1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/CodeGen/FunctionLoweringInfo.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetFrameLowering.h" 42 #include "llvm/CodeGen/TargetLowering.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/CodeGen/ValueTypes.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/Mutex.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include "llvm/Target/TargetOptions.h" 68 #include "llvm/Transforms/Utils/SizeOpts.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <cstdlib> 73 #include <limits> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 /// makeVTList - Return an instance of the SDVTList struct initialized with the 82 /// specified members. 83 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 84 SDVTList Res = {VTs, NumVTs}; 85 return Res; 86 } 87 88 // Default null implementations of the callbacks. 89 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 90 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 92 93 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 94 95 #define DEBUG_TYPE "selectiondag" 96 97 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 98 cl::Hidden, cl::init(true), 99 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 100 101 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 102 cl::desc("Number limit for gluing ld/st of memcpy."), 103 cl::Hidden, cl::init(0)); 104 105 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 106 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 107 } 108 109 //===----------------------------------------------------------------------===// 110 // ConstantFPSDNode Class 111 //===----------------------------------------------------------------------===// 112 113 /// isExactlyValue - We don't rely on operator== working on double values, as 114 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 115 /// As such, this method can be used to do an exact bit-for-bit comparison of 116 /// two floating point values. 117 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 118 return getValueAPF().bitwiseIsEqual(V); 119 } 120 121 bool ConstantFPSDNode::isValueValidForType(EVT VT, 122 const APFloat& Val) { 123 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 124 125 // convert modifies in place, so make a copy. 126 APFloat Val2 = APFloat(Val); 127 bool losesInfo; 128 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 129 APFloat::rmNearestTiesToEven, 130 &losesInfo); 131 return !losesInfo; 132 } 133 134 //===----------------------------------------------------------------------===// 135 // ISD Namespace 136 //===----------------------------------------------------------------------===// 137 138 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 139 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 140 unsigned EltSize = 141 N->getValueType(0).getVectorElementType().getSizeInBits(); 142 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 143 SplatVal = Op0->getAPIntValue().trunc(EltSize); 144 return true; 145 } 146 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 148 return true; 149 } 150 } 151 152 auto *BV = dyn_cast<BuildVectorSDNode>(N); 153 if (!BV) 154 return false; 155 156 APInt SplatUndef; 157 unsigned SplatBitSize; 158 bool HasUndefs; 159 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 160 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 161 EltSize) && 162 EltSize == SplatBitSize; 163 } 164 165 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 166 // specializations of the more general isConstantSplatVector()? 167 168 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 169 // Look through a bit convert. 170 while (N->getOpcode() == ISD::BITCAST) 171 N = N->getOperand(0).getNode(); 172 173 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 174 APInt SplatVal; 175 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 176 } 177 178 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 179 180 unsigned i = 0, e = N->getNumOperands(); 181 182 // Skip over all of the undef values. 183 while (i != e && N->getOperand(i).isUndef()) 184 ++i; 185 186 // Do not accept an all-undef vector. 187 if (i == e) return false; 188 189 // Do not accept build_vectors that aren't all constants or which have non-~0 190 // elements. We have to be a bit careful here, as the type of the constant 191 // may not be the same as the type of the vector elements due to type 192 // legalization (the elements are promoted to a legal type for the target and 193 // a vector of a type may be legal when the base element type is not). 194 // We only want to check enough bits to cover the vector elements, because 195 // we care if the resultant vector is all ones, not whether the individual 196 // constants are. 197 SDValue NotZero = N->getOperand(i); 198 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 199 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 200 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 201 return false; 202 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 203 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 204 return false; 205 } else 206 return false; 207 208 // Okay, we have at least one ~0 value, check to see if the rest match or are 209 // undefs. Even with the above element type twiddling, this should be OK, as 210 // the same type legalization should have applied to all the elements. 211 for (++i; i != e; ++i) 212 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 213 return false; 214 return true; 215 } 216 217 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 218 // Look through a bit convert. 219 while (N->getOpcode() == ISD::BITCAST) 220 N = N->getOperand(0).getNode(); 221 222 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 223 APInt SplatVal; 224 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 225 } 226 227 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 228 229 bool IsAllUndef = true; 230 for (const SDValue &Op : N->op_values()) { 231 if (Op.isUndef()) 232 continue; 233 IsAllUndef = false; 234 // Do not accept build_vectors that aren't all constants or which have non-0 235 // elements. We have to be a bit careful here, as the type of the constant 236 // may not be the same as the type of the vector elements due to type 237 // legalization (the elements are promoted to a legal type for the target 238 // and a vector of a type may be legal when the base element type is not). 239 // We only want to check enough bits to cover the vector elements, because 240 // we care if the resultant vector is all zeros, not whether the individual 241 // constants are. 242 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 243 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 244 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 245 return false; 246 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 247 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 248 return false; 249 } else 250 return false; 251 } 252 253 // Do not accept an all-undef vector. 254 if (IsAllUndef) 255 return false; 256 return true; 257 } 258 259 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 260 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 261 } 262 263 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 264 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 268 if (N->getOpcode() != ISD::BUILD_VECTOR) 269 return false; 270 271 for (const SDValue &Op : N->op_values()) { 272 if (Op.isUndef()) 273 continue; 274 if (!isa<ConstantSDNode>(Op)) 275 return false; 276 } 277 return true; 278 } 279 280 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 281 if (N->getOpcode() != ISD::BUILD_VECTOR) 282 return false; 283 284 for (const SDValue &Op : N->op_values()) { 285 if (Op.isUndef()) 286 continue; 287 if (!isa<ConstantFPSDNode>(Op)) 288 return false; 289 } 290 return true; 291 } 292 293 bool ISD::allOperandsUndef(const SDNode *N) { 294 // Return false if the node has no operands. 295 // This is "logically inconsistent" with the definition of "all" but 296 // is probably the desired behavior. 297 if (N->getNumOperands() == 0) 298 return false; 299 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 300 } 301 302 bool ISD::matchUnaryPredicate(SDValue Op, 303 std::function<bool(ConstantSDNode *)> Match, 304 bool AllowUndefs) { 305 // FIXME: Add support for scalar UNDEF cases? 306 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 307 return Match(Cst); 308 309 // FIXME: Add support for vector UNDEF cases? 310 if (ISD::BUILD_VECTOR != Op.getOpcode() && 311 ISD::SPLAT_VECTOR != Op.getOpcode()) 312 return false; 313 314 EVT SVT = Op.getValueType().getScalarType(); 315 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 316 if (AllowUndefs && Op.getOperand(i).isUndef()) { 317 if (!Match(nullptr)) 318 return false; 319 continue; 320 } 321 322 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 323 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 324 return false; 325 } 326 return true; 327 } 328 329 bool ISD::matchBinaryPredicate( 330 SDValue LHS, SDValue RHS, 331 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 332 bool AllowUndefs, bool AllowTypeMismatch) { 333 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 334 return false; 335 336 // TODO: Add support for scalar UNDEF cases? 337 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 338 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 339 return Match(LHSCst, RHSCst); 340 341 // TODO: Add support for vector UNDEF cases? 342 if (LHS.getOpcode() != RHS.getOpcode() || 343 (LHS.getOpcode() != ISD::BUILD_VECTOR && 344 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 345 return false; 346 347 EVT SVT = LHS.getValueType().getScalarType(); 348 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 349 SDValue LHSOp = LHS.getOperand(i); 350 SDValue RHSOp = RHS.getOperand(i); 351 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 352 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 353 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 354 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 355 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 356 return false; 357 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 358 LHSOp.getValueType() != RHSOp.getValueType())) 359 return false; 360 if (!Match(LHSCst, RHSCst)) 361 return false; 362 } 363 return true; 364 } 365 366 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 367 switch (VecReduceOpcode) { 368 default: 369 llvm_unreachable("Expected VECREDUCE opcode"); 370 case ISD::VECREDUCE_FADD: 371 case ISD::VECREDUCE_SEQ_FADD: 372 case ISD::VP_REDUCE_FADD: 373 case ISD::VP_REDUCE_SEQ_FADD: 374 return ISD::FADD; 375 case ISD::VECREDUCE_FMUL: 376 case ISD::VECREDUCE_SEQ_FMUL: 377 case ISD::VP_REDUCE_FMUL: 378 case ISD::VP_REDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 case ISD::VP_REDUCE_ADD: 382 return ISD::ADD; 383 case ISD::VECREDUCE_MUL: 384 case ISD::VP_REDUCE_MUL: 385 return ISD::MUL; 386 case ISD::VECREDUCE_AND: 387 case ISD::VP_REDUCE_AND: 388 return ISD::AND; 389 case ISD::VECREDUCE_OR: 390 case ISD::VP_REDUCE_OR: 391 return ISD::OR; 392 case ISD::VECREDUCE_XOR: 393 case ISD::VP_REDUCE_XOR: 394 return ISD::XOR; 395 case ISD::VECREDUCE_SMAX: 396 case ISD::VP_REDUCE_SMAX: 397 return ISD::SMAX; 398 case ISD::VECREDUCE_SMIN: 399 case ISD::VP_REDUCE_SMIN: 400 return ISD::SMIN; 401 case ISD::VECREDUCE_UMAX: 402 case ISD::VP_REDUCE_UMAX: 403 return ISD::UMAX; 404 case ISD::VECREDUCE_UMIN: 405 case ISD::VP_REDUCE_UMIN: 406 return ISD::UMIN; 407 case ISD::VECREDUCE_FMAX: 408 case ISD::VP_REDUCE_FMAX: 409 return ISD::FMAXNUM; 410 case ISD::VECREDUCE_FMIN: 411 case ISD::VP_REDUCE_FMIN: 412 return ISD::FMINNUM; 413 } 414 } 415 416 bool ISD::isVPOpcode(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return false; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 421 case ISD::VPSD: \ 422 return true; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 bool ISD::isVPBinaryOp(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 break; 431 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 432 #define VP_PROPERTY_BINARYOP return true; 433 #define END_REGISTER_VP_SDNODE(VPSD) break; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 return false; 437 } 438 439 bool ISD::isVPReduction(unsigned Opcode) { 440 switch (Opcode) { 441 default: 442 break; 443 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 444 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 445 #define END_REGISTER_VP_SDNODE(VPSD) break; 446 #include "llvm/IR/VPIntrinsics.def" 447 } 448 return false; 449 } 450 451 /// The operand position of the vector mask. 452 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 453 switch (Opcode) { 454 default: 455 return None; 456 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 457 case ISD::VPSD: \ 458 return MASKPOS; 459 #include "llvm/IR/VPIntrinsics.def" 460 } 461 } 462 463 /// The operand position of the explicit vector length parameter. 464 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 465 switch (Opcode) { 466 default: 467 return None; 468 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 469 case ISD::VPSD: \ 470 return EVLPOS; 471 #include "llvm/IR/VPIntrinsics.def" 472 } 473 } 474 475 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 476 switch (ExtType) { 477 case ISD::EXTLOAD: 478 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 479 case ISD::SEXTLOAD: 480 return ISD::SIGN_EXTEND; 481 case ISD::ZEXTLOAD: 482 return ISD::ZERO_EXTEND; 483 default: 484 break; 485 } 486 487 llvm_unreachable("Invalid LoadExtType"); 488 } 489 490 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 491 // To perform this operation, we just need to swap the L and G bits of the 492 // operation. 493 unsigned OldL = (Operation >> 2) & 1; 494 unsigned OldG = (Operation >> 1) & 1; 495 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 496 (OldL << 1) | // New G bit 497 (OldG << 2)); // New L bit. 498 } 499 500 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 501 unsigned Operation = Op; 502 if (isIntegerLike) 503 Operation ^= 7; // Flip L, G, E bits, but not U. 504 else 505 Operation ^= 15; // Flip all of the condition bits. 506 507 if (Operation > ISD::SETTRUE2) 508 Operation &= ~8; // Don't let N and U bits get set. 509 510 return ISD::CondCode(Operation); 511 } 512 513 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 514 return getSetCCInverseImpl(Op, Type.isInteger()); 515 } 516 517 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 518 bool isIntegerLike) { 519 return getSetCCInverseImpl(Op, isIntegerLike); 520 } 521 522 /// For an integer comparison, return 1 if the comparison is a signed operation 523 /// and 2 if the result is an unsigned comparison. Return zero if the operation 524 /// does not depend on the sign of the input (setne and seteq). 525 static int isSignedOp(ISD::CondCode Opcode) { 526 switch (Opcode) { 527 default: llvm_unreachable("Illegal integer setcc operation!"); 528 case ISD::SETEQ: 529 case ISD::SETNE: return 0; 530 case ISD::SETLT: 531 case ISD::SETLE: 532 case ISD::SETGT: 533 case ISD::SETGE: return 1; 534 case ISD::SETULT: 535 case ISD::SETULE: 536 case ISD::SETUGT: 537 case ISD::SETUGE: return 2; 538 } 539 } 540 541 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 542 EVT Type) { 543 bool IsInteger = Type.isInteger(); 544 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 545 // Cannot fold a signed integer setcc with an unsigned integer setcc. 546 return ISD::SETCC_INVALID; 547 548 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 549 550 // If the N and U bits get set, then the resultant comparison DOES suddenly 551 // care about orderedness, and it is true when ordered. 552 if (Op > ISD::SETTRUE2) 553 Op &= ~16; // Clear the U bit if the N bit is set. 554 555 // Canonicalize illegal integer setcc's. 556 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 557 Op = ISD::SETNE; 558 559 return ISD::CondCode(Op); 560 } 561 562 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 563 EVT Type) { 564 bool IsInteger = Type.isInteger(); 565 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 566 // Cannot fold a signed setcc with an unsigned setcc. 567 return ISD::SETCC_INVALID; 568 569 // Combine all of the condition bits. 570 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 571 572 // Canonicalize illegal integer setcc's. 573 if (IsInteger) { 574 switch (Result) { 575 default: break; 576 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 577 case ISD::SETOEQ: // SETEQ & SETU[LG]E 578 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 579 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 580 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 581 } 582 } 583 584 return Result; 585 } 586 587 //===----------------------------------------------------------------------===// 588 // SDNode Profile Support 589 //===----------------------------------------------------------------------===// 590 591 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 592 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 593 ID.AddInteger(OpC); 594 } 595 596 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 597 /// solely with their pointer. 598 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 599 ID.AddPointer(VTList.VTs); 600 } 601 602 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 603 static void AddNodeIDOperands(FoldingSetNodeID &ID, 604 ArrayRef<SDValue> Ops) { 605 for (auto& Op : Ops) { 606 ID.AddPointer(Op.getNode()); 607 ID.AddInteger(Op.getResNo()); 608 } 609 } 610 611 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 612 static void AddNodeIDOperands(FoldingSetNodeID &ID, 613 ArrayRef<SDUse> Ops) { 614 for (auto& Op : Ops) { 615 ID.AddPointer(Op.getNode()); 616 ID.AddInteger(Op.getResNo()); 617 } 618 } 619 620 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 621 SDVTList VTList, ArrayRef<SDValue> OpList) { 622 AddNodeIDOpcode(ID, OpC); 623 AddNodeIDValueTypes(ID, VTList); 624 AddNodeIDOperands(ID, OpList); 625 } 626 627 /// If this is an SDNode with special info, add this info to the NodeID data. 628 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 629 switch (N->getOpcode()) { 630 case ISD::TargetExternalSymbol: 631 case ISD::ExternalSymbol: 632 case ISD::MCSymbol: 633 llvm_unreachable("Should only be used on nodes with operands"); 634 default: break; // Normal nodes don't need extra info. 635 case ISD::TargetConstant: 636 case ISD::Constant: { 637 const ConstantSDNode *C = cast<ConstantSDNode>(N); 638 ID.AddPointer(C->getConstantIntValue()); 639 ID.AddBoolean(C->isOpaque()); 640 break; 641 } 642 case ISD::TargetConstantFP: 643 case ISD::ConstantFP: 644 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 645 break; 646 case ISD::TargetGlobalAddress: 647 case ISD::GlobalAddress: 648 case ISD::TargetGlobalTLSAddress: 649 case ISD::GlobalTLSAddress: { 650 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 651 ID.AddPointer(GA->getGlobal()); 652 ID.AddInteger(GA->getOffset()); 653 ID.AddInteger(GA->getTargetFlags()); 654 break; 655 } 656 case ISD::BasicBlock: 657 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 658 break; 659 case ISD::Register: 660 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 661 break; 662 case ISD::RegisterMask: 663 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 664 break; 665 case ISD::SRCVALUE: 666 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 667 break; 668 case ISD::FrameIndex: 669 case ISD::TargetFrameIndex: 670 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 671 break; 672 case ISD::LIFETIME_START: 673 case ISD::LIFETIME_END: 674 if (cast<LifetimeSDNode>(N)->hasOffset()) { 675 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 676 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 677 } 678 break; 679 case ISD::PSEUDO_PROBE: 680 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 681 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 682 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 683 break; 684 case ISD::JumpTable: 685 case ISD::TargetJumpTable: 686 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 687 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 688 break; 689 case ISD::ConstantPool: 690 case ISD::TargetConstantPool: { 691 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 692 ID.AddInteger(CP->getAlign().value()); 693 ID.AddInteger(CP->getOffset()); 694 if (CP->isMachineConstantPoolEntry()) 695 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 696 else 697 ID.AddPointer(CP->getConstVal()); 698 ID.AddInteger(CP->getTargetFlags()); 699 break; 700 } 701 case ISD::TargetIndex: { 702 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 703 ID.AddInteger(TI->getIndex()); 704 ID.AddInteger(TI->getOffset()); 705 ID.AddInteger(TI->getTargetFlags()); 706 break; 707 } 708 case ISD::LOAD: { 709 const LoadSDNode *LD = cast<LoadSDNode>(N); 710 ID.AddInteger(LD->getMemoryVT().getRawBits()); 711 ID.AddInteger(LD->getRawSubclassData()); 712 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 713 ID.AddInteger(LD->getMemOperand()->getFlags()); 714 break; 715 } 716 case ISD::STORE: { 717 const StoreSDNode *ST = cast<StoreSDNode>(N); 718 ID.AddInteger(ST->getMemoryVT().getRawBits()); 719 ID.AddInteger(ST->getRawSubclassData()); 720 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 721 ID.AddInteger(ST->getMemOperand()->getFlags()); 722 break; 723 } 724 case ISD::VP_LOAD: { 725 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 726 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 727 ID.AddInteger(ELD->getRawSubclassData()); 728 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 729 ID.AddInteger(ELD->getMemOperand()->getFlags()); 730 break; 731 } 732 case ISD::VP_STORE: { 733 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 734 ID.AddInteger(EST->getMemoryVT().getRawBits()); 735 ID.AddInteger(EST->getRawSubclassData()); 736 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 737 ID.AddInteger(EST->getMemOperand()->getFlags()); 738 break; 739 } 740 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 741 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 742 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 743 ID.AddInteger(SLD->getRawSubclassData()); 744 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 748 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 749 ID.AddInteger(SST->getMemoryVT().getRawBits()); 750 ID.AddInteger(SST->getRawSubclassData()); 751 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::VP_GATHER: { 755 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 756 ID.AddInteger(EG->getMemoryVT().getRawBits()); 757 ID.AddInteger(EG->getRawSubclassData()); 758 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 759 ID.AddInteger(EG->getMemOperand()->getFlags()); 760 break; 761 } 762 case ISD::VP_SCATTER: { 763 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 764 ID.AddInteger(ES->getMemoryVT().getRawBits()); 765 ID.AddInteger(ES->getRawSubclassData()); 766 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 767 ID.AddInteger(ES->getMemOperand()->getFlags()); 768 break; 769 } 770 case ISD::MLOAD: { 771 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 772 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 773 ID.AddInteger(MLD->getRawSubclassData()); 774 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 775 ID.AddInteger(MLD->getMemOperand()->getFlags()); 776 break; 777 } 778 case ISD::MSTORE: { 779 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 780 ID.AddInteger(MST->getMemoryVT().getRawBits()); 781 ID.AddInteger(MST->getRawSubclassData()); 782 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 783 ID.AddInteger(MST->getMemOperand()->getFlags()); 784 break; 785 } 786 case ISD::MGATHER: { 787 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 788 ID.AddInteger(MG->getMemoryVT().getRawBits()); 789 ID.AddInteger(MG->getRawSubclassData()); 790 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 791 ID.AddInteger(MG->getMemOperand()->getFlags()); 792 break; 793 } 794 case ISD::MSCATTER: { 795 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 796 ID.AddInteger(MS->getMemoryVT().getRawBits()); 797 ID.AddInteger(MS->getRawSubclassData()); 798 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 799 ID.AddInteger(MS->getMemOperand()->getFlags()); 800 break; 801 } 802 case ISD::ATOMIC_CMP_SWAP: 803 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 804 case ISD::ATOMIC_SWAP: 805 case ISD::ATOMIC_LOAD_ADD: 806 case ISD::ATOMIC_LOAD_SUB: 807 case ISD::ATOMIC_LOAD_AND: 808 case ISD::ATOMIC_LOAD_CLR: 809 case ISD::ATOMIC_LOAD_OR: 810 case ISD::ATOMIC_LOAD_XOR: 811 case ISD::ATOMIC_LOAD_NAND: 812 case ISD::ATOMIC_LOAD_MIN: 813 case ISD::ATOMIC_LOAD_MAX: 814 case ISD::ATOMIC_LOAD_UMIN: 815 case ISD::ATOMIC_LOAD_UMAX: 816 case ISD::ATOMIC_LOAD: 817 case ISD::ATOMIC_STORE: { 818 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 819 ID.AddInteger(AT->getMemoryVT().getRawBits()); 820 ID.AddInteger(AT->getRawSubclassData()); 821 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 822 ID.AddInteger(AT->getMemOperand()->getFlags()); 823 break; 824 } 825 case ISD::PREFETCH: { 826 const MemSDNode *PF = cast<MemSDNode>(N); 827 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 828 ID.AddInteger(PF->getMemOperand()->getFlags()); 829 break; 830 } 831 case ISD::VECTOR_SHUFFLE: { 832 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 833 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 834 i != e; ++i) 835 ID.AddInteger(SVN->getMaskElt(i)); 836 break; 837 } 838 case ISD::TargetBlockAddress: 839 case ISD::BlockAddress: { 840 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 841 ID.AddPointer(BA->getBlockAddress()); 842 ID.AddInteger(BA->getOffset()); 843 ID.AddInteger(BA->getTargetFlags()); 844 break; 845 } 846 case ISD::AssertAlign: 847 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 848 break; 849 } // end switch (N->getOpcode()) 850 851 // Target specific memory nodes could also have address spaces and flags 852 // to check. 853 if (N->isTargetMemoryOpcode()) { 854 const MemSDNode *MN = cast<MemSDNode>(N); 855 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 856 ID.AddInteger(MN->getMemOperand()->getFlags()); 857 } 858 } 859 860 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 861 /// data. 862 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 863 AddNodeIDOpcode(ID, N->getOpcode()); 864 // Add the return value info. 865 AddNodeIDValueTypes(ID, N->getVTList()); 866 // Add the operand info. 867 AddNodeIDOperands(ID, N->ops()); 868 869 // Handle SDNode leafs with special info. 870 AddNodeIDCustom(ID, N); 871 } 872 873 //===----------------------------------------------------------------------===// 874 // SelectionDAG Class 875 //===----------------------------------------------------------------------===// 876 877 /// doNotCSE - Return true if CSE should not be performed for this node. 878 static bool doNotCSE(SDNode *N) { 879 if (N->getValueType(0) == MVT::Glue) 880 return true; // Never CSE anything that produces a flag. 881 882 switch (N->getOpcode()) { 883 default: break; 884 case ISD::HANDLENODE: 885 case ISD::EH_LABEL: 886 return true; // Never CSE these nodes. 887 } 888 889 // Check that remaining values produced are not flags. 890 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 891 if (N->getValueType(i) == MVT::Glue) 892 return true; // Never CSE anything that produces a flag. 893 894 return false; 895 } 896 897 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 898 /// SelectionDAG. 899 void SelectionDAG::RemoveDeadNodes() { 900 // Create a dummy node (which is not added to allnodes), that adds a reference 901 // to the root node, preventing it from being deleted. 902 HandleSDNode Dummy(getRoot()); 903 904 SmallVector<SDNode*, 128> DeadNodes; 905 906 // Add all obviously-dead nodes to the DeadNodes worklist. 907 for (SDNode &Node : allnodes()) 908 if (Node.use_empty()) 909 DeadNodes.push_back(&Node); 910 911 RemoveDeadNodes(DeadNodes); 912 913 // If the root changed (e.g. it was a dead load, update the root). 914 setRoot(Dummy.getValue()); 915 } 916 917 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 918 /// given list, and any nodes that become unreachable as a result. 919 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 920 921 // Process the worklist, deleting the nodes and adding their uses to the 922 // worklist. 923 while (!DeadNodes.empty()) { 924 SDNode *N = DeadNodes.pop_back_val(); 925 // Skip to next node if we've already managed to delete the node. This could 926 // happen if replacing a node causes a node previously added to the node to 927 // be deleted. 928 if (N->getOpcode() == ISD::DELETED_NODE) 929 continue; 930 931 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 932 DUL->NodeDeleted(N, nullptr); 933 934 // Take the node out of the appropriate CSE map. 935 RemoveNodeFromCSEMaps(N); 936 937 // Next, brutally remove the operand list. This is safe to do, as there are 938 // no cycles in the graph. 939 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 940 SDUse &Use = *I++; 941 SDNode *Operand = Use.getNode(); 942 Use.set(SDValue()); 943 944 // Now that we removed this operand, see if there are no uses of it left. 945 if (Operand->use_empty()) 946 DeadNodes.push_back(Operand); 947 } 948 949 DeallocateNode(N); 950 } 951 } 952 953 void SelectionDAG::RemoveDeadNode(SDNode *N){ 954 SmallVector<SDNode*, 16> DeadNodes(1, N); 955 956 // Create a dummy node that adds a reference to the root node, preventing 957 // it from being deleted. (This matters if the root is an operand of the 958 // dead node.) 959 HandleSDNode Dummy(getRoot()); 960 961 RemoveDeadNodes(DeadNodes); 962 } 963 964 void SelectionDAG::DeleteNode(SDNode *N) { 965 // First take this out of the appropriate CSE map. 966 RemoveNodeFromCSEMaps(N); 967 968 // Finally, remove uses due to operands of this node, remove from the 969 // AllNodes list, and delete the node. 970 DeleteNodeNotInCSEMaps(N); 971 } 972 973 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 974 assert(N->getIterator() != AllNodes.begin() && 975 "Cannot delete the entry node!"); 976 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 977 978 // Drop all of the operands and decrement used node's use counts. 979 N->DropOperands(); 980 981 DeallocateNode(N); 982 } 983 984 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 985 assert(!(V->isVariadic() && isParameter)); 986 if (isParameter) 987 ByvalParmDbgValues.push_back(V); 988 else 989 DbgValues.push_back(V); 990 for (const SDNode *Node : V->getSDNodes()) 991 if (Node) 992 DbgValMap[Node].push_back(V); 993 } 994 995 void SDDbgInfo::erase(const SDNode *Node) { 996 DbgValMapType::iterator I = DbgValMap.find(Node); 997 if (I == DbgValMap.end()) 998 return; 999 for (auto &Val: I->second) 1000 Val->setIsInvalidated(); 1001 DbgValMap.erase(I); 1002 } 1003 1004 void SelectionDAG::DeallocateNode(SDNode *N) { 1005 // If we have operands, deallocate them. 1006 removeOperands(N); 1007 1008 NodeAllocator.Deallocate(AllNodes.remove(N)); 1009 1010 // Set the opcode to DELETED_NODE to help catch bugs when node 1011 // memory is reallocated. 1012 // FIXME: There are places in SDag that have grown a dependency on the opcode 1013 // value in the released node. 1014 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1015 N->NodeType = ISD::DELETED_NODE; 1016 1017 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1018 // them and forget about that node. 1019 DbgInfo->erase(N); 1020 } 1021 1022 #ifndef NDEBUG 1023 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1024 static void VerifySDNode(SDNode *N) { 1025 switch (N->getOpcode()) { 1026 default: 1027 break; 1028 case ISD::BUILD_PAIR: { 1029 EVT VT = N->getValueType(0); 1030 assert(N->getNumValues() == 1 && "Too many results!"); 1031 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1032 "Wrong return type!"); 1033 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1034 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1035 "Mismatched operand types!"); 1036 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1037 "Wrong operand type!"); 1038 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1039 "Wrong return type size"); 1040 break; 1041 } 1042 case ISD::BUILD_VECTOR: { 1043 assert(N->getNumValues() == 1 && "Too many results!"); 1044 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1045 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1046 "Wrong number of operands!"); 1047 EVT EltVT = N->getValueType(0).getVectorElementType(); 1048 for (const SDUse &Op : N->ops()) { 1049 assert((Op.getValueType() == EltVT || 1050 (EltVT.isInteger() && Op.getValueType().isInteger() && 1051 EltVT.bitsLE(Op.getValueType()))) && 1052 "Wrong operand type!"); 1053 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1054 "Operands must all have the same type"); 1055 } 1056 break; 1057 } 1058 } 1059 } 1060 #endif // NDEBUG 1061 1062 /// Insert a newly allocated node into the DAG. 1063 /// 1064 /// Handles insertion into the all nodes list and CSE map, as well as 1065 /// verification and other common operations when a new node is allocated. 1066 void SelectionDAG::InsertNode(SDNode *N) { 1067 AllNodes.push_back(N); 1068 #ifndef NDEBUG 1069 N->PersistentId = NextPersistentId++; 1070 VerifySDNode(N); 1071 #endif 1072 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1073 DUL->NodeInserted(N); 1074 } 1075 1076 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1077 /// correspond to it. This is useful when we're about to delete or repurpose 1078 /// the node. We don't want future request for structurally identical nodes 1079 /// to return N anymore. 1080 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1081 bool Erased = false; 1082 switch (N->getOpcode()) { 1083 case ISD::HANDLENODE: return false; // noop. 1084 case ISD::CONDCODE: 1085 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1086 "Cond code doesn't exist!"); 1087 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1088 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1089 break; 1090 case ISD::ExternalSymbol: 1091 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1092 break; 1093 case ISD::TargetExternalSymbol: { 1094 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1095 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1096 ESN->getSymbol(), ESN->getTargetFlags())); 1097 break; 1098 } 1099 case ISD::MCSymbol: { 1100 auto *MCSN = cast<MCSymbolSDNode>(N); 1101 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1102 break; 1103 } 1104 case ISD::VALUETYPE: { 1105 EVT VT = cast<VTSDNode>(N)->getVT(); 1106 if (VT.isExtended()) { 1107 Erased = ExtendedValueTypeNodes.erase(VT); 1108 } else { 1109 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1110 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1111 } 1112 break; 1113 } 1114 default: 1115 // Remove it from the CSE Map. 1116 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1117 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1118 Erased = CSEMap.RemoveNode(N); 1119 break; 1120 } 1121 #ifndef NDEBUG 1122 // Verify that the node was actually in one of the CSE maps, unless it has a 1123 // flag result (which cannot be CSE'd) or is one of the special cases that are 1124 // not subject to CSE. 1125 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1126 !N->isMachineOpcode() && !doNotCSE(N)) { 1127 N->dump(this); 1128 dbgs() << "\n"; 1129 llvm_unreachable("Node is not in map!"); 1130 } 1131 #endif 1132 return Erased; 1133 } 1134 1135 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1136 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1137 /// node already exists, in which case transfer all its users to the existing 1138 /// node. This transfer can potentially trigger recursive merging. 1139 void 1140 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1141 // For node types that aren't CSE'd, just act as if no identical node 1142 // already exists. 1143 if (!doNotCSE(N)) { 1144 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1145 if (Existing != N) { 1146 // If there was already an existing matching node, use ReplaceAllUsesWith 1147 // to replace the dead one with the existing one. This can cause 1148 // recursive merging of other unrelated nodes down the line. 1149 ReplaceAllUsesWith(N, Existing); 1150 1151 // N is now dead. Inform the listeners and delete it. 1152 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1153 DUL->NodeDeleted(N, Existing); 1154 DeleteNodeNotInCSEMaps(N); 1155 return; 1156 } 1157 } 1158 1159 // If the node doesn't already exist, we updated it. Inform listeners. 1160 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1161 DUL->NodeUpdated(N); 1162 } 1163 1164 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1165 /// were replaced with those specified. If this node is never memoized, 1166 /// return null, otherwise return a pointer to the slot it would take. If a 1167 /// node already exists with these operands, the slot will be non-null. 1168 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1169 void *&InsertPos) { 1170 if (doNotCSE(N)) 1171 return nullptr; 1172 1173 SDValue Ops[] = { Op }; 1174 FoldingSetNodeID ID; 1175 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1176 AddNodeIDCustom(ID, N); 1177 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1178 if (Node) 1179 Node->intersectFlagsWith(N->getFlags()); 1180 return Node; 1181 } 1182 1183 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1184 /// were replaced with those specified. If this node is never memoized, 1185 /// return null, otherwise return a pointer to the slot it would take. If a 1186 /// node already exists with these operands, the slot will be non-null. 1187 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1188 SDValue Op1, SDValue Op2, 1189 void *&InsertPos) { 1190 if (doNotCSE(N)) 1191 return nullptr; 1192 1193 SDValue Ops[] = { Op1, Op2 }; 1194 FoldingSetNodeID ID; 1195 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1196 AddNodeIDCustom(ID, N); 1197 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1198 if (Node) 1199 Node->intersectFlagsWith(N->getFlags()); 1200 return Node; 1201 } 1202 1203 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1204 /// were replaced with those specified. If this node is never memoized, 1205 /// return null, otherwise return a pointer to the slot it would take. If a 1206 /// node already exists with these operands, the slot will be non-null. 1207 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1208 void *&InsertPos) { 1209 if (doNotCSE(N)) 1210 return nullptr; 1211 1212 FoldingSetNodeID ID; 1213 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1214 AddNodeIDCustom(ID, N); 1215 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1216 if (Node) 1217 Node->intersectFlagsWith(N->getFlags()); 1218 return Node; 1219 } 1220 1221 Align SelectionDAG::getEVTAlign(EVT VT) const { 1222 Type *Ty = VT == MVT::iPTR ? 1223 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1224 VT.getTypeForEVT(*getContext()); 1225 1226 return getDataLayout().getABITypeAlign(Ty); 1227 } 1228 1229 // EntryNode could meaningfully have debug info if we can find it... 1230 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1231 : TM(tm), OptLevel(OL), 1232 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1233 Root(getEntryNode()) { 1234 InsertNode(&EntryNode); 1235 DbgInfo = new SDDbgInfo(); 1236 } 1237 1238 void SelectionDAG::init(MachineFunction &NewMF, 1239 OptimizationRemarkEmitter &NewORE, 1240 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1241 LegacyDivergenceAnalysis * Divergence, 1242 ProfileSummaryInfo *PSIin, 1243 BlockFrequencyInfo *BFIin) { 1244 MF = &NewMF; 1245 SDAGISelPass = PassPtr; 1246 ORE = &NewORE; 1247 TLI = getSubtarget().getTargetLowering(); 1248 TSI = getSubtarget().getSelectionDAGInfo(); 1249 LibInfo = LibraryInfo; 1250 Context = &MF->getFunction().getContext(); 1251 DA = Divergence; 1252 PSI = PSIin; 1253 BFI = BFIin; 1254 } 1255 1256 SelectionDAG::~SelectionDAG() { 1257 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1258 allnodes_clear(); 1259 OperandRecycler.clear(OperandAllocator); 1260 delete DbgInfo; 1261 } 1262 1263 bool SelectionDAG::shouldOptForSize() const { 1264 return MF->getFunction().hasOptSize() || 1265 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1266 } 1267 1268 void SelectionDAG::allnodes_clear() { 1269 assert(&*AllNodes.begin() == &EntryNode); 1270 AllNodes.remove(AllNodes.begin()); 1271 while (!AllNodes.empty()) 1272 DeallocateNode(&AllNodes.front()); 1273 #ifndef NDEBUG 1274 NextPersistentId = 0; 1275 #endif 1276 } 1277 1278 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1279 void *&InsertPos) { 1280 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1281 if (N) { 1282 switch (N->getOpcode()) { 1283 default: break; 1284 case ISD::Constant: 1285 case ISD::ConstantFP: 1286 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1287 "debug location. Use another overload."); 1288 } 1289 } 1290 return N; 1291 } 1292 1293 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1294 const SDLoc &DL, void *&InsertPos) { 1295 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1296 if (N) { 1297 switch (N->getOpcode()) { 1298 case ISD::Constant: 1299 case ISD::ConstantFP: 1300 // Erase debug location from the node if the node is used at several 1301 // different places. Do not propagate one location to all uses as it 1302 // will cause a worse single stepping debugging experience. 1303 if (N->getDebugLoc() != DL.getDebugLoc()) 1304 N->setDebugLoc(DebugLoc()); 1305 break; 1306 default: 1307 // When the node's point of use is located earlier in the instruction 1308 // sequence than its prior point of use, update its debug info to the 1309 // earlier location. 1310 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1311 N->setDebugLoc(DL.getDebugLoc()); 1312 break; 1313 } 1314 } 1315 return N; 1316 } 1317 1318 void SelectionDAG::clear() { 1319 allnodes_clear(); 1320 OperandRecycler.clear(OperandAllocator); 1321 OperandAllocator.Reset(); 1322 CSEMap.clear(); 1323 1324 ExtendedValueTypeNodes.clear(); 1325 ExternalSymbols.clear(); 1326 TargetExternalSymbols.clear(); 1327 MCSymbols.clear(); 1328 SDCallSiteDbgInfo.clear(); 1329 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1330 static_cast<CondCodeSDNode*>(nullptr)); 1331 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1332 static_cast<SDNode*>(nullptr)); 1333 1334 EntryNode.UseList = nullptr; 1335 InsertNode(&EntryNode); 1336 Root = getEntryNode(); 1337 DbgInfo->clear(); 1338 } 1339 1340 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1341 return VT.bitsGT(Op.getValueType()) 1342 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1343 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1344 } 1345 1346 std::pair<SDValue, SDValue> 1347 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1348 const SDLoc &DL, EVT VT) { 1349 assert(!VT.bitsEq(Op.getValueType()) && 1350 "Strict no-op FP extend/round not allowed."); 1351 SDValue Res = 1352 VT.bitsGT(Op.getValueType()) 1353 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1354 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1355 {Chain, Op, getIntPtrConstant(0, DL)}); 1356 1357 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1358 } 1359 1360 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1361 return VT.bitsGT(Op.getValueType()) ? 1362 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1363 getNode(ISD::TRUNCATE, DL, VT, Op); 1364 } 1365 1366 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1367 return VT.bitsGT(Op.getValueType()) ? 1368 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1369 getNode(ISD::TRUNCATE, DL, VT, Op); 1370 } 1371 1372 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1373 return VT.bitsGT(Op.getValueType()) ? 1374 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1375 getNode(ISD::TRUNCATE, DL, VT, Op); 1376 } 1377 1378 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1379 EVT OpVT) { 1380 if (VT.bitsLE(Op.getValueType())) 1381 return getNode(ISD::TRUNCATE, SL, VT, Op); 1382 1383 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1384 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1385 } 1386 1387 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1388 EVT OpVT = Op.getValueType(); 1389 assert(VT.isInteger() && OpVT.isInteger() && 1390 "Cannot getZeroExtendInReg FP types"); 1391 assert(VT.isVector() == OpVT.isVector() && 1392 "getZeroExtendInReg type should be vector iff the operand " 1393 "type is vector!"); 1394 assert((!VT.isVector() || 1395 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1396 "Vector element counts must match in getZeroExtendInReg"); 1397 assert(VT.bitsLE(OpVT) && "Not extending!"); 1398 if (OpVT == VT) 1399 return Op; 1400 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1401 VT.getScalarSizeInBits()); 1402 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1403 } 1404 1405 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1406 // Only unsigned pointer semantics are supported right now. In the future this 1407 // might delegate to TLI to check pointer signedness. 1408 return getZExtOrTrunc(Op, DL, VT); 1409 } 1410 1411 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1412 // Only unsigned pointer semantics are supported right now. In the future this 1413 // might delegate to TLI to check pointer signedness. 1414 return getZeroExtendInReg(Op, DL, VT); 1415 } 1416 1417 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1418 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1419 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1420 } 1421 1422 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1423 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1424 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1425 } 1426 1427 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1428 SDValue Mask, SDValue EVL, EVT VT) { 1429 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1430 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1431 } 1432 1433 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1434 EVT OpVT) { 1435 if (!V) 1436 return getConstant(0, DL, VT); 1437 1438 switch (TLI->getBooleanContents(OpVT)) { 1439 case TargetLowering::ZeroOrOneBooleanContent: 1440 case TargetLowering::UndefinedBooleanContent: 1441 return getConstant(1, DL, VT); 1442 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1443 return getAllOnesConstant(DL, VT); 1444 } 1445 llvm_unreachable("Unexpected boolean content enum!"); 1446 } 1447 1448 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1449 bool isT, bool isO) { 1450 EVT EltVT = VT.getScalarType(); 1451 assert((EltVT.getSizeInBits() >= 64 || 1452 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1453 "getConstant with a uint64_t value that doesn't fit in the type!"); 1454 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1455 } 1456 1457 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1458 bool isT, bool isO) { 1459 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1460 } 1461 1462 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1463 EVT VT, bool isT, bool isO) { 1464 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1465 1466 EVT EltVT = VT.getScalarType(); 1467 const ConstantInt *Elt = &Val; 1468 1469 // In some cases the vector type is legal but the element type is illegal and 1470 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1471 // inserted value (the type does not need to match the vector element type). 1472 // Any extra bits introduced will be truncated away. 1473 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1474 TargetLowering::TypePromoteInteger) { 1475 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1476 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1477 Elt = ConstantInt::get(*getContext(), NewVal); 1478 } 1479 // In other cases the element type is illegal and needs to be expanded, for 1480 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1481 // the value into n parts and use a vector type with n-times the elements. 1482 // Then bitcast to the type requested. 1483 // Legalizing constants too early makes the DAGCombiner's job harder so we 1484 // only legalize if the DAG tells us we must produce legal types. 1485 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1486 TLI->getTypeAction(*getContext(), EltVT) == 1487 TargetLowering::TypeExpandInteger) { 1488 const APInt &NewVal = Elt->getValue(); 1489 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1490 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1491 1492 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1493 if (VT.isScalableVector()) { 1494 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1495 "Can only handle an even split!"); 1496 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1497 1498 SmallVector<SDValue, 2> ScalarParts; 1499 for (unsigned i = 0; i != Parts; ++i) 1500 ScalarParts.push_back(getConstant( 1501 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1502 ViaEltVT, isT, isO)); 1503 1504 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1505 } 1506 1507 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1508 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1509 1510 // Check the temporary vector is the correct size. If this fails then 1511 // getTypeToTransformTo() probably returned a type whose size (in bits) 1512 // isn't a power-of-2 factor of the requested type size. 1513 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1514 1515 SmallVector<SDValue, 2> EltParts; 1516 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1517 EltParts.push_back(getConstant( 1518 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1519 ViaEltVT, isT, isO)); 1520 1521 // EltParts is currently in little endian order. If we actually want 1522 // big-endian order then reverse it now. 1523 if (getDataLayout().isBigEndian()) 1524 std::reverse(EltParts.begin(), EltParts.end()); 1525 1526 // The elements must be reversed when the element order is different 1527 // to the endianness of the elements (because the BITCAST is itself a 1528 // vector shuffle in this situation). However, we do not need any code to 1529 // perform this reversal because getConstant() is producing a vector 1530 // splat. 1531 // This situation occurs in MIPS MSA. 1532 1533 SmallVector<SDValue, 8> Ops; 1534 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1535 llvm::append_range(Ops, EltParts); 1536 1537 SDValue V = 1538 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1539 return V; 1540 } 1541 1542 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1543 "APInt size does not match type size!"); 1544 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1545 FoldingSetNodeID ID; 1546 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1547 ID.AddPointer(Elt); 1548 ID.AddBoolean(isO); 1549 void *IP = nullptr; 1550 SDNode *N = nullptr; 1551 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1552 if (!VT.isVector()) 1553 return SDValue(N, 0); 1554 1555 if (!N) { 1556 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1557 CSEMap.InsertNode(N, IP); 1558 InsertNode(N); 1559 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1560 } 1561 1562 SDValue Result(N, 0); 1563 if (VT.isScalableVector()) 1564 Result = getSplatVector(VT, DL, Result); 1565 else if (VT.isVector()) 1566 Result = getSplatBuildVector(VT, DL, Result); 1567 1568 return Result; 1569 } 1570 1571 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1572 bool isTarget) { 1573 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1574 } 1575 1576 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1577 const SDLoc &DL, bool LegalTypes) { 1578 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1579 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1580 return getConstant(Val, DL, ShiftVT); 1581 } 1582 1583 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1584 bool isTarget) { 1585 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1586 } 1587 1588 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1589 bool isTarget) { 1590 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1591 } 1592 1593 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1594 EVT VT, bool isTarget) { 1595 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1596 1597 EVT EltVT = VT.getScalarType(); 1598 1599 // Do the map lookup using the actual bit pattern for the floating point 1600 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1601 // we don't have issues with SNANs. 