xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MachineValueType.h"
66 #include "llvm/Support/ManagedStatic.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/Mutex.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include "llvm/Target/TargetOptions.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 
99 #define DEBUG_TYPE "selectiondag"
100 
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102        cl::Hidden, cl::init(true),
103        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104 
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106        cl::desc("Number limit for gluing ld/st of memcpy."),
107        cl::Hidden, cl::init(0));
108 
109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                              ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116 
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122   return getValueAPF().bitwiseIsEqual(V);
123 }
124 
125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126                                            const APFloat& Val) {
127   assert(VT.isFloatingPoint() && "Can only convert between FP types");
128 
129   // convert modifies in place, so make a copy.
130   APFloat Val2 = APFloat(Val);
131   bool losesInfo;
132   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133                       APFloat::rmNearestTiesToEven,
134                       &losesInfo);
135   return !losesInfo;
136 }
137 
138 //===----------------------------------------------------------------------===//
139 //                              ISD Namespace
140 //===----------------------------------------------------------------------===//
141 
142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
144     unsigned EltSize =
145         N->getValueType(0).getVectorElementType().getSizeInBits();
146     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
147       SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize);
148       return true;
149     }
150     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
151       SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize);
152       return true;
153     }
154   }
155 
156   auto *BV = dyn_cast<BuildVectorSDNode>(N);
157   if (!BV)
158     return false;
159 
160   APInt SplatUndef;
161   unsigned SplatBitSize;
162   bool HasUndefs;
163   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
164   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
165                              EltSize) &&
166          EltSize == SplatBitSize;
167 }
168 
169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
170 // specializations of the more general isConstantSplatVector()?
171 
172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
173   // Look through a bit convert.
174   while (N->getOpcode() == ISD::BITCAST)
175     N = N->getOperand(0).getNode();
176 
177   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
178     APInt SplatVal;
179     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
180   }
181 
182   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
183 
184   unsigned i = 0, e = N->getNumOperands();
185 
186   // Skip over all of the undef values.
187   while (i != e && N->getOperand(i).isUndef())
188     ++i;
189 
190   // Do not accept an all-undef vector.
191   if (i == e) return false;
192 
193   // Do not accept build_vectors that aren't all constants or which have non-~0
194   // elements. We have to be a bit careful here, as the type of the constant
195   // may not be the same as the type of the vector elements due to type
196   // legalization (the elements are promoted to a legal type for the target and
197   // a vector of a type may be legal when the base element type is not).
198   // We only want to check enough bits to cover the vector elements, because
199   // we care if the resultant vector is all ones, not whether the individual
200   // constants are.
201   SDValue NotZero = N->getOperand(i);
202   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
203   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
204     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
205       return false;
206   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
207     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
208       return false;
209   } else
210     return false;
211 
212   // Okay, we have at least one ~0 value, check to see if the rest match or are
213   // undefs. Even with the above element type twiddling, this should be OK, as
214   // the same type legalization should have applied to all the elements.
215   for (++i; i != e; ++i)
216     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
217       return false;
218   return true;
219 }
220 
221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
222   // Look through a bit convert.
223   while (N->getOpcode() == ISD::BITCAST)
224     N = N->getOperand(0).getNode();
225 
226   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
227     APInt SplatVal;
228     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
229   }
230 
231   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
232 
233   bool IsAllUndef = true;
234   for (const SDValue &Op : N->op_values()) {
235     if (Op.isUndef())
236       continue;
237     IsAllUndef = false;
238     // Do not accept build_vectors that aren't all constants or which have non-0
239     // elements. We have to be a bit careful here, as the type of the constant
240     // may not be the same as the type of the vector elements due to type
241     // legalization (the elements are promoted to a legal type for the target
242     // and a vector of a type may be legal when the base element type is not).
243     // We only want to check enough bits to cover the vector elements, because
244     // we care if the resultant vector is all zeros, not whether the individual
245     // constants are.
246     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
247     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
248       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
249         return false;
250     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
251       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
252         return false;
253     } else
254       return false;
255   }
256 
257   // Do not accept an all-undef vector.
258   if (IsAllUndef)
259     return false;
260   return true;
261 }
262 
263 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
264   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
265 }
266 
267 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
268   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
269 }
270 
271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
272   if (N->getOpcode() != ISD::BUILD_VECTOR)
273     return false;
274 
275   for (const SDValue &Op : N->op_values()) {
276     if (Op.isUndef())
277       continue;
278     if (!isa<ConstantSDNode>(Op))
279       return false;
280   }
281   return true;
282 }
283 
284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
285   if (N->getOpcode() != ISD::BUILD_VECTOR)
286     return false;
287 
288   for (const SDValue &Op : N->op_values()) {
289     if (Op.isUndef())
290       continue;
291     if (!isa<ConstantFPSDNode>(Op))
292       return false;
293   }
294   return true;
295 }
296 
297 bool ISD::allOperandsUndef(const SDNode *N) {
298   // Return false if the node has no operands.
299   // This is "logically inconsistent" with the definition of "all" but
300   // is probably the desired behavior.
301   if (N->getNumOperands() == 0)
302     return false;
303   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
304 }
305 
306 bool ISD::matchUnaryPredicate(SDValue Op,
307                               std::function<bool(ConstantSDNode *)> Match,
308                               bool AllowUndefs) {
309   // FIXME: Add support for scalar UNDEF cases?
310   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
311     return Match(Cst);
312 
313   // FIXME: Add support for vector UNDEF cases?
314   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
315       ISD::SPLAT_VECTOR != Op.getOpcode())
316     return false;
317 
318   EVT SVT = Op.getValueType().getScalarType();
319   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
320     if (AllowUndefs && Op.getOperand(i).isUndef()) {
321       if (!Match(nullptr))
322         return false;
323       continue;
324     }
325 
326     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
327     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
328       return false;
329   }
330   return true;
331 }
332 
333 bool ISD::matchBinaryPredicate(
334     SDValue LHS, SDValue RHS,
335     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
336     bool AllowUndefs, bool AllowTypeMismatch) {
337   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
338     return false;
339 
340   // TODO: Add support for scalar UNDEF cases?
341   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
342     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
343       return Match(LHSCst, RHSCst);
344 
345   // TODO: Add support for vector UNDEF cases?
346   if (LHS.getOpcode() != RHS.getOpcode() ||
347       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
348        LHS.getOpcode() != ISD::SPLAT_VECTOR))
349     return false;
350 
351   EVT SVT = LHS.getValueType().getScalarType();
352   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
353     SDValue LHSOp = LHS.getOperand(i);
354     SDValue RHSOp = RHS.getOperand(i);
355     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
356     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
357     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
358     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
359     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
360       return false;
361     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
362                                LHSOp.getValueType() != RHSOp.getValueType()))
363       return false;
364     if (!Match(LHSCst, RHSCst))
365       return false;
366   }
367   return true;
368 }
369 
370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
371   switch (VecReduceOpcode) {
372   default:
373     llvm_unreachable("Expected VECREDUCE opcode");
374   case ISD::VECREDUCE_FADD:
375   case ISD::VECREDUCE_SEQ_FADD:
376     return ISD::FADD;
377   case ISD::VECREDUCE_FMUL:
378   case ISD::VECREDUCE_SEQ_FMUL:
379     return ISD::FMUL;
380   case ISD::VECREDUCE_ADD:
381     return ISD::ADD;
382   case ISD::VECREDUCE_MUL:
383     return ISD::MUL;
384   case ISD::VECREDUCE_AND:
385     return ISD::AND;
386   case ISD::VECREDUCE_OR:
387     return ISD::OR;
388   case ISD::VECREDUCE_XOR:
389     return ISD::XOR;
390   case ISD::VECREDUCE_SMAX:
391     return ISD::SMAX;
392   case ISD::VECREDUCE_SMIN:
393     return ISD::SMIN;
394   case ISD::VECREDUCE_UMAX:
395     return ISD::UMAX;
396   case ISD::VECREDUCE_UMIN:
397     return ISD::UMIN;
398   case ISD::VECREDUCE_FMAX:
399     return ISD::FMAXNUM;
400   case ISD::VECREDUCE_FMIN:
401     return ISD::FMINNUM;
402   }
403 }
404 
405 bool ISD::isVPOpcode(unsigned Opcode) {
406   switch (Opcode) {
407   default:
408     return false;
409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
410   case ISD::VPSD:                                                              \
411     return true;
412 #include "llvm/IR/VPIntrinsics.def"
413   }
414 }
415 
416 bool ISD::isVPBinaryOp(unsigned Opcode) {
417   switch (Opcode) {
418   default:
419     break;
420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
421 #define VP_PROPERTY_BINARYOP return true;
422 #define END_REGISTER_VP_SDNODE(VPSD) break;
423 #include "llvm/IR/VPIntrinsics.def"
424   }
425   return false;
426 }
427 
428 bool ISD::isVPReduction(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 /// The operand position of the vector mask.
441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
442   switch (Opcode) {
443   default:
444     return None;
445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
446   case ISD::VPSD:                                                              \
447     return MASKPOS;
448 #include "llvm/IR/VPIntrinsics.def"
449   }
450 }
451 
452 /// The operand position of the explicit vector length parameter.
453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
458   case ISD::VPSD:                                                              \
459     return EVLPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
465   switch (ExtType) {
466   case ISD::EXTLOAD:
467     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
468   case ISD::SEXTLOAD:
469     return ISD::SIGN_EXTEND;
470   case ISD::ZEXTLOAD:
471     return ISD::ZERO_EXTEND;
472   default:
473     break;
474   }
475 
476   llvm_unreachable("Invalid LoadExtType");
477 }
478 
479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
480   // To perform this operation, we just need to swap the L and G bits of the
481   // operation.
482   unsigned OldL = (Operation >> 2) & 1;
483   unsigned OldG = (Operation >> 1) & 1;
484   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
485                        (OldL << 1) |       // New G bit
486                        (OldG << 2));       // New L bit.
487 }
488 
489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
490   unsigned Operation = Op;
491   if (isIntegerLike)
492     Operation ^= 7;   // Flip L, G, E bits, but not U.
493   else
494     Operation ^= 15;  // Flip all of the condition bits.
495 
496   if (Operation > ISD::SETTRUE2)
497     Operation &= ~8;  // Don't let N and U bits get set.
498 
499   return ISD::CondCode(Operation);
500 }
501 
502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
503   return getSetCCInverseImpl(Op, Type.isInteger());
504 }
505 
506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
507                                                bool isIntegerLike) {
508   return getSetCCInverseImpl(Op, isIntegerLike);
509 }
510 
511 /// For an integer comparison, return 1 if the comparison is a signed operation
512 /// and 2 if the result is an unsigned comparison. Return zero if the operation
513 /// does not depend on the sign of the input (setne and seteq).
514 static int isSignedOp(ISD::CondCode Opcode) {
515   switch (Opcode) {
516   default: llvm_unreachable("Illegal integer setcc operation!");
517   case ISD::SETEQ:
518   case ISD::SETNE: return 0;
519   case ISD::SETLT:
520   case ISD::SETLE:
521   case ISD::SETGT:
522   case ISD::SETGE: return 1;
523   case ISD::SETULT:
524   case ISD::SETULE:
525   case ISD::SETUGT:
526   case ISD::SETUGE: return 2;
527   }
528 }
529 
530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
531                                        EVT Type) {
532   bool IsInteger = Type.isInteger();
533   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
534     // Cannot fold a signed integer setcc with an unsigned integer setcc.
535     return ISD::SETCC_INVALID;
536 
537   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
538 
539   // If the N and U bits get set, then the resultant comparison DOES suddenly
540   // care about orderedness, and it is true when ordered.
541   if (Op > ISD::SETTRUE2)
542     Op &= ~16;     // Clear the U bit if the N bit is set.
543 
544   // Canonicalize illegal integer setcc's.
545   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
546     Op = ISD::SETNE;
547 
548   return ISD::CondCode(Op);
549 }
550 
551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
552                                         EVT Type) {
553   bool IsInteger = Type.isInteger();
554   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
555     // Cannot fold a signed setcc with an unsigned setcc.
556     return ISD::SETCC_INVALID;
557 
558   // Combine all of the condition bits.
559   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
560 
561   // Canonicalize illegal integer setcc's.
562   if (IsInteger) {
563     switch (Result) {
564     default: break;
565     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
566     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
567     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
568     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
569     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
570     }
571   }
572 
573   return Result;
574 }
575 
576 //===----------------------------------------------------------------------===//
577 //                           SDNode Profile Support
578 //===----------------------------------------------------------------------===//
579 
580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
582   ID.AddInteger(OpC);
583 }
584 
585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
586 /// solely with their pointer.
587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
588   ID.AddPointer(VTList.VTs);
589 }
590 
591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
592 static void AddNodeIDOperands(FoldingSetNodeID &ID,
593                               ArrayRef<SDValue> Ops) {
594   for (auto& Op : Ops) {
595     ID.AddPointer(Op.getNode());
596     ID.AddInteger(Op.getResNo());
597   }
598 }
599 
600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
601 static void AddNodeIDOperands(FoldingSetNodeID &ID,
602                               ArrayRef<SDUse> Ops) {
603   for (auto& Op : Ops) {
604     ID.AddPointer(Op.getNode());
605     ID.AddInteger(Op.getResNo());
606   }
607 }
608 
609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
610                           SDVTList VTList, ArrayRef<SDValue> OpList) {
611   AddNodeIDOpcode(ID, OpC);
612   AddNodeIDValueTypes(ID, VTList);
613   AddNodeIDOperands(ID, OpList);
614 }
615 
616 /// If this is an SDNode with special info, add this info to the NodeID data.
617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
618   switch (N->getOpcode()) {
619   case ISD::TargetExternalSymbol:
620   case ISD::ExternalSymbol:
621   case ISD::MCSymbol:
622     llvm_unreachable("Should only be used on nodes with operands");
623   default: break;  // Normal nodes don't need extra info.
624   case ISD::TargetConstant:
625   case ISD::Constant: {
626     const ConstantSDNode *C = cast<ConstantSDNode>(N);
627     ID.AddPointer(C->getConstantIntValue());
628     ID.AddBoolean(C->isOpaque());
629     break;
630   }
631   case ISD::TargetConstantFP:
632   case ISD::ConstantFP:
633     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
634     break;
635   case ISD::TargetGlobalAddress:
636   case ISD::GlobalAddress:
637   case ISD::TargetGlobalTLSAddress:
638   case ISD::GlobalTLSAddress: {
639     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
640     ID.AddPointer(GA->getGlobal());
641     ID.AddInteger(GA->getOffset());
642     ID.AddInteger(GA->getTargetFlags());
643     break;
644   }
645   case ISD::BasicBlock:
646     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
647     break;
648   case ISD::Register:
649     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
650     break;
651   case ISD::RegisterMask:
652     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
653     break;
654   case ISD::SRCVALUE:
655     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
656     break;
657   case ISD::FrameIndex:
658   case ISD::TargetFrameIndex:
659     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
660     break;
661   case ISD::LIFETIME_START:
662   case ISD::LIFETIME_END:
663     if (cast<LifetimeSDNode>(N)->hasOffset()) {
664       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
665       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
666     }
667     break;
668   case ISD::PSEUDO_PROBE:
669     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
670     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
671     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
672     break;
673   case ISD::JumpTable:
674   case ISD::TargetJumpTable:
675     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
676     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
677     break;
678   case ISD::ConstantPool:
679   case ISD::TargetConstantPool: {
680     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
681     ID.AddInteger(CP->getAlign().value());
682     ID.AddInteger(CP->getOffset());
683     if (CP->isMachineConstantPoolEntry())
684       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
685     else
686       ID.AddPointer(CP->getConstVal());
687     ID.AddInteger(CP->getTargetFlags());
688     break;
689   }
690   case ISD::TargetIndex: {
691     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
692     ID.AddInteger(TI->getIndex());
693     ID.AddInteger(TI->getOffset());
694     ID.AddInteger(TI->getTargetFlags());
695     break;
696   }
697   case ISD::LOAD: {
698     const LoadSDNode *LD = cast<LoadSDNode>(N);
699     ID.AddInteger(LD->getMemoryVT().getRawBits());
700     ID.AddInteger(LD->getRawSubclassData());
701     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
702     break;
703   }
704   case ISD::STORE: {
705     const StoreSDNode *ST = cast<StoreSDNode>(N);
706     ID.AddInteger(ST->getMemoryVT().getRawBits());
707     ID.AddInteger(ST->getRawSubclassData());
708     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
709     break;
710   }
711   case ISD::VP_LOAD: {
712     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
713     ID.AddInteger(ELD->getMemoryVT().getRawBits());
714     ID.AddInteger(ELD->getRawSubclassData());
715     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
716     break;
717   }
718   case ISD::VP_STORE: {
719     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
720     ID.AddInteger(EST->getMemoryVT().getRawBits());
721     ID.AddInteger(EST->getRawSubclassData());
722     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
723     break;
724   }
725   case ISD::VP_GATHER: {
726     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
727     ID.AddInteger(EG->getMemoryVT().getRawBits());
728     ID.AddInteger(EG->getRawSubclassData());
729     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
730     break;
731   }
732   case ISD::VP_SCATTER: {
733     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
734     ID.AddInteger(ES->getMemoryVT().getRawBits());
735     ID.AddInteger(ES->getRawSubclassData());
736     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
737     break;
738   }
739   case ISD::MLOAD: {
740     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
741     ID.AddInteger(MLD->getMemoryVT().getRawBits());
742     ID.AddInteger(MLD->getRawSubclassData());
743     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
744     break;
745   }
746   case ISD::MSTORE: {
747     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
748     ID.AddInteger(MST->getMemoryVT().getRawBits());
749     ID.AddInteger(MST->getRawSubclassData());
750     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
751     break;
752   }
753   case ISD::MGATHER: {
754     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
755     ID.AddInteger(MG->getMemoryVT().getRawBits());
756     ID.AddInteger(MG->getRawSubclassData());
757     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
758     break;
759   }
760   case ISD::MSCATTER: {
761     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
762     ID.AddInteger(MS->getMemoryVT().getRawBits());
763     ID.AddInteger(MS->getRawSubclassData());
764     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
765     break;
766   }
767   case ISD::ATOMIC_CMP_SWAP:
768   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
769   case ISD::ATOMIC_SWAP:
770   case ISD::ATOMIC_LOAD_ADD:
771   case ISD::ATOMIC_LOAD_SUB:
772   case ISD::ATOMIC_LOAD_AND:
773   case ISD::ATOMIC_LOAD_CLR:
774   case ISD::ATOMIC_LOAD_OR:
775   case ISD::ATOMIC_LOAD_XOR:
776   case ISD::ATOMIC_LOAD_NAND:
777   case ISD::ATOMIC_LOAD_MIN:
778   case ISD::ATOMIC_LOAD_MAX:
779   case ISD::ATOMIC_LOAD_UMIN:
780   case ISD::ATOMIC_LOAD_UMAX:
781   case ISD::ATOMIC_LOAD:
782   case ISD::ATOMIC_STORE: {
783     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
784     ID.AddInteger(AT->getMemoryVT().getRawBits());
785     ID.AddInteger(AT->getRawSubclassData());
786     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
787     break;
788   }
789   case ISD::PREFETCH: {
790     const MemSDNode *PF = cast<MemSDNode>(N);
791     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
792     break;
793   }
794   case ISD::VECTOR_SHUFFLE: {
795     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
796     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
797          i != e; ++i)
798       ID.AddInteger(SVN->getMaskElt(i));
799     break;
800   }
801   case ISD::TargetBlockAddress:
802   case ISD::BlockAddress: {
803     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
804     ID.AddPointer(BA->getBlockAddress());
805     ID.AddInteger(BA->getOffset());
806     ID.AddInteger(BA->getTargetFlags());
807     break;
808   }
809   } // end switch (N->getOpcode())
810 
811   // Target specific memory nodes could also have address spaces to check.
812   if (N->isTargetMemoryOpcode())
813     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
814 }
815 
816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
817 /// data.
818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
819   AddNodeIDOpcode(ID, N->getOpcode());
820   // Add the return value info.
821   AddNodeIDValueTypes(ID, N->getVTList());
822   // Add the operand info.
823   AddNodeIDOperands(ID, N->ops());
824 
825   // Handle SDNode leafs with special info.
826   AddNodeIDCustom(ID, N);
827 }
828 
829 //===----------------------------------------------------------------------===//
830 //                              SelectionDAG Class
831 //===----------------------------------------------------------------------===//
832 
833 /// doNotCSE - Return true if CSE should not be performed for this node.
834 static bool doNotCSE(SDNode *N) {
835   if (N->getValueType(0) == MVT::Glue)
836     return true; // Never CSE anything that produces a flag.
837 
838   switch (N->getOpcode()) {
839   default: break;
840   case ISD::HANDLENODE:
841   case ISD::EH_LABEL:
842     return true;   // Never CSE these nodes.
843   }
844 
845   // Check that remaining values produced are not flags.
846   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
847     if (N->getValueType(i) == MVT::Glue)
848       return true; // Never CSE anything that produces a flag.
849 
850   return false;
851 }
852 
853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
854 /// SelectionDAG.
855 void SelectionDAG::RemoveDeadNodes() {
856   // Create a dummy node (which is not added to allnodes), that adds a reference
857   // to the root node, preventing it from being deleted.
858   HandleSDNode Dummy(getRoot());
859 
860   SmallVector<SDNode*, 128> DeadNodes;
861 
862   // Add all obviously-dead nodes to the DeadNodes worklist.
863   for (SDNode &Node : allnodes())
864     if (Node.use_empty())
865       DeadNodes.push_back(&Node);
866 
867   RemoveDeadNodes(DeadNodes);
868 
869   // If the root changed (e.g. it was a dead load, update the root).
870   setRoot(Dummy.getValue());
871 }
872 
873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
874 /// given list, and any nodes that become unreachable as a result.
875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
876 
877   // Process the worklist, deleting the nodes and adding their uses to the
878   // worklist.
879   while (!DeadNodes.empty()) {
880     SDNode *N = DeadNodes.pop_back_val();
881     // Skip to next node if we've already managed to delete the node. This could
882     // happen if replacing a node causes a node previously added to the node to
883     // be deleted.
884     if (N->getOpcode() == ISD::DELETED_NODE)
885       continue;
886 
887     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
888       DUL->NodeDeleted(N, nullptr);
889 
890     // Take the node out of the appropriate CSE map.
891     RemoveNodeFromCSEMaps(N);
892 
893     // Next, brutally remove the operand list.  This is safe to do, as there are
894     // no cycles in the graph.
895     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
896       SDUse &Use = *I++;
897       SDNode *Operand = Use.getNode();
898       Use.set(SDValue());
899 
900       // Now that we removed this operand, see if there are no uses of it left.
901       if (Operand->use_empty())
902         DeadNodes.push_back(Operand);
903     }
904 
905     DeallocateNode(N);
906   }
907 }
908 
909 void SelectionDAG::RemoveDeadNode(SDNode *N){
910   SmallVector<SDNode*, 16> DeadNodes(1, N);
911 
912   // Create a dummy node that adds a reference to the root node, preventing
913   // it from being deleted.  (This matters if the root is an operand of the
914   // dead node.)
915   HandleSDNode Dummy(getRoot());
916 
917   RemoveDeadNodes(DeadNodes);
918 }
919 
920 void SelectionDAG::DeleteNode(SDNode *N) {
921   // First take this out of the appropriate CSE map.
922   RemoveNodeFromCSEMaps(N);
923 
924   // Finally, remove uses due to operands of this node, remove from the
925   // AllNodes list, and delete the node.
926   DeleteNodeNotInCSEMaps(N);
927 }
928 
929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
930   assert(N->getIterator() != AllNodes.begin() &&
931          "Cannot delete the entry node!");
932   assert(N->use_empty() && "Cannot delete a node that is not dead!");
933 
934   // Drop all of the operands and decrement used node's use counts.
935   N->DropOperands();
936 
937   DeallocateNode(N);
938 }
939 
940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
941   assert(!(V->isVariadic() && isParameter));
942   if (isParameter)
943     ByvalParmDbgValues.push_back(V);
944   else
945     DbgValues.push_back(V);
946   for (const SDNode *Node : V->getSDNodes())
947     if (Node)
948       DbgValMap[Node].push_back(V);
949 }
950 
951 void SDDbgInfo::erase(const SDNode *Node) {
952   DbgValMapType::iterator I = DbgValMap.find(Node);
953   if (I == DbgValMap.end())
954     return;
955   for (auto &Val: I->second)
956     Val->setIsInvalidated();
957   DbgValMap.erase(I);
958 }
959 
960 void SelectionDAG::DeallocateNode(SDNode *N) {
961   // If we have operands, deallocate them.
962   removeOperands(N);
963 
964   NodeAllocator.Deallocate(AllNodes.remove(N));
965 
966   // Set the opcode to DELETED_NODE to help catch bugs when node
967   // memory is reallocated.
968   // FIXME: There are places in SDag that have grown a dependency on the opcode
969   // value in the released node.
970   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
971   N->NodeType = ISD::DELETED_NODE;
972 
973   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
974   // them and forget about that node.
975   DbgInfo->erase(N);
976 }
977 
978 #ifndef NDEBUG
979 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
980 static void VerifySDNode(SDNode *N) {
981   switch (N->getOpcode()) {
982   default:
983     break;
984   case ISD::BUILD_PAIR: {
985     EVT VT = N->getValueType(0);
986     assert(N->getNumValues() == 1 && "Too many results!");
987     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
988            "Wrong return type!");
989     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
990     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
991            "Mismatched operand types!");
992     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
993            "Wrong operand type!");
994     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
995            "Wrong return type size");
996     break;
997   }
998   case ISD::BUILD_VECTOR: {
999     assert(N->getNumValues() == 1 && "Too many results!");
1000     assert(N->getValueType(0).isVector() && "Wrong return type!");
1001     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1002            "Wrong number of operands!");
1003     EVT EltVT = N->getValueType(0).getVectorElementType();
1004     for (const SDUse &Op : N->ops()) {
1005       assert((Op.getValueType() == EltVT ||
1006               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1007                EltVT.bitsLE(Op.getValueType()))) &&
1008              "Wrong operand type!");
1009       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1010              "Operands must all have the same type");
1011     }
1012     break;
1013   }
1014   }
1015 }
1016 #endif // NDEBUG
1017 
1018 /// Insert a newly allocated node into the DAG.
1019 ///
1020 /// Handles insertion into the all nodes list and CSE map, as well as
1021 /// verification and other common operations when a new node is allocated.
1022 void SelectionDAG::InsertNode(SDNode *N) {
1023   AllNodes.push_back(N);
1024 #ifndef NDEBUG
1025   N->PersistentId = NextPersistentId++;
1026   VerifySDNode(N);
1027 #endif
1028   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1029     DUL->NodeInserted(N);
1030 }
1031 
1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1033 /// correspond to it.  This is useful when we're about to delete or repurpose
1034 /// the node.  We don't want future request for structurally identical nodes
1035 /// to return N anymore.
1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1037   bool Erased = false;
1038   switch (N->getOpcode()) {
1039   case ISD::HANDLENODE: return false;  // noop.
1040   case ISD::CONDCODE:
1041     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1042            "Cond code doesn't exist!");
1043     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1044     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1045     break;
1046   case ISD::ExternalSymbol:
1047     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1048     break;
1049   case ISD::TargetExternalSymbol: {
1050     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1051     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1052         ESN->getSymbol(), ESN->getTargetFlags()));
1053     break;
1054   }
1055   case ISD::MCSymbol: {
1056     auto *MCSN = cast<MCSymbolSDNode>(N);
1057     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1058     break;
1059   }
1060   case ISD::VALUETYPE: {
1061     EVT VT = cast<VTSDNode>(N)->getVT();
1062     if (VT.isExtended()) {
1063       Erased = ExtendedValueTypeNodes.erase(VT);
1064     } else {
1065       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1066       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1067     }
1068     break;
1069   }
1070   default:
1071     // Remove it from the CSE Map.
1072     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1073     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1074     Erased = CSEMap.RemoveNode(N);
1075     break;
1076   }
1077 #ifndef NDEBUG
1078   // Verify that the node was actually in one of the CSE maps, unless it has a
1079   // flag result (which cannot be CSE'd) or is one of the special cases that are
1080   // not subject to CSE.
1081   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1082       !N->isMachineOpcode() && !doNotCSE(N)) {
1083     N->dump(this);
1084     dbgs() << "\n";
1085     llvm_unreachable("Node is not in map!");
1086   }
1087 #endif
1088   return Erased;
1089 }
1090 
1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1093 /// node already exists, in which case transfer all its users to the existing
1094 /// node. This transfer can potentially trigger recursive merging.
1095 void
1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1097   // For node types that aren't CSE'd, just act as if no identical node
1098   // already exists.
1099   if (!doNotCSE(N)) {
1100     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1101     if (Existing != N) {
1102       // If there was already an existing matching node, use ReplaceAllUsesWith
1103       // to replace the dead one with the existing one.  This can cause
1104       // recursive merging of other unrelated nodes down the line.
1105       ReplaceAllUsesWith(N, Existing);
1106 
1107       // N is now dead. Inform the listeners and delete it.
1108       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1109         DUL->NodeDeleted(N, Existing);
1110       DeleteNodeNotInCSEMaps(N);
1111       return;
1112     }
1113   }
1114 
1115   // If the node doesn't already exist, we updated it.  Inform listeners.
1116   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1117     DUL->NodeUpdated(N);
1118 }
1119 
1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1121 /// were replaced with those specified.  If this node is never memoized,
1122 /// return null, otherwise return a pointer to the slot it would take.  If a
1123 /// node already exists with these operands, the slot will be non-null.
1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1125                                            void *&InsertPos) {
1126   if (doNotCSE(N))
1127     return nullptr;
1128 
1129   SDValue Ops[] = { Op };
1130   FoldingSetNodeID ID;
1131   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1132   AddNodeIDCustom(ID, N);
1133   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1134   if (Node)
1135     Node->intersectFlagsWith(N->getFlags());
1136   return Node;
1137 }
1138 
1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1140 /// were replaced with those specified.  If this node is never memoized,
1141 /// return null, otherwise return a pointer to the slot it would take.  If a
1142 /// node already exists with these operands, the slot will be non-null.
1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1144                                            SDValue Op1, SDValue Op2,
1145                                            void *&InsertPos) {
1146   if (doNotCSE(N))
1147     return nullptr;
1148 
1149   SDValue Ops[] = { Op1, Op2 };
1150   FoldingSetNodeID ID;
1151   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1152   AddNodeIDCustom(ID, N);
1153   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1154   if (Node)
1155     Node->intersectFlagsWith(N->getFlags());
1156   return Node;
1157 }
1158 
1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1160 /// were replaced with those specified.  If this node is never memoized,
1161 /// return null, otherwise return a pointer to the slot it would take.  If a
1162 /// node already exists with these operands, the slot will be non-null.
1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1164                                            void *&InsertPos) {
1165   if (doNotCSE(N))
1166     return nullptr;
1167 
1168   FoldingSetNodeID ID;
1169   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1170   AddNodeIDCustom(ID, N);
1171   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1172   if (Node)
1173     Node->intersectFlagsWith(N->getFlags());
1174   return Node;
1175 }
1176 
1177 Align SelectionDAG::getEVTAlign(EVT VT) const {
1178   Type *Ty = VT == MVT::iPTR ?
1179                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1180                    VT.getTypeForEVT(*getContext());
1181 
1182   return getDataLayout().getABITypeAlign(Ty);
1183 }
1184 
1185 // EntryNode could meaningfully have debug info if we can find it...
1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1187     : TM(tm), OptLevel(OL),
1188       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1189       Root(getEntryNode()) {
1190   InsertNode(&EntryNode);
1191   DbgInfo = new SDDbgInfo();
1192 }
1193 
1194 void SelectionDAG::init(MachineFunction &NewMF,
1195                         OptimizationRemarkEmitter &NewORE,
1196                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1197                         LegacyDivergenceAnalysis * Divergence,
1198                         ProfileSummaryInfo *PSIin,
1199                         BlockFrequencyInfo *BFIin) {
1200   MF = &NewMF;
1201   SDAGISelPass = PassPtr;
1202   ORE = &NewORE;
1203   TLI = getSubtarget().getTargetLowering();
1204   TSI = getSubtarget().getSelectionDAGInfo();
1205   LibInfo = LibraryInfo;
1206   Context = &MF->getFunction().getContext();
1207   DA = Divergence;
1208   PSI = PSIin;
1209   BFI = BFIin;
1210 }
1211 
1212 SelectionDAG::~SelectionDAG() {
1213   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1214   allnodes_clear();
1215   OperandRecycler.clear(OperandAllocator);
1216   delete DbgInfo;
1217 }
1218 
1219 bool SelectionDAG::shouldOptForSize() const {
1220   return MF->getFunction().hasOptSize() ||
1221       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1222 }
1223 
1224 void SelectionDAG::allnodes_clear() {
1225   assert(&*AllNodes.begin() == &EntryNode);
1226   AllNodes.remove(AllNodes.begin());
1227   while (!AllNodes.empty())
1228     DeallocateNode(&AllNodes.front());
1229 #ifndef NDEBUG
1230   NextPersistentId = 0;
1231 #endif
1232 }
1233 
1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1235                                           void *&InsertPos) {
1236   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1237   if (N) {
1238     switch (N->getOpcode()) {
1239     default: break;
1240     case ISD::Constant:
1241     case ISD::ConstantFP:
1242       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1243                        "debug location.  Use another overload.");
1244     }
1245   }
1246   return N;
1247 }
1248 
1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1250                                           const SDLoc &DL, void *&InsertPos) {
1251   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1252   if (N) {
1253     switch (N->getOpcode()) {
1254     case ISD::Constant:
1255     case ISD::ConstantFP:
1256       // Erase debug location from the node if the node is used at several
1257       // different places. Do not propagate one location to all uses as it
1258       // will cause a worse single stepping debugging experience.
1259       if (N->getDebugLoc() != DL.getDebugLoc())
1260         N->setDebugLoc(DebugLoc());
1261       break;
1262     default:
1263       // When the node's point of use is located earlier in the instruction
1264       // sequence than its prior point of use, update its debug info to the
1265       // earlier location.
1266       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1267         N->setDebugLoc(DL.getDebugLoc());
1268       break;
1269     }
1270   }
1271   return N;
1272 }
1273 
1274 void SelectionDAG::clear() {
1275   allnodes_clear();
1276   OperandRecycler.clear(OperandAllocator);
1277   OperandAllocator.Reset();
1278   CSEMap.clear();
1279 
1280   ExtendedValueTypeNodes.clear();
1281   ExternalSymbols.clear();
1282   TargetExternalSymbols.clear();
1283   MCSymbols.clear();
1284   SDCallSiteDbgInfo.clear();
1285   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1286             static_cast<CondCodeSDNode*>(nullptr));
1287   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1288             static_cast<SDNode*>(nullptr));
1289 
1290   EntryNode.UseList = nullptr;
1291   InsertNode(&EntryNode);
1292   Root = getEntryNode();
1293   DbgInfo->clear();
1294 }
1295 
1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1297   return VT.bitsGT(Op.getValueType())
1298              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1299              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1300 }
1301 
1302 std::pair<SDValue, SDValue>
1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1304                                        const SDLoc &DL, EVT VT) {
1305   assert(!VT.bitsEq(Op.getValueType()) &&
1306          "Strict no-op FP extend/round not allowed.");
1307   SDValue Res =
1308       VT.bitsGT(Op.getValueType())
1309           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1310           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1311                     {Chain, Op, getIntPtrConstant(0, DL)});
1312 
1313   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1314 }
1315 
1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1317   return VT.bitsGT(Op.getValueType()) ?
1318     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1319     getNode(ISD::TRUNCATE, DL, VT, Op);
1320 }
1321 
1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1323   return VT.bitsGT(Op.getValueType()) ?
1324     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1325     getNode(ISD::TRUNCATE, DL, VT, Op);
1326 }
1327 
1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1329   return VT.bitsGT(Op.getValueType()) ?
1330     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1331     getNode(ISD::TRUNCATE, DL, VT, Op);
1332 }
1333 
1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1335                                         EVT OpVT) {
1336   if (VT.bitsLE(Op.getValueType()))
1337     return getNode(ISD::TRUNCATE, SL, VT, Op);
1338 
1339   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1340   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1341 }
1342 
1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1344   EVT OpVT = Op.getValueType();
1345   assert(VT.isInteger() && OpVT.isInteger() &&
1346          "Cannot getZeroExtendInReg FP types");
1347   assert(VT.isVector() == OpVT.isVector() &&
1348          "getZeroExtendInReg type should be vector iff the operand "
1349          "type is vector!");
1350   assert((!VT.isVector() ||
1351           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1352          "Vector element counts must match in getZeroExtendInReg");
1353   assert(VT.bitsLE(OpVT) && "Not extending!");
1354   if (OpVT == VT)
1355     return Op;
1356   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1357                                    VT.getScalarSizeInBits());
1358   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1359 }
1360 
1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362   // Only unsigned pointer semantics are supported right now. In the future this
1363   // might delegate to TLI to check pointer signedness.
1364   return getZExtOrTrunc(Op, DL, VT);
1365 }
1366 
1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1368   // Only unsigned pointer semantics are supported right now. In the future this
1369   // might delegate to TLI to check pointer signedness.
1370   return getZeroExtendInReg(Op, DL, VT);
1371 }
1372 
1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1375   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1376 }
1377 
1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1379   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1380   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1381 }
1382 
1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1384                                       EVT OpVT) {
1385   if (!V)
1386     return getConstant(0, DL, VT);
1387 
1388   switch (TLI->getBooleanContents(OpVT)) {
1389   case TargetLowering::ZeroOrOneBooleanContent:
1390   case TargetLowering::UndefinedBooleanContent:
1391     return getConstant(1, DL, VT);
1392   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1393     return getAllOnesConstant(DL, VT);
1394   }
1395   llvm_unreachable("Unexpected boolean content enum!");
1396 }
1397 
1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1399                                   bool isT, bool isO) {
1400   EVT EltVT = VT.getScalarType();
1401   assert((EltVT.getSizeInBits() >= 64 ||
1402           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1403          "getConstant with a uint64_t value that doesn't fit in the type!");
1404   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1405 }
1406 
1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1408                                   bool isT, bool isO) {
1409   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1410 }
1411 
1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1413                                   EVT VT, bool isT, bool isO) {
1414   assert(VT.isInteger() && "Cannot create FP integer constant!");
1415 
1416   EVT EltVT = VT.getScalarType();
1417   const ConstantInt *Elt = &Val;
1418 
1419   // In some cases the vector type is legal but the element type is illegal and
1420   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1421   // inserted value (the type does not need to match the vector element type).
1422   // Any extra bits introduced will be truncated away.
1423   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1424                            TargetLowering::TypePromoteInteger) {
1425     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1426     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1427     Elt = ConstantInt::get(*getContext(), NewVal);
1428   }
1429   // In other cases the element type is illegal and needs to be expanded, for
1430   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1431   // the value into n parts and use a vector type with n-times the elements.
1432   // Then bitcast to the type requested.
1433   // Legalizing constants too early makes the DAGCombiner's job harder so we
1434   // only legalize if the DAG tells us we must produce legal types.
1435   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1436            TLI->getTypeAction(*getContext(), EltVT) ==
1437                TargetLowering::TypeExpandInteger) {
1438     const APInt &NewVal = Elt->getValue();
1439     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1440     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1441 
1442     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1443     if (VT.isScalableVector()) {
1444       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1445              "Can only handle an even split!");
1446       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1447 
1448       SmallVector<SDValue, 2> ScalarParts;
1449       for (unsigned i = 0; i != Parts; ++i)
1450         ScalarParts.push_back(getConstant(
1451             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1452             ViaEltVT, isT, isO));
1453 
1454       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1455     }
1456 
1457     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1458     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1459 
1460     // Check the temporary vector is the correct size. If this fails then
1461     // getTypeToTransformTo() probably returned a type whose size (in bits)
1462     // isn't a power-of-2 factor of the requested type size.
1463     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1464 
1465     SmallVector<SDValue, 2> EltParts;
1466     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1467       EltParts.push_back(getConstant(
1468           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1469           ViaEltVT, isT, isO));
1470 
1471     // EltParts is currently in little endian order. If we actually want
1472     // big-endian order then reverse it now.
1473     if (getDataLayout().isBigEndian())
1474       std::reverse(EltParts.begin(), EltParts.end());
1475 
1476     // The elements must be reversed when the element order is different
1477     // to the endianness of the elements (because the BITCAST is itself a
1478     // vector shuffle in this situation). However, we do not need any code to
1479     // perform this reversal because getConstant() is producing a vector
1480     // splat.
1481     // This situation occurs in MIPS MSA.
1482 
1483     SmallVector<SDValue, 8> Ops;
1484     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1485       llvm::append_range(Ops, EltParts);
1486 
1487     SDValue V =
1488         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1489     return V;
1490   }
1491 
1492   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1493          "APInt size does not match type size!");
1494   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1495   FoldingSetNodeID ID;
1496   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1497   ID.AddPointer(Elt);
1498   ID.AddBoolean(isO);
1499   void *IP = nullptr;
1500   SDNode *N = nullptr;
1501   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1502     if (!VT.isVector())
1503       return SDValue(N, 0);
1504 
1505   if (!N) {
1506     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1507     CSEMap.InsertNode(N, IP);
1508     InsertNode(N);
1509     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1510   }
1511 
1512   SDValue Result(N, 0);
1513   if (VT.isScalableVector())
1514     Result = getSplatVector(VT, DL, Result);
1515   else if (VT.isVector())
1516     Result = getSplatBuildVector(VT, DL, Result);
1517 
1518   return Result;
1519 }
1520 
1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1522                                         bool isTarget) {
1523   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1524 }
1525 
1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1527                                              const SDLoc &DL, bool LegalTypes) {
1528   assert(VT.isInteger() && "Shift amount is not an integer type!");
1529   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1530   return getConstant(Val, DL, ShiftVT);
1531 }
1532 
1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1534                                            bool isTarget) {
1535   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1536 }
1537 
1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1539                                     bool isTarget) {
1540   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1541 }
1542 
1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1544                                     EVT VT, bool isTarget) {
1545   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1546 
1547   EVT EltVT = VT.getScalarType();
1548 
1549   // Do the map lookup using the actual bit pattern for the floating point
1550   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1551   // we don't have issues with SNANs.
1552   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1553   FoldingSetNodeID ID;
1554   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1555   ID.AddPointer(&V);
1556   void *IP = nullptr;
1557   SDNode *N = nullptr;
1558   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1559     if (!VT.isVector())
1560       return SDValue(N, 0);
1561 
1562   if (!N) {
1563     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1564     CSEMap.InsertNode(N, IP);
1565     InsertNode(N);
1566   }
1567 
1568   SDValue Result(N, 0);
1569   if (VT.isScalableVector())
1570     Result = getSplatVector(VT, DL, Result);
1571   else if (VT.isVector())
1572     Result = getSplatBuildVector(VT, DL, Result);
1573   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1574   return Result;
1575 }
1576 
1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1578                                     bool isTarget) {
1579   EVT EltVT = VT.getScalarType();
1580   if (EltVT == MVT::f32)
1581     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1582   if (EltVT == MVT::f64)
1583     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1584   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1585       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1586     bool Ignored;
1587     APFloat APF = APFloat(Val);
1588     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1589                 &Ignored);
1590     return getConstantFP(APF, DL, VT, isTarget);
1591   }
1592   llvm_unreachable("Unsupported type in getConstantFP");
1593 }
1594 
1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1596                                        EVT VT, int64_t Offset, bool isTargetGA,
1597                                        unsigned TargetFlags) {
1598   assert((TargetFlags == 0 || isTargetGA) &&
1599          "Cannot set target flags on target-independent globals");
1600 
1601   // Truncate (with sign-extension) the offset value to the pointer size.
