         else if ((ParamAlign = Arg.getParamAlign()))
10287           MemAlign = *ParamAlign;
10288         else
10289           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10290         if (Flags.isByRef())
10291           Flags.setByRefSize(MemSize);
10292         else
10293           Flags.setByValSize(MemSize);
10294       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10295         MemAlign = *ParamAlign;
10296       } else {
10297         MemAlign = OriginalAlignment;
10298       }
10299       Flags.setMemAlign(MemAlign);
10300 
10301       if (Arg.hasAttribute(Attribute::Nest))
10302         Flags.setNest();
10303       if (NeedsRegBlock)
10304         Flags.setInConsecutiveRegs();
10305       if (ArgCopyElisionCandidates.count(&Arg))
10306         Flags.setCopyElisionCandidate();
10307       if (Arg.hasAttribute(Attribute::Returned))
10308         Flags.setReturned();
10309 
10310       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10311           *CurDAG->getContext(), F.getCallingConv(), VT);
10312       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10313           *CurDAG->getContext(), F.getCallingConv(), VT);
10314       for (unsigned i = 0; i != NumRegs; ++i) {
10315         // For scalable vectors, use the minimum size; individual targets
10316         // are responsible for handling scalable vector arguments and
10317         // return values.
10318         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10319                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10320         if (NumRegs > 1 && i == 0)
10321           MyFlags.Flags.setSplit();
10322         // if it isn't first piece, alignment must be 1
10323         else if (i > 0) {
10324           MyFlags.Flags.setOrigAlign(Align(1));
10325           if (i == NumRegs - 1)
10326             MyFlags.Flags.setSplitEnd();
10327         }
10328         Ins.push_back(MyFlags);
10329       }
10330       if (NeedsRegBlock && Value == NumValues - 1)
10331         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10332       PartBase += VT.getStoreSize().getKnownMinSize();
10333     }
10334   }
10335 
10336   // Call the target to set up the argument values.
10337   SmallVector<SDValue, 8> InVals;
10338   SDValue NewRoot = TLI->LowerFormalArguments(
10339       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10340 
10341   // Verify that the target's LowerFormalArguments behaved as expected.
10342   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10343          "LowerFormalArguments didn't return a valid chain!");
10344   assert(InVals.size() == Ins.size() &&
10345          "LowerFormalArguments didn't emit the correct number of values!");
10346   LLVM_DEBUG({
10347     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10348       assert(InVals[i].getNode() &&
10349              "LowerFormalArguments emitted a null value!");
10350       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10351              "LowerFormalArguments emitted a value with the wrong type!");
10352     }
10353   });
10354 
10355   // Update the DAG with the new chain value resulting from argument lowering.
10356   DAG.setRoot(NewRoot);
10357 
10358   // Set up the argument values.
10359   unsigned i = 0;
10360   if (!FuncInfo->CanLowerReturn) {
10361     // Create a virtual register for the sret pointer, and put in a copy
10362     // from the sret argument into it.
10363     SmallVector<EVT, 1> ValueVTs;
10364     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10365                     F.getReturnType()->getPointerTo(
10366                         DAG.getDataLayout().getAllocaAddrSpace()),
10367                     ValueVTs);
10368     MVT VT = ValueVTs[0].getSimpleVT();
10369     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10370     Optional<ISD::NodeType> AssertOp = None;
10371     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10372                                         nullptr, F.getCallingConv(), AssertOp);
10373 
10374     MachineFunction& MF = SDB->DAG.getMachineFunction();
10375     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10376     Register SRetReg =
10377         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10378     FuncInfo->DemoteRegister = SRetReg;
10379     NewRoot =
10380         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10381     DAG.setRoot(NewRoot);
10382 
10383     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10384     ++i;
10385   }
10386 
10387   SmallVector<SDValue, 4> Chains;
10388   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10389   for (const Argument &Arg : F.args()) {
10390     SmallVector<SDValue, 4> ArgValues;
10391     SmallVector<EVT, 4> ValueVTs;
10392     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10393     unsigned NumValues = ValueVTs.size();
10394     if (NumValues == 0)
10395       continue;
10396 
10397     bool ArgHasUses = !Arg.use_empty();
10398 
10399     // Elide the copying store if the target loaded this argument from a
10400     // suitable fixed stack object.
