1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 410 case ISD::VPSD: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 break; 420 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 421 #define VP_PROPERTY_BINARYOP return true; 422 #define END_REGISTER_VP_SDNODE(VPSD) break; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 return false; 426 } 427 428 bool ISD::isVPReduction(unsigned Opcode) { 429 switch (Opcode) { 430 default: 431 break; 432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 433 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 434 #define END_REGISTER_VP_SDNODE(VPSD) break; 435 #include "llvm/IR/VPIntrinsics.def" 436 } 437 return false; 438 } 439 440 /// The operand position of the vector mask. 441 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 442 switch (Opcode) { 443 default: 444 return None; 445 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 446 case ISD::VPSD: \ 447 return MASKPOS; 448 #include "llvm/IR/VPIntrinsics.def" 449 } 450 } 451 452 /// The operand position of the explicit vector length parameter. 453 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 454 switch (Opcode) { 455 default: 456 return None; 457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 458 case ISD::VPSD: \ 459 return EVLPOS; 460 #include "llvm/IR/VPIntrinsics.def" 461 } 462 } 463 464 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 465 switch (ExtType) { 466 case ISD::EXTLOAD: 467 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 468 case ISD::SEXTLOAD: 469 return ISD::SIGN_EXTEND; 470 case ISD::ZEXTLOAD: 471 return ISD::ZERO_EXTEND; 472 default: 473 break; 474 } 475 476 llvm_unreachable("Invalid LoadExtType"); 477 } 478 479 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 480 // To perform this operation, we just need to swap the L and G bits of the 481 // operation. 482 unsigned OldL = (Operation >> 2) & 1; 483 unsigned OldG = (Operation >> 1) & 1; 484 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 485 (OldL << 1) | // New G bit 486 (OldG << 2)); // New L bit. 487 } 488 489 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 490 unsigned Operation = Op; 491 if (isIntegerLike) 492 Operation ^= 7; // Flip L, G, E bits, but not U. 493 else 494 Operation ^= 15; // Flip all of the condition bits. 495 496 if (Operation > ISD::SETTRUE2) 497 Operation &= ~8; // Don't let N and U bits get set. 498 499 return ISD::CondCode(Operation); 500 } 501 502 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 503 return getSetCCInverseImpl(Op, Type.isInteger()); 504 } 505 506 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 507 bool isIntegerLike) { 508 return getSetCCInverseImpl(Op, isIntegerLike); 509 } 510 511 /// For an integer comparison, return 1 if the comparison is a signed operation 512 /// and 2 if the result is an unsigned comparison. Return zero if the operation 513 /// does not depend on the sign of the input (setne and seteq). 514 static int isSignedOp(ISD::CondCode Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Illegal integer setcc operation!"); 517 case ISD::SETEQ: 518 case ISD::SETNE: return 0; 519 case ISD::SETLT: 520 case ISD::SETLE: 521 case ISD::SETGT: 522 case ISD::SETGE: return 1; 523 case ISD::SETULT: 524 case ISD::SETULE: 525 case ISD::SETUGT: 526 case ISD::SETUGE: return 2; 527 } 528 } 529 530 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 531 EVT Type) { 532 bool IsInteger = Type.isInteger(); 533 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 534 // Cannot fold a signed integer setcc with an unsigned integer setcc. 535 return ISD::SETCC_INVALID; 536 537 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 538 539 // If the N and U bits get set, then the resultant comparison DOES suddenly 540 // care about orderedness, and it is true when ordered. 541 if (Op > ISD::SETTRUE2) 542 Op &= ~16; // Clear the U bit if the N bit is set. 543 544 // Canonicalize illegal integer setcc's. 545 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 546 Op = ISD::SETNE; 547 548 return ISD::CondCode(Op); 549 } 550 551 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 552 EVT Type) { 553 bool IsInteger = Type.isInteger(); 554 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 555 // Cannot fold a signed setcc with an unsigned setcc. 556 return ISD::SETCC_INVALID; 557 558 // Combine all of the condition bits. 559 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 560 561 // Canonicalize illegal integer setcc's. 562 if (IsInteger) { 563 switch (Result) { 564 default: break; 565 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 566 case ISD::SETOEQ: // SETEQ & SETU[LG]E 567 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 568 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 569 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 570 } 571 } 572 573 return Result; 574 } 575 576 //===----------------------------------------------------------------------===// 577 // SDNode Profile Support 578 //===----------------------------------------------------------------------===// 579 580 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 581 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 582 ID.AddInteger(OpC); 583 } 584 585 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 586 /// solely with their pointer. 587 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 588 ID.AddPointer(VTList.VTs); 589 } 590 591 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 592 static void AddNodeIDOperands(FoldingSetNodeID &ID, 593 ArrayRef<SDValue> Ops) { 594 for (auto& Op : Ops) { 595 ID.AddPointer(Op.getNode()); 596 ID.AddInteger(Op.getResNo()); 597 } 598 } 599 600 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 601 static void AddNodeIDOperands(FoldingSetNodeID &ID, 602 ArrayRef<SDUse> Ops) { 603 for (auto& Op : Ops) { 604 ID.AddPointer(Op.getNode()); 605 ID.AddInteger(Op.getResNo()); 606 } 607 } 608 609 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 610 SDVTList VTList, ArrayRef<SDValue> OpList) { 611 AddNodeIDOpcode(ID, OpC); 612 AddNodeIDValueTypes(ID, VTList); 613 AddNodeIDOperands(ID, OpList); 614 } 615 616 /// If this is an SDNode with special info, add this info to the NodeID data. 617 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 618 switch (N->getOpcode()) { 619 case ISD::TargetExternalSymbol: 620 case ISD::ExternalSymbol: 621 case ISD::MCSymbol: 622 llvm_unreachable("Should only be used on nodes with operands"); 623 default: break; // Normal nodes don't need extra info. 624 case ISD::TargetConstant: 625 case ISD::Constant: { 626 const ConstantSDNode *C = cast<ConstantSDNode>(N); 627 ID.AddPointer(C->getConstantIntValue()); 628 ID.AddBoolean(C->isOpaque()); 629 break; 630 } 631 case ISD::TargetConstantFP: 632 case ISD::ConstantFP: 633 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 634 break; 635 case ISD::TargetGlobalAddress: 636 case ISD::GlobalAddress: 637 case ISD::TargetGlobalTLSAddress: 638 case ISD::GlobalTLSAddress: { 639 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 640 ID.AddPointer(GA->getGlobal()); 641 ID.AddInteger(GA->getOffset()); 642 ID.AddInteger(GA->getTargetFlags()); 643 break; 644 } 645 case ISD::BasicBlock: 646 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 647 break; 648 case ISD::Register: 649 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 650 break; 651 case ISD::RegisterMask: 652 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 653 break; 654 case ISD::SRCVALUE: 655 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 656 break; 657 case ISD::FrameIndex: 658 case ISD::TargetFrameIndex: 659 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 660 break; 661 case ISD::LIFETIME_START: 662 case ISD::LIFETIME_END: 663 if (cast<LifetimeSDNode>(N)->hasOffset()) { 664 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 665 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 666 } 667 break; 668 case ISD::PSEUDO_PROBE: 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 670 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 671 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 672 break; 673 case ISD::JumpTable: 674 case ISD::TargetJumpTable: 675 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 676 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 677 break; 678 case ISD::ConstantPool: 679 case ISD::TargetConstantPool: { 680 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 681 ID.AddInteger(CP->getAlign().value()); 682 ID.AddInteger(CP->getOffset()); 683 if (CP->isMachineConstantPoolEntry()) 684 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 685 else 686 ID.AddPointer(CP->getConstVal()); 687 ID.AddInteger(CP->getTargetFlags()); 688 break; 689 } 690 case ISD::TargetIndex: { 691 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 692 ID.AddInteger(TI->getIndex()); 693 ID.AddInteger(TI->getOffset()); 694 ID.AddInteger(TI->getTargetFlags()); 695 break; 696 } 697 case ISD::LOAD: { 698 const LoadSDNode *LD = cast<LoadSDNode>(N); 699 ID.AddInteger(LD->getMemoryVT().getRawBits()); 700 ID.AddInteger(LD->getRawSubclassData()); 701 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 702 break; 703 } 704 case ISD::STORE: { 705 const StoreSDNode *ST = cast<StoreSDNode>(N); 706 ID.AddInteger(ST->getMemoryVT().getRawBits()); 707 ID.AddInteger(ST->getRawSubclassData()); 708 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 709 break; 710 } 711 case ISD::VP_LOAD: { 712 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 713 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 714 ID.AddInteger(ELD->getRawSubclassData()); 715 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 716 break; 717 } 718 case ISD::VP_STORE: { 719 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 720 ID.AddInteger(EST->getMemoryVT().getRawBits()); 721 ID.AddInteger(EST->getRawSubclassData()); 722 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 723 break; 724 } 725 case ISD::VP_GATHER: { 726 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 727 ID.AddInteger(EG->getMemoryVT().getRawBits()); 728 ID.AddInteger(EG->getRawSubclassData()); 729 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 730 break; 731 } 732 case ISD::VP_SCATTER: { 733 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 734 ID.AddInteger(ES->getMemoryVT().getRawBits()); 735 ID.AddInteger(ES->getRawSubclassData()); 736 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 737 break; 738 } 739 case ISD::MLOAD: { 740 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 741 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 742 ID.AddInteger(MLD->getRawSubclassData()); 743 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 744 break; 745 } 746 case ISD::MSTORE: { 747 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 748 ID.AddInteger(MST->getMemoryVT().getRawBits()); 749 ID.AddInteger(MST->getRawSubclassData()); 750 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 751 break; 752 } 753 case ISD::MGATHER: { 754 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 755 ID.AddInteger(MG->getMemoryVT().getRawBits()); 756 ID.AddInteger(MG->getRawSubclassData()); 757 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 758 break; 759 } 760 case ISD::MSCATTER: { 761 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 762 ID.AddInteger(MS->getMemoryVT().getRawBits()); 763 ID.AddInteger(MS->getRawSubclassData()); 764 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 765 break; 766 } 767 case ISD::ATOMIC_CMP_SWAP: 768 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 769 case ISD::ATOMIC_SWAP: 770 case ISD::ATOMIC_LOAD_ADD: 771 case ISD::ATOMIC_LOAD_SUB: 772 case ISD::ATOMIC_LOAD_AND: 773 case ISD::ATOMIC_LOAD_CLR: 774 case ISD::ATOMIC_LOAD_OR: 775 case ISD::ATOMIC_LOAD_XOR: 776 case ISD::ATOMIC_LOAD_NAND: 777 case ISD::ATOMIC_LOAD_MIN: 778 case ISD::ATOMIC_LOAD_MAX: 779 case ISD::ATOMIC_LOAD_UMIN: 780 case ISD::ATOMIC_LOAD_UMAX: 781 case ISD::ATOMIC_LOAD: 782 case ISD::ATOMIC_STORE: { 783 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 784 ID.AddInteger(AT->getMemoryVT().getRawBits()); 785 ID.AddInteger(AT->getRawSubclassData()); 786 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 787 break; 788 } 789 case ISD::PREFETCH: { 790 const MemSDNode *PF = cast<MemSDNode>(N); 791 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 792 break; 793 } 794 case ISD::VECTOR_SHUFFLE: { 795 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 796 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 797 i != e; ++i) 798 ID.AddInteger(SVN->getMaskElt(i)); 799 break; 800 } 801 case ISD::TargetBlockAddress: 802 case ISD::BlockAddress: { 803 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 804 ID.AddPointer(BA->getBlockAddress()); 805 ID.AddInteger(BA->getOffset()); 806 ID.AddInteger(BA->getTargetFlags()); 807 break; 808 } 809 } // end switch (N->getOpcode()) 810 811 // Target specific memory nodes could also have address spaces to check. 812 if (N->isTargetMemoryOpcode()) 813 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 814 } 815 816 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 817 /// data. 818 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 819 AddNodeIDOpcode(ID, N->getOpcode()); 820 // Add the return value info. 821 AddNodeIDValueTypes(ID, N->getVTList()); 822 // Add the operand info. 823 AddNodeIDOperands(ID, N->ops()); 824 825 // Handle SDNode leafs with special info. 826 AddNodeIDCustom(ID, N); 827 } 828 829 //===----------------------------------------------------------------------===// 830 // SelectionDAG Class 831 //===----------------------------------------------------------------------===// 832 833 /// doNotCSE - Return true if CSE should not be performed for this node. 834 static bool doNotCSE(SDNode *N) { 835 if (N->getValueType(0) == MVT::Glue) 836 return true; // Never CSE anything that produces a flag. 837 838 switch (N->getOpcode()) { 839 default: break; 840 case ISD::HANDLENODE: 841 case ISD::EH_LABEL: 842 return true; // Never CSE these nodes. 843 } 844 845 // Check that remaining values produced are not flags. 846 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 847 if (N->getValueType(i) == MVT::Glue) 848 return true; // Never CSE anything that produces a flag. 849 850 return false; 851 } 852 853 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 854 /// SelectionDAG. 855 void SelectionDAG::RemoveDeadNodes() { 856 // Create a dummy node (which is not added to allnodes), that adds a reference 857 // to the root node, preventing it from being deleted. 858 HandleSDNode Dummy(getRoot()); 859 860 SmallVector<SDNode*, 128> DeadNodes; 861 862 // Add all obviously-dead nodes to the DeadNodes worklist. 863 for (SDNode &Node : allnodes()) 864 if (Node.use_empty()) 865 DeadNodes.push_back(&Node); 866 867 RemoveDeadNodes(DeadNodes); 868 869 // If the root changed (e.g. it was a dead load, update the root). 870 setRoot(Dummy.getValue()); 871 } 872 873 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 874 /// given list, and any nodes that become unreachable as a result. 875 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 876 877 // Process the worklist, deleting the nodes and adding their uses to the 878 // worklist. 879 while (!DeadNodes.empty()) { 880 SDNode *N = DeadNodes.pop_back_val(); 881 // Skip to next node if we've already managed to delete the node. This could 882 // happen if replacing a node causes a node previously added to the node to 883 // be deleted. 884 if (N->getOpcode() == ISD::DELETED_NODE) 885 continue; 886 887 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 888 DUL->NodeDeleted(N, nullptr); 889 890 // Take the node out of the appropriate CSE map. 891 RemoveNodeFromCSEMaps(N); 892 893 // Next, brutally remove the operand list. This is safe to do, as there are 894 // no cycles in the graph. 895 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 896 SDUse &Use = *I++; 897 SDNode *Operand = Use.getNode(); 898 Use.set(SDValue()); 899 900 // Now that we removed this operand, see if there are no uses of it left. 901 if (Operand->use_empty()) 902 DeadNodes.push_back(Operand); 903 } 904 905 DeallocateNode(N); 906 } 907 } 908 909 void SelectionDAG::RemoveDeadNode(SDNode *N){ 910 SmallVector<SDNode*, 16> DeadNodes(1, N); 911 912 // Create a dummy node that adds a reference to the root node, preventing 913 // it from being deleted. (This matters if the root is an operand of the 914 // dead node.) 915 HandleSDNode Dummy(getRoot()); 916 917 RemoveDeadNodes(DeadNodes); 918 } 919 920 void SelectionDAG::DeleteNode(SDNode *N) { 921 // First take this out of the appropriate CSE map. 922 RemoveNodeFromCSEMaps(N); 923 924 // Finally, remove uses due to operands of this node, remove from the 925 // AllNodes list, and delete the node. 926 DeleteNodeNotInCSEMaps(N); 927 } 928 929 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 930 assert(N->getIterator() != AllNodes.begin() && 931 "Cannot delete the entry node!"); 932 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 933 934 // Drop all of the operands and decrement used node's use counts. 935 N->DropOperands(); 936 937 DeallocateNode(N); 938 } 939 940 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 941 assert(!(V->isVariadic() && isParameter)); 942 if (isParameter) 943 ByvalParmDbgValues.push_back(V); 944 else 945 DbgValues.push_back(V); 946 for (const SDNode *Node : V->getSDNodes()) 947 if (Node) 948 DbgValMap[Node].push_back(V); 949 } 950 951 void SDDbgInfo::erase(const SDNode *Node) { 952 DbgValMapType::iterator I = DbgValMap.find(Node); 953 if (I == DbgValMap.end()) 954 return; 955 for (auto &Val: I->second) 956 Val->setIsInvalidated(); 957 DbgValMap.erase(I); 958 } 959 960 void SelectionDAG::DeallocateNode(SDNode *N) { 961 // If we have operands, deallocate them. 962 removeOperands(N); 963 964 NodeAllocator.Deallocate(AllNodes.remove(N)); 965 966 // Set the opcode to DELETED_NODE to help catch bugs when node 967 // memory is reallocated. 968 // FIXME: There are places in SDag that have grown a dependency on the opcode 969 // value in the released node. 970 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 971 N->NodeType = ISD::DELETED_NODE; 972 973 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 974 // them and forget about that node. 975 DbgInfo->erase(N); 976 } 977 978 #ifndef NDEBUG 979 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 980 static void VerifySDNode(SDNode *N) { 981 switch (N->getOpcode()) { 982 default: 983 break; 984 case ISD::BUILD_PAIR: { 985 EVT VT = N->getValueType(0); 986 assert(N->getNumValues() == 1 && "Too many results!"); 987 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 988 "Wrong return type!"); 989 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 990 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 991 "Mismatched operand types!"); 992 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 993 "Wrong operand type!"); 994 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 995 "Wrong return type size"); 996 break; 997 } 998 case ISD::BUILD_VECTOR: { 999 assert(N->getNumValues() == 1 && "Too many results!"); 1000 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1001 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1002 "Wrong number of operands!"); 1003 EVT EltVT = N->getValueType(0).getVectorElementType(); 1004 for (const SDUse &Op : N->ops()) { 1005 assert((Op.getValueType() == EltVT || 1006 (EltVT.isInteger() && Op.getValueType().isInteger() && 1007 EltVT.bitsLE(Op.getValueType()))) && 1008 "Wrong operand type!"); 1009 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1010 "Operands must all have the same type"); 1011 } 1012 break; 1013 } 1014 } 1015 } 1016 #endif // NDEBUG 1017 1018 /// Insert a newly allocated node into the DAG. 1019 /// 1020 /// Handles insertion into the all nodes list and CSE map, as well as 1021 /// verification and other common operations when a new node is allocated. 1022 void SelectionDAG::InsertNode(SDNode *N) { 1023 AllNodes.push_back(N); 1024 #ifndef NDEBUG 1025 N->PersistentId = NextPersistentId++; 1026 VerifySDNode(N); 1027 #endif 1028 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1029 DUL->NodeInserted(N); 1030 } 1031 1032 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1033 /// correspond to it. This is useful when we're about to delete or repurpose 1034 /// the node. We don't want future request for structurally identical nodes 1035 /// to return N anymore. 1036 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1037 bool Erased = false; 1038 switch (N->getOpcode()) { 1039 case ISD::HANDLENODE: return false; // noop. 1040 case ISD::CONDCODE: 1041 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1042 "Cond code doesn't exist!"); 1043 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1044 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1045 break; 1046 case ISD::ExternalSymbol: 1047 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1048 break; 1049 case ISD::TargetExternalSymbol: { 1050 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1051 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1052 ESN->getSymbol(), ESN->getTargetFlags())); 1053 break; 1054 } 1055 case ISD::MCSymbol: { 1056 auto *MCSN = cast<MCSymbolSDNode>(N); 1057 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1058 break; 1059 } 1060 case ISD::VALUETYPE: { 1061 EVT VT = cast<VTSDNode>(N)->getVT(); 1062 if (VT.isExtended()) { 1063 Erased = ExtendedValueTypeNodes.erase(VT); 1064 } else { 1065 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1066 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1067 } 1068 break; 1069 } 1070 default: 1071 // Remove it from the CSE Map. 1072 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1073 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1074 Erased = CSEMap.RemoveNode(N); 1075 break; 1076 } 1077 #ifndef NDEBUG 1078 // Verify that the node was actually in one of the CSE maps, unless it has a 1079 // flag result (which cannot be CSE'd) or is one of the special cases that are 1080 // not subject to CSE. 1081 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1082 !N->isMachineOpcode() && !doNotCSE(N)) { 1083 N->dump(this); 1084 dbgs() << "\n"; 1085 llvm_unreachable("Node is not in map!"); 1086 } 1087 #endif 1088 return Erased; 1089 } 1090 1091 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1092 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1093 /// node already exists, in which case transfer all its users to the existing 1094 /// node. This transfer can potentially trigger recursive merging. 1095 void 1096 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1097 // For node types that aren't CSE'd, just act as if no identical node 1098 // already exists. 1099 if (!doNotCSE(N)) { 1100 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1101 if (Existing != N) { 1102 // If there was already an existing matching node, use ReplaceAllUsesWith 1103 // to replace the dead one with the existing one. This can cause 1104 // recursive merging of other unrelated nodes down the line. 1105 ReplaceAllUsesWith(N, Existing); 1106 1107 // N is now dead. Inform the listeners and delete it. 1108 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1109 DUL->NodeDeleted(N, Existing); 1110 DeleteNodeNotInCSEMaps(N); 1111 return; 1112 } 1113 } 1114 1115 // If the node doesn't already exist, we updated it. Inform listeners. 1116 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1117 DUL->NodeUpdated(N); 1118 } 1119 1120 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1121 /// were replaced with those specified. If this node is never memoized, 1122 /// return null, otherwise return a pointer to the slot it would take. If a 1123 /// node already exists with these operands, the slot will be non-null. 1124 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1125 void *&InsertPos) { 1126 if (doNotCSE(N)) 1127 return nullptr; 1128 1129 SDValue Ops[] = { Op }; 1130 FoldingSetNodeID ID; 1131 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1132 AddNodeIDCustom(ID, N); 1133 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1134 if (Node) 1135 Node->intersectFlagsWith(N->getFlags()); 1136 return Node; 1137 } 1138 1139 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1140 /// were replaced with those specified. If this node is never memoized, 1141 /// return null, otherwise return a pointer to the slot it would take. If a 1142 /// node already exists with these operands, the slot will be non-null. 1143 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1144 SDValue Op1, SDValue Op2, 1145 void *&InsertPos) { 1146 if (doNotCSE(N)) 1147 return nullptr; 1148 1149 SDValue Ops[] = { Op1, Op2 }; 1150 FoldingSetNodeID ID; 1151 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1152 AddNodeIDCustom(ID, N); 1153 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1154 if (Node) 1155 Node->intersectFlagsWith(N->getFlags()); 1156 return Node; 1157 } 1158 1159 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1160 /// were replaced with those specified. If this node is never memoized, 1161 /// return null, otherwise return a pointer to the slot it would take. If a 1162 /// node already exists with these operands, the slot will be non-null. 1163 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1164 void *&InsertPos) { 1165 if (doNotCSE(N)) 1166 return nullptr; 1167 1168 FoldingSetNodeID ID; 1169 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1170 AddNodeIDCustom(ID, N); 1171 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1172 if (Node) 1173 Node->intersectFlagsWith(N->getFlags()); 1174 return Node; 1175 } 1176 1177 Align SelectionDAG::getEVTAlign(EVT VT) const { 1178 Type *Ty = VT == MVT::iPTR ? 1179 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1180 VT.getTypeForEVT(*getContext()); 1181 1182 return getDataLayout().getABITypeAlign(Ty); 1183 } 1184 1185 // EntryNode could meaningfully have debug info if we can find it... 1186 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1187 : TM(tm), OptLevel(OL), 1188 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1189 Root(getEntryNode()) { 1190 InsertNode(&EntryNode); 1191 DbgInfo = new SDDbgInfo(); 1192 } 1193 1194 void SelectionDAG::init(MachineFunction &NewMF, 1195 OptimizationRemarkEmitter &NewORE, 1196 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1197 LegacyDivergenceAnalysis * Divergence, 1198 ProfileSummaryInfo *PSIin, 1199 BlockFrequencyInfo *BFIin) { 1200 MF = &NewMF; 1201 SDAGISelPass = PassPtr; 1202 ORE = &NewORE; 1203 TLI = getSubtarget().getTargetLowering(); 1204 TSI = getSubtarget().getSelectionDAGInfo(); 1205 LibInfo = LibraryInfo; 1206 Context = &MF->getFunction().getContext(); 1207 DA = Divergence; 1208 PSI = PSIin; 1209 BFI = BFIin; 1210 } 1211 1212 SelectionDAG::~SelectionDAG() { 1213 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1214 allnodes_clear(); 1215 OperandRecycler.clear(OperandAllocator); 1216 delete DbgInfo; 1217 } 1218 1219 bool SelectionDAG::shouldOptForSize() const { 1220 return MF->getFunction().hasOptSize() || 1221 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1222 } 1223 1224 void SelectionDAG::allnodes_clear() { 1225 assert(&*AllNodes.begin() == &EntryNode); 1226 AllNodes.remove(AllNodes.begin()); 1227 while (!AllNodes.empty()) 1228 DeallocateNode(&AllNodes.front()); 1229 #ifndef NDEBUG 1230 NextPersistentId = 0; 1231 #endif 1232 } 1233 1234 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1235 void *&InsertPos) { 1236 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1237 if (N) { 1238 switch (N->getOpcode()) { 1239 default: break; 1240 case ISD::Constant: 1241 case ISD::ConstantFP: 1242 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1243 "debug location. Use another overload."); 1244 } 1245 } 1246 return N; 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 const SDLoc &DL, void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 case ISD::Constant: 1255 case ISD::ConstantFP: 1256 // Erase debug location from the node if the node is used at several 1257 // different places. Do not propagate one location to all uses as it 1258 // will cause a worse single stepping debugging experience. 1259 if (N->getDebugLoc() != DL.getDebugLoc()) 1260 N->setDebugLoc(DebugLoc()); 1261 break; 1262 default: 1263 // When the node's point of use is located earlier in the instruction 1264 // sequence than its prior point of use, update its debug info to the 1265 // earlier location. 1266 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1267 N->setDebugLoc(DL.getDebugLoc()); 1268 break; 1269 } 1270 } 1271 return N; 1272 } 1273 1274 void SelectionDAG::clear() { 1275 allnodes_clear(); 1276 OperandRecycler.clear(OperandAllocator); 1277 OperandAllocator.Reset(); 1278 CSEMap.clear(); 1279 1280 ExtendedValueTypeNodes.clear(); 1281 ExternalSymbols.clear(); 1282 TargetExternalSymbols.clear(); 1283 MCSymbols.clear(); 1284 SDCallSiteDbgInfo.clear(); 1285 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1286 static_cast<CondCodeSDNode*>(nullptr)); 1287 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1288 static_cast<SDNode*>(nullptr)); 1289 1290 EntryNode.UseList = nullptr; 1291 InsertNode(&EntryNode); 1292 Root = getEntryNode(); 1293 DbgInfo->clear(); 1294 } 1295 1296 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1297 return VT.bitsGT(Op.getValueType()) 1298 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1299 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1300 } 1301 1302 std::pair<SDValue, SDValue> 1303 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1304 const SDLoc &DL, EVT VT) { 1305 assert(!VT.bitsEq(Op.getValueType()) && 1306 "Strict no-op FP extend/round not allowed."); 1307 SDValue Res = 1308 VT.bitsGT(Op.getValueType()) 1309 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1310 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1311 {Chain, Op, getIntPtrConstant(0, DL)}); 1312 1313 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1314 } 1315 1316 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1317 return VT.bitsGT(Op.getValueType()) ? 1318 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1319 getNode(ISD::TRUNCATE, DL, VT, Op); 1320 } 1321 1322 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1323 return VT.bitsGT(Op.getValueType()) ? 1324 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1325 getNode(ISD::TRUNCATE, DL, VT, Op); 1326 } 1327 1328 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1329 return VT.bitsGT(Op.getValueType()) ? 1330 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1331 getNode(ISD::TRUNCATE, DL, VT, Op); 1332 } 1333 1334 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1335 EVT OpVT) { 1336 if (VT.bitsLE(Op.getValueType())) 1337 return getNode(ISD::TRUNCATE, SL, VT, Op); 1338 1339 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1340 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1344 EVT OpVT = Op.getValueType(); 1345 assert(VT.isInteger() && OpVT.isInteger() && 1346 "Cannot getZeroExtendInReg FP types"); 1347 assert(VT.isVector() == OpVT.isVector() && 1348 "getZeroExtendInReg type should be vector iff the operand " 1349 "type is vector!"); 1350 assert((!VT.isVector() || 1351 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1352 "Vector element counts must match in getZeroExtendInReg"); 1353 assert(VT.bitsLE(OpVT) && "Not extending!"); 1354 if (OpVT == VT) 1355 return Op; 1356 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1357 VT.getScalarSizeInBits()); 1358 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1359 } 1360 1361 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1362 // Only unsigned pointer semantics are supported right now. In the future this 1363 // might delegate to TLI to check pointer signedness. 1364 return getZExtOrTrunc(Op, DL, VT); 1365 } 1366 1367 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1368 // Only unsigned pointer semantics are supported right now. In the future this 1369 // might delegate to TLI to check pointer signedness. 1370 return getZeroExtendInReg(Op, DL, VT); 1371 } 1372 1373 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1374 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1375 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1376 } 1377 1378 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1379 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1380 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1381 } 1382 1383 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1384 EVT OpVT) { 1385 if (!V) 1386 return getConstant(0, DL, VT); 1387 1388 switch (TLI->getBooleanContents(OpVT)) { 1389 case TargetLowering::ZeroOrOneBooleanContent: 1390 case TargetLowering::UndefinedBooleanContent: 1391 return getConstant(1, DL, VT); 1392 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1393 return getAllOnesConstant(DL, VT); 1394 } 1395 llvm_unreachable("Unexpected boolean content enum!"); 1396 } 1397 1398 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1399 bool isT, bool isO) { 1400 EVT EltVT = VT.getScalarType(); 1401 assert((EltVT.getSizeInBits() >= 64 || 1402 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1403 "getConstant with a uint64_t value that doesn't fit in the type!"); 1404 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1405 } 1406 1407 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1408 bool isT, bool isO) { 1409 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1410 } 1411 1412 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1413 EVT VT, bool isT, bool isO) { 1414 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1415 1416 EVT EltVT = VT.getScalarType(); 1417 const ConstantInt *Elt = &Val; 1418 1419 // In some cases the vector type is legal but the element type is illegal and 1420 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1421 // inserted value (the type does not need to match the vector element type). 1422 // Any extra bits introduced will be truncated away. 1423 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1424 TargetLowering::TypePromoteInteger) { 1425 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1426 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1427 Elt = ConstantInt::get(*getContext(), NewVal); 1428 } 1429 // In other cases the element type is illegal and needs to be expanded, for 1430 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1431 // the value into n parts and use a vector type with n-times the elements. 1432 // Then bitcast to the type requested. 1433 // Legalizing constants too early makes the DAGCombiner's job harder so we 1434 // only legalize if the DAG tells us we must produce legal types. 1435 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1436 TLI->getTypeAction(*getContext(), EltVT) == 1437 TargetLowering::TypeExpandInteger) { 1438 const APInt &NewVal = Elt->getValue(); 1439 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1440 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1441 1442 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1443 if (VT.isScalableVector()) { 1444 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1445 "Can only handle an even split!"); 1446 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1447 1448 SmallVector<SDValue, 2> ScalarParts; 1449 for (unsigned i = 0; i != Parts; ++i) 1450 ScalarParts.push_back(getConstant( 1451 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1452 ViaEltVT, isT, isO)); 1453 1454 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1455 } 1456 1457 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1458 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1459 1460 // Check the temporary vector is the correct size. If this fails then 1461 // getTypeToTransformTo() probably returned a type whose size (in bits) 1462 // isn't a power-of-2 factor of the requested type size. 1463 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1464 1465 SmallVector<SDValue, 2> EltParts; 1466 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1467 EltParts.push_back(getConstant( 1468 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1469 ViaEltVT, isT, isO)); 1470 1471 // EltParts is currently in little endian order. If we actually want 1472 // big-endian order then reverse it now. 1473 if (getDataLayout().isBigEndian()) 1474 std::reverse(EltParts.begin(), EltParts.end()); 1475 1476 // The elements must be reversed when the element order is different 1477 // to the endianness of the elements (because the BITCAST is itself a 1478 // vector shuffle in this situation). However, we do not need any code to 1479 // perform this reversal because getConstant() is producing a vector 1480 // splat. 1481 // This situation occurs in MIPS MSA. 1482 1483 SmallVector<SDValue, 8> Ops; 1484 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1485 llvm::append_range(Ops, EltParts); 1486 1487 SDValue V = 1488 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1489 return V; 1490 } 1491 1492 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1493 "APInt size does not match type size!"); 1494 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1495 FoldingSetNodeID ID; 1496 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1497 ID.AddPointer(Elt); 1498 ID.AddBoolean(isO); 1499 void *IP = nullptr; 1500 SDNode *N = nullptr; 1501 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1502 if (!VT.isVector()) 1503 return SDValue(N, 0); 1504 1505 if (!N) { 1506 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1507 CSEMap.InsertNode(N, IP); 1508 InsertNode(N); 1509 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1510 } 1511 1512 SDValue Result(N, 0); 1513 if (VT.isScalableVector()) 1514 Result = getSplatVector(VT, DL, Result); 1515 else if (VT.isVector()) 1516 Result = getSplatBuildVector(VT, DL, Result); 1517 1518 return Result; 1519 } 1520 1521 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1522 bool isTarget) { 1523 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1524 } 1525 1526 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1527 const SDLoc &DL, bool LegalTypes) { 1528 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1529 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1530 return getConstant(Val, DL, ShiftVT); 1531 } 1532 1533 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1534 bool isTarget) { 1535 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1536 } 1537 1538 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1539 bool isTarget) { 1540 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1541 } 1542 1543 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1544 EVT VT, bool isTarget) { 1545 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1546 1547 EVT EltVT = VT.getScalarType(); 1548 1549 // Do the map lookup using the actual bit pattern for the floating point 1550 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1551 // we don't have issues with SNANs. 1552 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1553 FoldingSetNodeID ID; 1554 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1555 ID.AddPointer(&V); 1556 void *IP = nullptr; 1557 SDNode *N = nullptr; 1558 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1559 if (!VT.isVector()) 1560 return SDValue(N, 0); 1561 1562 if (!N) { 1563 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1564 CSEMap.InsertNode(N, IP); 1565 InsertNode(N); 1566 } 1567 1568 SDValue Result(N, 0); 1569 if (VT.isScalableVector()) 1570 Result = getSplatVector(VT, DL, Result); 1571 else if (VT.isVector()) 1572 Result = getSplatBuildVector(VT, DL, Result); 1573 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1574 return Result; 1575 } 1576 1577 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1578 bool isTarget) { 1579 EVT EltVT = VT.getScalarType(); 1580 if (EltVT == MVT::f32) 1581 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f64) 1583 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1584 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1585 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1586 bool Ignored; 1587 APFloat APF = APFloat(Val); 1588 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1589 &Ignored); 1590 return getConstantFP(APF, DL, VT, isTarget); 1591 } 1592 llvm_unreachable("Unsupported type in getConstantFP"); 1593 } 1594 1595 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1596 EVT VT, int64_t Offset, bool isTargetGA, 1597 unsigned TargetFlags) { 1598 assert((TargetFlags == 0 || isTargetGA) && 1599 "Cannot set target flags on target-independent globals"); 1600 1601 // Truncate (with sign-extension) the offset value to the pointer size. 1602 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1603 if (BitWidth < 64) 1604 Offset = SignExtend64(Offset, BitWidth); 1605 1606 unsigned Opc; 1607 if (GV->isThreadLocal()) 1608 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1609 else 1610 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1611 1612 FoldingSetNodeID ID; 1613 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1614 ID.AddPointer(GV); 1615 ID.AddInteger(Offset); 1616 ID.AddInteger(TargetFlags); 1617 void *IP = nullptr; 1618 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1619 return SDValue(E, 0); 1620 1621 auto *N = newSDNode<GlobalAddressSDNode>( 1622 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1623 CSEMap.InsertNode(N, IP); 1624 InsertNode(N); 1625 return SDValue(N, 0); 1626 } 1627 1628 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1629 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1630 FoldingSetNodeID ID; 1631 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1632 ID.AddInteger(FI); 1633 void *IP = nullptr; 1634 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1635 return SDValue(E, 0); 1636 1637 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1644 unsigned TargetFlags) { 1645 assert((TargetFlags == 0 || isTarget) && 1646 "Cannot set target flags on target-independent jump tables"); 1647 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1648 FoldingSetNodeID ID; 1649 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1650 ID.AddInteger(JTI); 1651 ID.AddInteger(TargetFlags); 1652 void *IP = nullptr; 1653 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1654 return SDValue(E, 0); 1655 1656 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1657 CSEMap.InsertNode(N, IP); 1658 InsertNode(N); 1659 return SDValue(N, 0); 1660 } 1661 1662 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1663 MaybeAlign Alignment, int Offset, 1664 bool isTarget, unsigned TargetFlags) { 1665 assert((TargetFlags == 0 || isTarget) && 1666 "Cannot set target flags on target-independent globals"); 1667 if (!Alignment) 1668 Alignment = shouldOptForSize() 1669 ? getDataLayout().getABITypeAlign(C->getType()) 1670 : getDataLayout().getPrefTypeAlign(C->getType()); 1671 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1672 FoldingSetNodeID ID; 1673 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1674 ID.AddInteger(Alignment->value()); 1675 ID.AddInteger(Offset); 1676 ID.AddPointer(C); 1677 ID.AddInteger(TargetFlags); 1678 void *IP = nullptr; 1679 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1680 return SDValue(E, 0); 1681 1682 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1683 TargetFlags); 1684 CSEMap.InsertNode(N, IP); 1685 InsertNode(N); 1686 SDValue V = SDValue(N, 0); 1687 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1688 return V; 1689 } 1690 1691 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1692 MaybeAlign Alignment, int Offset, 1693 bool isTarget, unsigned TargetFlags) { 1694 assert((TargetFlags == 0 || isTarget) && 1695 "Cannot set target flags on target-independent globals"); 1696 if (!Alignment) 1697 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1698 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1699 FoldingSetNodeID ID; 1700 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1701 ID.AddInteger(Alignment->value()); 1702 ID.AddInteger(Offset); 1703 C->addSelectionDAGCSEId(ID); 1704 ID.AddInteger(TargetFlags); 1705 void *IP = nullptr; 1706 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1707 return SDValue(E, 0); 1708 1709 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1710 TargetFlags); 1711 CSEMap.InsertNode(N, IP); 1712 InsertNode(N); 1713 return SDValue(N, 0); 1714 } 1715 1716 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1717 unsigned TargetFlags) { 1718 FoldingSetNodeID ID; 1719 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1720 ID.AddInteger(Index); 1721 ID.AddInteger(Offset); 1722 ID.AddInteger(TargetFlags); 1723 void *IP = nullptr; 1724 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1725 return SDValue(E, 0); 1726 1727 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1728 CSEMap.InsertNode(N, IP); 1729 InsertNode(N); 1730 return SDValue(N, 0); 1731 } 1732 1733 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1734 FoldingSetNodeID ID; 1735 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1736 ID.AddPointer(MBB); 1737 void *IP = nullptr; 1738 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1739 return SDValue(E, 0); 1740 1741 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1742 CSEMap.InsertNode(N, IP); 1743 InsertNode(N); 1744 return SDValue(N, 0); 1745 } 1746 1747 SDValue SelectionDAG::getValueType(EVT VT) { 1748 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1749 ValueTypeNodes.size()) 1750 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1751 1752 SDNode *&N = VT.isExtended() ? 1753 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1754 1755 if (N) return SDValue(N, 0); 1756 N = newSDNode<VTSDNode>(VT); 1757 InsertNode(N); 1758 return SDValue(N, 0); 1759 } 1760 1761 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1762 SDNode *&N = ExternalSymbols[Sym]; 1763 if (N) return SDValue(N, 0); 1764 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1765 InsertNode(N); 1766 return SDValue(N, 0); 1767 } 1768 1769 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1770 SDNode *&N = MCSymbols[Sym]; 1771 if (N) 1772 return SDValue(N, 0); 1773 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1774 InsertNode(N); 1775 return SDValue(N, 0); 1776 } 1777 1778 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1779 unsigned TargetFlags) { 1780 SDNode *&N = 1781 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1782 if (N) return SDValue(N, 0); 1783 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1784 InsertNode(N); 1785 return SDValue(N, 0); 1786 } 1787 1788 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1789 if ((unsigned)Cond >= CondCodeNodes.size()) 1790 CondCodeNodes.resize(Cond+1); 1791 1792 if (!CondCodeNodes[Cond]) { 1793 auto *N = newSDNode<CondCodeSDNode>(Cond); 1794 CondCodeNodes[Cond] = N; 1795 InsertNode(N); 1796 } 1797 1798 return SDValue(CondCodeNodes[Cond], 0); 1799 } 1800 1801 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1802 APInt One(ResVT.getScalarSizeInBits(), 1); 1803 return getStepVector(DL, ResVT, One); 1804 } 1805 1806 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1807 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1808 if (ResVT.isScalableVector()) 1809 return getNode( 1810 ISD::STEP_VECTOR, DL, ResVT, 1811 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1812 1813 SmallVector<SDValue, 16> OpsStepConstants; 1814 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1815 OpsStepConstants.push_back( 1816 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1817 return getBuildVector(ResVT, DL, OpsStepConstants); 1818 } 1819 1820 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1821 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1822 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1823 std::swap(N1, N2); 1824 ShuffleVectorSDNode::commuteMask(M); 1825 } 1826 1827 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1828 SDValue N2, ArrayRef<int> Mask) { 1829 assert(VT.getVectorNumElements() == Mask.size() && 1830 "Must have the same number of vector elements as mask elements!"); 1831 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1832 "Invalid VECTOR_SHUFFLE"); 1833 1834 // Canonicalize shuffle undef, undef -> undef 1835 if (N1.isUndef() && N2.isUndef()) 1836 return getUNDEF(VT); 1837 1838 // Validate that all indices in Mask are within the range of the elements 1839 // input to the shuffle. 