1602 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1603 FoldingSetNodeID ID; 1604 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1605 ID.AddPointer(&V); 1606 void *IP = nullptr; 1607 SDNode *N = nullptr; 1608 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1609 if (!VT.isVector()) 1610 return SDValue(N, 0); 1611 1612 if (!N) { 1613 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1614 CSEMap.InsertNode(N, IP); 1615 InsertNode(N); 1616 } 1617 1618 SDValue Result(N, 0); 1619 if (VT.isScalableVector()) 1620 Result = getSplatVector(VT, DL, Result); 1621 else if (VT.isVector()) 1622 Result = getSplatBuildVector(VT, DL, Result); 1623 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1624 return Result; 1625 } 1626 1627 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1628 bool isTarget) { 1629 EVT EltVT = VT.getScalarType(); 1630 if (EltVT == MVT::f32) 1631 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1632 if (EltVT == MVT::f64) 1633 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1634 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1635 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1636 bool Ignored; 1637 APFloat APF = APFloat(Val); 1638 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1639 &Ignored); 1640 return getConstantFP(APF, DL, VT, isTarget); 1641 } 1642 llvm_unreachable("Unsupported type in getConstantFP"); 1643 } 1644 1645 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1646 EVT VT, int64_t Offset, bool isTargetGA, 1647 unsigned TargetFlags) { 1648 assert((TargetFlags == 0 || isTargetGA) && 1649 "Cannot set target flags on target-independent globals"); 1650 1651 // Truncate (with sign-extension) the offset value to the pointer size. 1652 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1653 if (BitWidth < 64) 1654 Offset = SignExtend64(Offset, BitWidth); 1655 1656 unsigned Opc; 1657 if (GV->isThreadLocal()) 1658 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1659 else 1660 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1661 1662 FoldingSetNodeID ID; 1663 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1664 ID.AddPointer(GV); 1665 ID.AddInteger(Offset); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<GlobalAddressSDNode>( 1672 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1673 CSEMap.InsertNode(N, IP); 1674 InsertNode(N); 1675 return SDValue(N, 0); 1676 } 1677 1678 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1679 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1680 FoldingSetNodeID ID; 1681 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1682 ID.AddInteger(FI); 1683 void *IP = nullptr; 1684 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1685 return SDValue(E, 0); 1686 1687 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1688 CSEMap.InsertNode(N, IP); 1689 InsertNode(N); 1690 return SDValue(N, 0); 1691 } 1692 1693 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1694 unsigned TargetFlags) { 1695 assert((TargetFlags == 0 || isTarget) && 1696 "Cannot set target flags on target-independent jump tables"); 1697 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1698 FoldingSetNodeID ID; 1699 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1700 ID.AddInteger(JTI); 1701 ID.AddInteger(TargetFlags); 1702 void *IP = nullptr; 1703 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1704 return SDValue(E, 0); 1705 1706 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1707 CSEMap.InsertNode(N, IP); 1708 InsertNode(N); 1709 return SDValue(N, 0); 1710 } 1711 1712 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1713 MaybeAlign Alignment, int Offset, 1714 bool isTarget, unsigned TargetFlags) { 1715 assert((TargetFlags == 0 || isTarget) && 1716 "Cannot set target flags on target-independent globals"); 1717 if (!Alignment) 1718 Alignment = shouldOptForSize() 1719 ? getDataLayout().getABITypeAlign(C->getType()) 1720 : getDataLayout().getPrefTypeAlign(C->getType()); 1721 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1722 FoldingSetNodeID ID; 1723 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1724 ID.AddInteger(Alignment->value()); 1725 ID.AddInteger(Offset); 1726 ID.AddPointer(C); 1727 ID.AddInteger(TargetFlags); 1728 void *IP = nullptr; 1729 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1730 return SDValue(E, 0); 1731 1732 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1733 TargetFlags); 1734 CSEMap.InsertNode(N, IP); 1735 InsertNode(N); 1736 SDValue V = SDValue(N, 0); 1737 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1738 return V; 1739 } 1740 1741 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1742 MaybeAlign Alignment, int Offset, 1743 bool isTarget, unsigned TargetFlags) { 1744 assert((TargetFlags == 0 || isTarget) && 1745 "Cannot set target flags on target-independent globals"); 1746 if (!Alignment) 1747 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1748 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1751 ID.AddInteger(Alignment->value()); 1752 ID.AddInteger(Offset); 1753 C->addSelectionDAGCSEId(ID); 1754 ID.AddInteger(TargetFlags); 1755 void *IP = nullptr; 1756 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1757 return SDValue(E, 0); 1758 1759 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1760 TargetFlags); 1761 CSEMap.InsertNode(N, IP); 1762 InsertNode(N); 1763 return SDValue(N, 0); 1764 } 1765 1766 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1767 unsigned TargetFlags) { 1768 FoldingSetNodeID ID; 1769 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1770 ID.AddInteger(Index); 1771 ID.AddInteger(Offset); 1772 ID.AddInteger(TargetFlags); 1773 void *IP = nullptr; 1774 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1775 return SDValue(E, 0); 1776 1777 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1778 CSEMap.InsertNode(N, IP); 1779 InsertNode(N); 1780 return SDValue(N, 0); 1781 } 1782 1783 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1784 FoldingSetNodeID ID; 1785 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1786 ID.AddPointer(MBB); 1787 void *IP = nullptr; 1788 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1789 return SDValue(E, 0); 1790 1791 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1792 CSEMap.InsertNode(N, IP); 1793 InsertNode(N); 1794 return SDValue(N, 0); 1795 } 1796 1797 SDValue SelectionDAG::getValueType(EVT VT) { 1798 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1799 ValueTypeNodes.size()) 1800 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1801 1802 SDNode *&N = VT.isExtended() ? 1803 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1804 1805 if (N) return SDValue(N, 0); 1806 N = newSDNode<VTSDNode>(VT); 1807 InsertNode(N); 1808 return SDValue(N, 0); 1809 } 1810 1811 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1812 SDNode *&N = ExternalSymbols[Sym]; 1813 if (N) return SDValue(N, 0); 1814 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1815 InsertNode(N); 1816 return SDValue(N, 0); 1817 } 1818 1819 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1820 SDNode *&N = MCSymbols[Sym]; 1821 if (N) 1822 return SDValue(N, 0); 1823 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1824 InsertNode(N); 1825 return SDValue(N, 0); 1826 } 1827 1828 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1829 unsigned TargetFlags) { 1830 SDNode *&N = 1831 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1832 if (N) return SDValue(N, 0); 1833 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1834 InsertNode(N); 1835 return SDValue(N, 0); 1836 } 1837 1838 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1839 if ((unsigned)Cond >= CondCodeNodes.size()) 1840 CondCodeNodes.resize(Cond+1); 1841 1842 if (!CondCodeNodes[Cond]) { 1843 auto *N = newSDNode<CondCodeSDNode>(Cond); 1844 CondCodeNodes[Cond] = N; 1845 InsertNode(N); 1846 } 1847 1848 return SDValue(CondCodeNodes[Cond], 0); 1849 } 1850 1851 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1852 APInt One(ResVT.getScalarSizeInBits(), 1); 1853 return getStepVector(DL, ResVT, One); 1854 } 1855 1856 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1857 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1858 if (ResVT.isScalableVector()) 1859 return getNode( 1860 ISD::STEP_VECTOR, DL, ResVT, 1861 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1862 1863 SmallVector<SDValue, 16> OpsStepConstants; 1864 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1865 OpsStepConstants.push_back( 1866 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1867 return getBuildVector(ResVT, DL, OpsStepConstants); 1868 } 1869 1870 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1871 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1872 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1873 std::swap(N1, N2); 1874 ShuffleVectorSDNode::commuteMask(M); 1875 } 1876 1877 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1878 SDValue N2, ArrayRef<int> Mask) { 1879 assert(VT.getVectorNumElements() == Mask.size() && 1880 "Must have the same number of vector elements as mask elements!"); 1881 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1882 "Invalid VECTOR_SHUFFLE"); 1883 1884 // Canonicalize shuffle undef, undef -> undef 1885 if (N1.isUndef() && N2.isUndef()) 1886 return getUNDEF(VT); 1887 1888 // Validate that all indices in Mask are within the range of the elements 1889 // input to the shuffle. 1890 int NElts = Mask.size(); 1891 assert(llvm::all_of(Mask, 1892 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1893 "Index out of range"); 1894 1895 // Copy the mask so we can do any needed cleanup. 1896 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1897 1898 // Canonicalize shuffle v, v -> v, undef 1899 if (N1 == N2) { 1900 N2 = getUNDEF(VT); 1901 for (int i = 0; i != NElts; ++i) 1902 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1903 } 1904 1905 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1906 if (N1.isUndef()) 1907 commuteShuffle(N1, N2, MaskVec); 1908 1909 if (TLI->hasVectorBlend()) { 1910 // If shuffling a splat, try to blend the splat instead. We do this here so 1911 // that even when this arises during lowering we don't have to re-handle it. 1912 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1913 BitVector UndefElements; 1914 SDValue Splat = BV->getSplatValue(&UndefElements); 1915 if (!Splat) 1916 return; 1917 1918 for (int i = 0; i < NElts; ++i) { 1919 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1920 continue; 1921 1922 // If this input comes from undef, mark it as such. 1923 if (UndefElements[MaskVec[i] - Offset]) { 1924 MaskVec[i] = -1; 1925 continue; 1926 } 1927 1928 // If we can blend a non-undef lane, use that instead. 1929 if (!UndefElements[i]) 1930 MaskVec[i] = i + Offset; 1931 } 1932 }; 1933 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1934 BlendSplat(N1BV, 0); 1935 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1936 BlendSplat(N2BV, NElts); 1937 } 1938 1939 // Canonicalize all index into lhs, -> shuffle lhs, undef 1940 // Canonicalize all index into rhs, -> shuffle rhs, undef 1941 bool AllLHS = true, AllRHS = true; 1942 bool N2Undef = N2.isUndef(); 1943 for (int i = 0; i != NElts; ++i) { 1944 if (MaskVec[i] >= NElts) { 1945 if (N2Undef) 1946 MaskVec[i] = -1; 1947 else 1948 AllLHS = false; 1949 } else if (MaskVec[i] >= 0) { 1950 AllRHS = false; 1951 } 1952 } 1953 if (AllLHS && AllRHS) 1954 return getUNDEF(VT); 1955 if (AllLHS && !N2Undef) 1956 N2 = getUNDEF(VT); 1957 if (AllRHS) { 1958 N1 = getUNDEF(VT); 1959 commuteShuffle(N1, N2, MaskVec); 1960 } 1961 // Reset our undef status after accounting for the mask. 1962 N2Undef = N2.isUndef(); 1963 // Re-check whether both sides ended up undef. 1964 if (N1.isUndef() && N2Undef) 1965 return getUNDEF(VT); 1966 1967 // If Identity shuffle return that node. 1968 bool Identity = true, AllSame = true; 1969 for (int i = 0; i != NElts; ++i) { 1970 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1971 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1972 } 1973 if (Identity && NElts) 1974 return N1; 1975 1976 // Shuffling a constant splat doesn't change the result. 1977 if (N2Undef) { 1978 SDValue V = N1; 1979 1980 // Look through any bitcasts. We check that these don't change the number 1981 // (and size) of elements and just changes their types. 1982 while (V.getOpcode() == ISD::BITCAST) 1983 V = V->getOperand(0); 1984 1985 // A splat should always show up as a build vector node. 1986 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1987 BitVector UndefElements; 1988 SDValue Splat = BV->getSplatValue(&UndefElements); 1989 // If this is a splat of an undef, shuffling it is also undef. 1990 if (Splat && Splat.isUndef()) 1991 return getUNDEF(VT); 1992 1993 bool SameNumElts = 1994 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1995 1996 // We only have a splat which can skip shuffles if there is a splatted 1997 // value and no undef lanes rearranged by the shuffle. 1998 if (Splat && UndefElements.none()) { 1999 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2000 // number of elements match or the value splatted is a zero constant. 2001 if (SameNumElts) 2002 return N1; 2003 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2004 if (C->isZero()) 2005 return N1; 2006 } 2007 2008 // If the shuffle itself creates a splat, build the vector directly. 2009 if (AllSame && SameNumElts) { 2010 EVT BuildVT = BV->getValueType(0); 2011 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2012 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2013 2014 // We may have jumped through bitcasts, so the type of the 2015 // BUILD_VECTOR may not match the type of the shuffle. 2016 if (BuildVT != VT) 2017 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2018 return NewBV; 2019 } 2020 } 2021 } 2022 2023 FoldingSetNodeID ID; 2024 SDValue Ops[2] = { N1, N2 }; 2025 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2026 for (int i = 0; i != NElts; ++i) 2027 ID.AddInteger(MaskVec[i]); 2028 2029 void* IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2031 return SDValue(E, 0); 2032 2033 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2034 // SDNode doesn't have access to it. This memory will be "leaked" when 2035 // the node is deallocated, but recovered when the NodeAllocator is released. 2036 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2037 llvm::copy(MaskVec, MaskAlloc); 2038 2039 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2040 dl.getDebugLoc(), MaskAlloc); 2041 createOperands(N, Ops); 2042 2043 CSEMap.InsertNode(N, IP); 2044 InsertNode(N); 2045 SDValue V = SDValue(N, 0); 2046 NewSDValueDbgMsg(V, "Creating new node: ", this); 2047 return V; 2048 } 2049 2050 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2051 EVT VT = SV.getValueType(0); 2052 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2053 ShuffleVectorSDNode::commuteMask(MaskVec); 2054 2055 SDValue Op0 = SV.getOperand(0); 2056 SDValue Op1 = SV.getOperand(1); 2057 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2058 } 2059 2060 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2061 FoldingSetNodeID ID; 2062 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2063 ID.AddInteger(RegNo); 2064 void *IP = nullptr; 2065 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2066 return SDValue(E, 0); 2067 2068 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2069 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2070 CSEMap.InsertNode(N, IP); 2071 InsertNode(N); 2072 return SDValue(N, 0); 2073 } 2074 2075 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2076 FoldingSetNodeID ID; 2077 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2078 ID.AddPointer(RegMask); 2079 void *IP = nullptr; 2080 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2081 return SDValue(E, 0); 2082 2083 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2084 CSEMap.InsertNode(N, IP); 2085 InsertNode(N); 2086 return SDValue(N, 0); 2087 } 2088 2089 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2090 MCSymbol *Label) { 2091 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2092 } 2093 2094 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2095 SDValue Root, MCSymbol *Label) { 2096 FoldingSetNodeID ID; 2097 SDValue Ops[] = { Root }; 2098 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2099 ID.AddPointer(Label); 2100 void *IP = nullptr; 2101 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2102 return SDValue(E, 0); 2103 2104 auto *N = 2105 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2106 createOperands(N, Ops); 2107 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2114 int64_t Offset, bool isTarget, 2115 unsigned TargetFlags) { 2116 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2117 2118 FoldingSetNodeID ID; 2119 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2120 ID.AddPointer(BA); 2121 ID.AddInteger(Offset); 2122 ID.AddInteger(TargetFlags); 2123 void *IP = nullptr; 2124 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2125 return SDValue(E, 0); 2126 2127 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2128 CSEMap.InsertNode(N, IP); 2129 InsertNode(N); 2130 return SDValue(N, 0); 2131 } 2132 2133 SDValue SelectionDAG::getSrcValue(const Value *V) { 2134 FoldingSetNodeID ID; 2135 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2136 ID.AddPointer(V); 2137 2138 void *IP = nullptr; 2139 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2140 return SDValue(E, 0); 2141 2142 auto *N = newSDNode<SrcValueSDNode>(V); 2143 CSEMap.InsertNode(N, IP); 2144 InsertNode(N); 2145 return SDValue(N, 0); 2146 } 2147 2148 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2149 FoldingSetNodeID ID; 2150 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2151 ID.AddPointer(MD); 2152 2153 void *IP = nullptr; 2154 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2155 return SDValue(E, 0); 2156 2157 auto *N = newSDNode<MDNodeSDNode>(MD); 2158 CSEMap.InsertNode(N, IP); 2159 InsertNode(N); 2160 return SDValue(N, 0); 2161 } 2162 2163 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2164 if (VT == V.getValueType()) 2165 return V; 2166 2167 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2168 } 2169 2170 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2171 unsigned SrcAS, unsigned DestAS) { 2172 SDValue Ops[] = {Ptr}; 2173 FoldingSetNodeID ID; 2174 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2175 ID.AddInteger(SrcAS); 2176 ID.AddInteger(DestAS); 2177 2178 void *IP = nullptr; 2179 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2180 return SDValue(E, 0); 2181 2182 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2183 VT, SrcAS, DestAS); 2184 createOperands(N, Ops); 2185 2186 CSEMap.InsertNode(N, IP); 2187 InsertNode(N); 2188 return SDValue(N, 0); 2189 } 2190 2191 SDValue SelectionDAG::getFreeze(SDValue V) { 2192 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2193 } 2194 2195 /// getShiftAmountOperand - Return the specified value casted to 2196 /// the target's desired shift amount type. 2197 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2198 EVT OpTy = Op.getValueType(); 2199 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2200 if (OpTy == ShTy || OpTy.isVector()) return Op; 2201 2202 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2203 } 2204 2205 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2206 SDLoc dl(Node); 2207 const TargetLowering &TLI = getTargetLoweringInfo(); 2208 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2209 EVT VT = Node->getValueType(0); 2210 SDValue Tmp1 = Node->getOperand(0); 2211 SDValue Tmp2 = Node->getOperand(1); 2212 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2213 2214 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2215 Tmp2, MachinePointerInfo(V)); 2216 SDValue VAList = VAListLoad; 2217 2218 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2219 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2220 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2221 2222 VAList = 2223 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2224 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2225 } 2226 2227 // Increment the pointer, VAList, to the next vaarg 2228 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2229 getConstant(getDataLayout().getTypeAllocSize( 2230 VT.getTypeForEVT(*getContext())), 2231 dl, VAList.getValueType())); 2232 // Store the incremented VAList to the legalized pointer 2233 Tmp1 = 2234 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2235 // Load the actual argument out of the pointer VAList 2236 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2237 } 2238 2239 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2240 SDLoc dl(Node); 2241 const TargetLowering &TLI = getTargetLoweringInfo(); 2242 // This defaults to loading a pointer from the input and storing it to the 2243 // output, returning the chain. 2244 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2245 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2246 SDValue Tmp1 = 2247 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2248 Node->getOperand(2), MachinePointerInfo(VS)); 2249 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2250 MachinePointerInfo(VD)); 2251 } 2252 2253 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2254 const DataLayout &DL = getDataLayout(); 2255 Type *Ty = VT.getTypeForEVT(*getContext()); 2256 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2257 2258 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2259 return RedAlign; 2260 2261 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2262 const Align StackAlign = TFI->getStackAlign(); 2263 2264 // See if we can choose a smaller ABI alignment in cases where it's an 2265 // illegal vector type that will get broken down. 2266 if (RedAlign > StackAlign) { 2267 EVT IntermediateVT; 2268 MVT RegisterVT; 2269 unsigned NumIntermediates; 2270 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2271 NumIntermediates, RegisterVT); 2272 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2273 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2274 if (RedAlign2 < RedAlign) 2275 RedAlign = RedAlign2; 2276 } 2277 2278 return RedAlign; 2279 } 2280 2281 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2282 MachineFrameInfo &MFI = MF->getFrameInfo(); 2283 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2284 int StackID = 0; 2285 if (Bytes.isScalable()) 2286 StackID = TFI->getStackIDForScalableVectors(); 2287 // The stack id gives an indication of whether the object is scalable or 2288 // not, so it's safe to pass in the minimum size here. 2289 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2290 false, nullptr, StackID); 2291 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2292 } 2293 2294 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2295 Type *Ty = VT.getTypeForEVT(*getContext()); 2296 Align StackAlign = 2297 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2298 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2299 } 2300 2301 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2302 TypeSize VT1Size = VT1.getStoreSize(); 2303 TypeSize VT2Size = VT2.getStoreSize(); 2304 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2305 "Don't know how to choose the maximum size when creating a stack " 2306 "temporary"); 2307 TypeSize Bytes = 2308 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2309 2310 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2311 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2312 const DataLayout &DL = getDataLayout(); 2313 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2314 return CreateStackTemporary(Bytes, Align); 2315 } 2316 2317 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2318 ISD::CondCode Cond, const SDLoc &dl) { 2319 EVT OpVT = N1.getValueType(); 2320 2321 // These setcc operations always fold. 2322 switch (Cond) { 2323 default: break; 2324 case ISD::SETFALSE: 2325 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2326 case ISD::SETTRUE: 2327 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2328 2329 case ISD::SETOEQ: 2330 case ISD::SETOGT: 2331 case ISD::SETOGE: 2332 case ISD::SETOLT: 2333 case ISD::SETOLE: 2334 case ISD::SETONE: 2335 case ISD::SETO: 2336 case ISD::SETUO: 2337 case ISD::SETUEQ: 2338 case ISD::SETUNE: 2339 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2340 break; 2341 } 2342 2343 if (OpVT.isInteger()) { 2344 // For EQ and NE, we can always pick a value for the undef to make the 2345 // predicate pass or fail, so we can return undef. 2346 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2347 // icmp eq/ne X, undef -> undef. 2348 if ((N1.isUndef() || N2.isUndef()) && 2349 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2350 return getUNDEF(VT); 2351 2352 // If both operands are undef, we can return undef for int comparison. 2353 // icmp undef, undef -> undef. 2354 if (N1.isUndef() && N2.isUndef()) 2355 return getUNDEF(VT); 2356 2357 // icmp X, X -> true/false 2358 // icmp X, undef -> true/false because undef could be X. 2359 if (N1 == N2) 2360 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2361 } 2362 2363 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2364 const APInt &C2 = N2C->getAPIntValue(); 2365 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2366 const APInt &C1 = N1C->getAPIntValue(); 2367 2368 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2369 dl, VT, OpVT); 2370 } 2371 } 2372 2373 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2374 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2375 2376 if (N1CFP && N2CFP) { 2377 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2378 switch (Cond) { 2379 default: break; 2380 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2381 return getUNDEF(VT); 2382 LLVM_FALLTHROUGH; 2383 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2384 OpVT); 2385 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2386 return getUNDEF(VT); 2387 LLVM_FALLTHROUGH; 2388 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2389 R==APFloat::cmpLessThan, dl, VT, 2390 OpVT); 2391 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2392 return getUNDEF(VT); 2393 LLVM_FALLTHROUGH; 2394 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2397 return getUNDEF(VT); 2398 LLVM_FALLTHROUGH; 2399 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2400 VT, OpVT); 2401 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2402 return getUNDEF(VT); 2403 LLVM_FALLTHROUGH; 2404 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2405 R==APFloat::cmpEqual, dl, VT, 2406 OpVT); 2407 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2408 return getUNDEF(VT); 2409 LLVM_FALLTHROUGH; 2410 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2411 R==APFloat::cmpEqual, dl, VT, OpVT); 2412 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2413 OpVT); 2414 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2415 OpVT); 2416 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2417 R==APFloat::cmpEqual, dl, VT, 2418 OpVT); 2419 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2420 OpVT); 2421 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2422 R==APFloat::cmpLessThan, dl, VT, 2423 OpVT); 2424 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2425 R==APFloat::cmpUnordered, dl, VT, 2426 OpVT); 2427 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2428 VT, OpVT); 2429 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2430 OpVT); 2431 } 2432 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2433 // Ensure that the constant occurs on the RHS. 2434 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2435 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2436 return SDValue(); 2437 return getSetCC(dl, VT, N2, N1, SwappedCond); 2438 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2439 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2440 // If an operand is known to be a nan (or undef that could be a nan), we can 2441 // fold it. 2442 // Choosing NaN for the undef will always make unordered comparison succeed 2443 // and ordered comparison fails. 2444 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2445 switch (ISD::getUnorderedFlavor(Cond)) { 2446 default: 2447 llvm_unreachable("Unknown flavor!"); 2448 case 0: // Known false. 2449 return getBoolConstant(false, dl, VT, OpVT); 2450 case 1: // Known true. 2451 return getBoolConstant(true, dl, VT, OpVT); 2452 case 2: // Undefined. 2453 return getUNDEF(VT); 2454 } 2455 } 2456 2457 // Could not fold it. 2458 return SDValue(); 2459 } 2460 2461 /// See if the specified operand can be simplified with the knowledge that only 2462 /// the bits specified by DemandedBits are used. 2463 /// TODO: really we should be making this into the DAG equivalent of 2464 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2465 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2466 EVT VT = V.getValueType(); 2467 2468 if (VT.isScalableVector()) 2469 return SDValue(); 2470 2471 switch (V.getOpcode()) { 2472 default: 2473 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this); 2474 case ISD::Constant: { 2475 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2476 APInt NewVal = CVal & DemandedBits; 2477 if (NewVal != CVal) 2478 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2479 break; 2480 } 2481 case ISD::SRL: 2482 // Only look at single-use SRLs. 2483 if (!V.getNode()->hasOneUse()) 2484 break; 2485 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2486 // See if we can recursively simplify the LHS. 2487 unsigned Amt = RHSC->getZExtValue(); 2488 2489 // Watch out for shift count overflow though. 2490 if (Amt >= DemandedBits.getBitWidth()) 2491 break; 2492 APInt SrcDemandedBits = DemandedBits << Amt; 2493 if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits( 2494 V.getOperand(0), SrcDemandedBits, *this)) 2495 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2496 V.getOperand(1)); 2497 } 2498 break; 2499 } 2500 return SDValue(); 2501 } 2502 2503 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2504 /// use this predicate to simplify operations downstream. 2505 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2506 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2507 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2508 } 2509 2510 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2511 /// this predicate to simplify operations downstream. Mask is known to be zero 2512 /// for bits that V cannot have. 2513 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2514 unsigned Depth) const { 2515 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2516 } 2517 2518 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2519 /// DemandedElts. We use this predicate to simplify operations downstream. 2520 /// Mask is known to be zero for bits that V cannot have. 2521 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2522 const APInt &DemandedElts, 2523 unsigned Depth) const { 2524 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2525 } 2526 2527 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2528 /// DemandedElts. We use this predicate to simplify operations downstream. 2529 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2530 unsigned Depth /* = 0 */) const { 2531 APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits()); 2532 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2533 } 2534 2535 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2536 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2537 unsigned Depth) const { 2538 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2539 } 2540 2541 /// isSplatValue - Return true if the vector V has the same value 2542 /// across all DemandedElts. For scalable vectors it does not make 2543 /// sense to specify which elements are demanded or undefined, therefore 2544 /// they are simply ignored. 2545 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2546 APInt &UndefElts, unsigned Depth) const { 2547 unsigned Opcode = V.getOpcode(); 2548 EVT VT = V.getValueType(); 2549 assert(VT.isVector() && "Vector type expected"); 2550 2551 if (!VT.isScalableVector() && !DemandedElts) 2552 return false; // No demanded elts, better to assume we don't know anything. 2553 2554 if (Depth >= MaxRecursionDepth) 2555 return false; // Limit search depth. 2556 2557 // Deal with some common cases here that work for both fixed and scalable 2558 // vector types. 2559 switch (Opcode) { 2560 case ISD::SPLAT_VECTOR: 2561 UndefElts = V.getOperand(0).isUndef() 2562 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2563 : APInt(DemandedElts.getBitWidth(), 0); 2564 return true; 2565 case ISD::ADD: 2566 case ISD::SUB: 2567 case ISD::AND: 2568 case ISD::XOR: 2569 case ISD::OR: { 2570 APInt UndefLHS, UndefRHS; 2571 SDValue LHS = V.getOperand(0); 2572 SDValue RHS = V.getOperand(1); 2573 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2574 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2575 UndefElts = UndefLHS | UndefRHS; 2576 return true; 2577 } 2578 return false; 2579 } 2580 case ISD::ABS: 2581 case ISD::TRUNCATE: 2582 case ISD::SIGN_EXTEND: 2583 case ISD::ZERO_EXTEND: 2584 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2585 default: 2586 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2587 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2588 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2589 break; 2590 } 2591 2592 // We don't support other cases than those above for scalable vectors at 2593 // the moment. 2594 if (VT.isScalableVector()) 2595 return false; 2596 2597 unsigned NumElts = VT.getVectorNumElements(); 2598 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2599 UndefElts = APInt::getZero(NumElts); 2600 2601 switch (Opcode) { 2602 case ISD::BUILD_VECTOR: { 2603 SDValue Scl; 2604 for (unsigned i = 0; i != NumElts; ++i) { 2605 SDValue Op = V.getOperand(i); 2606 if (Op.isUndef()) { 2607 UndefElts.setBit(i); 2608 continue; 2609 } 2610 if (!DemandedElts[i]) 2611 continue; 2612 if (Scl && Scl != Op) 2613 return false; 2614 Scl = Op; 2615 } 2616 return true; 2617 } 2618 case ISD::VECTOR_SHUFFLE: { 2619 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2620 APInt DemandedLHS = APInt::getNullValue(NumElts); 2621 APInt DemandedRHS = APInt::getNullValue(NumElts); 2622 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2623 for (int i = 0; i != (int)NumElts; ++i) { 2624 int M = Mask[i]; 2625 if (M < 0) { 2626 UndefElts.setBit(i); 2627 continue; 2628 } 2629 if (!DemandedElts[i]) 2630 continue; 2631 if (M < (int)NumElts) 2632 DemandedLHS.setBit(M); 2633 else 2634 DemandedRHS.setBit(M - NumElts); 2635 } 2636 2637 // If we aren't demanding either op, assume there's no splat. 2638 // If we are demanding both ops, assume there's no splat. 2639 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2640 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2641 return false; 2642 2643 // See if the demanded elts of the source op is a splat or we only demand 2644 // one element, which should always be a splat. 2645 // TODO: Handle source ops splats with undefs. 2646 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2647 APInt SrcUndefs; 2648 return (SrcElts.countPopulation() == 1) || 2649 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2650 (SrcElts & SrcUndefs).isZero()); 2651 }; 2652 if (!DemandedLHS.isZero()) 2653 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2654 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2655 } 2656 case ISD::EXTRACT_SUBVECTOR: { 2657 // Offset the demanded elts by the subvector index. 2658 SDValue Src = V.getOperand(0); 2659 // We don't support scalable vectors at the moment. 2660 if (Src.getValueType().isScalableVector()) 2661 return false; 2662 uint64_t Idx = V.getConstantOperandVal(1); 2663 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2664 APInt UndefSrcElts; 2665 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2666 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2667 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2668 return true; 2669 } 2670 break; 2671 } 2672 case ISD::ANY_EXTEND_VECTOR_INREG: 2673 case ISD::SIGN_EXTEND_VECTOR_INREG: 2674 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2675 // Widen the demanded elts by the src element count. 2676 SDValue Src = V.getOperand(0); 2677 // We don't support scalable vectors at the moment. 2678 if (Src.getValueType().isScalableVector()) 2679 return false; 2680 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2681 APInt UndefSrcElts; 2682 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2683 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2684 UndefElts = UndefSrcElts.trunc(NumElts); 2685 return true; 2686 } 2687 break; 2688 } 2689 case ISD::BITCAST: { 2690 SDValue Src = V.getOperand(0); 2691 EVT SrcVT = Src.getValueType(); 2692 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2693 unsigned BitWidth = VT.getScalarSizeInBits(); 2694 2695 // Ignore bitcasts from unsupported types. 2696 // TODO: Add fp support? 2697 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2698 break; 2699 2700 // Bitcast 'small element' vector to 'large element' vector. 2701 if ((BitWidth % SrcBitWidth) == 0) { 2702 // See if each sub element is a splat. 2703 unsigned Scale = BitWidth / SrcBitWidth; 2704 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2705 APInt ScaledDemandedElts = 2706 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2707 for (unsigned I = 0; I != Scale; ++I) { 2708 APInt SubUndefElts; 2709 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2710 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2711 SubDemandedElts &= ScaledDemandedElts; 2712 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2713 return false; 2714 2715 // Here we can't do "MatchAnyBits" operation merge for undef bits. 2716 // Because some operation only use part value of the source. 2717 // Take llvm.fshl.* for example: 2718 // t1: v4i32 = Constant:i32<12>, undef:i32, Constant:i32<12>, undef:i32 2719 // t2: v2i64 = bitcast t1 2720 // t5: v2i64 = fshl t3, t4, t2 2721 // We can not convert t2 to {i64 undef, i64 undef} 2722 UndefElts |= APIntOps::ScaleBitMask(SubUndefElts, NumElts, 2723 /*MatchAllBits=*/true); 2724 } 2725 return true; 2726 } 2727 break; 2728 } 2729 } 2730 2731 return false; 2732 } 2733 2734 /// Helper wrapper to main isSplatValue function. 2735 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2736 EVT VT = V.getValueType(); 2737 assert(VT.isVector() && "Vector type expected"); 2738 2739 APInt UndefElts; 2740 APInt DemandedElts; 2741 2742 // For now we don't support this with scalable vectors. 2743 if (!VT.isScalableVector()) 2744 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2745 return isSplatValue(V, DemandedElts, UndefElts) && 2746 (AllowUndefs || !UndefElts); 2747 } 2748 2749 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2750 V = peekThroughExtractSubvectors(V); 2751 2752 EVT VT = V.getValueType(); 2753 unsigned Opcode = V.getOpcode(); 2754 switch (Opcode) { 2755 default: { 2756 APInt UndefElts; 2757 APInt DemandedElts; 2758 2759 if (!VT.isScalableVector()) 2760 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2761 2762 if (isSplatValue(V, DemandedElts, UndefElts)) { 2763 if (VT.isScalableVector()) { 2764 // DemandedElts and UndefElts are ignored for scalable vectors, since 2765 // the only supported cases are SPLAT_VECTOR nodes. 2766 SplatIdx = 0; 2767 } else { 2768 // Handle case where all demanded elements are UNDEF. 2769 if (DemandedElts.isSubsetOf(UndefElts)) { 2770 SplatIdx = 0; 2771 return getUNDEF(VT); 2772 } 2773 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2774 } 2775 return V; 2776 } 2777 break; 2778 } 2779 case ISD::SPLAT_VECTOR: 2780 SplatIdx = 0; 2781 return V; 2782 case ISD::VECTOR_SHUFFLE: { 2783 if (VT.isScalableVector()) 2784 return SDValue(); 2785 2786 // Check if this is a shuffle node doing a splat. 2787 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2788 // getTargetVShiftNode currently struggles without the splat source. 2789 auto *SVN = cast<ShuffleVectorSDNode>(V); 2790 if (!SVN->isSplat()) 2791 break; 2792 int Idx = SVN->getSplatIndex(); 2793 int NumElts = V.getValueType().getVectorNumElements(); 2794 SplatIdx = Idx % NumElts; 2795 return V.getOperand(Idx / NumElts); 2796 } 2797 } 2798 2799 return SDValue(); 2800 } 2801 2802 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2803 int SplatIdx; 2804 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2805 EVT SVT = SrcVector.getValueType().getScalarType(); 2806 EVT LegalSVT = SVT; 2807 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2808 if (!SVT.isInteger()) 2809 return SDValue(); 2810 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2811 if (LegalSVT.bitsLT(SVT)) 2812 return SDValue(); 2813 } 2814 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2815 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2816 } 2817 return SDValue(); 2818 } 2819 2820 const APInt * 2821 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2822 const APInt &DemandedElts) const { 2823 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2824 V.getOpcode() == ISD::SRA) && 2825 "Unknown shift node"); 2826 unsigned BitWidth = V.getScalarValueSizeInBits(); 2827 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2828 // Shifting more than the bitwidth is not valid. 2829 const APInt &ShAmt = SA->getAPIntValue(); 2830 if (ShAmt.ult(BitWidth)) 2831 return &ShAmt; 2832 } 2833 return nullptr; 2834 } 2835 2836 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2837 SDValue V, const APInt &DemandedElts) const { 2838 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2839 V.getOpcode() == ISD::SRA) && 2840 "Unknown shift node"); 2841 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2842 return ValidAmt; 2843 unsigned BitWidth = V.getScalarValueSizeInBits(); 2844 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2845 if (!BV) 2846 return nullptr; 2847 const APInt *MinShAmt = nullptr; 2848 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2849 if (!DemandedElts[i]) 2850 continue; 2851 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2852 if (!SA) 2853 return nullptr; 2854 // Shifting more than the bitwidth is not valid. 2855 const APInt &ShAmt = SA->getAPIntValue(); 2856 if (ShAmt.uge(BitWidth)) 2857 return nullptr; 2858 if (MinShAmt && MinShAmt->ule(ShAmt)) 2859 continue; 2860 MinShAmt = &ShAmt; 2861 } 2862 return MinShAmt; 2863 } 2864 2865 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2866 SDValue V, const APInt &DemandedElts) const { 2867 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2868 V.getOpcode() == ISD::SRA) && 2869 "Unknown shift node"); 2870 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2871 return ValidAmt; 2872 unsigned BitWidth = V.getScalarValueSizeInBits(); 2873 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2874 if (!BV) 2875 return nullptr; 2876 const APInt *MaxShAmt = nullptr; 2877 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2878 if (!DemandedElts[i]) 2879 continue; 2880 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2881 if (!SA) 2882 return nullptr; 2883 // Shifting more than the bitwidth is not valid. 2884 const APInt &ShAmt = SA->getAPIntValue(); 2885 if (ShAmt.uge(BitWidth)) 2886 return nullptr; 2887 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2888 continue; 2889 MaxShAmt = &ShAmt; 2890 } 2891 return MaxShAmt; 2892 } 2893 2894 /// Determine which bits of Op are known to be either zero or one and return 2895 /// them in Known. For vectors, the known bits are those that are shared by 2896 /// every vector element. 2897 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2898 EVT VT = Op.getValueType(); 2899 2900 // TOOD: Until we have a plan for how to represent demanded elements for 2901 // scalable vectors, we can just bail out for now. 2902 if (Op.getValueType().isScalableVector()) { 2903 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2904 return KnownBits(BitWidth); 2905 } 2906 2907 APInt DemandedElts = VT.isVector() 2908 ? APInt::getAllOnes(VT.getVectorNumElements()) 2909 : APInt(1, 1); 2910 return computeKnownBits(Op, DemandedElts, Depth); 2911 } 2912 2913 /// Determine which bits of Op are known to be either zero or one and return 2914 /// them in Known. The DemandedElts argument allows us to only collect the known 2915 /// bits that are shared by the requested vector elements. 2916 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2917 unsigned Depth) const { 2918 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2919 2920 KnownBits Known(BitWidth); // Don't know anything. 2921 2922 // TOOD: Until we have a plan for how to represent demanded elements for 2923 // scalable vectors, we can just bail out for now. 2924 if (Op.getValueType().isScalableVector()) 2925 return Known; 2926 2927 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2928 // We know all of the bits for a constant! 2929 return KnownBits::makeConstant(C->getAPIntValue()); 2930 } 2931 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2932 // We know all of the bits for a constant fp! 2933 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2934 } 2935 2936 if (Depth >= MaxRecursionDepth) 2937 return Known; // Limit search depth. 2938 2939 KnownBits Known2; 2940 unsigned NumElts = DemandedElts.getBitWidth(); 2941 assert((!Op.getValueType().isVector() || 2942 NumElts == Op.getValueType().getVectorNumElements()) && 2943 "Unexpected vector size"); 2944 2945 if (!DemandedElts) 2946 return Known; // No demanded elts, better to assume we don't know anything. 2947 2948 unsigned Opcode = Op.getOpcode(); 2949 switch (Opcode) { 2950 case ISD::BUILD_VECTOR: 2951 // Collect the known bits that are shared by every demanded vector element. 2952 Known.Zero.setAllBits(); Known.One.setAllBits(); 2953 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2954 if (!DemandedElts[i]) 2955 continue; 2956 2957 SDValue SrcOp = Op.getOperand(i); 2958 Known2 = computeKnownBits(SrcOp, Depth + 1); 2959 2960 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2961 if (SrcOp.getValueSizeInBits() != BitWidth) { 2962 assert(SrcOp.getValueSizeInBits() > BitWidth && 2963 "Expected BUILD_VECTOR implicit truncation"); 2964 Known2 = Known2.trunc(BitWidth); 2965 } 2966 2967 // Known bits are the values that are shared by every demanded element. 2968 Known = KnownBits::commonBits(Known, Known2); 2969 2970 // If we don't know any bits, early out. 2971 if (Known.isUnknown()) 2972 break; 2973 } 2974 break; 2975 case ISD::VECTOR_SHUFFLE: { 2976 // Collect the known bits that are shared by every vector element referenced 2977 // by the shuffle. 2978 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2979 Known.Zero.setAllBits(); Known.One.setAllBits(); 2980 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2981 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2982 for (unsigned i = 0; i != NumElts; ++i) { 2983 if (!DemandedElts[i]) 2984 continue; 2985 2986 int M = SVN->getMaskElt(i); 2987 if (M < 0) { 2988 // For UNDEF elements, we don't know anything about the common state of 2989 // the shuffle result. 2990 Known.resetAll(); 2991 DemandedLHS.clearAllBits(); 2992 DemandedRHS.clearAllBits(); 2993 break; 2994 } 2995 2996 if ((unsigned)M < NumElts) 2997 DemandedLHS.setBit((unsigned)M % NumElts); 2998 else 2999 DemandedRHS.setBit((unsigned)M % NumElts); 3000 } 3001 // Known bits are the values that are shared by every demanded element. 3002 if (!!DemandedLHS) { 3003 SDValue LHS = Op.getOperand(0); 3004 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3005 Known = KnownBits::commonBits(Known, Known2); 3006 } 3007 // If we don't know any bits, early out. 3008 if (Known.isUnknown()) 3009 break; 3010 if (!!DemandedRHS) { 3011 SDValue RHS = Op.getOperand(1); 3012 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3013 Known = KnownBits::commonBits(Known, Known2); 3014 } 3015 break; 3016 } 3017 case ISD::CONCAT_VECTORS: { 3018 // Split DemandedElts and test each of the demanded subvectors. 3019 Known.Zero.setAllBits(); Known.One.setAllBits(); 3020 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3021 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3022 unsigned NumSubVectors = Op.getNumOperands(); 3023 for (unsigned i = 0; i != NumSubVectors; ++i) { 3024 APInt DemandedSub = 3025 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3026 if (!!DemandedSub) { 3027 SDValue Sub = Op.getOperand(i); 3028 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3029 Known = KnownBits::commonBits(Known, Known2); 3030 } 3031 // If we don't know any bits, early out. 3032 if (Known.isUnknown()) 3033 break; 3034 } 3035 break; 3036 } 3037 case ISD::INSERT_SUBVECTOR: { 3038 // Demand any elements from the subvector and the remainder from the src its 3039 // inserted into. 3040 SDValue Src = Op.getOperand(0); 3041 SDValue Sub = Op.getOperand(1); 3042 uint64_t Idx = Op.getConstantOperandVal(2); 3043 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3044 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3045 APInt DemandedSrcElts = DemandedElts; 3046 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3047 3048 Known.One.setAllBits(); 3049 Known.Zero.setAllBits(); 3050 if (!!DemandedSubElts) { 3051 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3052 if (Known.isUnknown()) 3053 break; // early-out. 3054 } 3055 if (!!DemandedSrcElts) { 3056 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3057 Known = KnownBits::commonBits(Known, Known2); 3058 } 3059 break; 3060 } 3061 case ISD::EXTRACT_SUBVECTOR: { 3062 // Offset the demanded elts by the subvector index. 3063 SDValue Src = Op.getOperand(0); 3064 // Bail until we can represent demanded elements for scalable vectors. 3065 if (Src.getValueType().isScalableVector()) 3066 break; 3067 uint64_t Idx = Op.getConstantOperandVal(1); 3068 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3069 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3070 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3071 break; 3072 } 3073 case ISD::SCALAR_TO_VECTOR: { 3074 // We know about scalar_to_vector as much as we know about it source, 3075 // which becomes the first element of otherwise unknown vector. 3076 if (DemandedElts != 1) 3077 break; 3078 3079 SDValue N0 = Op.getOperand(0); 3080 Known = computeKnownBits(N0, Depth + 1); 3081 if (N0.getValueSizeInBits() != BitWidth) 3082 Known = Known.trunc(BitWidth); 3083 3084 break; 3085 } 3086 case ISD::BITCAST: { 3087 SDValue N0 = Op.getOperand(0); 3088 EVT SubVT = N0.getValueType(); 3089 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3090 3091 // Ignore bitcasts from unsupported types. 3092 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3093 break; 3094 3095 // Fast handling of 'identity' bitcasts. 3096 if (BitWidth == SubBitWidth) { 3097 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3098 break; 3099 } 3100 3101 bool IsLE = getDataLayout().isLittleEndian(); 3102 3103 // Bitcast 'small element' vector to 'large element' scalar/vector. 3104 if ((BitWidth % SubBitWidth) == 0) { 3105 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3106 3107 // Collect known bits for the (larger) output by collecting the known 3108 // bits from each set of sub elements and shift these into place. 3109 // We need to separately call computeKnownBits for each set of 3110 // sub elements as the knownbits for each is likely to be different. 