10401     if (Ins[i].Flags.isCopyElisionCandidate()) {
10402       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10403                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10404                              InVals[i], ArgHasUses);
10405     }
10406 
10407     // If this argument is unused then remember its value. It is used to generate
10408     // debugging information.
10409     bool isSwiftErrorArg =
10410         TLI->supportSwiftError() &&
10411         Arg.hasAttribute(Attribute::SwiftError);
10412     if (!ArgHasUses && !isSwiftErrorArg) {
10413       SDB->setUnusedArgValue(&Arg, InVals[i]);
10414 
10415       // Also remember any frame index for use in FastISel.
10416       if (FrameIndexSDNode *FI =
10417           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10418         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10419     }
10420 
10421     for (unsigned Val = 0; Val != NumValues; ++Val) {
10422       EVT VT = ValueVTs[Val];
10423       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10424                                                       F.getCallingConv(), VT);
10425       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10426           *CurDAG->getContext(), F.getCallingConv(), VT);
10427 
10428       // Even an apparent 'unused' swifterror argument needs to be returned. So
10429       // we do generate a copy for it that can be used on return from the
10430       // function.
10431       if (ArgHasUses || isSwiftErrorArg) {
10432         Optional<ISD::NodeType> AssertOp;
10433         if (Arg.hasAttribute(Attribute::SExt))
10434           AssertOp = ISD::AssertSext;
10435         else if (Arg.hasAttribute(Attribute::ZExt))
10436           AssertOp = ISD::AssertZext;
10437 
10438         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10439                                              PartVT, VT, nullptr,
10440                                              F.getCallingConv(), AssertOp));
10441       }
10442 
10443       i += NumParts;
10444     }
10445 
10446     // We don't need to do anything else for unused arguments.
10447     if (ArgValues.empty())
10448       continue;
10449 
10450     // Note down frame index.
10451     if (FrameIndexSDNode *FI =
10452         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10453       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10454 
10455     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10456                                      SDB->getCurSDLoc());
10457 
10458     SDB->setValue(&Arg, Res);
10459     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10460       // We want to associate the argument with the frame index, among
10461       // involved operands, that correspond to the lowest address. The
10462       // getCopyFromParts function, called earlier, is swapping the order of
10463       // the operands to BUILD_PAIR depending on endianness. The result of
10464       // that swapping is that the least significant bits of the argument will
10465       // be in the first operand of the BUILD_PAIR node, and the most
10466       // significant bits will be in the second operand.
10467       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10468       if (LoadSDNode *LNode =
10469           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10470         if (FrameIndexSDNode *FI =
10471             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10472           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10473     }
10474 
10475     // Analyses past this point are naive and don't expect an assertion.
10476     if (Res.getOpcode() == ISD::AssertZext)
10477       Res = Res.getOperand(0);
10478 
10479     // Update the SwiftErrorVRegDefMap.
10480     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10481       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10482       if (Register::isVirtualRegister(Reg))
10483         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10484                                    Reg);
10485     }
10486 
10487     // If this argument is live outside of the entry block, insert a copy from
10488     // wherever we got it to the vreg that other BB's will reference it as.
10489     if (Res.getOpcode() == ISD::CopyFromReg) {
10490       // If we can, though, try to skip creating an unnecessary vreg.
10491       // FIXME: This isn't very clean... it would be nice to make this more
10492       // general.
10493       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10494       if (Register::isVirtualRegister(Reg)) {
10495         FuncInfo->ValueMap[&Arg] = Reg;
10496         continue;
10497       }
10498     }
10499     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10500       FuncInfo->InitializeRegForValue(&Arg);
10501       SDB->CopyToExportRegsIfNeeded(&Arg);
10502     }
10503   }
10504 
10505   if (!Chains.empty()) {
10506     Chains.push_back(NewRoot);
10507     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10508   }
10509 
10510   DAG.setRoot(NewRoot);
10511 
10512   assert(i == InVals.size() && "Argument register count mismatch!");
10513 
10514   // If any argument copy elisions occurred and we have debug info, update the
10515   // stale frame indices used in the dbg.declare variable info table.