1602   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1603   if (BitWidth < 64)
1604     Offset = SignExtend64(Offset, BitWidth);
1605 
1606   unsigned Opc;
1607   if (GV->isThreadLocal())
1608     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1609   else
1610     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1611 
1612   FoldingSetNodeID ID;
1613   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1614   ID.AddPointer(GV);
1615   ID.AddInteger(Offset);
1616   ID.AddInteger(TargetFlags);
1617   void *IP = nullptr;
1618   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1619     return SDValue(E, 0);
1620 
1621   auto *N = newSDNode<GlobalAddressSDNode>(
1622       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1623   CSEMap.InsertNode(N, IP);
1624     InsertNode(N);
1625   return SDValue(N, 0);
1626 }
1627 
1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1629   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1630   FoldingSetNodeID ID;
1631   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1632   ID.AddInteger(FI);
1633   void *IP = nullptr;
1634   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1635     return SDValue(E, 0);
1636 
1637   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1638   CSEMap.InsertNode(N, IP);
1639   InsertNode(N);
1640   return SDValue(N, 0);
1641 }
1642 
1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1644                                    unsigned TargetFlags) {
1645   assert((TargetFlags == 0 || isTarget) &&
1646          "Cannot set target flags on target-independent jump tables");
1647   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1648   FoldingSetNodeID ID;
1649   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1650   ID.AddInteger(JTI);
1651   ID.AddInteger(TargetFlags);
1652   void *IP = nullptr;
1653   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1654     return SDValue(E, 0);
1655 
1656   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1657   CSEMap.InsertNode(N, IP);
1658   InsertNode(N);
1659   return SDValue(N, 0);
1660 }
1661 
1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1663                                       MaybeAlign Alignment, int Offset,
1664                                       bool isTarget, unsigned TargetFlags) {
1665   assert((TargetFlags == 0 || isTarget) &&
1666          "Cannot set target flags on target-independent globals");
1667   if (!Alignment)
1668     Alignment = shouldOptForSize()
1669                     ? getDataLayout().getABITypeAlign(C->getType())
1670                     : getDataLayout().getPrefTypeAlign(C->getType());
1671   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1672   FoldingSetNodeID ID;
1673   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1674   ID.AddInteger(Alignment->value());
1675   ID.AddInteger(Offset);
1676   ID.AddPointer(C);
1677   ID.AddInteger(TargetFlags);
1678   void *IP = nullptr;
1679   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1680     return SDValue(E, 0);
1681 
1682   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1683                                           TargetFlags);
1684   CSEMap.InsertNode(N, IP);
1685   InsertNode(N);
1686   SDValue V = SDValue(N, 0);
1687   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1688   return V;
1689 }
1690 
1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1692                                       MaybeAlign Alignment, int Offset,
1693                                       bool isTarget, unsigned TargetFlags) {
1694   assert((TargetFlags == 0 || isTarget) &&
1695          "Cannot set target flags on target-independent globals");
1696   if (!Alignment)
1697     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1698   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1699   FoldingSetNodeID ID;
1700   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1701   ID.AddInteger(Alignment->value());
1702   ID.AddInteger(Offset);
1703   C->addSelectionDAGCSEId(ID);
1704   ID.AddInteger(TargetFlags);
1705   void *IP = nullptr;
1706   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1707     return SDValue(E, 0);
1708 
1709   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1710                                           TargetFlags);
1711   CSEMap.InsertNode(N, IP);
1712   InsertNode(N);
1713   return SDValue(N, 0);
1714 }
1715 
1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1717                                      unsigned TargetFlags) {
1718   FoldingSetNodeID ID;
1719   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1720   ID.AddInteger(Index);
1721   ID.AddInteger(Offset);
1722   ID.AddInteger(TargetFlags);
1723   void *IP = nullptr;
1724   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1725     return SDValue(E, 0);
1726 
1727   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1728   CSEMap.InsertNode(N, IP);
1729   InsertNode(N);
1730   return SDValue(N, 0);
1731 }
1732 
1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1734   FoldingSetNodeID ID;
1735   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1736   ID.AddPointer(MBB);
1737   void *IP = nullptr;
1738   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1739     return SDValue(E, 0);
1740 
1741   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1742   CSEMap.InsertNode(N, IP);
1743   InsertNode(N);
1744   return SDValue(N, 0);
1745 }
1746 
1747 SDValue SelectionDAG::getValueType(EVT VT) {
1748   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1749       ValueTypeNodes.size())
1750     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1751 
1752   SDNode *&N = VT.isExtended() ?
1753     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1754 
1755   if (N) return SDValue(N, 0);
1756   N = newSDNode<VTSDNode>(VT);
1757   InsertNode(N);
1758   return SDValue(N, 0);
1759 }
1760 
1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1762   SDNode *&N = ExternalSymbols[Sym];
1763   if (N) return SDValue(N, 0);
1764   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1765   InsertNode(N);
1766   return SDValue(N, 0);
1767 }
1768 
1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1770   SDNode *&N = MCSymbols[Sym];
1771   if (N)
1772     return SDValue(N, 0);
1773   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1774   InsertNode(N);
1775   return SDValue(N, 0);
1776 }
1777 
1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1779                                               unsigned TargetFlags) {
1780   SDNode *&N =
1781       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1782   if (N) return SDValue(N, 0);
1783   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1784   InsertNode(N);
1785   return SDValue(N, 0);
1786 }
1787 
1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1789   if ((unsigned)Cond >= CondCodeNodes.size())
1790     CondCodeNodes.resize(Cond+1);
1791 
1792   if (!CondCodeNodes[Cond]) {
1793     auto *N = newSDNode<CondCodeSDNode>(Cond);
1794     CondCodeNodes[Cond] = N;
1795     InsertNode(N);
1796   }
1797 
1798   return SDValue(CondCodeNodes[Cond], 0);
1799 }
1800 
1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1802   APInt One(ResVT.getScalarSizeInBits(), 1);
1803   return getStepVector(DL, ResVT, One);
1804 }
1805 
1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1807   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1808   if (ResVT.isScalableVector())
1809     return getNode(
1810         ISD::STEP_VECTOR, DL, ResVT,
1811         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1812 
1813   SmallVector<SDValue, 16> OpsStepConstants;
1814   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1815     OpsStepConstants.push_back(
1816         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1817   return getBuildVector(ResVT, DL, OpsStepConstants);
1818 }
1819 
1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1823   std::swap(N1, N2);
1824   ShuffleVectorSDNode::commuteMask(M);
1825 }
1826 
1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1828                                        SDValue N2, ArrayRef<int> Mask) {
1829   assert(VT.getVectorNumElements() == Mask.size() &&
1830          "Must have the same number of vector elements as mask elements!");
1831   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1832          "Invalid VECTOR_SHUFFLE");
1833 
1834   // Canonicalize shuffle undef, undef -> undef
1835   if (N1.isUndef() && N2.isUndef())
1836     return getUNDEF(VT);
1837 
1838   // Validate that all indices in Mask are within the range of the elements
1839   // input to the shuffle.
1840   int NElts = Mask.size();
1841   assert(llvm::all_of(Mask,
1842                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1843          "Index out of range");
1844 
1845   // Copy the mask so we can do any needed cleanup.
1846   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1847 
1848   // Canonicalize shuffle v, v -> v, undef
1849   if (N1 == N2) {
1850     N2 = getUNDEF(VT);
1851     for (int i = 0; i != NElts; ++i)
1852       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1853   }
1854 
1855   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1856   if (N1.isUndef())
1857     commuteShuffle(N1, N2, MaskVec);
1858 
1859   if (TLI->hasVectorBlend()) {
1860     // If shuffling a splat, try to blend the splat instead. We do this here so
1861     // that even when this arises during lowering we don't have to re-handle it.
1862     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1863       BitVector UndefElements;
1864       SDValue Splat = BV->getSplatValue(&UndefElements);
1865       if (!Splat)
1866         return;
1867 
1868       for (int i = 0; i < NElts; ++i) {
1869         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1870           continue;
1871 
1872         // If this input comes from undef, mark it as such.
1873         if (UndefElements[MaskVec[i] - Offset]) {
1874           MaskVec[i] = -1;
1875           continue;
1876         }
1877 
1878         // If we can blend a non-undef lane, use that instead.
1879         if (!UndefElements[i])
1880           MaskVec[i] = i + Offset;
1881       }
1882     };
1883     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1884       BlendSplat(N1BV, 0);
1885     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1886       BlendSplat(N2BV, NElts);
1887   }
1888 
1889   // Canonicalize all index into lhs, -> shuffle lhs, undef
1890   // Canonicalize all index into rhs, -> shuffle rhs, undef
1891   bool AllLHS = true, AllRHS = true;
1892   bool N2Undef = N2.isUndef();
1893   for (int i = 0; i != NElts; ++i) {
1894     if (MaskVec[i] >= NElts) {
1895       if (N2Undef)
1896         MaskVec[i] = -1;
1897       else
1898         AllLHS = false;
1899     } else if (MaskVec[i] >= 0) {
1900       AllRHS = false;
1901     }
1902   }
1903   if (AllLHS && AllRHS)
1904     return getUNDEF(VT);
1905   if (AllLHS && !N2Undef)
1906     N2 = getUNDEF(VT);
1907   if (AllRHS) {
1908     N1 = getUNDEF(VT);
1909     commuteShuffle(N1, N2, MaskVec);
1910   }
1911   // Reset our undef status after accounting for the mask.
1912   N2Undef = N2.isUndef();
1913   // Re-check whether both sides ended up undef.
1914   if (N1.isUndef() && N2Undef)
1915     return getUNDEF(VT);
1916 
1917   // If Identity shuffle return that node.
1918   bool Identity = true, AllSame = true;
1919   for (int i = 0; i != NElts; ++i) {
1920     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1921     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1922   }
1923   if (Identity && NElts)
1924     return N1;
1925 
1926   // Shuffling a constant splat doesn't change the result.
1927   if (N2Undef) {
1928     SDValue V = N1;
1929 
1930     // Look through any bitcasts. We check that these don't change the number
1931     // (and size) of elements and just changes their types.
1932     while (V.getOpcode() == ISD::BITCAST)
1933       V = V->getOperand(0);
1934 
1935     // A splat should always show up as a build vector node.
1936     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1937       BitVector UndefElements;
1938       SDValue Splat = BV->getSplatValue(&UndefElements);
1939       // If this is a splat of an undef, shuffling it is also undef.
1940       if (Splat && Splat.isUndef())
1941         return getUNDEF(VT);
1942 
1943       bool SameNumElts =
1944           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1945 
1946       // We only have a splat which can skip shuffles if there is a splatted
1947       // value and no undef lanes rearranged by the shuffle.
1948       if (Splat && UndefElements.none()) {
1949         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1950         // number of elements match or the value splatted is a zero constant.
1951         if (SameNumElts)
1952           return N1;
1953         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1954           if (C->isZero())
1955             return N1;
1956       }
1957 
1958       // If the shuffle itself creates a splat, build the vector directly.
1959       if (AllSame && SameNumElts) {
1960         EVT BuildVT = BV->getValueType(0);
1961         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1962         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1963 
1964         // We may have jumped through bitcasts, so the type of the
1965         // BUILD_VECTOR may not match the type of the shuffle.
1966         if (BuildVT != VT)
1967           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1968         return NewBV;
1969       }
1970     }
1971   }
1972 
1973   FoldingSetNodeID ID;
1974   SDValue Ops[2] = { N1, N2 };
1975   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1976   for (int i = 0; i != NElts; ++i)
1977     ID.AddInteger(MaskVec[i]);
1978 
1979   void* IP = nullptr;
1980   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1981     return SDValue(E, 0);
1982 
1983   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1984   // SDNode doesn't have access to it.  This memory will be "leaked" when
1985   // the node is deallocated, but recovered when the NodeAllocator is released.
1986   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1987   llvm::copy(MaskVec, MaskAlloc);
1988 
1989   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1990                                            dl.getDebugLoc(), MaskAlloc);
1991   createOperands(N, Ops);
1992 
1993   CSEMap.InsertNode(N, IP);
1994   InsertNode(N);
1995   SDValue V = SDValue(N, 0);
1996   NewSDValueDbgMsg(V, "Creating new node: ", this);
1997   return V;
1998 }
1999 
2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2001   EVT VT = SV.getValueType(0);
2002   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2003   ShuffleVectorSDNode::commuteMask(MaskVec);
2004 
2005   SDValue Op0 = SV.getOperand(0);
2006   SDValue Op1 = SV.getOperand(1);
2007   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2008 }
2009 
2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2011   FoldingSetNodeID ID;
2012   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2013   ID.AddInteger(RegNo);
2014   void *IP = nullptr;
2015   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2016     return SDValue(E, 0);
2017 
2018   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2019   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2020   CSEMap.InsertNode(N, IP);
2021   InsertNode(N);
2022   return SDValue(N, 0);
2023 }
2024 
2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2026   FoldingSetNodeID ID;
2027   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2028   ID.AddPointer(RegMask);
2029   void *IP = nullptr;
2030   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2031     return SDValue(E, 0);
2032 
2033   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2034   CSEMap.InsertNode(N, IP);
2035   InsertNode(N);
2036   return SDValue(N, 0);
2037 }
2038 
2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2040                                  MCSymbol *Label) {
2041   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2042 }
2043 
2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2045                                    SDValue Root, MCSymbol *Label) {
2046   FoldingSetNodeID ID;
2047   SDValue Ops[] = { Root };
2048   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2049   ID.AddPointer(Label);
2050   void *IP = nullptr;
2051   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2052     return SDValue(E, 0);
2053 
2054   auto *N =
2055       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2056   createOperands(N, Ops);
2057 
2058   CSEMap.InsertNode(N, IP);
2059   InsertNode(N);
2060   return SDValue(N, 0);
2061 }
2062 
2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2064                                       int64_t Offset, bool isTarget,
2065                                       unsigned TargetFlags) {
2066   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2067 
2068   FoldingSetNodeID ID;
2069   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2070   ID.AddPointer(BA);
2071   ID.AddInteger(Offset);
2072   ID.AddInteger(TargetFlags);
2073   void *IP = nullptr;
2074   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2075     return SDValue(E, 0);
2076 
2077   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2078   CSEMap.InsertNode(N, IP);
2079   InsertNode(N);
2080   return SDValue(N, 0);
2081 }
2082 
2083 SDValue SelectionDAG::getSrcValue(const Value *V) {
2084   FoldingSetNodeID ID;
2085   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2086   ID.AddPointer(V);
2087 
2088   void *IP = nullptr;
2089   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2090     return SDValue(E, 0);
2091 
2092   auto *N = newSDNode<SrcValueSDNode>(V);
2093   CSEMap.InsertNode(N, IP);
2094   InsertNode(N);
2095   return SDValue(N, 0);
2096 }
2097 
2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2099   FoldingSetNodeID ID;
2100   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2101   ID.AddPointer(MD);
2102 
2103   void *IP = nullptr;
2104   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2105     return SDValue(E, 0);
2106 
2107   auto *N = newSDNode<MDNodeSDNode>(MD);
2108   CSEMap.InsertNode(N, IP);
2109   InsertNode(N);
2110   return SDValue(N, 0);
2111 }
2112 
2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2114   if (VT == V.getValueType())
2115     return V;
2116 
2117   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2118 }
2119 
2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2121                                        unsigned SrcAS, unsigned DestAS) {
2122   SDValue Ops[] = {Ptr};
2123   FoldingSetNodeID ID;
2124   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2125   ID.AddInteger(SrcAS);
2126   ID.AddInteger(DestAS);
2127 
2128   void *IP = nullptr;
2129   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2130     return SDValue(E, 0);
2131 
2132   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2133                                            VT, SrcAS, DestAS);
2134   createOperands(N, Ops);
2135 
2136   CSEMap.InsertNode(N, IP);
2137   InsertNode(N);
2138   return SDValue(N, 0);
2139 }
2140 
2141 SDValue SelectionDAG::getFreeze(SDValue V) {
2142   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2143 }
2144 
2145 /// getShiftAmountOperand - Return the specified value casted to
2146 /// the target's desired shift amount type.
2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2148   EVT OpTy = Op.getValueType();
2149   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2150   if (OpTy == ShTy || OpTy.isVector()) return Op;
2151 
2152   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2153 }
2154 
2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2156   SDLoc dl(Node);
2157   const TargetLowering &TLI = getTargetLoweringInfo();
2158   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2159   EVT VT = Node->getValueType(0);
2160   SDValue Tmp1 = Node->getOperand(0);
2161   SDValue Tmp2 = Node->getOperand(1);
2162   const MaybeAlign MA(Node->getConstantOperandVal(3));
2163 
2164   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2165                                Tmp2, MachinePointerInfo(V));
2166   SDValue VAList = VAListLoad;
2167 
2168   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2169     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2170                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2171 
2172     VAList =
2173         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2174                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2175   }
2176 
2177   // Increment the pointer, VAList, to the next vaarg
2178   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2179                  getConstant(getDataLayout().getTypeAllocSize(
2180                                                VT.getTypeForEVT(*getContext())),
2181                              dl, VAList.getValueType()));
2182   // Store the incremented VAList to the legalized pointer
2183   Tmp1 =
2184       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2185   // Load the actual argument out of the pointer VAList
2186   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2187 }
2188 
2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2190   SDLoc dl(Node);
2191   const TargetLowering &TLI = getTargetLoweringInfo();
2192   // This defaults to loading a pointer from the input and storing it to the
2193   // output, returning the chain.
2194   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2195   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2196   SDValue Tmp1 =
2197       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2198               Node->getOperand(2), MachinePointerInfo(VS));
2199   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2200                   MachinePointerInfo(VD));
2201 }
2202 
2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2204   const DataLayout &DL = getDataLayout();
2205   Type *Ty = VT.getTypeForEVT(*getContext());
2206   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2207 
2208   if (TLI->isTypeLegal(VT) || !VT.isVector())
2209     return RedAlign;
2210 
2211   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2212   const Align StackAlign = TFI->getStackAlign();
2213 
2214   // See if we can choose a smaller ABI alignment in cases where it's an
2215   // illegal vector type that will get broken down.
2216   if (RedAlign > StackAlign) {
2217     EVT IntermediateVT;
2218     MVT RegisterVT;
2219     unsigned NumIntermediates;
2220     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2221                                 NumIntermediates, RegisterVT);
2222     Ty = IntermediateVT.getTypeForEVT(*getContext());
2223     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2224     if (RedAlign2 < RedAlign)
2225       RedAlign = RedAlign2;
2226   }
2227 
2228   return RedAlign;
2229 }
2230 
2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2232   MachineFrameInfo &MFI = MF->getFrameInfo();
2233   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2234   int StackID = 0;
2235   if (Bytes.isScalable())
2236     StackID = TFI->getStackIDForScalableVectors();
2237   // The stack id gives an indication of whether the object is scalable or
2238   // not, so it's safe to pass in the minimum size here.
2239   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2240                                        false, nullptr, StackID);
2241   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2242 }
2243 
2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2245   Type *Ty = VT.getTypeForEVT(*getContext());
2246   Align StackAlign =
2247       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2248   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2249 }
2250 
2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2252   TypeSize VT1Size = VT1.getStoreSize();
2253   TypeSize VT2Size = VT2.getStoreSize();
2254   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2255          "Don't know how to choose the maximum size when creating a stack "
2256          "temporary");
2257   TypeSize Bytes =
2258       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2259 
2260   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2261   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2262   const DataLayout &DL = getDataLayout();
2263   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2264   return CreateStackTemporary(Bytes, Align);
2265 }
2266 
2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2268                                 ISD::CondCode Cond, const SDLoc &dl) {
2269   EVT OpVT = N1.getValueType();
2270 
2271   // These setcc operations always fold.
2272   switch (Cond) {
2273   default: break;
2274   case ISD::SETFALSE:
2275   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2276   case ISD::SETTRUE:
2277   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2278 
2279   case ISD::SETOEQ:
2280   case ISD::SETOGT:
2281   case ISD::SETOGE:
2282   case ISD::SETOLT:
2283   case ISD::SETOLE:
2284   case ISD::SETONE:
2285   case ISD::SETO:
2286   case ISD::SETUO:
2287   case ISD::SETUEQ:
2288   case ISD::SETUNE:
2289     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2290     break;
2291   }
2292 
2293   if (OpVT.isInteger()) {
2294     // For EQ and NE, we can always pick a value for the undef to make the
2295     // predicate pass or fail, so we can return undef.
2296     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2297     // icmp eq/ne X, undef -> undef.
2298     if ((N1.isUndef() || N2.isUndef()) &&
2299         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2300       return getUNDEF(VT);
2301 
2302     // If both operands are undef, we can return undef for int comparison.
2303     // icmp undef, undef -> undef.
2304     if (N1.isUndef() && N2.isUndef())
2305       return getUNDEF(VT);
2306 
2307     // icmp X, X -> true/false
2308     // icmp X, undef -> true/false because undef could be X.
2309     if (N1 == N2)
2310       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2311   }
2312 
2313   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2314     const APInt &C2 = N2C->getAPIntValue();
2315     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2316       const APInt &C1 = N1C->getAPIntValue();
2317 
2318       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2319                              dl, VT, OpVT);
2320     }
2321   }
2322 
2323   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2324   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2325 
2326   if (N1CFP && N2CFP) {
2327     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2328     switch (Cond) {
2329     default: break;
2330     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2331                         return getUNDEF(VT);
2332                       LLVM_FALLTHROUGH;
2333     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2334                                              OpVT);
2335     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2336                         return getUNDEF(VT);
2337                       LLVM_FALLTHROUGH;
2338     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2339                                              R==APFloat::cmpLessThan, dl, VT,
2340                                              OpVT);
2341     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2342                         return getUNDEF(VT);
2343                       LLVM_FALLTHROUGH;
2344     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2345                                              OpVT);
2346     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2347                         return getUNDEF(VT);
2348                       LLVM_FALLTHROUGH;
2349     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2350                                              VT, OpVT);
2351     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2352                         return getUNDEF(VT);
2353                       LLVM_FALLTHROUGH;
2354     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2355                                              R==APFloat::cmpEqual, dl, VT,
2356                                              OpVT);
2357     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2358                         return getUNDEF(VT);
2359                       LLVM_FALLTHROUGH;
2360     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2361                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2362     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2363                                              OpVT);
2364     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2365                                              OpVT);
2366     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2367                                              R==APFloat::cmpEqual, dl, VT,
2368                                              OpVT);
2369     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2370                                              OpVT);
2371     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2372                                              R==APFloat::cmpLessThan, dl, VT,
2373                                              OpVT);
2374     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2375                                              R==APFloat::cmpUnordered, dl, VT,
2376                                              OpVT);
2377     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2378                                              VT, OpVT);
2379     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2380                                              OpVT);
2381     }
2382   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2383     // Ensure that the constant occurs on the RHS.
2384     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2385     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2386       return SDValue();
2387     return getSetCC(dl, VT, N2, N1, SwappedCond);
2388   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2389              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2390     // If an operand is known to be a nan (or undef that could be a nan), we can
2391     // fold it.
2392     // Choosing NaN for the undef will always make unordered comparison succeed
2393     // and ordered comparison fails.
2394     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2395     switch (ISD::getUnorderedFlavor(Cond)) {
2396     default:
2397       llvm_unreachable("Unknown flavor!");
2398     case 0: // Known false.
2399       return getBoolConstant(false, dl, VT, OpVT);
2400     case 1: // Known true.
2401       return getBoolConstant(true, dl, VT, OpVT);
2402     case 2: // Undefined.
2403       return getUNDEF(VT);
2404     }
2405   }
2406 
2407   // Could not fold it.
2408   return SDValue();
2409 }
2410 
2411 /// See if the specified operand can be simplified with the knowledge that only
2412 /// the bits specified by DemandedBits are used.
2413 /// TODO: really we should be making this into the DAG equivalent of
2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2416   EVT VT = V.getValueType();
2417 
2418   if (VT.isScalableVector())
2419     return SDValue();
2420 
2421   APInt DemandedElts = VT.isVector()
2422                            ? APInt::getAllOnes(VT.getVectorNumElements())
2423                            : APInt(1, 1);
2424   return GetDemandedBits(V, DemandedBits, DemandedElts);
2425 }
2426 
2427 /// See if the specified operand can be simplified with the knowledge that only
2428 /// the bits specified by DemandedBits are used in the elements specified by
2429 /// DemandedElts.
2430 /// TODO: really we should be making this into the DAG equivalent of
2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2433                                       const APInt &DemandedElts) {
2434   switch (V.getOpcode()) {
2435   default:
2436     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2437                                                 *this, 0);
2438   case ISD::Constant: {
2439     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2440     APInt NewVal = CVal & DemandedBits;
2441     if (NewVal != CVal)
2442       return getConstant(NewVal, SDLoc(V), V.getValueType());
2443     break;
2444   }
2445   case ISD::SRL:
2446     // Only look at single-use SRLs.
2447     if (!V.getNode()->hasOneUse())
2448       break;
2449     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2450       // See if we can recursively simplify the LHS.
2451       unsigned Amt = RHSC->getZExtValue();
2452 
2453       // Watch out for shift count overflow though.
2454       if (Amt >= DemandedBits.getBitWidth())
2455         break;
2456       APInt SrcDemandedBits = DemandedBits << Amt;
2457       if (SDValue SimplifyLHS =
2458               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2459         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2460                        V.getOperand(1));
2461     }
2462     break;
2463   }
2464   return SDValue();
2465 }
2466 
2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2468 /// use this predicate to simplify operations downstream.
2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2470   unsigned BitWidth = Op.getScalarValueSizeInBits();
2471   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2472 }
2473 
2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2475 /// this predicate to simplify operations downstream.  Mask is known to be zero
2476 /// for bits that V cannot have.
2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2478                                      unsigned Depth) const {
2479   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2480 }
2481 
2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2483 /// DemandedElts.  We use this predicate to simplify operations downstream.
2484 /// Mask is known to be zero for bits that V cannot have.
2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2486                                      const APInt &DemandedElts,
2487                                      unsigned Depth) const {
2488   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2489 }
2490 
2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2493                                         unsigned Depth) const {
2494   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2495 }
2496 
2497 /// isSplatValue - Return true if the vector V has the same value
2498 /// across all DemandedElts. For scalable vectors it does not make
2499 /// sense to specify which elements are demanded or undefined, therefore
2500 /// they are simply ignored.
2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2502                                 APInt &UndefElts, unsigned Depth) const {
2503   unsigned Opcode = V.getOpcode();
2504   EVT VT = V.getValueType();
2505   assert(VT.isVector() && "Vector type expected");
2506 
2507   if (!VT.isScalableVector() && !DemandedElts)
2508     return false; // No demanded elts, better to assume we don't know anything.
2509 
2510   if (Depth >= MaxRecursionDepth)
2511     return false; // Limit search depth.
2512 
2513   // Deal with some common cases here that work for both fixed and scalable
2514   // vector types.
2515   switch (Opcode) {
2516   case ISD::SPLAT_VECTOR:
2517     UndefElts = V.getOperand(0).isUndef()
2518                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2519                     : APInt(DemandedElts.getBitWidth(), 0);
2520     return true;
2521   case ISD::ADD:
2522   case ISD::SUB:
2523   case ISD::AND:
2524   case ISD::XOR:
2525   case ISD::OR: {
2526     APInt UndefLHS, UndefRHS;
2527     SDValue LHS = V.getOperand(0);
2528     SDValue RHS = V.getOperand(1);
2529     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2530         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2531       UndefElts = UndefLHS | UndefRHS;
2532       return true;
2533     }
2534     return false;
2535   }
2536   case ISD::ABS:
2537   case ISD::TRUNCATE:
2538   case ISD::SIGN_EXTEND:
2539   case ISD::ZERO_EXTEND:
2540     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2541   default:
2542     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2543         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2544       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2545     break;
2546 }
2547 
2548   // We don't support other cases than those above for scalable vectors at
2549   // the moment.
2550   if (VT.isScalableVector())
2551     return false;
2552 
2553   unsigned NumElts = VT.getVectorNumElements();
2554   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2555   UndefElts = APInt::getZero(NumElts);
2556 
2557   switch (Opcode) {
2558   case ISD::BUILD_VECTOR: {
2559     SDValue Scl;
2560     for (unsigned i = 0; i != NumElts; ++i) {
2561       SDValue Op = V.getOperand(i);
2562       if (Op.isUndef()) {
2563         UndefElts.setBit(i);
2564         continue;
2565       }
2566       if (!DemandedElts[i])
2567         continue;
2568       if (Scl && Scl != Op)
2569         return false;
2570       Scl = Op;
2571     }
2572     return true;
2573   }
2574   case ISD::VECTOR_SHUFFLE: {
2575     // Check if this is a shuffle node doing a splat.
2576     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2577     int SplatIndex = -1;
2578     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2579     for (int i = 0; i != (int)NumElts; ++i) {
2580       int M = Mask[i];
2581       if (M < 0) {
2582         UndefElts.setBit(i);
2583         continue;
2584       }
2585       if (!DemandedElts[i])
2586         continue;
2587       if (0 <= SplatIndex && SplatIndex != M)
2588         return false;
2589       SplatIndex = M;
2590     }
2591     return true;
2592   }
2593   case ISD::EXTRACT_SUBVECTOR: {
2594     // Offset the demanded elts by the subvector index.
2595     SDValue Src = V.getOperand(0);
2596     // We don't support scalable vectors at the moment.
2597     if (Src.getValueType().isScalableVector())
2598       return false;
2599     uint64_t Idx = V.getConstantOperandVal(1);
2600     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2601     APInt UndefSrcElts;
2602     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2603     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2604       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2605       return true;
2606     }
2607     break;
2608   }
2609   case ISD::ANY_EXTEND_VECTOR_INREG:
2610   case ISD::SIGN_EXTEND_VECTOR_INREG:
2611   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2612     // Widen the demanded elts by the src element count.
2613     SDValue Src = V.getOperand(0);
2614     // We don't support scalable vectors at the moment.
2615     if (Src.getValueType().isScalableVector())
2616       return false;
2617     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2618     APInt UndefSrcElts;
2619     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2620     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2621       UndefElts = UndefSrcElts.truncOrSelf(NumElts);
2622       return true;
2623     }
2624     break;
2625   }
2626   }
2627 
2628   return false;
2629 }
2630 
2631 /// Helper wrapper to main isSplatValue function.
2632 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2633   EVT VT = V.getValueType();
2634   assert(VT.isVector() && "Vector type expected");
2635 
2636   APInt UndefElts;
2637   APInt DemandedElts;
2638 
2639   // For now we don't support this with scalable vectors.
2640   if (!VT.isScalableVector())
2641     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2642   return isSplatValue(V, DemandedElts, UndefElts) &&
2643          (AllowUndefs || !UndefElts);
2644 }
2645 
2646 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2647   V = peekThroughExtractSubvectors(V);
2648 
2649   EVT VT = V.getValueType();
2650   unsigned Opcode = V.getOpcode();
2651   switch (Opcode) {
2652   default: {
2653     APInt UndefElts;
2654     APInt DemandedElts;
2655 
2656     if (!VT.isScalableVector())
2657       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2658 
2659     if (isSplatValue(V, DemandedElts, UndefElts)) {
2660       if (VT.isScalableVector()) {
2661         // DemandedElts and UndefElts are ignored for scalable vectors, since
2662         // the only supported cases are SPLAT_VECTOR nodes.
2663         SplatIdx = 0;
2664       } else {
2665         // Handle case where all demanded elements are UNDEF.
2666         if (DemandedElts.isSubsetOf(UndefElts)) {
2667           SplatIdx = 0;
2668           return getUNDEF(VT);
2669         }
2670         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2671       }
2672       return V;
2673     }
2674     break;
2675   }
2676   case ISD::SPLAT_VECTOR:
2677     SplatIdx = 0;
2678     return V;
2679   case ISD::VECTOR_SHUFFLE: {
2680     if (VT.isScalableVector())
2681       return SDValue();
2682 
2683     // Check if this is a shuffle node doing a splat.
2684     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2685     // getTargetVShiftNode currently struggles without the splat source.
2686     auto *SVN = cast<ShuffleVectorSDNode>(V);
2687     if (!SVN->isSplat())
2688       break;
2689     int Idx = SVN->getSplatIndex();
2690     int NumElts = V.getValueType().getVectorNumElements();
2691     SplatIdx = Idx % NumElts;
2692     return V.getOperand(Idx / NumElts);
2693   }
2694   }
2695 
2696   return SDValue();
2697 }
2698 
2699 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2700   int SplatIdx;
2701   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2702     EVT SVT = SrcVector.getValueType().getScalarType();
2703     EVT LegalSVT = SVT;
2704     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2705       if (!SVT.isInteger())
2706         return SDValue();
2707       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2708       if (LegalSVT.bitsLT(SVT))
2709         return SDValue();
2710     }
2711     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2712                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2713   }
2714   return SDValue();
2715 }
2716 
2717 const APInt *
2718 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2719                                           const APInt &DemandedElts) const {
2720   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2721           V.getOpcode() == ISD::SRA) &&
2722          "Unknown shift node");
2723   unsigned BitWidth = V.getScalarValueSizeInBits();
2724   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2725     // Shifting more than the bitwidth is not valid.
2726     const APInt &ShAmt = SA->getAPIntValue();
2727     if (ShAmt.ult(BitWidth))
2728       return &ShAmt;
2729   }
2730   return nullptr;
2731 }
2732 
2733 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2734     SDValue V, const APInt &DemandedElts) const {
2735   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2736           V.getOpcode() == ISD::SRA) &&
2737          "Unknown shift node");
2738   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2739     return ValidAmt;
2740   unsigned BitWidth = V.getScalarValueSizeInBits();
2741   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2742   if (!BV)
2743     return nullptr;
2744   const APInt *MinShAmt = nullptr;
2745   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2746     if (!DemandedElts[i])
2747       continue;
2748     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2749     if (!SA)
2750       return nullptr;
2751     // Shifting more than the bitwidth is not valid.
2752     const APInt &ShAmt = SA->getAPIntValue();
2753     if (ShAmt.uge(BitWidth))
2754       return nullptr;
2755     if (MinShAmt && MinShAmt->ule(ShAmt))
2756       continue;
2757     MinShAmt = &ShAmt;
2758   }
2759   return MinShAmt;
2760 }
2761 
2762 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2763     SDValue V, const APInt &DemandedElts) const {
2764   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2765           V.getOpcode() == ISD::SRA) &&
2766          "Unknown shift node");
2767   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2768     return ValidAmt;
2769   unsigned BitWidth = V.getScalarValueSizeInBits();
2770   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2771   if (!BV)
2772     return nullptr;
2773   const APInt *MaxShAmt = nullptr;
2774   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2775     if (!DemandedElts[i])
2776       continue;
2777     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2778     if (!SA)
2779       return nullptr;
2780     // Shifting more than the bitwidth is not valid.
2781     const APInt &ShAmt = SA->getAPIntValue();
2782     if (ShAmt.uge(BitWidth))
2783       return nullptr;
2784     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2785       continue;
2786     MaxShAmt = &ShAmt;
2787   }
2788   return MaxShAmt;
2789 }
2790 
2791 /// Determine which bits of Op are known to be either zero or one and return
2792 /// them in Known. For vectors, the known bits are those that are shared by
2793 /// every vector element.
2794 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2795   EVT VT = Op.getValueType();
2796 
2797   // TOOD: Until we have a plan for how to represent demanded elements for
2798   // scalable vectors, we can just bail out for now.
2799   if (Op.getValueType().isScalableVector()) {
2800     unsigned BitWidth = Op.getScalarValueSizeInBits();
2801     return KnownBits(BitWidth);
2802   }
2803 
2804   APInt DemandedElts = VT.isVector()
2805                            ? APInt::getAllOnes(VT.getVectorNumElements())
2806                            : APInt(1, 1);
2807   return computeKnownBits(Op, DemandedElts, Depth);
2808 }
2809 
2810 /// Determine which bits of Op are known to be either zero or one and return
2811 /// them in Known. The DemandedElts argument allows us to only collect the known
2812 /// bits that are shared by the requested vector elements.
2813 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2814                                          unsigned Depth) const {
2815   unsigned BitWidth = Op.getScalarValueSizeInBits();
2816 
2817   KnownBits Known(BitWidth);   // Don't know anything.
2818 
2819   // TOOD: Until we have a plan for how to represent demanded elements for
2820   // scalable vectors, we can just bail out for now.
2821   if (Op.getValueType().isScalableVector())
2822     return Known;
2823 
2824   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2825     // We know all of the bits for a constant!
2826     return KnownBits::makeConstant(C->getAPIntValue());
2827   }
2828   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2829     // We know all of the bits for a constant fp!
2830     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2831   }
2832 
2833   if (Depth >= MaxRecursionDepth)
2834     return Known;  // Limit search depth.
2835 
2836   KnownBits Known2;
2837   unsigned NumElts = DemandedElts.getBitWidth();
2838   assert((!Op.getValueType().isVector() ||
2839           NumElts == Op.getValueType().getVectorNumElements()) &&
2840          "Unexpected vector size");
2841 
2842   if (!DemandedElts)
2843     return Known;  // No demanded elts, better to assume we don't know anything.
2844 
2845   unsigned Opcode = Op.getOpcode();
2846   switch (Opcode) {
2847   case ISD::BUILD_VECTOR:
2848     // Collect the known bits that are shared by every demanded vector element.
2849     Known.Zero.setAllBits(); Known.One.setAllBits();
2850     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2851       if (!DemandedElts[i])
2852         continue;
2853 
2854       SDValue SrcOp = Op.getOperand(i);
2855       Known2 = computeKnownBits(SrcOp, Depth + 1);
2856 
2857       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2858       if (SrcOp.getValueSizeInBits() != BitWidth) {
2859         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2860                "Expected BUILD_VECTOR implicit truncation");
2861         Known2 = Known2.trunc(BitWidth);
2862       }
2863 
2864       // Known bits are the values that are shared by every demanded element.
2865       Known = KnownBits::commonBits(Known, Known2);
2866 
2867       // If we don't know any bits, early out.
2868       if (Known.isUnknown())
2869         break;
2870     }
2871     break;
2872   case ISD::VECTOR_SHUFFLE: {
2873     // Collect the known bits that are shared by every vector element referenced
2874     // by the shuffle.
2875     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2876     Known.Zero.setAllBits(); Known.One.setAllBits();
2877     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2878     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2879     for (unsigned i = 0; i != NumElts; ++i) {
2880       if (!DemandedElts[i])
2881         continue;
2882 
2883       int M = SVN->getMaskElt(i);
2884       if (M < 0) {
2885         // For UNDEF elements, we don't know anything about the common state of
2886         // the shuffle result.
2887         Known.resetAll();
2888         DemandedLHS.clearAllBits();
2889         DemandedRHS.clearAllBits();
2890         break;
2891       }
2892 
2893       if ((unsigned)M < NumElts)
2894         DemandedLHS.setBit((unsigned)M % NumElts);
2895       else
2896         DemandedRHS.setBit((unsigned)M % NumElts);
2897     }
2898     // Known bits are the values that are shared by every demanded element.
2899     if (!!DemandedLHS) {
2900       SDValue LHS = Op.getOperand(0);
2901       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2902       Known = KnownBits::commonBits(Known, Known2);
2903     }
2904     // If we don't know any bits, early out.
2905     if (Known.isUnknown())
2906       break;
2907     if (!!DemandedRHS) {
2908       SDValue RHS = Op.getOperand(1);
2909       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2910       Known = KnownBits::commonBits(Known, Known2);
2911     }
2912     break;
2913   }
2914   case ISD::CONCAT_VECTORS: {
2915     // Split DemandedElts and test each of the demanded subvectors.
2916     Known.Zero.setAllBits(); Known.One.setAllBits();
2917     EVT SubVectorVT = Op.getOperand(0).getValueType();
2918     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2919     unsigned NumSubVectors = Op.getNumOperands();
2920     for (unsigned i = 0; i != NumSubVectors; ++i) {
2921       APInt DemandedSub =
2922           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
2923       if (!!DemandedSub) {
2924         SDValue Sub = Op.getOperand(i);
2925         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2926         Known = KnownBits::commonBits(Known, Known2);
2927       }
2928       // If we don't know any bits, early out.
2929       if (Known.isUnknown())
2930         break;
2931     }
2932     break;
2933   }
2934   case ISD::INSERT_SUBVECTOR: {
2935     // Demand any elements from the subvector and the remainder from the src its
2936     // inserted into.
2937     SDValue Src = Op.getOperand(0);
2938     SDValue Sub = Op.getOperand(1);
2939     uint64_t Idx = Op.getConstantOperandVal(2);
2940     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2941     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2942     APInt DemandedSrcElts = DemandedElts;
2943     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2944 
2945     Known.One.setAllBits();
2946     Known.Zero.setAllBits();
2947     if (!!DemandedSubElts) {
2948       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2949       if (Known.isUnknown())
2950         break; // early-out.
2951     }
2952     if (!!DemandedSrcElts) {
2953       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2954       Known = KnownBits::commonBits(Known, Known2);
2955     }
2956     break;
2957   }
2958   case ISD::EXTRACT_SUBVECTOR: {
2959     // Offset the demanded elts by the subvector index.
2960     SDValue Src = Op.getOperand(0);
2961     // Bail until we can represent demanded elements for scalable vectors.
2962     if (Src.getValueType().isScalableVector())
2963       break;
2964     uint64_t Idx = Op.getConstantOperandVal(1);
2965     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2966     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2967     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2968     break;
2969   }
2970   case ISD::SCALAR_TO_VECTOR: {
2971     // We know about scalar_to_vector as much as we know about it source,
2972     // which becomes the first element of otherwise unknown vector.
2973     if (DemandedElts != 1)
2974       break;
2975 
2976     SDValue N0 = Op.getOperand(0);
2977     Known = computeKnownBits(N0, Depth + 1);
2978     if (N0.getValueSizeInBits() != BitWidth)
2979       Known = Known.trunc(BitWidth);
2980 
2981     break;
2982   }
2983   case ISD::BITCAST: {
2984     SDValue N0 = Op.getOperand(0);
2985     EVT SubVT = N0.getValueType();
2986     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2987 
2988     // Ignore bitcasts from unsupported types.
2989     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2990       break;
2991 
2992     // Fast handling of 'identity' bitcasts.
2993     if (BitWidth == SubBitWidth) {
2994       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2995       break;
2996     }
2997 
2998     bool IsLE = getDataLayout().isLittleEndian();
2999 
3000     // Bitcast 'small element' vector to 'large element' scalar/vector.
3001     if ((BitWidth % SubBitWidth) == 0) {
3002       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3003 
3004       // Collect known bits for the (larger) output by collecting the known
3005       // bits from each set of sub elements and shift these into place.
3006       // We need to separately call computeKnownBits for each set of
3007       // sub elements as the knownbits for each is likely to be different.
3008       unsigned SubScale = BitWidth / SubBitWidth;
3009       APInt SubDemandedElts(NumElts * SubScale, 0);
3010       for (unsigned i = 0; i != NumElts; ++i)
3011         if (DemandedElts[i])
3012           SubDemandedElts.setBit(i * SubScale);
3013 
3014       for (unsigned i = 0; i != SubScale; ++i) {
3015         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3016                          Depth + 1);
3017         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3018         Known.insertBits(Known2, SubBitWidth * Shifts);
3019       }
3020     }
3021 
3022     // Bitcast 'large element' scalar/vector to 'small element' vector.
3023     if ((SubBitWidth % BitWidth) == 0) {
3024       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3025 
3026       // Collect known bits for the (smaller) output by collecting the known
3027       // bits from the overlapping larger input elements and extracting the
3028       // sub sections we actually care about.