1840 int NElts = Mask.size(); 1841 assert(llvm::all_of(Mask, 1842 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1843 "Index out of range"); 1844 1845 // Copy the mask so we can do any needed cleanup. 1846 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1847 1848 // Canonicalize shuffle v, v -> v, undef 1849 if (N1 == N2) { 1850 N2 = getUNDEF(VT); 1851 for (int i = 0; i != NElts; ++i) 1852 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1853 } 1854 1855 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1856 if (N1.isUndef()) 1857 commuteShuffle(N1, N2, MaskVec); 1858 1859 if (TLI->hasVectorBlend()) { 1860 // If shuffling a splat, try to blend the splat instead. We do this here so 1861 // that even when this arises during lowering we don't have to re-handle it. 1862 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1863 BitVector UndefElements; 1864 SDValue Splat = BV->getSplatValue(&UndefElements); 1865 if (!Splat) 1866 return; 1867 1868 for (int i = 0; i < NElts; ++i) { 1869 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1870 continue; 1871 1872 // If this input comes from undef, mark it as such. 1873 if (UndefElements[MaskVec[i] - Offset]) { 1874 MaskVec[i] = -1; 1875 continue; 1876 } 1877 1878 // If we can blend a non-undef lane, use that instead. 1879 if (!UndefElements[i]) 1880 MaskVec[i] = i + Offset; 1881 } 1882 }; 1883 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1884 BlendSplat(N1BV, 0); 1885 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1886 BlendSplat(N2BV, NElts); 1887 } 1888 1889 // Canonicalize all index into lhs, -> shuffle lhs, undef 1890 // Canonicalize all index into rhs, -> shuffle rhs, undef 1891 bool AllLHS = true, AllRHS = true; 1892 bool N2Undef = N2.isUndef(); 1893 for (int i = 0; i != NElts; ++i) { 1894 if (MaskVec[i] >= NElts) { 1895 if (N2Undef) 1896 MaskVec[i] = -1; 1897 else 1898 AllLHS = false; 1899 } else if (MaskVec[i] >= 0) { 1900 AllRHS = false; 1901 } 1902 } 1903 if (AllLHS && AllRHS) 1904 return getUNDEF(VT); 1905 if (AllLHS && !N2Undef) 1906 N2 = getUNDEF(VT); 1907 if (AllRHS) { 1908 N1 = getUNDEF(VT); 1909 commuteShuffle(N1, N2, MaskVec); 1910 } 1911 // Reset our undef status after accounting for the mask. 1912 N2Undef = N2.isUndef(); 1913 // Re-check whether both sides ended up undef. 1914 if (N1.isUndef() && N2Undef) 1915 return getUNDEF(VT); 1916 1917 // If Identity shuffle return that node. 1918 bool Identity = true, AllSame = true; 1919 for (int i = 0; i != NElts; ++i) { 1920 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1921 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1922 } 1923 if (Identity && NElts) 1924 return N1; 1925 1926 // Shuffling a constant splat doesn't change the result. 1927 if (N2Undef) { 1928 SDValue V = N1; 1929 1930 // Look through any bitcasts. We check that these don't change the number 1931 // (and size) of elements and just changes their types. 1932 while (V.getOpcode() == ISD::BITCAST) 1933 V = V->getOperand(0); 1934 1935 // A splat should always show up as a build vector node. 1936 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1937 BitVector UndefElements; 1938 SDValue Splat = BV->getSplatValue(&UndefElements); 1939 // If this is a splat of an undef, shuffling it is also undef. 1940 if (Splat && Splat.isUndef()) 1941 return getUNDEF(VT); 1942 1943 bool SameNumElts = 1944 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1945 1946 // We only have a splat which can skip shuffles if there is a splatted 1947 // value and no undef lanes rearranged by the shuffle. 1948 if (Splat && UndefElements.none()) { 1949 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1950 // number of elements match or the value splatted is a zero constant. 1951 if (SameNumElts) 1952 return N1; 1953 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1954 if (C->isZero()) 1955 return N1; 1956 } 1957 1958 // If the shuffle itself creates a splat, build the vector directly. 1959 if (AllSame && SameNumElts) { 1960 EVT BuildVT = BV->getValueType(0); 1961 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1962 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1963 1964 // We may have jumped through bitcasts, so the type of the 1965 // BUILD_VECTOR may not match the type of the shuffle. 1966 if (BuildVT != VT) 1967 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1968 return NewBV; 1969 } 1970 } 1971 } 1972 1973 FoldingSetNodeID ID; 1974 SDValue Ops[2] = { N1, N2 }; 1975 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1976 for (int i = 0; i != NElts; ++i) 1977 ID.AddInteger(MaskVec[i]); 1978 1979 void* IP = nullptr; 1980 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1981 return SDValue(E, 0); 1982 1983 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1984 // SDNode doesn't have access to it. This memory will be "leaked" when 1985 // the node is deallocated, but recovered when the NodeAllocator is released. 1986 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1987 llvm::copy(MaskVec, MaskAlloc); 1988 1989 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1990 dl.getDebugLoc(), MaskAlloc); 1991 createOperands(N, Ops); 1992 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 SDValue V = SDValue(N, 0); 1996 NewSDValueDbgMsg(V, "Creating new node: ", this); 1997 return V; 1998 } 1999 2000 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2001 EVT VT = SV.getValueType(0); 2002 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2003 ShuffleVectorSDNode::commuteMask(MaskVec); 2004 2005 SDValue Op0 = SV.getOperand(0); 2006 SDValue Op1 = SV.getOperand(1); 2007 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2008 } 2009 2010 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2011 FoldingSetNodeID ID; 2012 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2013 ID.AddInteger(RegNo); 2014 void *IP = nullptr; 2015 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2016 return SDValue(E, 0); 2017 2018 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2019 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2020 CSEMap.InsertNode(N, IP); 2021 InsertNode(N); 2022 return SDValue(N, 0); 2023 } 2024 2025 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2028 ID.AddPointer(RegMask); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2034 CSEMap.InsertNode(N, IP); 2035 InsertNode(N); 2036 return SDValue(N, 0); 2037 } 2038 2039 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2040 MCSymbol *Label) { 2041 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2042 } 2043 2044 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2045 SDValue Root, MCSymbol *Label) { 2046 FoldingSetNodeID ID; 2047 SDValue Ops[] = { Root }; 2048 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2049 ID.AddPointer(Label); 2050 void *IP = nullptr; 2051 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2052 return SDValue(E, 0); 2053 2054 auto *N = 2055 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2056 createOperands(N, Ops); 2057 2058 CSEMap.InsertNode(N, IP); 2059 InsertNode(N); 2060 return SDValue(N, 0); 2061 } 2062 2063 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2064 int64_t Offset, bool isTarget, 2065 unsigned TargetFlags) { 2066 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2067 2068 FoldingSetNodeID ID; 2069 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2070 ID.AddPointer(BA); 2071 ID.AddInteger(Offset); 2072 ID.AddInteger(TargetFlags); 2073 void *IP = nullptr; 2074 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2075 return SDValue(E, 0); 2076 2077 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2078 CSEMap.InsertNode(N, IP); 2079 InsertNode(N); 2080 return SDValue(N, 0); 2081 } 2082 2083 SDValue SelectionDAG::getSrcValue(const Value *V) { 2084 FoldingSetNodeID ID; 2085 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2086 ID.AddPointer(V); 2087 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<SrcValueSDNode>(V); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2101 ID.AddPointer(MD); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<MDNodeSDNode>(MD); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2114 if (VT == V.getValueType()) 2115 return V; 2116 2117 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2118 } 2119 2120 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2121 unsigned SrcAS, unsigned DestAS) { 2122 SDValue Ops[] = {Ptr}; 2123 FoldingSetNodeID ID; 2124 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2125 ID.AddInteger(SrcAS); 2126 ID.AddInteger(DestAS); 2127 2128 void *IP = nullptr; 2129 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2130 return SDValue(E, 0); 2131 2132 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2133 VT, SrcAS, DestAS); 2134 createOperands(N, Ops); 2135 2136 CSEMap.InsertNode(N, IP); 2137 InsertNode(N); 2138 return SDValue(N, 0); 2139 } 2140 2141 SDValue SelectionDAG::getFreeze(SDValue V) { 2142 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2143 } 2144 2145 /// getShiftAmountOperand - Return the specified value casted to 2146 /// the target's desired shift amount type. 2147 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2148 EVT OpTy = Op.getValueType(); 2149 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2150 if (OpTy == ShTy || OpTy.isVector()) return Op; 2151 2152 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2153 } 2154 2155 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2156 SDLoc dl(Node); 2157 const TargetLowering &TLI = getTargetLoweringInfo(); 2158 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2159 EVT VT = Node->getValueType(0); 2160 SDValue Tmp1 = Node->getOperand(0); 2161 SDValue Tmp2 = Node->getOperand(1); 2162 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2163 2164 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2165 Tmp2, MachinePointerInfo(V)); 2166 SDValue VAList = VAListLoad; 2167 2168 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2169 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2170 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2171 2172 VAList = 2173 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2174 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2175 } 2176 2177 // Increment the pointer, VAList, to the next vaarg 2178 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2179 getConstant(getDataLayout().getTypeAllocSize( 2180 VT.getTypeForEVT(*getContext())), 2181 dl, VAList.getValueType())); 2182 // Store the incremented VAList to the legalized pointer 2183 Tmp1 = 2184 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2185 // Load the actual argument out of the pointer VAList 2186 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2187 } 2188 2189 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2190 SDLoc dl(Node); 2191 const TargetLowering &TLI = getTargetLoweringInfo(); 2192 // This defaults to loading a pointer from the input and storing it to the 2193 // output, returning the chain. 2194 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2195 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2196 SDValue Tmp1 = 2197 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2198 Node->getOperand(2), MachinePointerInfo(VS)); 2199 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2200 MachinePointerInfo(VD)); 2201 } 2202 2203 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2204 const DataLayout &DL = getDataLayout(); 2205 Type *Ty = VT.getTypeForEVT(*getContext()); 2206 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2207 2208 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2209 return RedAlign; 2210 2211 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2212 const Align StackAlign = TFI->getStackAlign(); 2213 2214 // See if we can choose a smaller ABI alignment in cases where it's an 2215 // illegal vector type that will get broken down. 2216 if (RedAlign > StackAlign) { 2217 EVT IntermediateVT; 2218 MVT RegisterVT; 2219 unsigned NumIntermediates; 2220 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2221 NumIntermediates, RegisterVT); 2222 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2223 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2224 if (RedAlign2 < RedAlign) 2225 RedAlign = RedAlign2; 2226 } 2227 2228 return RedAlign; 2229 } 2230 2231 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2232 MachineFrameInfo &MFI = MF->getFrameInfo(); 2233 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2234 int StackID = 0; 2235 if (Bytes.isScalable()) 2236 StackID = TFI->getStackIDForScalableVectors(); 2237 // The stack id gives an indication of whether the object is scalable or 2238 // not, so it's safe to pass in the minimum size here. 2239 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2240 false, nullptr, StackID); 2241 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2242 } 2243 2244 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2245 Type *Ty = VT.getTypeForEVT(*getContext()); 2246 Align StackAlign = 2247 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2248 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2249 } 2250 2251 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2252 TypeSize VT1Size = VT1.getStoreSize(); 2253 TypeSize VT2Size = VT2.getStoreSize(); 2254 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2255 "Don't know how to choose the maximum size when creating a stack " 2256 "temporary"); 2257 TypeSize Bytes = 2258 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2259 2260 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2261 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2262 const DataLayout &DL = getDataLayout(); 2263 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2264 return CreateStackTemporary(Bytes, Align); 2265 } 2266 2267 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2268 ISD::CondCode Cond, const SDLoc &dl) { 2269 EVT OpVT = N1.getValueType(); 2270 2271 // These setcc operations always fold. 2272 switch (Cond) { 2273 default: break; 2274 case ISD::SETFALSE: 2275 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2276 case ISD::SETTRUE: 2277 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2278 2279 case ISD::SETOEQ: 2280 case ISD::SETOGT: 2281 case ISD::SETOGE: 2282 case ISD::SETOLT: 2283 case ISD::SETOLE: 2284 case ISD::SETONE: 2285 case ISD::SETO: 2286 case ISD::SETUO: 2287 case ISD::SETUEQ: 2288 case ISD::SETUNE: 2289 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2290 break; 2291 } 2292 2293 if (OpVT.isInteger()) { 2294 // For EQ and NE, we can always pick a value for the undef to make the 2295 // predicate pass or fail, so we can return undef. 2296 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2297 // icmp eq/ne X, undef -> undef. 2298 if ((N1.isUndef() || N2.isUndef()) && 2299 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2300 return getUNDEF(VT); 2301 2302 // If both operands are undef, we can return undef for int comparison. 2303 // icmp undef, undef -> undef. 2304 if (N1.isUndef() && N2.isUndef()) 2305 return getUNDEF(VT); 2306 2307 // icmp X, X -> true/false 2308 // icmp X, undef -> true/false because undef could be X. 2309 if (N1 == N2) 2310 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2311 } 2312 2313 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2314 const APInt &C2 = N2C->getAPIntValue(); 2315 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2316 const APInt &C1 = N1C->getAPIntValue(); 2317 2318 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2319 dl, VT, OpVT); 2320 } 2321 } 2322 2323 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2324 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2325 2326 if (N1CFP && N2CFP) { 2327 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2328 switch (Cond) { 2329 default: break; 2330 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2331 return getUNDEF(VT); 2332 LLVM_FALLTHROUGH; 2333 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2334 OpVT); 2335 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2336 return getUNDEF(VT); 2337 LLVM_FALLTHROUGH; 2338 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2339 R==APFloat::cmpLessThan, dl, VT, 2340 OpVT); 2341 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2342 return getUNDEF(VT); 2343 LLVM_FALLTHROUGH; 2344 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2345 OpVT); 2346 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2347 return getUNDEF(VT); 2348 LLVM_FALLTHROUGH; 2349 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2350 VT, OpVT); 2351 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2352 return getUNDEF(VT); 2353 LLVM_FALLTHROUGH; 2354 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2355 R==APFloat::cmpEqual, dl, VT, 2356 OpVT); 2357 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2358 return getUNDEF(VT); 2359 LLVM_FALLTHROUGH; 2360 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2361 R==APFloat::cmpEqual, dl, VT, OpVT); 2362 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2365 OpVT); 2366 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2367 R==APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2370 OpVT); 2371 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2372 R==APFloat::cmpLessThan, dl, VT, 2373 OpVT); 2374 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2375 R==APFloat::cmpUnordered, dl, VT, 2376 OpVT); 2377 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2378 VT, OpVT); 2379 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2380 OpVT); 2381 } 2382 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2383 // Ensure that the constant occurs on the RHS. 2384 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2385 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2386 return SDValue(); 2387 return getSetCC(dl, VT, N2, N1, SwappedCond); 2388 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2389 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2390 // If an operand is known to be a nan (or undef that could be a nan), we can 2391 // fold it. 2392 // Choosing NaN for the undef will always make unordered comparison succeed 2393 // and ordered comparison fails. 2394 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2395 switch (ISD::getUnorderedFlavor(Cond)) { 2396 default: 2397 llvm_unreachable("Unknown flavor!"); 2398 case 0: // Known false. 2399 return getBoolConstant(false, dl, VT, OpVT); 2400 case 1: // Known true. 2401 return getBoolConstant(true, dl, VT, OpVT); 2402 case 2: // Undefined. 2403 return getUNDEF(VT); 2404 } 2405 } 2406 2407 // Could not fold it. 2408 return SDValue(); 2409 } 2410 2411 /// See if the specified operand can be simplified with the knowledge that only 2412 /// the bits specified by DemandedBits are used. 2413 /// TODO: really we should be making this into the DAG equivalent of 2414 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2415 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2416 EVT VT = V.getValueType(); 2417 2418 if (VT.isScalableVector()) 2419 return SDValue(); 2420 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnes(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return GetDemandedBits(V, DemandedBits, DemandedElts); 2425 } 2426 2427 /// See if the specified operand can be simplified with the knowledge that only 2428 /// the bits specified by DemandedBits are used in the elements specified by 2429 /// DemandedElts. 2430 /// TODO: really we should be making this into the DAG equivalent of 2431 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2432 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2433 const APInt &DemandedElts) { 2434 switch (V.getOpcode()) { 2435 default: 2436 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2437 *this, 0); 2438 case ISD::Constant: { 2439 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2440 APInt NewVal = CVal & DemandedBits; 2441 if (NewVal != CVal) 2442 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2443 break; 2444 } 2445 case ISD::SRL: 2446 // Only look at single-use SRLs. 2447 if (!V.getNode()->hasOneUse()) 2448 break; 2449 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2450 // See if we can recursively simplify the LHS. 2451 unsigned Amt = RHSC->getZExtValue(); 2452 2453 // Watch out for shift count overflow though. 2454 if (Amt >= DemandedBits.getBitWidth()) 2455 break; 2456 APInt SrcDemandedBits = DemandedBits << Amt; 2457 if (SDValue SimplifyLHS = 2458 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2459 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2460 V.getOperand(1)); 2461 } 2462 break; 2463 } 2464 return SDValue(); 2465 } 2466 2467 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2468 /// use this predicate to simplify operations downstream. 2469 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2470 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2471 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2472 } 2473 2474 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2475 /// this predicate to simplify operations downstream. Mask is known to be zero 2476 /// for bits that V cannot have. 2477 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2478 unsigned Depth) const { 2479 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2480 } 2481 2482 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2483 /// DemandedElts. We use this predicate to simplify operations downstream. 2484 /// Mask is known to be zero for bits that V cannot have. 2485 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2486 const APInt &DemandedElts, 2487 unsigned Depth) const { 2488 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2489 } 2490 2491 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2492 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2495 } 2496 2497 /// isSplatValue - Return true if the vector V has the same value 2498 /// across all DemandedElts. For scalable vectors it does not make 2499 /// sense to specify which elements are demanded or undefined, therefore 2500 /// they are simply ignored. 2501 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2502 APInt &UndefElts, unsigned Depth) const { 2503 unsigned Opcode = V.getOpcode(); 2504 EVT VT = V.getValueType(); 2505 assert(VT.isVector() && "Vector type expected"); 2506 2507 if (!VT.isScalableVector() && !DemandedElts) 2508 return false; // No demanded elts, better to assume we don't know anything. 2509 2510 if (Depth >= MaxRecursionDepth) 2511 return false; // Limit search depth. 2512 2513 // Deal with some common cases here that work for both fixed and scalable 2514 // vector types. 2515 switch (Opcode) { 2516 case ISD::SPLAT_VECTOR: 2517 UndefElts = V.getOperand(0).isUndef() 2518 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2519 : APInt(DemandedElts.getBitWidth(), 0); 2520 return true; 2521 case ISD::ADD: 2522 case ISD::SUB: 2523 case ISD::AND: 2524 case ISD::XOR: 2525 case ISD::OR: { 2526 APInt UndefLHS, UndefRHS; 2527 SDValue LHS = V.getOperand(0); 2528 SDValue RHS = V.getOperand(1); 2529 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2530 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2531 UndefElts = UndefLHS | UndefRHS; 2532 return true; 2533 } 2534 return false; 2535 } 2536 case ISD::ABS: 2537 case ISD::TRUNCATE: 2538 case ISD::SIGN_EXTEND: 2539 case ISD::ZERO_EXTEND: 2540 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2541 default: 2542 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2543 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2544 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2545 break; 2546 } 2547 2548 // We don't support other cases than those above for scalable vectors at 2549 // the moment. 2550 if (VT.isScalableVector()) 2551 return false; 2552 2553 unsigned NumElts = VT.getVectorNumElements(); 2554 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2555 UndefElts = APInt::getZero(NumElts); 2556 2557 switch (Opcode) { 2558 case ISD::BUILD_VECTOR: { 2559 SDValue Scl; 2560 for (unsigned i = 0; i != NumElts; ++i) { 2561 SDValue Op = V.getOperand(i); 2562 if (Op.isUndef()) { 2563 UndefElts.setBit(i); 2564 continue; 2565 } 2566 if (!DemandedElts[i]) 2567 continue; 2568 if (Scl && Scl != Op) 2569 return false; 2570 Scl = Op; 2571 } 2572 return true; 2573 } 2574 case ISD::VECTOR_SHUFFLE: { 2575 // Check if this is a shuffle node doing a splat. 2576 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2577 int SplatIndex = -1; 2578 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2579 for (int i = 0; i != (int)NumElts; ++i) { 2580 int M = Mask[i]; 2581 if (M < 0) { 2582 UndefElts.setBit(i); 2583 continue; 2584 } 2585 if (!DemandedElts[i]) 2586 continue; 2587 if (0 <= SplatIndex && SplatIndex != M) 2588 return false; 2589 SplatIndex = M; 2590 } 2591 return true; 2592 } 2593 case ISD::EXTRACT_SUBVECTOR: { 2594 // Offset the demanded elts by the subvector index. 2595 SDValue Src = V.getOperand(0); 2596 // We don't support scalable vectors at the moment. 2597 if (Src.getValueType().isScalableVector()) 2598 return false; 2599 uint64_t Idx = V.getConstantOperandVal(1); 2600 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2601 APInt UndefSrcElts; 2602 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2603 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2604 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2605 return true; 2606 } 2607 break; 2608 } 2609 case ISD::ANY_EXTEND_VECTOR_INREG: 2610 case ISD::SIGN_EXTEND_VECTOR_INREG: 2611 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2612 // Widen the demanded elts by the src element count. 2613 SDValue Src = V.getOperand(0); 2614 // We don't support scalable vectors at the moment. 2615 if (Src.getValueType().isScalableVector()) 2616 return false; 2617 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2618 APInt UndefSrcElts; 2619 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2620 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2621 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2622 return true; 2623 } 2624 break; 2625 } 2626 } 2627 2628 return false; 2629 } 2630 2631 /// Helper wrapper to main isSplatValue function. 2632 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2633 EVT VT = V.getValueType(); 2634 assert(VT.isVector() && "Vector type expected"); 2635 2636 APInt UndefElts; 2637 APInt DemandedElts; 2638 2639 // For now we don't support this with scalable vectors. 2640 if (!VT.isScalableVector()) 2641 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2642 return isSplatValue(V, DemandedElts, UndefElts) && 2643 (AllowUndefs || !UndefElts); 2644 } 2645 2646 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2647 V = peekThroughExtractSubvectors(V); 2648 2649 EVT VT = V.getValueType(); 2650 unsigned Opcode = V.getOpcode(); 2651 switch (Opcode) { 2652 default: { 2653 APInt UndefElts; 2654 APInt DemandedElts; 2655 2656 if (!VT.isScalableVector()) 2657 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2658 2659 if (isSplatValue(V, DemandedElts, UndefElts)) { 2660 if (VT.isScalableVector()) { 2661 // DemandedElts and UndefElts are ignored for scalable vectors, since 2662 // the only supported cases are SPLAT_VECTOR nodes. 2663 SplatIdx = 0; 2664 } else { 2665 // Handle case where all demanded elements are UNDEF. 2666 if (DemandedElts.isSubsetOf(UndefElts)) { 2667 SplatIdx = 0; 2668 return getUNDEF(VT); 2669 } 2670 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2671 } 2672 return V; 2673 } 2674 break; 2675 } 2676 case ISD::SPLAT_VECTOR: 2677 SplatIdx = 0; 2678 return V; 2679 case ISD::VECTOR_SHUFFLE: { 2680 if (VT.isScalableVector()) 2681 return SDValue(); 2682 2683 // Check if this is a shuffle node doing a splat. 2684 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2685 // getTargetVShiftNode currently struggles without the splat source. 2686 auto *SVN = cast<ShuffleVectorSDNode>(V); 2687 if (!SVN->isSplat()) 2688 break; 2689 int Idx = SVN->getSplatIndex(); 2690 int NumElts = V.getValueType().getVectorNumElements(); 2691 SplatIdx = Idx % NumElts; 2692 return V.getOperand(Idx / NumElts); 2693 } 2694 } 2695 2696 return SDValue(); 2697 } 2698 2699 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2700 int SplatIdx; 2701 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2702 EVT SVT = SrcVector.getValueType().getScalarType(); 2703 EVT LegalSVT = SVT; 2704 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2705 if (!SVT.isInteger()) 2706 return SDValue(); 2707 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2708 if (LegalSVT.bitsLT(SVT)) 2709 return SDValue(); 2710 } 2711 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2712 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2713 } 2714 return SDValue(); 2715 } 2716 2717 const APInt * 2718 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2719 const APInt &DemandedElts) const { 2720 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2721 V.getOpcode() == ISD::SRA) && 2722 "Unknown shift node"); 2723 unsigned BitWidth = V.getScalarValueSizeInBits(); 2724 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2725 // Shifting more than the bitwidth is not valid. 2726 const APInt &ShAmt = SA->getAPIntValue(); 2727 if (ShAmt.ult(BitWidth)) 2728 return &ShAmt; 2729 } 2730 return nullptr; 2731 } 2732 2733 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2734 SDValue V, const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2739 return ValidAmt; 2740 unsigned BitWidth = V.getScalarValueSizeInBits(); 2741 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2742 if (!BV) 2743 return nullptr; 2744 const APInt *MinShAmt = nullptr; 2745 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2746 if (!DemandedElts[i]) 2747 continue; 2748 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2749 if (!SA) 2750 return nullptr; 2751 // Shifting more than the bitwidth is not valid. 2752 const APInt &ShAmt = SA->getAPIntValue(); 2753 if (ShAmt.uge(BitWidth)) 2754 return nullptr; 2755 if (MinShAmt && MinShAmt->ule(ShAmt)) 2756 continue; 2757 MinShAmt = &ShAmt; 2758 } 2759 return MinShAmt; 2760 } 2761 2762 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2763 SDValue V, const APInt &DemandedElts) const { 2764 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2765 V.getOpcode() == ISD::SRA) && 2766 "Unknown shift node"); 2767 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2768 return ValidAmt; 2769 unsigned BitWidth = V.getScalarValueSizeInBits(); 2770 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2771 if (!BV) 2772 return nullptr; 2773 const APInt *MaxShAmt = nullptr; 2774 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2775 if (!DemandedElts[i]) 2776 continue; 2777 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2778 if (!SA) 2779 return nullptr; 2780 // Shifting more than the bitwidth is not valid. 2781 const APInt &ShAmt = SA->getAPIntValue(); 2782 if (ShAmt.uge(BitWidth)) 2783 return nullptr; 2784 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2785 continue; 2786 MaxShAmt = &ShAmt; 2787 } 2788 return MaxShAmt; 2789 } 2790 2791 /// Determine which bits of Op are known to be either zero or one and return 2792 /// them in Known. For vectors, the known bits are those that are shared by 2793 /// every vector element. 2794 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2795 EVT VT = Op.getValueType(); 2796 2797 // TOOD: Until we have a plan for how to represent demanded elements for 2798 // scalable vectors, we can just bail out for now. 2799 if (Op.getValueType().isScalableVector()) { 2800 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2801 return KnownBits(BitWidth); 2802 } 2803 2804 APInt DemandedElts = VT.isVector() 2805 ? APInt::getAllOnes(VT.getVectorNumElements()) 2806 : APInt(1, 1); 2807 return computeKnownBits(Op, DemandedElts, Depth); 2808 } 2809 2810 /// Determine which bits of Op are known to be either zero or one and return 2811 /// them in Known. The DemandedElts argument allows us to only collect the known 2812 /// bits that are shared by the requested vector elements. 2813 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2814 unsigned Depth) const { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 2817 KnownBits Known(BitWidth); // Don't know anything. 2818 2819 // TOOD: Until we have a plan for how to represent demanded elements for 2820 // scalable vectors, we can just bail out for now. 2821 if (Op.getValueType().isScalableVector()) 2822 return Known; 2823 2824 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2825 // We know all of the bits for a constant! 2826 return KnownBits::makeConstant(C->getAPIntValue()); 2827 } 2828 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2829 // We know all of the bits for a constant fp! 2830 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2831 } 2832 2833 if (Depth >= MaxRecursionDepth) 2834 return Known; // Limit search depth. 2835 2836 KnownBits Known2; 2837 unsigned NumElts = DemandedElts.getBitWidth(); 2838 assert((!Op.getValueType().isVector() || 2839 NumElts == Op.getValueType().getVectorNumElements()) && 2840 "Unexpected vector size"); 2841 2842 if (!DemandedElts) 2843 return Known; // No demanded elts, better to assume we don't know anything. 2844 2845 unsigned Opcode = Op.getOpcode(); 2846 switch (Opcode) { 2847 case ISD::BUILD_VECTOR: 2848 // Collect the known bits that are shared by every demanded vector element. 2849 Known.Zero.setAllBits(); Known.One.setAllBits(); 2850 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2851 if (!DemandedElts[i]) 2852 continue; 2853 2854 SDValue SrcOp = Op.getOperand(i); 2855 Known2 = computeKnownBits(SrcOp, Depth + 1); 2856 2857 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2858 if (SrcOp.getValueSizeInBits() != BitWidth) { 2859 assert(SrcOp.getValueSizeInBits() > BitWidth && 2860 "Expected BUILD_VECTOR implicit truncation"); 2861 Known2 = Known2.trunc(BitWidth); 2862 } 2863 2864 // Known bits are the values that are shared by every demanded element. 2865 Known = KnownBits::commonBits(Known, Known2); 2866 2867 // If we don't know any bits, early out. 2868 if (Known.isUnknown()) 2869 break; 2870 } 2871 break; 2872 case ISD::VECTOR_SHUFFLE: { 2873 // Collect the known bits that are shared by every vector element referenced 2874 // by the shuffle. 2875 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2876 Known.Zero.setAllBits(); Known.One.setAllBits(); 2877 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2878 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2879 for (unsigned i = 0; i != NumElts; ++i) { 2880 if (!DemandedElts[i]) 2881 continue; 2882 2883 int M = SVN->getMaskElt(i); 2884 if (M < 0) { 2885 // For UNDEF elements, we don't know anything about the common state of 2886 // the shuffle result. 2887 Known.resetAll(); 2888 DemandedLHS.clearAllBits(); 2889 DemandedRHS.clearAllBits(); 2890 break; 2891 } 2892 2893 if ((unsigned)M < NumElts) 2894 DemandedLHS.setBit((unsigned)M % NumElts); 2895 else 2896 DemandedRHS.setBit((unsigned)M % NumElts); 2897 } 2898 // Known bits are the values that are shared by every demanded element. 2899 if (!!DemandedLHS) { 2900 SDValue LHS = Op.getOperand(0); 2901 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2902 Known = KnownBits::commonBits(Known, Known2); 2903 } 2904 // If we don't know any bits, early out. 2905 if (Known.isUnknown()) 2906 break; 2907 if (!!DemandedRHS) { 2908 SDValue RHS = Op.getOperand(1); 2909 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2910 Known = KnownBits::commonBits(Known, Known2); 2911 } 2912 break; 2913 } 2914 case ISD::CONCAT_VECTORS: { 2915 // Split DemandedElts and test each of the demanded subvectors. 2916 Known.Zero.setAllBits(); Known.One.setAllBits(); 2917 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2918 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2919 unsigned NumSubVectors = Op.getNumOperands(); 2920 for (unsigned i = 0; i != NumSubVectors; ++i) { 2921 APInt DemandedSub = 2922 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2923 if (!!DemandedSub) { 2924 SDValue Sub = Op.getOperand(i); 2925 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2926 Known = KnownBits::commonBits(Known, Known2); 2927 } 2928 // If we don't know any bits, early out. 2929 if (Known.isUnknown()) 2930 break; 2931 } 2932 break; 2933 } 2934 case ISD::INSERT_SUBVECTOR: { 2935 // Demand any elements from the subvector and the remainder from the src its 2936 // inserted into. 2937 SDValue Src = Op.getOperand(0); 2938 SDValue Sub = Op.getOperand(1); 2939 uint64_t Idx = Op.getConstantOperandVal(2); 2940 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2941 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2942 APInt DemandedSrcElts = DemandedElts; 2943 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2944 2945 Known.One.setAllBits(); 2946 Known.Zero.setAllBits(); 2947 if (!!DemandedSubElts) { 2948 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2949 if (Known.isUnknown()) 2950 break; // early-out. 2951 } 2952 if (!!DemandedSrcElts) { 2953 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2954 Known = KnownBits::commonBits(Known, Known2); 2955 } 2956 break; 2957 } 2958 case ISD::EXTRACT_SUBVECTOR: { 2959 // Offset the demanded elts by the subvector index. 2960 SDValue Src = Op.getOperand(0); 2961 // Bail until we can represent demanded elements for scalable vectors. 2962 if (Src.getValueType().isScalableVector()) 2963 break; 2964 uint64_t Idx = Op.getConstantOperandVal(1); 2965 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2966 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2967 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2968 break; 2969 } 2970 case ISD::SCALAR_TO_VECTOR: { 2971 // We know about scalar_to_vector as much as we know about it source, 2972 // which becomes the first element of otherwise unknown vector. 2973 if (DemandedElts != 1) 2974 break; 2975 2976 SDValue N0 = Op.getOperand(0); 2977 Known = computeKnownBits(N0, Depth + 1); 2978 if (N0.getValueSizeInBits() != BitWidth) 2979 Known = Known.trunc(BitWidth); 2980 2981 break; 2982 } 2983 case ISD::BITCAST: { 2984 SDValue N0 = Op.getOperand(0); 2985 EVT SubVT = N0.getValueType(); 2986 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2987 2988 // Ignore bitcasts from unsupported types. 2989 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2990 break; 2991 2992 // Fast handling of 'identity' bitcasts. 2993 if (BitWidth == SubBitWidth) { 2994 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2995 break; 2996 } 2997 2998 bool IsLE = getDataLayout().isLittleEndian(); 2999 3000 // Bitcast 'small element' vector to 'large element' scalar/vector. 3001 if ((BitWidth % SubBitWidth) == 0) { 3002 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3003 3004 // Collect known bits for the (larger) output by collecting the known 3005 // bits from each set of sub elements and shift these into place. 3006 // We need to separately call computeKnownBits for each set of 3007 // sub elements as the knownbits for each is likely to be different. 3008 unsigned SubScale = BitWidth / SubBitWidth; 3009 APInt SubDemandedElts(NumElts * SubScale, 0); 3010 for (unsigned i = 0; i != NumElts; ++i) 3011 if (DemandedElts[i]) 3012 SubDemandedElts.setBit(i * SubScale); 3013 3014 for (unsigned i = 0; i != SubScale; ++i) { 3015 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3016 Depth + 1); 3017 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3018 Known.insertBits(Known2, SubBitWidth * Shifts); 3019 } 3020 } 3021 3022 // Bitcast 'large element' scalar/vector to 'small element' vector. 3023 if ((SubBitWidth % BitWidth) == 0) { 3024 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3025 3026 // Collect known bits for the (smaller) output by collecting the known 3027 // bits from the overlapping larger input elements and extracting the 3028 // sub sections we actually care about. 3029 unsigned SubScale = SubBitWidth / BitWidth; 3030 APInt SubDemandedElts = 3031 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3032 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3033 3034 Known.Zero.setAllBits(); Known.One.setAllBits(); 3035 for (unsigned i = 0; i != NumElts; ++i) 3036 if (DemandedElts[i]) { 3037 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3038 unsigned Offset = (Shifts % SubScale) * BitWidth; 3039 Known = KnownBits::commonBits(Known, 3040 Known2.extractBits(BitWidth, Offset)); 3041 // If we don't know any bits, early out. 3042 if (Known.isUnknown()) 3043 break; 3044 } 3045 } 3046 break; 3047 } 3048 case ISD::AND: 3049 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3050 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3051 3052 Known &= Known2; 3053 break; 3054 case ISD::OR: 3055 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3056 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3057 3058 Known |= Known2; 3059 break; 3060 case ISD::XOR: 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 3064 Known ^= Known2; 3065 break; 3066 case ISD::MUL: { 3067 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3068 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3069 Known = KnownBits::mul(Known, Known2); 3070 break; 3071 } 3072 case ISD::MULHU: { 3073 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3074 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3075 Known = KnownBits::mulhu(Known, Known2); 3076 break; 3077 } 3078 case ISD::MULHS: { 3079 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3080 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known = KnownBits::mulhs(Known, Known2); 3082 break; 3083 } 3084 case ISD::UMUL_LOHI: { 3085 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3086 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3087 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3088 if (Op.getResNo() == 0) 3089 Known = KnownBits::mul(Known, Known2); 3090 else 3091 Known = KnownBits::mulhu(Known, Known2); 3092 break; 3093 } 3094 case ISD::SMUL_LOHI: { 3095 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3096 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3097 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3098 if (Op.getResNo() == 0) 3099 Known = KnownBits::mul(Known, Known2); 3100 else 3101 Known = KnownBits::mulhs(Known, Known2); 3102 break; 3103 } 3104 case ISD::UDIV: { 3105 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3106 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3107 Known = KnownBits::udiv(Known, Known2); 3108 break; 3109 } 3110 case ISD::SELECT: 3111 case ISD::VSELECT: 3112 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3113 // If we don't know any bits, early out. 3114 if (Known.isUnknown()) 3115 break; 3116 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3117 3118 // Only known if known in both the LHS and RHS. 3119 Known = KnownBits::commonBits(Known, Known2); 3120 break; 3121 case ISD::SELECT_CC: 3122 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3123 // If we don't know any bits, early out. 3124 if (Known.isUnknown()) 3125 break; 3126 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3127 3128 // Only known if known in both the LHS and RHS. 3129 Known = KnownBits::commonBits(Known, Known2); 3130 break; 3131 case ISD::SMULO: 3132 case ISD::UMULO: 3133 if (Op.getResNo() != 1) 3134 break; 3135 // The boolean result conforms to getBooleanContents. 3136 // If we know the result of a setcc has the top bits zero, use this info. 3137 // We know that we have an integer-based boolean since these operations 3138 // are only available for integer. 3139 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3140 TargetLowering::ZeroOrOneBooleanContent && 3141 BitWidth > 1) 3142 Known.Zero.setBitsFrom(1); 3143 break; 3144 case ISD::SETCC: 3145 case ISD::STRICT_FSETCC: 3146 case ISD::STRICT_FSETCCS: { 3147 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3148 // If we know the result of a setcc has the top bits zero, use this info. 3149 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3150 TargetLowering::ZeroOrOneBooleanContent && 3151 BitWidth > 1) 3152 Known.Zero.setBitsFrom(1); 3153 break; 3154 } 3155 case ISD::SHL: 3156 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3157 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3158 Known = KnownBits::shl(Known, Known2); 3159 3160 // Minimum shift low bits are known zero. 3161 if (const APInt *ShMinAmt = 3162 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3163 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3164 break; 3165 case ISD::SRL: 3166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3168 Known = KnownBits::lshr(Known, Known2); 3169 3170 // Minimum shift high bits are known zero. 3171 if (const APInt *ShMinAmt = 3172 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3173 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3174 break; 3175 case ISD::SRA: 3176 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3177 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3178 Known = KnownBits::ashr(Known, Known2); 3179 // TODO: Add minimum shift high known sign bits. 3180 break; 3181 case ISD::FSHL: 3182 case ISD::FSHR: 3183 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3184 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3185 3186 // For fshl, 0-shift returns the 1st arg. 3187 // For fshr, 0-shift returns the 2nd arg. 3188 if (Amt == 0) { 3189 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3190 DemandedElts, Depth + 1); 3191 break; 3192 } 3193 3194 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3195 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3196 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3198 if (Opcode == ISD::FSHL) { 3199 Known.One <<= Amt; 3200 Known.Zero <<= Amt; 3201 Known2.One.lshrInPlace(BitWidth - Amt); 3202 Known2.Zero.lshrInPlace(BitWidth - Amt); 3203 } else { 3204 Known.One <<= BitWidth - Amt; 3205 Known.Zero <<= BitWidth - Amt; 3206 Known2.One.lshrInPlace(Amt); 3207 Known2.Zero.lshrInPlace(Amt); 3208 } 3209 Known.One |= Known2.One; 3210 Known.Zero |= Known2.Zero; 3211 } 3212 break; 3213 case ISD::SIGN_EXTEND_INREG: { 3214 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3215 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3216 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3217 break; 3218 } 3219 case ISD::CTTZ: 3220 case ISD::CTTZ_ZERO_UNDEF: { 3221 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3222 // If we have a known 1, its position is our upper bound. 