xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/CodeGen/Analysis.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/ManagedStatic.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141     unsigned EltSize =
142         N->getValueType(0).getVectorElementType().getSizeInBits();
143     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144       SplatVal = Op0->getAPIntValue().trunc(EltSize);
145       return true;
146     }
147     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
149       return true;
150     }
151   }
152 
153   auto *BV = dyn_cast<BuildVectorSDNode>(N);
154   if (!BV)
155     return false;
156 
157   APInt SplatUndef;
158   unsigned SplatBitSize;
159   bool HasUndefs;
160   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162                              EltSize) &&
163          EltSize == SplatBitSize;
164 }
165 
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168 
169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170   // Look through a bit convert.
171   while (N->getOpcode() == ISD::BITCAST)
172     N = N->getOperand(0).getNode();
173 
174   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175     APInt SplatVal;
176     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177   }
178 
179   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180 
181   unsigned i = 0, e = N->getNumOperands();
182 
183   // Skip over all of the undef values.
184   while (i != e && N->getOperand(i).isUndef())
185     ++i;
186 
187   // Do not accept an all-undef vector.
188   if (i == e) return false;
189 
190   // Do not accept build_vectors that aren't all constants or which have non-~0
191   // elements. We have to be a bit careful here, as the type of the constant
192   // may not be the same as the type of the vector elements due to type
193   // legalization (the elements are promoted to a legal type for the target and
194   // a vector of a type may be legal when the base element type is not).
195   // We only want to check enough bits to cover the vector elements, because
196   // we care if the resultant vector is all ones, not whether the individual
197   // constants are.
198   SDValue NotZero = N->getOperand(i);
199   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202       return false;
203   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205       return false;
206   } else
207     return false;
208 
209   // Okay, we have at least one ~0 value, check to see if the rest match or are
210   // undefs. Even with the above element type twiddling, this should be OK, as
211   // the same type legalization should have applied to all the elements.
212   for (++i; i != e; ++i)
213     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214       return false;
215   return true;
216 }
217 
218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219   // Look through a bit convert.
220   while (N->getOpcode() == ISD::BITCAST)
221     N = N->getOperand(0).getNode();
222 
223   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224     APInt SplatVal;
225     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226   }
227 
228   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229 
230   bool IsAllUndef = true;
231   for (const SDValue &Op : N->op_values()) {
232     if (Op.isUndef())
233       continue;
234     IsAllUndef = false;
235     // Do not accept build_vectors that aren't all constants or which have non-0
236     // elements. We have to be a bit careful here, as the type of the constant
237     // may not be the same as the type of the vector elements due to type
238     // legalization (the elements are promoted to a legal type for the target
239     // and a vector of a type may be legal when the base element type is not).
240     // We only want to check enough bits to cover the vector elements, because
241     // we care if the resultant vector is all zeros, not whether the individual
242     // constants are.
243     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246         return false;
247     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249         return false;
250     } else
251       return false;
252   }
253 
254   // Do not accept an all-undef vector.
255   if (IsAllUndef)
256     return false;
257   return true;
258 }
259 
260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263 
264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267 
268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269   if (N->getOpcode() != ISD::BUILD_VECTOR)
270     return false;
271 
272   for (const SDValue &Op : N->op_values()) {
273     if (Op.isUndef())
274       continue;
275     if (!isa<ConstantSDNode>(Op))
276       return false;
277   }
278   return true;
279 }
280 
281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282   if (N->getOpcode() != ISD::BUILD_VECTOR)
283     return false;
284 
285   for (const SDValue &Op : N->op_values()) {
286     if (Op.isUndef())
287       continue;
288     if (!isa<ConstantFPSDNode>(Op))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::allOperandsUndef(const SDNode *N) {
295   // Return false if the node has no operands.
296   // This is "logically inconsistent" with the definition of "all" but
297   // is probably the desired behavior.
298   if (N->getNumOperands() == 0)
299     return false;
300   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302 
303 bool ISD::matchUnaryPredicate(SDValue Op,
304                               std::function<bool(ConstantSDNode *)> Match,
305                               bool AllowUndefs) {
306   // FIXME: Add support for scalar UNDEF cases?
307   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308     return Match(Cst);
309 
310   // FIXME: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312       ISD::SPLAT_VECTOR != Op.getOpcode())
313     return false;
314 
315   EVT SVT = Op.getValueType().getScalarType();
316   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317     if (AllowUndefs && Op.getOperand(i).isUndef()) {
318       if (!Match(nullptr))
319         return false;
320       continue;
321     }
322 
323     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325       return false;
326   }
327   return true;
328 }
329 
330 bool ISD::matchBinaryPredicate(
331     SDValue LHS, SDValue RHS,
332     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333     bool AllowUndefs, bool AllowTypeMismatch) {
334   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335     return false;
336 
337   // TODO: Add support for scalar UNDEF cases?
338   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340       return Match(LHSCst, RHSCst);
341 
342   // TODO: Add support for vector UNDEF cases?
343   if (LHS.getOpcode() != RHS.getOpcode() ||
344       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345        LHS.getOpcode() != ISD::SPLAT_VECTOR))
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373   case ISD::VP_REDUCE_FADD:
374   case ISD::VP_REDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378   case ISD::VP_REDUCE_FMUL:
379   case ISD::VP_REDUCE_SEQ_FMUL:
380     return ISD::FMUL;
381   case ISD::VECREDUCE_ADD:
382   case ISD::VP_REDUCE_ADD:
383     return ISD::ADD;
384   case ISD::VECREDUCE_MUL:
385   case ISD::VP_REDUCE_MUL:
386     return ISD::MUL;
387   case ISD::VECREDUCE_AND:
388   case ISD::VP_REDUCE_AND:
389     return ISD::AND;
390   case ISD::VECREDUCE_OR:
391   case ISD::VP_REDUCE_OR:
392     return ISD::OR;
393   case ISD::VECREDUCE_XOR:
394   case ISD::VP_REDUCE_XOR:
395     return ISD::XOR;
396   case ISD::VECREDUCE_SMAX:
397   case ISD::VP_REDUCE_SMAX:
398     return ISD::SMAX;
399   case ISD::VECREDUCE_SMIN:
400   case ISD::VP_REDUCE_SMIN:
401     return ISD::SMIN;
402   case ISD::VECREDUCE_UMAX:
403   case ISD::VP_REDUCE_UMAX:
404     return ISD::UMAX;
405   case ISD::VECREDUCE_UMIN:
406   case ISD::VP_REDUCE_UMIN:
407     return ISD::UMIN;
408   case ISD::VECREDUCE_FMAX:
409   case ISD::VP_REDUCE_FMAX:
410     return ISD::FMAXNUM;
411   case ISD::VECREDUCE_FMIN:
412   case ISD::VP_REDUCE_FMIN:
413     return ISD::FMINNUM;
414   }
415 }
416 
417 bool ISD::isVPOpcode(unsigned Opcode) {
418   switch (Opcode) {
419   default:
420     return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
422   case ISD::VPSD:                                                              \
423     return true;
424 #include "llvm/IR/VPIntrinsics.def"
425   }
426 }
427 
428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 bool ISD::isVPReduction(unsigned Opcode) {
441   switch (Opcode) {
442   default:
443     break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448   }
449   return false;
450 }
451 
452 /// The operand position of the vector mask.
453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
458   case ISD::VPSD:                                                              \
459     return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 /// The operand position of the explicit vector length parameter.
465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
470   case ISD::VPSD:                                                              \
471     return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477   switch (ExtType) {
478   case ISD::EXTLOAD:
479     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480   case ISD::SEXTLOAD:
481     return ISD::SIGN_EXTEND;
482   case ISD::ZEXTLOAD:
483     return ISD::ZERO_EXTEND;
484   default:
485     break;
486   }
487 
488   llvm_unreachable("Invalid LoadExtType");
489 }
490 
491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492   // To perform this operation, we just need to swap the L and G bits of the
493   // operation.
494   unsigned OldL = (Operation >> 2) & 1;
495   unsigned OldG = (Operation >> 1) & 1;
496   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
497                        (OldL << 1) |       // New G bit
498                        (OldG << 2));       // New L bit.
499 }
500 
501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502   unsigned Operation = Op;
503   if (isIntegerLike)
504     Operation ^= 7;   // Flip L, G, E bits, but not U.
505   else
506     Operation ^= 15;  // Flip all of the condition bits.
507 
508   if (Operation > ISD::SETTRUE2)
509     Operation &= ~8;  // Don't let N and U bits get set.
510 
511   return ISD::CondCode(Operation);
512 }
513 
514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515   return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517 
518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519                                                bool isIntegerLike) {
520   return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522 
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
526 static int isSignedOp(ISD::CondCode Opcode) {
527   switch (Opcode) {
528   default: llvm_unreachable("Illegal integer setcc operation!");
529   case ISD::SETEQ:
530   case ISD::SETNE: return 0;
531   case ISD::SETLT:
532   case ISD::SETLE:
533   case ISD::SETGT:
534   case ISD::SETGE: return 1;
535   case ISD::SETULT:
536   case ISD::SETULE:
537   case ISD::SETUGT:
538   case ISD::SETUGE: return 2;
539   }
540 }
541 
542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543                                        EVT Type) {
544   bool IsInteger = Type.isInteger();
545   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546     // Cannot fold a signed integer setcc with an unsigned integer setcc.
547     return ISD::SETCC_INVALID;
548 
549   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
550 
551   // If the N and U bits get set, then the resultant comparison DOES suddenly
552   // care about orderedness, and it is true when ordered.
553   if (Op > ISD::SETTRUE2)
554     Op &= ~16;     // Clear the U bit if the N bit is set.
555 
556   // Canonicalize illegal integer setcc's.
557   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
558     Op = ISD::SETNE;
559 
560   return ISD::CondCode(Op);
561 }
562 
563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564                                         EVT Type) {
565   bool IsInteger = Type.isInteger();
566   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567     // Cannot fold a signed setcc with an unsigned setcc.
568     return ISD::SETCC_INVALID;
569 
570   // Combine all of the condition bits.
571   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572 
573   // Canonicalize illegal integer setcc's.
574   if (IsInteger) {
575     switch (Result) {
576     default: break;
577     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
578     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
579     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
580     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
581     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
582     }
583   }
584 
585   return Result;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                           SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591 
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
594   ID.AddInteger(OpC);
595 }
596 
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600   ID.AddPointer(VTList.VTs);
601 }
602 
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605                               ArrayRef<SDValue> Ops) {
606   for (auto& Op : Ops) {
607     ID.AddPointer(Op.getNode());
608     ID.AddInteger(Op.getResNo());
609   }
610 }
611 
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614                               ArrayRef<SDUse> Ops) {
615   for (auto& Op : Ops) {
616     ID.AddPointer(Op.getNode());
617     ID.AddInteger(Op.getResNo());
618   }
619 }
620 
621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622                           SDVTList VTList, ArrayRef<SDValue> OpList) {
623   AddNodeIDOpcode(ID, OpC);
624   AddNodeIDValueTypes(ID, VTList);
625   AddNodeIDOperands(ID, OpList);
626 }
627 
628 /// If this is an SDNode with special info, add this info to the NodeID data.
629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630   switch (N->getOpcode()) {
631   case ISD::TargetExternalSymbol:
632   case ISD::ExternalSymbol:
633   case ISD::MCSymbol:
634     llvm_unreachable("Should only be used on nodes with operands");
635   default: break;  // Normal nodes don't need extra info.
636   case ISD::TargetConstant:
637   case ISD::Constant: {
638     const ConstantSDNode *C = cast<ConstantSDNode>(N);
639     ID.AddPointer(C->getConstantIntValue());
640     ID.AddBoolean(C->isOpaque());
641     break;
642   }
643   case ISD::TargetConstantFP:
644   case ISD::ConstantFP:
645     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646     break;
647   case ISD::TargetGlobalAddress:
648   case ISD::GlobalAddress:
649   case ISD::TargetGlobalTLSAddress:
650   case ISD::GlobalTLSAddress: {
651     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652     ID.AddPointer(GA->getGlobal());
653     ID.AddInteger(GA->getOffset());
654     ID.AddInteger(GA->getTargetFlags());
655     break;
656   }
657   case ISD::BasicBlock:
658     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659     break;
660   case ISD::Register:
661     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662     break;
663   case ISD::RegisterMask:
664     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665     break;
666   case ISD::SRCVALUE:
667     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668     break;
669   case ISD::FrameIndex:
670   case ISD::TargetFrameIndex:
671     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672     break;
673   case ISD::LIFETIME_START:
674   case ISD::LIFETIME_END:
675     if (cast<LifetimeSDNode>(N)->hasOffset()) {
676       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678     }
679     break;
680   case ISD::PSEUDO_PROBE:
681     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684     break;
685   case ISD::JumpTable:
686   case ISD::TargetJumpTable:
687     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689     break;
690   case ISD::ConstantPool:
691   case ISD::TargetConstantPool: {
692     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693     ID.AddInteger(CP->getAlign().value());
694     ID.AddInteger(CP->getOffset());
695     if (CP->isMachineConstantPoolEntry())
696       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697     else
698       ID.AddPointer(CP->getConstVal());
699     ID.AddInteger(CP->getTargetFlags());
700     break;
701   }
702   case ISD::TargetIndex: {
703     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704     ID.AddInteger(TI->getIndex());
705     ID.AddInteger(TI->getOffset());
706     ID.AddInteger(TI->getTargetFlags());
707     break;
708   }
709   case ISD::LOAD: {
710     const LoadSDNode *LD = cast<LoadSDNode>(N);
711     ID.AddInteger(LD->getMemoryVT().getRawBits());
712     ID.AddInteger(LD->getRawSubclassData());
713     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714     ID.AddInteger(LD->getMemOperand()->getFlags());
715     break;
716   }
717   case ISD::STORE: {
718     const StoreSDNode *ST = cast<StoreSDNode>(N);
719     ID.AddInteger(ST->getMemoryVT().getRawBits());
720     ID.AddInteger(ST->getRawSubclassData());
721     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722     ID.AddInteger(ST->getMemOperand()->getFlags());
723     break;
724   }
725   case ISD::VP_LOAD: {
726     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727     ID.AddInteger(ELD->getMemoryVT().getRawBits());
728     ID.AddInteger(ELD->getRawSubclassData());
729     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730     ID.AddInteger(ELD->getMemOperand()->getFlags());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     ID.AddInteger(EST->getMemOperand()->getFlags());
739     break;
740   }
741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743     ID.AddInteger(SLD->getMemoryVT().getRawBits());
744     ID.AddInteger(SLD->getRawSubclassData());
745     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746     break;
747   }
748   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750     ID.AddInteger(SST->getMemoryVT().getRawBits());
751     ID.AddInteger(SST->getRawSubclassData());
752     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753     break;
754   }
755   case ISD::VP_GATHER: {
756     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757     ID.AddInteger(EG->getMemoryVT().getRawBits());
758     ID.AddInteger(EG->getRawSubclassData());
759     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760     ID.AddInteger(EG->getMemOperand()->getFlags());
761     break;
762   }
763   case ISD::VP_SCATTER: {
764     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765     ID.AddInteger(ES->getMemoryVT().getRawBits());
766     ID.AddInteger(ES->getRawSubclassData());
767     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768     ID.AddInteger(ES->getMemOperand()->getFlags());
769     break;
770   }
771   case ISD::MLOAD: {
772     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773     ID.AddInteger(MLD->getMemoryVT().getRawBits());
774     ID.AddInteger(MLD->getRawSubclassData());
775     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776     ID.AddInteger(MLD->getMemOperand()->getFlags());
777     break;
778   }
779   case ISD::MSTORE: {
780     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781     ID.AddInteger(MST->getMemoryVT().getRawBits());
782     ID.AddInteger(MST->getRawSubclassData());
783     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784     ID.AddInteger(MST->getMemOperand()->getFlags());
785     break;
786   }
787   case ISD::MGATHER: {
788     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789     ID.AddInteger(MG->getMemoryVT().getRawBits());
790     ID.AddInteger(MG->getRawSubclassData());
791     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792     ID.AddInteger(MG->getMemOperand()->getFlags());
793     break;
794   }
795   case ISD::MSCATTER: {
796     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797     ID.AddInteger(MS->getMemoryVT().getRawBits());
798     ID.AddInteger(MS->getRawSubclassData());
799     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800     ID.AddInteger(MS->getMemOperand()->getFlags());
801     break;
802   }
803   case ISD::ATOMIC_CMP_SWAP:
804   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805   case ISD::ATOMIC_SWAP:
806   case ISD::ATOMIC_LOAD_ADD:
807   case ISD::ATOMIC_LOAD_SUB:
808   case ISD::ATOMIC_LOAD_AND:
809   case ISD::ATOMIC_LOAD_CLR:
810   case ISD::ATOMIC_LOAD_OR:
811   case ISD::ATOMIC_LOAD_XOR:
812   case ISD::ATOMIC_LOAD_NAND:
813   case ISD::ATOMIC_LOAD_MIN:
814   case ISD::ATOMIC_LOAD_MAX:
815   case ISD::ATOMIC_LOAD_UMIN:
816   case ISD::ATOMIC_LOAD_UMAX:
817   case ISD::ATOMIC_LOAD:
818   case ISD::ATOMIC_STORE: {
819     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820     ID.AddInteger(AT->getMemoryVT().getRawBits());
821     ID.AddInteger(AT->getRawSubclassData());
822     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823     ID.AddInteger(AT->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::PREFETCH: {
827     const MemSDNode *PF = cast<MemSDNode>(N);
828     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829     ID.AddInteger(PF->getMemOperand()->getFlags());
830     break;
831   }
832   case ISD::VECTOR_SHUFFLE: {
833     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835          i != e; ++i)
836       ID.AddInteger(SVN->getMaskElt(i));
837     break;
838   }
839   case ISD::TargetBlockAddress:
840   case ISD::BlockAddress: {
841     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842     ID.AddPointer(BA->getBlockAddress());
843     ID.AddInteger(BA->getOffset());
844     ID.AddInteger(BA->getTargetFlags());
845     break;
846   }
847   case ISD::AssertAlign:
848     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
849     break;
850   } // end switch (N->getOpcode())
851 
852   // Target specific memory nodes could also have address spaces and flags
853   // to check.
854   if (N->isTargetMemoryOpcode()) {
855     const MemSDNode *MN = cast<MemSDNode>(N);
856     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
857     ID.AddInteger(MN->getMemOperand()->getFlags());
858   }
859 }
860 
861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
862 /// data.
863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
864   AddNodeIDOpcode(ID, N->getOpcode());
865   // Add the return value info.
866   AddNodeIDValueTypes(ID, N->getVTList());
867   // Add the operand info.
868   AddNodeIDOperands(ID, N->ops());
869 
870   // Handle SDNode leafs with special info.
871   AddNodeIDCustom(ID, N);
872 }
873 
874 //===----------------------------------------------------------------------===//
875 //                              SelectionDAG Class
876 //===----------------------------------------------------------------------===//
877 
878 /// doNotCSE - Return true if CSE should not be performed for this node.
879 static bool doNotCSE(SDNode *N) {
880   if (N->getValueType(0) == MVT::Glue)
881     return true; // Never CSE anything that produces a flag.
882 
883   switch (N->getOpcode()) {
884   default: break;
885   case ISD::HANDLENODE:
886   case ISD::EH_LABEL:
887     return true;   // Never CSE these nodes.
888   }
889 
890   // Check that remaining values produced are not flags.
891   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
892     if (N->getValueType(i) == MVT::Glue)
893       return true; // Never CSE anything that produces a flag.
894 
895   return false;
896 }
897 
898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
899 /// SelectionDAG.
900 void SelectionDAG::RemoveDeadNodes() {
901   // Create a dummy node (which is not added to allnodes), that adds a reference
902   // to the root node, preventing it from being deleted.
903   HandleSDNode Dummy(getRoot());
904 
905   SmallVector<SDNode*, 128> DeadNodes;
906 
907   // Add all obviously-dead nodes to the DeadNodes worklist.
908   for (SDNode &Node : allnodes())
909     if (Node.use_empty())
910       DeadNodes.push_back(&Node);
911 
912   RemoveDeadNodes(DeadNodes);
913 
914   // If the root changed (e.g. it was a dead load, update the root).
915   setRoot(Dummy.getValue());
916 }
917 
918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
919 /// given list, and any nodes that become unreachable as a result.
920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
921 
922   // Process the worklist, deleting the nodes and adding their uses to the
923   // worklist.
924   while (!DeadNodes.empty()) {
925     SDNode *N = DeadNodes.pop_back_val();
926     // Skip to next node if we've already managed to delete the node. This could
927     // happen if replacing a node causes a node previously added to the node to
928     // be deleted.
929     if (N->getOpcode() == ISD::DELETED_NODE)
930       continue;
931 
932     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
933       DUL->NodeDeleted(N, nullptr);
934 
935     // Take the node out of the appropriate CSE map.
936     RemoveNodeFromCSEMaps(N);
937 
938     // Next, brutally remove the operand list.  This is safe to do, as there are
939     // no cycles in the graph.
940     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
941       SDUse &Use = *I++;
942       SDNode *Operand = Use.getNode();
943       Use.set(SDValue());
944 
945       // Now that we removed this operand, see if there are no uses of it left.
946       if (Operand->use_empty())
947         DeadNodes.push_back(Operand);
948     }
949 
950     DeallocateNode(N);
951   }
952 }
953 
954 void SelectionDAG::RemoveDeadNode(SDNode *N){
955   SmallVector<SDNode*, 16> DeadNodes(1, N);
956 
957   // Create a dummy node that adds a reference to the root node, preventing
958   // it from being deleted.  (This matters if the root is an operand of the
959   // dead node.)
960   HandleSDNode Dummy(getRoot());
961 
962   RemoveDeadNodes(DeadNodes);
963 }
964 
965 void SelectionDAG::DeleteNode(SDNode *N) {
966   // First take this out of the appropriate CSE map.
967   RemoveNodeFromCSEMaps(N);
968 
969   // Finally, remove uses due to operands of this node, remove from the
970   // AllNodes list, and delete the node.
971   DeleteNodeNotInCSEMaps(N);
972 }
973 
974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
975   assert(N->getIterator() != AllNodes.begin() &&
976          "Cannot delete the entry node!");
977   assert(N->use_empty() && "Cannot delete a node that is not dead!");
978 
979   // Drop all of the operands and decrement used node's use counts.
980   N->DropOperands();
981 
982   DeallocateNode(N);
983 }
984 
985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
986   assert(!(V->isVariadic() && isParameter));
987   if (isParameter)
988     ByvalParmDbgValues.push_back(V);
989   else
990     DbgValues.push_back(V);
991   for (const SDNode *Node : V->getSDNodes())
992     if (Node)
993       DbgValMap[Node].push_back(V);
994 }
995 
996 void SDDbgInfo::erase(const SDNode *Node) {
997   DbgValMapType::iterator I = DbgValMap.find(Node);
998   if (I == DbgValMap.end())
999     return;
1000   for (auto &Val: I->second)
1001     Val->setIsInvalidated();
1002   DbgValMap.erase(I);
1003 }
1004 
1005 void SelectionDAG::DeallocateNode(SDNode *N) {
1006   // If we have operands, deallocate them.
1007   removeOperands(N);
1008 
1009   NodeAllocator.Deallocate(AllNodes.remove(N));
1010 
1011   // Set the opcode to DELETED_NODE to help catch bugs when node
1012   // memory is reallocated.
1013   // FIXME: There are places in SDag that have grown a dependency on the opcode
1014   // value in the released node.
1015   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1016   N->NodeType = ISD::DELETED_NODE;
1017 
1018   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1019   // them and forget about that node.
1020   DbgInfo->erase(N);
1021 }
1022 
1023 #ifndef NDEBUG
1024 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1025 static void VerifySDNode(SDNode *N) {
1026   switch (N->getOpcode()) {
1027   default:
1028     break;
1029   case ISD::BUILD_PAIR: {
1030     EVT VT = N->getValueType(0);
1031     assert(N->getNumValues() == 1 && "Too many results!");
1032     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1033            "Wrong return type!");
1034     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1035     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1036            "Mismatched operand types!");
1037     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1038            "Wrong operand type!");
1039     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1040            "Wrong return type size");
1041     break;
1042   }
1043   case ISD::BUILD_VECTOR: {
1044     assert(N->getNumValues() == 1 && "Too many results!");
1045     assert(N->getValueType(0).isVector() && "Wrong return type!");
1046     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1047            "Wrong number of operands!");
1048     EVT EltVT = N->getValueType(0).getVectorElementType();
1049     for (const SDUse &Op : N->ops()) {
1050       assert((Op.getValueType() == EltVT ||
1051               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1052                EltVT.bitsLE(Op.getValueType()))) &&
1053              "Wrong operand type!");
1054       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1055              "Operands must all have the same type");
1056     }
1057     break;
1058   }
1059   }
1060 }
1061 #endif // NDEBUG
1062 
1063 /// Insert a newly allocated node into the DAG.
1064 ///
1065 /// Handles insertion into the all nodes list and CSE map, as well as
1066 /// verification and other common operations when a new node is allocated.
1067 void SelectionDAG::InsertNode(SDNode *N) {
1068   AllNodes.push_back(N);
1069 #ifndef NDEBUG
1070   N->PersistentId = NextPersistentId++;
1071   VerifySDNode(N);
1072 #endif
1073   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1074     DUL->NodeInserted(N);
1075 }
1076 
1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1078 /// correspond to it.  This is useful when we're about to delete or repurpose
1079 /// the node.  We don't want future request for structurally identical nodes
1080 /// to return N anymore.
1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1082   bool Erased = false;
1083   switch (N->getOpcode()) {
1084   case ISD::HANDLENODE: return false;  // noop.
1085   case ISD::CONDCODE:
1086     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1087            "Cond code doesn't exist!");
1088     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1089     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1090     break;
1091   case ISD::ExternalSymbol:
1092     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1093     break;
1094   case ISD::TargetExternalSymbol: {
1095     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1096     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1097         ESN->getSymbol(), ESN->getTargetFlags()));
1098     break;
1099   }
1100   case ISD::MCSymbol: {
1101     auto *MCSN = cast<MCSymbolSDNode>(N);
1102     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1103     break;
1104   }
1105   case ISD::VALUETYPE: {
1106     EVT VT = cast<VTSDNode>(N)->getVT();
1107     if (VT.isExtended()) {
1108       Erased = ExtendedValueTypeNodes.erase(VT);
1109     } else {
1110       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1111       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1112     }
1113     break;
1114   }
1115   default:
1116     // Remove it from the CSE Map.
1117     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1118     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1119     Erased = CSEMap.RemoveNode(N);
1120     break;
1121   }
1122 #ifndef NDEBUG
1123   // Verify that the node was actually in one of the CSE maps, unless it has a
1124   // flag result (which cannot be CSE'd) or is one of the special cases that are
1125   // not subject to CSE.
1126   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1127       !N->isMachineOpcode() && !doNotCSE(N)) {
1128     N->dump(this);
1129     dbgs() << "\n";
1130     llvm_unreachable("Node is not in map!");
1131   }
1132 #endif
1133   return Erased;
1134 }
1135 
1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1138 /// node already exists, in which case transfer all its users to the existing
1139 /// node. This transfer can potentially trigger recursive merging.
1140 void
1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1142   // For node types that aren't CSE'd, just act as if no identical node
1143   // already exists.
1144   if (!doNotCSE(N)) {
1145     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1146     if (Existing != N) {
1147       // If there was already an existing matching node, use ReplaceAllUsesWith
1148       // to replace the dead one with the existing one.  This can cause
1149       // recursive merging of other unrelated nodes down the line.
1150       ReplaceAllUsesWith(N, Existing);
1151 
1152       // N is now dead. Inform the listeners and delete it.
1153       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1154         DUL->NodeDeleted(N, Existing);
1155       DeleteNodeNotInCSEMaps(N);
1156       return;
1157     }
1158   }
1159 
1160   // If the node doesn't already exist, we updated it.  Inform listeners.
1161   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162     DUL->NodeUpdated(N);
1163 }
1164 
1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1166 /// were replaced with those specified.  If this node is never memoized,
1167 /// return null, otherwise return a pointer to the slot it would take.  If a
1168 /// node already exists with these operands, the slot will be non-null.
1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1170                                            void *&InsertPos) {
1171   if (doNotCSE(N))
1172     return nullptr;
1173 
1174   SDValue Ops[] = { Op };
1175   FoldingSetNodeID ID;
1176   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1177   AddNodeIDCustom(ID, N);
1178   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1179   if (Node)
1180     Node->intersectFlagsWith(N->getFlags());
1181   return Node;
1182 }
1183 
1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1185 /// were replaced with those specified.  If this node is never memoized,
1186 /// return null, otherwise return a pointer to the slot it would take.  If a
1187 /// node already exists with these operands, the slot will be non-null.
1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1189                                            SDValue Op1, SDValue Op2,
1190                                            void *&InsertPos) {
1191   if (doNotCSE(N))
1192     return nullptr;
1193 
1194   SDValue Ops[] = { Op1, Op2 };
1195   FoldingSetNodeID ID;
1196   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1197   AddNodeIDCustom(ID, N);
1198   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1199   if (Node)
1200     Node->intersectFlagsWith(N->getFlags());
1201   return Node;
1202 }
1203 
1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1205 /// were replaced with those specified.  If this node is never memoized,
1206 /// return null, otherwise return a pointer to the slot it would take.  If a
1207 /// node already exists with these operands, the slot will be non-null.
1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1209                                            void *&InsertPos) {
1210   if (doNotCSE(N))
1211     return nullptr;
1212 
1213   FoldingSetNodeID ID;
1214   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1215   AddNodeIDCustom(ID, N);
1216   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1217   if (Node)
1218     Node->intersectFlagsWith(N->getFlags());
1219   return Node;
1220 }
1221 
1222 Align SelectionDAG::getEVTAlign(EVT VT) const {
1223   Type *Ty = VT == MVT::iPTR ?
1224                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1225                    VT.getTypeForEVT(*getContext());
1226 
1227   return getDataLayout().getABITypeAlign(Ty);
1228 }
1229 
1230 // EntryNode could meaningfully have debug info if we can find it...
1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1232     : TM(tm), OptLevel(OL),
1233       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1234       Root(getEntryNode()) {
1235   InsertNode(&EntryNode);
1236   DbgInfo = new SDDbgInfo();
1237 }
1238 
1239 void SelectionDAG::init(MachineFunction &NewMF,
1240                         OptimizationRemarkEmitter &NewORE,
1241                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1242                         LegacyDivergenceAnalysis * Divergence,
1243                         ProfileSummaryInfo *PSIin,
1244                         BlockFrequencyInfo *BFIin) {
1245   MF = &NewMF;
1246   SDAGISelPass = PassPtr;
1247   ORE = &NewORE;
1248   TLI = getSubtarget().getTargetLowering();
1249   TSI = getSubtarget().getSelectionDAGInfo();
1250   LibInfo = LibraryInfo;
1251   Context = &MF->getFunction().getContext();
1252   DA = Divergence;
1253   PSI = PSIin;
1254   BFI = BFIin;
1255 }
1256 
1257 SelectionDAG::~SelectionDAG() {
1258   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1259   allnodes_clear();
1260   OperandRecycler.clear(OperandAllocator);
1261   delete DbgInfo;
1262 }
1263 
1264 bool SelectionDAG::shouldOptForSize() const {
1265   return MF->getFunction().hasOptSize() ||
1266       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1267 }
1268 
1269 void SelectionDAG::allnodes_clear() {
1270   assert(&*AllNodes.begin() == &EntryNode);
1271   AllNodes.remove(AllNodes.begin());
1272   while (!AllNodes.empty())
1273     DeallocateNode(&AllNodes.front());
1274 #ifndef NDEBUG
1275   NextPersistentId = 0;
1276 #endif
1277 }
1278 
1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1280                                           void *&InsertPos) {
1281   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1282   if (N) {
1283     switch (N->getOpcode()) {
1284     default: break;
1285     case ISD::Constant:
1286     case ISD::ConstantFP:
1287       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1288                        "debug location.  Use another overload.");
1289     }
1290   }
1291   return N;
1292 }
1293 
1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1295                                           const SDLoc &DL, void *&InsertPos) {
1296   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1297   if (N) {
1298     switch (N->getOpcode()) {
1299     case ISD::Constant:
1300     case ISD::ConstantFP:
1301       // Erase debug location from the node if the node is used at several
1302       // different places. Do not propagate one location to all uses as it
1303       // will cause a worse single stepping debugging experience.
1304       if (N->getDebugLoc() != DL.getDebugLoc())
1305         N->setDebugLoc(DebugLoc());
1306       break;
1307     default:
1308       // When the node's point of use is located earlier in the instruction
1309       // sequence than its prior point of use, update its debug info to the
1310       // earlier location.
1311       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1312         N->setDebugLoc(DL.getDebugLoc());
1313       break;
1314     }
1315   }
1316   return N;
1317 }
1318 
1319 void SelectionDAG::clear() {
1320   allnodes_clear();
1321   OperandRecycler.clear(OperandAllocator);
1322   OperandAllocator.Reset();
1323   CSEMap.clear();
1324 
1325   ExtendedValueTypeNodes.clear();
1326   ExternalSymbols.clear();
1327   TargetExternalSymbols.clear();
1328   MCSymbols.clear();
1329   SDCallSiteDbgInfo.clear();
1330   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1331             static_cast<CondCodeSDNode*>(nullptr));
1332   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1333             static_cast<SDNode*>(nullptr));
1334 
1335   EntryNode.UseList = nullptr;
1336   InsertNode(&EntryNode);
1337   Root = getEntryNode();
1338   DbgInfo->clear();
1339 }
1340 
1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1342   return VT.bitsGT(Op.getValueType())
1343              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1344              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1345 }
1346 
1347 std::pair<SDValue, SDValue>
1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1349                                        const SDLoc &DL, EVT VT) {
1350   assert(!VT.bitsEq(Op.getValueType()) &&
1351          "Strict no-op FP extend/round not allowed.");
1352   SDValue Res =
1353       VT.bitsGT(Op.getValueType())
1354           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1355           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1356                     {Chain, Op, getIntPtrConstant(0, DL)});
1357 
1358   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1359 }
1360 
1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362   return VT.bitsGT(Op.getValueType()) ?
1363     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1364     getNode(ISD::TRUNCATE, DL, VT, Op);
1365 }
1366 
1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1368   return VT.bitsGT(Op.getValueType()) ?
1369     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1370     getNode(ISD::TRUNCATE, DL, VT, Op);
1371 }
1372 
1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1374   return VT.bitsGT(Op.getValueType()) ?
1375     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1376     getNode(ISD::TRUNCATE, DL, VT, Op);
1377 }
1378 
1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1380                                         EVT OpVT) {
1381   if (VT.bitsLE(Op.getValueType()))
1382     return getNode(ISD::TRUNCATE, SL, VT, Op);
1383 
1384   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1385   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1386 }
1387 
1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1389   EVT OpVT = Op.getValueType();
1390   assert(VT.isInteger() && OpVT.isInteger() &&
1391          "Cannot getZeroExtendInReg FP types");
1392   assert(VT.isVector() == OpVT.isVector() &&
1393          "getZeroExtendInReg type should be vector iff the operand "
1394          "type is vector!");
1395   assert((!VT.isVector() ||
1396           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1397          "Vector element counts must match in getZeroExtendInReg");
1398   assert(VT.bitsLE(OpVT) && "Not extending!");
1399   if (OpVT == VT)
1400     return Op;
1401   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1402                                    VT.getScalarSizeInBits());
1403   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1404 }
1405 
1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1407   // Only unsigned pointer semantics are supported right now. In the future this
1408   // might delegate to TLI to check pointer signedness.
1409   return getZExtOrTrunc(Op, DL, VT);
1410 }
1411 
1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1413   // Only unsigned pointer semantics are supported right now. In the future this
1414   // might delegate to TLI to check pointer signedness.
1415   return getZeroExtendInReg(Op, DL, VT);
1416 }
1417 
1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1420   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1421 }
1422 
1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1424   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1425   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1426 }
1427 
1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1429                                       SDValue Mask, SDValue EVL, EVT VT) {
1430   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1431   return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1432 }
1433 
1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1435                                       EVT OpVT) {
1436   if (!V)
1437     return getConstant(0, DL, VT);
1438 
1439   switch (TLI->getBooleanContents(OpVT)) {
1440   case TargetLowering::ZeroOrOneBooleanContent:
1441   case TargetLowering::UndefinedBooleanContent:
1442     return getConstant(1, DL, VT);
1443   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1444     return getAllOnesConstant(DL, VT);
1445   }
1446   llvm_unreachable("Unexpected boolean content enum!");
1447 }
1448 
1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1450                                   bool isT, bool isO) {
1451   EVT EltVT = VT.getScalarType();
1452   assert((EltVT.getSizeInBits() >= 64 ||
1453           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1454          "getConstant with a uint64_t value that doesn't fit in the type!");
1455   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1456 }
1457 
1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1459                                   bool isT, bool isO) {
1460   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1461 }
1462 
1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1464                                   EVT VT, bool isT, bool isO) {
1465   assert(VT.isInteger() && "Cannot create FP integer constant!");
1466 
1467   EVT EltVT = VT.getScalarType();
1468   const ConstantInt *Elt = &Val;
1469 
1470   // In some cases the vector type is legal but the element type is illegal and
1471   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1472   // inserted value (the type does not need to match the vector element type).
1473   // Any extra bits introduced will be truncated away.
1474   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1475                            TargetLowering::TypePromoteInteger) {
1476     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1477     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1478     Elt = ConstantInt::get(*getContext(), NewVal);
1479   }
1480   // In other cases the element type is illegal and needs to be expanded, for
1481   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1482   // the value into n parts and use a vector type with n-times the elements.
1483   // Then bitcast to the type requested.
1484   // Legalizing constants too early makes the DAGCombiner's job harder so we
1485   // only legalize if the DAG tells us we must produce legal types.
1486   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1487            TLI->getTypeAction(*getContext(), EltVT) ==
1488                TargetLowering::TypeExpandInteger) {
1489     const APInt &NewVal = Elt->getValue();
1490     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1491     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1492 
1493     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1494     if (VT.isScalableVector()) {
1495       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1496              "Can only handle an even split!");
1497       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1498 
1499       SmallVector<SDValue, 2> ScalarParts;
1500       for (unsigned i = 0; i != Parts; ++i)
1501         ScalarParts.push_back(getConstant(
1502             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1503             ViaEltVT, isT, isO));
1504 
1505       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1506     }
1507 
1508     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1509     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1510 
1511     // Check the temporary vector is the correct size. If this fails then
1512     // getTypeToTransformTo() probably returned a type whose size (in bits)
1513     // isn't a power-of-2 factor of the requested type size.
1514     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1515 
1516     SmallVector<SDValue, 2> EltParts;
1517     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1518       EltParts.push_back(getConstant(
1519           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1520           ViaEltVT, isT, isO));
1521 
1522     // EltParts is currently in little endian order. If we actually want
1523     // big-endian order then reverse it now.
1524     if (getDataLayout().isBigEndian())
1525       std::reverse(EltParts.begin(), EltParts.end());
1526 
1527     // The elements must be reversed when the element order is different
1528     // to the endianness of the elements (because the BITCAST is itself a
1529     // vector shuffle in this situation). However, we do not need any code to
1530     // perform this reversal because getConstant() is producing a vector
1531     // splat.
1532     // This situation occurs in MIPS MSA.
1533 
1534     SmallVector<SDValue, 8> Ops;
1535     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1536       llvm::append_range(Ops, EltParts);
1537 
1538     SDValue V =
1539         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1540     return V;
1541   }
1542 
1543   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1544          "APInt size does not match type size!");
1545   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1548   ID.AddPointer(Elt);
1549   ID.AddBoolean(isO);
1550   void *IP = nullptr;
1551   SDNode *N = nullptr;
1552   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1553     if (!VT.isVector())
1554       return SDValue(N, 0);
1555 
1556   if (!N) {
1557     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1558     CSEMap.InsertNode(N, IP);
1559     InsertNode(N);
1560     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1561   }
1562 
1563   SDValue Result(N, 0);
1564   if (VT.isScalableVector())
1565     Result = getSplatVector(VT, DL, Result);
1566   else if (VT.isVector())
1567     Result = getSplatBuildVector(VT, DL, Result);
1568 
1569   return Result;
1570 }
1571 
1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1573                                         bool isTarget) {
1574   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1575 }
1576 
1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1578                                              const SDLoc &DL, bool LegalTypes) {
1579   assert(VT.isInteger() && "Shift amount is not an integer type!");
1580   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1581   return getConstant(Val, DL, ShiftVT);
1582 }
1583 
1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1585                                            bool isTarget) {
1586   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1587 }
1588 
1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1590                                     bool isTarget) {
1591   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1592 }
1593 
1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1595                                     EVT VT, bool isTarget) {
1596   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1597 
1598   EVT EltVT = VT.getScalarType();
1599 
1600   // Do the map lookup using the actual bit pattern for the floating point
1601   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1602   // we don't have issues with SNANs.
1603   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1604   FoldingSetNodeID ID;
1605   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1606   ID.AddPointer(&V);
1607   void *IP = nullptr;
1608   SDNode *N = nullptr;
1609   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1610     if (!VT.isVector())
1611       return SDValue(N, 0);
1612 
1613   if (!N) {
1614     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1615     CSEMap.InsertNode(N, IP);
1616     InsertNode(N);
1617   }
1618 
1619   SDValue Result(N, 0);
1620   if (VT.isScalableVector())
1621     Result = getSplatVector(VT, DL, Result);
1622   else if (VT.isVector())
1623     Result = getSplatBuildVector(VT, DL, Result);
1624   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1625   return Result;
1626 }
1627 
1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1629                                     bool isTarget) {
1630   EVT EltVT = VT.getScalarType();
1631   if (EltVT == MVT::f32)
1632     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1633   if (EltVT == MVT::f64)
1634     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1635   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1636       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1637     bool Ignored;
1638     APFloat APF = APFloat(Val);
1639     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1640                 &Ignored);
1641     return getConstantFP(APF, DL, VT, isTarget);
1642   }
1643   llvm_unreachable("Unsupported type in getConstantFP");
1644 }
1645 
1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1647                                        EVT VT, int64_t Offset, bool isTargetGA,
1648                                        unsigned TargetFlags) {
1649   assert((TargetFlags == 0 || isTargetGA) &&
1650          "Cannot set target flags on target-independent globals");
1651 
1652   // Truncate (with sign-extension) the offset value to the pointer size.