3029       unsigned SubScale = SubBitWidth / BitWidth;
3030       APInt SubDemandedElts =
3031           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3032       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3033 
3034       Known.Zero.setAllBits(); Known.One.setAllBits();
3035       for (unsigned i = 0; i != NumElts; ++i)
3036         if (DemandedElts[i]) {
3037           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3038           unsigned Offset = (Shifts % SubScale) * BitWidth;
3039           Known = KnownBits::commonBits(Known,
3040                                         Known2.extractBits(BitWidth, Offset));
3041           // If we don't know any bits, early out.
3042           if (Known.isUnknown())
3043             break;
3044         }
3045     }
3046     break;
3047   }
3048   case ISD::AND:
3049     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3050     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3051 
3052     Known &= Known2;
3053     break;
3054   case ISD::OR:
3055     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3056     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3057 
3058     Known |= Known2;
3059     break;
3060   case ISD::XOR:
3061     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3062     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3063 
3064     Known ^= Known2;
3065     break;
3066   case ISD::MUL: {
3067     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3068     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3069     Known = KnownBits::mul(Known, Known2);
3070     break;
3071   }
3072   case ISD::MULHU: {
3073     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3074     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3075     Known = KnownBits::mulhu(Known, Known2);
3076     break;
3077   }
3078   case ISD::MULHS: {
3079     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3080     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3081     Known = KnownBits::mulhs(Known, Known2);
3082     break;
3083   }
3084   case ISD::UMUL_LOHI: {
3085     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3086     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3087     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3088     if (Op.getResNo() == 0)
3089       Known = KnownBits::mul(Known, Known2);
3090     else
3091       Known = KnownBits::mulhu(Known, Known2);
3092     break;
3093   }
3094   case ISD::SMUL_LOHI: {
3095     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3096     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3097     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3098     if (Op.getResNo() == 0)
3099       Known = KnownBits::mul(Known, Known2);
3100     else
3101       Known = KnownBits::mulhs(Known, Known2);
3102     break;
3103   }
3104   case ISD::UDIV: {
3105     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3106     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3107     Known = KnownBits::udiv(Known, Known2);
3108     break;
3109   }
3110   case ISD::SELECT:
3111   case ISD::VSELECT:
3112     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3113     // If we don't know any bits, early out.
3114     if (Known.isUnknown())
3115       break;
3116     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3117 
3118     // Only known if known in both the LHS and RHS.
3119     Known = KnownBits::commonBits(Known, Known2);
3120     break;
3121   case ISD::SELECT_CC:
3122     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3123     // If we don't know any bits, early out.
3124     if (Known.isUnknown())
3125       break;
3126     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3127 
3128     // Only known if known in both the LHS and RHS.
3129     Known = KnownBits::commonBits(Known, Known2);
3130     break;
3131   case ISD::SMULO:
3132   case ISD::UMULO:
3133     if (Op.getResNo() != 1)
3134       break;
3135     // The boolean result conforms to getBooleanContents.
3136     // If we know the result of a setcc has the top bits zero, use this info.
3137     // We know that we have an integer-based boolean since these operations
3138     // are only available for integer.
3139     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3140             TargetLowering::ZeroOrOneBooleanContent &&
3141         BitWidth > 1)
3142       Known.Zero.setBitsFrom(1);
3143     break;
3144   case ISD::SETCC:
3145   case ISD::STRICT_FSETCC:
3146   case ISD::STRICT_FSETCCS: {
3147     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3148     // If we know the result of a setcc has the top bits zero, use this info.
3149     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3150             TargetLowering::ZeroOrOneBooleanContent &&
3151         BitWidth > 1)
3152       Known.Zero.setBitsFrom(1);
3153     break;
3154   }
3155   case ISD::SHL:
3156     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3158     Known = KnownBits::shl(Known, Known2);
3159 
3160     // Minimum shift low bits are known zero.
3161     if (const APInt *ShMinAmt =
3162             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3163       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3164     break;
3165   case ISD::SRL:
3166     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3167     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3168     Known = KnownBits::lshr(Known, Known2);
3169 
3170     // Minimum shift high bits are known zero.
3171     if (const APInt *ShMinAmt =
3172             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3173       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3174     break;
3175   case ISD::SRA:
3176     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3177     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3178     Known = KnownBits::ashr(Known, Known2);
3179     // TODO: Add minimum shift high known sign bits.
3180     break;
3181   case ISD::FSHL:
3182   case ISD::FSHR:
3183     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3184       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3185 
3186       // For fshl, 0-shift returns the 1st arg.
3187       // For fshr, 0-shift returns the 2nd arg.
3188       if (Amt == 0) {
3189         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3190                                  DemandedElts, Depth + 1);
3191         break;
3192       }
3193 
3194       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3195       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3196       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3197       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3198       if (Opcode == ISD::FSHL) {
3199         Known.One <<= Amt;
3200         Known.Zero <<= Amt;
3201         Known2.One.lshrInPlace(BitWidth - Amt);
3202         Known2.Zero.lshrInPlace(BitWidth - Amt);
3203       } else {
3204         Known.One <<= BitWidth - Amt;
3205         Known.Zero <<= BitWidth - Amt;
3206         Known2.One.lshrInPlace(Amt);
3207         Known2.Zero.lshrInPlace(Amt);
3208       }
3209       Known.One |= Known2.One;
3210       Known.Zero |= Known2.Zero;
3211     }
3212     break;
3213   case ISD::SIGN_EXTEND_INREG: {
3214     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3215     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3216     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3217     break;
3218   }
3219   case ISD::CTTZ:
3220   case ISD::CTTZ_ZERO_UNDEF: {
3221     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3222     // If we have a known 1, its position is our upper bound.
3223     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3224     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3225     Known.Zero.setBitsFrom(LowBits);
3226     break;
3227   }
3228   case ISD::CTLZ:
3229   case ISD::CTLZ_ZERO_UNDEF: {
3230     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3231     // If we have a known 1, its position is our upper bound.
3232     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3233     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3234     Known.Zero.setBitsFrom(LowBits);
3235     break;
3236   }
3237   case ISD::CTPOP: {
3238     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3239     // If we know some of the bits are zero, they can't be one.
3240     unsigned PossibleOnes = Known2.countMaxPopulation();
3241     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3242     break;
3243   }
3244   case ISD::PARITY: {
3245     // Parity returns 0 everywhere but the LSB.
3246     Known.Zero.setBitsFrom(1);
3247     break;
3248   }
3249   case ISD::LOAD: {
3250     LoadSDNode *LD = cast<LoadSDNode>(Op);
3251     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3252     if (ISD::isNON_EXTLoad(LD) && Cst) {
3253       // Determine any common known bits from the loaded constant pool value.
3254       Type *CstTy = Cst->getType();
3255       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3256         // If its a vector splat, then we can (quickly) reuse the scalar path.
3257         // NOTE: We assume all elements match and none are UNDEF.
3258         if (CstTy->isVectorTy()) {
3259           if (const Constant *Splat = Cst->getSplatValue()) {
3260             Cst = Splat;
3261             CstTy = Cst->getType();
3262           }
3263         }
3264         // TODO - do we need to handle different bitwidths?
3265         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3266           // Iterate across all vector elements finding common known bits.
3267           Known.One.setAllBits();
3268           Known.Zero.setAllBits();
3269           for (unsigned i = 0; i != NumElts; ++i) {
3270             if (!DemandedElts[i])
3271               continue;
3272             if (Constant *Elt = Cst->getAggregateElement(i)) {
3273               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3274                 const APInt &Value = CInt->getValue();
3275                 Known.One &= Value;
3276                 Known.Zero &= ~Value;
3277                 continue;
3278               }
3279               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3280                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3281                 Known.One &= Value;
3282                 Known.Zero &= ~Value;
3283                 continue;
3284               }
3285             }
3286             Known.One.clearAllBits();
3287             Known.Zero.clearAllBits();
3288             break;
3289           }
3290         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3291           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3292             Known = KnownBits::makeConstant(CInt->getValue());
3293           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3294             Known =
3295                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3296           }
3297         }
3298       }
3299     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3300       // If this is a ZEXTLoad and we are looking at the loaded value.
3301       EVT VT = LD->getMemoryVT();
3302       unsigned MemBits = VT.getScalarSizeInBits();
3303       Known.Zero.setBitsFrom(MemBits);
3304     } else if (const MDNode *Ranges = LD->getRanges()) {
3305       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3306         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3307     }
3308     break;
3309   }
3310   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3311     EVT InVT = Op.getOperand(0).getValueType();
3312     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3313     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3314     Known = Known.zext(BitWidth);
3315     break;
3316   }
3317   case ISD::ZERO_EXTEND: {
3318     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3319     Known = Known.zext(BitWidth);
3320     break;
3321   }
3322   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3323     EVT InVT = Op.getOperand(0).getValueType();
3324     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3325     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3326     // If the sign bit is known to be zero or one, then sext will extend
3327     // it to the top bits, else it will just zext.
3328     Known = Known.sext(BitWidth);
3329     break;
3330   }
3331   case ISD::SIGN_EXTEND: {
3332     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3333     // If the sign bit is known to be zero or one, then sext will extend
3334     // it to the top bits, else it will just zext.
3335     Known = Known.sext(BitWidth);
3336     break;
3337   }
3338   case ISD::ANY_EXTEND_VECTOR_INREG: {
3339     EVT InVT = Op.getOperand(0).getValueType();
3340     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3341     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3342     Known = Known.anyext(BitWidth);
3343     break;
3344   }
3345   case ISD::ANY_EXTEND: {
3346     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3347     Known = Known.anyext(BitWidth);
3348     break;
3349   }
3350   case ISD::TRUNCATE: {
3351     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3352     Known = Known.trunc(BitWidth);
3353     break;
3354   }
3355   case ISD::AssertZext: {
3356     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3357     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3358     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3359     Known.Zero |= (~InMask);
3360     Known.One  &= (~Known.Zero);
3361     break;
3362   }
3363   case ISD::AssertAlign: {
3364     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3365     assert(LogOfAlign != 0);
3366     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3367     // well as clearing one bits.
3368     Known.Zero.setLowBits(LogOfAlign);
3369     Known.One.clearLowBits(LogOfAlign);
3370     break;
3371   }
3372   case ISD::FGETSIGN:
3373     // All bits are zero except the low bit.
3374     Known.Zero.setBitsFrom(1);
3375     break;
3376   case ISD::USUBO:
3377   case ISD::SSUBO:
3378     if (Op.getResNo() == 1) {
3379       // If we know the result of a setcc has the top bits zero, use this info.
3380       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3381               TargetLowering::ZeroOrOneBooleanContent &&
3382           BitWidth > 1)
3383         Known.Zero.setBitsFrom(1);
3384       break;
3385     }
3386     LLVM_FALLTHROUGH;
3387   case ISD::SUB:
3388   case ISD::SUBC: {
3389     assert(Op.getResNo() == 0 &&
3390            "We only compute knownbits for the difference here.");
3391 
3392     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3393     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3394     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3395                                         Known, Known2);
3396     break;
3397   }
3398   case ISD::UADDO:
3399   case ISD::SADDO:
3400   case ISD::ADDCARRY:
3401     if (Op.getResNo() == 1) {
3402       // If we know the result of a setcc has the top bits zero, use this info.
3403       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3404               TargetLowering::ZeroOrOneBooleanContent &&
3405           BitWidth > 1)
3406         Known.Zero.setBitsFrom(1);
3407       break;
3408     }
3409     LLVM_FALLTHROUGH;
3410   case ISD::ADD:
3411   case ISD::ADDC:
3412   case ISD::ADDE: {
3413     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3414 
3415     // With ADDE and ADDCARRY, a carry bit may be added in.
3416     KnownBits Carry(1);
3417     if (Opcode == ISD::ADDE)
3418       // Can't track carry from glue, set carry to unknown.
3419       Carry.resetAll();
3420     else if (Opcode == ISD::ADDCARRY)
3421       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3422       // the trouble (how often will we find a known carry bit). And I haven't
3423       // tested this very much yet, but something like this might work:
3424       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3425       //   Carry = Carry.zextOrTrunc(1, false);
3426       Carry.resetAll();
3427     else
3428       Carry.setAllZero();
3429 
3430     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3431     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3432     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3433     break;
3434   }
3435   case ISD::SREM: {
3436     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3437     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3438     Known = KnownBits::srem(Known, Known2);
3439     break;
3440   }
3441   case ISD::UREM: {
3442     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3443     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3444     Known = KnownBits::urem(Known, Known2);
3445     break;
3446   }
3447   case ISD::EXTRACT_ELEMENT: {
3448     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3449     const unsigned Index = Op.getConstantOperandVal(1);
3450     const unsigned EltBitWidth = Op.getValueSizeInBits();
3451 
3452     // Remove low part of known bits mask
3453     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3454     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3455 
3456     // Remove high part of known bit mask
3457     Known = Known.trunc(EltBitWidth);
3458     break;
3459   }
3460   case ISD::EXTRACT_VECTOR_ELT: {
3461     SDValue InVec = Op.getOperand(0);
3462     SDValue EltNo = Op.getOperand(1);
3463     EVT VecVT = InVec.getValueType();
3464     // computeKnownBits not yet implemented for scalable vectors.
3465     if (VecVT.isScalableVector())
3466       break;
3467     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3468     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3469 
3470     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3471     // anything about the extended bits.
3472     if (BitWidth > EltBitWidth)
3473       Known = Known.trunc(EltBitWidth);
3474 
3475     // If we know the element index, just demand that vector element, else for
3476     // an unknown element index, ignore DemandedElts and demand them all.
3477     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3478     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3479     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3480       DemandedSrcElts =
3481           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3482 
3483     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3484     if (BitWidth > EltBitWidth)
3485       Known = Known.anyext(BitWidth);
3486     break;
3487   }
3488   case ISD::INSERT_VECTOR_ELT: {
3489     // If we know the element index, split the demand between the
3490     // source vector and the inserted element, otherwise assume we need
3491     // the original demanded vector elements and the value.
3492     SDValue InVec = Op.getOperand(0);
3493     SDValue InVal = Op.getOperand(1);
3494     SDValue EltNo = Op.getOperand(2);
3495     bool DemandedVal = true;
3496     APInt DemandedVecElts = DemandedElts;
3497     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3498     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3499       unsigned EltIdx = CEltNo->getZExtValue();
3500       DemandedVal = !!DemandedElts[EltIdx];
3501       DemandedVecElts.clearBit(EltIdx);
3502     }
3503     Known.One.setAllBits();
3504     Known.Zero.setAllBits();
3505     if (DemandedVal) {
3506       Known2 = computeKnownBits(InVal, Depth + 1);
3507       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3508     }
3509     if (!!DemandedVecElts) {
3510       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3511       Known = KnownBits::commonBits(Known, Known2);
3512     }
3513     break;
3514   }
3515   case ISD::BITREVERSE: {
3516     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3517     Known = Known2.reverseBits();
3518     break;
3519   }
3520   case ISD::BSWAP: {
3521     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3522     Known = Known2.byteSwap();
3523     break;
3524   }
3525   case ISD::ABS: {
3526     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3527     Known = Known2.abs();
3528     break;
3529   }
3530   case ISD::USUBSAT: {
3531     // The result of usubsat will never be larger than the LHS.
3532     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3533     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3534     break;
3535   }
3536   case ISD::UMIN: {
3537     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3538     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3539     Known = KnownBits::umin(Known, Known2);
3540     break;
3541   }
3542   case ISD::UMAX: {
3543     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3544     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3545     Known = KnownBits::umax(Known, Known2);
3546     break;
3547   }
3548   case ISD::SMIN:
3549   case ISD::SMAX: {
3550     // If we have a clamp pattern, we know that the number of sign bits will be
3551     // the minimum of the clamp min/max range.
3552     bool IsMax = (Opcode == ISD::SMAX);
3553     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3554     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3555       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3556         CstHigh =
3557             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3558     if (CstLow && CstHigh) {
3559       if (!IsMax)
3560         std::swap(CstLow, CstHigh);
3561 
3562       const APInt &ValueLow = CstLow->getAPIntValue();
3563       const APInt &ValueHigh = CstHigh->getAPIntValue();
3564       if (ValueLow.sle(ValueHigh)) {
3565         unsigned LowSignBits = ValueLow.getNumSignBits();
3566         unsigned HighSignBits = ValueHigh.getNumSignBits();
3567         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3568         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3569           Known.One.setHighBits(MinSignBits);
3570           break;
3571         }
3572         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3573           Known.Zero.setHighBits(MinSignBits);
3574           break;
3575         }
3576       }
3577     }
3578 
3579     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3580     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3581     if (IsMax)
3582       Known = KnownBits::smax(Known, Known2);
3583     else
3584       Known = KnownBits::smin(Known, Known2);
3585     break;
3586   }
3587   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3588     if (Op.getResNo() == 1) {
3589       // The boolean result conforms to getBooleanContents.
3590       // If we know the result of a setcc has the top bits zero, use this info.
3591       // We know that we have an integer-based boolean since these operations
3592       // are only available for integer.
3593       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3594               TargetLowering::ZeroOrOneBooleanContent &&
3595           BitWidth > 1)
3596         Known.Zero.setBitsFrom(1);
3597       break;
3598     }
3599     LLVM_FALLTHROUGH;
3600   case ISD::ATOMIC_CMP_SWAP:
3601   case ISD::ATOMIC_SWAP:
3602   case ISD::ATOMIC_LOAD_ADD:
3603   case ISD::ATOMIC_LOAD_SUB:
3604   case ISD::ATOMIC_LOAD_AND:
3605   case ISD::ATOMIC_LOAD_CLR:
3606   case ISD::ATOMIC_LOAD_OR:
3607   case ISD::ATOMIC_LOAD_XOR:
3608   case ISD::ATOMIC_LOAD_NAND:
3609   case ISD::ATOMIC_LOAD_MIN:
3610   case ISD::ATOMIC_LOAD_MAX:
3611   case ISD::ATOMIC_LOAD_UMIN:
3612   case ISD::ATOMIC_LOAD_UMAX:
3613   case ISD::ATOMIC_LOAD: {
3614     unsigned MemBits =
3615         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3616     // If we are looking at the loaded value.
3617     if (Op.getResNo() == 0) {
3618       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3619         Known.Zero.setBitsFrom(MemBits);
3620     }
3621     break;
3622   }
3623   case ISD::FrameIndex:
3624   case ISD::TargetFrameIndex:
3625     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3626                                        Known, getMachineFunction());
3627     break;
3628 
3629   default:
3630     if (Opcode < ISD::BUILTIN_OP_END)
3631       break;
3632     LLVM_FALLTHROUGH;
3633   case ISD::INTRINSIC_WO_CHAIN:
3634   case ISD::INTRINSIC_W_CHAIN:
3635   case ISD::INTRINSIC_VOID:
3636     // Allow the target to implement this method for its nodes.
3637     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3638     break;
3639   }
3640 
3641   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3642   return Known;
3643 }
3644 
3645 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3646                                                              SDValue N1) const {
3647   // X + 0 never overflow
3648   if (isNullConstant(N1))
3649     return OFK_Never;
3650 
3651   KnownBits N1Known = computeKnownBits(N1);
3652   if (N1Known.Zero.getBoolValue()) {
3653     KnownBits N0Known = computeKnownBits(N0);
3654 
3655     bool overflow;
3656     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3657     if (!overflow)
3658       return OFK_Never;
3659   }
3660 
3661   // mulhi + 1 never overflow
3662   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3663       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3664     return OFK_Never;
3665 
3666   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3667     KnownBits N0Known = computeKnownBits(N0);
3668 
3669     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3670       return OFK_Never;
3671   }
3672 
3673   return OFK_Sometime;
3674 }
3675 
3676 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3677   EVT OpVT = Val.getValueType();
3678   unsigned BitWidth = OpVT.getScalarSizeInBits();
3679 
3680   // Is the constant a known power of 2?
3681   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3682     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3683 
3684   // A left-shift of a constant one will have exactly one bit set because
3685   // shifting the bit off the end is undefined.
3686   if (Val.getOpcode() == ISD::SHL) {
3687     auto *C = isConstOrConstSplat(Val.getOperand(0));
3688     if (C && C->getAPIntValue() == 1)
3689       return true;
3690   }
3691 
3692   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3693   // one bit set.
3694   if (Val.getOpcode() == ISD::SRL) {
3695     auto *C = isConstOrConstSplat(Val.getOperand(0));
3696     if (C && C->getAPIntValue().isSignMask())
3697       return true;
3698   }
3699 
3700   // Are all operands of a build vector constant powers of two?
3701   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3702     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3703           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3704             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3705           return false;
3706         }))
3707       return true;
3708 
3709   // Is the operand of a splat vector a constant power of two?
3710   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3711     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3712       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3713         return true;
3714 
3715   // More could be done here, though the above checks are enough
3716   // to handle some common cases.
3717 
3718   // Fall back to computeKnownBits to catch other known cases.
3719   KnownBits Known = computeKnownBits(Val);
3720   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3721 }
3722 
3723 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3724   EVT VT = Op.getValueType();
3725 
3726   // TODO: Assume we don't know anything for now.
3727   if (VT.isScalableVector())
3728     return 1;
3729 
3730   APInt DemandedElts = VT.isVector()
3731                            ? APInt::getAllOnes(VT.getVectorNumElements())
3732                            : APInt(1, 1);
3733   return ComputeNumSignBits(Op, DemandedElts, Depth);
3734 }
3735 
3736 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3737                                           unsigned Depth) const {
3738   EVT VT = Op.getValueType();
3739   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3740   unsigned VTBits = VT.getScalarSizeInBits();
3741   unsigned NumElts = DemandedElts.getBitWidth();
3742   unsigned Tmp, Tmp2;
3743   unsigned FirstAnswer = 1;
3744 
3745   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3746     const APInt &Val = C->getAPIntValue();
3747     return Val.getNumSignBits();
3748   }
3749 
3750   if (Depth >= MaxRecursionDepth)
3751     return 1;  // Limit search depth.
3752 
3753   if (!DemandedElts || VT.isScalableVector())
3754     return 1;  // No demanded elts, better to assume we don't know anything.
3755 
3756   unsigned Opcode = Op.getOpcode();
3757   switch (Opcode) {
3758   default: break;
3759   case ISD::AssertSext:
3760     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3761     return VTBits-Tmp+1;
3762   case ISD::AssertZext:
3763     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3764     return VTBits-Tmp;
3765 
3766   case ISD::BUILD_VECTOR:
3767     Tmp = VTBits;
3768     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3769       if (!DemandedElts[i])
3770         continue;
3771 
3772       SDValue SrcOp = Op.getOperand(i);
3773       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3774 
3775       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3776       if (SrcOp.getValueSizeInBits() != VTBits) {
3777         assert(SrcOp.getValueSizeInBits() > VTBits &&
3778                "Expected BUILD_VECTOR implicit truncation");
3779         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3780         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3781       }
3782       Tmp = std::min(Tmp, Tmp2);
3783     }
3784     return Tmp;
3785 
3786   case ISD::VECTOR_SHUFFLE: {
3787     // Collect the minimum number of sign bits that are shared by every vector
3788     // element referenced by the shuffle.
3789     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3790     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3791     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3792     for (unsigned i = 0; i != NumElts; ++i) {
3793       int M = SVN->getMaskElt(i);
3794       if (!DemandedElts[i])
3795         continue;
3796       // For UNDEF elements, we don't know anything about the common state of
3797       // the shuffle result.
3798       if (M < 0)
3799         return 1;
3800       if ((unsigned)M < NumElts)
3801         DemandedLHS.setBit((unsigned)M % NumElts);
3802       else
3803         DemandedRHS.setBit((unsigned)M % NumElts);
3804     }
3805     Tmp = std::numeric_limits<unsigned>::max();
3806     if (!!DemandedLHS)
3807       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3808     if (!!DemandedRHS) {
3809       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3810       Tmp = std::min(Tmp, Tmp2);
3811     }
3812     // If we don't know anything, early out and try computeKnownBits fall-back.
3813     if (Tmp == 1)
3814       break;
3815     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3816     return Tmp;
3817   }
3818 
3819   case ISD::BITCAST: {
3820     SDValue N0 = Op.getOperand(0);
3821     EVT SrcVT = N0.getValueType();
3822     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3823 
3824     // Ignore bitcasts from unsupported types..
3825     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3826       break;
3827 
3828     // Fast handling of 'identity' bitcasts.
3829     if (VTBits == SrcBits)
3830       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3831 
3832     bool IsLE = getDataLayout().isLittleEndian();
3833 
3834     // Bitcast 'large element' scalar/vector to 'small element' vector.
3835     if ((SrcBits % VTBits) == 0) {
3836       assert(VT.isVector() && "Expected bitcast to vector");
3837 
3838       unsigned Scale = SrcBits / VTBits;
3839       APInt SrcDemandedElts =
3840           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
3841 
3842       // Fast case - sign splat can be simply split across the small elements.
3843       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3844       if (Tmp == SrcBits)
3845         return VTBits;
3846 
3847       // Slow case - determine how far the sign extends into each sub-element.
3848       Tmp2 = VTBits;
3849       for (unsigned i = 0; i != NumElts; ++i)
3850         if (DemandedElts[i]) {
3851           unsigned SubOffset = i % Scale;
3852           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3853           SubOffset = SubOffset * VTBits;
3854           if (Tmp <= SubOffset)
3855             return 1;
3856           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3857         }
3858       return Tmp2;
3859     }
3860     break;
3861   }
3862 
3863   case ISD::SIGN_EXTEND:
3864     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3865     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3866   case ISD::SIGN_EXTEND_INREG:
3867     // Max of the input and what this extends.
3868     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3869     Tmp = VTBits-Tmp+1;
3870     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3871     return std::max(Tmp, Tmp2);
3872   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3873     SDValue Src = Op.getOperand(0);
3874     EVT SrcVT = Src.getValueType();
3875     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3876     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3877     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3878   }
3879   case ISD::SRA:
3880     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3881     // SRA X, C -> adds C sign bits.
3882     if (const APInt *ShAmt =
3883             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3884       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3885     return Tmp;
3886   case ISD::SHL:
3887     if (const APInt *ShAmt =
3888             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3889       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3890       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3891       if (ShAmt->ult(Tmp))
3892         return Tmp - ShAmt->getZExtValue();
3893     }
3894     break;
3895   case ISD::AND:
3896   case ISD::OR:
3897   case ISD::XOR:    // NOT is handled here.
3898     // Logical binary ops preserve the number of sign bits at the worst.
3899     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3900     if (Tmp != 1) {
3901       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3902       FirstAnswer = std::min(Tmp, Tmp2);
3903       // We computed what we know about the sign bits as our first
3904       // answer. Now proceed to the generic code that uses
3905       // computeKnownBits, and pick whichever answer is better.
3906     }
3907     break;
3908 
3909   case ISD::SELECT:
3910   case ISD::VSELECT:
3911     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3912     if (Tmp == 1) return 1;  // Early out.
3913     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3914     return std::min(Tmp, Tmp2);
3915   case ISD::SELECT_CC:
3916     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3917     if (Tmp == 1) return 1;  // Early out.
3918     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3919     return std::min(Tmp, Tmp2);
3920 
3921   case ISD::SMIN:
3922   case ISD::SMAX: {
3923     // If we have a clamp pattern, we know that the number of sign bits will be
3924     // the minimum of the clamp min/max range.
3925     bool IsMax = (Opcode == ISD::SMAX);
3926     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3927     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3928       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3929         CstHigh =
3930             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3931     if (CstLow && CstHigh) {
3932       if (!IsMax)
3933         std::swap(CstLow, CstHigh);
3934       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3935         Tmp = CstLow->getAPIntValue().getNumSignBits();
3936         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3937         return std::min(Tmp, Tmp2);
3938       }
3939     }
3940 
3941     // Fallback - just get the minimum number of sign bits of the operands.
3942     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3943     if (Tmp == 1)
3944       return 1;  // Early out.
3945     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3946     return std::min(Tmp, Tmp2);
3947   }
3948   case ISD::UMIN:
3949   case ISD::UMAX:
3950     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3951     if (Tmp == 1)
3952       return 1;  // Early out.
3953     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3954     return std::min(Tmp, Tmp2);
3955   case ISD::SADDO:
3956   case ISD::UADDO:
3957   case ISD::SSUBO:
3958   case ISD::USUBO:
3959   case ISD::SMULO:
3960   case ISD::UMULO:
3961     if (Op.getResNo() != 1)
3962       break;
3963     // The boolean result conforms to getBooleanContents.  Fall through.
3964     // If setcc returns 0/-1, all bits are sign bits.
3965     // We know that we have an integer-based boolean since these operations
3966     // are only available for integer.
3967     if (TLI->getBooleanContents(VT.isVector(), false) ==
3968         TargetLowering::ZeroOrNegativeOneBooleanContent)
3969       return VTBits;
3970     break;
3971   case ISD::SETCC:
3972   case ISD::STRICT_FSETCC:
3973   case ISD::STRICT_FSETCCS: {
3974     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3975     // If setcc returns 0/-1, all bits are sign bits.
3976     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3977         TargetLowering::ZeroOrNegativeOneBooleanContent)
3978       return VTBits;
3979     break;
3980   }
3981   case ISD::ROTL:
3982   case ISD::ROTR:
3983     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3984 
3985     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3986     if (Tmp == VTBits)
3987       return VTBits;
3988 
3989     if (ConstantSDNode *C =
3990             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3991       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3992 
3993       // Handle rotate right by N like a rotate left by 32-N.
3994       if (Opcode == ISD::ROTR)
3995         RotAmt = (VTBits - RotAmt) % VTBits;
3996 
3997       // If we aren't rotating out all of the known-in sign bits, return the
3998       // number that are left.  This handles rotl(sext(x), 1) for example.
3999       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4000     }
4001     break;
4002   case ISD::ADD:
4003   case ISD::ADDC:
4004     // Add can have at most one carry bit.  Thus we know that the output
4005     // is, at worst, one more bit than the inputs.
4006     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4007     if (Tmp == 1) return 1; // Early out.
4008 
4009     // Special case decrementing a value (ADD X, -1):
4010     if (ConstantSDNode *CRHS =
4011             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4012       if (CRHS->isAllOnes()) {
4013         KnownBits Known =
4014             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4015 
4016         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4017         // sign bits set.
4018         if ((Known.Zero | 1).isAllOnes())
4019           return VTBits;
4020 
4021         // If we are subtracting one from a positive number, there is no carry
4022         // out of the result.
4023         if (Known.isNonNegative())
4024           return Tmp;
4025       }
4026 
4027     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4028     if (Tmp2 == 1) return 1; // Early out.
4029     return std::min(Tmp, Tmp2) - 1;
4030   case ISD::SUB:
4031     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4032     if (Tmp2 == 1) return 1; // Early out.
4033 
4034     // Handle NEG.
4035     if (ConstantSDNode *CLHS =
4036             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4037       if (CLHS->isZero()) {
4038         KnownBits Known =
4039             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4040         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4041         // sign bits set.
4042         if ((Known.Zero | 1).isAllOnes())
4043           return VTBits;
4044 
4045         // If the input is known to be positive (the sign bit is known clear),
4046         // the output of the NEG has the same number of sign bits as the input.
4047         if (Known.isNonNegative())
4048           return Tmp2;
4049 
4050         // Otherwise, we treat this like a SUB.
4051       }
4052 
4053     // Sub can have at most one carry bit.  Thus we know that the output
4054     // is, at worst, one more bit than the inputs.
4055     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4056     if (Tmp == 1) return 1; // Early out.
4057     return std::min(Tmp, Tmp2) - 1;
4058   case ISD::MUL: {
4059     // The output of the Mul can be at most twice the valid bits in the inputs.
4060     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4061     if (SignBitsOp0 == 1)
4062       break;
4063     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4064     if (SignBitsOp1 == 1)
4065       break;
4066     unsigned OutValidBits =
4067         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4068     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4069   }
4070   case ISD::SREM:
4071     // The sign bit is the LHS's sign bit, except when the result of the
4072     // remainder is zero. The magnitude of the result should be less than or
4073     // equal to the magnitude of the LHS. Therefore, the result should have
4074     // at least as many sign bits as the left hand side.
4075     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4076   case ISD::TRUNCATE: {
4077     // Check if the sign bits of source go down as far as the truncated value.
4078     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4079     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4080     if (NumSrcSignBits > (NumSrcBits - VTBits))
4081       return NumSrcSignBits - (NumSrcBits - VTBits);
4082     break;
4083   }
4084   case ISD::EXTRACT_ELEMENT: {
4085     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4086     const int BitWidth = Op.getValueSizeInBits();
4087     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4088 
4089     // Get reverse index (starting from 1), Op1 value indexes elements from
4090     // little end. Sign starts at big end.
4091     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4092 
4093     // If the sign portion ends in our element the subtraction gives correct
4094     // result. Otherwise it gives either negative or > bitwidth result
4095     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4096   }
4097   case ISD::INSERT_VECTOR_ELT: {
4098     // If we know the element index, split the demand between the
4099     // source vector and the inserted element, otherwise assume we need
4100     // the original demanded vector elements and the value.
4101     SDValue InVec = Op.getOperand(0);
4102     SDValue InVal = Op.getOperand(1);
4103     SDValue EltNo = Op.getOperand(2);
4104     bool DemandedVal = true;
4105     APInt DemandedVecElts = DemandedElts;
4106     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4107     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4108       unsigned EltIdx = CEltNo->getZExtValue();
4109       DemandedVal = !!DemandedElts[EltIdx];
4110       DemandedVecElts.clearBit(EltIdx);
4111     }
4112     Tmp = std::numeric_limits<unsigned>::max();
4113     if (DemandedVal) {
4114       // TODO - handle implicit truncation of inserted elements.
4115       if (InVal.getScalarValueSizeInBits() != VTBits)
4116         break;
4117       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4118       Tmp = std::min(Tmp, Tmp2);
4119     }
4120     if (!!DemandedVecElts) {
4121       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4122       Tmp = std::min(Tmp, Tmp2);
4123     }
4124     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4125     return Tmp;
4126   }
4127   case ISD::EXTRACT_VECTOR_ELT: {
4128     SDValue InVec = Op.getOperand(0);
4129     SDValue EltNo = Op.getOperand(1);
4130     EVT VecVT = InVec.getValueType();
4131     // ComputeNumSignBits not yet implemented for scalable vectors.
4132     if (VecVT.isScalableVector())
4133       break;
4134     const unsigned BitWidth = Op.getValueSizeInBits();
4135     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4136     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4137 
4138     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4139     // anything about sign bits. But if the sizes match we can derive knowledge
4140     // about sign bits from the vector operand.
4141     if (BitWidth != EltBitWidth)
4142       break;
4143 
4144     // If we know the element index, just demand that vector element, else for
4145     // an unknown element index, ignore DemandedElts and demand them all.
4146     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4147     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4148     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4149       DemandedSrcElts =
4150           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4151 
4152     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4153   }
4154   case ISD::EXTRACT_SUBVECTOR: {
4155     // Offset the demanded elts by the subvector index.
4156     SDValue Src = Op.getOperand(0);
4157     // Bail until we can represent demanded elements for scalable vectors.
4158     if (Src.getValueType().isScalableVector())
4159       break;
4160     uint64_t Idx = Op.getConstantOperandVal(1);
4161     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4162     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4163     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4164   }
4165   case ISD::CONCAT_VECTORS: {
4166     // Determine the minimum number of sign bits across all demanded
4167     // elts of the input vectors. Early out if the result is already 1.
4168     Tmp = std::numeric_limits<unsigned>::max();
4169     EVT SubVectorVT = Op.getOperand(0).getValueType();
4170     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4171     unsigned NumSubVectors = Op.getNumOperands();
4172     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4173       APInt DemandedSub =
4174           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4175       if (!DemandedSub)
4176         continue;
4177       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4178       Tmp = std::min(Tmp, Tmp2);
4179     }
4180     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4181     return Tmp;
4182   }
4183   case ISD::INSERT_SUBVECTOR: {
4184     // Demand any elements from the subvector and the remainder from the src its
4185     // inserted into.
4186     SDValue Src = Op.getOperand(0);
4187     SDValue Sub = Op.getOperand(1);
4188     uint64_t Idx = Op.getConstantOperandVal(2);
4189     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4190     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4191     APInt DemandedSrcElts = DemandedElts;
4192     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4193 
4194     Tmp = std::numeric_limits<unsigned>::max();
4195     if (!!DemandedSubElts) {
4196       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4197       if (Tmp == 1)
4198         return 1; // early-out
4199     }
4200     if (!!DemandedSrcElts) {
4201       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4202       Tmp = std::min(Tmp, Tmp2);
4203     }
4204     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4205     return Tmp;
4206   }
4207   case ISD::ATOMIC_CMP_SWAP:
4208   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4209   case ISD::ATOMIC_SWAP:
4210   case ISD::ATOMIC_LOAD_ADD:
4211   case ISD::ATOMIC_LOAD_SUB:
4212   case ISD::ATOMIC_LOAD_AND:
4213   case ISD::ATOMIC_LOAD_CLR:
4214   case ISD::ATOMIC_LOAD_OR:
4215   case ISD::ATOMIC_LOAD_XOR:
4216   case ISD::ATOMIC_LOAD_NAND:
4217   case ISD::ATOMIC_LOAD_MIN:
4218   case ISD::ATOMIC_LOAD_MAX:
4219   case ISD::ATOMIC_LOAD_UMIN:
4220   case ISD::ATOMIC_LOAD_UMAX:
4221   case ISD::ATOMIC_LOAD: {
4222     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4223     // If we are looking at the loaded value.
4224     if (Op.getResNo() == 0) {
4225       if (Tmp == VTBits)
4226         return 1; // early-out
4227       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4228         return VTBits - Tmp + 1;
4229       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4230         return VTBits - Tmp;
4231     }
4232     break;
4233   }
4234   }
4235 
4236   // If we are looking at the loaded value of the SDNode.
4237   if (Op.getResNo() == 0) {
4238     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4239     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4240       unsigned ExtType = LD->getExtensionType();
4241       switch (ExtType) {
4242       default: break;
4243       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4244         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4245         return VTBits - Tmp + 1;
4246       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4247         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4248         return VTBits - Tmp;
4249       case ISD::NON_EXTLOAD:
4250         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4251           // We only need to handle vectors - computeKnownBits should handle
4252           // scalar cases.
4253           Type *CstTy = Cst->getType();
4254           if (CstTy->isVectorTy() &&
4255               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4256             Tmp = VTBits;
4257             for (unsigned i = 0; i != NumElts; ++i) {
4258               if (!DemandedElts[i])
4259                 continue;
4260               if (Constant *Elt = Cst->getAggregateElement(i)) {
4261                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4262                   const APInt &Value = CInt->getValue();
4263                   Tmp = std::min(Tmp, Value.getNumSignBits());
4264                   continue;
4265                 }
4266                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4267                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4268                   Tmp = std::min(Tmp, Value.getNumSignBits());
4269                   continue;
4270                 }
4271               }
4272               // Unknown type. Conservatively assume no bits match sign bit.
4273               return 1;
4274             }
4275             return Tmp;
4276           }
4277         }
4278         break;
4279       }
4280     }
4281   }
4282 
4283   // Allow the target to implement this method for its nodes.
4284   if (Opcode >= ISD::BUILTIN_OP_END ||
4285       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4286       Opcode == ISD::INTRINSIC_W_CHAIN ||
4287       Opcode == ISD::INTRINSIC_VOID) {
4288     unsigned NumBits =
4289         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4290     if (NumBits > 1)
4291       FirstAnswer = std::max(FirstAnswer, NumBits);
4292   }
4293 
4294   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4295   // use this information.
4296   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4297 
4298   APInt Mask;
4299   if (Known.isNonNegative()) {        // sign bit is 0
4300     Mask = Known.Zero;
4301   } else if (Known.isNegative()) {  // sign bit is 1;
4302     Mask = Known.One;
4303   } else {
4304     // Nothing known.
4305     return FirstAnswer;
4306   }
4307 
4308   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4309   // the number of identical bits in the top of the input value.
4310   Mask <<= Mask.getBitWidth()-VTBits;
4311   return std::max(FirstAnswer, Mask.countLeadingOnes());
4312 }
4313 
4314 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const {
4315   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4316   return Op.getScalarValueSizeInBits() - SignBits + 1;
4317 }
4318 
4319 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op,
4320                                             const APInt &DemandedElts,
4321                                             unsigned Depth) const {
4322   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4323   return Op.getScalarValueSizeInBits() - SignBits + 1;
4324 }
4325 
4326 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4327                                                     unsigned Depth) const {
4328   // Early out for FREEZE.
4329   if (Op.getOpcode() == ISD::FREEZE)
4330     return true;
4331 
4332   // TODO: Assume we don't know anything for now.
4333   EVT VT = Op.getValueType();
4334   if (VT.isScalableVector())
4335     return false;
4336 
4337   APInt DemandedElts = VT.isVector()
4338                            ? APInt::getAllOnes(VT.getVectorNumElements())
4339                            : APInt(1, 1);
4340   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4341 }
4342 
4343 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4344                                                     const APInt &DemandedElts,
4345                                                     bool PoisonOnly,
4346                                                     unsigned Depth) const {
4347   unsigned Opcode = Op.getOpcode();
4348 
4349   // Early out for FREEZE.
4350   if (Opcode == ISD::FREEZE)
4351     return true;
4352 
4353   if (Depth >= MaxRecursionDepth)
4354     return false; // Limit search depth.
4355 
4356   if (isIntOrFPConstant(Op))
4357     return true;
4358 
4359   switch (Opcode) {
4360   case ISD::UNDEF:
4361     return PoisonOnly;
4362 
4363   case ISD::BUILD_VECTOR:
4364     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4365     // this shouldn't affect the result.
4366     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4367       if (!DemandedElts[i])
4368         continue;
4369       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4370                                             Depth + 1))
4371         return false;
4372     }
4373     return true;
4374 
4375   // TODO: Search for noundef attributes from library functions.
4376 
4377   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4378 
4379   default:
4380     // Allow the target to implement this method for its nodes.
4381     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4382         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4383       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4384           Op, DemandedElts, *this, PoisonOnly, Depth);
4385     break;
4386   }
4387 
4388   return false;
4389 }
4390 
4391 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4392   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4393       !isa<ConstantSDNode>(Op.getOperand(1)))
4394     return false;
4395 
4396   if (Op.getOpcode() == ISD::OR &&
4397       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4398     return false;
4399 
4400   return true;
4401 }
4402 
4403 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4404   // If we're told that NaNs won't happen, assume they won't.
4405   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4406     return true;
4407 
4408   if (Depth >= MaxRecursionDepth)
4409     return false; // Limit search depth.
4410 
4411   // TODO: Handle vectors.
4412   // If the value is a constant, we can obviously see if it is a NaN or not.