3223 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3224 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3225 Known.Zero.setBitsFrom(LowBits); 3226 break; 3227 } 3228 case ISD::CTLZ: 3229 case ISD::CTLZ_ZERO_UNDEF: { 3230 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3231 // If we have a known 1, its position is our upper bound. 3232 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3233 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3234 Known.Zero.setBitsFrom(LowBits); 3235 break; 3236 } 3237 case ISD::CTPOP: { 3238 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3239 // If we know some of the bits are zero, they can't be one. 3240 unsigned PossibleOnes = Known2.countMaxPopulation(); 3241 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3242 break; 3243 } 3244 case ISD::PARITY: { 3245 // Parity returns 0 everywhere but the LSB. 3246 Known.Zero.setBitsFrom(1); 3247 break; 3248 } 3249 case ISD::LOAD: { 3250 LoadSDNode *LD = cast<LoadSDNode>(Op); 3251 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3252 if (ISD::isNON_EXTLoad(LD) && Cst) { 3253 // Determine any common known bits from the loaded constant pool value. 3254 Type *CstTy = Cst->getType(); 3255 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3256 // If its a vector splat, then we can (quickly) reuse the scalar path. 3257 // NOTE: We assume all elements match and none are UNDEF. 3258 if (CstTy->isVectorTy()) { 3259 if (const Constant *Splat = Cst->getSplatValue()) { 3260 Cst = Splat; 3261 CstTy = Cst->getType(); 3262 } 3263 } 3264 // TODO - do we need to handle different bitwidths? 3265 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3266 // Iterate across all vector elements finding common known bits. 3267 Known.One.setAllBits(); 3268 Known.Zero.setAllBits(); 3269 for (unsigned i = 0; i != NumElts; ++i) { 3270 if (!DemandedElts[i]) 3271 continue; 3272 if (Constant *Elt = Cst->getAggregateElement(i)) { 3273 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3274 const APInt &Value = CInt->getValue(); 3275 Known.One &= Value; 3276 Known.Zero &= ~Value; 3277 continue; 3278 } 3279 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3280 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3281 Known.One &= Value; 3282 Known.Zero &= ~Value; 3283 continue; 3284 } 3285 } 3286 Known.One.clearAllBits(); 3287 Known.Zero.clearAllBits(); 3288 break; 3289 } 3290 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3291 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3292 Known = KnownBits::makeConstant(CInt->getValue()); 3293 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3294 Known = 3295 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3296 } 3297 } 3298 } 3299 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3300 // If this is a ZEXTLoad and we are looking at the loaded value. 3301 EVT VT = LD->getMemoryVT(); 3302 unsigned MemBits = VT.getScalarSizeInBits(); 3303 Known.Zero.setBitsFrom(MemBits); 3304 } else if (const MDNode *Ranges = LD->getRanges()) { 3305 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3306 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3307 } 3308 break; 3309 } 3310 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3311 EVT InVT = Op.getOperand(0).getValueType(); 3312 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3313 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3314 Known = Known.zext(BitWidth); 3315 break; 3316 } 3317 case ISD::ZERO_EXTEND: { 3318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 Known = Known.zext(BitWidth); 3320 break; 3321 } 3322 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3323 EVT InVT = Op.getOperand(0).getValueType(); 3324 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3325 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3326 // If the sign bit is known to be zero or one, then sext will extend 3327 // it to the top bits, else it will just zext. 3328 Known = Known.sext(BitWidth); 3329 break; 3330 } 3331 case ISD::SIGN_EXTEND: { 3332 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3333 // If the sign bit is known to be zero or one, then sext will extend 3334 // it to the top bits, else it will just zext. 3335 Known = Known.sext(BitWidth); 3336 break; 3337 } 3338 case ISD::ANY_EXTEND_VECTOR_INREG: { 3339 EVT InVT = Op.getOperand(0).getValueType(); 3340 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3341 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3342 Known = Known.anyext(BitWidth); 3343 break; 3344 } 3345 case ISD::ANY_EXTEND: { 3346 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3347 Known = Known.anyext(BitWidth); 3348 break; 3349 } 3350 case ISD::TRUNCATE: { 3351 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3352 Known = Known.trunc(BitWidth); 3353 break; 3354 } 3355 case ISD::AssertZext: { 3356 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3357 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3358 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3359 Known.Zero |= (~InMask); 3360 Known.One &= (~Known.Zero); 3361 break; 3362 } 3363 case ISD::AssertAlign: { 3364 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3365 assert(LogOfAlign != 0); 3366 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3367 // well as clearing one bits. 3368 Known.Zero.setLowBits(LogOfAlign); 3369 Known.One.clearLowBits(LogOfAlign); 3370 break; 3371 } 3372 case ISD::FGETSIGN: 3373 // All bits are zero except the low bit. 3374 Known.Zero.setBitsFrom(1); 3375 break; 3376 case ISD::USUBO: 3377 case ISD::SSUBO: 3378 if (Op.getResNo() == 1) { 3379 // If we know the result of a setcc has the top bits zero, use this info. 3380 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3381 TargetLowering::ZeroOrOneBooleanContent && 3382 BitWidth > 1) 3383 Known.Zero.setBitsFrom(1); 3384 break; 3385 } 3386 LLVM_FALLTHROUGH; 3387 case ISD::SUB: 3388 case ISD::SUBC: { 3389 assert(Op.getResNo() == 0 && 3390 "We only compute knownbits for the difference here."); 3391 3392 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3393 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3394 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3395 Known, Known2); 3396 break; 3397 } 3398 case ISD::UADDO: 3399 case ISD::SADDO: 3400 case ISD::ADDCARRY: 3401 if (Op.getResNo() == 1) { 3402 // If we know the result of a setcc has the top bits zero, use this info. 3403 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3404 TargetLowering::ZeroOrOneBooleanContent && 3405 BitWidth > 1) 3406 Known.Zero.setBitsFrom(1); 3407 break; 3408 } 3409 LLVM_FALLTHROUGH; 3410 case ISD::ADD: 3411 case ISD::ADDC: 3412 case ISD::ADDE: { 3413 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3414 3415 // With ADDE and ADDCARRY, a carry bit may be added in. 3416 KnownBits Carry(1); 3417 if (Opcode == ISD::ADDE) 3418 // Can't track carry from glue, set carry to unknown. 3419 Carry.resetAll(); 3420 else if (Opcode == ISD::ADDCARRY) 3421 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3422 // the trouble (how often will we find a known carry bit). And I haven't 3423 // tested this very much yet, but something like this might work: 3424 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3425 // Carry = Carry.zextOrTrunc(1, false); 3426 Carry.resetAll(); 3427 else 3428 Carry.setAllZero(); 3429 3430 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3431 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3432 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3433 break; 3434 } 3435 case ISD::SREM: { 3436 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3437 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3438 Known = KnownBits::srem(Known, Known2); 3439 break; 3440 } 3441 case ISD::UREM: { 3442 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3443 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3444 Known = KnownBits::urem(Known, Known2); 3445 break; 3446 } 3447 case ISD::EXTRACT_ELEMENT: { 3448 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3449 const unsigned Index = Op.getConstantOperandVal(1); 3450 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3451 3452 // Remove low part of known bits mask 3453 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3454 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3455 3456 // Remove high part of known bit mask 3457 Known = Known.trunc(EltBitWidth); 3458 break; 3459 } 3460 case ISD::EXTRACT_VECTOR_ELT: { 3461 SDValue InVec = Op.getOperand(0); 3462 SDValue EltNo = Op.getOperand(1); 3463 EVT VecVT = InVec.getValueType(); 3464 // computeKnownBits not yet implemented for scalable vectors. 3465 if (VecVT.isScalableVector()) 3466 break; 3467 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3468 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3469 3470 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3471 // anything about the extended bits. 3472 if (BitWidth > EltBitWidth) 3473 Known = Known.trunc(EltBitWidth); 3474 3475 // If we know the element index, just demand that vector element, else for 3476 // an unknown element index, ignore DemandedElts and demand them all. 3477 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3478 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3479 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3480 DemandedSrcElts = 3481 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3482 3483 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3484 if (BitWidth > EltBitWidth) 3485 Known = Known.anyext(BitWidth); 3486 break; 3487 } 3488 case ISD::INSERT_VECTOR_ELT: { 3489 // If we know the element index, split the demand between the 3490 // source vector and the inserted element, otherwise assume we need 3491 // the original demanded vector elements and the value. 3492 SDValue InVec = Op.getOperand(0); 3493 SDValue InVal = Op.getOperand(1); 3494 SDValue EltNo = Op.getOperand(2); 3495 bool DemandedVal = true; 3496 APInt DemandedVecElts = DemandedElts; 3497 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3498 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3499 unsigned EltIdx = CEltNo->getZExtValue(); 3500 DemandedVal = !!DemandedElts[EltIdx]; 3501 DemandedVecElts.clearBit(EltIdx); 3502 } 3503 Known.One.setAllBits(); 3504 Known.Zero.setAllBits(); 3505 if (DemandedVal) { 3506 Known2 = computeKnownBits(InVal, Depth + 1); 3507 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3508 } 3509 if (!!DemandedVecElts) { 3510 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3511 Known = KnownBits::commonBits(Known, Known2); 3512 } 3513 break; 3514 } 3515 case ISD::BITREVERSE: { 3516 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3517 Known = Known2.reverseBits(); 3518 break; 3519 } 3520 case ISD::BSWAP: { 3521 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3522 Known = Known2.byteSwap(); 3523 break; 3524 } 3525 case ISD::ABS: { 3526 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3527 Known = Known2.abs(); 3528 break; 3529 } 3530 case ISD::USUBSAT: { 3531 // The result of usubsat will never be larger than the LHS. 3532 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3533 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3534 break; 3535 } 3536 case ISD::UMIN: { 3537 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3538 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3539 Known = KnownBits::umin(Known, Known2); 3540 break; 3541 } 3542 case ISD::UMAX: { 3543 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3544 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3545 Known = KnownBits::umax(Known, Known2); 3546 break; 3547 } 3548 case ISD::SMIN: 3549 case ISD::SMAX: { 3550 // If we have a clamp pattern, we know that the number of sign bits will be 3551 // the minimum of the clamp min/max range. 3552 bool IsMax = (Opcode == ISD::SMAX); 3553 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3554 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3555 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3556 CstHigh = 3557 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3558 if (CstLow && CstHigh) { 3559 if (!IsMax) 3560 std::swap(CstLow, CstHigh); 3561 3562 const APInt &ValueLow = CstLow->getAPIntValue(); 3563 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3564 if (ValueLow.sle(ValueHigh)) { 3565 unsigned LowSignBits = ValueLow.getNumSignBits(); 3566 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3567 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3568 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3569 Known.One.setHighBits(MinSignBits); 3570 break; 3571 } 3572 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3573 Known.Zero.setHighBits(MinSignBits); 3574 break; 3575 } 3576 } 3577 } 3578 3579 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3580 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3581 if (IsMax) 3582 Known = KnownBits::smax(Known, Known2); 3583 else 3584 Known = KnownBits::smin(Known, Known2); 3585 break; 3586 } 3587 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3588 if (Op.getResNo() == 1) { 3589 // The boolean result conforms to getBooleanContents. 3590 // If we know the result of a setcc has the top bits zero, use this info. 3591 // We know that we have an integer-based boolean since these operations 3592 // are only available for integer. 3593 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3594 TargetLowering::ZeroOrOneBooleanContent && 3595 BitWidth > 1) 3596 Known.Zero.setBitsFrom(1); 3597 break; 3598 } 3599 LLVM_FALLTHROUGH; 3600 case ISD::ATOMIC_CMP_SWAP: 3601 case ISD::ATOMIC_SWAP: 3602 case ISD::ATOMIC_LOAD_ADD: 3603 case ISD::ATOMIC_LOAD_SUB: 3604 case ISD::ATOMIC_LOAD_AND: 3605 case ISD::ATOMIC_LOAD_CLR: 3606 case ISD::ATOMIC_LOAD_OR: 3607 case ISD::ATOMIC_LOAD_XOR: 3608 case ISD::ATOMIC_LOAD_NAND: 3609 case ISD::ATOMIC_LOAD_MIN: 3610 case ISD::ATOMIC_LOAD_MAX: 3611 case ISD::ATOMIC_LOAD_UMIN: 3612 case ISD::ATOMIC_LOAD_UMAX: 3613 case ISD::ATOMIC_LOAD: { 3614 unsigned MemBits = 3615 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3616 // If we are looking at the loaded value. 3617 if (Op.getResNo() == 0) { 3618 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3619 Known.Zero.setBitsFrom(MemBits); 3620 } 3621 break; 3622 } 3623 case ISD::FrameIndex: 3624 case ISD::TargetFrameIndex: 3625 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3626 Known, getMachineFunction()); 3627 break; 3628 3629 default: 3630 if (Opcode < ISD::BUILTIN_OP_END) 3631 break; 3632 LLVM_FALLTHROUGH; 3633 case ISD::INTRINSIC_WO_CHAIN: 3634 case ISD::INTRINSIC_W_CHAIN: 3635 case ISD::INTRINSIC_VOID: 3636 // Allow the target to implement this method for its nodes. 3637 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3638 break; 3639 } 3640 3641 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3642 return Known; 3643 } 3644 3645 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3646 SDValue N1) const { 3647 // X + 0 never overflow 3648 if (isNullConstant(N1)) 3649 return OFK_Never; 3650 3651 KnownBits N1Known = computeKnownBits(N1); 3652 if (N1Known.Zero.getBoolValue()) { 3653 KnownBits N0Known = computeKnownBits(N0); 3654 3655 bool overflow; 3656 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3657 if (!overflow) 3658 return OFK_Never; 3659 } 3660 3661 // mulhi + 1 never overflow 3662 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3663 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3664 return OFK_Never; 3665 3666 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3667 KnownBits N0Known = computeKnownBits(N0); 3668 3669 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3670 return OFK_Never; 3671 } 3672 3673 return OFK_Sometime; 3674 } 3675 3676 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3677 EVT OpVT = Val.getValueType(); 3678 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3679 3680 // Is the constant a known power of 2? 3681 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3682 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3683 3684 // A left-shift of a constant one will have exactly one bit set because 3685 // shifting the bit off the end is undefined. 3686 if (Val.getOpcode() == ISD::SHL) { 3687 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3688 if (C && C->getAPIntValue() == 1) 3689 return true; 3690 } 3691 3692 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3693 // one bit set. 3694 if (Val.getOpcode() == ISD::SRL) { 3695 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3696 if (C && C->getAPIntValue().isSignMask()) 3697 return true; 3698 } 3699 3700 // Are all operands of a build vector constant powers of two? 3701 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3702 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3703 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3704 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3705 return false; 3706 })) 3707 return true; 3708 3709 // Is the operand of a splat vector a constant power of two? 3710 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3711 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3712 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3713 return true; 3714 3715 // More could be done here, though the above checks are enough 3716 // to handle some common cases. 3717 3718 // Fall back to computeKnownBits to catch other known cases. 3719 KnownBits Known = computeKnownBits(Val); 3720 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3721 } 3722 3723 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3724 EVT VT = Op.getValueType(); 3725 3726 // TODO: Assume we don't know anything for now. 3727 if (VT.isScalableVector()) 3728 return 1; 3729 3730 APInt DemandedElts = VT.isVector() 3731 ? APInt::getAllOnes(VT.getVectorNumElements()) 3732 : APInt(1, 1); 3733 return ComputeNumSignBits(Op, DemandedElts, Depth); 3734 } 3735 3736 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3737 unsigned Depth) const { 3738 EVT VT = Op.getValueType(); 3739 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3740 unsigned VTBits = VT.getScalarSizeInBits(); 3741 unsigned NumElts = DemandedElts.getBitWidth(); 3742 unsigned Tmp, Tmp2; 3743 unsigned FirstAnswer = 1; 3744 3745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3746 const APInt &Val = C->getAPIntValue(); 3747 return Val.getNumSignBits(); 3748 } 3749 3750 if (Depth >= MaxRecursionDepth) 3751 return 1; // Limit search depth. 3752 3753 if (!DemandedElts || VT.isScalableVector()) 3754 return 1; // No demanded elts, better to assume we don't know anything. 3755 3756 unsigned Opcode = Op.getOpcode(); 3757 switch (Opcode) { 3758 default: break; 3759 case ISD::AssertSext: 3760 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3761 return VTBits-Tmp+1; 3762 case ISD::AssertZext: 3763 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3764 return VTBits-Tmp; 3765 3766 case ISD::BUILD_VECTOR: 3767 Tmp = VTBits; 3768 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3769 if (!DemandedElts[i]) 3770 continue; 3771 3772 SDValue SrcOp = Op.getOperand(i); 3773 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3774 3775 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3776 if (SrcOp.getValueSizeInBits() != VTBits) { 3777 assert(SrcOp.getValueSizeInBits() > VTBits && 3778 "Expected BUILD_VECTOR implicit truncation"); 3779 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3780 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3781 } 3782 Tmp = std::min(Tmp, Tmp2); 3783 } 3784 return Tmp; 3785 3786 case ISD::VECTOR_SHUFFLE: { 3787 // Collect the minimum number of sign bits that are shared by every vector 3788 // element referenced by the shuffle. 3789 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3790 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3791 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3792 for (unsigned i = 0; i != NumElts; ++i) { 3793 int M = SVN->getMaskElt(i); 3794 if (!DemandedElts[i]) 3795 continue; 3796 // For UNDEF elements, we don't know anything about the common state of 3797 // the shuffle result. 3798 if (M < 0) 3799 return 1; 3800 if ((unsigned)M < NumElts) 3801 DemandedLHS.setBit((unsigned)M % NumElts); 3802 else 3803 DemandedRHS.setBit((unsigned)M % NumElts); 3804 } 3805 Tmp = std::numeric_limits<unsigned>::max(); 3806 if (!!DemandedLHS) 3807 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3808 if (!!DemandedRHS) { 3809 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3810 Tmp = std::min(Tmp, Tmp2); 3811 } 3812 // If we don't know anything, early out and try computeKnownBits fall-back. 3813 if (Tmp == 1) 3814 break; 3815 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3816 return Tmp; 3817 } 3818 3819 case ISD::BITCAST: { 3820 SDValue N0 = Op.getOperand(0); 3821 EVT SrcVT = N0.getValueType(); 3822 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3823 3824 // Ignore bitcasts from unsupported types.. 3825 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3826 break; 3827 3828 // Fast handling of 'identity' bitcasts. 3829 if (VTBits == SrcBits) 3830 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3831 3832 bool IsLE = getDataLayout().isLittleEndian(); 3833 3834 // Bitcast 'large element' scalar/vector to 'small element' vector. 3835 if ((SrcBits % VTBits) == 0) { 3836 assert(VT.isVector() && "Expected bitcast to vector"); 3837 3838 unsigned Scale = SrcBits / VTBits; 3839 APInt SrcDemandedElts = 3840 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3841 3842 // Fast case - sign splat can be simply split across the small elements. 3843 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3844 if (Tmp == SrcBits) 3845 return VTBits; 3846 3847 // Slow case - determine how far the sign extends into each sub-element. 3848 Tmp2 = VTBits; 3849 for (unsigned i = 0; i != NumElts; ++i) 3850 if (DemandedElts[i]) { 3851 unsigned SubOffset = i % Scale; 3852 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3853 SubOffset = SubOffset * VTBits; 3854 if (Tmp <= SubOffset) 3855 return 1; 3856 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3857 } 3858 return Tmp2; 3859 } 3860 break; 3861 } 3862 3863 case ISD::SIGN_EXTEND: 3864 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3865 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3866 case ISD::SIGN_EXTEND_INREG: 3867 // Max of the input and what this extends. 3868 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3869 Tmp = VTBits-Tmp+1; 3870 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3871 return std::max(Tmp, Tmp2); 3872 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3873 SDValue Src = Op.getOperand(0); 3874 EVT SrcVT = Src.getValueType(); 3875 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3876 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3877 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3878 } 3879 case ISD::SRA: 3880 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3881 // SRA X, C -> adds C sign bits. 3882 if (const APInt *ShAmt = 3883 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3884 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3885 return Tmp; 3886 case ISD::SHL: 3887 if (const APInt *ShAmt = 3888 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3889 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3890 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3891 if (ShAmt->ult(Tmp)) 3892 return Tmp - ShAmt->getZExtValue(); 3893 } 3894 break; 3895 case ISD::AND: 3896 case ISD::OR: 3897 case ISD::XOR: // NOT is handled here. 3898 // Logical binary ops preserve the number of sign bits at the worst. 3899 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3900 if (Tmp != 1) { 3901 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3902 FirstAnswer = std::min(Tmp, Tmp2); 3903 // We computed what we know about the sign bits as our first 3904 // answer. Now proceed to the generic code that uses 3905 // computeKnownBits, and pick whichever answer is better. 3906 } 3907 break; 3908 3909 case ISD::SELECT: 3910 case ISD::VSELECT: 3911 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3912 if (Tmp == 1) return 1; // Early out. 3913 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3914 return std::min(Tmp, Tmp2); 3915 case ISD::SELECT_CC: 3916 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3917 if (Tmp == 1) return 1; // Early out. 3918 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3919 return std::min(Tmp, Tmp2); 3920 3921 case ISD::SMIN: 3922 case ISD::SMAX: { 3923 // If we have a clamp pattern, we know that the number of sign bits will be 3924 // the minimum of the clamp min/max range. 3925 bool IsMax = (Opcode == ISD::SMAX); 3926 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3927 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3928 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3929 CstHigh = 3930 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3931 if (CstLow && CstHigh) { 3932 if (!IsMax) 3933 std::swap(CstLow, CstHigh); 3934 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3935 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3936 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3937 return std::min(Tmp, Tmp2); 3938 } 3939 } 3940 3941 // Fallback - just get the minimum number of sign bits of the operands. 3942 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3943 if (Tmp == 1) 3944 return 1; // Early out. 3945 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3946 return std::min(Tmp, Tmp2); 3947 } 3948 case ISD::UMIN: 3949 case ISD::UMAX: 3950 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3951 if (Tmp == 1) 3952 return 1; // Early out. 3953 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3954 return std::min(Tmp, Tmp2); 3955 case ISD::SADDO: 3956 case ISD::UADDO: 3957 case ISD::SSUBO: 3958 case ISD::USUBO: 3959 case ISD::SMULO: 3960 case ISD::UMULO: 3961 if (Op.getResNo() != 1) 3962 break; 3963 // The boolean result conforms to getBooleanContents. Fall through. 3964 // If setcc returns 0/-1, all bits are sign bits. 3965 // We know that we have an integer-based boolean since these operations 3966 // are only available for integer. 3967 if (TLI->getBooleanContents(VT.isVector(), false) == 3968 TargetLowering::ZeroOrNegativeOneBooleanContent) 3969 return VTBits; 3970 break; 3971 case ISD::SETCC: 3972 case ISD::STRICT_FSETCC: 3973 case ISD::STRICT_FSETCCS: { 3974 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3975 // If setcc returns 0/-1, all bits are sign bits. 3976 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3977 TargetLowering::ZeroOrNegativeOneBooleanContent) 3978 return VTBits; 3979 break; 3980 } 3981 case ISD::ROTL: 3982 case ISD::ROTR: 3983 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3984 3985 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3986 if (Tmp == VTBits) 3987 return VTBits; 3988 3989 if (ConstantSDNode *C = 3990 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3991 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3992 3993 // Handle rotate right by N like a rotate left by 32-N. 3994 if (Opcode == ISD::ROTR) 3995 RotAmt = (VTBits - RotAmt) % VTBits; 3996 3997 // If we aren't rotating out all of the known-in sign bits, return the 3998 // number that are left. This handles rotl(sext(x), 1) for example. 3999 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4000 } 4001 break; 4002 case ISD::ADD: 4003 case ISD::ADDC: 4004 // Add can have at most one carry bit. Thus we know that the output 4005 // is, at worst, one more bit than the inputs. 4006 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4007 if (Tmp == 1) return 1; // Early out. 4008 4009 // Special case decrementing a value (ADD X, -1): 4010 if (ConstantSDNode *CRHS = 4011 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4012 if (CRHS->isAllOnes()) { 4013 KnownBits Known = 4014 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4015 4016 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4017 // sign bits set. 4018 if ((Known.Zero | 1).isAllOnes()) 4019 return VTBits; 4020 4021 // If we are subtracting one from a positive number, there is no carry 4022 // out of the result. 4023 if (Known.isNonNegative()) 4024 return Tmp; 4025 } 4026 4027 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4028 if (Tmp2 == 1) return 1; // Early out. 4029 return std::min(Tmp, Tmp2) - 1; 4030 case ISD::SUB: 4031 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4032 if (Tmp2 == 1) return 1; // Early out. 4033 4034 // Handle NEG. 4035 if (ConstantSDNode *CLHS = 4036 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4037 if (CLHS->isZero()) { 4038 KnownBits Known = 4039 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4040 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4041 // sign bits set. 4042 if ((Known.Zero | 1).isAllOnes()) 4043 return VTBits; 4044 4045 // If the input is known to be positive (the sign bit is known clear), 4046 // the output of the NEG has the same number of sign bits as the input. 4047 if (Known.isNonNegative()) 4048 return Tmp2; 4049 4050 // Otherwise, we treat this like a SUB. 4051 } 4052 4053 // Sub can have at most one carry bit. Thus we know that the output 4054 // is, at worst, one more bit than the inputs. 4055 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4056 if (Tmp == 1) return 1; // Early out. 4057 return std::min(Tmp, Tmp2) - 1; 4058 case ISD::MUL: { 4059 // The output of the Mul can be at most twice the valid bits in the inputs. 4060 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4061 if (SignBitsOp0 == 1) 4062 break; 4063 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4064 if (SignBitsOp1 == 1) 4065 break; 4066 unsigned OutValidBits = 4067 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4068 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4069 } 4070 case ISD::SREM: 4071 // The sign bit is the LHS's sign bit, except when the result of the 4072 // remainder is zero. The magnitude of the result should be less than or 4073 // equal to the magnitude of the LHS. Therefore, the result should have 4074 // at least as many sign bits as the left hand side. 4075 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4076 case ISD::TRUNCATE: { 4077 // Check if the sign bits of source go down as far as the truncated value. 4078 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4079 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4080 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4081 return NumSrcSignBits - (NumSrcBits - VTBits); 4082 break; 4083 } 4084 case ISD::EXTRACT_ELEMENT: { 4085 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4086 const int BitWidth = Op.getValueSizeInBits(); 4087 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4088 4089 // Get reverse index (starting from 1), Op1 value indexes elements from 4090 // little end. Sign starts at big end. 4091 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4092 4093 // If the sign portion ends in our element the subtraction gives correct 4094 // result. Otherwise it gives either negative or > bitwidth result 4095 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4096 } 4097 case ISD::INSERT_VECTOR_ELT: { 4098 // If we know the element index, split the demand between the 4099 // source vector and the inserted element, otherwise assume we need 4100 // the original demanded vector elements and the value. 4101 SDValue InVec = Op.getOperand(0); 4102 SDValue InVal = Op.getOperand(1); 4103 SDValue EltNo = Op.getOperand(2); 4104 bool DemandedVal = true; 4105 APInt DemandedVecElts = DemandedElts; 4106 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4107 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4108 unsigned EltIdx = CEltNo->getZExtValue(); 4109 DemandedVal = !!DemandedElts[EltIdx]; 4110 DemandedVecElts.clearBit(EltIdx); 4111 } 4112 Tmp = std::numeric_limits<unsigned>::max(); 4113 if (DemandedVal) { 4114 // TODO - handle implicit truncation of inserted elements. 4115 if (InVal.getScalarValueSizeInBits() != VTBits) 4116 break; 4117 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4118 Tmp = std::min(Tmp, Tmp2); 4119 } 4120 if (!!DemandedVecElts) { 4121 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4122 Tmp = std::min(Tmp, Tmp2); 4123 } 4124 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4125 return Tmp; 4126 } 4127 case ISD::EXTRACT_VECTOR_ELT: { 4128 SDValue InVec = Op.getOperand(0); 4129 SDValue EltNo = Op.getOperand(1); 4130 EVT VecVT = InVec.getValueType(); 4131 // ComputeNumSignBits not yet implemented for scalable vectors. 4132 if (VecVT.isScalableVector()) 4133 break; 4134 const unsigned BitWidth = Op.getValueSizeInBits(); 4135 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4136 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4137 4138 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4139 // anything about sign bits. But if the sizes match we can derive knowledge 4140 // about sign bits from the vector operand. 4141 if (BitWidth != EltBitWidth) 4142 break; 4143 4144 // If we know the element index, just demand that vector element, else for 4145 // an unknown element index, ignore DemandedElts and demand them all. 4146 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4147 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4148 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4149 DemandedSrcElts = 4150 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4151 4152 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4153 } 4154 case ISD::EXTRACT_SUBVECTOR: { 4155 // Offset the demanded elts by the subvector index. 4156 SDValue Src = Op.getOperand(0); 4157 // Bail until we can represent demanded elements for scalable vectors. 4158 if (Src.getValueType().isScalableVector()) 4159 break; 4160 uint64_t Idx = Op.getConstantOperandVal(1); 4161 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4162 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4163 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4164 } 4165 case ISD::CONCAT_VECTORS: { 4166 // Determine the minimum number of sign bits across all demanded 4167 // elts of the input vectors. Early out if the result is already 1. 4168 Tmp = std::numeric_limits<unsigned>::max(); 4169 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4170 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4171 unsigned NumSubVectors = Op.getNumOperands(); 4172 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4173 APInt DemandedSub = 4174 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4175 if (!DemandedSub) 4176 continue; 4177 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4178 Tmp = std::min(Tmp, Tmp2); 4179 } 4180 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4181 return Tmp; 4182 } 4183 case ISD::INSERT_SUBVECTOR: { 4184 // Demand any elements from the subvector and the remainder from the src its 4185 // inserted into. 4186 SDValue Src = Op.getOperand(0); 4187 SDValue Sub = Op.getOperand(1); 4188 uint64_t Idx = Op.getConstantOperandVal(2); 4189 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4190 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4191 APInt DemandedSrcElts = DemandedElts; 4192 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4193 4194 Tmp = std::numeric_limits<unsigned>::max(); 4195 if (!!DemandedSubElts) { 4196 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4197 if (Tmp == 1) 4198 return 1; // early-out 4199 } 4200 if (!!DemandedSrcElts) { 4201 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4202 Tmp = std::min(Tmp, Tmp2); 4203 } 4204 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4205 return Tmp; 4206 } 4207 case ISD::ATOMIC_CMP_SWAP: 4208 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4209 case ISD::ATOMIC_SWAP: 4210 case ISD::ATOMIC_LOAD_ADD: 4211 case ISD::ATOMIC_LOAD_SUB: 4212 case ISD::ATOMIC_LOAD_AND: 4213 case ISD::ATOMIC_LOAD_CLR: 4214 case ISD::ATOMIC_LOAD_OR: 4215 case ISD::ATOMIC_LOAD_XOR: 4216 case ISD::ATOMIC_LOAD_NAND: 4217 case ISD::ATOMIC_LOAD_MIN: 4218 case ISD::ATOMIC_LOAD_MAX: 4219 case ISD::ATOMIC_LOAD_UMIN: 4220 case ISD::ATOMIC_LOAD_UMAX: 4221 case ISD::ATOMIC_LOAD: { 4222 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4223 // If we are looking at the loaded value. 4224 if (Op.getResNo() == 0) { 4225 if (Tmp == VTBits) 4226 return 1; // early-out 4227 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4228 return VTBits - Tmp + 1; 4229 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4230 return VTBits - Tmp; 4231 } 4232 break; 4233 } 4234 } 4235 4236 // If we are looking at the loaded value of the SDNode. 4237 if (Op.getResNo() == 0) { 4238 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4239 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4240 unsigned ExtType = LD->getExtensionType(); 4241 switch (ExtType) { 4242 default: break; 4243 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4244 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4245 return VTBits - Tmp + 1; 4246 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4247 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4248 return VTBits - Tmp; 4249 case ISD::NON_EXTLOAD: 4250 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4251 // We only need to handle vectors - computeKnownBits should handle 4252 // scalar cases. 4253 Type *CstTy = Cst->getType(); 4254 if (CstTy->isVectorTy() && 4255 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4256 Tmp = VTBits; 4257 for (unsigned i = 0; i != NumElts; ++i) { 4258 if (!DemandedElts[i]) 4259 continue; 4260 if (Constant *Elt = Cst->getAggregateElement(i)) { 4261 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4262 const APInt &Value = CInt->getValue(); 4263 Tmp = std::min(Tmp, Value.getNumSignBits()); 4264 continue; 4265 } 4266 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4267 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4268 Tmp = std::min(Tmp, Value.getNumSignBits()); 4269 continue; 4270 } 4271 } 4272 // Unknown type. Conservatively assume no bits match sign bit. 4273 return 1; 4274 } 4275 return Tmp; 4276 } 4277 } 4278 break; 4279 } 4280 } 4281 } 4282 4283 // Allow the target to implement this method for its nodes. 4284 if (Opcode >= ISD::BUILTIN_OP_END || 4285 Opcode == ISD::INTRINSIC_WO_CHAIN || 4286 Opcode == ISD::INTRINSIC_W_CHAIN || 4287 Opcode == ISD::INTRINSIC_VOID) { 4288 unsigned NumBits = 4289 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4290 if (NumBits > 1) 4291 FirstAnswer = std::max(FirstAnswer, NumBits); 4292 } 4293 4294 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4295 // use this information. 4296 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4297 4298 APInt Mask; 4299 if (Known.isNonNegative()) { // sign bit is 0 4300 Mask = Known.Zero; 4301 } else if (Known.isNegative()) { // sign bit is 1; 4302 Mask = Known.One; 4303 } else { 4304 // Nothing known. 4305 return FirstAnswer; 4306 } 4307 4308 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4309 // the number of identical bits in the top of the input value. 4310 Mask <<= Mask.getBitWidth()-VTBits; 4311 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4312 } 4313 4314 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const { 4315 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4316 return Op.getScalarValueSizeInBits() - SignBits + 1; 4317 } 4318 4319 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, 4320 const APInt &DemandedElts, 4321 unsigned Depth) const { 4322 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4323 return Op.getScalarValueSizeInBits() - SignBits + 1; 4324 } 4325 4326 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4327 unsigned Depth) const { 4328 // Early out for FREEZE. 4329 if (Op.getOpcode() == ISD::FREEZE) 4330 return true; 4331 4332 // TODO: Assume we don't know anything for now. 4333 EVT VT = Op.getValueType(); 4334 if (VT.isScalableVector()) 4335 return false; 4336 4337 APInt DemandedElts = VT.isVector() 4338 ? APInt::getAllOnes(VT.getVectorNumElements()) 4339 : APInt(1, 1); 4340 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4341 } 4342 4343 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4344 const APInt &DemandedElts, 4345 bool PoisonOnly, 4346 unsigned Depth) const { 4347 unsigned Opcode = Op.getOpcode(); 4348 4349 // Early out for FREEZE. 4350 if (Opcode == ISD::FREEZE) 4351 return true; 4352 4353 if (Depth >= MaxRecursionDepth) 4354 return false; // Limit search depth. 4355 4356 if (isIntOrFPConstant(Op)) 4357 return true; 4358 4359 switch (Opcode) { 4360 case ISD::UNDEF: 4361 return PoisonOnly; 4362 4363 case ISD::BUILD_VECTOR: 4364 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4365 // this shouldn't affect the result. 4366 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4367 if (!DemandedElts[i]) 4368 continue; 4369 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4370 Depth + 1)) 4371 return false; 4372 } 4373 return true; 4374 4375 // TODO: Search for noundef attributes from library functions. 4376 4377 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4378 4379 default: 4380 // Allow the target to implement this method for its nodes. 4381 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4382 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4383 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4384 Op, DemandedElts, *this, PoisonOnly, Depth); 4385 break; 4386 } 4387 4388 return false; 4389 } 4390 4391 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4392 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4393 !isa<ConstantSDNode>(Op.getOperand(1))) 4394 return false; 4395 4396 if (Op.getOpcode() == ISD::OR && 4397 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4398 return false; 4399 4400 return true; 4401 } 4402 4403 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4404 // If we're told that NaNs won't happen, assume they won't. 4405 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4406 return true; 4407 4408 if (Depth >= MaxRecursionDepth) 4409 return false; // Limit search depth. 4410 4411 // TODO: Handle vectors. 4412 // If the value is a constant, we can obviously see if it is a NaN or not. 4413 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4414 return !C->getValueAPF().isNaN() || 4415 (SNaN && !C->getValueAPF().isSignaling()); 4416 } 4417 4418 unsigned Opcode = Op.getOpcode(); 4419 switch (Opcode) { 4420 case ISD::FADD: 4421 case ISD::FSUB: 4422 case ISD::FMUL: 4423 case ISD::FDIV: 4424 case ISD::FREM: 4425 case ISD::FSIN: 4426 case ISD::FCOS: { 4427 if (SNaN) 4428 return true; 4429 // TODO: Need isKnownNeverInfinity 4430 return false; 4431 } 4432 case ISD::FCANONICALIZE: 4433 case ISD::FEXP: 4434 case ISD::FEXP2: 4435 case ISD::FTRUNC: 4436 case ISD::FFLOOR: 4437 case ISD::FCEIL: 4438 case ISD::FROUND: 4439 case ISD::FROUNDEVEN: 4440 case ISD::FRINT: 4441 case ISD::FNEARBYINT: { 4442 if (SNaN) 4443 return true; 4444 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4445 } 4446 case ISD::FABS: 4447 case ISD::FNEG: 4448 case ISD::FCOPYSIGN: { 4449 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4450 } 4451 case ISD::SELECT: 4452 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4453 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4454 case ISD::FP_EXTEND: 4455 case ISD::FP_ROUND: { 4456 if (SNaN) 4457 return true; 4458 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4459 } 4460 case ISD::SINT_TO_FP: 4461 case ISD::UINT_TO_FP: 4462 return true; 4463 case ISD::FMA: 4464 case ISD::FMAD: { 4465 if (SNaN) 4466 return true; 4467 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4468 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4469 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4470 } 4471 case ISD::FSQRT: // Need is known positive 4472 case ISD::FLOG: 4473 case ISD::FLOG2: 4474 case ISD::FLOG10: 4475 case ISD::FPOWI: 4476 case ISD::FPOW: { 4477 if (SNaN) 4478 return true; 4479 // TODO: Refine on operand 4480 return false; 4481 } 4482 case ISD::FMINNUM: 4483 case ISD::FMAXNUM: { 4484 // Only one needs to be known not-nan, since it will be returned if the 4485 // other ends up being one. 4486 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4487 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4488 } 4489 case ISD::FMINNUM_IEEE: 4490 case ISD::FMAXNUM_IEEE: { 4491 if (SNaN) 4492 return true; 4493 // This can return a NaN if either operand is an sNaN, or if both operands 4494 // are NaN. 4495 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4496 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4497 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4498 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4499 } 4500 case ISD::FMINIMUM: 4501 case ISD::FMAXIMUM: { 4502 // TODO: Does this quiet or return the origina NaN as-is? 4503 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4504 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4505 } 4506 case ISD::EXTRACT_VECTOR_ELT: { 4507 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4508 } 4509 default: 4510 if (Opcode >= ISD::BUILTIN_OP_END || 4511 Opcode == ISD::INTRINSIC_WO_CHAIN || 4512 Opcode == ISD::INTRINSIC_W_CHAIN || 4513 Opcode == ISD::INTRINSIC_VOID) { 4514 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4515 } 4516 4517 return false; 4518 } 4519 } 4520 4521 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4522 assert(Op.getValueType().isFloatingPoint() && 4523 "Floating point type expected"); 4524 4525 // If the value is a constant, we can obviously see if it is a zero or not. 4526 // TODO: Add BuildVector support. 4527 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4528 return !C->isZero(); 4529 return false; 4530 } 4531 4532 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4533 assert(!Op.getValueType().isFloatingPoint() && 4534 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4535 4536 // If the value is a constant, we can obviously see if it is a zero or not. 4537 if (ISD::matchUnaryPredicate(Op, 4538 [](ConstantSDNode *C) { return !C->isZero(); })) 4539 return true; 4540 4541 // TODO: Recognize more cases here. 4542 switch (Op.getOpcode()) { 4543 default: break; 4544 case ISD::OR: 4545 if (isKnownNeverZero(Op.getOperand(1)) || 4546 isKnownNeverZero(Op.getOperand(0))) 4547 return true; 4548 break; 4549 } 4550 4551 return false; 4552 } 4553 4554 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4555 // Check the obvious case. 4556 if (A == B) return true; 4557 4558 // For for negative and positive zero. 4559 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4560 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4561 if (CA->isZero() && CB->isZero()) return true; 4562 4563 // Otherwise they may not be equal. 4564 return false; 4565 } 4566 4567 // FIXME: unify with llvm::haveNoCommonBitsSet. 