1653   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1654   if (BitWidth < 64)
1655     Offset = SignExtend64(Offset, BitWidth);
1656 
1657   unsigned Opc;
1658   if (GV->isThreadLocal())
1659     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1660   else
1661     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1662 
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddPointer(GV);
1666   ID.AddInteger(Offset);
1667   ID.AddInteger(TargetFlags);
1668   void *IP = nullptr;
1669   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1670     return SDValue(E, 0);
1671 
1672   auto *N = newSDNode<GlobalAddressSDNode>(
1673       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1674   CSEMap.InsertNode(N, IP);
1675     InsertNode(N);
1676   return SDValue(N, 0);
1677 }
1678 
1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1680   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1681   FoldingSetNodeID ID;
1682   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1683   ID.AddInteger(FI);
1684   void *IP = nullptr;
1685   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1686     return SDValue(E, 0);
1687 
1688   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1689   CSEMap.InsertNode(N, IP);
1690   InsertNode(N);
1691   return SDValue(N, 0);
1692 }
1693 
1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1695                                    unsigned TargetFlags) {
1696   assert((TargetFlags == 0 || isTarget) &&
1697          "Cannot set target flags on target-independent jump tables");
1698   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1699   FoldingSetNodeID ID;
1700   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1701   ID.AddInteger(JTI);
1702   ID.AddInteger(TargetFlags);
1703   void *IP = nullptr;
1704   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1705     return SDValue(E, 0);
1706 
1707   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1708   CSEMap.InsertNode(N, IP);
1709   InsertNode(N);
1710   return SDValue(N, 0);
1711 }
1712 
1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1714                                       MaybeAlign Alignment, int Offset,
1715                                       bool isTarget, unsigned TargetFlags) {
1716   assert((TargetFlags == 0 || isTarget) &&
1717          "Cannot set target flags on target-independent globals");
1718   if (!Alignment)
1719     Alignment = shouldOptForSize()
1720                     ? getDataLayout().getABITypeAlign(C->getType())
1721                     : getDataLayout().getPrefTypeAlign(C->getType());
1722   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1723   FoldingSetNodeID ID;
1724   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1725   ID.AddInteger(Alignment->value());
1726   ID.AddInteger(Offset);
1727   ID.AddPointer(C);
1728   ID.AddInteger(TargetFlags);
1729   void *IP = nullptr;
1730   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1731     return SDValue(E, 0);
1732 
1733   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1734                                           TargetFlags);
1735   CSEMap.InsertNode(N, IP);
1736   InsertNode(N);
1737   SDValue V = SDValue(N, 0);
1738   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1739   return V;
1740 }
1741 
1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1743                                       MaybeAlign Alignment, int Offset,
1744                                       bool isTarget, unsigned TargetFlags) {
1745   assert((TargetFlags == 0 || isTarget) &&
1746          "Cannot set target flags on target-independent globals");
1747   if (!Alignment)
1748     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1749   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1750   FoldingSetNodeID ID;
1751   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1752   ID.AddInteger(Alignment->value());
1753   ID.AddInteger(Offset);
1754   C->addSelectionDAGCSEId(ID);
1755   ID.AddInteger(TargetFlags);
1756   void *IP = nullptr;
1757   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1758     return SDValue(E, 0);
1759 
1760   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1761                                           TargetFlags);
1762   CSEMap.InsertNode(N, IP);
1763   InsertNode(N);
1764   return SDValue(N, 0);
1765 }
1766 
1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1768                                      unsigned TargetFlags) {
1769   FoldingSetNodeID ID;
1770   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1771   ID.AddInteger(Index);
1772   ID.AddInteger(Offset);
1773   ID.AddInteger(TargetFlags);
1774   void *IP = nullptr;
1775   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776     return SDValue(E, 0);
1777 
1778   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1785   FoldingSetNodeID ID;
1786   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1787   ID.AddPointer(MBB);
1788   void *IP = nullptr;
1789   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1790     return SDValue(E, 0);
1791 
1792   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1793   CSEMap.InsertNode(N, IP);
1794   InsertNode(N);
1795   return SDValue(N, 0);
1796 }
1797 
1798 SDValue SelectionDAG::getValueType(EVT VT) {
1799   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1800       ValueTypeNodes.size())
1801     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1802 
1803   SDNode *&N = VT.isExtended() ?
1804     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1805 
1806   if (N) return SDValue(N, 0);
1807   N = newSDNode<VTSDNode>(VT);
1808   InsertNode(N);
1809   return SDValue(N, 0);
1810 }
1811 
1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1813   SDNode *&N = ExternalSymbols[Sym];
1814   if (N) return SDValue(N, 0);
1815   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1816   InsertNode(N);
1817   return SDValue(N, 0);
1818 }
1819 
1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1821   SDNode *&N = MCSymbols[Sym];
1822   if (N)
1823     return SDValue(N, 0);
1824   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1825   InsertNode(N);
1826   return SDValue(N, 0);
1827 }
1828 
1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1830                                               unsigned TargetFlags) {
1831   SDNode *&N =
1832       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1833   if (N) return SDValue(N, 0);
1834   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1835   InsertNode(N);
1836   return SDValue(N, 0);
1837 }
1838 
1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1840   if ((unsigned)Cond >= CondCodeNodes.size())
1841     CondCodeNodes.resize(Cond+1);
1842 
1843   if (!CondCodeNodes[Cond]) {
1844     auto *N = newSDNode<CondCodeSDNode>(Cond);
1845     CondCodeNodes[Cond] = N;
1846     InsertNode(N);
1847   }
1848 
1849   return SDValue(CondCodeNodes[Cond], 0);
1850 }
1851 
1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1853   APInt One(ResVT.getScalarSizeInBits(), 1);
1854   return getStepVector(DL, ResVT, One);
1855 }
1856 
1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1858   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1859   if (ResVT.isScalableVector())
1860     return getNode(
1861         ISD::STEP_VECTOR, DL, ResVT,
1862         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1863 
1864   SmallVector<SDValue, 16> OpsStepConstants;
1865   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1866     OpsStepConstants.push_back(
1867         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1868   return getBuildVector(ResVT, DL, OpsStepConstants);
1869 }
1870 
1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1874   std::swap(N1, N2);
1875   ShuffleVectorSDNode::commuteMask(M);
1876 }
1877 
1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1879                                        SDValue N2, ArrayRef<int> Mask) {
1880   assert(VT.getVectorNumElements() == Mask.size() &&
1881          "Must have the same number of vector elements as mask elements!");
1882   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1883          "Invalid VECTOR_SHUFFLE");
1884 
1885   // Canonicalize shuffle undef, undef -> undef
1886   if (N1.isUndef() && N2.isUndef())
1887     return getUNDEF(VT);
1888 
1889   // Validate that all indices in Mask are within the range of the elements
1890   // input to the shuffle.
1891   int NElts = Mask.size();
1892   assert(llvm::all_of(Mask,
1893                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1894          "Index out of range");
1895 
1896   // Copy the mask so we can do any needed cleanup.
1897   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1898 
1899   // Canonicalize shuffle v, v -> v, undef
1900   if (N1 == N2) {
1901     N2 = getUNDEF(VT);
1902     for (int i = 0; i != NElts; ++i)
1903       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1904   }
1905 
1906   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1907   if (N1.isUndef())
1908     commuteShuffle(N1, N2, MaskVec);
1909 
1910   if (TLI->hasVectorBlend()) {
1911     // If shuffling a splat, try to blend the splat instead. We do this here so
1912     // that even when this arises during lowering we don't have to re-handle it.
1913     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1914       BitVector UndefElements;
1915       SDValue Splat = BV->getSplatValue(&UndefElements);
1916       if (!Splat)
1917         return;
1918 
1919       for (int i = 0; i < NElts; ++i) {
1920         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1921           continue;
1922 
1923         // If this input comes from undef, mark it as such.
1924         if (UndefElements[MaskVec[i] - Offset]) {
1925           MaskVec[i] = -1;
1926           continue;
1927         }
1928 
1929         // If we can blend a non-undef lane, use that instead.
1930         if (!UndefElements[i])
1931           MaskVec[i] = i + Offset;
1932       }
1933     };
1934     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1935       BlendSplat(N1BV, 0);
1936     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1937       BlendSplat(N2BV, NElts);
1938   }
1939 
1940   // Canonicalize all index into lhs, -> shuffle lhs, undef
1941   // Canonicalize all index into rhs, -> shuffle rhs, undef
1942   bool AllLHS = true, AllRHS = true;
1943   bool N2Undef = N2.isUndef();
1944   for (int i = 0; i != NElts; ++i) {
1945     if (MaskVec[i] >= NElts) {
1946       if (N2Undef)
1947         MaskVec[i] = -1;
1948       else
1949         AllLHS = false;
1950     } else if (MaskVec[i] >= 0) {
1951       AllRHS = false;
1952     }
1953   }
1954   if (AllLHS && AllRHS)
1955     return getUNDEF(VT);
1956   if (AllLHS && !N2Undef)
1957     N2 = getUNDEF(VT);
1958   if (AllRHS) {
1959     N1 = getUNDEF(VT);
1960     commuteShuffle(N1, N2, MaskVec);
1961   }
1962   // Reset our undef status after accounting for the mask.
1963   N2Undef = N2.isUndef();
1964   // Re-check whether both sides ended up undef.
1965   if (N1.isUndef() && N2Undef)
1966     return getUNDEF(VT);
1967 
1968   // If Identity shuffle return that node.
1969   bool Identity = true, AllSame = true;
1970   for (int i = 0; i != NElts; ++i) {
1971     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1972     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1973   }
1974   if (Identity && NElts)
1975     return N1;
1976 
1977   // Shuffling a constant splat doesn't change the result.
1978   if (N2Undef) {
1979     SDValue V = N1;
1980 
1981     // Look through any bitcasts. We check that these don't change the number
1982     // (and size) of elements and just changes their types.
1983     while (V.getOpcode() == ISD::BITCAST)
1984       V = V->getOperand(0);
1985 
1986     // A splat should always show up as a build vector node.
1987     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1988       BitVector UndefElements;
1989       SDValue Splat = BV->getSplatValue(&UndefElements);
1990       // If this is a splat of an undef, shuffling it is also undef.
1991       if (Splat && Splat.isUndef())
1992         return getUNDEF(VT);
1993 
1994       bool SameNumElts =
1995           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1996 
1997       // We only have a splat which can skip shuffles if there is a splatted
1998       // value and no undef lanes rearranged by the shuffle.
1999       if (Splat && UndefElements.none()) {
2000         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2001         // number of elements match or the value splatted is a zero constant.
2002         if (SameNumElts)
2003           return N1;
2004         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
2005           if (C->isZero())
2006             return N1;
2007       }
2008 
2009       // If the shuffle itself creates a splat, build the vector directly.
2010       if (AllSame && SameNumElts) {
2011         EVT BuildVT = BV->getValueType(0);
2012         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2013         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2014 
2015         // We may have jumped through bitcasts, so the type of the
2016         // BUILD_VECTOR may not match the type of the shuffle.
2017         if (BuildVT != VT)
2018           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2019         return NewBV;
2020       }
2021     }
2022   }
2023 
2024   FoldingSetNodeID ID;
2025   SDValue Ops[2] = { N1, N2 };
2026   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2027   for (int i = 0; i != NElts; ++i)
2028     ID.AddInteger(MaskVec[i]);
2029 
2030   void* IP = nullptr;
2031   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2032     return SDValue(E, 0);
2033 
2034   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2035   // SDNode doesn't have access to it.  This memory will be "leaked" when
2036   // the node is deallocated, but recovered when the NodeAllocator is released.
2037   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2038   llvm::copy(MaskVec, MaskAlloc);
2039 
2040   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2041                                            dl.getDebugLoc(), MaskAlloc);
2042   createOperands(N, Ops);
2043 
2044   CSEMap.InsertNode(N, IP);
2045   InsertNode(N);
2046   SDValue V = SDValue(N, 0);
2047   NewSDValueDbgMsg(V, "Creating new node: ", this);
2048   return V;
2049 }
2050 
2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2052   EVT VT = SV.getValueType(0);
2053   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2054   ShuffleVectorSDNode::commuteMask(MaskVec);
2055 
2056   SDValue Op0 = SV.getOperand(0);
2057   SDValue Op1 = SV.getOperand(1);
2058   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2059 }
2060 
2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2062   FoldingSetNodeID ID;
2063   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2064   ID.AddInteger(RegNo);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2070   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2071   CSEMap.InsertNode(N, IP);
2072   InsertNode(N);
2073   return SDValue(N, 0);
2074 }
2075 
2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2077   FoldingSetNodeID ID;
2078   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2079   ID.AddPointer(RegMask);
2080   void *IP = nullptr;
2081   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2082     return SDValue(E, 0);
2083 
2084   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2085   CSEMap.InsertNode(N, IP);
2086   InsertNode(N);
2087   return SDValue(N, 0);
2088 }
2089 
2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2091                                  MCSymbol *Label) {
2092   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2093 }
2094 
2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2096                                    SDValue Root, MCSymbol *Label) {
2097   FoldingSetNodeID ID;
2098   SDValue Ops[] = { Root };
2099   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2100   ID.AddPointer(Label);
2101   void *IP = nullptr;
2102   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2103     return SDValue(E, 0);
2104 
2105   auto *N =
2106       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2107   createOperands(N, Ops);
2108 
2109   CSEMap.InsertNode(N, IP);
2110   InsertNode(N);
2111   return SDValue(N, 0);
2112 }
2113 
2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2115                                       int64_t Offset, bool isTarget,
2116                                       unsigned TargetFlags) {
2117   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2118 
2119   FoldingSetNodeID ID;
2120   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2121   ID.AddPointer(BA);
2122   ID.AddInteger(Offset);
2123   ID.AddInteger(TargetFlags);
2124   void *IP = nullptr;
2125   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2126     return SDValue(E, 0);
2127 
2128   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2129   CSEMap.InsertNode(N, IP);
2130   InsertNode(N);
2131   return SDValue(N, 0);
2132 }
2133 
2134 SDValue SelectionDAG::getSrcValue(const Value *V) {
2135   FoldingSetNodeID ID;
2136   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2137   ID.AddPointer(V);
2138 
2139   void *IP = nullptr;
2140   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2141     return SDValue(E, 0);
2142 
2143   auto *N = newSDNode<SrcValueSDNode>(V);
2144   CSEMap.InsertNode(N, IP);
2145   InsertNode(N);
2146   return SDValue(N, 0);
2147 }
2148 
2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2150   FoldingSetNodeID ID;
2151   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2152   ID.AddPointer(MD);
2153 
2154   void *IP = nullptr;
2155   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2156     return SDValue(E, 0);
2157 
2158   auto *N = newSDNode<MDNodeSDNode>(MD);
2159   CSEMap.InsertNode(N, IP);
2160   InsertNode(N);
2161   return SDValue(N, 0);
2162 }
2163 
2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2165   if (VT == V.getValueType())
2166     return V;
2167 
2168   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2169 }
2170 
2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2172                                        unsigned SrcAS, unsigned DestAS) {
2173   SDValue Ops[] = {Ptr};
2174   FoldingSetNodeID ID;
2175   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2176   ID.AddInteger(SrcAS);
2177   ID.AddInteger(DestAS);
2178 
2179   void *IP = nullptr;
2180   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2181     return SDValue(E, 0);
2182 
2183   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2184                                            VT, SrcAS, DestAS);
2185   createOperands(N, Ops);
2186 
2187   CSEMap.InsertNode(N, IP);
2188   InsertNode(N);
2189   return SDValue(N, 0);
2190 }
2191 
2192 SDValue SelectionDAG::getFreeze(SDValue V) {
2193   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2194 }
2195 
2196 /// getShiftAmountOperand - Return the specified value casted to
2197 /// the target's desired shift amount type.
2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2199   EVT OpTy = Op.getValueType();
2200   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2201   if (OpTy == ShTy || OpTy.isVector()) return Op;
2202 
2203   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2204 }
2205 
2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2207   SDLoc dl(Node);
2208   const TargetLowering &TLI = getTargetLoweringInfo();
2209   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2210   EVT VT = Node->getValueType(0);
2211   SDValue Tmp1 = Node->getOperand(0);
2212   SDValue Tmp2 = Node->getOperand(1);
2213   const MaybeAlign MA(Node->getConstantOperandVal(3));
2214 
2215   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2216                                Tmp2, MachinePointerInfo(V));
2217   SDValue VAList = VAListLoad;
2218 
2219   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2220     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2221                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2222 
2223     VAList =
2224         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2225                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2226   }
2227 
2228   // Increment the pointer, VAList, to the next vaarg
2229   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2230                  getConstant(getDataLayout().getTypeAllocSize(
2231                                                VT.getTypeForEVT(*getContext())),
2232                              dl, VAList.getValueType()));
2233   // Store the incremented VAList to the legalized pointer
2234   Tmp1 =
2235       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2236   // Load the actual argument out of the pointer VAList
2237   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2238 }
2239 
2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2241   SDLoc dl(Node);
2242   const TargetLowering &TLI = getTargetLoweringInfo();
2243   // This defaults to loading a pointer from the input and storing it to the
2244   // output, returning the chain.
2245   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2246   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2247   SDValue Tmp1 =
2248       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2249               Node->getOperand(2), MachinePointerInfo(VS));
2250   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2251                   MachinePointerInfo(VD));
2252 }
2253 
2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2255   const DataLayout &DL = getDataLayout();
2256   Type *Ty = VT.getTypeForEVT(*getContext());
2257   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2258 
2259   if (TLI->isTypeLegal(VT) || !VT.isVector())
2260     return RedAlign;
2261 
2262   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2263   const Align StackAlign = TFI->getStackAlign();
2264 
2265   // See if we can choose a smaller ABI alignment in cases where it's an
2266   // illegal vector type that will get broken down.
2267   if (RedAlign > StackAlign) {
2268     EVT IntermediateVT;
2269     MVT RegisterVT;
2270     unsigned NumIntermediates;
2271     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2272                                 NumIntermediates, RegisterVT);
2273     Ty = IntermediateVT.getTypeForEVT(*getContext());
2274     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2275     if (RedAlign2 < RedAlign)
2276       RedAlign = RedAlign2;
2277   }
2278 
2279   return RedAlign;
2280 }
2281 
2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2283   MachineFrameInfo &MFI = MF->getFrameInfo();
2284   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2285   int StackID = 0;
2286   if (Bytes.isScalable())
2287     StackID = TFI->getStackIDForScalableVectors();
2288   // The stack id gives an indication of whether the object is scalable or
2289   // not, so it's safe to pass in the minimum size here.
2290   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2291                                        false, nullptr, StackID);
2292   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2293 }
2294 
2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2296   Type *Ty = VT.getTypeForEVT(*getContext());
2297   Align StackAlign =
2298       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2299   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2300 }
2301 
2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2303   TypeSize VT1Size = VT1.getStoreSize();
2304   TypeSize VT2Size = VT2.getStoreSize();
2305   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2306          "Don't know how to choose the maximum size when creating a stack "
2307          "temporary");
2308   TypeSize Bytes =
2309       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2310 
2311   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2312   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2313   const DataLayout &DL = getDataLayout();
2314   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2315   return CreateStackTemporary(Bytes, Align);
2316 }
2317 
2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2319                                 ISD::CondCode Cond, const SDLoc &dl) {
2320   EVT OpVT = N1.getValueType();
2321 
2322   // These setcc operations always fold.
2323   switch (Cond) {
2324   default: break;
2325   case ISD::SETFALSE:
2326   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2327   case ISD::SETTRUE:
2328   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2329 
2330   case ISD::SETOEQ:
2331   case ISD::SETOGT:
2332   case ISD::SETOGE:
2333   case ISD::SETOLT:
2334   case ISD::SETOLE:
2335   case ISD::SETONE:
2336   case ISD::SETO:
2337   case ISD::SETUO:
2338   case ISD::SETUEQ:
2339   case ISD::SETUNE:
2340     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2341     break;
2342   }
2343 
2344   if (OpVT.isInteger()) {
2345     // For EQ and NE, we can always pick a value for the undef to make the
2346     // predicate pass or fail, so we can return undef.
2347     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2348     // icmp eq/ne X, undef -> undef.
2349     if ((N1.isUndef() || N2.isUndef()) &&
2350         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2351       return getUNDEF(VT);
2352 
2353     // If both operands are undef, we can return undef for int comparison.
2354     // icmp undef, undef -> undef.
2355     if (N1.isUndef() && N2.isUndef())
2356       return getUNDEF(VT);
2357 
2358     // icmp X, X -> true/false
2359     // icmp X, undef -> true/false because undef could be X.
2360     if (N1 == N2)
2361       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2362   }
2363 
2364   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2365     const APInt &C2 = N2C->getAPIntValue();
2366     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2367       const APInt &C1 = N1C->getAPIntValue();
2368 
2369       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2370                              dl, VT, OpVT);
2371     }
2372   }
2373 
2374   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2375   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2376 
2377   if (N1CFP && N2CFP) {
2378     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2379     switch (Cond) {
2380     default: break;
2381     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2382                         return getUNDEF(VT);
2383                       LLVM_FALLTHROUGH;
2384     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2387                         return getUNDEF(VT);
2388                       LLVM_FALLTHROUGH;
2389     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpLessThan, dl, VT,
2391                                              OpVT);
2392     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2393                         return getUNDEF(VT);
2394                       LLVM_FALLTHROUGH;
2395     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2396                                              OpVT);
2397     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2398                         return getUNDEF(VT);
2399                       LLVM_FALLTHROUGH;
2400     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2401                                              VT, OpVT);
2402     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2403                         return getUNDEF(VT);
2404                       LLVM_FALLTHROUGH;
2405     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2406                                              R==APFloat::cmpEqual, dl, VT,
2407                                              OpVT);
2408     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2409                         return getUNDEF(VT);
2410                       LLVM_FALLTHROUGH;
2411     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2412                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2413     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2414                                              OpVT);
2415     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2416                                              OpVT);
2417     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2418                                              R==APFloat::cmpEqual, dl, VT,
2419                                              OpVT);
2420     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2421                                              OpVT);
2422     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2423                                              R==APFloat::cmpLessThan, dl, VT,
2424                                              OpVT);
2425     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2426                                              R==APFloat::cmpUnordered, dl, VT,
2427                                              OpVT);
2428     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2429                                              VT, OpVT);
2430     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2431                                              OpVT);
2432     }
2433   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2434     // Ensure that the constant occurs on the RHS.
2435     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2436     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2437       return SDValue();
2438     return getSetCC(dl, VT, N2, N1, SwappedCond);
2439   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2440              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2441     // If an operand is known to be a nan (or undef that could be a nan), we can
2442     // fold it.
2443     // Choosing NaN for the undef will always make unordered comparison succeed
2444     // and ordered comparison fails.
2445     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2446     switch (ISD::getUnorderedFlavor(Cond)) {
2447     default:
2448       llvm_unreachable("Unknown flavor!");
2449     case 0: // Known false.
2450       return getBoolConstant(false, dl, VT, OpVT);
2451     case 1: // Known true.
2452       return getBoolConstant(true, dl, VT, OpVT);
2453     case 2: // Undefined.
2454       return getUNDEF(VT);
2455     }
2456   }
2457 
2458   // Could not fold it.
2459   return SDValue();
2460 }
2461 
2462 /// See if the specified operand can be simplified with the knowledge that only
2463 /// the bits specified by DemandedBits are used.
2464 /// TODO: really we should be making this into the DAG equivalent of
2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2467   EVT VT = V.getValueType();
2468 
2469   if (VT.isScalableVector())
2470     return SDValue();
2471 
2472   switch (V.getOpcode()) {
2473   default:
2474     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this);
2475   case ISD::Constant: {
2476     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2477     APInt NewVal = CVal & DemandedBits;
2478     if (NewVal != CVal)
2479       return getConstant(NewVal, SDLoc(V), V.getValueType());
2480     break;
2481   }
2482   case ISD::SRL:
2483     // Only look at single-use SRLs.
2484     if (!V.getNode()->hasOneUse())
2485       break;
2486     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2487       // See if we can recursively simplify the LHS.
2488       unsigned Amt = RHSC->getZExtValue();
2489 
2490       // Watch out for shift count overflow though.
2491       if (Amt >= DemandedBits.getBitWidth())
2492         break;
2493       APInt SrcDemandedBits = DemandedBits << Amt;
2494       if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits(
2495               V.getOperand(0), SrcDemandedBits, *this))
2496         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2497                        V.getOperand(1));
2498     }
2499     break;
2500   }
2501   return SDValue();
2502 }
2503 
2504 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2505 /// use this predicate to simplify operations downstream.
2506 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2507   unsigned BitWidth = Op.getScalarValueSizeInBits();
2508   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2509 }
2510 
2511 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2512 /// this predicate to simplify operations downstream.  Mask is known to be zero
2513 /// for bits that V cannot have.
2514 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2515                                      unsigned Depth) const {
2516   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2517 }
2518 
2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2520 /// DemandedElts.  We use this predicate to simplify operations downstream.
2521 /// Mask is known to be zero for bits that V cannot have.
2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2523                                      const APInt &DemandedElts,
2524                                      unsigned Depth) const {
2525   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2526 }
2527 
2528 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2529 /// DemandedElts.  We use this predicate to simplify operations downstream.
2530 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
2531                                       unsigned Depth /* = 0 */) const {
2532   APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits());
2533   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2534 }
2535 
2536 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2537 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2538                                         unsigned Depth) const {
2539   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2540 }
2541 
2542 /// isSplatValue - Return true if the vector V has the same value
2543 /// across all DemandedElts. For scalable vectors it does not make
2544 /// sense to specify which elements are demanded or undefined, therefore
2545 /// they are simply ignored.
2546 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2547                                 APInt &UndefElts, unsigned Depth) const {
2548   unsigned Opcode = V.getOpcode();
2549   EVT VT = V.getValueType();
2550   assert(VT.isVector() && "Vector type expected");
2551 
2552   if (!VT.isScalableVector() && !DemandedElts)
2553     return false; // No demanded elts, better to assume we don't know anything.
2554 
2555   if (Depth >= MaxRecursionDepth)
2556     return false; // Limit search depth.
2557 
2558   // Deal with some common cases here that work for both fixed and scalable
2559   // vector types.
2560   switch (Opcode) {
2561   case ISD::SPLAT_VECTOR:
2562     UndefElts = V.getOperand(0).isUndef()
2563                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2564                     : APInt(DemandedElts.getBitWidth(), 0);
2565     return true;
2566   case ISD::ADD:
2567   case ISD::SUB:
2568   case ISD::AND:
2569   case ISD::XOR:
2570   case ISD::OR: {
2571     APInt UndefLHS, UndefRHS;
2572     SDValue LHS = V.getOperand(0);
2573     SDValue RHS = V.getOperand(1);
2574     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2575         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2576       UndefElts = UndefLHS | UndefRHS;
2577       return true;
2578     }
2579     return false;
2580   }
2581   case ISD::ABS:
2582   case ISD::TRUNCATE:
2583   case ISD::SIGN_EXTEND:
2584   case ISD::ZERO_EXTEND:
2585     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2586   default:
2587     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2588         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2589       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2590     break;
2591 }
2592 
2593   // We don't support other cases than those above for scalable vectors at
2594   // the moment.
2595   if (VT.isScalableVector())
2596     return false;
2597 
2598   unsigned NumElts = VT.getVectorNumElements();
2599   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2600   UndefElts = APInt::getZero(NumElts);
2601 
2602   switch (Opcode) {
2603   case ISD::BUILD_VECTOR: {
2604     SDValue Scl;
2605     for (unsigned i = 0; i != NumElts; ++i) {
2606       SDValue Op = V.getOperand(i);
2607       if (Op.isUndef()) {
2608         UndefElts.setBit(i);
2609         continue;
2610       }
2611       if (!DemandedElts[i])
2612         continue;
2613       if (Scl && Scl != Op)
2614         return false;
2615       Scl = Op;
2616     }
2617     return true;
2618   }
2619   case ISD::VECTOR_SHUFFLE: {
2620     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2621     APInt DemandedLHS = APInt::getNullValue(NumElts);
2622     APInt DemandedRHS = APInt::getNullValue(NumElts);
2623     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2624     for (int i = 0; i != (int)NumElts; ++i) {
2625       int M = Mask[i];
2626       if (M < 0) {
2627         UndefElts.setBit(i);
2628         continue;
2629       }
2630       if (!DemandedElts[i])
2631         continue;
2632       if (M < (int)NumElts)
2633         DemandedLHS.setBit(M);
2634       else
2635         DemandedRHS.setBit(M - NumElts);
2636     }
2637 
2638     // If we aren't demanding either op, assume there's no splat.
2639     // If we are demanding both ops, assume there's no splat.
2640     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2641         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2642       return false;
2643 
2644     // See if the demanded elts of the source op is a splat or we only demand
2645     // one element, which should always be a splat.
2646     // TODO: Handle source ops splats with undefs.
2647     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2648       APInt SrcUndefs;
2649       return (SrcElts.countPopulation() == 1) ||
2650              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2651               (SrcElts & SrcUndefs).isZero());
2652     };
2653     if (!DemandedLHS.isZero())
2654       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2655     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2656   }
2657   case ISD::EXTRACT_SUBVECTOR: {
2658     // Offset the demanded elts by the subvector index.
2659     SDValue Src = V.getOperand(0);
2660     // We don't support scalable vectors at the moment.
2661     if (Src.getValueType().isScalableVector())
2662       return false;
2663     uint64_t Idx = V.getConstantOperandVal(1);
2664     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2665     APInt UndefSrcElts;
2666     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2667     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2668       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2669       return true;
2670     }
2671     break;
2672   }
2673   case ISD::ANY_EXTEND_VECTOR_INREG:
2674   case ISD::SIGN_EXTEND_VECTOR_INREG:
2675   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2676     // Widen the demanded elts by the src element count.
2677     SDValue Src = V.getOperand(0);
2678     // We don't support scalable vectors at the moment.
2679     if (Src.getValueType().isScalableVector())
2680       return false;
2681     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2682     APInt UndefSrcElts;
2683     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
2684     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2685       UndefElts = UndefSrcElts.trunc(NumElts);
2686       return true;
2687     }
2688     break;
2689   }
2690   case ISD::BITCAST: {
2691     SDValue Src = V.getOperand(0);
2692     EVT SrcVT = Src.getValueType();
2693     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2694     unsigned BitWidth = VT.getScalarSizeInBits();
2695 
2696     // Ignore bitcasts from unsupported types.
2697     // TODO: Add fp support?
2698     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2699       break;
2700 
2701     // Bitcast 'small element' vector to 'large element' vector.
2702     if ((BitWidth % SrcBitWidth) == 0) {
2703       // See if each sub element is a splat.
2704       unsigned Scale = BitWidth / SrcBitWidth;
2705       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2706       APInt ScaledDemandedElts =
2707           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2708       for (unsigned I = 0; I != Scale; ++I) {
2709         APInt SubUndefElts;
2710         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2711         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2712         SubDemandedElts &= ScaledDemandedElts;
2713         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2714           return false;
2715 
2716         // Here we can't do "MatchAnyBits" operation merge for undef bits.
2717         // Because some operation only use part value of the source.
2718         // Take llvm.fshl.* for example:
2719         // t1: v4i32 = Constant:i32<12>, undef:i32, Constant:i32<12>, undef:i32
2720         // t2: v2i64 = bitcast t1
2721         // t5: v2i64 = fshl t3, t4, t2
2722         // We can not convert t2 to {i64 undef, i64 undef}
2723         UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts,
2724                                             /*MatchAllBits=*/true);
2725       }
2726       return true;
2727     }
2728     break;
2729   }
2730   }
2731 
2732   return false;
2733 }
2734 
2735 /// Helper wrapper to main isSplatValue function.
2736 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2737   EVT VT = V.getValueType();
2738   assert(VT.isVector() && "Vector type expected");
2739 
2740   APInt UndefElts;
2741   APInt DemandedElts;
2742 
2743   // For now we don't support this with scalable vectors.
2744   if (!VT.isScalableVector())
2745     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2746   return isSplatValue(V, DemandedElts, UndefElts) &&
2747          (AllowUndefs || !UndefElts);
2748 }
2749 
2750 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2751   V = peekThroughExtractSubvectors(V);
2752 
2753   EVT VT = V.getValueType();
2754   unsigned Opcode = V.getOpcode();
2755   switch (Opcode) {
2756   default: {
2757     APInt UndefElts;
2758     APInt DemandedElts;
2759 
2760     if (!VT.isScalableVector())
2761       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2762 
2763     if (isSplatValue(V, DemandedElts, UndefElts)) {
2764       if (VT.isScalableVector()) {
2765         // DemandedElts and UndefElts are ignored for scalable vectors, since
2766         // the only supported cases are SPLAT_VECTOR nodes.
2767         SplatIdx = 0;
2768       } else {
2769         // Handle case where all demanded elements are UNDEF.
2770         if (DemandedElts.isSubsetOf(UndefElts)) {
2771           SplatIdx = 0;
2772           return getUNDEF(VT);
2773         }
2774         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2775       }
2776       return V;
2777     }
2778     break;
2779   }
2780   case ISD::SPLAT_VECTOR:
2781     SplatIdx = 0;
2782     return V;
2783   case ISD::VECTOR_SHUFFLE: {
2784     if (VT.isScalableVector())
2785       return SDValue();
2786 
2787     // Check if this is a shuffle node doing a splat.
2788     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2789     // getTargetVShiftNode currently struggles without the splat source.
2790     auto *SVN = cast<ShuffleVectorSDNode>(V);
2791     if (!SVN->isSplat())
2792       break;
2793     int Idx = SVN->getSplatIndex();
2794     int NumElts = V.getValueType().getVectorNumElements();
2795     SplatIdx = Idx % NumElts;
2796     return V.getOperand(Idx / NumElts);
2797   }
2798   }
2799 
2800   return SDValue();
2801 }
2802 
2803 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2804   int SplatIdx;
2805   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2806     EVT SVT = SrcVector.getValueType().getScalarType();
2807     EVT LegalSVT = SVT;
2808     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2809       if (!SVT.isInteger())
2810         return SDValue();
2811       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2812       if (LegalSVT.bitsLT(SVT))
2813         return SDValue();
2814     }
2815     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2816                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2817   }
2818   return SDValue();
2819 }
2820 
2821 const APInt *
2822 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2823                                           const APInt &DemandedElts) const {
2824   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2825           V.getOpcode() == ISD::SRA) &&
2826          "Unknown shift node");
2827   unsigned BitWidth = V.getScalarValueSizeInBits();
2828   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2829     // Shifting more than the bitwidth is not valid.
2830     const APInt &ShAmt = SA->getAPIntValue();
2831     if (ShAmt.ult(BitWidth))
2832       return &ShAmt;
2833   }
2834   return nullptr;
2835 }
2836 
2837 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2838     SDValue V, const APInt &DemandedElts) const {
2839   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2840           V.getOpcode() == ISD::SRA) &&
2841          "Unknown shift node");
2842   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2843     return ValidAmt;
2844   unsigned BitWidth = V.getScalarValueSizeInBits();
2845   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2846   if (!BV)
2847     return nullptr;
2848   const APInt *MinShAmt = nullptr;
2849   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2850     if (!DemandedElts[i])
2851       continue;
2852     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2853     if (!SA)
2854       return nullptr;
2855     // Shifting more than the bitwidth is not valid.
2856     const APInt &ShAmt = SA->getAPIntValue();
2857     if (ShAmt.uge(BitWidth))
2858       return nullptr;
2859     if (MinShAmt && MinShAmt->ule(ShAmt))
2860       continue;
2861     MinShAmt = &ShAmt;
2862   }
2863   return MinShAmt;
2864 }
2865 
2866 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2867     SDValue V, const APInt &DemandedElts) const {
2868   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2869           V.getOpcode() == ISD::SRA) &&
2870          "Unknown shift node");
2871   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2872     return ValidAmt;
2873   unsigned BitWidth = V.getScalarValueSizeInBits();
2874   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2875   if (!BV)
2876     return nullptr;
2877   const APInt *MaxShAmt = nullptr;
2878   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2879     if (!DemandedElts[i])
2880       continue;
2881     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2882     if (!SA)
2883       return nullptr;
2884     // Shifting more than the bitwidth is not valid.
2885     const APInt &ShAmt = SA->getAPIntValue();
2886     if (ShAmt.uge(BitWidth))
2887       return nullptr;
2888     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2889       continue;
2890     MaxShAmt = &ShAmt;
2891   }
2892   return MaxShAmt;
2893 }
2894 
2895 /// Determine which bits of Op are known to be either zero or one and return
2896 /// them in Known. For vectors, the known bits are those that are shared by
2897 /// every vector element.
2898 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2899   EVT VT = Op.getValueType();
2900 
2901   // TOOD: Until we have a plan for how to represent demanded elements for
2902   // scalable vectors, we can just bail out for now.
2903   if (Op.getValueType().isScalableVector()) {
2904     unsigned BitWidth = Op.getScalarValueSizeInBits();
2905     return KnownBits(BitWidth);
2906   }
2907 
2908   APInt DemandedElts = VT.isVector()
2909                            ? APInt::getAllOnes(VT.getVectorNumElements())
2910                            : APInt(1, 1);
2911   return computeKnownBits(Op, DemandedElts, Depth);
2912 }
2913 
2914 /// Determine which bits of Op are known to be either zero or one and return
2915 /// them in Known. The DemandedElts argument allows us to only collect the known
2916 /// bits that are shared by the requested vector elements.
2917 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2918                                          unsigned Depth) const {
2919   unsigned BitWidth = Op.getScalarValueSizeInBits();
2920 
2921   KnownBits Known(BitWidth);   // Don't know anything.
2922 
2923   // TOOD: Until we have a plan for how to represent demanded elements for
2924   // scalable vectors, we can just bail out for now.
2925   if (Op.getValueType().isScalableVector())
2926     return Known;
2927 
2928   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2929     // We know all of the bits for a constant!
2930     return KnownBits::makeConstant(C->getAPIntValue());
2931   }
2932   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2933     // We know all of the bits for a constant fp!
2934     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2935   }
2936 
2937   if (Depth >= MaxRecursionDepth)
2938     return Known;  // Limit search depth.
2939 
2940   KnownBits Known2;
2941   unsigned NumElts = DemandedElts.getBitWidth();
2942   assert((!Op.getValueType().isVector() ||
2943           NumElts == Op.getValueType().getVectorNumElements()) &&
2944          "Unexpected vector size");
2945 
2946   if (!DemandedElts)
2947     return Known;  // No demanded elts, better to assume we don't know anything.
2948 
2949   unsigned Opcode = Op.getOpcode();
2950   switch (Opcode) {
2951   case ISD::BUILD_VECTOR:
2952     // Collect the known bits that are shared by every demanded vector element.
2953     Known.Zero.setAllBits(); Known.One.setAllBits();
2954     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2955       if (!DemandedElts[i])
2956         continue;
2957 
2958       SDValue SrcOp = Op.getOperand(i);
2959       Known2 = computeKnownBits(SrcOp, Depth + 1);
2960 
2961       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2962       if (SrcOp.getValueSizeInBits() != BitWidth) {
2963         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2964                "Expected BUILD_VECTOR implicit truncation");
2965         Known2 = Known2.trunc(BitWidth);
2966       }
2967 
2968       // Known bits are the values that are shared by every demanded element.
2969       Known = KnownBits::commonBits(Known, Known2);
2970 
2971       // If we don't know any bits, early out.
2972       if (Known.isUnknown())
2973         break;
2974     }
2975     break;
2976   case ISD::VECTOR_SHUFFLE: {
2977     // Collect the known bits that are shared by every vector element referenced
2978     // by the shuffle.
2979     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2980     Known.Zero.setAllBits(); Known.One.setAllBits();
2981     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2982     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2983     for (unsigned i = 0; i != NumElts; ++i) {
2984       if (!DemandedElts[i])
2985         continue;
2986 
2987       int M = SVN->getMaskElt(i);
2988       if (M < 0) {
2989         // For UNDEF elements, we don't know anything about the common state of
2990         // the shuffle result.
2991         Known.resetAll();
2992         DemandedLHS.clearAllBits();
2993         DemandedRHS.clearAllBits();
2994         break;
2995       }
2996 
2997       if ((unsigned)M < NumElts)
2998         DemandedLHS.setBit((unsigned)M % NumElts);
2999       else
3000         DemandedRHS.setBit((unsigned)M % NumElts);
3001     }
3002     // Known bits are the values that are shared by every demanded element.
3003     if (!!DemandedLHS) {
3004       SDValue LHS = Op.getOperand(0);
3005       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3006       Known = KnownBits::commonBits(Known, Known2);
3007     }
3008     // If we don't know any bits, early out.
3009     if (Known.isUnknown())
3010       break;
3011     if (!!DemandedRHS) {
3012       SDValue RHS = Op.getOperand(1);
3013       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3014       Known = KnownBits::commonBits(Known, Known2);
3015     }
3016     break;
3017   }
3018   case ISD::CONCAT_VECTORS: {
3019     // Split DemandedElts and test each of the demanded subvectors.
3020     Known.Zero.setAllBits(); Known.One.setAllBits();
3021     EVT SubVectorVT = Op.getOperand(0).getValueType();
3022     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3023     unsigned NumSubVectors = Op.getNumOperands();
3024     for (unsigned i = 0; i != NumSubVectors; ++i) {
3025       APInt DemandedSub =
3026           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3027       if (!!DemandedSub) {
3028         SDValue Sub = Op.getOperand(i);
3029         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3030         Known = KnownBits::commonBits(Known, Known2);
3031       }
3032       // If we don't know any bits, early out.
3033       if (Known.isUnknown())
3034         break;
3035     }
3036     break;
3037   }
3038   case ISD::INSERT_SUBVECTOR: {
3039     // Demand any elements from the subvector and the remainder from the src its
3040     // inserted into.
3041     SDValue Src = Op.getOperand(0);
3042     SDValue Sub = Op.getOperand(1);
3043     uint64_t Idx = Op.getConstantOperandVal(2);
3044     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3045     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3046     APInt DemandedSrcElts = DemandedElts;
3047     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3048 
3049     Known.One.setAllBits();
3050     Known.Zero.setAllBits();
3051     if (!!DemandedSubElts) {
3052       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3053       if (Known.isUnknown())
3054         break; // early-out.
3055     }
3056     if (!!DemandedSrcElts) {
3057       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3058       Known = KnownBits::commonBits(Known, Known2);
3059     }
3060     break;
3061   }
3062   case ISD::EXTRACT_SUBVECTOR: {
3063     // Offset the demanded elts by the subvector index.
3064     SDValue Src = Op.getOperand(0);
3065     // Bail until we can represent demanded elements for scalable vectors.
3066     if (Src.getValueType().isScalableVector())
3067       break;
3068     uint64_t Idx = Op.getConstantOperandVal(1);
3069     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3070     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3071     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3072     break;
3073   }
3074   case ISD::SCALAR_TO_VECTOR: {
3075     // We know about scalar_to_vector as much as we know about it source,
3076     // which becomes the first element of otherwise unknown vector.
3077     if (DemandedElts != 1)
3078       break;
3079 
3080     SDValue N0 = Op.getOperand(0);
3081     Known = computeKnownBits(N0, Depth + 1);
3082     if (N0.getValueSizeInBits() != BitWidth)
3083       Known = Known.trunc(BitWidth);
3084 
3085     break;
3086   }
3087   case ISD::BITCAST: {
3088     SDValue N0 = Op.getOperand(0);
3089     EVT SubVT = N0.getValueType();
3090     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3091 
3092     // Ignore bitcasts from unsupported types.
3093     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3094       break;
3095 
3096     // Fast handling of 'identity' bitcasts.
3097     if (BitWidth == SubBitWidth) {
3098       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3099       break;
3100     }
3101 
3102     bool IsLE = getDataLayout().isLittleEndian();
3103 
3104     // Bitcast 'small element' vector to 'large element' scalar/vector.
3105     if ((BitWidth % SubBitWidth) == 0) {
3106       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3107 
3108       // Collect known bits for the (larger) output by collecting the known
3109       // bits from each set of sub elements and shift these into place.
3110       // We need to separately call computeKnownBits for each set of
3111       // sub elements as the knownbits for each is likely to be different.
3112       unsigned SubScale = BitWidth / SubBitWidth;
3113       APInt SubDemandedElts(NumElts * SubScale, 0);
3114       for (unsigned i = 0; i != NumElts; ++i)
3115         if (DemandedElts[i])
3116           SubDemandedElts.setBit(i * SubScale);
3117 
3118       for (unsigned i = 0; i != SubScale; ++i) {
3119         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3120                          Depth + 1);
3121         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3122         Known.insertBits(Known2, SubBitWidth * Shifts);
3123       }
3124     }
3125 
3126     // Bitcast 'large element' scalar/vector to 'small element' vector.
3127     if ((SubBitWidth % BitWidth) == 0) {
3128       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3129 
3130       // Collect known bits for the (smaller) output by collecting the known
3131       // bits from the overlapping larger input elements and extracting the
3132       // sub sections we actually care about.
3133       unsigned SubScale = SubBitWidth / BitWidth;
3134       APInt SubDemandedElts =
3135           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3136       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3137 
3138       Known.Zero.setAllBits(); Known.One.setAllBits();
3139       for (unsigned i = 0; i != NumElts; ++i)
3140         if (DemandedElts[i]) {
3141           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3142           unsigned Offset = (Shifts % SubScale) * BitWidth;
3143           Known = KnownBits::commonBits(Known,
3144                                         Known2.extractBits(BitWidth, Offset));
3145           // If we don't know any bits, early out.
3146           if (Known.isUnknown())
3147             break;
3148         }
3149     }
3150     break;
3151   }
3152   case ISD::AND:
3153     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3154     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3155 
3156     Known &= Known2;
3157     break;
3158   case ISD::OR:
3159     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3160     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3161 
3162     Known |= Known2;
3163     break;
3164   case ISD::XOR:
3165     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3166     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3167 
3168     Known ^= Known2;
3169     break;
3170   case ISD::MUL: {
3171     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3172     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3173     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3174     // TODO: SelfMultiply can be poison, but not undef.
3175     if (SelfMultiply)
3176       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3177           Op.getOperand(0), DemandedElts, false, Depth + 1);
3178     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3179 
3180     // If the multiplication is known not to overflow, the product of a number
3181     // with itself is non-negative. Only do this if we didn't already computed
3182     // the opposite value for the sign bit.
3183     if (Op->getFlags().hasNoSignedWrap() &&
3184         Op.getOperand(0) == Op.getOperand(1) &&
3185         !Known.isNegative())
3186       Known.makeNonNegative();
3187     break;
3188   }
3189   case ISD::MULHU: {
3190     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3191     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3192     Known = KnownBits::mulhu(Known, Known2);
3193     break;
3194   }
3195   case ISD::MULHS: {
3196     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3197     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3198     Known = KnownBits::mulhs(Known, Known2);
3199     break;
3200   }
3201   case ISD::UMUL_LOHI: {
3202     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3203     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3204     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3205     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3206     if (Op.getResNo() == 0)
3207       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3208     else
3209       Known = KnownBits::mulhu(Known, Known2);
3210     break;
3211   }
3212   case ISD::SMUL_LOHI: {
3213     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3214     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3215     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3216     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3217     if (Op.getResNo() == 0)
3218       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3219     else
3220       Known = KnownBits::mulhs(Known, Known2);
3221     break;
3222   }
3223   case ISD::UDIV: {
3224     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3225     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3226     Known = KnownBits::udiv(Known, Known2);
3227     break;
3228   }
3229   case ISD::AVGCEILU: {
3230     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3231     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3232     Known = Known.zext(BitWidth + 1);
3233     Known2 = Known2.zext(BitWidth + 1);
3234     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3235     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3236     Known = Known.extractBits(BitWidth, 1);
3237     break;
3238   }
3239   case ISD::SELECT:
3240   case ISD::VSELECT:
3241     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3242     // If we don't know any bits, early out.
3243     if (Known.isUnknown())
3244       break;
3245     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3246 
3247     // Only known if known in both the LHS and RHS.
3248     Known = KnownBits::commonBits(Known, Known2);
3249     break;
3250   case ISD::SELECT_CC:
3251     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3252     // If we don't know any bits, early out.
3253     if (Known.isUnknown())
3254       break;
3255     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3256 
3257     // Only known if known in both the LHS and RHS.
3258     Known = KnownBits::commonBits(Known, Known2);
3259     break;
3260   case ISD::SMULO:
3261   case ISD::UMULO:
3262     if (Op.getResNo() != 1)
3263       break;
3264     // The boolean result conforms to getBooleanContents.
3265     // If we know the result of a setcc has the top bits zero, use this info.