4413   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4414     return !C->getValueAPF().isNaN() ||
4415            (SNaN && !C->getValueAPF().isSignaling());
4416   }
4417 
4418   unsigned Opcode = Op.getOpcode();
4419   switch (Opcode) {
4420   case ISD::FADD:
4421   case ISD::FSUB:
4422   case ISD::FMUL:
4423   case ISD::FDIV:
4424   case ISD::FREM:
4425   case ISD::FSIN:
4426   case ISD::FCOS: {
4427     if (SNaN)
4428       return true;
4429     // TODO: Need isKnownNeverInfinity
4430     return false;
4431   }
4432   case ISD::FCANONICALIZE:
4433   case ISD::FEXP:
4434   case ISD::FEXP2:
4435   case ISD::FTRUNC:
4436   case ISD::FFLOOR:
4437   case ISD::FCEIL:
4438   case ISD::FROUND:
4439   case ISD::FROUNDEVEN:
4440   case ISD::FRINT:
4441   case ISD::FNEARBYINT: {
4442     if (SNaN)
4443       return true;
4444     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4445   }
4446   case ISD::FABS:
4447   case ISD::FNEG:
4448   case ISD::FCOPYSIGN: {
4449     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4450   }
4451   case ISD::SELECT:
4452     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4453            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4454   case ISD::FP_EXTEND:
4455   case ISD::FP_ROUND: {
4456     if (SNaN)
4457       return true;
4458     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4459   }
4460   case ISD::SINT_TO_FP:
4461   case ISD::UINT_TO_FP:
4462     return true;
4463   case ISD::FMA:
4464   case ISD::FMAD: {
4465     if (SNaN)
4466       return true;
4467     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4468            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4469            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4470   }
4471   case ISD::FSQRT: // Need is known positive
4472   case ISD::FLOG:
4473   case ISD::FLOG2:
4474   case ISD::FLOG10:
4475   case ISD::FPOWI:
4476   case ISD::FPOW: {
4477     if (SNaN)
4478       return true;
4479     // TODO: Refine on operand
4480     return false;
4481   }
4482   case ISD::FMINNUM:
4483   case ISD::FMAXNUM: {
4484     // Only one needs to be known not-nan, since it will be returned if the
4485     // other ends up being one.
4486     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4487            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4488   }
4489   case ISD::FMINNUM_IEEE:
4490   case ISD::FMAXNUM_IEEE: {
4491     if (SNaN)
4492       return true;
4493     // This can return a NaN if either operand is an sNaN, or if both operands
4494     // are NaN.
4495     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4496             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4497            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4498             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4499   }
4500   case ISD::FMINIMUM:
4501   case ISD::FMAXIMUM: {
4502     // TODO: Does this quiet or return the origina NaN as-is?
4503     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4504            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4505   }
4506   case ISD::EXTRACT_VECTOR_ELT: {
4507     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4508   }
4509   default:
4510     if (Opcode >= ISD::BUILTIN_OP_END ||
4511         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4512         Opcode == ISD::INTRINSIC_W_CHAIN ||
4513         Opcode == ISD::INTRINSIC_VOID) {
4514       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4515     }
4516 
4517     return false;
4518   }
4519 }
4520 
4521 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4522   assert(Op.getValueType().isFloatingPoint() &&
4523          "Floating point type expected");
4524 
4525   // If the value is a constant, we can obviously see if it is a zero or not.
4526   // TODO: Add BuildVector support.
4527   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4528     return !C->isZero();
4529   return false;
4530 }
4531 
4532 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4533   assert(!Op.getValueType().isFloatingPoint() &&
4534          "Floating point types unsupported - use isKnownNeverZeroFloat");
4535 
4536   // If the value is a constant, we can obviously see if it is a zero or not.
4537   if (ISD::matchUnaryPredicate(Op,
4538                                [](ConstantSDNode *C) { return !C->isZero(); }))
4539     return true;
4540 
4541   // TODO: Recognize more cases here.
4542   switch (Op.getOpcode()) {
4543   default: break;
4544   case ISD::OR:
4545     if (isKnownNeverZero(Op.getOperand(1)) ||
4546         isKnownNeverZero(Op.getOperand(0)))
4547       return true;
4548     break;
4549   }
4550 
4551   return false;
4552 }
4553 
4554 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4555   // Check the obvious case.
4556   if (A == B) return true;
4557 
4558   // For for negative and positive zero.
4559   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4560     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4561       if (CA->isZero() && CB->isZero()) return true;
4562 
4563   // Otherwise they may not be equal.
4564   return false;
4565 }
4566 
4567 // FIXME: unify with llvm::haveNoCommonBitsSet.
4568 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4569   assert(A.getValueType() == B.getValueType() &&
4570          "Values must have the same type");
4571   // Match masked merge pattern (X & ~M) op (Y & M)
4572   if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) {
4573     auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) {
4574       if (isBitwiseNot(NotM, true)) {
4575         SDValue NotOperand = NotM->getOperand(0);
4576         return NotOperand == And->getOperand(0) ||
4577                NotOperand == And->getOperand(1);
4578       }
4579       return false;
4580     };
4581     if (MatchNoCommonBitsPattern(A->getOperand(0), B) ||
4582         MatchNoCommonBitsPattern(A->getOperand(1), B) ||
4583         MatchNoCommonBitsPattern(B->getOperand(0), A) ||
4584         MatchNoCommonBitsPattern(B->getOperand(1), A))
4585       return true;
4586   }
4587   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4588                                         computeKnownBits(B));
4589 }
4590 
4591 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4592                                SelectionDAG &DAG) {
4593   if (cast<ConstantSDNode>(Step)->isZero())
4594     return DAG.getConstant(0, DL, VT);
4595 
4596   return SDValue();
4597 }
4598 
4599 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4600                                 ArrayRef<SDValue> Ops,
4601                                 SelectionDAG &DAG) {
4602   int NumOps = Ops.size();
4603   assert(NumOps != 0 && "Can't build an empty vector!");
4604   assert(!VT.isScalableVector() &&
4605          "BUILD_VECTOR cannot be used with scalable types");
4606   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4607          "Incorrect element count in BUILD_VECTOR!");
4608 
4609   // BUILD_VECTOR of UNDEFs is UNDEF.
4610   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4611     return DAG.getUNDEF(VT);
4612 
4613   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4614   SDValue IdentitySrc;
4615   bool IsIdentity = true;
4616   for (int i = 0; i != NumOps; ++i) {
4617     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4618         Ops[i].getOperand(0).getValueType() != VT ||
4619         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4620         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4621         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4622       IsIdentity = false;
4623       break;
4624     }
4625     IdentitySrc = Ops[i].getOperand(0);
4626   }
4627   if (IsIdentity)
4628     return IdentitySrc;
4629 
4630   return SDValue();
4631 }
4632 
4633 /// Try to simplify vector concatenation to an input value, undef, or build
4634 /// vector.
4635 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4636                                   ArrayRef<SDValue> Ops,
4637                                   SelectionDAG &DAG) {
4638   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4639   assert(llvm::all_of(Ops,
4640                       [Ops](SDValue Op) {
4641                         return Ops[0].getValueType() == Op.getValueType();
4642                       }) &&
4643          "Concatenation of vectors with inconsistent value types!");
4644   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4645              VT.getVectorElementCount() &&
4646          "Incorrect element count in vector concatenation!");
4647 
4648   if (Ops.size() == 1)
4649     return Ops[0];
4650 
4651   // Concat of UNDEFs is UNDEF.
4652   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4653     return DAG.getUNDEF(VT);
4654 
4655   // Scan the operands and look for extract operations from a single source
4656   // that correspond to insertion at the same location via this concatenation:
4657   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4658   SDValue IdentitySrc;
4659   bool IsIdentity = true;
4660   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4661     SDValue Op = Ops[i];
4662     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4663     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4664         Op.getOperand(0).getValueType() != VT ||
4665         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4666         Op.getConstantOperandVal(1) != IdentityIndex) {
4667       IsIdentity = false;
4668       break;
4669     }
4670     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4671            "Unexpected identity source vector for concat of extracts");
4672     IdentitySrc = Op.getOperand(0);
4673   }
4674   if (IsIdentity) {
4675     assert(IdentitySrc && "Failed to set source vector of extracts");
4676     return IdentitySrc;
4677   }
4678 
4679   // The code below this point is only designed to work for fixed width
4680   // vectors, so we bail out for now.
4681   if (VT.isScalableVector())
4682     return SDValue();
4683 
4684   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4685   // simplified to one big BUILD_VECTOR.
4686   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4687   EVT SVT = VT.getScalarType();
4688   SmallVector<SDValue, 16> Elts;
4689   for (SDValue Op : Ops) {
4690     EVT OpVT = Op.getValueType();
4691     if (Op.isUndef())
4692       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4693     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4694       Elts.append(Op->op_begin(), Op->op_end());
4695     else
4696       return SDValue();
4697   }
4698 
4699   // BUILD_VECTOR requires all inputs to be of the same type, find the
4700   // maximum type and extend them all.
4701   for (SDValue Op : Elts)
4702     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4703 
4704   if (SVT.bitsGT(VT.getScalarType())) {
4705     for (SDValue &Op : Elts) {
4706       if (Op.isUndef())
4707         Op = DAG.getUNDEF(SVT);
4708       else
4709         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4710                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4711                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4712     }
4713   }
4714 
4715   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4716   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4717   return V;
4718 }
4719 
4720 /// Gets or creates the specified node.
4721 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4722   FoldingSetNodeID ID;
4723   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4724   void *IP = nullptr;
4725   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4726     return SDValue(E, 0);
4727 
4728   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4729                               getVTList(VT));
4730   CSEMap.InsertNode(N, IP);
4731 
4732   InsertNode(N);
4733   SDValue V = SDValue(N, 0);
4734   NewSDValueDbgMsg(V, "Creating new node: ", this);
4735   return V;
4736 }
4737 
4738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4739                               SDValue Operand) {
4740   SDNodeFlags Flags;
4741   if (Inserter)
4742     Flags = Inserter->getFlags();
4743   return getNode(Opcode, DL, VT, Operand, Flags);
4744 }
4745 
4746 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4747                               SDValue Operand, const SDNodeFlags Flags) {
4748   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4749          "Operand is DELETED_NODE!");
4750   // Constant fold unary operations with an integer constant operand. Even
4751   // opaque constant will be folded, because the folding of unary operations
4752   // doesn't create new constants with different values. Nevertheless, the
4753   // opaque flag is preserved during folding to prevent future folding with
4754   // other constants.
4755   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4756     const APInt &Val = C->getAPIntValue();
4757     switch (Opcode) {
4758     default: break;
4759     case ISD::SIGN_EXTEND:
4760       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4761                          C->isTargetOpcode(), C->isOpaque());
4762     case ISD::TRUNCATE:
4763       if (C->isOpaque())
4764         break;
4765       LLVM_FALLTHROUGH;
4766     case ISD::ZERO_EXTEND:
4767       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4768                          C->isTargetOpcode(), C->isOpaque());
4769     case ISD::ANY_EXTEND:
4770       // Some targets like RISCV prefer to sign extend some types.
4771       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4772         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4773                            C->isTargetOpcode(), C->isOpaque());
4774       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4775                          C->isTargetOpcode(), C->isOpaque());
4776     case ISD::UINT_TO_FP:
4777     case ISD::SINT_TO_FP: {
4778       APFloat apf(EVTToAPFloatSemantics(VT),
4779                   APInt::getZero(VT.getSizeInBits()));
4780       (void)apf.convertFromAPInt(Val,
4781                                  Opcode==ISD::SINT_TO_FP,
4782                                  APFloat::rmNearestTiesToEven);
4783       return getConstantFP(apf, DL, VT);
4784     }
4785     case ISD::BITCAST:
4786       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4787         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4788       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4789         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4790       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4791         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4792       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4793         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4794       break;
4795     case ISD::ABS:
4796       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4797                          C->isOpaque());
4798     case ISD::BITREVERSE:
4799       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4800                          C->isOpaque());
4801     case ISD::BSWAP:
4802       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4803                          C->isOpaque());
4804     case ISD::CTPOP:
4805       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4806                          C->isOpaque());
4807     case ISD::CTLZ:
4808     case ISD::CTLZ_ZERO_UNDEF:
4809       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4810                          C->isOpaque());
4811     case ISD::CTTZ:
4812     case ISD::CTTZ_ZERO_UNDEF:
4813       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4814                          C->isOpaque());
4815     case ISD::FP16_TO_FP: {
4816       bool Ignored;
4817       APFloat FPV(APFloat::IEEEhalf(),
4818                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4819 
4820       // This can return overflow, underflow, or inexact; we don't care.
4821       // FIXME need to be more flexible about rounding mode.
4822       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4823                         APFloat::rmNearestTiesToEven, &Ignored);
4824       return getConstantFP(FPV, DL, VT);
4825     }
4826     case ISD::STEP_VECTOR: {
4827       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
4828         return V;
4829       break;
4830     }
4831     }
4832   }
4833 
4834   // Constant fold unary operations with a floating point constant operand.
4835   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4836     APFloat V = C->getValueAPF();    // make copy
4837     switch (Opcode) {
4838     case ISD::FNEG:
4839       V.changeSign();
4840       return getConstantFP(V, DL, VT);
4841     case ISD::FABS:
4842       V.clearSign();
4843       return getConstantFP(V, DL, VT);
4844     case ISD::FCEIL: {
4845       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4846       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4847         return getConstantFP(V, DL, VT);
4848       break;
4849     }
4850     case ISD::FTRUNC: {
4851       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4852       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4853         return getConstantFP(V, DL, VT);
4854       break;
4855     }
4856     case ISD::FFLOOR: {
4857       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4858       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4859         return getConstantFP(V, DL, VT);
4860       break;
4861     }
4862     case ISD::FP_EXTEND: {
4863       bool ignored;
4864       // This can return overflow, underflow, or inexact; we don't care.
4865       // FIXME need to be more flexible about rounding mode.
4866       (void)V.convert(EVTToAPFloatSemantics(VT),
4867                       APFloat::rmNearestTiesToEven, &ignored);
4868       return getConstantFP(V, DL, VT);
4869     }
4870     case ISD::FP_TO_SINT:
4871     case ISD::FP_TO_UINT: {
4872       bool ignored;
4873       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4874       // FIXME need to be more flexible about rounding mode.
4875       APFloat::opStatus s =
4876           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4877       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4878         break;
4879       return getConstant(IntVal, DL, VT);
4880     }
4881     case ISD::BITCAST:
4882       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4883         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4884       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
4885         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4886       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4887         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4888       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4889         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4890       break;
4891     case ISD::FP_TO_FP16: {
4892       bool Ignored;
4893       // This can return overflow, underflow, or inexact; we don't care.
4894       // FIXME need to be more flexible about rounding mode.
4895       (void)V.convert(APFloat::IEEEhalf(),
4896                       APFloat::rmNearestTiesToEven, &Ignored);
4897       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4898     }
4899     }
4900   }
4901 
4902   // Constant fold unary operations with a vector integer or float operand.
4903   switch (Opcode) {
4904   default:
4905     // FIXME: Entirely reasonable to perform folding of other unary
4906     // operations here as the need arises.
4907     break;
4908   case ISD::FNEG:
4909   case ISD::FABS:
4910   case ISD::FCEIL:
4911   case ISD::FTRUNC:
4912   case ISD::FFLOOR:
4913   case ISD::FP_EXTEND:
4914   case ISD::FP_TO_SINT:
4915   case ISD::FP_TO_UINT:
4916   case ISD::TRUNCATE:
4917   case ISD::ANY_EXTEND:
4918   case ISD::ZERO_EXTEND:
4919   case ISD::SIGN_EXTEND:
4920   case ISD::UINT_TO_FP:
4921   case ISD::SINT_TO_FP:
4922   case ISD::ABS:
4923   case ISD::BITREVERSE:
4924   case ISD::BSWAP:
4925   case ISD::CTLZ:
4926   case ISD::CTLZ_ZERO_UNDEF:
4927   case ISD::CTTZ:
4928   case ISD::CTTZ_ZERO_UNDEF:
4929   case ISD::CTPOP: {
4930     SDValue Ops = {Operand};
4931     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
4932       return Fold;
4933   }
4934   }
4935 
4936   unsigned OpOpcode = Operand.getNode()->getOpcode();
4937   switch (Opcode) {
4938   case ISD::STEP_VECTOR:
4939     assert(VT.isScalableVector() &&
4940            "STEP_VECTOR can only be used with scalable types");
4941     assert(OpOpcode == ISD::TargetConstant &&
4942            VT.getVectorElementType() == Operand.getValueType() &&
4943            "Unexpected step operand");
4944     break;
4945   case ISD::FREEZE:
4946     assert(VT == Operand.getValueType() && "Unexpected VT!");
4947     break;
4948   case ISD::TokenFactor:
4949   case ISD::MERGE_VALUES:
4950   case ISD::CONCAT_VECTORS:
4951     return Operand;         // Factor, merge or concat of one node?  No need.
4952   case ISD::BUILD_VECTOR: {
4953     // Attempt to simplify BUILD_VECTOR.
4954     SDValue Ops[] = {Operand};
4955     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4956       return V;
4957     break;
4958   }
4959   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4960   case ISD::FP_EXTEND:
4961     assert(VT.isFloatingPoint() &&
4962            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4963     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4964     assert((!VT.isVector() ||
4965             VT.getVectorElementCount() ==
4966             Operand.getValueType().getVectorElementCount()) &&
4967            "Vector element count mismatch!");
4968     assert(Operand.getValueType().bitsLT(VT) &&
4969            "Invalid fpext node, dst < src!");
4970     if (Operand.isUndef())
4971       return getUNDEF(VT);
4972     break;
4973   case ISD::FP_TO_SINT:
4974   case ISD::FP_TO_UINT:
4975     if (Operand.isUndef())
4976       return getUNDEF(VT);
4977     break;
4978   case ISD::SINT_TO_FP:
4979   case ISD::UINT_TO_FP:
4980     // [us]itofp(undef) = 0, because the result value is bounded.
4981     if (Operand.isUndef())
4982       return getConstantFP(0.0, DL, VT);
4983     break;
4984   case ISD::SIGN_EXTEND:
4985     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4986            "Invalid SIGN_EXTEND!");
4987     assert(VT.isVector() == Operand.getValueType().isVector() &&
4988            "SIGN_EXTEND result type type should be vector iff the operand "
4989            "type is vector!");
4990     if (Operand.getValueType() == VT) return Operand;   // noop extension
4991     assert((!VT.isVector() ||
4992             VT.getVectorElementCount() ==
4993                 Operand.getValueType().getVectorElementCount()) &&
4994            "Vector element count mismatch!");
4995     assert(Operand.getValueType().bitsLT(VT) &&
4996            "Invalid sext node, dst < src!");
4997     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4998       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4999     if (OpOpcode == ISD::UNDEF)
5000       // sext(undef) = 0, because the top bits will all be the same.
5001       return getConstant(0, DL, VT);
5002     break;
5003   case ISD::ZERO_EXTEND:
5004     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5005            "Invalid ZERO_EXTEND!");
5006     assert(VT.isVector() == Operand.getValueType().isVector() &&
5007            "ZERO_EXTEND result type type should be vector iff the operand "
5008            "type is vector!");
5009     if (Operand.getValueType() == VT) return Operand;   // noop extension
5010     assert((!VT.isVector() ||
5011             VT.getVectorElementCount() ==
5012                 Operand.getValueType().getVectorElementCount()) &&
5013            "Vector element count mismatch!");
5014     assert(Operand.getValueType().bitsLT(VT) &&
5015            "Invalid zext node, dst < src!");
5016     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5017       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5018     if (OpOpcode == ISD::UNDEF)
5019       // zext(undef) = 0, because the top bits will be zero.
5020       return getConstant(0, DL, VT);
5021     break;
5022   case ISD::ANY_EXTEND:
5023     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5024            "Invalid ANY_EXTEND!");
5025     assert(VT.isVector() == Operand.getValueType().isVector() &&
5026            "ANY_EXTEND result type type should be vector iff the operand "
5027            "type is vector!");
5028     if (Operand.getValueType() == VT) return Operand;   // noop extension
5029     assert((!VT.isVector() ||
5030             VT.getVectorElementCount() ==
5031                 Operand.getValueType().getVectorElementCount()) &&
5032            "Vector element count mismatch!");
5033     assert(Operand.getValueType().bitsLT(VT) &&
5034            "Invalid anyext node, dst < src!");
5035 
5036     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5037         OpOpcode == ISD::ANY_EXTEND)
5038       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5039       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5040     if (OpOpcode == ISD::UNDEF)
5041       return getUNDEF(VT);
5042 
5043     // (ext (trunc x)) -> x
5044     if (OpOpcode == ISD::TRUNCATE) {
5045       SDValue OpOp = Operand.getOperand(0);
5046       if (OpOp.getValueType() == VT) {
5047         transferDbgValues(Operand, OpOp);
5048         return OpOp;
5049       }
5050     }
5051     break;
5052   case ISD::TRUNCATE:
5053     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5054            "Invalid TRUNCATE!");
5055     assert(VT.isVector() == Operand.getValueType().isVector() &&
5056            "TRUNCATE result type type should be vector iff the operand "
5057            "type is vector!");
5058     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5059     assert((!VT.isVector() ||
5060             VT.getVectorElementCount() ==
5061                 Operand.getValueType().getVectorElementCount()) &&
5062            "Vector element count mismatch!");
5063     assert(Operand.getValueType().bitsGT(VT) &&
5064            "Invalid truncate node, src < dst!");
5065     if (OpOpcode == ISD::TRUNCATE)
5066       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5067     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5068         OpOpcode == ISD::ANY_EXTEND) {
5069       // If the source is smaller than the dest, we still need an extend.
5070       if (Operand.getOperand(0).getValueType().getScalarType()
5071             .bitsLT(VT.getScalarType()))
5072         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5073       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5074         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5075       return Operand.getOperand(0);
5076     }
5077     if (OpOpcode == ISD::UNDEF)
5078       return getUNDEF(VT);
5079     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5080       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5081     break;
5082   case ISD::ANY_EXTEND_VECTOR_INREG:
5083   case ISD::ZERO_EXTEND_VECTOR_INREG:
5084   case ISD::SIGN_EXTEND_VECTOR_INREG:
5085     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5086     assert(Operand.getValueType().bitsLE(VT) &&
5087            "The input must be the same size or smaller than the result.");
5088     assert(VT.getVectorMinNumElements() <
5089                Operand.getValueType().getVectorMinNumElements() &&
5090            "The destination vector type must have fewer lanes than the input.");
5091     break;
5092   case ISD::ABS:
5093     assert(VT.isInteger() && VT == Operand.getValueType() &&
5094            "Invalid ABS!");
5095     if (OpOpcode == ISD::UNDEF)
5096       return getUNDEF(VT);
5097     break;
5098   case ISD::BSWAP:
5099     assert(VT.isInteger() && VT == Operand.getValueType() &&
5100            "Invalid BSWAP!");
5101     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5102            "BSWAP types must be a multiple of 16 bits!");
5103     if (OpOpcode == ISD::UNDEF)
5104       return getUNDEF(VT);
5105     break;
5106   case ISD::BITREVERSE:
5107     assert(VT.isInteger() && VT == Operand.getValueType() &&
5108            "Invalid BITREVERSE!");
5109     if (OpOpcode == ISD::UNDEF)
5110       return getUNDEF(VT);
5111     break;
5112   case ISD::BITCAST:
5113     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5114            "Cannot BITCAST between types of different sizes!");
5115     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5116     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5117       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5118     if (OpOpcode == ISD::UNDEF)
5119       return getUNDEF(VT);
5120     break;
5121   case ISD::SCALAR_TO_VECTOR:
5122     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5123            (VT.getVectorElementType() == Operand.getValueType() ||
5124             (VT.getVectorElementType().isInteger() &&
5125              Operand.getValueType().isInteger() &&
5126              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5127            "Illegal SCALAR_TO_VECTOR node!");
5128     if (OpOpcode == ISD::UNDEF)
5129       return getUNDEF(VT);
5130     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5131     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5132         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5133         Operand.getConstantOperandVal(1) == 0 &&
5134         Operand.getOperand(0).getValueType() == VT)
5135       return Operand.getOperand(0);
5136     break;
5137   case ISD::FNEG:
5138     // Negation of an unknown bag of bits is still completely undefined.
5139     if (OpOpcode == ISD::UNDEF)
5140       return getUNDEF(VT);
5141 
5142     if (OpOpcode == ISD::FNEG)  // --X -> X
5143       return Operand.getOperand(0);
5144     break;
5145   case ISD::FABS:
5146     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5147       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5148     break;
5149   case ISD::VSCALE:
5150     assert(VT == Operand.getValueType() && "Unexpected VT!");
5151     break;
5152   case ISD::CTPOP:
5153     if (Operand.getValueType().getScalarType() == MVT::i1)
5154       return Operand;
5155     break;
5156   case ISD::CTLZ:
5157   case ISD::CTTZ:
5158     if (Operand.getValueType().getScalarType() == MVT::i1)
5159       return getNOT(DL, Operand, Operand.getValueType());
5160     break;
5161   case ISD::VECREDUCE_SMIN:
5162   case ISD::VECREDUCE_UMAX:
5163     if (Operand.getValueType().getScalarType() == MVT::i1)
5164       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5165     break;
5166   case ISD::VECREDUCE_SMAX:
5167   case ISD::VECREDUCE_UMIN:
5168     if (Operand.getValueType().getScalarType() == MVT::i1)
5169       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5170     break;
5171   }
5172 
5173   SDNode *N;
5174   SDVTList VTs = getVTList(VT);
5175   SDValue Ops[] = {Operand};
5176   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5177     FoldingSetNodeID ID;
5178     AddNodeIDNode(ID, Opcode, VTs, Ops);
5179     void *IP = nullptr;
5180     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5181       E->intersectFlagsWith(Flags);
5182       return SDValue(E, 0);
5183     }
5184 
5185     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5186     N->setFlags(Flags);
5187     createOperands(N, Ops);
5188     CSEMap.InsertNode(N, IP);
5189   } else {
5190     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5191     createOperands(N, Ops);
5192   }
5193 
5194   InsertNode(N);
5195   SDValue V = SDValue(N, 0);
5196   NewSDValueDbgMsg(V, "Creating new node: ", this);
5197   return V;
5198 }
5199 
5200 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5201                                        const APInt &C2) {
5202   switch (Opcode) {
5203   case ISD::ADD:  return C1 + C2;
5204   case ISD::SUB:  return C1 - C2;
5205   case ISD::MUL:  return C1 * C2;
5206   case ISD::AND:  return C1 & C2;
5207   case ISD::OR:   return C1 | C2;
5208   case ISD::XOR:  return C1 ^ C2;
5209   case ISD::SHL:  return C1 << C2;
5210   case ISD::SRL:  return C1.lshr(C2);
5211   case ISD::SRA:  return C1.ashr(C2);
5212   case ISD::ROTL: return C1.rotl(C2);
5213   case ISD::ROTR: return C1.rotr(C2);
5214   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5215   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5216   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5217   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5218   case ISD::SADDSAT: return C1.sadd_sat(C2);
5219   case ISD::UADDSAT: return C1.uadd_sat(C2);
5220   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5221   case ISD::USUBSAT: return C1.usub_sat(C2);
5222   case ISD::UDIV:
5223     if (!C2.getBoolValue())
5224       break;
5225     return C1.udiv(C2);
5226   case ISD::UREM:
5227     if (!C2.getBoolValue())
5228       break;
5229     return C1.urem(C2);
5230   case ISD::SDIV:
5231     if (!C2.getBoolValue())
5232       break;
5233     return C1.sdiv(C2);
5234   case ISD::SREM:
5235     if (!C2.getBoolValue())
5236       break;
5237     return C1.srem(C2);
5238   case ISD::MULHS: {
5239     unsigned FullWidth = C1.getBitWidth() * 2;
5240     APInt C1Ext = C1.sext(FullWidth);
5241     APInt C2Ext = C2.sext(FullWidth);
5242     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5243   }
5244   case ISD::MULHU: {
5245     unsigned FullWidth = C1.getBitWidth() * 2;
5246     APInt C1Ext = C1.zext(FullWidth);
5247     APInt C2Ext = C2.zext(FullWidth);
5248     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5249   }
5250   }
5251   return llvm::None;
5252 }
5253 
5254 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5255                                        const GlobalAddressSDNode *GA,
5256                                        const SDNode *N2) {
5257   if (GA->getOpcode() != ISD::GlobalAddress)
5258     return SDValue();
5259   if (!TLI->isOffsetFoldingLegal(GA))
5260     return SDValue();
5261   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5262   if (!C2)
5263     return SDValue();
5264   int64_t Offset = C2->getSExtValue();
5265   switch (Opcode) {
5266   case ISD::ADD: break;
5267   case ISD::SUB: Offset = -uint64_t(Offset); break;
5268   default: return SDValue();
5269   }
5270   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5271                           GA->getOffset() + uint64_t(Offset));
5272 }
5273 
5274 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5275   switch (Opcode) {
5276   case ISD::SDIV:
5277   case ISD::UDIV:
5278   case ISD::SREM:
5279   case ISD::UREM: {
5280     // If a divisor is zero/undef or any element of a divisor vector is
5281     // zero/undef, the whole op is undef.
5282     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5283     SDValue Divisor = Ops[1];
5284     if (Divisor.isUndef() || isNullConstant(Divisor))
5285       return true;
5286 
5287     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5288            llvm::any_of(Divisor->op_values(),
5289                         [](SDValue V) { return V.isUndef() ||
5290                                         isNullConstant(V); });
5291     // TODO: Handle signed overflow.
5292   }
5293   // TODO: Handle oversized shifts.
5294   default:
5295     return false;
5296   }
5297 }
5298 
5299 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5300                                              EVT VT, ArrayRef<SDValue> Ops) {
5301   // If the opcode is a target-specific ISD node, there's nothing we can
5302   // do here and the operand rules may not line up with the below, so
5303   // bail early.
5304   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5305   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5306   // foldCONCAT_VECTORS in getNode before this is called.
5307   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5308     return SDValue();
5309 
5310   unsigned NumOps = Ops.size();
5311   if (NumOps == 0)
5312     return SDValue();
5313 
5314   if (isUndef(Opcode, Ops))
5315     return getUNDEF(VT);
5316 
5317   // Handle binops special cases.
5318   if (NumOps == 2) {
5319     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5320       return CFP;
5321 
5322     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5323       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5324         if (C1->isOpaque() || C2->isOpaque())
5325           return SDValue();
5326 
5327         Optional<APInt> FoldAttempt =
5328             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5329         if (!FoldAttempt)
5330           return SDValue();
5331 
5332         SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5333         assert((!Folded || !VT.isVector()) &&
5334                "Can't fold vectors ops with scalar operands");
5335         return Folded;
5336       }
5337     }
5338 
5339     // fold (add Sym, c) -> Sym+c
5340     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5341       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5342     if (TLI->isCommutativeBinOp(Opcode))
5343       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5344         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5345   }
5346 
5347   // This is for vector folding only from here on.
5348   if (!VT.isVector())
5349     return SDValue();
5350 
5351   ElementCount NumElts = VT.getVectorElementCount();
5352 
5353   // See if we can fold through bitcasted integer ops.
5354   // TODO: Can we handle undef elements?
5355   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5356       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5357       Ops[0].getOpcode() == ISD::BITCAST &&
5358       Ops[1].getOpcode() == ISD::BITCAST) {
5359     SDValue N1 = peekThroughBitcasts(Ops[0]);
5360     SDValue N2 = peekThroughBitcasts(Ops[1]);
5361     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5362     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5363     EVT BVVT = N1.getValueType();
5364     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5365       bool IsLE = getDataLayout().isLittleEndian();
5366       unsigned EltBits = VT.getScalarSizeInBits();
5367       SmallVector<APInt> RawBits1, RawBits2;
5368       BitVector UndefElts1, UndefElts2;
5369       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5370           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5371           UndefElts1.none() && UndefElts2.none()) {
5372         SmallVector<APInt> RawBits;
5373         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5374           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5375           if (!Fold)
5376             break;
5377           RawBits.push_back(Fold.getValue());
5378         }
5379         if (RawBits.size() == NumElts.getFixedValue()) {
5380           // We have constant folded, but we need to cast this again back to
5381           // the original (possibly legalized) type.
5382           SmallVector<APInt> DstBits;
5383           BitVector DstUndefs;
5384           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5385                                            DstBits, RawBits, DstUndefs,
5386                                            BitVector(RawBits.size(), false));
5387           EVT BVEltVT = BV1->getOperand(0).getValueType();
5388           unsigned BVEltBits = BVEltVT.getSizeInBits();
5389           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5390           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5391             if (DstUndefs[I])
5392               continue;
5393             Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT);
5394           }
5395           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5396         }
5397       }
5398     }
5399   }
5400 
5401   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5402     return !Op.getValueType().isVector() ||
5403            Op.getValueType().getVectorElementCount() == NumElts;
5404   };
5405 
5406   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5407     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5408            Op.getOpcode() == ISD::BUILD_VECTOR ||
5409            Op.getOpcode() == ISD::SPLAT_VECTOR;
5410   };
5411 
5412   // All operands must be vector types with the same number of elements as
5413   // the result type and must be either UNDEF or a build/splat vector
5414   // or UNDEF scalars.
5415   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5416       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5417     return SDValue();
5418 
5419   // If we are comparing vectors, then the result needs to be a i1 boolean
5420   // that is then sign-extended back to the legal result type.
5421   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5422 
5423   // Find legal integer scalar type for constant promotion and
5424   // ensure that its scalar size is at least as large as source.
5425   EVT LegalSVT = VT.getScalarType();
5426   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5427     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5428     if (LegalSVT.bitsLT(VT.getScalarType()))
5429       return SDValue();
5430   }
5431 
5432   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5433   // only have one operand to check. For fixed-length vector types we may have
5434   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5435   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5436 
5437   // Constant fold each scalar lane separately.
5438   SmallVector<SDValue, 4> ScalarResults;
5439   for (unsigned I = 0; I != NumVectorElts; I++) {
5440     SmallVector<SDValue, 4> ScalarOps;
5441     for (SDValue Op : Ops) {
5442       EVT InSVT = Op.getValueType().getScalarType();
5443       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5444           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5445         if (Op.isUndef())
5446           ScalarOps.push_back(getUNDEF(InSVT));
5447         else
5448           ScalarOps.push_back(Op);
5449         continue;
5450       }
5451 
5452       SDValue ScalarOp =
5453           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5454       EVT ScalarVT = ScalarOp.getValueType();
5455 
5456       // Build vector (integer) scalar operands may need implicit
5457       // truncation - do this before constant folding.
5458       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5459         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5460 
5461       ScalarOps.push_back(ScalarOp);
5462     }
5463 
5464     // Constant fold the scalar operands.
5465     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5466 
5467     // Legalize the (integer) scalar constant if necessary.
5468     if (LegalSVT != SVT)
5469       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5470 
5471     // Scalar folding only succeeded if the result is a constant or UNDEF.
5472     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5473         ScalarResult.getOpcode() != ISD::ConstantFP)
5474       return SDValue();
5475     ScalarResults.push_back(ScalarResult);
5476   }
5477 
5478   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5479                                    : getBuildVector(VT, DL, ScalarResults);
5480   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5481   return V;
5482 }
5483 
5484 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5485                                          EVT VT, SDValue N1, SDValue N2) {
5486   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5487   //       should. That will require dealing with a potentially non-default
5488   //       rounding mode, checking the "opStatus" return value from the APFloat
5489   //       math calculations, and possibly other variations.
5490   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5491   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5492   if (N1CFP && N2CFP) {
5493     APFloat C1 = N1CFP->getValueAPF(); // make copy
5494     const APFloat &C2 = N2CFP->getValueAPF();
5495     switch (Opcode) {
5496     case ISD::FADD:
5497       C1.add(C2, APFloat::rmNearestTiesToEven);
5498       return getConstantFP(C1, DL, VT);
5499     case ISD::FSUB:
5500       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5501       return getConstantFP(C1, DL, VT);
5502     case ISD::FMUL:
5503       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5504       return getConstantFP(C1, DL, VT);
5505     case ISD::FDIV:
5506       C1.divide(C2, APFloat::rmNearestTiesToEven);
5507       return getConstantFP(C1, DL, VT);
5508     case ISD::FREM:
5509       C1.mod(C2);
5510       return getConstantFP(C1, DL, VT);
5511     case ISD::FCOPYSIGN:
5512       C1.copySign(C2);
5513       return getConstantFP(C1, DL, VT);
5514     case ISD::FMINNUM:
5515       return getConstantFP(minnum(C1, C2), DL, VT);
5516     case ISD::FMAXNUM:
5517       return getConstantFP(maxnum(C1, C2), DL, VT);
5518     case ISD::FMINIMUM:
5519       return getConstantFP(minimum(C1, C2), DL, VT);
5520     case ISD::FMAXIMUM:
5521       return getConstantFP(maximum(C1, C2), DL, VT);
5522     default: break;
5523     }
5524   }
5525   if (N1CFP && Opcode == ISD::FP_ROUND) {
5526     APFloat C1 = N1CFP->getValueAPF();    // make copy
5527     bool Unused;
5528     // This can return overflow, underflow, or inexact; we don't care.
5529     // FIXME need to be more flexible about rounding mode.
5530     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5531                       &Unused);
5532     return getConstantFP(C1, DL, VT);
5533   }
5534 
5535   switch (Opcode) {
5536   case ISD::FSUB:
5537     // -0.0 - undef --> undef (consistent with "fneg undef")
5538     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5539       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5540         return getUNDEF(VT);
5541     LLVM_FALLTHROUGH;
5542 
5543   case ISD::FADD:
5544   case ISD::FMUL:
5545   case ISD::FDIV:
5546   case ISD::FREM:
5547     // If both operands are undef, the result is undef. If 1 operand is undef,
5548     // the result is NaN. This should match the behavior of the IR optimizer.
5549     if (N1.isUndef() && N2.isUndef())
5550       return getUNDEF(VT);
5551     if (N1.isUndef() || N2.isUndef())
5552       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5553   }
5554   return SDValue();
5555 }
5556 
5557 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5558   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5559 
5560   // There's no need to assert on a byte-aligned pointer. All pointers are at
5561   // least byte aligned.
5562   if (A == Align(1))
5563     return Val;
5564 
5565   FoldingSetNodeID ID;
5566   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5567   ID.AddInteger(A.value());
5568 
5569   void *IP = nullptr;
5570   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5571     return SDValue(E, 0);
5572 
5573   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5574                                          Val.getValueType(), A);
5575   createOperands(N, {Val});
5576 
5577   CSEMap.InsertNode(N, IP);
5578   InsertNode(N);
5579 
5580   SDValue V(N, 0);
5581   NewSDValueDbgMsg(V, "Creating new node: ", this);
5582   return V;
5583 }
5584 
5585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5586                               SDValue N1, SDValue N2) {
5587   SDNodeFlags Flags;
5588   if (Inserter)
5589     Flags = Inserter->getFlags();
5590   return getNode(Opcode, DL, VT, N1, N2, Flags);
5591 }
5592 
5593 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5594                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5595   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5596          N2.getOpcode() != ISD::DELETED_NODE &&
5597          "Operand is DELETED_NODE!");
5598   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5599   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5600   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5601   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5602 
5603   // Canonicalize constant to RHS if commutative.
5604   if (TLI->isCommutativeBinOp(Opcode)) {
5605     if (N1C && !N2C) {
5606       std::swap(N1C, N2C);
5607       std::swap(N1, N2);
5608     } else if (N1CFP && !N2CFP) {
5609       std::swap(N1CFP, N2CFP);
5610       std::swap(N1, N2);
5611     }
5612   }
5613 
5614   switch (Opcode) {
5615   default: break;
5616   case ISD::TokenFactor:
5617     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5618            N2.getValueType() == MVT::Other && "Invalid token factor!");
5619     // Fold trivial token factors.
5620     if (N1.getOpcode() == ISD::EntryToken) return N2;
5621     if (N2.getOpcode() == ISD::EntryToken) return N1;
5622     if (N1 == N2) return N1;
5623     break;
5624   case ISD::BUILD_VECTOR: {
5625     // Attempt to simplify BUILD_VECTOR.
5626     SDValue Ops[] = {N1, N2};
5627     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5628       return V;
5629     break;
5630   }
5631   case ISD::CONCAT_VECTORS: {
5632     SDValue Ops[] = {N1, N2};
5633     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5634       return V;
5635     break;
5636   }
5637   case ISD::AND:
5638     assert(VT.isInteger() && "This operator does not apply to FP types!");
5639     assert(N1.getValueType() == N2.getValueType() &&
5640            N1.getValueType() == VT && "Binary operator types must match!");
5641     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5642     // worth handling here.
5643     if (N2C && N2C->isZero())
5644       return N2;
5645     if (N2C && N2C->isAllOnes()) // X & -1 -> X
5646       return N1;
5647     break;
5648   case ISD::OR:
5649   case ISD::XOR:
5650   case ISD::ADD:
5651   case ISD::SUB:
5652     assert(VT.isInteger() && "This operator does not apply to FP types!");
5653     assert(N1.getValueType() == N2.getValueType() &&
5654            N1.getValueType() == VT && "Binary operator types must match!");
5655     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5656     // it's worth handling here.
5657     if (N2C && N2C->isZero())
5658       return N1;
5659     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5660         VT.getVectorElementType() == MVT::i1)
5661       return getNode(ISD::XOR, DL, VT, N1, N2);
5662     break;
5663   case ISD::MUL:
5664     assert(VT.isInteger() && "This operator does not apply to FP types!");
5665     assert(N1.getValueType() == N2.getValueType() &&
5666            N1.getValueType() == VT && "Binary operator types must match!");
5667     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5668       return getNode(ISD::AND, DL, VT, N1, N2);
5669     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5670       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5671       const APInt &N2CImm = N2C->getAPIntValue();
5672       return getVScale(DL, VT, MulImm * N2CImm);
5673     }
5674     break;
5675   case ISD::UDIV:
5676   case ISD::UREM:
5677   case ISD::MULHU:
5678   case ISD::MULHS:
5679   case ISD::SDIV:
5680   case ISD::SREM:
5681   case ISD::SADDSAT:
5682   case ISD::SSUBSAT:
5683   case ISD::UADDSAT:
5684   case ISD::USUBSAT:
5685     assert(VT.isInteger() && "This operator does not apply to FP types!");
5686     assert(N1.getValueType() == N2.getValueType() &&
5687            N1.getValueType() == VT && "Binary operator types must match!");
5688     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5689       // fold (add_sat x, y) -> (or x, y) for bool types.
5690       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5691         return getNode(ISD::OR, DL, VT, N1, N2);
5692       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5693       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5694         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5695     }
5696     break;
5697   case ISD::SMIN:
5698   case ISD::UMAX:
5699     assert(VT.isInteger() && "This operator does not apply to FP types!");
5700     assert(N1.getValueType() == N2.getValueType() &&
5701            N1.getValueType() == VT && "Binary operator types must match!");
5702     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5703       return getNode(ISD::OR, DL, VT, N1, N2);
5704     break;
5705   case ISD::SMAX:
5706   case ISD::UMIN:
5707     assert(VT.isInteger() && "This operator does not apply to FP types!");
5708     assert(N1.getValueType() == N2.getValueType() &&
5709            N1.getValueType() == VT && "Binary operator types must match!");
5710     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5711       return getNode(ISD::AND, DL, VT, N1, N2);
5712     break;
5713   case ISD::FADD:
5714   case ISD::FSUB:
5715   case ISD::FMUL:
5716   case ISD::FDIV:
5717   case ISD::FREM:
5718     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5719     assert(N1.getValueType() == N2.getValueType() &&
5720            N1.getValueType() == VT && "Binary operator types must match!");
5721     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5722       return V;
5723     break;
5724   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5725     assert(N1.getValueType() == VT &&
5726            N1.getValueType().isFloatingPoint() &&
5727            N2.getValueType().isFloatingPoint() &&
5728            "Invalid FCOPYSIGN!");
5729     break;
5730   case ISD::SHL:
5731     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5732       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5733       const APInt &ShiftImm = N2C->getAPIntValue();
5734       return getVScale(DL, VT, MulImm << ShiftImm);
5735     }
5736     LLVM_FALLTHROUGH;
5737   case ISD::SRA:
5738   case ISD::SRL:
5739     if (SDValue V = simplifyShift(N1, N2))
5740       return V;
5741     LLVM_FALLTHROUGH;
5742   case ISD::ROTL:
5743   case ISD::ROTR:
5744     assert(VT == N1.getValueType() &&
5745            "Shift operators return type must be the same as their first arg");
5746     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5747            "Shifts only work on integers");
5748     assert((!VT.isVector() || VT == N2.getValueType()) &&
5749            "Vector shift amounts must be in the same as their first arg");
5750     // Verify that the shift amount VT is big enough to hold valid shift
5751     // amounts.  This catches things like trying to shift an i1024 value by an
5752     // i8, which is easy to fall into in generic code that uses
5753     // TLI.getShiftAmount().