3111 unsigned SubScale = BitWidth / SubBitWidth; 3112 APInt SubDemandedElts(NumElts * SubScale, 0); 3113 for (unsigned i = 0; i != NumElts; ++i) 3114 if (DemandedElts[i]) 3115 SubDemandedElts.setBit(i * SubScale); 3116 3117 for (unsigned i = 0; i != SubScale; ++i) { 3118 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3119 Depth + 1); 3120 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3121 Known.insertBits(Known2, SubBitWidth * Shifts); 3122 } 3123 } 3124 3125 // Bitcast 'large element' scalar/vector to 'small element' vector. 3126 if ((SubBitWidth % BitWidth) == 0) { 3127 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3128 3129 // Collect known bits for the (smaller) output by collecting the known 3130 // bits from the overlapping larger input elements and extracting the 3131 // sub sections we actually care about. 3132 unsigned SubScale = SubBitWidth / BitWidth; 3133 APInt SubDemandedElts = 3134 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3135 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3136 3137 Known.Zero.setAllBits(); Known.One.setAllBits(); 3138 for (unsigned i = 0; i != NumElts; ++i) 3139 if (DemandedElts[i]) { 3140 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3141 unsigned Offset = (Shifts % SubScale) * BitWidth; 3142 Known = KnownBits::commonBits(Known, 3143 Known2.extractBits(BitWidth, Offset)); 3144 // If we don't know any bits, early out. 3145 if (Known.isUnknown()) 3146 break; 3147 } 3148 } 3149 break; 3150 } 3151 case ISD::AND: 3152 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3154 3155 Known &= Known2; 3156 break; 3157 case ISD::OR: 3158 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3159 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3160 3161 Known |= Known2; 3162 break; 3163 case ISD::XOR: 3164 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3165 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3166 3167 Known ^= Known2; 3168 break; 3169 case ISD::MUL: { 3170 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3171 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3173 // TODO: SelfMultiply can be poison, but not undef. 3174 if (SelfMultiply) 3175 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3176 Op.getOperand(0), DemandedElts, false, Depth + 1); 3177 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3178 3179 // If the multiplication is known not to overflow, the product of a number 3180 // with itself is non-negative. Only do this if we didn't already computed 3181 // the opposite value for the sign bit. 3182 if (Op->getFlags().hasNoSignedWrap() && 3183 Op.getOperand(0) == Op.getOperand(1) && 3184 !Known.isNegative()) 3185 Known.makeNonNegative(); 3186 break; 3187 } 3188 case ISD::MULHU: { 3189 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3190 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3191 Known = KnownBits::mulhu(Known, Known2); 3192 break; 3193 } 3194 case ISD::MULHS: { 3195 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3196 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known = KnownBits::mulhs(Known, Known2); 3198 break; 3199 } 3200 case ISD::UMUL_LOHI: { 3201 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3202 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3203 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3204 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3205 if (Op.getResNo() == 0) 3206 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3207 else 3208 Known = KnownBits::mulhu(Known, Known2); 3209 break; 3210 } 3211 case ISD::SMUL_LOHI: { 3212 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3213 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3214 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3216 if (Op.getResNo() == 0) 3217 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3218 else 3219 Known = KnownBits::mulhs(Known, Known2); 3220 break; 3221 } 3222 case ISD::UDIV: { 3223 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3224 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3225 Known = KnownBits::udiv(Known, Known2); 3226 break; 3227 } 3228 case ISD::AVGCEILU: { 3229 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3230 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3231 Known = Known.zext(BitWidth + 1); 3232 Known2 = Known2.zext(BitWidth + 1); 3233 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3234 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3235 Known = Known.extractBits(BitWidth, 1); 3236 break; 3237 } 3238 case ISD::SELECT: 3239 case ISD::VSELECT: 3240 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3241 // If we don't know any bits, early out. 3242 if (Known.isUnknown()) 3243 break; 3244 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3245 3246 // Only known if known in both the LHS and RHS. 3247 Known = KnownBits::commonBits(Known, Known2); 3248 break; 3249 case ISD::SELECT_CC: 3250 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3251 // If we don't know any bits, early out. 3252 if (Known.isUnknown()) 3253 break; 3254 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3255 3256 // Only known if known in both the LHS and RHS. 3257 Known = KnownBits::commonBits(Known, Known2); 3258 break; 3259 case ISD::SMULO: 3260 case ISD::UMULO: 3261 if (Op.getResNo() != 1) 3262 break; 3263 // The boolean result conforms to getBooleanContents. 3264 // If we know the result of a setcc has the top bits zero, use this info. 3265 // We know that we have an integer-based boolean since these operations 3266 // are only available for integer. 3267 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3268 TargetLowering::ZeroOrOneBooleanContent && 3269 BitWidth > 1) 3270 Known.Zero.setBitsFrom(1); 3271 break; 3272 case ISD::SETCC: 3273 case ISD::SETCCCARRY: 3274 case ISD::STRICT_FSETCC: 3275 case ISD::STRICT_FSETCCS: { 3276 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3277 // If we know the result of a setcc has the top bits zero, use this info. 3278 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3279 TargetLowering::ZeroOrOneBooleanContent && 3280 BitWidth > 1) 3281 Known.Zero.setBitsFrom(1); 3282 break; 3283 } 3284 case ISD::SHL: 3285 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3286 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3287 Known = KnownBits::shl(Known, Known2); 3288 3289 // Minimum shift low bits are known zero. 3290 if (const APInt *ShMinAmt = 3291 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3292 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3293 break; 3294 case ISD::SRL: 3295 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3296 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3297 Known = KnownBits::lshr(Known, Known2); 3298 3299 // Minimum shift high bits are known zero. 3300 if (const APInt *ShMinAmt = 3301 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3302 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3303 break; 3304 case ISD::SRA: 3305 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3306 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3307 Known = KnownBits::ashr(Known, Known2); 3308 // TODO: Add minimum shift high known sign bits. 3309 break; 3310 case ISD::FSHL: 3311 case ISD::FSHR: 3312 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3313 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3314 3315 // For fshl, 0-shift returns the 1st arg. 3316 // For fshr, 0-shift returns the 2nd arg. 3317 if (Amt == 0) { 3318 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3319 DemandedElts, Depth + 1); 3320 break; 3321 } 3322 3323 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3324 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3325 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3326 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3327 if (Opcode == ISD::FSHL) { 3328 Known.One <<= Amt; 3329 Known.Zero <<= Amt; 3330 Known2.One.lshrInPlace(BitWidth - Amt); 3331 Known2.Zero.lshrInPlace(BitWidth - Amt); 3332 } else { 3333 Known.One <<= BitWidth - Amt; 3334 Known.Zero <<= BitWidth - Amt; 3335 Known2.One.lshrInPlace(Amt); 3336 Known2.Zero.lshrInPlace(Amt); 3337 } 3338 Known.One |= Known2.One; 3339 Known.Zero |= Known2.Zero; 3340 } 3341 break; 3342 case ISD::SIGN_EXTEND_INREG: { 3343 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3344 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3345 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3346 break; 3347 } 3348 case ISD::CTTZ: 3349 case ISD::CTTZ_ZERO_UNDEF: { 3350 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3351 // If we have a known 1, its position is our upper bound. 3352 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3353 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3354 Known.Zero.setBitsFrom(LowBits); 3355 break; 3356 } 3357 case ISD::CTLZ: 3358 case ISD::CTLZ_ZERO_UNDEF: { 3359 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3360 // If we have a known 1, its position is our upper bound. 3361 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3362 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3363 Known.Zero.setBitsFrom(LowBits); 3364 break; 3365 } 3366 case ISD::CTPOP: { 3367 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 // If we know some of the bits are zero, they can't be one. 3369 unsigned PossibleOnes = Known2.countMaxPopulation(); 3370 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3371 break; 3372 } 3373 case ISD::PARITY: { 3374 // Parity returns 0 everywhere but the LSB. 3375 Known.Zero.setBitsFrom(1); 3376 break; 3377 } 3378 case ISD::LOAD: { 3379 LoadSDNode *LD = cast<LoadSDNode>(Op); 3380 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3381 if (ISD::isNON_EXTLoad(LD) && Cst) { 3382 // Determine any common known bits from the loaded constant pool value. 3383 Type *CstTy = Cst->getType(); 3384 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3385 // If its a vector splat, then we can (quickly) reuse the scalar path. 3386 // NOTE: We assume all elements match and none are UNDEF. 3387 if (CstTy->isVectorTy()) { 3388 if (const Constant *Splat = Cst->getSplatValue()) { 3389 Cst = Splat; 3390 CstTy = Cst->getType(); 3391 } 3392 } 3393 // TODO - do we need to handle different bitwidths? 3394 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3395 // Iterate across all vector elements finding common known bits. 3396 Known.One.setAllBits(); 3397 Known.Zero.setAllBits(); 3398 for (unsigned i = 0; i != NumElts; ++i) { 3399 if (!DemandedElts[i]) 3400 continue; 3401 if (Constant *Elt = Cst->getAggregateElement(i)) { 3402 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3403 const APInt &Value = CInt->getValue(); 3404 Known.One &= Value; 3405 Known.Zero &= ~Value; 3406 continue; 3407 } 3408 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3409 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3410 Known.One &= Value; 3411 Known.Zero &= ~Value; 3412 continue; 3413 } 3414 } 3415 Known.One.clearAllBits(); 3416 Known.Zero.clearAllBits(); 3417 break; 3418 } 3419 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3420 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3421 Known = KnownBits::makeConstant(CInt->getValue()); 3422 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3423 Known = 3424 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3425 } 3426 } 3427 } 3428 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3429 // If this is a ZEXTLoad and we are looking at the loaded value. 3430 EVT VT = LD->getMemoryVT(); 3431 unsigned MemBits = VT.getScalarSizeInBits(); 3432 Known.Zero.setBitsFrom(MemBits); 3433 } else if (const MDNode *Ranges = LD->getRanges()) { 3434 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3435 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3436 } 3437 break; 3438 } 3439 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3440 EVT InVT = Op.getOperand(0).getValueType(); 3441 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3442 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3443 Known = Known.zext(BitWidth); 3444 break; 3445 } 3446 case ISD::ZERO_EXTEND: { 3447 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3448 Known = Known.zext(BitWidth); 3449 break; 3450 } 3451 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3452 EVT InVT = Op.getOperand(0).getValueType(); 3453 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3454 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3455 // If the sign bit is known to be zero or one, then sext will extend 3456 // it to the top bits, else it will just zext. 3457 Known = Known.sext(BitWidth); 3458 break; 3459 } 3460 case ISD::SIGN_EXTEND: { 3461 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3462 // If the sign bit is known to be zero or one, then sext will extend 3463 // it to the top bits, else it will just zext. 3464 Known = Known.sext(BitWidth); 3465 break; 3466 } 3467 case ISD::ANY_EXTEND_VECTOR_INREG: { 3468 EVT InVT = Op.getOperand(0).getValueType(); 3469 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3470 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3471 Known = Known.anyext(BitWidth); 3472 break; 3473 } 3474 case ISD::ANY_EXTEND: { 3475 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3476 Known = Known.anyext(BitWidth); 3477 break; 3478 } 3479 case ISD::TRUNCATE: { 3480 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3481 Known = Known.trunc(BitWidth); 3482 break; 3483 } 3484 case ISD::AssertZext: { 3485 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3486 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3487 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3488 Known.Zero |= (~InMask); 3489 Known.One &= (~Known.Zero); 3490 break; 3491 } 3492 case ISD::AssertAlign: { 3493 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3494 assert(LogOfAlign != 0); 3495 3496 // TODO: Should use maximum with source 3497 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3498 // well as clearing one bits. 3499 Known.Zero.setLowBits(LogOfAlign); 3500 Known.One.clearLowBits(LogOfAlign); 3501 break; 3502 } 3503 case ISD::FGETSIGN: 3504 // All bits are zero except the low bit. 3505 Known.Zero.setBitsFrom(1); 3506 break; 3507 case ISD::USUBO: 3508 case ISD::SSUBO: 3509 case ISD::SUBCARRY: 3510 case ISD::SSUBO_CARRY: 3511 if (Op.getResNo() == 1) { 3512 // If we know the result of a setcc has the top bits zero, use this info. 3513 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3514 TargetLowering::ZeroOrOneBooleanContent && 3515 BitWidth > 1) 3516 Known.Zero.setBitsFrom(1); 3517 break; 3518 } 3519 LLVM_FALLTHROUGH; 3520 case ISD::SUB: 3521 case ISD::SUBC: { 3522 assert(Op.getResNo() == 0 && 3523 "We only compute knownbits for the difference here."); 3524 3525 // TODO: Compute influence of the carry operand. 3526 if (Opcode == ISD::SUBCARRY || Opcode == ISD::SSUBO_CARRY) 3527 break; 3528 3529 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3530 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3531 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3532 Known, Known2); 3533 break; 3534 } 3535 case ISD::UADDO: 3536 case ISD::SADDO: 3537 case ISD::ADDCARRY: 3538 case ISD::SADDO_CARRY: 3539 if (Op.getResNo() == 1) { 3540 // If we know the result of a setcc has the top bits zero, use this info. 3541 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3542 TargetLowering::ZeroOrOneBooleanContent && 3543 BitWidth > 1) 3544 Known.Zero.setBitsFrom(1); 3545 break; 3546 } 3547 LLVM_FALLTHROUGH; 3548 case ISD::ADD: 3549 case ISD::ADDC: 3550 case ISD::ADDE: { 3551 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3552 3553 // With ADDE and ADDCARRY, a carry bit may be added in. 3554 KnownBits Carry(1); 3555 if (Opcode == ISD::ADDE) 3556 // Can't track carry from glue, set carry to unknown. 3557 Carry.resetAll(); 3558 else if (Opcode == ISD::ADDCARRY || Opcode == ISD::SADDO_CARRY) 3559 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3560 // the trouble (how often will we find a known carry bit). And I haven't 3561 // tested this very much yet, but something like this might work: 3562 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3563 // Carry = Carry.zextOrTrunc(1, false); 3564 Carry.resetAll(); 3565 else 3566 Carry.setAllZero(); 3567 3568 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3569 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3570 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3571 break; 3572 } 3573 case ISD::SREM: { 3574 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3575 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3576 Known = KnownBits::srem(Known, Known2); 3577 break; 3578 } 3579 case ISD::UREM: { 3580 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3581 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3582 Known = KnownBits::urem(Known, Known2); 3583 break; 3584 } 3585 case ISD::EXTRACT_ELEMENT: { 3586 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3587 const unsigned Index = Op.getConstantOperandVal(1); 3588 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3589 3590 // Remove low part of known bits mask 3591 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3592 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3593 3594 // Remove high part of known bit mask 3595 Known = Known.trunc(EltBitWidth); 3596 break; 3597 } 3598 case ISD::EXTRACT_VECTOR_ELT: { 3599 SDValue InVec = Op.getOperand(0); 3600 SDValue EltNo = Op.getOperand(1); 3601 EVT VecVT = InVec.getValueType(); 3602 // computeKnownBits not yet implemented for scalable vectors. 3603 if (VecVT.isScalableVector()) 3604 break; 3605 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3606 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3607 3608 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3609 // anything about the extended bits. 3610 if (BitWidth > EltBitWidth) 3611 Known = Known.trunc(EltBitWidth); 3612 3613 // If we know the element index, just demand that vector element, else for 3614 // an unknown element index, ignore DemandedElts and demand them all. 3615 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3616 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3617 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3618 DemandedSrcElts = 3619 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3620 3621 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3622 if (BitWidth > EltBitWidth) 3623 Known = Known.anyext(BitWidth); 3624 break; 3625 } 3626 case ISD::INSERT_VECTOR_ELT: { 3627 // If we know the element index, split the demand between the 3628 // source vector and the inserted element, otherwise assume we need 3629 // the original demanded vector elements and the value. 3630 SDValue InVec = Op.getOperand(0); 3631 SDValue InVal = Op.getOperand(1); 3632 SDValue EltNo = Op.getOperand(2); 3633 bool DemandedVal = true; 3634 APInt DemandedVecElts = DemandedElts; 3635 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3636 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3637 unsigned EltIdx = CEltNo->getZExtValue(); 3638 DemandedVal = !!DemandedElts[EltIdx]; 3639 DemandedVecElts.clearBit(EltIdx); 3640 } 3641 Known.One.setAllBits(); 3642 Known.Zero.setAllBits(); 3643 if (DemandedVal) { 3644 Known2 = computeKnownBits(InVal, Depth + 1); 3645 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3646 } 3647 if (!!DemandedVecElts) { 3648 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3649 Known = KnownBits::commonBits(Known, Known2); 3650 } 3651 break; 3652 } 3653 case ISD::BITREVERSE: { 3654 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3655 Known = Known2.reverseBits(); 3656 break; 3657 } 3658 case ISD::BSWAP: { 3659 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3660 Known = Known2.byteSwap(); 3661 break; 3662 } 3663 case ISD::ABS: { 3664 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3665 Known = Known2.abs(); 3666 break; 3667 } 3668 case ISD::USUBSAT: { 3669 // The result of usubsat will never be larger than the LHS. 3670 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3671 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3672 break; 3673 } 3674 case ISD::UMIN: { 3675 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3676 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3677 Known = KnownBits::umin(Known, Known2); 3678 break; 3679 } 3680 case ISD::UMAX: { 3681 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3682 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3683 Known = KnownBits::umax(Known, Known2); 3684 break; 3685 } 3686 case ISD::SMIN: 3687 case ISD::SMAX: { 3688 // If we have a clamp pattern, we know that the number of sign bits will be 3689 // the minimum of the clamp min/max range. 3690 bool IsMax = (Opcode == ISD::SMAX); 3691 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3692 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3693 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3694 CstHigh = 3695 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3696 if (CstLow && CstHigh) { 3697 if (!IsMax) 3698 std::swap(CstLow, CstHigh); 3699 3700 const APInt &ValueLow = CstLow->getAPIntValue(); 3701 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3702 if (ValueLow.sle(ValueHigh)) { 3703 unsigned LowSignBits = ValueLow.getNumSignBits(); 3704 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3705 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3706 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3707 Known.One.setHighBits(MinSignBits); 3708 break; 3709 } 3710 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3711 Known.Zero.setHighBits(MinSignBits); 3712 break; 3713 } 3714 } 3715 } 3716 3717 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3718 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3719 if (IsMax) 3720 Known = KnownBits::smax(Known, Known2); 3721 else 3722 Known = KnownBits::smin(Known, Known2); 3723 3724 // For SMAX, if CstLow is non-negative we know the result will be 3725 // non-negative and thus all sign bits are 0. 3726 // TODO: There's an equivalent of this for smin with negative constant for 3727 // known ones. 3728 if (IsMax && CstLow) { 3729 const APInt &ValueLow = CstLow->getAPIntValue(); 3730 if (ValueLow.isNonNegative()) { 3731 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3732 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3733 } 3734 } 3735 3736 break; 3737 } 3738 case ISD::FP_TO_UINT_SAT: { 3739 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3740 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3741 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3742 break; 3743 } 3744 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3745 if (Op.getResNo() == 1) { 3746 // The boolean result conforms to getBooleanContents. 3747 // If we know the result of a setcc has the top bits zero, use this info. 3748 // We know that we have an integer-based boolean since these operations 3749 // are only available for integer. 3750 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3751 TargetLowering::ZeroOrOneBooleanContent && 3752 BitWidth > 1) 3753 Known.Zero.setBitsFrom(1); 3754 break; 3755 } 3756 LLVM_FALLTHROUGH; 3757 case ISD::ATOMIC_CMP_SWAP: 3758 case ISD::ATOMIC_SWAP: 3759 case ISD::ATOMIC_LOAD_ADD: 3760 case ISD::ATOMIC_LOAD_SUB: 3761 case ISD::ATOMIC_LOAD_AND: 3762 case ISD::ATOMIC_LOAD_CLR: 3763 case ISD::ATOMIC_LOAD_OR: 3764 case ISD::ATOMIC_LOAD_XOR: 3765 case ISD::ATOMIC_LOAD_NAND: 3766 case ISD::ATOMIC_LOAD_MIN: 3767 case ISD::ATOMIC_LOAD_MAX: 3768 case ISD::ATOMIC_LOAD_UMIN: 3769 case ISD::ATOMIC_LOAD_UMAX: 3770 case ISD::ATOMIC_LOAD: { 3771 unsigned MemBits = 3772 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3773 // If we are looking at the loaded value. 3774 if (Op.getResNo() == 0) { 3775 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3776 Known.Zero.setBitsFrom(MemBits); 3777 } 3778 break; 3779 } 3780 case ISD::FrameIndex: 3781 case ISD::TargetFrameIndex: 3782 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3783 Known, getMachineFunction()); 3784 break; 3785 3786 default: 3787 if (Opcode < ISD::BUILTIN_OP_END) 3788 break; 3789 LLVM_FALLTHROUGH; 3790 case ISD::INTRINSIC_WO_CHAIN: 3791 case ISD::INTRINSIC_W_CHAIN: 3792 case ISD::INTRINSIC_VOID: 3793 // Allow the target to implement this method for its nodes. 3794 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3795 break; 3796 } 3797 3798 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3799 return Known; 3800 } 3801 3802 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3803 SDValue N1) const { 3804 // X + 0 never overflow 3805 if (isNullConstant(N1)) 3806 return OFK_Never; 3807 3808 KnownBits N1Known = computeKnownBits(N1); 3809 if (N1Known.Zero.getBoolValue()) { 3810 KnownBits N0Known = computeKnownBits(N0); 3811 3812 bool overflow; 3813 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3814 if (!overflow) 3815 return OFK_Never; 3816 } 3817 3818 // mulhi + 1 never overflow 3819 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3820 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3821 return OFK_Never; 3822 3823 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3824 KnownBits N0Known = computeKnownBits(N0); 3825 3826 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3827 return OFK_Never; 3828 } 3829 3830 return OFK_Sometime; 3831 } 3832 3833 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3834 EVT OpVT = Val.getValueType(); 3835 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3836 3837 // Is the constant a known power of 2? 3838 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3839 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3840 3841 // A left-shift of a constant one will have exactly one bit set because 3842 // shifting the bit off the end is undefined. 3843 if (Val.getOpcode() == ISD::SHL) { 3844 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3845 if (C && C->getAPIntValue() == 1) 3846 return true; 3847 } 3848 3849 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3850 // one bit set. 3851 if (Val.getOpcode() == ISD::SRL) { 3852 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3853 if (C && C->getAPIntValue().isSignMask()) 3854 return true; 3855 } 3856 3857 // Are all operands of a build vector constant powers of two? 3858 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3859 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3860 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3861 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3862 return false; 3863 })) 3864 return true; 3865 3866 // Is the operand of a splat vector a constant power of two? 3867 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3868 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3869 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3870 return true; 3871 3872 // vscale(power-of-two) is a power-of-two for some targets 3873 if (Val.getOpcode() == ISD::VSCALE && 3874 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() && 3875 isKnownToBeAPowerOfTwo(Val.getOperand(0))) 3876 return true; 3877 3878 // More could be done here, though the above checks are enough 3879 // to handle some common cases. 3880 3881 // Fall back to computeKnownBits to catch other known cases. 3882 KnownBits Known = computeKnownBits(Val); 3883 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3884 } 3885 3886 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3887 EVT VT = Op.getValueType(); 3888 3889 // TODO: Assume we don't know anything for now. 3890 if (VT.isScalableVector()) 3891 return 1; 3892 3893 APInt DemandedElts = VT.isVector() 3894 ? APInt::getAllOnes(VT.getVectorNumElements()) 3895 : APInt(1, 1); 3896 return ComputeNumSignBits(Op, DemandedElts, Depth); 3897 } 3898 3899 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3900 unsigned Depth) const { 3901 EVT VT = Op.getValueType(); 3902 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3903 unsigned VTBits = VT.getScalarSizeInBits(); 3904 unsigned NumElts = DemandedElts.getBitWidth(); 3905 unsigned Tmp, Tmp2; 3906 unsigned FirstAnswer = 1; 3907 3908 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3909 const APInt &Val = C->getAPIntValue(); 3910 return Val.getNumSignBits(); 3911 } 3912 3913 if (Depth >= MaxRecursionDepth) 3914 return 1; // Limit search depth. 3915 3916 if (!DemandedElts || VT.isScalableVector()) 3917 return 1; // No demanded elts, better to assume we don't know anything. 3918 3919 unsigned Opcode = Op.getOpcode(); 3920 switch (Opcode) { 3921 default: break; 3922 case ISD::AssertSext: 3923 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3924 return VTBits-Tmp+1; 3925 case ISD::AssertZext: 3926 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3927 return VTBits-Tmp; 3928 3929 case ISD::BUILD_VECTOR: 3930 Tmp = VTBits; 3931 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3932 if (!DemandedElts[i]) 3933 continue; 3934 3935 SDValue SrcOp = Op.getOperand(i); 3936 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3937 3938 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3939 if (SrcOp.getValueSizeInBits() != VTBits) { 3940 assert(SrcOp.getValueSizeInBits() > VTBits && 3941 "Expected BUILD_VECTOR implicit truncation"); 3942 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3943 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3944 } 3945 Tmp = std::min(Tmp, Tmp2); 3946 } 3947 return Tmp; 3948 3949 case ISD::VECTOR_SHUFFLE: { 3950 // Collect the minimum number of sign bits that are shared by every vector 3951 // element referenced by the shuffle. 3952 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3953 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3954 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3955 for (unsigned i = 0; i != NumElts; ++i) { 3956 int M = SVN->getMaskElt(i); 3957 if (!DemandedElts[i]) 3958 continue; 3959 // For UNDEF elements, we don't know anything about the common state of 3960 // the shuffle result. 3961 if (M < 0) 3962 return 1; 3963 if ((unsigned)M < NumElts) 3964 DemandedLHS.setBit((unsigned)M % NumElts); 3965 else 3966 DemandedRHS.setBit((unsigned)M % NumElts); 3967 } 3968 Tmp = std::numeric_limits<unsigned>::max(); 3969 if (!!DemandedLHS) 3970 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3971 if (!!DemandedRHS) { 3972 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3973 Tmp = std::min(Tmp, Tmp2); 3974 } 3975 // If we don't know anything, early out and try computeKnownBits fall-back. 3976 if (Tmp == 1) 3977 break; 3978 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3979 return Tmp; 3980 } 3981 3982 case ISD::BITCAST: { 3983 SDValue N0 = Op.getOperand(0); 3984 EVT SrcVT = N0.getValueType(); 3985 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3986 3987 // Ignore bitcasts from unsupported types.. 3988 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3989 break; 3990 3991 // Fast handling of 'identity' bitcasts. 3992 if (VTBits == SrcBits) 3993 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3994 3995 bool IsLE = getDataLayout().isLittleEndian(); 3996 3997 // Bitcast 'large element' scalar/vector to 'small element' vector. 3998 if ((SrcBits % VTBits) == 0) { 3999 assert(VT.isVector() && "Expected bitcast to vector"); 4000 4001 unsigned Scale = SrcBits / VTBits; 4002 APInt SrcDemandedElts = 4003 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 4004 4005 // Fast case - sign splat can be simply split across the small elements. 4006 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 4007 if (Tmp == SrcBits) 4008 return VTBits; 4009 4010 // Slow case - determine how far the sign extends into each sub-element. 4011 Tmp2 = VTBits; 4012 for (unsigned i = 0; i != NumElts; ++i) 4013 if (DemandedElts[i]) { 4014 unsigned SubOffset = i % Scale; 4015 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4016 SubOffset = SubOffset * VTBits; 4017 if (Tmp <= SubOffset) 4018 return 1; 4019 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4020 } 4021 return Tmp2; 4022 } 4023 break; 4024 } 4025 4026 case ISD::FP_TO_SINT_SAT: 4027 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4028 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4029 return VTBits - Tmp + 1; 4030 case ISD::SIGN_EXTEND: 4031 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4032 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4033 case ISD::SIGN_EXTEND_INREG: 4034 // Max of the input and what this extends. 4035 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4036 Tmp = VTBits-Tmp+1; 4037 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4038 return std::max(Tmp, Tmp2); 4039 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4040 SDValue Src = Op.getOperand(0); 4041 EVT SrcVT = Src.getValueType(); 4042 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4043 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4044 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4045 } 4046 case ISD::SRA: 4047 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4048 // SRA X, C -> adds C sign bits. 4049 if (const APInt *ShAmt = 4050 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4051 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4052 return Tmp; 4053 case ISD::SHL: 4054 if (const APInt *ShAmt = 4055 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4056 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4057 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4058 if (ShAmt->ult(Tmp)) 4059 return Tmp - ShAmt->getZExtValue(); 4060 } 4061 break; 4062 case ISD::AND: 4063 case ISD::OR: 4064 case ISD::XOR: // NOT is handled here. 4065 // Logical binary ops preserve the number of sign bits at the worst. 4066 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4067 if (Tmp != 1) { 4068 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4069 FirstAnswer = std::min(Tmp, Tmp2); 4070 // We computed what we know about the sign bits as our first 4071 // answer. Now proceed to the generic code that uses 4072 // computeKnownBits, and pick whichever answer is better. 4073 } 4074 break; 4075 4076 case ISD::SELECT: 4077 case ISD::VSELECT: 4078 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4079 if (Tmp == 1) return 1; // Early out. 4080 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4081 return std::min(Tmp, Tmp2); 4082 case ISD::SELECT_CC: 4083 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4084 if (Tmp == 1) return 1; // Early out. 4085 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4086 return std::min(Tmp, Tmp2); 4087 4088 case ISD::SMIN: 4089 case ISD::SMAX: { 4090 // If we have a clamp pattern, we know that the number of sign bits will be 4091 // the minimum of the clamp min/max range. 4092 bool IsMax = (Opcode == ISD::SMAX); 4093 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4094 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4095 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4096 CstHigh = 4097 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4098 if (CstLow && CstHigh) { 4099 if (!IsMax) 4100 std::swap(CstLow, CstHigh); 4101 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4102 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4103 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4104 return std::min(Tmp, Tmp2); 4105 } 4106 } 4107 4108 // Fallback - just get the minimum number of sign bits of the operands. 4109 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4110 if (Tmp == 1) 4111 return 1; // Early out. 4112 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4113 return std::min(Tmp, Tmp2); 4114 } 4115 case ISD::UMIN: 4116 case ISD::UMAX: 4117 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4118 if (Tmp == 1) 4119 return 1; // Early out. 4120 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4121 return std::min(Tmp, Tmp2); 4122 case ISD::SADDO: 4123 case ISD::UADDO: 4124 case ISD::SADDO_CARRY: 4125 case ISD::ADDCARRY: 4126 case ISD::SSUBO: 4127 case ISD::USUBO: 4128 case ISD::SSUBO_CARRY: 4129 case ISD::SUBCARRY: 4130 case ISD::SMULO: 4131 case ISD::UMULO: 4132 if (Op.getResNo() != 1) 4133 break; 4134 // The boolean result conforms to getBooleanContents. Fall through. 4135 // If setcc returns 0/-1, all bits are sign bits. 4136 // We know that we have an integer-based boolean since these operations 4137 // are only available for integer. 4138 if (TLI->getBooleanContents(VT.isVector(), false) == 4139 TargetLowering::ZeroOrNegativeOneBooleanContent) 4140 return VTBits; 4141 break; 4142 case ISD::SETCC: 4143 case ISD::SETCCCARRY: 4144 case ISD::STRICT_FSETCC: 4145 case ISD::STRICT_FSETCCS: { 4146 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4147 // If setcc returns 0/-1, all bits are sign bits. 4148 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4149 TargetLowering::ZeroOrNegativeOneBooleanContent) 4150 return VTBits; 4151 break; 4152 } 4153 case ISD::ROTL: 4154 case ISD::ROTR: 4155 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4156 4157 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4158 if (Tmp == VTBits) 4159 return VTBits; 4160 4161 if (ConstantSDNode *C = 4162 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4163 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4164 4165 // Handle rotate right by N like a rotate left by 32-N. 4166 if (Opcode == ISD::ROTR) 4167 RotAmt = (VTBits - RotAmt) % VTBits; 4168 4169 // If we aren't rotating out all of the known-in sign bits, return the 4170 // number that are left. This handles rotl(sext(x), 1) for example. 4171 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4172 } 4173 break; 4174 case ISD::ADD: 4175 case ISD::ADDC: 4176 // Add can have at most one carry bit. Thus we know that the output 4177 // is, at worst, one more bit than the inputs. 4178 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4179 if (Tmp == 1) return 1; // Early out. 4180 4181 // Special case decrementing a value (ADD X, -1): 4182 if (ConstantSDNode *CRHS = 4183 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4184 if (CRHS->isAllOnes()) { 4185 KnownBits Known = 4186 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4187 4188 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4189 // sign bits set. 4190 if ((Known.Zero | 1).isAllOnes()) 4191 return VTBits; 4192 4193 // If we are subtracting one from a positive number, there is no carry 4194 // out of the result. 4195 if (Known.isNonNegative()) 4196 return Tmp; 4197 } 4198 4199 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4200 if (Tmp2 == 1) return 1; // Early out. 4201 return std::min(Tmp, Tmp2) - 1; 4202 case ISD::SUB: 4203 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4204 if (Tmp2 == 1) return 1; // Early out. 4205 4206 // Handle NEG. 4207 if (ConstantSDNode *CLHS = 4208 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4209 if (CLHS->isZero()) { 4210 KnownBits Known = 4211 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4212 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4213 // sign bits set. 4214 if ((Known.Zero | 1).isAllOnes()) 4215 return VTBits; 4216 4217 // If the input is known to be positive (the sign bit is known clear), 4218 // the output of the NEG has the same number of sign bits as the input. 4219 if (Known.isNonNegative()) 4220 return Tmp2; 4221 4222 // Otherwise, we treat this like a SUB. 4223 } 4224 4225 // Sub can have at most one carry bit. Thus we know that the output 4226 // is, at worst, one more bit than the inputs. 4227 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4228 if (Tmp == 1) return 1; // Early out. 4229 return std::min(Tmp, Tmp2) - 1; 4230 case ISD::MUL: { 4231 // The output of the Mul can be at most twice the valid bits in the inputs. 4232 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4233 if (SignBitsOp0 == 1) 4234 break; 4235 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4236 if (SignBitsOp1 == 1) 4237 break; 4238 unsigned OutValidBits = 4239 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4240 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4241 } 4242 case ISD::SREM: 4243 // The sign bit is the LHS's sign bit, except when the result of the 4244 // remainder is zero. The magnitude of the result should be less than or 4245 // equal to the magnitude of the LHS. Therefore, the result should have 4246 // at least as many sign bits as the left hand side. 4247 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4248 case ISD::TRUNCATE: { 4249 // Check if the sign bits of source go down as far as the truncated value. 4250 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4251 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4252 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4253 return NumSrcSignBits - (NumSrcBits - VTBits); 4254 break; 4255 } 4256 case ISD::EXTRACT_ELEMENT: { 4257 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4258 const int BitWidth = Op.getValueSizeInBits(); 4259 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4260 4261 // Get reverse index (starting from 1), Op1 value indexes elements from 4262 // little end. Sign starts at big end. 4263 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4264 4265 // If the sign portion ends in our element the subtraction gives correct 4266 // result. Otherwise it gives either negative or > bitwidth result 4267 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4268 } 4269 case ISD::INSERT_VECTOR_ELT: { 4270 // If we know the element index, split the demand between the 4271 // source vector and the inserted element, otherwise assume we need 4272 // the original demanded vector elements and the value. 4273 SDValue InVec = Op.getOperand(0); 4274 SDValue InVal = Op.getOperand(1); 4275 SDValue EltNo = Op.getOperand(2); 4276 bool DemandedVal = true; 4277 APInt DemandedVecElts = DemandedElts; 4278 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4279 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4280 unsigned EltIdx = CEltNo->getZExtValue(); 4281 DemandedVal = !!DemandedElts[EltIdx]; 4282 DemandedVecElts.clearBit(EltIdx); 4283 } 4284 Tmp = std::numeric_limits<unsigned>::max(); 4285 if (DemandedVal) { 4286 // TODO - handle implicit truncation of inserted elements. 4287 if (InVal.getScalarValueSizeInBits() != VTBits) 4288 break; 4289 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4290 Tmp = std::min(Tmp, Tmp2); 4291 } 4292 if (!!DemandedVecElts) { 4293 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4294 Tmp = std::min(Tmp, Tmp2); 4295 } 4296 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4297 return Tmp; 4298 } 4299 case ISD::EXTRACT_VECTOR_ELT: { 4300 SDValue InVec = Op.getOperand(0); 4301 SDValue EltNo = Op.getOperand(1); 4302 EVT VecVT = InVec.getValueType(); 4303 // ComputeNumSignBits not yet implemented for scalable vectors. 4304 if (VecVT.isScalableVector()) 4305 break; 4306 const unsigned BitWidth = Op.getValueSizeInBits(); 4307 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4308 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4309 4310 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4311 // anything about sign bits. But if the sizes match we can derive knowledge 4312 // about sign bits from the vector operand. 4313 if (BitWidth != EltBitWidth) 4314 break; 4315 4316 // If we know the element index, just demand that vector element, else for 4317 // an unknown element index, ignore DemandedElts and demand them all. 4318 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4319 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4320 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4321 DemandedSrcElts = 4322 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4323 4324 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4325 } 4326 case ISD::EXTRACT_SUBVECTOR: { 4327 // Offset the demanded elts by the subvector index. 4328 SDValue Src = Op.getOperand(0); 4329 // Bail until we can represent demanded elements for scalable vectors. 4330 if (Src.getValueType().isScalableVector()) 4331 break; 4332 uint64_t Idx = Op.getConstantOperandVal(1); 4333 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4334 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4335 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4336 } 4337 case ISD::CONCAT_VECTORS: { 4338 // Determine the minimum number of sign bits across all demanded 4339 // elts of the input vectors. Early out if the result is already 1. 4340 Tmp = std::numeric_limits<unsigned>::max(); 4341 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4342 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4343 unsigned NumSubVectors = Op.getNumOperands(); 4344 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4345 APInt DemandedSub = 4346 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4347 if (!DemandedSub) 4348 continue; 4349 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4350 Tmp = std::min(Tmp, Tmp2); 4351 } 4352 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4353 return Tmp; 4354 } 4355 case ISD::INSERT_SUBVECTOR: { 4356 // Demand any elements from the subvector and the remainder from the src its 4357 // inserted into. 4358 SDValue Src = Op.getOperand(0); 4359 SDValue Sub = Op.getOperand(1); 4360 uint64_t Idx = Op.getConstantOperandVal(2); 4361 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4362 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4363 APInt DemandedSrcElts = DemandedElts; 4364 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4365 4366 Tmp = std::numeric_limits<unsigned>::max(); 4367 if (!!DemandedSubElts) { 4368 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4369 if (Tmp == 1) 4370 return 1; // early-out 4371 } 4372 if (!!DemandedSrcElts) { 4373 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4374 Tmp = std::min(Tmp, Tmp2); 4375 } 4376 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4377 return Tmp; 4378 } 4379 case ISD::ATOMIC_CMP_SWAP: 4380 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4381 case ISD::ATOMIC_SWAP: 4382 case ISD::ATOMIC_LOAD_ADD: 4383 case ISD::ATOMIC_LOAD_SUB: 4384 case ISD::ATOMIC_LOAD_AND: 4385 case ISD::ATOMIC_LOAD_CLR: 4386 case ISD::ATOMIC_LOAD_OR: 4387 case ISD::ATOMIC_LOAD_XOR: 4388 case ISD::ATOMIC_LOAD_NAND: 4389 case ISD::ATOMIC_LOAD_MIN: 4390 case ISD::ATOMIC_LOAD_MAX: 4391 case ISD::ATOMIC_LOAD_UMIN: 4392 case ISD::ATOMIC_LOAD_UMAX: 4393 case ISD::ATOMIC_LOAD: { 4394 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4395 // If we are looking at the loaded value. 4396 if (Op.getResNo() == 0) { 4397 if (Tmp == VTBits) 4398 return 1; // early-out 4399 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4400 return VTBits - Tmp + 1; 4401 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4402 return VTBits - Tmp; 4403 } 4404 break; 4405 } 4406 } 4407 4408 // If we are looking at the loaded value of the SDNode. 4409 if (Op.getResNo() == 0) { 4410 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4411 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4412 unsigned ExtType = LD->getExtensionType(); 4413 switch (ExtType) { 4414 default: break; 4415 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4416 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4417 return VTBits - Tmp + 1; 4418 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4419 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4420 return VTBits - Tmp; 4421 case ISD::NON_EXTLOAD: 4422 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4423 // We only need to handle vectors - computeKnownBits should handle 4424 // scalar cases. 4425 Type *CstTy = Cst->getType(); 4426 if (CstTy->isVectorTy() && 4427 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4428 VTBits == CstTy->getScalarSizeInBits()) { 4429 Tmp = VTBits; 4430 for (unsigned i = 0; i != NumElts; ++i) { 4431 if (!DemandedElts[i]) 4432 continue; 4433 if (Constant *Elt = Cst->getAggregateElement(i)) { 4434 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4435 const APInt &Value = CInt->getValue(); 4436 Tmp = std::min(Tmp, Value.getNumSignBits()); 4437 continue; 4438 } 4439 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4440 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4441 Tmp = std::min(Tmp, Value.getNumSignBits()); 4442 continue; 4443 } 4444 } 4445 // Unknown type. Conservatively assume no bits match sign bit. 4446 return 1; 4447 } 4448 return Tmp; 4449 } 4450 } 4451 break; 4452 } 4453 } 4454 } 4455 4456 // Allow the target to implement this method for its nodes. 4457 if (Opcode >= ISD::BUILTIN_OP_END || 4458 Opcode == ISD::INTRINSIC_WO_CHAIN || 4459 Opcode == ISD::INTRINSIC_W_CHAIN || 4460 Opcode == ISD::INTRINSIC_VOID) { 4461 unsigned NumBits = 4462 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4463 if (NumBits > 1) 4464 FirstAnswer = std::max(FirstAnswer, NumBits); 4465 } 4466 4467 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4468 // use this information. 4469 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4470 return std::max(FirstAnswer, Known.countMinSignBits()); 4471 } 4472 4473 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4474 unsigned Depth) const { 4475 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4476 return Op.getScalarValueSizeInBits() - SignBits + 1; 4477 } 4478 4479 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4480 const APInt &DemandedElts, 4481 unsigned Depth) const { 4482 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4483 return Op.getScalarValueSizeInBits() - SignBits + 1; 4484 } 4485 4486 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4487 unsigned Depth) const { 4488 // Early out for FREEZE. 4489 if (Op.getOpcode() == ISD::FREEZE) 4490 return true; 4491 4492 // TODO: Assume we don't know anything for now. 4493 EVT VT = Op.getValueType(); 4494 if (VT.isScalableVector()) 4495 return false; 4496 4497 APInt DemandedElts = VT.isVector() 4498 ? APInt::getAllOnes(VT.getVectorNumElements()) 4499 : APInt(1, 1); 4500 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4501 } 4502 4503 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4504 const APInt &DemandedElts, 4505 bool PoisonOnly, 4506 unsigned Depth) const { 4507 unsigned Opcode = Op.getOpcode(); 4508 4509 // Early out for FREEZE. 4510 if (Opcode == ISD::FREEZE) 4511 return true; 4512 4513 if (Depth >= MaxRecursionDepth) 4514 return false; // Limit search depth. 4515 4516 if (isIntOrFPConstant(Op)) 4517 return true; 4518 4519 switch (Opcode) { 4520 case ISD::UNDEF: 4521 return PoisonOnly; 4522 4523 case ISD::BUILD_VECTOR: 4524 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4525 // this shouldn't affect the result. 4526 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4527 if (!DemandedElts[i]) 4528 continue; 4529 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4530 Depth + 1)) 4531 return false; 4532 } 4533 return true; 4534 4535 // TODO: Search for noundef attributes from library functions. 4536 4537 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4538 4539 default: 4540 // Allow the target to implement this method for its nodes. 4541 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4542 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4543 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4544 Op, DemandedElts, *this, PoisonOnly, Depth); 4545 break; 4546 } 4547 4548 return false; 4549 } 4550 4551 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4552 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4553 !isa<ConstantSDNode>(Op.getOperand(1))) 4554 return false; 4555 4556 if (Op.getOpcode() == ISD::OR && 4557 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4558 return false; 4559 4560 return true; 4561 } 4562 4563 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4564 // If we're told that NaNs won't happen, assume they won't. 4565 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4566 return true; 4567 4568 if (Depth >= MaxRecursionDepth) 4569 return false; // Limit search depth. 4570 4571 // TODO: Handle vectors. 