3266     // We know that we have an integer-based boolean since these operations
3267     // are only available for integer.
3268     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3269             TargetLowering::ZeroOrOneBooleanContent &&
3270         BitWidth > 1)
3271       Known.Zero.setBitsFrom(1);
3272     break;
3273   case ISD::SETCC:
3274   case ISD::STRICT_FSETCC:
3275   case ISD::STRICT_FSETCCS: {
3276     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3277     // If we know the result of a setcc has the top bits zero, use this info.
3278     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3279             TargetLowering::ZeroOrOneBooleanContent &&
3280         BitWidth > 1)
3281       Known.Zero.setBitsFrom(1);
3282     break;
3283   }
3284   case ISD::SHL:
3285     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3286     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3287     Known = KnownBits::shl(Known, Known2);
3288 
3289     // Minimum shift low bits are known zero.
3290     if (const APInt *ShMinAmt =
3291             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3292       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3293     break;
3294   case ISD::SRL:
3295     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3296     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3297     Known = KnownBits::lshr(Known, Known2);
3298 
3299     // Minimum shift high bits are known zero.
3300     if (const APInt *ShMinAmt =
3301             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3302       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3303     break;
3304   case ISD::SRA:
3305     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3306     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3307     Known = KnownBits::ashr(Known, Known2);
3308     // TODO: Add minimum shift high known sign bits.
3309     break;
3310   case ISD::FSHL:
3311   case ISD::FSHR:
3312     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3313       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3314 
3315       // For fshl, 0-shift returns the 1st arg.
3316       // For fshr, 0-shift returns the 2nd arg.
3317       if (Amt == 0) {
3318         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3319                                  DemandedElts, Depth + 1);
3320         break;
3321       }
3322 
3323       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3324       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3325       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3326       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3327       if (Opcode == ISD::FSHL) {
3328         Known.One <<= Amt;
3329         Known.Zero <<= Amt;
3330         Known2.One.lshrInPlace(BitWidth - Amt);
3331         Known2.Zero.lshrInPlace(BitWidth - Amt);
3332       } else {
3333         Known.One <<= BitWidth - Amt;
3334         Known.Zero <<= BitWidth - Amt;
3335         Known2.One.lshrInPlace(Amt);
3336         Known2.Zero.lshrInPlace(Amt);
3337       }
3338       Known.One |= Known2.One;
3339       Known.Zero |= Known2.Zero;
3340     }
3341     break;
3342   case ISD::SIGN_EXTEND_INREG: {
3343     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3344     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3345     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3346     break;
3347   }
3348   case ISD::CTTZ:
3349   case ISD::CTTZ_ZERO_UNDEF: {
3350     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3351     // If we have a known 1, its position is our upper bound.
3352     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3353     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3354     Known.Zero.setBitsFrom(LowBits);
3355     break;
3356   }
3357   case ISD::CTLZ:
3358   case ISD::CTLZ_ZERO_UNDEF: {
3359     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3360     // If we have a known 1, its position is our upper bound.
3361     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3362     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3363     Known.Zero.setBitsFrom(LowBits);
3364     break;
3365   }
3366   case ISD::CTPOP: {
3367     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3368     // If we know some of the bits are zero, they can't be one.
3369     unsigned PossibleOnes = Known2.countMaxPopulation();
3370     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3371     break;
3372   }
3373   case ISD::PARITY: {
3374     // Parity returns 0 everywhere but the LSB.
3375     Known.Zero.setBitsFrom(1);
3376     break;
3377   }
3378   case ISD::LOAD: {
3379     LoadSDNode *LD = cast<LoadSDNode>(Op);
3380     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3381     if (ISD::isNON_EXTLoad(LD) && Cst) {
3382       // Determine any common known bits from the loaded constant pool value.
3383       Type *CstTy = Cst->getType();
3384       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3385         // If its a vector splat, then we can (quickly) reuse the scalar path.
3386         // NOTE: We assume all elements match and none are UNDEF.
3387         if (CstTy->isVectorTy()) {
3388           if (const Constant *Splat = Cst->getSplatValue()) {
3389             Cst = Splat;
3390             CstTy = Cst->getType();
3391           }
3392         }
3393         // TODO - do we need to handle different bitwidths?
3394         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3395           // Iterate across all vector elements finding common known bits.
3396           Known.One.setAllBits();
3397           Known.Zero.setAllBits();
3398           for (unsigned i = 0; i != NumElts; ++i) {
3399             if (!DemandedElts[i])
3400               continue;
3401             if (Constant *Elt = Cst->getAggregateElement(i)) {
3402               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3403                 const APInt &Value = CInt->getValue();
3404                 Known.One &= Value;
3405                 Known.Zero &= ~Value;
3406                 continue;
3407               }
3408               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3409                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3410                 Known.One &= Value;
3411                 Known.Zero &= ~Value;
3412                 continue;
3413               }
3414             }
3415             Known.One.clearAllBits();
3416             Known.Zero.clearAllBits();
3417             break;
3418           }
3419         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3420           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3421             Known = KnownBits::makeConstant(CInt->getValue());
3422           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3423             Known =
3424                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3425           }
3426         }
3427       }
3428     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3429       // If this is a ZEXTLoad and we are looking at the loaded value.
3430       EVT VT = LD->getMemoryVT();
3431       unsigned MemBits = VT.getScalarSizeInBits();
3432       Known.Zero.setBitsFrom(MemBits);
3433     } else if (const MDNode *Ranges = LD->getRanges()) {
3434       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3435         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3436     }
3437     break;
3438   }
3439   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3440     EVT InVT = Op.getOperand(0).getValueType();
3441     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3442     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3443     Known = Known.zext(BitWidth);
3444     break;
3445   }
3446   case ISD::ZERO_EXTEND: {
3447     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3448     Known = Known.zext(BitWidth);
3449     break;
3450   }
3451   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3452     EVT InVT = Op.getOperand(0).getValueType();
3453     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3454     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3455     // If the sign bit is known to be zero or one, then sext will extend
3456     // it to the top bits, else it will just zext.
3457     Known = Known.sext(BitWidth);
3458     break;
3459   }
3460   case ISD::SIGN_EXTEND: {
3461     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3462     // If the sign bit is known to be zero or one, then sext will extend
3463     // it to the top bits, else it will just zext.
3464     Known = Known.sext(BitWidth);
3465     break;
3466   }
3467   case ISD::ANY_EXTEND_VECTOR_INREG: {
3468     EVT InVT = Op.getOperand(0).getValueType();
3469     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3470     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3471     Known = Known.anyext(BitWidth);
3472     break;
3473   }
3474   case ISD::ANY_EXTEND: {
3475     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3476     Known = Known.anyext(BitWidth);
3477     break;
3478   }
3479   case ISD::TRUNCATE: {
3480     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3481     Known = Known.trunc(BitWidth);
3482     break;
3483   }
3484   case ISD::AssertZext: {
3485     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3486     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3487     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3488     Known.Zero |= (~InMask);
3489     Known.One  &= (~Known.Zero);
3490     break;
3491   }
3492   case ISD::AssertAlign: {
3493     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3494     assert(LogOfAlign != 0);
3495 
3496     // TODO: Should use maximum with source
3497     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3498     // well as clearing one bits.
3499     Known.Zero.setLowBits(LogOfAlign);
3500     Known.One.clearLowBits(LogOfAlign);
3501     break;
3502   }
3503   case ISD::FGETSIGN:
3504     // All bits are zero except the low bit.
3505     Known.Zero.setBitsFrom(1);
3506     break;
3507   case ISD::USUBO:
3508   case ISD::SSUBO:
3509     if (Op.getResNo() == 1) {
3510       // If we know the result of a setcc has the top bits zero, use this info.
3511       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3512               TargetLowering::ZeroOrOneBooleanContent &&
3513           BitWidth > 1)
3514         Known.Zero.setBitsFrom(1);
3515       break;
3516     }
3517     LLVM_FALLTHROUGH;
3518   case ISD::SUB:
3519   case ISD::SUBC: {
3520     assert(Op.getResNo() == 0 &&
3521            "We only compute knownbits for the difference here.");
3522 
3523     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3524     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3525     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3526                                         Known, Known2);
3527     break;
3528   }
3529   case ISD::UADDO:
3530   case ISD::SADDO:
3531   case ISD::ADDCARRY:
3532     if (Op.getResNo() == 1) {
3533       // If we know the result of a setcc has the top bits zero, use this info.
3534       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3535               TargetLowering::ZeroOrOneBooleanContent &&
3536           BitWidth > 1)
3537         Known.Zero.setBitsFrom(1);
3538       break;
3539     }
3540     LLVM_FALLTHROUGH;
3541   case ISD::ADD:
3542   case ISD::ADDC:
3543   case ISD::ADDE: {
3544     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3545 
3546     // With ADDE and ADDCARRY, a carry bit may be added in.
3547     KnownBits Carry(1);
3548     if (Opcode == ISD::ADDE)
3549       // Can't track carry from glue, set carry to unknown.
3550       Carry.resetAll();
3551     else if (Opcode == ISD::ADDCARRY)
3552       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3553       // the trouble (how often will we find a known carry bit). And I haven't
3554       // tested this very much yet, but something like this might work:
3555       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3556       //   Carry = Carry.zextOrTrunc(1, false);
3557       Carry.resetAll();
3558     else
3559       Carry.setAllZero();
3560 
3561     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3562     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3563     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3564     break;
3565   }
3566   case ISD::SREM: {
3567     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3568     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3569     Known = KnownBits::srem(Known, Known2);
3570     break;
3571   }
3572   case ISD::UREM: {
3573     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3574     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3575     Known = KnownBits::urem(Known, Known2);
3576     break;
3577   }
3578   case ISD::EXTRACT_ELEMENT: {
3579     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3580     const unsigned Index = Op.getConstantOperandVal(1);
3581     const unsigned EltBitWidth = Op.getValueSizeInBits();
3582 
3583     // Remove low part of known bits mask
3584     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3585     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3586 
3587     // Remove high part of known bit mask
3588     Known = Known.trunc(EltBitWidth);
3589     break;
3590   }
3591   case ISD::EXTRACT_VECTOR_ELT: {
3592     SDValue InVec = Op.getOperand(0);
3593     SDValue EltNo = Op.getOperand(1);
3594     EVT VecVT = InVec.getValueType();
3595     // computeKnownBits not yet implemented for scalable vectors.
3596     if (VecVT.isScalableVector())
3597       break;
3598     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3599     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3600 
3601     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3602     // anything about the extended bits.
3603     if (BitWidth > EltBitWidth)
3604       Known = Known.trunc(EltBitWidth);
3605 
3606     // If we know the element index, just demand that vector element, else for
3607     // an unknown element index, ignore DemandedElts and demand them all.
3608     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3609     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3610     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3611       DemandedSrcElts =
3612           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3613 
3614     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3615     if (BitWidth > EltBitWidth)
3616       Known = Known.anyext(BitWidth);
3617     break;
3618   }
3619   case ISD::INSERT_VECTOR_ELT: {
3620     // If we know the element index, split the demand between the
3621     // source vector and the inserted element, otherwise assume we need
3622     // the original demanded vector elements and the value.
3623     SDValue InVec = Op.getOperand(0);
3624     SDValue InVal = Op.getOperand(1);
3625     SDValue EltNo = Op.getOperand(2);
3626     bool DemandedVal = true;
3627     APInt DemandedVecElts = DemandedElts;
3628     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3629     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3630       unsigned EltIdx = CEltNo->getZExtValue();
3631       DemandedVal = !!DemandedElts[EltIdx];
3632       DemandedVecElts.clearBit(EltIdx);
3633     }
3634     Known.One.setAllBits();
3635     Known.Zero.setAllBits();
3636     if (DemandedVal) {
3637       Known2 = computeKnownBits(InVal, Depth + 1);
3638       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3639     }
3640     if (!!DemandedVecElts) {
3641       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3642       Known = KnownBits::commonBits(Known, Known2);
3643     }
3644     break;
3645   }
3646   case ISD::BITREVERSE: {
3647     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3648     Known = Known2.reverseBits();
3649     break;
3650   }
3651   case ISD::BSWAP: {
3652     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3653     Known = Known2.byteSwap();
3654     break;
3655   }
3656   case ISD::ABS: {
3657     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3658     Known = Known2.abs();
3659     break;
3660   }
3661   case ISD::USUBSAT: {
3662     // The result of usubsat will never be larger than the LHS.
3663     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3664     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3665     break;
3666   }
3667   case ISD::UMIN: {
3668     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3669     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3670     Known = KnownBits::umin(Known, Known2);
3671     break;
3672   }
3673   case ISD::UMAX: {
3674     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3675     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3676     Known = KnownBits::umax(Known, Known2);
3677     break;
3678   }
3679   case ISD::SMIN:
3680   case ISD::SMAX: {
3681     // If we have a clamp pattern, we know that the number of sign bits will be
3682     // the minimum of the clamp min/max range.
3683     bool IsMax = (Opcode == ISD::SMAX);
3684     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3685     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3686       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3687         CstHigh =
3688             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3689     if (CstLow && CstHigh) {
3690       if (!IsMax)
3691         std::swap(CstLow, CstHigh);
3692 
3693       const APInt &ValueLow = CstLow->getAPIntValue();
3694       const APInt &ValueHigh = CstHigh->getAPIntValue();
3695       if (ValueLow.sle(ValueHigh)) {
3696         unsigned LowSignBits = ValueLow.getNumSignBits();
3697         unsigned HighSignBits = ValueHigh.getNumSignBits();
3698         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3699         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3700           Known.One.setHighBits(MinSignBits);
3701           break;
3702         }
3703         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3704           Known.Zero.setHighBits(MinSignBits);
3705           break;
3706         }
3707       }
3708     }
3709 
3710     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3711     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3712     if (IsMax)
3713       Known = KnownBits::smax(Known, Known2);
3714     else
3715       Known = KnownBits::smin(Known, Known2);
3716 
3717     // For SMAX, if CstLow is non-negative we know the result will be
3718     // non-negative and thus all sign bits are 0.
3719     // TODO: There's an equivalent of this for smin with negative constant for
3720     // known ones.
3721     if (IsMax && CstLow) {
3722       const APInt &ValueLow = CstLow->getAPIntValue();
3723       if (ValueLow.isNonNegative()) {
3724         unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3725         Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
3726       }
3727     }
3728 
3729     break;
3730   }
3731   case ISD::FP_TO_UINT_SAT: {
3732     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3733     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3734     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3735     break;
3736   }
3737   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3738     if (Op.getResNo() == 1) {
3739       // The boolean result conforms to getBooleanContents.
3740       // If we know the result of a setcc has the top bits zero, use this info.
3741       // We know that we have an integer-based boolean since these operations
3742       // are only available for integer.
3743       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3744               TargetLowering::ZeroOrOneBooleanContent &&
3745           BitWidth > 1)
3746         Known.Zero.setBitsFrom(1);
3747       break;
3748     }
3749     LLVM_FALLTHROUGH;
3750   case ISD::ATOMIC_CMP_SWAP:
3751   case ISD::ATOMIC_SWAP:
3752   case ISD::ATOMIC_LOAD_ADD:
3753   case ISD::ATOMIC_LOAD_SUB:
3754   case ISD::ATOMIC_LOAD_AND:
3755   case ISD::ATOMIC_LOAD_CLR:
3756   case ISD::ATOMIC_LOAD_OR:
3757   case ISD::ATOMIC_LOAD_XOR:
3758   case ISD::ATOMIC_LOAD_NAND:
3759   case ISD::ATOMIC_LOAD_MIN:
3760   case ISD::ATOMIC_LOAD_MAX:
3761   case ISD::ATOMIC_LOAD_UMIN:
3762   case ISD::ATOMIC_LOAD_UMAX:
3763   case ISD::ATOMIC_LOAD: {
3764     unsigned MemBits =
3765         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3766     // If we are looking at the loaded value.
3767     if (Op.getResNo() == 0) {
3768       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3769         Known.Zero.setBitsFrom(MemBits);
3770     }
3771     break;
3772   }
3773   case ISD::FrameIndex:
3774   case ISD::TargetFrameIndex:
3775     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3776                                        Known, getMachineFunction());
3777     break;
3778 
3779   default:
3780     if (Opcode < ISD::BUILTIN_OP_END)
3781       break;
3782     LLVM_FALLTHROUGH;
3783   case ISD::INTRINSIC_WO_CHAIN:
3784   case ISD::INTRINSIC_W_CHAIN:
3785   case ISD::INTRINSIC_VOID:
3786     // Allow the target to implement this method for its nodes.
3787     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3788     break;
3789   }
3790 
3791   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3792   return Known;
3793 }
3794 
3795 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3796                                                              SDValue N1) const {
3797   // X + 0 never overflow
3798   if (isNullConstant(N1))
3799     return OFK_Never;
3800 
3801   KnownBits N1Known = computeKnownBits(N1);
3802   if (N1Known.Zero.getBoolValue()) {
3803     KnownBits N0Known = computeKnownBits(N0);
3804 
3805     bool overflow;
3806     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3807     if (!overflow)
3808       return OFK_Never;
3809   }
3810 
3811   // mulhi + 1 never overflow
3812   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3813       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3814     return OFK_Never;
3815 
3816   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3817     KnownBits N0Known = computeKnownBits(N0);
3818 
3819     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3820       return OFK_Never;
3821   }
3822 
3823   return OFK_Sometime;
3824 }
3825 
3826 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3827   EVT OpVT = Val.getValueType();
3828   unsigned BitWidth = OpVT.getScalarSizeInBits();
3829 
3830   // Is the constant a known power of 2?
3831   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3832     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3833 
3834   // A left-shift of a constant one will have exactly one bit set because
3835   // shifting the bit off the end is undefined.
3836   if (Val.getOpcode() == ISD::SHL) {
3837     auto *C = isConstOrConstSplat(Val.getOperand(0));
3838     if (C && C->getAPIntValue() == 1)
3839       return true;
3840   }
3841 
3842   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3843   // one bit set.
3844   if (Val.getOpcode() == ISD::SRL) {
3845     auto *C = isConstOrConstSplat(Val.getOperand(0));
3846     if (C && C->getAPIntValue().isSignMask())
3847       return true;
3848   }
3849 
3850   // Are all operands of a build vector constant powers of two?
3851   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3852     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3853           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3854             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3855           return false;
3856         }))
3857       return true;
3858 
3859   // Is the operand of a splat vector a constant power of two?
3860   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3861     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3862       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3863         return true;
3864 
3865   // More could be done here, though the above checks are enough
3866   // to handle some common cases.
3867 
3868   // Fall back to computeKnownBits to catch other known cases.
3869   KnownBits Known = computeKnownBits(Val);
3870   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3871 }
3872 
3873 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3874   EVT VT = Op.getValueType();
3875 
3876   // TODO: Assume we don't know anything for now.
3877   if (VT.isScalableVector())
3878     return 1;
3879 
3880   APInt DemandedElts = VT.isVector()
3881                            ? APInt::getAllOnes(VT.getVectorNumElements())
3882                            : APInt(1, 1);
3883   return ComputeNumSignBits(Op, DemandedElts, Depth);
3884 }
3885 
3886 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3887                                           unsigned Depth) const {
3888   EVT VT = Op.getValueType();
3889   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3890   unsigned VTBits = VT.getScalarSizeInBits();
3891   unsigned NumElts = DemandedElts.getBitWidth();
3892   unsigned Tmp, Tmp2;
3893   unsigned FirstAnswer = 1;
3894 
3895   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3896     const APInt &Val = C->getAPIntValue();
3897     return Val.getNumSignBits();
3898   }
3899 
3900   if (Depth >= MaxRecursionDepth)
3901     return 1;  // Limit search depth.
3902 
3903   if (!DemandedElts || VT.isScalableVector())
3904     return 1;  // No demanded elts, better to assume we don't know anything.
3905 
3906   unsigned Opcode = Op.getOpcode();
3907   switch (Opcode) {
3908   default: break;
3909   case ISD::AssertSext:
3910     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3911     return VTBits-Tmp+1;
3912   case ISD::AssertZext:
3913     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3914     return VTBits-Tmp;
3915 
3916   case ISD::BUILD_VECTOR:
3917     Tmp = VTBits;
3918     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3919       if (!DemandedElts[i])
3920         continue;
3921 
3922       SDValue SrcOp = Op.getOperand(i);
3923       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3924 
3925       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3926       if (SrcOp.getValueSizeInBits() != VTBits) {
3927         assert(SrcOp.getValueSizeInBits() > VTBits &&
3928                "Expected BUILD_VECTOR implicit truncation");
3929         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3930         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3931       }
3932       Tmp = std::min(Tmp, Tmp2);
3933     }
3934     return Tmp;
3935 
3936   case ISD::VECTOR_SHUFFLE: {
3937     // Collect the minimum number of sign bits that are shared by every vector
3938     // element referenced by the shuffle.
3939     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3940     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3941     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3942     for (unsigned i = 0; i != NumElts; ++i) {
3943       int M = SVN->getMaskElt(i);
3944       if (!DemandedElts[i])
3945         continue;
3946       // For UNDEF elements, we don't know anything about the common state of
3947       // the shuffle result.
3948       if (M < 0)
3949         return 1;
3950       if ((unsigned)M < NumElts)
3951         DemandedLHS.setBit((unsigned)M % NumElts);
3952       else
3953         DemandedRHS.setBit((unsigned)M % NumElts);
3954     }
3955     Tmp = std::numeric_limits<unsigned>::max();
3956     if (!!DemandedLHS)
3957       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3958     if (!!DemandedRHS) {
3959       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3960       Tmp = std::min(Tmp, Tmp2);
3961     }
3962     // If we don't know anything, early out and try computeKnownBits fall-back.
3963     if (Tmp == 1)
3964       break;
3965     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3966     return Tmp;
3967   }
3968 
3969   case ISD::BITCAST: {
3970     SDValue N0 = Op.getOperand(0);
3971     EVT SrcVT = N0.getValueType();
3972     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3973 
3974     // Ignore bitcasts from unsupported types..
3975     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3976       break;
3977 
3978     // Fast handling of 'identity' bitcasts.
3979     if (VTBits == SrcBits)
3980       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3981 
3982     bool IsLE = getDataLayout().isLittleEndian();
3983 
3984     // Bitcast 'large element' scalar/vector to 'small element' vector.
3985     if ((SrcBits % VTBits) == 0) {
3986       assert(VT.isVector() && "Expected bitcast to vector");
3987 
3988       unsigned Scale = SrcBits / VTBits;
3989       APInt SrcDemandedElts =
3990           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3991 
3992       // Fast case - sign splat can be simply split across the small elements.
3993       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3994       if (Tmp == SrcBits)
3995         return VTBits;
3996 
3997       // Slow case - determine how far the sign extends into each sub-element.
3998       Tmp2 = VTBits;
3999       for (unsigned i = 0; i != NumElts; ++i)
4000         if (DemandedElts[i]) {
4001           unsigned SubOffset = i % Scale;
4002           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4003           SubOffset = SubOffset * VTBits;
4004           if (Tmp <= SubOffset)
4005             return 1;
4006           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4007         }
4008       return Tmp2;
4009     }
4010     break;
4011   }
4012 
4013   case ISD::FP_TO_SINT_SAT:
4014     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4015     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4016     return VTBits - Tmp + 1;
4017   case ISD::SIGN_EXTEND:
4018     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4019     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4020   case ISD::SIGN_EXTEND_INREG:
4021     // Max of the input and what this extends.
4022     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4023     Tmp = VTBits-Tmp+1;
4024     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4025     return std::max(Tmp, Tmp2);
4026   case ISD::SIGN_EXTEND_VECTOR_INREG: {
4027     SDValue Src = Op.getOperand(0);
4028     EVT SrcVT = Src.getValueType();
4029     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4030     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4031     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4032   }
4033   case ISD::SRA:
4034     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4035     // SRA X, C -> adds C sign bits.
4036     if (const APInt *ShAmt =
4037             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4038       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4039     return Tmp;
4040   case ISD::SHL:
4041     if (const APInt *ShAmt =
4042             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4043       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4044       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4045       if (ShAmt->ult(Tmp))
4046         return Tmp - ShAmt->getZExtValue();
4047     }
4048     break;
4049   case ISD::AND:
4050   case ISD::OR:
4051   case ISD::XOR:    // NOT is handled here.
4052     // Logical binary ops preserve the number of sign bits at the worst.
4053     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4054     if (Tmp != 1) {
4055       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4056       FirstAnswer = std::min(Tmp, Tmp2);
4057       // We computed what we know about the sign bits as our first
4058       // answer. Now proceed to the generic code that uses
4059       // computeKnownBits, and pick whichever answer is better.
4060     }
4061     break;
4062 
4063   case ISD::SELECT:
4064   case ISD::VSELECT:
4065     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4066     if (Tmp == 1) return 1;  // Early out.
4067     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4068     return std::min(Tmp, Tmp2);
4069   case ISD::SELECT_CC:
4070     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4071     if (Tmp == 1) return 1;  // Early out.
4072     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4073     return std::min(Tmp, Tmp2);
4074 
4075   case ISD::SMIN:
4076   case ISD::SMAX: {
4077     // If we have a clamp pattern, we know that the number of sign bits will be
4078     // the minimum of the clamp min/max range.
4079     bool IsMax = (Opcode == ISD::SMAX);
4080     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4081     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4082       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4083         CstHigh =
4084             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4085     if (CstLow && CstHigh) {
4086       if (!IsMax)
4087         std::swap(CstLow, CstHigh);
4088       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4089         Tmp = CstLow->getAPIntValue().getNumSignBits();
4090         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4091         return std::min(Tmp, Tmp2);
4092       }
4093     }
4094 
4095     // Fallback - just get the minimum number of sign bits of the operands.
4096     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4097     if (Tmp == 1)
4098       return 1;  // Early out.
4099     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4100     return std::min(Tmp, Tmp2);
4101   }
4102   case ISD::UMIN:
4103   case ISD::UMAX:
4104     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4105     if (Tmp == 1)
4106       return 1;  // Early out.
4107     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4108     return std::min(Tmp, Tmp2);
4109   case ISD::SADDO:
4110   case ISD::UADDO:
4111   case ISD::SSUBO:
4112   case ISD::USUBO:
4113   case ISD::SMULO:
4114   case ISD::UMULO:
4115     if (Op.getResNo() != 1)
4116       break;
4117     // The boolean result conforms to getBooleanContents.  Fall through.
4118     // If setcc returns 0/-1, all bits are sign bits.
4119     // We know that we have an integer-based boolean since these operations
4120     // are only available for integer.
4121     if (TLI->getBooleanContents(VT.isVector(), false) ==
4122         TargetLowering::ZeroOrNegativeOneBooleanContent)
4123       return VTBits;
4124     break;
4125   case ISD::SETCC:
4126   case ISD::STRICT_FSETCC:
4127   case ISD::STRICT_FSETCCS: {
4128     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4129     // If setcc returns 0/-1, all bits are sign bits.
4130     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4131         TargetLowering::ZeroOrNegativeOneBooleanContent)
4132       return VTBits;
4133     break;
4134   }
4135   case ISD::ROTL:
4136   case ISD::ROTR:
4137     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4138 
4139     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4140     if (Tmp == VTBits)
4141       return VTBits;
4142 
4143     if (ConstantSDNode *C =
4144             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4145       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4146 
4147       // Handle rotate right by N like a rotate left by 32-N.
4148       if (Opcode == ISD::ROTR)
4149         RotAmt = (VTBits - RotAmt) % VTBits;
4150 
4151       // If we aren't rotating out all of the known-in sign bits, return the
4152       // number that are left.  This handles rotl(sext(x), 1) for example.
4153       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4154     }
4155     break;
4156   case ISD::ADD:
4157   case ISD::ADDC:
4158     // Add can have at most one carry bit.  Thus we know that the output
4159     // is, at worst, one more bit than the inputs.
4160     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4161     if (Tmp == 1) return 1; // Early out.
4162 
4163     // Special case decrementing a value (ADD X, -1):
4164     if (ConstantSDNode *CRHS =
4165             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4166       if (CRHS->isAllOnes()) {
4167         KnownBits Known =
4168             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4169 
4170         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4171         // sign bits set.
4172         if ((Known.Zero | 1).isAllOnes())
4173           return VTBits;
4174 
4175         // If we are subtracting one from a positive number, there is no carry
4176         // out of the result.
4177         if (Known.isNonNegative())
4178           return Tmp;
4179       }
4180 
4181     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4182     if (Tmp2 == 1) return 1; // Early out.
4183     return std::min(Tmp, Tmp2) - 1;
4184   case ISD::SUB:
4185     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4186     if (Tmp2 == 1) return 1; // Early out.
4187 
4188     // Handle NEG.
4189     if (ConstantSDNode *CLHS =
4190             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4191       if (CLHS->isZero()) {
4192         KnownBits Known =
4193             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4194         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4195         // sign bits set.
4196         if ((Known.Zero | 1).isAllOnes())
4197           return VTBits;
4198 
4199         // If the input is known to be positive (the sign bit is known clear),
4200         // the output of the NEG has the same number of sign bits as the input.
4201         if (Known.isNonNegative())
4202           return Tmp2;
4203 
4204         // Otherwise, we treat this like a SUB.
4205       }
4206 
4207     // Sub can have at most one carry bit.  Thus we know that the output
4208     // is, at worst, one more bit than the inputs.
4209     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4210     if (Tmp == 1) return 1; // Early out.
4211     return std::min(Tmp, Tmp2) - 1;
4212   case ISD::MUL: {
4213     // The output of the Mul can be at most twice the valid bits in the inputs.
4214     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4215     if (SignBitsOp0 == 1)
4216       break;
4217     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4218     if (SignBitsOp1 == 1)
4219       break;
4220     unsigned OutValidBits =
4221         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4222     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4223   }
4224   case ISD::SREM:
4225     // The sign bit is the LHS's sign bit, except when the result of the
4226     // remainder is zero. The magnitude of the result should be less than or
4227     // equal to the magnitude of the LHS. Therefore, the result should have
4228     // at least as many sign bits as the left hand side.
4229     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4230   case ISD::TRUNCATE: {
4231     // Check if the sign bits of source go down as far as the truncated value.
4232     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4233     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4234     if (NumSrcSignBits > (NumSrcBits - VTBits))
4235       return NumSrcSignBits - (NumSrcBits - VTBits);
4236     break;
4237   }
4238   case ISD::EXTRACT_ELEMENT: {
4239     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4240     const int BitWidth = Op.getValueSizeInBits();
4241     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4242 
4243     // Get reverse index (starting from 1), Op1 value indexes elements from
4244     // little end. Sign starts at big end.
4245     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4246 
4247     // If the sign portion ends in our element the subtraction gives correct
4248     // result. Otherwise it gives either negative or > bitwidth result
4249     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4250   }
4251   case ISD::INSERT_VECTOR_ELT: {
4252     // If we know the element index, split the demand between the
4253     // source vector and the inserted element, otherwise assume we need
4254     // the original demanded vector elements and the value.
4255     SDValue InVec = Op.getOperand(0);
4256     SDValue InVal = Op.getOperand(1);
4257     SDValue EltNo = Op.getOperand(2);
4258     bool DemandedVal = true;
4259     APInt DemandedVecElts = DemandedElts;
4260     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4261     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4262       unsigned EltIdx = CEltNo->getZExtValue();
4263       DemandedVal = !!DemandedElts[EltIdx];
4264       DemandedVecElts.clearBit(EltIdx);
4265     }
4266     Tmp = std::numeric_limits<unsigned>::max();
4267     if (DemandedVal) {
4268       // TODO - handle implicit truncation of inserted elements.
4269       if (InVal.getScalarValueSizeInBits() != VTBits)
4270         break;
4271       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4272       Tmp = std::min(Tmp, Tmp2);
4273     }
4274     if (!!DemandedVecElts) {
4275       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4276       Tmp = std::min(Tmp, Tmp2);
4277     }
4278     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4279     return Tmp;
4280   }
4281   case ISD::EXTRACT_VECTOR_ELT: {
4282     SDValue InVec = Op.getOperand(0);
4283     SDValue EltNo = Op.getOperand(1);
4284     EVT VecVT = InVec.getValueType();
4285     // ComputeNumSignBits not yet implemented for scalable vectors.
4286     if (VecVT.isScalableVector())
4287       break;
4288     const unsigned BitWidth = Op.getValueSizeInBits();
4289     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4290     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4291 
4292     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4293     // anything about sign bits. But if the sizes match we can derive knowledge
4294     // about sign bits from the vector operand.
4295     if (BitWidth != EltBitWidth)
4296       break;
4297 
4298     // If we know the element index, just demand that vector element, else for
4299     // an unknown element index, ignore DemandedElts and demand them all.
4300     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4301     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4302     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4303       DemandedSrcElts =
4304           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4305 
4306     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4307   }
4308   case ISD::EXTRACT_SUBVECTOR: {
4309     // Offset the demanded elts by the subvector index.
4310     SDValue Src = Op.getOperand(0);
4311     // Bail until we can represent demanded elements for scalable vectors.
4312     if (Src.getValueType().isScalableVector())
4313       break;
4314     uint64_t Idx = Op.getConstantOperandVal(1);
4315     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4316     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
4317     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4318   }
4319   case ISD::CONCAT_VECTORS: {
4320     // Determine the minimum number of sign bits across all demanded
4321     // elts of the input vectors. Early out if the result is already 1.
4322     Tmp = std::numeric_limits<unsigned>::max();
4323     EVT SubVectorVT = Op.getOperand(0).getValueType();
4324     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4325     unsigned NumSubVectors = Op.getNumOperands();
4326     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4327       APInt DemandedSub =
4328           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4329       if (!DemandedSub)
4330         continue;
4331       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4332       Tmp = std::min(Tmp, Tmp2);
4333     }
4334     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4335     return Tmp;
4336   }
4337   case ISD::INSERT_SUBVECTOR: {
4338     // Demand any elements from the subvector and the remainder from the src its
4339     // inserted into.
4340     SDValue Src = Op.getOperand(0);
4341     SDValue Sub = Op.getOperand(1);
4342     uint64_t Idx = Op.getConstantOperandVal(2);
4343     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4344     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4345     APInt DemandedSrcElts = DemandedElts;
4346     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4347 
4348     Tmp = std::numeric_limits<unsigned>::max();
4349     if (!!DemandedSubElts) {
4350       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4351       if (Tmp == 1)
4352         return 1; // early-out
4353     }
4354     if (!!DemandedSrcElts) {
4355       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4356       Tmp = std::min(Tmp, Tmp2);
4357     }
4358     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4359     return Tmp;
4360   }
4361   case ISD::ATOMIC_CMP_SWAP:
4362   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4363   case ISD::ATOMIC_SWAP:
4364   case ISD::ATOMIC_LOAD_ADD:
4365   case ISD::ATOMIC_LOAD_SUB:
4366   case ISD::ATOMIC_LOAD_AND:
4367   case ISD::ATOMIC_LOAD_CLR:
4368   case ISD::ATOMIC_LOAD_OR:
4369   case ISD::ATOMIC_LOAD_XOR:
4370   case ISD::ATOMIC_LOAD_NAND:
4371   case ISD::ATOMIC_LOAD_MIN:
4372   case ISD::ATOMIC_LOAD_MAX:
4373   case ISD::ATOMIC_LOAD_UMIN:
4374   case ISD::ATOMIC_LOAD_UMAX:
4375   case ISD::ATOMIC_LOAD: {
4376     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4377     // If we are looking at the loaded value.
4378     if (Op.getResNo() == 0) {
4379       if (Tmp == VTBits)
4380         return 1; // early-out
4381       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4382         return VTBits - Tmp + 1;
4383       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4384         return VTBits - Tmp;
4385     }
4386     break;
4387   }
4388   }
4389 
4390   // If we are looking at the loaded value of the SDNode.
4391   if (Op.getResNo() == 0) {
4392     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4393     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4394       unsigned ExtType = LD->getExtensionType();
4395       switch (ExtType) {
4396       default: break;
4397       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4398         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4399         return VTBits - Tmp + 1;
4400       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4401         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4402         return VTBits - Tmp;
4403       case ISD::NON_EXTLOAD:
4404         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4405           // We only need to handle vectors - computeKnownBits should handle
4406           // scalar cases.
4407           Type *CstTy = Cst->getType();
4408           if (CstTy->isVectorTy() &&
4409               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4410               VTBits == CstTy->getScalarSizeInBits()) {
4411             Tmp = VTBits;
4412             for (unsigned i = 0; i != NumElts; ++i) {
4413               if (!DemandedElts[i])
4414                 continue;
4415               if (Constant *Elt = Cst->getAggregateElement(i)) {
4416                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4417                   const APInt &Value = CInt->getValue();
4418                   Tmp = std::min(Tmp, Value.getNumSignBits());
4419                   continue;
4420                 }
4421                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4422                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4423                   Tmp = std::min(Tmp, Value.getNumSignBits());
4424                   continue;
4425                 }
4426               }
4427               // Unknown type. Conservatively assume no bits match sign bit.
4428               return 1;
4429             }
4430             return Tmp;
4431           }
4432         }
4433         break;
4434       }
4435     }
4436   }
4437 
4438   // Allow the target to implement this method for its nodes.
4439   if (Opcode >= ISD::BUILTIN_OP_END ||
4440       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4441       Opcode == ISD::INTRINSIC_W_CHAIN ||
4442       Opcode == ISD::INTRINSIC_VOID) {
4443     unsigned NumBits =
4444         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4445     if (NumBits > 1)
4446       FirstAnswer = std::max(FirstAnswer, NumBits);
4447   }
4448 
4449   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4450   // use this information.
4451   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4452   return std::max(FirstAnswer, Known.countMinSignBits());
4453 }
4454 
4455 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4456                                                  unsigned Depth) const {
4457   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4458   return Op.getScalarValueSizeInBits() - SignBits + 1;
4459 }
4460 
4461 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4462                                                  const APInt &DemandedElts,
4463                                                  unsigned Depth) const {
4464   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4465   return Op.getScalarValueSizeInBits() - SignBits + 1;
4466 }
4467 
4468 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4469                                                     unsigned Depth) const {
4470   // Early out for FREEZE.
4471   if (Op.getOpcode() == ISD::FREEZE)
4472     return true;
4473 
4474   // TODO: Assume we don't know anything for now.
4475   EVT VT = Op.getValueType();
4476   if (VT.isScalableVector())
4477     return false;
4478 
4479   APInt DemandedElts = VT.isVector()
4480                            ? APInt::getAllOnes(VT.getVectorNumElements())
4481                            : APInt(1, 1);
4482   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4483 }
4484 
4485 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4486                                                     const APInt &DemandedElts,
4487                                                     bool PoisonOnly,
4488                                                     unsigned Depth) const {
4489   unsigned Opcode = Op.getOpcode();
4490 
4491   // Early out for FREEZE.
4492   if (Opcode == ISD::FREEZE)
4493     return true;
4494 
4495   if (Depth >= MaxRecursionDepth)
4496     return false; // Limit search depth.
4497 
4498   if (isIntOrFPConstant(Op))
4499     return true;
4500 
4501   switch (Opcode) {
4502   case ISD::UNDEF:
4503     return PoisonOnly;
4504 
4505   case ISD::BUILD_VECTOR:
4506     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4507     // this shouldn't affect the result.
4508     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4509       if (!DemandedElts[i])
4510         continue;
4511       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4512                                             Depth + 1))
4513         return false;
4514     }
4515     return true;
4516 
4517   // TODO: Search for noundef attributes from library functions.
4518 
4519   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4520 
4521   default:
4522     // Allow the target to implement this method for its nodes.
4523     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4524         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4525       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4526           Op, DemandedElts, *this, PoisonOnly, Depth);
4527     break;
4528   }
4529 
4530   return false;
4531 }
4532 
4533 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4534   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4535       !isa<ConstantSDNode>(Op.getOperand(1)))
4536     return false;
4537 
4538   if (Op.getOpcode() == ISD::OR &&
4539       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4540     return false;
4541 
4542   return true;
4543 }
4544 
4545 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4546   // If we're told that NaNs won't happen, assume they won't.
4547   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4548     return true;
4549 
4550   if (Depth >= MaxRecursionDepth)
4551     return false; // Limit search depth.
4552 
4553   // TODO: Handle vectors.
4554   // If the value is a constant, we can obviously see if it is a NaN or not.
4555   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4556     return !C->getValueAPF().isNaN() ||
4557            (SNaN && !C->getValueAPF().isSignaling());
4558   }
4559 
4560   unsigned Opcode = Op.getOpcode();
4561   switch (Opcode) {
4562   case ISD::FADD:
4563   case ISD::FSUB:
4564   case ISD::FMUL:
4565   case ISD::FDIV:
4566   case ISD::FREM:
4567   case ISD::FSIN:
4568   case ISD::FCOS: {
4569     if (SNaN)
4570       return true;
4571     // TODO: Need isKnownNeverInfinity
4572     return false;
4573   }
4574   case ISD::FCANONICALIZE:
4575   case ISD::FEXP:
4576   case ISD::FEXP2:
4577   case ISD::FTRUNC:
4578   case ISD::FFLOOR:
4579   case ISD::FCEIL:
4580   case ISD::FROUND:
4581   case ISD::FROUNDEVEN:
4582   case ISD::FRINT:
4583   case ISD::FNEARBYINT: {
4584     if (SNaN)
4585       return true;
4586     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4587   }
4588   case ISD::FABS:
4589   case ISD::FNEG:
4590   case ISD::FCOPYSIGN: {
4591     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4592   }
4593   case ISD::SELECT:
4594     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4595            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4596   case ISD::FP_EXTEND:
4597   case ISD::FP_ROUND: {
4598     if (SNaN)
4599       return true;
4600     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4601   }
4602   case ISD::SINT_TO_FP:
4603   case ISD::UINT_TO_FP:
4604     return true;
4605   case ISD::FMA:
4606   case ISD::FMAD: {
4607     if (SNaN)
4608       return true;
4609     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4610            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4611            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4612   }
4613   case ISD::FSQRT: // Need is known positive
4614   case ISD::FLOG:
4615   case ISD::FLOG2:
4616   case ISD::FLOG10:
4617   case ISD::FPOWI:
4618   case ISD::FPOW: {
4619     if (SNaN)
4620       return true;
4621     // TODO: Refine on operand
4622     return false;
4623   }
4624   case ISD::FMINNUM:
4625   case ISD::FMAXNUM: {
4626     // Only one needs to be known not-nan, since it will be returned if the
4627     // other ends up being one.
4628     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4629            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4630   }
4631   case ISD::FMINNUM_IEEE:
4632   case ISD::FMAXNUM_IEEE: {
4633     if (SNaN)
4634       return true;
4635     // This can return a NaN if either operand is an sNaN, or if both operands
4636     // are NaN.
4637     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4638             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4639            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4640             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4641   }
4642   case ISD::FMINIMUM:
4643   case ISD::FMAXIMUM: {
4644     // TODO: Does this quiet or return the origina NaN as-is?
4645     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4646            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4647   }
4648   case ISD::EXTRACT_VECTOR_ELT: {
4649     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4650   }
4651   default:
4652     if (Opcode >= ISD::BUILTIN_OP_END ||
4653         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4654         Opcode == ISD::INTRINSIC_W_CHAIN ||
4655         Opcode == ISD::INTRINSIC_VOID) {
4656       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4657     }
4658 
4659     return false;
4660   }
4661 }
4662 
4663 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4664   assert(Op.getValueType().isFloatingPoint() &&
4665          "Floating point type expected");
4666 
4667   // If the value is a constant, we can obviously see if it is a zero or not.
4668   // TODO: Add BuildVector support.
4669   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4670     return !C->isZero();
4671   return false;
4672 }
4673 
4674 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4675   assert(!Op.getValueType().isFloatingPoint() &&
4676          "Floating point types unsupported - use isKnownNeverZeroFloat");
4677 
4678   // If the value is a constant, we can obviously see if it is a zero or not.
4679   if (ISD::matchUnaryPredicate(Op,
4680                                [](ConstantSDNode *C) { return !C->isZero(); }))
4681     return true;
4682 
4683   // TODO: Recognize more cases here.
4684   switch (Op.getOpcode()) {
4685   default: break;
4686   case ISD::OR:
4687     if (isKnownNeverZero(Op.getOperand(1)) ||
4688         isKnownNeverZero(Op.getOperand(0)))
4689       return true;
4690     break;
4691   }
4692 
4693   return false;
4694 }
4695 
4696 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4697   // Check the obvious case.
4698   if (A == B) return true;
4699 
4700   // For for negative and positive zero.
4701   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4702     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4703       if (CA->isZero() && CB->isZero()) return true;
4704 
4705   // Otherwise they may not be equal.
4706   return false;
4707 }
4708 
4709 // Only bits set in Mask must be negated, other bits may be arbitrary.
4710 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
4711   if (isBitwiseNot(V, AllowUndefs))
4712     return V.getOperand(0);
4713 
4714   // Handle any_extend (not (truncate X)) pattern, where Mask only sets
4715   // bits in the non-extended part.
4716   ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
4717   if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
4718     return SDValue();
4719   SDValue ExtArg = V.getOperand(0);
4720   if (ExtArg.getScalarValueSizeInBits() >=
4721           MaskC->getAPIntValue().getActiveBits() &&
4722       isBitwiseNot(ExtArg, AllowUndefs) &&
4723       ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4724       ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
4725     return ExtArg.getOperand(0).getOperand(0);
4726   return SDValue();
4727 }
4728 
4729 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
4730   // Match masked merge pattern (X & ~M) op (Y & M)
4731   // Including degenerate case (X & ~M) op M
4732   auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
4733                                       SDValue Other) {
4734     if (SDValue NotOperand =
4735             getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
4736       if (Other == NotOperand)
4737         return true;
4738       if (Other->getOpcode() == ISD::AND)
4739         return NotOperand == Other->getOperand(0) ||
4740                NotOperand == Other->getOperand(1);
4741     }
4742     return false;
4743   };
4744   if (A->getOpcode() == ISD::AND)
4745     return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
4746            MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
4747   return false;
4748 }
4749 
4750 // FIXME: unify with llvm::haveNoCommonBitsSet.