4568 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4569 assert(A.getValueType() == B.getValueType() && 4570 "Values must have the same type"); 4571 // Match masked merge pattern (X & ~M) op (Y & M) 4572 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4573 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4574 if (isBitwiseNot(NotM, true)) { 4575 SDValue NotOperand = NotM->getOperand(0); 4576 return NotOperand == And->getOperand(0) || 4577 NotOperand == And->getOperand(1); 4578 } 4579 return false; 4580 }; 4581 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4582 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4583 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4584 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4585 return true; 4586 } 4587 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4588 computeKnownBits(B)); 4589 } 4590 4591 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4592 SelectionDAG &DAG) { 4593 if (cast<ConstantSDNode>(Step)->isZero()) 4594 return DAG.getConstant(0, DL, VT); 4595 4596 return SDValue(); 4597 } 4598 4599 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4600 ArrayRef<SDValue> Ops, 4601 SelectionDAG &DAG) { 4602 int NumOps = Ops.size(); 4603 assert(NumOps != 0 && "Can't build an empty vector!"); 4604 assert(!VT.isScalableVector() && 4605 "BUILD_VECTOR cannot be used with scalable types"); 4606 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4607 "Incorrect element count in BUILD_VECTOR!"); 4608 4609 // BUILD_VECTOR of UNDEFs is UNDEF. 4610 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4611 return DAG.getUNDEF(VT); 4612 4613 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4614 SDValue IdentitySrc; 4615 bool IsIdentity = true; 4616 for (int i = 0; i != NumOps; ++i) { 4617 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4618 Ops[i].getOperand(0).getValueType() != VT || 4619 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4620 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4621 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4622 IsIdentity = false; 4623 break; 4624 } 4625 IdentitySrc = Ops[i].getOperand(0); 4626 } 4627 if (IsIdentity) 4628 return IdentitySrc; 4629 4630 return SDValue(); 4631 } 4632 4633 /// Try to simplify vector concatenation to an input value, undef, or build 4634 /// vector. 4635 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4636 ArrayRef<SDValue> Ops, 4637 SelectionDAG &DAG) { 4638 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4639 assert(llvm::all_of(Ops, 4640 [Ops](SDValue Op) { 4641 return Ops[0].getValueType() == Op.getValueType(); 4642 }) && 4643 "Concatenation of vectors with inconsistent value types!"); 4644 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4645 VT.getVectorElementCount() && 4646 "Incorrect element count in vector concatenation!"); 4647 4648 if (Ops.size() == 1) 4649 return Ops[0]; 4650 4651 // Concat of UNDEFs is UNDEF. 4652 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4653 return DAG.getUNDEF(VT); 4654 4655 // Scan the operands and look for extract operations from a single source 4656 // that correspond to insertion at the same location via this concatenation: 4657 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4658 SDValue IdentitySrc; 4659 bool IsIdentity = true; 4660 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4661 SDValue Op = Ops[i]; 4662 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4663 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4664 Op.getOperand(0).getValueType() != VT || 4665 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4666 Op.getConstantOperandVal(1) != IdentityIndex) { 4667 IsIdentity = false; 4668 break; 4669 } 4670 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4671 "Unexpected identity source vector for concat of extracts"); 4672 IdentitySrc = Op.getOperand(0); 4673 } 4674 if (IsIdentity) { 4675 assert(IdentitySrc && "Failed to set source vector of extracts"); 4676 return IdentitySrc; 4677 } 4678 4679 // The code below this point is only designed to work for fixed width 4680 // vectors, so we bail out for now. 4681 if (VT.isScalableVector()) 4682 return SDValue(); 4683 4684 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4685 // simplified to one big BUILD_VECTOR. 4686 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4687 EVT SVT = VT.getScalarType(); 4688 SmallVector<SDValue, 16> Elts; 4689 for (SDValue Op : Ops) { 4690 EVT OpVT = Op.getValueType(); 4691 if (Op.isUndef()) 4692 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4693 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4694 Elts.append(Op->op_begin(), Op->op_end()); 4695 else 4696 return SDValue(); 4697 } 4698 4699 // BUILD_VECTOR requires all inputs to be of the same type, find the 4700 // maximum type and extend them all. 4701 for (SDValue Op : Elts) 4702 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4703 4704 if (SVT.bitsGT(VT.getScalarType())) { 4705 for (SDValue &Op : Elts) { 4706 if (Op.isUndef()) 4707 Op = DAG.getUNDEF(SVT); 4708 else 4709 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4710 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4711 : DAG.getSExtOrTrunc(Op, DL, SVT); 4712 } 4713 } 4714 4715 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4716 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4717 return V; 4718 } 4719 4720 /// Gets or creates the specified node. 4721 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4722 FoldingSetNodeID ID; 4723 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4724 void *IP = nullptr; 4725 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4726 return SDValue(E, 0); 4727 4728 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4729 getVTList(VT)); 4730 CSEMap.InsertNode(N, IP); 4731 4732 InsertNode(N); 4733 SDValue V = SDValue(N, 0); 4734 NewSDValueDbgMsg(V, "Creating new node: ", this); 4735 return V; 4736 } 4737 4738 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4739 SDValue Operand) { 4740 SDNodeFlags Flags; 4741 if (Inserter) 4742 Flags = Inserter->getFlags(); 4743 return getNode(Opcode, DL, VT, Operand, Flags); 4744 } 4745 4746 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4747 SDValue Operand, const SDNodeFlags Flags) { 4748 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4749 "Operand is DELETED_NODE!"); 4750 // Constant fold unary operations with an integer constant operand. Even 4751 // opaque constant will be folded, because the folding of unary operations 4752 // doesn't create new constants with different values. Nevertheless, the 4753 // opaque flag is preserved during folding to prevent future folding with 4754 // other constants. 4755 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4756 const APInt &Val = C->getAPIntValue(); 4757 switch (Opcode) { 4758 default: break; 4759 case ISD::SIGN_EXTEND: 4760 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4761 C->isTargetOpcode(), C->isOpaque()); 4762 case ISD::TRUNCATE: 4763 if (C->isOpaque()) 4764 break; 4765 LLVM_FALLTHROUGH; 4766 case ISD::ZERO_EXTEND: 4767 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4768 C->isTargetOpcode(), C->isOpaque()); 4769 case ISD::ANY_EXTEND: 4770 // Some targets like RISCV prefer to sign extend some types. 4771 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4772 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4773 C->isTargetOpcode(), C->isOpaque()); 4774 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4775 C->isTargetOpcode(), C->isOpaque()); 4776 case ISD::UINT_TO_FP: 4777 case ISD::SINT_TO_FP: { 4778 APFloat apf(EVTToAPFloatSemantics(VT), 4779 APInt::getZero(VT.getSizeInBits())); 4780 (void)apf.convertFromAPInt(Val, 4781 Opcode==ISD::SINT_TO_FP, 4782 APFloat::rmNearestTiesToEven); 4783 return getConstantFP(apf, DL, VT); 4784 } 4785 case ISD::BITCAST: 4786 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4787 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4788 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4789 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4790 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4791 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4792 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4793 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4794 break; 4795 case ISD::ABS: 4796 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4797 C->isOpaque()); 4798 case ISD::BITREVERSE: 4799 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4800 C->isOpaque()); 4801 case ISD::BSWAP: 4802 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4803 C->isOpaque()); 4804 case ISD::CTPOP: 4805 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4806 C->isOpaque()); 4807 case ISD::CTLZ: 4808 case ISD::CTLZ_ZERO_UNDEF: 4809 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4810 C->isOpaque()); 4811 case ISD::CTTZ: 4812 case ISD::CTTZ_ZERO_UNDEF: 4813 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4814 C->isOpaque()); 4815 case ISD::FP16_TO_FP: { 4816 bool Ignored; 4817 APFloat FPV(APFloat::IEEEhalf(), 4818 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4819 4820 // This can return overflow, underflow, or inexact; we don't care. 4821 // FIXME need to be more flexible about rounding mode. 4822 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4823 APFloat::rmNearestTiesToEven, &Ignored); 4824 return getConstantFP(FPV, DL, VT); 4825 } 4826 case ISD::STEP_VECTOR: { 4827 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4828 return V; 4829 break; 4830 } 4831 } 4832 } 4833 4834 // Constant fold unary operations with a floating point constant operand. 4835 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4836 APFloat V = C->getValueAPF(); // make copy 4837 switch (Opcode) { 4838 case ISD::FNEG: 4839 V.changeSign(); 4840 return getConstantFP(V, DL, VT); 4841 case ISD::FABS: 4842 V.clearSign(); 4843 return getConstantFP(V, DL, VT); 4844 case ISD::FCEIL: { 4845 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4846 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4847 return getConstantFP(V, DL, VT); 4848 break; 4849 } 4850 case ISD::FTRUNC: { 4851 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4852 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4853 return getConstantFP(V, DL, VT); 4854 break; 4855 } 4856 case ISD::FFLOOR: { 4857 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4858 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4859 return getConstantFP(V, DL, VT); 4860 break; 4861 } 4862 case ISD::FP_EXTEND: { 4863 bool ignored; 4864 // This can return overflow, underflow, or inexact; we don't care. 4865 // FIXME need to be more flexible about rounding mode. 4866 (void)V.convert(EVTToAPFloatSemantics(VT), 4867 APFloat::rmNearestTiesToEven, &ignored); 4868 return getConstantFP(V, DL, VT); 4869 } 4870 case ISD::FP_TO_SINT: 4871 case ISD::FP_TO_UINT: { 4872 bool ignored; 4873 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4874 // FIXME need to be more flexible about rounding mode. 4875 APFloat::opStatus s = 4876 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4877 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4878 break; 4879 return getConstant(IntVal, DL, VT); 4880 } 4881 case ISD::BITCAST: 4882 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4883 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4884 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4885 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4886 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4887 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4888 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4889 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4890 break; 4891 case ISD::FP_TO_FP16: { 4892 bool Ignored; 4893 // This can return overflow, underflow, or inexact; we don't care. 4894 // FIXME need to be more flexible about rounding mode. 4895 (void)V.convert(APFloat::IEEEhalf(), 4896 APFloat::rmNearestTiesToEven, &Ignored); 4897 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4898 } 4899 } 4900 } 4901 4902 // Constant fold unary operations with a vector integer or float operand. 4903 switch (Opcode) { 4904 default: 4905 // FIXME: Entirely reasonable to perform folding of other unary 4906 // operations here as the need arises. 4907 break; 4908 case ISD::FNEG: 4909 case ISD::FABS: 4910 case ISD::FCEIL: 4911 case ISD::FTRUNC: 4912 case ISD::FFLOOR: 4913 case ISD::FP_EXTEND: 4914 case ISD::FP_TO_SINT: 4915 case ISD::FP_TO_UINT: 4916 case ISD::TRUNCATE: 4917 case ISD::ANY_EXTEND: 4918 case ISD::ZERO_EXTEND: 4919 case ISD::SIGN_EXTEND: 4920 case ISD::UINT_TO_FP: 4921 case ISD::SINT_TO_FP: 4922 case ISD::ABS: 4923 case ISD::BITREVERSE: 4924 case ISD::BSWAP: 4925 case ISD::CTLZ: 4926 case ISD::CTLZ_ZERO_UNDEF: 4927 case ISD::CTTZ: 4928 case ISD::CTTZ_ZERO_UNDEF: 4929 case ISD::CTPOP: { 4930 SDValue Ops = {Operand}; 4931 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4932 return Fold; 4933 } 4934 } 4935 4936 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4937 switch (Opcode) { 4938 case ISD::STEP_VECTOR: 4939 assert(VT.isScalableVector() && 4940 "STEP_VECTOR can only be used with scalable types"); 4941 assert(OpOpcode == ISD::TargetConstant && 4942 VT.getVectorElementType() == Operand.getValueType() && 4943 "Unexpected step operand"); 4944 break; 4945 case ISD::FREEZE: 4946 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4947 break; 4948 case ISD::TokenFactor: 4949 case ISD::MERGE_VALUES: 4950 case ISD::CONCAT_VECTORS: 4951 return Operand; // Factor, merge or concat of one node? No need. 4952 case ISD::BUILD_VECTOR: { 4953 // Attempt to simplify BUILD_VECTOR. 4954 SDValue Ops[] = {Operand}; 4955 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4956 return V; 4957 break; 4958 } 4959 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4960 case ISD::FP_EXTEND: 4961 assert(VT.isFloatingPoint() && 4962 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4963 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4964 assert((!VT.isVector() || 4965 VT.getVectorElementCount() == 4966 Operand.getValueType().getVectorElementCount()) && 4967 "Vector element count mismatch!"); 4968 assert(Operand.getValueType().bitsLT(VT) && 4969 "Invalid fpext node, dst < src!"); 4970 if (Operand.isUndef()) 4971 return getUNDEF(VT); 4972 break; 4973 case ISD::FP_TO_SINT: 4974 case ISD::FP_TO_UINT: 4975 if (Operand.isUndef()) 4976 return getUNDEF(VT); 4977 break; 4978 case ISD::SINT_TO_FP: 4979 case ISD::UINT_TO_FP: 4980 // [us]itofp(undef) = 0, because the result value is bounded. 4981 if (Operand.isUndef()) 4982 return getConstantFP(0.0, DL, VT); 4983 break; 4984 case ISD::SIGN_EXTEND: 4985 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4986 "Invalid SIGN_EXTEND!"); 4987 assert(VT.isVector() == Operand.getValueType().isVector() && 4988 "SIGN_EXTEND result type type should be vector iff the operand " 4989 "type is vector!"); 4990 if (Operand.getValueType() == VT) return Operand; // noop extension 4991 assert((!VT.isVector() || 4992 VT.getVectorElementCount() == 4993 Operand.getValueType().getVectorElementCount()) && 4994 "Vector element count mismatch!"); 4995 assert(Operand.getValueType().bitsLT(VT) && 4996 "Invalid sext node, dst < src!"); 4997 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4998 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4999 if (OpOpcode == ISD::UNDEF) 5000 // sext(undef) = 0, because the top bits will all be the same. 5001 return getConstant(0, DL, VT); 5002 break; 5003 case ISD::ZERO_EXTEND: 5004 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5005 "Invalid ZERO_EXTEND!"); 5006 assert(VT.isVector() == Operand.getValueType().isVector() && 5007 "ZERO_EXTEND result type type should be vector iff the operand " 5008 "type is vector!"); 5009 if (Operand.getValueType() == VT) return Operand; // noop extension 5010 assert((!VT.isVector() || 5011 VT.getVectorElementCount() == 5012 Operand.getValueType().getVectorElementCount()) && 5013 "Vector element count mismatch!"); 5014 assert(Operand.getValueType().bitsLT(VT) && 5015 "Invalid zext node, dst < src!"); 5016 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5017 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5018 if (OpOpcode == ISD::UNDEF) 5019 // zext(undef) = 0, because the top bits will be zero. 5020 return getConstant(0, DL, VT); 5021 break; 5022 case ISD::ANY_EXTEND: 5023 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5024 "Invalid ANY_EXTEND!"); 5025 assert(VT.isVector() == Operand.getValueType().isVector() && 5026 "ANY_EXTEND result type type should be vector iff the operand " 5027 "type is vector!"); 5028 if (Operand.getValueType() == VT) return Operand; // noop extension 5029 assert((!VT.isVector() || 5030 VT.getVectorElementCount() == 5031 Operand.getValueType().getVectorElementCount()) && 5032 "Vector element count mismatch!"); 5033 assert(Operand.getValueType().bitsLT(VT) && 5034 "Invalid anyext node, dst < src!"); 5035 5036 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5037 OpOpcode == ISD::ANY_EXTEND) 5038 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5039 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5040 if (OpOpcode == ISD::UNDEF) 5041 return getUNDEF(VT); 5042 5043 // (ext (trunc x)) -> x 5044 if (OpOpcode == ISD::TRUNCATE) { 5045 SDValue OpOp = Operand.getOperand(0); 5046 if (OpOp.getValueType() == VT) { 5047 transferDbgValues(Operand, OpOp); 5048 return OpOp; 5049 } 5050 } 5051 break; 5052 case ISD::TRUNCATE: 5053 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5054 "Invalid TRUNCATE!"); 5055 assert(VT.isVector() == Operand.getValueType().isVector() && 5056 "TRUNCATE result type type should be vector iff the operand " 5057 "type is vector!"); 5058 if (Operand.getValueType() == VT) return Operand; // noop truncate 5059 assert((!VT.isVector() || 5060 VT.getVectorElementCount() == 5061 Operand.getValueType().getVectorElementCount()) && 5062 "Vector element count mismatch!"); 5063 assert(Operand.getValueType().bitsGT(VT) && 5064 "Invalid truncate node, src < dst!"); 5065 if (OpOpcode == ISD::TRUNCATE) 5066 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5067 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5068 OpOpcode == ISD::ANY_EXTEND) { 5069 // If the source is smaller than the dest, we still need an extend. 5070 if (Operand.getOperand(0).getValueType().getScalarType() 5071 .bitsLT(VT.getScalarType())) 5072 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5073 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5074 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5075 return Operand.getOperand(0); 5076 } 5077 if (OpOpcode == ISD::UNDEF) 5078 return getUNDEF(VT); 5079 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5080 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5081 break; 5082 case ISD::ANY_EXTEND_VECTOR_INREG: 5083 case ISD::ZERO_EXTEND_VECTOR_INREG: 5084 case ISD::SIGN_EXTEND_VECTOR_INREG: 5085 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5086 assert(Operand.getValueType().bitsLE(VT) && 5087 "The input must be the same size or smaller than the result."); 5088 assert(VT.getVectorMinNumElements() < 5089 Operand.getValueType().getVectorMinNumElements() && 5090 "The destination vector type must have fewer lanes than the input."); 5091 break; 5092 case ISD::ABS: 5093 assert(VT.isInteger() && VT == Operand.getValueType() && 5094 "Invalid ABS!"); 5095 if (OpOpcode == ISD::UNDEF) 5096 return getUNDEF(VT); 5097 break; 5098 case ISD::BSWAP: 5099 assert(VT.isInteger() && VT == Operand.getValueType() && 5100 "Invalid BSWAP!"); 5101 assert((VT.getScalarSizeInBits() % 16 == 0) && 5102 "BSWAP types must be a multiple of 16 bits!"); 5103 if (OpOpcode == ISD::UNDEF) 5104 return getUNDEF(VT); 5105 break; 5106 case ISD::BITREVERSE: 5107 assert(VT.isInteger() && VT == Operand.getValueType() && 5108 "Invalid BITREVERSE!"); 5109 if (OpOpcode == ISD::UNDEF) 5110 return getUNDEF(VT); 5111 break; 5112 case ISD::BITCAST: 5113 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5114 "Cannot BITCAST between types of different sizes!"); 5115 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5116 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5117 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5118 if (OpOpcode == ISD::UNDEF) 5119 return getUNDEF(VT); 5120 break; 5121 case ISD::SCALAR_TO_VECTOR: 5122 assert(VT.isVector() && !Operand.getValueType().isVector() && 5123 (VT.getVectorElementType() == Operand.getValueType() || 5124 (VT.getVectorElementType().isInteger() && 5125 Operand.getValueType().isInteger() && 5126 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5127 "Illegal SCALAR_TO_VECTOR node!"); 5128 if (OpOpcode == ISD::UNDEF) 5129 return getUNDEF(VT); 5130 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5131 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5132 isa<ConstantSDNode>(Operand.getOperand(1)) && 5133 Operand.getConstantOperandVal(1) == 0 && 5134 Operand.getOperand(0).getValueType() == VT) 5135 return Operand.getOperand(0); 5136 break; 5137 case ISD::FNEG: 5138 // Negation of an unknown bag of bits is still completely undefined. 5139 if (OpOpcode == ISD::UNDEF) 5140 return getUNDEF(VT); 5141 5142 if (OpOpcode == ISD::FNEG) // --X -> X 5143 return Operand.getOperand(0); 5144 break; 5145 case ISD::FABS: 5146 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5147 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5148 break; 5149 case ISD::VSCALE: 5150 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5151 break; 5152 case ISD::CTPOP: 5153 if (Operand.getValueType().getScalarType() == MVT::i1) 5154 return Operand; 5155 break; 5156 case ISD::CTLZ: 5157 case ISD::CTTZ: 5158 if (Operand.getValueType().getScalarType() == MVT::i1) 5159 return getNOT(DL, Operand, Operand.getValueType()); 5160 break; 5161 case ISD::VECREDUCE_SMIN: 5162 case ISD::VECREDUCE_UMAX: 5163 if (Operand.getValueType().getScalarType() == MVT::i1) 5164 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5165 break; 5166 case ISD::VECREDUCE_SMAX: 5167 case ISD::VECREDUCE_UMIN: 5168 if (Operand.getValueType().getScalarType() == MVT::i1) 5169 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5170 break; 5171 } 5172 5173 SDNode *N; 5174 SDVTList VTs = getVTList(VT); 5175 SDValue Ops[] = {Operand}; 5176 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5177 FoldingSetNodeID ID; 5178 AddNodeIDNode(ID, Opcode, VTs, Ops); 5179 void *IP = nullptr; 5180 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5181 E->intersectFlagsWith(Flags); 5182 return SDValue(E, 0); 5183 } 5184 5185 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5186 N->setFlags(Flags); 5187 createOperands(N, Ops); 5188 CSEMap.InsertNode(N, IP); 5189 } else { 5190 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5191 createOperands(N, Ops); 5192 } 5193 5194 InsertNode(N); 5195 SDValue V = SDValue(N, 0); 5196 NewSDValueDbgMsg(V, "Creating new node: ", this); 5197 return V; 5198 } 5199 5200 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5201 const APInt &C2) { 5202 switch (Opcode) { 5203 case ISD::ADD: return C1 + C2; 5204 case ISD::SUB: return C1 - C2; 5205 case ISD::MUL: return C1 * C2; 5206 case ISD::AND: return C1 & C2; 5207 case ISD::OR: return C1 | C2; 5208 case ISD::XOR: return C1 ^ C2; 5209 case ISD::SHL: return C1 << C2; 5210 case ISD::SRL: return C1.lshr(C2); 5211 case ISD::SRA: return C1.ashr(C2); 5212 case ISD::ROTL: return C1.rotl(C2); 5213 case ISD::ROTR: return C1.rotr(C2); 5214 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5215 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5216 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5217 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5218 case ISD::SADDSAT: return C1.sadd_sat(C2); 5219 case ISD::UADDSAT: return C1.uadd_sat(C2); 5220 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5221 case ISD::USUBSAT: return C1.usub_sat(C2); 5222 case ISD::UDIV: 5223 if (!C2.getBoolValue()) 5224 break; 5225 return C1.udiv(C2); 5226 case ISD::UREM: 5227 if (!C2.getBoolValue()) 5228 break; 5229 return C1.urem(C2); 5230 case ISD::SDIV: 5231 if (!C2.getBoolValue()) 5232 break; 5233 return C1.sdiv(C2); 5234 case ISD::SREM: 5235 if (!C2.getBoolValue()) 5236 break; 5237 return C1.srem(C2); 5238 case ISD::MULHS: { 5239 unsigned FullWidth = C1.getBitWidth() * 2; 5240 APInt C1Ext = C1.sext(FullWidth); 5241 APInt C2Ext = C2.sext(FullWidth); 5242 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5243 } 5244 case ISD::MULHU: { 5245 unsigned FullWidth = C1.getBitWidth() * 2; 5246 APInt C1Ext = C1.zext(FullWidth); 5247 APInt C2Ext = C2.zext(FullWidth); 5248 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5249 } 5250 } 5251 return llvm::None; 5252 } 5253 5254 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5255 const GlobalAddressSDNode *GA, 5256 const SDNode *N2) { 5257 if (GA->getOpcode() != ISD::GlobalAddress) 5258 return SDValue(); 5259 if (!TLI->isOffsetFoldingLegal(GA)) 5260 return SDValue(); 5261 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5262 if (!C2) 5263 return SDValue(); 5264 int64_t Offset = C2->getSExtValue(); 5265 switch (Opcode) { 5266 case ISD::ADD: break; 5267 case ISD::SUB: Offset = -uint64_t(Offset); break; 5268 default: return SDValue(); 5269 } 5270 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5271 GA->getOffset() + uint64_t(Offset)); 5272 } 5273 5274 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5275 switch (Opcode) { 5276 case ISD::SDIV: 5277 case ISD::UDIV: 5278 case ISD::SREM: 5279 case ISD::UREM: { 5280 // If a divisor is zero/undef or any element of a divisor vector is 5281 // zero/undef, the whole op is undef. 5282 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5283 SDValue Divisor = Ops[1]; 5284 if (Divisor.isUndef() || isNullConstant(Divisor)) 5285 return true; 5286 5287 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5288 llvm::any_of(Divisor->op_values(), 5289 [](SDValue V) { return V.isUndef() || 5290 isNullConstant(V); }); 5291 // TODO: Handle signed overflow. 5292 } 5293 // TODO: Handle oversized shifts. 5294 default: 5295 return false; 5296 } 5297 } 5298 5299 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5300 EVT VT, ArrayRef<SDValue> Ops) { 5301 // If the opcode is a target-specific ISD node, there's nothing we can 5302 // do here and the operand rules may not line up with the below, so 5303 // bail early. 5304 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5305 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5306 // foldCONCAT_VECTORS in getNode before this is called. 5307 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5308 return SDValue(); 5309 5310 unsigned NumOps = Ops.size(); 5311 if (NumOps == 0) 5312 return SDValue(); 5313 5314 if (isUndef(Opcode, Ops)) 5315 return getUNDEF(VT); 5316 5317 // Handle binops special cases. 5318 if (NumOps == 2) { 5319 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5320 return CFP; 5321 5322 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5323 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5324 if (C1->isOpaque() || C2->isOpaque()) 5325 return SDValue(); 5326 5327 Optional<APInt> FoldAttempt = 5328 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5329 if (!FoldAttempt) 5330 return SDValue(); 5331 5332 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5333 assert((!Folded || !VT.isVector()) && 5334 "Can't fold vectors ops with scalar operands"); 5335 return Folded; 5336 } 5337 } 5338 5339 // fold (add Sym, c) -> Sym+c 5340 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5341 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5342 if (TLI->isCommutativeBinOp(Opcode)) 5343 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5344 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5345 } 5346 5347 // This is for vector folding only from here on. 5348 if (!VT.isVector()) 5349 return SDValue(); 5350 5351 ElementCount NumElts = VT.getVectorElementCount(); 5352 5353 // See if we can fold through bitcasted integer ops. 5354 // TODO: Can we handle undef elements? 5355 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5356 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5357 Ops[0].getOpcode() == ISD::BITCAST && 5358 Ops[1].getOpcode() == ISD::BITCAST) { 5359 SDValue N1 = peekThroughBitcasts(Ops[0]); 5360 SDValue N2 = peekThroughBitcasts(Ops[1]); 5361 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5362 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5363 EVT BVVT = N1.getValueType(); 5364 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5365 bool IsLE = getDataLayout().isLittleEndian(); 5366 unsigned EltBits = VT.getScalarSizeInBits(); 5367 SmallVector<APInt> RawBits1, RawBits2; 5368 BitVector UndefElts1, UndefElts2; 5369 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5370 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5371 UndefElts1.none() && UndefElts2.none()) { 5372 SmallVector<APInt> RawBits; 5373 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5374 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5375 if (!Fold) 5376 break; 5377 RawBits.push_back(Fold.getValue()); 5378 } 5379 if (RawBits.size() == NumElts.getFixedValue()) { 5380 // We have constant folded, but we need to cast this again back to 5381 // the original (possibly legalized) type. 5382 SmallVector<APInt> DstBits; 5383 BitVector DstUndefs; 5384 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5385 DstBits, RawBits, DstUndefs, 5386 BitVector(RawBits.size(), false)); 5387 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5388 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5389 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5390 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5391 if (DstUndefs[I]) 5392 continue; 5393 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5394 } 5395 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5396 } 5397 } 5398 } 5399 } 5400 5401 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5402 return !Op.getValueType().isVector() || 5403 Op.getValueType().getVectorElementCount() == NumElts; 5404 }; 5405 5406 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5407 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5408 Op.getOpcode() == ISD::BUILD_VECTOR || 5409 Op.getOpcode() == ISD::SPLAT_VECTOR; 5410 }; 5411 5412 // All operands must be vector types with the same number of elements as 5413 // the result type and must be either UNDEF or a build/splat vector 5414 // or UNDEF scalars. 5415 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5416 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5417 return SDValue(); 5418 5419 // If we are comparing vectors, then the result needs to be a i1 boolean 5420 // that is then sign-extended back to the legal result type. 5421 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5422 5423 // Find legal integer scalar type for constant promotion and 5424 // ensure that its scalar size is at least as large as source. 5425 EVT LegalSVT = VT.getScalarType(); 5426 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5427 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5428 if (LegalSVT.bitsLT(VT.getScalarType())) 5429 return SDValue(); 5430 } 5431 5432 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5433 // only have one operand to check. For fixed-length vector types we may have 5434 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5435 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5436 5437 // Constant fold each scalar lane separately. 5438 SmallVector<SDValue, 4> ScalarResults; 5439 for (unsigned I = 0; I != NumVectorElts; I++) { 5440 SmallVector<SDValue, 4> ScalarOps; 5441 for (SDValue Op : Ops) { 5442 EVT InSVT = Op.getValueType().getScalarType(); 5443 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5444 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5445 if (Op.isUndef()) 5446 ScalarOps.push_back(getUNDEF(InSVT)); 5447 else 5448 ScalarOps.push_back(Op); 5449 continue; 5450 } 5451 5452 SDValue ScalarOp = 5453 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5454 EVT ScalarVT = ScalarOp.getValueType(); 5455 5456 // Build vector (integer) scalar operands may need implicit 5457 // truncation - do this before constant folding. 5458 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5459 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5460 5461 ScalarOps.push_back(ScalarOp); 5462 } 5463 5464 // Constant fold the scalar operands. 5465 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5466 5467 // Legalize the (integer) scalar constant if necessary. 5468 if (LegalSVT != SVT) 5469 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5470 5471 // Scalar folding only succeeded if the result is a constant or UNDEF. 5472 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5473 ScalarResult.getOpcode() != ISD::ConstantFP) 5474 return SDValue(); 5475 ScalarResults.push_back(ScalarResult); 5476 } 5477 5478 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5479 : getBuildVector(VT, DL, ScalarResults); 5480 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5481 return V; 5482 } 5483 5484 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5485 EVT VT, SDValue N1, SDValue N2) { 5486 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5487 // should. That will require dealing with a potentially non-default 5488 // rounding mode, checking the "opStatus" return value from the APFloat 5489 // math calculations, and possibly other variations. 5490 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5491 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5492 if (N1CFP && N2CFP) { 5493 APFloat C1 = N1CFP->getValueAPF(); // make copy 5494 const APFloat &C2 = N2CFP->getValueAPF(); 5495 switch (Opcode) { 5496 case ISD::FADD: 5497 C1.add(C2, APFloat::rmNearestTiesToEven); 5498 return getConstantFP(C1, DL, VT); 5499 case ISD::FSUB: 5500 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5501 return getConstantFP(C1, DL, VT); 5502 case ISD::FMUL: 5503 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5504 return getConstantFP(C1, DL, VT); 5505 case ISD::FDIV: 5506 C1.divide(C2, APFloat::rmNearestTiesToEven); 5507 return getConstantFP(C1, DL, VT); 5508 case ISD::FREM: 5509 C1.mod(C2); 5510 return getConstantFP(C1, DL, VT); 5511 case ISD::FCOPYSIGN: 5512 C1.copySign(C2); 5513 return getConstantFP(C1, DL, VT); 5514 case ISD::FMINNUM: 5515 return getConstantFP(minnum(C1, C2), DL, VT); 5516 case ISD::FMAXNUM: 5517 return getConstantFP(maxnum(C1, C2), DL, VT); 5518 case ISD::FMINIMUM: 5519 return getConstantFP(minimum(C1, C2), DL, VT); 5520 case ISD::FMAXIMUM: 5521 return getConstantFP(maximum(C1, C2), DL, VT); 5522 default: break; 5523 } 5524 } 5525 if (N1CFP && Opcode == ISD::FP_ROUND) { 5526 APFloat C1 = N1CFP->getValueAPF(); // make copy 5527 bool Unused; 5528 // This can return overflow, underflow, or inexact; we don't care. 5529 // FIXME need to be more flexible about rounding mode. 5530 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5531 &Unused); 5532 return getConstantFP(C1, DL, VT); 5533 } 5534 5535 switch (Opcode) { 5536 case ISD::FSUB: 5537 // -0.0 - undef --> undef (consistent with "fneg undef") 5538 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5539 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5540 return getUNDEF(VT); 5541 LLVM_FALLTHROUGH; 5542 5543 case ISD::FADD: 5544 case ISD::FMUL: 5545 case ISD::FDIV: 5546 case ISD::FREM: 5547 // If both operands are undef, the result is undef. If 1 operand is undef, 5548 // the result is NaN. This should match the behavior of the IR optimizer. 5549 if (N1.isUndef() && N2.isUndef()) 5550 return getUNDEF(VT); 5551 if (N1.isUndef() || N2.isUndef()) 5552 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5553 } 5554 return SDValue(); 5555 } 5556 5557 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5558 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5559 5560 // There's no need to assert on a byte-aligned pointer. All pointers are at 5561 // least byte aligned. 5562 if (A == Align(1)) 5563 return Val; 5564 5565 FoldingSetNodeID ID; 5566 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5567 ID.AddInteger(A.value()); 5568 5569 void *IP = nullptr; 5570 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5571 return SDValue(E, 0); 5572 5573 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5574 Val.getValueType(), A); 5575 createOperands(N, {Val}); 5576 5577 CSEMap.InsertNode(N, IP); 5578 InsertNode(N); 5579 5580 SDValue V(N, 0); 5581 NewSDValueDbgMsg(V, "Creating new node: ", this); 5582 return V; 5583 } 5584 5585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5586 SDValue N1, SDValue N2) { 5587 SDNodeFlags Flags; 5588 if (Inserter) 5589 Flags = Inserter->getFlags(); 5590 return getNode(Opcode, DL, VT, N1, N2, Flags); 5591 } 5592 5593 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5594 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5595 assert(N1.getOpcode() != ISD::DELETED_NODE && 5596 N2.getOpcode() != ISD::DELETED_NODE && 5597 "Operand is DELETED_NODE!"); 5598 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5599 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5600 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5601 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5602 5603 // Canonicalize constant to RHS if commutative. 5604 if (TLI->isCommutativeBinOp(Opcode)) { 5605 if (N1C && !N2C) { 5606 std::swap(N1C, N2C); 5607 std::swap(N1, N2); 5608 } else if (N1CFP && !N2CFP) { 5609 std::swap(N1CFP, N2CFP); 5610 std::swap(N1, N2); 5611 } 5612 } 5613 5614 switch (Opcode) { 5615 default: break; 5616 case ISD::TokenFactor: 5617 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5618 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5619 // Fold trivial token factors. 5620 if (N1.getOpcode() == ISD::EntryToken) return N2; 5621 if (N2.getOpcode() == ISD::EntryToken) return N1; 5622 if (N1 == N2) return N1; 5623 break; 5624 case ISD::BUILD_VECTOR: { 5625 // Attempt to simplify BUILD_VECTOR. 5626 SDValue Ops[] = {N1, N2}; 5627 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5628 return V; 5629 break; 5630 } 5631 case ISD::CONCAT_VECTORS: { 5632 SDValue Ops[] = {N1, N2}; 5633 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5634 return V; 5635 break; 5636 } 5637 case ISD::AND: 5638 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5639 assert(N1.getValueType() == N2.getValueType() && 5640 N1.getValueType() == VT && "Binary operator types must match!"); 5641 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5642 // worth handling here. 5643 if (N2C && N2C->isZero()) 5644 return N2; 5645 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5646 return N1; 5647 break; 5648 case ISD::OR: 5649 case ISD::XOR: 5650 case ISD::ADD: 5651 case ISD::SUB: 5652 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5653 assert(N1.getValueType() == N2.getValueType() && 5654 N1.getValueType() == VT && "Binary operator types must match!"); 5655 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5656 // it's worth handling here. 5657 if (N2C && N2C->isZero()) 5658 return N1; 5659 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5660 VT.getVectorElementType() == MVT::i1) 5661 return getNode(ISD::XOR, DL, VT, N1, N2); 5662 break; 5663 case ISD::MUL: 5664 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5665 assert(N1.getValueType() == N2.getValueType() && 5666 N1.getValueType() == VT && "Binary operator types must match!"); 5667 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5668 return getNode(ISD::AND, DL, VT, N1, N2); 5669 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5670 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5671 const APInt &N2CImm = N2C->getAPIntValue(); 5672 return getVScale(DL, VT, MulImm * N2CImm); 5673 } 5674 break; 5675 case ISD::UDIV: 5676 case ISD::UREM: 5677 case ISD::MULHU: 5678 case ISD::MULHS: 5679 case ISD::SDIV: 5680 case ISD::SREM: 5681 case ISD::SADDSAT: 5682 case ISD::SSUBSAT: 5683 case ISD::UADDSAT: 5684 case ISD::USUBSAT: 5685 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5686 assert(N1.getValueType() == N2.getValueType() && 5687 N1.getValueType() == VT && "Binary operator types must match!"); 5688 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5689 // fold (add_sat x, y) -> (or x, y) for bool types. 5690 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5691 return getNode(ISD::OR, DL, VT, N1, N2); 5692 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5693 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5694 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5695 } 5696 break; 5697 case ISD::SMIN: 5698 case ISD::UMAX: 5699 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5700 assert(N1.getValueType() == N2.getValueType() && 5701 N1.getValueType() == VT && "Binary operator types must match!"); 5702 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5703 return getNode(ISD::OR, DL, VT, N1, N2); 5704 break; 5705 case ISD::SMAX: 5706 case ISD::UMIN: 5707 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5708 assert(N1.getValueType() == N2.getValueType() && 5709 N1.getValueType() == VT && "Binary operator types must match!"); 5710 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5711 return getNode(ISD::AND, DL, VT, N1, N2); 5712 break; 5713 case ISD::FADD: 5714 case ISD::FSUB: 5715 case ISD::FMUL: 5716 case ISD::FDIV: 5717 case ISD::FREM: 5718 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5719 assert(N1.getValueType() == N2.getValueType() && 5720 N1.getValueType() == VT && "Binary operator types must match!"); 5721 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5722 return V; 5723 break; 5724 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5725 assert(N1.getValueType() == VT && 5726 N1.getValueType().isFloatingPoint() && 5727 N2.getValueType().isFloatingPoint() && 5728 "Invalid FCOPYSIGN!"); 5729 break; 5730 case ISD::SHL: 5731 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5732 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5733 const APInt &ShiftImm = N2C->getAPIntValue(); 5734 return getVScale(DL, VT, MulImm << ShiftImm); 5735 } 5736 LLVM_FALLTHROUGH; 5737 case ISD::SRA: 5738 case ISD::SRL: 5739 if (SDValue V = simplifyShift(N1, N2)) 5740 return V; 5741 LLVM_FALLTHROUGH; 5742 case ISD::ROTL: 5743 case ISD::ROTR: 5744 assert(VT == N1.getValueType() && 5745 "Shift operators return type must be the same as their first arg"); 5746 assert(VT.isInteger() && N2.getValueType().isInteger() && 5747 "Shifts only work on integers"); 5748 assert((!VT.isVector() || VT == N2.getValueType()) && 5749 "Vector shift amounts must be in the same as their first arg"); 5750 // Verify that the shift amount VT is big enough to hold valid shift 5751 // amounts. This catches things like trying to shift an i1024 value by an 5752 // i8, which is easy to fall into in generic code that uses 5753 // TLI.getShiftAmount(). 5754 assert(N2.getValueType().getScalarSizeInBits() >= 5755 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5756 "Invalid use of small shift amount with oversized value!"); 5757 5758 // Always fold shifts of i1 values so the code generator doesn't need to 5759 // handle them. Since we know the size of the shift has to be less than the 5760 // size of the value, the shift/rotate count is guaranteed to be zero. 5761 if (VT == MVT::i1) 5762 return N1; 5763 if (N2C && N2C->isZero()) 5764 return N1; 5765 break; 5766 case ISD::FP_ROUND: 5767 assert(VT.isFloatingPoint() && 5768 N1.getValueType().isFloatingPoint() && 5769 VT.bitsLE(N1.getValueType()) && 5770 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5771 "Invalid FP_ROUND!"); 5772 if (N1.getValueType() == VT) return N1; // noop conversion. 5773 break; 5774 case ISD::AssertSext: 5775 case ISD::AssertZext: { 5776 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5777 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5778 assert(VT.isInteger() && EVT.isInteger() && 5779 "Cannot *_EXTEND_INREG FP types"); 5780 assert(!EVT.isVector() && 5781 "AssertSExt/AssertZExt type should be the vector element type " 5782 "rather than the vector type!"); 5783 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5784 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5785 break; 5786 } 5787 case ISD::SIGN_EXTEND_INREG: { 5788 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5789 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5790 assert(VT.isInteger() && EVT.isInteger() && 5791 "Cannot *_EXTEND_INREG FP types"); 5792 assert(EVT.isVector() == VT.isVector() && 5793 "SIGN_EXTEND_INREG type should be vector iff the operand " 5794 "type is vector!"); 5795 assert((!EVT.isVector() || 5796 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5797 "Vector element counts must match in SIGN_EXTEND_INREG"); 5798 assert(EVT.bitsLE(VT) && "Not extending!"); 5799 if (EVT == VT) return N1; // Not actually extending 5800 5801 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5802 unsigned FromBits = EVT.getScalarSizeInBits(); 5803 Val <<= Val.getBitWidth() - FromBits; 5804 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5805 return getConstant(Val, DL, ConstantVT); 5806 }; 5807 5808 if (N1C) { 5809 const APInt &Val = N1C->getAPIntValue(); 5810 return SignExtendInReg(Val, VT); 5811 } 5812 5813 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5814 SmallVector<SDValue, 8> Ops; 5815 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5816 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5817 SDValue Op = N1.getOperand(i); 5818 if (Op.isUndef()) { 5819 Ops.push_back(getUNDEF(OpVT)); 5820 continue; 5821 } 5822 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5823 APInt Val = C->getAPIntValue(); 5824 Ops.push_back(SignExtendInReg(Val, OpVT)); 5825 } 5826 return getBuildVector(VT, DL, Ops); 5827 } 5828 break; 5829 } 5830 case ISD::FP_TO_SINT_SAT: 5831 case ISD::FP_TO_UINT_SAT: { 5832 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5833 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5834 assert(N1.getValueType().isVector() == VT.isVector() && 5835 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5836 "vector!"); 5837 assert((!VT.isVector() || VT.getVectorNumElements() == 5838 N1.getValueType().getVectorNumElements()) && 5839 "Vector element counts must match in FP_TO_*INT_SAT"); 5840 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5841 "Type to saturate to must be a scalar."); 5842 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5843 "Not extending!"); 5844 break; 5845 } 5846 case ISD::EXTRACT_VECTOR_ELT: 5847 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5848 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5849 element type of the vector."); 5850 5851 // Extract from an undefined value or using an undefined index is undefined. 5852 if (N1.isUndef() || N2.isUndef()) 5853 return getUNDEF(VT); 5854 5855 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5856 // vectors. For scalable vectors we will provide appropriate support for 5857 // dealing with arbitrary indices. 5858 if (N2C && N1.getValueType().isFixedLengthVector() && 5859 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5860 return getUNDEF(VT); 5861 5862 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5863 // expanding copies of large vectors from registers. This only works for 5864 // fixed length vectors, since we need to know the exact number of 5865 // elements. 5866 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5867 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5868 unsigned Factor = 5869 N1.getOperand(0).getValueType().getVectorNumElements(); 5870 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5871 N1.getOperand(N2C->getZExtValue() / Factor), 5872 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5873 } 5874 5875 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5876 // lowering is expanding large vector constants. 