xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   bool HasVectorValueOrOp =
258       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
259       llvm::any_of(Node->op_values(),
260                    [](SDValue O) { return O.getValueType().isVector(); });
261   if (!HasVectorValueOrOp)
262     return TranslateLegalizeResults(Op, Node);
263 
264   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
265   EVT ValVT;
266   switch (Op.getOpcode()) {
267   default:
268     return TranslateLegalizeResults(Op, Node);
269   case ISD::LOAD: {
270     LoadSDNode *LD = cast<LoadSDNode>(Node);
271     ISD::LoadExtType ExtType = LD->getExtensionType();
272     EVT LoadedVT = LD->getMemoryVT();
273     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
274       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
275     break;
276   }
277   case ISD::STORE: {
278     StoreSDNode *ST = cast<StoreSDNode>(Node);
279     EVT StVT = ST->getMemoryVT();
280     MVT ValVT = ST->getValue().getSimpleValueType();
281     if (StVT.isVector() && ST->isTruncatingStore())
282       Action = TLI.getTruncStoreAction(ValVT, StVT);
283     break;
284   }
285   case ISD::MERGE_VALUES:
286     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
287     // This operation lies about being legal: when it claims to be legal,
288     // it should actually be expanded.
289     if (Action == TargetLowering::Legal)
290       Action = TargetLowering::Expand;
291     break;
292 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
293   case ISD::STRICT_##DAGN:
294 #include "llvm/IR/ConstrainedOps.def"
295     ValVT = Node->getValueType(0);
296     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
297         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
298       ValVT = Node->getOperand(1).getValueType();
299     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
300     // If we're asked to expand a strict vector floating-point operation,
301     // by default we're going to simply unroll it.  That is usually the
302     // best approach, except in the case where the resulting strict (scalar)
303     // operations would themselves use the fallback mutation to non-strict.
304     // In that specific case, just do the fallback on the vector op.
305     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
306         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
307             TargetLowering::Legal) {
308       EVT EltVT = ValVT.getVectorElementType();
309       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
310           == TargetLowering::Expand &&
311           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
312           == TargetLowering::Legal)
313         Action = TargetLowering::Legal;
314     }
315     break;
316   case ISD::ADD:
317   case ISD::SUB:
318   case ISD::MUL:
319   case ISD::MULHS:
320   case ISD::MULHU:
321   case ISD::SDIV:
322   case ISD::UDIV:
323   case ISD::SREM:
324   case ISD::UREM:
325   case ISD::SDIVREM:
326   case ISD::UDIVREM:
327   case ISD::FADD:
328   case ISD::FSUB:
329   case ISD::FMUL:
330   case ISD::FDIV:
331   case ISD::FREM:
332   case ISD::AND:
333   case ISD::OR:
334   case ISD::XOR:
335   case ISD::SHL:
336   case ISD::SRA:
337   case ISD::SRL:
338   case ISD::FSHL:
339   case ISD::FSHR:
340   case ISD::ROTL:
341   case ISD::ROTR:
342   case ISD::ABS:
343   case ISD::BSWAP:
344   case ISD::BITREVERSE:
345   case ISD::CTLZ:
346   case ISD::CTTZ:
347   case ISD::CTLZ_ZERO_UNDEF:
348   case ISD::CTTZ_ZERO_UNDEF:
349   case ISD::CTPOP:
350   case ISD::SELECT:
351   case ISD::VSELECT:
352   case ISD::SELECT_CC:
353   case ISD::ZERO_EXTEND:
354   case ISD::ANY_EXTEND:
355   case ISD::TRUNCATE:
356   case ISD::SIGN_EXTEND:
357   case ISD::FP_TO_SINT:
358   case ISD::FP_TO_UINT:
359   case ISD::FNEG:
360   case ISD::FABS:
361   case ISD::FMINNUM:
362   case ISD::FMAXNUM:
363   case ISD::FMINNUM_IEEE:
364   case ISD::FMAXNUM_IEEE:
365   case ISD::FMINIMUM:
366   case ISD::FMAXIMUM:
367   case ISD::FCOPYSIGN:
368   case ISD::FSQRT:
369   case ISD::FSIN:
370   case ISD::FCOS:
371   case ISD::FPOWI:
372   case ISD::FPOW:
373   case ISD::FLOG:
374   case ISD::FLOG2:
375   case ISD::FLOG10:
376   case ISD::FEXP:
377   case ISD::FEXP2:
378   case ISD::FCEIL:
379   case ISD::FTRUNC:
380   case ISD::FRINT:
381   case ISD::FNEARBYINT:
382   case ISD::FROUND:
383   case ISD::FROUNDEVEN:
384   case ISD::FFLOOR:
385   case ISD::FP_ROUND:
386   case ISD::FP_EXTEND:
387   case ISD::FMA:
388   case ISD::SIGN_EXTEND_INREG:
389   case ISD::ANY_EXTEND_VECTOR_INREG:
390   case ISD::SIGN_EXTEND_VECTOR_INREG:
391   case ISD::ZERO_EXTEND_VECTOR_INREG:
392   case ISD::SMIN:
393   case ISD::SMAX:
394   case ISD::UMIN:
395   case ISD::UMAX:
396   case ISD::SMUL_LOHI:
397   case ISD::UMUL_LOHI:
398   case ISD::SADDO:
399   case ISD::UADDO:
400   case ISD::SSUBO:
401   case ISD::USUBO:
402   case ISD::SMULO:
403   case ISD::UMULO:
404   case ISD::FCANONICALIZE:
405   case ISD::SADDSAT:
406   case ISD::UADDSAT:
407   case ISD::SSUBSAT:
408   case ISD::USUBSAT:
409   case ISD::SSHLSAT:
410   case ISD::USHLSAT:
411   case ISD::FP_TO_SINT_SAT:
412   case ISD::FP_TO_UINT_SAT:
413   case ISD::MGATHER:
414     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
415     break;
416   case ISD::SMULFIX:
417   case ISD::SMULFIXSAT:
418   case ISD::UMULFIX:
419   case ISD::UMULFIXSAT:
420   case ISD::SDIVFIX:
421   case ISD::SDIVFIXSAT:
422   case ISD::UDIVFIX:
423   case ISD::UDIVFIXSAT: {
424     unsigned Scale = Node->getConstantOperandVal(2);
425     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
426                                               Node->getValueType(0), Scale);
427     break;
428   }
429   case ISD::SINT_TO_FP:
430   case ISD::UINT_TO_FP:
431   case ISD::VECREDUCE_ADD:
432   case ISD::VECREDUCE_MUL:
433   case ISD::VECREDUCE_AND:
434   case ISD::VECREDUCE_OR:
435   case ISD::VECREDUCE_XOR:
436   case ISD::VECREDUCE_SMAX:
437   case ISD::VECREDUCE_SMIN:
438   case ISD::VECREDUCE_UMAX:
439   case ISD::VECREDUCE_UMIN:
440   case ISD::VECREDUCE_FADD:
441   case ISD::VECREDUCE_FMUL:
442   case ISD::VECREDUCE_FMAX:
443   case ISD::VECREDUCE_FMIN:
444     Action = TLI.getOperationAction(Node->getOpcode(),
445                                     Node->getOperand(0).getValueType());
446     break;
447   case ISD::VECREDUCE_SEQ_FADD:
448   case ISD::VECREDUCE_SEQ_FMUL:
449     Action = TLI.getOperationAction(Node->getOpcode(),
450                                     Node->getOperand(1).getValueType());
451     break;
452   case ISD::SETCC: {
453     MVT OpVT = Node->getOperand(0).getSimpleValueType();
454     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
455     Action = TLI.getCondCodeAction(CCCode, OpVT);
456     if (Action == TargetLowering::Legal)
457       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
458     break;
459   }
460   }
461 
462   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
463 
464   SmallVector<SDValue, 8> ResultVals;
465   switch (Action) {
466   default: llvm_unreachable("This action is not supported yet!");
467   case TargetLowering::Promote:
468     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
469            "This action is not supported yet!");
470     LLVM_DEBUG(dbgs() << "Promoting\n");
471     Promote(Node, ResultVals);
472     assert(!ResultVals.empty() && "No results for promotion?");
473     break;
474   case TargetLowering::Legal:
475     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
476     break;
477   case TargetLowering::Custom:
478     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
479     if (LowerOperationWrapper(Node, ResultVals))
480       break;
481     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
482     LLVM_FALLTHROUGH;
483   case TargetLowering::Expand:
484     LLVM_DEBUG(dbgs() << "Expanding\n");
485     Expand(Node, ResultVals);
486     break;
487   }
488 
489   if (ResultVals.empty())
490     return TranslateLegalizeResults(Op, Node);
491 
492   Changed = true;
493   return RecursivelyLegalizeResults(Op, ResultVals);
494 }
495 
496 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
497 // merge them somehow?