5754     assert(N2.getValueType().getScalarSizeInBits() >=
5755                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
5756            "Invalid use of small shift amount with oversized value!");
5757 
5758     // Always fold shifts of i1 values so the code generator doesn't need to
5759     // handle them.  Since we know the size of the shift has to be less than the
5760     // size of the value, the shift/rotate count is guaranteed to be zero.
5761     if (VT == MVT::i1)
5762       return N1;
5763     if (N2C && N2C->isZero())
5764       return N1;
5765     break;
5766   case ISD::FP_ROUND:
5767     assert(VT.isFloatingPoint() &&
5768            N1.getValueType().isFloatingPoint() &&
5769            VT.bitsLE(N1.getValueType()) &&
5770            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5771            "Invalid FP_ROUND!");
5772     if (N1.getValueType() == VT) return N1;  // noop conversion.
5773     break;
5774   case ISD::AssertSext:
5775   case ISD::AssertZext: {
5776     EVT EVT = cast<VTSDNode>(N2)->getVT();
5777     assert(VT == N1.getValueType() && "Not an inreg extend!");
5778     assert(VT.isInteger() && EVT.isInteger() &&
5779            "Cannot *_EXTEND_INREG FP types");
5780     assert(!EVT.isVector() &&
5781            "AssertSExt/AssertZExt type should be the vector element type "
5782            "rather than the vector type!");
5783     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5784     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5785     break;
5786   }
5787   case ISD::SIGN_EXTEND_INREG: {
5788     EVT EVT = cast<VTSDNode>(N2)->getVT();
5789     assert(VT == N1.getValueType() && "Not an inreg extend!");
5790     assert(VT.isInteger() && EVT.isInteger() &&
5791            "Cannot *_EXTEND_INREG FP types");
5792     assert(EVT.isVector() == VT.isVector() &&
5793            "SIGN_EXTEND_INREG type should be vector iff the operand "
5794            "type is vector!");
5795     assert((!EVT.isVector() ||
5796             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5797            "Vector element counts must match in SIGN_EXTEND_INREG");
5798     assert(EVT.bitsLE(VT) && "Not extending!");
5799     if (EVT == VT) return N1;  // Not actually extending
5800 
5801     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5802       unsigned FromBits = EVT.getScalarSizeInBits();
5803       Val <<= Val.getBitWidth() - FromBits;
5804       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5805       return getConstant(Val, DL, ConstantVT);
5806     };
5807 
5808     if (N1C) {
5809       const APInt &Val = N1C->getAPIntValue();
5810       return SignExtendInReg(Val, VT);
5811     }
5812 
5813     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5814       SmallVector<SDValue, 8> Ops;
5815       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5816       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5817         SDValue Op = N1.getOperand(i);
5818         if (Op.isUndef()) {
5819           Ops.push_back(getUNDEF(OpVT));
5820           continue;
5821         }
5822         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5823         APInt Val = C->getAPIntValue();
5824         Ops.push_back(SignExtendInReg(Val, OpVT));
5825       }
5826       return getBuildVector(VT, DL, Ops);
5827     }
5828     break;
5829   }
5830   case ISD::FP_TO_SINT_SAT:
5831   case ISD::FP_TO_UINT_SAT: {
5832     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
5833            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
5834     assert(N1.getValueType().isVector() == VT.isVector() &&
5835            "FP_TO_*INT_SAT type should be vector iff the operand type is "
5836            "vector!");
5837     assert((!VT.isVector() || VT.getVectorNumElements() ==
5838                                   N1.getValueType().getVectorNumElements()) &&
5839            "Vector element counts must match in FP_TO_*INT_SAT");
5840     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
5841            "Type to saturate to must be a scalar.");
5842     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
5843            "Not extending!");
5844     break;
5845   }
5846   case ISD::EXTRACT_VECTOR_ELT:
5847     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5848            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5849              element type of the vector.");
5850 
5851     // Extract from an undefined value or using an undefined index is undefined.
5852     if (N1.isUndef() || N2.isUndef())
5853       return getUNDEF(VT);
5854 
5855     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5856     // vectors. For scalable vectors we will provide appropriate support for
5857     // dealing with arbitrary indices.
5858     if (N2C && N1.getValueType().isFixedLengthVector() &&
5859         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5860       return getUNDEF(VT);
5861 
5862     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5863     // expanding copies of large vectors from registers. This only works for
5864     // fixed length vectors, since we need to know the exact number of
5865     // elements.
5866     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5867         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5868       unsigned Factor =
5869         N1.getOperand(0).getValueType().getVectorNumElements();
5870       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5871                      N1.getOperand(N2C->getZExtValue() / Factor),
5872                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5873     }
5874 
5875     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5876     // lowering is expanding large vector constants.
5877     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5878                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5879       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5880               N1.getValueType().isFixedLengthVector()) &&
5881              "BUILD_VECTOR used for scalable vectors");
5882       unsigned Index =
5883           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5884       SDValue Elt = N1.getOperand(Index);
5885 
5886       if (VT != Elt.getValueType())
5887         // If the vector element type is not legal, the BUILD_VECTOR operands
5888         // are promoted and implicitly truncated, and the result implicitly
5889         // extended. Make that explicit here.
5890         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5891 
5892       return Elt;
5893     }
5894 
5895     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5896     // operations are lowered to scalars.
5897     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5898       // If the indices are the same, return the inserted element else
5899       // if the indices are known different, extract the element from
5900       // the original vector.
5901       SDValue N1Op2 = N1.getOperand(2);
5902       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5903 
5904       if (N1Op2C && N2C) {
5905         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5906           if (VT == N1.getOperand(1).getValueType())
5907             return N1.getOperand(1);
5908           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5909         }
5910         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5911       }
5912     }
5913 
5914     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5915     // when vector types are scalarized and v1iX is legal.
5916     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5917     // Here we are completely ignoring the extract element index (N2),
5918     // which is fine for fixed width vectors, since any index other than 0
5919     // is undefined anyway. However, this cannot be ignored for scalable
5920     // vectors - in theory we could support this, but we don't want to do this
5921     // without a profitability check.
5922     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5923         N1.getValueType().isFixedLengthVector() &&
5924         N1.getValueType().getVectorNumElements() == 1) {
5925       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5926                      N1.getOperand(1));
5927     }
5928     break;
5929   case ISD::EXTRACT_ELEMENT:
5930     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5931     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5932            (N1.getValueType().isInteger() == VT.isInteger()) &&
5933            N1.getValueType() != VT &&
5934            "Wrong types for EXTRACT_ELEMENT!");
5935 
5936     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5937     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5938     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5939     if (N1.getOpcode() == ISD::BUILD_PAIR)
5940       return N1.getOperand(N2C->getZExtValue());
5941 
5942     // EXTRACT_ELEMENT of a constant int is also very common.
5943     if (N1C) {
5944       unsigned ElementSize = VT.getSizeInBits();
5945       unsigned Shift = ElementSize * N2C->getZExtValue();
5946       const APInt &Val = N1C->getAPIntValue();
5947       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
5948     }
5949     break;
5950   case ISD::EXTRACT_SUBVECTOR: {
5951     EVT N1VT = N1.getValueType();
5952     assert(VT.isVector() && N1VT.isVector() &&
5953            "Extract subvector VTs must be vectors!");
5954     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5955            "Extract subvector VTs must have the same element type!");
5956     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5957            "Cannot extract a scalable vector from a fixed length vector!");
5958     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5959             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5960            "Extract subvector must be from larger vector to smaller vector!");
5961     assert(N2C && "Extract subvector index must be a constant");
5962     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5963             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5964                 N1VT.getVectorMinNumElements()) &&
5965            "Extract subvector overflow!");
5966     assert(N2C->getAPIntValue().getBitWidth() ==
5967                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
5968            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
5969 
5970     // Trivial extraction.
5971     if (VT == N1VT)
5972       return N1;
5973 
5974     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5975     if (N1.isUndef())
5976       return getUNDEF(VT);
5977 
5978     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5979     // the concat have the same type as the extract.
5980     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
5981         VT == N1.getOperand(0).getValueType()) {
5982       unsigned Factor = VT.getVectorMinNumElements();
5983       return N1.getOperand(N2C->getZExtValue() / Factor);
5984     }
5985 
5986     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5987     // during shuffle legalization.
5988     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5989         VT == N1.getOperand(1).getValueType())
5990       return N1.getOperand(1);
5991     break;
5992   }
5993   }
5994 
5995   // Perform trivial constant folding.
5996   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5997     return SV;
5998 
5999   // Canonicalize an UNDEF to the RHS, even over a constant.
6000   if (N1.isUndef()) {
6001     if (TLI->isCommutativeBinOp(Opcode)) {
6002       std::swap(N1, N2);
6003     } else {
6004       switch (Opcode) {
6005       case ISD::SIGN_EXTEND_INREG:
6006       case ISD::SUB:
6007         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6008       case ISD::UDIV:
6009       case ISD::SDIV:
6010       case ISD::UREM:
6011       case ISD::SREM:
6012       case ISD::SSUBSAT:
6013       case ISD::USUBSAT:
6014         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6015       }
6016     }
6017   }
6018 
6019   // Fold a bunch of operators when the RHS is undef.
6020   if (N2.isUndef()) {
6021     switch (Opcode) {
6022     case ISD::XOR:
6023       if (N1.isUndef())
6024         // Handle undef ^ undef -> 0 special case. This is a common
6025         // idiom (misuse).
6026         return getConstant(0, DL, VT);
6027       LLVM_FALLTHROUGH;
6028     case ISD::ADD:
6029     case ISD::SUB:
6030     case ISD::UDIV:
6031     case ISD::SDIV:
6032     case ISD::UREM:
6033     case ISD::SREM:
6034       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6035     case ISD::MUL:
6036     case ISD::AND:
6037     case ISD::SSUBSAT:
6038     case ISD::USUBSAT:
6039       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6040     case ISD::OR:
6041     case ISD::SADDSAT:
6042     case ISD::UADDSAT:
6043       return getAllOnesConstant(DL, VT);
6044     }
6045   }
6046 
6047   // Memoize this node if possible.
6048   SDNode *N;
6049   SDVTList VTs = getVTList(VT);
6050   SDValue Ops[] = {N1, N2};
6051   if (VT != MVT::Glue) {
6052     FoldingSetNodeID ID;
6053     AddNodeIDNode(ID, Opcode, VTs, Ops);
6054     void *IP = nullptr;
6055     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6056       E->intersectFlagsWith(Flags);
6057       return SDValue(E, 0);
6058     }
6059 
6060     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6061     N->setFlags(Flags);
6062     createOperands(N, Ops);
6063     CSEMap.InsertNode(N, IP);
6064   } else {
6065     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6066     createOperands(N, Ops);
6067   }
6068 
6069   InsertNode(N);
6070   SDValue V = SDValue(N, 0);
6071   NewSDValueDbgMsg(V, "Creating new node: ", this);
6072   return V;
6073 }
6074 
6075 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6076                               SDValue N1, SDValue N2, SDValue N3) {
6077   SDNodeFlags Flags;
6078   if (Inserter)
6079     Flags = Inserter->getFlags();
6080   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6081 }
6082 
6083 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6084                               SDValue N1, SDValue N2, SDValue N3,
6085                               const SDNodeFlags Flags) {
6086   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6087          N2.getOpcode() != ISD::DELETED_NODE &&
6088          N3.getOpcode() != ISD::DELETED_NODE &&
6089          "Operand is DELETED_NODE!");
6090   // Perform various simplifications.
6091   switch (Opcode) {
6092   case ISD::FMA: {
6093     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6094     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6095            N3.getValueType() == VT && "FMA types must match!");
6096     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6097     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6098     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6099     if (N1CFP && N2CFP && N3CFP) {
6100       APFloat  V1 = N1CFP->getValueAPF();
6101       const APFloat &V2 = N2CFP->getValueAPF();
6102       const APFloat &V3 = N3CFP->getValueAPF();
6103       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6104       return getConstantFP(V1, DL, VT);
6105     }
6106     break;
6107   }
6108   case ISD::BUILD_VECTOR: {
6109     // Attempt to simplify BUILD_VECTOR.
6110     SDValue Ops[] = {N1, N2, N3};
6111     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6112       return V;
6113     break;
6114   }
6115   case ISD::CONCAT_VECTORS: {
6116     SDValue Ops[] = {N1, N2, N3};
6117     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6118       return V;
6119     break;
6120   }
6121   case ISD::SETCC: {
6122     assert(VT.isInteger() && "SETCC result type must be an integer!");
6123     assert(N1.getValueType() == N2.getValueType() &&
6124            "SETCC operands must have the same type!");
6125     assert(VT.isVector() == N1.getValueType().isVector() &&
6126            "SETCC type should be vector iff the operand type is vector!");
6127     assert((!VT.isVector() || VT.getVectorElementCount() ==
6128                                   N1.getValueType().getVectorElementCount()) &&
6129            "SETCC vector element counts must match!");
6130     // Use FoldSetCC to simplify SETCC's.
6131     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6132       return V;
6133     // Vector constant folding.
6134     SDValue Ops[] = {N1, N2, N3};
6135     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6136       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6137       return V;
6138     }
6139     break;
6140   }
6141   case ISD::SELECT:
6142   case ISD::VSELECT:
6143     if (SDValue V = simplifySelect(N1, N2, N3))
6144       return V;
6145     break;
6146   case ISD::VECTOR_SHUFFLE:
6147     llvm_unreachable("should use getVectorShuffle constructor!");
6148   case ISD::VECTOR_SPLICE: {
6149     if (cast<ConstantSDNode>(N3)->isNullValue())
6150       return N1;
6151     break;
6152   }
6153   case ISD::INSERT_VECTOR_ELT: {
6154     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6155     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6156     // for scalable vectors where we will generate appropriate code to
6157     // deal with out-of-bounds cases correctly.
6158     if (N3C && N1.getValueType().isFixedLengthVector() &&
6159         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6160       return getUNDEF(VT);
6161 
6162     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6163     if (N3.isUndef())
6164       return getUNDEF(VT);
6165 
6166     // If the inserted element is an UNDEF, just use the input vector.
6167     if (N2.isUndef())
6168       return N1;
6169 
6170     break;
6171   }
6172   case ISD::INSERT_SUBVECTOR: {
6173     // Inserting undef into undef is still undef.
6174     if (N1.isUndef() && N2.isUndef())
6175       return getUNDEF(VT);
6176 
6177     EVT N2VT = N2.getValueType();
6178     assert(VT == N1.getValueType() &&
6179            "Dest and insert subvector source types must match!");
6180     assert(VT.isVector() && N2VT.isVector() &&
6181            "Insert subvector VTs must be vectors!");
6182     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6183            "Cannot insert a scalable vector into a fixed length vector!");
6184     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6185             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6186            "Insert subvector must be from smaller vector to larger vector!");
6187     assert(isa<ConstantSDNode>(N3) &&
6188            "Insert subvector index must be constant");
6189     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6190             (N2VT.getVectorMinNumElements() +
6191              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6192                 VT.getVectorMinNumElements()) &&
6193            "Insert subvector overflow!");
6194     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6195                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6196            "Constant index for INSERT_SUBVECTOR has an invalid size");
6197 
6198     // Trivial insertion.
6199     if (VT == N2VT)
6200       return N2;
6201 
6202     // If this is an insert of an extracted vector into an undef vector, we
6203     // can just use the input to the extract.
6204     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6205         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6206       return N2.getOperand(0);
6207     break;
6208   }
6209   case ISD::BITCAST:
6210     // Fold bit_convert nodes from a type to themselves.
6211     if (N1.getValueType() == VT)
6212       return N1;
6213     break;
6214   }
6215 
6216   // Memoize node if it doesn't produce a flag.
6217   SDNode *N;
6218   SDVTList VTs = getVTList(VT);
6219   SDValue Ops[] = {N1, N2, N3};
6220   if (VT != MVT::Glue) {
6221     FoldingSetNodeID ID;
6222     AddNodeIDNode(ID, Opcode, VTs, Ops);
6223     void *IP = nullptr;
6224     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6225       E->intersectFlagsWith(Flags);
6226       return SDValue(E, 0);
6227     }
6228 
6229     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6230     N->setFlags(Flags);
6231     createOperands(N, Ops);
6232     CSEMap.InsertNode(N, IP);
6233   } else {
6234     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6235     createOperands(N, Ops);
6236   }
6237 
6238   InsertNode(N);
6239   SDValue V = SDValue(N, 0);
6240   NewSDValueDbgMsg(V, "Creating new node: ", this);
6241   return V;
6242 }
6243 
6244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6245                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6246   SDValue Ops[] = { N1, N2, N3, N4 };
6247   return getNode(Opcode, DL, VT, Ops);
6248 }
6249 
6250 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6251                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6252                               SDValue N5) {
6253   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6254   return getNode(Opcode, DL, VT, Ops);
6255 }
6256 
6257 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6258 /// the incoming stack arguments to be loaded from the stack.
6259 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6260   SmallVector<SDValue, 8> ArgChains;
6261 
6262   // Include the original chain at the beginning of the list. When this is
6263   // used by target LowerCall hooks, this helps legalize find the
6264   // CALLSEQ_BEGIN node.
6265   ArgChains.push_back(Chain);
6266 
6267   // Add a chain value for each stack argument.
6268   for (SDNode *U : getEntryNode().getNode()->uses())
6269     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6270       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6271         if (FI->getIndex() < 0)
6272           ArgChains.push_back(SDValue(L, 1));
6273 
6274   // Build a tokenfactor for all the chains.
6275   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6276 }
6277 
6278 /// getMemsetValue - Vectorized representation of the memset value
6279 /// operand.
6280 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6281                               const SDLoc &dl) {
6282   assert(!Value.isUndef());
6283 
6284   unsigned NumBits = VT.getScalarSizeInBits();
6285   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6286     assert(C->getAPIntValue().getBitWidth() == 8);
6287     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6288     if (VT.isInteger()) {
6289       bool IsOpaque = VT.getSizeInBits() > 64 ||
6290           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6291       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6292     }
6293     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6294                              VT);
6295   }
6296 
6297   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6298   EVT IntVT = VT.getScalarType();
6299   if (!IntVT.isInteger())
6300     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6301 
6302   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6303   if (NumBits > 8) {
6304     // Use a multiplication with 0x010101... to extend the input to the
6305     // required length.
6306     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6307     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6308                         DAG.getConstant(Magic, dl, IntVT));
6309   }
6310 
6311   if (VT != Value.getValueType() && !VT.isInteger())
6312     Value = DAG.getBitcast(VT.getScalarType(), Value);
6313   if (VT != Value.getValueType())
6314     Value = DAG.getSplatBuildVector(VT, dl, Value);
6315 
6316   return Value;
6317 }
6318 
6319 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6320 /// used when a memcpy is turned into a memset when the source is a constant
6321 /// string ptr.
6322 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6323                                   const TargetLowering &TLI,
6324                                   const ConstantDataArraySlice &Slice) {
6325   // Handle vector with all elements zero.
6326   if (Slice.Array == nullptr) {
6327     if (VT.isInteger())
6328       return DAG.getConstant(0, dl, VT);
6329     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6330       return DAG.getConstantFP(0.0, dl, VT);
6331     if (VT.isVector()) {
6332       unsigned NumElts = VT.getVectorNumElements();
6333       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6334       return DAG.getNode(ISD::BITCAST, dl, VT,
6335                          DAG.getConstant(0, dl,
6336                                          EVT::getVectorVT(*DAG.getContext(),
6337                                                           EltVT, NumElts)));
6338     }
6339     llvm_unreachable("Expected type!");
6340   }
6341 
6342   assert(!VT.isVector() && "Can't handle vector type here!");
6343   unsigned NumVTBits = VT.getSizeInBits();
6344   unsigned NumVTBytes = NumVTBits / 8;
6345   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6346 
6347   APInt Val(NumVTBits, 0);
6348   if (DAG.getDataLayout().isLittleEndian()) {
6349     for (unsigned i = 0; i != NumBytes; ++i)
6350       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6351   } else {
6352     for (unsigned i = 0; i != NumBytes; ++i)
6353       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6354   }
6355 
6356   // If the "cost" of materializing the integer immediate is less than the cost
6357   // of a load, then it is cost effective to turn the load into the immediate.
6358   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6359   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6360     return DAG.getConstant(Val, dl, VT);
6361   return SDValue(nullptr, 0);
6362 }
6363 
6364 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6365                                            const SDLoc &DL,
6366                                            const SDNodeFlags Flags) {
6367   EVT VT = Base.getValueType();
6368   SDValue Index;
6369 
6370   if (Offset.isScalable())
6371     Index = getVScale(DL, Base.getValueType(),
6372                       APInt(Base.getValueSizeInBits().getFixedSize(),
6373                             Offset.getKnownMinSize()));
6374   else
6375     Index = getConstant(Offset.getFixedSize(), DL, VT);
6376 
6377   return getMemBasePlusOffset(Base, Index, DL, Flags);
6378 }
6379 
6380 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6381                                            const SDLoc &DL,
6382                                            const SDNodeFlags Flags) {
6383   assert(Offset.getValueType().isInteger());
6384   EVT BasePtrVT = Ptr.getValueType();
6385   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6386 }
6387 
6388 /// Returns true if memcpy source is constant data.
6389 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6390   uint64_t SrcDelta = 0;
6391   GlobalAddressSDNode *G = nullptr;
6392   if (Src.getOpcode() == ISD::GlobalAddress)
6393     G = cast<GlobalAddressSDNode>(Src);
6394   else if (Src.getOpcode() == ISD::ADD &&
6395            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6396            Src.getOperand(1).getOpcode() == ISD::Constant) {
6397     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6398     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6399   }
6400   if (!G)
6401     return false;
6402 
6403   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6404                                   SrcDelta + G->getOffset());
6405 }
6406 
6407 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6408                                       SelectionDAG &DAG) {
6409   // On Darwin, -Os means optimize for size without hurting performance, so
6410   // only really optimize for size when -Oz (MinSize) is used.
6411   if (MF.getTarget().getTargetTriple().isOSDarwin())
6412     return MF.getFunction().hasMinSize();
6413   return DAG.shouldOptForSize();
6414 }
6415 
6416 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6417                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6418                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6419                           SmallVector<SDValue, 16> &OutStoreChains) {
6420   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6421   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6422   SmallVector<SDValue, 16> GluedLoadChains;
6423   for (unsigned i = From; i < To; ++i) {
6424     OutChains.push_back(OutLoadChains[i]);
6425     GluedLoadChains.push_back(OutLoadChains[i]);
6426   }
6427 
6428   // Chain for all loads.
6429   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6430                                   GluedLoadChains);
6431 
6432   for (unsigned i = From; i < To; ++i) {
6433     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6434     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6435                                   ST->getBasePtr(), ST->getMemoryVT(),
6436                                   ST->getMemOperand());
6437     OutChains.push_back(NewStore);
6438   }
6439 }
6440 
6441 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6442                                        SDValue Chain, SDValue Dst, SDValue Src,
6443                                        uint64_t Size, Align Alignment,
6444                                        bool isVol, bool AlwaysInline,
6445                                        MachinePointerInfo DstPtrInfo,
6446                                        MachinePointerInfo SrcPtrInfo,
6447                                        const AAMDNodes &AAInfo) {
6448   // Turn a memcpy of undef to nop.
6449   // FIXME: We need to honor volatile even is Src is undef.
6450   if (Src.isUndef())
6451     return Chain;
6452 
6453   // Expand memcpy to a series of load and store ops if the size operand falls
6454   // below a certain threshold.
6455   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6456   // rather than maybe a humongous number of loads and stores.
6457   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6458   const DataLayout &DL = DAG.getDataLayout();
6459   LLVMContext &C = *DAG.getContext();
6460   std::vector<EVT> MemOps;
6461   bool DstAlignCanChange = false;
6462   MachineFunction &MF = DAG.getMachineFunction();
6463   MachineFrameInfo &MFI = MF.getFrameInfo();
6464   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6465   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6466   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6467     DstAlignCanChange = true;
6468   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6469   if (!SrcAlign || Alignment > *SrcAlign)
6470     SrcAlign = Alignment;
6471   assert(SrcAlign && "SrcAlign must be set");
6472   ConstantDataArraySlice Slice;
6473   // If marked as volatile, perform a copy even when marked as constant.
6474   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6475   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6476   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6477   const MemOp Op = isZeroConstant
6478                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6479                                     /*IsZeroMemset*/ true, isVol)
6480                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6481                                      *SrcAlign, isVol, CopyFromConstant);
6482   if (!TLI.findOptimalMemOpLowering(
6483           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6484           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6485     return SDValue();
6486 
6487   if (DstAlignCanChange) {
6488     Type *Ty = MemOps[0].getTypeForEVT(C);
6489     Align NewAlign = DL.getABITypeAlign(Ty);
6490 
6491     // Don't promote to an alignment that would require dynamic stack
6492     // realignment.
6493     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6494     if (!TRI->hasStackRealignment(MF))
6495       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6496         NewAlign = NewAlign / 2;
6497 
6498     if (NewAlign > Alignment) {
6499       // Give the stack frame object a larger alignment if needed.
6500       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6501         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6502       Alignment = NewAlign;
6503     }
6504   }
6505 
6506   // Prepare AAInfo for loads/stores after lowering this memcpy.
6507   AAMDNodes NewAAInfo = AAInfo;
6508   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6509 
6510   MachineMemOperand::Flags MMOFlags =
6511       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6512   SmallVector<SDValue, 16> OutLoadChains;
6513   SmallVector<SDValue, 16> OutStoreChains;
6514   SmallVector<SDValue, 32> OutChains;
6515   unsigned NumMemOps = MemOps.size();
6516   uint64_t SrcOff = 0, DstOff = 0;
6517   for (unsigned i = 0; i != NumMemOps; ++i) {
6518     EVT VT = MemOps[i];
6519     unsigned VTSize = VT.getSizeInBits() / 8;
6520     SDValue Value, Store;
6521 
6522     if (VTSize > Size) {
6523       // Issuing an unaligned load / store pair  that overlaps with the previous
6524       // pair. Adjust the offset accordingly.
6525       assert(i == NumMemOps-1 && i != 0);
6526       SrcOff -= VTSize - Size;
6527       DstOff -= VTSize - Size;
6528     }
6529 
6530     if (CopyFromConstant &&
6531         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6532       // It's unlikely a store of a vector immediate can be done in a single
6533       // instruction. It would require a load from a constantpool first.
6534       // We only handle zero vectors here.
6535       // FIXME: Handle other cases where store of vector immediate is done in
6536       // a single instruction.
6537       ConstantDataArraySlice SubSlice;
6538       if (SrcOff < Slice.Length) {
6539         SubSlice = Slice;
6540         SubSlice.move(SrcOff);
6541       } else {
6542         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6543         SubSlice.Array = nullptr;
6544         SubSlice.Offset = 0;
6545         SubSlice.Length = VTSize;
6546       }
6547       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6548       if (Value.getNode()) {
6549         Store = DAG.getStore(
6550             Chain, dl, Value,
6551             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6552             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6553         OutChains.push_back(Store);
6554       }
6555     }
6556 
6557     if (!Store.getNode()) {
6558       // The type might not be legal for the target.  This should only happen
6559       // if the type is smaller than a legal type, as on PPC, so the right
6560       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6561       // to Load/Store if NVT==VT.
6562       // FIXME does the case above also need this?
6563       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6564       assert(NVT.bitsGE(VT));
6565 
6566       bool isDereferenceable =
6567         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6568       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6569       if (isDereferenceable)
6570         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6571 
6572       Value = DAG.getExtLoad(
6573           ISD::EXTLOAD, dl, NVT, Chain,
6574           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6575           SrcPtrInfo.getWithOffset(SrcOff), VT,
6576           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6577       OutLoadChains.push_back(Value.getValue(1));
6578 
6579       Store = DAG.getTruncStore(
6580           Chain, dl, Value,
6581           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6582           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6583       OutStoreChains.push_back(Store);
6584     }
6585     SrcOff += VTSize;
6586     DstOff += VTSize;
6587     Size -= VTSize;
6588   }
6589 
6590   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6591                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6592   unsigned NumLdStInMemcpy = OutStoreChains.size();
6593 
6594   if (NumLdStInMemcpy) {
6595     // It may be that memcpy might be converted to memset if it's memcpy
6596     // of constants. In such a case, we won't have loads and stores, but
6597     // just stores. In the absence of loads, there is nothing to gang up.
6598     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6599       // If target does not care, just leave as it.
6600       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6601         OutChains.push_back(OutLoadChains[i]);
6602         OutChains.push_back(OutStoreChains[i]);
6603       }
6604     } else {
6605       // Ld/St less than/equal limit set by target.
6606       if (NumLdStInMemcpy <= GluedLdStLimit) {
6607           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6608                                         NumLdStInMemcpy, OutLoadChains,
6609                                         OutStoreChains);
6610       } else {
6611         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6612         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6613         unsigned GlueIter = 0;
6614 
6615         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6616           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6617           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6618 
6619           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6620                                        OutLoadChains, OutStoreChains);
6621           GlueIter += GluedLdStLimit;
6622         }
6623 
6624         // Residual ld/st.
6625         if (RemainingLdStInMemcpy) {
6626           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6627                                         RemainingLdStInMemcpy, OutLoadChains,
6628                                         OutStoreChains);
6629         }
6630       }
6631     }
6632   }
6633   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6634 }
6635 
6636 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6637                                         SDValue Chain, SDValue Dst, SDValue Src,
6638                                         uint64_t Size, Align Alignment,
6639                                         bool isVol, bool AlwaysInline,
6640                                         MachinePointerInfo DstPtrInfo,
6641                                         MachinePointerInfo SrcPtrInfo,
6642                                         const AAMDNodes &AAInfo) {
6643   // Turn a memmove of undef to nop.
6644   // FIXME: We need to honor volatile even is Src is undef.
6645   if (Src.isUndef())
6646     return Chain;
6647 
6648   // Expand memmove to a series of load and store ops if the size operand falls
6649   // below a certain threshold.
6650   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6651   const DataLayout &DL = DAG.getDataLayout();
6652   LLVMContext &C = *DAG.getContext();
6653   std::vector<EVT> MemOps;
6654   bool DstAlignCanChange = false;
6655   MachineFunction &MF = DAG.getMachineFunction();
6656   MachineFrameInfo &MFI = MF.getFrameInfo();
6657   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6658   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6659   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6660     DstAlignCanChange = true;
6661   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6662   if (!SrcAlign || Alignment > *SrcAlign)
6663     SrcAlign = Alignment;
6664   assert(SrcAlign && "SrcAlign must be set");
6665   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6666   if (!TLI.findOptimalMemOpLowering(
6667           MemOps, Limit,
6668           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6669                       /*IsVolatile*/ true),
6670           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6671           MF.getFunction().getAttributes()))
6672     return SDValue();
6673 
6674   if (DstAlignCanChange) {
6675     Type *Ty = MemOps[0].getTypeForEVT(C);
6676     Align NewAlign = DL.getABITypeAlign(Ty);
6677     if (NewAlign > Alignment) {
6678       // Give the stack frame object a larger alignment if needed.
6679       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6680         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6681       Alignment = NewAlign;
6682     }
6683   }
6684 
6685   // Prepare AAInfo for loads/stores after lowering this memmove.
6686   AAMDNodes NewAAInfo = AAInfo;
6687   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6688 
6689   MachineMemOperand::Flags MMOFlags =
6690       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6691   uint64_t SrcOff = 0, DstOff = 0;
6692   SmallVector<SDValue, 8> LoadValues;
6693   SmallVector<SDValue, 8> LoadChains;
6694   SmallVector<SDValue, 8> OutChains;
6695   unsigned NumMemOps = MemOps.size();
6696   for (unsigned i = 0; i < NumMemOps; i++) {
6697     EVT VT = MemOps[i];
6698     unsigned VTSize = VT.getSizeInBits() / 8;
6699     SDValue Value;
6700 
6701     bool isDereferenceable =
6702       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6703     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6704     if (isDereferenceable)
6705       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6706 
6707     Value = DAG.getLoad(
6708         VT, dl, Chain,
6709         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6710         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
6711     LoadValues.push_back(Value);
6712     LoadChains.push_back(Value.getValue(1));
6713     SrcOff += VTSize;
6714   }
6715   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6716   OutChains.clear();
6717   for (unsigned i = 0; i < NumMemOps; i++) {
6718     EVT VT = MemOps[i];
6719     unsigned VTSize = VT.getSizeInBits() / 8;
6720     SDValue Store;
6721 
6722     Store = DAG.getStore(
6723         Chain, dl, LoadValues[i],
6724         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6725         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6726     OutChains.push_back(Store);
6727     DstOff += VTSize;
6728   }
6729 
6730   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6731 }
6732 
6733 /// Lower the call to 'memset' intrinsic function into a series of store
6734 /// operations.
6735 ///
6736 /// \param DAG Selection DAG where lowered code is placed.
6737 /// \param dl Link to corresponding IR location.
6738 /// \param Chain Control flow dependency.
6739 /// \param Dst Pointer to destination memory location.
6740 /// \param Src Value of byte to write into the memory.
6741 /// \param Size Number of bytes to write.
6742 /// \param Alignment Alignment of the destination in bytes.
6743 /// \param isVol True if destination is volatile.
6744 /// \param DstPtrInfo IR information on the memory pointer.
6745 /// \returns New head in the control flow, if lowering was successful, empty
6746 /// SDValue otherwise.
6747 ///
6748 /// The function tries to replace 'llvm.memset' intrinsic with several store
6749 /// operations and value calculation code. This is usually profitable for small
6750 /// memory size.
6751 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6752                                SDValue Chain, SDValue Dst, SDValue Src,
6753                                uint64_t Size, Align Alignment, bool isVol,
6754                                MachinePointerInfo DstPtrInfo,
6755                                const AAMDNodes &AAInfo) {
6756   // Turn a memset of undef to nop.
6757   // FIXME: We need to honor volatile even is Src is undef.
6758   if (Src.isUndef())
6759     return Chain;
6760 
6761   // Expand memset to a series of load/store ops if the size operand
6762   // falls below a certain threshold.
6763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6764   std::vector<EVT> MemOps;
6765   bool DstAlignCanChange = false;
6766   MachineFunction &MF = DAG.getMachineFunction();
6767   MachineFrameInfo &MFI = MF.getFrameInfo();
6768   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6769   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6770   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6771     DstAlignCanChange = true;
6772   bool IsZeroVal =
6773       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
6774   if (!TLI.findOptimalMemOpLowering(
6775           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6776           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6777           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6778     return SDValue();
6779 
6780   if (DstAlignCanChange) {
6781     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6782     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6783     if (NewAlign > Alignment) {
6784       // Give the stack frame object a larger alignment if needed.
6785       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6786         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6787       Alignment = NewAlign;
6788     }
6789   }
6790 
6791   SmallVector<SDValue, 8> OutChains;
6792   uint64_t DstOff = 0;
6793   unsigned NumMemOps = MemOps.size();
6794 
6795   // Find the largest store and generate the bit pattern for it.
6796   EVT LargestVT = MemOps[0];
6797   for (unsigned i = 1; i < NumMemOps; i++)
6798     if (MemOps[i].bitsGT(LargestVT))
6799       LargestVT = MemOps[i];
6800   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6801 
6802   // Prepare AAInfo for loads/stores after lowering this memset.
6803   AAMDNodes NewAAInfo = AAInfo;
6804   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6805 
6806   for (unsigned i = 0; i < NumMemOps; i++) {
6807     EVT VT = MemOps[i];
6808     unsigned VTSize = VT.getSizeInBits() / 8;
6809     if (VTSize > Size) {
6810       // Issuing an unaligned load / store pair  that overlaps with the previous
6811       // pair. Adjust the offset accordingly.
6812       assert(i == NumMemOps-1 && i != 0);
6813       DstOff -= VTSize - Size;
6814     }
6815 
6816     // If this store is smaller than the largest store see whether we can get
6817     // the smaller value for free with a truncate.
6818     SDValue Value = MemSetValue;
6819     if (VT.bitsLT(LargestVT)) {
6820       if (!LargestVT.isVector() && !VT.isVector() &&
6821           TLI.isTruncateFree(LargestVT, VT))
6822         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6823       else
6824         Value = getMemsetValue(Src, VT, DAG, dl);
6825     }
6826     assert(Value.getValueType() == VT && "Value with wrong type.");
6827     SDValue Store = DAG.getStore(
6828         Chain, dl, Value,
6829         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6830         DstPtrInfo.getWithOffset(DstOff), Alignment,
6831         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
6832         NewAAInfo);
6833     OutChains.push_back(Store);
6834     DstOff += VT.getSizeInBits() / 8;
6835     Size -= VTSize;
6836   }
6837 
6838   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6839 }
6840 
6841 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6842                                             unsigned AS) {
6843   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6844   // pointer operands can be losslessly bitcasted to pointers of address space 0
6845   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
6846     report_fatal_error("cannot lower memory intrinsic in address space " +
6847                        Twine(AS));
6848   }
6849 }
6850 
6851 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6852                                 SDValue Src, SDValue Size, Align Alignment,
6853                                 bool isVol, bool AlwaysInline, bool isTailCall,
6854                                 MachinePointerInfo DstPtrInfo,
6855                                 MachinePointerInfo SrcPtrInfo,
6856                                 const AAMDNodes &AAInfo) {
6857   // Check to see if we should lower the memcpy to loads and stores first.
6858   // For cases within the target-specified limits, this is the best choice.
6859   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6860   if (ConstantSize) {
6861     // Memcpy with size zero? Just return the original chain.
6862     if (ConstantSize->isZero())
6863       return Chain;
6864 
6865     SDValue Result = getMemcpyLoadsAndStores(
6866         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6867         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6868     if (Result.getNode())
6869       return Result;
6870   }
6871 
6872   // Then check to see if we should lower the memcpy with target-specific
6873   // code. If the target chooses to do this, this is the next best.
6874   if (TSI) {
6875     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6876         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6877         DstPtrInfo, SrcPtrInfo);
6878     if (Result.getNode())
6879       return Result;
6880   }
6881 
6882   // If we really need inline code and the target declined to provide it,
6883   // use a (potentially long) sequence of loads and stores.
6884   if (AlwaysInline) {
6885     assert(ConstantSize && "AlwaysInline requires a constant size!");
6886     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6887                                    ConstantSize->getZExtValue(), Alignment,
6888                                    isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo);
6889   }
6890 
6891   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6892   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6893 
6894   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6895   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6896   // respect volatile, so they may do things like read or write memory
6897   // beyond the given memory regions. But fixing this isn't easy, and most
6898   // people don't care.
6899 
6900   // Emit a library call.
6901   TargetLowering::ArgListTy Args;
6902   TargetLowering::ArgListEntry Entry;
6903   Entry.Ty = Type::getInt8PtrTy(*getContext());
6904   Entry.Node = Dst; Args.push_back(Entry);
6905   Entry.Node = Src; Args.push_back(Entry);
6906 
6907   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6908   Entry.Node = Size; Args.push_back(Entry);
6909   // FIXME: pass in SDLoc
6910   TargetLowering::CallLoweringInfo CLI(*this);
6911   CLI.setDebugLoc(dl)
6912       .setChain(Chain)
6913       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6914                     Dst.getValueType().getTypeForEVT(*getContext()),
6915                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6916                                       TLI->getPointerTy(getDataLayout())),
6917                     std::move(Args))
6918       .setDiscardResult()
6919       .setTailCall(isTailCall);
6920 
6921   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6922   return CallResult.second;
6923 }
6924 
6925 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6926                                       SDValue Dst, unsigned DstAlign,
6927                                       SDValue Src, unsigned SrcAlign,
6928                                       SDValue Size, Type *SizeTy,
6929                                       unsigned ElemSz, bool isTailCall,
6930                                       MachinePointerInfo DstPtrInfo,
6931                                       MachinePointerInfo SrcPtrInfo) {
6932   // Emit a library call.
6933   TargetLowering::ArgListTy Args;
6934   TargetLowering::ArgListEntry Entry;
6935   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6936   Entry.Node = Dst;
6937   Args.push_back(Entry);
6938 
6939   Entry.Node = Src;
6940   Args.push_back(Entry);
6941 
6942   Entry.Ty = SizeTy;
6943   Entry.Node = Size;
6944   Args.push_back(Entry);
6945 
6946   RTLIB::Libcall LibraryCall =
6947       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6948   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6949     report_fatal_error("Unsupported element size");
6950 
6951   TargetLowering::CallLoweringInfo CLI(*this);
6952   CLI.setDebugLoc(dl)
6953       .setChain(Chain)
6954       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6955                     Type::getVoidTy(*getContext()),
6956                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6957                                       TLI->getPointerTy(getDataLayout())),
6958                     std::move(Args))
6959       .setDiscardResult()
6960       .setTailCall(isTailCall);
6961 
6962   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6963   return CallResult.second;
6964 }
6965 
6966 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6967                                  SDValue Src, SDValue Size, Align Alignment,
6968                                  bool isVol, bool isTailCall,
6969                                  MachinePointerInfo DstPtrInfo,
6970                                  MachinePointerInfo SrcPtrInfo,
6971                                  const AAMDNodes &AAInfo) {
6972   // Check to see if we should lower the memmove to loads and stores first.
6973   // For cases within the target-specified limits, this is the best choice.
6974   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6975   if (ConstantSize) {
6976     // Memmove with size zero? Just return the original chain.
6977     if (ConstantSize->isZero())
6978       return Chain;
6979 
6980     SDValue Result = getMemmoveLoadsAndStores(
6981         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6982         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
6983     if (Result.getNode())
6984       return Result;
6985   }
6986 
6987   // Then check to see if we should lower the memmove with target-specific
6988   // code. If the target chooses to do this, this is the next best.
6989   if (TSI) {
6990     SDValue Result =
6991         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6992                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6993     if (Result.getNode())
6994       return Result;
6995   }
6996 
6997   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6998   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6999 
7000   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7001   // not be safe.  See memcpy above for more details.
7002 
7003   // Emit a library call.
7004   TargetLowering::ArgListTy Args;
7005   TargetLowering::ArgListEntry Entry;
7006   Entry.Ty = Type::getInt8PtrTy(*getContext());
7007   Entry.Node = Dst; Args.push_back(Entry);
7008   Entry.Node = Src; Args.push_back(Entry);
7009 
7010   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7011   Entry.Node = Size; Args.push_back(Entry);
7012   // FIXME:  pass in SDLoc
7013   TargetLowering::CallLoweringInfo CLI(*this);
7014   CLI.setDebugLoc(dl)
7015       .setChain(Chain)
7016       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7017                     Dst.getValueType().getTypeForEVT(*getContext()),
7018                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7019                                       TLI->getPointerTy(getDataLayout())),
7020                     std::move(Args))
7021       .setDiscardResult()
7022       .setTailCall(isTailCall);
7023 
7024   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7025   return CallResult.second;
7026 }
7027 
7028 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7029                                        SDValue Dst, unsigned DstAlign,
7030                                        SDValue Src, unsigned SrcAlign,
7031                                        SDValue Size, Type *SizeTy,
7032                                        unsigned ElemSz, bool isTailCall,
7033                                        MachinePointerInfo DstPtrInfo,
7034                                        MachinePointerInfo SrcPtrInfo) {
7035   // Emit a library call.