4751 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4752   assert(A.getValueType() == B.getValueType() &&
4753          "Values must have the same type");
4754   if (haveNoCommonBitsSetCommutative(A, B) ||
4755       haveNoCommonBitsSetCommutative(B, A))
4756     return true;
4757   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4758                                         computeKnownBits(B));
4759 }
4760 
4761 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4762                                SelectionDAG &DAG) {
4763   if (cast<ConstantSDNode>(Step)->isZero())
4764     return DAG.getConstant(0, DL, VT);
4765 
4766   return SDValue();
4767 }
4768 
4769 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4770                                 ArrayRef<SDValue> Ops,
4771                                 SelectionDAG &DAG) {
4772   int NumOps = Ops.size();
4773   assert(NumOps != 0 && "Can't build an empty vector!");
4774   assert(!VT.isScalableVector() &&
4775          "BUILD_VECTOR cannot be used with scalable types");
4776   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4777          "Incorrect element count in BUILD_VECTOR!");
4778 
4779   // BUILD_VECTOR of UNDEFs is UNDEF.
4780   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4781     return DAG.getUNDEF(VT);
4782 
4783   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4784   SDValue IdentitySrc;
4785   bool IsIdentity = true;
4786   for (int i = 0; i != NumOps; ++i) {
4787     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4788         Ops[i].getOperand(0).getValueType() != VT ||
4789         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4790         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4791         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4792       IsIdentity = false;
4793       break;
4794     }
4795     IdentitySrc = Ops[i].getOperand(0);
4796   }
4797   if (IsIdentity)
4798     return IdentitySrc;
4799 
4800   return SDValue();
4801 }
4802 
4803 /// Try to simplify vector concatenation to an input value, undef, or build
4804 /// vector.
4805 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4806                                   ArrayRef<SDValue> Ops,
4807                                   SelectionDAG &DAG) {
4808   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4809   assert(llvm::all_of(Ops,
4810                       [Ops](SDValue Op) {
4811                         return Ops[0].getValueType() == Op.getValueType();
4812                       }) &&
4813          "Concatenation of vectors with inconsistent value types!");
4814   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4815              VT.getVectorElementCount() &&
4816          "Incorrect element count in vector concatenation!");
4817 
4818   if (Ops.size() == 1)
4819     return Ops[0];
4820 
4821   // Concat of UNDEFs is UNDEF.
4822   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4823     return DAG.getUNDEF(VT);
4824 
4825   // Scan the operands and look for extract operations from a single source
4826   // that correspond to insertion at the same location via this concatenation:
4827   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4828   SDValue IdentitySrc;
4829   bool IsIdentity = true;
4830   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4831     SDValue Op = Ops[i];
4832     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4833     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4834         Op.getOperand(0).getValueType() != VT ||
4835         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4836         Op.getConstantOperandVal(1) != IdentityIndex) {
4837       IsIdentity = false;
4838       break;
4839     }
4840     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4841            "Unexpected identity source vector for concat of extracts");
4842     IdentitySrc = Op.getOperand(0);
4843   }
4844   if (IsIdentity) {
4845     assert(IdentitySrc && "Failed to set source vector of extracts");
4846     return IdentitySrc;
4847   }
4848 
4849   // The code below this point is only designed to work for fixed width
4850   // vectors, so we bail out for now.
4851   if (VT.isScalableVector())
4852     return SDValue();
4853 
4854   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4855   // simplified to one big BUILD_VECTOR.
4856   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4857   EVT SVT = VT.getScalarType();
4858   SmallVector<SDValue, 16> Elts;
4859   for (SDValue Op : Ops) {
4860     EVT OpVT = Op.getValueType();
4861     if (Op.isUndef())
4862       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4863     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4864       Elts.append(Op->op_begin(), Op->op_end());
4865     else
4866       return SDValue();
4867   }
4868 
4869   // BUILD_VECTOR requires all inputs to be of the same type, find the
4870   // maximum type and extend them all.
4871   for (SDValue Op : Elts)
4872     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4873 
4874   if (SVT.bitsGT(VT.getScalarType())) {
4875     for (SDValue &Op : Elts) {
4876       if (Op.isUndef())
4877         Op = DAG.getUNDEF(SVT);
4878       else
4879         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4880                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4881                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4882     }
4883   }
4884 
4885   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4886   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4887   return V;
4888 }
4889 
4890 /// Gets or creates the specified node.
4891 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4892   FoldingSetNodeID ID;
4893   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4894   void *IP = nullptr;
4895   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4896     return SDValue(E, 0);
4897 
4898   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4899                               getVTList(VT));
4900   CSEMap.InsertNode(N, IP);
4901 
4902   InsertNode(N);
4903   SDValue V = SDValue(N, 0);
4904   NewSDValueDbgMsg(V, "Creating new node: ", this);
4905   return V;
4906 }
4907 
4908 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4909                               SDValue Operand) {
4910   SDNodeFlags Flags;
4911   if (Inserter)
4912     Flags = Inserter->getFlags();
4913   return getNode(Opcode, DL, VT, Operand, Flags);
4914 }
4915 
4916 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4917                               SDValue Operand, const SDNodeFlags Flags) {
4918   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4919          "Operand is DELETED_NODE!");
4920   // Constant fold unary operations with an integer constant operand. Even
4921   // opaque constant will be folded, because the folding of unary operations
4922   // doesn't create new constants with different values. Nevertheless, the
4923   // opaque flag is preserved during folding to prevent future folding with
4924   // other constants.
4925   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4926     const APInt &Val = C->getAPIntValue();
4927     switch (Opcode) {
4928     default: break;
4929     case ISD::SIGN_EXTEND:
4930       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4931                          C->isTargetOpcode(), C->isOpaque());
4932     case ISD::TRUNCATE:
4933       if (C->isOpaque())
4934         break;
4935       LLVM_FALLTHROUGH;
4936     case ISD::ZERO_EXTEND:
4937       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4938                          C->isTargetOpcode(), C->isOpaque());
4939     case ISD::ANY_EXTEND:
4940       // Some targets like RISCV prefer to sign extend some types.
4941       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4942         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4943                            C->isTargetOpcode(), C->isOpaque());
4944       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4945                          C->isTargetOpcode(), C->isOpaque());
4946     case ISD::UINT_TO_FP:
4947     case ISD::SINT_TO_FP: {
4948       APFloat apf(EVTToAPFloatSemantics(VT),
4949                   APInt::getZero(VT.getSizeInBits()));
4950       (void)apf.convertFromAPInt(Val,
4951                                  Opcode==ISD::SINT_TO_FP,
4952                                  APFloat::rmNearestTiesToEven);
4953       return getConstantFP(apf, DL, VT);
4954     }
4955     case ISD::BITCAST:
4956       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4957         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4958       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4959         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4960       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4961         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4962       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4963         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4964       break;
4965     case ISD::ABS:
4966       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4967                          C->isOpaque());
4968     case ISD::BITREVERSE:
4969       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4970                          C->isOpaque());
4971     case ISD::BSWAP:
4972       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4973                          C->isOpaque());
4974     case ISD::CTPOP:
4975       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4976                          C->isOpaque());
4977     case ISD::CTLZ:
4978     case ISD::CTLZ_ZERO_UNDEF:
4979       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4980                          C->isOpaque());
4981     case ISD::CTTZ:
4982     case ISD::CTTZ_ZERO_UNDEF:
4983       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4984                          C->isOpaque());
4985     case ISD::FP16_TO_FP:
4986     case ISD::BF16_TO_FP: {
4987       bool Ignored;
4988       APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
4989                                             : APFloat::BFloat(),
4990                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4991 
4992       // This can return overflow, underflow, or inexact; we don't care.
4993       // FIXME need to be more flexible about rounding mode.
4994       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4995                         APFloat::rmNearestTiesToEven, &Ignored);
4996       return getConstantFP(FPV, DL, VT);
4997     }
4998     case ISD::STEP_VECTOR: {
4999       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
5000         return V;
5001       break;
5002     }
5003     }
5004   }
5005 
5006   // Constant fold unary operations with a floating point constant operand.
5007   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
5008     APFloat V = C->getValueAPF();    // make copy
5009     switch (Opcode) {
5010     case ISD::FNEG:
5011       V.changeSign();
5012       return getConstantFP(V, DL, VT);
5013     case ISD::FABS:
5014       V.clearSign();
5015       return getConstantFP(V, DL, VT);
5016     case ISD::FCEIL: {
5017       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
5018       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5019         return getConstantFP(V, DL, VT);
5020       break;
5021     }
5022     case ISD::FTRUNC: {
5023       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
5024       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5025         return getConstantFP(V, DL, VT);
5026       break;
5027     }
5028     case ISD::FFLOOR: {
5029       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
5030       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5031         return getConstantFP(V, DL, VT);
5032       break;
5033     }
5034     case ISD::FP_EXTEND: {
5035       bool ignored;
5036       // This can return overflow, underflow, or inexact; we don't care.
5037       // FIXME need to be more flexible about rounding mode.
5038       (void)V.convert(EVTToAPFloatSemantics(VT),
5039                       APFloat::rmNearestTiesToEven, &ignored);
5040       return getConstantFP(V, DL, VT);
5041     }
5042     case ISD::FP_TO_SINT:
5043     case ISD::FP_TO_UINT: {
5044       bool ignored;
5045       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
5046       // FIXME need to be more flexible about rounding mode.
5047       APFloat::opStatus s =
5048           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
5049       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
5050         break;
5051       return getConstant(IntVal, DL, VT);
5052     }
5053     case ISD::BITCAST:
5054       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
5055         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5056       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
5057         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5058       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5059         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5060       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5061         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5062       break;
5063     case ISD::FP_TO_FP16:
5064     case ISD::FP_TO_BF16: {
5065       bool Ignored;
5066       // This can return overflow, underflow, or inexact; we don't care.
5067       // FIXME need to be more flexible about rounding mode.
5068       (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
5069                                                 : APFloat::BFloat(),
5070                       APFloat::rmNearestTiesToEven, &Ignored);
5071       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5072     }
5073     }
5074   }
5075 
5076   // Constant fold unary operations with a vector integer or float operand.
5077   switch (Opcode) {
5078   default:
5079     // FIXME: Entirely reasonable to perform folding of other unary
5080     // operations here as the need arises.
5081     break;
5082   case ISD::FNEG:
5083   case ISD::FABS:
5084   case ISD::FCEIL:
5085   case ISD::FTRUNC:
5086   case ISD::FFLOOR:
5087   case ISD::FP_EXTEND:
5088   case ISD::FP_TO_SINT:
5089   case ISD::FP_TO_UINT:
5090   case ISD::TRUNCATE:
5091   case ISD::ANY_EXTEND:
5092   case ISD::ZERO_EXTEND:
5093   case ISD::SIGN_EXTEND:
5094   case ISD::UINT_TO_FP:
5095   case ISD::SINT_TO_FP:
5096   case ISD::ABS:
5097   case ISD::BITREVERSE:
5098   case ISD::BSWAP:
5099   case ISD::CTLZ:
5100   case ISD::CTLZ_ZERO_UNDEF:
5101   case ISD::CTTZ:
5102   case ISD::CTTZ_ZERO_UNDEF:
5103   case ISD::CTPOP: {
5104     SDValue Ops = {Operand};
5105     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5106       return Fold;
5107   }
5108   }
5109 
5110   unsigned OpOpcode = Operand.getNode()->getOpcode();
5111   switch (Opcode) {
5112   case ISD::STEP_VECTOR:
5113     assert(VT.isScalableVector() &&
5114            "STEP_VECTOR can only be used with scalable types");
5115     assert(OpOpcode == ISD::TargetConstant &&
5116            VT.getVectorElementType() == Operand.getValueType() &&
5117            "Unexpected step operand");
5118     break;
5119   case ISD::FREEZE:
5120     assert(VT == Operand.getValueType() && "Unexpected VT!");
5121     if (isGuaranteedNotToBeUndefOrPoison(Operand))
5122       return Operand;
5123     break;
5124   case ISD::TokenFactor:
5125   case ISD::MERGE_VALUES:
5126   case ISD::CONCAT_VECTORS:
5127     return Operand;         // Factor, merge or concat of one node?  No need.
5128   case ISD::BUILD_VECTOR: {
5129     // Attempt to simplify BUILD_VECTOR.
5130     SDValue Ops[] = {Operand};
5131     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5132       return V;
5133     break;
5134   }
5135   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5136   case ISD::FP_EXTEND:
5137     assert(VT.isFloatingPoint() &&
5138            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5139     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
5140     assert((!VT.isVector() ||
5141             VT.getVectorElementCount() ==
5142             Operand.getValueType().getVectorElementCount()) &&
5143            "Vector element count mismatch!");
5144     assert(Operand.getValueType().bitsLT(VT) &&
5145            "Invalid fpext node, dst < src!");
5146     if (Operand.isUndef())
5147       return getUNDEF(VT);
5148     break;
5149   case ISD::FP_TO_SINT:
5150   case ISD::FP_TO_UINT:
5151     if (Operand.isUndef())
5152       return getUNDEF(VT);
5153     break;
5154   case ISD::SINT_TO_FP:
5155   case ISD::UINT_TO_FP:
5156     // [us]itofp(undef) = 0, because the result value is bounded.
5157     if (Operand.isUndef())
5158       return getConstantFP(0.0, DL, VT);
5159     break;
5160   case ISD::SIGN_EXTEND:
5161     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5162            "Invalid SIGN_EXTEND!");
5163     assert(VT.isVector() == Operand.getValueType().isVector() &&
5164            "SIGN_EXTEND result type type should be vector iff the operand "
5165            "type is vector!");
5166     if (Operand.getValueType() == VT) return Operand;   // noop extension
5167     assert((!VT.isVector() ||
5168             VT.getVectorElementCount() ==
5169                 Operand.getValueType().getVectorElementCount()) &&
5170            "Vector element count mismatch!");
5171     assert(Operand.getValueType().bitsLT(VT) &&
5172            "Invalid sext node, dst < src!");
5173     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5174       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5175     if (OpOpcode == ISD::UNDEF)
5176       // sext(undef) = 0, because the top bits will all be the same.
5177       return getConstant(0, DL, VT);
5178     break;
5179   case ISD::ZERO_EXTEND:
5180     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5181            "Invalid ZERO_EXTEND!");
5182     assert(VT.isVector() == Operand.getValueType().isVector() &&
5183            "ZERO_EXTEND result type type should be vector iff the operand "
5184            "type is vector!");
5185     if (Operand.getValueType() == VT) return Operand;   // noop extension
5186     assert((!VT.isVector() ||
5187             VT.getVectorElementCount() ==
5188                 Operand.getValueType().getVectorElementCount()) &&
5189            "Vector element count mismatch!");
5190     assert(Operand.getValueType().bitsLT(VT) &&
5191            "Invalid zext node, dst < src!");
5192     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5193       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5194     if (OpOpcode == ISD::UNDEF)
5195       // zext(undef) = 0, because the top bits will be zero.
5196       return getConstant(0, DL, VT);
5197     break;
5198   case ISD::ANY_EXTEND:
5199     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5200            "Invalid ANY_EXTEND!");
5201     assert(VT.isVector() == Operand.getValueType().isVector() &&
5202            "ANY_EXTEND result type type should be vector iff the operand "
5203            "type is vector!");
5204     if (Operand.getValueType() == VT) return Operand;   // noop extension
5205     assert((!VT.isVector() ||
5206             VT.getVectorElementCount() ==
5207                 Operand.getValueType().getVectorElementCount()) &&
5208            "Vector element count mismatch!");
5209     assert(Operand.getValueType().bitsLT(VT) &&
5210            "Invalid anyext node, dst < src!");
5211 
5212     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5213         OpOpcode == ISD::ANY_EXTEND)
5214       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5215       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5216     if (OpOpcode == ISD::UNDEF)
5217       return getUNDEF(VT);
5218 
5219     // (ext (trunc x)) -> x
5220     if (OpOpcode == ISD::TRUNCATE) {
5221       SDValue OpOp = Operand.getOperand(0);
5222       if (OpOp.getValueType() == VT) {
5223         transferDbgValues(Operand, OpOp);
5224         return OpOp;
5225       }
5226     }
5227     break;
5228   case ISD::TRUNCATE:
5229     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5230            "Invalid TRUNCATE!");
5231     assert(VT.isVector() == Operand.getValueType().isVector() &&
5232            "TRUNCATE result type type should be vector iff the operand "
5233            "type is vector!");
5234     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5235     assert((!VT.isVector() ||
5236             VT.getVectorElementCount() ==
5237                 Operand.getValueType().getVectorElementCount()) &&
5238            "Vector element count mismatch!");
5239     assert(Operand.getValueType().bitsGT(VT) &&
5240            "Invalid truncate node, src < dst!");
5241     if (OpOpcode == ISD::TRUNCATE)
5242       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5243     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5244         OpOpcode == ISD::ANY_EXTEND) {
5245       // If the source is smaller than the dest, we still need an extend.
5246       if (Operand.getOperand(0).getValueType().getScalarType()
5247             .bitsLT(VT.getScalarType()))
5248         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5249       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5250         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5251       return Operand.getOperand(0);
5252     }
5253     if (OpOpcode == ISD::UNDEF)
5254       return getUNDEF(VT);
5255     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5256       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5257     break;
5258   case ISD::ANY_EXTEND_VECTOR_INREG:
5259   case ISD::ZERO_EXTEND_VECTOR_INREG:
5260   case ISD::SIGN_EXTEND_VECTOR_INREG:
5261     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5262     assert(Operand.getValueType().bitsLE(VT) &&
5263            "The input must be the same size or smaller than the result.");
5264     assert(VT.getVectorMinNumElements() <
5265                Operand.getValueType().getVectorMinNumElements() &&
5266            "The destination vector type must have fewer lanes than the input.");
5267     break;
5268   case ISD::ABS:
5269     assert(VT.isInteger() && VT == Operand.getValueType() &&
5270            "Invalid ABS!");
5271     if (OpOpcode == ISD::UNDEF)
5272       return getConstant(0, DL, VT);
5273     break;
5274   case ISD::BSWAP:
5275     assert(VT.isInteger() && VT == Operand.getValueType() &&
5276            "Invalid BSWAP!");
5277     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5278            "BSWAP types must be a multiple of 16 bits!");
5279     if (OpOpcode == ISD::UNDEF)
5280       return getUNDEF(VT);
5281     // bswap(bswap(X)) -> X.
5282     if (OpOpcode == ISD::BSWAP)
5283       return Operand.getOperand(0);
5284     break;
5285   case ISD::BITREVERSE:
5286     assert(VT.isInteger() && VT == Operand.getValueType() &&
5287            "Invalid BITREVERSE!");
5288     if (OpOpcode == ISD::UNDEF)
5289       return getUNDEF(VT);
5290     break;
5291   case ISD::BITCAST:
5292     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5293            "Cannot BITCAST between types of different sizes!");
5294     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5295     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5296       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5297     if (OpOpcode == ISD::UNDEF)
5298       return getUNDEF(VT);
5299     break;
5300   case ISD::SCALAR_TO_VECTOR:
5301     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5302            (VT.getVectorElementType() == Operand.getValueType() ||
5303             (VT.getVectorElementType().isInteger() &&
5304              Operand.getValueType().isInteger() &&
5305              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5306            "Illegal SCALAR_TO_VECTOR node!");
5307     if (OpOpcode == ISD::UNDEF)
5308       return getUNDEF(VT);
5309     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5310     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5311         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5312         Operand.getConstantOperandVal(1) == 0 &&
5313         Operand.getOperand(0).getValueType() == VT)
5314       return Operand.getOperand(0);
5315     break;
5316   case ISD::FNEG:
5317     // Negation of an unknown bag of bits is still completely undefined.
5318     if (OpOpcode == ISD::UNDEF)
5319       return getUNDEF(VT);
5320 
5321     if (OpOpcode == ISD::FNEG)  // --X -> X
5322       return Operand.getOperand(0);
5323     break;
5324   case ISD::FABS:
5325     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5326       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5327     break;
5328   case ISD::VSCALE:
5329     assert(VT == Operand.getValueType() && "Unexpected VT!");
5330     break;
5331   case ISD::CTPOP:
5332     if (Operand.getValueType().getScalarType() == MVT::i1)
5333       return Operand;
5334     break;
5335   case ISD::CTLZ:
5336   case ISD::CTTZ:
5337     if (Operand.getValueType().getScalarType() == MVT::i1)
5338       return getNOT(DL, Operand, Operand.getValueType());
5339     break;
5340   case ISD::VECREDUCE_ADD:
5341     if (Operand.getValueType().getScalarType() == MVT::i1)
5342       return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand);
5343     break;
5344   case ISD::VECREDUCE_SMIN:
5345   case ISD::VECREDUCE_UMAX:
5346     if (Operand.getValueType().getScalarType() == MVT::i1)
5347       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5348     break;
5349   case ISD::VECREDUCE_SMAX:
5350   case ISD::VECREDUCE_UMIN:
5351     if (Operand.getValueType().getScalarType() == MVT::i1)
5352       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5353     break;
5354   }
5355 
5356   SDNode *N;
5357   SDVTList VTs = getVTList(VT);
5358   SDValue Ops[] = {Operand};
5359   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5360     FoldingSetNodeID ID;
5361     AddNodeIDNode(ID, Opcode, VTs, Ops);
5362     void *IP = nullptr;
5363     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5364       E->intersectFlagsWith(Flags);
5365       return SDValue(E, 0);
5366     }
5367 
5368     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5369     N->setFlags(Flags);
5370     createOperands(N, Ops);
5371     CSEMap.InsertNode(N, IP);
5372   } else {
5373     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5374     createOperands(N, Ops);
5375   }
5376 
5377   InsertNode(N);
5378   SDValue V = SDValue(N, 0);
5379   NewSDValueDbgMsg(V, "Creating new node: ", this);
5380   return V;
5381 }
5382 
5383 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5384                                        const APInt &C2) {
5385   switch (Opcode) {
5386   case ISD::ADD:  return C1 + C2;
5387   case ISD::SUB:  return C1 - C2;
5388   case ISD::MUL:  return C1 * C2;
5389   case ISD::AND:  return C1 & C2;
5390   case ISD::OR:   return C1 | C2;
5391   case ISD::XOR:  return C1 ^ C2;
5392   case ISD::SHL:  return C1 << C2;
5393   case ISD::SRL:  return C1.lshr(C2);
5394   case ISD::SRA:  return C1.ashr(C2);
5395   case ISD::ROTL: return C1.rotl(C2);
5396   case ISD::ROTR: return C1.rotr(C2);
5397   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5398   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5399   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5400   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5401   case ISD::SADDSAT: return C1.sadd_sat(C2);
5402   case ISD::UADDSAT: return C1.uadd_sat(C2);
5403   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5404   case ISD::USUBSAT: return C1.usub_sat(C2);
5405   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5406   case ISD::USHLSAT: return C1.ushl_sat(C2);
5407   case ISD::UDIV:
5408     if (!C2.getBoolValue())
5409       break;
5410     return C1.udiv(C2);
5411   case ISD::UREM:
5412     if (!C2.getBoolValue())
5413       break;
5414     return C1.urem(C2);
5415   case ISD::SDIV:
5416     if (!C2.getBoolValue())
5417       break;
5418     return C1.sdiv(C2);
5419   case ISD::SREM:
5420     if (!C2.getBoolValue())
5421       break;
5422     return C1.srem(C2);
5423   case ISD::MULHS: {
5424     unsigned FullWidth = C1.getBitWidth() * 2;
5425     APInt C1Ext = C1.sext(FullWidth);
5426     APInt C2Ext = C2.sext(FullWidth);
5427     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5428   }
5429   case ISD::MULHU: {
5430     unsigned FullWidth = C1.getBitWidth() * 2;
5431     APInt C1Ext = C1.zext(FullWidth);
5432     APInt C2Ext = C2.zext(FullWidth);
5433     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5434   }
5435   case ISD::AVGFLOORS: {
5436     unsigned FullWidth = C1.getBitWidth() + 1;
5437     APInt C1Ext = C1.sext(FullWidth);
5438     APInt C2Ext = C2.sext(FullWidth);
5439     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5440   }
5441   case ISD::AVGFLOORU: {
5442     unsigned FullWidth = C1.getBitWidth() + 1;
5443     APInt C1Ext = C1.zext(FullWidth);
5444     APInt C2Ext = C2.zext(FullWidth);
5445     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5446   }
5447   case ISD::AVGCEILS: {
5448     unsigned FullWidth = C1.getBitWidth() + 1;
5449     APInt C1Ext = C1.sext(FullWidth);
5450     APInt C2Ext = C2.sext(FullWidth);
5451     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5452   }
5453   case ISD::AVGCEILU: {
5454     unsigned FullWidth = C1.getBitWidth() + 1;
5455     APInt C1Ext = C1.zext(FullWidth);
5456     APInt C2Ext = C2.zext(FullWidth);
5457     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5458   }
5459   }
5460   return llvm::None;
5461 }
5462 
5463 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5464                                        const GlobalAddressSDNode *GA,
5465                                        const SDNode *N2) {
5466   if (GA->getOpcode() != ISD::GlobalAddress)
5467     return SDValue();
5468   if (!TLI->isOffsetFoldingLegal(GA))
5469     return SDValue();
5470   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5471   if (!C2)
5472     return SDValue();
5473   int64_t Offset = C2->getSExtValue();
5474   switch (Opcode) {
5475   case ISD::ADD: break;
5476   case ISD::SUB: Offset = -uint64_t(Offset); break;
5477   default: return SDValue();
5478   }
5479   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5480                           GA->getOffset() + uint64_t(Offset));
5481 }
5482 
5483 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5484   switch (Opcode) {
5485   case ISD::SDIV:
5486   case ISD::UDIV:
5487   case ISD::SREM:
5488   case ISD::UREM: {
5489     // If a divisor is zero/undef or any element of a divisor vector is
5490     // zero/undef, the whole op is undef.
5491     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5492     SDValue Divisor = Ops[1];
5493     if (Divisor.isUndef() || isNullConstant(Divisor))
5494       return true;
5495 
5496     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5497            llvm::any_of(Divisor->op_values(),
5498                         [](SDValue V) { return V.isUndef() ||
5499                                         isNullConstant(V); });
5500     // TODO: Handle signed overflow.
5501   }
5502   // TODO: Handle oversized shifts.
5503   default:
5504     return false;
5505   }
5506 }
5507 
5508 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5509                                              EVT VT, ArrayRef<SDValue> Ops) {
5510   // If the opcode is a target-specific ISD node, there's nothing we can
5511   // do here and the operand rules may not line up with the below, so
5512   // bail early.
5513   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5514   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5515   // foldCONCAT_VECTORS in getNode before this is called.
5516   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5517     return SDValue();
5518 
5519   unsigned NumOps = Ops.size();
5520   if (NumOps == 0)
5521     return SDValue();
5522 
5523   if (isUndef(Opcode, Ops))
5524     return getUNDEF(VT);
5525 
5526   // Handle binops special cases.
5527   if (NumOps == 2) {
5528     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5529       return CFP;
5530 
5531     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5532       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5533         if (C1->isOpaque() || C2->isOpaque())
5534           return SDValue();
5535 
5536         Optional<APInt> FoldAttempt =
5537             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5538         if (!FoldAttempt)
5539           return SDValue();
5540 
5541         SDValue Folded = getConstant(*FoldAttempt, DL, VT);
5542         assert((!Folded || !VT.isVector()) &&
5543                "Can't fold vectors ops with scalar operands");
5544         return Folded;
5545       }
5546     }
5547 
5548     // fold (add Sym, c) -> Sym+c
5549     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5550       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5551     if (TLI->isCommutativeBinOp(Opcode))
5552       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5553         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5554   }
5555 
5556   // This is for vector folding only from here on.
5557   if (!VT.isVector())
5558     return SDValue();
5559 
5560   ElementCount NumElts = VT.getVectorElementCount();
5561 
5562   // See if we can fold through bitcasted integer ops.
5563   // TODO: Can we handle undef elements?
5564   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5565       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5566       Ops[0].getOpcode() == ISD::BITCAST &&
5567       Ops[1].getOpcode() == ISD::BITCAST) {
5568     SDValue N1 = peekThroughBitcasts(Ops[0]);
5569     SDValue N2 = peekThroughBitcasts(Ops[1]);
5570     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5571     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5572     EVT BVVT = N1.getValueType();
5573     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5574       bool IsLE = getDataLayout().isLittleEndian();
5575       unsigned EltBits = VT.getScalarSizeInBits();
5576       SmallVector<APInt> RawBits1, RawBits2;
5577       BitVector UndefElts1, UndefElts2;
5578       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5579           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5580           UndefElts1.none() && UndefElts2.none()) {
5581         SmallVector<APInt> RawBits;
5582         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5583           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5584           if (!Fold)
5585             break;
5586           RawBits.push_back(*Fold);
5587         }
5588         if (RawBits.size() == NumElts.getFixedValue()) {
5589           // We have constant folded, but we need to cast this again back to
5590           // the original (possibly legalized) type.
5591           SmallVector<APInt> DstBits;
5592           BitVector DstUndefs;
5593           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5594                                            DstBits, RawBits, DstUndefs,
5595                                            BitVector(RawBits.size(), false));
5596           EVT BVEltVT = BV1->getOperand(0).getValueType();
5597           unsigned BVEltBits = BVEltVT.getSizeInBits();
5598           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5599           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5600             if (DstUndefs[I])
5601               continue;
5602             Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
5603           }
5604           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5605         }
5606       }
5607     }
5608   }
5609 
5610   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5611   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5612   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5613       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5614     APInt RHSVal;
5615     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5616       APInt NewStep = Opcode == ISD::MUL
5617                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5618                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5619       return getStepVector(DL, VT, NewStep);
5620     }
5621   }
5622 
5623   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5624     return !Op.getValueType().isVector() ||
5625            Op.getValueType().getVectorElementCount() == NumElts;
5626   };
5627 
5628   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5629     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5630            Op.getOpcode() == ISD::BUILD_VECTOR ||
5631            Op.getOpcode() == ISD::SPLAT_VECTOR;
5632   };
5633 
5634   // All operands must be vector types with the same number of elements as
5635   // the result type and must be either UNDEF or a build/splat vector
5636   // or UNDEF scalars.
5637   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5638       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5639     return SDValue();
5640 
5641   // If we are comparing vectors, then the result needs to be a i1 boolean that
5642   // is then extended back to the legal result type depending on how booleans
5643   // are represented.
5644   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5645   ISD::NodeType ExtendCode =
5646       (Opcode == ISD::SETCC && SVT != VT.getScalarType())
5647           ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
5648           : ISD::SIGN_EXTEND;
5649 
5650   // Find legal integer scalar type for constant promotion and
5651   // ensure that its scalar size is at least as large as source.
5652   EVT LegalSVT = VT.getScalarType();
5653   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5654     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5655     if (LegalSVT.bitsLT(VT.getScalarType()))
5656       return SDValue();
5657   }
5658 
5659   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5660   // only have one operand to check. For fixed-length vector types we may have
5661   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5662   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5663 
5664   // Constant fold each scalar lane separately.
5665   SmallVector<SDValue, 4> ScalarResults;
5666   for (unsigned I = 0; I != NumVectorElts; I++) {
5667     SmallVector<SDValue, 4> ScalarOps;
5668     for (SDValue Op : Ops) {
5669       EVT InSVT = Op.getValueType().getScalarType();
5670       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5671           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5672         if (Op.isUndef())
5673           ScalarOps.push_back(getUNDEF(InSVT));
5674         else
5675           ScalarOps.push_back(Op);
5676         continue;
5677       }
5678 
5679       SDValue ScalarOp =
5680           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5681       EVT ScalarVT = ScalarOp.getValueType();
5682 
5683       // Build vector (integer) scalar operands may need implicit
5684       // truncation - do this before constant folding.
5685       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
5686         // Don't create illegally-typed nodes unless they're constants or undef
5687         // - if we fail to constant fold we can't guarantee the (dead) nodes
5688         // we're creating will be cleaned up before being visited for
5689         // legalization.
5690         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
5691             !isa<ConstantSDNode>(ScalarOp) &&
5692             TLI->getTypeAction(*getContext(), InSVT) !=
5693                 TargetLowering::TypeLegal)
5694           return SDValue();
5695         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5696       }
5697 
5698       ScalarOps.push_back(ScalarOp);
5699     }
5700 
5701     // Constant fold the scalar operands.
5702     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5703 
5704     // Legalize the (integer) scalar constant if necessary.
5705     if (LegalSVT != SVT)
5706       ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
5707 
5708     // Scalar folding only succeeded if the result is a constant or UNDEF.
5709     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5710         ScalarResult.getOpcode() != ISD::ConstantFP)
5711       return SDValue();
5712     ScalarResults.push_back(ScalarResult);
5713   }
5714 
5715   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5716                                    : getBuildVector(VT, DL, ScalarResults);
5717   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5718   return V;
5719 }
5720 
5721 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5722                                          EVT VT, SDValue N1, SDValue N2) {
5723   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5724   //       should. That will require dealing with a potentially non-default
5725   //       rounding mode, checking the "opStatus" return value from the APFloat
5726   //       math calculations, and possibly other variations.
5727   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5728   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5729   if (N1CFP && N2CFP) {
5730     APFloat C1 = N1CFP->getValueAPF(); // make copy
5731     const APFloat &C2 = N2CFP->getValueAPF();
5732     switch (Opcode) {
5733     case ISD::FADD:
5734       C1.add(C2, APFloat::rmNearestTiesToEven);
5735       return getConstantFP(C1, DL, VT);
5736     case ISD::FSUB:
5737       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5738       return getConstantFP(C1, DL, VT);
5739     case ISD::FMUL:
5740       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5741       return getConstantFP(C1, DL, VT);
5742     case ISD::FDIV:
5743       C1.divide(C2, APFloat::rmNearestTiesToEven);
5744       return getConstantFP(C1, DL, VT);
5745     case ISD::FREM:
5746       C1.mod(C2);
5747       return getConstantFP(C1, DL, VT);
5748     case ISD::FCOPYSIGN:
5749       C1.copySign(C2);
5750       return getConstantFP(C1, DL, VT);
5751     case ISD::FMINNUM:
5752       return getConstantFP(minnum(C1, C2), DL, VT);
5753     case ISD::FMAXNUM:
5754       return getConstantFP(maxnum(C1, C2), DL, VT);
5755     case ISD::FMINIMUM:
5756       return getConstantFP(minimum(C1, C2), DL, VT);
5757     case ISD::FMAXIMUM:
5758       return getConstantFP(maximum(C1, C2), DL, VT);
5759     default: break;
5760     }
5761   }
5762   if (N1CFP && Opcode == ISD::FP_ROUND) {
5763     APFloat C1 = N1CFP->getValueAPF();    // make copy
5764     bool Unused;
5765     // This can return overflow, underflow, or inexact; we don't care.
5766     // FIXME need to be more flexible about rounding mode.
5767     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5768                       &Unused);
5769     return getConstantFP(C1, DL, VT);
5770   }
5771 
5772   switch (Opcode) {
5773   case ISD::FSUB:
5774     // -0.0 - undef --> undef (consistent with "fneg undef")
5775     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5776       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5777         return getUNDEF(VT);
5778     LLVM_FALLTHROUGH;
5779 
5780   case ISD::FADD:
5781   case ISD::FMUL:
5782   case ISD::FDIV:
5783   case ISD::FREM:
5784     // If both operands are undef, the result is undef. If 1 operand is undef,
5785     // the result is NaN. This should match the behavior of the IR optimizer.
5786     if (N1.isUndef() && N2.isUndef())
5787       return getUNDEF(VT);
5788     if (N1.isUndef() || N2.isUndef())
5789       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5790   }
5791   return SDValue();
5792 }
5793 
5794 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5795   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5796 
5797   // There's no need to assert on a byte-aligned pointer. All pointers are at
5798   // least byte aligned.
5799   if (A == Align(1))
5800     return Val;
5801 
5802   FoldingSetNodeID ID;
5803   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5804   ID.AddInteger(A.value());
5805 
5806   void *IP = nullptr;
5807   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5808     return SDValue(E, 0);
5809 
5810   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5811                                          Val.getValueType(), A);
5812   createOperands(N, {Val});
5813 
5814   CSEMap.InsertNode(N, IP);
5815   InsertNode(N);
5816 
5817   SDValue V(N, 0);
5818   NewSDValueDbgMsg(V, "Creating new node: ", this);
5819   return V;
5820 }
5821 
5822 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5823                               SDValue N1, SDValue N2) {
5824   SDNodeFlags Flags;
5825   if (Inserter)
5826     Flags = Inserter->getFlags();
5827   return getNode(Opcode, DL, VT, N1, N2, Flags);
5828 }
5829 
5830 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5831                                                 SDValue &N2) const {
5832   if (!TLI->isCommutativeBinOp(Opcode))
5833     return;
5834 
5835   // Canonicalize:
5836   //   binop(const, nonconst) -> binop(nonconst, const)
5837   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5838   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5839   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5840   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5841   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5842     std::swap(N1, N2);
5843 
5844   // Canonicalize:
5845   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5846   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5847            N2.getOpcode() == ISD::STEP_VECTOR)
5848     std::swap(N1, N2);
5849 }
5850 
5851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5852                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5853   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5854          N2.getOpcode() != ISD::DELETED_NODE &&
5855          "Operand is DELETED_NODE!");
5856 
5857   canonicalizeCommutativeBinop(Opcode, N1, N2);
5858 
5859   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5860   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5861 
5862   // Don't allow undefs in vector splats - we might be returning N2 when folding
5863   // to zero etc.
5864   ConstantSDNode *N2CV =
5865       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5866 
5867   switch (Opcode) {
5868   default: break;
5869   case ISD::TokenFactor:
5870     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5871            N2.getValueType() == MVT::Other && "Invalid token factor!");
5872     // Fold trivial token factors.
5873     if (N1.getOpcode() == ISD::EntryToken) return N2;
5874     if (N2.getOpcode() == ISD::EntryToken) return N1;
5875     if (N1 == N2) return N1;
5876     break;
5877   case ISD::BUILD_VECTOR: {
5878     // Attempt to simplify BUILD_VECTOR.
5879     SDValue Ops[] = {N1, N2};
5880     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5881       return V;
5882     break;
5883   }
5884   case ISD::CONCAT_VECTORS: {
5885     SDValue Ops[] = {N1, N2};
5886     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5887       return V;
5888     break;
5889   }
5890   case ISD::AND:
5891     assert(VT.isInteger() && "This operator does not apply to FP types!");
5892     assert(N1.getValueType() == N2.getValueType() &&
5893            N1.getValueType() == VT && "Binary operator types must match!");
5894     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5895     // worth handling here.
5896     if (N2CV && N2CV->isZero())
5897       return N2;
5898     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5899       return N1;
5900     break;
5901   case ISD::OR:
5902   case ISD::XOR:
5903   case ISD::ADD:
5904   case ISD::SUB:
5905     assert(VT.isInteger() && "This operator does not apply to FP types!");
5906     assert(N1.getValueType() == N2.getValueType() &&
5907            N1.getValueType() == VT && "Binary operator types must match!");
5908     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5909     // it's worth handling here.
5910     if (N2CV && N2CV->isZero())
5911       return N1;
5912     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5913         VT.getVectorElementType() == MVT::i1)
5914       return getNode(ISD::XOR, DL, VT, N1, N2);
5915     break;
5916   case ISD::MUL:
5917     assert(VT.isInteger() && "This operator does not apply to FP types!");
5918     assert(N1.getValueType() == N2.getValueType() &&
5919            N1.getValueType() == VT && "Binary operator types must match!");
5920     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5921       return getNode(ISD::AND, DL, VT, N1, N2);
5922     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5923       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5924       const APInt &N2CImm = N2C->getAPIntValue();
5925       return getVScale(DL, VT, MulImm * N2CImm);
5926     }
5927     break;
5928   case ISD::UDIV:
5929   case ISD::UREM:
5930   case ISD::MULHU:
5931   case ISD::MULHS:
5932   case ISD::SDIV:
5933   case ISD::SREM:
5934   case ISD::SADDSAT:
5935   case ISD::SSUBSAT:
5936   case ISD::UADDSAT:
5937   case ISD::USUBSAT:
5938     assert(VT.isInteger() && "This operator does not apply to FP types!");
5939     assert(N1.getValueType() == N2.getValueType() &&
5940            N1.getValueType() == VT && "Binary operator types must match!");
5941     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5942       // fold (add_sat x, y) -> (or x, y) for bool types.
5943       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5944         return getNode(ISD::OR, DL, VT, N1, N2);
5945       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5946       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5947         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5948     }
5949     break;
5950   case ISD::SMIN:
5951   case ISD::UMAX:
5952     assert(VT.isInteger() && "This operator does not apply to FP types!");
5953     assert(N1.getValueType() == N2.getValueType() &&
5954            N1.getValueType() == VT && "Binary operator types must match!");
5955     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5956       return getNode(ISD::OR, DL, VT, N1, N2);
5957     break;
5958   case ISD::SMAX:
5959   case ISD::UMIN:
5960     assert(VT.isInteger() && "This operator does not apply to FP types!");
5961     assert(N1.getValueType() == N2.getValueType() &&
5962            N1.getValueType() == VT && "Binary operator types must match!");
5963     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5964       return getNode(ISD::AND, DL, VT, N1, N2);
5965     break;
5966   case ISD::FADD:
5967   case ISD::FSUB:
5968   case ISD::FMUL:
5969   case ISD::FDIV:
5970   case ISD::FREM:
5971     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5972     assert(N1.getValueType() == N2.getValueType() &&
5973            N1.getValueType() == VT && "Binary operator types must match!");
5974     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5975       return V;
5976     break;
5977   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5978     assert(N1.getValueType() == VT &&
5979            N1.getValueType().isFloatingPoint() &&
5980            N2.getValueType().isFloatingPoint() &&
5981            "Invalid FCOPYSIGN!");
5982     break;
5983   case ISD::SHL:
5984     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5985       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5986       const APInt &ShiftImm = N2C->getAPIntValue();
5987       return getVScale(DL, VT, MulImm << ShiftImm);
5988     }
5989     LLVM_FALLTHROUGH;
5990   case ISD::SRA:
5991   case ISD::SRL:
5992     if (SDValue V = simplifyShift(N1, N2))
5993       return V;
5994     LLVM_FALLTHROUGH;
5995   case ISD::ROTL:
5996   case ISD::ROTR:
5997     assert(VT == N1.getValueType() &&
5998            "Shift operators return type must be the same as their first arg");
5999     assert(VT.isInteger() && N2.getValueType().isInteger() &&
6000            "Shifts only work on integers");
6001     assert((!VT.isVector() || VT == N2.getValueType()) &&
6002            "Vector shift amounts must be in the same as their first arg");
6003     // Verify that the shift amount VT is big enough to hold valid shift
6004     // amounts.  This catches things like trying to shift an i1024 value by an
6005     // i8, which is easy to fall into in generic code that uses
6006     // TLI.getShiftAmount().
6007     assert(N2.getValueType().getScalarSizeInBits() >=
6008                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
6009            "Invalid use of small shift amount with oversized value!");
6010 
6011     // Always fold shifts of i1 values so the code generator doesn't need to
6012     // handle them.  Since we know the size of the shift has to be less than the
6013     // size of the value, the shift/rotate count is guaranteed to be zero.
6014     if (VT == MVT::i1)
6015       return N1;
6016     if (N2CV && N2CV->isZero())
6017       return N1;
6018     break;
6019   case ISD::FP_ROUND:
6020     assert(VT.isFloatingPoint() &&
6021            N1.getValueType().isFloatingPoint() &&
6022            VT.bitsLE(N1.getValueType()) &&
6023            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
6024            "Invalid FP_ROUND!");
6025     if (N1.getValueType() == VT) return N1;  // noop conversion.
6026     break;
6027   case ISD::AssertSext:
6028   case ISD::AssertZext: {
6029     EVT EVT = cast<VTSDNode>(N2)->getVT();
6030     assert(VT == N1.getValueType() && "Not an inreg extend!");
6031     assert(VT.isInteger() && EVT.isInteger() &&
6032            "Cannot *_EXTEND_INREG FP types");
6033     assert(!EVT.isVector() &&
6034            "AssertSExt/AssertZExt type should be the vector element type "
6035            "rather than the vector type!");
6036     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
6037     if (VT.getScalarType() == EVT) return N1; // noop assertion.