4572 // If the value is a constant, we can obviously see if it is a NaN or not. 4573 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4574 return !C->getValueAPF().isNaN() || 4575 (SNaN && !C->getValueAPF().isSignaling()); 4576 } 4577 4578 unsigned Opcode = Op.getOpcode(); 4579 switch (Opcode) { 4580 case ISD::FADD: 4581 case ISD::FSUB: 4582 case ISD::FMUL: 4583 case ISD::FDIV: 4584 case ISD::FREM: 4585 case ISD::FSIN: 4586 case ISD::FCOS: { 4587 if (SNaN) 4588 return true; 4589 // TODO: Need isKnownNeverInfinity 4590 return false; 4591 } 4592 case ISD::FCANONICALIZE: 4593 case ISD::FEXP: 4594 case ISD::FEXP2: 4595 case ISD::FTRUNC: 4596 case ISD::FFLOOR: 4597 case ISD::FCEIL: 4598 case ISD::FROUND: 4599 case ISD::FROUNDEVEN: 4600 case ISD::FRINT: 4601 case ISD::FNEARBYINT: { 4602 if (SNaN) 4603 return true; 4604 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4605 } 4606 case ISD::FABS: 4607 case ISD::FNEG: 4608 case ISD::FCOPYSIGN: { 4609 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4610 } 4611 case ISD::SELECT: 4612 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4613 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4614 case ISD::FP_EXTEND: 4615 case ISD::FP_ROUND: { 4616 if (SNaN) 4617 return true; 4618 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4619 } 4620 case ISD::SINT_TO_FP: 4621 case ISD::UINT_TO_FP: 4622 return true; 4623 case ISD::FMA: 4624 case ISD::FMAD: { 4625 if (SNaN) 4626 return true; 4627 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4628 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4629 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4630 } 4631 case ISD::FSQRT: // Need is known positive 4632 case ISD::FLOG: 4633 case ISD::FLOG2: 4634 case ISD::FLOG10: 4635 case ISD::FPOWI: 4636 case ISD::FPOW: { 4637 if (SNaN) 4638 return true; 4639 // TODO: Refine on operand 4640 return false; 4641 } 4642 case ISD::FMINNUM: 4643 case ISD::FMAXNUM: { 4644 // Only one needs to be known not-nan, since it will be returned if the 4645 // other ends up being one. 4646 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4647 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4648 } 4649 case ISD::FMINNUM_IEEE: 4650 case ISD::FMAXNUM_IEEE: { 4651 if (SNaN) 4652 return true; 4653 // This can return a NaN if either operand is an sNaN, or if both operands 4654 // are NaN. 4655 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4656 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4657 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4658 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4659 } 4660 case ISD::FMINIMUM: 4661 case ISD::FMAXIMUM: { 4662 // TODO: Does this quiet or return the origina NaN as-is? 4663 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4664 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4665 } 4666 case ISD::EXTRACT_VECTOR_ELT: { 4667 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4668 } 4669 default: 4670 if (Opcode >= ISD::BUILTIN_OP_END || 4671 Opcode == ISD::INTRINSIC_WO_CHAIN || 4672 Opcode == ISD::INTRINSIC_W_CHAIN || 4673 Opcode == ISD::INTRINSIC_VOID) { 4674 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4675 } 4676 4677 return false; 4678 } 4679 } 4680 4681 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4682 assert(Op.getValueType().isFloatingPoint() && 4683 "Floating point type expected"); 4684 4685 // If the value is a constant, we can obviously see if it is a zero or not. 4686 // TODO: Add BuildVector support. 4687 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4688 return !C->isZero(); 4689 return false; 4690 } 4691 4692 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4693 assert(!Op.getValueType().isFloatingPoint() && 4694 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4695 4696 // If the value is a constant, we can obviously see if it is a zero or not. 4697 if (ISD::matchUnaryPredicate(Op, 4698 [](ConstantSDNode *C) { return !C->isZero(); })) 4699 return true; 4700 4701 // TODO: Recognize more cases here. 4702 switch (Op.getOpcode()) { 4703 default: break; 4704 case ISD::OR: 4705 if (isKnownNeverZero(Op.getOperand(1)) || 4706 isKnownNeverZero(Op.getOperand(0))) 4707 return true; 4708 break; 4709 } 4710 4711 return false; 4712 } 4713 4714 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4715 // Check the obvious case. 4716 if (A == B) return true; 4717 4718 // For for negative and positive zero. 4719 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4720 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4721 if (CA->isZero() && CB->isZero()) return true; 4722 4723 // Otherwise they may not be equal. 4724 return false; 4725 } 4726 4727 // Only bits set in Mask must be negated, other bits may be arbitrary. 4728 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 4729 if (isBitwiseNot(V, AllowUndefs)) 4730 return V.getOperand(0); 4731 4732 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 4733 // bits in the non-extended part. 4734 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 4735 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 4736 return SDValue(); 4737 SDValue ExtArg = V.getOperand(0); 4738 if (ExtArg.getScalarValueSizeInBits() >= 4739 MaskC->getAPIntValue().getActiveBits() && 4740 isBitwiseNot(ExtArg, AllowUndefs) && 4741 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 4742 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 4743 return ExtArg.getOperand(0).getOperand(0); 4744 return SDValue(); 4745 } 4746 4747 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 4748 // Match masked merge pattern (X & ~M) op (Y & M) 4749 // Including degenerate case (X & ~M) op M 4750 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 4751 SDValue Other) { 4752 if (SDValue NotOperand = 4753 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 4754 if (Other == NotOperand) 4755 return true; 4756 if (Other->getOpcode() == ISD::AND) 4757 return NotOperand == Other->getOperand(0) || 4758 NotOperand == Other->getOperand(1); 4759 } 4760 return false; 4761 }; 4762 if (A->getOpcode() == ISD::AND) 4763 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 4764 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 4765 return false; 4766 } 4767 4768 // FIXME: unify with llvm::haveNoCommonBitsSet. 4769 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4770 assert(A.getValueType() == B.getValueType() && 4771 "Values must have the same type"); 4772 if (haveNoCommonBitsSetCommutative(A, B) || 4773 haveNoCommonBitsSetCommutative(B, A)) 4774 return true; 4775 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4776 computeKnownBits(B)); 4777 } 4778 4779 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4780 SelectionDAG &DAG) { 4781 if (cast<ConstantSDNode>(Step)->isZero()) 4782 return DAG.getConstant(0, DL, VT); 4783 4784 return SDValue(); 4785 } 4786 4787 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4788 ArrayRef<SDValue> Ops, 4789 SelectionDAG &DAG) { 4790 int NumOps = Ops.size(); 4791 assert(NumOps != 0 && "Can't build an empty vector!"); 4792 assert(!VT.isScalableVector() && 4793 "BUILD_VECTOR cannot be used with scalable types"); 4794 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4795 "Incorrect element count in BUILD_VECTOR!"); 4796 4797 // BUILD_VECTOR of UNDEFs is UNDEF. 4798 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4799 return DAG.getUNDEF(VT); 4800 4801 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4802 SDValue IdentitySrc; 4803 bool IsIdentity = true; 4804 for (int i = 0; i != NumOps; ++i) { 4805 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4806 Ops[i].getOperand(0).getValueType() != VT || 4807 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4808 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4809 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4810 IsIdentity = false; 4811 break; 4812 } 4813 IdentitySrc = Ops[i].getOperand(0); 4814 } 4815 if (IsIdentity) 4816 return IdentitySrc; 4817 4818 return SDValue(); 4819 } 4820 4821 /// Try to simplify vector concatenation to an input value, undef, or build 4822 /// vector. 4823 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4824 ArrayRef<SDValue> Ops, 4825 SelectionDAG &DAG) { 4826 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4827 assert(llvm::all_of(Ops, 4828 [Ops](SDValue Op) { 4829 return Ops[0].getValueType() == Op.getValueType(); 4830 }) && 4831 "Concatenation of vectors with inconsistent value types!"); 4832 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4833 VT.getVectorElementCount() && 4834 "Incorrect element count in vector concatenation!"); 4835 4836 if (Ops.size() == 1) 4837 return Ops[0]; 4838 4839 // Concat of UNDEFs is UNDEF. 4840 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4841 return DAG.getUNDEF(VT); 4842 4843 // Scan the operands and look for extract operations from a single source 4844 // that correspond to insertion at the same location via this concatenation: 4845 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4846 SDValue IdentitySrc; 4847 bool IsIdentity = true; 4848 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4849 SDValue Op = Ops[i]; 4850 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4851 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4852 Op.getOperand(0).getValueType() != VT || 4853 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4854 Op.getConstantOperandVal(1) != IdentityIndex) { 4855 IsIdentity = false; 4856 break; 4857 } 4858 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4859 "Unexpected identity source vector for concat of extracts"); 4860 IdentitySrc = Op.getOperand(0); 4861 } 4862 if (IsIdentity) { 4863 assert(IdentitySrc && "Failed to set source vector of extracts"); 4864 return IdentitySrc; 4865 } 4866 4867 // The code below this point is only designed to work for fixed width 4868 // vectors, so we bail out for now. 4869 if (VT.isScalableVector()) 4870 return SDValue(); 4871 4872 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4873 // simplified to one big BUILD_VECTOR. 4874 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4875 EVT SVT = VT.getScalarType(); 4876 SmallVector<SDValue, 16> Elts; 4877 for (SDValue Op : Ops) { 4878 EVT OpVT = Op.getValueType(); 4879 if (Op.isUndef()) 4880 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4881 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4882 Elts.append(Op->op_begin(), Op->op_end()); 4883 else 4884 return SDValue(); 4885 } 4886 4887 // BUILD_VECTOR requires all inputs to be of the same type, find the 4888 // maximum type and extend them all. 4889 for (SDValue Op : Elts) 4890 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4891 4892 if (SVT.bitsGT(VT.getScalarType())) { 4893 for (SDValue &Op : Elts) { 4894 if (Op.isUndef()) 4895 Op = DAG.getUNDEF(SVT); 4896 else 4897 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4898 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4899 : DAG.getSExtOrTrunc(Op, DL, SVT); 4900 } 4901 } 4902 4903 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4904 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4905 return V; 4906 } 4907 4908 /// Gets or creates the specified node. 4909 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4910 FoldingSetNodeID ID; 4911 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4912 void *IP = nullptr; 4913 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4914 return SDValue(E, 0); 4915 4916 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4917 getVTList(VT)); 4918 CSEMap.InsertNode(N, IP); 4919 4920 InsertNode(N); 4921 SDValue V = SDValue(N, 0); 4922 NewSDValueDbgMsg(V, "Creating new node: ", this); 4923 return V; 4924 } 4925 4926 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4927 SDValue Operand) { 4928 SDNodeFlags Flags; 4929 if (Inserter) 4930 Flags = Inserter->getFlags(); 4931 return getNode(Opcode, DL, VT, Operand, Flags); 4932 } 4933 4934 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4935 SDValue Operand, const SDNodeFlags Flags) { 4936 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4937 "Operand is DELETED_NODE!"); 4938 // Constant fold unary operations with an integer constant operand. Even 4939 // opaque constant will be folded, because the folding of unary operations 4940 // doesn't create new constants with different values. Nevertheless, the 4941 // opaque flag is preserved during folding to prevent future folding with 4942 // other constants. 4943 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4944 const APInt &Val = C->getAPIntValue(); 4945 switch (Opcode) { 4946 default: break; 4947 case ISD::SIGN_EXTEND: 4948 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4949 C->isTargetOpcode(), C->isOpaque()); 4950 case ISD::TRUNCATE: 4951 if (C->isOpaque()) 4952 break; 4953 LLVM_FALLTHROUGH; 4954 case ISD::ZERO_EXTEND: 4955 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4956 C->isTargetOpcode(), C->isOpaque()); 4957 case ISD::ANY_EXTEND: 4958 // Some targets like RISCV prefer to sign extend some types. 4959 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4960 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4961 C->isTargetOpcode(), C->isOpaque()); 4962 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4963 C->isTargetOpcode(), C->isOpaque()); 4964 case ISD::UINT_TO_FP: 4965 case ISD::SINT_TO_FP: { 4966 APFloat apf(EVTToAPFloatSemantics(VT), 4967 APInt::getZero(VT.getSizeInBits())); 4968 (void)apf.convertFromAPInt(Val, 4969 Opcode==ISD::SINT_TO_FP, 4970 APFloat::rmNearestTiesToEven); 4971 return getConstantFP(apf, DL, VT); 4972 } 4973 case ISD::BITCAST: 4974 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4975 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4976 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4977 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4978 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4979 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4980 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4981 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4982 break; 4983 case ISD::ABS: 4984 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4985 C->isOpaque()); 4986 case ISD::BITREVERSE: 4987 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4988 C->isOpaque()); 4989 case ISD::BSWAP: 4990 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4991 C->isOpaque()); 4992 case ISD::CTPOP: 4993 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4994 C->isOpaque()); 4995 case ISD::CTLZ: 4996 case ISD::CTLZ_ZERO_UNDEF: 4997 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4998 C->isOpaque()); 4999 case ISD::CTTZ: 5000 case ISD::CTTZ_ZERO_UNDEF: 5001 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 5002 C->isOpaque()); 5003 case ISD::FP16_TO_FP: 5004 case ISD::BF16_TO_FP: { 5005 bool Ignored; 5006 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 5007 : APFloat::BFloat(), 5008 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 5009 5010 // This can return overflow, underflow, or inexact; we don't care. 5011 // FIXME need to be more flexible about rounding mode. 5012 (void)FPV.convert(EVTToAPFloatSemantics(VT), 5013 APFloat::rmNearestTiesToEven, &Ignored); 5014 return getConstantFP(FPV, DL, VT); 5015 } 5016 case ISD::STEP_VECTOR: { 5017 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 5018 return V; 5019 break; 5020 } 5021 } 5022 } 5023 5024 // Constant fold unary operations with a floating point constant operand. 5025 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 5026 APFloat V = C->getValueAPF(); // make copy 5027 switch (Opcode) { 5028 case ISD::FNEG: 5029 V.changeSign(); 5030 return getConstantFP(V, DL, VT); 5031 case ISD::FABS: 5032 V.clearSign(); 5033 return getConstantFP(V, DL, VT); 5034 case ISD::FCEIL: { 5035 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5036 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5037 return getConstantFP(V, DL, VT); 5038 break; 5039 } 5040 case ISD::FTRUNC: { 5041 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5042 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5043 return getConstantFP(V, DL, VT); 5044 break; 5045 } 5046 case ISD::FFLOOR: { 5047 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5048 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5049 return getConstantFP(V, DL, VT); 5050 break; 5051 } 5052 case ISD::FP_EXTEND: { 5053 bool ignored; 5054 // This can return overflow, underflow, or inexact; we don't care. 5055 // FIXME need to be more flexible about rounding mode. 5056 (void)V.convert(EVTToAPFloatSemantics(VT), 5057 APFloat::rmNearestTiesToEven, &ignored); 5058 return getConstantFP(V, DL, VT); 5059 } 5060 case ISD::FP_TO_SINT: 5061 case ISD::FP_TO_UINT: { 5062 bool ignored; 5063 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5064 // FIXME need to be more flexible about rounding mode. 5065 APFloat::opStatus s = 5066 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5067 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5068 break; 5069 return getConstant(IntVal, DL, VT); 5070 } 5071 case ISD::BITCAST: 5072 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5073 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5074 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5075 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5076 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5077 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5078 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5079 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5080 break; 5081 case ISD::FP_TO_FP16: 5082 case ISD::FP_TO_BF16: { 5083 bool Ignored; 5084 // This can return overflow, underflow, or inexact; we don't care. 5085 // FIXME need to be more flexible about rounding mode. 5086 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5087 : APFloat::BFloat(), 5088 APFloat::rmNearestTiesToEven, &Ignored); 5089 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5090 } 5091 } 5092 } 5093 5094 // Constant fold unary operations with a vector integer or float operand. 5095 switch (Opcode) { 5096 default: 5097 // FIXME: Entirely reasonable to perform folding of other unary 5098 // operations here as the need arises. 5099 break; 5100 case ISD::FNEG: 5101 case ISD::FABS: 5102 case ISD::FCEIL: 5103 case ISD::FTRUNC: 5104 case ISD::FFLOOR: 5105 case ISD::FP_EXTEND: 5106 case ISD::FP_TO_SINT: 5107 case ISD::FP_TO_UINT: 5108 case ISD::TRUNCATE: 5109 case ISD::ANY_EXTEND: 5110 case ISD::ZERO_EXTEND: 5111 case ISD::SIGN_EXTEND: 5112 case ISD::UINT_TO_FP: 5113 case ISD::SINT_TO_FP: 5114 case ISD::ABS: 5115 case ISD::BITREVERSE: 5116 case ISD::BSWAP: 5117 case ISD::CTLZ: 5118 case ISD::CTLZ_ZERO_UNDEF: 5119 case ISD::CTTZ: 5120 case ISD::CTTZ_ZERO_UNDEF: 5121 case ISD::CTPOP: { 5122 SDValue Ops = {Operand}; 5123 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5124 return Fold; 5125 } 5126 } 5127 5128 unsigned OpOpcode = Operand.getNode()->getOpcode(); 5129 switch (Opcode) { 5130 case ISD::STEP_VECTOR: 5131 assert(VT.isScalableVector() && 5132 "STEP_VECTOR can only be used with scalable types"); 5133 assert(OpOpcode == ISD::TargetConstant && 5134 VT.getVectorElementType() == Operand.getValueType() && 5135 "Unexpected step operand"); 5136 break; 5137 case ISD::FREEZE: 5138 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5139 if (isGuaranteedNotToBeUndefOrPoison(Operand)) 5140 return Operand; 5141 break; 5142 case ISD::TokenFactor: 5143 case ISD::MERGE_VALUES: 5144 case ISD::CONCAT_VECTORS: 5145 return Operand; // Factor, merge or concat of one node? No need. 5146 case ISD::BUILD_VECTOR: { 5147 // Attempt to simplify BUILD_VECTOR. 5148 SDValue Ops[] = {Operand}; 5149 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5150 return V; 5151 break; 5152 } 5153 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5154 case ISD::FP_EXTEND: 5155 assert(VT.isFloatingPoint() && 5156 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 5157 if (Operand.getValueType() == VT) return Operand; // noop conversion. 5158 assert((!VT.isVector() || 5159 VT.getVectorElementCount() == 5160 Operand.getValueType().getVectorElementCount()) && 5161 "Vector element count mismatch!"); 5162 assert(Operand.getValueType().bitsLT(VT) && 5163 "Invalid fpext node, dst < src!"); 5164 if (Operand.isUndef()) 5165 return getUNDEF(VT); 5166 break; 5167 case ISD::FP_TO_SINT: 5168 case ISD::FP_TO_UINT: 5169 if (Operand.isUndef()) 5170 return getUNDEF(VT); 5171 break; 5172 case ISD::SINT_TO_FP: 5173 case ISD::UINT_TO_FP: 5174 // [us]itofp(undef) = 0, because the result value is bounded. 5175 if (Operand.isUndef()) 5176 return getConstantFP(0.0, DL, VT); 5177 break; 5178 case ISD::SIGN_EXTEND: 5179 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5180 "Invalid SIGN_EXTEND!"); 5181 assert(VT.isVector() == Operand.getValueType().isVector() && 5182 "SIGN_EXTEND result type type should be vector iff the operand " 5183 "type is vector!"); 5184 if (Operand.getValueType() == VT) return Operand; // noop extension 5185 assert((!VT.isVector() || 5186 VT.getVectorElementCount() == 5187 Operand.getValueType().getVectorElementCount()) && 5188 "Vector element count mismatch!"); 5189 assert(Operand.getValueType().bitsLT(VT) && 5190 "Invalid sext node, dst < src!"); 5191 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5192 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5193 if (OpOpcode == ISD::UNDEF) 5194 // sext(undef) = 0, because the top bits will all be the same. 5195 return getConstant(0, DL, VT); 5196 break; 5197 case ISD::ZERO_EXTEND: 5198 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5199 "Invalid ZERO_EXTEND!"); 5200 assert(VT.isVector() == Operand.getValueType().isVector() && 5201 "ZERO_EXTEND result type type should be vector iff the operand " 5202 "type is vector!"); 5203 if (Operand.getValueType() == VT) return Operand; // noop extension 5204 assert((!VT.isVector() || 5205 VT.getVectorElementCount() == 5206 Operand.getValueType().getVectorElementCount()) && 5207 "Vector element count mismatch!"); 5208 assert(Operand.getValueType().bitsLT(VT) && 5209 "Invalid zext node, dst < src!"); 5210 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5211 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5212 if (OpOpcode == ISD::UNDEF) 5213 // zext(undef) = 0, because the top bits will be zero. 5214 return getConstant(0, DL, VT); 5215 break; 5216 case ISD::ANY_EXTEND: 5217 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5218 "Invalid ANY_EXTEND!"); 5219 assert(VT.isVector() == Operand.getValueType().isVector() && 5220 "ANY_EXTEND result type type should be vector iff the operand " 5221 "type is vector!"); 5222 if (Operand.getValueType() == VT) return Operand; // noop extension 5223 assert((!VT.isVector() || 5224 VT.getVectorElementCount() == 5225 Operand.getValueType().getVectorElementCount()) && 5226 "Vector element count mismatch!"); 5227 assert(Operand.getValueType().bitsLT(VT) && 5228 "Invalid anyext node, dst < src!"); 5229 5230 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5231 OpOpcode == ISD::ANY_EXTEND) 5232 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5233 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5234 if (OpOpcode == ISD::UNDEF) 5235 return getUNDEF(VT); 5236 5237 // (ext (trunc x)) -> x 5238 if (OpOpcode == ISD::TRUNCATE) { 5239 SDValue OpOp = Operand.getOperand(0); 5240 if (OpOp.getValueType() == VT) { 5241 transferDbgValues(Operand, OpOp); 5242 return OpOp; 5243 } 5244 } 5245 break; 5246 case ISD::TRUNCATE: 5247 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5248 "Invalid TRUNCATE!"); 5249 assert(VT.isVector() == Operand.getValueType().isVector() && 5250 "TRUNCATE result type type should be vector iff the operand " 5251 "type is vector!"); 5252 if (Operand.getValueType() == VT) return Operand; // noop truncate 5253 assert((!VT.isVector() || 5254 VT.getVectorElementCount() == 5255 Operand.getValueType().getVectorElementCount()) && 5256 "Vector element count mismatch!"); 5257 assert(Operand.getValueType().bitsGT(VT) && 5258 "Invalid truncate node, src < dst!"); 5259 if (OpOpcode == ISD::TRUNCATE) 5260 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5261 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5262 OpOpcode == ISD::ANY_EXTEND) { 5263 // If the source is smaller than the dest, we still need an extend. 5264 if (Operand.getOperand(0).getValueType().getScalarType() 5265 .bitsLT(VT.getScalarType())) 5266 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5267 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5268 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5269 return Operand.getOperand(0); 5270 } 5271 if (OpOpcode == ISD::UNDEF) 5272 return getUNDEF(VT); 5273 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5274 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5275 break; 5276 case ISD::ANY_EXTEND_VECTOR_INREG: 5277 case ISD::ZERO_EXTEND_VECTOR_INREG: 5278 case ISD::SIGN_EXTEND_VECTOR_INREG: 5279 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5280 assert(Operand.getValueType().bitsLE(VT) && 5281 "The input must be the same size or smaller than the result."); 5282 assert(VT.getVectorMinNumElements() < 5283 Operand.getValueType().getVectorMinNumElements() && 5284 "The destination vector type must have fewer lanes than the input."); 5285 break; 5286 case ISD::ABS: 5287 assert(VT.isInteger() && VT == Operand.getValueType() && 5288 "Invalid ABS!"); 5289 if (OpOpcode == ISD::UNDEF) 5290 return getConstant(0, DL, VT); 5291 break; 5292 case ISD::BSWAP: 5293 assert(VT.isInteger() && VT == Operand.getValueType() && 5294 "Invalid BSWAP!"); 5295 assert((VT.getScalarSizeInBits() % 16 == 0) && 5296 "BSWAP types must be a multiple of 16 bits!"); 5297 if (OpOpcode == ISD::UNDEF) 5298 return getUNDEF(VT); 5299 // bswap(bswap(X)) -> X. 5300 if (OpOpcode == ISD::BSWAP) 5301 return Operand.getOperand(0); 5302 break; 5303 case ISD::BITREVERSE: 5304 assert(VT.isInteger() && VT == Operand.getValueType() && 5305 "Invalid BITREVERSE!"); 5306 if (OpOpcode == ISD::UNDEF) 5307 return getUNDEF(VT); 5308 break; 5309 case ISD::BITCAST: 5310 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5311 "Cannot BITCAST between types of different sizes!"); 5312 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5313 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5314 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5315 if (OpOpcode == ISD::UNDEF) 5316 return getUNDEF(VT); 5317 break; 5318 case ISD::SCALAR_TO_VECTOR: 5319 assert(VT.isVector() && !Operand.getValueType().isVector() && 5320 (VT.getVectorElementType() == Operand.getValueType() || 5321 (VT.getVectorElementType().isInteger() && 5322 Operand.getValueType().isInteger() && 5323 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5324 "Illegal SCALAR_TO_VECTOR node!"); 5325 if (OpOpcode == ISD::UNDEF) 5326 return getUNDEF(VT); 5327 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5328 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5329 isa<ConstantSDNode>(Operand.getOperand(1)) && 5330 Operand.getConstantOperandVal(1) == 0 && 5331 Operand.getOperand(0).getValueType() == VT) 5332 return Operand.getOperand(0); 5333 break; 5334 case ISD::FNEG: 5335 // Negation of an unknown bag of bits is still completely undefined. 5336 if (OpOpcode == ISD::UNDEF) 5337 return getUNDEF(VT); 5338 5339 if (OpOpcode == ISD::FNEG) // --X -> X 5340 return Operand.getOperand(0); 5341 break; 5342 case ISD::FABS: 5343 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5344 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5345 break; 5346 case ISD::VSCALE: 5347 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5348 break; 5349 case ISD::CTPOP: 5350 if (Operand.getValueType().getScalarType() == MVT::i1) 5351 return Operand; 5352 break; 5353 case ISD::CTLZ: 5354 case ISD::CTTZ: 5355 if (Operand.getValueType().getScalarType() == MVT::i1) 5356 return getNOT(DL, Operand, Operand.getValueType()); 5357 break; 5358 case ISD::VECREDUCE_ADD: 5359 if (Operand.getValueType().getScalarType() == MVT::i1) 5360 return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand); 5361 break; 5362 case ISD::VECREDUCE_SMIN: 5363 case ISD::VECREDUCE_UMAX: 5364 if (Operand.getValueType().getScalarType() == MVT::i1) 5365 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5366 break; 5367 case ISD::VECREDUCE_SMAX: 5368 case ISD::VECREDUCE_UMIN: 5369 if (Operand.getValueType().getScalarType() == MVT::i1) 5370 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5371 break; 5372 } 5373 5374 SDNode *N; 5375 SDVTList VTs = getVTList(VT); 5376 SDValue Ops[] = {Operand}; 5377 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5378 FoldingSetNodeID ID; 5379 AddNodeIDNode(ID, Opcode, VTs, Ops); 5380 void *IP = nullptr; 5381 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5382 E->intersectFlagsWith(Flags); 5383 return SDValue(E, 0); 5384 } 5385 5386 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5387 N->setFlags(Flags); 5388 createOperands(N, Ops); 5389 CSEMap.InsertNode(N, IP); 5390 } else { 5391 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5392 createOperands(N, Ops); 5393 } 5394 5395 InsertNode(N); 5396 SDValue V = SDValue(N, 0); 5397 NewSDValueDbgMsg(V, "Creating new node: ", this); 5398 return V; 5399 } 5400 5401 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5402 const APInt &C2) { 5403 switch (Opcode) { 5404 case ISD::ADD: return C1 + C2; 5405 case ISD::SUB: return C1 - C2; 5406 case ISD::MUL: return C1 * C2; 5407 case ISD::AND: return C1 & C2; 5408 case ISD::OR: return C1 | C2; 5409 case ISD::XOR: return C1 ^ C2; 5410 case ISD::SHL: return C1 << C2; 5411 case ISD::SRL: return C1.lshr(C2); 5412 case ISD::SRA: return C1.ashr(C2); 5413 case ISD::ROTL: return C1.rotl(C2); 5414 case ISD::ROTR: return C1.rotr(C2); 5415 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5416 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5417 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5418 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5419 case ISD::SADDSAT: return C1.sadd_sat(C2); 5420 case ISD::UADDSAT: return C1.uadd_sat(C2); 5421 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5422 case ISD::USUBSAT: return C1.usub_sat(C2); 5423 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5424 case ISD::USHLSAT: return C1.ushl_sat(C2); 5425 case ISD::UDIV: 5426 if (!C2.getBoolValue()) 5427 break; 5428 return C1.udiv(C2); 5429 case ISD::UREM: 5430 if (!C2.getBoolValue()) 5431 break; 5432 return C1.urem(C2); 5433 case ISD::SDIV: 5434 if (!C2.getBoolValue()) 5435 break; 5436 return C1.sdiv(C2); 5437 case ISD::SREM: 5438 if (!C2.getBoolValue()) 5439 break; 5440 return C1.srem(C2); 5441 case ISD::MULHS: { 5442 unsigned FullWidth = C1.getBitWidth() * 2; 5443 APInt C1Ext = C1.sext(FullWidth); 5444 APInt C2Ext = C2.sext(FullWidth); 5445 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5446 } 5447 case ISD::MULHU: { 5448 unsigned FullWidth = C1.getBitWidth() * 2; 5449 APInt C1Ext = C1.zext(FullWidth); 5450 APInt C2Ext = C2.zext(FullWidth); 5451 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5452 } 5453 case ISD::AVGFLOORS: { 5454 unsigned FullWidth = C1.getBitWidth() + 1; 5455 APInt C1Ext = C1.sext(FullWidth); 5456 APInt C2Ext = C2.sext(FullWidth); 5457 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5458 } 5459 case ISD::AVGFLOORU: { 5460 unsigned FullWidth = C1.getBitWidth() + 1; 5461 APInt C1Ext = C1.zext(FullWidth); 5462 APInt C2Ext = C2.zext(FullWidth); 5463 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5464 } 5465 case ISD::AVGCEILS: { 5466 unsigned FullWidth = C1.getBitWidth() + 1; 5467 APInt C1Ext = C1.sext(FullWidth); 5468 APInt C2Ext = C2.sext(FullWidth); 5469 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5470 } 5471 case ISD::AVGCEILU: { 5472 unsigned FullWidth = C1.getBitWidth() + 1; 5473 APInt C1Ext = C1.zext(FullWidth); 5474 APInt C2Ext = C2.zext(FullWidth); 5475 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5476 } 5477 } 5478 return llvm::None; 5479 } 5480 5481 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5482 const GlobalAddressSDNode *GA, 5483 const SDNode *N2) { 5484 if (GA->getOpcode() != ISD::GlobalAddress) 5485 return SDValue(); 5486 if (!TLI->isOffsetFoldingLegal(GA)) 5487 return SDValue(); 5488 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5489 if (!C2) 5490 return SDValue(); 5491 int64_t Offset = C2->getSExtValue(); 5492 switch (Opcode) { 5493 case ISD::ADD: break; 5494 case ISD::SUB: Offset = -uint64_t(Offset); break; 5495 default: return SDValue(); 5496 } 5497 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5498 GA->getOffset() + uint64_t(Offset)); 5499 } 5500 5501 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5502 switch (Opcode) { 5503 case ISD::SDIV: 5504 case ISD::UDIV: 5505 case ISD::SREM: 5506 case ISD::UREM: { 5507 // If a divisor is zero/undef or any element of a divisor vector is 5508 // zero/undef, the whole op is undef. 5509 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5510 SDValue Divisor = Ops[1]; 5511 if (Divisor.isUndef() || isNullConstant(Divisor)) 5512 return true; 5513 5514 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5515 llvm::any_of(Divisor->op_values(), 5516 [](SDValue V) { return V.isUndef() || 5517 isNullConstant(V); }); 5518 // TODO: Handle signed overflow. 5519 } 5520 // TODO: Handle oversized shifts. 5521 default: 5522 return false; 5523 } 5524 } 5525 5526 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5527 EVT VT, ArrayRef<SDValue> Ops) { 5528 // If the opcode is a target-specific ISD node, there's nothing we can 5529 // do here and the operand rules may not line up with the below, so 5530 // bail early. 5531 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5532 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5533 // foldCONCAT_VECTORS in getNode before this is called. 5534 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5535 return SDValue(); 5536 5537 unsigned NumOps = Ops.size(); 5538 if (NumOps == 0) 5539 return SDValue(); 5540 5541 if (isUndef(Opcode, Ops)) 5542 return getUNDEF(VT); 5543 5544 // Handle binops special cases. 5545 if (NumOps == 2) { 5546 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5547 return CFP; 5548 5549 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5550 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5551 if (C1->isOpaque() || C2->isOpaque()) 5552 return SDValue(); 5553 5554 Optional<APInt> FoldAttempt = 5555 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5556 if (!FoldAttempt) 5557 return SDValue(); 5558 5559 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 5560 assert((!Folded || !VT.isVector()) && 5561 "Can't fold vectors ops with scalar operands"); 5562 return Folded; 5563 } 5564 } 5565 5566 // fold (add Sym, c) -> Sym+c 5567 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5568 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5569 if (TLI->isCommutativeBinOp(Opcode)) 5570 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5571 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5572 } 5573 5574 // This is for vector folding only from here on. 5575 if (!VT.isVector()) 5576 return SDValue(); 5577 5578 ElementCount NumElts = VT.getVectorElementCount(); 5579 5580 // See if we can fold through bitcasted integer ops. 5581 // TODO: Can we handle undef elements? 5582 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5583 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5584 Ops[0].getOpcode() == ISD::BITCAST && 5585 Ops[1].getOpcode() == ISD::BITCAST) { 5586 SDValue N1 = peekThroughBitcasts(Ops[0]); 5587 SDValue N2 = peekThroughBitcasts(Ops[1]); 5588 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5589 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5590 EVT BVVT = N1.getValueType(); 5591 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5592 bool IsLE = getDataLayout().isLittleEndian(); 5593 unsigned EltBits = VT.getScalarSizeInBits(); 5594 SmallVector<APInt> RawBits1, RawBits2; 5595 BitVector UndefElts1, UndefElts2; 5596 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5597 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5598 UndefElts1.none() && UndefElts2.none()) { 5599 SmallVector<APInt> RawBits; 5600 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5601 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5602 if (!Fold) 5603 break; 5604 RawBits.push_back(*Fold); 5605 } 5606 if (RawBits.size() == NumElts.getFixedValue()) { 5607 // We have constant folded, but we need to cast this again back to 5608 // the original (possibly legalized) type. 5609 SmallVector<APInt> DstBits; 5610 BitVector DstUndefs; 5611 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5612 DstBits, RawBits, DstUndefs, 5613 BitVector(RawBits.size(), false)); 5614 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5615 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5616 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5617 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5618 if (DstUndefs[I]) 5619 continue; 5620 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 5621 } 5622 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5623 } 5624 } 5625 } 5626 } 5627 5628 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5629 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5630 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5631 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5632 APInt RHSVal; 5633 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5634 APInt NewStep = Opcode == ISD::MUL 5635 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5636 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5637 return getStepVector(DL, VT, NewStep); 5638 } 5639 } 5640 5641 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5642 return !Op.getValueType().isVector() || 5643 Op.getValueType().getVectorElementCount() == NumElts; 5644 }; 5645 5646 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5647 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5648 Op.getOpcode() == ISD::BUILD_VECTOR || 5649 Op.getOpcode() == ISD::SPLAT_VECTOR; 5650 }; 5651 5652 // All operands must be vector types with the same number of elements as 5653 // the result type and must be either UNDEF or a build/splat vector 5654 // or UNDEF scalars. 5655 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5656 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5657 return SDValue(); 5658 5659 // If we are comparing vectors, then the result needs to be a i1 boolean that 5660 // is then extended back to the legal result type depending on how booleans 5661 // are represented. 5662 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5663 ISD::NodeType ExtendCode = 5664 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 5665 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 5666 : ISD::SIGN_EXTEND; 5667 5668 // Find legal integer scalar type for constant promotion and 5669 // ensure that its scalar size is at least as large as source. 5670 EVT LegalSVT = VT.getScalarType(); 5671 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5672 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5673 if (LegalSVT.bitsLT(VT.getScalarType())) 5674 return SDValue(); 5675 } 5676 5677 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5678 // only have one operand to check. For fixed-length vector types we may have 5679 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5680 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5681 5682 // Constant fold each scalar lane separately. 5683 SmallVector<SDValue, 4> ScalarResults; 5684 for (unsigned I = 0; I != NumVectorElts; I++) { 5685 SmallVector<SDValue, 4> ScalarOps; 5686 for (SDValue Op : Ops) { 5687 EVT InSVT = Op.getValueType().getScalarType(); 5688 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5689 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5690 if (Op.isUndef()) 5691 ScalarOps.push_back(getUNDEF(InSVT)); 5692 else 5693 ScalarOps.push_back(Op); 5694 continue; 5695 } 5696 5697 SDValue ScalarOp = 5698 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5699 EVT ScalarVT = ScalarOp.getValueType(); 5700 5701 // Build vector (integer) scalar operands may need implicit 5702 // truncation - do this before constant folding. 5703 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5704 // Don't create illegally-typed nodes unless they're constants or undef 5705 // - if we fail to constant fold we can't guarantee the (dead) nodes 5706 // we're creating will be cleaned up before being visited for 5707 // legalization. 5708 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5709 !isa<ConstantSDNode>(ScalarOp) && 5710 TLI->getTypeAction(*getContext(), InSVT) != 5711 TargetLowering::TypeLegal) 5712 return SDValue(); 5713 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5714 } 5715 5716 ScalarOps.push_back(ScalarOp); 5717 } 5718 5719 // Constant fold the scalar operands. 5720 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5721 5722 // Legalize the (integer) scalar constant if necessary. 5723 if (LegalSVT != SVT) 5724 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 5725 5726 // Scalar folding only succeeded if the result is a constant or UNDEF. 5727 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5728 ScalarResult.getOpcode() != ISD::ConstantFP) 5729 return SDValue(); 5730 ScalarResults.push_back(ScalarResult); 5731 } 5732 5733 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5734 : getBuildVector(VT, DL, ScalarResults); 5735 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5736 return V; 5737 } 5738 5739 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5740 EVT VT, SDValue N1, SDValue N2) { 5741 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5742 // should. That will require dealing with a potentially non-default 5743 // rounding mode, checking the "opStatus" return value from the APFloat 5744 // math calculations, and possibly other variations. 5745 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5746 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5747 if (N1CFP && N2CFP) { 5748 APFloat C1 = N1CFP->getValueAPF(); // make copy 5749 const APFloat &C2 = N2CFP->getValueAPF(); 5750 switch (Opcode) { 5751 case ISD::FADD: 5752 C1.add(C2, APFloat::rmNearestTiesToEven); 5753 return getConstantFP(C1, DL, VT); 5754 case ISD::FSUB: 5755 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5756 return getConstantFP(C1, DL, VT); 5757 case ISD::FMUL: 5758 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5759 return getConstantFP(C1, DL, VT); 5760 case ISD::FDIV: 5761 C1.divide(C2, APFloat::rmNearestTiesToEven); 5762 return getConstantFP(C1, DL, VT); 5763 case ISD::FREM: 5764 C1.mod(C2); 5765 return getConstantFP(C1, DL, VT); 5766 case ISD::FCOPYSIGN: 5767 C1.copySign(C2); 5768 return getConstantFP(C1, DL, VT); 5769 case ISD::FMINNUM: 5770 return getConstantFP(minnum(C1, C2), DL, VT); 5771 case ISD::FMAXNUM: 5772 return getConstantFP(maxnum(C1, C2), DL, VT); 5773 case ISD::FMINIMUM: 5774 return getConstantFP(minimum(C1, C2), DL, VT); 5775 case ISD::FMAXIMUM: 5776 return getConstantFP(maximum(C1, C2), DL, VT); 5777 default: break; 5778 } 5779 } 5780 if (N1CFP && Opcode == ISD::FP_ROUND) { 5781 APFloat C1 = N1CFP->getValueAPF(); // make copy 5782 bool Unused; 5783 // This can return overflow, underflow, or inexact; we don't care. 5784 // FIXME need to be more flexible about rounding mode. 5785 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5786 &Unused); 5787 return getConstantFP(C1, DL, VT); 5788 } 5789 5790 switch (Opcode) { 5791 case ISD::FSUB: 5792 // -0.0 - undef --> undef (consistent with "fneg undef") 5793 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5794 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5795 return getUNDEF(VT); 5796 LLVM_FALLTHROUGH; 5797 5798 case ISD::FADD: 5799 case ISD::FMUL: 5800 case ISD::FDIV: 5801 case ISD::FREM: 5802 // If both operands are undef, the result is undef. If 1 operand is undef, 5803 // the result is NaN. This should match the behavior of the IR optimizer. 5804 if (N1.isUndef() && N2.isUndef()) 5805 return getUNDEF(VT); 5806 if (N1.isUndef() || N2.isUndef()) 5807 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5808 } 5809 return SDValue(); 5810 } 5811 5812 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5813 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5814 5815 // There's no need to assert on a byte-aligned pointer. All pointers are at 5816 // least byte aligned. 5817 if (A == Align(1)) 5818 return Val; 5819 5820 FoldingSetNodeID ID; 5821 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5822 ID.AddInteger(A.value()); 5823 5824 void *IP = nullptr; 5825 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5826 return SDValue(E, 0); 5827 5828 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5829 Val.getValueType(), A); 5830 createOperands(N, {Val}); 5831 5832 CSEMap.InsertNode(N, IP); 5833 InsertNode(N); 5834 5835 SDValue V(N, 0); 5836 NewSDValueDbgMsg(V, "Creating new node: ", this); 5837 return V; 5838 } 5839 5840 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5841 SDValue N1, SDValue N2) { 5842 SDNodeFlags Flags; 5843 if (Inserter) 5844 Flags = Inserter->getFlags(); 5845 return getNode(Opcode, DL, VT, N1, N2, Flags); 5846 } 5847 5848 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 5849 SDValue &N2) const { 5850 if (!TLI->isCommutativeBinOp(Opcode)) 5851 return; 5852 5853 // Canonicalize: 5854 // binop(const, nonconst) -> binop(nonconst, const) 5855 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5856 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5857 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5858 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5859 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5860 std::swap(N1, N2); 5861 5862 // Canonicalize: 5863 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 5864 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 5865 N2.getOpcode() == ISD::STEP_VECTOR) 5866 std::swap(N1, N2); 5867 } 5868 5869 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5870 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5871 assert(N1.getOpcode() != ISD::DELETED_NODE && 5872 N2.getOpcode() != ISD::DELETED_NODE && 5873 "Operand is DELETED_NODE!"); 5874 5875 canonicalizeCommutativeBinop(Opcode, N1, N2); 5876 5877 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5878 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5879 5880 // Don't allow undefs in vector splats - we might be returning N2 when folding 5881 // to zero etc. 5882 ConstantSDNode *N2CV = 5883 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5884 5885 switch (Opcode) { 5886 default: break; 5887 case ISD::TokenFactor: 5888 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5889 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5890 // Fold trivial token factors. 5891 if (N1.getOpcode() == ISD::EntryToken) return N2; 5892 if (N2.getOpcode() == ISD::EntryToken) return N1; 5893 if (N1 == N2) return N1; 5894 break; 5895 case ISD::BUILD_VECTOR: { 5896 // Attempt to simplify BUILD_VECTOR. 5897 SDValue Ops[] = {N1, N2}; 5898 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5899 return V; 5900 break; 5901 } 5902 case ISD::CONCAT_VECTORS: { 5903 SDValue Ops[] = {N1, N2}; 5904 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5905 return V; 5906 break; 5907 } 5908 case ISD::AND: 5909 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5910 assert(N1.getValueType() == N2.getValueType() && 5911 N1.getValueType() == VT && "Binary operator types must match!"); 5912 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5913 // worth handling here. 5914 if (N2CV && N2CV->isZero()) 5915 return N2; 5916 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5917 return N1; 5918 break; 5919 case ISD::OR: 5920 case ISD::XOR: 5921 case ISD::ADD: 5922 case ISD::SUB: 5923 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5924 assert(N1.getValueType() == N2.getValueType() && 5925 N1.getValueType() == VT && "Binary operator types must match!"); 5926 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5927 // it's worth handling here. 5928 if (N2CV && N2CV->isZero()) 5929 return N1; 5930 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5931 VT.getVectorElementType() == MVT::i1) 5932 return getNode(ISD::XOR, DL, VT, N1, N2); 5933 break; 5934 case ISD::MUL: 5935 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5936 assert(N1.getValueType() == N2.getValueType() && 5937 N1.getValueType() == VT && "Binary operator types must match!"); 5938 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5939 return getNode(ISD::AND, DL, VT, N1, N2); 5940 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5941 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5942 const APInt &N2CImm = N2C->getAPIntValue(); 5943 return getVScale(DL, VT, MulImm * N2CImm); 5944 } 5945 break; 5946 case ISD::UDIV: 5947 case ISD::UREM: 5948 case ISD::MULHU: 5949 case ISD::MULHS: 5950 case ISD::SDIV: 5951 case ISD::SREM: 5952 case ISD::SADDSAT: 5953 case ISD::SSUBSAT: 5954 case ISD::UADDSAT: 5955 case ISD::USUBSAT: 5956 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5957 assert(N1.getValueType() == N2.getValueType() && 5958 N1.getValueType() == VT && "Binary operator types must match!"); 5959 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5960 // fold (add_sat x, y) -> (or x, y) for bool types. 5961 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5962 return getNode(ISD::OR, DL, VT, N1, N2); 5963 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5964 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5965 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5966 } 5967 break; 5968 case ISD::SMIN: 5969 case ISD::UMAX: 5970 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5971 assert(N1.getValueType() == N2.getValueType() && 5972 N1.getValueType() == VT && "Binary operator types must match!"); 5973 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5974 return getNode(ISD::OR, DL, VT, N1, N2); 5975 break; 5976 case ISD::SMAX: 5977 case ISD::UMIN: 5978 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5979 assert(N1.getValueType() == N2.getValueType() && 5980 N1.getValueType() == VT && "Binary operator types must match!"); 5981 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5982 return getNode(ISD::AND, DL, VT, N1, N2); 5983 break; 5984 case ISD::FADD: 5985 case ISD::FSUB: 5986 case ISD::FMUL: 5987 case ISD::FDIV: 5988 case ISD::FREM: 5989 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5990 assert(N1.getValueType() == N2.getValueType() && 5991 N1.getValueType() == VT && "Binary operator types must match!"); 5992 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5993 return V; 5994 break; 5995 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5996 assert(N1.getValueType() == VT && 5997 N1.getValueType().isFloatingPoint() && 5998 N2.getValueType().isFloatingPoint() && 5999 "Invalid FCOPYSIGN!"); 6000 break; 6001 case ISD::SHL: 6002 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 6003 const APInt &MulImm = N1->getConstantOperandAPInt(0); 6004 const APInt &ShiftImm = N2C->getAPIntValue(); 6005 return getVScale(DL, VT, MulImm << ShiftImm); 6006 } 6007 LLVM_FALLTHROUGH; 6008 case ISD::SRA: 6009 case ISD::SRL: 6010 if (SDValue V = simplifyShift(N1, N2)) 6011 return V; 6012 LLVM_FALLTHROUGH; 6013 case ISD::ROTL: 6014 case ISD::ROTR: 6015 assert(VT == N1.getValueType() && 6016 "Shift operators return type must be the same as their first arg"); 6017 assert(VT.isInteger() && N2.getValueType().isInteger() && 6018 "Shifts only work on integers"); 6019 assert((!VT.isVector() || VT == N2.getValueType()) && 6020 "Vector shift amounts must be in the same as their first arg"); 6021 // Verify that the shift amount VT is big enough to hold valid shift 6022 // amounts. This catches things like trying to shift an i1024 value by an 6023 // i8, which is easy to fall into in generic code that uses 6024 // TLI.getShiftAmount(). 6025 assert(N2.getValueType().getScalarSizeInBits() >= 6026 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6027 "Invalid use of small shift amount with oversized value!"); 6028 6029 // Always fold shifts of i1 values so the code generator doesn't need to 6030 // handle them. Since we know the size of the shift has to be less than the 6031 // size of the value, the shift/rotate count is guaranteed to be zero. 6032 if (VT == MVT::i1) 6033 return N1; 6034 if (N2CV && N2CV->isZero()) 6035 return N1; 6036 break; 6037 case ISD::FP_ROUND: 6038 assert(VT.isFloatingPoint() && 6039 N1.getValueType().isFloatingPoint() && 6040 VT.bitsLE(N1.getValueType()) && 6041 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6042 "Invalid FP_ROUND!"); 6043 if (N1.getValueType() == VT) return N1; // noop conversion. 