10516   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10517   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10518     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10519       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10520       if (I != ArgCopyElisionFrameIndexMap.end())
10521         VI.Slot = I->second;
10522     }
10523   }
10524 
10525   // Finally, if the target has anything special to do, allow it to do so.
10526   emitFunctionEntryCode();
10527 }
10528 
10529 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10530 /// ensure constants are generated when needed.  Remember the virtual registers
10531 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10532 /// directly add them, because expansion might result in multiple MBB's for one
10533 /// BB.  As such, the start of the BB might correspond to a different MBB than
10534 /// the end.
10535 void
10536 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10537   const Instruction *TI = LLVMBB->getTerminator();
10538 
10539   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10540 
10541   // Check PHI nodes in successors that expect a value to be available from this
10542   // block.
10543   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10544     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10545     if (!isa<PHINode>(SuccBB->begin())) continue;
10546     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10547 
10548     // If this terminator has multiple identical successors (common for
10549     // switches), only handle each succ once.
10550     if (!SuccsHandled.insert(SuccMBB).second)
10551       continue;
10552 
10553     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10554 
10555     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10556     // nodes and Machine PHI nodes, but the incoming operands have not been
10557     // emitted yet.
10558     for (const PHINode &PN : SuccBB->phis()) {
10559       // Ignore dead phi's.
10560       if (PN.use_empty())
10561         continue;
10562 
10563       // Skip empty types
10564       if (PN.getType()->isEmptyTy())
10565         continue;
10566 
10567       unsigned Reg;
10568       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10569 
10570       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10571         unsigned &RegOut = ConstantsOut[C];
10572         if (RegOut == 0) {
10573           RegOut = FuncInfo.CreateRegs(C);
10574           CopyValueToVirtualRegister(C, RegOut);
10575         }
10576         Reg = RegOut;
10577       } else {
10578         DenseMap<const Value *, Register>::iterator I =
10579           FuncInfo.ValueMap.find(PHIOp);
10580         if (I != FuncInfo.ValueMap.end())
10581           Reg = I->second;
10582         else {
10583           assert(isa<AllocaInst>(PHIOp) &&
10584                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10585                  "Didn't codegen value into a register!??");
10586           Reg = FuncInfo.CreateRegs(PHIOp);
10587           CopyValueToVirtualRegister(PHIOp, Reg);
10588         }
10589       }
10590 
10591       // Remember that this register needs to added to the machine PHI node as
10592       // the input for this MBB.
10593       SmallVector<EVT, 4> ValueVTs;
10594       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10595       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10596       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10597         EVT VT = ValueVTs[vti];
10598         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10599         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10600           FuncInfo.PHINodesToUpdate.push_back(
10601               std::make_pair(&*MBBI++, Reg + i));
10602         Reg += NumRegisters;
10603       }
10604     }
10605   }
10606 
10607   ConstantsOut.clear();
10608 }
10609 
10610 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10611   MachineFunction::iterator I(MBB);
10612   if (++I == FuncInfo.MF->end())
10613     return nullptr;
10614   return &*I;
10615 }
10616 
10617 /// During lowering new call nodes can be created (such as memset, etc.).
10618 /// Those will become new roots of the current DAG, but complications arise
10619 /// when they are tail calls. In such cases, the call lowering will update
10620 /// the root, but the builder still needs to know that a tail call has been
10621 /// lowered in order to avoid generating an additional return.
10622 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10623   // If the node is null, we do have a tail call.