6038     break;
6039   }
6040   case ISD::SIGN_EXTEND_INREG: {
6041     EVT EVT = cast<VTSDNode>(N2)->getVT();
6042     assert(VT == N1.getValueType() && "Not an inreg extend!");
6043     assert(VT.isInteger() && EVT.isInteger() &&
6044            "Cannot *_EXTEND_INREG FP types");
6045     assert(EVT.isVector() == VT.isVector() &&
6046            "SIGN_EXTEND_INREG type should be vector iff the operand "
6047            "type is vector!");
6048     assert((!EVT.isVector() ||
6049             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
6050            "Vector element counts must match in SIGN_EXTEND_INREG");
6051     assert(EVT.bitsLE(VT) && "Not extending!");
6052     if (EVT == VT) return N1;  // Not actually extending
6053 
6054     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
6055       unsigned FromBits = EVT.getScalarSizeInBits();
6056       Val <<= Val.getBitWidth() - FromBits;
6057       Val.ashrInPlace(Val.getBitWidth() - FromBits);
6058       return getConstant(Val, DL, ConstantVT);
6059     };
6060 
6061     if (N1C) {
6062       const APInt &Val = N1C->getAPIntValue();
6063       return SignExtendInReg(Val, VT);
6064     }
6065 
6066     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
6067       SmallVector<SDValue, 8> Ops;
6068       llvm::EVT OpVT = N1.getOperand(0).getValueType();
6069       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6070         SDValue Op = N1.getOperand(i);
6071         if (Op.isUndef()) {
6072           Ops.push_back(getUNDEF(OpVT));
6073           continue;
6074         }
6075         ConstantSDNode *C = cast<ConstantSDNode>(Op);
6076         APInt Val = C->getAPIntValue();
6077         Ops.push_back(SignExtendInReg(Val, OpVT));
6078       }
6079       return getBuildVector(VT, DL, Ops);
6080     }
6081     break;
6082   }
6083   case ISD::FP_TO_SINT_SAT:
6084   case ISD::FP_TO_UINT_SAT: {
6085     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6086            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6087     assert(N1.getValueType().isVector() == VT.isVector() &&
6088            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6089            "vector!");
6090     assert((!VT.isVector() || VT.getVectorNumElements() ==
6091                                   N1.getValueType().getVectorNumElements()) &&
6092            "Vector element counts must match in FP_TO_*INT_SAT");
6093     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6094            "Type to saturate to must be a scalar.");
6095     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6096            "Not extending!");
6097     break;
6098   }
6099   case ISD::EXTRACT_VECTOR_ELT:
6100     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6101            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6102              element type of the vector.");
6103 
6104     // Extract from an undefined value or using an undefined index is undefined.
6105     if (N1.isUndef() || N2.isUndef())
6106       return getUNDEF(VT);
6107 
6108     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6109     // vectors. For scalable vectors we will provide appropriate support for
6110     // dealing with arbitrary indices.
6111     if (N2C && N1.getValueType().isFixedLengthVector() &&
6112         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6113       return getUNDEF(VT);
6114 
6115     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6116     // expanding copies of large vectors from registers. This only works for
6117     // fixed length vectors, since we need to know the exact number of
6118     // elements.
6119     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6120         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6121       unsigned Factor =
6122         N1.getOperand(0).getValueType().getVectorNumElements();
6123       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6124                      N1.getOperand(N2C->getZExtValue() / Factor),
6125                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6126     }
6127 
6128     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6129     // lowering is expanding large vector constants.
6130     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6131                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6132       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6133               N1.getValueType().isFixedLengthVector()) &&
6134              "BUILD_VECTOR used for scalable vectors");
6135       unsigned Index =
6136           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6137       SDValue Elt = N1.getOperand(Index);
6138 
6139       if (VT != Elt.getValueType())
6140         // If the vector element type is not legal, the BUILD_VECTOR operands
6141         // are promoted and implicitly truncated, and the result implicitly
6142         // extended. Make that explicit here.
6143         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6144 
6145       return Elt;
6146     }
6147 
6148     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6149     // operations are lowered to scalars.
6150     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6151       // If the indices are the same, return the inserted element else
6152       // if the indices are known different, extract the element from
6153       // the original vector.
6154       SDValue N1Op2 = N1.getOperand(2);
6155       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6156 
6157       if (N1Op2C && N2C) {
6158         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6159           if (VT == N1.getOperand(1).getValueType())
6160             return N1.getOperand(1);
6161           if (VT.isFloatingPoint()) {
6162             assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
6163             return getFPExtendOrRound(N1.getOperand(1), DL, VT);
6164           }
6165           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6166         }
6167         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6168       }
6169     }
6170 
6171     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6172     // when vector types are scalarized and v1iX is legal.
6173     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6174     // Here we are completely ignoring the extract element index (N2),
6175     // which is fine for fixed width vectors, since any index other than 0
6176     // is undefined anyway. However, this cannot be ignored for scalable
6177     // vectors - in theory we could support this, but we don't want to do this
6178     // without a profitability check.
6179     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6180         N1.getValueType().isFixedLengthVector() &&
6181         N1.getValueType().getVectorNumElements() == 1) {
6182       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6183                      N1.getOperand(1));
6184     }
6185     break;
6186   case ISD::EXTRACT_ELEMENT:
6187     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6188     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6189            (N1.getValueType().isInteger() == VT.isInteger()) &&
6190            N1.getValueType() != VT &&
6191            "Wrong types for EXTRACT_ELEMENT!");
6192 
6193     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6194     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6195     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6196     if (N1.getOpcode() == ISD::BUILD_PAIR)
6197       return N1.getOperand(N2C->getZExtValue());
6198 
6199     // EXTRACT_ELEMENT of a constant int is also very common.
6200     if (N1C) {
6201       unsigned ElementSize = VT.getSizeInBits();
6202       unsigned Shift = ElementSize * N2C->getZExtValue();
6203       const APInt &Val = N1C->getAPIntValue();
6204       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6205     }
6206     break;
6207   case ISD::EXTRACT_SUBVECTOR: {
6208     EVT N1VT = N1.getValueType();
6209     assert(VT.isVector() && N1VT.isVector() &&
6210            "Extract subvector VTs must be vectors!");
6211     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6212            "Extract subvector VTs must have the same element type!");
6213     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6214            "Cannot extract a scalable vector from a fixed length vector!");
6215     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6216             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6217            "Extract subvector must be from larger vector to smaller vector!");
6218     assert(N2C && "Extract subvector index must be a constant");
6219     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6220             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6221                 N1VT.getVectorMinNumElements()) &&
6222            "Extract subvector overflow!");
6223     assert(N2C->getAPIntValue().getBitWidth() ==
6224                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6225            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6226 
6227     // Trivial extraction.
6228     if (VT == N1VT)
6229       return N1;
6230 
6231     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6232     if (N1.isUndef())
6233       return getUNDEF(VT);
6234 
6235     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6236     // the concat have the same type as the extract.
6237     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6238         VT == N1.getOperand(0).getValueType()) {
6239       unsigned Factor = VT.getVectorMinNumElements();
6240       return N1.getOperand(N2C->getZExtValue() / Factor);
6241     }
6242 
6243     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6244     // during shuffle legalization.
6245     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6246         VT == N1.getOperand(1).getValueType())
6247       return N1.getOperand(1);
6248     break;
6249   }
6250   }
6251 
6252   // Perform trivial constant folding.
6253   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6254     return SV;
6255 
6256   // Canonicalize an UNDEF to the RHS, even over a constant.
6257   if (N1.isUndef()) {
6258     if (TLI->isCommutativeBinOp(Opcode)) {
6259       std::swap(N1, N2);
6260     } else {
6261       switch (Opcode) {
6262       case ISD::SUB:
6263         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6264       case ISD::SIGN_EXTEND_INREG:
6265       case ISD::UDIV:
6266       case ISD::SDIV:
6267       case ISD::UREM:
6268       case ISD::SREM:
6269       case ISD::SSUBSAT:
6270       case ISD::USUBSAT:
6271         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6272       }
6273     }
6274   }
6275 
6276   // Fold a bunch of operators when the RHS is undef.
6277   if (N2.isUndef()) {
6278     switch (Opcode) {
6279     case ISD::XOR:
6280       if (N1.isUndef())
6281         // Handle undef ^ undef -> 0 special case. This is a common
6282         // idiom (misuse).
6283         return getConstant(0, DL, VT);
6284       LLVM_FALLTHROUGH;
6285     case ISD::ADD:
6286     case ISD::SUB:
6287     case ISD::UDIV:
6288     case ISD::SDIV:
6289     case ISD::UREM:
6290     case ISD::SREM:
6291       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6292     case ISD::MUL:
6293     case ISD::AND:
6294     case ISD::SSUBSAT:
6295     case ISD::USUBSAT:
6296       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6297     case ISD::OR:
6298     case ISD::SADDSAT:
6299     case ISD::UADDSAT:
6300       return getAllOnesConstant(DL, VT);
6301     }
6302   }
6303 
6304   // Memoize this node if possible.
6305   SDNode *N;
6306   SDVTList VTs = getVTList(VT);
6307   SDValue Ops[] = {N1, N2};
6308   if (VT != MVT::Glue) {
6309     FoldingSetNodeID ID;
6310     AddNodeIDNode(ID, Opcode, VTs, Ops);
6311     void *IP = nullptr;
6312     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6313       E->intersectFlagsWith(Flags);
6314       return SDValue(E, 0);
6315     }
6316 
6317     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6318     N->setFlags(Flags);
6319     createOperands(N, Ops);
6320     CSEMap.InsertNode(N, IP);
6321   } else {
6322     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6323     createOperands(N, Ops);
6324   }
6325 
6326   InsertNode(N);
6327   SDValue V = SDValue(N, 0);
6328   NewSDValueDbgMsg(V, "Creating new node: ", this);
6329   return V;
6330 }
6331 
6332 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6333                               SDValue N1, SDValue N2, SDValue N3) {
6334   SDNodeFlags Flags;
6335   if (Inserter)
6336     Flags = Inserter->getFlags();
6337   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6338 }
6339 
6340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6341                               SDValue N1, SDValue N2, SDValue N3,
6342                               const SDNodeFlags Flags) {
6343   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6344          N2.getOpcode() != ISD::DELETED_NODE &&
6345          N3.getOpcode() != ISD::DELETED_NODE &&
6346          "Operand is DELETED_NODE!");
6347   // Perform various simplifications.
6348   switch (Opcode) {
6349   case ISD::FMA: {
6350     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6351     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6352            N3.getValueType() == VT && "FMA types must match!");
6353     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6354     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6355     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6356     if (N1CFP && N2CFP && N3CFP) {
6357       APFloat  V1 = N1CFP->getValueAPF();
6358       const APFloat &V2 = N2CFP->getValueAPF();
6359       const APFloat &V3 = N3CFP->getValueAPF();
6360       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6361       return getConstantFP(V1, DL, VT);
6362     }
6363     break;
6364   }
6365   case ISD::BUILD_VECTOR: {
6366     // Attempt to simplify BUILD_VECTOR.
6367     SDValue Ops[] = {N1, N2, N3};
6368     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6369       return V;
6370     break;
6371   }
6372   case ISD::CONCAT_VECTORS: {
6373     SDValue Ops[] = {N1, N2, N3};
6374     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6375       return V;
6376     break;
6377   }
6378   case ISD::SETCC: {
6379     assert(VT.isInteger() && "SETCC result type must be an integer!");
6380     assert(N1.getValueType() == N2.getValueType() &&
6381            "SETCC operands must have the same type!");
6382     assert(VT.isVector() == N1.getValueType().isVector() &&
6383            "SETCC type should be vector iff the operand type is vector!");
6384     assert((!VT.isVector() || VT.getVectorElementCount() ==
6385                                   N1.getValueType().getVectorElementCount()) &&
6386            "SETCC vector element counts must match!");
6387     // Use FoldSetCC to simplify SETCC's.
6388     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6389       return V;
6390     // Vector constant folding.
6391     SDValue Ops[] = {N1, N2, N3};
6392     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6393       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6394       return V;
6395     }
6396     break;
6397   }
6398   case ISD::SELECT:
6399   case ISD::VSELECT:
6400     if (SDValue V = simplifySelect(N1, N2, N3))
6401       return V;
6402     break;
6403   case ISD::VECTOR_SHUFFLE:
6404     llvm_unreachable("should use getVectorShuffle constructor!");
6405   case ISD::VECTOR_SPLICE: {
6406     if (cast<ConstantSDNode>(N3)->isNullValue())
6407       return N1;
6408     break;
6409   }
6410   case ISD::INSERT_VECTOR_ELT: {
6411     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6412     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6413     // for scalable vectors where we will generate appropriate code to
6414     // deal with out-of-bounds cases correctly.
6415     if (N3C && N1.getValueType().isFixedLengthVector() &&
6416         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6417       return getUNDEF(VT);
6418 
6419     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6420     if (N3.isUndef())
6421       return getUNDEF(VT);
6422 
6423     // If the inserted element is an UNDEF, just use the input vector.
6424     if (N2.isUndef())
6425       return N1;
6426 
6427     break;
6428   }
6429   case ISD::INSERT_SUBVECTOR: {
6430     // Inserting undef into undef is still undef.
6431     if (N1.isUndef() && N2.isUndef())
6432       return getUNDEF(VT);
6433 
6434     EVT N2VT = N2.getValueType();
6435     assert(VT == N1.getValueType() &&
6436            "Dest and insert subvector source types must match!");
6437     assert(VT.isVector() && N2VT.isVector() &&
6438            "Insert subvector VTs must be vectors!");
6439     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6440            "Cannot insert a scalable vector into a fixed length vector!");
6441     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6442             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6443            "Insert subvector must be from smaller vector to larger vector!");
6444     assert(isa<ConstantSDNode>(N3) &&
6445            "Insert subvector index must be constant");
6446     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6447             (N2VT.getVectorMinNumElements() +
6448              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6449                 VT.getVectorMinNumElements()) &&
6450            "Insert subvector overflow!");
6451     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6452                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6453            "Constant index for INSERT_SUBVECTOR has an invalid size");
6454 
6455     // Trivial insertion.
6456     if (VT == N2VT)
6457       return N2;
6458 
6459     // If this is an insert of an extracted vector into an undef vector, we
6460     // can just use the input to the extract.
6461     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6462         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6463       return N2.getOperand(0);
6464     break;
6465   }
6466   case ISD::BITCAST:
6467     // Fold bit_convert nodes from a type to themselves.
6468     if (N1.getValueType() == VT)
6469       return N1;
6470     break;
6471   }
6472 
6473   // Memoize node if it doesn't produce a flag.
6474   SDNode *N;
6475   SDVTList VTs = getVTList(VT);
6476   SDValue Ops[] = {N1, N2, N3};
6477   if (VT != MVT::Glue) {
6478     FoldingSetNodeID ID;
6479     AddNodeIDNode(ID, Opcode, VTs, Ops);
6480     void *IP = nullptr;
6481     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6482       E->intersectFlagsWith(Flags);
6483       return SDValue(E, 0);
6484     }
6485 
6486     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6487     N->setFlags(Flags);
6488     createOperands(N, Ops);
6489     CSEMap.InsertNode(N, IP);
6490   } else {
6491     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6492     createOperands(N, Ops);
6493   }
6494 
6495   InsertNode(N);
6496   SDValue V = SDValue(N, 0);
6497   NewSDValueDbgMsg(V, "Creating new node: ", this);
6498   return V;
6499 }
6500 
6501 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6502                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6503   SDValue Ops[] = { N1, N2, N3, N4 };
6504   return getNode(Opcode, DL, VT, Ops);
6505 }
6506 
6507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6508                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6509                               SDValue N5) {
6510   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6511   return getNode(Opcode, DL, VT, Ops);
6512 }
6513 
6514 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6515 /// the incoming stack arguments to be loaded from the stack.
6516 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6517   SmallVector<SDValue, 8> ArgChains;
6518 
6519   // Include the original chain at the beginning of the list. When this is
6520   // used by target LowerCall hooks, this helps legalize find the
6521   // CALLSEQ_BEGIN node.
6522   ArgChains.push_back(Chain);
6523 
6524   // Add a chain value for each stack argument.
6525   for (SDNode *U : getEntryNode().getNode()->uses())
6526     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6527       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6528         if (FI->getIndex() < 0)
6529           ArgChains.push_back(SDValue(L, 1));
6530 
6531   // Build a tokenfactor for all the chains.
6532   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6533 }
6534 
6535 /// getMemsetValue - Vectorized representation of the memset value
6536 /// operand.
6537 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6538                               const SDLoc &dl) {
6539   assert(!Value.isUndef());
6540 
6541   unsigned NumBits = VT.getScalarSizeInBits();
6542   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6543     assert(C->getAPIntValue().getBitWidth() == 8);
6544     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6545     if (VT.isInteger()) {
6546       bool IsOpaque = VT.getSizeInBits() > 64 ||
6547           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6548       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6549     }
6550     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6551                              VT);
6552   }
6553 
6554   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6555   EVT IntVT = VT.getScalarType();
6556   if (!IntVT.isInteger())
6557     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6558 
6559   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6560   if (NumBits > 8) {
6561     // Use a multiplication with 0x010101... to extend the input to the
6562     // required length.
6563     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6564     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6565                         DAG.getConstant(Magic, dl, IntVT));
6566   }
6567 
6568   if (VT != Value.getValueType() && !VT.isInteger())
6569     Value = DAG.getBitcast(VT.getScalarType(), Value);
6570   if (VT != Value.getValueType())
6571     Value = DAG.getSplatBuildVector(VT, dl, Value);
6572 
6573   return Value;
6574 }
6575 
6576 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6577 /// used when a memcpy is turned into a memset when the source is a constant
6578 /// string ptr.
6579 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6580                                   const TargetLowering &TLI,
6581                                   const ConstantDataArraySlice &Slice) {
6582   // Handle vector with all elements zero.
6583   if (Slice.Array == nullptr) {
6584     if (VT.isInteger())
6585       return DAG.getConstant(0, dl, VT);
6586     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6587       return DAG.getConstantFP(0.0, dl, VT);
6588     if (VT.isVector()) {
6589       unsigned NumElts = VT.getVectorNumElements();
6590       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6591       return DAG.getNode(ISD::BITCAST, dl, VT,
6592                          DAG.getConstant(0, dl,
6593                                          EVT::getVectorVT(*DAG.getContext(),
6594                                                           EltVT, NumElts)));
6595     }
6596     llvm_unreachable("Expected type!");
6597   }
6598 
6599   assert(!VT.isVector() && "Can't handle vector type here!");
6600   unsigned NumVTBits = VT.getSizeInBits();
6601   unsigned NumVTBytes = NumVTBits / 8;
6602   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6603 
6604   APInt Val(NumVTBits, 0);
6605   if (DAG.getDataLayout().isLittleEndian()) {
6606     for (unsigned i = 0; i != NumBytes; ++i)
6607       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6608   } else {
6609     for (unsigned i = 0; i != NumBytes; ++i)
6610       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6611   }
6612 
6613   // If the "cost" of materializing the integer immediate is less than the cost
6614   // of a load, then it is cost effective to turn the load into the immediate.
6615   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6616   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6617     return DAG.getConstant(Val, dl, VT);
6618   return SDValue();
6619 }
6620 
6621 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6622                                            const SDLoc &DL,
6623                                            const SDNodeFlags Flags) {
6624   EVT VT = Base.getValueType();
6625   SDValue Index;
6626 
6627   if (Offset.isScalable())
6628     Index = getVScale(DL, Base.getValueType(),
6629                       APInt(Base.getValueSizeInBits().getFixedSize(),
6630                             Offset.getKnownMinSize()));
6631   else
6632     Index = getConstant(Offset.getFixedSize(), DL, VT);
6633 
6634   return getMemBasePlusOffset(Base, Index, DL, Flags);
6635 }
6636 
6637 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6638                                            const SDLoc &DL,
6639                                            const SDNodeFlags Flags) {
6640   assert(Offset.getValueType().isInteger());
6641   EVT BasePtrVT = Ptr.getValueType();
6642   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6643 }
6644 
6645 /// Returns true if memcpy source is constant data.
6646 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6647   uint64_t SrcDelta = 0;
6648   GlobalAddressSDNode *G = nullptr;
6649   if (Src.getOpcode() == ISD::GlobalAddress)
6650     G = cast<GlobalAddressSDNode>(Src);
6651   else if (Src.getOpcode() == ISD::ADD &&
6652            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6653            Src.getOperand(1).getOpcode() == ISD::Constant) {
6654     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6655     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6656   }
6657   if (!G)
6658     return false;
6659 
6660   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6661                                   SrcDelta + G->getOffset());
6662 }
6663 
6664 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6665                                       SelectionDAG &DAG) {
6666   // On Darwin, -Os means optimize for size without hurting performance, so
6667   // only really optimize for size when -Oz (MinSize) is used.
6668   if (MF.getTarget().getTargetTriple().isOSDarwin())
6669     return MF.getFunction().hasMinSize();
6670   return DAG.shouldOptForSize();
6671 }
6672 
6673 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6674                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6675                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6676                           SmallVector<SDValue, 16> &OutStoreChains) {
6677   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6678   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6679   SmallVector<SDValue, 16> GluedLoadChains;
6680   for (unsigned i = From; i < To; ++i) {
6681     OutChains.push_back(OutLoadChains[i]);
6682     GluedLoadChains.push_back(OutLoadChains[i]);
6683   }
6684 
6685   // Chain for all loads.
6686   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6687                                   GluedLoadChains);
6688 
6689   for (unsigned i = From; i < To; ++i) {
6690     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6691     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6692                                   ST->getBasePtr(), ST->getMemoryVT(),
6693                                   ST->getMemOperand());
6694     OutChains.push_back(NewStore);
6695   }
6696 }
6697 
6698 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6699                                        SDValue Chain, SDValue Dst, SDValue Src,
6700                                        uint64_t Size, Align Alignment,
6701                                        bool isVol, bool AlwaysInline,
6702                                        MachinePointerInfo DstPtrInfo,
6703                                        MachinePointerInfo SrcPtrInfo,
6704                                        const AAMDNodes &AAInfo) {
6705   // Turn a memcpy of undef to nop.
6706   // FIXME: We need to honor volatile even is Src is undef.
6707   if (Src.isUndef())
6708     return Chain;
6709 
6710   // Expand memcpy to a series of load and store ops if the size operand falls
6711   // below a certain threshold.
6712   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6713   // rather than maybe a humongous number of loads and stores.
6714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6715   const DataLayout &DL = DAG.getDataLayout();
6716   LLVMContext &C = *DAG.getContext();
6717   std::vector<EVT> MemOps;
6718   bool DstAlignCanChange = false;
6719   MachineFunction &MF = DAG.getMachineFunction();
6720   MachineFrameInfo &MFI = MF.getFrameInfo();
6721   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6722   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6723   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6724     DstAlignCanChange = true;
6725   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6726   if (!SrcAlign || Alignment > *SrcAlign)
6727     SrcAlign = Alignment;
6728   assert(SrcAlign && "SrcAlign must be set");
6729   ConstantDataArraySlice Slice;
6730   // If marked as volatile, perform a copy even when marked as constant.
6731   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6732   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6733   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6734   const MemOp Op = isZeroConstant
6735                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6736                                     /*IsZeroMemset*/ true, isVol)
6737                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6738                                      *SrcAlign, isVol, CopyFromConstant);
6739   if (!TLI.findOptimalMemOpLowering(
6740           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6741           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6742     return SDValue();
6743 
6744   if (DstAlignCanChange) {
6745     Type *Ty = MemOps[0].getTypeForEVT(C);
6746     Align NewAlign = DL.getABITypeAlign(Ty);
6747 
6748     // Don't promote to an alignment that would require dynamic stack
6749     // realignment.
6750     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6751     if (!TRI->hasStackRealignment(MF))
6752       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6753         NewAlign = NewAlign.previous();
6754 
6755     if (NewAlign > Alignment) {
6756       // Give the stack frame object a larger alignment if needed.
6757       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6758         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6759       Alignment = NewAlign;
6760     }
6761   }
6762 
6763   // Prepare AAInfo for loads/stores after lowering this memcpy.
6764   AAMDNodes NewAAInfo = AAInfo;
6765   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6766 
6767   MachineMemOperand::Flags MMOFlags =
6768       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6769   SmallVector<SDValue, 16> OutLoadChains;
6770   SmallVector<SDValue, 16> OutStoreChains;
6771   SmallVector<SDValue, 32> OutChains;
6772   unsigned NumMemOps = MemOps.size();
6773   uint64_t SrcOff = 0, DstOff = 0;
6774   for (unsigned i = 0; i != NumMemOps; ++i) {
6775     EVT VT = MemOps[i];
6776     unsigned VTSize = VT.getSizeInBits() / 8;
6777     SDValue Value, Store;
6778 
6779     if (VTSize > Size) {
6780       // Issuing an unaligned load / store pair  that overlaps with the previous
6781       // pair. Adjust the offset accordingly.
6782       assert(i == NumMemOps-1 && i != 0);
6783       SrcOff -= VTSize - Size;
6784       DstOff -= VTSize - Size;
6785     }
6786 
6787     if (CopyFromConstant &&
6788         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6789       // It's unlikely a store of a vector immediate can be done in a single
6790       // instruction. It would require a load from a constantpool first.
6791       // We only handle zero vectors here.
6792       // FIXME: Handle other cases where store of vector immediate is done in
6793       // a single instruction.
6794       ConstantDataArraySlice SubSlice;
6795       if (SrcOff < Slice.Length) {
6796         SubSlice = Slice;
6797         SubSlice.move(SrcOff);
6798       } else {
6799         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6800         SubSlice.Array = nullptr;
6801         SubSlice.Offset = 0;
6802         SubSlice.Length = VTSize;
6803       }
6804       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6805       if (Value.getNode()) {
6806         Store = DAG.getStore(
6807             Chain, dl, Value,
6808             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6809             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6810         OutChains.push_back(Store);
6811       }
6812     }
6813 
6814     if (!Store.getNode()) {
6815       // The type might not be legal for the target.  This should only happen
6816       // if the type is smaller than a legal type, as on PPC, so the right
6817       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6818       // to Load/Store if NVT==VT.
6819       // FIXME does the case above also need this?
6820       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6821       assert(NVT.bitsGE(VT));
6822 
6823       bool isDereferenceable =
6824         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6825       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6826       if (isDereferenceable)
6827         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6828 
6829       Value = DAG.getExtLoad(
6830           ISD::EXTLOAD, dl, NVT, Chain,
6831           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6832           SrcPtrInfo.getWithOffset(SrcOff), VT,
6833           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6834       OutLoadChains.push_back(Value.getValue(1));
6835 
6836       Store = DAG.getTruncStore(
6837           Chain, dl, Value,
6838           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6839           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6840       OutStoreChains.push_back(Store);
6841     }
6842     SrcOff += VTSize;
6843     DstOff += VTSize;
6844     Size -= VTSize;
6845   }
6846 
6847   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6848                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6849   unsigned NumLdStInMemcpy = OutStoreChains.size();
6850 
6851   if (NumLdStInMemcpy) {
6852     // It may be that memcpy might be converted to memset if it's memcpy
6853     // of constants. In such a case, we won't have loads and stores, but
6854     // just stores. In the absence of loads, there is nothing to gang up.
6855     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6856       // If target does not care, just leave as it.
6857       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6858         OutChains.push_back(OutLoadChains[i]);
6859         OutChains.push_back(OutStoreChains[i]);
6860       }
6861     } else {
6862       // Ld/St less than/equal limit set by target.
6863       if (NumLdStInMemcpy <= GluedLdStLimit) {
6864           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6865                                         NumLdStInMemcpy, OutLoadChains,
6866                                         OutStoreChains);
6867       } else {
6868         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6869         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6870         unsigned GlueIter = 0;
6871 
6872         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6873           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6874           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6875 
6876           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6877                                        OutLoadChains, OutStoreChains);
6878           GlueIter += GluedLdStLimit;
6879         }
6880 
6881         // Residual ld/st.
6882         if (RemainingLdStInMemcpy) {
6883           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6884                                         RemainingLdStInMemcpy, OutLoadChains,
6885                                         OutStoreChains);
6886         }
6887       }
6888     }
6889   }
6890   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6891 }
6892 
6893 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6894                                         SDValue Chain, SDValue Dst, SDValue Src,
6895                                         uint64_t Size, Align Alignment,
6896                                         bool isVol, bool AlwaysInline,
6897                                         MachinePointerInfo DstPtrInfo,
6898                                         MachinePointerInfo SrcPtrInfo,
6899                                         const AAMDNodes &AAInfo) {
6900   // Turn a memmove of undef to nop.
6901   // FIXME: We need to honor volatile even is Src is undef.
6902   if (Src.isUndef())
6903     return Chain;
6904 
6905   // Expand memmove to a series of load and store ops if the size operand falls
6906   // below a certain threshold.
6907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6908   const DataLayout &DL = DAG.getDataLayout();
6909   LLVMContext &C = *DAG.getContext();
6910   std::vector<EVT> MemOps;
6911   bool DstAlignCanChange = false;
6912   MachineFunction &MF = DAG.getMachineFunction();
6913   MachineFrameInfo &MFI = MF.getFrameInfo();
6914   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6915   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6916   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6917     DstAlignCanChange = true;
6918   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6919   if (!SrcAlign || Alignment > *SrcAlign)
6920     SrcAlign = Alignment;
6921   assert(SrcAlign && "SrcAlign must be set");
6922   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6923   if (!TLI.findOptimalMemOpLowering(
6924           MemOps, Limit,
6925           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6926                       /*IsVolatile*/ true),
6927           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6928           MF.getFunction().getAttributes()))
6929     return SDValue();
6930 
6931   if (DstAlignCanChange) {
6932     Type *Ty = MemOps[0].getTypeForEVT(C);
6933     Align NewAlign = DL.getABITypeAlign(Ty);
6934     if (NewAlign > Alignment) {
6935       // Give the stack frame object a larger alignment if needed.
6936       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6937         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6938       Alignment = NewAlign;
6939     }
6940   }
6941 
6942   // Prepare AAInfo for loads/stores after lowering this memmove.
6943   AAMDNodes NewAAInfo = AAInfo;
6944   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6945 
6946   MachineMemOperand::Flags MMOFlags =
6947       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6948   uint64_t SrcOff = 0, DstOff = 0;
6949   SmallVector<SDValue, 8> LoadValues;
6950   SmallVector<SDValue, 8> LoadChains;
6951   SmallVector<SDValue, 8> OutChains;
6952   unsigned NumMemOps = MemOps.size();
6953   for (unsigned i = 0; i < NumMemOps; i++) {
6954     EVT VT = MemOps[i];
6955     unsigned VTSize = VT.getSizeInBits() / 8;
6956     SDValue Value;
6957 
6958     bool isDereferenceable =
6959       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6960     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6961     if (isDereferenceable)
6962       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6963 
6964     Value = DAG.getLoad(
6965         VT, dl, Chain,
6966         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6967         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6968     LoadValues.push_back(Value);
6969     LoadChains.push_back(Value.getValue(1));
6970     SrcOff += VTSize;
6971   }
6972   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6973   OutChains.clear();
6974   for (unsigned i = 0; i < NumMemOps; i++) {
6975     EVT VT = MemOps[i];
6976     unsigned VTSize = VT.getSizeInBits() / 8;
6977     SDValue Store;
6978 
6979     Store = DAG.getStore(
6980         Chain, dl, LoadValues[i],
6981         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6982         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6983     OutChains.push_back(Store);
6984     DstOff += VTSize;
6985   }
6986 
6987   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6988 }
6989 
6990 /// Lower the call to 'memset' intrinsic function into a series of store
6991 /// operations.
6992 ///
6993 /// \param DAG Selection DAG where lowered code is placed.
6994 /// \param dl Link to corresponding IR location.
6995 /// \param Chain Control flow dependency.
6996 /// \param Dst Pointer to destination memory location.
6997 /// \param Src Value of byte to write into the memory.
6998 /// \param Size Number of bytes to write.
6999 /// \param Alignment Alignment of the destination in bytes.
7000 /// \param isVol True if destination is volatile.
7001 /// \param AlwaysInline Makes sure no function call is generated.
7002 /// \param DstPtrInfo IR information on the memory pointer.
7003 /// \returns New head in the control flow, if lowering was successful, empty
7004 /// SDValue otherwise.
7005 ///
7006 /// The function tries to replace 'llvm.memset' intrinsic with several store
7007 /// operations and value calculation code. This is usually profitable for small
7008 /// memory size or when the semantic requires inlining.
7009 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
7010                                SDValue Chain, SDValue Dst, SDValue Src,
7011                                uint64_t Size, Align Alignment, bool isVol,
7012                                bool AlwaysInline, MachinePointerInfo DstPtrInfo,
7013                                const AAMDNodes &AAInfo) {
7014   // Turn a memset of undef to nop.
7015   // FIXME: We need to honor volatile even is Src is undef.
7016   if (Src.isUndef())
7017     return Chain;
7018 
7019   // Expand memset to a series of load/store ops if the size operand
7020   // falls below a certain threshold.
7021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7022   std::vector<EVT> MemOps;
7023   bool DstAlignCanChange = false;
7024   MachineFunction &MF = DAG.getMachineFunction();
7025   MachineFrameInfo &MFI = MF.getFrameInfo();
7026   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7027   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7028   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7029     DstAlignCanChange = true;
7030   bool IsZeroVal =
7031       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
7032   unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
7033 
7034   if (!TLI.findOptimalMemOpLowering(
7035           MemOps, Limit,
7036           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
7037           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
7038     return SDValue();
7039 
7040   if (DstAlignCanChange) {
7041     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
7042     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
7043     if (NewAlign > Alignment) {
7044       // Give the stack frame object a larger alignment if needed.
7045       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7046         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7047       Alignment = NewAlign;
7048     }
7049   }
7050 
7051   SmallVector<SDValue, 8> OutChains;
7052   uint64_t DstOff = 0;
7053   unsigned NumMemOps = MemOps.size();
7054 
7055   // Find the largest store and generate the bit pattern for it.
7056   EVT LargestVT = MemOps[0];
7057   for (unsigned i = 1; i < NumMemOps; i++)
7058     if (MemOps[i].bitsGT(LargestVT))
7059       LargestVT = MemOps[i];
7060   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
7061 
7062   // Prepare AAInfo for loads/stores after lowering this memset.
7063   AAMDNodes NewAAInfo = AAInfo;
7064   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7065 
7066   for (unsigned i = 0; i < NumMemOps; i++) {
7067     EVT VT = MemOps[i];
7068     unsigned VTSize = VT.getSizeInBits() / 8;
7069     if (VTSize > Size) {
7070       // Issuing an unaligned load / store pair  that overlaps with the previous
7071       // pair. Adjust the offset accordingly.
7072       assert(i == NumMemOps-1 && i != 0);
7073       DstOff -= VTSize - Size;
7074     }
7075 
7076     // If this store is smaller than the largest store see whether we can get
7077     // the smaller value for free with a truncate.
7078     SDValue Value = MemSetValue;
7079     if (VT.bitsLT(LargestVT)) {
7080       if (!LargestVT.isVector() && !VT.isVector() &&
7081           TLI.isTruncateFree(LargestVT, VT))
7082         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7083       else
7084         Value = getMemsetValue(Src, VT, DAG, dl);
7085     }
7086     assert(Value.getValueType() == VT && "Value with wrong type.");
7087     SDValue Store = DAG.getStore(
7088         Chain, dl, Value,
7089         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7090         DstPtrInfo.getWithOffset(DstOff), Alignment,
7091         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7092         NewAAInfo);
7093     OutChains.push_back(Store);
7094     DstOff += VT.getSizeInBits() / 8;
7095     Size -= VTSize;
7096   }
7097 
7098   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7099 }
7100 
7101 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7102                                             unsigned AS) {
7103   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7104   // pointer operands can be losslessly bitcasted to pointers of address space 0
7105   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7106     report_fatal_error("cannot lower memory intrinsic in address space " +
7107                        Twine(AS));
7108   }
7109 }
7110 
7111 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7112                                 SDValue Src, SDValue Size, Align Alignment,
7113                                 bool isVol, bool AlwaysInline, bool isTailCall,
7114                                 MachinePointerInfo DstPtrInfo,
7115                                 MachinePointerInfo SrcPtrInfo,
7116                                 const AAMDNodes &AAInfo) {
7117   // Check to see if we should lower the memcpy to loads and stores first.
7118   // For cases within the target-specified limits, this is the best choice.
7119   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7120   if (ConstantSize) {
7121     // Memcpy with size zero? Just return the original chain.
7122     if (ConstantSize->isZero())
7123       return Chain;
7124 
7125     SDValue Result = getMemcpyLoadsAndStores(
7126         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7127         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7128     if (Result.getNode())
7129       return Result;
7130   }
7131 
7132   // Then check to see if we should lower the memcpy with target-specific
7133   // code. If the target chooses to do this, this is the next best.
7134   if (TSI) {
7135     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7136         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7137         DstPtrInfo, SrcPtrInfo);
7138     if (Result.getNode())
7139       return Result;
7140   }
7141 
7142   // If we really need inline code and the target declined to provide it,
7143   // use a (potentially long) sequence of loads and stores.
7144   if (AlwaysInline) {
7145     assert(ConstantSize && "AlwaysInline requires a constant size!");
7146     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
7147                                    ConstantSize->getZExtValue(), Alignment,
7148                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
7149   }
7150 
7151   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7152   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7153 
7154   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7155   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7156   // respect volatile, so they may do things like read or write memory
7157   // beyond the given memory regions. But fixing this isn't easy, and most
7158   // people don't care.
7159 
7160   // Emit a library call.
7161   TargetLowering::ArgListTy Args;
7162   TargetLowering::ArgListEntry Entry;
7163   Entry.Ty = Type::getInt8PtrTy(*getContext());
7164   Entry.Node = Dst; Args.push_back(Entry);
7165   Entry.Node = Src; Args.push_back(Entry);
7166 
7167   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7168   Entry.Node = Size; Args.push_back(Entry);
7169   // FIXME: pass in SDLoc
7170   TargetLowering::CallLoweringInfo CLI(*this);
7171   CLI.setDebugLoc(dl)
7172       .setChain(Chain)
7173       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7174                     Dst.getValueType().getTypeForEVT(*getContext()),
7175                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7176                                       TLI->getPointerTy(getDataLayout())),
7177                     std::move(Args))
7178       .setDiscardResult()
7179       .setTailCall(isTailCall);
7180 
7181   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7182   return CallResult.second;
7183 }
7184 
7185 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7186                                       SDValue Dst, SDValue Src, SDValue Size,
7187                                       Type *SizeTy, unsigned ElemSz,
7188                                       bool isTailCall,
7189                                       MachinePointerInfo DstPtrInfo,
7190                                       MachinePointerInfo SrcPtrInfo) {
7191   // Emit a library call.
7192   TargetLowering::ArgListTy Args;
7193   TargetLowering::ArgListEntry Entry;
7194   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7195   Entry.Node = Dst;
7196   Args.push_back(Entry);
7197 
7198   Entry.Node = Src;
7199   Args.push_back(Entry);
7200 
7201   Entry.Ty = SizeTy;
7202   Entry.Node = Size;
7203   Args.push_back(Entry);
7204 
7205   RTLIB::Libcall LibraryCall =
7206       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7207   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7208     report_fatal_error("Unsupported element size");
7209 
7210   TargetLowering::CallLoweringInfo CLI(*this);
7211   CLI.setDebugLoc(dl)
7212       .setChain(Chain)
7213       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7214                     Type::getVoidTy(*getContext()),
7215                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7216                                       TLI->getPointerTy(getDataLayout())),
7217                     std::move(Args))
7218       .setDiscardResult()
7219       .setTailCall(isTailCall);
7220 
7221   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7222   return CallResult.second;
7223 }
7224 
7225 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7226                                  SDValue Src, SDValue Size, Align Alignment,
7227                                  bool isVol, bool isTailCall,
7228                                  MachinePointerInfo DstPtrInfo,
7229                                  MachinePointerInfo SrcPtrInfo,
7230                                  const AAMDNodes &AAInfo) {
7231   // Check to see if we should lower the memmove to loads and stores first.
7232   // For cases within the target-specified limits, this is the best choice.
7233   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7234   if (ConstantSize) {
7235     // Memmove with size zero? Just return the original chain.
7236     if (ConstantSize->isZero())
7237       return Chain;
7238 
7239     SDValue Result = getMemmoveLoadsAndStores(
7240         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7241         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7242     if (Result.getNode())
7243       return Result;
7244   }
7245 
7246   // Then check to see if we should lower the memmove with target-specific
7247   // code. If the target chooses to do this, this is the next best.
7248   if (TSI) {
7249     SDValue Result =
7250         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7251                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7252     if (Result.getNode())
7253       return Result;
7254   }
7255 
7256   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7257   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7258 
7259   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7260   // not be safe.  See memcpy above for more details.
7261 
7262   // Emit a library call.
7263   TargetLowering::ArgListTy Args;
7264   TargetLowering::ArgListEntry Entry;
7265   Entry.Ty = Type::getInt8PtrTy(*getContext());
7266   Entry.Node = Dst; Args.push_back(Entry);
7267   Entry.Node = Src; Args.push_back(Entry);
7268 
7269   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7270   Entry.Node = Size; Args.push_back(Entry);
7271   // FIXME:  pass in SDLoc
7272   TargetLowering::CallLoweringInfo CLI(*this);
7273   CLI.setDebugLoc(dl)
7274       .setChain(Chain)
7275       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7276                     Dst.getValueType().getTypeForEVT(*getContext()),
7277                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7278                                       TLI->getPointerTy(getDataLayout())),
7279                     std::move(Args))
7280       .setDiscardResult()
7281       .setTailCall(isTailCall);
7282 
7283   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7284   return CallResult.second;
7285 }
7286 
7287 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7288                                        SDValue Dst, SDValue Src, SDValue Size,
7289                                        Type *SizeTy, unsigned ElemSz,
7290                                        bool isTailCall,
7291                                        MachinePointerInfo DstPtrInfo,
7292                                        MachinePointerInfo SrcPtrInfo) {
7293   // Emit a library call.
7294   TargetLowering::ArgListTy Args;
7295   TargetLowering::ArgListEntry Entry;
7296   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7297   Entry.Node = Dst;
7298   Args.push_back(Entry);
7299 
7300   Entry.Node = Src;
7301   Args.push_back(Entry);
7302 
7303   Entry.Ty = SizeTy;
7304   Entry.Node = Size;
7305   Args.push_back(Entry);
7306 
7307   RTLIB::Libcall LibraryCall =
7308       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7309   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7310     report_fatal_error("Unsupported element size");
7311 
7312   TargetLowering::CallLoweringInfo CLI(*this);
7313   CLI.setDebugLoc(dl)
7314       .setChain(Chain)
7315       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7316                     Type::getVoidTy(*getContext()),
7317                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7318                                       TLI->getPointerTy(getDataLayout())),
7319                     std::move(Args))
7320       .setDiscardResult()
7321       .setTailCall(isTailCall);
7322 
7323   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7324   return CallResult.second;
7325 }
7326 
7327 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7328                                 SDValue Src, SDValue Size, Align Alignment,
7329                                 bool isVol, bool AlwaysInline, bool isTailCall,
7330                                 MachinePointerInfo DstPtrInfo,
7331                                 const AAMDNodes &AAInfo) {
7332   // Check to see if we should lower the memset to stores first.
7333   // For cases within the target-specified limits, this is the best choice.
7334   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7335   if (ConstantSize) {
7336     // Memset with size zero? Just return the original chain.
7337     if (ConstantSize->isZero())
7338       return Chain;
7339 
7340     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7341                                      ConstantSize->getZExtValue(), Alignment,
7342                                      isVol, false, DstPtrInfo, AAInfo);
7343 
7344     if (Result.getNode())
7345       return Result;
7346   }
7347 
7348   // Then check to see if we should lower the memset with target-specific
7349   // code. If the target chooses to do this, this is the next best.
7350   if (TSI) {
7351     SDValue Result = TSI->EmitTargetCodeForMemset(
7352         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
7353     if (Result.getNode())
7354       return Result;
7355   }
7356 
7357   // If we really need inline code and the target declined to provide it,
7358   // use a (potentially long) sequence of loads and stores.
7359   if (AlwaysInline) {
7360     assert(ConstantSize && "AlwaysInline requires a constant size!");
7361     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7362                                      ConstantSize->getZExtValue(), Alignment,
7363                                      isVol, true, DstPtrInfo, AAInfo);
7364     assert(Result &&
7365            "getMemsetStores must return a valid sequence when AlwaysInline");
7366     return Result;
7367   }
7368 
7369   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7370 
7371   // Emit a library call.
7372   auto &Ctx = *getContext();
7373   const auto& DL = getDataLayout();
7374 
7375   TargetLowering::CallLoweringInfo CLI(*this);
7376   // FIXME: pass in SDLoc
7377   CLI.setDebugLoc(dl).setChain(Chain);
7378 
7379   ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src);
7380   const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero();
7381   const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
7382 
7383   // Helper function to create an Entry from Node and Type.
7384   const auto CreateEntry = [](SDValue Node, Type *Ty) {
7385     TargetLowering::ArgListEntry Entry;
7386     Entry.Node = Node;
7387     Entry.Ty = Ty;
7388     return Entry;
7389   };
7390 
7391   // If zeroing out and bzero is present, use it.
7392   if (SrcIsZero && BzeroName) {
7393     TargetLowering::ArgListTy Args;
7394     Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7395     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7396     CLI.setLibCallee(
7397         TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
7398         getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
7399   } else {
7400     TargetLowering::ArgListTy Args;
7401     Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7402     Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
7403     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7404     CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7405                      Dst.getValueType().getTypeForEVT(Ctx),
7406                      getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7407                                        TLI->getPointerTy(DL)),
7408                      std::move(Args));
7409   }
7410 
7411   CLI.setDiscardResult().setTailCall(isTailCall);
7412 
7413   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7414   return CallResult.second;
7415 }
7416 
7417 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7418                                       SDValue Dst, SDValue Value, SDValue Size,
7419                                       Type *SizeTy, unsigned ElemSz,
7420                                       bool isTailCall,
7421                                       MachinePointerInfo DstPtrInfo) {
7422   // Emit a library call.