498 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
499                                             SmallVectorImpl<SDValue> &Results) {
500   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
501 
502   if (!Res.getNode())
503     return false;
504 
505   if (Res == SDValue(Node, 0))
506     return true;
507 
508   // If the original node has one result, take the return value from
509   // LowerOperation as is. It might not be result number 0.
510   if (Node->getNumValues() == 1) {
511     Results.push_back(Res);
512     return true;
513   }
514 
515   // If the original node has multiple results, then the return node should
516   // have the same number of results.
517   assert((Node->getNumValues() == Res->getNumValues()) &&
518          "Lowering returned the wrong number of results!");
519 
520   // Places new result values base on N result number.
521   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
522     Results.push_back(Res.getValue(I));
523 
524   return true;
525 }
526 
527 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
528   // For a few operations there is a specific concept for promotion based on
529   // the operand's type.
530   switch (Node->getOpcode()) {
531   case ISD::SINT_TO_FP:
532   case ISD::UINT_TO_FP:
533   case ISD::STRICT_SINT_TO_FP:
534   case ISD::STRICT_UINT_TO_FP:
535     // "Promote" the operation by extending the operand.
536     PromoteINT_TO_FP(Node, Results);
537     return;
538   case ISD::FP_TO_UINT:
539   case ISD::FP_TO_SINT:
540   case ISD::STRICT_FP_TO_UINT:
541   case ISD::STRICT_FP_TO_SINT:
542     // Promote the operation by extending the operand.
543     PromoteFP_TO_INT(Node, Results);
544     return;
545   case ISD::FP_ROUND:
546   case ISD::FP_EXTEND:
547     // These operations are used to do promotion so they can't be promoted
548     // themselves.
549     llvm_unreachable("Don't know how to promote this operation!");
550   }
551 
552   // There are currently two cases of vector promotion:
553   // 1) Bitcasting a vector of integers to a different type to a vector of the
554   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
555   // 2) Extending a vector of floats to a vector of the same number of larger
556   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
557   assert(Node->getNumValues() == 1 &&
558          "Can't promote a vector with multiple results!");
559   MVT VT = Node->getSimpleValueType(0);
560   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
561   SDLoc dl(Node);
562   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
563 
564   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
565     if (Node->getOperand(j).getValueType().isVector())
566       if (Node->getOperand(j)
567               .getValueType()
568               .getVectorElementType()
569               .isFloatingPoint() &&
570           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
571         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
572       else
573         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
574     else
575       Operands[j] = Node->getOperand(j);
576   }
577 
578   SDValue Res =
579       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
580 
581   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
582       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
583        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
584     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
585   else
586     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
587 
588   Results.push_back(Res);
589 }
590 
591 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
592                                        SmallVectorImpl<SDValue> &Results) {
593   // INT_TO_FP operations may require the input operand be promoted even
594   // when the type is otherwise legal.
595   bool IsStrict = Node->isStrictFPOpcode();
596   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
597   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
598   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
599          "Vectors have different number of elements!");
600 
601   SDLoc dl(Node);
602   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
603 
604   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
605                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
606                      ? ISD::ZERO_EXTEND
607                      : ISD::SIGN_EXTEND;
608   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
609     if (Node->getOperand(j).getValueType().isVector())
610       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
611     else
612       Operands[j] = Node->getOperand(j);
613   }
614 
615   if (IsStrict) {
616     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
617                               {Node->getValueType(0), MVT::Other}, Operands);
618     Results.push_back(Res);
619     Results.push_back(Res.getValue(1));
620     return;
621   }
622 
623   SDValue Res =
624       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
625   Results.push_back(Res);
626 }
627 
628 // For FP_TO_INT we promote the result type to a vector type with wider
629 // elements and then truncate the result.  This is different from the default
630 // PromoteVector which uses bitcast to promote thus assumning that the
631 // promoted vector type has the same overall size.
632 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
633                                        SmallVectorImpl<SDValue> &Results) {
634   MVT VT = Node->getSimpleValueType(0);
635   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
636   bool IsStrict = Node->isStrictFPOpcode();
637   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
638          "Vectors have different number of elements!");
639 
640   unsigned NewOpc = Node->getOpcode();
641   // Change FP_TO_UINT to FP_TO_SINT if possible.