10624   if (MaybeTC.getNode() != nullptr)
10625     DAG.setRoot(MaybeTC);
10626   else
10627     HasTailCall = true;
10628 }
10629 
10630 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10631                                         MachineBasicBlock *SwitchMBB,
10632                                         MachineBasicBlock *DefaultMBB) {
10633   MachineFunction *CurMF = FuncInfo.MF;
10634   MachineBasicBlock *NextMBB = nullptr;
10635   MachineFunction::iterator BBI(W.MBB);
10636   if (++BBI != FuncInfo.MF->end())
10637     NextMBB = &*BBI;
10638 
10639   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10640 
10641   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10642 
10643   if (Size == 2 && W.MBB == SwitchMBB) {
10644     // If any two of the cases has the same destination, and if one value
10645     // is the same as the other, but has one bit unset that the other has set,
10646     // use bit manipulation to do two compares at once.  For example:
10647     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10648     // TODO: This could be extended to merge any 2 cases in switches with 3
10649     // cases.
10650     // TODO: Handle cases where W.CaseBB != SwitchBB.
10651     CaseCluster &Small = *W.FirstCluster;
10652     CaseCluster &Big = *W.LastCluster;
10653 
10654     if (Small.Low == Small.High && Big.Low == Big.High &&
10655         Small.MBB == Big.MBB) {
10656       const APInt &SmallValue = Small.Low->getValue();
10657       const APInt &BigValue = Big.Low->getValue();
10658 
10659       // Check that there is only one bit different.
10660       APInt CommonBit = BigValue ^ SmallValue;
10661       if (CommonBit.isPowerOf2()) {
10662         SDValue CondLHS = getValue(Cond);
10663         EVT VT = CondLHS.getValueType();
10664         SDLoc DL = getCurSDLoc();
10665 
10666         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10667                                  DAG.getConstant(CommonBit, DL, VT));
10668         SDValue Cond = DAG.getSetCC(
10669             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10670             ISD::SETEQ);
10671 
10672         // Update successor info.
10673         // Both Small and Big will jump to Small.BB, so we sum up the
10674         // probabilities.
10675         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10676         if (BPI)
10677           addSuccessorWithProb(
10678               SwitchMBB, DefaultMBB,
10679               // The default destination is the first successor in IR.
10680               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10681         else
10682           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10683 
10684         // Insert the true branch.
10685         SDValue BrCond =
10686             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10687                         DAG.getBasicBlock(Small.MBB));
10688         // Insert the false branch.
10689         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10690                              DAG.getBasicBlock(DefaultMBB));
10691 
10692         DAG.setRoot(BrCond);
10693         return;
10694       }
10695     }
10696   }
10697 
10698   if (TM.getOptLevel() != CodeGenOpt::None) {
10699     // Here, we order cases by probability so the most likely case will be
10700     // checked first. However, two clusters can have the same probability in
10701     // which case their relative ordering is non-deterministic. So we use Low
10702     // as a tie-breaker as clusters are guaranteed to never overlap.
10703     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10704                [](const CaseCluster &a, const CaseCluster &b) {
10705       return a.Prob != b.Prob ?
10706              a.Prob > b.Prob :
10707              a.Low->getValue().slt(b.Low->getValue());
10708     });
10709 
10710     // Rearrange the case blocks so that the last one falls through if possible
10711     // without changing the order of probabilities.
10712     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10713       --I;
10714       if (I->Prob > W.LastCluster->Prob)
10715         break;
10716       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10717         std::swap(*I, *W.LastCluster);
10718         break;
10719       }
10720     }
10721   }
10722 
10723   // Compute total probability.
10724   BranchProbability DefaultProb = W.DefaultProb;
10725   BranchProbability UnhandledProbs = DefaultProb;
10726   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10727     UnhandledProbs += I->Prob;
10728 
10729   MachineBasicBlock *CurMBB = W.MBB;
10730   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10731     bool FallthroughUnreachable = false;
10732     MachineBasicBlock *Fallthrough;
10733     if (I == W.LastCluster) {
10734       // For the last cluster, fall through to the default destination.
10735       Fallthrough = DefaultMBB;
10736       FallthroughUnreachable = isa<UnreachableInst>(
10737           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10738     } else {
10739       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10740       CurMF->insert(BBI, Fallthrough);
10741       // Put Cond in a virtual register to make it available from the new blocks.
10742       ExportFromCurrentBlock(Cond);
10743     }
10744     UnhandledProbs -= I->Prob;
10745 
10746     switch (I->Kind) {
10747       case CC_JumpTable: {
10748         // FIXME: Optimize away range check based on pivot comparisons.