7423   TargetLowering::ArgListTy Args;
7424   TargetLowering::ArgListEntry Entry;
7425   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7426   Entry.Node = Dst;
7427   Args.push_back(Entry);
7428 
7429   Entry.Ty = Type::getInt8Ty(*getContext());
7430   Entry.Node = Value;
7431   Args.push_back(Entry);
7432 
7433   Entry.Ty = SizeTy;
7434   Entry.Node = Size;
7435   Args.push_back(Entry);
7436 
7437   RTLIB::Libcall LibraryCall =
7438       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7439   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7440     report_fatal_error("Unsupported element size");
7441 
7442   TargetLowering::CallLoweringInfo CLI(*this);
7443   CLI.setDebugLoc(dl)
7444       .setChain(Chain)
7445       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7446                     Type::getVoidTy(*getContext()),
7447                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7448                                       TLI->getPointerTy(getDataLayout())),
7449                     std::move(Args))
7450       .setDiscardResult()
7451       .setTailCall(isTailCall);
7452 
7453   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7454   return CallResult.second;
7455 }
7456 
7457 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7458                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7459                                 MachineMemOperand *MMO) {
7460   FoldingSetNodeID ID;
7461   ID.AddInteger(MemVT.getRawBits());
7462   AddNodeIDNode(ID, Opcode, VTList, Ops);
7463   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7464   ID.AddInteger(MMO->getFlags());
7465   void* IP = nullptr;
7466   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7467     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7468     return SDValue(E, 0);
7469   }
7470 
7471   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7472                                     VTList, MemVT, MMO);
7473   createOperands(N, Ops);
7474 
7475   CSEMap.InsertNode(N, IP);
7476   InsertNode(N);
7477   return SDValue(N, 0);
7478 }
7479 
7480 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7481                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7482                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7483                                        MachineMemOperand *MMO) {
7484   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7485          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7486   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7487 
7488   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7489   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7490 }
7491 
7492 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7493                                 SDValue Chain, SDValue Ptr, SDValue Val,
7494                                 MachineMemOperand *MMO) {
7495   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7496           Opcode == ISD::ATOMIC_LOAD_SUB ||
7497           Opcode == ISD::ATOMIC_LOAD_AND ||
7498           Opcode == ISD::ATOMIC_LOAD_CLR ||
7499           Opcode == ISD::ATOMIC_LOAD_OR ||
7500           Opcode == ISD::ATOMIC_LOAD_XOR ||
7501           Opcode == ISD::ATOMIC_LOAD_NAND ||
7502           Opcode == ISD::ATOMIC_LOAD_MIN ||
7503           Opcode == ISD::ATOMIC_LOAD_MAX ||
7504           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7505           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7506           Opcode == ISD::ATOMIC_LOAD_FADD ||
7507           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7508           Opcode == ISD::ATOMIC_SWAP ||
7509           Opcode == ISD::ATOMIC_STORE) &&
7510          "Invalid Atomic Op");
7511 
7512   EVT VT = Val.getValueType();
7513 
7514   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7515                                                getVTList(VT, MVT::Other);
7516   SDValue Ops[] = {Chain, Ptr, Val};
7517   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7518 }
7519 
7520 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7521                                 EVT VT, SDValue Chain, SDValue Ptr,
7522                                 MachineMemOperand *MMO) {
7523   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7524 
7525   SDVTList VTs = getVTList(VT, MVT::Other);
7526   SDValue Ops[] = {Chain, Ptr};
7527   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7528 }
7529 
7530 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7531 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7532   if (Ops.size() == 1)
7533     return Ops[0];
7534 
7535   SmallVector<EVT, 4> VTs;
7536   VTs.reserve(Ops.size());
7537   for (const SDValue &Op : Ops)
7538     VTs.push_back(Op.getValueType());
7539   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7540 }
7541 
7542 SDValue SelectionDAG::getMemIntrinsicNode(
7543     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7544     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7545     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7546   if (!Size && MemVT.isScalableVector())
7547     Size = MemoryLocation::UnknownSize;
7548   else if (!Size)
7549     Size = MemVT.getStoreSize();
7550 
7551   MachineFunction &MF = getMachineFunction();
7552   MachineMemOperand *MMO =
7553       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7554 
7555   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7556 }
7557 
7558 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7559                                           SDVTList VTList,
7560                                           ArrayRef<SDValue> Ops, EVT MemVT,
7561                                           MachineMemOperand *MMO) {
7562   assert((Opcode == ISD::INTRINSIC_VOID ||
7563           Opcode == ISD::INTRINSIC_W_CHAIN ||
7564           Opcode == ISD::PREFETCH ||
7565           ((int)Opcode <= std::numeric_limits<int>::max() &&
7566            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7567          "Opcode is not a memory-accessing opcode!");
7568 
7569   // Memoize the node unless it returns a flag.
7570   MemIntrinsicSDNode *N;
7571   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7572     FoldingSetNodeID ID;
7573     AddNodeIDNode(ID, Opcode, VTList, Ops);
7574     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7575         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7576     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7577     ID.AddInteger(MMO->getFlags());
7578     void *IP = nullptr;
7579     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7580       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7581       return SDValue(E, 0);
7582     }
7583 
7584     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7585                                       VTList, MemVT, MMO);
7586     createOperands(N, Ops);
7587 
7588   CSEMap.InsertNode(N, IP);
7589   } else {
7590     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7591                                       VTList, MemVT, MMO);
7592     createOperands(N, Ops);
7593   }
7594   InsertNode(N);
7595   SDValue V(N, 0);
7596   NewSDValueDbgMsg(V, "Creating new node: ", this);
7597   return V;
7598 }
7599 
7600 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7601                                       SDValue Chain, int FrameIndex,
7602                                       int64_t Size, int64_t Offset) {
7603   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7604   const auto VTs = getVTList(MVT::Other);
7605   SDValue Ops[2] = {
7606       Chain,
7607       getFrameIndex(FrameIndex,
7608                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7609                     true)};
7610 
7611   FoldingSetNodeID ID;
7612   AddNodeIDNode(ID, Opcode, VTs, Ops);
7613   ID.AddInteger(FrameIndex);
7614   ID.AddInteger(Size);
7615   ID.AddInteger(Offset);
7616   void *IP = nullptr;
7617   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7618     return SDValue(E, 0);
7619 
7620   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7621       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7622   createOperands(N, Ops);
7623   CSEMap.InsertNode(N, IP);
7624   InsertNode(N);
7625   SDValue V(N, 0);
7626   NewSDValueDbgMsg(V, "Creating new node: ", this);
7627   return V;
7628 }
7629 
7630 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7631                                          uint64_t Guid, uint64_t Index,
7632                                          uint32_t Attr) {
7633   const unsigned Opcode = ISD::PSEUDO_PROBE;
7634   const auto VTs = getVTList(MVT::Other);
7635   SDValue Ops[] = {Chain};
7636   FoldingSetNodeID ID;
7637   AddNodeIDNode(ID, Opcode, VTs, Ops);
7638   ID.AddInteger(Guid);
7639   ID.AddInteger(Index);
7640   void *IP = nullptr;
7641   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7642     return SDValue(E, 0);
7643 
7644   auto *N = newSDNode<PseudoProbeSDNode>(
7645       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7646   createOperands(N, Ops);
7647   CSEMap.InsertNode(N, IP);
7648   InsertNode(N);
7649   SDValue V(N, 0);
7650   NewSDValueDbgMsg(V, "Creating new node: ", this);
7651   return V;
7652 }
7653 
7654 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7655 /// MachinePointerInfo record from it.  This is particularly useful because the
7656 /// code generator has many cases where it doesn't bother passing in a
7657 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7658 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7659                                            SelectionDAG &DAG, SDValue Ptr,
7660                                            int64_t Offset = 0) {
7661   // If this is FI+Offset, we can model it.
7662   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7663     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7664                                              FI->getIndex(), Offset);
7665 
7666   // If this is (FI+Offset1)+Offset2, we can model it.
7667   if (Ptr.getOpcode() != ISD::ADD ||
7668       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7669       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7670     return Info;
7671 
7672   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7673   return MachinePointerInfo::getFixedStack(
7674       DAG.getMachineFunction(), FI,
7675       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7676 }
7677 
7678 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7679 /// MachinePointerInfo record from it.  This is particularly useful because the
7680 /// code generator has many cases where it doesn't bother passing in a
7681 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7682 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7683                                            SelectionDAG &DAG, SDValue Ptr,
7684                                            SDValue OffsetOp) {
7685   // If the 'Offset' value isn't a constant, we can't handle this.
7686   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7687     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7688   if (OffsetOp.isUndef())
7689     return InferPointerInfo(Info, DAG, Ptr);
7690   return Info;
7691 }
7692 
7693 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7694                               EVT VT, const SDLoc &dl, SDValue Chain,
7695                               SDValue Ptr, SDValue Offset,
7696                               MachinePointerInfo PtrInfo, EVT MemVT,
7697                               Align Alignment,
7698                               MachineMemOperand::Flags MMOFlags,
7699                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7700   assert(Chain.getValueType() == MVT::Other &&
7701         "Invalid chain type");
7702 
7703   MMOFlags |= MachineMemOperand::MOLoad;
7704   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7705   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7706   // clients.
7707   if (PtrInfo.V.isNull())
7708     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7709 
7710   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7711   MachineFunction &MF = getMachineFunction();
7712   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7713                                                    Alignment, AAInfo, Ranges);
7714   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7715 }
7716 
7717 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7718                               EVT VT, const SDLoc &dl, SDValue Chain,
7719                               SDValue Ptr, SDValue Offset, EVT MemVT,
7720                               MachineMemOperand *MMO) {
7721   if (VT == MemVT) {
7722     ExtType = ISD::NON_EXTLOAD;
7723   } else if (ExtType == ISD::NON_EXTLOAD) {
7724     assert(VT == MemVT && "Non-extending load from different memory type!");
7725   } else {
7726     // Extending load.
7727     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7728            "Should only be an extending load, not truncating!");
7729     assert(VT.isInteger() == MemVT.isInteger() &&
7730            "Cannot convert from FP to Int or Int -> FP!");
7731     assert(VT.isVector() == MemVT.isVector() &&
7732            "Cannot use an ext load to convert to or from a vector!");
7733     assert((!VT.isVector() ||
7734             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7735            "Cannot use an ext load to change the number of vector elements!");
7736   }
7737 
7738   bool Indexed = AM != ISD::UNINDEXED;
7739   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7740 
7741   SDVTList VTs = Indexed ?
7742     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7743   SDValue Ops[] = { Chain, Ptr, Offset };
7744   FoldingSetNodeID ID;
7745   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7746   ID.AddInteger(MemVT.getRawBits());
7747   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7748       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7749   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7750   ID.AddInteger(MMO->getFlags());
7751   void *IP = nullptr;
7752   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7753     cast<LoadSDNode>(E)->refineAlignment(MMO);
7754     return SDValue(E, 0);
7755   }
7756   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7757                                   ExtType, MemVT, MMO);
7758   createOperands(N, Ops);
7759 
7760   CSEMap.InsertNode(N, IP);
7761   InsertNode(N);
7762   SDValue V(N, 0);
7763   NewSDValueDbgMsg(V, "Creating new node: ", this);
7764   return V;
7765 }
7766 
7767 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7768                               SDValue Ptr, MachinePointerInfo PtrInfo,
7769                               MaybeAlign Alignment,
7770                               MachineMemOperand::Flags MMOFlags,
7771                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7772   SDValue Undef = getUNDEF(Ptr.getValueType());
7773   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7774                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7775 }
7776 
7777 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7778                               SDValue Ptr, MachineMemOperand *MMO) {
7779   SDValue Undef = getUNDEF(Ptr.getValueType());
7780   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7781                  VT, MMO);
7782 }
7783 
7784 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7785                                  EVT VT, SDValue Chain, SDValue Ptr,
7786                                  MachinePointerInfo PtrInfo, EVT MemVT,
7787                                  MaybeAlign Alignment,
7788                                  MachineMemOperand::Flags MMOFlags,
7789                                  const AAMDNodes &AAInfo) {
7790   SDValue Undef = getUNDEF(Ptr.getValueType());
7791   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7792                  MemVT, Alignment, MMOFlags, AAInfo);
7793 }
7794 
7795 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7796                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7797                                  MachineMemOperand *MMO) {
7798   SDValue Undef = getUNDEF(Ptr.getValueType());
7799   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7800                  MemVT, MMO);
7801 }
7802 
7803 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7804                                      SDValue Base, SDValue Offset,
7805                                      ISD::MemIndexedMode AM) {
7806   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7807   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7808   // Don't propagate the invariant or dereferenceable flags.
7809   auto MMOFlags =
7810       LD->getMemOperand()->getFlags() &
7811       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7812   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7813                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7814                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7815 }
7816 
7817 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7818                                SDValue Ptr, MachinePointerInfo PtrInfo,
7819                                Align Alignment,
7820                                MachineMemOperand::Flags MMOFlags,
7821                                const AAMDNodes &AAInfo) {
7822   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7823 
7824   MMOFlags |= MachineMemOperand::MOStore;
7825   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7826 
7827   if (PtrInfo.V.isNull())
7828     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7829 
7830   MachineFunction &MF = getMachineFunction();
7831   uint64_t Size =
7832       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7833   MachineMemOperand *MMO =
7834       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7835   return getStore(Chain, dl, Val, Ptr, MMO);
7836 }
7837 
7838 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7839                                SDValue Ptr, MachineMemOperand *MMO) {
7840   assert(Chain.getValueType() == MVT::Other &&
7841         "Invalid chain type");
7842   EVT VT = Val.getValueType();
7843   SDVTList VTs = getVTList(MVT::Other);
7844   SDValue Undef = getUNDEF(Ptr.getValueType());
7845   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7846   FoldingSetNodeID ID;
7847   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7848   ID.AddInteger(VT.getRawBits());
7849   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7850       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7851   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7852   ID.AddInteger(MMO->getFlags());
7853   void *IP = nullptr;
7854   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7855     cast<StoreSDNode>(E)->refineAlignment(MMO);
7856     return SDValue(E, 0);
7857   }
7858   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7859                                    ISD::UNINDEXED, false, VT, MMO);
7860   createOperands(N, Ops);
7861 
7862   CSEMap.InsertNode(N, IP);
7863   InsertNode(N);
7864   SDValue V(N, 0);
7865   NewSDValueDbgMsg(V, "Creating new node: ", this);
7866   return V;
7867 }
7868 
7869 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7870                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7871                                     EVT SVT, Align Alignment,
7872                                     MachineMemOperand::Flags MMOFlags,
7873                                     const AAMDNodes &AAInfo) {
7874   assert(Chain.getValueType() == MVT::Other &&
7875         "Invalid chain type");
7876 
7877   MMOFlags |= MachineMemOperand::MOStore;
7878   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7879 
7880   if (PtrInfo.V.isNull())
7881     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7882 
7883   MachineFunction &MF = getMachineFunction();
7884   MachineMemOperand *MMO = MF.getMachineMemOperand(
7885       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7886       Alignment, AAInfo);
7887   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7888 }
7889 
7890 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7891                                     SDValue Ptr, EVT SVT,
7892                                     MachineMemOperand *MMO) {
7893   EVT VT = Val.getValueType();
7894 
7895   assert(Chain.getValueType() == MVT::Other &&
7896         "Invalid chain type");
7897   if (VT == SVT)
7898     return getStore(Chain, dl, Val, Ptr, MMO);
7899 
7900   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7901          "Should only be a truncating store, not extending!");
7902   assert(VT.isInteger() == SVT.isInteger() &&
7903          "Can't do FP-INT conversion!");
7904   assert(VT.isVector() == SVT.isVector() &&
7905          "Cannot use trunc store to convert to or from a vector!");
7906   assert((!VT.isVector() ||
7907           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7908          "Cannot use trunc store to change the number of vector elements!");
7909 
7910   SDVTList VTs = getVTList(MVT::Other);
7911   SDValue Undef = getUNDEF(Ptr.getValueType());
7912   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7913   FoldingSetNodeID ID;
7914   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7915   ID.AddInteger(SVT.getRawBits());
7916   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7917       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7918   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7919   ID.AddInteger(MMO->getFlags());
7920   void *IP = nullptr;
7921   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7922     cast<StoreSDNode>(E)->refineAlignment(MMO);
7923     return SDValue(E, 0);
7924   }
7925   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7926                                    ISD::UNINDEXED, true, SVT, MMO);
7927   createOperands(N, Ops);
7928 
7929   CSEMap.InsertNode(N, IP);
7930   InsertNode(N);
7931   SDValue V(N, 0);
7932   NewSDValueDbgMsg(V, "Creating new node: ", this);
7933   return V;
7934 }
7935 
7936 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7937                                       SDValue Base, SDValue Offset,
7938                                       ISD::MemIndexedMode AM) {
7939   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7940   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7941   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7942   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7943   FoldingSetNodeID ID;
7944   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7945   ID.AddInteger(ST->getMemoryVT().getRawBits());
7946   ID.AddInteger(ST->getRawSubclassData());
7947   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7948   ID.AddInteger(ST->getMemOperand()->getFlags());
7949   void *IP = nullptr;
7950   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7951     return SDValue(E, 0);
7952 
7953   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7954                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7955                                    ST->getMemOperand());
7956   createOperands(N, Ops);
7957 
7958   CSEMap.InsertNode(N, IP);
7959   InsertNode(N);
7960   SDValue V(N, 0);
7961   NewSDValueDbgMsg(V, "Creating new node: ", this);
7962   return V;
7963 }
7964 
7965 SDValue SelectionDAG::getLoadVP(
7966     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7967     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7968     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7969     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7970     const MDNode *Ranges, bool IsExpanding) {
7971   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7972 
7973   MMOFlags |= MachineMemOperand::MOLoad;
7974   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7975   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7976   // clients.
7977   if (PtrInfo.V.isNull())
7978     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7979 
7980   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7981   MachineFunction &MF = getMachineFunction();
7982   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7983                                                    Alignment, AAInfo, Ranges);
7984   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7985                    MMO, IsExpanding);
7986 }
7987 
7988 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7989                                 ISD::LoadExtType ExtType, EVT VT,
7990                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7991                                 SDValue Offset, SDValue Mask, SDValue EVL,
7992                                 EVT MemVT, MachineMemOperand *MMO,
7993                                 bool IsExpanding) {
7994   bool Indexed = AM != ISD::UNINDEXED;
7995   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7996 
7997   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7998                          : getVTList(VT, MVT::Other);
7999   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
8000   FoldingSetNodeID ID;
8001   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
8002   ID.AddInteger(VT.getRawBits());
8003   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
8004       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8005   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8006   ID.AddInteger(MMO->getFlags());
8007   void *IP = nullptr;
8008   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8009     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
8010     return SDValue(E, 0);
8011   }
8012   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8013                                     ExtType, IsExpanding, MemVT, MMO);
8014   createOperands(N, Ops);
8015 
8016   CSEMap.InsertNode(N, IP);
8017   InsertNode(N);
8018   SDValue V(N, 0);
8019   NewSDValueDbgMsg(V, "Creating new node: ", this);
8020   return V;
8021 }
8022 
8023 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8024                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8025                                 MachinePointerInfo PtrInfo,
8026                                 MaybeAlign Alignment,
8027                                 MachineMemOperand::Flags MMOFlags,
8028                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
8029                                 bool IsExpanding) {
8030   SDValue Undef = getUNDEF(Ptr.getValueType());
8031   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8032                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
8033                    IsExpanding);
8034 }
8035 
8036 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8037                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8038                                 MachineMemOperand *MMO, bool IsExpanding) {
8039   SDValue Undef = getUNDEF(Ptr.getValueType());
8040   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8041                    Mask, EVL, VT, MMO, IsExpanding);
8042 }
8043 
8044 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8045                                    EVT VT, SDValue Chain, SDValue Ptr,
8046                                    SDValue Mask, SDValue EVL,
8047                                    MachinePointerInfo PtrInfo, EVT MemVT,
8048                                    MaybeAlign Alignment,
8049                                    MachineMemOperand::Flags MMOFlags,
8050                                    const AAMDNodes &AAInfo, bool IsExpanding) {
8051   SDValue Undef = getUNDEF(Ptr.getValueType());
8052   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8053                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
8054                    IsExpanding);
8055 }
8056 
8057 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8058                                    EVT VT, SDValue Chain, SDValue Ptr,
8059                                    SDValue Mask, SDValue EVL, EVT MemVT,
8060                                    MachineMemOperand *MMO, bool IsExpanding) {
8061   SDValue Undef = getUNDEF(Ptr.getValueType());
8062   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8063                    EVL, MemVT, MMO, IsExpanding);
8064 }
8065 
8066 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
8067                                        SDValue Base, SDValue Offset,
8068                                        ISD::MemIndexedMode AM) {
8069   auto *LD = cast<VPLoadSDNode>(OrigLoad);
8070   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8071   // Don't propagate the invariant or dereferenceable flags.
8072   auto MMOFlags =
8073       LD->getMemOperand()->getFlags() &
8074       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8075   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8076                    LD->getChain(), Base, Offset, LD->getMask(),
8077                    LD->getVectorLength(), LD->getPointerInfo(),
8078                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
8079                    nullptr, LD->isExpandingLoad());
8080 }
8081 
8082 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
8083                                  SDValue Ptr, SDValue Offset, SDValue Mask,
8084                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
8085                                  ISD::MemIndexedMode AM, bool IsTruncating,
8086                                  bool IsCompressing) {
8087   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8088   bool Indexed = AM != ISD::UNINDEXED;
8089   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8090   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8091                          : getVTList(MVT::Other);
8092   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
8093   FoldingSetNodeID ID;
8094   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8095   ID.AddInteger(MemVT.getRawBits());
8096   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8097       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8098   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8099   ID.AddInteger(MMO->getFlags());
8100   void *IP = nullptr;
8101   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8102     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8103     return SDValue(E, 0);
8104   }
8105   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8106                                      IsTruncating, IsCompressing, MemVT, MMO);
8107   createOperands(N, Ops);
8108 
8109   CSEMap.InsertNode(N, IP);
8110   InsertNode(N);
8111   SDValue V(N, 0);
8112   NewSDValueDbgMsg(V, "Creating new node: ", this);
8113   return V;
8114 }
8115 
8116 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8117                                       SDValue Val, SDValue Ptr, SDValue Mask,
8118                                       SDValue EVL, MachinePointerInfo PtrInfo,
8119                                       EVT SVT, Align Alignment,
8120                                       MachineMemOperand::Flags MMOFlags,
8121                                       const AAMDNodes &AAInfo,
8122                                       bool IsCompressing) {
8123   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8124 
8125   MMOFlags |= MachineMemOperand::MOStore;
8126   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8127 
8128   if (PtrInfo.V.isNull())
8129     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8130 
8131   MachineFunction &MF = getMachineFunction();
8132   MachineMemOperand *MMO = MF.getMachineMemOperand(
8133       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8134       Alignment, AAInfo);
8135   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8136                          IsCompressing);
8137 }
8138 
8139 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8140                                       SDValue Val, SDValue Ptr, SDValue Mask,
8141                                       SDValue EVL, EVT SVT,
8142                                       MachineMemOperand *MMO,
8143                                       bool IsCompressing) {
8144   EVT VT = Val.getValueType();
8145 
8146   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8147   if (VT == SVT)
8148     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8149                       EVL, VT, MMO, ISD::UNINDEXED,
8150                       /*IsTruncating*/ false, IsCompressing);
8151 
8152   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8153          "Should only be a truncating store, not extending!");
8154   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8155   assert(VT.isVector() == SVT.isVector() &&
8156          "Cannot use trunc store to convert to or from a vector!");
8157   assert((!VT.isVector() ||
8158           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8159          "Cannot use trunc store to change the number of vector elements!");
8160 
8161   SDVTList VTs = getVTList(MVT::Other);
8162   SDValue Undef = getUNDEF(Ptr.getValueType());
8163   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8164   FoldingSetNodeID ID;
8165   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8166   ID.AddInteger(SVT.getRawBits());
8167   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8168       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8169   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8170   ID.AddInteger(MMO->getFlags());
8171   void *IP = nullptr;
8172   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8173     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8174     return SDValue(E, 0);
8175   }
8176   auto *N =
8177       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8178                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8179   createOperands(N, Ops);
8180 
8181   CSEMap.InsertNode(N, IP);
8182   InsertNode(N);
8183   SDValue V(N, 0);
8184   NewSDValueDbgMsg(V, "Creating new node: ", this);
8185   return V;
8186 }
8187 
8188 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8189                                         SDValue Base, SDValue Offset,
8190                                         ISD::MemIndexedMode AM) {
8191   auto *ST = cast<VPStoreSDNode>(OrigStore);
8192   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8193   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8194   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8195                    Offset,         ST->getMask(),  ST->getVectorLength()};
8196   FoldingSetNodeID ID;
8197   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8198   ID.AddInteger(ST->getMemoryVT().getRawBits());
8199   ID.AddInteger(ST->getRawSubclassData());
8200   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8201   ID.AddInteger(ST->getMemOperand()->getFlags());
8202   void *IP = nullptr;
8203   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8204     return SDValue(E, 0);
8205 
8206   auto *N = newSDNode<VPStoreSDNode>(
8207       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8208       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8209   createOperands(N, Ops);
8210 
8211   CSEMap.InsertNode(N, IP);
8212   InsertNode(N);
8213   SDValue V(N, 0);
8214   NewSDValueDbgMsg(V, "Creating new node: ", this);
8215   return V;
8216 }
8217 
8218 SDValue SelectionDAG::getStridedLoadVP(
8219     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8220     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8221     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8222     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8223     const MDNode *Ranges, bool IsExpanding) {
8224   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8225 
8226   MMOFlags |= MachineMemOperand::MOLoad;
8227   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8228   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8229   // clients.
8230   if (PtrInfo.V.isNull())
8231     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8232 
8233   uint64_t Size = MemoryLocation::UnknownSize;
8234   MachineFunction &MF = getMachineFunction();
8235   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8236                                                    Alignment, AAInfo, Ranges);
8237   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8238                           EVL, MemVT, MMO, IsExpanding);
8239 }
8240 
8241 SDValue SelectionDAG::getStridedLoadVP(
8242     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8243     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8244     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8245   bool Indexed = AM != ISD::UNINDEXED;
8246   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8247 
8248   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8249   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8250                          : getVTList(VT, MVT::Other);
8251   FoldingSetNodeID ID;
8252   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8253   ID.AddInteger(VT.getRawBits());
8254   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8255       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8256   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8257 
8258   void *IP = nullptr;
8259   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8260     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8261     return SDValue(E, 0);
8262   }
8263 
8264   auto *N =
8265       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8266                                      ExtType, IsExpanding, MemVT, MMO);
8267   createOperands(N, Ops);
8268   CSEMap.InsertNode(N, IP);
8269   InsertNode(N);
8270   SDValue V(N, 0);
8271   NewSDValueDbgMsg(V, "Creating new node: ", this);
8272   return V;
8273 }
8274 
8275 SDValue SelectionDAG::getStridedLoadVP(
8276     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8277     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8278     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8279     const MDNode *Ranges, bool IsExpanding) {
8280   SDValue Undef = getUNDEF(Ptr.getValueType());
8281   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8282                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8283                           MMOFlags, AAInfo, Ranges, IsExpanding);
8284 }
8285 
8286 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8287                                        SDValue Ptr, SDValue Stride,
8288                                        SDValue Mask, SDValue EVL,
8289                                        MachineMemOperand *MMO,
8290                                        bool IsExpanding) {
8291   SDValue Undef = getUNDEF(Ptr.getValueType());
8292   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8293                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8294 }
8295 
8296 SDValue SelectionDAG::getExtStridedLoadVP(
8297     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8298     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8299     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8300     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8301     bool IsExpanding) {
8302   SDValue Undef = getUNDEF(Ptr.getValueType());
8303   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8304                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8305                           MMOFlags, AAInfo, nullptr, IsExpanding);
8306 }
8307 
8308 SDValue SelectionDAG::getExtStridedLoadVP(
8309     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8310     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8311     MachineMemOperand *MMO, bool IsExpanding) {
8312   SDValue Undef = getUNDEF(Ptr.getValueType());
8313   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8314                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8315 }
8316 
8317 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8318                                               SDValue Base, SDValue Offset,
8319                                               ISD::MemIndexedMode AM) {
8320   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8321   assert(SLD->getOffset().isUndef() &&
8322          "Strided load is already a indexed load!");
8323   // Don't propagate the invariant or dereferenceable flags.
8324   auto MMOFlags =
8325       SLD->getMemOperand()->getFlags() &
8326       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8327   return getStridedLoadVP(
8328       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8329       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8330       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8331       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8332 }
8333 
8334 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8335                                         SDValue Val, SDValue Ptr,
8336                                         SDValue Offset, SDValue Stride,
8337                                         SDValue Mask, SDValue EVL, EVT MemVT,
8338                                         MachineMemOperand *MMO,
8339                                         ISD::MemIndexedMode AM,
8340                                         bool IsTruncating, bool IsCompressing) {
8341   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8342   bool Indexed = AM != ISD::UNINDEXED;
8343   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8344   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8345                          : getVTList(MVT::Other);
8346   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8347   FoldingSetNodeID ID;
8348   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8349   ID.AddInteger(MemVT.getRawBits());
8350   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8351       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8352   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8353   void *IP = nullptr;
8354   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8355     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8356     return SDValue(E, 0);
8357   }
8358   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8359                                             VTs, AM, IsTruncating,
8360                                             IsCompressing, MemVT, MMO);
8361   createOperands(N, Ops);
8362 
8363   CSEMap.InsertNode(N, IP);
8364   InsertNode(N);
8365   SDValue V(N, 0);
8366   NewSDValueDbgMsg(V, "Creating new node: ", this);
8367   return V;
8368 }
8369 
8370 SDValue SelectionDAG::getTruncStridedStoreVP(
8371     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8372     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8373     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8374     bool IsCompressing) {
8375   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8376 
8377   MMOFlags |= MachineMemOperand::MOStore;
8378   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8379 
8380   if (PtrInfo.V.isNull())
8381     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8382 
8383   MachineFunction &MF = getMachineFunction();
8384   MachineMemOperand *MMO = MF.getMachineMemOperand(
8385       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8386   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8387                                 MMO, IsCompressing);
8388 }
8389 
8390 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8391                                              SDValue Val, SDValue Ptr,
8392                                              SDValue Stride, SDValue Mask,
8393                                              SDValue EVL, EVT SVT,
8394                                              MachineMemOperand *MMO,
8395                                              bool IsCompressing) {
8396   EVT VT = Val.getValueType();
8397 
8398   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8399   if (VT == SVT)
8400     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8401                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8402                              /*IsTruncating*/ false, IsCompressing);
8403 
8404   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8405          "Should only be a truncating store, not extending!");
8406   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8407   assert(VT.isVector() == SVT.isVector() &&
8408          "Cannot use trunc store to convert to or from a vector!");
8409   assert((!VT.isVector() ||
8410           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8411          "Cannot use trunc store to change the number of vector elements!");
8412 
8413   SDVTList VTs = getVTList(MVT::Other);
8414   SDValue Undef = getUNDEF(Ptr.getValueType());
8415   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8416   FoldingSetNodeID ID;
8417   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8418   ID.AddInteger(SVT.getRawBits());
8419   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8420       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8421   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8422   void *IP = nullptr;
8423   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8424     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8425     return SDValue(E, 0);
8426   }
8427   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8428                                             VTs, ISD::UNINDEXED, true,
8429                                             IsCompressing, SVT, MMO);
8430   createOperands(N, Ops);
8431 
8432   CSEMap.InsertNode(N, IP);
8433   InsertNode(N);
8434   SDValue V(N, 0);
8435   NewSDValueDbgMsg(V, "Creating new node: ", this);
8436   return V;
8437 }
8438 
8439 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8440                                                const SDLoc &DL, SDValue Base,
8441                                                SDValue Offset,
8442                                                ISD::MemIndexedMode AM) {
8443   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8444   assert(SST->getOffset().isUndef() &&
8445          "Strided store is already an indexed store!");
8446   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8447   SDValue Ops[] = {
8448       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
8449       SST->getMask(),  SST->getVectorLength()};
8450   FoldingSetNodeID ID;
8451   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8452   ID.AddInteger(SST->getMemoryVT().getRawBits());
8453   ID.AddInteger(SST->getRawSubclassData());
8454   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8455   void *IP = nullptr;
8456   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8457     return SDValue(E, 0);
8458 
8459   auto *N = newSDNode<VPStridedStoreSDNode>(
8460       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8461       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8462   createOperands(N, Ops);
8463 
8464   CSEMap.InsertNode(N, IP);
8465   InsertNode(N);
8466   SDValue V(N, 0);
8467   NewSDValueDbgMsg(V, "Creating new node: ", this);
8468   return V;
8469 }
8470 
8471 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8472                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8473                                   ISD::MemIndexType IndexType) {
8474   assert(Ops.size() == 6 && "Incompatible number of operands");
8475 
8476   FoldingSetNodeID ID;
8477   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8478   ID.AddInteger(VT.getRawBits());
8479   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8480       dl.getIROrder(), VTs, VT, MMO, IndexType));
8481   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8482   ID.AddInteger(MMO->getFlags());
8483   void *IP = nullptr;
8484   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8485     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8486     return SDValue(E, 0);
8487   }
8488 
8489   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8490                                       VT, MMO, IndexType);
8491   createOperands(N, Ops);
8492 
8493   assert(N->getMask().getValueType().getVectorElementCount() ==
8494              N->getValueType(0).getVectorElementCount() &&
8495          "Vector width mismatch between mask and data");
8496   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8497              N->getValueType(0).getVectorElementCount().isScalable() &&
8498          "Scalable flags of index and data do not match");
8499   assert(ElementCount::isKnownGE(
8500              N->getIndex().getValueType().getVectorElementCount(),
8501              N->getValueType(0).getVectorElementCount()) &&
8502          "Vector width mismatch between index and data");
8503   assert(isa<ConstantSDNode>(N->getScale()) &&
8504          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8505          "Scale should be a constant power of 2");
8506 
8507   CSEMap.InsertNode(N, IP);
8508   InsertNode(N);
8509   SDValue V(N, 0);
8510   NewSDValueDbgMsg(V, "Creating new node: ", this);
8511   return V;
8512 }
8513 
8514 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8515                                    ArrayRef<SDValue> Ops,
8516                                    MachineMemOperand *MMO,
8517                                    ISD::MemIndexType IndexType) {
8518   assert(Ops.size() == 7 && "Incompatible number of operands");
8519 
8520   FoldingSetNodeID ID;
8521   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8522   ID.AddInteger(VT.getRawBits());
8523   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8524       dl.getIROrder(), VTs, VT, MMO, IndexType));
8525   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8526   ID.AddInteger(MMO->getFlags());
8527   void *IP = nullptr;
8528   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8529     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8530     return SDValue(E, 0);
8531   }
8532   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8533                                        VT, MMO, IndexType);
8534   createOperands(N, Ops);
8535 
8536   assert(N->getMask().getValueType().getVectorElementCount() ==
8537              N->getValue().getValueType().getVectorElementCount() &&
8538          "Vector width mismatch between mask and data");
8539   assert(
8540       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8541           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8542       "Scalable flags of index and data do not match");
8543   assert(ElementCount::isKnownGE(
8544              N->getIndex().getValueType().getVectorElementCount(),
8545              N->getValue().getValueType().getVectorElementCount()) &&
8546          "Vector width mismatch between index and data");
8547   assert(isa<ConstantSDNode>(N->getScale()) &&
8548          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8549          "Scale should be a constant power of 2");
8550 
8551   CSEMap.InsertNode(N, IP);
8552   InsertNode(N);
8553   SDValue V(N, 0);
8554   NewSDValueDbgMsg(V, "Creating new node: ", this);
8555   return V;
8556 }
8557 
8558 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8559                                     SDValue Base, SDValue Offset, SDValue Mask,
8560                                     SDValue PassThru, EVT MemVT,
8561                                     MachineMemOperand *MMO,
8562                                     ISD::MemIndexedMode AM,
8563                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8564   bool Indexed = AM != ISD::UNINDEXED;
8565   assert((Indexed || Offset.isUndef()) &&
8566          "Unindexed masked load with an offset!");
8567   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8568                          : getVTList(VT, MVT::Other);
8569   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8570   FoldingSetNodeID ID;
8571   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8572   ID.AddInteger(MemVT.getRawBits());
8573   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8574       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8575   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8576   ID.AddInteger(MMO->getFlags());
8577   void *IP = nullptr;
8578   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8579     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8580     return SDValue(E, 0);
8581   }
8582   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8583                                         AM, ExtTy, isExpanding, MemVT, MMO);
8584   createOperands(N, Ops);
8585 
8586   CSEMap.InsertNode(N, IP);
8587   InsertNode(N);
8588   SDValue V(N, 0);
8589   NewSDValueDbgMsg(V, "Creating new node: ", this);
8590   return V;
8591 }
8592 
8593 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8594                                            SDValue Base, SDValue Offset,
8595                                            ISD::MemIndexedMode AM) {
8596   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8597   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8598   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8599                        Offset, LD->getMask(), LD->getPassThru(),
8600                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8601                        LD->getExtensionType(), LD->isExpandingLoad());
8602 }
8603 
8604 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8605                                      SDValue Val, SDValue Base, SDValue Offset,
8606                                      SDValue Mask, EVT MemVT,
8607                                      MachineMemOperand *MMO,
8608                                      ISD::MemIndexedMode AM, bool IsTruncating,
8609                                      bool IsCompressing) {
8610   assert(Chain.getValueType() == MVT::Other &&
8611         "Invalid chain type");
8612   bool Indexed = AM != ISD::UNINDEXED;
8613   assert((Indexed || Offset.isUndef()) &&
8614          "Unindexed masked store with an offset!");
8615   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8616                          : getVTList(MVT::Other);
8617   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8618   FoldingSetNodeID ID;
8619   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8620   ID.AddInteger(MemVT.getRawBits());
8621   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8622       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8623   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8624   ID.AddInteger(MMO->getFlags());
8625   void *IP = nullptr;
8626   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8627     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8628     return SDValue(E, 0);
8629   }
8630   auto *N =
8631       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8632                                    IsTruncating, IsCompressing, MemVT, MMO);
8633   createOperands(N, Ops);
8634 
8635   CSEMap.InsertNode(N, IP);
8636   InsertNode(N);
8637   SDValue V(N, 0);
8638   NewSDValueDbgMsg(V, "Creating new node: ", this);
8639   return V;
8640 }
8641 
8642 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8643                                             SDValue Base, SDValue Offset,
8644                                             ISD::MemIndexedMode AM) {
8645   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8646   assert(ST->getOffset().isUndef() &&
8647          "Masked store is already a indexed store!");
8648   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8649                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8650                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8651 }
8652 
8653 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8654                                       ArrayRef<SDValue> Ops,
8655                                       MachineMemOperand *MMO,
8656                                       ISD::MemIndexType IndexType,
8657                                       ISD::LoadExtType ExtTy) {
8658   assert(Ops.size() == 6 && "Incompatible number of operands");
8659 
8660   FoldingSetNodeID ID;
8661   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8662   ID.AddInteger(MemVT.getRawBits());
8663   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8664       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8665   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8666   ID.AddInteger(MMO->getFlags());
8667   void *IP = nullptr;
8668   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8669     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8670     return SDValue(E, 0);
8671   }
8672 
8673   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8674                                           VTs, MemVT, MMO, IndexType, ExtTy);
8675   createOperands(N, Ops);
8676 
8677   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8678          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8679   assert(N->getMask().getValueType().getVectorElementCount() ==
8680              N->getValueType(0).getVectorElementCount() &&
8681          "Vector width mismatch between mask and data");
8682   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8683              N->getValueType(0).getVectorElementCount().isScalable() &&
8684          "Scalable flags of index and data do not match");
8685   assert(ElementCount::isKnownGE(
8686              N->getIndex().getValueType().getVectorElementCount(),
8687              N->getValueType(0).getVectorElementCount()) &&
8688          "Vector width mismatch between index and data");
8689   assert(isa<ConstantSDNode>(N->getScale()) &&
8690          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8691          "Scale should be a constant power of 2");
8692 
8693   CSEMap.InsertNode(N, IP);
8694   InsertNode(N);
8695   SDValue V(N, 0);
8696   NewSDValueDbgMsg(V, "Creating new node: ", this);
8697   return V;
8698 }
8699 
8700 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8701                                        ArrayRef<SDValue> Ops,
8702                                        MachineMemOperand *MMO,
8703                                        ISD::MemIndexType IndexType,
8704                                        bool IsTrunc) {
8705   assert(Ops.size() == 6 && "Incompatible number of operands");
8706 
8707   FoldingSetNodeID ID;
8708   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8709   ID.AddInteger(MemVT.getRawBits());
8710   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8711       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8712   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8713   ID.AddInteger(MMO->getFlags());
8714   void *IP = nullptr;
8715   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8716     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8717     return SDValue(E, 0);
8718   }
8719 
8720   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8721                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8722   createOperands(N, Ops);
8723 
8724   assert(N->getMask().getValueType().getVectorElementCount() ==
8725              N->getValue().getValueType().getVectorElementCount() &&
8726          "Vector width mismatch between mask and data");
8727   assert(
8728       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8729           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8730       "Scalable flags of index and data do not match");
8731   assert(ElementCount::isKnownGE(
8732              N->getIndex().getValueType().getVectorElementCount(),
8733              N->getValue().getValueType().getVectorElementCount()) &&
8734          "Vector width mismatch between index and data");
8735   assert(isa<ConstantSDNode>(N->getScale()) &&
8736          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8737          "Scale should be a constant power of 2");
8738 
8739   CSEMap.InsertNode(N, IP);
8740   InsertNode(N);
8741   SDValue V(N, 0);
8742   NewSDValueDbgMsg(V, "Creating new node: ", this);
8743   return V;
8744 }
8745 
8746 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8747   // select undef, T, F --> T (if T is a constant), otherwise F
8748   // select, ?, undef, F --> F
8749   // select, ?, T, undef --> T
8750   if (Cond.isUndef())
8751     return isConstantValueOfAnyType(T) ? T : F;
8752   if (T.isUndef())
8753     return F;
8754   if (F.isUndef())
8755     return T;
8756 
8757   // select true, T, F --> T
8758   // select false, T, F --> F
8759   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8760     return CondC->isZero() ? F : T;
8761 
8762   // TODO: This should simplify VSELECT with constant condition using something
8763   // like this (but check boolean contents to be complete?):
8764   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8765   //    return T;
8766   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8767   //    return F;
8768 
8769   // select ?, T, T --> T
8770   if (T == F)
8771     return T;
8772 
8773   return SDValue();
8774 }
8775 
8776 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8777   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8778   if (X.isUndef())
8779     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8780   // shift X, undef --> undef (because it may shift by the bitwidth)
8781   if (Y.isUndef())
8782     return getUNDEF(X.getValueType());
8783 
8784   // shift 0, Y --> 0
8785   // shift X, 0 --> X
8786   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8787     return X;
8788 
8789   // shift X, C >= bitwidth(X) --> undef
8790   // All vector elements must be too big (or undef) to avoid partial undefs.
8791   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8792     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8793   };
8794   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8795     return getUNDEF(X.getValueType());
8796 
8797   return SDValue();
8798 }
8799 
8800 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8801                                       SDNodeFlags Flags) {
8802   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8803   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8804   // operation is poison. That result can be relaxed to undef.
8805   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8806   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8807   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8808                 (YC && YC->getValueAPF().isNaN());
8809   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8810                 (YC && YC->getValueAPF().isInfinity());
8811 
8812   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8813     return getUNDEF(X.getValueType());
8814 
8815   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8816     return getUNDEF(X.getValueType());
8817 
8818   if (!YC)
8819     return SDValue();
8820 
8821   // X + -0.0 --> X
8822   if (Opcode == ISD::FADD)
8823     if (YC->getValueAPF().isNegZero())
8824       return X;
8825 
8826   // X - +0.0 --> X
8827   if (Opcode == ISD::FSUB)
8828     if (YC->getValueAPF().isPosZero())
8829       return X;
8830 
8831   // X * 1.0 --> X
8832   // X / 1.0 --> X
8833   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8834     if (YC->getValueAPF().isExactlyValue(1.0))
8835       return X;
8836 
8837   // X * 0.0 --> 0.0
8838   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8839     if (YC->getValueAPF().isZero())
8840       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8841 
8842   return SDValue();
8843 }
8844 
8845 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8846                                SDValue Ptr, SDValue SV, unsigned Align) {
8847   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8848   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8849 }
8850 
8851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8852                               ArrayRef<SDUse> Ops) {
8853   switch (Ops.size()) {
8854   case 0: return getNode(Opcode, DL, VT);
8855   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8856   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8857   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8858   default: break;
8859   }
8860 
8861   // Copy from an SDUse array into an SDValue array for use with
8862   // the regular getNode logic.
8863   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8864   return getNode(Opcode, DL, VT, NewOps);
8865 }
8866 
8867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8868                               ArrayRef<SDValue> Ops) {
8869   SDNodeFlags Flags;
8870   if (Inserter)
8871     Flags = Inserter->getFlags();
8872   return getNode(Opcode, DL, VT, Ops, Flags);
8873 }
8874 
8875 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8876                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8877   unsigned NumOps = Ops.size();
8878   switch (NumOps) {
8879   case 0: return getNode(Opcode, DL, VT);
8880   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8881   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8882   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8883   default: break;
8884   }
8885 
8886 #ifndef NDEBUG
8887   for (auto &Op : Ops)
8888     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8889            "Operand is DELETED_NODE!");
8890 #endif
8891 
8892   switch (Opcode) {
8893   default: break;
8894   case ISD::BUILD_VECTOR:
8895     // Attempt to simplify BUILD_VECTOR.