6044 break; 6045 case ISD::AssertSext: 6046 case ISD::AssertZext: { 6047 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6048 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6049 assert(VT.isInteger() && EVT.isInteger() && 6050 "Cannot *_EXTEND_INREG FP types"); 6051 assert(!EVT.isVector() && 6052 "AssertSExt/AssertZExt type should be the vector element type " 6053 "rather than the vector type!"); 6054 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6055 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6056 break; 6057 } 6058 case ISD::SIGN_EXTEND_INREG: { 6059 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6060 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6061 assert(VT.isInteger() && EVT.isInteger() && 6062 "Cannot *_EXTEND_INREG FP types"); 6063 assert(EVT.isVector() == VT.isVector() && 6064 "SIGN_EXTEND_INREG type should be vector iff the operand " 6065 "type is vector!"); 6066 assert((!EVT.isVector() || 6067 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6068 "Vector element counts must match in SIGN_EXTEND_INREG"); 6069 assert(EVT.bitsLE(VT) && "Not extending!"); 6070 if (EVT == VT) return N1; // Not actually extending 6071 6072 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6073 unsigned FromBits = EVT.getScalarSizeInBits(); 6074 Val <<= Val.getBitWidth() - FromBits; 6075 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6076 return getConstant(Val, DL, ConstantVT); 6077 }; 6078 6079 if (N1C) { 6080 const APInt &Val = N1C->getAPIntValue(); 6081 return SignExtendInReg(Val, VT); 6082 } 6083 6084 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6085 SmallVector<SDValue, 8> Ops; 6086 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6087 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6088 SDValue Op = N1.getOperand(i); 6089 if (Op.isUndef()) { 6090 Ops.push_back(getUNDEF(OpVT)); 6091 continue; 6092 } 6093 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6094 APInt Val = C->getAPIntValue(); 6095 Ops.push_back(SignExtendInReg(Val, OpVT)); 6096 } 6097 return getBuildVector(VT, DL, Ops); 6098 } 6099 break; 6100 } 6101 case ISD::FP_TO_SINT_SAT: 6102 case ISD::FP_TO_UINT_SAT: { 6103 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6104 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6105 assert(N1.getValueType().isVector() == VT.isVector() && 6106 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6107 "vector!"); 6108 assert((!VT.isVector() || VT.getVectorNumElements() == 6109 N1.getValueType().getVectorNumElements()) && 6110 "Vector element counts must match in FP_TO_*INT_SAT"); 6111 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6112 "Type to saturate to must be a scalar."); 6113 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6114 "Not extending!"); 6115 break; 6116 } 6117 case ISD::EXTRACT_VECTOR_ELT: 6118 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6119 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6120 element type of the vector."); 6121 6122 // Extract from an undefined value or using an undefined index is undefined. 6123 if (N1.isUndef() || N2.isUndef()) 6124 return getUNDEF(VT); 6125 6126 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6127 // vectors. For scalable vectors we will provide appropriate support for 6128 // dealing with arbitrary indices. 6129 if (N2C && N1.getValueType().isFixedLengthVector() && 6130 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6131 return getUNDEF(VT); 6132 6133 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6134 // expanding copies of large vectors from registers. This only works for 6135 // fixed length vectors, since we need to know the exact number of 6136 // elements. 6137 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6138 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6139 unsigned Factor = 6140 N1.getOperand(0).getValueType().getVectorNumElements(); 6141 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6142 N1.getOperand(N2C->getZExtValue() / Factor), 6143 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6144 } 6145 6146 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6147 // lowering is expanding large vector constants. 6148 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6149 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6150 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6151 N1.getValueType().isFixedLengthVector()) && 6152 "BUILD_VECTOR used for scalable vectors"); 6153 unsigned Index = 6154 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6155 SDValue Elt = N1.getOperand(Index); 6156 6157 if (VT != Elt.getValueType()) 6158 // If the vector element type is not legal, the BUILD_VECTOR operands 6159 // are promoted and implicitly truncated, and the result implicitly 6160 // extended. Make that explicit here. 6161 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6162 6163 return Elt; 6164 } 6165 6166 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6167 // operations are lowered to scalars. 6168 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6169 // If the indices are the same, return the inserted element else 6170 // if the indices are known different, extract the element from 6171 // the original vector. 6172 SDValue N1Op2 = N1.getOperand(2); 6173 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6174 6175 if (N1Op2C && N2C) { 6176 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6177 if (VT == N1.getOperand(1).getValueType()) 6178 return N1.getOperand(1); 6179 if (VT.isFloatingPoint()) { 6180 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits()); 6181 return getFPExtendOrRound(N1.getOperand(1), DL, VT); 6182 } 6183 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6184 } 6185 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6186 } 6187 } 6188 6189 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6190 // when vector types are scalarized and v1iX is legal. 6191 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6192 // Here we are completely ignoring the extract element index (N2), 6193 // which is fine for fixed width vectors, since any index other than 0 6194 // is undefined anyway. However, this cannot be ignored for scalable 6195 // vectors - in theory we could support this, but we don't want to do this 6196 // without a profitability check. 6197 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6198 N1.getValueType().isFixedLengthVector() && 6199 N1.getValueType().getVectorNumElements() == 1) { 6200 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6201 N1.getOperand(1)); 6202 } 6203 break; 6204 case ISD::EXTRACT_ELEMENT: 6205 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6206 assert(!N1.getValueType().isVector() && !VT.isVector() && 6207 (N1.getValueType().isInteger() == VT.isInteger()) && 6208 N1.getValueType() != VT && 6209 "Wrong types for EXTRACT_ELEMENT!"); 6210 6211 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6212 // 64-bit integers into 32-bit parts. Instead of building the extract of 6213 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6214 if (N1.getOpcode() == ISD::BUILD_PAIR) 6215 return N1.getOperand(N2C->getZExtValue()); 6216 6217 // EXTRACT_ELEMENT of a constant int is also very common. 6218 if (N1C) { 6219 unsigned ElementSize = VT.getSizeInBits(); 6220 unsigned Shift = ElementSize * N2C->getZExtValue(); 6221 const APInt &Val = N1C->getAPIntValue(); 6222 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6223 } 6224 break; 6225 case ISD::EXTRACT_SUBVECTOR: { 6226 EVT N1VT = N1.getValueType(); 6227 assert(VT.isVector() && N1VT.isVector() && 6228 "Extract subvector VTs must be vectors!"); 6229 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6230 "Extract subvector VTs must have the same element type!"); 6231 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6232 "Cannot extract a scalable vector from a fixed length vector!"); 6233 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6234 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6235 "Extract subvector must be from larger vector to smaller vector!"); 6236 assert(N2C && "Extract subvector index must be a constant"); 6237 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6238 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6239 N1VT.getVectorMinNumElements()) && 6240 "Extract subvector overflow!"); 6241 assert(N2C->getAPIntValue().getBitWidth() == 6242 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6243 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6244 6245 // Trivial extraction. 6246 if (VT == N1VT) 6247 return N1; 6248 6249 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6250 if (N1.isUndef()) 6251 return getUNDEF(VT); 6252 6253 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6254 // the concat have the same type as the extract. 6255 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6256 VT == N1.getOperand(0).getValueType()) { 6257 unsigned Factor = VT.getVectorMinNumElements(); 6258 return N1.getOperand(N2C->getZExtValue() / Factor); 6259 } 6260 6261 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6262 // during shuffle legalization. 6263 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6264 VT == N1.getOperand(1).getValueType()) 6265 return N1.getOperand(1); 6266 break; 6267 } 6268 } 6269 6270 // Perform trivial constant folding. 6271 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6272 return SV; 6273 6274 // Canonicalize an UNDEF to the RHS, even over a constant. 6275 if (N1.isUndef()) { 6276 if (TLI->isCommutativeBinOp(Opcode)) { 6277 std::swap(N1, N2); 6278 } else { 6279 switch (Opcode) { 6280 case ISD::SUB: 6281 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6282 case ISD::SIGN_EXTEND_INREG: 6283 case ISD::UDIV: 6284 case ISD::SDIV: 6285 case ISD::UREM: 6286 case ISD::SREM: 6287 case ISD::SSUBSAT: 6288 case ISD::USUBSAT: 6289 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6290 } 6291 } 6292 } 6293 6294 // Fold a bunch of operators when the RHS is undef. 6295 if (N2.isUndef()) { 6296 switch (Opcode) { 6297 case ISD::XOR: 6298 if (N1.isUndef()) 6299 // Handle undef ^ undef -> 0 special case. This is a common 6300 // idiom (misuse). 6301 return getConstant(0, DL, VT); 6302 LLVM_FALLTHROUGH; 6303 case ISD::ADD: 6304 case ISD::SUB: 6305 case ISD::UDIV: 6306 case ISD::SDIV: 6307 case ISD::UREM: 6308 case ISD::SREM: 6309 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6310 case ISD::MUL: 6311 case ISD::AND: 6312 case ISD::SSUBSAT: 6313 case ISD::USUBSAT: 6314 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6315 case ISD::OR: 6316 case ISD::SADDSAT: 6317 case ISD::UADDSAT: 6318 return getAllOnesConstant(DL, VT); 6319 } 6320 } 6321 6322 // Memoize this node if possible. 6323 SDNode *N; 6324 SDVTList VTs = getVTList(VT); 6325 SDValue Ops[] = {N1, N2}; 6326 if (VT != MVT::Glue) { 6327 FoldingSetNodeID ID; 6328 AddNodeIDNode(ID, Opcode, VTs, Ops); 6329 void *IP = nullptr; 6330 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6331 E->intersectFlagsWith(Flags); 6332 return SDValue(E, 0); 6333 } 6334 6335 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6336 N->setFlags(Flags); 6337 createOperands(N, Ops); 6338 CSEMap.InsertNode(N, IP); 6339 } else { 6340 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6341 createOperands(N, Ops); 6342 } 6343 6344 InsertNode(N); 6345 SDValue V = SDValue(N, 0); 6346 NewSDValueDbgMsg(V, "Creating new node: ", this); 6347 return V; 6348 } 6349 6350 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6351 SDValue N1, SDValue N2, SDValue N3) { 6352 SDNodeFlags Flags; 6353 if (Inserter) 6354 Flags = Inserter->getFlags(); 6355 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6356 } 6357 6358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6359 SDValue N1, SDValue N2, SDValue N3, 6360 const SDNodeFlags Flags) { 6361 assert(N1.getOpcode() != ISD::DELETED_NODE && 6362 N2.getOpcode() != ISD::DELETED_NODE && 6363 N3.getOpcode() != ISD::DELETED_NODE && 6364 "Operand is DELETED_NODE!"); 6365 // Perform various simplifications. 6366 switch (Opcode) { 6367 case ISD::FMA: { 6368 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6369 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6370 N3.getValueType() == VT && "FMA types must match!"); 6371 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6372 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6373 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6374 if (N1CFP && N2CFP && N3CFP) { 6375 APFloat V1 = N1CFP->getValueAPF(); 6376 const APFloat &V2 = N2CFP->getValueAPF(); 6377 const APFloat &V3 = N3CFP->getValueAPF(); 6378 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6379 return getConstantFP(V1, DL, VT); 6380 } 6381 break; 6382 } 6383 case ISD::BUILD_VECTOR: { 6384 // Attempt to simplify BUILD_VECTOR. 6385 SDValue Ops[] = {N1, N2, N3}; 6386 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6387 return V; 6388 break; 6389 } 6390 case ISD::CONCAT_VECTORS: { 6391 SDValue Ops[] = {N1, N2, N3}; 6392 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6393 return V; 6394 break; 6395 } 6396 case ISD::SETCC: { 6397 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6398 assert(N1.getValueType() == N2.getValueType() && 6399 "SETCC operands must have the same type!"); 6400 assert(VT.isVector() == N1.getValueType().isVector() && 6401 "SETCC type should be vector iff the operand type is vector!"); 6402 assert((!VT.isVector() || VT.getVectorElementCount() == 6403 N1.getValueType().getVectorElementCount()) && 6404 "SETCC vector element counts must match!"); 6405 // Use FoldSetCC to simplify SETCC's. 6406 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6407 return V; 6408 // Vector constant folding. 6409 SDValue Ops[] = {N1, N2, N3}; 6410 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6411 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6412 return V; 6413 } 6414 break; 6415 } 6416 case ISD::SELECT: 6417 case ISD::VSELECT: 6418 if (SDValue V = simplifySelect(N1, N2, N3)) 6419 return V; 6420 break; 6421 case ISD::VECTOR_SHUFFLE: 6422 llvm_unreachable("should use getVectorShuffle constructor!"); 6423 case ISD::VECTOR_SPLICE: { 6424 if (cast<ConstantSDNode>(N3)->isNullValue()) 6425 return N1; 6426 break; 6427 } 6428 case ISD::INSERT_VECTOR_ELT: { 6429 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6430 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6431 // for scalable vectors where we will generate appropriate code to 6432 // deal with out-of-bounds cases correctly. 6433 if (N3C && N1.getValueType().isFixedLengthVector() && 6434 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6435 return getUNDEF(VT); 6436 6437 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6438 if (N3.isUndef()) 6439 return getUNDEF(VT); 6440 6441 // If the inserted element is an UNDEF, just use the input vector. 6442 if (N2.isUndef()) 6443 return N1; 6444 6445 break; 6446 } 6447 case ISD::INSERT_SUBVECTOR: { 6448 // Inserting undef into undef is still undef. 6449 if (N1.isUndef() && N2.isUndef()) 6450 return getUNDEF(VT); 6451 6452 EVT N2VT = N2.getValueType(); 6453 assert(VT == N1.getValueType() && 6454 "Dest and insert subvector source types must match!"); 6455 assert(VT.isVector() && N2VT.isVector() && 6456 "Insert subvector VTs must be vectors!"); 6457 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6458 "Cannot insert a scalable vector into a fixed length vector!"); 6459 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6460 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6461 "Insert subvector must be from smaller vector to larger vector!"); 6462 assert(isa<ConstantSDNode>(N3) && 6463 "Insert subvector index must be constant"); 6464 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6465 (N2VT.getVectorMinNumElements() + 6466 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6467 VT.getVectorMinNumElements()) && 6468 "Insert subvector overflow!"); 6469 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6470 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6471 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6472 6473 // Trivial insertion. 6474 if (VT == N2VT) 6475 return N2; 6476 6477 // If this is an insert of an extracted vector into an undef vector, we 6478 // can just use the input to the extract. 6479 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6480 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6481 return N2.getOperand(0); 6482 break; 6483 } 6484 case ISD::BITCAST: 6485 // Fold bit_convert nodes from a type to themselves. 6486 if (N1.getValueType() == VT) 6487 return N1; 6488 break; 6489 } 6490 6491 // Memoize node if it doesn't produce a flag. 6492 SDNode *N; 6493 SDVTList VTs = getVTList(VT); 6494 SDValue Ops[] = {N1, N2, N3}; 6495 if (VT != MVT::Glue) { 6496 FoldingSetNodeID ID; 6497 AddNodeIDNode(ID, Opcode, VTs, Ops); 6498 void *IP = nullptr; 6499 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6500 E->intersectFlagsWith(Flags); 6501 return SDValue(E, 0); 6502 } 6503 6504 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6505 N->setFlags(Flags); 6506 createOperands(N, Ops); 6507 CSEMap.InsertNode(N, IP); 6508 } else { 6509 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6510 createOperands(N, Ops); 6511 } 6512 6513 InsertNode(N); 6514 SDValue V = SDValue(N, 0); 6515 NewSDValueDbgMsg(V, "Creating new node: ", this); 6516 return V; 6517 } 6518 6519 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6520 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6521 SDValue Ops[] = { N1, N2, N3, N4 }; 6522 return getNode(Opcode, DL, VT, Ops); 6523 } 6524 6525 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6526 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6527 SDValue N5) { 6528 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6529 return getNode(Opcode, DL, VT, Ops); 6530 } 6531 6532 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6533 /// the incoming stack arguments to be loaded from the stack. 6534 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6535 SmallVector<SDValue, 8> ArgChains; 6536 6537 // Include the original chain at the beginning of the list. When this is 6538 // used by target LowerCall hooks, this helps legalize find the 6539 // CALLSEQ_BEGIN node. 6540 ArgChains.push_back(Chain); 6541 6542 // Add a chain value for each stack argument. 6543 for (SDNode *U : getEntryNode().getNode()->uses()) 6544 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6545 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6546 if (FI->getIndex() < 0) 6547 ArgChains.push_back(SDValue(L, 1)); 6548 6549 // Build a tokenfactor for all the chains. 6550 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6551 } 6552 6553 /// getMemsetValue - Vectorized representation of the memset value 6554 /// operand. 6555 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6556 const SDLoc &dl) { 6557 assert(!Value.isUndef()); 6558 6559 unsigned NumBits = VT.getScalarSizeInBits(); 6560 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6561 assert(C->getAPIntValue().getBitWidth() == 8); 6562 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6563 if (VT.isInteger()) { 6564 bool IsOpaque = VT.getSizeInBits() > 64 || 6565 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6566 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6567 } 6568 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6569 VT); 6570 } 6571 6572 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6573 EVT IntVT = VT.getScalarType(); 6574 if (!IntVT.isInteger()) 6575 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6576 6577 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6578 if (NumBits > 8) { 6579 // Use a multiplication with 0x010101... to extend the input to the 6580 // required length. 6581 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6582 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6583 DAG.getConstant(Magic, dl, IntVT)); 6584 } 6585 6586 if (VT != Value.getValueType() && !VT.isInteger()) 6587 Value = DAG.getBitcast(VT.getScalarType(), Value); 6588 if (VT != Value.getValueType()) 6589 Value = DAG.getSplatBuildVector(VT, dl, Value); 6590 6591 return Value; 6592 } 6593 6594 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6595 /// used when a memcpy is turned into a memset when the source is a constant 6596 /// string ptr. 6597 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6598 const TargetLowering &TLI, 6599 const ConstantDataArraySlice &Slice) { 6600 // Handle vector with all elements zero. 6601 if (Slice.Array == nullptr) { 6602 if (VT.isInteger()) 6603 return DAG.getConstant(0, dl, VT); 6604 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6605 return DAG.getConstantFP(0.0, dl, VT); 6606 if (VT.isVector()) { 6607 unsigned NumElts = VT.getVectorNumElements(); 6608 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6609 return DAG.getNode(ISD::BITCAST, dl, VT, 6610 DAG.getConstant(0, dl, 6611 EVT::getVectorVT(*DAG.getContext(), 6612 EltVT, NumElts))); 6613 } 6614 llvm_unreachable("Expected type!"); 6615 } 6616 6617 assert(!VT.isVector() && "Can't handle vector type here!"); 6618 unsigned NumVTBits = VT.getSizeInBits(); 6619 unsigned NumVTBytes = NumVTBits / 8; 6620 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6621 6622 APInt Val(NumVTBits, 0); 6623 if (DAG.getDataLayout().isLittleEndian()) { 6624 for (unsigned i = 0; i != NumBytes; ++i) 6625 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6626 } else { 6627 for (unsigned i = 0; i != NumBytes; ++i) 6628 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6629 } 6630 6631 // If the "cost" of materializing the integer immediate is less than the cost 6632 // of a load, then it is cost effective to turn the load into the immediate. 6633 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6634 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6635 return DAG.getConstant(Val, dl, VT); 6636 return SDValue(); 6637 } 6638 6639 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6640 const SDLoc &DL, 6641 const SDNodeFlags Flags) { 6642 EVT VT = Base.getValueType(); 6643 SDValue Index; 6644 6645 if (Offset.isScalable()) 6646 Index = getVScale(DL, Base.getValueType(), 6647 APInt(Base.getValueSizeInBits().getFixedSize(), 6648 Offset.getKnownMinSize())); 6649 else 6650 Index = getConstant(Offset.getFixedSize(), DL, VT); 6651 6652 return getMemBasePlusOffset(Base, Index, DL, Flags); 6653 } 6654 6655 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6656 const SDLoc &DL, 6657 const SDNodeFlags Flags) { 6658 assert(Offset.getValueType().isInteger()); 6659 EVT BasePtrVT = Ptr.getValueType(); 6660 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6661 } 6662 6663 /// Returns true if memcpy source is constant data. 6664 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6665 uint64_t SrcDelta = 0; 6666 GlobalAddressSDNode *G = nullptr; 6667 if (Src.getOpcode() == ISD::GlobalAddress) 6668 G = cast<GlobalAddressSDNode>(Src); 6669 else if (Src.getOpcode() == ISD::ADD && 6670 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6671 Src.getOperand(1).getOpcode() == ISD::Constant) { 6672 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6673 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6674 } 6675 if (!G) 6676 return false; 6677 6678 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6679 SrcDelta + G->getOffset()); 6680 } 6681 6682 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6683 SelectionDAG &DAG) { 6684 // On Darwin, -Os means optimize for size without hurting performance, so 6685 // only really optimize for size when -Oz (MinSize) is used. 6686 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6687 return MF.getFunction().hasMinSize(); 6688 return DAG.shouldOptForSize(); 6689 } 6690 6691 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6692 SmallVector<SDValue, 32> &OutChains, unsigned From, 6693 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6694 SmallVector<SDValue, 16> &OutStoreChains) { 6695 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6696 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6697 SmallVector<SDValue, 16> GluedLoadChains; 6698 for (unsigned i = From; i < To; ++i) { 6699 OutChains.push_back(OutLoadChains[i]); 6700 GluedLoadChains.push_back(OutLoadChains[i]); 6701 } 6702 6703 // Chain for all loads. 6704 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6705 GluedLoadChains); 6706 6707 for (unsigned i = From; i < To; ++i) { 6708 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6709 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6710 ST->getBasePtr(), ST->getMemoryVT(), 6711 ST->getMemOperand()); 6712 OutChains.push_back(NewStore); 6713 } 6714 } 6715 6716 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6717 SDValue Chain, SDValue Dst, SDValue Src, 6718 uint64_t Size, Align Alignment, 6719 bool isVol, bool AlwaysInline, 6720 MachinePointerInfo DstPtrInfo, 6721 MachinePointerInfo SrcPtrInfo, 6722 const AAMDNodes &AAInfo) { 6723 // Turn a memcpy of undef to nop. 6724 // FIXME: We need to honor volatile even is Src is undef. 6725 if (Src.isUndef()) 6726 return Chain; 6727 6728 // Expand memcpy to a series of load and store ops if the size operand falls 6729 // below a certain threshold. 6730 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6731 // rather than maybe a humongous number of loads and stores. 6732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6733 const DataLayout &DL = DAG.getDataLayout(); 6734 LLVMContext &C = *DAG.getContext(); 6735 std::vector<EVT> MemOps; 6736 bool DstAlignCanChange = false; 6737 MachineFunction &MF = DAG.getMachineFunction(); 6738 MachineFrameInfo &MFI = MF.getFrameInfo(); 6739 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6740 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6741 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6742 DstAlignCanChange = true; 6743 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6744 if (!SrcAlign || Alignment > *SrcAlign) 6745 SrcAlign = Alignment; 6746 assert(SrcAlign && "SrcAlign must be set"); 6747 ConstantDataArraySlice Slice; 6748 // If marked as volatile, perform a copy even when marked as constant. 6749 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6750 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6751 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6752 const MemOp Op = isZeroConstant 6753 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6754 /*IsZeroMemset*/ true, isVol) 6755 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6756 *SrcAlign, isVol, CopyFromConstant); 6757 if (!TLI.findOptimalMemOpLowering( 6758 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6759 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6760 return SDValue(); 6761 6762 if (DstAlignCanChange) { 6763 Type *Ty = MemOps[0].getTypeForEVT(C); 6764 Align NewAlign = DL.getABITypeAlign(Ty); 6765 6766 // Don't promote to an alignment that would require dynamic stack 6767 // realignment. 6768 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6769 if (!TRI->hasStackRealignment(MF)) 6770 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6771 NewAlign = NewAlign.previous(); 6772 6773 if (NewAlign > Alignment) { 6774 // Give the stack frame object a larger alignment if needed. 6775 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6776 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6777 Alignment = NewAlign; 6778 } 6779 } 6780 6781 // Prepare AAInfo for loads/stores after lowering this memcpy. 6782 AAMDNodes NewAAInfo = AAInfo; 6783 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6784 6785 MachineMemOperand::Flags MMOFlags = 6786 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6787 SmallVector<SDValue, 16> OutLoadChains; 6788 SmallVector<SDValue, 16> OutStoreChains; 6789 SmallVector<SDValue, 32> OutChains; 6790 unsigned NumMemOps = MemOps.size(); 6791 uint64_t SrcOff = 0, DstOff = 0; 6792 for (unsigned i = 0; i != NumMemOps; ++i) { 6793 EVT VT = MemOps[i]; 6794 unsigned VTSize = VT.getSizeInBits() / 8; 6795 SDValue Value, Store; 6796 6797 if (VTSize > Size) { 6798 // Issuing an unaligned load / store pair that overlaps with the previous 6799 // pair. Adjust the offset accordingly. 6800 assert(i == NumMemOps-1 && i != 0); 6801 SrcOff -= VTSize - Size; 6802 DstOff -= VTSize - Size; 6803 } 6804 6805 if (CopyFromConstant && 6806 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6807 // It's unlikely a store of a vector immediate can be done in a single 6808 // instruction. It would require a load from a constantpool first. 6809 // We only handle zero vectors here. 6810 // FIXME: Handle other cases where store of vector immediate is done in 6811 // a single instruction. 6812 ConstantDataArraySlice SubSlice; 6813 if (SrcOff < Slice.Length) { 6814 SubSlice = Slice; 6815 SubSlice.move(SrcOff); 6816 } else { 6817 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6818 SubSlice.Array = nullptr; 6819 SubSlice.Offset = 0; 6820 SubSlice.Length = VTSize; 6821 } 6822 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6823 if (Value.getNode()) { 6824 Store = DAG.getStore( 6825 Chain, dl, Value, 6826 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6827 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6828 OutChains.push_back(Store); 6829 } 6830 } 6831 6832 if (!Store.getNode()) { 6833 // The type might not be legal for the target. This should only happen 6834 // if the type is smaller than a legal type, as on PPC, so the right 6835 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6836 // to Load/Store if NVT==VT. 6837 // FIXME does the case above also need this? 6838 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6839 assert(NVT.bitsGE(VT)); 6840 6841 bool isDereferenceable = 6842 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6843 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6844 if (isDereferenceable) 6845 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6846 6847 Value = DAG.getExtLoad( 6848 ISD::EXTLOAD, dl, NVT, Chain, 6849 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6850 SrcPtrInfo.getWithOffset(SrcOff), VT, 6851 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6852 OutLoadChains.push_back(Value.getValue(1)); 6853 6854 Store = DAG.getTruncStore( 6855 Chain, dl, Value, 6856 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6857 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6858 OutStoreChains.push_back(Store); 6859 } 6860 SrcOff += VTSize; 6861 DstOff += VTSize; 6862 Size -= VTSize; 6863 } 6864 6865 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6866 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6867 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6868 6869 if (NumLdStInMemcpy) { 6870 // It may be that memcpy might be converted to memset if it's memcpy 6871 // of constants. In such a case, we won't have loads and stores, but 6872 // just stores. In the absence of loads, there is nothing to gang up. 6873 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6874 // If target does not care, just leave as it. 6875 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6876 OutChains.push_back(OutLoadChains[i]); 6877 OutChains.push_back(OutStoreChains[i]); 6878 } 6879 } else { 6880 // Ld/St less than/equal limit set by target. 6881 if (NumLdStInMemcpy <= GluedLdStLimit) { 6882 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6883 NumLdStInMemcpy, OutLoadChains, 6884 OutStoreChains); 6885 } else { 6886 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6887 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6888 unsigned GlueIter = 0; 6889 6890 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6891 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6892 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6893 6894 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6895 OutLoadChains, OutStoreChains); 6896 GlueIter += GluedLdStLimit; 6897 } 6898 6899 // Residual ld/st. 6900 if (RemainingLdStInMemcpy) { 6901 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6902 RemainingLdStInMemcpy, OutLoadChains, 6903 OutStoreChains); 6904 } 6905 } 6906 } 6907 } 6908 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6909 } 6910 6911 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6912 SDValue Chain, SDValue Dst, SDValue Src, 6913 uint64_t Size, Align Alignment, 6914 bool isVol, bool AlwaysInline, 6915 MachinePointerInfo DstPtrInfo, 6916 MachinePointerInfo SrcPtrInfo, 6917 const AAMDNodes &AAInfo) { 6918 // Turn a memmove of undef to nop. 6919 // FIXME: We need to honor volatile even is Src is undef. 6920 if (Src.isUndef()) 6921 return Chain; 6922 6923 // Expand memmove to a series of load and store ops if the size operand falls 6924 // below a certain threshold. 6925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6926 const DataLayout &DL = DAG.getDataLayout(); 6927 LLVMContext &C = *DAG.getContext(); 6928 std::vector<EVT> MemOps; 6929 bool DstAlignCanChange = false; 6930 MachineFunction &MF = DAG.getMachineFunction(); 6931 MachineFrameInfo &MFI = MF.getFrameInfo(); 6932 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6933 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6934 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6935 DstAlignCanChange = true; 6936 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6937 if (!SrcAlign || Alignment > *SrcAlign) 6938 SrcAlign = Alignment; 6939 assert(SrcAlign && "SrcAlign must be set"); 6940 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6941 if (!TLI.findOptimalMemOpLowering( 6942 MemOps, Limit, 6943 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6944 /*IsVolatile*/ true), 6945 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6946 MF.getFunction().getAttributes())) 6947 return SDValue(); 6948 6949 if (DstAlignCanChange) { 6950 Type *Ty = MemOps[0].getTypeForEVT(C); 6951 Align NewAlign = DL.getABITypeAlign(Ty); 6952 if (NewAlign > Alignment) { 6953 // Give the stack frame object a larger alignment if needed. 6954 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6955 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6956 Alignment = NewAlign; 6957 } 6958 } 6959 6960 // Prepare AAInfo for loads/stores after lowering this memmove. 6961 AAMDNodes NewAAInfo = AAInfo; 6962 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6963 6964 MachineMemOperand::Flags MMOFlags = 6965 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6966 uint64_t SrcOff = 0, DstOff = 0; 6967 SmallVector<SDValue, 8> LoadValues; 6968 SmallVector<SDValue, 8> LoadChains; 6969 SmallVector<SDValue, 8> OutChains; 6970 unsigned NumMemOps = MemOps.size(); 6971 for (unsigned i = 0; i < NumMemOps; i++) { 6972 EVT VT = MemOps[i]; 6973 unsigned VTSize = VT.getSizeInBits() / 8; 6974 SDValue Value; 6975 6976 bool isDereferenceable = 6977 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6978 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6979 if (isDereferenceable) 6980 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6981 6982 Value = DAG.getLoad( 6983 VT, dl, Chain, 6984 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6985 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6986 LoadValues.push_back(Value); 6987 LoadChains.push_back(Value.getValue(1)); 6988 SrcOff += VTSize; 6989 } 6990 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6991 OutChains.clear(); 6992 for (unsigned i = 0; i < NumMemOps; i++) { 6993 EVT VT = MemOps[i]; 6994 unsigned VTSize = VT.getSizeInBits() / 8; 6995 SDValue Store; 6996 6997 Store = DAG.getStore( 6998 Chain, dl, LoadValues[i], 6999 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7000 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 7001 OutChains.push_back(Store); 7002 DstOff += VTSize; 7003 } 7004 7005 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7006 } 7007 7008 /// Lower the call to 'memset' intrinsic function into a series of store 7009 /// operations. 7010 /// 7011 /// \param DAG Selection DAG where lowered code is placed. 7012 /// \param dl Link to corresponding IR location. 7013 /// \param Chain Control flow dependency. 7014 /// \param Dst Pointer to destination memory location. 7015 /// \param Src Value of byte to write into the memory. 7016 /// \param Size Number of bytes to write. 7017 /// \param Alignment Alignment of the destination in bytes. 7018 /// \param isVol True if destination is volatile. 7019 /// \param AlwaysInline Makes sure no function call is generated. 7020 /// \param DstPtrInfo IR information on the memory pointer. 7021 /// \returns New head in the control flow, if lowering was successful, empty 7022 /// SDValue otherwise. 7023 /// 7024 /// The function tries to replace 'llvm.memset' intrinsic with several store 7025 /// operations and value calculation code. This is usually profitable for small 7026 /// memory size or when the semantic requires inlining. 7027 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7028 SDValue Chain, SDValue Dst, SDValue Src, 7029 uint64_t Size, Align Alignment, bool isVol, 7030 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7031 const AAMDNodes &AAInfo) { 7032 // Turn a memset of undef to nop. 7033 // FIXME: We need to honor volatile even is Src is undef. 7034 if (Src.isUndef()) 7035 return Chain; 7036 7037 // Expand memset to a series of load/store ops if the size operand 7038 // falls below a certain threshold. 7039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7040 std::vector<EVT> MemOps; 7041 bool DstAlignCanChange = false; 7042 MachineFunction &MF = DAG.getMachineFunction(); 7043 MachineFrameInfo &MFI = MF.getFrameInfo(); 7044 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7045 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7046 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7047 DstAlignCanChange = true; 7048 bool IsZeroVal = 7049 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 7050 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7051 7052 if (!TLI.findOptimalMemOpLowering( 7053 MemOps, Limit, 7054 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7055 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7056 return SDValue(); 7057 7058 if (DstAlignCanChange) { 7059 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7060 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 7061 if (NewAlign > Alignment) { 7062 // Give the stack frame object a larger alignment if needed. 7063 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7064 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7065 Alignment = NewAlign; 7066 } 7067 } 7068 7069 SmallVector<SDValue, 8> OutChains; 7070 uint64_t DstOff = 0; 7071 unsigned NumMemOps = MemOps.size(); 7072 7073 // Find the largest store and generate the bit pattern for it. 7074 EVT LargestVT = MemOps[0]; 7075 for (unsigned i = 1; i < NumMemOps; i++) 7076 if (MemOps[i].bitsGT(LargestVT)) 7077 LargestVT = MemOps[i]; 7078 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7079 7080 // Prepare AAInfo for loads/stores after lowering this memset. 7081 AAMDNodes NewAAInfo = AAInfo; 7082 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7083 7084 for (unsigned i = 0; i < NumMemOps; i++) { 7085 EVT VT = MemOps[i]; 7086 unsigned VTSize = VT.getSizeInBits() / 8; 7087 if (VTSize > Size) { 7088 // Issuing an unaligned load / store pair that overlaps with the previous 7089 // pair. Adjust the offset accordingly. 7090 assert(i == NumMemOps-1 && i != 0); 7091 DstOff -= VTSize - Size; 7092 } 7093 7094 // If this store is smaller than the largest store see whether we can get 7095 // the smaller value for free with a truncate. 7096 SDValue Value = MemSetValue; 7097 if (VT.bitsLT(LargestVT)) { 7098 if (!LargestVT.isVector() && !VT.isVector() && 7099 TLI.isTruncateFree(LargestVT, VT)) 7100 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7101 else 7102 Value = getMemsetValue(Src, VT, DAG, dl); 7103 } 7104 assert(Value.getValueType() == VT && "Value with wrong type."); 7105 SDValue Store = DAG.getStore( 7106 Chain, dl, Value, 7107 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7108 DstPtrInfo.getWithOffset(DstOff), Alignment, 7109 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7110 NewAAInfo); 7111 OutChains.push_back(Store); 7112 DstOff += VT.getSizeInBits() / 8; 7113 Size -= VTSize; 7114 } 7115 7116 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7117 } 7118 7119 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7120 unsigned AS) { 7121 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7122 // pointer operands can be losslessly bitcasted to pointers of address space 0 7123 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7124 report_fatal_error("cannot lower memory intrinsic in address space " + 7125 Twine(AS)); 7126 } 7127 } 7128 7129 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7130 SDValue Src, SDValue Size, Align Alignment, 7131 bool isVol, bool AlwaysInline, bool isTailCall, 7132 MachinePointerInfo DstPtrInfo, 7133 MachinePointerInfo SrcPtrInfo, 7134 const AAMDNodes &AAInfo) { 7135 // Check to see if we should lower the memcpy to loads and stores first. 7136 // For cases within the target-specified limits, this is the best choice. 7137 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7138 if (ConstantSize) { 7139 // Memcpy with size zero? Just return the original chain. 7140 if (ConstantSize->isZero()) 7141 return Chain; 7142 7143 SDValue Result = getMemcpyLoadsAndStores( 7144 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7145 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7146 if (Result.getNode()) 7147 return Result; 7148 } 7149 7150 // Then check to see if we should lower the memcpy with target-specific 7151 // code. If the target chooses to do this, this is the next best. 7152 if (TSI) { 7153 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7154 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7155 DstPtrInfo, SrcPtrInfo); 7156 if (Result.getNode()) 7157 return Result; 7158 } 7159 7160 // If we really need inline code and the target declined to provide it, 7161 // use a (potentially long) sequence of loads and stores. 7162 if (AlwaysInline) { 7163 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7164 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 7165 ConstantSize->getZExtValue(), Alignment, 7166 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 7167 } 7168 7169 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7170 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7171 7172 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7173 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7174 // respect volatile, so they may do things like read or write memory 7175 // beyond the given memory regions. But fixing this isn't easy, and most 7176 // people don't care. 7177 7178 // Emit a library call. 7179 TargetLowering::ArgListTy Args; 7180 TargetLowering::ArgListEntry Entry; 7181 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7182 Entry.Node = Dst; Args.push_back(Entry); 7183 Entry.Node = Src; Args.push_back(Entry); 7184 7185 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7186 Entry.Node = Size; Args.push_back(Entry); 7187 // FIXME: pass in SDLoc 7188 TargetLowering::CallLoweringInfo CLI(*this); 7189 CLI.setDebugLoc(dl) 7190 .setChain(Chain) 7191 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7192 Dst.getValueType().getTypeForEVT(*getContext()), 7193 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7194 TLI->getPointerTy(getDataLayout())), 7195 std::move(Args)) 7196 .setDiscardResult() 7197 .setTailCall(isTailCall); 7198 7199 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7200 return CallResult.second; 7201 } 7202 7203 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7204 SDValue Dst, SDValue Src, SDValue Size, 7205 Type *SizeTy, unsigned ElemSz, 7206 bool isTailCall, 7207 MachinePointerInfo DstPtrInfo, 7208 MachinePointerInfo SrcPtrInfo) { 7209 // Emit a library call. 7210 TargetLowering::ArgListTy Args; 7211 TargetLowering::ArgListEntry Entry; 7212 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7213 Entry.Node = Dst; 7214 Args.push_back(Entry); 7215 7216 Entry.Node = Src; 7217 Args.push_back(Entry); 7218 7219 Entry.Ty = SizeTy; 7220 Entry.Node = Size; 7221 Args.push_back(Entry); 7222 7223 RTLIB::Libcall LibraryCall = 7224 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7225 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7226 report_fatal_error("Unsupported element size"); 7227 7228 TargetLowering::CallLoweringInfo CLI(*this); 7229 CLI.setDebugLoc(dl) 7230 .setChain(Chain) 7231 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7232 Type::getVoidTy(*getContext()), 7233 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7234 TLI->getPointerTy(getDataLayout())), 7235 std::move(Args)) 7236 .setDiscardResult() 7237 .setTailCall(isTailCall); 7238 7239 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7240 return CallResult.second; 7241 } 7242 7243 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7244 SDValue Src, SDValue Size, Align Alignment, 7245 bool isVol, bool isTailCall, 7246 MachinePointerInfo DstPtrInfo, 7247 MachinePointerInfo SrcPtrInfo, 7248 const AAMDNodes &AAInfo) { 7249 // Check to see if we should lower the memmove to loads and stores first. 7250 // For cases within the target-specified limits, this is the best choice. 7251 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7252 if (ConstantSize) { 7253 // Memmove with size zero? Just return the original chain. 7254 if (ConstantSize->isZero()) 7255 return Chain; 7256 7257 SDValue Result = getMemmoveLoadsAndStores( 7258 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7259 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7260 if (Result.getNode()) 7261 return Result; 7262 } 7263 7264 // Then check to see if we should lower the memmove with target-specific 7265 // code. If the target chooses to do this, this is the next best. 7266 if (TSI) { 7267 SDValue Result = 7268 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7269 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7270 if (Result.getNode()) 7271 return Result; 7272 } 7273 7274 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7275 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7276 7277 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7278 // not be safe. See memcpy above for more details. 7279 7280 // Emit a library call. 7281 TargetLowering::ArgListTy Args; 7282 TargetLowering::ArgListEntry Entry; 7283 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7284 Entry.Node = Dst; Args.push_back(Entry); 7285 Entry.Node = Src; Args.push_back(Entry); 7286 7287 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7288 Entry.Node = Size; Args.push_back(Entry); 7289 // FIXME: pass in SDLoc 7290 TargetLowering::CallLoweringInfo CLI(*this); 7291 CLI.setDebugLoc(dl) 7292 .setChain(Chain) 7293 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7294 Dst.getValueType().getTypeForEVT(*getContext()), 7295 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7296 TLI->getPointerTy(getDataLayout())), 7297 std::move(Args)) 7298 .setDiscardResult() 7299 .setTailCall(isTailCall); 7300 7301 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7302 return CallResult.second; 7303 } 7304 7305 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7306 SDValue Dst, SDValue Src, SDValue Size, 7307 Type *SizeTy, unsigned ElemSz, 7308 bool isTailCall, 7309 MachinePointerInfo DstPtrInfo, 7310 MachinePointerInfo SrcPtrInfo) { 7311 // Emit a library call. 7312 TargetLowering::ArgListTy Args; 7313 TargetLowering::ArgListEntry Entry; 7314 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7315 Entry.Node = Dst; 7316 Args.push_back(Entry); 7317 7318 Entry.Node = Src; 7319 Args.push_back(Entry); 7320 7321 Entry.Ty = SizeTy; 7322 Entry.Node = Size; 7323 Args.push_back(Entry); 7324 7325 RTLIB::Libcall LibraryCall = 7326 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7327 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7328 report_fatal_error("Unsupported element size"); 7329 7330 TargetLowering::CallLoweringInfo CLI(*this); 7331 CLI.setDebugLoc(dl) 7332 .setChain(Chain) 7333 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7334 Type::getVoidTy(*getContext()), 7335 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7336 TLI->getPointerTy(getDataLayout())), 7337 std::move(Args)) 7338 .setDiscardResult() 7339 .setTailCall(isTailCall); 7340 7341 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7342 return CallResult.second; 7343 } 7344 7345 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7346 SDValue Src, SDValue Size, Align Alignment, 7347 bool isVol, bool AlwaysInline, bool isTailCall, 7348 MachinePointerInfo DstPtrInfo, 7349 const AAMDNodes &AAInfo) { 7350 // Check to see if we should lower the memset to stores first. 7351 // For cases within the target-specified limits, this is the best choice. 7352 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7353 if (ConstantSize) { 7354 // Memset with size zero? Just return the original chain. 7355 if (ConstantSize->isZero()) 7356 return Chain; 7357 7358 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7359 ConstantSize->getZExtValue(), Alignment, 7360 isVol, false, DstPtrInfo, AAInfo); 7361 7362 if (Result.getNode()) 7363 return Result; 7364 } 7365 7366 // Then check to see if we should lower the memset with target-specific 7367 // code. If the target chooses to do this, this is the next best. 7368 if (TSI) { 7369 SDValue Result = TSI->EmitTargetCodeForMemset( 7370 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7371 if (Result.getNode()) 7372 return Result; 7373 } 7374 7375 // If we really need inline code and the target declined to provide it, 7376 // use a (potentially long) sequence of loads and stores. 