10749         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10750         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10751 
10752         // The jump block hasn't been inserted yet; insert it here.
10753         MachineBasicBlock *JumpMBB = JT->MBB;
10754         CurMF->insert(BBI, JumpMBB);
10755 
10756         auto JumpProb = I->Prob;
10757         auto FallthroughProb = UnhandledProbs;
10758 
10759         // If the default statement is a target of the jump table, we evenly
10760         // distribute the default probability to successors of CurMBB. Also
10761         // update the probability on the edge from JumpMBB to Fallthrough.
10762         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10763                                               SE = JumpMBB->succ_end();
10764              SI != SE; ++SI) {
10765           if (*SI == DefaultMBB) {
10766             JumpProb += DefaultProb / 2;
10767             FallthroughProb -= DefaultProb / 2;
10768             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10769             JumpMBB->normalizeSuccProbs();
10770             break;
10771           }
10772         }
10773 
10774         if (FallthroughUnreachable)
10775           JTH->FallthroughUnreachable = true;
10776 
10777         if (!JTH->FallthroughUnreachable)
10778           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10779         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10780         CurMBB->normalizeSuccProbs();
10781 
10782         // The jump table header will be inserted in our current block, do the
10783         // range check, and fall through to our fallthrough block.
10784         JTH->HeaderBB = CurMBB;
10785         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10786 
10787         // If we're in the right place, emit the jump table header right now.
10788         if (CurMBB == SwitchMBB) {
10789           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10790           JTH->Emitted = true;
10791         }
10792         break;
10793       }
10794       case CC_BitTests: {
10795         // FIXME: Optimize away range check based on pivot comparisons.
10796         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10797 
10798         // The bit test blocks haven't been inserted yet; insert them here.
10799         for (BitTestCase &BTC : BTB->Cases)
10800           CurMF->insert(BBI, BTC.ThisBB);
10801 
10802         // Fill in fields of the BitTestBlock.
10803         BTB->Parent = CurMBB;
10804         BTB->Default = Fallthrough;
10805 
10806         BTB->DefaultProb = UnhandledProbs;
10807         // If the cases in bit test don't form a contiguous range, we evenly
10808         // distribute the probability on the edge to Fallthrough to two
10809         // successors of CurMBB.
10810         if (!BTB->ContiguousRange) {
10811           BTB->Prob += DefaultProb / 2;
10812           BTB->DefaultProb -= DefaultProb / 2;
10813         }
10814 
10815         if (FallthroughUnreachable)
10816           BTB->FallthroughUnreachable = true;
10817 
10818         // If we're in the right place, emit the bit test header right now.
10819         if (CurMBB == SwitchMBB) {
10820           visitBitTestHeader(*BTB, SwitchMBB);
10821           BTB->Emitted = true;
10822         }
10823         break;
10824       }
10825       case CC_Range: {
10826         const Value *RHS, *LHS, *MHS;
10827         ISD::CondCode CC;
10828         if (I->Low == I->High) {
10829           // Check Cond == I->Low.
10830           CC = ISD::SETEQ;
10831           LHS = Cond;
10832           RHS=I->Low;
10833           MHS = nullptr;
10834         } else {
10835           // Check I->Low <= Cond <= I->High.
10836           CC = ISD::SETLE;
10837           LHS = I->Low;
10838           MHS = Cond;
10839           RHS = I->High;
10840         }
10841 
10842         // If Fallthrough is unreachable, fold away the comparison.
10843         if (FallthroughUnreachable)
10844           CC = ISD::SETTRUE;
10845 
10846         // The false probability is the sum of all unhandled cases.
10847         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10848                      getCurSDLoc(), I->Prob, UnhandledProbs);
10849 
10850         if (CurMBB == SwitchMBB)
10851           visitSwitchCase(CB, SwitchMBB);
10852         else
10853           SL->SwitchCases.push_back(CB);
10854 
10855         break;
10856       }
10857     }
10858     CurMBB = Fallthrough;
10859   }
10860 }
10861 
10862 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10863                                               CaseClusterIt First,
10864                                               CaseClusterIt Last) {
10865   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10866     if (X.Prob != CC.Prob)
10867       return X.Prob > CC.Prob;
10868 
10869     // Ties are broken by comparing the case value.