7036   TargetLowering::ArgListTy Args;
7037   TargetLowering::ArgListEntry Entry;
7038   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7039   Entry.Node = Dst;
7040   Args.push_back(Entry);
7041 
7042   Entry.Node = Src;
7043   Args.push_back(Entry);
7044 
7045   Entry.Ty = SizeTy;
7046   Entry.Node = Size;
7047   Args.push_back(Entry);
7048 
7049   RTLIB::Libcall LibraryCall =
7050       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7051   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7052     report_fatal_error("Unsupported element size");
7053 
7054   TargetLowering::CallLoweringInfo CLI(*this);
7055   CLI.setDebugLoc(dl)
7056       .setChain(Chain)
7057       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7058                     Type::getVoidTy(*getContext()),
7059                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7060                                       TLI->getPointerTy(getDataLayout())),
7061                     std::move(Args))
7062       .setDiscardResult()
7063       .setTailCall(isTailCall);
7064 
7065   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7066   return CallResult.second;
7067 }
7068 
7069 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7070                                 SDValue Src, SDValue Size, Align Alignment,
7071                                 bool isVol, bool isTailCall,
7072                                 MachinePointerInfo DstPtrInfo,
7073                                 const AAMDNodes &AAInfo) {
7074   // Check to see if we should lower the memset to stores first.
7075   // For cases within the target-specified limits, this is the best choice.
7076   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7077   if (ConstantSize) {
7078     // Memset with size zero? Just return the original chain.
7079     if (ConstantSize->isZero())
7080       return Chain;
7081 
7082     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7083                                      ConstantSize->getZExtValue(), Alignment,
7084                                      isVol, DstPtrInfo, AAInfo);
7085 
7086     if (Result.getNode())
7087       return Result;
7088   }
7089 
7090   // Then check to see if we should lower the memset with target-specific
7091   // code. If the target chooses to do this, this is the next best.
7092   if (TSI) {
7093     SDValue Result = TSI->EmitTargetCodeForMemset(
7094         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
7095     if (Result.getNode())
7096       return Result;
7097   }
7098 
7099   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7100 
7101   // Emit a library call.
7102   TargetLowering::ArgListTy Args;
7103   TargetLowering::ArgListEntry Entry;
7104   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
7105   Args.push_back(Entry);
7106   Entry.Node = Src;
7107   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
7108   Args.push_back(Entry);
7109   Entry.Node = Size;
7110   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7111   Args.push_back(Entry);
7112 
7113   // FIXME: pass in SDLoc
7114   TargetLowering::CallLoweringInfo CLI(*this);
7115   CLI.setDebugLoc(dl)
7116       .setChain(Chain)
7117       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7118                     Dst.getValueType().getTypeForEVT(*getContext()),
7119                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7120                                       TLI->getPointerTy(getDataLayout())),
7121                     std::move(Args))
7122       .setDiscardResult()
7123       .setTailCall(isTailCall);
7124 
7125   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7126   return CallResult.second;
7127 }
7128 
7129 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7130                                       SDValue Dst, unsigned DstAlign,
7131                                       SDValue Value, SDValue Size, Type *SizeTy,
7132                                       unsigned ElemSz, bool isTailCall,
7133                                       MachinePointerInfo DstPtrInfo) {
7134   // Emit a library call.
7135   TargetLowering::ArgListTy Args;
7136   TargetLowering::ArgListEntry Entry;
7137   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7138   Entry.Node = Dst;
7139   Args.push_back(Entry);
7140 
7141   Entry.Ty = Type::getInt8Ty(*getContext());
7142   Entry.Node = Value;
7143   Args.push_back(Entry);
7144 
7145   Entry.Ty = SizeTy;
7146   Entry.Node = Size;
7147   Args.push_back(Entry);
7148 
7149   RTLIB::Libcall LibraryCall =
7150       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7151   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7152     report_fatal_error("Unsupported element size");
7153 
7154   TargetLowering::CallLoweringInfo CLI(*this);
7155   CLI.setDebugLoc(dl)
7156       .setChain(Chain)
7157       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7158                     Type::getVoidTy(*getContext()),
7159                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7160                                       TLI->getPointerTy(getDataLayout())),
7161                     std::move(Args))
7162       .setDiscardResult()
7163       .setTailCall(isTailCall);
7164 
7165   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7166   return CallResult.second;
7167 }
7168 
7169 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7170                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7171                                 MachineMemOperand *MMO) {
7172   FoldingSetNodeID ID;
7173   ID.AddInteger(MemVT.getRawBits());
7174   AddNodeIDNode(ID, Opcode, VTList, Ops);
7175   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7176   void* IP = nullptr;
7177   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7178     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7179     return SDValue(E, 0);
7180   }
7181 
7182   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7183                                     VTList, MemVT, MMO);
7184   createOperands(N, Ops);
7185 
7186   CSEMap.InsertNode(N, IP);
7187   InsertNode(N);
7188   return SDValue(N, 0);
7189 }
7190 
7191 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7192                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7193                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7194                                        MachineMemOperand *MMO) {
7195   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7196          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7197   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7198 
7199   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7200   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7201 }
7202 
7203 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7204                                 SDValue Chain, SDValue Ptr, SDValue Val,
7205                                 MachineMemOperand *MMO) {
7206   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7207           Opcode == ISD::ATOMIC_LOAD_SUB ||
7208           Opcode == ISD::ATOMIC_LOAD_AND ||
7209           Opcode == ISD::ATOMIC_LOAD_CLR ||
7210           Opcode == ISD::ATOMIC_LOAD_OR ||
7211           Opcode == ISD::ATOMIC_LOAD_XOR ||
7212           Opcode == ISD::ATOMIC_LOAD_NAND ||
7213           Opcode == ISD::ATOMIC_LOAD_MIN ||
7214           Opcode == ISD::ATOMIC_LOAD_MAX ||
7215           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7216           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7217           Opcode == ISD::ATOMIC_LOAD_FADD ||
7218           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7219           Opcode == ISD::ATOMIC_SWAP ||
7220           Opcode == ISD::ATOMIC_STORE) &&
7221          "Invalid Atomic Op");
7222 
7223   EVT VT = Val.getValueType();
7224 
7225   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7226                                                getVTList(VT, MVT::Other);
7227   SDValue Ops[] = {Chain, Ptr, Val};
7228   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7229 }
7230 
7231 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7232                                 EVT VT, SDValue Chain, SDValue Ptr,
7233                                 MachineMemOperand *MMO) {
7234   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7235 
7236   SDVTList VTs = getVTList(VT, MVT::Other);
7237   SDValue Ops[] = {Chain, Ptr};
7238   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7239 }
7240 
7241 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7242 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7243   if (Ops.size() == 1)
7244     return Ops[0];
7245 
7246   SmallVector<EVT, 4> VTs;
7247   VTs.reserve(Ops.size());
7248   for (const SDValue &Op : Ops)
7249     VTs.push_back(Op.getValueType());
7250   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7251 }
7252 
7253 SDValue SelectionDAG::getMemIntrinsicNode(
7254     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7255     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7256     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7257   if (!Size && MemVT.isScalableVector())
7258     Size = MemoryLocation::UnknownSize;
7259   else if (!Size)
7260     Size = MemVT.getStoreSize();
7261 
7262   MachineFunction &MF = getMachineFunction();
7263   MachineMemOperand *MMO =
7264       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7265 
7266   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7267 }
7268 
7269 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7270                                           SDVTList VTList,
7271                                           ArrayRef<SDValue> Ops, EVT MemVT,
7272                                           MachineMemOperand *MMO) {
7273   assert((Opcode == ISD::INTRINSIC_VOID ||
7274           Opcode == ISD::INTRINSIC_W_CHAIN ||
7275           Opcode == ISD::PREFETCH ||
7276           ((int)Opcode <= std::numeric_limits<int>::max() &&
7277            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7278          "Opcode is not a memory-accessing opcode!");
7279 
7280   // Memoize the node unless it returns a flag.
7281   MemIntrinsicSDNode *N;
7282   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7283     FoldingSetNodeID ID;
7284     AddNodeIDNode(ID, Opcode, VTList, Ops);
7285     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7286         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7287     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7288     void *IP = nullptr;
7289     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7290       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7291       return SDValue(E, 0);
7292     }
7293 
7294     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7295                                       VTList, MemVT, MMO);
7296     createOperands(N, Ops);
7297 
7298   CSEMap.InsertNode(N, IP);
7299   } else {
7300     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7301                                       VTList, MemVT, MMO);
7302     createOperands(N, Ops);
7303   }
7304   InsertNode(N);
7305   SDValue V(N, 0);
7306   NewSDValueDbgMsg(V, "Creating new node: ", this);
7307   return V;
7308 }
7309 
7310 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7311                                       SDValue Chain, int FrameIndex,
7312                                       int64_t Size, int64_t Offset) {
7313   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7314   const auto VTs = getVTList(MVT::Other);
7315   SDValue Ops[2] = {
7316       Chain,
7317       getFrameIndex(FrameIndex,
7318                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7319                     true)};
7320 
7321   FoldingSetNodeID ID;
7322   AddNodeIDNode(ID, Opcode, VTs, Ops);
7323   ID.AddInteger(FrameIndex);
7324   ID.AddInteger(Size);
7325   ID.AddInteger(Offset);
7326   void *IP = nullptr;
7327   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7328     return SDValue(E, 0);
7329 
7330   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7331       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7332   createOperands(N, Ops);
7333   CSEMap.InsertNode(N, IP);
7334   InsertNode(N);
7335   SDValue V(N, 0);
7336   NewSDValueDbgMsg(V, "Creating new node: ", this);
7337   return V;
7338 }
7339 
7340 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7341                                          uint64_t Guid, uint64_t Index,
7342                                          uint32_t Attr) {
7343   const unsigned Opcode = ISD::PSEUDO_PROBE;
7344   const auto VTs = getVTList(MVT::Other);
7345   SDValue Ops[] = {Chain};
7346   FoldingSetNodeID ID;
7347   AddNodeIDNode(ID, Opcode, VTs, Ops);
7348   ID.AddInteger(Guid);
7349   ID.AddInteger(Index);
7350   void *IP = nullptr;
7351   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7352     return SDValue(E, 0);
7353 
7354   auto *N = newSDNode<PseudoProbeSDNode>(
7355       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7356   createOperands(N, Ops);
7357   CSEMap.InsertNode(N, IP);
7358   InsertNode(N);
7359   SDValue V(N, 0);
7360   NewSDValueDbgMsg(V, "Creating new node: ", this);
7361   return V;
7362 }
7363 
7364 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7365 /// MachinePointerInfo record from it.  This is particularly useful because the
7366 /// code generator has many cases where it doesn't bother passing in a
7367 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7368 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7369                                            SelectionDAG &DAG, SDValue Ptr,
7370                                            int64_t Offset = 0) {
7371   // If this is FI+Offset, we can model it.
7372   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7373     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7374                                              FI->getIndex(), Offset);
7375 
7376   // If this is (FI+Offset1)+Offset2, we can model it.
7377   if (Ptr.getOpcode() != ISD::ADD ||
7378       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7379       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7380     return Info;
7381 
7382   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7383   return MachinePointerInfo::getFixedStack(
7384       DAG.getMachineFunction(), FI,
7385       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7386 }
7387 
7388 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7389 /// MachinePointerInfo record from it.  This is particularly useful because the
7390 /// code generator has many cases where it doesn't bother passing in a
7391 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7392 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7393                                            SelectionDAG &DAG, SDValue Ptr,
7394                                            SDValue OffsetOp) {
7395   // If the 'Offset' value isn't a constant, we can't handle this.
7396   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7397     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7398   if (OffsetOp.isUndef())
7399     return InferPointerInfo(Info, DAG, Ptr);
7400   return Info;
7401 }
7402 
7403 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7404                               EVT VT, const SDLoc &dl, SDValue Chain,
7405                               SDValue Ptr, SDValue Offset,
7406                               MachinePointerInfo PtrInfo, EVT MemVT,
7407                               Align Alignment,
7408                               MachineMemOperand::Flags MMOFlags,
7409                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7410   assert(Chain.getValueType() == MVT::Other &&
7411         "Invalid chain type");
7412 
7413   MMOFlags |= MachineMemOperand::MOLoad;
7414   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7415   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7416   // clients.
7417   if (PtrInfo.V.isNull())
7418     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7419 
7420   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7421   MachineFunction &MF = getMachineFunction();
7422   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7423                                                    Alignment, AAInfo, Ranges);
7424   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7425 }
7426 
7427 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7428                               EVT VT, const SDLoc &dl, SDValue Chain,
7429                               SDValue Ptr, SDValue Offset, EVT MemVT,
7430                               MachineMemOperand *MMO) {
7431   if (VT == MemVT) {
7432     ExtType = ISD::NON_EXTLOAD;
7433   } else if (ExtType == ISD::NON_EXTLOAD) {
7434     assert(VT == MemVT && "Non-extending load from different memory type!");
7435   } else {
7436     // Extending load.
7437     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7438            "Should only be an extending load, not truncating!");
7439     assert(VT.isInteger() == MemVT.isInteger() &&
7440            "Cannot convert from FP to Int or Int -> FP!");
7441     assert(VT.isVector() == MemVT.isVector() &&
7442            "Cannot use an ext load to convert to or from a vector!");
7443     assert((!VT.isVector() ||
7444             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7445            "Cannot use an ext load to change the number of vector elements!");
7446   }
7447 
7448   bool Indexed = AM != ISD::UNINDEXED;
7449   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7450 
7451   SDVTList VTs = Indexed ?
7452     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7453   SDValue Ops[] = { Chain, Ptr, Offset };
7454   FoldingSetNodeID ID;
7455   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7456   ID.AddInteger(MemVT.getRawBits());
7457   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7458       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7459   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7460   void *IP = nullptr;
7461   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7462     cast<LoadSDNode>(E)->refineAlignment(MMO);
7463     return SDValue(E, 0);
7464   }
7465   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7466                                   ExtType, MemVT, MMO);
7467   createOperands(N, Ops);
7468 
7469   CSEMap.InsertNode(N, IP);
7470   InsertNode(N);
7471   SDValue V(N, 0);
7472   NewSDValueDbgMsg(V, "Creating new node: ", this);
7473   return V;
7474 }
7475 
7476 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7477                               SDValue Ptr, MachinePointerInfo PtrInfo,
7478                               MaybeAlign Alignment,
7479                               MachineMemOperand::Flags MMOFlags,
7480                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7481   SDValue Undef = getUNDEF(Ptr.getValueType());
7482   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7483                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7484 }
7485 
7486 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7487                               SDValue Ptr, MachineMemOperand *MMO) {
7488   SDValue Undef = getUNDEF(Ptr.getValueType());
7489   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7490                  VT, MMO);
7491 }
7492 
7493 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7494                                  EVT VT, SDValue Chain, SDValue Ptr,
7495                                  MachinePointerInfo PtrInfo, EVT MemVT,
7496                                  MaybeAlign Alignment,
7497                                  MachineMemOperand::Flags MMOFlags,
7498                                  const AAMDNodes &AAInfo) {
7499   SDValue Undef = getUNDEF(Ptr.getValueType());
7500   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7501                  MemVT, Alignment, MMOFlags, AAInfo);
7502 }
7503 
7504 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7505                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7506                                  MachineMemOperand *MMO) {
7507   SDValue Undef = getUNDEF(Ptr.getValueType());
7508   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7509                  MemVT, MMO);
7510 }
7511 
7512 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7513                                      SDValue Base, SDValue Offset,
7514                                      ISD::MemIndexedMode AM) {
7515   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7516   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7517   // Don't propagate the invariant or dereferenceable flags.
7518   auto MMOFlags =
7519       LD->getMemOperand()->getFlags() &
7520       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7521   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7522                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7523                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7524 }
7525 
7526 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7527                                SDValue Ptr, MachinePointerInfo PtrInfo,
7528                                Align Alignment,
7529                                MachineMemOperand::Flags MMOFlags,
7530                                const AAMDNodes &AAInfo) {
7531   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7532 
7533   MMOFlags |= MachineMemOperand::MOStore;
7534   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7535 
7536   if (PtrInfo.V.isNull())
7537     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7538 
7539   MachineFunction &MF = getMachineFunction();
7540   uint64_t Size =
7541       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7542   MachineMemOperand *MMO =
7543       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7544   return getStore(Chain, dl, Val, Ptr, MMO);
7545 }
7546 
7547 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7548                                SDValue Ptr, MachineMemOperand *MMO) {
7549   assert(Chain.getValueType() == MVT::Other &&
7550         "Invalid chain type");
7551   EVT VT = Val.getValueType();
7552   SDVTList VTs = getVTList(MVT::Other);
7553   SDValue Undef = getUNDEF(Ptr.getValueType());
7554   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7555   FoldingSetNodeID ID;
7556   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7557   ID.AddInteger(VT.getRawBits());
7558   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7559       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7560   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7561   void *IP = nullptr;
7562   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7563     cast<StoreSDNode>(E)->refineAlignment(MMO);
7564     return SDValue(E, 0);
7565   }
7566   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7567                                    ISD::UNINDEXED, false, VT, MMO);
7568   createOperands(N, Ops);
7569 
7570   CSEMap.InsertNode(N, IP);
7571   InsertNode(N);
7572   SDValue V(N, 0);
7573   NewSDValueDbgMsg(V, "Creating new node: ", this);
7574   return V;
7575 }
7576 
7577 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7578                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7579                                     EVT SVT, Align Alignment,
7580                                     MachineMemOperand::Flags MMOFlags,
7581                                     const AAMDNodes &AAInfo) {
7582   assert(Chain.getValueType() == MVT::Other &&
7583         "Invalid chain type");
7584 
7585   MMOFlags |= MachineMemOperand::MOStore;
7586   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7587 
7588   if (PtrInfo.V.isNull())
7589     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7590 
7591   MachineFunction &MF = getMachineFunction();
7592   MachineMemOperand *MMO = MF.getMachineMemOperand(
7593       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7594       Alignment, AAInfo);
7595   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7596 }
7597 
7598 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7599                                     SDValue Ptr, EVT SVT,
7600                                     MachineMemOperand *MMO) {
7601   EVT VT = Val.getValueType();
7602 
7603   assert(Chain.getValueType() == MVT::Other &&
7604         "Invalid chain type");
7605   if (VT == SVT)
7606     return getStore(Chain, dl, Val, Ptr, MMO);
7607 
7608   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7609          "Should only be a truncating store, not extending!");
7610   assert(VT.isInteger() == SVT.isInteger() &&
7611          "Can't do FP-INT conversion!");
7612   assert(VT.isVector() == SVT.isVector() &&
7613          "Cannot use trunc store to convert to or from a vector!");
7614   assert((!VT.isVector() ||
7615           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7616          "Cannot use trunc store to change the number of vector elements!");
7617 
7618   SDVTList VTs = getVTList(MVT::Other);
7619   SDValue Undef = getUNDEF(Ptr.getValueType());
7620   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7621   FoldingSetNodeID ID;
7622   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7623   ID.AddInteger(SVT.getRawBits());
7624   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7625       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7626   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7627   void *IP = nullptr;
7628   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7629     cast<StoreSDNode>(E)->refineAlignment(MMO);
7630     return SDValue(E, 0);
7631   }
7632   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7633                                    ISD::UNINDEXED, true, SVT, MMO);
7634   createOperands(N, Ops);
7635 
7636   CSEMap.InsertNode(N, IP);
7637   InsertNode(N);
7638   SDValue V(N, 0);
7639   NewSDValueDbgMsg(V, "Creating new node: ", this);
7640   return V;
7641 }
7642 
7643 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7644                                       SDValue Base, SDValue Offset,
7645                                       ISD::MemIndexedMode AM) {
7646   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7647   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7648   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7649   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7650   FoldingSetNodeID ID;
7651   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7652   ID.AddInteger(ST->getMemoryVT().getRawBits());
7653   ID.AddInteger(ST->getRawSubclassData());
7654   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7655   void *IP = nullptr;
7656   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7657     return SDValue(E, 0);
7658 
7659   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7660                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7661                                    ST->getMemOperand());
7662   createOperands(N, Ops);
7663 
7664   CSEMap.InsertNode(N, IP);
7665   InsertNode(N);
7666   SDValue V(N, 0);
7667   NewSDValueDbgMsg(V, "Creating new node: ", this);
7668   return V;
7669 }
7670 
7671 SDValue SelectionDAG::getLoadVP(
7672     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
7673     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
7674     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
7675     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
7676     const MDNode *Ranges, bool IsExpanding) {
7677   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7678 
7679   MMOFlags |= MachineMemOperand::MOLoad;
7680   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7681   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7682   // clients.
7683   if (PtrInfo.V.isNull())
7684     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7685 
7686   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7687   MachineFunction &MF = getMachineFunction();
7688   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7689                                                    Alignment, AAInfo, Ranges);
7690   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
7691                    MMO, IsExpanding);
7692 }
7693 
7694 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
7695                                 ISD::LoadExtType ExtType, EVT VT,
7696                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
7697                                 SDValue Offset, SDValue Mask, SDValue EVL,
7698                                 EVT MemVT, MachineMemOperand *MMO,
7699                                 bool IsExpanding) {
7700   if (VT == MemVT) {
7701     ExtType = ISD::NON_EXTLOAD;
7702   } else if (ExtType == ISD::NON_EXTLOAD) {
7703     assert(VT == MemVT && "Non-extending load from different memory type!");
7704   } else {
7705     // Extending load.
7706     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7707            "Should only be an extending load, not truncating!");
7708     assert(VT.isInteger() == MemVT.isInteger() &&
7709            "Cannot convert from FP to Int or Int -> FP!");
7710     assert(VT.isVector() == MemVT.isVector() &&
7711            "Cannot use an ext load to convert to or from a vector!");
7712     assert((!VT.isVector() ||
7713             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7714            "Cannot use an ext load to change the number of vector elements!");
7715   }
7716 
7717   bool Indexed = AM != ISD::UNINDEXED;
7718   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7719 
7720   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
7721                          : getVTList(VT, MVT::Other);
7722   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
7723   FoldingSetNodeID ID;
7724   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
7725   ID.AddInteger(VT.getRawBits());
7726   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
7727       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
7728   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7729   void *IP = nullptr;
7730   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7731     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
7732     return SDValue(E, 0);
7733   }
7734   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7735                                     ExtType, IsExpanding, MemVT, MMO);
7736   createOperands(N, Ops);
7737 
7738   CSEMap.InsertNode(N, IP);
7739   InsertNode(N);
7740   SDValue V(N, 0);
7741   NewSDValueDbgMsg(V, "Creating new node: ", this);
7742   return V;
7743 }
7744 
7745 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7746                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7747                                 MachinePointerInfo PtrInfo,
7748                                 MaybeAlign Alignment,
7749                                 MachineMemOperand::Flags MMOFlags,
7750                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
7751                                 bool IsExpanding) {
7752   SDValue Undef = getUNDEF(Ptr.getValueType());
7753   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7754                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
7755                    IsExpanding);
7756 }
7757 
7758 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
7759                                 SDValue Ptr, SDValue Mask, SDValue EVL,
7760                                 MachineMemOperand *MMO, bool IsExpanding) {
7761   SDValue Undef = getUNDEF(Ptr.getValueType());
7762   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7763                    Mask, EVL, VT, MMO, IsExpanding);
7764 }
7765 
7766 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7767                                    EVT VT, SDValue Chain, SDValue Ptr,
7768                                    SDValue Mask, SDValue EVL,
7769                                    MachinePointerInfo PtrInfo, EVT MemVT,
7770                                    MaybeAlign Alignment,
7771                                    MachineMemOperand::Flags MMOFlags,
7772                                    const AAMDNodes &AAInfo, bool IsExpanding) {
7773   SDValue Undef = getUNDEF(Ptr.getValueType());
7774   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7775                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
7776                    IsExpanding);
7777 }
7778 
7779 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
7780                                    EVT VT, SDValue Chain, SDValue Ptr,
7781                                    SDValue Mask, SDValue EVL, EVT MemVT,
7782                                    MachineMemOperand *MMO, bool IsExpanding) {
7783   SDValue Undef = getUNDEF(Ptr.getValueType());
7784   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
7785                    EVL, MemVT, MMO, IsExpanding);
7786 }
7787 
7788 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
7789                                        SDValue Base, SDValue Offset,
7790                                        ISD::MemIndexedMode AM) {
7791   auto *LD = cast<VPLoadSDNode>(OrigLoad);
7792   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7793   // Don't propagate the invariant or dereferenceable flags.
7794   auto MMOFlags =
7795       LD->getMemOperand()->getFlags() &
7796       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7797   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7798                    LD->getChain(), Base, Offset, LD->getMask(),
7799                    LD->getVectorLength(), LD->getPointerInfo(),
7800                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
7801                    nullptr, LD->isExpandingLoad());
7802 }
7803 
7804 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7805                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7806                                  MachinePointerInfo PtrInfo, Align Alignment,
7807                                  MachineMemOperand::Flags MMOFlags,
7808                                  const AAMDNodes &AAInfo, bool IsCompressing) {
7809   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7810 
7811   MMOFlags |= MachineMemOperand::MOStore;
7812   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7813 
7814   if (PtrInfo.V.isNull())
7815     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7816 
7817   MachineFunction &MF = getMachineFunction();
7818   uint64_t Size =
7819       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7820   MachineMemOperand *MMO =
7821       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7822   return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7823 }
7824 
7825 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
7826                                  SDValue Ptr, SDValue Mask, SDValue EVL,
7827                                  MachineMemOperand *MMO, bool IsCompressing) {
7828   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7829   EVT VT = Val.getValueType();
7830   SDVTList VTs = getVTList(MVT::Other);
7831   SDValue Undef = getUNDEF(Ptr.getValueType());
7832   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7833   FoldingSetNodeID ID;
7834   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7835   ID.AddInteger(VT.getRawBits());
7836   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7837       dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO));
7838   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7839   void *IP = nullptr;
7840   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7841     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7842     return SDValue(E, 0);
7843   }
7844   auto *N =
7845       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7846                                ISD::UNINDEXED, false, IsCompressing, VT, MMO);
7847   createOperands(N, Ops);
7848 
7849   CSEMap.InsertNode(N, IP);
7850   InsertNode(N);
7851   SDValue V(N, 0);
7852   NewSDValueDbgMsg(V, "Creating new node: ", this);
7853   return V;
7854 }
7855 
7856 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7857                                       SDValue Val, SDValue Ptr, SDValue Mask,
7858                                       SDValue EVL, MachinePointerInfo PtrInfo,
7859                                       EVT SVT, Align Alignment,
7860                                       MachineMemOperand::Flags MMOFlags,
7861                                       const AAMDNodes &AAInfo,
7862                                       bool IsCompressing) {
7863   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7864 
7865   MMOFlags |= MachineMemOperand::MOStore;
7866   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7867 
7868   if (PtrInfo.V.isNull())
7869     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7870 
7871   MachineFunction &MF = getMachineFunction();
7872   MachineMemOperand *MMO = MF.getMachineMemOperand(
7873       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7874       Alignment, AAInfo);
7875   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
7876                          IsCompressing);
7877 }
7878 
7879 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
7880                                       SDValue Val, SDValue Ptr, SDValue Mask,
7881                                       SDValue EVL, EVT SVT,
7882                                       MachineMemOperand *MMO,
7883                                       bool IsCompressing) {
7884   EVT VT = Val.getValueType();
7885 
7886   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7887   if (VT == SVT)
7888     return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing);
7889 
7890   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7891          "Should only be a truncating store, not extending!");
7892   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
7893   assert(VT.isVector() == SVT.isVector() &&
7894          "Cannot use trunc store to convert to or from a vector!");
7895   assert((!VT.isVector() ||
7896           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7897          "Cannot use trunc store to change the number of vector elements!");
7898 
7899   SDVTList VTs = getVTList(MVT::Other);
7900   SDValue Undef = getUNDEF(Ptr.getValueType());
7901   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
7902   FoldingSetNodeID ID;
7903   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7904   ID.AddInteger(SVT.getRawBits());
7905   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
7906       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
7907   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7908   void *IP = nullptr;
7909   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7910     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
7911     return SDValue(E, 0);
7912   }
7913   auto *N =
7914       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7915                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
7916   createOperands(N, Ops);
7917 
7918   CSEMap.InsertNode(N, IP);
7919   InsertNode(N);
7920   SDValue V(N, 0);
7921   NewSDValueDbgMsg(V, "Creating new node: ", this);
7922   return V;
7923 }
7924 
7925 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
7926                                         SDValue Base, SDValue Offset,
7927                                         ISD::MemIndexedMode AM) {
7928   auto *ST = cast<VPStoreSDNode>(OrigStore);
7929   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
7930   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7931   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
7932                    Offset,         ST->getMask(),  ST->getVectorLength()};
7933   FoldingSetNodeID ID;
7934   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
7935   ID.AddInteger(ST->getMemoryVT().getRawBits());
7936   ID.AddInteger(ST->getRawSubclassData());
7937   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7938   void *IP = nullptr;
7939   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7940     return SDValue(E, 0);
7941 
7942   auto *N = newSDNode<VPStoreSDNode>(
7943       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
7944       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
7945   createOperands(N, Ops);
7946 
7947   CSEMap.InsertNode(N, IP);
7948   InsertNode(N);
7949   SDValue V(N, 0);
7950   NewSDValueDbgMsg(V, "Creating new node: ", this);
7951   return V;
7952 }
7953 
7954 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7955                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
7956                                   ISD::MemIndexType IndexType) {
7957   assert(Ops.size() == 6 && "Incompatible number of operands");
7958 
7959   FoldingSetNodeID ID;
7960   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
7961   ID.AddInteger(VT.getRawBits());
7962   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
7963       dl.getIROrder(), VTs, VT, MMO, IndexType));
7964   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7965   void *IP = nullptr;
7966   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7967     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
7968     return SDValue(E, 0);
7969   }
7970 
7971   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7972                                       VT, MMO, IndexType);
7973   createOperands(N, Ops);
7974 
7975   assert(N->getMask().getValueType().getVectorElementCount() ==
7976              N->getValueType(0).getVectorElementCount() &&
7977          "Vector width mismatch between mask and data");
7978   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
7979              N->getValueType(0).getVectorElementCount().isScalable() &&
7980          "Scalable flags of index and data do not match");
7981   assert(ElementCount::isKnownGE(
7982              N->getIndex().getValueType().getVectorElementCount(),
7983              N->getValueType(0).getVectorElementCount()) &&
7984          "Vector width mismatch between index and data");
7985   assert(isa<ConstantSDNode>(N->getScale()) &&
7986          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7987          "Scale should be a constant power of 2");
7988 
7989   CSEMap.InsertNode(N, IP);
7990   InsertNode(N);
7991   SDValue V(N, 0);
7992   NewSDValueDbgMsg(V, "Creating new node: ", this);
7993   return V;
7994 }
7995 
7996 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
7997                                    ArrayRef<SDValue> Ops,
7998                                    MachineMemOperand *MMO,
7999                                    ISD::MemIndexType IndexType) {
8000   assert(Ops.size() == 7 && "Incompatible number of operands");
8001 
8002   FoldingSetNodeID ID;
8003   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8004   ID.AddInteger(VT.getRawBits());
8005   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8006       dl.getIROrder(), VTs, VT, MMO, IndexType));
8007   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8008   void *IP = nullptr;
8009   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8010     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8011     return SDValue(E, 0);
8012   }
8013   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8014                                        VT, MMO, IndexType);
8015   createOperands(N, Ops);
8016 
8017   assert(N->getMask().getValueType().getVectorElementCount() ==
8018              N->getValue().getValueType().getVectorElementCount() &&
8019          "Vector width mismatch between mask and data");
8020   assert(
8021       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8022           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8023       "Scalable flags of index and data do not match");
8024   assert(ElementCount::isKnownGE(
8025              N->getIndex().getValueType().getVectorElementCount(),
8026              N->getValue().getValueType().getVectorElementCount()) &&
8027          "Vector width mismatch between index and data");
8028   assert(isa<ConstantSDNode>(N->getScale()) &&
8029          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8030          "Scale should be a constant power of 2");
8031 
8032   CSEMap.InsertNode(N, IP);
8033   InsertNode(N);
8034   SDValue V(N, 0);
8035   NewSDValueDbgMsg(V, "Creating new node: ", this);
8036   return V;
8037 }
8038 
8039 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8040                                     SDValue Base, SDValue Offset, SDValue Mask,
8041                                     SDValue PassThru, EVT MemVT,
8042                                     MachineMemOperand *MMO,
8043                                     ISD::MemIndexedMode AM,
8044                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8045   bool Indexed = AM != ISD::UNINDEXED;
8046   assert((Indexed || Offset.isUndef()) &&
8047          "Unindexed masked load with an offset!");
8048   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8049                          : getVTList(VT, MVT::Other);
8050   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8051   FoldingSetNodeID ID;
8052   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8053   ID.AddInteger(MemVT.getRawBits());
8054   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8055       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8056   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8057   void *IP = nullptr;
8058   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8059     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8060     return SDValue(E, 0);
8061   }
8062   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8063                                         AM, ExtTy, isExpanding, MemVT, MMO);
8064   createOperands(N, Ops);
8065 
8066   CSEMap.InsertNode(N, IP);
8067   InsertNode(N);
8068   SDValue V(N, 0);
8069   NewSDValueDbgMsg(V, "Creating new node: ", this);
8070   return V;
8071 }
8072 
8073 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8074                                            SDValue Base, SDValue Offset,
8075                                            ISD::MemIndexedMode AM) {
8076   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8077   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8078   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8079                        Offset, LD->getMask(), LD->getPassThru(),
8080                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8081                        LD->getExtensionType(), LD->isExpandingLoad());
8082 }
8083 
8084 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8085                                      SDValue Val, SDValue Base, SDValue Offset,
8086                                      SDValue Mask, EVT MemVT,
8087                                      MachineMemOperand *MMO,
8088                                      ISD::MemIndexedMode AM, bool IsTruncating,
8089                                      bool IsCompressing) {
8090   assert(Chain.getValueType() == MVT::Other &&
8091         "Invalid chain type");
8092   bool Indexed = AM != ISD::UNINDEXED;
8093   assert((Indexed || Offset.isUndef()) &&
8094          "Unindexed masked store with an offset!");
8095   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8096                          : getVTList(MVT::Other);
8097   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8098   FoldingSetNodeID ID;
8099   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8100   ID.AddInteger(MemVT.getRawBits());
8101   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8102       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8103   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8104   void *IP = nullptr;
8105   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8106     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8107     return SDValue(E, 0);
8108   }
8109   auto *N =
8110       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8111                                    IsTruncating, IsCompressing, MemVT, MMO);
8112   createOperands(N, Ops);
8113 
8114   CSEMap.InsertNode(N, IP);
8115   InsertNode(N);
8116   SDValue V(N, 0);
8117   NewSDValueDbgMsg(V, "Creating new node: ", this);
8118   return V;
8119 }
8120 
8121 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8122                                             SDValue Base, SDValue Offset,
8123                                             ISD::MemIndexedMode AM) {
8124   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8125   assert(ST->getOffset().isUndef() &&
8126          "Masked store is already a indexed store!");
8127   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8128                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8129                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8130 }
8131 
8132 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8133                                       ArrayRef<SDValue> Ops,
8134                                       MachineMemOperand *MMO,
8135                                       ISD::MemIndexType IndexType,
8136                                       ISD::LoadExtType ExtTy) {
8137   assert(Ops.size() == 6 && "Incompatible number of operands");
8138 
8139   FoldingSetNodeID ID;
8140   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8141   ID.AddInteger(MemVT.getRawBits());
8142   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8143       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8144   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8145   void *IP = nullptr;
8146   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8147     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8148     return SDValue(E, 0);
8149   }
8150 
8151   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8152   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8153                                           VTs, MemVT, MMO, IndexType, ExtTy);
8154   createOperands(N, Ops);
8155 
8156   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8157          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8158   assert(N->getMask().getValueType().getVectorElementCount() ==
8159              N->getValueType(0).getVectorElementCount() &&
8160          "Vector width mismatch between mask and data");
8161   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8162              N->getValueType(0).getVectorElementCount().isScalable() &&
8163          "Scalable flags of index and data do not match");
8164   assert(ElementCount::isKnownGE(
8165              N->getIndex().getValueType().getVectorElementCount(),
8166              N->getValueType(0).getVectorElementCount()) &&
8167          "Vector width mismatch between index and data");
8168   assert(isa<ConstantSDNode>(N->getScale()) &&
8169          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8170          "Scale should be a constant power of 2");
8171 
8172   CSEMap.InsertNode(N, IP);
8173   InsertNode(N);
8174   SDValue V(N, 0);
8175   NewSDValueDbgMsg(V, "Creating new node: ", this);
8176   return V;
8177 }
8178 
8179 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8180                                        ArrayRef<SDValue> Ops,
8181                                        MachineMemOperand *MMO,
8182                                        ISD::MemIndexType IndexType,
8183                                        bool IsTrunc) {
8184   assert(Ops.size() == 6 && "Incompatible number of operands");
8185 
8186   FoldingSetNodeID ID;
8187   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8188   ID.AddInteger(MemVT.getRawBits());
8189   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8190       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8191   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8192   void *IP = nullptr;
8193   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8194     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8195     return SDValue(E, 0);
8196   }
8197 
8198   IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]);
8199   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8200                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8201   createOperands(N, Ops);
8202 
8203   assert(N->getMask().getValueType().getVectorElementCount() ==
8204              N->getValue().getValueType().getVectorElementCount() &&
8205          "Vector width mismatch between mask and data");
8206   assert(
8207       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8208           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8209       "Scalable flags of index and data do not match");
8210   assert(ElementCount::isKnownGE(
8211              N->getIndex().getValueType().getVectorElementCount(),
8212              N->getValue().getValueType().getVectorElementCount()) &&
8213          "Vector width mismatch between index and data");
8214   assert(isa<ConstantSDNode>(N->getScale()) &&
8215          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8216          "Scale should be a constant power of 2");
8217 
8218   CSEMap.InsertNode(N, IP);
8219   InsertNode(N);
8220   SDValue V(N, 0);
8221   NewSDValueDbgMsg(V, "Creating new node: ", this);
8222   return V;
8223 }
8224 
8225 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8226   // select undef, T, F --> T (if T is a constant), otherwise F
8227   // select, ?, undef, F --> F
8228   // select, ?, T, undef --> T
8229   if (Cond.isUndef())
8230     return isConstantValueOfAnyType(T) ? T : F;
8231   if (T.isUndef())
8232     return F;
8233   if (F.isUndef())
8234     return T;
8235 
8236   // select true, T, F --> T
8237   // select false, T, F --> F
8238   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8239     return CondC->isZero() ? F : T;
8240 
8241   // TODO: This should simplify VSELECT with constant condition using something
8242   // like this (but check boolean contents to be complete?):
8243   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8244   //    return T;
8245   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8246   //    return F;
8247 
8248   // select ?, T, T --> T
8249   if (T == F)
8250     return T;
8251 
8252   return SDValue();
8253 }
8254 
8255 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8256   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8257   if (X.isUndef())
8258     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8259   // shift X, undef --> undef (because it may shift by the bitwidth)
8260   if (Y.isUndef())
8261     return getUNDEF(X.getValueType());
8262 
8263   // shift 0, Y --> 0
8264   // shift X, 0 --> X
8265   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8266     return X;
8267 
8268   // shift X, C >= bitwidth(X) --> undef
8269   // All vector elements must be too big (or undef) to avoid partial undefs.
8270   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8271     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8272   };
8273   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8274     return getUNDEF(X.getValueType());
8275 
8276   return SDValue();
8277 }
8278 
8279 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8280                                       SDNodeFlags Flags) {
8281   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8282   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8283   // operation is poison. That result can be relaxed to undef.
8284   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8285   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8286   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8287                 (YC && YC->getValueAPF().isNaN());
8288   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8289                 (YC && YC->getValueAPF().isInfinity());
8290 
8291   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8292     return getUNDEF(X.getValueType());
8293 
8294   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8295     return getUNDEF(X.getValueType());
8296 
8297   if (!YC)
8298     return SDValue();
8299 
8300   // X + -0.0 --> X
8301   if (Opcode == ISD::FADD)
8302     if (YC->getValueAPF().isNegZero())
8303       return X;
8304 
8305   // X - +0.0 --> X
8306   if (Opcode == ISD::FSUB)
8307     if (YC->getValueAPF().isPosZero())
8308       return X;
8309 
8310   // X * 1.0 --> X
8311   // X / 1.0 --> X
8312   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8313     if (YC->getValueAPF().isExactlyValue(1.0))
8314       return X;
8315 
8316   // X * 0.0 --> 0.0
8317   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8318     if (YC->getValueAPF().isZero())
8319       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8320 
8321   return SDValue();
8322 }
8323 
8324 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8325                                SDValue Ptr, SDValue SV, unsigned Align) {
8326   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8327   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8328 }
8329 
8330 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8331                               ArrayRef<SDUse> Ops) {
8332   switch (Ops.size()) {
8333   case 0: return getNode(Opcode, DL, VT);
8334   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8335   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8336   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8337   default: break;
8338   }
8339 
8340   // Copy from an SDUse array into an SDValue array for use with
8341   // the regular getNode logic.
8342   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8343   return getNode(Opcode, DL, VT, NewOps);
8344 }
8345 
8346 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8347                               ArrayRef<SDValue> Ops) {
8348   SDNodeFlags Flags;
8349   if (Inserter)
8350     Flags = Inserter->getFlags();
8351   return getNode(Opcode, DL, VT, Ops, Flags);
8352 }
8353 
8354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8355                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8356   unsigned NumOps = Ops.size();
8357   switch (NumOps) {
8358   case 0: return getNode(Opcode, DL, VT);
8359   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8360   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8361   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8362   default: break;
8363   }
8364 
8365 #ifndef NDEBUG
8366   for (auto &Op : Ops)
8367     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8368            "Operand is DELETED_NODE!");
8369 #endif
8370 
8371   switch (Opcode) {
8372   default: break;
8373   case ISD::BUILD_VECTOR:
8374     // Attempt to simplify BUILD_VECTOR.
8375     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8376       return V;
8377     break;
8378   case ISD::CONCAT_VECTORS:
8379     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8380       return V;
8381     break;
8382   case ISD::SELECT_CC:
8383     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8384     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8385            "LHS and RHS of condition must have same type!");
8386     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8387            "True and False arms of SelectCC must have same type!");
8388     assert(Ops[2].getValueType() == VT &&
8389            "select_cc node must be of same type as true and false value!");
8390     break;
8391   case ISD::BR_CC:
8392     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8393     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8394            "LHS/RHS of comparison should match types!");
8395     break;
8396   }
8397 
8398   // Memoize nodes.