7377 if (AlwaysInline) { 7378 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7379 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7380 ConstantSize->getZExtValue(), Alignment, 7381 isVol, true, DstPtrInfo, AAInfo); 7382 assert(Result && 7383 "getMemsetStores must return a valid sequence when AlwaysInline"); 7384 return Result; 7385 } 7386 7387 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7388 7389 // Emit a library call. 7390 auto &Ctx = *getContext(); 7391 const auto& DL = getDataLayout(); 7392 7393 TargetLowering::CallLoweringInfo CLI(*this); 7394 // FIXME: pass in SDLoc 7395 CLI.setDebugLoc(dl).setChain(Chain); 7396 7397 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7398 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7399 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7400 7401 // Helper function to create an Entry from Node and Type. 7402 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7403 TargetLowering::ArgListEntry Entry; 7404 Entry.Node = Node; 7405 Entry.Ty = Ty; 7406 return Entry; 7407 }; 7408 7409 // If zeroing out and bzero is present, use it. 7410 if (SrcIsZero && BzeroName) { 7411 TargetLowering::ArgListTy Args; 7412 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7413 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7414 CLI.setLibCallee( 7415 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7416 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7417 } else { 7418 TargetLowering::ArgListTy Args; 7419 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7420 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7421 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7422 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7423 Dst.getValueType().getTypeForEVT(Ctx), 7424 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7425 TLI->getPointerTy(DL)), 7426 std::move(Args)); 7427 } 7428 7429 CLI.setDiscardResult().setTailCall(isTailCall); 7430 7431 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7432 return CallResult.second; 7433 } 7434 7435 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7436 SDValue Dst, SDValue Value, SDValue Size, 7437 Type *SizeTy, unsigned ElemSz, 7438 bool isTailCall, 7439 MachinePointerInfo DstPtrInfo) { 7440 // Emit a library call. 7441 TargetLowering::ArgListTy Args; 7442 TargetLowering::ArgListEntry Entry; 7443 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7444 Entry.Node = Dst; 7445 Args.push_back(Entry); 7446 7447 Entry.Ty = Type::getInt8Ty(*getContext()); 7448 Entry.Node = Value; 7449 Args.push_back(Entry); 7450 7451 Entry.Ty = SizeTy; 7452 Entry.Node = Size; 7453 Args.push_back(Entry); 7454 7455 RTLIB::Libcall LibraryCall = 7456 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7457 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7458 report_fatal_error("Unsupported element size"); 7459 7460 TargetLowering::CallLoweringInfo CLI(*this); 7461 CLI.setDebugLoc(dl) 7462 .setChain(Chain) 7463 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7464 Type::getVoidTy(*getContext()), 7465 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7466 TLI->getPointerTy(getDataLayout())), 7467 std::move(Args)) 7468 .setDiscardResult() 7469 .setTailCall(isTailCall); 7470 7471 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7472 return CallResult.second; 7473 } 7474 7475 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7476 SDVTList VTList, ArrayRef<SDValue> Ops, 7477 MachineMemOperand *MMO) { 7478 FoldingSetNodeID ID; 7479 ID.AddInteger(MemVT.getRawBits()); 7480 AddNodeIDNode(ID, Opcode, VTList, Ops); 7481 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7482 ID.AddInteger(MMO->getFlags()); 7483 void* IP = nullptr; 7484 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7485 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7486 return SDValue(E, 0); 7487 } 7488 7489 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7490 VTList, MemVT, MMO); 7491 createOperands(N, Ops); 7492 7493 CSEMap.InsertNode(N, IP); 7494 InsertNode(N); 7495 return SDValue(N, 0); 7496 } 7497 7498 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7499 EVT MemVT, SDVTList VTs, SDValue Chain, 7500 SDValue Ptr, SDValue Cmp, SDValue Swp, 7501 MachineMemOperand *MMO) { 7502 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7503 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7504 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7505 7506 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7507 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7508 } 7509 7510 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7511 SDValue Chain, SDValue Ptr, SDValue Val, 7512 MachineMemOperand *MMO) { 7513 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7514 Opcode == ISD::ATOMIC_LOAD_SUB || 7515 Opcode == ISD::ATOMIC_LOAD_AND || 7516 Opcode == ISD::ATOMIC_LOAD_CLR || 7517 Opcode == ISD::ATOMIC_LOAD_OR || 7518 Opcode == ISD::ATOMIC_LOAD_XOR || 7519 Opcode == ISD::ATOMIC_LOAD_NAND || 7520 Opcode == ISD::ATOMIC_LOAD_MIN || 7521 Opcode == ISD::ATOMIC_LOAD_MAX || 7522 Opcode == ISD::ATOMIC_LOAD_UMIN || 7523 Opcode == ISD::ATOMIC_LOAD_UMAX || 7524 Opcode == ISD::ATOMIC_LOAD_FADD || 7525 Opcode == ISD::ATOMIC_LOAD_FSUB || 7526 Opcode == ISD::ATOMIC_LOAD_FMAX || 7527 Opcode == ISD::ATOMIC_LOAD_FMIN || 7528 Opcode == ISD::ATOMIC_SWAP || 7529 Opcode == ISD::ATOMIC_STORE) && 7530 "Invalid Atomic Op"); 7531 7532 EVT VT = Val.getValueType(); 7533 7534 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7535 getVTList(VT, MVT::Other); 7536 SDValue Ops[] = {Chain, Ptr, Val}; 7537 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7538 } 7539 7540 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7541 EVT VT, SDValue Chain, SDValue Ptr, 7542 MachineMemOperand *MMO) { 7543 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7544 7545 SDVTList VTs = getVTList(VT, MVT::Other); 7546 SDValue Ops[] = {Chain, Ptr}; 7547 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7548 } 7549 7550 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7551 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7552 if (Ops.size() == 1) 7553 return Ops[0]; 7554 7555 SmallVector<EVT, 4> VTs; 7556 VTs.reserve(Ops.size()); 7557 for (const SDValue &Op : Ops) 7558 VTs.push_back(Op.getValueType()); 7559 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7560 } 7561 7562 SDValue SelectionDAG::getMemIntrinsicNode( 7563 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7564 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7565 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7566 if (!Size && MemVT.isScalableVector()) 7567 Size = MemoryLocation::UnknownSize; 7568 else if (!Size) 7569 Size = MemVT.getStoreSize(); 7570 7571 MachineFunction &MF = getMachineFunction(); 7572 MachineMemOperand *MMO = 7573 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7574 7575 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7576 } 7577 7578 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7579 SDVTList VTList, 7580 ArrayRef<SDValue> Ops, EVT MemVT, 7581 MachineMemOperand *MMO) { 7582 assert((Opcode == ISD::INTRINSIC_VOID || 7583 Opcode == ISD::INTRINSIC_W_CHAIN || 7584 Opcode == ISD::PREFETCH || 7585 ((int)Opcode <= std::numeric_limits<int>::max() && 7586 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7587 "Opcode is not a memory-accessing opcode!"); 7588 7589 // Memoize the node unless it returns a flag. 7590 MemIntrinsicSDNode *N; 7591 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7592 FoldingSetNodeID ID; 7593 AddNodeIDNode(ID, Opcode, VTList, Ops); 7594 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7595 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7596 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7597 ID.AddInteger(MMO->getFlags()); 7598 void *IP = nullptr; 7599 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7600 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7601 return SDValue(E, 0); 7602 } 7603 7604 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7605 VTList, MemVT, MMO); 7606 createOperands(N, Ops); 7607 7608 CSEMap.InsertNode(N, IP); 7609 } else { 7610 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7611 VTList, MemVT, MMO); 7612 createOperands(N, Ops); 7613 } 7614 InsertNode(N); 7615 SDValue V(N, 0); 7616 NewSDValueDbgMsg(V, "Creating new node: ", this); 7617 return V; 7618 } 7619 7620 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7621 SDValue Chain, int FrameIndex, 7622 int64_t Size, int64_t Offset) { 7623 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7624 const auto VTs = getVTList(MVT::Other); 7625 SDValue Ops[2] = { 7626 Chain, 7627 getFrameIndex(FrameIndex, 7628 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7629 true)}; 7630 7631 FoldingSetNodeID ID; 7632 AddNodeIDNode(ID, Opcode, VTs, Ops); 7633 ID.AddInteger(FrameIndex); 7634 ID.AddInteger(Size); 7635 ID.AddInteger(Offset); 7636 void *IP = nullptr; 7637 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7638 return SDValue(E, 0); 7639 7640 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7641 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7642 createOperands(N, Ops); 7643 CSEMap.InsertNode(N, IP); 7644 InsertNode(N); 7645 SDValue V(N, 0); 7646 NewSDValueDbgMsg(V, "Creating new node: ", this); 7647 return V; 7648 } 7649 7650 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7651 uint64_t Guid, uint64_t Index, 7652 uint32_t Attr) { 7653 const unsigned Opcode = ISD::PSEUDO_PROBE; 7654 const auto VTs = getVTList(MVT::Other); 7655 SDValue Ops[] = {Chain}; 7656 FoldingSetNodeID ID; 7657 AddNodeIDNode(ID, Opcode, VTs, Ops); 7658 ID.AddInteger(Guid); 7659 ID.AddInteger(Index); 7660 void *IP = nullptr; 7661 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7662 return SDValue(E, 0); 7663 7664 auto *N = newSDNode<PseudoProbeSDNode>( 7665 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7666 createOperands(N, Ops); 7667 CSEMap.InsertNode(N, IP); 7668 InsertNode(N); 7669 SDValue V(N, 0); 7670 NewSDValueDbgMsg(V, "Creating new node: ", this); 7671 return V; 7672 } 7673 7674 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7675 /// MachinePointerInfo record from it. This is particularly useful because the 7676 /// code generator has many cases where it doesn't bother passing in a 7677 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7678 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7679 SelectionDAG &DAG, SDValue Ptr, 7680 int64_t Offset = 0) { 7681 // If this is FI+Offset, we can model it. 7682 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7683 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7684 FI->getIndex(), Offset); 7685 7686 // If this is (FI+Offset1)+Offset2, we can model it. 7687 if (Ptr.getOpcode() != ISD::ADD || 7688 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7689 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7690 return Info; 7691 7692 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7693 return MachinePointerInfo::getFixedStack( 7694 DAG.getMachineFunction(), FI, 7695 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7696 } 7697 7698 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7699 /// MachinePointerInfo record from it. This is particularly useful because the 7700 /// code generator has many cases where it doesn't bother passing in a 7701 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7702 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7703 SelectionDAG &DAG, SDValue Ptr, 7704 SDValue OffsetOp) { 7705 // If the 'Offset' value isn't a constant, we can't handle this. 7706 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7707 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7708 if (OffsetOp.isUndef()) 7709 return InferPointerInfo(Info, DAG, Ptr); 7710 return Info; 7711 } 7712 7713 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7714 EVT VT, const SDLoc &dl, SDValue Chain, 7715 SDValue Ptr, SDValue Offset, 7716 MachinePointerInfo PtrInfo, EVT MemVT, 7717 Align Alignment, 7718 MachineMemOperand::Flags MMOFlags, 7719 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7720 assert(Chain.getValueType() == MVT::Other && 7721 "Invalid chain type"); 7722 7723 MMOFlags |= MachineMemOperand::MOLoad; 7724 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7725 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7726 // clients. 7727 if (PtrInfo.V.isNull()) 7728 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7729 7730 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7731 MachineFunction &MF = getMachineFunction(); 7732 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7733 Alignment, AAInfo, Ranges); 7734 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7735 } 7736 7737 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7738 EVT VT, const SDLoc &dl, SDValue Chain, 7739 SDValue Ptr, SDValue Offset, EVT MemVT, 7740 MachineMemOperand *MMO) { 7741 if (VT == MemVT) { 7742 ExtType = ISD::NON_EXTLOAD; 7743 } else if (ExtType == ISD::NON_EXTLOAD) { 7744 assert(VT == MemVT && "Non-extending load from different memory type!"); 7745 } else { 7746 // Extending load. 7747 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7748 "Should only be an extending load, not truncating!"); 7749 assert(VT.isInteger() == MemVT.isInteger() && 7750 "Cannot convert from FP to Int or Int -> FP!"); 7751 assert(VT.isVector() == MemVT.isVector() && 7752 "Cannot use an ext load to convert to or from a vector!"); 7753 assert((!VT.isVector() || 7754 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7755 "Cannot use an ext load to change the number of vector elements!"); 7756 } 7757 7758 bool Indexed = AM != ISD::UNINDEXED; 7759 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7760 7761 SDVTList VTs = Indexed ? 7762 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7763 SDValue Ops[] = { Chain, Ptr, Offset }; 7764 FoldingSetNodeID ID; 7765 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7766 ID.AddInteger(MemVT.getRawBits()); 7767 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7768 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7769 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7770 ID.AddInteger(MMO->getFlags()); 7771 void *IP = nullptr; 7772 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7773 cast<LoadSDNode>(E)->refineAlignment(MMO); 7774 return SDValue(E, 0); 7775 } 7776 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7777 ExtType, MemVT, MMO); 7778 createOperands(N, Ops); 7779 7780 CSEMap.InsertNode(N, IP); 7781 InsertNode(N); 7782 SDValue V(N, 0); 7783 NewSDValueDbgMsg(V, "Creating new node: ", this); 7784 return V; 7785 } 7786 7787 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7788 SDValue Ptr, MachinePointerInfo PtrInfo, 7789 MaybeAlign Alignment, 7790 MachineMemOperand::Flags MMOFlags, 7791 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7792 SDValue Undef = getUNDEF(Ptr.getValueType()); 7793 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7794 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7795 } 7796 7797 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7798 SDValue Ptr, MachineMemOperand *MMO) { 7799 SDValue Undef = getUNDEF(Ptr.getValueType()); 7800 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7801 VT, MMO); 7802 } 7803 7804 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7805 EVT VT, SDValue Chain, SDValue Ptr, 7806 MachinePointerInfo PtrInfo, EVT MemVT, 7807 MaybeAlign Alignment, 7808 MachineMemOperand::Flags MMOFlags, 7809 const AAMDNodes &AAInfo) { 7810 SDValue Undef = getUNDEF(Ptr.getValueType()); 7811 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7812 MemVT, Alignment, MMOFlags, AAInfo); 7813 } 7814 7815 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7816 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7817 MachineMemOperand *MMO) { 7818 SDValue Undef = getUNDEF(Ptr.getValueType()); 7819 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7820 MemVT, MMO); 7821 } 7822 7823 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7824 SDValue Base, SDValue Offset, 7825 ISD::MemIndexedMode AM) { 7826 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7827 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7828 // Don't propagate the invariant or dereferenceable flags. 7829 auto MMOFlags = 7830 LD->getMemOperand()->getFlags() & 7831 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7832 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7833 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7834 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7835 } 7836 7837 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7838 SDValue Ptr, MachinePointerInfo PtrInfo, 7839 Align Alignment, 7840 MachineMemOperand::Flags MMOFlags, 7841 const AAMDNodes &AAInfo) { 7842 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7843 7844 MMOFlags |= MachineMemOperand::MOStore; 7845 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7846 7847 if (PtrInfo.V.isNull()) 7848 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7849 7850 MachineFunction &MF = getMachineFunction(); 7851 uint64_t Size = 7852 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7853 MachineMemOperand *MMO = 7854 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7855 return getStore(Chain, dl, Val, Ptr, MMO); 7856 } 7857 7858 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7859 SDValue Ptr, MachineMemOperand *MMO) { 7860 assert(Chain.getValueType() == MVT::Other && 7861 "Invalid chain type"); 7862 EVT VT = Val.getValueType(); 7863 SDVTList VTs = getVTList(MVT::Other); 7864 SDValue Undef = getUNDEF(Ptr.getValueType()); 7865 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7866 FoldingSetNodeID ID; 7867 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7868 ID.AddInteger(VT.getRawBits()); 7869 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7870 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7871 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7872 ID.AddInteger(MMO->getFlags()); 7873 void *IP = nullptr; 7874 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7875 cast<StoreSDNode>(E)->refineAlignment(MMO); 7876 return SDValue(E, 0); 7877 } 7878 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7879 ISD::UNINDEXED, false, VT, MMO); 7880 createOperands(N, Ops); 7881 7882 CSEMap.InsertNode(N, IP); 7883 InsertNode(N); 7884 SDValue V(N, 0); 7885 NewSDValueDbgMsg(V, "Creating new node: ", this); 7886 return V; 7887 } 7888 7889 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7890 SDValue Ptr, MachinePointerInfo PtrInfo, 7891 EVT SVT, Align Alignment, 7892 MachineMemOperand::Flags MMOFlags, 7893 const AAMDNodes &AAInfo) { 7894 assert(Chain.getValueType() == MVT::Other && 7895 "Invalid chain type"); 7896 7897 MMOFlags |= MachineMemOperand::MOStore; 7898 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7899 7900 if (PtrInfo.V.isNull()) 7901 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7902 7903 MachineFunction &MF = getMachineFunction(); 7904 MachineMemOperand *MMO = MF.getMachineMemOperand( 7905 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7906 Alignment, AAInfo); 7907 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7908 } 7909 7910 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7911 SDValue Ptr, EVT SVT, 7912 MachineMemOperand *MMO) { 7913 EVT VT = Val.getValueType(); 7914 7915 assert(Chain.getValueType() == MVT::Other && 7916 "Invalid chain type"); 7917 if (VT == SVT) 7918 return getStore(Chain, dl, Val, Ptr, MMO); 7919 7920 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7921 "Should only be a truncating store, not extending!"); 7922 assert(VT.isInteger() == SVT.isInteger() && 7923 "Can't do FP-INT conversion!"); 7924 assert(VT.isVector() == SVT.isVector() && 7925 "Cannot use trunc store to convert to or from a vector!"); 7926 assert((!VT.isVector() || 7927 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7928 "Cannot use trunc store to change the number of vector elements!"); 7929 7930 SDVTList VTs = getVTList(MVT::Other); 7931 SDValue Undef = getUNDEF(Ptr.getValueType()); 7932 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7933 FoldingSetNodeID ID; 7934 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7935 ID.AddInteger(SVT.getRawBits()); 7936 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7937 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7938 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7939 ID.AddInteger(MMO->getFlags()); 7940 void *IP = nullptr; 7941 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7942 cast<StoreSDNode>(E)->refineAlignment(MMO); 7943 return SDValue(E, 0); 7944 } 7945 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7946 ISD::UNINDEXED, true, SVT, MMO); 7947 createOperands(N, Ops); 7948 7949 CSEMap.InsertNode(N, IP); 7950 InsertNode(N); 7951 SDValue V(N, 0); 7952 NewSDValueDbgMsg(V, "Creating new node: ", this); 7953 return V; 7954 } 7955 7956 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7957 SDValue Base, SDValue Offset, 7958 ISD::MemIndexedMode AM) { 7959 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7960 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7961 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7962 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7963 FoldingSetNodeID ID; 7964 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7965 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7966 ID.AddInteger(ST->getRawSubclassData()); 7967 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7968 ID.AddInteger(ST->getMemOperand()->getFlags()); 7969 void *IP = nullptr; 7970 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7971 return SDValue(E, 0); 7972 7973 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7974 ST->isTruncatingStore(), ST->getMemoryVT(), 7975 ST->getMemOperand()); 7976 createOperands(N, Ops); 7977 7978 CSEMap.InsertNode(N, IP); 7979 InsertNode(N); 7980 SDValue V(N, 0); 7981 NewSDValueDbgMsg(V, "Creating new node: ", this); 7982 return V; 7983 } 7984 7985 SDValue SelectionDAG::getLoadVP( 7986 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7987 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7988 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7989 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7990 const MDNode *Ranges, bool IsExpanding) { 7991 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7992 7993 MMOFlags |= MachineMemOperand::MOLoad; 7994 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7995 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7996 // clients. 7997 if (PtrInfo.V.isNull()) 7998 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7999 8000 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 8001 MachineFunction &MF = getMachineFunction(); 8002 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8003 Alignment, AAInfo, Ranges); 8004 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 8005 MMO, IsExpanding); 8006 } 8007 8008 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 8009 ISD::LoadExtType ExtType, EVT VT, 8010 const SDLoc &dl, SDValue Chain, SDValue Ptr, 8011 SDValue Offset, SDValue Mask, SDValue EVL, 8012 EVT MemVT, MachineMemOperand *MMO, 8013 bool IsExpanding) { 8014 bool Indexed = AM != ISD::UNINDEXED; 8015 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8016 8017 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8018 : getVTList(VT, MVT::Other); 8019 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 8020 FoldingSetNodeID ID; 8021 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 8022 ID.AddInteger(VT.getRawBits()); 8023 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 8024 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8025 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8026 ID.AddInteger(MMO->getFlags()); 8027 void *IP = nullptr; 8028 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8029 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8030 return SDValue(E, 0); 8031 } 8032 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8033 ExtType, IsExpanding, MemVT, MMO); 8034 createOperands(N, Ops); 8035 8036 CSEMap.InsertNode(N, IP); 8037 InsertNode(N); 8038 SDValue V(N, 0); 8039 NewSDValueDbgMsg(V, "Creating new node: ", this); 8040 return V; 8041 } 8042 8043 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8044 SDValue Ptr, SDValue Mask, SDValue EVL, 8045 MachinePointerInfo PtrInfo, 8046 MaybeAlign Alignment, 8047 MachineMemOperand::Flags MMOFlags, 8048 const AAMDNodes &AAInfo, const MDNode *Ranges, 8049 bool IsExpanding) { 8050 SDValue Undef = getUNDEF(Ptr.getValueType()); 8051 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8052 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8053 IsExpanding); 8054 } 8055 8056 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8057 SDValue Ptr, SDValue Mask, SDValue EVL, 8058 MachineMemOperand *MMO, bool IsExpanding) { 8059 SDValue Undef = getUNDEF(Ptr.getValueType()); 8060 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8061 Mask, EVL, VT, MMO, IsExpanding); 8062 } 8063 8064 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8065 EVT VT, SDValue Chain, SDValue Ptr, 8066 SDValue Mask, SDValue EVL, 8067 MachinePointerInfo PtrInfo, EVT MemVT, 8068 MaybeAlign Alignment, 8069 MachineMemOperand::Flags MMOFlags, 8070 const AAMDNodes &AAInfo, bool IsExpanding) { 8071 SDValue Undef = getUNDEF(Ptr.getValueType()); 8072 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8073 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8074 IsExpanding); 8075 } 8076 8077 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8078 EVT VT, SDValue Chain, SDValue Ptr, 8079 SDValue Mask, SDValue EVL, EVT MemVT, 8080 MachineMemOperand *MMO, bool IsExpanding) { 8081 SDValue Undef = getUNDEF(Ptr.getValueType()); 8082 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8083 EVL, MemVT, MMO, IsExpanding); 8084 } 8085 8086 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8087 SDValue Base, SDValue Offset, 8088 ISD::MemIndexedMode AM) { 8089 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8090 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8091 // Don't propagate the invariant or dereferenceable flags. 8092 auto MMOFlags = 8093 LD->getMemOperand()->getFlags() & 8094 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8095 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8096 LD->getChain(), Base, Offset, LD->getMask(), 8097 LD->getVectorLength(), LD->getPointerInfo(), 8098 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8099 nullptr, LD->isExpandingLoad()); 8100 } 8101 8102 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8103 SDValue Ptr, SDValue Offset, SDValue Mask, 8104 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8105 ISD::MemIndexedMode AM, bool IsTruncating, 8106 bool IsCompressing) { 8107 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8108 bool Indexed = AM != ISD::UNINDEXED; 8109 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8110 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8111 : getVTList(MVT::Other); 8112 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8113 FoldingSetNodeID ID; 8114 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8115 ID.AddInteger(MemVT.getRawBits()); 8116 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8117 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8118 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8119 ID.AddInteger(MMO->getFlags()); 8120 void *IP = nullptr; 8121 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8122 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8123 return SDValue(E, 0); 8124 } 8125 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8126 IsTruncating, IsCompressing, MemVT, MMO); 8127 createOperands(N, Ops); 8128 8129 CSEMap.InsertNode(N, IP); 8130 InsertNode(N); 8131 SDValue V(N, 0); 8132 NewSDValueDbgMsg(V, "Creating new node: ", this); 8133 return V; 8134 } 8135 8136 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8137 SDValue Val, SDValue Ptr, SDValue Mask, 8138 SDValue EVL, MachinePointerInfo PtrInfo, 8139 EVT SVT, Align Alignment, 8140 MachineMemOperand::Flags MMOFlags, 8141 const AAMDNodes &AAInfo, 8142 bool IsCompressing) { 8143 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8144 8145 MMOFlags |= MachineMemOperand::MOStore; 8146 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8147 8148 if (PtrInfo.V.isNull()) 8149 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8150 8151 MachineFunction &MF = getMachineFunction(); 8152 MachineMemOperand *MMO = MF.getMachineMemOperand( 8153 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8154 Alignment, AAInfo); 8155 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8156 IsCompressing); 8157 } 8158 8159 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8160 SDValue Val, SDValue Ptr, SDValue Mask, 8161 SDValue EVL, EVT SVT, 8162 MachineMemOperand *MMO, 8163 bool IsCompressing) { 8164 EVT VT = Val.getValueType(); 8165 8166 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8167 if (VT == SVT) 8168 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8169 EVL, VT, MMO, ISD::UNINDEXED, 8170 /*IsTruncating*/ false, IsCompressing); 8171 8172 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8173 "Should only be a truncating store, not extending!"); 8174 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8175 assert(VT.isVector() == SVT.isVector() && 8176 "Cannot use trunc store to convert to or from a vector!"); 8177 assert((!VT.isVector() || 8178 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8179 "Cannot use trunc store to change the number of vector elements!"); 8180 8181 SDVTList VTs = getVTList(MVT::Other); 8182 SDValue Undef = getUNDEF(Ptr.getValueType()); 8183 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8184 FoldingSetNodeID ID; 8185 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8186 ID.AddInteger(SVT.getRawBits()); 8187 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8188 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8189 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8190 ID.AddInteger(MMO->getFlags()); 8191 void *IP = nullptr; 8192 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8193 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8194 return SDValue(E, 0); 8195 } 8196 auto *N = 8197 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8198 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8199 createOperands(N, Ops); 8200 8201 CSEMap.InsertNode(N, IP); 8202 InsertNode(N); 8203 SDValue V(N, 0); 8204 NewSDValueDbgMsg(V, "Creating new node: ", this); 8205 return V; 8206 } 8207 8208 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8209 SDValue Base, SDValue Offset, 8210 ISD::MemIndexedMode AM) { 8211 auto *ST = cast<VPStoreSDNode>(OrigStore); 8212 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8213 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8214 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8215 Offset, ST->getMask(), ST->getVectorLength()}; 8216 FoldingSetNodeID ID; 8217 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8218 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8219 ID.AddInteger(ST->getRawSubclassData()); 8220 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8221 ID.AddInteger(ST->getMemOperand()->getFlags()); 8222 void *IP = nullptr; 8223 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8224 return SDValue(E, 0); 8225 8226 auto *N = newSDNode<VPStoreSDNode>( 8227 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8228 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8229 createOperands(N, Ops); 8230 8231 CSEMap.InsertNode(N, IP); 8232 InsertNode(N); 8233 SDValue V(N, 0); 8234 NewSDValueDbgMsg(V, "Creating new node: ", this); 8235 return V; 8236 } 8237 8238 SDValue SelectionDAG::getStridedLoadVP( 8239 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8240 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8241 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8242 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8243 const MDNode *Ranges, bool IsExpanding) { 8244 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8245 8246 MMOFlags |= MachineMemOperand::MOLoad; 8247 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8248 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8249 // clients. 8250 if (PtrInfo.V.isNull()) 8251 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8252 8253 uint64_t Size = MemoryLocation::UnknownSize; 8254 MachineFunction &MF = getMachineFunction(); 8255 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8256 Alignment, AAInfo, Ranges); 8257 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8258 EVL, MemVT, MMO, IsExpanding); 8259 } 8260 8261 SDValue SelectionDAG::getStridedLoadVP( 8262 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8263 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8264 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8265 bool Indexed = AM != ISD::UNINDEXED; 8266 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8267 8268 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8269 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8270 : getVTList(VT, MVT::Other); 8271 FoldingSetNodeID ID; 8272 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8273 ID.AddInteger(VT.getRawBits()); 8274 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8275 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8276 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8277 8278 void *IP = nullptr; 8279 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8280 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8281 return SDValue(E, 0); 8282 } 8283 8284 auto *N = 8285 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8286 ExtType, IsExpanding, MemVT, MMO); 8287 createOperands(N, Ops); 8288 CSEMap.InsertNode(N, IP); 8289 InsertNode(N); 8290 SDValue V(N, 0); 8291 NewSDValueDbgMsg(V, "Creating new node: ", this); 8292 return V; 8293 } 8294 8295 SDValue SelectionDAG::getStridedLoadVP( 8296 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8297 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8298 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8299 const MDNode *Ranges, bool IsExpanding) { 8300 SDValue Undef = getUNDEF(Ptr.getValueType()); 8301 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8302 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8303 MMOFlags, AAInfo, Ranges, IsExpanding); 8304 } 8305 8306 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8307 SDValue Ptr, SDValue Stride, 8308 SDValue Mask, SDValue EVL, 8309 MachineMemOperand *MMO, 8310 bool IsExpanding) { 8311 SDValue Undef = getUNDEF(Ptr.getValueType()); 8312 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8313 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8314 } 8315 8316 SDValue SelectionDAG::getExtStridedLoadVP( 8317 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8318 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8319 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8320 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8321 bool IsExpanding) { 8322 SDValue Undef = getUNDEF(Ptr.getValueType()); 8323 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8324 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8325 MMOFlags, AAInfo, nullptr, IsExpanding); 8326 } 8327 8328 SDValue SelectionDAG::getExtStridedLoadVP( 8329 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8330 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8331 MachineMemOperand *MMO, bool IsExpanding) { 8332 SDValue Undef = getUNDEF(Ptr.getValueType()); 8333 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8334 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8335 } 8336 8337 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8338 SDValue Base, SDValue Offset, 8339 ISD::MemIndexedMode AM) { 8340 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8341 assert(SLD->getOffset().isUndef() && 8342 "Strided load is already a indexed load!"); 8343 // Don't propagate the invariant or dereferenceable flags. 8344 auto MMOFlags = 8345 SLD->getMemOperand()->getFlags() & 8346 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8347 return getStridedLoadVP( 8348 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8349 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8350 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8351 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8352 } 8353 8354 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8355 SDValue Val, SDValue Ptr, 8356 SDValue Offset, SDValue Stride, 8357 SDValue Mask, SDValue EVL, EVT MemVT, 8358 MachineMemOperand *MMO, 8359 ISD::MemIndexedMode AM, 8360 bool IsTruncating, bool IsCompressing) { 8361 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8362 bool Indexed = AM != ISD::UNINDEXED; 8363 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8364 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8365 : getVTList(MVT::Other); 8366 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8367 FoldingSetNodeID ID; 8368 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8369 ID.AddInteger(MemVT.getRawBits()); 8370 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8371 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8372 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8373 void *IP = nullptr; 8374 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8375 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8376 return SDValue(E, 0); 8377 } 8378 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8379 VTs, AM, IsTruncating, 8380 IsCompressing, MemVT, MMO); 8381 createOperands(N, Ops); 8382 8383 CSEMap.InsertNode(N, IP); 8384 InsertNode(N); 8385 SDValue V(N, 0); 8386 NewSDValueDbgMsg(V, "Creating new node: ", this); 8387 return V; 8388 } 8389 8390 SDValue SelectionDAG::getTruncStridedStoreVP( 8391 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8392 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8393 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8394 bool IsCompressing) { 8395 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8396 8397 MMOFlags |= MachineMemOperand::MOStore; 8398 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8399 8400 if (PtrInfo.V.isNull()) 8401 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8402 8403 MachineFunction &MF = getMachineFunction(); 8404 MachineMemOperand *MMO = MF.getMachineMemOperand( 8405 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8406 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8407 MMO, IsCompressing); 8408 } 8409 8410 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8411 SDValue Val, SDValue Ptr, 8412 SDValue Stride, SDValue Mask, 8413 SDValue EVL, EVT SVT, 8414 MachineMemOperand *MMO, 8415 bool IsCompressing) { 8416 EVT VT = Val.getValueType(); 8417 8418 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8419 if (VT == SVT) 8420 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8421 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8422 /*IsTruncating*/ false, IsCompressing); 8423 8424 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8425 "Should only be a truncating store, not extending!"); 8426 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8427 assert(VT.isVector() == SVT.isVector() && 8428 "Cannot use trunc store to convert to or from a vector!"); 8429 assert((!VT.isVector() || 8430 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8431 "Cannot use trunc store to change the number of vector elements!"); 8432 8433 SDVTList VTs = getVTList(MVT::Other); 8434 SDValue Undef = getUNDEF(Ptr.getValueType()); 8435 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8436 FoldingSetNodeID ID; 8437 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8438 ID.AddInteger(SVT.getRawBits()); 8439 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8440 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8441 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8442 void *IP = nullptr; 8443 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8444 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8445 return SDValue(E, 0); 8446 } 8447 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8448 VTs, ISD::UNINDEXED, true, 8449 IsCompressing, SVT, MMO); 8450 createOperands(N, Ops); 8451 8452 CSEMap.InsertNode(N, IP); 8453 InsertNode(N); 8454 SDValue V(N, 0); 8455 NewSDValueDbgMsg(V, "Creating new node: ", this); 8456 return V; 8457 } 8458 8459 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8460 const SDLoc &DL, SDValue Base, 8461 SDValue Offset, 8462 ISD::MemIndexedMode AM) { 8463 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 8464 assert(SST->getOffset().isUndef() && 8465 "Strided store is already an indexed store!"); 8466 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8467 SDValue Ops[] = { 8468 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 8469 SST->getMask(), SST->getVectorLength()}; 8470 FoldingSetNodeID ID; 8471 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8472 ID.AddInteger(SST->getMemoryVT().getRawBits()); 8473 ID.AddInteger(SST->getRawSubclassData()); 8474 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 8475 void *IP = nullptr; 8476 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8477 return SDValue(E, 0); 8478 8479 auto *N = newSDNode<VPStridedStoreSDNode>( 8480 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 8481 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 8482 createOperands(N, Ops); 8483 8484 CSEMap.InsertNode(N, IP); 8485 InsertNode(N); 8486 SDValue V(N, 0); 8487 NewSDValueDbgMsg(V, "Creating new node: ", this); 8488 return V; 8489 } 8490 8491 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8492 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 8493 ISD::MemIndexType IndexType) { 8494 assert(Ops.size() == 6 && "Incompatible number of operands"); 8495 8496 FoldingSetNodeID ID; 8497 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 8498 ID.AddInteger(VT.getRawBits()); 8499 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 8500 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8501 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8502 ID.AddInteger(MMO->getFlags()); 8503 void *IP = nullptr; 8504 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8505 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 8506 return SDValue(E, 0); 8507 } 8508 8509 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8510 VT, MMO, IndexType); 8511 createOperands(N, Ops); 8512 8513 assert(N->getMask().getValueType().getVectorElementCount() == 8514 N->getValueType(0).getVectorElementCount() && 8515 "Vector width mismatch between mask and data"); 8516 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8517 N->getValueType(0).getVectorElementCount().isScalable() && 8518 "Scalable flags of index and data do not match"); 8519 assert(ElementCount::isKnownGE( 8520 N->getIndex().getValueType().getVectorElementCount(), 8521 N->getValueType(0).getVectorElementCount()) && 8522 "Vector width mismatch between index and data"); 8523 assert(isa<ConstantSDNode>(N->getScale()) && 8524 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8525 "Scale should be a constant power of 2"); 8526 8527 CSEMap.InsertNode(N, IP); 8528 InsertNode(N); 8529 SDValue V(N, 0); 8530 NewSDValueDbgMsg(V, "Creating new node: ", this); 8531 return V; 8532 } 8533 8534 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8535 ArrayRef<SDValue> Ops, 8536 MachineMemOperand *MMO, 8537 ISD::MemIndexType IndexType) { 8538 assert(Ops.size() == 7 && "Incompatible number of operands"); 8539 8540 FoldingSetNodeID ID; 8541 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8542 ID.AddInteger(VT.getRawBits()); 8543 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8544 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8545 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8546 ID.AddInteger(MMO->getFlags()); 8547 void *IP = nullptr; 8548 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8549 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8550 return SDValue(E, 0); 8551 } 8552 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8553 VT, MMO, IndexType); 8554 createOperands(N, Ops); 8555 8556 assert(N->getMask().getValueType().getVectorElementCount() == 8557 N->getValue().getValueType().getVectorElementCount() && 8558 "Vector width mismatch between mask and data"); 8559 assert( 8560 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8561 N->getValue().getValueType().getVectorElementCount().isScalable() && 8562 "Scalable flags of index and data do not match"); 8563 assert(ElementCount::isKnownGE( 8564 N->getIndex().getValueType().getVectorElementCount(), 8565 N->getValue().getValueType().getVectorElementCount()) && 8566 "Vector width mismatch between index and data"); 8567 assert(isa<ConstantSDNode>(N->getScale()) && 8568 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8569 "Scale should be a constant power of 2"); 8570 8571 CSEMap.InsertNode(N, IP); 8572 InsertNode(N); 8573 SDValue V(N, 0); 8574 NewSDValueDbgMsg(V, "Creating new node: ", this); 8575 return V; 8576 } 8577 8578 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8579 SDValue Base, SDValue Offset, SDValue Mask, 8580 SDValue PassThru, EVT MemVT, 8581 MachineMemOperand *MMO, 8582 ISD::MemIndexedMode AM, 8583 ISD::LoadExtType ExtTy, bool isExpanding) { 8584 bool Indexed = AM != ISD::UNINDEXED; 8585 assert((Indexed || Offset.isUndef()) && 8586 "Unindexed masked load with an offset!"); 8587 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8588 : getVTList(VT, MVT::Other); 8589 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8590 FoldingSetNodeID ID; 8591 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8592 ID.AddInteger(MemVT.getRawBits()); 8593 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8594 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8595 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8596 ID.AddInteger(MMO->getFlags()); 8597 void *IP = nullptr; 8598 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8599 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8600 return SDValue(E, 0); 8601 } 8602 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8603 AM, ExtTy, isExpanding, MemVT, MMO); 8604 createOperands(N, Ops); 8605 8606 CSEMap.InsertNode(N, IP); 8607 InsertNode(N); 8608 SDValue V(N, 0); 8609 NewSDValueDbgMsg(V, "Creating new node: ", this); 8610 return V; 8611 } 8612 8613 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8614 SDValue Base, SDValue Offset, 8615 ISD::MemIndexedMode AM) { 8616 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8617 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8618 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8619 Offset, LD->getMask(), LD->getPassThru(), 8620 LD->getMemoryVT(), LD->getMemOperand(), AM, 8621 LD->getExtensionType(), LD->isExpandingLoad()); 8622 } 8623 8624 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8625 SDValue Val, SDValue Base, SDValue Offset, 8626 SDValue Mask, EVT MemVT, 8627 MachineMemOperand *MMO, 8628 ISD::MemIndexedMode AM, bool IsTruncating, 8629 bool IsCompressing) { 8630 assert(Chain.getValueType() == MVT::Other && 8631 "Invalid chain type"); 8632 bool Indexed = AM != ISD::UNINDEXED; 8633 assert((Indexed || Offset.isUndef()) && 8634 "Unindexed masked store with an offset!"); 8635 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8636 : getVTList(MVT::Other); 8637 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8638 FoldingSetNodeID ID; 8639 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8640 ID.AddInteger(MemVT.getRawBits()); 8641 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8642 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8643 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8644 ID.AddInteger(MMO->getFlags()); 8645 void *IP = nullptr; 8646 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8647 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8648 return SDValue(E, 0); 8649 } 8650 auto *N = 8651 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8652 IsTruncating, IsCompressing, MemVT, MMO); 8653 createOperands(N, Ops); 8654 8655 CSEMap.InsertNode(N, IP); 8656 InsertNode(N); 8657 SDValue V(N, 0); 8658 NewSDValueDbgMsg(V, "Creating new node: ", this); 8659 return V; 8660 } 8661 8662 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8663 SDValue Base, SDValue Offset, 8664 ISD::MemIndexedMode AM) { 8665 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8666 assert(ST->getOffset().isUndef() && 8667 "Masked store is already a indexed store!"); 8668 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8669 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8670 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8671 } 8672 8673 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8674 ArrayRef<SDValue> Ops, 8675 MachineMemOperand *MMO, 8676 ISD::MemIndexType IndexType, 8677 ISD::LoadExtType ExtTy) { 8678 assert(Ops.size() == 6 && "Incompatible number of operands"); 8679 8680 FoldingSetNodeID ID; 8681 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8682 ID.AddInteger(MemVT.getRawBits()); 8683 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8684 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8685 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8686 ID.AddInteger(MMO->getFlags()); 8687 void *IP = nullptr; 8688 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8689 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8690 return SDValue(E, 0); 8691 } 8692 8693 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8694 VTs, MemVT, MMO, IndexType, ExtTy); 8695 createOperands(N, Ops); 8696 8697 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8698 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8699 assert(N->getMask().getValueType().getVectorElementCount() == 8700 N->getValueType(0).getVectorElementCount() && 8701 "Vector width mismatch between mask and data"); 8702 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8703 N->getValueType(0).getVectorElementCount().isScalable() && 8704 "Scalable flags of index and data do not match"); 8705 assert(ElementCount::isKnownGE( 8706 N->getIndex().getValueType().getVectorElementCount(), 8707 N->getValueType(0).getVectorElementCount()) && 8708 "Vector width mismatch between index and data"); 8709 assert(isa<ConstantSDNode>(N->getScale()) && 8710 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8711 "Scale should be a constant power of 2"); 8712 8713 CSEMap.InsertNode(N, IP); 8714 InsertNode(N); 8715 SDValue V(N, 0); 8716 NewSDValueDbgMsg(V, "Creating new node: ", this); 8717 return V; 8718 } 8719 8720 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8721 ArrayRef<SDValue> Ops, 8722 MachineMemOperand *MMO, 8723 ISD::MemIndexType IndexType, 8724 bool IsTrunc) { 8725 assert(Ops.size() == 6 && "Incompatible number of operands"); 8726 8727 FoldingSetNodeID ID; 8728 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8729 ID.AddInteger(MemVT.getRawBits()); 8730 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8731 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8732 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8733 ID.AddInteger(MMO->getFlags()); 8734 void *IP = nullptr; 8735 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8736 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8737 return SDValue(E, 0); 8738 } 8739 8740 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8741 VTs, MemVT, MMO, IndexType, IsTrunc); 8742 createOperands(N, Ops); 8743 8744 assert(N->getMask().getValueType().getVectorElementCount() == 8745 N->getValue().getValueType().getVectorElementCount() && 8746 "Vector width mismatch between mask and data"); 8747 assert( 8748 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8749 N->getValue().getValueType().getVectorElementCount().isScalable() && 8750 "Scalable flags of index and data do not match"); 8751 assert(ElementCount::isKnownGE( 8752 N->getIndex().getValueType().getVectorElementCount(), 8753 N->getValue().getValueType().getVectorElementCount()) && 8754 "Vector width mismatch between index and data"); 8755 assert(isa<ConstantSDNode>(N->getScale()) && 8756 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8757 "Scale should be a constant power of 2"); 8758 8759 CSEMap.InsertNode(N, IP); 8760 InsertNode(N); 8761 SDValue V(N, 0); 8762 NewSDValueDbgMsg(V, "Creating new node: ", this); 8763 return V; 8764 } 8765 8766 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8767 // select undef, T, F --> T (if T is a constant), otherwise F 8768 // select, ?, undef, F --> F 8769 // select, ?, T, undef --> T 8770 if (Cond.isUndef()) 8771 return isConstantValueOfAnyType(T) ? T : F; 8772 if (T.isUndef()) 8773 return F; 8774 if (F.isUndef()) 8775 return T; 8776 8777 // select true, T, F --> T 8778 // select false, T, F --> F 8779 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8780 return CondC->isZero() ? F : T; 8781 8782 // TODO: This should simplify VSELECT with constant condition using something 8783 // like this (but check boolean contents to be complete?): 8784 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8785 // return T; 8786 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8787 // return F; 8788 8789 // select ?, T, T --> T 8790 if (T == F) 8791 return T; 8792 8793 return SDValue(); 8794 } 8795 8796 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8797 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8798 if (X.isUndef()) 8799 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8800 // shift X, undef --> undef (because it may shift by the bitwidth) 8801 if (Y.isUndef()) 8802 return getUNDEF(X.getValueType()); 8803 8804 // shift 0, Y --> 0 8805 // shift X, 0 --> X 8806 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8807 return X; 8808 8809 // shift X, C >= bitwidth(X) --> undef 8810 // All vector elements must be too big (or undef) to avoid partial undefs. 8811 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8812 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8813 }; 8814 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8815 return getUNDEF(X.getValueType()); 8816 8817 return SDValue(); 8818 } 8819 8820 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8821 SDNodeFlags Flags) { 8822 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8823 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8824 // operation is poison. That result can be relaxed to undef. 