8896     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8897       return V;
8898     break;
8899   case ISD::CONCAT_VECTORS:
8900     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8901       return V;
8902     break;
8903   case ISD::SELECT_CC:
8904     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8905     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8906            "LHS and RHS of condition must have same type!");
8907     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8908            "True and False arms of SelectCC must have same type!");
8909     assert(Ops[2].getValueType() == VT &&
8910            "select_cc node must be of same type as true and false value!");
8911     break;
8912   case ISD::BR_CC:
8913     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8914     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8915            "LHS/RHS of comparison should match types!");
8916     break;
8917   case ISD::VP_ADD:
8918   case ISD::VP_SUB:
8919     // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
8920     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8921       Opcode = ISD::VP_XOR;
8922     break;
8923   case ISD::VP_MUL:
8924     // If it is VP_MUL mask operation then turn it to VP_AND
8925     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8926       Opcode = ISD::VP_AND;
8927     break;
8928   case ISD::VP_REDUCE_MUL:
8929     // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
8930     if (VT == MVT::i1)
8931       Opcode = ISD::VP_REDUCE_AND;
8932     break;
8933   case ISD::VP_REDUCE_ADD:
8934     // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
8935     if (VT == MVT::i1)
8936       Opcode = ISD::VP_REDUCE_XOR;
8937     break;
8938   case ISD::VP_REDUCE_SMAX:
8939   case ISD::VP_REDUCE_UMIN:
8940     // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
8941     // VP_REDUCE_AND.
8942     if (VT == MVT::i1)
8943       Opcode = ISD::VP_REDUCE_AND;
8944     break;
8945   case ISD::VP_REDUCE_SMIN:
8946   case ISD::VP_REDUCE_UMAX:
8947     // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
8948     // VP_REDUCE_OR.
8949     if (VT == MVT::i1)
8950       Opcode = ISD::VP_REDUCE_OR;
8951     break;
8952   }
8953 
8954   // Memoize nodes.
8955   SDNode *N;
8956   SDVTList VTs = getVTList(VT);
8957 
8958   if (VT != MVT::Glue) {
8959     FoldingSetNodeID ID;
8960     AddNodeIDNode(ID, Opcode, VTs, Ops);
8961     void *IP = nullptr;
8962 
8963     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8964       return SDValue(E, 0);
8965 
8966     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8967     createOperands(N, Ops);
8968 
8969     CSEMap.InsertNode(N, IP);
8970   } else {
8971     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8972     createOperands(N, Ops);
8973   }
8974 
8975   N->setFlags(Flags);
8976   InsertNode(N);
8977   SDValue V(N, 0);
8978   NewSDValueDbgMsg(V, "Creating new node: ", this);
8979   return V;
8980 }
8981 
8982 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8983                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8984   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8985 }
8986 
8987 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8988                               ArrayRef<SDValue> Ops) {
8989   SDNodeFlags Flags;
8990   if (Inserter)
8991     Flags = Inserter->getFlags();
8992   return getNode(Opcode, DL, VTList, Ops, Flags);
8993 }
8994 
8995 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8996                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8997   if (VTList.NumVTs == 1)
8998     return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
8999 
9000 #ifndef NDEBUG
9001   for (auto &Op : Ops)
9002     assert(Op.getOpcode() != ISD::DELETED_NODE &&
9003            "Operand is DELETED_NODE!");
9004 #endif
9005 
9006   switch (Opcode) {
9007   case ISD::STRICT_FP_EXTEND:
9008     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9009            "Invalid STRICT_FP_EXTEND!");
9010     assert(VTList.VTs[0].isFloatingPoint() &&
9011            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
9012     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9013            "STRICT_FP_EXTEND result type should be vector iff the operand "
9014            "type is vector!");
9015     assert((!VTList.VTs[0].isVector() ||
9016             VTList.VTs[0].getVectorNumElements() ==
9017             Ops[1].getValueType().getVectorNumElements()) &&
9018            "Vector element count mismatch!");
9019     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
9020            "Invalid fpext node, dst <= src!");
9021     break;
9022   case ISD::STRICT_FP_ROUND:
9023     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
9024     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9025            "STRICT_FP_ROUND result type should be vector iff the operand "
9026            "type is vector!");
9027     assert((!VTList.VTs[0].isVector() ||
9028             VTList.VTs[0].getVectorNumElements() ==
9029             Ops[1].getValueType().getVectorNumElements()) &&
9030            "Vector element count mismatch!");
9031     assert(VTList.VTs[0].isFloatingPoint() &&
9032            Ops[1].getValueType().isFloatingPoint() &&
9033            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
9034            isa<ConstantSDNode>(Ops[2]) &&
9035            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
9036             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
9037            "Invalid STRICT_FP_ROUND!");
9038     break;
9039 #if 0
9040   // FIXME: figure out how to safely handle things like
9041   // int foo(int x) { return 1 << (x & 255); }
9042   // int bar() { return foo(256); }
9043   case ISD::SRA_PARTS:
9044   case ISD::SRL_PARTS:
9045   case ISD::SHL_PARTS:
9046     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
9047         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
9048       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9049     else if (N3.getOpcode() == ISD::AND)
9050       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
9051         // If the and is only masking out bits that cannot effect the shift,
9052         // eliminate the and.
9053         unsigned NumBits = VT.getScalarSizeInBits()*2;
9054         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
9055           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9056       }
9057     break;
9058 #endif
9059   }
9060 
9061   // Memoize the node unless it returns a flag.
9062   SDNode *N;
9063   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9064     FoldingSetNodeID ID;
9065     AddNodeIDNode(ID, Opcode, VTList, Ops);
9066     void *IP = nullptr;
9067     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9068       return SDValue(E, 0);
9069 
9070     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9071     createOperands(N, Ops);
9072     CSEMap.InsertNode(N, IP);
9073   } else {
9074     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9075     createOperands(N, Ops);
9076   }
9077 
9078   N->setFlags(Flags);
9079   InsertNode(N);
9080   SDValue V(N, 0);
9081   NewSDValueDbgMsg(V, "Creating new node: ", this);
9082   return V;
9083 }
9084 
9085 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9086                               SDVTList VTList) {
9087   return getNode(Opcode, DL, VTList, None);
9088 }
9089 
9090 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9091                               SDValue N1) {
9092   SDValue Ops[] = { N1 };
9093   return getNode(Opcode, DL, VTList, Ops);
9094 }
9095 
9096 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9097                               SDValue N1, SDValue N2) {
9098   SDValue Ops[] = { N1, N2 };
9099   return getNode(Opcode, DL, VTList, Ops);
9100 }
9101 
9102 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9103                               SDValue N1, SDValue N2, SDValue N3) {
9104   SDValue Ops[] = { N1, N2, N3 };
9105   return getNode(Opcode, DL, VTList, Ops);
9106 }
9107 
9108 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9109                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
9110   SDValue Ops[] = { N1, N2, N3, N4 };
9111   return getNode(Opcode, DL, VTList, Ops);
9112 }
9113 
9114 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9115                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
9116                               SDValue N5) {
9117   SDValue Ops[] = { N1, N2, N3, N4, N5 };
9118   return getNode(Opcode, DL, VTList, Ops);
9119 }
9120 
9121 SDVTList SelectionDAG::getVTList(EVT VT) {
9122   return makeVTList(SDNode::getValueTypeList(VT), 1);
9123 }
9124 
9125 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
9126   FoldingSetNodeID ID;
9127   ID.AddInteger(2U);
9128   ID.AddInteger(VT1.getRawBits());
9129   ID.AddInteger(VT2.getRawBits());
9130 
9131   void *IP = nullptr;
9132   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9133   if (!Result) {
9134     EVT *Array = Allocator.Allocate<EVT>(2);
9135     Array[0] = VT1;
9136     Array[1] = VT2;
9137     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
9138     VTListMap.InsertNode(Result, IP);
9139   }
9140   return Result->getSDVTList();
9141 }
9142 
9143 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
9144   FoldingSetNodeID ID;
9145   ID.AddInteger(3U);
9146   ID.AddInteger(VT1.getRawBits());
9147   ID.AddInteger(VT2.getRawBits());
9148   ID.AddInteger(VT3.getRawBits());
9149 
9150   void *IP = nullptr;
9151   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9152   if (!Result) {
9153     EVT *Array = Allocator.Allocate<EVT>(3);
9154     Array[0] = VT1;
9155     Array[1] = VT2;
9156     Array[2] = VT3;
9157     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9158     VTListMap.InsertNode(Result, IP);
9159   }
9160   return Result->getSDVTList();
9161 }
9162 
9163 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9164   FoldingSetNodeID ID;
9165   ID.AddInteger(4U);
9166   ID.AddInteger(VT1.getRawBits());
9167   ID.AddInteger(VT2.getRawBits());
9168   ID.AddInteger(VT3.getRawBits());
9169   ID.AddInteger(VT4.getRawBits());
9170 
9171   void *IP = nullptr;
9172   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9173   if (!Result) {
9174     EVT *Array = Allocator.Allocate<EVT>(4);
9175     Array[0] = VT1;
9176     Array[1] = VT2;
9177     Array[2] = VT3;
9178     Array[3] = VT4;
9179     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9180     VTListMap.InsertNode(Result, IP);
9181   }
9182   return Result->getSDVTList();
9183 }
9184 
9185 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9186   unsigned NumVTs = VTs.size();
9187   FoldingSetNodeID ID;
9188   ID.AddInteger(NumVTs);
9189   for (unsigned index = 0; index < NumVTs; index++) {
9190     ID.AddInteger(VTs[index].getRawBits());
9191   }
9192 
9193   void *IP = nullptr;
9194   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9195   if (!Result) {
9196     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9197     llvm::copy(VTs, Array);
9198     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9199     VTListMap.InsertNode(Result, IP);
9200   }
9201   return Result->getSDVTList();
9202 }
9203 
9204 
9205 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9206 /// specified operands.  If the resultant node already exists in the DAG,
9207 /// this does not modify the specified node, instead it returns the node that
9208 /// already exists.  If the resultant node does not exist in the DAG, the
9209 /// input node is returned.  As a degenerate case, if you specify the same
9210 /// input operands as the node already has, the input node is returned.
9211 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9212   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9213 
9214   // Check to see if there is no change.
9215   if (Op == N->getOperand(0)) return N;
9216 
9217   // See if the modified node already exists.
9218   void *InsertPos = nullptr;
9219   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9220     return Existing;
9221 
9222   // Nope it doesn't.  Remove the node from its current place in the maps.
9223   if (InsertPos)
9224     if (!RemoveNodeFromCSEMaps(N))
9225       InsertPos = nullptr;
9226 
9227   // Now we update the operands.
9228   N->OperandList[0].set(Op);
9229 
9230   updateDivergence(N);
9231   // If this gets put into a CSE map, add it.
9232   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9233   return N;
9234 }
9235 
9236 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9237   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9238 
9239   // Check to see if there is no change.
9240   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9241     return N;   // No operands changed, just return the input node.
9242 
9243   // See if the modified node already exists.
9244   void *InsertPos = nullptr;
9245   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9246     return Existing;
9247 
9248   // Nope it doesn't.  Remove the node from its current place in the maps.
9249   if (InsertPos)
9250     if (!RemoveNodeFromCSEMaps(N))
9251       InsertPos = nullptr;
9252 
9253   // Now we update the operands.
9254   if (N->OperandList[0] != Op1)
9255     N->OperandList[0].set(Op1);
9256   if (N->OperandList[1] != Op2)
9257     N->OperandList[1].set(Op2);
9258 
9259   updateDivergence(N);
9260   // If this gets put into a CSE map, add it.
9261   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9262   return N;
9263 }
9264 
9265 SDNode *SelectionDAG::
9266 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9267   SDValue Ops[] = { Op1, Op2, Op3 };
9268   return UpdateNodeOperands(N, Ops);
9269 }
9270 
9271 SDNode *SelectionDAG::
9272 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9273                    SDValue Op3, SDValue Op4) {
9274   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9275   return UpdateNodeOperands(N, Ops);
9276 }
9277 
9278 SDNode *SelectionDAG::
9279 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9280                    SDValue Op3, SDValue Op4, SDValue Op5) {
9281   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9282   return UpdateNodeOperands(N, Ops);
9283 }
9284 
9285 SDNode *SelectionDAG::
9286 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9287   unsigned NumOps = Ops.size();
9288   assert(N->getNumOperands() == NumOps &&
9289          "Update with wrong number of operands");
9290 
9291   // If no operands changed just return the input node.
9292   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9293     return N;
9294 
9295   // See if the modified node already exists.
9296   void *InsertPos = nullptr;
9297   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9298     return Existing;
9299 
9300   // Nope it doesn't.  Remove the node from its current place in the maps.
9301   if (InsertPos)
9302     if (!RemoveNodeFromCSEMaps(N))
9303       InsertPos = nullptr;
9304 
9305   // Now we update the operands.
9306   for (unsigned i = 0; i != NumOps; ++i)
9307     if (N->OperandList[i] != Ops[i])
9308       N->OperandList[i].set(Ops[i]);
9309 
9310   updateDivergence(N);
9311   // If this gets put into a CSE map, add it.
9312   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9313   return N;
9314 }
9315 
9316 /// DropOperands - Release the operands and set this node to have
9317 /// zero operands.
9318 void SDNode::DropOperands() {
9319   // Unlike the code in MorphNodeTo that does this, we don't need to
9320   // watch for dead nodes here.
9321   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9322     SDUse &Use = *I++;
9323     Use.set(SDValue());
9324   }
9325 }
9326 
9327 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9328                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9329   if (NewMemRefs.empty()) {
9330     N->clearMemRefs();
9331     return;
9332   }
9333 
9334   // Check if we can avoid allocating by storing a single reference directly.
9335   if (NewMemRefs.size() == 1) {
9336     N->MemRefs = NewMemRefs[0];
9337     N->NumMemRefs = 1;
9338     return;
9339   }
9340 
9341   MachineMemOperand **MemRefsBuffer =
9342       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9343   llvm::copy(NewMemRefs, MemRefsBuffer);
9344   N->MemRefs = MemRefsBuffer;
9345   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9346 }
9347 
9348 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9349 /// machine opcode.
9350 ///
9351 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9352                                    EVT VT) {
9353   SDVTList VTs = getVTList(VT);
9354   return SelectNodeTo(N, MachineOpc, VTs, None);
9355 }
9356 
9357 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9358                                    EVT VT, SDValue Op1) {
9359   SDVTList VTs = getVTList(VT);
9360   SDValue Ops[] = { Op1 };
9361   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9362 }
9363 
9364 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9365                                    EVT VT, SDValue Op1,
9366                                    SDValue Op2) {
9367   SDVTList VTs = getVTList(VT);
9368   SDValue Ops[] = { Op1, Op2 };
9369   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9370 }
9371 
9372 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9373                                    EVT VT, SDValue Op1,
9374                                    SDValue Op2, SDValue Op3) {
9375   SDVTList VTs = getVTList(VT);
9376   SDValue Ops[] = { Op1, Op2, Op3 };
9377   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9378 }
9379 
9380 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9381                                    EVT VT, ArrayRef<SDValue> Ops) {
9382   SDVTList VTs = getVTList(VT);
9383   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9384 }
9385 
9386 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9387                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9388   SDVTList VTs = getVTList(VT1, VT2);
9389   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9390 }
9391 
9392 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9393                                    EVT VT1, EVT VT2) {
9394   SDVTList VTs = getVTList(VT1, VT2);
9395   return SelectNodeTo(N, MachineOpc, VTs, None);
9396 }
9397 
9398 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9399                                    EVT VT1, EVT VT2, EVT VT3,
9400                                    ArrayRef<SDValue> Ops) {
9401   SDVTList VTs = getVTList(VT1, VT2, VT3);
9402   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9403 }
9404 
9405 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9406                                    EVT VT1, EVT VT2,
9407                                    SDValue Op1, SDValue Op2) {
9408   SDVTList VTs = getVTList(VT1, VT2);
9409   SDValue Ops[] = { Op1, Op2 };
9410   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9411 }
9412 
9413 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9414                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
9415   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9416   // Reset the NodeID to -1.
9417   New->setNodeId(-1);
9418   if (New != N) {
9419     ReplaceAllUsesWith(N, New);
9420     RemoveDeadNode(N);
9421   }
9422   return New;
9423 }
9424 
9425 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9426 /// the line number information on the merged node since it is not possible to
9427 /// preserve the information that operation is associated with multiple lines.
9428 /// This will make the debugger working better at -O0, were there is a higher
9429 /// probability having other instructions associated with that line.
9430 ///
9431 /// For IROrder, we keep the smaller of the two
9432 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9433   DebugLoc NLoc = N->getDebugLoc();
9434   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9435     N->setDebugLoc(DebugLoc());
9436   }
9437   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9438   N->setIROrder(Order);
9439   return N;
9440 }
9441 
9442 /// MorphNodeTo - This *mutates* the specified node to have the specified
9443 /// return type, opcode, and operands.
9444 ///
9445 /// Note that MorphNodeTo returns the resultant node.  If there is already a
9446 /// node of the specified opcode and operands, it returns that node instead of
9447 /// the current one.  Note that the SDLoc need not be the same.
9448 ///
9449 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9450 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9451 /// node, and because it doesn't require CSE recalculation for any of
9452 /// the node's users.
9453 ///
9454 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9455 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9456 /// the legalizer which maintain worklists that would need to be updated when
9457 /// deleting things.
9458 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9459                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
9460   // If an identical node already exists, use it.
9461   void *IP = nullptr;
9462   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9463     FoldingSetNodeID ID;
9464     AddNodeIDNode(ID, Opc, VTs, Ops);
9465     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9466       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9467   }
9468 
9469   if (!RemoveNodeFromCSEMaps(N))
9470     IP = nullptr;
9471 
9472   // Start the morphing.
9473   N->NodeType = Opc;
9474   N->ValueList = VTs.VTs;
9475   N->NumValues = VTs.NumVTs;
9476 
9477   // Clear the operands list, updating used nodes to remove this from their
9478   // use list.  Keep track of any operands that become dead as a result.
9479   SmallPtrSet<SDNode*, 16> DeadNodeSet;
9480   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9481     SDUse &Use = *I++;
9482     SDNode *Used = Use.getNode();
9483     Use.set(SDValue());
9484     if (Used->use_empty())
9485       DeadNodeSet.insert(Used);
9486   }
9487 
9488   // For MachineNode, initialize the memory references information.
9489   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9490     MN->clearMemRefs();
9491 
9492   // Swap for an appropriately sized array from the recycler.
9493   removeOperands(N);
9494   createOperands(N, Ops);
9495 
9496   // Delete any nodes that are still dead after adding the uses for the
9497   // new operands.
9498   if (!DeadNodeSet.empty()) {
9499     SmallVector<SDNode *, 16> DeadNodes;
9500     for (SDNode *N : DeadNodeSet)
9501       if (N->use_empty())
9502         DeadNodes.push_back(N);
9503     RemoveDeadNodes(DeadNodes);
9504   }
9505 
9506   if (IP)
9507     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9508   return N;
9509 }
9510 
9511 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9512   unsigned OrigOpc = Node->getOpcode();
9513   unsigned NewOpc;
9514   switch (OrigOpc) {
9515   default:
9516     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9517 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9518   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9519 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9520   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9521 #include "llvm/IR/ConstrainedOps.def"
9522   }
9523 
9524   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9525 
9526   // We're taking this node out of the chain, so we need to re-link things.
9527   SDValue InputChain = Node->getOperand(0);
9528   SDValue OutputChain = SDValue(Node, 1);
9529   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9530 
9531   SmallVector<SDValue, 3> Ops;
9532   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9533     Ops.push_back(Node->getOperand(i));
9534 
9535   SDVTList VTs = getVTList(Node->getValueType(0));
9536   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9537 
9538   // MorphNodeTo can operate in two ways: if an existing node with the
9539   // specified operands exists, it can just return it.  Otherwise, it
9540   // updates the node in place to have the requested operands.
9541   if (Res == Node) {
9542     // If we updated the node in place, reset the node ID.  To the isel,
9543     // this should be just like a newly allocated machine node.
9544     Res->setNodeId(-1);
9545   } else {
9546     ReplaceAllUsesWith(Node, Res);
9547     RemoveDeadNode(Node);
9548   }
9549 
9550   return Res;
9551 }
9552 
9553 /// getMachineNode - These are used for target selectors to create a new node
9554 /// with specified return type(s), MachineInstr opcode, and operands.
9555 ///
9556 /// Note that getMachineNode returns the resultant node.  If there is already a
9557 /// node of the specified opcode and operands, it returns that node instead of
9558 /// the current one.
9559 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9560                                             EVT VT) {
9561   SDVTList VTs = getVTList(VT);
9562   return getMachineNode(Opcode, dl, VTs, None);
9563 }
9564 
9565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9566                                             EVT VT, SDValue Op1) {
9567   SDVTList VTs = getVTList(VT);
9568   SDValue Ops[] = { Op1 };
9569   return getMachineNode(Opcode, dl, VTs, Ops);
9570 }
9571 
9572 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9573                                             EVT VT, SDValue Op1, SDValue Op2) {
9574   SDVTList VTs = getVTList(VT);
9575   SDValue Ops[] = { Op1, Op2 };
9576   return getMachineNode(Opcode, dl, VTs, Ops);
9577 }
9578 
9579 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9580                                             EVT VT, SDValue Op1, SDValue Op2,
9581                                             SDValue Op3) {
9582   SDVTList VTs = getVTList(VT);
9583   SDValue Ops[] = { Op1, Op2, Op3 };
9584   return getMachineNode(Opcode, dl, VTs, Ops);
9585 }
9586 
9587 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9588                                             EVT VT, ArrayRef<SDValue> Ops) {
9589   SDVTList VTs = getVTList(VT);
9590   return getMachineNode(Opcode, dl, VTs, Ops);
9591 }
9592 
9593 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9594                                             EVT VT1, EVT VT2, SDValue Op1,
9595                                             SDValue Op2) {
9596   SDVTList VTs = getVTList(VT1, VT2);
9597   SDValue Ops[] = { Op1, Op2 };
9598   return getMachineNode(Opcode, dl, VTs, Ops);
9599 }
9600 
9601 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9602                                             EVT VT1, EVT VT2, SDValue Op1,
9603                                             SDValue Op2, SDValue Op3) {
9604   SDVTList VTs = getVTList(VT1, VT2);
9605   SDValue Ops[] = { Op1, Op2, Op3 };
9606   return getMachineNode(Opcode, dl, VTs, Ops);
9607 }
9608 
9609 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9610                                             EVT VT1, EVT VT2,
9611                                             ArrayRef<SDValue> Ops) {
9612   SDVTList VTs = getVTList(VT1, VT2);
9613   return getMachineNode(Opcode, dl, VTs, Ops);
9614 }
9615 
9616 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9617                                             EVT VT1, EVT VT2, EVT VT3,
9618                                             SDValue Op1, SDValue Op2) {
9619   SDVTList VTs = getVTList(VT1, VT2, VT3);
9620   SDValue Ops[] = { Op1, Op2 };
9621   return getMachineNode(Opcode, dl, VTs, Ops);
9622 }
9623 
9624 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9625                                             EVT VT1, EVT VT2, EVT VT3,
9626                                             SDValue Op1, SDValue Op2,
9627                                             SDValue Op3) {
9628   SDVTList VTs = getVTList(VT1, VT2, VT3);
9629   SDValue Ops[] = { Op1, Op2, Op3 };
9630   return getMachineNode(Opcode, dl, VTs, Ops);
9631 }
9632 
9633 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9634                                             EVT VT1, EVT VT2, EVT VT3,
9635                                             ArrayRef<SDValue> Ops) {
9636   SDVTList VTs = getVTList(VT1, VT2, VT3);
9637   return getMachineNode(Opcode, dl, VTs, Ops);
9638 }
9639 
9640 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9641                                             ArrayRef<EVT> ResultTys,
9642                                             ArrayRef<SDValue> Ops) {
9643   SDVTList VTs = getVTList(ResultTys);
9644   return getMachineNode(Opcode, dl, VTs, Ops);
9645 }
9646 
9647 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9648                                             SDVTList VTs,
9649                                             ArrayRef<SDValue> Ops) {
9650   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9651   MachineSDNode *N;
9652   void *IP = nullptr;
9653 
9654   if (DoCSE) {
9655     FoldingSetNodeID ID;
9656     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9657     IP = nullptr;
9658     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9659       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9660     }
9661   }
9662 
9663   // Allocate a new MachineSDNode.
9664   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9665   createOperands(N, Ops);
9666 
9667   if (DoCSE)
9668     CSEMap.InsertNode(N, IP);
9669 
9670   InsertNode(N);
9671   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9672   return N;
9673 }
9674 
9675 /// getTargetExtractSubreg - A convenience function for creating
9676 /// TargetOpcode::EXTRACT_SUBREG nodes.
9677 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9678                                              SDValue Operand) {
9679   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9680   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9681                                   VT, Operand, SRIdxVal);
9682   return SDValue(Subreg, 0);
9683 }
9684 
9685 /// getTargetInsertSubreg - A convenience function for creating
9686 /// TargetOpcode::INSERT_SUBREG nodes.
9687 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9688                                             SDValue Operand, SDValue Subreg) {
9689   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9690   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9691                                   VT, Operand, Subreg, SRIdxVal);
9692   return SDValue(Result, 0);
9693 }
9694 
9695 /// getNodeIfExists - Get the specified node if it's already available, or
9696 /// else return NULL.
9697 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9698                                       ArrayRef<SDValue> Ops) {
9699   SDNodeFlags Flags;
9700   if (Inserter)
9701     Flags = Inserter->getFlags();
9702   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9703 }
9704 
9705 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9706                                       ArrayRef<SDValue> Ops,
9707                                       const SDNodeFlags Flags) {
9708   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9709     FoldingSetNodeID ID;
9710     AddNodeIDNode(ID, Opcode, VTList, Ops);
9711     void *IP = nullptr;
9712     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9713       E->intersectFlagsWith(Flags);
9714       return E;
9715     }
9716   }
9717   return nullptr;
9718 }
9719 
9720 /// doesNodeExist - Check if a node exists without modifying its flags.
9721 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9722                                  ArrayRef<SDValue> Ops) {
9723   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9724     FoldingSetNodeID ID;
9725     AddNodeIDNode(ID, Opcode, VTList, Ops);
9726     void *IP = nullptr;
9727     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9728       return true;
9729   }
9730   return false;
9731 }
9732 
9733 /// getDbgValue - Creates a SDDbgValue node.
9734 ///
9735 /// SDNode
9736 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9737                                       SDNode *N, unsigned R, bool IsIndirect,
9738                                       const DebugLoc &DL, unsigned O) {
9739   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9740          "Expected inlined-at fields to agree");
9741   return new (DbgInfo->getAlloc())
9742       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9743                  {}, IsIndirect, DL, O,
9744                  /*IsVariadic=*/false);
9745 }
9746 
9747 /// Constant
9748 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9749                                               DIExpression *Expr,
9750                                               const Value *C,
9751                                               const DebugLoc &DL, unsigned O) {
9752   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9753          "Expected inlined-at fields to agree");
9754   return new (DbgInfo->getAlloc())
9755       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9756                  /*IsIndirect=*/false, DL, O,
9757                  /*IsVariadic=*/false);
9758 }
9759 
9760 /// FrameIndex
9761 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9762                                                 DIExpression *Expr, unsigned FI,
9763                                                 bool IsIndirect,
9764                                                 const DebugLoc &DL,
9765                                                 unsigned O) {
9766   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9767          "Expected inlined-at fields to agree");
9768   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9769 }
9770 
9771 /// FrameIndex with dependencies
9772 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9773                                                 DIExpression *Expr, unsigned FI,
9774                                                 ArrayRef<SDNode *> Dependencies,
9775                                                 bool IsIndirect,
9776                                                 const DebugLoc &DL,
9777                                                 unsigned O) {
9778   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9779          "Expected inlined-at fields to agree");
9780   return new (DbgInfo->getAlloc())
9781       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9782                  Dependencies, IsIndirect, DL, O,
9783                  /*IsVariadic=*/false);
9784 }
9785 
9786 /// VReg
9787 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9788                                           unsigned VReg, bool IsIndirect,
9789                                           const DebugLoc &DL, unsigned O) {
9790   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9791          "Expected inlined-at fields to agree");
9792   return new (DbgInfo->getAlloc())
9793       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9794                  {}, IsIndirect, DL, O,
9795                  /*IsVariadic=*/false);
9796 }
9797 
9798 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9799                                           ArrayRef<SDDbgOperand> Locs,
9800                                           ArrayRef<SDNode *> Dependencies,
9801                                           bool IsIndirect, const DebugLoc &DL,
9802                                           unsigned O, bool IsVariadic) {
9803   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9804          "Expected inlined-at fields to agree");
9805   return new (DbgInfo->getAlloc())
9806       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9807                  DL, O, IsVariadic);
9808 }
9809 
9810 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9811                                      unsigned OffsetInBits, unsigned SizeInBits,
9812                                      bool InvalidateDbg) {
9813   SDNode *FromNode = From.getNode();
9814   SDNode *ToNode = To.getNode();
9815   assert(FromNode && ToNode && "Can't modify dbg values");
9816 
9817   // PR35338
9818   // TODO: assert(From != To && "Redundant dbg value transfer");
9819   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9820   if (From == To || FromNode == ToNode)
9821     return;
9822 
9823   if (!FromNode->getHasDebugValue())
9824     return;
9825 
9826   SDDbgOperand FromLocOp =
9827       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9828   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9829 
9830   SmallVector<SDDbgValue *, 2> ClonedDVs;
9831   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9832     if (Dbg->isInvalidated())
9833       continue;
9834 
9835     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9836 
9837     // Create a new location ops vector that is equal to the old vector, but
9838     // with each instance of FromLocOp replaced with ToLocOp.
9839     bool Changed = false;
9840     auto NewLocOps = Dbg->copyLocationOps();
9841     std::replace_if(
9842         NewLocOps.begin(), NewLocOps.end(),
9843         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9844           bool Match = Op == FromLocOp;
9845           Changed |= Match;
9846           return Match;
9847         },
9848         ToLocOp);
9849     // Ignore this SDDbgValue if we didn't find a matching location.
9850     if (!Changed)
9851       continue;
9852 
9853     DIVariable *Var = Dbg->getVariable();
9854     auto *Expr = Dbg->getExpression();
9855     // If a fragment is requested, update the expression.
9856     if (SizeInBits) {
9857       // When splitting a larger (e.g., sign-extended) value whose
9858       // lower bits are described with an SDDbgValue, do not attempt
9859       // to transfer the SDDbgValue to the upper bits.
9860       if (auto FI = Expr->getFragmentInfo())
9861         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9862           continue;
9863       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9864                                                              SizeInBits);
9865       if (!Fragment)
9866         continue;
9867       Expr = *Fragment;
9868     }
9869 
9870     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9871     // Clone the SDDbgValue and move it to To.
9872     SDDbgValue *Clone = getDbgValueList(
9873         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9874         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9875         Dbg->isVariadic());
9876     ClonedDVs.push_back(Clone);
9877 
9878     if (InvalidateDbg) {
9879       // Invalidate value and indicate the SDDbgValue should not be emitted.
9880       Dbg->setIsInvalidated();
9881       Dbg->setIsEmitted();
9882     }
9883   }
9884 
9885   for (SDDbgValue *Dbg : ClonedDVs) {
9886     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9887            "Transferred DbgValues should depend on the new SDNode");
9888     AddDbgValue(Dbg, false);
9889   }
9890 }
9891 
9892 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9893   if (!N.getHasDebugValue())
9894     return;
9895 
9896   SmallVector<SDDbgValue *, 2> ClonedDVs;
9897   for (auto DV : GetDbgValues(&N)) {
9898     if (DV->isInvalidated())
9899       continue;
9900     switch (N.getOpcode()) {
9901     default:
9902       break;
9903     case ISD::ADD:
9904       SDValue N0 = N.getOperand(0);
9905       SDValue N1 = N.getOperand(1);
9906       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9907           isConstantIntBuildVectorOrConstantInt(N1)) {
9908         uint64_t Offset = N.getConstantOperandVal(1);
9909 
9910         // Rewrite an ADD constant node into a DIExpression. Since we are
9911         // performing arithmetic to compute the variable's *value* in the
9912         // DIExpression, we need to mark the expression with a
9913         // DW_OP_stack_value.
9914         auto *DIExpr = DV->getExpression();
9915         auto NewLocOps = DV->copyLocationOps();
9916         bool Changed = false;
9917         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9918           // We're not given a ResNo to compare against because the whole
9919           // node is going away. We know that any ISD::ADD only has one
9920           // result, so we can assume any node match is using the result.
9921           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9922               NewLocOps[i].getSDNode() != &N)
9923             continue;
9924           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9925           SmallVector<uint64_t, 3> ExprOps;
9926           DIExpression::appendOffset(ExprOps, Offset);
9927           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9928           Changed = true;
9929         }
9930         (void)Changed;
9931         assert(Changed && "Salvage target doesn't use N");
9932 
9933         auto AdditionalDependencies = DV->getAdditionalDependencies();
9934         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9935                                             NewLocOps, AdditionalDependencies,
9936                                             DV->isIndirect(), DV->getDebugLoc(),
9937                                             DV->getOrder(), DV->isVariadic());
9938         ClonedDVs.push_back(Clone);
9939         DV->setIsInvalidated();
9940         DV->setIsEmitted();
9941         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9942                    N0.getNode()->dumprFull(this);
9943                    dbgs() << " into " << *DIExpr << '\n');
9944       }
9945     }
9946   }
9947 
9948   for (SDDbgValue *Dbg : ClonedDVs) {
9949     assert(!Dbg->getSDNodes().empty() &&
9950            "Salvaged DbgValue should depend on a new SDNode");
9951     AddDbgValue(Dbg, false);
9952   }
9953 }
9954 
9955 /// Creates a SDDbgLabel node.
9956 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9957                                       const DebugLoc &DL, unsigned O) {
9958   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9959          "Expected inlined-at fields to agree");
9960   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9961 }
9962 
9963 namespace {
9964 
9965 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9966 /// pointed to by a use iterator is deleted, increment the use iterator
9967 /// so that it doesn't dangle.
9968 ///
9969 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9970   SDNode::use_iterator &UI;
9971   SDNode::use_iterator &UE;
9972 
9973   void NodeDeleted(SDNode *N, SDNode *E) override {
9974     // Increment the iterator as needed.
9975     while (UI != UE && N == *UI)
9976       ++UI;
9977   }
9978 
9979 public:
9980   RAUWUpdateListener(SelectionDAG &d,
9981                      SDNode::use_iterator &ui,
9982                      SDNode::use_iterator &ue)
9983     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9984 };
9985 
9986 } // end anonymous namespace
9987 
9988 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9989 /// This can cause recursive merging of nodes in the DAG.
9990 ///
9991 /// This version assumes From has a single result value.
9992 ///
9993 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9994   SDNode *From = FromN.getNode();
9995   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9996          "Cannot replace with this method!");
9997   assert(From != To.getNode() && "Cannot replace uses of with self");
9998 
9999   // Preserve Debug Values
10000   transferDbgValues(FromN, To);
10001 
10002   // Iterate over all the existing uses of From. New uses will be added
10003   // to the beginning of the use list, which we avoid visiting.
10004   // This specifically avoids visiting uses of From that arise while the
10005   // replacement is happening, because any such uses would be the result
10006   // of CSE: If an existing node looks like From after one of its operands
10007   // is replaced by To, we don't want to replace of all its users with To
10008   // too. See PR3018 for more info.
10009   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10010   RAUWUpdateListener Listener(*this, UI, UE);
10011   while (UI != UE) {
10012     SDNode *User = *UI;
10013 
10014     // This node is about to morph, remove its old self from the CSE maps.
10015     RemoveNodeFromCSEMaps(User);
10016 
10017     // A user can appear in a use list multiple times, and when this
10018     // happens the uses are usually next to each other in the list.
10019     // To help reduce the number of CSE recomputations, process all
10020     // the uses of this user that we can find this way.
10021     do {
10022       SDUse &Use = UI.getUse();
10023       ++UI;
10024       Use.set(To);
10025       if (To->isDivergent() != From->isDivergent())
10026         updateDivergence(User);
10027     } while (UI != UE && *UI == User);
10028     // Now that we have modified User, add it back to the CSE maps.  If it
10029     // already exists there, recursively merge the results together.
10030     AddModifiedNodeToCSEMaps(User);
10031   }
10032 
10033   // If we just RAUW'd the root, take note.
10034   if (FromN == getRoot())
10035     setRoot(To);
10036 }
10037 
10038 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10039 /// This can cause recursive merging of nodes in the DAG.
10040 ///
10041 /// This version assumes that for each value of From, there is a
10042 /// corresponding value in To in the same position with the same type.
10043 ///
10044 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
10045 #ifndef NDEBUG
10046   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10047     assert((!From->hasAnyUseOfValue(i) ||
10048             From->getValueType(i) == To->getValueType(i)) &&
10049            "Cannot use this version of ReplaceAllUsesWith!");
10050 #endif
10051 
10052   // Handle the trivial case.
10053   if (From == To)
10054     return;
10055 
10056   // Preserve Debug Info. Only do this if there's a use.
10057   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10058     if (From->hasAnyUseOfValue(i)) {
10059       assert((i < To->getNumValues()) && "Invalid To location");
10060       transferDbgValues(SDValue(From, i), SDValue(To, i));
10061     }
10062 
10063   // Iterate over just the existing users of From. See the comments in
10064   // the ReplaceAllUsesWith above.
10065   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10066   RAUWUpdateListener Listener(*this, UI, UE);
10067   while (UI != UE) {
10068     SDNode *User = *UI;
10069 
10070     // This node is about to morph, remove its old self from the CSE maps.
10071     RemoveNodeFromCSEMaps(User);
10072 
10073     // A user can appear in a use list multiple times, and when this
10074     // happens the uses are usually next to each other in the list.
10075     // To help reduce the number of CSE recomputations, process all
10076     // the uses of this user that we can find this way.
10077     do {
10078       SDUse &Use = UI.getUse();
10079       ++UI;
10080       Use.setNode(To);
10081       if (To->isDivergent() != From->isDivergent())
10082         updateDivergence(User);
10083     } while (UI != UE && *UI == User);
10084 
10085     // Now that we have modified User, add it back to the CSE maps.  If it
10086     // already exists there, recursively merge the results together.
10087     AddModifiedNodeToCSEMaps(User);
10088   }
10089 
10090   // If we just RAUW'd the root, take note.
10091   if (From == getRoot().getNode())
10092     setRoot(SDValue(To, getRoot().getResNo()));
10093 }
10094 
10095 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10096 /// This can cause recursive merging of nodes in the DAG.
10097 ///
10098 /// This version can replace From with any result values.  To must match the
10099 /// number and types of values returned by From.
10100 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
10101   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
10102     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
10103 
10104   // Preserve Debug Info.
10105   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10106     transferDbgValues(SDValue(From, i), To[i]);
10107 
10108   // Iterate over just the existing users of From. See the comments in
10109   // the ReplaceAllUsesWith above.
10110   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10111   RAUWUpdateListener Listener(*this, UI, UE);
10112   while (UI != UE) {
10113     SDNode *User = *UI;
10114 
10115     // This node is about to morph, remove its old self from the CSE maps.
10116     RemoveNodeFromCSEMaps(User);
10117 
10118     // A user can appear in a use list multiple times, and when this happens the
10119     // uses are usually next to each other in the list.  To help reduce the
10120     // number of CSE and divergence recomputations, process all the uses of this
10121     // user that we can find this way.
10122     bool To_IsDivergent = false;
10123     do {
10124       SDUse &Use = UI.getUse();
10125       const SDValue &ToOp = To[Use.getResNo()];
10126       ++UI;
10127       Use.set(ToOp);
10128       To_IsDivergent |= ToOp->isDivergent();
10129     } while (UI != UE && *UI == User);
10130 
10131     if (To_IsDivergent != From->isDivergent())
10132       updateDivergence(User);
10133 
10134     // Now that we have modified User, add it back to the CSE maps.  If it
10135     // already exists there, recursively merge the results together.
10136     AddModifiedNodeToCSEMaps(User);
10137   }
10138 
10139   // If we just RAUW'd the root, take note.
10140   if (From == getRoot().getNode())
10141     setRoot(SDValue(To[getRoot().getResNo()]));
10142 }
10143 
10144 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
10145 /// uses of other values produced by From.getNode() alone.  The Deleted
10146 /// vector is handled the same way as for ReplaceAllUsesWith.
10147 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
10148   // Handle the really simple, really trivial case efficiently.
10149   if (From == To) return;
10150 
10151   // Handle the simple, trivial, case efficiently.
10152   if (From.getNode()->getNumValues() == 1) {
10153     ReplaceAllUsesWith(From, To);
10154     return;
10155   }
10156 
10157   // Preserve Debug Info.
10158   transferDbgValues(From, To);
10159 
10160   // Iterate over just the existing users of From. See the comments in
10161   // the ReplaceAllUsesWith above.
10162   SDNode::use_iterator UI = From.getNode()->use_begin(),
10163                        UE = From.getNode()->use_end();
10164   RAUWUpdateListener Listener(*this, UI, UE);
10165   while (UI != UE) {
10166     SDNode *User = *UI;
10167     bool UserRemovedFromCSEMaps = false;
10168 
10169     // A user can appear in a use list multiple times, and when this
10170     // happens the uses are usually next to each other in the list.
10171     // To help reduce the number of CSE recomputations, process all
10172     // the uses of this user that we can find this way.
10173     do {
10174       SDUse &Use = UI.getUse();
10175 
10176       // Skip uses of different values from the same node.
10177       if (Use.getResNo() != From.getResNo()) {
10178         ++UI;
10179         continue;
10180       }
10181 
10182       // If this node hasn't been modified yet, it's still in the CSE maps,
10183       // so remove its old self from the CSE maps.
10184       if (!UserRemovedFromCSEMaps) {
10185         RemoveNodeFromCSEMaps(User);
10186         UserRemovedFromCSEMaps = true;
10187       }
10188 
10189       ++UI;
10190       Use.set(To);
10191       if (To->isDivergent() != From->isDivergent())
10192         updateDivergence(User);
10193     } while (UI != UE && *UI == User);
10194     // We are iterating over all uses of the From node, so if a use
10195     // doesn't use the specific value, no changes are made.
10196     if (!UserRemovedFromCSEMaps)
10197       continue;
10198 
10199     // Now that we have modified User, add it back to the CSE maps.  If it
10200     // already exists there, recursively merge the results together.
10201     AddModifiedNodeToCSEMaps(User);
10202   }
10203 
10204   // If we just RAUW'd the root, take note.
10205   if (From == getRoot())
10206     setRoot(To);
10207 }
10208 
10209 namespace {
10210 
10211 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10212 /// to record information about a use.
10213 struct UseMemo {
10214   SDNode *User;
10215   unsigned Index;
10216   SDUse *Use;
10217 };
10218 
10219 /// operator< - Sort Memos by User.
10220 bool operator<(const UseMemo &L, const UseMemo &R) {
10221   return (intptr_t)L.User < (intptr_t)R.User;
10222 }
10223 
10224 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10225 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10226 /// the node already has been taken care of recursively.
10227 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10228   SmallVector<UseMemo, 4> &Uses;
10229 
10230   void NodeDeleted(SDNode *N, SDNode *E) override {
10231     for (UseMemo &Memo : Uses)
10232       if (Memo.User == N)
10233         Memo.User = nullptr;
10234   }
10235 
10236 public:
10237   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10238       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10239 };
10240 
10241 } // end anonymous namespace
10242 
10243 bool SelectionDAG::calculateDivergence(SDNode *N) {
10244   if (TLI->isSDNodeAlwaysUniform(N)) {
10245     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10246            "Conflicting divergence information!");
10247     return false;
10248   }
10249   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10250     return true;
10251   for (auto &Op : N->ops()) {
10252     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10253       return true;
10254   }
10255   return false;
10256 }
10257 
10258 void SelectionDAG::updateDivergence(SDNode *N) {
10259   SmallVector<SDNode *, 16> Worklist(1, N);
10260   do {
10261     N = Worklist.pop_back_val();
10262     bool IsDivergent = calculateDivergence(N);
10263     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10264       N->SDNodeBits.IsDivergent = IsDivergent;
10265       llvm::append_range(Worklist, N->uses());
10266     }
10267   } while (!Worklist.empty());
10268 }
10269 
10270 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10271   DenseMap<SDNode *, unsigned> Degree;
10272   Order.reserve(AllNodes.size());
10273   for (auto &N : allnodes()) {
10274     unsigned NOps = N.getNumOperands();
10275     Degree[&N] = NOps;
10276     if (0 == NOps)
10277       Order.push_back(&N);
10278   }
10279   for (size_t I = 0; I != Order.size(); ++I) {
10280     SDNode *N = Order[I];
10281     for (auto U : N->uses()) {
10282       unsigned &UnsortedOps = Degree[U];
10283       if (0 == --UnsortedOps)
10284         Order.push_back(U);
10285     }
10286   }
10287 }
10288 
10289 #ifndef NDEBUG
10290 void SelectionDAG::VerifyDAGDivergence() {
10291   std::vector<SDNode *> TopoOrder;
10292   CreateTopologicalOrder(TopoOrder);
10293   for (auto *N : TopoOrder) {
10294     assert(calculateDivergence(N) == N->isDivergent() &&
10295            "Divergence bit inconsistency detected");
10296   }
10297 }
10298 #endif
10299 
10300 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10301 /// uses of other values produced by From.getNode() alone.  The same value
10302 /// may appear in both the From and To list.  The Deleted vector is
10303 /// handled the same way as for ReplaceAllUsesWith.