10870     return X.Low->getValue().slt(CC.Low->getValue());
10871   });
10872 }
10873 
10874 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10875                                         const SwitchWorkListItem &W,
10876                                         Value *Cond,
10877                                         MachineBasicBlock *SwitchMBB) {
10878   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10879          "Clusters not sorted?");
10880 
10881   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10882 
10883   // Balance the tree based on branch probabilities to create a near-optimal (in
10884   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10885   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10886   CaseClusterIt LastLeft = W.FirstCluster;
10887   CaseClusterIt FirstRight = W.LastCluster;
10888   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10889   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10890 
10891   // Move LastLeft and FirstRight towards each other from opposite directions to
10892   // find a partitioning of the clusters which balances the probability on both
10893   // sides. If LeftProb and RightProb are equal, alternate which side is
10894   // taken to ensure 0-probability nodes are distributed evenly.
10895   unsigned I = 0;
10896   while (LastLeft + 1 < FirstRight) {
10897     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10898       LeftProb += (++LastLeft)->Prob;
10899     else
10900       RightProb += (--FirstRight)->Prob;
10901     I++;
10902   }
10903 
10904   while (true) {
10905     // Our binary search tree differs from a typical BST in that ours can have up
10906     // to three values in each leaf. The pivot selection above doesn't take that
10907     // into account, which means the tree might require more nodes and be less
10908     // efficient. We compensate for this here.
10909 
10910     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10911     unsigned NumRight = W.LastCluster - FirstRight + 1;
10912 
10913     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10914       // If one side has less than 3 clusters, and the other has more than 3,
10915       // consider taking a cluster from the other side.
10916 
10917       if (NumLeft < NumRight) {
10918         // Consider moving the first cluster on the right to the left side.
10919         CaseCluster &CC = *FirstRight;
10920         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10921         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10922         if (LeftSideRank <= RightSideRank) {
10923           // Moving the cluster to the left does not demote it.
10924           ++LastLeft;
10925           ++FirstRight;
10926           continue;
10927         }
10928       } else {
10929         assert(NumRight < NumLeft);
10930         // Consider moving the last element on the left to the right side.
10931         CaseCluster &CC = *LastLeft;
10932         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10933         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10934         if (RightSideRank <= LeftSideRank) {
10935           // Moving the cluster to the right does not demot it.
10936           --LastLeft;
10937           --FirstRight;
10938           continue;
10939         }
10940       }
10941     }
10942     break;
10943   }
10944 
10945   assert(LastLeft + 1 == FirstRight);
10946   assert(LastLeft >= W.FirstCluster);
10947   assert(FirstRight <= W.LastCluster);
10948 
10949   // Use the first element on the right as pivot since we will make less-than
10950   // comparisons against it.
10951   CaseClusterIt PivotCluster = FirstRight;
10952   assert(PivotCluster > W.FirstCluster);
10953   assert(PivotCluster <= W.LastCluster);
10954 
10955   CaseClusterIt FirstLeft = W.FirstCluster;
10956   CaseClusterIt LastRight = W.LastCluster;
10957 
10958   const ConstantInt *Pivot = PivotCluster->Low;
10959 
10960   // New blocks will be inserted immediately after the current one.
10961   MachineFunction::iterator BBI(W.MBB);
10962   ++BBI;
10963 
10964   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10965   // we can branch to its destination directly if it's squeezed exactly in
10966   // between the known lower bound and Pivot - 1.
10967   MachineBasicBlock *LeftMBB;
10968   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10969       FirstLeft->Low == W.GE &&
10970       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10971     LeftMBB = FirstLeft->MBB;
10972   } else {
10973     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10974     FuncInfo.MF->insert(BBI, LeftMBB);
10975     WorkList.push_back(
10976         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10977     // Put Cond in a virtual register to make it available from the new blocks.