8825 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8826 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8827 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8828 (YC && YC->getValueAPF().isNaN()); 8829 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8830 (YC && YC->getValueAPF().isInfinity()); 8831 8832 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8833 return getUNDEF(X.getValueType()); 8834 8835 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8836 return getUNDEF(X.getValueType()); 8837 8838 if (!YC) 8839 return SDValue(); 8840 8841 // X + -0.0 --> X 8842 if (Opcode == ISD::FADD) 8843 if (YC->getValueAPF().isNegZero()) 8844 return X; 8845 8846 // X - +0.0 --> X 8847 if (Opcode == ISD::FSUB) 8848 if (YC->getValueAPF().isPosZero()) 8849 return X; 8850 8851 // X * 1.0 --> X 8852 // X / 1.0 --> X 8853 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8854 if (YC->getValueAPF().isExactlyValue(1.0)) 8855 return X; 8856 8857 // X * 0.0 --> 0.0 8858 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8859 if (YC->getValueAPF().isZero()) 8860 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8861 8862 return SDValue(); 8863 } 8864 8865 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8866 SDValue Ptr, SDValue SV, unsigned Align) { 8867 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8868 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8869 } 8870 8871 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8872 ArrayRef<SDUse> Ops) { 8873 switch (Ops.size()) { 8874 case 0: return getNode(Opcode, DL, VT); 8875 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8876 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8877 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8878 default: break; 8879 } 8880 8881 // Copy from an SDUse array into an SDValue array for use with 8882 // the regular getNode logic. 8883 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8884 return getNode(Opcode, DL, VT, NewOps); 8885 } 8886 8887 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8888 ArrayRef<SDValue> Ops) { 8889 SDNodeFlags Flags; 8890 if (Inserter) 8891 Flags = Inserter->getFlags(); 8892 return getNode(Opcode, DL, VT, Ops, Flags); 8893 } 8894 8895 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8896 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8897 unsigned NumOps = Ops.size(); 8898 switch (NumOps) { 8899 case 0: return getNode(Opcode, DL, VT); 8900 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8901 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8902 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8903 default: break; 8904 } 8905 8906 #ifndef NDEBUG 8907 for (auto &Op : Ops) 8908 assert(Op.getOpcode() != ISD::DELETED_NODE && 8909 "Operand is DELETED_NODE!"); 8910 #endif 8911 8912 switch (Opcode) { 8913 default: break; 8914 case ISD::BUILD_VECTOR: 8915 // Attempt to simplify BUILD_VECTOR. 8916 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8917 return V; 8918 break; 8919 case ISD::CONCAT_VECTORS: 8920 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8921 return V; 8922 break; 8923 case ISD::SELECT_CC: 8924 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8925 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8926 "LHS and RHS of condition must have same type!"); 8927 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8928 "True and False arms of SelectCC must have same type!"); 8929 assert(Ops[2].getValueType() == VT && 8930 "select_cc node must be of same type as true and false value!"); 8931 break; 8932 case ISD::BR_CC: 8933 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8934 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8935 "LHS/RHS of comparison should match types!"); 8936 break; 8937 case ISD::VP_ADD: 8938 case ISD::VP_SUB: 8939 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 8940 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8941 Opcode = ISD::VP_XOR; 8942 break; 8943 case ISD::VP_MUL: 8944 // If it is VP_MUL mask operation then turn it to VP_AND 8945 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 8946 Opcode = ISD::VP_AND; 8947 break; 8948 case ISD::VP_REDUCE_MUL: 8949 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 8950 if (VT == MVT::i1) 8951 Opcode = ISD::VP_REDUCE_AND; 8952 break; 8953 case ISD::VP_REDUCE_ADD: 8954 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 8955 if (VT == MVT::i1) 8956 Opcode = ISD::VP_REDUCE_XOR; 8957 break; 8958 case ISD::VP_REDUCE_SMAX: 8959 case ISD::VP_REDUCE_UMIN: 8960 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 8961 // VP_REDUCE_AND. 8962 if (VT == MVT::i1) 8963 Opcode = ISD::VP_REDUCE_AND; 8964 break; 8965 case ISD::VP_REDUCE_SMIN: 8966 case ISD::VP_REDUCE_UMAX: 8967 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 8968 // VP_REDUCE_OR. 8969 if (VT == MVT::i1) 8970 Opcode = ISD::VP_REDUCE_OR; 8971 break; 8972 } 8973 8974 // Memoize nodes. 8975 SDNode *N; 8976 SDVTList VTs = getVTList(VT); 8977 8978 if (VT != MVT::Glue) { 8979 FoldingSetNodeID ID; 8980 AddNodeIDNode(ID, Opcode, VTs, Ops); 8981 void *IP = nullptr; 8982 8983 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8984 return SDValue(E, 0); 8985 8986 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8987 createOperands(N, Ops); 8988 8989 CSEMap.InsertNode(N, IP); 8990 } else { 8991 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8992 createOperands(N, Ops); 8993 } 8994 8995 N->setFlags(Flags); 8996 InsertNode(N); 8997 SDValue V(N, 0); 8998 NewSDValueDbgMsg(V, "Creating new node: ", this); 8999 return V; 9000 } 9001 9002 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9003 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 9004 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 9005 } 9006 9007 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9008 ArrayRef<SDValue> Ops) { 9009 SDNodeFlags Flags; 9010 if (Inserter) 9011 Flags = Inserter->getFlags(); 9012 return getNode(Opcode, DL, VTList, Ops, Flags); 9013 } 9014 9015 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9016 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9017 if (VTList.NumVTs == 1) 9018 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 9019 9020 #ifndef NDEBUG 9021 for (auto &Op : Ops) 9022 assert(Op.getOpcode() != ISD::DELETED_NODE && 9023 "Operand is DELETED_NODE!"); 9024 #endif 9025 9026 switch (Opcode) { 9027 case ISD::STRICT_FP_EXTEND: 9028 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9029 "Invalid STRICT_FP_EXTEND!"); 9030 assert(VTList.VTs[0].isFloatingPoint() && 9031 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9032 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9033 "STRICT_FP_EXTEND result type should be vector iff the operand " 9034 "type is vector!"); 9035 assert((!VTList.VTs[0].isVector() || 9036 VTList.VTs[0].getVectorNumElements() == 9037 Ops[1].getValueType().getVectorNumElements()) && 9038 "Vector element count mismatch!"); 9039 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9040 "Invalid fpext node, dst <= src!"); 9041 break; 9042 case ISD::STRICT_FP_ROUND: 9043 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9044 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9045 "STRICT_FP_ROUND result type should be vector iff the operand " 9046 "type is vector!"); 9047 assert((!VTList.VTs[0].isVector() || 9048 VTList.VTs[0].getVectorNumElements() == 9049 Ops[1].getValueType().getVectorNumElements()) && 9050 "Vector element count mismatch!"); 9051 assert(VTList.VTs[0].isFloatingPoint() && 9052 Ops[1].getValueType().isFloatingPoint() && 9053 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9054 isa<ConstantSDNode>(Ops[2]) && 9055 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9056 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9057 "Invalid STRICT_FP_ROUND!"); 9058 break; 9059 #if 0 9060 // FIXME: figure out how to safely handle things like 9061 // int foo(int x) { return 1 << (x & 255); } 9062 // int bar() { return foo(256); } 9063 case ISD::SRA_PARTS: 9064 case ISD::SRL_PARTS: 9065 case ISD::SHL_PARTS: 9066 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9067 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9068 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9069 else if (N3.getOpcode() == ISD::AND) 9070 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9071 // If the and is only masking out bits that cannot effect the shift, 9072 // eliminate the and. 9073 unsigned NumBits = VT.getScalarSizeInBits()*2; 9074 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9075 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9076 } 9077 break; 9078 #endif 9079 } 9080 9081 // Memoize the node unless it returns a flag. 9082 SDNode *N; 9083 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9084 FoldingSetNodeID ID; 9085 AddNodeIDNode(ID, Opcode, VTList, Ops); 9086 void *IP = nullptr; 9087 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9088 return SDValue(E, 0); 9089 9090 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9091 createOperands(N, Ops); 9092 CSEMap.InsertNode(N, IP); 9093 } else { 9094 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9095 createOperands(N, Ops); 9096 } 9097 9098 N->setFlags(Flags); 9099 InsertNode(N); 9100 SDValue V(N, 0); 9101 NewSDValueDbgMsg(V, "Creating new node: ", this); 9102 return V; 9103 } 9104 9105 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9106 SDVTList VTList) { 9107 return getNode(Opcode, DL, VTList, None); 9108 } 9109 9110 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9111 SDValue N1) { 9112 SDValue Ops[] = { N1 }; 9113 return getNode(Opcode, DL, VTList, Ops); 9114 } 9115 9116 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9117 SDValue N1, SDValue N2) { 9118 SDValue Ops[] = { N1, N2 }; 9119 return getNode(Opcode, DL, VTList, Ops); 9120 } 9121 9122 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9123 SDValue N1, SDValue N2, SDValue N3) { 9124 SDValue Ops[] = { N1, N2, N3 }; 9125 return getNode(Opcode, DL, VTList, Ops); 9126 } 9127 9128 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9129 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9130 SDValue Ops[] = { N1, N2, N3, N4 }; 9131 return getNode(Opcode, DL, VTList, Ops); 9132 } 9133 9134 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9135 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9136 SDValue N5) { 9137 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9138 return getNode(Opcode, DL, VTList, Ops); 9139 } 9140 9141 SDVTList SelectionDAG::getVTList(EVT VT) { 9142 return makeVTList(SDNode::getValueTypeList(VT), 1); 9143 } 9144 9145 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9146 FoldingSetNodeID ID; 9147 ID.AddInteger(2U); 9148 ID.AddInteger(VT1.getRawBits()); 9149 ID.AddInteger(VT2.getRawBits()); 9150 9151 void *IP = nullptr; 9152 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9153 if (!Result) { 9154 EVT *Array = Allocator.Allocate<EVT>(2); 9155 Array[0] = VT1; 9156 Array[1] = VT2; 9157 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9158 VTListMap.InsertNode(Result, IP); 9159 } 9160 return Result->getSDVTList(); 9161 } 9162 9163 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9164 FoldingSetNodeID ID; 9165 ID.AddInteger(3U); 9166 ID.AddInteger(VT1.getRawBits()); 9167 ID.AddInteger(VT2.getRawBits()); 9168 ID.AddInteger(VT3.getRawBits()); 9169 9170 void *IP = nullptr; 9171 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9172 if (!Result) { 9173 EVT *Array = Allocator.Allocate<EVT>(3); 9174 Array[0] = VT1; 9175 Array[1] = VT2; 9176 Array[2] = VT3; 9177 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9178 VTListMap.InsertNode(Result, IP); 9179 } 9180 return Result->getSDVTList(); 9181 } 9182 9183 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9184 FoldingSetNodeID ID; 9185 ID.AddInteger(4U); 9186 ID.AddInteger(VT1.getRawBits()); 9187 ID.AddInteger(VT2.getRawBits()); 9188 ID.AddInteger(VT3.getRawBits()); 9189 ID.AddInteger(VT4.getRawBits()); 9190 9191 void *IP = nullptr; 9192 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9193 if (!Result) { 9194 EVT *Array = Allocator.Allocate<EVT>(4); 9195 Array[0] = VT1; 9196 Array[1] = VT2; 9197 Array[2] = VT3; 9198 Array[3] = VT4; 9199 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9200 VTListMap.InsertNode(Result, IP); 9201 } 9202 return Result->getSDVTList(); 9203 } 9204 9205 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9206 unsigned NumVTs = VTs.size(); 9207 FoldingSetNodeID ID; 9208 ID.AddInteger(NumVTs); 9209 for (unsigned index = 0; index < NumVTs; index++) { 9210 ID.AddInteger(VTs[index].getRawBits()); 9211 } 9212 9213 void *IP = nullptr; 9214 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9215 if (!Result) { 9216 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9217 llvm::copy(VTs, Array); 9218 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9219 VTListMap.InsertNode(Result, IP); 9220 } 9221 return Result->getSDVTList(); 9222 } 9223 9224 9225 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9226 /// specified operands. If the resultant node already exists in the DAG, 9227 /// this does not modify the specified node, instead it returns the node that 9228 /// already exists. If the resultant node does not exist in the DAG, the 9229 /// input node is returned. As a degenerate case, if you specify the same 9230 /// input operands as the node already has, the input node is returned. 9231 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9232 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9233 9234 // Check to see if there is no change. 9235 if (Op == N->getOperand(0)) return N; 9236 9237 // See if the modified node already exists. 9238 void *InsertPos = nullptr; 9239 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9240 return Existing; 9241 9242 // Nope it doesn't. Remove the node from its current place in the maps. 9243 if (InsertPos) 9244 if (!RemoveNodeFromCSEMaps(N)) 9245 InsertPos = nullptr; 9246 9247 // Now we update the operands. 9248 N->OperandList[0].set(Op); 9249 9250 updateDivergence(N); 9251 // If this gets put into a CSE map, add it. 9252 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9253 return N; 9254 } 9255 9256 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9257 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9258 9259 // Check to see if there is no change. 9260 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9261 return N; // No operands changed, just return the input node. 9262 9263 // See if the modified node already exists. 9264 void *InsertPos = nullptr; 9265 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9266 return Existing; 9267 9268 // Nope it doesn't. Remove the node from its current place in the maps. 9269 if (InsertPos) 9270 if (!RemoveNodeFromCSEMaps(N)) 9271 InsertPos = nullptr; 9272 9273 // Now we update the operands. 9274 if (N->OperandList[0] != Op1) 9275 N->OperandList[0].set(Op1); 9276 if (N->OperandList[1] != Op2) 9277 N->OperandList[1].set(Op2); 9278 9279 updateDivergence(N); 9280 // If this gets put into a CSE map, add it. 9281 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9282 return N; 9283 } 9284 9285 SDNode *SelectionDAG:: 9286 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9287 SDValue Ops[] = { Op1, Op2, Op3 }; 9288 return UpdateNodeOperands(N, Ops); 9289 } 9290 9291 SDNode *SelectionDAG:: 9292 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9293 SDValue Op3, SDValue Op4) { 9294 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9295 return UpdateNodeOperands(N, Ops); 9296 } 9297 9298 SDNode *SelectionDAG:: 9299 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9300 SDValue Op3, SDValue Op4, SDValue Op5) { 9301 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9302 return UpdateNodeOperands(N, Ops); 9303 } 9304 9305 SDNode *SelectionDAG:: 9306 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9307 unsigned NumOps = Ops.size(); 9308 assert(N->getNumOperands() == NumOps && 9309 "Update with wrong number of operands"); 9310 9311 // If no operands changed just return the input node. 9312 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9313 return N; 9314 9315 // See if the modified node already exists. 9316 void *InsertPos = nullptr; 9317 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9318 return Existing; 9319 9320 // Nope it doesn't. Remove the node from its current place in the maps. 9321 if (InsertPos) 9322 if (!RemoveNodeFromCSEMaps(N)) 9323 InsertPos = nullptr; 9324 9325 // Now we update the operands. 9326 for (unsigned i = 0; i != NumOps; ++i) 9327 if (N->OperandList[i] != Ops[i]) 9328 N->OperandList[i].set(Ops[i]); 9329 9330 updateDivergence(N); 9331 // If this gets put into a CSE map, add it. 9332 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9333 return N; 9334 } 9335 9336 /// DropOperands - Release the operands and set this node to have 9337 /// zero operands. 9338 void SDNode::DropOperands() { 9339 // Unlike the code in MorphNodeTo that does this, we don't need to 9340 // watch for dead nodes here. 9341 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9342 SDUse &Use = *I++; 9343 Use.set(SDValue()); 9344 } 9345 } 9346 9347 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9348 ArrayRef<MachineMemOperand *> NewMemRefs) { 9349 if (NewMemRefs.empty()) { 9350 N->clearMemRefs(); 9351 return; 9352 } 9353 9354 // Check if we can avoid allocating by storing a single reference directly. 9355 if (NewMemRefs.size() == 1) { 9356 N->MemRefs = NewMemRefs[0]; 9357 N->NumMemRefs = 1; 9358 return; 9359 } 9360 9361 MachineMemOperand **MemRefsBuffer = 9362 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 9363 llvm::copy(NewMemRefs, MemRefsBuffer); 9364 N->MemRefs = MemRefsBuffer; 9365 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 9366 } 9367 9368 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 9369 /// machine opcode. 9370 /// 9371 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9372 EVT VT) { 9373 SDVTList VTs = getVTList(VT); 9374 return SelectNodeTo(N, MachineOpc, VTs, None); 9375 } 9376 9377 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9378 EVT VT, SDValue Op1) { 9379 SDVTList VTs = getVTList(VT); 9380 SDValue Ops[] = { Op1 }; 9381 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9382 } 9383 9384 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9385 EVT VT, SDValue Op1, 9386 SDValue Op2) { 9387 SDVTList VTs = getVTList(VT); 9388 SDValue Ops[] = { Op1, Op2 }; 9389 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9390 } 9391 9392 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9393 EVT VT, SDValue Op1, 9394 SDValue Op2, SDValue Op3) { 9395 SDVTList VTs = getVTList(VT); 9396 SDValue Ops[] = { Op1, Op2, Op3 }; 9397 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9398 } 9399 9400 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9401 EVT VT, ArrayRef<SDValue> Ops) { 9402 SDVTList VTs = getVTList(VT); 9403 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9404 } 9405 9406 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9407 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 9408 SDVTList VTs = getVTList(VT1, VT2); 9409 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9410 } 9411 9412 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9413 EVT VT1, EVT VT2) { 9414 SDVTList VTs = getVTList(VT1, VT2); 9415 return SelectNodeTo(N, MachineOpc, VTs, None); 9416 } 9417 9418 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9419 EVT VT1, EVT VT2, EVT VT3, 9420 ArrayRef<SDValue> Ops) { 9421 SDVTList VTs = getVTList(VT1, VT2, VT3); 9422 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9423 } 9424 9425 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9426 EVT VT1, EVT VT2, 9427 SDValue Op1, SDValue Op2) { 9428 SDVTList VTs = getVTList(VT1, VT2); 9429 SDValue Ops[] = { Op1, Op2 }; 9430 return SelectNodeTo(N, MachineOpc, VTs, Ops); 9431 } 9432 9433 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 9434 SDVTList VTs,ArrayRef<SDValue> Ops) { 9435 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 9436 // Reset the NodeID to -1. 9437 New->setNodeId(-1); 9438 if (New != N) { 9439 ReplaceAllUsesWith(N, New); 9440 RemoveDeadNode(N); 9441 } 9442 return New; 9443 } 9444 9445 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 9446 /// the line number information on the merged node since it is not possible to 9447 /// preserve the information that operation is associated with multiple lines. 9448 /// This will make the debugger working better at -O0, were there is a higher 9449 /// probability having other instructions associated with that line. 9450 /// 9451 /// For IROrder, we keep the smaller of the two 9452 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 9453 DebugLoc NLoc = N->getDebugLoc(); 9454 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 9455 N->setDebugLoc(DebugLoc()); 9456 } 9457 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 9458 N->setIROrder(Order); 9459 return N; 9460 } 9461 9462 /// MorphNodeTo - This *mutates* the specified node to have the specified 9463 /// return type, opcode, and operands. 9464 /// 9465 /// Note that MorphNodeTo returns the resultant node. If there is already a 9466 /// node of the specified opcode and operands, it returns that node instead of 9467 /// the current one. Note that the SDLoc need not be the same. 9468 /// 9469 /// Using MorphNodeTo is faster than creating a new node and swapping it in 9470 /// with ReplaceAllUsesWith both because it often avoids allocating a new 9471 /// node, and because it doesn't require CSE recalculation for any of 9472 /// the node's users. 9473 /// 9474 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 9475 /// As a consequence it isn't appropriate to use from within the DAG combiner or 9476 /// the legalizer which maintain worklists that would need to be updated when 9477 /// deleting things. 9478 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 9479 SDVTList VTs, ArrayRef<SDValue> Ops) { 9480 // If an identical node already exists, use it. 9481 void *IP = nullptr; 9482 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 9483 FoldingSetNodeID ID; 9484 AddNodeIDNode(ID, Opc, VTs, Ops); 9485 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 9486 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 9487 } 9488 9489 if (!RemoveNodeFromCSEMaps(N)) 9490 IP = nullptr; 9491 9492 // Start the morphing. 9493 N->NodeType = Opc; 9494 N->ValueList = VTs.VTs; 9495 N->NumValues = VTs.NumVTs; 9496 9497 // Clear the operands list, updating used nodes to remove this from their 9498 // use list. Keep track of any operands that become dead as a result. 9499 SmallPtrSet<SDNode*, 16> DeadNodeSet; 9500 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 9501 SDUse &Use = *I++; 9502 SDNode *Used = Use.getNode(); 9503 Use.set(SDValue()); 9504 if (Used->use_empty()) 9505 DeadNodeSet.insert(Used); 9506 } 9507 9508 // For MachineNode, initialize the memory references information. 9509 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 9510 MN->clearMemRefs(); 9511 9512 // Swap for an appropriately sized array from the recycler. 9513 removeOperands(N); 9514 createOperands(N, Ops); 9515 9516 // Delete any nodes that are still dead after adding the uses for the 9517 // new operands. 9518 if (!DeadNodeSet.empty()) { 9519 SmallVector<SDNode *, 16> DeadNodes; 9520 for (SDNode *N : DeadNodeSet) 9521 if (N->use_empty()) 9522 DeadNodes.push_back(N); 9523 RemoveDeadNodes(DeadNodes); 9524 } 9525 9526 if (IP) 9527 CSEMap.InsertNode(N, IP); // Memoize the new node. 9528 return N; 9529 } 9530 9531 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 9532 unsigned OrigOpc = Node->getOpcode(); 9533 unsigned NewOpc; 9534 switch (OrigOpc) { 9535 default: 9536 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 9537 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9538 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 9539 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 9540 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 9541 #include "llvm/IR/ConstrainedOps.def" 9542 } 9543 9544 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 9545 9546 // We're taking this node out of the chain, so we need to re-link things. 9547 SDValue InputChain = Node->getOperand(0); 9548 SDValue OutputChain = SDValue(Node, 1); 9549 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 9550 9551 SmallVector<SDValue, 3> Ops; 9552 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 9553 Ops.push_back(Node->getOperand(i)); 9554 9555 SDVTList VTs = getVTList(Node->getValueType(0)); 9556 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 9557 9558 // MorphNodeTo can operate in two ways: if an existing node with the 9559 // specified operands exists, it can just return it. Otherwise, it 9560 // updates the node in place to have the requested operands. 9561 if (Res == Node) { 9562 // If we updated the node in place, reset the node ID. To the isel, 9563 // this should be just like a newly allocated machine node. 9564 Res->setNodeId(-1); 9565 } else { 9566 ReplaceAllUsesWith(Node, Res); 9567 RemoveDeadNode(Node); 9568 } 9569 9570 return Res; 9571 } 9572 9573 /// getMachineNode - These are used for target selectors to create a new node 9574 /// with specified return type(s), MachineInstr opcode, and operands. 9575 /// 9576 /// Note that getMachineNode returns the resultant node. If there is already a 9577 /// node of the specified opcode and operands, it returns that node instead of 9578 /// the current one. 9579 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9580 EVT VT) { 9581 SDVTList VTs = getVTList(VT); 9582 return getMachineNode(Opcode, dl, VTs, None); 9583 } 9584 9585 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9586 EVT VT, SDValue Op1) { 9587 SDVTList VTs = getVTList(VT); 9588 SDValue Ops[] = { Op1 }; 9589 return getMachineNode(Opcode, dl, VTs, Ops); 9590 } 9591 9592 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9593 EVT VT, SDValue Op1, SDValue Op2) { 9594 SDVTList VTs = getVTList(VT); 9595 SDValue Ops[] = { Op1, Op2 }; 9596 return getMachineNode(Opcode, dl, VTs, Ops); 9597 } 9598 9599 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9600 EVT VT, SDValue Op1, SDValue Op2, 9601 SDValue Op3) { 9602 SDVTList VTs = getVTList(VT); 9603 SDValue Ops[] = { Op1, Op2, Op3 }; 9604 return getMachineNode(Opcode, dl, VTs, Ops); 9605 } 9606 9607 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9608 EVT VT, ArrayRef<SDValue> Ops) { 9609 SDVTList VTs = getVTList(VT); 9610 return getMachineNode(Opcode, dl, VTs, Ops); 9611 } 9612 9613 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9614 EVT VT1, EVT VT2, SDValue Op1, 9615 SDValue Op2) { 9616 SDVTList VTs = getVTList(VT1, VT2); 9617 SDValue Ops[] = { Op1, Op2 }; 9618 return getMachineNode(Opcode, dl, VTs, Ops); 9619 } 9620 9621 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9622 EVT VT1, EVT VT2, SDValue Op1, 9623 SDValue Op2, SDValue Op3) { 9624 SDVTList VTs = getVTList(VT1, VT2); 9625 SDValue Ops[] = { Op1, Op2, Op3 }; 9626 return getMachineNode(Opcode, dl, VTs, Ops); 9627 } 9628 9629 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9630 EVT VT1, EVT VT2, 9631 ArrayRef<SDValue> Ops) { 9632 SDVTList VTs = getVTList(VT1, VT2); 9633 return getMachineNode(Opcode, dl, VTs, Ops); 9634 } 9635 9636 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9637 EVT VT1, EVT VT2, EVT VT3, 9638 SDValue Op1, SDValue Op2) { 9639 SDVTList VTs = getVTList(VT1, VT2, VT3); 9640 SDValue Ops[] = { Op1, Op2 }; 9641 return getMachineNode(Opcode, dl, VTs, Ops); 9642 } 9643 9644 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9645 EVT VT1, EVT VT2, EVT VT3, 9646 SDValue Op1, SDValue Op2, 9647 SDValue Op3) { 9648 SDVTList VTs = getVTList(VT1, VT2, VT3); 9649 SDValue Ops[] = { Op1, Op2, Op3 }; 9650 return getMachineNode(Opcode, dl, VTs, Ops); 9651 } 9652 9653 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9654 EVT VT1, EVT VT2, EVT VT3, 9655 ArrayRef<SDValue> Ops) { 9656 SDVTList VTs = getVTList(VT1, VT2, VT3); 9657 return getMachineNode(Opcode, dl, VTs, Ops); 9658 } 9659 9660 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9661 ArrayRef<EVT> ResultTys, 9662 ArrayRef<SDValue> Ops) { 9663 SDVTList VTs = getVTList(ResultTys); 9664 return getMachineNode(Opcode, dl, VTs, Ops); 9665 } 9666 9667 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9668 SDVTList VTs, 9669 ArrayRef<SDValue> Ops) { 9670 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9671 MachineSDNode *N; 9672 void *IP = nullptr; 9673 9674 if (DoCSE) { 9675 FoldingSetNodeID ID; 9676 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9677 IP = nullptr; 9678 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9679 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9680 } 9681 } 9682 9683 // Allocate a new MachineSDNode. 9684 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9685 createOperands(N, Ops); 9686 9687 if (DoCSE) 9688 CSEMap.InsertNode(N, IP); 9689 9690 InsertNode(N); 9691 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9692 return N; 9693 } 9694 9695 /// getTargetExtractSubreg - A convenience function for creating 9696 /// TargetOpcode::EXTRACT_SUBREG nodes. 9697 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9698 SDValue Operand) { 9699 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9700 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9701 VT, Operand, SRIdxVal); 9702 return SDValue(Subreg, 0); 9703 } 9704 9705 /// getTargetInsertSubreg - A convenience function for creating 9706 /// TargetOpcode::INSERT_SUBREG nodes. 9707 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9708 SDValue Operand, SDValue Subreg) { 9709 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9710 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9711 VT, Operand, Subreg, SRIdxVal); 9712 return SDValue(Result, 0); 9713 } 9714 9715 /// getNodeIfExists - Get the specified node if it's already available, or 9716 /// else return NULL. 9717 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9718 ArrayRef<SDValue> Ops) { 9719 SDNodeFlags Flags; 9720 if (Inserter) 9721 Flags = Inserter->getFlags(); 9722 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9723 } 9724 9725 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9726 ArrayRef<SDValue> Ops, 9727 const SDNodeFlags Flags) { 9728 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9729 FoldingSetNodeID ID; 9730 AddNodeIDNode(ID, Opcode, VTList, Ops); 9731 void *IP = nullptr; 9732 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9733 E->intersectFlagsWith(Flags); 9734 return E; 9735 } 9736 } 9737 return nullptr; 9738 } 9739 9740 /// doesNodeExist - Check if a node exists without modifying its flags. 9741 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9742 ArrayRef<SDValue> Ops) { 9743 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9744 FoldingSetNodeID ID; 9745 AddNodeIDNode(ID, Opcode, VTList, Ops); 9746 void *IP = nullptr; 9747 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9748 return true; 9749 } 9750 return false; 9751 } 9752 9753 /// getDbgValue - Creates a SDDbgValue node. 9754 /// 9755 /// SDNode 9756 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9757 SDNode *N, unsigned R, bool IsIndirect, 9758 const DebugLoc &DL, unsigned O) { 9759 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9760 "Expected inlined-at fields to agree"); 9761 return new (DbgInfo->getAlloc()) 9762 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9763 {}, IsIndirect, DL, O, 9764 /*IsVariadic=*/false); 9765 } 9766 9767 /// Constant 9768 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9769 DIExpression *Expr, 9770 const Value *C, 9771 const DebugLoc &DL, unsigned O) { 9772 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9773 "Expected inlined-at fields to agree"); 9774 return new (DbgInfo->getAlloc()) 9775 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9776 /*IsIndirect=*/false, DL, O, 9777 /*IsVariadic=*/false); 9778 } 9779 9780 /// FrameIndex 9781 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9782 DIExpression *Expr, unsigned FI, 9783 bool IsIndirect, 9784 const DebugLoc &DL, 9785 unsigned O) { 9786 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9787 "Expected inlined-at fields to agree"); 9788 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9789 } 9790 9791 /// FrameIndex with dependencies 9792 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9793 DIExpression *Expr, unsigned FI, 9794 ArrayRef<SDNode *> Dependencies, 9795 bool IsIndirect, 9796 const DebugLoc &DL, 9797 unsigned O) { 9798 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9799 "Expected inlined-at fields to agree"); 9800 return new (DbgInfo->getAlloc()) 9801 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9802 Dependencies, IsIndirect, DL, O, 9803 /*IsVariadic=*/false); 9804 } 9805 9806 /// VReg 9807 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9808 unsigned VReg, bool IsIndirect, 9809 const DebugLoc &DL, unsigned O) { 9810 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9811 "Expected inlined-at fields to agree"); 9812 return new (DbgInfo->getAlloc()) 9813 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9814 {}, IsIndirect, DL, O, 9815 /*IsVariadic=*/false); 9816 } 9817 9818 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9819 ArrayRef<SDDbgOperand> Locs, 9820 ArrayRef<SDNode *> Dependencies, 9821 bool IsIndirect, const DebugLoc &DL, 9822 unsigned O, bool IsVariadic) { 9823 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9824 "Expected inlined-at fields to agree"); 9825 return new (DbgInfo->getAlloc()) 9826 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9827 DL, O, IsVariadic); 9828 } 9829 9830 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9831 unsigned OffsetInBits, unsigned SizeInBits, 9832 bool InvalidateDbg) { 9833 SDNode *FromNode = From.getNode(); 9834 SDNode *ToNode = To.getNode(); 9835 assert(FromNode && ToNode && "Can't modify dbg values"); 9836 9837 // PR35338 9838 // TODO: assert(From != To && "Redundant dbg value transfer"); 9839 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9840 if (From == To || FromNode == ToNode) 9841 return; 9842 9843 if (!FromNode->getHasDebugValue()) 9844 return; 9845 9846 SDDbgOperand FromLocOp = 9847 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9848 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9849 9850 SmallVector<SDDbgValue *, 2> ClonedDVs; 9851 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9852 if (Dbg->isInvalidated()) 9853 continue; 9854 9855 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9856 9857 // Create a new location ops vector that is equal to the old vector, but 9858 // with each instance of FromLocOp replaced with ToLocOp. 9859 bool Changed = false; 9860 auto NewLocOps = Dbg->copyLocationOps(); 9861 std::replace_if( 9862 NewLocOps.begin(), NewLocOps.end(), 9863 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9864 bool Match = Op == FromLocOp; 9865 Changed |= Match; 9866 return Match; 9867 }, 9868 ToLocOp); 9869 // Ignore this SDDbgValue if we didn't find a matching location. 9870 if (!Changed) 9871 continue; 9872 9873 DIVariable *Var = Dbg->getVariable(); 9874 auto *Expr = Dbg->getExpression(); 9875 // If a fragment is requested, update the expression. 9876 if (SizeInBits) { 9877 // When splitting a larger (e.g., sign-extended) value whose 9878 // lower bits are described with an SDDbgValue, do not attempt 9879 // to transfer the SDDbgValue to the upper bits. 9880 if (auto FI = Expr->getFragmentInfo()) 9881 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9882 continue; 9883 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9884 SizeInBits); 9885 if (!Fragment) 9886 continue; 9887 Expr = *Fragment; 9888 } 9889 9890 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9891 // Clone the SDDbgValue and move it to To. 9892 SDDbgValue *Clone = getDbgValueList( 9893 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9894 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9895 Dbg->isVariadic()); 9896 ClonedDVs.push_back(Clone); 9897 9898 if (InvalidateDbg) { 9899 // Invalidate value and indicate the SDDbgValue should not be emitted. 9900 Dbg->setIsInvalidated(); 9901 Dbg->setIsEmitted(); 9902 } 9903 } 9904 9905 for (SDDbgValue *Dbg : ClonedDVs) { 9906 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9907 "Transferred DbgValues should depend on the new SDNode"); 9908 AddDbgValue(Dbg, false); 9909 } 9910 } 9911 9912 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9913 if (!N.getHasDebugValue()) 9914 return; 9915 9916 SmallVector<SDDbgValue *, 2> ClonedDVs; 9917 for (auto DV : GetDbgValues(&N)) { 9918 if (DV->isInvalidated()) 9919 continue; 9920 switch (N.getOpcode()) { 9921 default: 9922 break; 9923 case ISD::ADD: 9924 SDValue N0 = N.getOperand(0); 9925 SDValue N1 = N.getOperand(1); 9926 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9927 isConstantIntBuildVectorOrConstantInt(N1)) { 9928 uint64_t Offset = N.getConstantOperandVal(1); 9929 9930 // Rewrite an ADD constant node into a DIExpression. Since we are 9931 // performing arithmetic to compute the variable's *value* in the 9932 // DIExpression, we need to mark the expression with a 9933 // DW_OP_stack_value. 9934 auto *DIExpr = DV->getExpression(); 9935 auto NewLocOps = DV->copyLocationOps(); 9936 bool Changed = false; 9937 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9938 // We're not given a ResNo to compare against because the whole 9939 // node is going away. We know that any ISD::ADD only has one 9940 // result, so we can assume any node match is using the result. 9941 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9942 NewLocOps[i].getSDNode() != &N) 9943 continue; 9944 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9945 SmallVector<uint64_t, 3> ExprOps; 9946 DIExpression::appendOffset(ExprOps, Offset); 9947 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9948 Changed = true; 9949 } 9950 (void)Changed; 9951 assert(Changed && "Salvage target doesn't use N"); 9952 9953 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9954 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9955 NewLocOps, AdditionalDependencies, 9956 DV->isIndirect(), DV->getDebugLoc(), 9957 DV->getOrder(), DV->isVariadic()); 9958 ClonedDVs.push_back(Clone); 9959 DV->setIsInvalidated(); 9960 DV->setIsEmitted(); 9961 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9962 N0.getNode()->dumprFull(this); 9963 dbgs() << " into " << *DIExpr << '\n'); 9964 } 9965 } 9966 } 9967 9968 for (SDDbgValue *Dbg : ClonedDVs) { 9969 assert(!Dbg->getSDNodes().empty() && 9970 "Salvaged DbgValue should depend on a new SDNode"); 9971 AddDbgValue(Dbg, false); 9972 } 9973 } 9974 9975 /// Creates a SDDbgLabel node. 9976 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9977 const DebugLoc &DL, unsigned O) { 9978 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9979 "Expected inlined-at fields to agree"); 9980 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9981 } 9982 9983 namespace { 9984 9985 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9986 /// pointed to by a use iterator is deleted, increment the use iterator 9987 /// so that it doesn't dangle. 9988 /// 9989 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9990 SDNode::use_iterator &UI; 9991 SDNode::use_iterator &UE; 9992 9993 void NodeDeleted(SDNode *N, SDNode *E) override { 9994 // Increment the iterator as needed. 9995 while (UI != UE && N == *UI) 9996 ++UI; 9997 } 9998 9999 public: 10000 RAUWUpdateListener(SelectionDAG &d, 10001 SDNode::use_iterator &ui, 10002 SDNode::use_iterator &ue) 10003 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 10004 }; 10005 10006 } // end anonymous namespace 10007 10008 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10009 /// This can cause recursive merging of nodes in the DAG. 10010 /// 10011 /// This version assumes From has a single result value. 10012 /// 10013 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 10014 SDNode *From = FromN.getNode(); 10015 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 10016 "Cannot replace with this method!"); 10017 assert(From != To.getNode() && "Cannot replace uses of with self"); 10018 10019 // Preserve Debug Values 10020 transferDbgValues(FromN, To); 10021 10022 // Iterate over all the existing uses of From. New uses will be added 10023 // to the beginning of the use list, which we avoid visiting. 10024 // This specifically avoids visiting uses of From that arise while the 10025 // replacement is happening, because any such uses would be the result 10026 // of CSE: If an existing node looks like From after one of its operands 10027 // is replaced by To, we don't want to replace of all its users with To 10028 // too. See PR3018 for more info. 10029 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10030 RAUWUpdateListener Listener(*this, UI, UE); 10031 while (UI != UE) { 10032 SDNode *User = *UI; 10033 10034 // This node is about to morph, remove its old self from the CSE maps. 10035 RemoveNodeFromCSEMaps(User); 10036 10037 // A user can appear in a use list multiple times, and when this 10038 // happens the uses are usually next to each other in the list. 10039 // To help reduce the number of CSE recomputations, process all 10040 // the uses of this user that we can find this way. 10041 do { 10042 SDUse &Use = UI.getUse(); 10043 ++UI; 10044 Use.set(To); 10045 if (To->isDivergent() != From->isDivergent()) 10046 updateDivergence(User); 10047 } while (UI != UE && *UI == User); 10048 // Now that we have modified User, add it back to the CSE maps. If it 10049 // already exists there, recursively merge the results together. 10050 AddModifiedNodeToCSEMaps(User); 10051 } 10052 10053 // If we just RAUW'd the root, take note. 10054 if (FromN == getRoot()) 10055 setRoot(To); 10056 } 10057 10058 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10059 /// This can cause recursive merging of nodes in the DAG. 10060 /// 10061 /// This version assumes that for each value of From, there is a 10062 /// corresponding value in To in the same position with the same type. 10063 /// 10064 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10065 #ifndef NDEBUG 10066 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10067 assert((!From->hasAnyUseOfValue(i) || 10068 From->getValueType(i) == To->getValueType(i)) && 10069 "Cannot use this version of ReplaceAllUsesWith!"); 10070 #endif 10071 10072 // Handle the trivial case. 10073 if (From == To) 10074 return; 10075 10076 // Preserve Debug Info. Only do this if there's a use. 10077 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10078 if (From->hasAnyUseOfValue(i)) { 10079 assert((i < To->getNumValues()) && "Invalid To location"); 10080 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10081 } 10082 10083 // Iterate over just the existing users of From. See the comments in 10084 // the ReplaceAllUsesWith above. 10085 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10086 RAUWUpdateListener Listener(*this, UI, UE); 10087 while (UI != UE) { 10088 SDNode *User = *UI; 10089 10090 // This node is about to morph, remove its old self from the CSE maps. 10091 RemoveNodeFromCSEMaps(User); 10092 10093 // A user can appear in a use list multiple times, and when this 10094 // happens the uses are usually next to each other in the list. 10095 // To help reduce the number of CSE recomputations, process all 10096 // the uses of this user that we can find this way. 10097 do { 10098 SDUse &Use = UI.getUse(); 10099 ++UI; 10100 Use.setNode(To); 10101 if (To->isDivergent() != From->isDivergent()) 10102 updateDivergence(User); 10103 } while (UI != UE && *UI == User); 10104 10105 // Now that we have modified User, add it back to the CSE maps. If it 10106 // already exists there, recursively merge the results together. 10107 AddModifiedNodeToCSEMaps(User); 10108 } 10109 10110 // If we just RAUW'd the root, take note. 10111 if (From == getRoot().getNode()) 10112 setRoot(SDValue(To, getRoot().getResNo())); 10113 } 10114 10115 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10116 /// This can cause recursive merging of nodes in the DAG. 10117 /// 10118 /// This version can replace From with any result values. To must match the 10119 /// number and types of values returned by From. 10120 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10121 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10122 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10123 10124 // Preserve Debug Info. 10125 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10126 transferDbgValues(SDValue(From, i), To[i]); 10127 10128 // Iterate over just the existing users of From. See the comments in 10129 // the ReplaceAllUsesWith above. 10130 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10131 RAUWUpdateListener Listener(*this, UI, UE); 10132 while (UI != UE) { 10133 SDNode *User = *UI; 10134 10135 // This node is about to morph, remove its old self from the CSE maps. 10136 RemoveNodeFromCSEMaps(User); 10137 10138 // A user can appear in a use list multiple times, and when this happens the 10139 // uses are usually next to each other in the list. To help reduce the 10140 // number of CSE and divergence recomputations, process all the uses of this 10141 // user that we can find this way. 10142 bool To_IsDivergent = false; 10143 do { 10144 SDUse &Use = UI.getUse(); 10145 const SDValue &ToOp = To[Use.getResNo()]; 10146 ++UI; 10147 Use.set(ToOp); 10148 To_IsDivergent |= ToOp->isDivergent(); 10149 } while (UI != UE && *UI == User); 10150 10151 if (To_IsDivergent != From->isDivergent()) 10152 updateDivergence(User); 10153 10154 // Now that we have modified User, add it back to the CSE maps. If it 10155 // already exists there, recursively merge the results together. 10156 AddModifiedNodeToCSEMaps(User); 10157 } 10158 10159 // If we just RAUW'd the root, take note. 10160 if (From == getRoot().getNode()) 10161 setRoot(SDValue(To[getRoot().getResNo()])); 10162 } 10163 10164 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10165 /// uses of other values produced by From.getNode() alone. The Deleted 10166 /// vector is handled the same way as for ReplaceAllUsesWith. 10167 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10168 // Handle the really simple, really trivial case efficiently. 10169 if (From == To) return; 10170 10171 // Handle the simple, trivial, case efficiently. 10172 if (From.getNode()->getNumValues() == 1) { 10173 ReplaceAllUsesWith(From, To); 10174 return; 10175 } 10176 10177 // Preserve Debug Info. 10178 transferDbgValues(From, To); 10179 10180 // Iterate over just the existing users of From. See the comments in 10181 // the ReplaceAllUsesWith above. 10182 SDNode::use_iterator UI = From.getNode()->use_begin(), 10183 UE = From.getNode()->use_end(); 10184 RAUWUpdateListener Listener(*this, UI, UE); 10185 while (UI != UE) { 10186 SDNode *User = *UI; 10187 bool UserRemovedFromCSEMaps = false; 10188 10189 // A user can appear in a use list multiple times, and when this 10190 // happens the uses are usually next to each other in the list. 10191 // To help reduce the number of CSE recomputations, process all 10192 // the uses of this user that we can find this way. 10193 do { 10194 SDUse &Use = UI.getUse(); 10195 10196 // Skip uses of different values from the same node. 10197 if (Use.getResNo() != From.getResNo()) { 10198 ++UI; 10199 continue; 10200 } 10201 10202 // If this node hasn't been modified yet, it's still in the CSE maps, 10203 // so remove its old self from the CSE maps. 10204 if (!UserRemovedFromCSEMaps) { 10205 RemoveNodeFromCSEMaps(User); 10206 UserRemovedFromCSEMaps = true; 10207 } 10208 10209 ++UI; 10210 Use.set(To); 10211 if (To->isDivergent() != From->isDivergent()) 10212 updateDivergence(User); 10213 } while (UI != UE && *UI == User); 10214 // We are iterating over all uses of the From node, so if a use 10215 // doesn't use the specific value, no changes are made. 10216 if (!UserRemovedFromCSEMaps) 10217 continue; 10218 10219 // Now that we have modified User, add it back to the CSE maps. If it 10220 // already exists there, recursively merge the results together. 10221 AddModifiedNodeToCSEMaps(User); 10222 } 10223 10224 // If we just RAUW'd the root, take note. 10225 if (From == getRoot()) 10226 setRoot(To); 10227 } 10228 10229 namespace { 10230 10231 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10232 /// to record information about a use. 10233 struct UseMemo { 10234 SDNode *User; 10235 unsigned Index; 10236 SDUse *Use; 10237 }; 10238 10239 /// operator< - Sort Memos by User. 10240 bool operator<(const UseMemo &L, const UseMemo &R) { 10241 return (intptr_t)L.User < (intptr_t)R.User; 10242 } 10243 10244 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10245 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10246 /// the node already has been taken care of recursively. 10247 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10248 SmallVector<UseMemo, 4> &Uses; 10249 10250 void NodeDeleted(SDNode *N, SDNode *E) override { 10251 for (UseMemo &Memo : Uses) 10252 if (Memo.User == N) 10253 Memo.User = nullptr; 10254 } 10255 10256 public: 10257 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10258 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10259 }; 10260 10261 } // end anonymous namespace 10262 10263 bool SelectionDAG::calculateDivergence(SDNode *N) { 10264 if (TLI->isSDNodeAlwaysUniform(N)) { 10265 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 10266 "Conflicting divergence information!"); 10267 return false; 10268 } 10269 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 10270 return true; 10271 for (auto &Op : N->ops()) { 10272 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10273 return true; 10274 } 10275 return false; 10276 } 10277 10278 void SelectionDAG::updateDivergence(SDNode *N) { 10279 SmallVector<SDNode *, 16> Worklist(1, N); 10280 do { 10281 N = Worklist.pop_back_val(); 10282 bool IsDivergent = calculateDivergence(N); 10283 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10284 N->SDNodeBits.IsDivergent = IsDivergent; 10285 llvm::append_range(Worklist, N->uses()); 10286 } 10287 } while (!Worklist.empty()); 10288 } 10289 10290 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10291 DenseMap<SDNode *, unsigned> Degree; 10292 Order.reserve(AllNodes.size()); 10293 for (auto &N : allnodes()) { 10294 unsigned NOps = N.getNumOperands(); 10295 Degree[&N] = NOps; 10296 if (0 == NOps) 10297 Order.push_back(&N); 10298 } 10299 for (size_t I = 0; I != Order.size(); ++I) { 10300 SDNode *N = Order[I]; 10301 for (auto U : N->uses()) { 10302 unsigned &UnsortedOps = Degree[U]; 10303 if (0 == --UnsortedOps) 10304 Order.push_back(U); 10305 } 10306 } 10307 } 10308 10309 #ifndef NDEBUG 10310 void SelectionDAG::VerifyDAGDivergence() { 10311 std::vector<SDNode *> TopoOrder; 10312 CreateTopologicalOrder(TopoOrder); 10313 for (auto *N : TopoOrder) { 10314 assert(calculateDivergence(N) == N->isDivergent() && 10315 "Divergence bit inconsistency detected"); 10316 } 10317 } 10318 #endif 10319 10320 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10321 /// uses of other values produced by From.getNode() alone. The same value 10322 /// may appear in both the From and To list. The Deleted vector is 10323 /// handled the same way as for ReplaceAllUsesWith. 10324 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10325 const SDValue *To, 10326 unsigned Num){ 10327 // Handle the simple, trivial case efficiently. 10328 if (Num == 1) 10329 return ReplaceAllUsesOfValueWith(*From, *To); 10330 10331 transferDbgValues(*From, *To); 10332 10333 // Read up all the uses and make records of them. This helps 10334 // processing new uses that are introduced during the 10335 // replacement process. 