642   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
643   if (NewOpc == ISD::FP_TO_UINT &&
644       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
645     NewOpc = ISD::FP_TO_SINT;
646 
647   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
648       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
649     NewOpc = ISD::STRICT_FP_TO_SINT;
650 
651   SDLoc dl(Node);
652   SDValue Promoted, Chain;
653   if (IsStrict) {
654     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
655                            {Node->getOperand(0), Node->getOperand(1)});
656     Chain = Promoted.getValue(1);
657   } else
658     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
659 
660   // Assert that the converted value fits in the original type.  If it doesn't
661   // (eg: because the value being converted is too big), then the result of the
662   // original operation was undefined anyway, so the assert is still correct.
663   if (Node->getOpcode() == ISD::FP_TO_UINT ||
664       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
665     NewOpc = ISD::AssertZext;
666   else
667     NewOpc = ISD::AssertSext;
668 
669   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
670                          DAG.getValueType(VT.getScalarType()));
671   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
672   Results.push_back(Promoted);
673   if (IsStrict)
674     Results.push_back(Chain);
675 }
676 
677 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
678   LoadSDNode *LD = cast<LoadSDNode>(N);
679   return TLI.scalarizeVectorLoad(LD, DAG);
680 }
681 
682 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
683   StoreSDNode *ST = cast<StoreSDNode>(N);
684   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
685   return TF;
686 }
687 
688 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
689   switch (Node->getOpcode()) {
690   case ISD::LOAD: {
691     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
692     Results.push_back(Tmp.first);
693     Results.push_back(Tmp.second);
694     return;
695   }
696   case ISD::STORE:
697     Results.push_back(ExpandStore(Node));
698     return;
699   case ISD::MERGE_VALUES:
700     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
701       Results.push_back(Node->getOperand(i));
702     return;
703   case ISD::SIGN_EXTEND_INREG:
704     Results.push_back(ExpandSEXTINREG(Node));
705     return;
706   case ISD::ANY_EXTEND_VECTOR_INREG:
707     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
708     return;
709   case ISD::SIGN_EXTEND_VECTOR_INREG:
710     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
711     return;
712   case ISD::ZERO_EXTEND_VECTOR_INREG:
713     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
714     return;
715   case ISD::BSWAP:
716     Results.push_back(ExpandBSWAP(Node));
717     return;
718   case ISD::VSELECT:
719     Results.push_back(ExpandVSELECT(Node));
720     return;
721   case ISD::SELECT:
722     Results.push_back(ExpandSELECT(Node));
723     return;
724   case ISD::FP_TO_UINT:
725     ExpandFP_TO_UINT(Node, Results);
726     return;
727   case ISD::UINT_TO_FP:
728     ExpandUINT_TO_FLOAT(Node, Results);
729     return;
730   case ISD::FNEG:
731     Results.push_back(ExpandFNEG(Node));
732     return;
733   case ISD::FSUB:
734     ExpandFSUB(Node, Results);
735     return;
736   case ISD::SETCC:
737     ExpandSETCC(Node, Results);
738     return;
739   case ISD::ABS:
740     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
741       Results.push_back(Expanded);
742       return;
743     }
744     break;
745   case ISD::BITREVERSE:
746     ExpandBITREVERSE(Node, Results);
747     return;
748   case ISD::CTPOP:
749     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
750       Results.push_back(Expanded);
751       return;
752     }
753     break;
754   case ISD::CTLZ:
755   case ISD::CTLZ_ZERO_UNDEF:
756     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
757       Results.push_back(Expanded);
758       return;
759     }
760     break;
761   case ISD::CTTZ:
762   case ISD::CTTZ_ZERO_UNDEF:
763     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
764       Results.push_back(Expanded);
765       return;
766     }
767     break;
768   case ISD::FSHL:
769   case ISD::FSHR:
770     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
771       Results.push_back(Expanded);
772       return;
773     }
774     break;
775   case ISD::ROTL:
776   case ISD::ROTR:
777     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
778       Results.push_back(Expanded);
779       return;
780     }
781     break;
782   case ISD::FMINNUM:
783   case ISD::FMAXNUM:
784     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
785       Results.push_back(Expanded);
786       return;
787     }
788     break;
789   case ISD::SMIN:
790   case ISD::SMAX:
791   case ISD::UMIN:
792   case ISD::UMAX:
793     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
794       Results.push_back(Expanded);
795       return;
796     }
797     break;
798   case ISD::UADDO:
799   case ISD::USUBO:
800     ExpandUADDSUBO(Node, Results);
801     return;
802   case ISD::SADDO:
803   case ISD::SSUBO:
804     ExpandSADDSUBO(Node, Results);
805     return;
806   case ISD::UMULO:
807   case ISD::SMULO:
808     ExpandMULO(Node, Results);
809     return;
810   case ISD::USUBSAT:
811   case ISD::SSUBSAT:
812   case ISD::UADDSAT:
813   case ISD::SADDSAT:
814     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
815       Results.push_back(Expanded);
816       return;
817     }
818     break;
819   case ISD::SMULFIX:
820   case ISD::UMULFIX:
821     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
822       Results.push_back(Expanded);
823       return;
824     }
825     break;
826   case ISD::SMULFIXSAT:
827   case ISD::UMULFIXSAT:
828     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
829     // why. Maybe it results in worse codegen compared to the unroll for some
830     // targets? This should probably be investigated. And if we still prefer to
831     // unroll an explanation could be helpful.