10978     ExportFromCurrentBlock(Cond);
10979   }
10980 
10981   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10982   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10983   // directly if RHS.High equals the current upper bound.
10984   MachineBasicBlock *RightMBB;
10985   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10986       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10987     RightMBB = FirstRight->MBB;
10988   } else {
10989     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10990     FuncInfo.MF->insert(BBI, RightMBB);
10991     WorkList.push_back(
10992         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10993     // Put Cond in a virtual register to make it available from the new blocks.
10994     ExportFromCurrentBlock(Cond);
10995   }
10996 
10997   // Create the CaseBlock record that will be used to lower the branch.
10998   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10999                getCurSDLoc(), LeftProb, RightProb);
11000 
11001   if (W.MBB == SwitchMBB)
11002     visitSwitchCase(CB, SwitchMBB);
11003   else
11004     SL->SwitchCases.push_back(CB);
11005 }
11006 
11007 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11008 // from the swith statement.
11009 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11010                                             BranchProbability PeeledCaseProb) {
11011   if (PeeledCaseProb == BranchProbability::getOne())
11012     return BranchProbability::getZero();
11013   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11014 
11015   uint32_t Numerator = CaseProb.getNumerator();
11016   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11017   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11018 }
11019 
11020 // Try to peel the top probability case if it exceeds the threshold.
11021 // Return current MachineBasicBlock for the switch statement if the peeling
11022 // does not occur.
11023 // If the peeling is performed, return the newly created MachineBasicBlock
11024 // for the peeled switch statement. Also update Clusters to remove the peeled
11025 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11026 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11027     const SwitchInst &SI, CaseClusterVector &Clusters,
11028     BranchProbability &PeeledCaseProb) {
11029   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11030   // Don't perform if there is only one cluster or optimizing for size.
11031   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11032       TM.getOptLevel() == CodeGenOpt::None ||
11033       SwitchMBB->getParent()->getFunction().hasMinSize())
11034     return SwitchMBB;
11035 
11036   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11037   unsigned PeeledCaseIndex = 0;
11038   bool SwitchPeeled = false;
11039   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11040     CaseCluster &CC = Clusters[Index];
11041     if (CC.Prob < TopCaseProb)
11042       continue;
11043     TopCaseProb = CC.Prob;
11044     PeeledCaseIndex = Index;
11045     SwitchPeeled = true;
11046   }
11047   if (!SwitchPeeled)
11048     return SwitchMBB;
11049 
11050   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11051                     << TopCaseProb << "\n");
11052 
11053   // Record the MBB for the peeled switch statement.
11054   MachineFunction::iterator BBI(SwitchMBB);
11055   ++BBI;
11056   MachineBasicBlock *PeeledSwitchMBB =
11057       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11058   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11059 
11060   ExportFromCurrentBlock(SI.getCondition());
11061   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11062   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11063                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11064   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11065 
11066   Clusters.erase(PeeledCaseIt);
11067   for (CaseCluster &CC : Clusters) {
11068     LLVM_DEBUG(
11069         dbgs() << "Scale the probablity for one cluster, before scaling: "
11070                << CC.Prob << "\n");
11071     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11072     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11073   }
11074   PeeledCaseProb = TopCaseProb;
11075   return PeeledSwitchMBB;
11076 }
11077 
11078 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11079   // Extract cases from the switch.
11080   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11081   CaseClusterVector Clusters;
11082   Clusters.reserve(SI.getNumCases());
11083   for (auto I : SI.cases()) {
11084     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11085     const ConstantInt *CaseVal = I.getCaseValue();
11086     BranchProbability Prob =
11087         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11088             : BranchProbability(1, SI.getNumCases() + 1);
11089     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11090   }
11091 
11092   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11093 
11094   // Cluster adjacent cases with the same destination. We do this at all
11095   // optimization levels because it's cheap to do and will make codegen faster
11096   // if there are many clusters.
11097   sortAndRangeify(Clusters);
11098 
11099   // The branch probablity of the peeled case.
11100   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11101   MachineBasicBlock *PeeledSwitchMBB =
11102       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11103 
11104   // If there is only the default destination, jump there directly.