8399   SDNode *N;
8400   SDVTList VTs = getVTList(VT);
8401 
8402   if (VT != MVT::Glue) {
8403     FoldingSetNodeID ID;
8404     AddNodeIDNode(ID, Opcode, VTs, Ops);
8405     void *IP = nullptr;
8406 
8407     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8408       return SDValue(E, 0);
8409 
8410     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8411     createOperands(N, Ops);
8412 
8413     CSEMap.InsertNode(N, IP);
8414   } else {
8415     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8416     createOperands(N, Ops);
8417   }
8418 
8419   N->setFlags(Flags);
8420   InsertNode(N);
8421   SDValue V(N, 0);
8422   NewSDValueDbgMsg(V, "Creating new node: ", this);
8423   return V;
8424 }
8425 
8426 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8427                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
8428   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
8429 }
8430 
8431 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8432                               ArrayRef<SDValue> Ops) {
8433   SDNodeFlags Flags;
8434   if (Inserter)
8435     Flags = Inserter->getFlags();
8436   return getNode(Opcode, DL, VTList, Ops, Flags);
8437 }
8438 
8439 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8440                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8441   if (VTList.NumVTs == 1)
8442     return getNode(Opcode, DL, VTList.VTs[0], Ops);
8443 
8444 #ifndef NDEBUG
8445   for (auto &Op : Ops)
8446     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8447            "Operand is DELETED_NODE!");
8448 #endif
8449 
8450   switch (Opcode) {
8451   case ISD::STRICT_FP_EXTEND:
8452     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
8453            "Invalid STRICT_FP_EXTEND!");
8454     assert(VTList.VTs[0].isFloatingPoint() &&
8455            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
8456     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8457            "STRICT_FP_EXTEND result type should be vector iff the operand "
8458            "type is vector!");
8459     assert((!VTList.VTs[0].isVector() ||
8460             VTList.VTs[0].getVectorNumElements() ==
8461             Ops[1].getValueType().getVectorNumElements()) &&
8462            "Vector element count mismatch!");
8463     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
8464            "Invalid fpext node, dst <= src!");
8465     break;
8466   case ISD::STRICT_FP_ROUND:
8467     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
8468     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
8469            "STRICT_FP_ROUND result type should be vector iff the operand "
8470            "type is vector!");
8471     assert((!VTList.VTs[0].isVector() ||
8472             VTList.VTs[0].getVectorNumElements() ==
8473             Ops[1].getValueType().getVectorNumElements()) &&
8474            "Vector element count mismatch!");
8475     assert(VTList.VTs[0].isFloatingPoint() &&
8476            Ops[1].getValueType().isFloatingPoint() &&
8477            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
8478            isa<ConstantSDNode>(Ops[2]) &&
8479            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
8480             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
8481            "Invalid STRICT_FP_ROUND!");
8482     break;
8483 #if 0
8484   // FIXME: figure out how to safely handle things like
8485   // int foo(int x) { return 1 << (x & 255); }
8486   // int bar() { return foo(256); }
8487   case ISD::SRA_PARTS:
8488   case ISD::SRL_PARTS:
8489   case ISD::SHL_PARTS:
8490     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
8491         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
8492       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8493     else if (N3.getOpcode() == ISD::AND)
8494       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
8495         // If the and is only masking out bits that cannot effect the shift,
8496         // eliminate the and.
8497         unsigned NumBits = VT.getScalarSizeInBits()*2;
8498         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
8499           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
8500       }
8501     break;
8502 #endif
8503   }
8504 
8505   // Memoize the node unless it returns a flag.
8506   SDNode *N;
8507   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8508     FoldingSetNodeID ID;
8509     AddNodeIDNode(ID, Opcode, VTList, Ops);
8510     void *IP = nullptr;
8511     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8512       return SDValue(E, 0);
8513 
8514     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8515     createOperands(N, Ops);
8516     CSEMap.InsertNode(N, IP);
8517   } else {
8518     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
8519     createOperands(N, Ops);
8520   }
8521 
8522   N->setFlags(Flags);
8523   InsertNode(N);
8524   SDValue V(N, 0);
8525   NewSDValueDbgMsg(V, "Creating new node: ", this);
8526   return V;
8527 }
8528 
8529 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
8530                               SDVTList VTList) {
8531   return getNode(Opcode, DL, VTList, None);
8532 }
8533 
8534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8535                               SDValue N1) {
8536   SDValue Ops[] = { N1 };
8537   return getNode(Opcode, DL, VTList, Ops);
8538 }
8539 
8540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8541                               SDValue N1, SDValue N2) {
8542   SDValue Ops[] = { N1, N2 };
8543   return getNode(Opcode, DL, VTList, Ops);
8544 }
8545 
8546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8547                               SDValue N1, SDValue N2, SDValue N3) {
8548   SDValue Ops[] = { N1, N2, N3 };
8549   return getNode(Opcode, DL, VTList, Ops);
8550 }
8551 
8552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8553                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8554   SDValue Ops[] = { N1, N2, N3, N4 };
8555   return getNode(Opcode, DL, VTList, Ops);
8556 }
8557 
8558 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
8559                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8560                               SDValue N5) {
8561   SDValue Ops[] = { N1, N2, N3, N4, N5 };
8562   return getNode(Opcode, DL, VTList, Ops);
8563 }
8564 
8565 SDVTList SelectionDAG::getVTList(EVT VT) {
8566   return makeVTList(SDNode::getValueTypeList(VT), 1);
8567 }
8568 
8569 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
8570   FoldingSetNodeID ID;
8571   ID.AddInteger(2U);
8572   ID.AddInteger(VT1.getRawBits());
8573   ID.AddInteger(VT2.getRawBits());
8574 
8575   void *IP = nullptr;
8576   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8577   if (!Result) {
8578     EVT *Array = Allocator.Allocate<EVT>(2);
8579     Array[0] = VT1;
8580     Array[1] = VT2;
8581     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
8582     VTListMap.InsertNode(Result, IP);
8583   }
8584   return Result->getSDVTList();
8585 }
8586 
8587 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
8588   FoldingSetNodeID ID;
8589   ID.AddInteger(3U);
8590   ID.AddInteger(VT1.getRawBits());
8591   ID.AddInteger(VT2.getRawBits());
8592   ID.AddInteger(VT3.getRawBits());
8593 
8594   void *IP = nullptr;
8595   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8596   if (!Result) {
8597     EVT *Array = Allocator.Allocate<EVT>(3);
8598     Array[0] = VT1;
8599     Array[1] = VT2;
8600     Array[2] = VT3;
8601     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
8602     VTListMap.InsertNode(Result, IP);
8603   }
8604   return Result->getSDVTList();
8605 }
8606 
8607 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
8608   FoldingSetNodeID ID;
8609   ID.AddInteger(4U);
8610   ID.AddInteger(VT1.getRawBits());
8611   ID.AddInteger(VT2.getRawBits());
8612   ID.AddInteger(VT3.getRawBits());
8613   ID.AddInteger(VT4.getRawBits());
8614 
8615   void *IP = nullptr;
8616   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8617   if (!Result) {
8618     EVT *Array = Allocator.Allocate<EVT>(4);
8619     Array[0] = VT1;
8620     Array[1] = VT2;
8621     Array[2] = VT3;
8622     Array[3] = VT4;
8623     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
8624     VTListMap.InsertNode(Result, IP);
8625   }
8626   return Result->getSDVTList();
8627 }
8628 
8629 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
8630   unsigned NumVTs = VTs.size();
8631   FoldingSetNodeID ID;
8632   ID.AddInteger(NumVTs);
8633   for (unsigned index = 0; index < NumVTs; index++) {
8634     ID.AddInteger(VTs[index].getRawBits());
8635   }
8636 
8637   void *IP = nullptr;
8638   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
8639   if (!Result) {
8640     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
8641     llvm::copy(VTs, Array);
8642     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
8643     VTListMap.InsertNode(Result, IP);
8644   }
8645   return Result->getSDVTList();
8646 }
8647 
8648 
8649 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
8650 /// specified operands.  If the resultant node already exists in the DAG,
8651 /// this does not modify the specified node, instead it returns the node that
8652 /// already exists.  If the resultant node does not exist in the DAG, the
8653 /// input node is returned.  As a degenerate case, if you specify the same
8654 /// input operands as the node already has, the input node is returned.
8655 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
8656   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
8657 
8658   // Check to see if there is no change.
8659   if (Op == N->getOperand(0)) return N;
8660 
8661   // See if the modified node already exists.
8662   void *InsertPos = nullptr;
8663   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
8664     return Existing;
8665 
8666   // Nope it doesn't.  Remove the node from its current place in the maps.
8667   if (InsertPos)
8668     if (!RemoveNodeFromCSEMaps(N))
8669       InsertPos = nullptr;
8670 
8671   // Now we update the operands.
8672   N->OperandList[0].set(Op);
8673 
8674   updateDivergence(N);
8675   // If this gets put into a CSE map, add it.
8676   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8677   return N;
8678 }
8679 
8680 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
8681   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
8682 
8683   // Check to see if there is no change.
8684   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8685     return N;   // No operands changed, just return the input node.
8686 
8687   // See if the modified node already exists.
8688   void *InsertPos = nullptr;
8689   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8690     return Existing;
8691 
8692   // Nope it doesn't.  Remove the node from its current place in the maps.
8693   if (InsertPos)
8694     if (!RemoveNodeFromCSEMaps(N))
8695       InsertPos = nullptr;
8696 
8697   // Now we update the operands.
8698   if (N->OperandList[0] != Op1)
8699     N->OperandList[0].set(Op1);
8700   if (N->OperandList[1] != Op2)
8701     N->OperandList[1].set(Op2);
8702 
8703   updateDivergence(N);
8704   // If this gets put into a CSE map, add it.
8705   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8706   return N;
8707 }
8708 
8709 SDNode *SelectionDAG::
8710 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8711   SDValue Ops[] = { Op1, Op2, Op3 };
8712   return UpdateNodeOperands(N, Ops);
8713 }
8714 
8715 SDNode *SelectionDAG::
8716 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8717                    SDValue Op3, SDValue Op4) {
8718   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8719   return UpdateNodeOperands(N, Ops);
8720 }
8721 
8722 SDNode *SelectionDAG::
8723 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8724                    SDValue Op3, SDValue Op4, SDValue Op5) {
8725   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8726   return UpdateNodeOperands(N, Ops);
8727 }
8728 
8729 SDNode *SelectionDAG::
8730 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8731   unsigned NumOps = Ops.size();
8732   assert(N->getNumOperands() == NumOps &&
8733          "Update with wrong number of operands");
8734 
8735   // If no operands changed just return the input node.
8736   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8737     return N;
8738 
8739   // See if the modified node already exists.
8740   void *InsertPos = nullptr;
8741   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8742     return Existing;
8743 
8744   // Nope it doesn't.  Remove the node from its current place in the maps.
8745   if (InsertPos)
8746     if (!RemoveNodeFromCSEMaps(N))
8747       InsertPos = nullptr;
8748 
8749   // Now we update the operands.
8750   for (unsigned i = 0; i != NumOps; ++i)
8751     if (N->OperandList[i] != Ops[i])
8752       N->OperandList[i].set(Ops[i]);
8753 
8754   updateDivergence(N);
8755   // If this gets put into a CSE map, add it.
8756   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8757   return N;
8758 }
8759 
8760 /// DropOperands - Release the operands and set this node to have
8761 /// zero operands.
8762 void SDNode::DropOperands() {
8763   // Unlike the code in MorphNodeTo that does this, we don't need to
8764   // watch for dead nodes here.
8765   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8766     SDUse &Use = *I++;
8767     Use.set(SDValue());
8768   }
8769 }
8770 
8771 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8772                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
8773   if (NewMemRefs.empty()) {
8774     N->clearMemRefs();
8775     return;
8776   }
8777 
8778   // Check if we can avoid allocating by storing a single reference directly.
8779   if (NewMemRefs.size() == 1) {
8780     N->MemRefs = NewMemRefs[0];
8781     N->NumMemRefs = 1;
8782     return;
8783   }
8784 
8785   MachineMemOperand **MemRefsBuffer =
8786       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8787   llvm::copy(NewMemRefs, MemRefsBuffer);
8788   N->MemRefs = MemRefsBuffer;
8789   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8790 }
8791 
8792 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8793 /// machine opcode.
8794 ///
8795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8796                                    EVT VT) {
8797   SDVTList VTs = getVTList(VT);
8798   return SelectNodeTo(N, MachineOpc, VTs, None);
8799 }
8800 
8801 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8802                                    EVT VT, SDValue Op1) {
8803   SDVTList VTs = getVTList(VT);
8804   SDValue Ops[] = { Op1 };
8805   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8806 }
8807 
8808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8809                                    EVT VT, SDValue Op1,
8810                                    SDValue Op2) {
8811   SDVTList VTs = getVTList(VT);
8812   SDValue Ops[] = { Op1, Op2 };
8813   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8814 }
8815 
8816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8817                                    EVT VT, SDValue Op1,
8818                                    SDValue Op2, SDValue Op3) {
8819   SDVTList VTs = getVTList(VT);
8820   SDValue Ops[] = { Op1, Op2, Op3 };
8821   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8822 }
8823 
8824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8825                                    EVT VT, ArrayRef<SDValue> Ops) {
8826   SDVTList VTs = getVTList(VT);
8827   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8828 }
8829 
8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8831                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8832   SDVTList VTs = getVTList(VT1, VT2);
8833   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8834 }
8835 
8836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8837                                    EVT VT1, EVT VT2) {
8838   SDVTList VTs = getVTList(VT1, VT2);
8839   return SelectNodeTo(N, MachineOpc, VTs, None);
8840 }
8841 
8842 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8843                                    EVT VT1, EVT VT2, EVT VT3,
8844                                    ArrayRef<SDValue> Ops) {
8845   SDVTList VTs = getVTList(VT1, VT2, VT3);
8846   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8847 }
8848 
8849 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8850                                    EVT VT1, EVT VT2,
8851                                    SDValue Op1, SDValue Op2) {
8852   SDVTList VTs = getVTList(VT1, VT2);
8853   SDValue Ops[] = { Op1, Op2 };
8854   return SelectNodeTo(N, MachineOpc, VTs, Ops);
8855 }
8856 
8857 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8858                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
8859   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8860   // Reset the NodeID to -1.
8861   New->setNodeId(-1);
8862   if (New != N) {
8863     ReplaceAllUsesWith(N, New);
8864     RemoveDeadNode(N);
8865   }
8866   return New;
8867 }
8868 
8869 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8870 /// the line number information on the merged node since it is not possible to
8871 /// preserve the information that operation is associated with multiple lines.
8872 /// This will make the debugger working better at -O0, were there is a higher
8873 /// probability having other instructions associated with that line.
8874 ///
8875 /// For IROrder, we keep the smaller of the two
8876 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8877   DebugLoc NLoc = N->getDebugLoc();
8878   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8879     N->setDebugLoc(DebugLoc());
8880   }
8881   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8882   N->setIROrder(Order);
8883   return N;
8884 }
8885 
8886 /// MorphNodeTo - This *mutates* the specified node to have the specified
8887 /// return type, opcode, and operands.
8888 ///
8889 /// Note that MorphNodeTo returns the resultant node.  If there is already a
8890 /// node of the specified opcode and operands, it returns that node instead of
8891 /// the current one.  Note that the SDLoc need not be the same.
8892 ///
8893 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8894 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8895 /// node, and because it doesn't require CSE recalculation for any of
8896 /// the node's users.
8897 ///
8898 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8899 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8900 /// the legalizer which maintain worklists that would need to be updated when
8901 /// deleting things.
8902 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8903                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8904   // If an identical node already exists, use it.
8905   void *IP = nullptr;
8906   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8907     FoldingSetNodeID ID;
8908     AddNodeIDNode(ID, Opc, VTs, Ops);
8909     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8910       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8911   }
8912 
8913   if (!RemoveNodeFromCSEMaps(N))
8914     IP = nullptr;
8915 
8916   // Start the morphing.
8917   N->NodeType = Opc;
8918   N->ValueList = VTs.VTs;
8919   N->NumValues = VTs.NumVTs;
8920 
8921   // Clear the operands list, updating used nodes to remove this from their
8922   // use list.  Keep track of any operands that become dead as a result.
8923   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8924   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8925     SDUse &Use = *I++;
8926     SDNode *Used = Use.getNode();
8927     Use.set(SDValue());
8928     if (Used->use_empty())
8929       DeadNodeSet.insert(Used);
8930   }
8931 
8932   // For MachineNode, initialize the memory references information.
8933   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8934     MN->clearMemRefs();
8935 
8936   // Swap for an appropriately sized array from the recycler.
8937   removeOperands(N);
8938   createOperands(N, Ops);
8939 
8940   // Delete any nodes that are still dead after adding the uses for the
8941   // new operands.
8942   if (!DeadNodeSet.empty()) {
8943     SmallVector<SDNode *, 16> DeadNodes;
8944     for (SDNode *N : DeadNodeSet)
8945       if (N->use_empty())
8946         DeadNodes.push_back(N);
8947     RemoveDeadNodes(DeadNodes);
8948   }
8949 
8950   if (IP)
8951     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8952   return N;
8953 }
8954 
8955 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8956   unsigned OrigOpc = Node->getOpcode();
8957   unsigned NewOpc;
8958   switch (OrigOpc) {
8959   default:
8960     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8961 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8962   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8963 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8964   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8965 #include "llvm/IR/ConstrainedOps.def"
8966   }
8967 
8968   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8969 
8970   // We're taking this node out of the chain, so we need to re-link things.
8971   SDValue InputChain = Node->getOperand(0);
8972   SDValue OutputChain = SDValue(Node, 1);
8973   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8974 
8975   SmallVector<SDValue, 3> Ops;
8976   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8977     Ops.push_back(Node->getOperand(i));
8978 
8979   SDVTList VTs = getVTList(Node->getValueType(0));
8980   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8981 
8982   // MorphNodeTo can operate in two ways: if an existing node with the
8983   // specified operands exists, it can just return it.  Otherwise, it
8984   // updates the node in place to have the requested operands.
8985   if (Res == Node) {
8986     // If we updated the node in place, reset the node ID.  To the isel,
8987     // this should be just like a newly allocated machine node.
8988     Res->setNodeId(-1);
8989   } else {
8990     ReplaceAllUsesWith(Node, Res);
8991     RemoveDeadNode(Node);
8992   }
8993 
8994   return Res;
8995 }
8996 
8997 /// getMachineNode - These are used for target selectors to create a new node
8998 /// with specified return type(s), MachineInstr opcode, and operands.
8999 ///
9000 /// Note that getMachineNode returns the resultant node.  If there is already a
9001 /// node of the specified opcode and operands, it returns that node instead of
9002 /// the current one.
9003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9004                                             EVT VT) {
9005   SDVTList VTs = getVTList(VT);
9006   return getMachineNode(Opcode, dl, VTs, None);
9007 }
9008 
9009 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9010                                             EVT VT, SDValue Op1) {
9011   SDVTList VTs = getVTList(VT);
9012   SDValue Ops[] = { Op1 };
9013   return getMachineNode(Opcode, dl, VTs, Ops);
9014 }
9015 
9016 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9017                                             EVT VT, SDValue Op1, SDValue Op2) {
9018   SDVTList VTs = getVTList(VT);
9019   SDValue Ops[] = { Op1, Op2 };
9020   return getMachineNode(Opcode, dl, VTs, Ops);
9021 }
9022 
9023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9024                                             EVT VT, SDValue Op1, SDValue Op2,
9025                                             SDValue Op3) {
9026   SDVTList VTs = getVTList(VT);
9027   SDValue Ops[] = { Op1, Op2, Op3 };
9028   return getMachineNode(Opcode, dl, VTs, Ops);
9029 }
9030 
9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9032                                             EVT VT, ArrayRef<SDValue> Ops) {
9033   SDVTList VTs = getVTList(VT);
9034   return getMachineNode(Opcode, dl, VTs, Ops);
9035 }
9036 
9037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9038                                             EVT VT1, EVT VT2, SDValue Op1,
9039                                             SDValue Op2) {
9040   SDVTList VTs = getVTList(VT1, VT2);
9041   SDValue Ops[] = { Op1, Op2 };
9042   return getMachineNode(Opcode, dl, VTs, Ops);
9043 }
9044 
9045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9046                                             EVT VT1, EVT VT2, SDValue Op1,
9047                                             SDValue Op2, SDValue Op3) {
9048   SDVTList VTs = getVTList(VT1, VT2);
9049   SDValue Ops[] = { Op1, Op2, Op3 };
9050   return getMachineNode(Opcode, dl, VTs, Ops);
9051 }
9052 
9053 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9054                                             EVT VT1, EVT VT2,
9055                                             ArrayRef<SDValue> Ops) {
9056   SDVTList VTs = getVTList(VT1, VT2);
9057   return getMachineNode(Opcode, dl, VTs, Ops);
9058 }
9059 
9060 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9061                                             EVT VT1, EVT VT2, EVT VT3,
9062                                             SDValue Op1, SDValue Op2) {
9063   SDVTList VTs = getVTList(VT1, VT2, VT3);
9064   SDValue Ops[] = { Op1, Op2 };
9065   return getMachineNode(Opcode, dl, VTs, Ops);
9066 }
9067 
9068 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9069                                             EVT VT1, EVT VT2, EVT VT3,
9070                                             SDValue Op1, SDValue Op2,
9071                                             SDValue Op3) {
9072   SDVTList VTs = getVTList(VT1, VT2, VT3);
9073   SDValue Ops[] = { Op1, Op2, Op3 };
9074   return getMachineNode(Opcode, dl, VTs, Ops);
9075 }
9076 
9077 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9078                                             EVT VT1, EVT VT2, EVT VT3,
9079                                             ArrayRef<SDValue> Ops) {
9080   SDVTList VTs = getVTList(VT1, VT2, VT3);
9081   return getMachineNode(Opcode, dl, VTs, Ops);
9082 }
9083 
9084 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9085                                             ArrayRef<EVT> ResultTys,
9086                                             ArrayRef<SDValue> Ops) {
9087   SDVTList VTs = getVTList(ResultTys);
9088   return getMachineNode(Opcode, dl, VTs, Ops);
9089 }
9090 
9091 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9092                                             SDVTList VTs,
9093                                             ArrayRef<SDValue> Ops) {
9094   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9095   MachineSDNode *N;
9096   void *IP = nullptr;
9097 
9098   if (DoCSE) {
9099     FoldingSetNodeID ID;
9100     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9101     IP = nullptr;
9102     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9103       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9104     }
9105   }
9106 
9107   // Allocate a new MachineSDNode.
9108   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9109   createOperands(N, Ops);
9110 
9111   if (DoCSE)
9112     CSEMap.InsertNode(N, IP);
9113 
9114   InsertNode(N);
9115   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9116   return N;
9117 }
9118 
9119 /// getTargetExtractSubreg - A convenience function for creating
9120 /// TargetOpcode::EXTRACT_SUBREG nodes.
9121 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9122                                              SDValue Operand) {
9123   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9124   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9125                                   VT, Operand, SRIdxVal);
9126   return SDValue(Subreg, 0);
9127 }
9128 
9129 /// getTargetInsertSubreg - A convenience function for creating
9130 /// TargetOpcode::INSERT_SUBREG nodes.
9131 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9132                                             SDValue Operand, SDValue Subreg) {
9133   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9134   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9135                                   VT, Operand, Subreg, SRIdxVal);
9136   return SDValue(Result, 0);
9137 }
9138 
9139 /// getNodeIfExists - Get the specified node if it's already available, or
9140 /// else return NULL.
9141 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9142                                       ArrayRef<SDValue> Ops) {
9143   SDNodeFlags Flags;
9144   if (Inserter)
9145     Flags = Inserter->getFlags();
9146   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9147 }
9148 
9149 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9150                                       ArrayRef<SDValue> Ops,
9151                                       const SDNodeFlags Flags) {
9152   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9153     FoldingSetNodeID ID;
9154     AddNodeIDNode(ID, Opcode, VTList, Ops);
9155     void *IP = nullptr;
9156     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9157       E->intersectFlagsWith(Flags);
9158       return E;
9159     }
9160   }
9161   return nullptr;
9162 }
9163 
9164 /// doesNodeExist - Check if a node exists without modifying its flags.
9165 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9166                                  ArrayRef<SDValue> Ops) {
9167   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9168     FoldingSetNodeID ID;
9169     AddNodeIDNode(ID, Opcode, VTList, Ops);
9170     void *IP = nullptr;
9171     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9172       return true;
9173   }
9174   return false;
9175 }
9176 
9177 /// getDbgValue - Creates a SDDbgValue node.
9178 ///
9179 /// SDNode
9180 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9181                                       SDNode *N, unsigned R, bool IsIndirect,
9182                                       const DebugLoc &DL, unsigned O) {
9183   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9184          "Expected inlined-at fields to agree");
9185   return new (DbgInfo->getAlloc())
9186       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9187                  {}, IsIndirect, DL, O,
9188                  /*IsVariadic=*/false);
9189 }
9190 
9191 /// Constant
9192 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9193                                               DIExpression *Expr,
9194                                               const Value *C,
9195                                               const DebugLoc &DL, unsigned O) {
9196   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9197          "Expected inlined-at fields to agree");
9198   return new (DbgInfo->getAlloc())
9199       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9200                  /*IsIndirect=*/false, DL, O,
9201                  /*IsVariadic=*/false);
9202 }
9203 
9204 /// FrameIndex
9205 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9206                                                 DIExpression *Expr, unsigned FI,
9207                                                 bool IsIndirect,
9208                                                 const DebugLoc &DL,
9209                                                 unsigned O) {
9210   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9211          "Expected inlined-at fields to agree");
9212   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9213 }
9214 
9215 /// FrameIndex with dependencies
9216 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9217                                                 DIExpression *Expr, unsigned FI,
9218                                                 ArrayRef<SDNode *> Dependencies,
9219                                                 bool IsIndirect,
9220                                                 const DebugLoc &DL,
9221                                                 unsigned O) {
9222   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9223          "Expected inlined-at fields to agree");
9224   return new (DbgInfo->getAlloc())
9225       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9226                  Dependencies, IsIndirect, DL, O,
9227                  /*IsVariadic=*/false);
9228 }
9229 
9230 /// VReg
9231 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9232                                           unsigned VReg, bool IsIndirect,
9233                                           const DebugLoc &DL, unsigned O) {
9234   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9235          "Expected inlined-at fields to agree");
9236   return new (DbgInfo->getAlloc())
9237       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9238                  {}, IsIndirect, DL, O,
9239                  /*IsVariadic=*/false);
9240 }
9241 
9242 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9243                                           ArrayRef<SDDbgOperand> Locs,
9244                                           ArrayRef<SDNode *> Dependencies,
9245                                           bool IsIndirect, const DebugLoc &DL,
9246                                           unsigned O, bool IsVariadic) {
9247   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9248          "Expected inlined-at fields to agree");
9249   return new (DbgInfo->getAlloc())
9250       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9251                  DL, O, IsVariadic);
9252 }
9253 
9254 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9255                                      unsigned OffsetInBits, unsigned SizeInBits,
9256                                      bool InvalidateDbg) {
9257   SDNode *FromNode = From.getNode();
9258   SDNode *ToNode = To.getNode();
9259   assert(FromNode && ToNode && "Can't modify dbg values");
9260 
9261   // PR35338
9262   // TODO: assert(From != To && "Redundant dbg value transfer");
9263   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9264   if (From == To || FromNode == ToNode)
9265     return;
9266 
9267   if (!FromNode->getHasDebugValue())
9268     return;
9269 
9270   SDDbgOperand FromLocOp =
9271       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9272   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9273 
9274   SmallVector<SDDbgValue *, 2> ClonedDVs;
9275   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9276     if (Dbg->isInvalidated())
9277       continue;
9278 
9279     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9280 
9281     // Create a new location ops vector that is equal to the old vector, but
9282     // with each instance of FromLocOp replaced with ToLocOp.
9283     bool Changed = false;
9284     auto NewLocOps = Dbg->copyLocationOps();
9285     std::replace_if(
9286         NewLocOps.begin(), NewLocOps.end(),
9287         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9288           bool Match = Op == FromLocOp;
9289           Changed |= Match;
9290           return Match;
9291         },
9292         ToLocOp);
9293     // Ignore this SDDbgValue if we didn't find a matching location.
9294     if (!Changed)
9295       continue;
9296 
9297     DIVariable *Var = Dbg->getVariable();
9298     auto *Expr = Dbg->getExpression();
9299     // If a fragment is requested, update the expression.
9300     if (SizeInBits) {
9301       // When splitting a larger (e.g., sign-extended) value whose
9302       // lower bits are described with an SDDbgValue, do not attempt
9303       // to transfer the SDDbgValue to the upper bits.
9304       if (auto FI = Expr->getFragmentInfo())
9305         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9306           continue;
9307       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9308                                                              SizeInBits);
9309       if (!Fragment)
9310         continue;
9311       Expr = *Fragment;
9312     }
9313 
9314     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9315     // Clone the SDDbgValue and move it to To.
9316     SDDbgValue *Clone = getDbgValueList(
9317         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9318         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9319         Dbg->isVariadic());
9320     ClonedDVs.push_back(Clone);
9321 
9322     if (InvalidateDbg) {
9323       // Invalidate value and indicate the SDDbgValue should not be emitted.
9324       Dbg->setIsInvalidated();
9325       Dbg->setIsEmitted();
9326     }
9327   }
9328 
9329   for (SDDbgValue *Dbg : ClonedDVs) {
9330     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9331            "Transferred DbgValues should depend on the new SDNode");
9332     AddDbgValue(Dbg, false);
9333   }
9334 }
9335 
9336 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9337   if (!N.getHasDebugValue())
9338     return;
9339 
9340   SmallVector<SDDbgValue *, 2> ClonedDVs;
9341   for (auto DV : GetDbgValues(&N)) {
9342     if (DV->isInvalidated())
9343       continue;
9344     switch (N.getOpcode()) {
9345     default:
9346       break;
9347     case ISD::ADD:
9348       SDValue N0 = N.getOperand(0);
9349       SDValue N1 = N.getOperand(1);
9350       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9351           isConstantIntBuildVectorOrConstantInt(N1)) {
9352         uint64_t Offset = N.getConstantOperandVal(1);
9353 
9354         // Rewrite an ADD constant node into a DIExpression. Since we are
9355         // performing arithmetic to compute the variable's *value* in the
9356         // DIExpression, we need to mark the expression with a
9357         // DW_OP_stack_value.
9358         auto *DIExpr = DV->getExpression();
9359         auto NewLocOps = DV->copyLocationOps();
9360         bool Changed = false;
9361         for (size_t i = 0; i < NewLocOps.size(); ++i) {
9362           // We're not given a ResNo to compare against because the whole
9363           // node is going away. We know that any ISD::ADD only has one
9364           // result, so we can assume any node match is using the result.
9365           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
9366               NewLocOps[i].getSDNode() != &N)
9367             continue;
9368           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
9369           SmallVector<uint64_t, 3> ExprOps;
9370           DIExpression::appendOffset(ExprOps, Offset);
9371           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
9372           Changed = true;
9373         }
9374         (void)Changed;
9375         assert(Changed && "Salvage target doesn't use N");
9376 
9377         auto AdditionalDependencies = DV->getAdditionalDependencies();
9378         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
9379                                             NewLocOps, AdditionalDependencies,
9380                                             DV->isIndirect(), DV->getDebugLoc(),
9381                                             DV->getOrder(), DV->isVariadic());
9382         ClonedDVs.push_back(Clone);
9383         DV->setIsInvalidated();
9384         DV->setIsEmitted();
9385         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
9386                    N0.getNode()->dumprFull(this);
9387                    dbgs() << " into " << *DIExpr << '\n');
9388       }
9389     }
9390   }
9391 
9392   for (SDDbgValue *Dbg : ClonedDVs) {
9393     assert(!Dbg->getSDNodes().empty() &&
9394            "Salvaged DbgValue should depend on a new SDNode");
9395     AddDbgValue(Dbg, false);
9396   }
9397 }
9398 
9399 /// Creates a SDDbgLabel node.
9400 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
9401                                       const DebugLoc &DL, unsigned O) {
9402   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
9403          "Expected inlined-at fields to agree");
9404   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
9405 }
9406 
9407 namespace {
9408 
9409 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
9410 /// pointed to by a use iterator is deleted, increment the use iterator
9411 /// so that it doesn't dangle.
9412 ///
9413 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
9414   SDNode::use_iterator &UI;
9415   SDNode::use_iterator &UE;
9416 
9417   void NodeDeleted(SDNode *N, SDNode *E) override {
9418     // Increment the iterator as needed.
9419     while (UI != UE && N == *UI)
9420       ++UI;
9421   }
9422 
9423 public:
9424   RAUWUpdateListener(SelectionDAG &d,
9425                      SDNode::use_iterator &ui,
9426                      SDNode::use_iterator &ue)
9427     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
9428 };
9429 
9430 } // end anonymous namespace
9431 
9432 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9433 /// This can cause recursive merging of nodes in the DAG.
9434 ///
9435 /// This version assumes From has a single result value.
9436 ///
9437 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
9438   SDNode *From = FromN.getNode();
9439   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
9440          "Cannot replace with this method!");
9441   assert(From != To.getNode() && "Cannot replace uses of with self");
9442 
9443   // Preserve Debug Values
9444   transferDbgValues(FromN, To);
9445 
9446   // Iterate over all the existing uses of From. New uses will be added
9447   // to the beginning of the use list, which we avoid visiting.
9448   // This specifically avoids visiting uses of From that arise while the
9449   // replacement is happening, because any such uses would be the result
9450   // of CSE: If an existing node looks like From after one of its operands
9451   // is replaced by To, we don't want to replace of all its users with To
9452   // too. See PR3018 for more info.
9453   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9454   RAUWUpdateListener Listener(*this, UI, UE);
9455   while (UI != UE) {
9456     SDNode *User = *UI;
9457 
9458     // This node is about to morph, remove its old self from the CSE maps.
9459     RemoveNodeFromCSEMaps(User);
9460 
9461     // A user can appear in a use list multiple times, and when this
9462     // happens the uses are usually next to each other in the list.
9463     // To help reduce the number of CSE recomputations, process all
9464     // the uses of this user that we can find this way.
9465     do {
9466       SDUse &Use = UI.getUse();
9467       ++UI;
9468       Use.set(To);
9469       if (To->isDivergent() != From->isDivergent())
9470         updateDivergence(User);
9471     } while (UI != UE && *UI == User);
9472     // Now that we have modified User, add it back to the CSE maps.  If it
9473     // already exists there, recursively merge the results together.
9474     AddModifiedNodeToCSEMaps(User);
9475   }
9476 
9477   // If we just RAUW'd the root, take note.
9478   if (FromN == getRoot())
9479     setRoot(To);
9480 }
9481 
9482 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9483 /// This can cause recursive merging of nodes in the DAG.
9484 ///
9485 /// This version assumes that for each value of From, there is a
9486 /// corresponding value in To in the same position with the same type.
9487 ///
9488 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
9489 #ifndef NDEBUG
9490   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9491     assert((!From->hasAnyUseOfValue(i) ||
9492             From->getValueType(i) == To->getValueType(i)) &&
9493            "Cannot use this version of ReplaceAllUsesWith!");
9494 #endif
9495 
9496   // Handle the trivial case.
9497   if (From == To)
9498     return;
9499 
9500   // Preserve Debug Info. Only do this if there's a use.
9501   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9502     if (From->hasAnyUseOfValue(i)) {
9503       assert((i < To->getNumValues()) && "Invalid To location");
9504       transferDbgValues(SDValue(From, i), SDValue(To, i));
9505     }
9506 
9507   // Iterate over just the existing users of From. See the comments in
9508   // the ReplaceAllUsesWith above.
9509   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9510   RAUWUpdateListener Listener(*this, UI, UE);
9511   while (UI != UE) {
9512     SDNode *User = *UI;
9513 
9514     // This node is about to morph, remove its old self from the CSE maps.
9515     RemoveNodeFromCSEMaps(User);
9516 
9517     // A user can appear in a use list multiple times, and when this
9518     // happens the uses are usually next to each other in the list.
9519     // To help reduce the number of CSE recomputations, process all
9520     // the uses of this user that we can find this way.
9521     do {
9522       SDUse &Use = UI.getUse();
9523       ++UI;
9524       Use.setNode(To);
9525       if (To->isDivergent() != From->isDivergent())
9526         updateDivergence(User);
9527     } while (UI != UE && *UI == User);
9528 
9529     // Now that we have modified User, add it back to the CSE maps.  If it
9530     // already exists there, recursively merge the results together.
9531     AddModifiedNodeToCSEMaps(User);
9532   }
9533 
9534   // If we just RAUW'd the root, take note.
9535   if (From == getRoot().getNode())
9536     setRoot(SDValue(To, getRoot().getResNo()));
9537 }
9538 
9539 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
9540 /// This can cause recursive merging of nodes in the DAG.
9541 ///
9542 /// This version can replace From with any result values.  To must match the
9543 /// number and types of values returned by From.
9544 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
9545   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
9546     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
9547 
9548   // Preserve Debug Info.
9549   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
9550     transferDbgValues(SDValue(From, i), To[i]);
9551 
9552   // Iterate over just the existing users of From. See the comments in
9553   // the ReplaceAllUsesWith above.
9554   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
9555   RAUWUpdateListener Listener(*this, UI, UE);
9556   while (UI != UE) {
9557     SDNode *User = *UI;
9558 
9559     // This node is about to morph, remove its old self from the CSE maps.
9560     RemoveNodeFromCSEMaps(User);
9561 
9562     // A user can appear in a use list multiple times, and when this happens the
9563     // uses are usually next to each other in the list.  To help reduce the
9564     // number of CSE and divergence recomputations, process all the uses of this
9565     // user that we can find this way.
9566     bool To_IsDivergent = false;
9567     do {
9568       SDUse &Use = UI.getUse();
9569       const SDValue &ToOp = To[Use.getResNo()];
9570       ++UI;
9571       Use.set(ToOp);
9572       To_IsDivergent |= ToOp->isDivergent();
9573     } while (UI != UE && *UI == User);
9574 
9575     if (To_IsDivergent != From->isDivergent())
9576       updateDivergence(User);
9577 
9578     // Now that we have modified User, add it back to the CSE maps.  If it
9579     // already exists there, recursively merge the results together.
9580     AddModifiedNodeToCSEMaps(User);
9581   }
9582 
9583   // If we just RAUW'd the root, take note.
9584   if (From == getRoot().getNode())
9585     setRoot(SDValue(To[getRoot().getResNo()]));
9586 }
9587 
9588 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
9589 /// uses of other values produced by From.getNode() alone.  The Deleted
9590 /// vector is handled the same way as for ReplaceAllUsesWith.
9591 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
9592   // Handle the really simple, really trivial case efficiently.
9593   if (From == To) return;
9594 
9595   // Handle the simple, trivial, case efficiently.
9596   if (From.getNode()->getNumValues() == 1) {
9597     ReplaceAllUsesWith(From, To);
9598     return;
9599   }
9600 
9601   // Preserve Debug Info.
9602   transferDbgValues(From, To);
9603 
9604   // Iterate over just the existing users of From. See the comments in
9605   // the ReplaceAllUsesWith above.
9606   SDNode::use_iterator UI = From.getNode()->use_begin(),
9607                        UE = From.getNode()->use_end();
9608   RAUWUpdateListener Listener(*this, UI, UE);
9609   while (UI != UE) {
9610     SDNode *User = *UI;
9611     bool UserRemovedFromCSEMaps = false;
9612 
9613     // A user can appear in a use list multiple times, and when this
9614     // happens the uses are usually next to each other in the list.
9615     // To help reduce the number of CSE recomputations, process all
9616     // the uses of this user that we can find this way.
9617     do {
9618       SDUse &Use = UI.getUse();
9619 
9620       // Skip uses of different values from the same node.
9621       if (Use.getResNo() != From.getResNo()) {
9622         ++UI;
9623         continue;
9624       }
9625 
9626       // If this node hasn't been modified yet, it's still in the CSE maps,
9627       // so remove its old self from the CSE maps.
9628       if (!UserRemovedFromCSEMaps) {
9629         RemoveNodeFromCSEMaps(User);
9630         UserRemovedFromCSEMaps = true;
9631       }
9632 
9633       ++UI;
9634       Use.set(To);
9635       if (To->isDivergent() != From->isDivergent())
9636         updateDivergence(User);
9637     } while (UI != UE && *UI == User);
9638     // We are iterating over all uses of the From node, so if a use
9639     // doesn't use the specific value, no changes are made.
9640     if (!UserRemovedFromCSEMaps)
9641       continue;
9642 
9643     // Now that we have modified User, add it back to the CSE maps.  If it
9644     // already exists there, recursively merge the results together.
9645     AddModifiedNodeToCSEMaps(User);
9646   }
9647 
9648   // If we just RAUW'd the root, take note.
9649   if (From == getRoot())
9650     setRoot(To);
9651 }
9652 
9653 namespace {
9654 
9655   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
9656   /// to record information about a use.
9657   struct UseMemo {
9658     SDNode *User;
9659     unsigned Index;
9660     SDUse *Use;
9661   };
9662 
9663   /// operator< - Sort Memos by User.
9664   bool operator<(const UseMemo &L, const UseMemo &R) {
9665     return (intptr_t)L.User < (intptr_t)R.User;
9666   }
9667 
9668 } // end anonymous namespace
9669 
9670 bool SelectionDAG::calculateDivergence(SDNode *N) {
9671   if (TLI->isSDNodeAlwaysUniform(N)) {
9672     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
9673            "Conflicting divergence information!");
9674     return false;
9675   }
9676   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
9677     return true;
9678   for (auto &Op : N->ops()) {
9679     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
9680       return true;
9681   }
9682   return false;
9683 }
9684 
9685 void SelectionDAG::updateDivergence(SDNode *N) {
9686   SmallVector<SDNode *, 16> Worklist(1, N);
9687   do {
9688     N = Worklist.pop_back_val();
9689     bool IsDivergent = calculateDivergence(N);
9690     if (N->SDNodeBits.IsDivergent != IsDivergent) {
9691       N->SDNodeBits.IsDivergent = IsDivergent;
9692       llvm::append_range(Worklist, N->uses());
9693     }
9694   } while (!Worklist.empty());
9695 }
9696 
9697 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
9698   DenseMap<SDNode *, unsigned> Degree;
9699   Order.reserve(AllNodes.size());
9700   for (auto &N : allnodes()) {
9701     unsigned NOps = N.getNumOperands();
9702     Degree[&N] = NOps;
9703     if (0 == NOps)
9704       Order.push_back(&N);
9705   }
9706   for (size_t I = 0; I != Order.size(); ++I) {
9707     SDNode *N = Order[I];
9708     for (auto U : N->uses()) {
9709       unsigned &UnsortedOps = Degree[U];
9710       if (0 == --UnsortedOps)
9711         Order.push_back(U);
9712     }
9713   }
9714 }
9715 
9716 #ifndef NDEBUG
9717 void SelectionDAG::VerifyDAGDivergence() {
9718   std::vector<SDNode *> TopoOrder;
9719   CreateTopologicalOrder(TopoOrder);
9720   for (auto *N : TopoOrder) {
9721     assert(calculateDivergence(N) == N->isDivergent() &&
9722            "Divergence bit inconsistency detected");
9723   }
9724 }
9725 #endif
9726 
9727 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
9728 /// uses of other values produced by From.getNode() alone.  The same value
9729 /// may appear in both the From and To list.  The Deleted vector is
9730 /// handled the same way as for ReplaceAllUsesWith.
9731 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
9732                                               const SDValue *To,
9733                                               unsigned Num){
9734   // Handle the simple, trivial case efficiently.
9735   if (Num == 1)
9736     return ReplaceAllUsesOfValueWith(*From, *To);
9737 
9738   transferDbgValues(*From, *To);
9739 
9740   // Read up all the uses and make records of them. This helps
9741   // processing new uses that are introduced during the
9742   // replacement process.
9743   SmallVector<UseMemo, 4> Uses;
9744   for (unsigned i = 0; i != Num; ++i) {
9745     unsigned FromResNo = From[i].getResNo();
9746     SDNode *FromNode = From[i].getNode();
9747     for (SDNode::use_iterator UI = FromNode->use_begin(),
9748          E = FromNode->use_end(); UI != E; ++UI) {
9749       SDUse &Use = UI.getUse();
9750       if (Use.getResNo() == FromResNo) {
9751         UseMemo Memo = { *UI, i, &Use };
9752         Uses.push_back(Memo);
9753       }
9754     }
9755   }
9756 
9757   // Sort the uses, so that all the uses from a given User are together.
9758   llvm::sort(Uses);
9759 
9760   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
9761        UseIndex != UseIndexEnd; ) {
9762     // We know that this user uses some value of From.  If it is the right
9763     // value, update it.