832     break;
833   case ISD::SDIVFIX:
834   case ISD::UDIVFIX:
835     ExpandFixedPointDiv(Node, Results);
836     return;
837   case ISD::SDIVFIXSAT:
838   case ISD::UDIVFIXSAT:
839     break;
840 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
841   case ISD::STRICT_##DAGN:
842 #include "llvm/IR/ConstrainedOps.def"
843     ExpandStrictFPOp(Node, Results);
844     return;
845   case ISD::VECREDUCE_ADD:
846   case ISD::VECREDUCE_MUL:
847   case ISD::VECREDUCE_AND:
848   case ISD::VECREDUCE_OR:
849   case ISD::VECREDUCE_XOR:
850   case ISD::VECREDUCE_SMAX:
851   case ISD::VECREDUCE_SMIN:
852   case ISD::VECREDUCE_UMAX:
853   case ISD::VECREDUCE_UMIN:
854   case ISD::VECREDUCE_FADD:
855   case ISD::VECREDUCE_FMUL:
856   case ISD::VECREDUCE_FMAX:
857   case ISD::VECREDUCE_FMIN:
858     Results.push_back(TLI.expandVecReduce(Node, DAG));
859     return;
860   case ISD::VECREDUCE_SEQ_FADD:
861   case ISD::VECREDUCE_SEQ_FMUL:
862     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
863     return;
864   case ISD::SREM:
865   case ISD::UREM:
866     ExpandREM(Node, Results);
867     return;
868   }
869 
870   Results.push_back(DAG.UnrollVectorOp(Node));
871 }
872 
873 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
874   // Lower a select instruction where the condition is a scalar and the
875   // operands are vectors. Lower this select to VSELECT and implement it
876   // using XOR AND OR. The selector bit is broadcasted.
877   EVT VT = Node->getValueType(0);
878   SDLoc DL(Node);
879 
880   SDValue Mask = Node->getOperand(0);
881   SDValue Op1 = Node->getOperand(1);
882   SDValue Op2 = Node->getOperand(2);
883 
884   assert(VT.isVector() && !Mask.getValueType().isVector()
885          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
886 
887   // If we can't even use the basic vector operations of
888   // AND,OR,XOR, we will have to scalarize the op.
889   // Notice that the operation may be 'promoted' which means that it is
890   // 'bitcasted' to another type which is handled.
891   // Also, we need to be able to construct a splat vector using either
892   // BUILD_VECTOR or SPLAT_VECTOR.
893   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
894   // BUILD_VECTOR?
895   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
896       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
897       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
898       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
899                                                       : ISD::SPLAT_VECTOR,
900                              VT) == TargetLowering::Expand)
901     return DAG.UnrollVectorOp(Node);
902 
903   // Generate a mask operand.
904   EVT MaskTy = VT.changeVectorElementTypeToInteger();
905 
906   // What is the size of each element in the vector mask.
907   EVT BitTy = MaskTy.getScalarType();
908 
909   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
910                        DAG.getConstant(0, DL, BitTy));
911 
912   // Broadcast the mask so that the entire vector is all one or all zero.