5877 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5878 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5879 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5880 N1.getValueType().isFixedLengthVector()) && 5881 "BUILD_VECTOR used for scalable vectors"); 5882 unsigned Index = 5883 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5884 SDValue Elt = N1.getOperand(Index); 5885 5886 if (VT != Elt.getValueType()) 5887 // If the vector element type is not legal, the BUILD_VECTOR operands 5888 // are promoted and implicitly truncated, and the result implicitly 5889 // extended. Make that explicit here. 5890 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5891 5892 return Elt; 5893 } 5894 5895 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5896 // operations are lowered to scalars. 5897 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5898 // If the indices are the same, return the inserted element else 5899 // if the indices are known different, extract the element from 5900 // the original vector. 5901 SDValue N1Op2 = N1.getOperand(2); 5902 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5903 5904 if (N1Op2C && N2C) { 5905 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5906 if (VT == N1.getOperand(1).getValueType()) 5907 return N1.getOperand(1); 5908 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5909 } 5910 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5911 } 5912 } 5913 5914 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5915 // when vector types are scalarized and v1iX is legal. 5916 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5917 // Here we are completely ignoring the extract element index (N2), 5918 // which is fine for fixed width vectors, since any index other than 0 5919 // is undefined anyway. However, this cannot be ignored for scalable 5920 // vectors - in theory we could support this, but we don't want to do this 5921 // without a profitability check. 5922 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5923 N1.getValueType().isFixedLengthVector() && 5924 N1.getValueType().getVectorNumElements() == 1) { 5925 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5926 N1.getOperand(1)); 5927 } 5928 break; 5929 case ISD::EXTRACT_ELEMENT: 5930 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5931 assert(!N1.getValueType().isVector() && !VT.isVector() && 5932 (N1.getValueType().isInteger() == VT.isInteger()) && 5933 N1.getValueType() != VT && 5934 "Wrong types for EXTRACT_ELEMENT!"); 5935 5936 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5937 // 64-bit integers into 32-bit parts. Instead of building the extract of 5938 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5939 if (N1.getOpcode() == ISD::BUILD_PAIR) 5940 return N1.getOperand(N2C->getZExtValue()); 5941 5942 // EXTRACT_ELEMENT of a constant int is also very common. 5943 if (N1C) { 5944 unsigned ElementSize = VT.getSizeInBits(); 5945 unsigned Shift = ElementSize * N2C->getZExtValue(); 5946 const APInt &Val = N1C->getAPIntValue(); 5947 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5948 } 5949 break; 5950 case ISD::EXTRACT_SUBVECTOR: { 5951 EVT N1VT = N1.getValueType(); 5952 assert(VT.isVector() && N1VT.isVector() && 5953 "Extract subvector VTs must be vectors!"); 5954 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5955 "Extract subvector VTs must have the same element type!"); 5956 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5957 "Cannot extract a scalable vector from a fixed length vector!"); 5958 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5959 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5960 "Extract subvector must be from larger vector to smaller vector!"); 5961 assert(N2C && "Extract subvector index must be a constant"); 5962 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5963 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5964 N1VT.getVectorMinNumElements()) && 5965 "Extract subvector overflow!"); 5966 assert(N2C->getAPIntValue().getBitWidth() == 5967 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5968 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5969 5970 // Trivial extraction. 5971 if (VT == N1VT) 5972 return N1; 5973 5974 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5975 if (N1.isUndef()) 5976 return getUNDEF(VT); 5977 5978 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5979 // the concat have the same type as the extract. 5980 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5981 VT == N1.getOperand(0).getValueType()) { 5982 unsigned Factor = VT.getVectorMinNumElements(); 5983 return N1.getOperand(N2C->getZExtValue() / Factor); 5984 } 5985 5986 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5987 // during shuffle legalization. 5988 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5989 VT == N1.getOperand(1).getValueType()) 5990 return N1.getOperand(1); 5991 break; 5992 } 5993 } 5994 5995 // Perform trivial constant folding. 5996 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5997 return SV; 5998 5999 // Canonicalize an UNDEF to the RHS, even over a constant. 6000 if (N1.isUndef()) { 6001 if (TLI->isCommutativeBinOp(Opcode)) { 6002 std::swap(N1, N2); 6003 } else { 6004 switch (Opcode) { 6005 case ISD::SIGN_EXTEND_INREG: 6006 case ISD::SUB: 6007 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6008 case ISD::UDIV: 6009 case ISD::SDIV: 6010 case ISD::UREM: 6011 case ISD::SREM: 6012 case ISD::SSUBSAT: 6013 case ISD::USUBSAT: 6014 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6015 } 6016 } 6017 } 6018 6019 // Fold a bunch of operators when the RHS is undef. 6020 if (N2.isUndef()) { 6021 switch (Opcode) { 6022 case ISD::XOR: 6023 if (N1.isUndef()) 6024 // Handle undef ^ undef -> 0 special case. This is a common 6025 // idiom (misuse). 6026 return getConstant(0, DL, VT); 6027 LLVM_FALLTHROUGH; 6028 case ISD::ADD: 6029 case ISD::SUB: 6030 case ISD::UDIV: 6031 case ISD::SDIV: 6032 case ISD::UREM: 6033 case ISD::SREM: 6034 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6035 case ISD::MUL: 6036 case ISD::AND: 6037 case ISD::SSUBSAT: 6038 case ISD::USUBSAT: 6039 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6040 case ISD::OR: 6041 case ISD::SADDSAT: 6042 case ISD::UADDSAT: 6043 return getAllOnesConstant(DL, VT); 6044 } 6045 } 6046 6047 // Memoize this node if possible. 6048 SDNode *N; 6049 SDVTList VTs = getVTList(VT); 6050 SDValue Ops[] = {N1, N2}; 6051 if (VT != MVT::Glue) { 6052 FoldingSetNodeID ID; 6053 AddNodeIDNode(ID, Opcode, VTs, Ops); 6054 void *IP = nullptr; 6055 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6056 E->intersectFlagsWith(Flags); 6057 return SDValue(E, 0); 6058 } 6059 6060 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6061 N->setFlags(Flags); 6062 createOperands(N, Ops); 6063 CSEMap.InsertNode(N, IP); 6064 } else { 6065 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6066 createOperands(N, Ops); 6067 } 6068 6069 InsertNode(N); 6070 SDValue V = SDValue(N, 0); 6071 NewSDValueDbgMsg(V, "Creating new node: ", this); 6072 return V; 6073 } 6074 6075 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6076 SDValue N1, SDValue N2, SDValue N3) { 6077 SDNodeFlags Flags; 6078 if (Inserter) 6079 Flags = Inserter->getFlags(); 6080 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6081 } 6082 6083 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6084 SDValue N1, SDValue N2, SDValue N3, 6085 const SDNodeFlags Flags) { 6086 assert(N1.getOpcode() != ISD::DELETED_NODE && 6087 N2.getOpcode() != ISD::DELETED_NODE && 6088 N3.getOpcode() != ISD::DELETED_NODE && 6089 "Operand is DELETED_NODE!"); 6090 // Perform various simplifications. 6091 switch (Opcode) { 6092 case ISD::FMA: { 6093 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6094 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6095 N3.getValueType() == VT && "FMA types must match!"); 6096 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6097 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6098 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6099 if (N1CFP && N2CFP && N3CFP) { 6100 APFloat V1 = N1CFP->getValueAPF(); 6101 const APFloat &V2 = N2CFP->getValueAPF(); 6102 const APFloat &V3 = N3CFP->getValueAPF(); 6103 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6104 return getConstantFP(V1, DL, VT); 6105 } 6106 break; 6107 } 6108 case ISD::BUILD_VECTOR: { 6109 // Attempt to simplify BUILD_VECTOR. 6110 SDValue Ops[] = {N1, N2, N3}; 6111 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6112 return V; 6113 break; 6114 } 6115 case ISD::CONCAT_VECTORS: { 6116 SDValue Ops[] = {N1, N2, N3}; 6117 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6118 return V; 6119 break; 6120 } 6121 case ISD::SETCC: { 6122 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6123 assert(N1.getValueType() == N2.getValueType() && 6124 "SETCC operands must have the same type!"); 6125 assert(VT.isVector() == N1.getValueType().isVector() && 6126 "SETCC type should be vector iff the operand type is vector!"); 6127 assert((!VT.isVector() || VT.getVectorElementCount() == 6128 N1.getValueType().getVectorElementCount()) && 6129 "SETCC vector element counts must match!"); 6130 // Use FoldSetCC to simplify SETCC's. 6131 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6132 return V; 6133 // Vector constant folding. 6134 SDValue Ops[] = {N1, N2, N3}; 6135 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6136 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6137 return V; 6138 } 6139 break; 6140 } 6141 case ISD::SELECT: 6142 case ISD::VSELECT: 6143 if (SDValue V = simplifySelect(N1, N2, N3)) 6144 return V; 6145 break; 6146 case ISD::VECTOR_SHUFFLE: 6147 llvm_unreachable("should use getVectorShuffle constructor!"); 6148 case ISD::VECTOR_SPLICE: { 6149 if (cast<ConstantSDNode>(N3)->isNullValue()) 6150 return N1; 6151 break; 6152 } 6153 case ISD::INSERT_VECTOR_ELT: { 6154 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6155 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6156 // for scalable vectors where we will generate appropriate code to 6157 // deal with out-of-bounds cases correctly. 6158 if (N3C && N1.getValueType().isFixedLengthVector() && 6159 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6160 return getUNDEF(VT); 6161 6162 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6163 if (N3.isUndef()) 6164 return getUNDEF(VT); 6165 6166 // If the inserted element is an UNDEF, just use the input vector. 6167 if (N2.isUndef()) 6168 return N1; 6169 6170 break; 6171 } 6172 case ISD::INSERT_SUBVECTOR: { 6173 // Inserting undef into undef is still undef. 6174 if (N1.isUndef() && N2.isUndef()) 6175 return getUNDEF(VT); 6176 6177 EVT N2VT = N2.getValueType(); 6178 assert(VT == N1.getValueType() && 6179 "Dest and insert subvector source types must match!"); 6180 assert(VT.isVector() && N2VT.isVector() && 6181 "Insert subvector VTs must be vectors!"); 6182 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6183 "Cannot insert a scalable vector into a fixed length vector!"); 6184 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6185 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6186 "Insert subvector must be from smaller vector to larger vector!"); 6187 assert(isa<ConstantSDNode>(N3) && 6188 "Insert subvector index must be constant"); 6189 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6190 (N2VT.getVectorMinNumElements() + 6191 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6192 VT.getVectorMinNumElements()) && 6193 "Insert subvector overflow!"); 6194 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6195 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6196 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6197 6198 // Trivial insertion. 6199 if (VT == N2VT) 6200 return N2; 6201 6202 // If this is an insert of an extracted vector into an undef vector, we 6203 // can just use the input to the extract. 6204 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6205 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6206 return N2.getOperand(0); 6207 break; 6208 } 6209 case ISD::BITCAST: 6210 // Fold bit_convert nodes from a type to themselves. 6211 if (N1.getValueType() == VT) 6212 return N1; 6213 break; 6214 } 6215 6216 // Memoize node if it doesn't produce a flag. 6217 SDNode *N; 6218 SDVTList VTs = getVTList(VT); 6219 SDValue Ops[] = {N1, N2, N3}; 6220 if (VT != MVT::Glue) { 6221 FoldingSetNodeID ID; 6222 AddNodeIDNode(ID, Opcode, VTs, Ops); 6223 void *IP = nullptr; 6224 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6225 E->intersectFlagsWith(Flags); 6226 return SDValue(E, 0); 6227 } 6228 6229 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6230 N->setFlags(Flags); 6231 createOperands(N, Ops); 6232 CSEMap.InsertNode(N, IP); 6233 } else { 6234 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6235 createOperands(N, Ops); 6236 } 6237 6238 InsertNode(N); 6239 SDValue V = SDValue(N, 0); 6240 NewSDValueDbgMsg(V, "Creating new node: ", this); 6241 return V; 6242 } 6243 6244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6245 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6246 SDValue Ops[] = { N1, N2, N3, N4 }; 6247 return getNode(Opcode, DL, VT, Ops); 6248 } 6249 6250 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6251 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6252 SDValue N5) { 6253 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6254 return getNode(Opcode, DL, VT, Ops); 6255 } 6256 6257 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6258 /// the incoming stack arguments to be loaded from the stack. 6259 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6260 SmallVector<SDValue, 8> ArgChains; 6261 6262 // Include the original chain at the beginning of the list. When this is 6263 // used by target LowerCall hooks, this helps legalize find the 6264 // CALLSEQ_BEGIN node. 6265 ArgChains.push_back(Chain); 6266 6267 // Add a chain value for each stack argument. 6268 for (SDNode *U : getEntryNode().getNode()->uses()) 6269 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6270 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6271 if (FI->getIndex() < 0) 6272 ArgChains.push_back(SDValue(L, 1)); 6273 6274 // Build a tokenfactor for all the chains. 6275 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6276 } 6277 6278 /// getMemsetValue - Vectorized representation of the memset value 6279 /// operand. 6280 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6281 const SDLoc &dl) { 6282 assert(!Value.isUndef()); 6283 6284 unsigned NumBits = VT.getScalarSizeInBits(); 6285 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6286 assert(C->getAPIntValue().getBitWidth() == 8); 6287 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6288 if (VT.isInteger()) { 6289 bool IsOpaque = VT.getSizeInBits() > 64 || 6290 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6291 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6292 } 6293 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6294 VT); 6295 } 6296 6297 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6298 EVT IntVT = VT.getScalarType(); 6299 if (!IntVT.isInteger()) 6300 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6301 6302 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6303 if (NumBits > 8) { 6304 // Use a multiplication with 0x010101... to extend the input to the 6305 // required length. 6306 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6307 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6308 DAG.getConstant(Magic, dl, IntVT)); 6309 } 6310 6311 if (VT != Value.getValueType() && !VT.isInteger()) 6312 Value = DAG.getBitcast(VT.getScalarType(), Value); 6313 if (VT != Value.getValueType()) 6314 Value = DAG.getSplatBuildVector(VT, dl, Value); 6315 6316 return Value; 6317 } 6318 6319 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6320 /// used when a memcpy is turned into a memset when the source is a constant 6321 /// string ptr. 6322 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6323 const TargetLowering &TLI, 6324 const ConstantDataArraySlice &Slice) { 6325 // Handle vector with all elements zero. 6326 if (Slice.Array == nullptr) { 6327 if (VT.isInteger()) 6328 return DAG.getConstant(0, dl, VT); 6329 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6330 return DAG.getConstantFP(0.0, dl, VT); 6331 if (VT.isVector()) { 6332 unsigned NumElts = VT.getVectorNumElements(); 6333 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6334 return DAG.getNode(ISD::BITCAST, dl, VT, 6335 DAG.getConstant(0, dl, 6336 EVT::getVectorVT(*DAG.getContext(), 6337 EltVT, NumElts))); 6338 } 6339 llvm_unreachable("Expected type!"); 6340 } 6341 6342 assert(!VT.isVector() && "Can't handle vector type here!"); 6343 unsigned NumVTBits = VT.getSizeInBits(); 6344 unsigned NumVTBytes = NumVTBits / 8; 6345 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6346 6347 APInt Val(NumVTBits, 0); 6348 if (DAG.getDataLayout().isLittleEndian()) { 6349 for (unsigned i = 0; i != NumBytes; ++i) 6350 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6351 } else { 6352 for (unsigned i = 0; i != NumBytes; ++i) 6353 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6354 } 6355 6356 // If the "cost" of materializing the integer immediate is less than the cost 6357 // of a load, then it is cost effective to turn the load into the immediate. 6358 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6359 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6360 return DAG.getConstant(Val, dl, VT); 6361 return SDValue(nullptr, 0); 6362 } 6363 6364 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6365 const SDLoc &DL, 6366 const SDNodeFlags Flags) { 6367 EVT VT = Base.getValueType(); 6368 SDValue Index; 6369 6370 if (Offset.isScalable()) 6371 Index = getVScale(DL, Base.getValueType(), 6372 APInt(Base.getValueSizeInBits().getFixedSize(), 6373 Offset.getKnownMinSize())); 6374 else 6375 Index = getConstant(Offset.getFixedSize(), DL, VT); 6376 6377 return getMemBasePlusOffset(Base, Index, DL, Flags); 6378 } 6379 6380 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6381 const SDLoc &DL, 6382 const SDNodeFlags Flags) { 6383 assert(Offset.getValueType().isInteger()); 6384 EVT BasePtrVT = Ptr.getValueType(); 6385 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6386 } 6387 6388 /// Returns true if memcpy source is constant data. 6389 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6390 uint64_t SrcDelta = 0; 6391 GlobalAddressSDNode *G = nullptr; 6392 if (Src.getOpcode() == ISD::GlobalAddress) 6393 G = cast<GlobalAddressSDNode>(Src); 6394 else if (Src.getOpcode() == ISD::ADD && 6395 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6396 Src.getOperand(1).getOpcode() == ISD::Constant) { 6397 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6398 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6399 } 6400 if (!G) 6401 return false; 6402 6403 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6404 SrcDelta + G->getOffset()); 6405 } 6406 6407 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6408 SelectionDAG &DAG) { 6409 // On Darwin, -Os means optimize for size without hurting performance, so 6410 // only really optimize for size when -Oz (MinSize) is used. 6411 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6412 return MF.getFunction().hasMinSize(); 6413 return DAG.shouldOptForSize(); 6414 } 6415 6416 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6417 SmallVector<SDValue, 32> &OutChains, unsigned From, 6418 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6419 SmallVector<SDValue, 16> &OutStoreChains) { 6420 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6421 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6422 SmallVector<SDValue, 16> GluedLoadChains; 6423 for (unsigned i = From; i < To; ++i) { 6424 OutChains.push_back(OutLoadChains[i]); 6425 GluedLoadChains.push_back(OutLoadChains[i]); 6426 } 6427 6428 // Chain for all loads. 6429 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6430 GluedLoadChains); 6431 6432 for (unsigned i = From; i < To; ++i) { 6433 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6434 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6435 ST->getBasePtr(), ST->getMemoryVT(), 6436 ST->getMemOperand()); 6437 OutChains.push_back(NewStore); 6438 } 6439 } 6440 6441 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6442 SDValue Chain, SDValue Dst, SDValue Src, 6443 uint64_t Size, Align Alignment, 6444 bool isVol, bool AlwaysInline, 6445 MachinePointerInfo DstPtrInfo, 6446 MachinePointerInfo SrcPtrInfo, 6447 const AAMDNodes &AAInfo) { 6448 // Turn a memcpy of undef to nop. 6449 // FIXME: We need to honor volatile even is Src is undef. 6450 if (Src.isUndef()) 6451 return Chain; 6452 6453 // Expand memcpy to a series of load and store ops if the size operand falls 6454 // below a certain threshold. 6455 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6456 // rather than maybe a humongous number of loads and stores. 6457 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6458 const DataLayout &DL = DAG.getDataLayout(); 6459 LLVMContext &C = *DAG.getContext(); 6460 std::vector<EVT> MemOps; 6461 bool DstAlignCanChange = false; 6462 MachineFunction &MF = DAG.getMachineFunction(); 6463 MachineFrameInfo &MFI = MF.getFrameInfo(); 6464 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6465 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6466 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6467 DstAlignCanChange = true; 6468 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6469 if (!SrcAlign || Alignment > *SrcAlign) 6470 SrcAlign = Alignment; 6471 assert(SrcAlign && "SrcAlign must be set"); 6472 ConstantDataArraySlice Slice; 6473 // If marked as volatile, perform a copy even when marked as constant. 6474 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6475 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6476 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6477 const MemOp Op = isZeroConstant 6478 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6479 /*IsZeroMemset*/ true, isVol) 6480 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6481 *SrcAlign, isVol, CopyFromConstant); 6482 if (!TLI.findOptimalMemOpLowering( 6483 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6484 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6485 return SDValue(); 6486 6487 if (DstAlignCanChange) { 6488 Type *Ty = MemOps[0].getTypeForEVT(C); 6489 Align NewAlign = DL.getABITypeAlign(Ty); 6490 6491 // Don't promote to an alignment that would require dynamic stack 6492 // realignment. 6493 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6494 if (!TRI->hasStackRealignment(MF)) 6495 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6496 NewAlign = NewAlign / 2; 6497 6498 if (NewAlign > Alignment) { 6499 // Give the stack frame object a larger alignment if needed. 6500 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6501 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6502 Alignment = NewAlign; 6503 } 6504 } 6505 6506 // Prepare AAInfo for loads/stores after lowering this memcpy. 6507 AAMDNodes NewAAInfo = AAInfo; 6508 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6509 6510 MachineMemOperand::Flags MMOFlags = 6511 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6512 SmallVector<SDValue, 16> OutLoadChains; 6513 SmallVector<SDValue, 16> OutStoreChains; 6514 SmallVector<SDValue, 32> OutChains; 6515 unsigned NumMemOps = MemOps.size(); 6516 uint64_t SrcOff = 0, DstOff = 0; 6517 for (unsigned i = 0; i != NumMemOps; ++i) { 6518 EVT VT = MemOps[i]; 6519 unsigned VTSize = VT.getSizeInBits() / 8; 6520 SDValue Value, Store; 6521 6522 if (VTSize > Size) { 6523 // Issuing an unaligned load / store pair that overlaps with the previous 6524 // pair. Adjust the offset accordingly. 6525 assert(i == NumMemOps-1 && i != 0); 6526 SrcOff -= VTSize - Size; 6527 DstOff -= VTSize - Size; 6528 } 6529 6530 if (CopyFromConstant && 6531 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6532 // It's unlikely a store of a vector immediate can be done in a single 6533 // instruction. It would require a load from a constantpool first. 6534 // We only handle zero vectors here. 6535 // FIXME: Handle other cases where store of vector immediate is done in 6536 // a single instruction. 6537 ConstantDataArraySlice SubSlice; 6538 if (SrcOff < Slice.Length) { 6539 SubSlice = Slice; 6540 SubSlice.move(SrcOff); 6541 } else { 6542 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6543 SubSlice.Array = nullptr; 6544 SubSlice.Offset = 0; 6545 SubSlice.Length = VTSize; 6546 } 6547 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6548 if (Value.getNode()) { 6549 Store = DAG.getStore( 6550 Chain, dl, Value, 6551 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6552 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6553 OutChains.push_back(Store); 6554 } 6555 } 6556 6557 if (!Store.getNode()) { 6558 // The type might not be legal for the target. This should only happen 6559 // if the type is smaller than a legal type, as on PPC, so the right 6560 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6561 // to Load/Store if NVT==VT. 6562 // FIXME does the case above also need this? 6563 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6564 assert(NVT.bitsGE(VT)); 6565 6566 bool isDereferenceable = 6567 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6568 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6569 if (isDereferenceable) 6570 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6571 6572 Value = DAG.getExtLoad( 6573 ISD::EXTLOAD, dl, NVT, Chain, 6574 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6575 SrcPtrInfo.getWithOffset(SrcOff), VT, 6576 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6577 OutLoadChains.push_back(Value.getValue(1)); 6578 6579 Store = DAG.getTruncStore( 6580 Chain, dl, Value, 6581 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6582 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6583 OutStoreChains.push_back(Store); 6584 } 6585 SrcOff += VTSize; 6586 DstOff += VTSize; 6587 Size -= VTSize; 6588 } 6589 6590 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6591 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6592 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6593 6594 if (NumLdStInMemcpy) { 6595 // It may be that memcpy might be converted to memset if it's memcpy 6596 // of constants. In such a case, we won't have loads and stores, but 6597 // just stores. In the absence of loads, there is nothing to gang up. 6598 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6599 // If target does not care, just leave as it. 6600 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6601 OutChains.push_back(OutLoadChains[i]); 6602 OutChains.push_back(OutStoreChains[i]); 6603 } 6604 } else { 6605 // Ld/St less than/equal limit set by target. 6606 if (NumLdStInMemcpy <= GluedLdStLimit) { 6607 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6608 NumLdStInMemcpy, OutLoadChains, 6609 OutStoreChains); 6610 } else { 6611 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6612 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6613 unsigned GlueIter = 0; 6614 6615 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6616 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6617 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6618 6619 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6620 OutLoadChains, OutStoreChains); 6621 GlueIter += GluedLdStLimit; 6622 } 6623 6624 // Residual ld/st. 6625 if (RemainingLdStInMemcpy) { 6626 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6627 RemainingLdStInMemcpy, OutLoadChains, 6628 OutStoreChains); 6629 } 6630 } 6631 } 6632 } 6633 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6634 } 6635 6636 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6637 SDValue Chain, SDValue Dst, SDValue Src, 6638 uint64_t Size, Align Alignment, 6639 bool isVol, bool AlwaysInline, 6640 MachinePointerInfo DstPtrInfo, 6641 MachinePointerInfo SrcPtrInfo, 6642 const AAMDNodes &AAInfo) { 6643 // Turn a memmove of undef to nop. 6644 // FIXME: We need to honor volatile even is Src is undef. 6645 if (Src.isUndef()) 6646 return Chain; 6647 6648 // Expand memmove to a series of load and store ops if the size operand falls 6649 // below a certain threshold. 6650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6651 const DataLayout &DL = DAG.getDataLayout(); 6652 LLVMContext &C = *DAG.getContext(); 6653 std::vector<EVT> MemOps; 6654 bool DstAlignCanChange = false; 6655 MachineFunction &MF = DAG.getMachineFunction(); 6656 MachineFrameInfo &MFI = MF.getFrameInfo(); 6657 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6658 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6659 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6660 DstAlignCanChange = true; 6661 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6662 if (!SrcAlign || Alignment > *SrcAlign) 6663 SrcAlign = Alignment; 6664 assert(SrcAlign && "SrcAlign must be set"); 6665 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6666 if (!TLI.findOptimalMemOpLowering( 6667 MemOps, Limit, 6668 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6669 /*IsVolatile*/ true), 6670 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6671 MF.getFunction().getAttributes())) 6672 return SDValue(); 6673 6674 if (DstAlignCanChange) { 6675 Type *Ty = MemOps[0].getTypeForEVT(C); 6676 Align NewAlign = DL.getABITypeAlign(Ty); 6677 if (NewAlign > Alignment) { 6678 // Give the stack frame object a larger alignment if needed. 6679 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6680 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6681 Alignment = NewAlign; 6682 } 6683 } 6684 6685 // Prepare AAInfo for loads/stores after lowering this memmove. 6686 AAMDNodes NewAAInfo = AAInfo; 6687 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6688 6689 MachineMemOperand::Flags MMOFlags = 6690 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6691 uint64_t SrcOff = 0, DstOff = 0; 6692 SmallVector<SDValue, 8> LoadValues; 6693 SmallVector<SDValue, 8> LoadChains; 6694 SmallVector<SDValue, 8> OutChains; 6695 unsigned NumMemOps = MemOps.size(); 6696 for (unsigned i = 0; i < NumMemOps; i++) { 6697 EVT VT = MemOps[i]; 6698 unsigned VTSize = VT.getSizeInBits() / 8; 6699 SDValue Value; 6700 6701 bool isDereferenceable = 6702 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6703 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6704 if (isDereferenceable) 6705 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6706 6707 Value = DAG.getLoad( 6708 VT, dl, Chain, 6709 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6710 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6711 LoadValues.push_back(Value); 6712 LoadChains.push_back(Value.getValue(1)); 6713 SrcOff += VTSize; 6714 } 6715 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6716 OutChains.clear(); 6717 for (unsigned i = 0; i < NumMemOps; i++) { 6718 EVT VT = MemOps[i]; 6719 unsigned VTSize = VT.getSizeInBits() / 8; 6720 SDValue Store; 6721 6722 Store = DAG.getStore( 6723 Chain, dl, LoadValues[i], 6724 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6725 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6726 OutChains.push_back(Store); 6727 DstOff += VTSize; 6728 } 6729 6730 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6731 } 6732 6733 /// Lower the call to 'memset' intrinsic function into a series of store 6734 /// operations. 6735 /// 6736 /// \param DAG Selection DAG where lowered code is placed. 6737 /// \param dl Link to corresponding IR location. 6738 /// \param Chain Control flow dependency. 6739 /// \param Dst Pointer to destination memory location. 6740 /// \param Src Value of byte to write into the memory. 6741 /// \param Size Number of bytes to write. 6742 /// \param Alignment Alignment of the destination in bytes. 6743 /// \param isVol True if destination is volatile. 6744 /// \param DstPtrInfo IR information on the memory pointer. 6745 /// \returns New head in the control flow, if lowering was successful, empty 6746 /// SDValue otherwise. 6747 /// 6748 /// The function tries to replace 'llvm.memset' intrinsic with several store 6749 /// operations and value calculation code. This is usually profitable for small 6750 /// memory size. 6751 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6752 SDValue Chain, SDValue Dst, SDValue Src, 6753 uint64_t Size, Align Alignment, bool isVol, 6754 MachinePointerInfo DstPtrInfo, 6755 const AAMDNodes &AAInfo) { 6756 // Turn a memset of undef to nop. 6757 // FIXME: We need to honor volatile even is Src is undef. 6758 if (Src.isUndef()) 6759 return Chain; 6760 6761 // Expand memset to a series of load/store ops if the size operand 6762 // falls below a certain threshold. 6763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6764 std::vector<EVT> MemOps; 6765 bool DstAlignCanChange = false; 6766 MachineFunction &MF = DAG.getMachineFunction(); 6767 MachineFrameInfo &MFI = MF.getFrameInfo(); 6768 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6769 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6770 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6771 DstAlignCanChange = true; 6772 bool IsZeroVal = 6773 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6774 if (!TLI.findOptimalMemOpLowering( 6775 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6776 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6777 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6778 return SDValue(); 6779 6780 if (DstAlignCanChange) { 6781 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6782 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6783 if (NewAlign > Alignment) { 6784 // Give the stack frame object a larger alignment if needed. 6785 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6786 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6787 Alignment = NewAlign; 6788 } 6789 } 6790 6791 SmallVector<SDValue, 8> OutChains; 6792 uint64_t DstOff = 0; 6793 unsigned NumMemOps = MemOps.size(); 6794 6795 // Find the largest store and generate the bit pattern for it. 6796 EVT LargestVT = MemOps[0]; 6797 for (unsigned i = 1; i < NumMemOps; i++) 6798 if (MemOps[i].bitsGT(LargestVT)) 6799 LargestVT = MemOps[i]; 6800 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6801 6802 // Prepare AAInfo for loads/stores after lowering this memset. 6803 AAMDNodes NewAAInfo = AAInfo; 6804 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6805 6806 for (unsigned i = 0; i < NumMemOps; i++) { 6807 EVT VT = MemOps[i]; 6808 unsigned VTSize = VT.getSizeInBits() / 8; 6809 if (VTSize > Size) { 6810 // Issuing an unaligned load / store pair that overlaps with the previous 6811 // pair. Adjust the offset accordingly. 6812 assert(i == NumMemOps-1 && i != 0); 6813 DstOff -= VTSize - Size; 6814 } 6815 6816 // If this store is smaller than the largest store see whether we can get 6817 // the smaller value for free with a truncate. 6818 SDValue Value = MemSetValue; 6819 if (VT.bitsLT(LargestVT)) { 6820 if (!LargestVT.isVector() && !VT.isVector() && 6821 TLI.isTruncateFree(LargestVT, VT)) 6822 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6823 else 6824 Value = getMemsetValue(Src, VT, DAG, dl); 6825 } 6826 assert(Value.getValueType() == VT && "Value with wrong type."); 6827 SDValue Store = DAG.getStore( 6828 Chain, dl, Value, 6829 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6830 DstPtrInfo.getWithOffset(DstOff), Alignment, 6831 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6832 NewAAInfo); 6833 OutChains.push_back(Store); 6834 DstOff += VT.getSizeInBits() / 8; 6835 Size -= VTSize; 6836 } 6837 6838 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6839 } 6840 6841 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6842 unsigned AS) { 6843 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6844 // pointer operands can be losslessly bitcasted to pointers of address space 0 6845 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6846 report_fatal_error("cannot lower memory intrinsic in address space " + 6847 Twine(AS)); 6848 } 6849 } 6850 6851 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6852 SDValue Src, SDValue Size, Align Alignment, 6853 bool isVol, bool AlwaysInline, bool isTailCall, 6854 MachinePointerInfo DstPtrInfo, 6855 MachinePointerInfo SrcPtrInfo, 6856 const AAMDNodes &AAInfo) { 6857 // Check to see if we should lower the memcpy to loads and stores first. 6858 // For cases within the target-specified limits, this is the best choice. 6859 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6860 if (ConstantSize) { 6861 // Memcpy with size zero? Just return the original chain. 6862 if (ConstantSize->isZero()) 6863 return Chain; 6864 6865 SDValue Result = getMemcpyLoadsAndStores( 6866 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6867 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6868 if (Result.getNode()) 6869 return Result; 6870 } 6871 6872 // Then check to see if we should lower the memcpy with target-specific 6873 // code. If the target chooses to do this, this is the next best. 6874 if (TSI) { 6875 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6876 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6877 DstPtrInfo, SrcPtrInfo); 6878 if (Result.getNode()) 6879 return Result; 6880 } 6881 6882 // If we really need inline code and the target declined to provide it, 6883 // use a (potentially long) sequence of loads and stores. 6884 if (AlwaysInline) { 6885 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6886 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6887 ConstantSize->getZExtValue(), Alignment, 6888 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6889 } 6890 6891 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6892 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6893 6894 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6895 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6896 // respect volatile, so they may do things like read or write memory 6897 // beyond the given memory regions. But fixing this isn't easy, and most 6898 // people don't care. 6899 6900 // Emit a library call. 6901 TargetLowering::ArgListTy Args; 6902 TargetLowering::ArgListEntry Entry; 6903 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6904 Entry.Node = Dst; Args.push_back(Entry); 6905 Entry.Node = Src; Args.push_back(Entry); 6906 6907 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6908 Entry.Node = Size; Args.push_back(Entry); 6909 // FIXME: pass in SDLoc 6910 TargetLowering::CallLoweringInfo CLI(*this); 6911 CLI.setDebugLoc(dl) 6912 .setChain(Chain) 6913 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6914 Dst.getValueType().getTypeForEVT(*getContext()), 6915 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6916 TLI->getPointerTy(getDataLayout())), 6917 std::move(Args)) 6918 .setDiscardResult() 6919 .setTailCall(isTailCall); 6920 6921 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6922 return CallResult.second; 6923 } 6924 6925 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6926 SDValue Dst, unsigned DstAlign, 6927 SDValue Src, unsigned SrcAlign, 6928 SDValue Size, Type *SizeTy, 6929 unsigned ElemSz, bool isTailCall, 6930 MachinePointerInfo DstPtrInfo, 6931 MachinePointerInfo SrcPtrInfo) { 6932 // Emit a library call. 6933 TargetLowering::ArgListTy Args; 6934 TargetLowering::ArgListEntry Entry; 6935 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6936 Entry.Node = Dst; 6937 Args.push_back(Entry); 6938 6939 Entry.Node = Src; 6940 Args.push_back(Entry); 6941 6942 Entry.Ty = SizeTy; 6943 Entry.Node = Size; 6944 Args.push_back(Entry); 6945 6946 RTLIB::Libcall LibraryCall = 6947 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6948 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6949 report_fatal_error("Unsupported element size"); 6950 6951 TargetLowering::CallLoweringInfo CLI(*this); 6952 CLI.setDebugLoc(dl) 6953 .setChain(Chain) 6954 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6955 Type::getVoidTy(*getContext()), 6956 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6957 TLI->getPointerTy(getDataLayout())), 6958 std::move(Args)) 6959 .setDiscardResult() 6960 .setTailCall(isTailCall); 6961 6962 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6963 return CallResult.second; 6964 } 6965 6966 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6967 SDValue Src, SDValue Size, Align Alignment, 6968 bool isVol, bool isTailCall, 6969 MachinePointerInfo DstPtrInfo, 6970 MachinePointerInfo SrcPtrInfo, 6971 const AAMDNodes &AAInfo) { 6972 // Check to see if we should lower the memmove to loads and stores first. 6973 // For cases within the target-specified limits, this is the best choice. 6974 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6975 if (ConstantSize) { 6976 // Memmove with size zero? Just return the original chain. 6977 if (ConstantSize->isZero()) 6978 return Chain; 6979 6980 SDValue Result = getMemmoveLoadsAndStores( 6981 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6982 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6983 if (Result.getNode()) 6984 return Result; 6985 } 6986 6987 // Then check to see if we should lower the memmove with target-specific 6988 // code. If the target chooses to do this, this is the next best. 6989 if (TSI) { 6990 SDValue Result = 6991 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6992 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6993 if (Result.getNode()) 6994 return Result; 6995 } 6996 6997 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6998 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6999 7000 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7001 // not be safe. See memcpy above for more details. 7002 7003 // Emit a library call. 7004 TargetLowering::ArgListTy Args; 7005 TargetLowering::ArgListEntry Entry; 7006 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7007 Entry.Node = Dst; Args.push_back(Entry); 7008 Entry.Node = Src; Args.push_back(Entry); 7009 7010 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7011 Entry.Node = Size; Args.push_back(Entry); 7012 // FIXME: pass in SDLoc 7013 TargetLowering::CallLoweringInfo CLI(*this); 7014 CLI.setDebugLoc(dl) 7015 .setChain(Chain) 7016 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7017 Dst.getValueType().getTypeForEVT(*getContext()), 7018 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7019 TLI->getPointerTy(getDataLayout())), 7020 std::move(Args)) 7021 .setDiscardResult() 7022 .setTailCall(isTailCall); 7023 7024 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7025 return CallResult.second; 7026 } 7027 7028 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7029 SDValue Dst, unsigned DstAlign, 7030 SDValue Src, unsigned SrcAlign, 7031 SDValue Size, Type *SizeTy, 7032 unsigned ElemSz, bool isTailCall, 7033 MachinePointerInfo DstPtrInfo, 7034 MachinePointerInfo SrcPtrInfo) { 7035 // Emit a library call. 7036 TargetLowering::ArgListTy Args; 7037 TargetLowering::ArgListEntry Entry; 7038 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7039 Entry.Node = Dst; 7040 Args.push_back(Entry); 7041 7042 Entry.Node = Src; 7043 Args.push_back(Entry); 7044 7045 Entry.Ty = SizeTy; 7046 Entry.Node = Size; 7047 Args.push_back(Entry); 7048 7049 RTLIB::Libcall LibraryCall = 7050 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7051 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7052 report_fatal_error("Unsupported element size"); 7053 7054 TargetLowering::CallLoweringInfo CLI(*this); 7055 CLI.setDebugLoc(dl) 7056 .setChain(Chain) 7057 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7058 Type::getVoidTy(*getContext()), 7059 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7060 TLI->getPointerTy(getDataLayout())), 7061 std::move(Args)) 7062 .setDiscardResult() 7063 .setTailCall(isTailCall); 7064 7065 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7066 return CallResult.second; 7067 } 7068 7069 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7070 SDValue Src, SDValue Size, Align Alignment, 7071 bool isVol, bool isTailCall, 7072 MachinePointerInfo DstPtrInfo, 7073 const AAMDNodes &AAInfo) { 7074 // Check to see if we should lower the memset to stores first. 7075 // For cases within the target-specified limits, this is the best choice. 7076 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7077 if (ConstantSize) { 7078 // Memset with size zero? Just return the original chain. 