9764     SDNode *User = Uses[UseIndex].User;
9765 
9766     // This node is about to morph, remove its old self from the CSE maps.
9767     RemoveNodeFromCSEMaps(User);
9768 
9769     // The Uses array is sorted, so all the uses for a given User
9770     // are next to each other in the list.
9771     // To help reduce the number of CSE recomputations, process all
9772     // the uses of this user that we can find this way.
9773     do {
9774       unsigned i = Uses[UseIndex].Index;
9775       SDUse &Use = *Uses[UseIndex].Use;
9776       ++UseIndex;
9777 
9778       Use.set(To[i]);
9779     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9780 
9781     // Now that we have modified User, add it back to the CSE maps.  If it
9782     // already exists there, recursively merge the results together.
9783     AddModifiedNodeToCSEMaps(User);
9784   }
9785 }
9786 
9787 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9788 /// based on their topological order. It returns the maximum id and a vector
9789 /// of the SDNodes* in assigned order by reference.
9790 unsigned SelectionDAG::AssignTopologicalOrder() {
9791   unsigned DAGSize = 0;
9792 
9793   // SortedPos tracks the progress of the algorithm. Nodes before it are
9794   // sorted, nodes after it are unsorted. When the algorithm completes
9795   // it is at the end of the list.
9796   allnodes_iterator SortedPos = allnodes_begin();
9797 
9798   // Visit all the nodes. Move nodes with no operands to the front of
9799   // the list immediately. Annotate nodes that do have operands with their
9800   // operand count. Before we do this, the Node Id fields of the nodes
9801   // may contain arbitrary values. After, the Node Id fields for nodes
9802   // before SortedPos will contain the topological sort index, and the
9803   // Node Id fields for nodes At SortedPos and after will contain the
9804   // count of outstanding operands.
9805   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
9806     checkForCycles(&N, this);
9807     unsigned Degree = N.getNumOperands();
9808     if (Degree == 0) {
9809       // A node with no uses, add it to the result array immediately.
9810       N.setNodeId(DAGSize++);
9811       allnodes_iterator Q(&N);
9812       if (Q != SortedPos)
9813         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9814       assert(SortedPos != AllNodes.end() && "Overran node list");
9815       ++SortedPos;
9816     } else {
9817       // Temporarily use the Node Id as scratch space for the degree count.
9818       N.setNodeId(Degree);
9819     }
9820   }
9821 
9822   // Visit all the nodes. As we iterate, move nodes into sorted order,
9823   // such that by the time the end is reached all nodes will be sorted.
9824   for (SDNode &Node : allnodes()) {
9825     SDNode *N = &Node;
9826     checkForCycles(N, this);
9827     // N is in sorted position, so all its uses have one less operand
9828     // that needs to be sorted.
9829     for (SDNode *P : N->uses()) {
9830       unsigned Degree = P->getNodeId();
9831       assert(Degree != 0 && "Invalid node degree");
9832       --Degree;
9833       if (Degree == 0) {
9834         // All of P's operands are sorted, so P may sorted now.
9835         P->setNodeId(DAGSize++);
9836         if (P->getIterator() != SortedPos)
9837           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9838         assert(SortedPos != AllNodes.end() && "Overran node list");
9839         ++SortedPos;
9840       } else {
9841         // Update P's outstanding operand count.
9842         P->setNodeId(Degree);
9843       }
9844     }
9845     if (Node.getIterator() == SortedPos) {
9846 #ifndef NDEBUG
9847       allnodes_iterator I(N);
9848       SDNode *S = &*++I;
9849       dbgs() << "Overran sorted position:\n";
9850       S->dumprFull(this); dbgs() << "\n";
9851       dbgs() << "Checking if this is due to cycles\n";
9852       checkForCycles(this, true);
9853 #endif
9854       llvm_unreachable(nullptr);
9855     }
9856   }
9857 
9858   assert(SortedPos == AllNodes.end() &&
9859          "Topological sort incomplete!");
9860   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9861          "First node in topological sort is not the entry token!");
9862   assert(AllNodes.front().getNodeId() == 0 &&
9863          "First node in topological sort has non-zero id!");
9864   assert(AllNodes.front().getNumOperands() == 0 &&
9865          "First node in topological sort has operands!");
9866   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9867          "Last node in topologic sort has unexpected id!");
9868   assert(AllNodes.back().use_empty() &&
9869          "Last node in topologic sort has users!");
9870   assert(DAGSize == allnodes_size() && "Node count mismatch!");
9871   return DAGSize;
9872 }
9873 
9874 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9875 /// value is produced by SD.
9876 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
9877   for (SDNode *SD : DB->getSDNodes()) {
9878     if (!SD)
9879       continue;
9880     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9881     SD->setHasDebugValue(true);
9882   }
9883   DbgInfo->add(DB, isParameter);
9884 }
9885 
9886 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
9887 
9888 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
9889                                                    SDValue NewMemOpChain) {
9890   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
9891   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
9892   // The new memory operation must have the same position as the old load in
9893   // terms of memory dependency. Create a TokenFactor for the old load and new
9894   // memory operation and update uses of the old load's output chain to use that
9895   // TokenFactor.
9896   if (OldChain == NewMemOpChain || OldChain.use_empty())
9897     return NewMemOpChain;
9898 
9899   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
9900                                 OldChain, NewMemOpChain);
9901   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9902   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
9903   return TokenFactor;
9904 }
9905 
9906 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9907                                                    SDValue NewMemOp) {
9908   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9909   SDValue OldChain = SDValue(OldLoad, 1);
9910   SDValue NewMemOpChain = NewMemOp.getValue(1);
9911   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
9912 }
9913 
9914 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9915                                                      Function **OutFunction) {
9916   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9917 
9918   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9919   auto *Module = MF->getFunction().getParent();
9920   auto *Function = Module->getFunction(Symbol);
9921 
9922   if (OutFunction != nullptr)
9923       *OutFunction = Function;
9924 
9925   if (Function != nullptr) {
9926     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9927     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9928   }
9929 
9930   std::string ErrorStr;
9931   raw_string_ostream ErrorFormatter(ErrorStr);
9932   ErrorFormatter << "Undefined external symbol ";
9933   ErrorFormatter << '"' << Symbol << '"';
9934   report_fatal_error(Twine(ErrorFormatter.str()));
9935 }
9936 
9937 //===----------------------------------------------------------------------===//
9938 //                              SDNode Class
9939 //===----------------------------------------------------------------------===//
9940 
9941 bool llvm::isNullConstant(SDValue V) {
9942   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9943   return Const != nullptr && Const->isZero();
9944 }
9945 
9946 bool llvm::isNullFPConstant(SDValue V) {
9947   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9948   return Const != nullptr && Const->isZero() && !Const->isNegative();
9949 }
9950 
9951 bool llvm::isAllOnesConstant(SDValue V) {
9952   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9953   return Const != nullptr && Const->isAllOnes();
9954 }
9955 
9956 bool llvm::isOneConstant(SDValue V) {
9957   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9958   return Const != nullptr && Const->isOne();
9959 }
9960 
9961 SDValue llvm::peekThroughBitcasts(SDValue V) {
9962   while (V.getOpcode() == ISD::BITCAST)
9963     V = V.getOperand(0);
9964   return V;
9965 }
9966 
9967 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9968   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9969     V = V.getOperand(0);
9970   return V;
9971 }
9972 
9973 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9974   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9975     V = V.getOperand(0);
9976   return V;
9977 }
9978 
9979 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9980   if (V.getOpcode() != ISD::XOR)
9981     return false;
9982   V = peekThroughBitcasts(V.getOperand(1));
9983   unsigned NumBits = V.getScalarValueSizeInBits();
9984   ConstantSDNode *C =
9985       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9986   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9987 }
9988 
9989 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9990                                           bool AllowTruncation) {
9991   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9992     return CN;
9993 
9994   // SplatVectors can truncate their operands. Ignore that case here unless
9995   // AllowTruncation is set.
9996   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
9997     EVT VecEltVT = N->getValueType(0).getVectorElementType();
9998     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9999       EVT CVT = CN->getValueType(0);
10000       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10001       if (AllowTruncation || CVT == VecEltVT)
10002         return CN;
10003     }
10004   }
10005 
10006   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10007     BitVector UndefElements;
10008     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10009 
10010     // BuildVectors can truncate their operands. Ignore that case here unless
10011     // AllowTruncation is set.
10012     if (CN && (UndefElements.none() || AllowUndefs)) {
10013       EVT CVT = CN->getValueType(0);
10014       EVT NSVT = N.getValueType().getScalarType();
10015       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10016       if (AllowTruncation || (CVT == NSVT))
10017         return CN;
10018     }
10019   }
10020 
10021   return nullptr;
10022 }
10023 
10024 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10025                                           bool AllowUndefs,
10026                                           bool AllowTruncation) {
10027   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10028     return CN;
10029 
10030   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10031     BitVector UndefElements;
10032     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10033 
10034     // BuildVectors can truncate their operands. Ignore that case here unless
10035     // AllowTruncation is set.
10036     if (CN && (UndefElements.none() || AllowUndefs)) {
10037       EVT CVT = CN->getValueType(0);
10038       EVT NSVT = N.getValueType().getScalarType();
10039       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10040       if (AllowTruncation || (CVT == NSVT))
10041         return CN;
10042     }
10043   }
10044 
10045   return nullptr;
10046 }
10047 
10048 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10049   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10050     return CN;
10051 
10052   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10053     BitVector UndefElements;
10054     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10055     if (CN && (UndefElements.none() || AllowUndefs))
10056       return CN;
10057   }
10058 
10059   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10060     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10061       return CN;
10062 
10063   return nullptr;
10064 }
10065 
10066 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10067                                               const APInt &DemandedElts,
10068                                               bool AllowUndefs) {
10069   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10070     return CN;
10071 
10072   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10073     BitVector UndefElements;
10074     ConstantFPSDNode *CN =
10075         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10076     if (CN && (UndefElements.none() || AllowUndefs))
10077       return CN;
10078   }
10079 
10080   return nullptr;
10081 }
10082 
10083 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10084   // TODO: may want to use peekThroughBitcast() here.
10085   ConstantSDNode *C =
10086       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10087   return C && C->isZero();
10088 }
10089 
10090 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10091   // TODO: may want to use peekThroughBitcast() here.
10092   unsigned BitWidth = N.getScalarValueSizeInBits();
10093   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10094   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
10095 }
10096 
10097 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10098   N = peekThroughBitcasts(N);
10099   unsigned BitWidth = N.getScalarValueSizeInBits();
10100   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10101   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10102 }
10103 
10104 HandleSDNode::~HandleSDNode() {
10105   DropOperands();
10106 }
10107 
10108 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10109                                          const DebugLoc &DL,
10110                                          const GlobalValue *GA, EVT VT,
10111                                          int64_t o, unsigned TF)
10112     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10113   TheGlobal = GA;
10114 }
10115 
10116 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10117                                          EVT VT, unsigned SrcAS,
10118                                          unsigned DestAS)
10119     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10120       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10121 
10122 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10123                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10124     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10125   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10126   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10127   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10128   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10129 
10130   // We check here that the size of the memory operand fits within the size of
10131   // the MMO. This is because the MMO might indicate only a possible address
10132   // range instead of specifying the affected memory addresses precisely.
10133   // TODO: Make MachineMemOperands aware of scalable vectors.
10134   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10135          "Size mismatch!");
10136 }
10137 
10138 /// Profile - Gather unique data for the node.
10139 ///
10140 void SDNode::Profile(FoldingSetNodeID &ID) const {
10141   AddNodeIDNode(ID, this);
10142 }
10143 
10144 namespace {
10145 
10146   struct EVTArray {
10147     std::vector<EVT> VTs;
10148 
10149     EVTArray() {
10150       VTs.reserve(MVT::VALUETYPE_SIZE);
10151       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10152         VTs.push_back(MVT((MVT::SimpleValueType)i));
10153     }
10154   };
10155 
10156 } // end anonymous namespace
10157 
10158 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
10159 static ManagedStatic<EVTArray> SimpleVTArray;
10160 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
10161 
10162 /// getValueTypeList - Return a pointer to the specified value type.
10163 ///
10164 const EVT *SDNode::getValueTypeList(EVT VT) {
10165   if (VT.isExtended()) {
10166     sys::SmartScopedLock<true> Lock(*VTMutex);
10167     return &(*EVTs->insert(VT).first);
10168   }
10169   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10170   return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
10171 }
10172 
10173 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10174 /// indicated value.  This method ignores uses of other values defined by this
10175 /// operation.
10176 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10177   assert(Value < getNumValues() && "Bad value!");
10178 
10179   // TODO: Only iterate over uses of a given value of the node
10180   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10181     if (UI.getUse().getResNo() == Value) {
10182       if (NUses == 0)
10183         return false;
10184       --NUses;
10185     }
10186   }
10187 
10188   // Found exactly the right number of uses?
10189   return NUses == 0;
10190 }
10191 
10192 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10193 /// value. This method ignores uses of other values defined by this operation.
10194 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10195   assert(Value < getNumValues() && "Bad value!");
10196 
10197   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10198     if (UI.getUse().getResNo() == Value)
10199       return true;
10200 
10201   return false;
10202 }
10203 
10204 /// isOnlyUserOf - Return true if this node is the only use of N.
10205 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10206   bool Seen = false;
10207   for (const SDNode *User : N->uses()) {
10208     if (User == this)
10209       Seen = true;
10210     else
10211       return false;
10212   }
10213 
10214   return Seen;
10215 }
10216 
10217 /// Return true if the only users of N are contained in Nodes.
10218 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10219   bool Seen = false;
10220   for (const SDNode *User : N->uses()) {
10221     if (llvm::is_contained(Nodes, User))
10222       Seen = true;
10223     else
10224       return false;
10225   }
10226 
10227   return Seen;
10228 }
10229 
10230 /// isOperand - Return true if this node is an operand of N.
10231 bool SDValue::isOperandOf(const SDNode *N) const {
10232   return is_contained(N->op_values(), *this);
10233 }
10234 
10235 bool SDNode::isOperandOf(const SDNode *N) const {
10236   return any_of(N->op_values(),
10237                 [this](SDValue Op) { return this == Op.getNode(); });
10238 }
10239 
10240 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10241 /// be a chain) reaches the specified operand without crossing any
10242 /// side-effecting instructions on any chain path.  In practice, this looks
10243 /// through token factors and non-volatile loads.  In order to remain efficient,
10244 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10245 ///
10246 /// Note that we only need to examine chains when we're searching for
10247 /// side-effects; SelectionDAG requires that all side-effects are represented
10248 /// by chains, even if another operand would force a specific ordering. This
10249 /// constraint is necessary to allow transformations like splitting loads.
10250 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10251                                              unsigned Depth) const {
10252   if (*this == Dest) return true;
10253 
10254   // Don't search too deeply, we just want to be able to see through
10255   // TokenFactor's etc.
10256   if (Depth == 0) return false;
10257 
10258   // If this is a token factor, all inputs to the TF happen in parallel.
10259   if (getOpcode() == ISD::TokenFactor) {
10260     // First, try a shallow search.
10261     if (is_contained((*this)->ops(), Dest)) {
10262       // We found the chain we want as an operand of this TokenFactor.
10263       // Essentially, we reach the chain without side-effects if we could
10264       // serialize the TokenFactor into a simple chain of operations with
10265       // Dest as the last operation. This is automatically true if the
10266       // chain has one use: there are no other ordering constraints.
10267       // If the chain has more than one use, we give up: some other
10268       // use of Dest might force a side-effect between Dest and the current
10269       // node.
10270       if (Dest.hasOneUse())
10271         return true;
10272     }
10273     // Next, try a deep search: check whether every operand of the TokenFactor
10274     // reaches Dest.
10275     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10276       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10277     });
10278   }
10279 
10280   // Loads don't have side effects, look through them.
10281   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10282     if (Ld->isUnordered())
10283       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10284   }
10285   return false;
10286 }
10287 
10288 bool SDNode::hasPredecessor(const SDNode *N) const {
10289   SmallPtrSet<const SDNode *, 32> Visited;
10290   SmallVector<const SDNode *, 16> Worklist;
10291   Worklist.push_back(this);
10292   return hasPredecessorHelper(N, Visited, Worklist);
10293 }
10294 
10295 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10296   this->Flags.intersectWith(Flags);
10297 }
10298 
10299 SDValue
10300 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10301                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10302                                   bool AllowPartials) {
10303   // The pattern must end in an extract from index 0.
10304   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10305       !isNullConstant(Extract->getOperand(1)))
10306     return SDValue();
10307 
10308   // Match against one of the candidate binary ops.
10309   SDValue Op = Extract->getOperand(0);
10310   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10311         return Op.getOpcode() == unsigned(BinOp);
10312       }))
10313     return SDValue();
10314 
10315   // Floating-point reductions may require relaxed constraints on the final step
10316   // of the reduction because they may reorder intermediate operations.
10317   unsigned CandidateBinOp = Op.getOpcode();
10318   if (Op.getValueType().isFloatingPoint()) {
10319     SDNodeFlags Flags = Op->getFlags();
10320     switch (CandidateBinOp) {
10321     case ISD::FADD:
10322       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10323         return SDValue();
10324       break;
10325     default:
10326       llvm_unreachable("Unhandled FP opcode for binop reduction");
10327     }
10328   }
10329 
10330   // Matching failed - attempt to see if we did enough stages that a partial
10331   // reduction from a subvector is possible.
10332   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
10333     if (!AllowPartials || !Op)
10334       return SDValue();
10335     EVT OpVT = Op.getValueType();
10336     EVT OpSVT = OpVT.getScalarType();
10337     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
10338     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
10339       return SDValue();
10340     BinOp = (ISD::NodeType)CandidateBinOp;
10341     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
10342                    getVectorIdxConstant(0, SDLoc(Op)));
10343   };
10344 
10345   // At each stage, we're looking for something that looks like:
10346   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
10347   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
10348   //                               i32 undef, i32 undef, i32 undef, i32 undef>
10349   // %a = binop <8 x i32> %op, %s
10350   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
10351   // we expect something like:
10352   // <4,5,6,7,u,u,u,u>
10353   // <2,3,u,u,u,u,u,u>
10354   // <1,u,u,u,u,u,u,u>
10355   // While a partial reduction match would be:
10356   // <2,3,u,u,u,u,u,u>
10357   // <1,u,u,u,u,u,u,u>
10358   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
10359   SDValue PrevOp;
10360   for (unsigned i = 0; i < Stages; ++i) {
10361     unsigned MaskEnd = (1 << i);
10362 
10363     if (Op.getOpcode() != CandidateBinOp)
10364       return PartialReduction(PrevOp, MaskEnd);
10365 
10366     SDValue Op0 = Op.getOperand(0);
10367     SDValue Op1 = Op.getOperand(1);
10368 
10369     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
10370     if (Shuffle) {
10371       Op = Op1;
10372     } else {
10373       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
10374       Op = Op0;
10375     }
10376 
10377     // The first operand of the shuffle should be the same as the other operand
10378     // of the binop.
10379     if (!Shuffle || Shuffle->getOperand(0) != Op)
10380       return PartialReduction(PrevOp, MaskEnd);
10381 
10382     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
10383     for (int Index = 0; Index < (int)MaskEnd; ++Index)
10384       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
10385         return PartialReduction(PrevOp, MaskEnd);
10386 
10387     PrevOp = Op;
10388   }
10389 
10390   // Handle subvector reductions, which tend to appear after the shuffle
10391   // reduction stages.
10392   while (Op.getOpcode() == CandidateBinOp) {
10393     unsigned NumElts = Op.getValueType().getVectorNumElements();
10394     SDValue Op0 = Op.getOperand(0);
10395     SDValue Op1 = Op.getOperand(1);
10396     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10397         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
10398         Op0.getOperand(0) != Op1.getOperand(0))
10399       break;
10400     SDValue Src = Op0.getOperand(0);
10401     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
10402     if (NumSrcElts != (2 * NumElts))
10403       break;
10404     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
10405           Op1.getConstantOperandAPInt(1) == NumElts) &&
10406         !(Op1.getConstantOperandAPInt(1) == 0 &&
10407           Op0.getConstantOperandAPInt(1) == NumElts))
10408       break;
10409     Op = Src;
10410   }
10411 
10412   BinOp = (ISD::NodeType)CandidateBinOp;
10413   return Op;
10414 }
10415 
10416 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
10417   assert(N->getNumValues() == 1 &&
10418          "Can't unroll a vector with multiple results!");
10419 
10420   EVT VT = N->getValueType(0);
10421   unsigned NE = VT.getVectorNumElements();
10422   EVT EltVT = VT.getVectorElementType();
10423   SDLoc dl(N);
10424 
10425   SmallVector<SDValue, 8> Scalars;
10426   SmallVector<SDValue, 4> Operands(N->getNumOperands());
10427 
10428   // If ResNE is 0, fully unroll the vector op.
10429   if (ResNE == 0)
10430     ResNE = NE;
10431   else if (NE > ResNE)
10432     NE = ResNE;
10433 
10434   unsigned i;
10435   for (i= 0; i != NE; ++i) {
10436     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
10437       SDValue Operand = N->getOperand(j);
10438       EVT OperandVT = Operand.getValueType();
10439       if (OperandVT.isVector()) {
10440         // A vector operand; extract a single element.
10441         EVT OperandEltVT = OperandVT.getVectorElementType();
10442         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
10443                               Operand, getVectorIdxConstant(i, dl));
10444       } else {
10445         // A scalar operand; just use it as is.
10446         Operands[j] = Operand;
10447       }
10448     }
10449 
10450     switch (N->getOpcode()) {
10451     default: {
10452       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
10453                                 N->getFlags()));
10454       break;
10455     }
10456     case ISD::VSELECT:
10457       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
10458       break;
10459     case ISD::SHL:
10460     case ISD::SRA:
10461     case ISD::SRL:
10462     case ISD::ROTL:
10463     case ISD::ROTR:
10464       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
10465                                getShiftAmountOperand(Operands[0].getValueType(),
10466                                                      Operands[1])));
10467       break;
10468     case ISD::SIGN_EXTEND_INREG: {
10469       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
10470       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
10471                                 Operands[0],
10472                                 getValueType(ExtVT)));
10473     }
10474     }
10475   }
10476 
10477   for (; i < ResNE; ++i)
10478     Scalars.push_back(getUNDEF(EltVT));
10479 
10480   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
10481   return getBuildVector(VecVT, dl, Scalars);
10482 }
10483 
10484 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
10485     SDNode *N, unsigned ResNE) {
10486   unsigned Opcode = N->getOpcode();
10487   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
10488           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
10489           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
10490          "Expected an overflow opcode");
10491 
10492   EVT ResVT = N->getValueType(0);
10493   EVT OvVT = N->getValueType(1);
10494   EVT ResEltVT = ResVT.getVectorElementType();
10495   EVT OvEltVT = OvVT.getVectorElementType();
10496   SDLoc dl(N);
10497 
10498   // If ResNE is 0, fully unroll the vector op.
10499   unsigned NE = ResVT.getVectorNumElements();
10500   if (ResNE == 0)
10501     ResNE = NE;
10502   else if (NE > ResNE)
10503     NE = ResNE;
10504 
10505   SmallVector<SDValue, 8> LHSScalars;
10506   SmallVector<SDValue, 8> RHSScalars;
10507   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
10508   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
10509 
10510   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
10511   SDVTList VTs = getVTList(ResEltVT, SVT);
10512   SmallVector<SDValue, 8> ResScalars;
10513   SmallVector<SDValue, 8> OvScalars;
10514   for (unsigned i = 0; i < NE; ++i) {
10515     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
10516     SDValue Ov =
10517         getSelect(dl, OvEltVT, Res.getValue(1),
10518                   getBoolConstant(true, dl, OvEltVT, ResVT),
10519                   getConstant(0, dl, OvEltVT));
10520 
10521     ResScalars.push_back(Res);
10522     OvScalars.push_back(Ov);
10523   }
10524 
10525   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
10526   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
10527 
10528   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
10529   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
10530   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
10531                         getBuildVector(NewOvVT, dl, OvScalars));
10532 }
10533 
10534 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
10535                                                   LoadSDNode *Base,
10536                                                   unsigned Bytes,
10537                                                   int Dist) const {
10538   if (LD->isVolatile() || Base->isVolatile())
10539     return false;
10540   // TODO: probably too restrictive for atomics, revisit
10541   if (!LD->isSimple())
10542     return false;
10543   if (LD->isIndexed() || Base->isIndexed())
10544     return false;
10545   if (LD->getChain() != Base->getChain())
10546     return false;
10547   EVT VT = LD->getValueType(0);
10548   if (VT.getSizeInBits() / 8 != Bytes)
10549     return false;
10550 
10551   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
10552   auto LocDecomp = BaseIndexOffset::match(LD, *this);
10553 
10554   int64_t Offset = 0;
10555   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
10556     return (Dist * Bytes == Offset);
10557   return false;
10558 }
10559 
10560 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
10561 /// if it cannot be inferred.
10562 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
10563   // If this is a GlobalAddress + cst, return the alignment.
10564   const GlobalValue *GV = nullptr;
10565   int64_t GVOffset = 0;
10566   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
10567     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
10568     KnownBits Known(PtrWidth);
10569     llvm::computeKnownBits(GV, Known, getDataLayout());
10570     unsigned AlignBits = Known.countMinTrailingZeros();
10571     if (AlignBits)
10572       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
10573   }
10574 
10575   // If this is a direct reference to a stack slot, use information about the
10576   // stack slot's alignment.
10577   int FrameIdx = INT_MIN;
10578   int64_t FrameOffset = 0;
10579   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
10580     FrameIdx = FI->getIndex();
10581   } else if (isBaseWithConstantOffset(Ptr) &&
10582              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
10583     // Handle FI+Cst
10584     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
10585     FrameOffset = Ptr.getConstantOperandVal(1);
10586   }
10587 
10588   if (FrameIdx != INT_MIN) {
10589     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
10590     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
10591   }
10592 
10593   return None;
10594 }
10595 
10596 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
10597 /// which is split (or expanded) into two not necessarily identical pieces.
10598 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
10599   // Currently all types are split in half.
10600   EVT LoVT, HiVT;
10601   if (!VT.isVector())
10602     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
10603   else
10604     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
10605 
10606   return std::make_pair(LoVT, HiVT);
10607 }
10608 
10609 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
10610 /// type, dependent on an enveloping VT that has been split into two identical
10611 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
10612 std::pair<EVT, EVT>
10613 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
10614                                        bool *HiIsEmpty) const {
10615   EVT EltTp = VT.getVectorElementType();
10616   // Examples:
10617   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
10618   //   custom VL=9  with enveloping VL=8/8 yields 8/1
10619   //   custom VL=10 with enveloping VL=8/8 yields 8/2
10620   //   etc.
10621   ElementCount VTNumElts = VT.getVectorElementCount();
10622   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
10623   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
10624          "Mixing fixed width and scalable vectors when enveloping a type");
10625   EVT LoVT, HiVT;
10626   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
10627     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10628     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
10629     *HiIsEmpty = false;
10630   } else {
10631     // Flag that hi type has zero storage size, but return split envelop type
10632     // (this would be easier if vector types with zero elements were allowed).
10633     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
10634     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
10635     *HiIsEmpty = true;
10636   }
10637   return std::make_pair(LoVT, HiVT);
10638 }
10639 
10640 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
10641 /// low/high part.
10642 std::pair<SDValue, SDValue>
10643 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
10644                           const EVT &HiVT) {
10645   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
10646          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
10647          "Splitting vector with an invalid mixture of fixed and scalable "
10648          "vector types");
10649   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
10650              N.getValueType().getVectorMinNumElements() &&
10651          "More vector elements requested than available!");
10652   SDValue Lo, Hi;
10653   Lo =
10654       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
10655   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
10656   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
10657   // IDX with the runtime scaling factor of the result vector type. For
10658   // fixed-width result vectors, that runtime scaling factor is 1.
10659   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
10660                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10661   return std::make_pair(Lo, Hi);
10662 }
10663 
10664 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
10665 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
10666   EVT VT = N.getValueType();
10667   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
10668                                 NextPowerOf2(VT.getVectorNumElements()));
10669   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
10670                  getVectorIdxConstant(0, DL));
10671 }
10672 
10673 void SelectionDAG::ExtractVectorElements(SDValue Op,
10674                                          SmallVectorImpl<SDValue> &Args,
10675                                          unsigned Start, unsigned Count,
10676                                          EVT EltVT) {
10677   EVT VT = Op.getValueType();
10678   if (Count == 0)
10679     Count = VT.getVectorNumElements();
10680   if (EltVT == EVT())
10681     EltVT = VT.getVectorElementType();
10682   SDLoc SL(Op);
10683   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
10684     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
10685                            getVectorIdxConstant(i, SL)));
10686   }
10687 }
10688 
10689 // getAddressSpace - Return the address space this GlobalAddress belongs to.
10690 unsigned GlobalAddressSDNode::getAddressSpace() const {
10691   return getGlobal()->getType()->getAddressSpace();
10692 }
10693 
10694 Type *ConstantPoolSDNode::getType() const {
10695   if (isMachineConstantPoolEntry())
10696     return Val.MachineCPVal->getType();
10697   return Val.ConstVal->getType();
10698 }
10699 
10700 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
10701                                         unsigned &SplatBitSize,
10702                                         bool &HasAnyUndefs,
10703                                         unsigned MinSplatBits,
10704                                         bool IsBigEndian) const {
10705   EVT VT = getValueType(0);
10706   assert(VT.isVector() && "Expected a vector type");
10707   unsigned VecWidth = VT.getSizeInBits();
10708   if (MinSplatBits > VecWidth)
10709     return false;
10710 
10711   // FIXME: The widths are based on this node's type, but build vectors can
10712   // truncate their operands.
10713   SplatValue = APInt(VecWidth, 0);
10714   SplatUndef = APInt(VecWidth, 0);
10715 
10716   // Get the bits. Bits with undefined values (when the corresponding element
10717   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
10718   // in SplatValue. If any of the values are not constant, give up and return
10719   // false.
10720   unsigned int NumOps = getNumOperands();
10721   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
10722   unsigned EltWidth = VT.getScalarSizeInBits();
10723 
10724   for (unsigned j = 0; j < NumOps; ++j) {
10725     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
10726     SDValue OpVal = getOperand(i);
10727     unsigned BitPos = j * EltWidth;
10728 
10729     if (OpVal.isUndef())
10730       SplatUndef.setBits(BitPos, BitPos + EltWidth);
10731     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
10732       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
10733     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
10734       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
10735     else
10736       return false;
10737   }
10738 
10739   // The build_vector is all constants or undefs. Find the smallest element
10740   // size that splats the vector.
10741   HasAnyUndefs = (SplatUndef != 0);
10742 
10743   // FIXME: This does not work for vectors with elements less than 8 bits.
10744   while (VecWidth > 8) {
10745     unsigned HalfSize = VecWidth / 2;
10746     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
10747     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
10748     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
10749     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
10750 
10751     // If the two halves do not match (ignoring undef bits), stop here.
10752     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
10753         MinSplatBits > HalfSize)
10754       break;
10755 
10756     SplatValue = HighValue | LowValue;
10757     SplatUndef = HighUndef & LowUndef;
10758 
10759     VecWidth = HalfSize;
10760   }
10761 
10762   SplatBitSize = VecWidth;
10763   return true;
10764 }
10765 
10766 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
10767                                          BitVector *UndefElements) const {
10768   unsigned NumOps = getNumOperands();
10769   if (UndefElements) {
10770     UndefElements->clear();
10771     UndefElements->resize(NumOps);
10772   }
10773   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10774   if (!DemandedElts)
10775     return SDValue();
10776   SDValue Splatted;
10777   for (unsigned i = 0; i != NumOps; ++i) {
10778     if (!DemandedElts[i])
10779       continue;
10780     SDValue Op = getOperand(i);
10781     if (Op.isUndef()) {
10782       if (UndefElements)
10783         (*UndefElements)[i] = true;
10784     } else if (!Splatted) {
10785       Splatted = Op;
10786     } else if (Splatted != Op) {
10787       return SDValue();
10788     }
10789   }
10790 
10791   if (!Splatted) {
10792     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10793     assert(getOperand(FirstDemandedIdx).isUndef() &&
10794            "Can only have a splat without a constant for all undefs.");
10795     return getOperand(FirstDemandedIdx);
10796   }
10797 
10798   return Splatted;
10799 }
10800 
10801 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10802   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10803   return getSplatValue(DemandedElts, UndefElements);
10804 }
10805 
10806 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
10807                                             SmallVectorImpl<SDValue> &Sequence,
10808                                             BitVector *UndefElements) const {
10809   unsigned NumOps = getNumOperands();
10810   Sequence.clear();
10811   if (UndefElements) {
10812     UndefElements->clear();
10813     UndefElements->resize(NumOps);
10814   }
10815   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
10816   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
10817     return false;
10818 
10819   // Set the undefs even if we don't find a sequence (like getSplatValue).
10820   if (UndefElements)
10821     for (unsigned I = 0; I != NumOps; ++I)
10822       if (DemandedElts[I] && getOperand(I).isUndef())
10823         (*UndefElements)[I] = true;
10824 
10825   // Iteratively widen the sequence length looking for repetitions.
10826   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
10827     Sequence.append(SeqLen, SDValue());
10828     for (unsigned I = 0; I != NumOps; ++I) {
10829       if (!DemandedElts[I])
10830         continue;
10831       SDValue &SeqOp = Sequence[I % SeqLen];
10832       SDValue Op = getOperand(I);
10833       if (Op.isUndef()) {
10834         if (!SeqOp)
10835           SeqOp = Op;
10836         continue;
10837       }
10838       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
10839         Sequence.clear();
10840         break;
10841       }
10842       SeqOp = Op;
10843     }
10844     if (!Sequence.empty())
10845       return true;
10846   }
10847 
10848   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
10849   return false;
10850 }
10851 
10852 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
10853                                             BitVector *UndefElements) const {
10854   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
10855   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
10856 }
10857 
10858 ConstantSDNode *
10859 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10860                                         BitVector *UndefElements) const {
10861   return dyn_cast_or_null<ConstantSDNode>(
10862       getSplatValue(DemandedElts, UndefElements));
10863 }
10864 
10865 ConstantSDNode *
10866 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10867   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10868 }
10869 
10870 ConstantFPSDNode *
10871 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10872                                           BitVector *UndefElements) const {
10873   return dyn_cast_or_null<ConstantFPSDNode>(
10874       getSplatValue(DemandedElts, UndefElements));
10875 }
10876 
10877 ConstantFPSDNode *
10878 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10879   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10880 }
10881 
10882 int32_t
10883 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10884                                                    uint32_t BitWidth) const {
10885   if (ConstantFPSDNode *CN =
10886           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10887     bool IsExact;
10888     APSInt IntVal(BitWidth);
10889     const APFloat &APF = CN->getValueAPF();
10890     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10891             APFloat::opOK ||
10892         !IsExact)
10893       return -1;
10894 
10895     return IntVal.exactLogBase2();
10896   }
10897   return -1;
10898 }
10899 
10900 bool BuildVectorSDNode::getConstantRawBits(
10901     bool IsLittleEndian, unsigned DstEltSizeInBits,
10902     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
10903   // Early-out if this contains anything but Undef/Constant/ConstantFP.
10904   if (!isConstant())
10905     return false;
10906 
10907   unsigned NumSrcOps = getNumOperands();
10908   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
10909   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10910          "Invalid bitcast scale");
10911 
10912   // Extract raw src bits.
10913   SmallVector<APInt> SrcBitElements(NumSrcOps,
10914                                     APInt::getNullValue(SrcEltSizeInBits));
10915   BitVector SrcUndeElements(NumSrcOps, false);
10916 
10917   for (unsigned I = 0; I != NumSrcOps; ++I) {
10918     SDValue Op = getOperand(I);
10919     if (Op.isUndef()) {
10920       SrcUndeElements.set(I);
10921       continue;
10922     }
10923     auto *CInt = dyn_cast<ConstantSDNode>(Op);
10924     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
10925     assert((CInt || CFP) && "Unknown constant");
10926     SrcBitElements[I] =
10927         CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits)
10928              : CFP->getValueAPF().bitcastToAPInt();
10929   }
10930 
10931   // Recast to dst width.
10932   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
10933                 SrcBitElements, UndefElements, SrcUndeElements);
10934   return true;
10935 }
10936 
10937 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
10938                                       unsigned DstEltSizeInBits,
10939                                       SmallVectorImpl<APInt> &DstBitElements,
10940                                       ArrayRef<APInt> SrcBitElements,
10941                                       BitVector &DstUndefElements,
10942                                       const BitVector &SrcUndefElements) {
10943   unsigned NumSrcOps = SrcBitElements.size();
10944   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
10945   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
10946          "Invalid bitcast scale");
10947   assert(NumSrcOps == SrcUndefElements.size() &&
10948          "Vector size mismatch");
10949 
10950   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
10951   DstUndefElements.clear();
10952   DstUndefElements.resize(NumDstOps, false);
10953   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
10954 
10955   // Concatenate src elements constant bits together into dst element.
10956   if (SrcEltSizeInBits <= DstEltSizeInBits) {
10957     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
10958     for (unsigned I = 0; I != NumDstOps; ++I) {
10959       DstUndefElements.set(I);
10960       APInt &DstBits = DstBitElements[I];
10961       for (unsigned J = 0; J != Scale; ++J) {
10962         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10963         if (SrcUndefElements[Idx])
10964           continue;
10965         DstUndefElements.reset(I);
10966         const APInt &SrcBits = SrcBitElements[Idx];
10967         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
10968                "Illegal constant bitwidths");
10969         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
10970       }
10971     }
10972     return;
10973   }
10974 
10975   // Split src element constant bits into dst elements.
10976   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
10977   for (unsigned I = 0; I != NumSrcOps; ++I) {
10978     if (SrcUndefElements[I]) {
10979       DstUndefElements.set(I * Scale, (I + 1) * Scale);
10980       continue;
10981     }
10982     const APInt &SrcBits = SrcBitElements[I];
10983     for (unsigned J = 0; J != Scale; ++J) {
10984       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
10985       APInt &DstBits = DstBitElements[Idx];
10986       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
10987     }
10988   }
10989 }
10990 
10991 bool BuildVectorSDNode::isConstant() const {
10992   for (const SDValue &Op : op_values()) {
10993     unsigned Opc = Op.getOpcode();
10994     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10995       return false;
10996   }
10997   return true;
10998 }
10999 
11000 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11001   // Find the first non-undef value in the shuffle mask.
11002   unsigned i, e;
11003   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11004     /* search */;
11005 
11006   // If all elements are undefined, this shuffle can be considered a splat
11007   // (although it should eventually get simplified away completely).
11008   if (i == e)
11009     return true;
11010 
11011   // Make sure all remaining elements are either undef or the same as the first
11012   // non-undef value.
11013   for (int Idx = Mask[i]; i != e; ++i)
11014     if (Mask[i] >= 0 && Mask[i] != Idx)
11015       return false;
11016   return true;
11017 }
11018 
11019 // Returns the SDNode if it is a constant integer BuildVector
11020 // or constant integer.
11021 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11022   if (isa<ConstantSDNode>(N))
11023     return N.getNode();
11024   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11025     return N.getNode();
11026   // Treat a GlobalAddress supporting constant offset folding as a
11027   // constant integer.
11028   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11029     if (GA->getOpcode() == ISD::GlobalAddress &&
11030         TLI->isOffsetFoldingLegal(GA))
11031       return GA;
11032   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11033       isa<ConstantSDNode>(N.getOperand(0)))
11034     return N.getNode();
11035   return nullptr;
11036 }
11037 
11038 // Returns the SDNode if it is a constant float BuildVector
11039 // or constant float.
11040 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11041   if (isa<ConstantFPSDNode>(N))
11042     return N.getNode();
11043 
11044   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11045     return N.getNode();
11046 
11047   return nullptr;
11048 }
11049 
11050 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11051   assert(!Node->OperandList && "Node already has operands");
11052   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11053          "too many operands to fit into SDNode");
11054   SDUse *Ops = OperandRecycler.allocate(
11055       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11056 
11057   bool IsDivergent = false;
11058   for (unsigned I = 0; I != Vals.size(); ++I) {
11059     Ops[I].setUser(Node);
11060     Ops[I].setInitial(Vals[I]);
11061     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11062       IsDivergent |= Ops[I].getNode()->isDivergent();
11063   }
11064   Node->NumOperands = Vals.size();
11065   Node->OperandList = Ops;
11066   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11067     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11068     Node->SDNodeBits.IsDivergent = IsDivergent;
11069   }
11070   checkForCycles(Node);
11071 }
11072 
11073 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11074                                      SmallVectorImpl<SDValue> &Vals) {
11075   size_t Limit = SDNode::getMaxNumOperands();
11076   while (Vals.size() > Limit) {
11077     unsigned SliceIdx = Vals.size() - Limit;
11078     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11079     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11080     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11081     Vals.emplace_back(NewTF);
11082   }
11083   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11084 }
11085 
11086 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11087                                         EVT VT, SDNodeFlags Flags) {
11088   switch (Opcode) {
11089   default:
11090     return SDValue();
11091   case ISD::ADD:
11092   case ISD::OR:
11093   case ISD::XOR:
11094   case ISD::UMAX:
11095     return getConstant(0, DL, VT);
11096   case ISD::MUL:
11097     return getConstant(1, DL, VT);
11098   case ISD::AND:
11099   case ISD::UMIN:
11100     return getAllOnesConstant(DL, VT);
11101   case ISD::SMAX:
11102     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11103   case ISD::SMIN:
11104     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11105   case ISD::FADD:
11106     return getConstantFP(-0.0, DL, VT);
11107   case ISD::FMUL:
11108     return getConstantFP(1.0, DL, VT);
11109   case ISD::FMINNUM:
11110   case ISD::FMAXNUM: {
11111     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11112     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11113     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11114                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11115                         APFloat::getLargest(Semantics);
11116     if (Opcode == ISD::FMAXNUM)
11117       NeutralAF.changeSign();
11118 
11119     return getConstantFP(NeutralAF, DL, VT);
11120   }
11121   }
11122 }
11123 
11124 #ifndef NDEBUG
11125 static void checkForCyclesHelper(const SDNode *N,
11126                                  SmallPtrSetImpl<const SDNode*> &Visited,
11127                                  SmallPtrSetImpl<const SDNode*> &Checked,
11128                                  const llvm::SelectionDAG *DAG) {
11129   // If this node has already been checked, don't check it again.
11130   if (Checked.count(N))
11131     return;
11132 
11133   // If a node has already been visited on this depth-first walk, reject it as
11134   // a cycle.
11135   if (!Visited.insert(N).second) {
11136     errs() << "Detected cycle in SelectionDAG\n";
11137     dbgs() << "Offending node:\n";
11138     N->dumprFull(DAG); dbgs() << "\n";
11139     abort();
11140   }
11141 
11142   for (const SDValue &Op : N->op_values())
11143     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11144 
11145   Checked.insert(N);
11146   Visited.erase(N);
11147 }
11148 #endif
11149 
11150 void llvm::checkForCycles(const llvm::SDNode *N,
11151                           const llvm::SelectionDAG *DAG,
11152                           bool force) {
11153 #ifndef NDEBUG
11154   bool check = force;
11155 #ifdef EXPENSIVE_CHECKS
11156   check = true;
11157 #endif  // EXPENSIVE_CHECKS
11158   if (check) {
11159     assert(N && "Checking nonexistent SDNode");
11160     SmallPtrSet<const SDNode*, 32> visited;
11161     SmallPtrSet<const SDNode*, 32> checked;
11162     checkForCyclesHelper(N, visited, checked, DAG);
11163   }
11164 #endif  // !NDEBUG
11165 }
11166 
11167 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11168   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11169 }
11170