913   if (VT.isFixedLengthVector())
914     Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
915   else
916     Mask = DAG.getSplatVector(MaskTy, DL, Mask);
917 
918   // Bitcast the operands to be the same type as the mask.
919   // This is needed when we select between FP types because
920   // the mask is a vector of integers.
921   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
922   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
923 
924   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
925 
926   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
927   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
928   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
929   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
930 }
931 
932 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
933   EVT VT = Node->getValueType(0);
934 
935   // Make sure that the SRA and SHL instructions are available.
936   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
937       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
938     return DAG.UnrollVectorOp(Node);
939 
940   SDLoc DL(Node);
941   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
942 
943   unsigned BW = VT.getScalarSizeInBits();
944   unsigned OrigBW = OrigTy.getScalarSizeInBits();
945   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
946 
947   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
948   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
949 }
950 
951 // Generically expand a vector anyext in register to a shuffle of the relevant
952 // lanes into the appropriate locations, with other lanes left undef.
953 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
954   SDLoc DL(Node);
955   EVT VT = Node->getValueType(0);
956   int NumElements = VT.getVectorNumElements();
957   SDValue Src = Node->getOperand(0);
958   EVT SrcVT = Src.getValueType();
959   int NumSrcElements = SrcVT.getVectorNumElements();
960 
961   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
962   // into a larger vector type.
963   if (SrcVT.bitsLE(VT)) {
964     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
965            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
966     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
967     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
968                              NumSrcElements);
969     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
970                       Src, DAG.getVectorIdxConstant(0, DL));
971   }
972 
973   // Build a base mask of undef shuffles.
974   SmallVector<int, 16> ShuffleMask;
975   ShuffleMask.resize(NumSrcElements, -1);
976 
977   // Place the extended lanes into the correct locations.
978   int ExtLaneScale = NumSrcElements / NumElements;
979   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
980   for (int i = 0; i < NumElements; ++i)
981     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
982 
983   return DAG.getNode(
984       ISD::BITCAST, DL, VT,
985       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
986 }
987 
988 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
989   SDLoc DL(Node);
990   EVT VT = Node->getValueType(0);
991   SDValue Src = Node->getOperand(0);
992   EVT SrcVT = Src.getValueType();
993 
994   // First build an any-extend node which can be legalized above when we
995   // recurse through it.
996   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
997 
998   // Now we need sign extend. Do this by shifting the elements. Even if these
999   // aren't legal operations, they have a better chance of being legalized
1000   // without full scalarization than the sign extension does.
1001   unsigned EltWidth = VT.getScalarSizeInBits();
1002   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1003   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1004   return DAG.getNode(ISD::SRA, DL, VT,
1005                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1006                      ShiftAmount);
1007 }
1008 
1009 // Generically expand a vector zext in register to a shuffle of the relevant
1010 // lanes into the appropriate locations, a blend of zero into the high bits,
1011 // and a bitcast to the wider element type.
1012 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1013   SDLoc DL(Node);
1014   EVT VT = Node->getValueType(0);
1015   int NumElements = VT.getVectorNumElements();
1016   SDValue Src = Node->getOperand(0);
1017   EVT SrcVT = Src.getValueType();
1018   int NumSrcElements = SrcVT.getVectorNumElements();
1019 
1020   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1021   // into a larger vector type.
1022   if (SrcVT.bitsLE(VT)) {
1023     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1024            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1025     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1026     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1027                              NumSrcElements);
1028     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1029                       Src, DAG.getVectorIdxConstant(0, DL));
1030   }
1031 
1032   // Build up a zero vector to blend into this one.
1033   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1034 
1035   // Shuffle the incoming lanes into the correct position, and pull all other
1036   // lanes from the zero vector.
1037   SmallVector<int, 16> ShuffleMask;
1038   ShuffleMask.reserve(NumSrcElements);
1039   for (int i = 0; i < NumSrcElements; ++i)
1040     ShuffleMask.push_back(i);
1041 
1042   int ExtLaneScale = NumSrcElements / NumElements;
1043   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1044   for (int i = 0; i < NumElements; ++i)
1045     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1046 
1047   return DAG.getNode(ISD::BITCAST, DL, VT,
1048                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1049 }
1050 
1051 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1052   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1053   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1054     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1055       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1056 }
1057 
1058 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1059   EVT VT = Node->getValueType(0);
1060 
1061   // Scalable vectors can't use shuffle expansion.