7079 if (ConstantSize->isZero()) 7080 return Chain; 7081 7082 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7083 ConstantSize->getZExtValue(), Alignment, 7084 isVol, DstPtrInfo, AAInfo); 7085 7086 if (Result.getNode()) 7087 return Result; 7088 } 7089 7090 // Then check to see if we should lower the memset with target-specific 7091 // code. If the target chooses to do this, this is the next best. 7092 if (TSI) { 7093 SDValue Result = TSI->EmitTargetCodeForMemset( 7094 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7095 if (Result.getNode()) 7096 return Result; 7097 } 7098 7099 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7100 7101 // Emit a library call. 7102 TargetLowering::ArgListTy Args; 7103 TargetLowering::ArgListEntry Entry; 7104 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7105 Args.push_back(Entry); 7106 Entry.Node = Src; 7107 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7108 Args.push_back(Entry); 7109 Entry.Node = Size; 7110 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7111 Args.push_back(Entry); 7112 7113 // FIXME: pass in SDLoc 7114 TargetLowering::CallLoweringInfo CLI(*this); 7115 CLI.setDebugLoc(dl) 7116 .setChain(Chain) 7117 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7118 Dst.getValueType().getTypeForEVT(*getContext()), 7119 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7120 TLI->getPointerTy(getDataLayout())), 7121 std::move(Args)) 7122 .setDiscardResult() 7123 .setTailCall(isTailCall); 7124 7125 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7126 return CallResult.second; 7127 } 7128 7129 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7130 SDValue Dst, unsigned DstAlign, 7131 SDValue Value, SDValue Size, Type *SizeTy, 7132 unsigned ElemSz, bool isTailCall, 7133 MachinePointerInfo DstPtrInfo) { 7134 // Emit a library call. 7135 TargetLowering::ArgListTy Args; 7136 TargetLowering::ArgListEntry Entry; 7137 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7138 Entry.Node = Dst; 7139 Args.push_back(Entry); 7140 7141 Entry.Ty = Type::getInt8Ty(*getContext()); 7142 Entry.Node = Value; 7143 Args.push_back(Entry); 7144 7145 Entry.Ty = SizeTy; 7146 Entry.Node = Size; 7147 Args.push_back(Entry); 7148 7149 RTLIB::Libcall LibraryCall = 7150 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7151 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7152 report_fatal_error("Unsupported element size"); 7153 7154 TargetLowering::CallLoweringInfo CLI(*this); 7155 CLI.setDebugLoc(dl) 7156 .setChain(Chain) 7157 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7158 Type::getVoidTy(*getContext()), 7159 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7160 TLI->getPointerTy(getDataLayout())), 7161 std::move(Args)) 7162 .setDiscardResult() 7163 .setTailCall(isTailCall); 7164 7165 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7166 return CallResult.second; 7167 } 7168 7169 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7170 SDVTList VTList, ArrayRef<SDValue> Ops, 7171 MachineMemOperand *MMO) { 7172 FoldingSetNodeID ID; 7173 ID.AddInteger(MemVT.getRawBits()); 7174 AddNodeIDNode(ID, Opcode, VTList, Ops); 7175 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7176 void* IP = nullptr; 7177 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7178 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7179 return SDValue(E, 0); 7180 } 7181 7182 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7183 VTList, MemVT, MMO); 7184 createOperands(N, Ops); 7185 7186 CSEMap.InsertNode(N, IP); 7187 InsertNode(N); 7188 return SDValue(N, 0); 7189 } 7190 7191 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7192 EVT MemVT, SDVTList VTs, SDValue Chain, 7193 SDValue Ptr, SDValue Cmp, SDValue Swp, 7194 MachineMemOperand *MMO) { 7195 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7196 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7197 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7198 7199 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7200 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7201 } 7202 7203 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7204 SDValue Chain, SDValue Ptr, SDValue Val, 7205 MachineMemOperand *MMO) { 7206 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7207 Opcode == ISD::ATOMIC_LOAD_SUB || 7208 Opcode == ISD::ATOMIC_LOAD_AND || 7209 Opcode == ISD::ATOMIC_LOAD_CLR || 7210 Opcode == ISD::ATOMIC_LOAD_OR || 7211 Opcode == ISD::ATOMIC_LOAD_XOR || 7212 Opcode == ISD::ATOMIC_LOAD_NAND || 7213 Opcode == ISD::ATOMIC_LOAD_MIN || 7214 Opcode == ISD::ATOMIC_LOAD_MAX || 7215 Opcode == ISD::ATOMIC_LOAD_UMIN || 7216 Opcode == ISD::ATOMIC_LOAD_UMAX || 7217 Opcode == ISD::ATOMIC_LOAD_FADD || 7218 Opcode == ISD::ATOMIC_LOAD_FSUB || 7219 Opcode == ISD::ATOMIC_SWAP || 7220 Opcode == ISD::ATOMIC_STORE) && 7221 "Invalid Atomic Op"); 7222 7223 EVT VT = Val.getValueType(); 7224 7225 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7226 getVTList(VT, MVT::Other); 7227 SDValue Ops[] = {Chain, Ptr, Val}; 7228 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7229 } 7230 7231 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7232 EVT VT, SDValue Chain, SDValue Ptr, 7233 MachineMemOperand *MMO) { 7234 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7235 7236 SDVTList VTs = getVTList(VT, MVT::Other); 7237 SDValue Ops[] = {Chain, Ptr}; 7238 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7239 } 7240 7241 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7242 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7243 if (Ops.size() == 1) 7244 return Ops[0]; 7245 7246 SmallVector<EVT, 4> VTs; 7247 VTs.reserve(Ops.size()); 7248 for (const SDValue &Op : Ops) 7249 VTs.push_back(Op.getValueType()); 7250 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7251 } 7252 7253 SDValue SelectionDAG::getMemIntrinsicNode( 7254 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7255 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7256 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7257 if (!Size && MemVT.isScalableVector()) 7258 Size = MemoryLocation::UnknownSize; 7259 else if (!Size) 7260 Size = MemVT.getStoreSize(); 7261 7262 MachineFunction &MF = getMachineFunction(); 7263 MachineMemOperand *MMO = 7264 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7265 7266 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7267 } 7268 7269 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7270 SDVTList VTList, 7271 ArrayRef<SDValue> Ops, EVT MemVT, 7272 MachineMemOperand *MMO) { 7273 assert((Opcode == ISD::INTRINSIC_VOID || 7274 Opcode == ISD::INTRINSIC_W_CHAIN || 7275 Opcode == ISD::PREFETCH || 7276 ((int)Opcode <= std::numeric_limits<int>::max() && 7277 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7278 "Opcode is not a memory-accessing opcode!"); 7279 7280 // Memoize the node unless it returns a flag. 7281 MemIntrinsicSDNode *N; 7282 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7283 FoldingSetNodeID ID; 7284 AddNodeIDNode(ID, Opcode, VTList, Ops); 7285 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7286 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7287 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7288 void *IP = nullptr; 7289 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7290 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7291 return SDValue(E, 0); 7292 } 7293 7294 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7295 VTList, MemVT, MMO); 7296 createOperands(N, Ops); 7297 7298 CSEMap.InsertNode(N, IP); 7299 } else { 7300 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7301 VTList, MemVT, MMO); 7302 createOperands(N, Ops); 7303 } 7304 InsertNode(N); 7305 SDValue V(N, 0); 7306 NewSDValueDbgMsg(V, "Creating new node: ", this); 7307 return V; 7308 } 7309 7310 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7311 SDValue Chain, int FrameIndex, 7312 int64_t Size, int64_t Offset) { 7313 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7314 const auto VTs = getVTList(MVT::Other); 7315 SDValue Ops[2] = { 7316 Chain, 7317 getFrameIndex(FrameIndex, 7318 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7319 true)}; 7320 7321 FoldingSetNodeID ID; 7322 AddNodeIDNode(ID, Opcode, VTs, Ops); 7323 ID.AddInteger(FrameIndex); 7324 ID.AddInteger(Size); 7325 ID.AddInteger(Offset); 7326 void *IP = nullptr; 7327 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7328 return SDValue(E, 0); 7329 7330 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7331 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7332 createOperands(N, Ops); 7333 CSEMap.InsertNode(N, IP); 7334 InsertNode(N); 7335 SDValue V(N, 0); 7336 NewSDValueDbgMsg(V, "Creating new node: ", this); 7337 return V; 7338 } 7339 7340 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7341 uint64_t Guid, uint64_t Index, 7342 uint32_t Attr) { 7343 const unsigned Opcode = ISD::PSEUDO_PROBE; 7344 const auto VTs = getVTList(MVT::Other); 7345 SDValue Ops[] = {Chain}; 7346 FoldingSetNodeID ID; 7347 AddNodeIDNode(ID, Opcode, VTs, Ops); 7348 ID.AddInteger(Guid); 7349 ID.AddInteger(Index); 7350 void *IP = nullptr; 7351 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7352 return SDValue(E, 0); 7353 7354 auto *N = newSDNode<PseudoProbeSDNode>( 7355 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7356 createOperands(N, Ops); 7357 CSEMap.InsertNode(N, IP); 7358 InsertNode(N); 7359 SDValue V(N, 0); 7360 NewSDValueDbgMsg(V, "Creating new node: ", this); 7361 return V; 7362 } 7363 7364 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7365 /// MachinePointerInfo record from it. This is particularly useful because the 7366 /// code generator has many cases where it doesn't bother passing in a 7367 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7368 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7369 SelectionDAG &DAG, SDValue Ptr, 7370 int64_t Offset = 0) { 7371 // If this is FI+Offset, we can model it. 7372 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7373 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7374 FI->getIndex(), Offset); 7375 7376 // If this is (FI+Offset1)+Offset2, we can model it. 7377 if (Ptr.getOpcode() != ISD::ADD || 7378 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7379 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7380 return Info; 7381 7382 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7383 return MachinePointerInfo::getFixedStack( 7384 DAG.getMachineFunction(), FI, 7385 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7386 } 7387 7388 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7389 /// MachinePointerInfo record from it. This is particularly useful because the 7390 /// code generator has many cases where it doesn't bother passing in a 7391 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7392 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7393 SelectionDAG &DAG, SDValue Ptr, 7394 SDValue OffsetOp) { 7395 // If the 'Offset' value isn't a constant, we can't handle this. 7396 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7397 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7398 if (OffsetOp.isUndef()) 7399 return InferPointerInfo(Info, DAG, Ptr); 7400 return Info; 7401 } 7402 7403 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7404 EVT VT, const SDLoc &dl, SDValue Chain, 7405 SDValue Ptr, SDValue Offset, 7406 MachinePointerInfo PtrInfo, EVT MemVT, 7407 Align Alignment, 7408 MachineMemOperand::Flags MMOFlags, 7409 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7410 assert(Chain.getValueType() == MVT::Other && 7411 "Invalid chain type"); 7412 7413 MMOFlags |= MachineMemOperand::MOLoad; 7414 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7415 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7416 // clients. 7417 if (PtrInfo.V.isNull()) 7418 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7419 7420 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7421 MachineFunction &MF = getMachineFunction(); 7422 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7423 Alignment, AAInfo, Ranges); 7424 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7425 } 7426 7427 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7428 EVT VT, const SDLoc &dl, SDValue Chain, 7429 SDValue Ptr, SDValue Offset, EVT MemVT, 7430 MachineMemOperand *MMO) { 7431 if (VT == MemVT) { 7432 ExtType = ISD::NON_EXTLOAD; 7433 } else if (ExtType == ISD::NON_EXTLOAD) { 7434 assert(VT == MemVT && "Non-extending load from different memory type!"); 7435 } else { 7436 // Extending load. 7437 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7438 "Should only be an extending load, not truncating!"); 7439 assert(VT.isInteger() == MemVT.isInteger() && 7440 "Cannot convert from FP to Int or Int -> FP!"); 7441 assert(VT.isVector() == MemVT.isVector() && 7442 "Cannot use an ext load to convert to or from a vector!"); 7443 assert((!VT.isVector() || 7444 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7445 "Cannot use an ext load to change the number of vector elements!"); 7446 } 7447 7448 bool Indexed = AM != ISD::UNINDEXED; 7449 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7450 7451 SDVTList VTs = Indexed ? 7452 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7453 SDValue Ops[] = { Chain, Ptr, Offset }; 7454 FoldingSetNodeID ID; 7455 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7456 ID.AddInteger(MemVT.getRawBits()); 7457 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7458 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7459 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7460 void *IP = nullptr; 7461 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7462 cast<LoadSDNode>(E)->refineAlignment(MMO); 7463 return SDValue(E, 0); 7464 } 7465 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7466 ExtType, MemVT, MMO); 7467 createOperands(N, Ops); 7468 7469 CSEMap.InsertNode(N, IP); 7470 InsertNode(N); 7471 SDValue V(N, 0); 7472 NewSDValueDbgMsg(V, "Creating new node: ", this); 7473 return V; 7474 } 7475 7476 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7477 SDValue Ptr, MachinePointerInfo PtrInfo, 7478 MaybeAlign Alignment, 7479 MachineMemOperand::Flags MMOFlags, 7480 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7481 SDValue Undef = getUNDEF(Ptr.getValueType()); 7482 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7483 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7484 } 7485 7486 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7487 SDValue Ptr, MachineMemOperand *MMO) { 7488 SDValue Undef = getUNDEF(Ptr.getValueType()); 7489 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7490 VT, MMO); 7491 } 7492 7493 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7494 EVT VT, SDValue Chain, SDValue Ptr, 7495 MachinePointerInfo PtrInfo, EVT MemVT, 7496 MaybeAlign Alignment, 7497 MachineMemOperand::Flags MMOFlags, 7498 const AAMDNodes &AAInfo) { 7499 SDValue Undef = getUNDEF(Ptr.getValueType()); 7500 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7501 MemVT, Alignment, MMOFlags, AAInfo); 7502 } 7503 7504 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7505 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7506 MachineMemOperand *MMO) { 7507 SDValue Undef = getUNDEF(Ptr.getValueType()); 7508 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7509 MemVT, MMO); 7510 } 7511 7512 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7513 SDValue Base, SDValue Offset, 7514 ISD::MemIndexedMode AM) { 7515 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7516 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7517 // Don't propagate the invariant or dereferenceable flags. 7518 auto MMOFlags = 7519 LD->getMemOperand()->getFlags() & 7520 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7521 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7522 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7523 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7524 } 7525 7526 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7527 SDValue Ptr, MachinePointerInfo PtrInfo, 7528 Align Alignment, 7529 MachineMemOperand::Flags MMOFlags, 7530 const AAMDNodes &AAInfo) { 7531 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7532 7533 MMOFlags |= MachineMemOperand::MOStore; 7534 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7535 7536 if (PtrInfo.V.isNull()) 7537 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7538 7539 MachineFunction &MF = getMachineFunction(); 7540 uint64_t Size = 7541 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7542 MachineMemOperand *MMO = 7543 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7544 return getStore(Chain, dl, Val, Ptr, MMO); 7545 } 7546 7547 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7548 SDValue Ptr, MachineMemOperand *MMO) { 7549 assert(Chain.getValueType() == MVT::Other && 7550 "Invalid chain type"); 7551 EVT VT = Val.getValueType(); 7552 SDVTList VTs = getVTList(MVT::Other); 7553 SDValue Undef = getUNDEF(Ptr.getValueType()); 7554 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7555 FoldingSetNodeID ID; 7556 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7557 ID.AddInteger(VT.getRawBits()); 7558 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7559 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7560 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7561 void *IP = nullptr; 7562 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7563 cast<StoreSDNode>(E)->refineAlignment(MMO); 7564 return SDValue(E, 0); 7565 } 7566 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7567 ISD::UNINDEXED, false, VT, MMO); 7568 createOperands(N, Ops); 7569 7570 CSEMap.InsertNode(N, IP); 7571 InsertNode(N); 7572 SDValue V(N, 0); 7573 NewSDValueDbgMsg(V, "Creating new node: ", this); 7574 return V; 7575 } 7576 7577 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7578 SDValue Ptr, MachinePointerInfo PtrInfo, 7579 EVT SVT, Align Alignment, 7580 MachineMemOperand::Flags MMOFlags, 7581 const AAMDNodes &AAInfo) { 7582 assert(Chain.getValueType() == MVT::Other && 7583 "Invalid chain type"); 7584 7585 MMOFlags |= MachineMemOperand::MOStore; 7586 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7587 7588 if (PtrInfo.V.isNull()) 7589 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7590 7591 MachineFunction &MF = getMachineFunction(); 7592 MachineMemOperand *MMO = MF.getMachineMemOperand( 7593 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7594 Alignment, AAInfo); 7595 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7596 } 7597 7598 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7599 SDValue Ptr, EVT SVT, 7600 MachineMemOperand *MMO) { 7601 EVT VT = Val.getValueType(); 7602 7603 assert(Chain.getValueType() == MVT::Other && 7604 "Invalid chain type"); 7605 if (VT == SVT) 7606 return getStore(Chain, dl, Val, Ptr, MMO); 7607 7608 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7609 "Should only be a truncating store, not extending!"); 7610 assert(VT.isInteger() == SVT.isInteger() && 7611 "Can't do FP-INT conversion!"); 7612 assert(VT.isVector() == SVT.isVector() && 7613 "Cannot use trunc store to convert to or from a vector!"); 7614 assert((!VT.isVector() || 7615 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7616 "Cannot use trunc store to change the number of vector elements!"); 7617 7618 SDVTList VTs = getVTList(MVT::Other); 7619 SDValue Undef = getUNDEF(Ptr.getValueType()); 7620 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7621 FoldingSetNodeID ID; 7622 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7623 ID.AddInteger(SVT.getRawBits()); 7624 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7625 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7626 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7627 void *IP = nullptr; 7628 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7629 cast<StoreSDNode>(E)->refineAlignment(MMO); 7630 return SDValue(E, 0); 7631 } 7632 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7633 ISD::UNINDEXED, true, SVT, MMO); 7634 createOperands(N, Ops); 7635 7636 CSEMap.InsertNode(N, IP); 7637 InsertNode(N); 7638 SDValue V(N, 0); 7639 NewSDValueDbgMsg(V, "Creating new node: ", this); 7640 return V; 7641 } 7642 7643 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7644 SDValue Base, SDValue Offset, 7645 ISD::MemIndexedMode AM) { 7646 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7647 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7648 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7649 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7650 FoldingSetNodeID ID; 7651 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7652 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7653 ID.AddInteger(ST->getRawSubclassData()); 7654 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7655 void *IP = nullptr; 7656 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7657 return SDValue(E, 0); 7658 7659 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7660 ST->isTruncatingStore(), ST->getMemoryVT(), 7661 ST->getMemOperand()); 7662 createOperands(N, Ops); 7663 7664 CSEMap.InsertNode(N, IP); 7665 InsertNode(N); 7666 SDValue V(N, 0); 7667 NewSDValueDbgMsg(V, "Creating new node: ", this); 7668 return V; 7669 } 7670 7671 SDValue SelectionDAG::getLoadVP( 7672 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7673 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7674 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7675 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7676 const MDNode *Ranges, bool IsExpanding) { 7677 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7678 7679 MMOFlags |= MachineMemOperand::MOLoad; 7680 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7681 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7682 // clients. 7683 if (PtrInfo.V.isNull()) 7684 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7685 7686 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7687 MachineFunction &MF = getMachineFunction(); 7688 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7689 Alignment, AAInfo, Ranges); 7690 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7691 MMO, IsExpanding); 7692 } 7693 7694 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7695 ISD::LoadExtType ExtType, EVT VT, 7696 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7697 SDValue Offset, SDValue Mask, SDValue EVL, 7698 EVT MemVT, MachineMemOperand *MMO, 7699 bool IsExpanding) { 7700 if (VT == MemVT) { 7701 ExtType = ISD::NON_EXTLOAD; 7702 } else if (ExtType == ISD::NON_EXTLOAD) { 7703 assert(VT == MemVT && "Non-extending load from different memory type!"); 7704 } else { 7705 // Extending load. 7706 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7707 "Should only be an extending load, not truncating!"); 7708 assert(VT.isInteger() == MemVT.isInteger() && 7709 "Cannot convert from FP to Int or Int -> FP!"); 7710 assert(VT.isVector() == MemVT.isVector() && 7711 "Cannot use an ext load to convert to or from a vector!"); 7712 assert((!VT.isVector() || 7713 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7714 "Cannot use an ext load to change the number of vector elements!"); 7715 } 7716 7717 bool Indexed = AM != ISD::UNINDEXED; 7718 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7719 7720 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7721 : getVTList(VT, MVT::Other); 7722 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7723 FoldingSetNodeID ID; 7724 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7725 ID.AddInteger(VT.getRawBits()); 7726 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7727 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7728 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7729 void *IP = nullptr; 7730 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7731 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7732 return SDValue(E, 0); 7733 } 7734 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7735 ExtType, IsExpanding, MemVT, MMO); 7736 createOperands(N, Ops); 7737 7738 CSEMap.InsertNode(N, IP); 7739 InsertNode(N); 7740 SDValue V(N, 0); 7741 NewSDValueDbgMsg(V, "Creating new node: ", this); 7742 return V; 7743 } 7744 7745 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7746 SDValue Ptr, SDValue Mask, SDValue EVL, 7747 MachinePointerInfo PtrInfo, 7748 MaybeAlign Alignment, 7749 MachineMemOperand::Flags MMOFlags, 7750 const AAMDNodes &AAInfo, const MDNode *Ranges, 7751 bool IsExpanding) { 7752 SDValue Undef = getUNDEF(Ptr.getValueType()); 7753 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7754 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7755 IsExpanding); 7756 } 7757 7758 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7759 SDValue Ptr, SDValue Mask, SDValue EVL, 7760 MachineMemOperand *MMO, bool IsExpanding) { 7761 SDValue Undef = getUNDEF(Ptr.getValueType()); 7762 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7763 Mask, EVL, VT, MMO, IsExpanding); 7764 } 7765 7766 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7767 EVT VT, SDValue Chain, SDValue Ptr, 7768 SDValue Mask, SDValue EVL, 7769 MachinePointerInfo PtrInfo, EVT MemVT, 7770 MaybeAlign Alignment, 7771 MachineMemOperand::Flags MMOFlags, 7772 const AAMDNodes &AAInfo, bool IsExpanding) { 7773 SDValue Undef = getUNDEF(Ptr.getValueType()); 7774 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7775 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7776 IsExpanding); 7777 } 7778 7779 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7780 EVT VT, SDValue Chain, SDValue Ptr, 7781 SDValue Mask, SDValue EVL, EVT MemVT, 7782 MachineMemOperand *MMO, bool IsExpanding) { 7783 SDValue Undef = getUNDEF(Ptr.getValueType()); 7784 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7785 EVL, MemVT, MMO, IsExpanding); 7786 } 7787 7788 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7789 SDValue Base, SDValue Offset, 7790 ISD::MemIndexedMode AM) { 7791 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7792 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7793 // Don't propagate the invariant or dereferenceable flags. 7794 auto MMOFlags = 7795 LD->getMemOperand()->getFlags() & 7796 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7797 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7798 LD->getChain(), Base, Offset, LD->getMask(), 7799 LD->getVectorLength(), LD->getPointerInfo(), 7800 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7801 nullptr, LD->isExpandingLoad()); 7802 } 7803 7804 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7805 SDValue Ptr, SDValue Mask, SDValue EVL, 7806 MachinePointerInfo PtrInfo, Align Alignment, 7807 MachineMemOperand::Flags MMOFlags, 7808 const AAMDNodes &AAInfo, bool IsCompressing) { 7809 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7810 7811 MMOFlags |= MachineMemOperand::MOStore; 7812 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7813 7814 if (PtrInfo.V.isNull()) 7815 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7816 7817 MachineFunction &MF = getMachineFunction(); 7818 uint64_t Size = 7819 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7820 MachineMemOperand *MMO = 7821 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7822 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7823 } 7824 7825 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7826 SDValue Ptr, SDValue Mask, SDValue EVL, 7827 MachineMemOperand *MMO, bool IsCompressing) { 7828 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7829 EVT VT = Val.getValueType(); 7830 SDVTList VTs = getVTList(MVT::Other); 7831 SDValue Undef = getUNDEF(Ptr.getValueType()); 7832 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7833 FoldingSetNodeID ID; 7834 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7835 ID.AddInteger(VT.getRawBits()); 7836 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7837 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7838 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7839 void *IP = nullptr; 7840 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7841 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7842 return SDValue(E, 0); 7843 } 7844 auto *N = 7845 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7846 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7847 createOperands(N, Ops); 7848 7849 CSEMap.InsertNode(N, IP); 7850 InsertNode(N); 7851 SDValue V(N, 0); 7852 NewSDValueDbgMsg(V, "Creating new node: ", this); 7853 return V; 7854 } 7855 7856 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7857 SDValue Val, SDValue Ptr, SDValue Mask, 7858 SDValue EVL, MachinePointerInfo PtrInfo, 7859 EVT SVT, Align Alignment, 7860 MachineMemOperand::Flags MMOFlags, 7861 const AAMDNodes &AAInfo, 7862 bool IsCompressing) { 7863 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7864 7865 MMOFlags |= MachineMemOperand::MOStore; 7866 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7867 7868 if (PtrInfo.V.isNull()) 7869 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7870 7871 MachineFunction &MF = getMachineFunction(); 7872 MachineMemOperand *MMO = MF.getMachineMemOperand( 7873 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7874 Alignment, AAInfo); 7875 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7876 IsCompressing); 7877 } 7878 7879 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7880 SDValue Val, SDValue Ptr, SDValue Mask, 7881 SDValue EVL, EVT SVT, 7882 MachineMemOperand *MMO, 7883 bool IsCompressing) { 7884 EVT VT = Val.getValueType(); 7885 7886 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7887 if (VT == SVT) 7888 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7889 7890 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7891 "Should only be a truncating store, not extending!"); 7892 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7893 assert(VT.isVector() == SVT.isVector() && 7894 "Cannot use trunc store to convert to or from a vector!"); 7895 assert((!VT.isVector() || 7896 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7897 "Cannot use trunc store to change the number of vector elements!"); 7898 7899 SDVTList VTs = getVTList(MVT::Other); 7900 SDValue Undef = getUNDEF(Ptr.getValueType()); 7901 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7902 FoldingSetNodeID ID; 7903 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7904 ID.AddInteger(SVT.getRawBits()); 7905 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7906 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7907 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7908 void *IP = nullptr; 7909 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7910 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7911 return SDValue(E, 0); 7912 } 7913 auto *N = 7914 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7915 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7916 createOperands(N, Ops); 7917 7918 CSEMap.InsertNode(N, IP); 7919 InsertNode(N); 7920 SDValue V(N, 0); 7921 NewSDValueDbgMsg(V, "Creating new node: ", this); 7922 return V; 7923 } 7924 7925 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7926 SDValue Base, SDValue Offset, 7927 ISD::MemIndexedMode AM) { 7928 auto *ST = cast<VPStoreSDNode>(OrigStore); 7929 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7930 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7931 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7932 Offset, ST->getMask(), ST->getVectorLength()}; 7933 FoldingSetNodeID ID; 7934 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7935 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7936 ID.AddInteger(ST->getRawSubclassData()); 7937 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7938 void *IP = nullptr; 7939 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7940 return SDValue(E, 0); 7941 7942 auto *N = newSDNode<VPStoreSDNode>( 7943 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7944 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7945 createOperands(N, Ops); 7946 7947 CSEMap.InsertNode(N, IP); 7948 InsertNode(N); 7949 SDValue V(N, 0); 7950 NewSDValueDbgMsg(V, "Creating new node: ", this); 7951 return V; 7952 } 7953 7954 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7955 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7956 ISD::MemIndexType IndexType) { 7957 assert(Ops.size() == 6 && "Incompatible number of operands"); 7958 7959 FoldingSetNodeID ID; 7960 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7961 ID.AddInteger(VT.getRawBits()); 7962 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7963 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7964 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7965 void *IP = nullptr; 7966 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7967 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7968 return SDValue(E, 0); 7969 } 7970 7971 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7972 VT, MMO, IndexType); 7973 createOperands(N, Ops); 7974 7975 assert(N->getMask().getValueType().getVectorElementCount() == 7976 N->getValueType(0).getVectorElementCount() && 7977 "Vector width mismatch between mask and data"); 7978 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7979 N->getValueType(0).getVectorElementCount().isScalable() && 7980 "Scalable flags of index and data do not match"); 7981 assert(ElementCount::isKnownGE( 7982 N->getIndex().getValueType().getVectorElementCount(), 7983 N->getValueType(0).getVectorElementCount()) && 7984 "Vector width mismatch between index and data"); 7985 assert(isa<ConstantSDNode>(N->getScale()) && 7986 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7987 "Scale should be a constant power of 2"); 7988 7989 CSEMap.InsertNode(N, IP); 7990 InsertNode(N); 7991 SDValue V(N, 0); 7992 NewSDValueDbgMsg(V, "Creating new node: ", this); 7993 return V; 7994 } 7995 7996 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7997 ArrayRef<SDValue> Ops, 7998 MachineMemOperand *MMO, 7999 ISD::MemIndexType IndexType) { 8000 assert(Ops.size() == 7 && "Incompatible number of operands"); 8001 8002 FoldingSetNodeID ID; 8003 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8004 ID.AddInteger(VT.getRawBits()); 8005 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8006 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8007 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8008 void *IP = nullptr; 8009 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8010 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8011 return SDValue(E, 0); 8012 } 8013 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8014 VT, MMO, IndexType); 8015 createOperands(N, Ops); 8016 8017 assert(N->getMask().getValueType().getVectorElementCount() == 8018 N->getValue().getValueType().getVectorElementCount() && 8019 "Vector width mismatch between mask and data"); 8020 assert( 8021 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8022 N->getValue().getValueType().getVectorElementCount().isScalable() && 8023 "Scalable flags of index and data do not match"); 8024 assert(ElementCount::isKnownGE( 8025 N->getIndex().getValueType().getVectorElementCount(), 8026 N->getValue().getValueType().getVectorElementCount()) && 8027 "Vector width mismatch between index and data"); 8028 assert(isa<ConstantSDNode>(N->getScale()) && 8029 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8030 "Scale should be a constant power of 2"); 8031 8032 CSEMap.InsertNode(N, IP); 8033 InsertNode(N); 8034 SDValue V(N, 0); 8035 NewSDValueDbgMsg(V, "Creating new node: ", this); 8036 return V; 8037 } 8038 8039 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8040 SDValue Base, SDValue Offset, SDValue Mask, 8041 SDValue PassThru, EVT MemVT, 8042 MachineMemOperand *MMO, 8043 ISD::MemIndexedMode AM, 8044 ISD::LoadExtType ExtTy, bool isExpanding) { 8045 bool Indexed = AM != ISD::UNINDEXED; 8046 assert((Indexed || Offset.isUndef()) && 8047 "Unindexed masked load with an offset!"); 8048 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8049 : getVTList(VT, MVT::Other); 8050 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8051 FoldingSetNodeID ID; 8052 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8053 ID.AddInteger(MemVT.getRawBits()); 8054 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8055 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8056 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8057 void *IP = nullptr; 8058 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8059 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8060 return SDValue(E, 0); 8061 } 8062 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8063 AM, ExtTy, isExpanding, MemVT, MMO); 8064 createOperands(N, Ops); 8065 8066 CSEMap.InsertNode(N, IP); 8067 InsertNode(N); 8068 SDValue V(N, 0); 8069 NewSDValueDbgMsg(V, "Creating new node: ", this); 8070 return V; 8071 } 8072 8073 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8074 SDValue Base, SDValue Offset, 8075 ISD::MemIndexedMode AM) { 8076 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8077 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8078 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8079 Offset, LD->getMask(), LD->getPassThru(), 8080 LD->getMemoryVT(), LD->getMemOperand(), AM, 8081 LD->getExtensionType(), LD->isExpandingLoad()); 8082 } 8083 8084 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8085 SDValue Val, SDValue Base, SDValue Offset, 8086 SDValue Mask, EVT MemVT, 8087 MachineMemOperand *MMO, 8088 ISD::MemIndexedMode AM, bool IsTruncating, 8089 bool IsCompressing) { 8090 assert(Chain.getValueType() == MVT::Other && 8091 "Invalid chain type"); 8092 bool Indexed = AM != ISD::UNINDEXED; 8093 assert((Indexed || Offset.isUndef()) && 8094 "Unindexed masked store with an offset!"); 8095 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8096 : getVTList(MVT::Other); 8097 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8098 FoldingSetNodeID ID; 8099 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8100 ID.AddInteger(MemVT.getRawBits()); 8101 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8102 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8103 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8104 void *IP = nullptr; 8105 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8106 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8107 return SDValue(E, 0); 8108 } 8109 auto *N = 8110 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8111 IsTruncating, IsCompressing, MemVT, MMO); 8112 createOperands(N, Ops); 8113 8114 CSEMap.InsertNode(N, IP); 8115 InsertNode(N); 8116 SDValue V(N, 0); 8117 NewSDValueDbgMsg(V, "Creating new node: ", this); 8118 return V; 8119 } 8120 8121 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8122 SDValue Base, SDValue Offset, 8123 ISD::MemIndexedMode AM) { 8124 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8125 assert(ST->getOffset().isUndef() && 8126 "Masked store is already a indexed store!"); 8127 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8128 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8129 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8130 } 8131 8132 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8133 ArrayRef<SDValue> Ops, 8134 MachineMemOperand *MMO, 8135 ISD::MemIndexType IndexType, 8136 ISD::LoadExtType ExtTy) { 8137 assert(Ops.size() == 6 && "Incompatible number of operands"); 8138 8139 FoldingSetNodeID ID; 8140 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8141 ID.AddInteger(MemVT.getRawBits()); 8142 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8143 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8144 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8145 void *IP = nullptr; 8146 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8147 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8148 return SDValue(E, 0); 8149 } 8150 8151 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8152 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8153 VTs, MemVT, MMO, IndexType, ExtTy); 8154 createOperands(N, Ops); 8155 8156 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8157 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8158 assert(N->getMask().getValueType().getVectorElementCount() == 8159 N->getValueType(0).getVectorElementCount() && 8160 "Vector width mismatch between mask and data"); 8161 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8162 N->getValueType(0).getVectorElementCount().isScalable() && 8163 "Scalable flags of index and data do not match"); 8164 assert(ElementCount::isKnownGE( 8165 N->getIndex().getValueType().getVectorElementCount(), 8166 N->getValueType(0).getVectorElementCount()) && 8167 "Vector width mismatch between index and data"); 8168 assert(isa<ConstantSDNode>(N->getScale()) && 8169 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8170 "Scale should be a constant power of 2"); 8171 8172 CSEMap.InsertNode(N, IP); 8173 InsertNode(N); 8174 SDValue V(N, 0); 8175 NewSDValueDbgMsg(V, "Creating new node: ", this); 8176 return V; 8177 } 8178 8179 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8180 ArrayRef<SDValue> Ops, 8181 MachineMemOperand *MMO, 8182 ISD::MemIndexType IndexType, 8183 bool IsTrunc) { 8184 assert(Ops.size() == 6 && "Incompatible number of operands"); 8185 8186 FoldingSetNodeID ID; 8187 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8188 ID.AddInteger(MemVT.getRawBits()); 8189 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8190 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8191 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8192 void *IP = nullptr; 8193 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8194 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8195 return SDValue(E, 0); 8196 } 8197 8198 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8199 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8200 VTs, MemVT, MMO, IndexType, IsTrunc); 8201 createOperands(N, Ops); 8202 8203 assert(N->getMask().getValueType().getVectorElementCount() == 8204 N->getValue().getValueType().getVectorElementCount() && 8205 "Vector width mismatch between mask and data"); 8206 assert( 8207 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8208 N->getValue().getValueType().getVectorElementCount().isScalable() && 8209 "Scalable flags of index and data do not match"); 8210 assert(ElementCount::isKnownGE( 8211 N->getIndex().getValueType().getVectorElementCount(), 8212 N->getValue().getValueType().getVectorElementCount()) && 8213 "Vector width mismatch between index and data"); 8214 assert(isa<ConstantSDNode>(N->getScale()) && 8215 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8216 "Scale should be a constant power of 2"); 8217 8218 CSEMap.InsertNode(N, IP); 8219 InsertNode(N); 8220 SDValue V(N, 0); 8221 NewSDValueDbgMsg(V, "Creating new node: ", this); 8222 return V; 8223 } 8224 8225 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8226 // select undef, T, F --> T (if T is a constant), otherwise F 8227 // select, ?, undef, F --> F 8228 // select, ?, T, undef --> T 8229 if (Cond.isUndef()) 8230 return isConstantValueOfAnyType(T) ? T : F; 8231 if (T.isUndef()) 8232 return F; 8233 if (F.isUndef()) 8234 return T; 8235 8236 // select true, T, F --> T 8237 // select false, T, F --> F 8238 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8239 return CondC->isZero() ? F : T; 8240 8241 // TODO: This should simplify VSELECT with constant condition using something 8242 // like this (but check boolean contents to be complete?): 8243 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8244 // return T; 8245 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8246 // return F; 8247 8248 // select ?, T, T --> T 8249 if (T == F) 8250 return T; 8251 8252 return SDValue(); 8253 } 8254 8255 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8256 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8257 if (X.isUndef()) 8258 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8259 // shift X, undef --> undef (because it may shift by the bitwidth) 8260 if (Y.isUndef()) 8261 return getUNDEF(X.getValueType()); 8262 8263 // shift 0, Y --> 0 8264 // shift X, 0 --> X 8265 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8266 return X; 8267 8268 // shift X, C >= bitwidth(X) --> undef 8269 // All vector elements must be too big (or undef) to avoid partial undefs. 8270 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8271 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8272 }; 8273 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8274 return getUNDEF(X.getValueType()); 8275 8276 return SDValue(); 8277 } 8278 8279 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8280 SDNodeFlags Flags) { 8281 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8282 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8283 // operation is poison. That result can be relaxed to undef. 8284 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8285 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8286 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8287 (YC && YC->getValueAPF().isNaN()); 8288 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8289 (YC && YC->getValueAPF().isInfinity()); 8290 8291 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8292 return getUNDEF(X.getValueType()); 8293 8294 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8295 return getUNDEF(X.getValueType()); 8296 8297 if (!YC) 8298 return SDValue(); 8299 8300 // X + -0.0 --> X 8301 if (Opcode == ISD::FADD) 8302 if (YC->getValueAPF().isNegZero()) 8303 return X; 8304 8305 // X - +0.0 --> X 8306 if (Opcode == ISD::FSUB) 8307 if (YC->getValueAPF().isPosZero()) 8308 return X; 8309 8310 // X * 1.0 --> X 8311 // X / 1.0 --> X 8312 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8313 if (YC->getValueAPF().isExactlyValue(1.0)) 8314 return X; 8315 8316 // X * 0.0 --> 0.0 8317 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8318 if (YC->getValueAPF().isZero()) 8319 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8320 8321 return SDValue(); 8322 } 8323 8324 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8325 SDValue Ptr, SDValue SV, unsigned Align) { 8326 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8327 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8328 } 8329 8330 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8331 ArrayRef<SDUse> Ops) { 8332 switch (Ops.size()) { 8333 case 0: return getNode(Opcode, DL, VT); 8334 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8335 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8336 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8337 default: break; 8338 } 8339 8340 // Copy from an SDUse array into an SDValue array for use with 8341 // the regular getNode logic. 8342 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8343 return getNode(Opcode, DL, VT, NewOps); 8344 } 8345 8346 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8347 ArrayRef<SDValue> Ops) { 8348 SDNodeFlags Flags; 8349 if (Inserter) 8350 Flags = Inserter->getFlags(); 8351 return getNode(Opcode, DL, VT, Ops, Flags); 8352 } 8353 8354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8355 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8356 unsigned NumOps = Ops.size(); 8357 switch (NumOps) { 8358 case 0: return getNode(Opcode, DL, VT); 8359 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8360 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8361 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8362 default: break; 8363 } 8364 8365 #ifndef NDEBUG 8366 for (auto &Op : Ops) 8367 assert(Op.getOpcode() != ISD::DELETED_NODE && 8368 "Operand is DELETED_NODE!"); 8369 #endif 8370 8371 switch (Opcode) { 8372 default: break; 8373 case ISD::BUILD_VECTOR: 8374 // Attempt to simplify BUILD_VECTOR. 8375 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8376 return V; 8377 break; 8378 case ISD::CONCAT_VECTORS: 8379 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8380 return V; 8381 break; 8382 case ISD::SELECT_CC: 8383 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8384 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8385 "LHS and RHS of condition must have same type!"); 8386 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8387 "True and False arms of SelectCC must have same type!"); 8388 assert(Ops[2].getValueType() == VT && 8389 "select_cc node must be of same type as true and false value!"); 8390 break; 8391 case ISD::BR_CC: 8392 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8393 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8394 "LHS/RHS of comparison should match types!"); 8395 break; 8396 } 8397 8398 // Memoize nodes. 