10304 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10305                                               const SDValue *To,
10306                                               unsigned Num){
10307   // Handle the simple, trivial case efficiently.
10308   if (Num == 1)
10309     return ReplaceAllUsesOfValueWith(*From, *To);
10310 
10311   transferDbgValues(*From, *To);
10312 
10313   // Read up all the uses and make records of them. This helps
10314   // processing new uses that are introduced during the
10315   // replacement process.
10316   SmallVector<UseMemo, 4> Uses;
10317   for (unsigned i = 0; i != Num; ++i) {
10318     unsigned FromResNo = From[i].getResNo();
10319     SDNode *FromNode = From[i].getNode();
10320     for (SDNode::use_iterator UI = FromNode->use_begin(),
10321          E = FromNode->use_end(); UI != E; ++UI) {
10322       SDUse &Use = UI.getUse();
10323       if (Use.getResNo() == FromResNo) {
10324         UseMemo Memo = { *UI, i, &Use };
10325         Uses.push_back(Memo);
10326       }
10327     }
10328   }
10329 
10330   // Sort the uses, so that all the uses from a given User are together.
10331   llvm::sort(Uses);
10332   RAUOVWUpdateListener Listener(*this, Uses);
10333 
10334   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10335        UseIndex != UseIndexEnd; ) {
10336     // We know that this user uses some value of From.  If it is the right
10337     // value, update it.
10338     SDNode *User = Uses[UseIndex].User;
10339     // If the node has been deleted by recursive CSE updates when updating
10340     // another node, then just skip this entry.
10341     if (User == nullptr) {
10342       ++UseIndex;
10343       continue;
10344     }
10345 
10346     // This node is about to morph, remove its old self from the CSE maps.
10347     RemoveNodeFromCSEMaps(User);
10348 
10349     // The Uses array is sorted, so all the uses for a given User
10350     // are next to each other in the list.
10351     // To help reduce the number of CSE recomputations, process all
10352     // the uses of this user that we can find this way.
10353     do {
10354       unsigned i = Uses[UseIndex].Index;
10355       SDUse &Use = *Uses[UseIndex].Use;
10356       ++UseIndex;
10357 
10358       Use.set(To[i]);
10359     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10360 
10361     // Now that we have modified User, add it back to the CSE maps.  If it
10362     // already exists there, recursively merge the results together.
10363     AddModifiedNodeToCSEMaps(User);
10364   }
10365 }
10366 
10367 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10368 /// based on their topological order. It returns the maximum id and a vector
10369 /// of the SDNodes* in assigned order by reference.
10370 unsigned SelectionDAG::AssignTopologicalOrder() {
10371   unsigned DAGSize = 0;
10372 
10373   // SortedPos tracks the progress of the algorithm. Nodes before it are
10374   // sorted, nodes after it are unsorted. When the algorithm completes
10375   // it is at the end of the list.
10376   allnodes_iterator SortedPos = allnodes_begin();
10377 
10378   // Visit all the nodes. Move nodes with no operands to the front of
10379   // the list immediately. Annotate nodes that do have operands with their
10380   // operand count. Before we do this, the Node Id fields of the nodes
10381   // may contain arbitrary values. After, the Node Id fields for nodes
10382   // before SortedPos will contain the topological sort index, and the
10383   // Node Id fields for nodes At SortedPos and after will contain the
10384   // count of outstanding operands.
10385   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10386     checkForCycles(&N, this);
10387     unsigned Degree = N.getNumOperands();
10388     if (Degree == 0) {
10389       // A node with no uses, add it to the result array immediately.
10390       N.setNodeId(DAGSize++);
10391       allnodes_iterator Q(&N);
10392       if (Q != SortedPos)
10393         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10394       assert(SortedPos != AllNodes.end() && "Overran node list");
10395       ++SortedPos;
10396     } else {
10397       // Temporarily use the Node Id as scratch space for the degree count.
10398       N.setNodeId(Degree);
10399     }
10400   }
10401 
10402   // Visit all the nodes. As we iterate, move nodes into sorted order,
10403   // such that by the time the end is reached all nodes will be sorted.
10404   for (SDNode &Node : allnodes()) {
10405     SDNode *N = &Node;
10406     checkForCycles(N, this);
10407     // N is in sorted position, so all its uses have one less operand
10408     // that needs to be sorted.
10409     for (SDNode *P : N->uses()) {
10410       unsigned Degree = P->getNodeId();
10411       assert(Degree != 0 && "Invalid node degree");
10412       --Degree;
10413       if (Degree == 0) {
10414         // All of P's operands are sorted, so P may sorted now.
10415         P->setNodeId(DAGSize++);
10416         if (P->getIterator() != SortedPos)
10417           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10418         assert(SortedPos != AllNodes.end() && "Overran node list");
10419         ++SortedPos;
10420       } else {
10421         // Update P's outstanding operand count.
10422         P->setNodeId(Degree);
10423       }
10424     }
10425     if (Node.getIterator() == SortedPos) {
10426 #ifndef NDEBUG
10427       allnodes_iterator I(N);
10428       SDNode *S = &*++I;
10429       dbgs() << "Overran sorted position:\n";
10430       S->dumprFull(this); dbgs() << "\n";
10431       dbgs() << "Checking if this is due to cycles\n";
10432       checkForCycles(this, true);
10433 #endif
10434       llvm_unreachable(nullptr);
10435     }
10436   }
10437 
10438   assert(SortedPos == AllNodes.end() &&
10439          "Topological sort incomplete!");
10440   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10441          "First node in topological sort is not the entry token!");
10442   assert(AllNodes.front().getNodeId() == 0 &&
10443          "First node in topological sort has non-zero id!");
10444   assert(AllNodes.front().getNumOperands() == 0 &&
10445          "First node in topological sort has operands!");
10446   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10447          "Last node in topologic sort has unexpected id!");
10448   assert(AllNodes.back().use_empty() &&
10449          "Last node in topologic sort has users!");
10450   assert(DAGSize == allnodes_size() && "Node count mismatch!");
10451   return DAGSize;
10452 }
10453 
10454 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10455 /// value is produced by SD.
10456 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10457   for (SDNode *SD : DB->getSDNodes()) {
10458     if (!SD)
10459       continue;
10460     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10461     SD->setHasDebugValue(true);
10462   }
10463   DbgInfo->add(DB, isParameter);
10464 }
10465 
10466 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10467 
10468 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10469                                                    SDValue NewMemOpChain) {
10470   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10471   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10472   // The new memory operation must have the same position as the old load in
10473   // terms of memory dependency. Create a TokenFactor for the old load and new
10474   // memory operation and update uses of the old load's output chain to use that
10475   // TokenFactor.
10476   if (OldChain == NewMemOpChain || OldChain.use_empty())
10477     return NewMemOpChain;
10478 
10479   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10480                                 OldChain, NewMemOpChain);
10481   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10482   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10483   return TokenFactor;
10484 }
10485 
10486 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10487                                                    SDValue NewMemOp) {
10488   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10489   SDValue OldChain = SDValue(OldLoad, 1);
10490   SDValue NewMemOpChain = NewMemOp.getValue(1);
10491   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10492 }
10493 
10494 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10495                                                      Function **OutFunction) {
10496   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10497 
10498   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10499   auto *Module = MF->getFunction().getParent();
10500   auto *Function = Module->getFunction(Symbol);
10501 
10502   if (OutFunction != nullptr)
10503       *OutFunction = Function;
10504 
10505   if (Function != nullptr) {
10506     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10507     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10508   }
10509 
10510   std::string ErrorStr;
10511   raw_string_ostream ErrorFormatter(ErrorStr);
10512   ErrorFormatter << "Undefined external symbol ";
10513   ErrorFormatter << '"' << Symbol << '"';
10514   report_fatal_error(Twine(ErrorFormatter.str()));
10515 }
10516 
10517 //===----------------------------------------------------------------------===//
10518 //                              SDNode Class
10519 //===----------------------------------------------------------------------===//
10520 
10521 bool llvm::isNullConstant(SDValue V) {
10522   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10523   return Const != nullptr && Const->isZero();
10524 }
10525 
10526 bool llvm::isNullFPConstant(SDValue V) {
10527   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10528   return Const != nullptr && Const->isZero() && !Const->isNegative();
10529 }
10530 
10531 bool llvm::isAllOnesConstant(SDValue V) {
10532   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10533   return Const != nullptr && Const->isAllOnes();
10534 }
10535 
10536 bool llvm::isOneConstant(SDValue V) {
10537   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10538   return Const != nullptr && Const->isOne();
10539 }
10540 
10541 bool llvm::isMinSignedConstant(SDValue V) {
10542   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10543   return Const != nullptr && Const->isMinSignedValue();
10544 }
10545 
10546 SDValue llvm::peekThroughBitcasts(SDValue V) {
10547   while (V.getOpcode() == ISD::BITCAST)
10548     V = V.getOperand(0);
10549   return V;
10550 }
10551 
10552 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10553   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10554     V = V.getOperand(0);
10555   return V;
10556 }
10557 
10558 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10559   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10560     V = V.getOperand(0);
10561   return V;
10562 }
10563 
10564 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10565   if (V.getOpcode() != ISD::XOR)
10566     return false;
10567   V = peekThroughBitcasts(V.getOperand(1));
10568   unsigned NumBits = V.getScalarValueSizeInBits();
10569   ConstantSDNode *C =
10570       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10571   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10572 }
10573 
10574 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10575                                           bool AllowTruncation) {
10576   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10577     return CN;
10578 
10579   // SplatVectors can truncate their operands. Ignore that case here unless
10580   // AllowTruncation is set.
10581   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10582     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10583     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10584       EVT CVT = CN->getValueType(0);
10585       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10586       if (AllowTruncation || CVT == VecEltVT)
10587         return CN;
10588     }
10589   }
10590 
10591   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10592     BitVector UndefElements;
10593     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10594 
10595     // BuildVectors can truncate their operands. Ignore that case here unless
10596     // AllowTruncation is set.
10597     if (CN && (UndefElements.none() || AllowUndefs)) {
10598       EVT CVT = CN->getValueType(0);
10599       EVT NSVT = N.getValueType().getScalarType();
10600       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10601       if (AllowTruncation || (CVT == NSVT))
10602         return CN;
10603     }
10604   }
10605 
10606   return nullptr;
10607 }
10608 
10609 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10610                                           bool AllowUndefs,
10611                                           bool AllowTruncation) {
10612   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10613     return CN;
10614 
10615   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10616     BitVector UndefElements;
10617     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10618 
10619     // BuildVectors can truncate their operands. Ignore that case here unless
10620     // AllowTruncation is set.
10621     if (CN && (UndefElements.none() || AllowUndefs)) {
10622       EVT CVT = CN->getValueType(0);
10623       EVT NSVT = N.getValueType().getScalarType();
10624       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10625       if (AllowTruncation || (CVT == NSVT))
10626         return CN;
10627     }
10628   }
10629 
10630   return nullptr;
10631 }
10632 
10633 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10634   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10635     return CN;
10636 
10637   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10638     BitVector UndefElements;
10639     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10640     if (CN && (UndefElements.none() || AllowUndefs))
10641       return CN;
10642   }
10643 
10644   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10645     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10646       return CN;
10647 
10648   return nullptr;
10649 }
10650 
10651 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10652                                               const APInt &DemandedElts,
10653                                               bool AllowUndefs) {
10654   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10655     return CN;
10656 
10657   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10658     BitVector UndefElements;
10659     ConstantFPSDNode *CN =
10660         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10661     if (CN && (UndefElements.none() || AllowUndefs))
10662       return CN;
10663   }
10664 
10665   return nullptr;
10666 }
10667 
10668 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10669   // TODO: may want to use peekThroughBitcast() here.
10670   ConstantSDNode *C =
10671       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10672   return C && C->isZero();
10673 }
10674 
10675 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10676   ConstantSDNode *C =
10677       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
10678   return C && C->isOne();
10679 }
10680 
10681 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10682   N = peekThroughBitcasts(N);
10683   unsigned BitWidth = N.getScalarValueSizeInBits();
10684   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10685   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10686 }
10687 
10688 HandleSDNode::~HandleSDNode() {
10689   DropOperands();
10690 }
10691 
10692 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10693                                          const DebugLoc &DL,
10694                                          const GlobalValue *GA, EVT VT,
10695                                          int64_t o, unsigned TF)
10696     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10697   TheGlobal = GA;
10698 }
10699 
10700 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10701                                          EVT VT, unsigned SrcAS,
10702                                          unsigned DestAS)
10703     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10704       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10705 
10706 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10707                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10708     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10709   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10710   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10711   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10712   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10713 
10714   // We check here that the size of the memory operand fits within the size of
10715   // the MMO. This is because the MMO might indicate only a possible address
10716   // range instead of specifying the affected memory addresses precisely.
10717   // TODO: Make MachineMemOperands aware of scalable vectors.
10718   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10719          "Size mismatch!");
10720 }
10721 
10722 /// Profile - Gather unique data for the node.
10723 ///
10724 void SDNode::Profile(FoldingSetNodeID &ID) const {
10725   AddNodeIDNode(ID, this);
10726 }
10727 
10728 namespace {
10729 
10730   struct EVTArray {
10731     std::vector<EVT> VTs;
10732 
10733     EVTArray() {
10734       VTs.reserve(MVT::VALUETYPE_SIZE);
10735       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10736         VTs.push_back(MVT((MVT::SimpleValueType)i));
10737     }
10738   };
10739 
10740 } // end anonymous namespace
10741 
10742 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10743 static ManagedStatic<EVTArray> SimpleVTArray;
10744 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10745 
10746 /// getValueTypeList - Return a pointer to the specified value type.
10747 ///
10748 const EVT *SDNode::getValueTypeList(EVT VT) {
10749   if (VT.isExtended()) {
10750     sys::SmartScopedLock<true> Lock(*VTMutex);
10751     return &(*EVTs->insert(VT).first);
10752   }
10753   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10754   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10755 }
10756 
10757 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10758 /// indicated value.  This method ignores uses of other values defined by this
10759 /// operation.
10760 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10761   assert(Value < getNumValues() && "Bad value!");
10762 
10763   // TODO: Only iterate over uses of a given value of the node
10764   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10765     if (UI.getUse().getResNo() == Value) {
10766       if (NUses == 0)
10767         return false;
10768       --NUses;
10769     }
10770   }
10771 
10772   // Found exactly the right number of uses?
10773   return NUses == 0;
10774 }
10775 
10776 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10777 /// value. This method ignores uses of other values defined by this operation.
10778 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10779   assert(Value < getNumValues() && "Bad value!");
10780 
10781   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10782     if (UI.getUse().getResNo() == Value)
10783       return true;
10784 
10785   return false;
10786 }
10787 
10788 /// isOnlyUserOf - Return true if this node is the only use of N.
10789 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10790   bool Seen = false;
10791   for (const SDNode *User : N->uses()) {
10792     if (User == this)
10793       Seen = true;
10794     else
10795       return false;
10796   }
10797 
10798   return Seen;
10799 }
10800 
10801 /// Return true if the only users of N are contained in Nodes.
10802 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10803   bool Seen = false;
10804   for (const SDNode *User : N->uses()) {
10805     if (llvm::is_contained(Nodes, User))
10806       Seen = true;
10807     else
10808       return false;
10809   }
10810 
10811   return Seen;
10812 }
10813 
10814 /// isOperand - Return true if this node is an operand of N.
10815 bool SDValue::isOperandOf(const SDNode *N) const {
10816   return is_contained(N->op_values(), *this);
10817 }
10818 
10819 bool SDNode::isOperandOf(const SDNode *N) const {
10820   return any_of(N->op_values(),
10821                 [this](SDValue Op) { return this == Op.getNode(); });
10822 }
10823 
10824 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10825 /// be a chain) reaches the specified operand without crossing any
10826 /// side-effecting instructions on any chain path.  In practice, this looks
10827 /// through token factors and non-volatile loads.  In order to remain efficient,
10828 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10829 ///
10830 /// Note that we only need to examine chains when we're searching for
10831 /// side-effects; SelectionDAG requires that all side-effects are represented
10832 /// by chains, even if another operand would force a specific ordering. This
10833 /// constraint is necessary to allow transformations like splitting loads.
10834 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10835                                              unsigned Depth) const {
10836   if (*this == Dest) return true;
10837 
10838   // Don't search too deeply, we just want to be able to see through
10839   // TokenFactor's etc.
10840   if (Depth == 0) return false;
10841 
10842   // If this is a token factor, all inputs to the TF happen in parallel.
10843   if (getOpcode() == ISD::TokenFactor) {
10844     // First, try a shallow search.
10845     if (is_contained((*this)->ops(), Dest)) {
10846       // We found the chain we want as an operand of this TokenFactor.
10847       // Essentially, we reach the chain without side-effects if we could
10848       // serialize the TokenFactor into a simple chain of operations with
10849       // Dest as the last operation. This is automatically true if the
10850       // chain has one use: there are no other ordering constraints.
10851       // If the chain has more than one use, we give up: some other
10852       // use of Dest might force a side-effect between Dest and the current
10853       // node.
10854       if (Dest.hasOneUse())
10855         return true;
10856     }
10857     // Next, try a deep search: check whether every operand of the TokenFactor
10858     // reaches Dest.
10859     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10860       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10861     });
10862   }
10863 
10864   // Loads don't have side effects, look through them.
10865   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10866     if (Ld->isUnordered())
10867       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10868   }
10869   return false;
10870 }
10871 
10872 bool SDNode::hasPredecessor(const SDNode *N) const {
10873   SmallPtrSet<const SDNode *, 32> Visited;
10874   SmallVector<const SDNode *, 16> Worklist;
10875   Worklist.push_back(this);
10876   return hasPredecessorHelper(N, Visited, Worklist);
10877 }
10878 
10879 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10880   this->Flags.intersectWith(Flags);
10881 }
10882 
10883 SDValue
10884 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10885                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10886                                   bool AllowPartials) {
10887   // The pattern must end in an extract from index 0.
10888   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10889       !isNullConstant(Extract->getOperand(1)))
10890     return SDValue();
10891 
10892   // Match against one of the candidate binary ops.
10893   SDValue Op = Extract->getOperand(0);
10894   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10895         return Op.getOpcode() == unsigned(BinOp);
10896       }))
10897     return SDValue();
10898 
10899   // Floating-point reductions may require relaxed constraints on the final step
10900   // of the reduction because they may reorder intermediate operations.
10901   unsigned CandidateBinOp = Op.getOpcode();
10902   if (Op.getValueType().isFloatingPoint()) {
10903     SDNodeFlags Flags = Op->getFlags();
10904     switch (CandidateBinOp) {
10905     case ISD::FADD:
10906       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10907         return SDValue();
10908       break;
10909     default:
10910       llvm_unreachable("Unhandled FP opcode for binop reduction");
10911     }
10912   }
10913 
10914   // Matching failed - attempt to see if we did enough stages that a partial
10915   // reduction from a subvector is possible.
10916   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10917     if (!AllowPartials || !Op)
10918       return SDValue();
10919     EVT OpVT = Op.getValueType();
10920     EVT OpSVT = OpVT.getScalarType();
10921     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10922     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10923       return SDValue();
10924     BinOp = (ISD::NodeType)CandidateBinOp;
10925     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10926                    getVectorIdxConstant(0, SDLoc(Op)));
10927   };
10928 
10929   // At each stage, we're looking for something that looks like:
10930   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10931   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10932   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10933   // %a = binop <8 x i32> %op, %s
10934   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10935   // we expect something like:
10936   // <4,5,6,7,u,u,u,u>
10937   // <2,3,u,u,u,u,u,u>
10938   // <1,u,u,u,u,u,u,u>
10939   // While a partial reduction match would be:
10940   // <2,3,u,u,u,u,u,u>
10941   // <1,u,u,u,u,u,u,u>
10942   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10943   SDValue PrevOp;
10944   for (unsigned i = 0; i < Stages; ++i) {
10945     unsigned MaskEnd = (1 << i);
10946 
10947     if (Op.getOpcode() != CandidateBinOp)
10948       return PartialReduction(PrevOp, MaskEnd);
10949 
10950     SDValue Op0 = Op.getOperand(0);
10951     SDValue Op1 = Op.getOperand(1);
10952 
10953     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10954     if (Shuffle) {
10955       Op = Op1;
10956     } else {
10957       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10958       Op = Op0;
10959     }
10960 
10961     // The first operand of the shuffle should be the same as the other operand
10962     // of the binop.
10963     if (!Shuffle || Shuffle->getOperand(0) != Op)
10964       return PartialReduction(PrevOp, MaskEnd);
10965 
10966     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10967     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10968       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10969         return PartialReduction(PrevOp, MaskEnd);
10970 
10971     PrevOp = Op;
10972   }
10973 
10974   // Handle subvector reductions, which tend to appear after the shuffle
10975   // reduction stages.
10976   while (Op.getOpcode() == CandidateBinOp) {
10977     unsigned NumElts = Op.getValueType().getVectorNumElements();
10978     SDValue Op0 = Op.getOperand(0);
10979     SDValue Op1 = Op.getOperand(1);
10980     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10981         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10982         Op0.getOperand(0) != Op1.getOperand(0))
10983       break;
10984     SDValue Src = Op0.getOperand(0);
10985     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10986     if (NumSrcElts != (2 * NumElts))
10987       break;
10988     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10989           Op1.getConstantOperandAPInt(1) == NumElts) &&
10990         !(Op1.getConstantOperandAPInt(1) == 0 &&
10991           Op0.getConstantOperandAPInt(1) == NumElts))
10992       break;
10993     Op = Src;
10994   }
10995 
10996   BinOp = (ISD::NodeType)CandidateBinOp;
10997   return Op;
10998 }
10999 
11000 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
11001   assert(N->getNumValues() == 1 &&
11002          "Can't unroll a vector with multiple results!");
11003 
11004   EVT VT = N->getValueType(0);
11005   unsigned NE = VT.getVectorNumElements();
11006   EVT EltVT = VT.getVectorElementType();
11007   SDLoc dl(N);
11008 
11009   SmallVector<SDValue, 8> Scalars;
11010   SmallVector<SDValue, 4> Operands(N->getNumOperands());
11011 
11012   // If ResNE is 0, fully unroll the vector op.
11013   if (ResNE == 0)
11014     ResNE = NE;
11015   else if (NE > ResNE)
11016     NE = ResNE;
11017 
11018   unsigned i;
11019   for (i= 0; i != NE; ++i) {
11020     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
11021       SDValue Operand = N->getOperand(j);
11022       EVT OperandVT = Operand.getValueType();
11023       if (OperandVT.isVector()) {
11024         // A vector operand; extract a single element.
11025         EVT OperandEltVT = OperandVT.getVectorElementType();
11026         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
11027                               Operand, getVectorIdxConstant(i, dl));
11028       } else {
11029         // A scalar operand; just use it as is.
11030         Operands[j] = Operand;
11031       }
11032     }
11033 
11034     switch (N->getOpcode()) {
11035     default: {
11036       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
11037                                 N->getFlags()));
11038       break;
11039     }
11040     case ISD::VSELECT:
11041       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
11042       break;
11043     case ISD::SHL:
11044     case ISD::SRA:
11045     case ISD::SRL:
11046     case ISD::ROTL:
11047     case ISD::ROTR:
11048       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
11049                                getShiftAmountOperand(Operands[0].getValueType(),
11050                                                      Operands[1])));
11051       break;
11052     case ISD::SIGN_EXTEND_INREG: {
11053       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
11054       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
11055                                 Operands[0],
11056                                 getValueType(ExtVT)));
11057     }
11058     }
11059   }
11060 
11061   for (; i < ResNE; ++i)
11062     Scalars.push_back(getUNDEF(EltVT));
11063 
11064   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
11065   return getBuildVector(VecVT, dl, Scalars);
11066 }
11067 
11068 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
11069     SDNode *N, unsigned ResNE) {
11070   unsigned Opcode = N->getOpcode();
11071   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
11072           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
11073           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
11074          "Expected an overflow opcode");
11075 
11076   EVT ResVT = N->getValueType(0);
11077   EVT OvVT = N->getValueType(1);
11078   EVT ResEltVT = ResVT.getVectorElementType();
11079   EVT OvEltVT = OvVT.getVectorElementType();
11080   SDLoc dl(N);
11081 
11082   // If ResNE is 0, fully unroll the vector op.
11083   unsigned NE = ResVT.getVectorNumElements();
11084   if (ResNE == 0)
11085     ResNE = NE;
11086   else if (NE > ResNE)
11087     NE = ResNE;
11088 
11089   SmallVector<SDValue, 8> LHSScalars;
11090   SmallVector<SDValue, 8> RHSScalars;
11091   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
11092   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
11093 
11094   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
11095   SDVTList VTs = getVTList(ResEltVT, SVT);
11096   SmallVector<SDValue, 8> ResScalars;
11097   SmallVector<SDValue, 8> OvScalars;
11098   for (unsigned i = 0; i < NE; ++i) {
11099     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
11100     SDValue Ov =
11101         getSelect(dl, OvEltVT, Res.getValue(1),
11102                   getBoolConstant(true, dl, OvEltVT, ResVT),
11103                   getConstant(0, dl, OvEltVT));
11104 
11105     ResScalars.push_back(Res);
11106     OvScalars.push_back(Ov);
11107   }
11108 
11109   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
11110   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
11111 
11112   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
11113   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
11114   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
11115                         getBuildVector(NewOvVT, dl, OvScalars));
11116 }
11117 
11118 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
11119                                                   LoadSDNode *Base,
11120                                                   unsigned Bytes,
11121                                                   int Dist) const {
11122   if (LD->isVolatile() || Base->isVolatile())
11123     return false;
11124   // TODO: probably too restrictive for atomics, revisit
11125   if (!LD->isSimple())
11126     return false;
11127   if (LD->isIndexed() || Base->isIndexed())
11128     return false;
11129   if (LD->getChain() != Base->getChain())
11130     return false;
11131   EVT VT = LD->getValueType(0);
11132   if (VT.getSizeInBits() / 8 != Bytes)
11133     return false;
11134 
11135   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
11136   auto LocDecomp = BaseIndexOffset::match(LD, *this);
11137 
11138   int64_t Offset = 0;
11139   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
11140     return (Dist * Bytes == Offset);
11141   return false;
11142 }
11143 
11144 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
11145 /// if it cannot be inferred.
11146 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
11147   // If this is a GlobalAddress + cst, return the alignment.
11148   const GlobalValue *GV = nullptr;
11149   int64_t GVOffset = 0;
11150   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
11151     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
11152     KnownBits Known(PtrWidth);
11153     llvm::computeKnownBits(GV, Known, getDataLayout());
11154     unsigned AlignBits = Known.countMinTrailingZeros();
11155     if (AlignBits)
11156       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11157   }
11158 
11159   // If this is a direct reference to a stack slot, use information about the
11160   // stack slot's alignment.
11161   int FrameIdx = INT_MIN;
11162   int64_t FrameOffset = 0;
11163   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11164     FrameIdx = FI->getIndex();
11165   } else if (isBaseWithConstantOffset(Ptr) &&
11166              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11167     // Handle FI+Cst
11168     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11169     FrameOffset = Ptr.getConstantOperandVal(1);
11170   }
11171 
11172   if (FrameIdx != INT_MIN) {
11173     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11174     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11175   }
11176 
11177   return None;
11178 }
11179 
11180 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11181 /// which is split (or expanded) into two not necessarily identical pieces.
11182 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11183   // Currently all types are split in half.
11184   EVT LoVT, HiVT;
11185   if (!VT.isVector())
11186     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11187   else
11188     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11189 
11190   return std::make_pair(LoVT, HiVT);
11191 }
11192 
11193 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11194 /// type, dependent on an enveloping VT that has been split into two identical
11195 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11196 std::pair<EVT, EVT>
11197 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11198                                        bool *HiIsEmpty) const {
11199   EVT EltTp = VT.getVectorElementType();
11200   // Examples:
11201   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11202   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11203   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11204   //   etc.
11205   ElementCount VTNumElts = VT.getVectorElementCount();
11206   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11207   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11208          "Mixing fixed width and scalable vectors when enveloping a type");
11209   EVT LoVT, HiVT;
11210   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11211     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11212     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11213     *HiIsEmpty = false;
11214   } else {
11215     // Flag that hi type has zero storage size, but return split envelop type
11216     // (this would be easier if vector types with zero elements were allowed).
11217     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11218     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11219     *HiIsEmpty = true;
11220   }
11221   return std::make_pair(LoVT, HiVT);
11222 }
11223 
11224 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11225 /// low/high part.
11226 std::pair<SDValue, SDValue>
11227 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11228                           const EVT &HiVT) {
11229   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11230          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11231          "Splitting vector with an invalid mixture of fixed and scalable "
11232          "vector types");
11233   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11234              N.getValueType().getVectorMinNumElements() &&
11235          "More vector elements requested than available!");
11236   SDValue Lo, Hi;
11237   Lo =
11238       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11239   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11240   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11241   // IDX with the runtime scaling factor of the result vector type. For
11242   // fixed-width result vectors, that runtime scaling factor is 1.
11243   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11244                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11245   return std::make_pair(Lo, Hi);
11246 }
11247 
11248 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11249                                                    const SDLoc &DL) {
11250   // Split the vector length parameter.
11251   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11252   EVT VT = N.getValueType();
11253   assert(VecVT.getVectorElementCount().isKnownEven() &&
11254          "Expecting the mask to be an evenly-sized vector");
11255   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11256   SDValue HalfNumElts =
11257       VecVT.isFixedLengthVector()
11258           ? getConstant(HalfMinNumElts, DL, VT)
11259           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11260   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11261   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11262   return std::make_pair(Lo, Hi);
11263 }
11264 
11265 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
11266 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11267   EVT VT = N.getValueType();
11268   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11269                                 NextPowerOf2(VT.getVectorNumElements()));
11270   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11271                  getVectorIdxConstant(0, DL));
11272 }
11273 
11274 void SelectionDAG::ExtractVectorElements(SDValue Op,
11275                                          SmallVectorImpl<SDValue> &Args,
11276                                          unsigned Start, unsigned Count,
11277                                          EVT EltVT) {
11278   EVT VT = Op.getValueType();
11279   if (Count == 0)
11280     Count = VT.getVectorNumElements();
11281   if (EltVT == EVT())
11282     EltVT = VT.getVectorElementType();
11283   SDLoc SL(Op);
11284   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11285     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11286                            getVectorIdxConstant(i, SL)));
11287   }
11288 }
11289 
11290 // getAddressSpace - Return the address space this GlobalAddress belongs to.
11291 unsigned GlobalAddressSDNode::getAddressSpace() const {
11292   return getGlobal()->getType()->getAddressSpace();
11293 }
11294 
11295 Type *ConstantPoolSDNode::getType() const {
11296   if (isMachineConstantPoolEntry())
11297     return Val.MachineCPVal->getType();
11298   return Val.ConstVal->getType();
11299 }
11300 
11301 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11302                                         unsigned &SplatBitSize,
11303                                         bool &HasAnyUndefs,
11304                                         unsigned MinSplatBits,
11305                                         bool IsBigEndian) const {
11306   EVT VT = getValueType(0);
11307   assert(VT.isVector() && "Expected a vector type");
11308   unsigned VecWidth = VT.getSizeInBits();
11309   if (MinSplatBits > VecWidth)
11310     return false;
11311 
11312   // FIXME: The widths are based on this node's type, but build vectors can
11313   // truncate their operands.
11314   SplatValue = APInt(VecWidth, 0);
11315   SplatUndef = APInt(VecWidth, 0);
11316 
11317   // Get the bits. Bits with undefined values (when the corresponding element
11318   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11319   // in SplatValue. If any of the values are not constant, give up and return
11320   // false.
11321   unsigned int NumOps = getNumOperands();
11322   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11323   unsigned EltWidth = VT.getScalarSizeInBits();
11324 
11325   for (unsigned j = 0; j < NumOps; ++j) {
11326     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11327     SDValue OpVal = getOperand(i);
11328     unsigned BitPos = j * EltWidth;
11329 
11330     if (OpVal.isUndef())
11331       SplatUndef.setBits(BitPos, BitPos + EltWidth);
11332     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11333       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11334     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11335       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11336     else
11337       return false;
11338   }
11339 
11340   // The build_vector is all constants or undefs. Find the smallest element
11341   // size that splats the vector.
11342   HasAnyUndefs = (SplatUndef != 0);
11343 
11344   // FIXME: This does not work for vectors with elements less than 8 bits.
11345   while (VecWidth > 8) {
11346     unsigned HalfSize = VecWidth / 2;
11347     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11348     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11349     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11350     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11351 
11352     // If the two halves do not match (ignoring undef bits), stop here.
11353     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11354         MinSplatBits > HalfSize)
11355       break;
11356 
11357     SplatValue = HighValue | LowValue;
11358     SplatUndef = HighUndef & LowUndef;
11359 
11360     VecWidth = HalfSize;
11361   }
11362 
11363   SplatBitSize = VecWidth;
11364   return true;
11365 }
11366 
11367 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11368                                          BitVector *UndefElements) const {
11369   unsigned NumOps = getNumOperands();
11370   if (UndefElements) {
11371     UndefElements->clear();
11372     UndefElements->resize(NumOps);
11373   }
11374   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11375   if (!DemandedElts)
11376     return SDValue();
11377   SDValue Splatted;
11378   for (unsigned i = 0; i != NumOps; ++i) {
11379     if (!DemandedElts[i])
11380       continue;
11381     SDValue Op = getOperand(i);
11382     if (Op.isUndef()) {
11383       if (UndefElements)
11384         (*UndefElements)[i] = true;
11385     } else if (!Splatted) {
11386       Splatted = Op;
11387     } else if (Splatted != Op) {
11388       return SDValue();
11389     }
11390   }
11391 
11392   if (!Splatted) {
11393     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11394     assert(getOperand(FirstDemandedIdx).isUndef() &&
11395            "Can only have a splat without a constant for all undefs.");
11396     return getOperand(FirstDemandedIdx);
11397   }
11398 
11399   return Splatted;
11400 }
11401 
11402 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11403   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11404   return getSplatValue(DemandedElts, UndefElements);
11405 }
11406 
11407 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11408                                             SmallVectorImpl<SDValue> &Sequence,
11409                                             BitVector *UndefElements) const {
11410   unsigned NumOps = getNumOperands();
11411   Sequence.clear();
11412   if (UndefElements) {
11413     UndefElements->clear();
11414     UndefElements->resize(NumOps);
11415   }
11416   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11417   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11418     return false;
11419 
11420   // Set the undefs even if we don't find a sequence (like getSplatValue).
11421   if (UndefElements)
11422     for (unsigned I = 0; I != NumOps; ++I)
11423       if (DemandedElts[I] && getOperand(I).isUndef())
11424         (*UndefElements)[I] = true;
11425 
11426   // Iteratively widen the sequence length looking for repetitions.
11427   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11428     Sequence.append(SeqLen, SDValue());
11429     for (unsigned I = 0; I != NumOps; ++I) {
11430       if (!DemandedElts[I])
11431         continue;
11432       SDValue &SeqOp = Sequence[I % SeqLen];
11433       SDValue Op = getOperand(I);
11434       if (Op.isUndef()) {
11435         if (!SeqOp)
11436           SeqOp = Op;
11437         continue;
11438       }
11439       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11440         Sequence.clear();
11441         break;
11442       }
11443       SeqOp = Op;
11444     }
11445     if (!Sequence.empty())
11446       return true;
11447   }
11448 
11449   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11450   return false;
11451 }
11452 
11453 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11454                                             BitVector *UndefElements) const {
11455   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11456   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11457 }
11458 
11459 ConstantSDNode *
11460 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11461                                         BitVector *UndefElements) const {
11462   return dyn_cast_or_null<ConstantSDNode>(
11463       getSplatValue(DemandedElts, UndefElements));
11464 }
11465 
11466 ConstantSDNode *
11467 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11468   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11469 }
11470 
11471 ConstantFPSDNode *
11472 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11473                                           BitVector *UndefElements) const {
11474   return dyn_cast_or_null<ConstantFPSDNode>(
11475       getSplatValue(DemandedElts, UndefElements));
11476 }
11477 
11478 ConstantFPSDNode *
11479 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11480   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11481 }
11482 
11483 int32_t
11484 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11485                                                    uint32_t BitWidth) const {
11486   if (ConstantFPSDNode *CN =
11487           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11488     bool IsExact;
11489     APSInt IntVal(BitWidth);
11490     const APFloat &APF = CN->getValueAPF();
11491     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11492             APFloat::opOK ||
11493         !IsExact)
11494       return -1;
11495 
11496     return IntVal.exactLogBase2();
11497   }
11498   return -1;
11499 }
11500 
11501 bool BuildVectorSDNode::getConstantRawBits(
11502     bool IsLittleEndian, unsigned DstEltSizeInBits,
11503     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11504   // Early-out if this contains anything but Undef/Constant/ConstantFP.
11505   if (!isConstant())
11506     return false;
11507 
11508   unsigned NumSrcOps = getNumOperands();
11509   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11510   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11511          "Invalid bitcast scale");
11512 
11513   // Extract raw src bits.
11514   SmallVector<APInt> SrcBitElements(NumSrcOps,
11515                                     APInt::getNullValue(SrcEltSizeInBits));
11516   BitVector SrcUndeElements(NumSrcOps, false);
11517 
11518   for (unsigned I = 0; I != NumSrcOps; ++I) {
11519     SDValue Op = getOperand(I);
11520     if (Op.isUndef()) {
11521       SrcUndeElements.set(I);
11522       continue;
11523     }
11524     auto *CInt = dyn_cast<ConstantSDNode>(Op);
11525     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11526     assert((CInt || CFP) && "Unknown constant");
11527     SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
11528                              : CFP->getValueAPF().bitcastToAPInt();
11529   }
11530 
11531   // Recast to dst width.
11532   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11533                 SrcBitElements, UndefElements, SrcUndeElements);
11534   return true;
11535 }
11536 
11537 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11538                                       unsigned DstEltSizeInBits,
11539                                       SmallVectorImpl<APInt> &DstBitElements,
11540                                       ArrayRef<APInt> SrcBitElements,
11541                                       BitVector &DstUndefElements,
11542                                       const BitVector &SrcUndefElements) {
11543   unsigned NumSrcOps = SrcBitElements.size();
11544   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11545   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11546          "Invalid bitcast scale");
11547   assert(NumSrcOps == SrcUndefElements.size() &&
11548          "Vector size mismatch");
11549 
11550   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11551   DstUndefElements.clear();
11552   DstUndefElements.resize(NumDstOps, false);
11553   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11554 
11555   // Concatenate src elements constant bits together into dst element.
11556   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11557     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11558     for (unsigned I = 0; I != NumDstOps; ++I) {
11559       DstUndefElements.set(I);
11560       APInt &DstBits = DstBitElements[I];
11561       for (unsigned J = 0; J != Scale; ++J) {
11562         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11563         if (SrcUndefElements[Idx])
11564           continue;
11565         DstUndefElements.reset(I);
11566         const APInt &SrcBits = SrcBitElements[Idx];
11567         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11568                "Illegal constant bitwidths");
11569         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11570       }
11571     }
11572     return;
11573   }
11574 
11575   // Split src element constant bits into dst elements.
11576   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11577   for (unsigned I = 0; I != NumSrcOps; ++I) {
11578     if (SrcUndefElements[I]) {
11579       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11580       continue;
11581     }
11582     const APInt &SrcBits = SrcBitElements[I];
11583     for (unsigned J = 0; J != Scale; ++J) {
11584       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11585       APInt &DstBits = DstBitElements[Idx];
11586       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11587     }
11588   }
11589 }
11590 
11591 bool BuildVectorSDNode::isConstant() const {
11592   for (const SDValue &Op : op_values()) {
11593     unsigned Opc = Op.getOpcode();
11594     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11595       return false;
11596   }
11597   return true;
11598 }
11599 
11600 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11601   // Find the first non-undef value in the shuffle mask.
11602   unsigned i, e;
11603   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11604     /* search */;
11605 
11606   // If all elements are undefined, this shuffle can be considered a splat
11607   // (although it should eventually get simplified away completely).
11608   if (i == e)
11609     return true;
11610 
11611   // Make sure all remaining elements are either undef or the same as the first
11612   // non-undef value.
11613   for (int Idx = Mask[i]; i != e; ++i)
11614     if (Mask[i] >= 0 && Mask[i] != Idx)
11615       return false;
11616   return true;
11617 }
11618 
11619 // Returns the SDNode if it is a constant integer BuildVector
11620 // or constant integer.
11621 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11622   if (isa<ConstantSDNode>(N))
11623     return N.getNode();
11624   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11625     return N.getNode();
11626   // Treat a GlobalAddress supporting constant offset folding as a
11627   // constant integer.
11628   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11629     if (GA->getOpcode() == ISD::GlobalAddress &&
11630         TLI->isOffsetFoldingLegal(GA))
11631       return GA;
11632   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11633       isa<ConstantSDNode>(N.getOperand(0)))
11634     return N.getNode();
11635   return nullptr;
11636 }
11637 
11638 // Returns the SDNode if it is a constant float BuildVector
11639 // or constant float.
11640 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11641   if (isa<ConstantFPSDNode>(N))
11642     return N.getNode();
11643 
11644   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11645     return N.getNode();
11646 
11647   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11648       isa<ConstantFPSDNode>(N.getOperand(0)))
11649     return N.getNode();
11650 
11651   return nullptr;
11652 }
11653 
11654 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11655   assert(!Node->OperandList && "Node already has operands");
11656   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11657          "too many operands to fit into SDNode");
11658   SDUse *Ops = OperandRecycler.allocate(
11659       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11660 
11661   bool IsDivergent = false;
11662   for (unsigned I = 0; I != Vals.size(); ++I) {
11663     Ops[I].setUser(Node);
11664     Ops[I].setInitial(Vals[I]);
11665     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11666       IsDivergent |= Ops[I].getNode()->isDivergent();
11667   }
11668   Node->NumOperands = Vals.size();
11669   Node->OperandList = Ops;
11670   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11671     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11672     Node->SDNodeBits.IsDivergent = IsDivergent;
11673   }
11674   checkForCycles(Node);
11675 }
11676 
11677 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11678                                      SmallVectorImpl<SDValue> &Vals) {
11679   size_t Limit = SDNode::getMaxNumOperands();
11680   while (Vals.size() > Limit) {
11681     unsigned SliceIdx = Vals.size() - Limit;
11682     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11683     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11684     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11685     Vals.emplace_back(NewTF);
11686   }
11687   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11688 }
11689 
11690 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11691                                         EVT VT, SDNodeFlags Flags) {
11692   switch (Opcode) {
11693   default:
11694     return SDValue();
11695   case ISD::ADD:
11696   case ISD::OR:
11697   case ISD::XOR:
11698   case ISD::UMAX:
11699     return getConstant(0, DL, VT);
11700   case ISD::MUL:
11701     return getConstant(1, DL, VT);
11702   case ISD::AND:
11703   case ISD::UMIN:
11704     return getAllOnesConstant(DL, VT);
11705   case ISD::SMAX:
11706     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11707   case ISD::SMIN:
11708     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11709   case ISD::FADD:
11710     return getConstantFP(-0.0, DL, VT);
11711   case ISD::FMUL:
11712     return getConstantFP(1.0, DL, VT);
11713   case ISD::FMINNUM:
11714   case ISD::FMAXNUM: {
11715     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11716     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11717     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11718                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11719                         APFloat::getLargest(Semantics);
11720     if (Opcode == ISD::FMAXNUM)
11721       NeutralAF.changeSign();
11722 
11723     return getConstantFP(NeutralAF, DL, VT);
11724   }
11725   }
11726 }
11727 
11728 #ifndef NDEBUG
11729 static void checkForCyclesHelper(const SDNode *N,
11730                                  SmallPtrSetImpl<const SDNode*> &Visited,
11731                                  SmallPtrSetImpl<const SDNode*> &Checked,
11732                                  const llvm::SelectionDAG *DAG) {
11733   // If this node has already been checked, don't check it again.
11734   if (Checked.count(N))
11735     return;
11736 
11737   // If a node has already been visited on this depth-first walk, reject it as
11738   // a cycle.
11739   if (!Visited.insert(N).second) {
11740     errs() << "Detected cycle in SelectionDAG\n";
11741     dbgs() << "Offending node:\n";
11742     N->dumprFull(DAG); dbgs() << "\n";
11743     abort();
11744   }
11745 
11746   for (const SDValue &Op : N->op_values())
11747     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11748 
11749   Checked.insert(N);
11750   Visited.erase(N);
11751 }
11752 #endif
11753 
11754 void llvm::checkForCycles(const llvm::SDNode *N,
11755                           const llvm::SelectionDAG *DAG,
11756                           bool force) {
11757 #ifndef NDEBUG
11758   bool check = force;
11759 #ifdef EXPENSIVE_CHECKS
11760   check = true;
11761 #endif  // EXPENSIVE_CHECKS
11762   if (check) {
11763     assert(N && "Checking nonexistent SDNode");
11764     SmallPtrSet<const SDNode*, 32> visited;
11765     SmallPtrSet<const SDNode*, 32> checked;
11766     checkForCyclesHelper(N, visited, checked, DAG);
11767   }
11768 #endif  // !NDEBUG
11769 }
11770 
11771 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11772   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11773 }
11774