1062   if (VT.isScalableVector())
1063     return TLI.expandBSWAP(Node, DAG);
1064 
1065   // Generate a byte wise shuffle mask for the BSWAP.
1066   SmallVector<int, 16> ShuffleMask;
1067   createBSWAPShuffleMask(VT, ShuffleMask);
1068   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1069 
1070   // Only emit a shuffle if the mask is legal.
1071   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1072     SDLoc DL(Node);
1073     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1074     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1075     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1076   }
1077 
1078   // If we have the appropriate vector bit operations, it is better to use them
1079   // than unrolling and expanding each component.
1080   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1081       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1082       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1083       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1084     return TLI.expandBSWAP(Node, DAG);
1085 
1086   // Otherwise unroll.
1087   return DAG.UnrollVectorOp(Node);
1088 }
1089 
1090 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1091                                        SmallVectorImpl<SDValue> &Results) {
1092   EVT VT = Node->getValueType(0);
1093 
1094   // We can't unroll or use shuffles for scalable vectors.
1095   if (VT.isScalableVector()) {
1096     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1097     return;
1098   }
1099 
1100   // If we have the scalar operation, it's probably cheaper to unroll it.
1101   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1102     SDValue Tmp = DAG.UnrollVectorOp(Node);
1103     Results.push_back(Tmp);
1104     return;
1105   }
1106 
1107   // If the vector element width is a whole number of bytes, test if its legal
1108   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1109   // vector. This greatly reduces the number of bit shifts necessary.
1110   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1111   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1112     SmallVector<int, 16> BSWAPMask;
1113     createBSWAPShuffleMask(VT, BSWAPMask);
1114 
1115     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1116     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1117         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1118          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1119           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1120           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1121           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1122       SDLoc DL(Node);
1123       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1124       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1125                                 BSWAPMask);
1126       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1127       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1128       Results.push_back(Op);
1129       return;
1130     }
1131   }
1132 
1133   // If we have the appropriate vector bit operations, it is better to use them
1134   // than unrolling and expanding each component.
1135   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1136       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1137       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1138       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1139     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1140     return;
1141   }
1142 
1143   // Otherwise unroll.
1144   SDValue Tmp = DAG.UnrollVectorOp(Node);
1145   Results.push_back(Tmp);
1146 }
1147 
1148 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1149   // Implement VSELECT in terms of XOR, AND, OR
1150   // on platforms which do not support blend natively.
1151   SDLoc DL(Node);
1152 
1153   SDValue Mask = Node->getOperand(0);
1154   SDValue Op1 = Node->getOperand(1);
1155   SDValue Op2 = Node->getOperand(2);
1156 
1157   EVT VT = Mask.getValueType();
1158 
1159   // If we can't even use the basic vector operations of
1160   // AND,OR,XOR, we will have to scalarize the op.
1161   // Notice that the operation may be 'promoted' which means that it is
1162   // 'bitcasted' to another type which is handled.
1163   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1164       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1165       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1166     return DAG.UnrollVectorOp(Node);
1167 
1168   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1169   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1170   // vector constant to mask with.
1171   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1172   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1173   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1174       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1175         Op1.getValueType().getVectorElementType() == MVT::i1))
1176     return DAG.UnrollVectorOp(Node);
1177 
1178   // If the mask and the type are different sizes, unroll the vector op. This
1179   // can occur when getSetCCResultType returns something that is different in
1180   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1181   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1182     return DAG.UnrollVectorOp(Node);
1183 
1184   // Bitcast the operands to be the same type as the mask.
1185   // This is needed when we select between FP types because
1186   // the mask is a vector of integers.
1187   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1188   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1189 
1190   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1191 
1192   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1193   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1194   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1195   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1196 }
1197 
1198 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1199                                        SmallVectorImpl<SDValue> &Results) {
1200   // Attempt to expand using TargetLowering.
1201   SDValue Result, Chain;
1202   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1203     Results.push_back(Result);
1204     if (Node->isStrictFPOpcode())
1205       Results.push_back(Chain);
1206     return;
1207   }
1208 
1209   // Otherwise go ahead and unroll.
1210   if (Node->isStrictFPOpcode()) {
1211     UnrollStrictFPOp(Node, Results);
1212     return;
1213   }
1214 
1215   Results.push_back(DAG.UnrollVectorOp(Node));
1216 }
1217 
1218 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1219                                           SmallVectorImpl<SDValue> &Results) {
1220   bool IsStrict = Node->isStrictFPOpcode();
1221   unsigned OpNo = IsStrict ? 1 : 0;
1222   SDValue Src = Node->getOperand(OpNo);
1223   EVT VT = Src.getValueType();
1224   SDLoc DL(Node);
1225 
1226   // Attempt to expand using TargetLowering.