8399 SDNode *N; 8400 SDVTList VTs = getVTList(VT); 8401 8402 if (VT != MVT::Glue) { 8403 FoldingSetNodeID ID; 8404 AddNodeIDNode(ID, Opcode, VTs, Ops); 8405 void *IP = nullptr; 8406 8407 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8408 return SDValue(E, 0); 8409 8410 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8411 createOperands(N, Ops); 8412 8413 CSEMap.InsertNode(N, IP); 8414 } else { 8415 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8416 createOperands(N, Ops); 8417 } 8418 8419 N->setFlags(Flags); 8420 InsertNode(N); 8421 SDValue V(N, 0); 8422 NewSDValueDbgMsg(V, "Creating new node: ", this); 8423 return V; 8424 } 8425 8426 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8427 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8428 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8429 } 8430 8431 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8432 ArrayRef<SDValue> Ops) { 8433 SDNodeFlags Flags; 8434 if (Inserter) 8435 Flags = Inserter->getFlags(); 8436 return getNode(Opcode, DL, VTList, Ops, Flags); 8437 } 8438 8439 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8440 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8441 if (VTList.NumVTs == 1) 8442 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8443 8444 #ifndef NDEBUG 8445 for (auto &Op : Ops) 8446 assert(Op.getOpcode() != ISD::DELETED_NODE && 8447 "Operand is DELETED_NODE!"); 8448 #endif 8449 8450 switch (Opcode) { 8451 case ISD::STRICT_FP_EXTEND: 8452 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8453 "Invalid STRICT_FP_EXTEND!"); 8454 assert(VTList.VTs[0].isFloatingPoint() && 8455 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8456 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8457 "STRICT_FP_EXTEND result type should be vector iff the operand " 8458 "type is vector!"); 8459 assert((!VTList.VTs[0].isVector() || 8460 VTList.VTs[0].getVectorNumElements() == 8461 Ops[1].getValueType().getVectorNumElements()) && 8462 "Vector element count mismatch!"); 8463 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8464 "Invalid fpext node, dst <= src!"); 8465 break; 8466 case ISD::STRICT_FP_ROUND: 8467 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8468 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8469 "STRICT_FP_ROUND result type should be vector iff the operand " 8470 "type is vector!"); 8471 assert((!VTList.VTs[0].isVector() || 8472 VTList.VTs[0].getVectorNumElements() == 8473 Ops[1].getValueType().getVectorNumElements()) && 8474 "Vector element count mismatch!"); 8475 assert(VTList.VTs[0].isFloatingPoint() && 8476 Ops[1].getValueType().isFloatingPoint() && 8477 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8478 isa<ConstantSDNode>(Ops[2]) && 8479 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8480 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8481 "Invalid STRICT_FP_ROUND!"); 8482 break; 8483 #if 0 8484 // FIXME: figure out how to safely handle things like 8485 // int foo(int x) { return 1 << (x & 255); } 8486 // int bar() { return foo(256); } 8487 case ISD::SRA_PARTS: 8488 case ISD::SRL_PARTS: 8489 case ISD::SHL_PARTS: 8490 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8491 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8492 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8493 else if (N3.getOpcode() == ISD::AND) 8494 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8495 // If the and is only masking out bits that cannot effect the shift, 8496 // eliminate the and. 8497 unsigned NumBits = VT.getScalarSizeInBits()*2; 8498 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8499 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8500 } 8501 break; 8502 #endif 8503 } 8504 8505 // Memoize the node unless it returns a flag. 8506 SDNode *N; 8507 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8508 FoldingSetNodeID ID; 8509 AddNodeIDNode(ID, Opcode, VTList, Ops); 8510 void *IP = nullptr; 8511 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8512 return SDValue(E, 0); 8513 8514 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8515 createOperands(N, Ops); 8516 CSEMap.InsertNode(N, IP); 8517 } else { 8518 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8519 createOperands(N, Ops); 8520 } 8521 8522 N->setFlags(Flags); 8523 InsertNode(N); 8524 SDValue V(N, 0); 8525 NewSDValueDbgMsg(V, "Creating new node: ", this); 8526 return V; 8527 } 8528 8529 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8530 SDVTList VTList) { 8531 return getNode(Opcode, DL, VTList, None); 8532 } 8533 8534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8535 SDValue N1) { 8536 SDValue Ops[] = { N1 }; 8537 return getNode(Opcode, DL, VTList, Ops); 8538 } 8539 8540 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8541 SDValue N1, SDValue N2) { 8542 SDValue Ops[] = { N1, N2 }; 8543 return getNode(Opcode, DL, VTList, Ops); 8544 } 8545 8546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8547 SDValue N1, SDValue N2, SDValue N3) { 8548 SDValue Ops[] = { N1, N2, N3 }; 8549 return getNode(Opcode, DL, VTList, Ops); 8550 } 8551 8552 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8553 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8554 SDValue Ops[] = { N1, N2, N3, N4 }; 8555 return getNode(Opcode, DL, VTList, Ops); 8556 } 8557 8558 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8559 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8560 SDValue N5) { 8561 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8562 return getNode(Opcode, DL, VTList, Ops); 8563 } 8564 8565 SDVTList SelectionDAG::getVTList(EVT VT) { 8566 return makeVTList(SDNode::getValueTypeList(VT), 1); 8567 } 8568 8569 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8570 FoldingSetNodeID ID; 8571 ID.AddInteger(2U); 8572 ID.AddInteger(VT1.getRawBits()); 8573 ID.AddInteger(VT2.getRawBits()); 8574 8575 void *IP = nullptr; 8576 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8577 if (!Result) { 8578 EVT *Array = Allocator.Allocate<EVT>(2); 8579 Array[0] = VT1; 8580 Array[1] = VT2; 8581 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8582 VTListMap.InsertNode(Result, IP); 8583 } 8584 return Result->getSDVTList(); 8585 } 8586 8587 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8588 FoldingSetNodeID ID; 8589 ID.AddInteger(3U); 8590 ID.AddInteger(VT1.getRawBits()); 8591 ID.AddInteger(VT2.getRawBits()); 8592 ID.AddInteger(VT3.getRawBits()); 8593 8594 void *IP = nullptr; 8595 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8596 if (!Result) { 8597 EVT *Array = Allocator.Allocate<EVT>(3); 8598 Array[0] = VT1; 8599 Array[1] = VT2; 8600 Array[2] = VT3; 8601 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8602 VTListMap.InsertNode(Result, IP); 8603 } 8604 return Result->getSDVTList(); 8605 } 8606 8607 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8608 FoldingSetNodeID ID; 8609 ID.AddInteger(4U); 8610 ID.AddInteger(VT1.getRawBits()); 8611 ID.AddInteger(VT2.getRawBits()); 8612 ID.AddInteger(VT3.getRawBits()); 8613 ID.AddInteger(VT4.getRawBits()); 8614 8615 void *IP = nullptr; 8616 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8617 if (!Result) { 8618 EVT *Array = Allocator.Allocate<EVT>(4); 8619 Array[0] = VT1; 8620 Array[1] = VT2; 8621 Array[2] = VT3; 8622 Array[3] = VT4; 8623 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8624 VTListMap.InsertNode(Result, IP); 8625 } 8626 return Result->getSDVTList(); 8627 } 8628 8629 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8630 unsigned NumVTs = VTs.size(); 8631 FoldingSetNodeID ID; 8632 ID.AddInteger(NumVTs); 8633 for (unsigned index = 0; index < NumVTs; index++) { 8634 ID.AddInteger(VTs[index].getRawBits()); 8635 } 8636 8637 void *IP = nullptr; 8638 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8639 if (!Result) { 8640 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8641 llvm::copy(VTs, Array); 8642 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8643 VTListMap.InsertNode(Result, IP); 8644 } 8645 return Result->getSDVTList(); 8646 } 8647 8648 8649 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8650 /// specified operands. If the resultant node already exists in the DAG, 8651 /// this does not modify the specified node, instead it returns the node that 8652 /// already exists. If the resultant node does not exist in the DAG, the 8653 /// input node is returned. As a degenerate case, if you specify the same 8654 /// input operands as the node already has, the input node is returned. 8655 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8656 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8657 8658 // Check to see if there is no change. 8659 if (Op == N->getOperand(0)) return N; 8660 8661 // See if the modified node already exists. 8662 void *InsertPos = nullptr; 8663 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8664 return Existing; 8665 8666 // Nope it doesn't. Remove the node from its current place in the maps. 8667 if (InsertPos) 8668 if (!RemoveNodeFromCSEMaps(N)) 8669 InsertPos = nullptr; 8670 8671 // Now we update the operands. 8672 N->OperandList[0].set(Op); 8673 8674 updateDivergence(N); 8675 // If this gets put into a CSE map, add it. 8676 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8677 return N; 8678 } 8679 8680 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8681 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8682 8683 // Check to see if there is no change. 8684 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8685 return N; // No operands changed, just return the input node. 8686 8687 // See if the modified node already exists. 8688 void *InsertPos = nullptr; 8689 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8690 return Existing; 8691 8692 // Nope it doesn't. Remove the node from its current place in the maps. 8693 if (InsertPos) 8694 if (!RemoveNodeFromCSEMaps(N)) 8695 InsertPos = nullptr; 8696 8697 // Now we update the operands. 8698 if (N->OperandList[0] != Op1) 8699 N->OperandList[0].set(Op1); 8700 if (N->OperandList[1] != Op2) 8701 N->OperandList[1].set(Op2); 8702 8703 updateDivergence(N); 8704 // If this gets put into a CSE map, add it. 8705 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8706 return N; 8707 } 8708 8709 SDNode *SelectionDAG:: 8710 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8711 SDValue Ops[] = { Op1, Op2, Op3 }; 8712 return UpdateNodeOperands(N, Ops); 8713 } 8714 8715 SDNode *SelectionDAG:: 8716 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8717 SDValue Op3, SDValue Op4) { 8718 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8719 return UpdateNodeOperands(N, Ops); 8720 } 8721 8722 SDNode *SelectionDAG:: 8723 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8724 SDValue Op3, SDValue Op4, SDValue Op5) { 8725 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8726 return UpdateNodeOperands(N, Ops); 8727 } 8728 8729 SDNode *SelectionDAG:: 8730 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8731 unsigned NumOps = Ops.size(); 8732 assert(N->getNumOperands() == NumOps && 8733 "Update with wrong number of operands"); 8734 8735 // If no operands changed just return the input node. 8736 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8737 return N; 8738 8739 // See if the modified node already exists. 8740 void *InsertPos = nullptr; 8741 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8742 return Existing; 8743 8744 // Nope it doesn't. Remove the node from its current place in the maps. 8745 if (InsertPos) 8746 if (!RemoveNodeFromCSEMaps(N)) 8747 InsertPos = nullptr; 8748 8749 // Now we update the operands. 8750 for (unsigned i = 0; i != NumOps; ++i) 8751 if (N->OperandList[i] != Ops[i]) 8752 N->OperandList[i].set(Ops[i]); 8753 8754 updateDivergence(N); 8755 // If this gets put into a CSE map, add it. 8756 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8757 return N; 8758 } 8759 8760 /// DropOperands - Release the operands and set this node to have 8761 /// zero operands. 8762 void SDNode::DropOperands() { 8763 // Unlike the code in MorphNodeTo that does this, we don't need to 8764 // watch for dead nodes here. 8765 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8766 SDUse &Use = *I++; 8767 Use.set(SDValue()); 8768 } 8769 } 8770 8771 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8772 ArrayRef<MachineMemOperand *> NewMemRefs) { 8773 if (NewMemRefs.empty()) { 8774 N->clearMemRefs(); 8775 return; 8776 } 8777 8778 // Check if we can avoid allocating by storing a single reference directly. 8779 if (NewMemRefs.size() == 1) { 8780 N->MemRefs = NewMemRefs[0]; 8781 N->NumMemRefs = 1; 8782 return; 8783 } 8784 8785 MachineMemOperand **MemRefsBuffer = 8786 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8787 llvm::copy(NewMemRefs, MemRefsBuffer); 8788 N->MemRefs = MemRefsBuffer; 8789 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8790 } 8791 8792 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8793 /// machine opcode. 8794 /// 8795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8796 EVT VT) { 8797 SDVTList VTs = getVTList(VT); 8798 return SelectNodeTo(N, MachineOpc, VTs, None); 8799 } 8800 8801 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8802 EVT VT, SDValue Op1) { 8803 SDVTList VTs = getVTList(VT); 8804 SDValue Ops[] = { Op1 }; 8805 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8806 } 8807 8808 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8809 EVT VT, SDValue Op1, 8810 SDValue Op2) { 8811 SDVTList VTs = getVTList(VT); 8812 SDValue Ops[] = { Op1, Op2 }; 8813 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8814 } 8815 8816 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8817 EVT VT, SDValue Op1, 8818 SDValue Op2, SDValue Op3) { 8819 SDVTList VTs = getVTList(VT); 8820 SDValue Ops[] = { Op1, Op2, Op3 }; 8821 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8822 } 8823 8824 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8825 EVT VT, ArrayRef<SDValue> Ops) { 8826 SDVTList VTs = getVTList(VT); 8827 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8828 } 8829 8830 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8831 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8832 SDVTList VTs = getVTList(VT1, VT2); 8833 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8834 } 8835 8836 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8837 EVT VT1, EVT VT2) { 8838 SDVTList VTs = getVTList(VT1, VT2); 8839 return SelectNodeTo(N, MachineOpc, VTs, None); 8840 } 8841 8842 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8843 EVT VT1, EVT VT2, EVT VT3, 8844 ArrayRef<SDValue> Ops) { 8845 SDVTList VTs = getVTList(VT1, VT2, VT3); 8846 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8847 } 8848 8849 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8850 EVT VT1, EVT VT2, 8851 SDValue Op1, SDValue Op2) { 8852 SDVTList VTs = getVTList(VT1, VT2); 8853 SDValue Ops[] = { Op1, Op2 }; 8854 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8855 } 8856 8857 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8858 SDVTList VTs,ArrayRef<SDValue> Ops) { 8859 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8860 // Reset the NodeID to -1. 8861 New->setNodeId(-1); 8862 if (New != N) { 8863 ReplaceAllUsesWith(N, New); 8864 RemoveDeadNode(N); 8865 } 8866 return New; 8867 } 8868 8869 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8870 /// the line number information on the merged node since it is not possible to 8871 /// preserve the information that operation is associated with multiple lines. 8872 /// This will make the debugger working better at -O0, were there is a higher 8873 /// probability having other instructions associated with that line. 8874 /// 8875 /// For IROrder, we keep the smaller of the two 8876 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8877 DebugLoc NLoc = N->getDebugLoc(); 8878 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8879 N->setDebugLoc(DebugLoc()); 8880 } 8881 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8882 N->setIROrder(Order); 8883 return N; 8884 } 8885 8886 /// MorphNodeTo - This *mutates* the specified node to have the specified 8887 /// return type, opcode, and operands. 8888 /// 8889 /// Note that MorphNodeTo returns the resultant node. If there is already a 8890 /// node of the specified opcode and operands, it returns that node instead of 8891 /// the current one. Note that the SDLoc need not be the same. 8892 /// 8893 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8894 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8895 /// node, and because it doesn't require CSE recalculation for any of 8896 /// the node's users. 8897 /// 8898 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8899 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8900 /// the legalizer which maintain worklists that would need to be updated when 8901 /// deleting things. 8902 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8903 SDVTList VTs, ArrayRef<SDValue> Ops) { 8904 // If an identical node already exists, use it. 8905 void *IP = nullptr; 8906 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8907 FoldingSetNodeID ID; 8908 AddNodeIDNode(ID, Opc, VTs, Ops); 8909 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8910 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8911 } 8912 8913 if (!RemoveNodeFromCSEMaps(N)) 8914 IP = nullptr; 8915 8916 // Start the morphing. 8917 N->NodeType = Opc; 8918 N->ValueList = VTs.VTs; 8919 N->NumValues = VTs.NumVTs; 8920 8921 // Clear the operands list, updating used nodes to remove this from their 8922 // use list. Keep track of any operands that become dead as a result. 8923 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8924 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8925 SDUse &Use = *I++; 8926 SDNode *Used = Use.getNode(); 8927 Use.set(SDValue()); 8928 if (Used->use_empty()) 8929 DeadNodeSet.insert(Used); 8930 } 8931 8932 // For MachineNode, initialize the memory references information. 8933 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8934 MN->clearMemRefs(); 8935 8936 // Swap for an appropriately sized array from the recycler. 8937 removeOperands(N); 8938 createOperands(N, Ops); 8939 8940 // Delete any nodes that are still dead after adding the uses for the 8941 // new operands. 8942 if (!DeadNodeSet.empty()) { 8943 SmallVector<SDNode *, 16> DeadNodes; 8944 for (SDNode *N : DeadNodeSet) 8945 if (N->use_empty()) 8946 DeadNodes.push_back(N); 8947 RemoveDeadNodes(DeadNodes); 8948 } 8949 8950 if (IP) 8951 CSEMap.InsertNode(N, IP); // Memoize the new node. 8952 return N; 8953 } 8954 8955 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8956 unsigned OrigOpc = Node->getOpcode(); 8957 unsigned NewOpc; 8958 switch (OrigOpc) { 8959 default: 8960 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8961 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8962 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8963 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8964 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8965 #include "llvm/IR/ConstrainedOps.def" 8966 } 8967 8968 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8969 8970 // We're taking this node out of the chain, so we need to re-link things. 8971 SDValue InputChain = Node->getOperand(0); 8972 SDValue OutputChain = SDValue(Node, 1); 8973 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8974 8975 SmallVector<SDValue, 3> Ops; 8976 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8977 Ops.push_back(Node->getOperand(i)); 8978 8979 SDVTList VTs = getVTList(Node->getValueType(0)); 8980 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8981 8982 // MorphNodeTo can operate in two ways: if an existing node with the 8983 // specified operands exists, it can just return it. Otherwise, it 8984 // updates the node in place to have the requested operands. 8985 if (Res == Node) { 8986 // If we updated the node in place, reset the node ID. To the isel, 8987 // this should be just like a newly allocated machine node. 8988 Res->setNodeId(-1); 8989 } else { 8990 ReplaceAllUsesWith(Node, Res); 8991 RemoveDeadNode(Node); 8992 } 8993 8994 return Res; 8995 } 8996 8997 /// getMachineNode - These are used for target selectors to create a new node 8998 /// with specified return type(s), MachineInstr opcode, and operands. 8999 /// 9000 /// Note that getMachineNode returns the resultant node. If there is already a 9001 /// node of the specified opcode and operands, it returns that node instead of 9002 /// the current one. 9003 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9004 EVT VT) { 9005 SDVTList VTs = getVTList(VT); 9006 return getMachineNode(Opcode, dl, VTs, None); 9007 } 9008 9009 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9010 EVT VT, SDValue Op1) { 9011 SDVTList VTs = getVTList(VT); 9012 SDValue Ops[] = { Op1 }; 9013 return getMachineNode(Opcode, dl, VTs, Ops); 9014 } 9015 9016 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9017 EVT VT, SDValue Op1, SDValue Op2) { 9018 SDVTList VTs = getVTList(VT); 9019 SDValue Ops[] = { Op1, Op2 }; 9020 return getMachineNode(Opcode, dl, VTs, Ops); 9021 } 9022 9023 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9024 EVT VT, SDValue Op1, SDValue Op2, 9025 SDValue Op3) { 9026 SDVTList VTs = getVTList(VT); 9027 SDValue Ops[] = { Op1, Op2, Op3 }; 9028 return getMachineNode(Opcode, dl, VTs, Ops); 9029 } 9030 9031 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9032 EVT VT, ArrayRef<SDValue> Ops) { 9033 SDVTList VTs = getVTList(VT); 9034 return getMachineNode(Opcode, dl, VTs, Ops); 9035 } 9036 9037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9038 EVT VT1, EVT VT2, SDValue Op1, 9039 SDValue Op2) { 9040 SDVTList VTs = getVTList(VT1, VT2); 9041 SDValue Ops[] = { Op1, Op2 }; 9042 return getMachineNode(Opcode, dl, VTs, Ops); 9043 } 9044 9045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9046 EVT VT1, EVT VT2, SDValue Op1, 9047 SDValue Op2, SDValue Op3) { 9048 SDVTList VTs = getVTList(VT1, VT2); 9049 SDValue Ops[] = { Op1, Op2, Op3 }; 9050 return getMachineNode(Opcode, dl, VTs, Ops); 9051 } 9052 9053 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9054 EVT VT1, EVT VT2, 9055 ArrayRef<SDValue> Ops) { 9056 SDVTList VTs = getVTList(VT1, VT2); 9057 return getMachineNode(Opcode, dl, VTs, Ops); 9058 } 9059 9060 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9061 EVT VT1, EVT VT2, EVT VT3, 9062 SDValue Op1, SDValue Op2) { 9063 SDVTList VTs = getVTList(VT1, VT2, VT3); 9064 SDValue Ops[] = { Op1, Op2 }; 9065 return getMachineNode(Opcode, dl, VTs, Ops); 9066 } 9067 9068 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9069 EVT VT1, EVT VT2, EVT VT3, 9070 SDValue Op1, SDValue Op2, 9071 SDValue Op3) { 9072 SDVTList VTs = getVTList(VT1, VT2, VT3); 9073 SDValue Ops[] = { Op1, Op2, Op3 }; 9074 return getMachineNode(Opcode, dl, VTs, Ops); 9075 } 9076 9077 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9078 EVT VT1, EVT VT2, EVT VT3, 9079 ArrayRef<SDValue> Ops) { 9080 SDVTList VTs = getVTList(VT1, VT2, VT3); 9081 return getMachineNode(Opcode, dl, VTs, Ops); 9082 } 9083 9084 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9085 ArrayRef<EVT> ResultTys, 9086 ArrayRef<SDValue> Ops) { 9087 SDVTList VTs = getVTList(ResultTys); 9088 return getMachineNode(Opcode, dl, VTs, Ops); 9089 } 9090 9091 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9092 SDVTList VTs, 9093 ArrayRef<SDValue> Ops) { 9094 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9095 MachineSDNode *N; 9096 void *IP = nullptr; 9097 9098 if (DoCSE) { 9099 FoldingSetNodeID ID; 9100 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9101 IP = nullptr; 9102 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9103 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9104 } 9105 } 9106 9107 // Allocate a new MachineSDNode. 9108 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9109 createOperands(N, Ops); 9110 9111 if (DoCSE) 9112 CSEMap.InsertNode(N, IP); 9113 9114 InsertNode(N); 9115 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9116 return N; 9117 } 9118 9119 /// getTargetExtractSubreg - A convenience function for creating 9120 /// TargetOpcode::EXTRACT_SUBREG nodes. 9121 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9122 SDValue Operand) { 9123 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9124 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9125 VT, Operand, SRIdxVal); 9126 return SDValue(Subreg, 0); 9127 } 9128 9129 /// getTargetInsertSubreg - A convenience function for creating 9130 /// TargetOpcode::INSERT_SUBREG nodes. 9131 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9132 SDValue Operand, SDValue Subreg) { 9133 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9134 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9135 VT, Operand, Subreg, SRIdxVal); 9136 return SDValue(Result, 0); 9137 } 9138 9139 /// getNodeIfExists - Get the specified node if it's already available, or 9140 /// else return NULL. 9141 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9142 ArrayRef<SDValue> Ops) { 9143 SDNodeFlags Flags; 9144 if (Inserter) 9145 Flags = Inserter->getFlags(); 9146 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9147 } 9148 9149 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9150 ArrayRef<SDValue> Ops, 9151 const SDNodeFlags Flags) { 9152 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9153 FoldingSetNodeID ID; 9154 AddNodeIDNode(ID, Opcode, VTList, Ops); 9155 void *IP = nullptr; 9156 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9157 E->intersectFlagsWith(Flags); 9158 return E; 9159 } 9160 } 9161 return nullptr; 9162 } 9163 9164 /// doesNodeExist - Check if a node exists without modifying its flags. 9165 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9166 ArrayRef<SDValue> Ops) { 9167 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9168 FoldingSetNodeID ID; 9169 AddNodeIDNode(ID, Opcode, VTList, Ops); 9170 void *IP = nullptr; 9171 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9172 return true; 9173 } 9174 return false; 9175 } 9176 9177 /// getDbgValue - Creates a SDDbgValue node. 9178 /// 9179 /// SDNode 9180 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9181 SDNode *N, unsigned R, bool IsIndirect, 9182 const DebugLoc &DL, unsigned O) { 9183 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9184 "Expected inlined-at fields to agree"); 9185 return new (DbgInfo->getAlloc()) 9186 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9187 {}, IsIndirect, DL, O, 9188 /*IsVariadic=*/false); 9189 } 9190 9191 /// Constant 9192 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9193 DIExpression *Expr, 9194 const Value *C, 9195 const DebugLoc &DL, unsigned O) { 9196 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9197 "Expected inlined-at fields to agree"); 9198 return new (DbgInfo->getAlloc()) 9199 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9200 /*IsIndirect=*/false, DL, O, 9201 /*IsVariadic=*/false); 9202 } 9203 9204 /// FrameIndex 9205 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9206 DIExpression *Expr, unsigned FI, 9207 bool IsIndirect, 9208 const DebugLoc &DL, 9209 unsigned O) { 9210 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9211 "Expected inlined-at fields to agree"); 9212 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9213 } 9214 9215 /// FrameIndex with dependencies 9216 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9217 DIExpression *Expr, unsigned FI, 9218 ArrayRef<SDNode *> Dependencies, 9219 bool IsIndirect, 9220 const DebugLoc &DL, 9221 unsigned O) { 9222 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9223 "Expected inlined-at fields to agree"); 9224 return new (DbgInfo->getAlloc()) 9225 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9226 Dependencies, IsIndirect, DL, O, 9227 /*IsVariadic=*/false); 9228 } 9229 9230 /// VReg 9231 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9232 unsigned VReg, bool IsIndirect, 9233 const DebugLoc &DL, unsigned O) { 9234 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9235 "Expected inlined-at fields to agree"); 9236 return new (DbgInfo->getAlloc()) 9237 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9238 {}, IsIndirect, DL, O, 9239 /*IsVariadic=*/false); 9240 } 9241 9242 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9243 ArrayRef<SDDbgOperand> Locs, 9244 ArrayRef<SDNode *> Dependencies, 9245 bool IsIndirect, const DebugLoc &DL, 9246 unsigned O, bool IsVariadic) { 9247 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9248 "Expected inlined-at fields to agree"); 9249 return new (DbgInfo->getAlloc()) 9250 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9251 DL, O, IsVariadic); 9252 } 9253 9254 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9255 unsigned OffsetInBits, unsigned SizeInBits, 9256 bool InvalidateDbg) { 9257 SDNode *FromNode = From.getNode(); 9258 SDNode *ToNode = To.getNode(); 9259 assert(FromNode && ToNode && "Can't modify dbg values"); 9260 9261 // PR35338 9262 // TODO: assert(From != To && "Redundant dbg value transfer"); 9263 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9264 if (From == To || FromNode == ToNode) 9265 return; 9266 9267 if (!FromNode->getHasDebugValue()) 9268 return; 9269 9270 SDDbgOperand FromLocOp = 9271 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9272 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9273 9274 SmallVector<SDDbgValue *, 2> ClonedDVs; 9275 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9276 if (Dbg->isInvalidated()) 9277 continue; 9278 9279 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9280 9281 // Create a new location ops vector that is equal to the old vector, but 9282 // with each instance of FromLocOp replaced with ToLocOp. 9283 bool Changed = false; 9284 auto NewLocOps = Dbg->copyLocationOps(); 9285 std::replace_if( 9286 NewLocOps.begin(), NewLocOps.end(), 9287 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9288 bool Match = Op == FromLocOp; 9289 Changed |= Match; 9290 return Match; 9291 }, 9292 ToLocOp); 9293 // Ignore this SDDbgValue if we didn't find a matching location. 9294 if (!Changed) 9295 continue; 9296 9297 DIVariable *Var = Dbg->getVariable(); 9298 auto *Expr = Dbg->getExpression(); 9299 // If a fragment is requested, update the expression. 9300 if (SizeInBits) { 9301 // When splitting a larger (e.g., sign-extended) value whose 9302 // lower bits are described with an SDDbgValue, do not attempt 9303 // to transfer the SDDbgValue to the upper bits. 9304 if (auto FI = Expr->getFragmentInfo()) 9305 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9306 continue; 9307 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9308 SizeInBits); 9309 if (!Fragment) 9310 continue; 9311 Expr = *Fragment; 9312 } 9313 9314 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9315 // Clone the SDDbgValue and move it to To. 9316 SDDbgValue *Clone = getDbgValueList( 9317 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9318 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9319 Dbg->isVariadic()); 9320 ClonedDVs.push_back(Clone); 9321 9322 if (InvalidateDbg) { 9323 // Invalidate value and indicate the SDDbgValue should not be emitted. 9324 Dbg->setIsInvalidated(); 9325 Dbg->setIsEmitted(); 9326 } 9327 } 9328 9329 for (SDDbgValue *Dbg : ClonedDVs) { 9330 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9331 "Transferred DbgValues should depend on the new SDNode"); 9332 AddDbgValue(Dbg, false); 9333 } 9334 } 9335 9336 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9337 if (!N.getHasDebugValue()) 9338 return; 9339 9340 SmallVector<SDDbgValue *, 2> ClonedDVs; 9341 for (auto DV : GetDbgValues(&N)) { 9342 if (DV->isInvalidated()) 9343 continue; 9344 switch (N.getOpcode()) { 9345 default: 9346 break; 9347 case ISD::ADD: 9348 SDValue N0 = N.getOperand(0); 9349 SDValue N1 = N.getOperand(1); 9350 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9351 isConstantIntBuildVectorOrConstantInt(N1)) { 9352 uint64_t Offset = N.getConstantOperandVal(1); 9353 9354 // Rewrite an ADD constant node into a DIExpression. Since we are 9355 // performing arithmetic to compute the variable's *value* in the 9356 // DIExpression, we need to mark the expression with a 9357 // DW_OP_stack_value. 9358 auto *DIExpr = DV->getExpression(); 9359 auto NewLocOps = DV->copyLocationOps(); 9360 bool Changed = false; 9361 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9362 // We're not given a ResNo to compare against because the whole 9363 // node is going away. We know that any ISD::ADD only has one 9364 // result, so we can assume any node match is using the result. 9365 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9366 NewLocOps[i].getSDNode() != &N) 9367 continue; 9368 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9369 SmallVector<uint64_t, 3> ExprOps; 9370 DIExpression::appendOffset(ExprOps, Offset); 9371 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9372 Changed = true; 9373 } 9374 (void)Changed; 9375 assert(Changed && "Salvage target doesn't use N"); 9376 9377 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9378 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9379 NewLocOps, AdditionalDependencies, 9380 DV->isIndirect(), DV->getDebugLoc(), 9381 DV->getOrder(), DV->isVariadic()); 9382 ClonedDVs.push_back(Clone); 9383 DV->setIsInvalidated(); 9384 DV->setIsEmitted(); 9385 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9386 N0.getNode()->dumprFull(this); 9387 dbgs() << " into " << *DIExpr << '\n'); 9388 } 9389 } 9390 } 9391 9392 for (SDDbgValue *Dbg : ClonedDVs) { 9393 assert(!Dbg->getSDNodes().empty() && 9394 "Salvaged DbgValue should depend on a new SDNode"); 9395 AddDbgValue(Dbg, false); 9396 } 9397 } 9398 9399 /// Creates a SDDbgLabel node. 9400 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9401 const DebugLoc &DL, unsigned O) { 9402 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9403 "Expected inlined-at fields to agree"); 9404 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9405 } 9406 9407 namespace { 9408 9409 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9410 /// pointed to by a use iterator is deleted, increment the use iterator 9411 /// so that it doesn't dangle. 9412 /// 9413 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9414 SDNode::use_iterator &UI; 9415 SDNode::use_iterator &UE; 9416 9417 void NodeDeleted(SDNode *N, SDNode *E) override { 9418 // Increment the iterator as needed. 9419 while (UI != UE && N == *UI) 9420 ++UI; 9421 } 9422 9423 public: 9424 RAUWUpdateListener(SelectionDAG &d, 9425 SDNode::use_iterator &ui, 9426 SDNode::use_iterator &ue) 9427 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9428 }; 9429 9430 } // end anonymous namespace 9431 9432 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9433 /// This can cause recursive merging of nodes in the DAG. 9434 /// 9435 /// This version assumes From has a single result value. 9436 /// 9437 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9438 SDNode *From = FromN.getNode(); 9439 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9440 "Cannot replace with this method!"); 9441 assert(From != To.getNode() && "Cannot replace uses of with self"); 9442 9443 // Preserve Debug Values 9444 transferDbgValues(FromN, To); 9445 9446 // Iterate over all the existing uses of From. New uses will be added 9447 // to the beginning of the use list, which we avoid visiting. 9448 // This specifically avoids visiting uses of From that arise while the 9449 // replacement is happening, because any such uses would be the result 9450 // of CSE: If an existing node looks like From after one of its operands 9451 // is replaced by To, we don't want to replace of all its users with To 9452 // too. See PR3018 for more info. 9453 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9454 RAUWUpdateListener Listener(*this, UI, UE); 9455 while (UI != UE) { 9456 SDNode *User = *UI; 9457 9458 // This node is about to morph, remove its old self from the CSE maps. 9459 RemoveNodeFromCSEMaps(User); 9460 9461 // A user can appear in a use list multiple times, and when this 9462 // happens the uses are usually next to each other in the list. 9463 // To help reduce the number of CSE recomputations, process all 9464 // the uses of this user that we can find this way. 9465 do { 9466 SDUse &Use = UI.getUse(); 9467 ++UI; 9468 Use.set(To); 9469 if (To->isDivergent() != From->isDivergent()) 9470 updateDivergence(User); 9471 } while (UI != UE && *UI == User); 9472 // Now that we have modified User, add it back to the CSE maps. If it 9473 // already exists there, recursively merge the results together. 9474 AddModifiedNodeToCSEMaps(User); 9475 } 9476 9477 // If we just RAUW'd the root, take note. 9478 if (FromN == getRoot()) 9479 setRoot(To); 9480 } 9481 9482 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9483 /// This can cause recursive merging of nodes in the DAG. 9484 /// 9485 /// This version assumes that for each value of From, there is a 9486 /// corresponding value in To in the same position with the same type. 9487 /// 9488 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9489 #ifndef NDEBUG 9490 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9491 assert((!From->hasAnyUseOfValue(i) || 9492 From->getValueType(i) == To->getValueType(i)) && 9493 "Cannot use this version of ReplaceAllUsesWith!"); 9494 #endif 9495 9496 // Handle the trivial case. 9497 if (From == To) 9498 return; 9499 9500 // Preserve Debug Info. Only do this if there's a use. 9501 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9502 if (From->hasAnyUseOfValue(i)) { 9503 assert((i < To->getNumValues()) && "Invalid To location"); 9504 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9505 } 9506 9507 // Iterate over just the existing users of From. See the comments in 9508 // the ReplaceAllUsesWith above. 9509 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9510 RAUWUpdateListener Listener(*this, UI, UE); 9511 while (UI != UE) { 9512 SDNode *User = *UI; 9513 9514 // This node is about to morph, remove its old self from the CSE maps. 9515 RemoveNodeFromCSEMaps(User); 9516 9517 // A user can appear in a use list multiple times, and when this 9518 // happens the uses are usually next to each other in the list. 9519 // To help reduce the number of CSE recomputations, process all 9520 // the uses of this user that we can find this way. 9521 do { 9522 SDUse &Use = UI.getUse(); 9523 ++UI; 9524 Use.setNode(To); 9525 if (To->isDivergent() != From->isDivergent()) 9526 updateDivergence(User); 9527 } while (UI != UE && *UI == User); 9528 9529 // Now that we have modified User, add it back to the CSE maps. If it 9530 // already exists there, recursively merge the results together. 9531 AddModifiedNodeToCSEMaps(User); 9532 } 9533 9534 // If we just RAUW'd the root, take note. 9535 if (From == getRoot().getNode()) 9536 setRoot(SDValue(To, getRoot().getResNo())); 9537 } 9538 9539 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9540 /// This can cause recursive merging of nodes in the DAG. 9541 /// 9542 /// This version can replace From with any result values. To must match the 9543 /// number and types of values returned by From. 9544 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9545 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9546 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9547 9548 // Preserve Debug Info. 9549 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9550 transferDbgValues(SDValue(From, i), To[i]); 9551 9552 // Iterate over just the existing users of From. See the comments in 9553 // the ReplaceAllUsesWith above. 9554 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9555 RAUWUpdateListener Listener(*this, UI, UE); 9556 while (UI != UE) { 9557 SDNode *User = *UI; 9558 9559 // This node is about to morph, remove its old self from the CSE maps. 9560 RemoveNodeFromCSEMaps(User); 9561 9562 // A user can appear in a use list multiple times, and when this happens the 9563 // uses are usually next to each other in the list. To help reduce the 9564 // number of CSE and divergence recomputations, process all the uses of this 9565 // user that we can find this way. 9566 bool To_IsDivergent = false; 9567 do { 9568 SDUse &Use = UI.getUse(); 9569 const SDValue &ToOp = To[Use.getResNo()]; 9570 ++UI; 9571 Use.set(ToOp); 9572 To_IsDivergent |= ToOp->isDivergent(); 9573 } while (UI != UE && *UI == User); 9574 9575 if (To_IsDivergent != From->isDivergent()) 9576 updateDivergence(User); 9577 9578 // Now that we have modified User, add it back to the CSE maps. If it 9579 // already exists there, recursively merge the results together. 9580 AddModifiedNodeToCSEMaps(User); 9581 } 9582 9583 // If we just RAUW'd the root, take note. 9584 if (From == getRoot().getNode()) 9585 setRoot(SDValue(To[getRoot().getResNo()])); 9586 } 9587 9588 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9589 /// uses of other values produced by From.getNode() alone. The Deleted 9590 /// vector is handled the same way as for ReplaceAllUsesWith. 9591 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9592 // Handle the really simple, really trivial case efficiently. 9593 if (From == To) return; 9594 9595 // Handle the simple, trivial, case efficiently. 9596 if (From.getNode()->getNumValues() == 1) { 9597 ReplaceAllUsesWith(From, To); 9598 return; 9599 } 9600 9601 // Preserve Debug Info. 9602 transferDbgValues(From, To); 9603 9604 // Iterate over just the existing users of From. See the comments in 9605 // the ReplaceAllUsesWith above. 9606 SDNode::use_iterator UI = From.getNode()->use_begin(), 9607 UE = From.getNode()->use_end(); 9608 RAUWUpdateListener Listener(*this, UI, UE); 9609 while (UI != UE) { 9610 SDNode *User = *UI; 9611 bool UserRemovedFromCSEMaps = false; 9612 9613 // A user can appear in a use list multiple times, and when this 9614 // happens the uses are usually next to each other in the list. 9615 // To help reduce the number of CSE recomputations, process all 9616 // the uses of this user that we can find this way. 9617 do { 9618 SDUse &Use = UI.getUse(); 9619 9620 // Skip uses of different values from the same node. 9621 if (Use.getResNo() != From.getResNo()) { 9622 ++UI; 9623 continue; 9624 } 9625 9626 // If this node hasn't been modified yet, it's still in the CSE maps, 9627 // so remove its old self from the CSE maps. 9628 if (!UserRemovedFromCSEMaps) { 9629 RemoveNodeFromCSEMaps(User); 9630 UserRemovedFromCSEMaps = true; 9631 } 9632 9633 ++UI; 9634 Use.set(To); 9635 if (To->isDivergent() != From->isDivergent()) 9636 updateDivergence(User); 9637 } while (UI != UE && *UI == User); 9638 // We are iterating over all uses of the From node, so if a use 9639 // doesn't use the specific value, no changes are made. 9640 if (!UserRemovedFromCSEMaps) 9641 continue; 9642 9643 // Now that we have modified User, add it back to the CSE maps. If it 9644 // already exists there, recursively merge the results together. 9645 AddModifiedNodeToCSEMaps(User); 9646 } 9647 9648 // If we just RAUW'd the root, take note. 9649 if (From == getRoot()) 9650 setRoot(To); 9651 } 9652 9653 namespace { 9654 9655 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9656 /// to record information about a use. 9657 struct UseMemo { 9658 SDNode *User; 9659 unsigned Index; 9660 SDUse *Use; 9661 }; 9662 9663 /// operator< - Sort Memos by User. 9664 bool operator<(const UseMemo &L, const UseMemo &R) { 9665 return (intptr_t)L.User < (intptr_t)R.User; 9666 } 9667 9668 } // end anonymous namespace 9669 9670 bool SelectionDAG::calculateDivergence(SDNode *N) { 9671 if (TLI->isSDNodeAlwaysUniform(N)) { 9672 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9673 "Conflicting divergence information!"); 9674 return false; 9675 } 9676 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9677 return true; 9678 for (auto &Op : N->ops()) { 9679 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9680 return true; 9681 } 9682 return false; 9683 } 9684 9685 void SelectionDAG::updateDivergence(SDNode *N) { 9686 SmallVector<SDNode *, 16> Worklist(1, N); 9687 do { 9688 N = Worklist.pop_back_val(); 9689 bool IsDivergent = calculateDivergence(N); 9690 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9691 N->SDNodeBits.IsDivergent = IsDivergent; 9692 llvm::append_range(Worklist, N->uses()); 9693 } 9694 } while (!Worklist.empty()); 9695 } 9696 9697 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9698 DenseMap<SDNode *, unsigned> Degree; 9699 Order.reserve(AllNodes.size()); 9700 for (auto &N : allnodes()) { 9701 unsigned NOps = N.getNumOperands(); 9702 Degree[&N] = NOps; 9703 if (0 == NOps) 9704 Order.push_back(&N); 9705 } 9706 for (size_t I = 0; I != Order.size(); ++I) { 9707 SDNode *N = Order[I]; 9708 for (auto U : N->uses()) { 9709 unsigned &UnsortedOps = Degree[U]; 9710 if (0 == --UnsortedOps) 9711 Order.push_back(U); 9712 } 9713 } 9714 } 9715 9716 #ifndef NDEBUG 9717 void SelectionDAG::VerifyDAGDivergence() { 9718 std::vector<SDNode *> TopoOrder; 9719 CreateTopologicalOrder(TopoOrder); 9720 for (auto *N : TopoOrder) { 9721 assert(calculateDivergence(N) == N->isDivergent() && 9722 "Divergence bit inconsistency detected"); 9723 } 9724 } 9725 #endif 9726 9727 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9728 /// uses of other values produced by From.getNode() alone. The same value 9729 /// may appear in both the From and To list. The Deleted vector is 9730 /// handled the same way as for ReplaceAllUsesWith. 9731 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9732 const SDValue *To, 9733 unsigned Num){ 9734 // Handle the simple, trivial case efficiently. 9735 if (Num == 1) 9736 return ReplaceAllUsesOfValueWith(*From, *To); 9737 9738 transferDbgValues(*From, *To); 9739 9740 // Read up all the uses and make records of them. This helps 9741 // processing new uses that are introduced during the 9742 // replacement process. 9743 SmallVector<UseMemo, 4> Uses; 9744 for (unsigned i = 0; i != Num; ++i) { 9745 unsigned FromResNo = From[i].getResNo(); 9746 SDNode *FromNode = From[i].getNode(); 9747 for (SDNode::use_iterator UI = FromNode->use_begin(), 9748 E = FromNode->use_end(); UI != E; ++UI) { 9749 SDUse &Use = UI.getUse(); 9750 if (Use.getResNo() == FromResNo) { 9751 UseMemo Memo = { *UI, i, &Use }; 9752 Uses.push_back(Memo); 9753 } 9754 } 9755 } 9756 9757 // Sort the uses, so that all the uses from a given User are together. 9758 llvm::sort(Uses); 9759 9760 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9761 UseIndex != UseIndexEnd; ) { 9762 // We know that this user uses some value of From. If it is the right 9763 // value, update it. 9764 SDNode *User = Uses[UseIndex].User; 9765 9766 // This node is about to morph, remove its old self from the CSE maps. 9767 RemoveNodeFromCSEMaps(User); 9768 9769 // The Uses array is sorted, so all the uses for a given User 9770 // are next to each other in the list. 9771 // To help reduce the number of CSE recomputations, process all 9772 // the uses of this user that we can find this way. 9773 do { 9774 unsigned i = Uses[UseIndex].Index; 9775 SDUse &Use = *Uses[UseIndex].Use; 9776 ++UseIndex; 9777 9778 Use.set(To[i]); 9779 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9780 9781 // Now that we have modified User, add it back to the CSE maps. If it 9782 // already exists there, recursively merge the results together. 9783 AddModifiedNodeToCSEMaps(User); 9784 } 9785 } 9786 9787 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9788 /// based on their topological order. It returns the maximum id and a vector 9789 /// of the SDNodes* in assigned order by reference. 9790 unsigned SelectionDAG::AssignTopologicalOrder() { 9791 unsigned DAGSize = 0; 9792 9793 // SortedPos tracks the progress of the algorithm. Nodes before it are 9794 // sorted, nodes after it are unsorted. When the algorithm completes 9795 // it is at the end of the list. 9796 allnodes_iterator SortedPos = allnodes_begin(); 9797 9798 // Visit all the nodes. Move nodes with no operands to the front of 9799 // the list immediately. Annotate nodes that do have operands with their 9800 // operand count. Before we do this, the Node Id fields of the nodes 9801 // may contain arbitrary values. After, the Node Id fields for nodes 9802 // before SortedPos will contain the topological sort index, and the 9803 // Node Id fields for nodes At SortedPos and after will contain the 9804 // count of outstanding operands. 9805 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9806 checkForCycles(&N, this); 9807 unsigned Degree = N.getNumOperands(); 9808 if (Degree == 0) { 9809 // A node with no uses, add it to the result array immediately. 9810 N.setNodeId(DAGSize++); 9811 allnodes_iterator Q(&N); 9812 if (Q != SortedPos) 9813 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9814 assert(SortedPos != AllNodes.end() && "Overran node list"); 9815 ++SortedPos; 9816 } else { 9817 // Temporarily use the Node Id as scratch space for the degree count. 9818 N.setNodeId(Degree); 9819 } 9820 } 9821 9822 // Visit all the nodes. As we iterate, move nodes into sorted order, 9823 // such that by the time the end is reached all nodes will be sorted. 