11105   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11106   if (Clusters.empty()) {
11107     assert(PeeledSwitchMBB == SwitchMBB);
11108     SwitchMBB->addSuccessor(DefaultMBB);
11109     if (DefaultMBB != NextBlock(SwitchMBB)) {
11110       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11111                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11112     }
11113     return;
11114   }
11115 
11116   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11117   SL->findBitTestClusters(Clusters, &SI);
11118 
11119   LLVM_DEBUG({
11120     dbgs() << "Case clusters: ";
11121     for (const CaseCluster &C : Clusters) {
11122       if (C.Kind == CC_JumpTable)
11123         dbgs() << "JT:";
11124       if (C.Kind == CC_BitTests)
11125         dbgs() << "BT:";
11126 
11127       C.Low->getValue().print(dbgs(), true);
11128       if (C.Low != C.High) {
11129         dbgs() << '-';
11130         C.High->getValue().print(dbgs(), true);
11131       }
11132       dbgs() << ' ';
11133     }
11134     dbgs() << '\n';
11135   });
11136 
11137   assert(!Clusters.empty());
11138   SwitchWorkList WorkList;
11139   CaseClusterIt First = Clusters.begin();
11140   CaseClusterIt Last = Clusters.end() - 1;
11141   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11142   // Scale the branchprobability for DefaultMBB if the peel occurs and
11143   // DefaultMBB is not replaced.
11144   if (PeeledCaseProb != BranchProbability::getZero() &&
11145       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11146     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11147   WorkList.push_back(
11148       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11149 
11150   while (!WorkList.empty()) {
11151     SwitchWorkListItem W = WorkList.pop_back_val();
11152     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11153 
11154     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11155         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11156       // For optimized builds, lower large range as a balanced binary tree.
11157       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11158       continue;
11159     }
11160 
11161     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11162   }
11163 }
11164 
11165 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11166   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11167   auto DL = getCurSDLoc();
11168   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11169   setValue(&I, DAG.getStepVector(DL, ResultVT));
11170 }
11171 
11172 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11173   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11174   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11175 
11176   SDLoc DL = getCurSDLoc();
11177   SDValue V = getValue(I.getOperand(0));
11178   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11179 
11180   if (VT.isScalableVector()) {
11181     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11182     return;
11183   }
11184 
11185   // Use VECTOR_SHUFFLE for the fixed-length vector
11186   // to maintain existing behavior.
11187   SmallVector<int, 8> Mask;
11188   unsigned NumElts = VT.getVectorMinNumElements();
11189   for (unsigned i = 0; i != NumElts; ++i)
11190     Mask.push_back(NumElts - 1 - i);
11191 
11192   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11193 }
11194 
11195 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11196   SmallVector<EVT, 4> ValueVTs;
11197   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11198                   ValueVTs);
11199   unsigned NumValues = ValueVTs.size();
11200   if (NumValues == 0) return;
11201 
11202   SmallVector<SDValue, 4> Values(NumValues);
11203   SDValue Op = getValue(I.getOperand(0));
11204 
11205   for (unsigned i = 0; i != NumValues; ++i)
11206     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11207                             SDValue(Op.getNode(), Op.getResNo() + i));
11208 
11209   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11210                            DAG.getVTList(ValueVTs), Values));
11211 }
11212 
11213 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11215   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11216 
11217   SDLoc DL = getCurSDLoc();
11218   SDValue V1 = getValue(I.getOperand(0));
11219   SDValue V2 = getValue(I.getOperand(1));
11220   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11221 
11222   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11223   if (VT.isScalableVector()) {
11224     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11225     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11226                              DAG.getConstant(Imm, DL, IdxVT)));
11227     return;
11228   }
11229 
11230   unsigned NumElts = VT.getVectorNumElements();
11231 
11232   uint64_t Idx = (NumElts + Imm) % NumElts;
11233 
11234   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11235   SmallVector<int, 8> Mask;
11236   for (unsigned i = 0; i < NumElts; ++i)
11237     Mask.push_back(Idx + i);
11238   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11239 }
11240