10336 SmallVector<UseMemo, 4> Uses; 10337 for (unsigned i = 0; i != Num; ++i) { 10338 unsigned FromResNo = From[i].getResNo(); 10339 SDNode *FromNode = From[i].getNode(); 10340 for (SDNode::use_iterator UI = FromNode->use_begin(), 10341 E = FromNode->use_end(); UI != E; ++UI) { 10342 SDUse &Use = UI.getUse(); 10343 if (Use.getResNo() == FromResNo) { 10344 UseMemo Memo = { *UI, i, &Use }; 10345 Uses.push_back(Memo); 10346 } 10347 } 10348 } 10349 10350 // Sort the uses, so that all the uses from a given User are together. 10351 llvm::sort(Uses); 10352 RAUOVWUpdateListener Listener(*this, Uses); 10353 10354 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 10355 UseIndex != UseIndexEnd; ) { 10356 // We know that this user uses some value of From. If it is the right 10357 // value, update it. 10358 SDNode *User = Uses[UseIndex].User; 10359 // If the node has been deleted by recursive CSE updates when updating 10360 // another node, then just skip this entry. 10361 if (User == nullptr) { 10362 ++UseIndex; 10363 continue; 10364 } 10365 10366 // This node is about to morph, remove its old self from the CSE maps. 10367 RemoveNodeFromCSEMaps(User); 10368 10369 // The Uses array is sorted, so all the uses for a given User 10370 // are next to each other in the list. 10371 // To help reduce the number of CSE recomputations, process all 10372 // the uses of this user that we can find this way. 10373 do { 10374 unsigned i = Uses[UseIndex].Index; 10375 SDUse &Use = *Uses[UseIndex].Use; 10376 ++UseIndex; 10377 10378 Use.set(To[i]); 10379 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 10380 10381 // Now that we have modified User, add it back to the CSE maps. If it 10382 // already exists there, recursively merge the results together. 10383 AddModifiedNodeToCSEMaps(User); 10384 } 10385 } 10386 10387 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 10388 /// based on their topological order. It returns the maximum id and a vector 10389 /// of the SDNodes* in assigned order by reference. 10390 unsigned SelectionDAG::AssignTopologicalOrder() { 10391 unsigned DAGSize = 0; 10392 10393 // SortedPos tracks the progress of the algorithm. Nodes before it are 10394 // sorted, nodes after it are unsorted. When the algorithm completes 10395 // it is at the end of the list. 10396 allnodes_iterator SortedPos = allnodes_begin(); 10397 10398 // Visit all the nodes. Move nodes with no operands to the front of 10399 // the list immediately. Annotate nodes that do have operands with their 10400 // operand count. Before we do this, the Node Id fields of the nodes 10401 // may contain arbitrary values. After, the Node Id fields for nodes 10402 // before SortedPos will contain the topological sort index, and the 10403 // Node Id fields for nodes At SortedPos and after will contain the 10404 // count of outstanding operands. 10405 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 10406 checkForCycles(&N, this); 10407 unsigned Degree = N.getNumOperands(); 10408 if (Degree == 0) { 10409 // A node with no uses, add it to the result array immediately. 10410 N.setNodeId(DAGSize++); 10411 allnodes_iterator Q(&N); 10412 if (Q != SortedPos) 10413 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 10414 assert(SortedPos != AllNodes.end() && "Overran node list"); 10415 ++SortedPos; 10416 } else { 10417 // Temporarily use the Node Id as scratch space for the degree count. 10418 N.setNodeId(Degree); 10419 } 10420 } 10421 10422 // Visit all the nodes. As we iterate, move nodes into sorted order, 10423 // such that by the time the end is reached all nodes will be sorted. 10424 for (SDNode &Node : allnodes()) { 10425 SDNode *N = &Node; 10426 checkForCycles(N, this); 10427 // N is in sorted position, so all its uses have one less operand 10428 // that needs to be sorted. 10429 for (SDNode *P : N->uses()) { 10430 unsigned Degree = P->getNodeId(); 10431 assert(Degree != 0 && "Invalid node degree"); 10432 --Degree; 10433 if (Degree == 0) { 10434 // All of P's operands are sorted, so P may sorted now. 10435 P->setNodeId(DAGSize++); 10436 if (P->getIterator() != SortedPos) 10437 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 10438 assert(SortedPos != AllNodes.end() && "Overran node list"); 10439 ++SortedPos; 10440 } else { 10441 // Update P's outstanding operand count. 10442 P->setNodeId(Degree); 10443 } 10444 } 10445 if (Node.getIterator() == SortedPos) { 10446 #ifndef NDEBUG 10447 allnodes_iterator I(N); 10448 SDNode *S = &*++I; 10449 dbgs() << "Overran sorted position:\n"; 10450 S->dumprFull(this); dbgs() << "\n"; 10451 dbgs() << "Checking if this is due to cycles\n"; 10452 checkForCycles(this, true); 10453 #endif 10454 llvm_unreachable(nullptr); 10455 } 10456 } 10457 10458 assert(SortedPos == AllNodes.end() && 10459 "Topological sort incomplete!"); 10460 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 10461 "First node in topological sort is not the entry token!"); 10462 assert(AllNodes.front().getNodeId() == 0 && 10463 "First node in topological sort has non-zero id!"); 10464 assert(AllNodes.front().getNumOperands() == 0 && 10465 "First node in topological sort has operands!"); 10466 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 10467 "Last node in topologic sort has unexpected id!"); 10468 assert(AllNodes.back().use_empty() && 10469 "Last node in topologic sort has users!"); 10470 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 10471 return DAGSize; 10472 } 10473 10474 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 10475 /// value is produced by SD. 10476 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 10477 for (SDNode *SD : DB->getSDNodes()) { 10478 if (!SD) 10479 continue; 10480 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 10481 SD->setHasDebugValue(true); 10482 } 10483 DbgInfo->add(DB, isParameter); 10484 } 10485 10486 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 10487 10488 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 10489 SDValue NewMemOpChain) { 10490 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 10491 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 10492 // The new memory operation must have the same position as the old load in 10493 // terms of memory dependency. Create a TokenFactor for the old load and new 10494 // memory operation and update uses of the old load's output chain to use that 10495 // TokenFactor. 10496 if (OldChain == NewMemOpChain || OldChain.use_empty()) 10497 return NewMemOpChain; 10498 10499 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 10500 OldChain, NewMemOpChain); 10501 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 10502 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 10503 return TokenFactor; 10504 } 10505 10506 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 10507 SDValue NewMemOp) { 10508 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 10509 SDValue OldChain = SDValue(OldLoad, 1); 10510 SDValue NewMemOpChain = NewMemOp.getValue(1); 10511 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 10512 } 10513 10514 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 10515 Function **OutFunction) { 10516 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 10517 10518 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 10519 auto *Module = MF->getFunction().getParent(); 10520 auto *Function = Module->getFunction(Symbol); 10521 10522 if (OutFunction != nullptr) 10523 *OutFunction = Function; 10524 10525 if (Function != nullptr) { 10526 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 10527 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 10528 } 10529 10530 std::string ErrorStr; 10531 raw_string_ostream ErrorFormatter(ErrorStr); 10532 ErrorFormatter << "Undefined external symbol "; 10533 ErrorFormatter << '"' << Symbol << '"'; 10534 report_fatal_error(Twine(ErrorFormatter.str())); 10535 } 10536 10537 //===----------------------------------------------------------------------===// 10538 // SDNode Class 10539 //===----------------------------------------------------------------------===// 10540 10541 bool llvm::isNullConstant(SDValue V) { 10542 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10543 return Const != nullptr && Const->isZero(); 10544 } 10545 10546 bool llvm::isNullFPConstant(SDValue V) { 10547 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 10548 return Const != nullptr && Const->isZero() && !Const->isNegative(); 10549 } 10550 10551 bool llvm::isAllOnesConstant(SDValue V) { 10552 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10553 return Const != nullptr && Const->isAllOnes(); 10554 } 10555 10556 bool llvm::isOneConstant(SDValue V) { 10557 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10558 return Const != nullptr && Const->isOne(); 10559 } 10560 10561 bool llvm::isMinSignedConstant(SDValue V) { 10562 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 10563 return Const != nullptr && Const->isMinSignedValue(); 10564 } 10565 10566 SDValue llvm::peekThroughBitcasts(SDValue V) { 10567 while (V.getOpcode() == ISD::BITCAST) 10568 V = V.getOperand(0); 10569 return V; 10570 } 10571 10572 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 10573 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 10574 V = V.getOperand(0); 10575 return V; 10576 } 10577 10578 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 10579 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 10580 V = V.getOperand(0); 10581 return V; 10582 } 10583 10584 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 10585 if (V.getOpcode() != ISD::XOR) 10586 return false; 10587 V = peekThroughBitcasts(V.getOperand(1)); 10588 unsigned NumBits = V.getScalarValueSizeInBits(); 10589 ConstantSDNode *C = 10590 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10591 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10592 } 10593 10594 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10595 bool AllowTruncation) { 10596 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10597 return CN; 10598 10599 // SplatVectors can truncate their operands. Ignore that case here unless 10600 // AllowTruncation is set. 10601 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10602 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10603 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10604 EVT CVT = CN->getValueType(0); 10605 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10606 if (AllowTruncation || CVT == VecEltVT) 10607 return CN; 10608 } 10609 } 10610 10611 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10612 BitVector UndefElements; 10613 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10614 10615 // BuildVectors can truncate their operands. Ignore that case here unless 10616 // AllowTruncation is set. 10617 if (CN && (UndefElements.none() || AllowUndefs)) { 10618 EVT CVT = CN->getValueType(0); 10619 EVT NSVT = N.getValueType().getScalarType(); 10620 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10621 if (AllowTruncation || (CVT == NSVT)) 10622 return CN; 10623 } 10624 } 10625 10626 return nullptr; 10627 } 10628 10629 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10630 bool AllowUndefs, 10631 bool AllowTruncation) { 10632 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10633 return CN; 10634 10635 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10636 BitVector UndefElements; 10637 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10638 10639 // BuildVectors can truncate their operands. Ignore that case here unless 10640 // AllowTruncation is set. 10641 if (CN && (UndefElements.none() || AllowUndefs)) { 10642 EVT CVT = CN->getValueType(0); 10643 EVT NSVT = N.getValueType().getScalarType(); 10644 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10645 if (AllowTruncation || (CVT == NSVT)) 10646 return CN; 10647 } 10648 } 10649 10650 return nullptr; 10651 } 10652 10653 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10654 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10655 return CN; 10656 10657 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10658 BitVector UndefElements; 10659 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10660 if (CN && (UndefElements.none() || AllowUndefs)) 10661 return CN; 10662 } 10663 10664 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10665 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10666 return CN; 10667 10668 return nullptr; 10669 } 10670 10671 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10672 const APInt &DemandedElts, 10673 bool AllowUndefs) { 10674 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10675 return CN; 10676 10677 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10678 BitVector UndefElements; 10679 ConstantFPSDNode *CN = 10680 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10681 if (CN && (UndefElements.none() || AllowUndefs)) 10682 return CN; 10683 } 10684 10685 return nullptr; 10686 } 10687 10688 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10689 // TODO: may want to use peekThroughBitcast() here. 10690 ConstantSDNode *C = 10691 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10692 return C && C->isZero(); 10693 } 10694 10695 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10696 ConstantSDNode *C = 10697 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 10698 return C && C->isOne(); 10699 } 10700 10701 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10702 N = peekThroughBitcasts(N); 10703 unsigned BitWidth = N.getScalarValueSizeInBits(); 10704 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10705 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10706 } 10707 10708 HandleSDNode::~HandleSDNode() { 10709 DropOperands(); 10710 } 10711 10712 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10713 const DebugLoc &DL, 10714 const GlobalValue *GA, EVT VT, 10715 int64_t o, unsigned TF) 10716 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10717 TheGlobal = GA; 10718 } 10719 10720 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10721 EVT VT, unsigned SrcAS, 10722 unsigned DestAS) 10723 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10724 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10725 10726 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10727 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10728 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10729 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10730 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10731 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10732 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10733 10734 // We check here that the size of the memory operand fits within the size of 10735 // the MMO. This is because the MMO might indicate only a possible address 10736 // range instead of specifying the affected memory addresses precisely. 10737 // TODO: Make MachineMemOperands aware of scalable vectors. 10738 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10739 "Size mismatch!"); 10740 } 10741 10742 /// Profile - Gather unique data for the node. 10743 /// 10744 void SDNode::Profile(FoldingSetNodeID &ID) const { 10745 AddNodeIDNode(ID, this); 10746 } 10747 10748 namespace { 10749 10750 struct EVTArray { 10751 std::vector<EVT> VTs; 10752 10753 EVTArray() { 10754 VTs.reserve(MVT::VALUETYPE_SIZE); 10755 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10756 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10757 } 10758 }; 10759 10760 } // end anonymous namespace 10761 10762 /// getValueTypeList - Return a pointer to the specified value type. 10763 /// 10764 const EVT *SDNode::getValueTypeList(EVT VT) { 10765 static std::set<EVT, EVT::compareRawBits> EVTs; 10766 static EVTArray SimpleVTArray; 10767 static sys::SmartMutex<true> VTMutex; 10768 10769 if (VT.isExtended()) { 10770 sys::SmartScopedLock<true> Lock(VTMutex); 10771 return &(*EVTs.insert(VT).first); 10772 } 10773 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10774 return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy]; 10775 } 10776 10777 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10778 /// indicated value. This method ignores uses of other values defined by this 10779 /// operation. 10780 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10781 assert(Value < getNumValues() && "Bad value!"); 10782 10783 // TODO: Only iterate over uses of a given value of the node 10784 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10785 if (UI.getUse().getResNo() == Value) { 10786 if (NUses == 0) 10787 return false; 10788 --NUses; 10789 } 10790 } 10791 10792 // Found exactly the right number of uses? 10793 return NUses == 0; 10794 } 10795 10796 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10797 /// value. This method ignores uses of other values defined by this operation. 10798 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10799 assert(Value < getNumValues() && "Bad value!"); 10800 10801 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10802 if (UI.getUse().getResNo() == Value) 10803 return true; 10804 10805 return false; 10806 } 10807 10808 /// isOnlyUserOf - Return true if this node is the only use of N. 10809 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10810 bool Seen = false; 10811 for (const SDNode *User : N->uses()) { 10812 if (User == this) 10813 Seen = true; 10814 else 10815 return false; 10816 } 10817 10818 return Seen; 10819 } 10820 10821 /// Return true if the only users of N are contained in Nodes. 10822 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10823 bool Seen = false; 10824 for (const SDNode *User : N->uses()) { 10825 if (llvm::is_contained(Nodes, User)) 10826 Seen = true; 10827 else 10828 return false; 10829 } 10830 10831 return Seen; 10832 } 10833 10834 /// isOperand - Return true if this node is an operand of N. 10835 bool SDValue::isOperandOf(const SDNode *N) const { 10836 return is_contained(N->op_values(), *this); 10837 } 10838 10839 bool SDNode::isOperandOf(const SDNode *N) const { 10840 return any_of(N->op_values(), 10841 [this](SDValue Op) { return this == Op.getNode(); }); 10842 } 10843 10844 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10845 /// be a chain) reaches the specified operand without crossing any 10846 /// side-effecting instructions on any chain path. In practice, this looks 10847 /// through token factors and non-volatile loads. In order to remain efficient, 10848 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10849 /// 10850 /// Note that we only need to examine chains when we're searching for 10851 /// side-effects; SelectionDAG requires that all side-effects are represented 10852 /// by chains, even if another operand would force a specific ordering. This 10853 /// constraint is necessary to allow transformations like splitting loads. 10854 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10855 unsigned Depth) const { 10856 if (*this == Dest) return true; 10857 10858 // Don't search too deeply, we just want to be able to see through 10859 // TokenFactor's etc. 10860 if (Depth == 0) return false; 10861 10862 // If this is a token factor, all inputs to the TF happen in parallel. 10863 if (getOpcode() == ISD::TokenFactor) { 10864 // First, try a shallow search. 10865 if (is_contained((*this)->ops(), Dest)) { 10866 // We found the chain we want as an operand of this TokenFactor. 10867 // Essentially, we reach the chain without side-effects if we could 10868 // serialize the TokenFactor into a simple chain of operations with 10869 // Dest as the last operation. This is automatically true if the 10870 // chain has one use: there are no other ordering constraints. 10871 // If the chain has more than one use, we give up: some other 10872 // use of Dest might force a side-effect between Dest and the current 10873 // node. 10874 if (Dest.hasOneUse()) 10875 return true; 10876 } 10877 // Next, try a deep search: check whether every operand of the TokenFactor 10878 // reaches Dest. 10879 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10880 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10881 }); 10882 } 10883 10884 // Loads don't have side effects, look through them. 10885 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10886 if (Ld->isUnordered()) 10887 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10888 } 10889 return false; 10890 } 10891 10892 bool SDNode::hasPredecessor(const SDNode *N) const { 10893 SmallPtrSet<const SDNode *, 32> Visited; 10894 SmallVector<const SDNode *, 16> Worklist; 10895 Worklist.push_back(this); 10896 return hasPredecessorHelper(N, Visited, Worklist); 10897 } 10898 10899 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10900 this->Flags.intersectWith(Flags); 10901 } 10902 10903 SDValue 10904 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10905 ArrayRef<ISD::NodeType> CandidateBinOps, 10906 bool AllowPartials) { 10907 // The pattern must end in an extract from index 0. 10908 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10909 !isNullConstant(Extract->getOperand(1))) 10910 return SDValue(); 10911 10912 // Match against one of the candidate binary ops. 10913 SDValue Op = Extract->getOperand(0); 10914 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10915 return Op.getOpcode() == unsigned(BinOp); 10916 })) 10917 return SDValue(); 10918 10919 // Floating-point reductions may require relaxed constraints on the final step 10920 // of the reduction because they may reorder intermediate operations. 10921 unsigned CandidateBinOp = Op.getOpcode(); 10922 if (Op.getValueType().isFloatingPoint()) { 10923 SDNodeFlags Flags = Op->getFlags(); 10924 switch (CandidateBinOp) { 10925 case ISD::FADD: 10926 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10927 return SDValue(); 10928 break; 10929 default: 10930 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10931 } 10932 } 10933 10934 // Matching failed - attempt to see if we did enough stages that a partial 10935 // reduction from a subvector is possible. 10936 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10937 if (!AllowPartials || !Op) 10938 return SDValue(); 10939 EVT OpVT = Op.getValueType(); 10940 EVT OpSVT = OpVT.getScalarType(); 10941 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10942 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10943 return SDValue(); 10944 BinOp = (ISD::NodeType)CandidateBinOp; 10945 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10946 getVectorIdxConstant(0, SDLoc(Op))); 10947 }; 10948 10949 // At each stage, we're looking for something that looks like: 10950 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10951 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10952 // i32 undef, i32 undef, i32 undef, i32 undef> 10953 // %a = binop <8 x i32> %op, %s 10954 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10955 // we expect something like: 10956 // <4,5,6,7,u,u,u,u> 10957 // <2,3,u,u,u,u,u,u> 10958 // <1,u,u,u,u,u,u,u> 10959 // While a partial reduction match would be: 10960 // <2,3,u,u,u,u,u,u> 10961 // <1,u,u,u,u,u,u,u> 10962 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10963 SDValue PrevOp; 10964 for (unsigned i = 0; i < Stages; ++i) { 10965 unsigned MaskEnd = (1 << i); 10966 10967 if (Op.getOpcode() != CandidateBinOp) 10968 return PartialReduction(PrevOp, MaskEnd); 10969 10970 SDValue Op0 = Op.getOperand(0); 10971 SDValue Op1 = Op.getOperand(1); 10972 10973 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10974 if (Shuffle) { 10975 Op = Op1; 10976 } else { 10977 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10978 Op = Op0; 10979 } 10980 10981 // The first operand of the shuffle should be the same as the other operand 10982 // of the binop. 10983 if (!Shuffle || Shuffle->getOperand(0) != Op) 10984 return PartialReduction(PrevOp, MaskEnd); 10985 10986 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10987 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10988 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10989 return PartialReduction(PrevOp, MaskEnd); 10990 10991 PrevOp = Op; 10992 } 10993 10994 // Handle subvector reductions, which tend to appear after the shuffle 10995 // reduction stages. 10996 while (Op.getOpcode() == CandidateBinOp) { 10997 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10998 SDValue Op0 = Op.getOperand(0); 10999 SDValue Op1 = Op.getOperand(1); 11000 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 11001 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 11002 Op0.getOperand(0) != Op1.getOperand(0)) 11003 break; 11004 SDValue Src = Op0.getOperand(0); 11005 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 11006 if (NumSrcElts != (2 * NumElts)) 11007 break; 11008 if (!(Op0.getConstantOperandAPInt(1) == 0 && 11009 Op1.getConstantOperandAPInt(1) == NumElts) && 11010 !(Op1.getConstantOperandAPInt(1) == 0 && 11011 Op0.getConstantOperandAPInt(1) == NumElts)) 11012 break; 11013 Op = Src; 11014 } 11015 11016 BinOp = (ISD::NodeType)CandidateBinOp; 11017 return Op; 11018 } 11019 11020 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 11021 assert(N->getNumValues() == 1 && 11022 "Can't unroll a vector with multiple results!"); 11023 11024 EVT VT = N->getValueType(0); 11025 unsigned NE = VT.getVectorNumElements(); 11026 EVT EltVT = VT.getVectorElementType(); 11027 SDLoc dl(N); 11028 11029 SmallVector<SDValue, 8> Scalars; 11030 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11031 11032 // If ResNE is 0, fully unroll the vector op. 11033 if (ResNE == 0) 11034 ResNE = NE; 11035 else if (NE > ResNE) 11036 NE = ResNE; 11037 11038 unsigned i; 11039 for (i= 0; i != NE; ++i) { 11040 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11041 SDValue Operand = N->getOperand(j); 11042 EVT OperandVT = Operand.getValueType(); 11043 if (OperandVT.isVector()) { 11044 // A vector operand; extract a single element. 11045 EVT OperandEltVT = OperandVT.getVectorElementType(); 11046 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11047 Operand, getVectorIdxConstant(i, dl)); 11048 } else { 11049 // A scalar operand; just use it as is. 11050 Operands[j] = Operand; 11051 } 11052 } 11053 11054 switch (N->getOpcode()) { 11055 default: { 11056 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11057 N->getFlags())); 11058 break; 11059 } 11060 case ISD::VSELECT: 11061 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11062 break; 11063 case ISD::SHL: 11064 case ISD::SRA: 11065 case ISD::SRL: 11066 case ISD::ROTL: 11067 case ISD::ROTR: 11068 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11069 getShiftAmountOperand(Operands[0].getValueType(), 11070 Operands[1]))); 11071 break; 11072 case ISD::SIGN_EXTEND_INREG: { 11073 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11074 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11075 Operands[0], 11076 getValueType(ExtVT))); 11077 } 11078 } 11079 } 11080 11081 for (; i < ResNE; ++i) 11082 Scalars.push_back(getUNDEF(EltVT)); 11083 11084 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11085 return getBuildVector(VecVT, dl, Scalars); 11086 } 11087 11088 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11089 SDNode *N, unsigned ResNE) { 11090 unsigned Opcode = N->getOpcode(); 11091 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11092 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11093 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11094 "Expected an overflow opcode"); 11095 11096 EVT ResVT = N->getValueType(0); 11097 EVT OvVT = N->getValueType(1); 11098 EVT ResEltVT = ResVT.getVectorElementType(); 11099 EVT OvEltVT = OvVT.getVectorElementType(); 11100 SDLoc dl(N); 11101 11102 // If ResNE is 0, fully unroll the vector op. 11103 unsigned NE = ResVT.getVectorNumElements(); 11104 if (ResNE == 0) 11105 ResNE = NE; 11106 else if (NE > ResNE) 11107 NE = ResNE; 11108 11109 SmallVector<SDValue, 8> LHSScalars; 11110 SmallVector<SDValue, 8> RHSScalars; 11111 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11112 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11113 11114 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11115 SDVTList VTs = getVTList(ResEltVT, SVT); 11116 SmallVector<SDValue, 8> ResScalars; 11117 SmallVector<SDValue, 8> OvScalars; 11118 for (unsigned i = 0; i < NE; ++i) { 11119 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11120 SDValue Ov = 11121 getSelect(dl, OvEltVT, Res.getValue(1), 11122 getBoolConstant(true, dl, OvEltVT, ResVT), 11123 getConstant(0, dl, OvEltVT)); 11124 11125 ResScalars.push_back(Res); 11126 OvScalars.push_back(Ov); 11127 } 11128 11129 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11130 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11131 11132 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11133 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11134 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11135 getBuildVector(NewOvVT, dl, OvScalars)); 11136 } 11137 11138 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11139 LoadSDNode *Base, 11140 unsigned Bytes, 11141 int Dist) const { 11142 if (LD->isVolatile() || Base->isVolatile()) 11143 return false; 11144 // TODO: probably too restrictive for atomics, revisit 11145 if (!LD->isSimple()) 11146 return false; 11147 if (LD->isIndexed() || Base->isIndexed()) 11148 return false; 11149 if (LD->getChain() != Base->getChain()) 11150 return false; 11151 EVT VT = LD->getValueType(0); 11152 if (VT.getSizeInBits() / 8 != Bytes) 11153 return false; 11154 11155 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11156 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11157 11158 int64_t Offset = 0; 11159 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11160 return (Dist * Bytes == Offset); 11161 return false; 11162 } 11163 11164 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 11165 /// if it cannot be inferred. 11166 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11167 // If this is a GlobalAddress + cst, return the alignment. 11168 const GlobalValue *GV = nullptr; 11169 int64_t GVOffset = 0; 11170 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11171 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11172 KnownBits Known(PtrWidth); 11173 llvm::computeKnownBits(GV, Known, getDataLayout()); 11174 unsigned AlignBits = Known.countMinTrailingZeros(); 11175 if (AlignBits) 11176 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11177 } 11178 11179 // If this is a direct reference to a stack slot, use information about the 11180 // stack slot's alignment. 11181 int FrameIdx = INT_MIN; 11182 int64_t FrameOffset = 0; 11183 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11184 FrameIdx = FI->getIndex(); 11185 } else if (isBaseWithConstantOffset(Ptr) && 11186 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11187 // Handle FI+Cst 11188 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11189 FrameOffset = Ptr.getConstantOperandVal(1); 11190 } 11191 11192 if (FrameIdx != INT_MIN) { 11193 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11194 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11195 } 11196 11197 return None; 11198 } 11199 11200 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11201 /// which is split (or expanded) into two not necessarily identical pieces. 11202 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11203 // Currently all types are split in half. 11204 EVT LoVT, HiVT; 11205 if (!VT.isVector()) 11206 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11207 else 11208 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11209 11210 return std::make_pair(LoVT, HiVT); 11211 } 11212 11213 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11214 /// type, dependent on an enveloping VT that has been split into two identical 11215 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11216 std::pair<EVT, EVT> 11217 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11218 bool *HiIsEmpty) const { 11219 EVT EltTp = VT.getVectorElementType(); 11220 // Examples: 11221 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11222 // custom VL=9 with enveloping VL=8/8 yields 8/1 11223 // custom VL=10 with enveloping VL=8/8 yields 8/2 11224 // etc. 11225 ElementCount VTNumElts = VT.getVectorElementCount(); 11226 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11227 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11228 "Mixing fixed width and scalable vectors when enveloping a type"); 11229 EVT LoVT, HiVT; 11230 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11231 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11232 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11233 *HiIsEmpty = false; 11234 } else { 11235 // Flag that hi type has zero storage size, but return split envelop type 11236 // (this would be easier if vector types with zero elements were allowed). 11237 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11238 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11239 *HiIsEmpty = true; 11240 } 11241 return std::make_pair(LoVT, HiVT); 11242 } 11243 11244 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11245 /// low/high part. 11246 std::pair<SDValue, SDValue> 11247 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11248 const EVT &HiVT) { 11249 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11250 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11251 "Splitting vector with an invalid mixture of fixed and scalable " 11252 "vector types"); 11253 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 11254 N.getValueType().getVectorMinNumElements() && 11255 "More vector elements requested than available!"); 11256 SDValue Lo, Hi; 11257 Lo = 11258 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 11259 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 11260 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 11261 // IDX with the runtime scaling factor of the result vector type. For 11262 // fixed-width result vectors, that runtime scaling factor is 1. 11263 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 11264 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 11265 return std::make_pair(Lo, Hi); 11266 } 11267 11268 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 11269 const SDLoc &DL) { 11270 // Split the vector length parameter. 11271 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 11272 EVT VT = N.getValueType(); 11273 assert(VecVT.getVectorElementCount().isKnownEven() && 11274 "Expecting the mask to be an evenly-sized vector"); 11275 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 11276 SDValue HalfNumElts = 11277 VecVT.isFixedLengthVector() 11278 ? getConstant(HalfMinNumElts, DL, VT) 11279 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 11280 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 11281 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 11282 return std::make_pair(Lo, Hi); 11283 } 11284 11285 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 11286 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 11287 EVT VT = N.getValueType(); 11288 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 11289 NextPowerOf2(VT.getVectorNumElements())); 11290 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 11291 getVectorIdxConstant(0, DL)); 11292 } 11293 11294 void SelectionDAG::ExtractVectorElements(SDValue Op, 11295 SmallVectorImpl<SDValue> &Args, 11296 unsigned Start, unsigned Count, 11297 EVT EltVT) { 11298 EVT VT = Op.getValueType(); 11299 if (Count == 0) 11300 Count = VT.getVectorNumElements(); 11301 if (EltVT == EVT()) 11302 EltVT = VT.getVectorElementType(); 11303 SDLoc SL(Op); 11304 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 11305 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 11306 getVectorIdxConstant(i, SL))); 11307 } 11308 } 11309 11310 // getAddressSpace - Return the address space this GlobalAddress belongs to. 11311 unsigned GlobalAddressSDNode::getAddressSpace() const { 11312 return getGlobal()->getType()->getAddressSpace(); 11313 } 11314 11315 Type *ConstantPoolSDNode::getType() const { 11316 if (isMachineConstantPoolEntry()) 11317 return Val.MachineCPVal->getType(); 11318 return Val.ConstVal->getType(); 11319 } 11320 11321 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 11322 unsigned &SplatBitSize, 11323 bool &HasAnyUndefs, 11324 unsigned MinSplatBits, 11325 bool IsBigEndian) const { 11326 EVT VT = getValueType(0); 11327 assert(VT.isVector() && "Expected a vector type"); 11328 unsigned VecWidth = VT.getSizeInBits(); 11329 if (MinSplatBits > VecWidth) 11330 return false; 11331 11332 // FIXME: The widths are based on this node's type, but build vectors can 11333 // truncate their operands. 11334 SplatValue = APInt(VecWidth, 0); 11335 SplatUndef = APInt(VecWidth, 0); 11336 11337 // Get the bits. Bits with undefined values (when the corresponding element 11338 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 11339 // in SplatValue. If any of the values are not constant, give up and return 11340 // false. 11341 unsigned int NumOps = getNumOperands(); 11342 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 11343 unsigned EltWidth = VT.getScalarSizeInBits(); 11344 11345 for (unsigned j = 0; j < NumOps; ++j) { 11346 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 11347 SDValue OpVal = getOperand(i); 11348 unsigned BitPos = j * EltWidth; 11349 11350 if (OpVal.isUndef()) 11351 SplatUndef.setBits(BitPos, BitPos + EltWidth); 11352 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 11353 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 11354 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 11355 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 11356 else 11357 return false; 11358 } 11359 11360 // The build_vector is all constants or undefs. Find the smallest element 11361 // size that splats the vector. 11362 HasAnyUndefs = (SplatUndef != 0); 11363 11364 // FIXME: This does not work for vectors with elements less than 8 bits. 11365 while (VecWidth > 8) { 11366 unsigned HalfSize = VecWidth / 2; 11367 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 11368 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 11369 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 11370 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 11371 11372 // If the two halves do not match (ignoring undef bits), stop here. 11373 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 11374 MinSplatBits > HalfSize) 11375 break; 11376 11377 SplatValue = HighValue | LowValue; 11378 SplatUndef = HighUndef & LowUndef; 11379 11380 VecWidth = HalfSize; 11381 } 11382 11383 SplatBitSize = VecWidth; 11384 return true; 11385 } 11386 11387 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 11388 BitVector *UndefElements) const { 11389 unsigned NumOps = getNumOperands(); 11390 if (UndefElements) { 11391 UndefElements->clear(); 11392 UndefElements->resize(NumOps); 11393 } 11394 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11395 if (!DemandedElts) 11396 return SDValue(); 11397 SDValue Splatted; 11398 for (unsigned i = 0; i != NumOps; ++i) { 11399 if (!DemandedElts[i]) 11400 continue; 11401 SDValue Op = getOperand(i); 11402 if (Op.isUndef()) { 11403 if (UndefElements) 11404 (*UndefElements)[i] = true; 11405 } else if (!Splatted) { 11406 Splatted = Op; 11407 } else if (Splatted != Op) { 11408 return SDValue(); 11409 } 11410 } 11411 11412 if (!Splatted) { 11413 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 11414 assert(getOperand(FirstDemandedIdx).isUndef() && 11415 "Can only have a splat without a constant for all undefs."); 11416 return getOperand(FirstDemandedIdx); 11417 } 11418 11419 return Splatted; 11420 } 11421 11422 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 11423 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11424 return getSplatValue(DemandedElts, UndefElements); 11425 } 11426 11427 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 11428 SmallVectorImpl<SDValue> &Sequence, 11429 BitVector *UndefElements) const { 11430 unsigned NumOps = getNumOperands(); 11431 Sequence.clear(); 11432 if (UndefElements) { 11433 UndefElements->clear(); 11434 UndefElements->resize(NumOps); 11435 } 11436 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 11437 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 11438 return false; 11439 11440 // Set the undefs even if we don't find a sequence (like getSplatValue). 11441 if (UndefElements) 11442 for (unsigned I = 0; I != NumOps; ++I) 11443 if (DemandedElts[I] && getOperand(I).isUndef()) 11444 (*UndefElements)[I] = true; 11445 11446 // Iteratively widen the sequence length looking for repetitions. 11447 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 11448 Sequence.append(SeqLen, SDValue()); 11449 for (unsigned I = 0; I != NumOps; ++I) { 11450 if (!DemandedElts[I]) 11451 continue; 11452 SDValue &SeqOp = Sequence[I % SeqLen]; 11453 SDValue Op = getOperand(I); 11454 if (Op.isUndef()) { 11455 if (!SeqOp) 11456 SeqOp = Op; 11457 continue; 11458 } 11459 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 11460 Sequence.clear(); 11461 break; 11462 } 11463 SeqOp = Op; 11464 } 11465 if (!Sequence.empty()) 11466 return true; 11467 } 11468 11469 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 11470 return false; 11471 } 11472 11473 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 11474 BitVector *UndefElements) const { 11475 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 11476 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 11477 } 11478 11479 ConstantSDNode * 11480 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 11481 BitVector *UndefElements) const { 11482 return dyn_cast_or_null<ConstantSDNode>( 11483 getSplatValue(DemandedElts, UndefElements)); 11484 } 11485 11486 ConstantSDNode * 11487 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 11488 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 11489 } 11490 11491 ConstantFPSDNode * 11492 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 11493 BitVector *UndefElements) const { 11494 return dyn_cast_or_null<ConstantFPSDNode>( 11495 getSplatValue(DemandedElts, UndefElements)); 11496 } 11497 11498 ConstantFPSDNode * 11499 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 11500 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 11501 } 11502 11503 int32_t 11504 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 11505 uint32_t BitWidth) const { 11506 if (ConstantFPSDNode *CN = 11507 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 11508 bool IsExact; 11509 APSInt IntVal(BitWidth); 11510 const APFloat &APF = CN->getValueAPF(); 11511 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 11512 APFloat::opOK || 11513 !IsExact) 11514 return -1; 11515 11516 return IntVal.exactLogBase2(); 11517 } 11518 return -1; 11519 } 11520 11521 bool BuildVectorSDNode::getConstantRawBits( 11522 bool IsLittleEndian, unsigned DstEltSizeInBits, 11523 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 11524 // Early-out if this contains anything but Undef/Constant/ConstantFP. 11525 if (!isConstant()) 11526 return false; 11527 11528 unsigned NumSrcOps = getNumOperands(); 11529 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 11530 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11531 "Invalid bitcast scale"); 11532 11533 // Extract raw src bits. 11534 SmallVector<APInt> SrcBitElements(NumSrcOps, 11535 APInt::getNullValue(SrcEltSizeInBits)); 11536 BitVector SrcUndeElements(NumSrcOps, false); 11537 11538 for (unsigned I = 0; I != NumSrcOps; ++I) { 11539 SDValue Op = getOperand(I); 11540 if (Op.isUndef()) { 11541 SrcUndeElements.set(I); 11542 continue; 11543 } 11544 auto *CInt = dyn_cast<ConstantSDNode>(Op); 11545 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 11546 assert((CInt || CFP) && "Unknown constant"); 11547 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 11548 : CFP->getValueAPF().bitcastToAPInt(); 11549 } 11550 11551 // Recast to dst width. 11552 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 11553 SrcBitElements, UndefElements, SrcUndeElements); 11554 return true; 11555 } 11556 11557 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 11558 unsigned DstEltSizeInBits, 11559 SmallVectorImpl<APInt> &DstBitElements, 11560 ArrayRef<APInt> SrcBitElements, 11561 BitVector &DstUndefElements, 11562 const BitVector &SrcUndefElements) { 11563 unsigned NumSrcOps = SrcBitElements.size(); 11564 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 11565 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 11566 "Invalid bitcast scale"); 11567 assert(NumSrcOps == SrcUndefElements.size() && 11568 "Vector size mismatch"); 11569 11570 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 11571 DstUndefElements.clear(); 11572 DstUndefElements.resize(NumDstOps, false); 11573 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 11574 11575 // Concatenate src elements constant bits together into dst element. 11576 if (SrcEltSizeInBits <= DstEltSizeInBits) { 11577 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 11578 for (unsigned I = 0; I != NumDstOps; ++I) { 11579 DstUndefElements.set(I); 11580 APInt &DstBits = DstBitElements[I]; 11581 for (unsigned J = 0; J != Scale; ++J) { 11582 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11583 if (SrcUndefElements[Idx]) 11584 continue; 11585 DstUndefElements.reset(I); 11586 const APInt &SrcBits = SrcBitElements[Idx]; 11587 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11588 "Illegal constant bitwidths"); 11589 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11590 } 11591 } 11592 return; 11593 } 11594 11595 // Split src element constant bits into dst elements. 11596 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11597 for (unsigned I = 0; I != NumSrcOps; ++I) { 11598 if (SrcUndefElements[I]) { 11599 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11600 continue; 11601 } 11602 const APInt &SrcBits = SrcBitElements[I]; 11603 for (unsigned J = 0; J != Scale; ++J) { 11604 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11605 APInt &DstBits = DstBitElements[Idx]; 11606 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11607 } 11608 } 11609 } 11610 11611 bool BuildVectorSDNode::isConstant() const { 11612 for (const SDValue &Op : op_values()) { 11613 unsigned Opc = Op.getOpcode(); 11614 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11615 return false; 11616 } 11617 return true; 11618 } 11619 11620 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11621 // Find the first non-undef value in the shuffle mask. 11622 unsigned i, e; 11623 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11624 /* search */; 11625 11626 // If all elements are undefined, this shuffle can be considered a splat 11627 // (although it should eventually get simplified away completely). 11628 if (i == e) 11629 return true; 11630 11631 // Make sure all remaining elements are either undef or the same as the first 11632 // non-undef value. 11633 for (int Idx = Mask[i]; i != e; ++i) 11634 if (Mask[i] >= 0 && Mask[i] != Idx) 11635 return false; 11636 return true; 11637 } 11638 11639 // Returns the SDNode if it is a constant integer BuildVector 11640 // or constant integer. 11641 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11642 if (isa<ConstantSDNode>(N)) 11643 return N.getNode(); 11644 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11645 return N.getNode(); 11646 // Treat a GlobalAddress supporting constant offset folding as a 11647 // constant integer. 11648 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11649 if (GA->getOpcode() == ISD::GlobalAddress && 11650 TLI->isOffsetFoldingLegal(GA)) 11651 return GA; 11652 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11653 isa<ConstantSDNode>(N.getOperand(0))) 11654 return N.getNode(); 11655 return nullptr; 11656 } 11657 11658 // Returns the SDNode if it is a constant float BuildVector 11659 // or constant float. 11660 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11661 if (isa<ConstantFPSDNode>(N)) 11662 return N.getNode(); 11663 11664 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11665 return N.getNode(); 11666 11667 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11668 isa<ConstantFPSDNode>(N.getOperand(0))) 11669 return N.getNode(); 11670 11671 return nullptr; 11672 } 11673 11674 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11675 assert(!Node->OperandList && "Node already has operands"); 11676 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11677 "too many operands to fit into SDNode"); 11678 SDUse *Ops = OperandRecycler.allocate( 11679 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11680 11681 bool IsDivergent = false; 11682 for (unsigned I = 0; I != Vals.size(); ++I) { 11683 Ops[I].setUser(Node); 11684 Ops[I].setInitial(Vals[I]); 11685 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11686 IsDivergent |= Ops[I].getNode()->isDivergent(); 11687 } 11688 Node->NumOperands = Vals.size(); 11689 Node->OperandList = Ops; 11690 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11691 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11692 Node->SDNodeBits.IsDivergent = IsDivergent; 11693 } 11694 checkForCycles(Node); 11695 } 11696 11697 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11698 SmallVectorImpl<SDValue> &Vals) { 11699 size_t Limit = SDNode::getMaxNumOperands(); 11700 while (Vals.size() > Limit) { 11701 unsigned SliceIdx = Vals.size() - Limit; 11702 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11703 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11704 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11705 Vals.emplace_back(NewTF); 11706 } 11707 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11708 } 11709 11710 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11711 EVT VT, SDNodeFlags Flags) { 11712 switch (Opcode) { 11713 default: 11714 return SDValue(); 11715 case ISD::ADD: 11716 case ISD::OR: 11717 case ISD::XOR: 11718 case ISD::UMAX: 11719 return getConstant(0, DL, VT); 11720 case ISD::MUL: 11721 return getConstant(1, DL, VT); 11722 case ISD::AND: 11723 case ISD::UMIN: 11724 return getAllOnesConstant(DL, VT); 11725 case ISD::SMAX: 11726 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11727 case ISD::SMIN: 11728 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11729 case ISD::FADD: 11730 return getConstantFP(-0.0, DL, VT); 11731 case ISD::FMUL: 11732 return getConstantFP(1.0, DL, VT); 11733 case ISD::FMINNUM: 11734 case ISD::FMAXNUM: { 11735 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11736 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11737 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11738 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11739 APFloat::getLargest(Semantics); 11740 if (Opcode == ISD::FMAXNUM) 11741 NeutralAF.changeSign(); 11742 11743 return getConstantFP(NeutralAF, DL, VT); 11744 } 11745 } 11746 } 11747 11748 #ifndef NDEBUG 11749 static void checkForCyclesHelper(const SDNode *N, 11750 SmallPtrSetImpl<const SDNode*> &Visited, 11751 SmallPtrSetImpl<const SDNode*> &Checked, 11752 const llvm::SelectionDAG *DAG) { 11753 // If this node has already been checked, don't check it again. 11754 if (Checked.count(N)) 11755 return; 11756 11757 // If a node has already been visited on this depth-first walk, reject it as 11758 // a cycle. 11759 if (!Visited.insert(N).second) { 11760 errs() << "Detected cycle in SelectionDAG\n"; 11761 dbgs() << "Offending node:\n"; 11762 N->dumprFull(DAG); dbgs() << "\n"; 11763 abort(); 11764 } 11765 11766 for (const SDValue &Op : N->op_values()) 11767 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11768 11769 Checked.insert(N); 11770 Visited.erase(N); 11771 } 11772 #endif 11773 11774 void llvm::checkForCycles(const llvm::SDNode *N, 11775 const llvm::SelectionDAG *DAG, 11776 bool force) { 11777 #ifndef NDEBUG 11778 bool check = force; 11779 #ifdef EXPENSIVE_CHECKS 11780 check = true; 11781 #endif // EXPENSIVE_CHECKS 11782 if (check) { 11783 assert(N && "Checking nonexistent SDNode"); 11784 SmallPtrSet<const SDNode*, 32> visited; 11785 SmallPtrSet<const SDNode*, 32> checked; 11786 checkForCyclesHelper(N, visited, checked, DAG); 11787 } 11788 #endif // !NDEBUG 11789 } 11790 11791 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11792 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11793 } 11794