9824 for (SDNode &Node : allnodes()) { 9825 SDNode *N = &Node; 9826 checkForCycles(N, this); 9827 // N is in sorted position, so all its uses have one less operand 9828 // that needs to be sorted. 9829 for (SDNode *P : N->uses()) { 9830 unsigned Degree = P->getNodeId(); 9831 assert(Degree != 0 && "Invalid node degree"); 9832 --Degree; 9833 if (Degree == 0) { 9834 // All of P's operands are sorted, so P may sorted now. 9835 P->setNodeId(DAGSize++); 9836 if (P->getIterator() != SortedPos) 9837 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9838 assert(SortedPos != AllNodes.end() && "Overran node list"); 9839 ++SortedPos; 9840 } else { 9841 // Update P's outstanding operand count. 9842 P->setNodeId(Degree); 9843 } 9844 } 9845 if (Node.getIterator() == SortedPos) { 9846 #ifndef NDEBUG 9847 allnodes_iterator I(N); 9848 SDNode *S = &*++I; 9849 dbgs() << "Overran sorted position:\n"; 9850 S->dumprFull(this); dbgs() << "\n"; 9851 dbgs() << "Checking if this is due to cycles\n"; 9852 checkForCycles(this, true); 9853 #endif 9854 llvm_unreachable(nullptr); 9855 } 9856 } 9857 9858 assert(SortedPos == AllNodes.end() && 9859 "Topological sort incomplete!"); 9860 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9861 "First node in topological sort is not the entry token!"); 9862 assert(AllNodes.front().getNodeId() == 0 && 9863 "First node in topological sort has non-zero id!"); 9864 assert(AllNodes.front().getNumOperands() == 0 && 9865 "First node in topological sort has operands!"); 9866 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9867 "Last node in topologic sort has unexpected id!"); 9868 assert(AllNodes.back().use_empty() && 9869 "Last node in topologic sort has users!"); 9870 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9871 return DAGSize; 9872 } 9873 9874 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9875 /// value is produced by SD. 9876 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9877 for (SDNode *SD : DB->getSDNodes()) { 9878 if (!SD) 9879 continue; 9880 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9881 SD->setHasDebugValue(true); 9882 } 9883 DbgInfo->add(DB, isParameter); 9884 } 9885 9886 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9887 9888 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9889 SDValue NewMemOpChain) { 9890 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9891 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9892 // The new memory operation must have the same position as the old load in 9893 // terms of memory dependency. Create a TokenFactor for the old load and new 9894 // memory operation and update uses of the old load's output chain to use that 9895 // TokenFactor. 9896 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9897 return NewMemOpChain; 9898 9899 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9900 OldChain, NewMemOpChain); 9901 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9902 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9903 return TokenFactor; 9904 } 9905 9906 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9907 SDValue NewMemOp) { 9908 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9909 SDValue OldChain = SDValue(OldLoad, 1); 9910 SDValue NewMemOpChain = NewMemOp.getValue(1); 9911 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9912 } 9913 9914 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9915 Function **OutFunction) { 9916 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9917 9918 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9919 auto *Module = MF->getFunction().getParent(); 9920 auto *Function = Module->getFunction(Symbol); 9921 9922 if (OutFunction != nullptr) 9923 *OutFunction = Function; 9924 9925 if (Function != nullptr) { 9926 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9927 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9928 } 9929 9930 std::string ErrorStr; 9931 raw_string_ostream ErrorFormatter(ErrorStr); 9932 ErrorFormatter << "Undefined external symbol "; 9933 ErrorFormatter << '"' << Symbol << '"'; 9934 report_fatal_error(Twine(ErrorFormatter.str())); 9935 } 9936 9937 //===----------------------------------------------------------------------===// 9938 // SDNode Class 9939 //===----------------------------------------------------------------------===// 9940 9941 bool llvm::isNullConstant(SDValue V) { 9942 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9943 return Const != nullptr && Const->isZero(); 9944 } 9945 9946 bool llvm::isNullFPConstant(SDValue V) { 9947 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9948 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9949 } 9950 9951 bool llvm::isAllOnesConstant(SDValue V) { 9952 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9953 return Const != nullptr && Const->isAllOnes(); 9954 } 9955 9956 bool llvm::isOneConstant(SDValue V) { 9957 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9958 return Const != nullptr && Const->isOne(); 9959 } 9960 9961 SDValue llvm::peekThroughBitcasts(SDValue V) { 9962 while (V.getOpcode() == ISD::BITCAST) 9963 V = V.getOperand(0); 9964 return V; 9965 } 9966 9967 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9968 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9969 V = V.getOperand(0); 9970 return V; 9971 } 9972 9973 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9974 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9975 V = V.getOperand(0); 9976 return V; 9977 } 9978 9979 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9980 if (V.getOpcode() != ISD::XOR) 9981 return false; 9982 V = peekThroughBitcasts(V.getOperand(1)); 9983 unsigned NumBits = V.getScalarValueSizeInBits(); 9984 ConstantSDNode *C = 9985 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9986 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9987 } 9988 9989 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9990 bool AllowTruncation) { 9991 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9992 return CN; 9993 9994 // SplatVectors can truncate their operands. Ignore that case here unless 9995 // AllowTruncation is set. 9996 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9997 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9998 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9999 EVT CVT = CN->getValueType(0); 10000 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10001 if (AllowTruncation || CVT == VecEltVT) 10002 return CN; 10003 } 10004 } 10005 10006 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10007 BitVector UndefElements; 10008 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10009 10010 // BuildVectors can truncate their operands. Ignore that case here unless 10011 // AllowTruncation is set. 10012 if (CN && (UndefElements.none() || AllowUndefs)) { 10013 EVT CVT = CN->getValueType(0); 10014 EVT NSVT = N.getValueType().getScalarType(); 10015 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10016 if (AllowTruncation || (CVT == NSVT)) 10017 return CN; 10018 } 10019 } 10020 10021 return nullptr; 10022 } 10023 10024 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10025 bool AllowUndefs, 10026 bool AllowTruncation) { 10027 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10028 return CN; 10029 10030 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10031 BitVector UndefElements; 10032 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10033 10034 // BuildVectors can truncate their operands. Ignore that case here unless 10035 // AllowTruncation is set. 10036 if (CN && (UndefElements.none() || AllowUndefs)) { 10037 EVT CVT = CN->getValueType(0); 10038 EVT NSVT = N.getValueType().getScalarType(); 10039 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10040 if (AllowTruncation || (CVT == NSVT)) 10041 return CN; 10042 } 10043 } 10044 10045 return nullptr; 10046 } 10047 10048 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10049 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10050 return CN; 10051 10052 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10053 BitVector UndefElements; 10054 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10055 if (CN && (UndefElements.none() || AllowUndefs)) 10056 return CN; 10057 } 10058 10059 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10060 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10061 return CN; 10062 10063 return nullptr; 10064 } 10065 10066 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10067 const APInt &DemandedElts, 10068 bool AllowUndefs) { 10069 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10070 return CN; 10071 10072 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10073 BitVector UndefElements; 10074 ConstantFPSDNode *CN = 10075 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10076 if (CN && (UndefElements.none() || AllowUndefs)) 10077 return CN; 10078 } 10079 10080 return nullptr; 10081 } 10082 10083 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10084 // TODO: may want to use peekThroughBitcast() here. 10085 ConstantSDNode *C = 10086 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10087 return C && C->isZero(); 10088 } 10089 10090 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10091 // TODO: may want to use peekThroughBitcast() here. 10092 unsigned BitWidth = N.getScalarValueSizeInBits(); 10093 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10094 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10095 } 10096 10097 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10098 N = peekThroughBitcasts(N); 10099 unsigned BitWidth = N.getScalarValueSizeInBits(); 10100 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10101 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10102 } 10103 10104 HandleSDNode::~HandleSDNode() { 10105 DropOperands(); 10106 } 10107 10108 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10109 const DebugLoc &DL, 10110 const GlobalValue *GA, EVT VT, 10111 int64_t o, unsigned TF) 10112 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10113 TheGlobal = GA; 10114 } 10115 10116 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10117 EVT VT, unsigned SrcAS, 10118 unsigned DestAS) 10119 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10120 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10121 10122 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10123 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10124 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10125 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10126 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10127 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10128 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10129 10130 // We check here that the size of the memory operand fits within the size of 10131 // the MMO. This is because the MMO might indicate only a possible address 10132 // range instead of specifying the affected memory addresses precisely. 10133 // TODO: Make MachineMemOperands aware of scalable vectors. 10134 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10135 "Size mismatch!"); 10136 } 10137 10138 /// Profile - Gather unique data for the node. 10139 /// 10140 void SDNode::Profile(FoldingSetNodeID &ID) const { 10141 AddNodeIDNode(ID, this); 10142 } 10143 10144 namespace { 10145 10146 struct EVTArray { 10147 std::vector<EVT> VTs; 10148 10149 EVTArray() { 10150 VTs.reserve(MVT::VALUETYPE_SIZE); 10151 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10152 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10153 } 10154 }; 10155 10156 } // end anonymous namespace 10157 10158 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10159 static ManagedStatic<EVTArray> SimpleVTArray; 10160 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10161 10162 /// getValueTypeList - Return a pointer to the specified value type. 10163 /// 10164 const EVT *SDNode::getValueTypeList(EVT VT) { 10165 if (VT.isExtended()) { 10166 sys::SmartScopedLock<true> Lock(*VTMutex); 10167 return &(*EVTs->insert(VT).first); 10168 } 10169 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10170 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10171 } 10172 10173 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10174 /// indicated value. This method ignores uses of other values defined by this 10175 /// operation. 10176 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10177 assert(Value < getNumValues() && "Bad value!"); 10178 10179 // TODO: Only iterate over uses of a given value of the node 10180 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10181 if (UI.getUse().getResNo() == Value) { 10182 if (NUses == 0) 10183 return false; 10184 --NUses; 10185 } 10186 } 10187 10188 // Found exactly the right number of uses? 10189 return NUses == 0; 10190 } 10191 10192 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10193 /// value. This method ignores uses of other values defined by this operation. 10194 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10195 assert(Value < getNumValues() && "Bad value!"); 10196 10197 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10198 if (UI.getUse().getResNo() == Value) 10199 return true; 10200 10201 return false; 10202 } 10203 10204 /// isOnlyUserOf - Return true if this node is the only use of N. 10205 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10206 bool Seen = false; 10207 for (const SDNode *User : N->uses()) { 10208 if (User == this) 10209 Seen = true; 10210 else 10211 return false; 10212 } 10213 10214 return Seen; 10215 } 10216 10217 /// Return true if the only users of N are contained in Nodes. 10218 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10219 bool Seen = false; 10220 for (const SDNode *User : N->uses()) { 10221 if (llvm::is_contained(Nodes, User)) 10222 Seen = true; 10223 else 10224 return false; 10225 } 10226 10227 return Seen; 10228 } 10229 10230 /// isOperand - Return true if this node is an operand of N. 10231 bool SDValue::isOperandOf(const SDNode *N) const { 10232 return is_contained(N->op_values(), *this); 10233 } 10234 10235 bool SDNode::isOperandOf(const SDNode *N) const { 10236 return any_of(N->op_values(), 10237 [this](SDValue Op) { return this == Op.getNode(); }); 10238 } 10239 10240 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10241 /// be a chain) reaches the specified operand without crossing any 10242 /// side-effecting instructions on any chain path. In practice, this looks 10243 /// through token factors and non-volatile loads. In order to remain efficient, 10244 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10245 /// 10246 /// Note that we only need to examine chains when we're searching for 10247 /// side-effects; SelectionDAG requires that all side-effects are represented 10248 /// by chains, even if another operand would force a specific ordering. This 10249 /// constraint is necessary to allow transformations like splitting loads. 10250 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10251 unsigned Depth) const { 10252 if (*this == Dest) return true; 10253 10254 // Don't search too deeply, we just want to be able to see through 10255 // TokenFactor's etc. 10256 if (Depth == 0) return false; 10257 10258 // If this is a token factor, all inputs to the TF happen in parallel. 10259 if (getOpcode() == ISD::TokenFactor) { 10260 // First, try a shallow search. 10261 if (is_contained((*this)->ops(), Dest)) { 10262 // We found the chain we want as an operand of this TokenFactor. 10263 // Essentially, we reach the chain without side-effects if we could 10264 // serialize the TokenFactor into a simple chain of operations with 10265 // Dest as the last operation. This is automatically true if the 10266 // chain has one use: there are no other ordering constraints. 10267 // If the chain has more than one use, we give up: some other 10268 // use of Dest might force a side-effect between Dest and the current 10269 // node. 10270 if (Dest.hasOneUse()) 10271 return true; 10272 } 10273 // Next, try a deep search: check whether every operand of the TokenFactor 10274 // reaches Dest. 10275 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10276 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10277 }); 10278 } 10279 10280 // Loads don't have side effects, look through them. 10281 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10282 if (Ld->isUnordered()) 10283 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10284 } 10285 return false; 10286 } 10287 10288 bool SDNode::hasPredecessor(const SDNode *N) const { 10289 SmallPtrSet<const SDNode *, 32> Visited; 10290 SmallVector<const SDNode *, 16> Worklist; 10291 Worklist.push_back(this); 10292 return hasPredecessorHelper(N, Visited, Worklist); 10293 } 10294 10295 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10296 this->Flags.intersectWith(Flags); 10297 } 10298 10299 SDValue 10300 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10301 ArrayRef<ISD::NodeType> CandidateBinOps, 10302 bool AllowPartials) { 10303 // The pattern must end in an extract from index 0. 10304 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10305 !isNullConstant(Extract->getOperand(1))) 10306 return SDValue(); 10307 10308 // Match against one of the candidate binary ops. 10309 SDValue Op = Extract->getOperand(0); 10310 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10311 return Op.getOpcode() == unsigned(BinOp); 10312 })) 10313 return SDValue(); 10314 10315 // Floating-point reductions may require relaxed constraints on the final step 10316 // of the reduction because they may reorder intermediate operations. 10317 unsigned CandidateBinOp = Op.getOpcode(); 10318 if (Op.getValueType().isFloatingPoint()) { 10319 SDNodeFlags Flags = Op->getFlags(); 10320 switch (CandidateBinOp) { 10321 case ISD::FADD: 10322 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10323 return SDValue(); 10324 break; 10325 default: 10326 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10327 } 10328 } 10329 10330 // Matching failed - attempt to see if we did enough stages that a partial 10331 // reduction from a subvector is possible. 10332 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10333 if (!AllowPartials || !Op) 10334 return SDValue(); 10335 EVT OpVT = Op.getValueType(); 10336 EVT OpSVT = OpVT.getScalarType(); 10337 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10338 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10339 return SDValue(); 10340 BinOp = (ISD::NodeType)CandidateBinOp; 10341 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10342 getVectorIdxConstant(0, SDLoc(Op))); 10343 }; 10344 10345 // At each stage, we're looking for something that looks like: 10346 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10347 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10348 // i32 undef, i32 undef, i32 undef, i32 undef> 10349 // %a = binop <8 x i32> %op, %s 10350 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10351 // we expect something like: 10352 // <4,5,6,7,u,u,u,u> 10353 // <2,3,u,u,u,u,u,u> 10354 // <1,u,u,u,u,u,u,u> 10355 // While a partial reduction match would be: 10356 // <2,3,u,u,u,u,u,u> 10357 // <1,u,u,u,u,u,u,u> 10358 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10359 SDValue PrevOp; 10360 for (unsigned i = 0; i < Stages; ++i) { 10361 unsigned MaskEnd = (1 << i); 10362 10363 if (Op.getOpcode() != CandidateBinOp) 10364 return PartialReduction(PrevOp, MaskEnd); 10365 10366 SDValue Op0 = Op.getOperand(0); 10367 SDValue Op1 = Op.getOperand(1); 10368 10369 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10370 if (Shuffle) { 10371 Op = Op1; 10372 } else { 10373 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10374 Op = Op0; 10375 } 10376 10377 // The first operand of the shuffle should be the same as the other operand 10378 // of the binop. 10379 if (!Shuffle || Shuffle->getOperand(0) != Op) 10380 return PartialReduction(PrevOp, MaskEnd); 10381 10382 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10383 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10384 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10385 return PartialReduction(PrevOp, MaskEnd); 10386 10387 PrevOp = Op; 10388 } 10389 10390 // Handle subvector reductions, which tend to appear after the shuffle 10391 // reduction stages. 10392 while (Op.getOpcode() == CandidateBinOp) { 10393 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10394 SDValue Op0 = Op.getOperand(0); 10395 SDValue Op1 = Op.getOperand(1); 10396 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10397 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10398 Op0.getOperand(0) != Op1.getOperand(0)) 10399 break; 10400 SDValue Src = Op0.getOperand(0); 10401 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10402 if (NumSrcElts != (2 * NumElts)) 10403 break; 10404 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10405 Op1.getConstantOperandAPInt(1) == NumElts) && 10406 !(Op1.getConstantOperandAPInt(1) == 0 && 10407 Op0.getConstantOperandAPInt(1) == NumElts)) 10408 break; 10409 Op = Src; 10410 } 10411 10412 BinOp = (ISD::NodeType)CandidateBinOp; 10413 return Op; 10414 } 10415 10416 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10417 assert(N->getNumValues() == 1 && 10418 "Can't unroll a vector with multiple results!"); 10419 10420 EVT VT = N->getValueType(0); 10421 unsigned NE = VT.getVectorNumElements(); 10422 EVT EltVT = VT.getVectorElementType(); 10423 SDLoc dl(N); 10424 10425 SmallVector<SDValue, 8> Scalars; 10426 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10427 10428 // If ResNE is 0, fully unroll the vector op. 10429 if (ResNE == 0) 10430 ResNE = NE; 10431 else if (NE > ResNE) 10432 NE = ResNE; 10433 10434 unsigned i; 10435 for (i= 0; i != NE; ++i) { 10436 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10437 SDValue Operand = N->getOperand(j); 10438 EVT OperandVT = Operand.getValueType(); 10439 if (OperandVT.isVector()) { 10440 // A vector operand; extract a single element. 10441 EVT OperandEltVT = OperandVT.getVectorElementType(); 10442 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10443 Operand, getVectorIdxConstant(i, dl)); 10444 } else { 10445 // A scalar operand; just use it as is. 10446 Operands[j] = Operand; 10447 } 10448 } 10449 10450 switch (N->getOpcode()) { 10451 default: { 10452 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10453 N->getFlags())); 10454 break; 10455 } 10456 case ISD::VSELECT: 10457 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10458 break; 10459 case ISD::SHL: 10460 case ISD::SRA: 10461 case ISD::SRL: 10462 case ISD::ROTL: 10463 case ISD::ROTR: 10464 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10465 getShiftAmountOperand(Operands[0].getValueType(), 10466 Operands[1]))); 10467 break; 10468 case ISD::SIGN_EXTEND_INREG: { 10469 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10470 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10471 Operands[0], 10472 getValueType(ExtVT))); 10473 } 10474 } 10475 } 10476 10477 for (; i < ResNE; ++i) 10478 Scalars.push_back(getUNDEF(EltVT)); 10479 10480 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10481 return getBuildVector(VecVT, dl, Scalars); 10482 } 10483 10484 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10485 SDNode *N, unsigned ResNE) { 10486 unsigned Opcode = N->getOpcode(); 10487 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10488 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10489 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10490 "Expected an overflow opcode"); 10491 10492 EVT ResVT = N->getValueType(0); 10493 EVT OvVT = N->getValueType(1); 10494 EVT ResEltVT = ResVT.getVectorElementType(); 10495 EVT OvEltVT = OvVT.getVectorElementType(); 10496 SDLoc dl(N); 10497 10498 // If ResNE is 0, fully unroll the vector op. 10499 unsigned NE = ResVT.getVectorNumElements(); 10500 if (ResNE == 0) 10501 ResNE = NE; 10502 else if (NE > ResNE) 10503 NE = ResNE; 10504 10505 SmallVector<SDValue, 8> LHSScalars; 10506 SmallVector<SDValue, 8> RHSScalars; 10507 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10508 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10509 10510 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10511 SDVTList VTs = getVTList(ResEltVT, SVT); 10512 SmallVector<SDValue, 8> ResScalars; 10513 SmallVector<SDValue, 8> OvScalars; 10514 for (unsigned i = 0; i < NE; ++i) { 10515 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10516 SDValue Ov = 10517 getSelect(dl, OvEltVT, Res.getValue(1), 10518 getBoolConstant(true, dl, OvEltVT, ResVT), 10519 getConstant(0, dl, OvEltVT)); 10520 10521 ResScalars.push_back(Res); 10522 OvScalars.push_back(Ov); 10523 } 10524 10525 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10526 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10527 10528 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10529 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10530 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10531 getBuildVector(NewOvVT, dl, OvScalars)); 10532 } 10533 10534 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10535 LoadSDNode *Base, 10536 unsigned Bytes, 10537 int Dist) const { 10538 if (LD->isVolatile() || Base->isVolatile()) 10539 return false; 10540 // TODO: probably too restrictive for atomics, revisit 10541 if (!LD->isSimple()) 10542 return false; 10543 if (LD->isIndexed() || Base->isIndexed()) 10544 return false; 10545 if (LD->getChain() != Base->getChain()) 10546 return false; 10547 EVT VT = LD->getValueType(0); 10548 if (VT.getSizeInBits() / 8 != Bytes) 10549 return false; 10550 10551 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10552 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10553 10554 int64_t Offset = 0; 10555 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10556 return (Dist * Bytes == Offset); 10557 return false; 10558 } 10559 10560 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10561 /// if it cannot be inferred. 10562 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10563 // If this is a GlobalAddress + cst, return the alignment. 10564 const GlobalValue *GV = nullptr; 10565 int64_t GVOffset = 0; 10566 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10567 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10568 KnownBits Known(PtrWidth); 10569 llvm::computeKnownBits(GV, Known, getDataLayout()); 10570 unsigned AlignBits = Known.countMinTrailingZeros(); 10571 if (AlignBits) 10572 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10573 } 10574 10575 // If this is a direct reference to a stack slot, use information about the 10576 // stack slot's alignment. 10577 int FrameIdx = INT_MIN; 10578 int64_t FrameOffset = 0; 10579 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10580 FrameIdx = FI->getIndex(); 10581 } else if (isBaseWithConstantOffset(Ptr) && 10582 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10583 // Handle FI+Cst 10584 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10585 FrameOffset = Ptr.getConstantOperandVal(1); 10586 } 10587 10588 if (FrameIdx != INT_MIN) { 10589 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10590 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10591 } 10592 10593 return None; 10594 } 10595 10596 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10597 /// which is split (or expanded) into two not necessarily identical pieces. 10598 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10599 // Currently all types are split in half. 10600 EVT LoVT, HiVT; 10601 if (!VT.isVector()) 10602 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10603 else 10604 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10605 10606 return std::make_pair(LoVT, HiVT); 10607 } 10608 10609 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10610 /// type, dependent on an enveloping VT that has been split into two identical 10611 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10612 std::pair<EVT, EVT> 10613 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10614 bool *HiIsEmpty) const { 10615 EVT EltTp = VT.getVectorElementType(); 10616 // Examples: 10617 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10618 // custom VL=9 with enveloping VL=8/8 yields 8/1 10619 // custom VL=10 with enveloping VL=8/8 yields 8/2 10620 // etc. 10621 ElementCount VTNumElts = VT.getVectorElementCount(); 10622 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10623 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10624 "Mixing fixed width and scalable vectors when enveloping a type"); 10625 EVT LoVT, HiVT; 10626 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10627 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10628 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10629 *HiIsEmpty = false; 10630 } else { 10631 // Flag that hi type has zero storage size, but return split envelop type 10632 // (this would be easier if vector types with zero elements were allowed). 10633 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10634 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10635 *HiIsEmpty = true; 10636 } 10637 return std::make_pair(LoVT, HiVT); 10638 } 10639 10640 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10641 /// low/high part. 10642 std::pair<SDValue, SDValue> 10643 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10644 const EVT &HiVT) { 10645 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10646 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10647 "Splitting vector with an invalid mixture of fixed and scalable " 10648 "vector types"); 10649 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10650 N.getValueType().getVectorMinNumElements() && 10651 "More vector elements requested than available!"); 10652 SDValue Lo, Hi; 10653 Lo = 10654 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10655 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10656 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10657 // IDX with the runtime scaling factor of the result vector type. For 10658 // fixed-width result vectors, that runtime scaling factor is 1. 10659 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10660 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10661 return std::make_pair(Lo, Hi); 10662 } 10663 10664 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10665 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10666 EVT VT = N.getValueType(); 10667 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10668 NextPowerOf2(VT.getVectorNumElements())); 10669 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10670 getVectorIdxConstant(0, DL)); 10671 } 10672 10673 void SelectionDAG::ExtractVectorElements(SDValue Op, 10674 SmallVectorImpl<SDValue> &Args, 10675 unsigned Start, unsigned Count, 10676 EVT EltVT) { 10677 EVT VT = Op.getValueType(); 10678 if (Count == 0) 10679 Count = VT.getVectorNumElements(); 10680 if (EltVT == EVT()) 10681 EltVT = VT.getVectorElementType(); 10682 SDLoc SL(Op); 10683 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10684 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10685 getVectorIdxConstant(i, SL))); 10686 } 10687 } 10688 10689 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10690 unsigned GlobalAddressSDNode::getAddressSpace() const { 10691 return getGlobal()->getType()->getAddressSpace(); 10692 } 10693 10694 Type *ConstantPoolSDNode::getType() const { 10695 if (isMachineConstantPoolEntry()) 10696 return Val.MachineCPVal->getType(); 10697 return Val.ConstVal->getType(); 10698 } 10699 10700 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10701 unsigned &SplatBitSize, 10702 bool &HasAnyUndefs, 10703 unsigned MinSplatBits, 10704 bool IsBigEndian) const { 10705 EVT VT = getValueType(0); 10706 assert(VT.isVector() && "Expected a vector type"); 10707 unsigned VecWidth = VT.getSizeInBits(); 10708 if (MinSplatBits > VecWidth) 10709 return false; 10710 10711 // FIXME: The widths are based on this node's type, but build vectors can 10712 // truncate their operands. 10713 SplatValue = APInt(VecWidth, 0); 10714 SplatUndef = APInt(VecWidth, 0); 10715 10716 // Get the bits. Bits with undefined values (when the corresponding element 10717 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10718 // in SplatValue. If any of the values are not constant, give up and return 10719 // false. 10720 unsigned int NumOps = getNumOperands(); 10721 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10722 unsigned EltWidth = VT.getScalarSizeInBits(); 10723 10724 for (unsigned j = 0; j < NumOps; ++j) { 10725 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10726 SDValue OpVal = getOperand(i); 10727 unsigned BitPos = j * EltWidth; 10728 10729 if (OpVal.isUndef()) 10730 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10731 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10732 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10733 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10734 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10735 else 10736 return false; 10737 } 10738 10739 // The build_vector is all constants or undefs. Find the smallest element 10740 // size that splats the vector. 10741 HasAnyUndefs = (SplatUndef != 0); 10742 10743 // FIXME: This does not work for vectors with elements less than 8 bits. 10744 while (VecWidth > 8) { 10745 unsigned HalfSize = VecWidth / 2; 10746 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10747 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10748 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10749 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10750 10751 // If the two halves do not match (ignoring undef bits), stop here. 10752 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10753 MinSplatBits > HalfSize) 10754 break; 10755 10756 SplatValue = HighValue | LowValue; 10757 SplatUndef = HighUndef & LowUndef; 10758 10759 VecWidth = HalfSize; 10760 } 10761 10762 SplatBitSize = VecWidth; 10763 return true; 10764 } 10765 10766 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10767 BitVector *UndefElements) const { 10768 unsigned NumOps = getNumOperands(); 10769 if (UndefElements) { 10770 UndefElements->clear(); 10771 UndefElements->resize(NumOps); 10772 } 10773 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10774 if (!DemandedElts) 10775 return SDValue(); 10776 SDValue Splatted; 10777 for (unsigned i = 0; i != NumOps; ++i) { 10778 if (!DemandedElts[i]) 10779 continue; 10780 SDValue Op = getOperand(i); 10781 if (Op.isUndef()) { 10782 if (UndefElements) 10783 (*UndefElements)[i] = true; 10784 } else if (!Splatted) { 10785 Splatted = Op; 10786 } else if (Splatted != Op) { 10787 return SDValue(); 10788 } 10789 } 10790 10791 if (!Splatted) { 10792 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10793 assert(getOperand(FirstDemandedIdx).isUndef() && 10794 "Can only have a splat without a constant for all undefs."); 10795 return getOperand(FirstDemandedIdx); 10796 } 10797 10798 return Splatted; 10799 } 10800 10801 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10802 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10803 return getSplatValue(DemandedElts, UndefElements); 10804 } 10805 10806 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10807 SmallVectorImpl<SDValue> &Sequence, 10808 BitVector *UndefElements) const { 10809 unsigned NumOps = getNumOperands(); 10810 Sequence.clear(); 10811 if (UndefElements) { 10812 UndefElements->clear(); 10813 UndefElements->resize(NumOps); 10814 } 10815 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10816 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10817 return false; 10818 10819 // Set the undefs even if we don't find a sequence (like getSplatValue). 10820 if (UndefElements) 10821 for (unsigned I = 0; I != NumOps; ++I) 10822 if (DemandedElts[I] && getOperand(I).isUndef()) 10823 (*UndefElements)[I] = true; 10824 10825 // Iteratively widen the sequence length looking for repetitions. 10826 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10827 Sequence.append(SeqLen, SDValue()); 10828 for (unsigned I = 0; I != NumOps; ++I) { 10829 if (!DemandedElts[I]) 10830 continue; 10831 SDValue &SeqOp = Sequence[I % SeqLen]; 10832 SDValue Op = getOperand(I); 10833 if (Op.isUndef()) { 10834 if (!SeqOp) 10835 SeqOp = Op; 10836 continue; 10837 } 10838 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10839 Sequence.clear(); 10840 break; 10841 } 10842 SeqOp = Op; 10843 } 10844 if (!Sequence.empty()) 10845 return true; 10846 } 10847 10848 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10849 return false; 10850 } 10851 10852 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10853 BitVector *UndefElements) const { 10854 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10855 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10856 } 10857 10858 ConstantSDNode * 10859 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10860 BitVector *UndefElements) const { 10861 return dyn_cast_or_null<ConstantSDNode>( 10862 getSplatValue(DemandedElts, UndefElements)); 10863 } 10864 10865 ConstantSDNode * 10866 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10867 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10868 } 10869 10870 ConstantFPSDNode * 10871 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10872 BitVector *UndefElements) const { 10873 return dyn_cast_or_null<ConstantFPSDNode>( 10874 getSplatValue(DemandedElts, UndefElements)); 10875 } 10876 10877 ConstantFPSDNode * 10878 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10879 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10880 } 10881 10882 int32_t 10883 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10884 uint32_t BitWidth) const { 10885 if (ConstantFPSDNode *CN = 10886 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10887 bool IsExact; 10888 APSInt IntVal(BitWidth); 10889 const APFloat &APF = CN->getValueAPF(); 10890 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10891 APFloat::opOK || 10892 !IsExact) 10893 return -1; 10894 10895 return IntVal.exactLogBase2(); 10896 } 10897 return -1; 10898 } 10899 10900 bool BuildVectorSDNode::getConstantRawBits( 10901 bool IsLittleEndian, unsigned DstEltSizeInBits, 10902 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10903 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10904 if (!isConstant()) 10905 return false; 10906 10907 unsigned NumSrcOps = getNumOperands(); 10908 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10909 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10910 "Invalid bitcast scale"); 10911 10912 // Extract raw src bits. 10913 SmallVector<APInt> SrcBitElements(NumSrcOps, 10914 APInt::getNullValue(SrcEltSizeInBits)); 10915 BitVector SrcUndeElements(NumSrcOps, false); 10916 10917 for (unsigned I = 0; I != NumSrcOps; ++I) { 10918 SDValue Op = getOperand(I); 10919 if (Op.isUndef()) { 10920 SrcUndeElements.set(I); 10921 continue; 10922 } 10923 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10924 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10925 assert((CInt || CFP) && "Unknown constant"); 10926 SrcBitElements[I] = 10927 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10928 : CFP->getValueAPF().bitcastToAPInt(); 10929 } 10930 10931 // Recast to dst width. 10932 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10933 SrcBitElements, UndefElements, SrcUndeElements); 10934 return true; 10935 } 10936 10937 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10938 unsigned DstEltSizeInBits, 10939 SmallVectorImpl<APInt> &DstBitElements, 10940 ArrayRef<APInt> SrcBitElements, 10941 BitVector &DstUndefElements, 10942 const BitVector &SrcUndefElements) { 10943 unsigned NumSrcOps = SrcBitElements.size(); 10944 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10945 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10946 "Invalid bitcast scale"); 10947 assert(NumSrcOps == SrcUndefElements.size() && 10948 "Vector size mismatch"); 10949 10950 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10951 DstUndefElements.clear(); 10952 DstUndefElements.resize(NumDstOps, false); 10953 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10954 10955 // Concatenate src elements constant bits together into dst element. 10956 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10957 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10958 for (unsigned I = 0; I != NumDstOps; ++I) { 10959 DstUndefElements.set(I); 10960 APInt &DstBits = DstBitElements[I]; 10961 for (unsigned J = 0; J != Scale; ++J) { 10962 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10963 if (SrcUndefElements[Idx]) 10964 continue; 10965 DstUndefElements.reset(I); 10966 const APInt &SrcBits = SrcBitElements[Idx]; 10967 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10968 "Illegal constant bitwidths"); 10969 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10970 } 10971 } 10972 return; 10973 } 10974 10975 // Split src element constant bits into dst elements. 10976 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10977 for (unsigned I = 0; I != NumSrcOps; ++I) { 10978 if (SrcUndefElements[I]) { 10979 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10980 continue; 10981 } 10982 const APInt &SrcBits = SrcBitElements[I]; 10983 for (unsigned J = 0; J != Scale; ++J) { 10984 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10985 APInt &DstBits = DstBitElements[Idx]; 10986 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10987 } 10988 } 10989 } 10990 10991 bool BuildVectorSDNode::isConstant() const { 10992 for (const SDValue &Op : op_values()) { 10993 unsigned Opc = Op.getOpcode(); 10994 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10995 return false; 10996 } 10997 return true; 10998 } 10999 11000 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11001 // Find the first non-undef value in the shuffle mask. 11002 unsigned i, e; 11003 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11004 /* search */; 11005 11006 // If all elements are undefined, this shuffle can be considered a splat 11007 // (although it should eventually get simplified away completely). 11008 if (i == e) 11009 return true; 11010 11011 // Make sure all remaining elements are either undef or the same as the first 11012 // non-undef value. 11013 for (int Idx = Mask[i]; i != e; ++i) 11014 if (Mask[i] >= 0 && Mask[i] != Idx) 11015 return false; 11016 return true; 11017 } 11018 11019 // Returns the SDNode if it is a constant integer BuildVector 11020 // or constant integer. 11021 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11022 if (isa<ConstantSDNode>(N)) 11023 return N.getNode(); 11024 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11025 return N.getNode(); 11026 // Treat a GlobalAddress supporting constant offset folding as a 11027 // constant integer. 11028 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11029 if (GA->getOpcode() == ISD::GlobalAddress && 11030 TLI->isOffsetFoldingLegal(GA)) 11031 return GA; 11032 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11033 isa<ConstantSDNode>(N.getOperand(0))) 11034 return N.getNode(); 11035 return nullptr; 11036 } 11037 11038 // Returns the SDNode if it is a constant float BuildVector 11039 // or constant float. 11040 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11041 if (isa<ConstantFPSDNode>(N)) 11042 return N.getNode(); 11043 11044 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11045 return N.getNode(); 11046 11047 return nullptr; 11048 } 11049 11050 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11051 assert(!Node->OperandList && "Node already has operands"); 11052 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11053 "too many operands to fit into SDNode"); 11054 SDUse *Ops = OperandRecycler.allocate( 11055 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11056 11057 bool IsDivergent = false; 11058 for (unsigned I = 0; I != Vals.size(); ++I) { 11059 Ops[I].setUser(Node); 11060 Ops[I].setInitial(Vals[I]); 11061 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11062 IsDivergent |= Ops[I].getNode()->isDivergent(); 11063 } 11064 Node->NumOperands = Vals.size(); 11065 Node->OperandList = Ops; 11066 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11067 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11068 Node->SDNodeBits.IsDivergent = IsDivergent; 11069 } 11070 checkForCycles(Node); 11071 } 11072 11073 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11074 SmallVectorImpl<SDValue> &Vals) { 11075 size_t Limit = SDNode::getMaxNumOperands(); 11076 while (Vals.size() > Limit) { 11077 unsigned SliceIdx = Vals.size() - Limit; 11078 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11079 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11080 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11081 Vals.emplace_back(NewTF); 11082 } 11083 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11084 } 11085 11086 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11087 EVT VT, SDNodeFlags Flags) { 11088 switch (Opcode) { 11089 default: 11090 return SDValue(); 11091 case ISD::ADD: 11092 case ISD::OR: 11093 case ISD::XOR: 11094 case ISD::UMAX: 11095 return getConstant(0, DL, VT); 11096 case ISD::MUL: 11097 return getConstant(1, DL, VT); 11098 case ISD::AND: 11099 case ISD::UMIN: 11100 return getAllOnesConstant(DL, VT); 11101 case ISD::SMAX: 11102 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11103 case ISD::SMIN: 11104 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11105 case ISD::FADD: 11106 return getConstantFP(-0.0, DL, VT); 11107 case ISD::FMUL: 11108 return getConstantFP(1.0, DL, VT); 11109 case ISD::FMINNUM: 11110 case ISD::FMAXNUM: { 11111 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11112 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11113 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11114 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11115 APFloat::getLargest(Semantics); 11116 if (Opcode == ISD::FMAXNUM) 11117 NeutralAF.changeSign(); 11118 11119 return getConstantFP(NeutralAF, DL, VT); 11120 } 11121 } 11122 } 11123 11124 #ifndef NDEBUG 11125 static void checkForCyclesHelper(const SDNode *N, 11126 SmallPtrSetImpl<const SDNode*> &Visited, 11127 SmallPtrSetImpl<const SDNode*> &Checked, 11128 const llvm::SelectionDAG *DAG) { 11129 // If this node has already been checked, don't check it again. 11130 if (Checked.count(N)) 11131 return; 11132 11133 // If a node has already been visited on this depth-first walk, reject it as 11134 // a cycle. 11135 if (!Visited.insert(N).second) { 11136 errs() << "Detected cycle in SelectionDAG\n"; 11137 dbgs() << "Offending node:\n"; 11138 N->dumprFull(DAG); dbgs() << "\n"; 11139 abort(); 11140 } 11141 11142 for (const SDValue &Op : N->op_values()) 11143 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11144 11145 Checked.insert(N); 11146 Visited.erase(N); 11147 } 11148 #endif 11149 11150 void llvm::checkForCycles(const llvm::SDNode *N, 11151 const llvm::SelectionDAG *DAG, 11152 bool force) { 11153 #ifndef NDEBUG 11154 bool check = force; 11155 #ifdef EXPENSIVE_CHECKS 11156 check = true; 11157 #endif // EXPENSIVE_CHECKS 11158 if (check) { 11159 assert(N && "Checking nonexistent SDNode"); 11160 SmallPtrSet<const SDNode*, 32> visited; 11161 SmallPtrSet<const SDNode*, 32> checked; 11162 checkForCyclesHelper(N, visited, checked, DAG); 11163 } 11164 #endif // !NDEBUG 11165 } 11166 11167 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11168 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11169 } 11170