1227   SDValue Result;
1228   SDValue Chain;
1229   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1230     Results.push_back(Result);
1231     if (IsStrict)
1232       Results.push_back(Chain);
1233     return;
1234   }
1235 
1236   // Make sure that the SINT_TO_FP and SRL instructions are available.
1237   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1238                          TargetLowering::Expand) ||
1239        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1240                         TargetLowering::Expand)) ||
1241       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1242     if (IsStrict) {
1243       UnrollStrictFPOp(Node, Results);
1244       return;
1245     }
1246 
1247     Results.push_back(DAG.UnrollVectorOp(Node));
1248     return;
1249   }
1250 
1251   unsigned BW = VT.getScalarSizeInBits();
1252   assert((BW == 64 || BW == 32) &&
1253          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1254 
1255   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1256 
1257   // Constants to clear the upper part of the word.
1258   // Notice that we can also use SHL+SHR, but using a constant is slightly
1259   // faster on x86.
1260   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1261   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1262 
1263   // Two to the power of half-word-size.
1264   SDValue TWOHW =
1265       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1266 
1267   // Clear upper part of LO, lower HI
1268   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1269   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1270 
1271   if (IsStrict) {
1272     // Convert hi and lo to floats
1273     // Convert the hi part back to the upper values
1274     // TODO: Can any fast-math-flags be set on these nodes?
1275     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1276                               {Node->getValueType(0), MVT::Other},
1277                               {Node->getOperand(0), HI});
1278     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1279                       {fHI.getValue(1), fHI, TWOHW});
1280     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1281                               {Node->getValueType(0), MVT::Other},
1282                               {Node->getOperand(0), LO});
1283 
1284     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1285                              fLO.getValue(1));
1286 
1287     // Add the two halves
1288     SDValue Result =
1289         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1290                     {TF, fHI, fLO});
1291 
1292     Results.push_back(Result);
1293     Results.push_back(Result.getValue(1));
1294     return;
1295   }
1296 
1297   // Convert hi and lo to floats
1298   // Convert the hi part back to the upper values
1299   // TODO: Can any fast-math-flags be set on these nodes?
1300   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1301   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1302   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1303 
1304   // Add the two halves
1305   Results.push_back(
1306       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1307 }
1308 
1309 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1310   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1311     SDLoc DL(Node);
1312     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1313     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1314     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1315                        Node->getOperand(0));
1316   }
1317   return DAG.UnrollVectorOp(Node);
1318 }
1319 
1320 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1321                                  SmallVectorImpl<SDValue> &Results) {
1322   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1323   // we can defer this to operation legalization where it will be lowered as
1324   // a+(-b).
1325   EVT VT = Node->getValueType(0);
1326   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1327       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1328     return; // Defer to LegalizeDAG
1329 
1330   SDValue Tmp = DAG.UnrollVectorOp(Node);
1331   Results.push_back(Tmp);
1332 }
1333 
1334 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1335                                   SmallVectorImpl<SDValue> &Results) {
1336   bool NeedInvert = false;
1337   SDLoc dl(Node);
1338   MVT OpVT = Node->getOperand(0).getSimpleValueType();
1339   ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
1340 
1341   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1342     Results.push_back(UnrollVSETCC(Node));
1343     return;
1344   }
1345 
1346   SDValue Chain;
1347   SDValue LHS = Node->getOperand(0);
1348   SDValue RHS = Node->getOperand(1);
1349   SDValue CC = Node->getOperand(2);
1350   bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS,
1351                                              RHS, CC, NeedInvert, dl, Chain);
1352 
1353   if (Legalized) {
1354     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1355     // condition code, create a new SETCC node.
1356     if (CC.getNode())
1357       LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1358                         Node->getFlags());
1359 
1360     // If we expanded the SETCC by inverting the condition code, then wrap
1361     // the existing SETCC in a NOT to restore the intended condition.
1362     if (NeedInvert)
1363       LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1364   } else {
1365     // Otherwise, SETCC for the given comparison type must be completely
1366     // illegal; expand it into a SELECT_CC.
1367     EVT VT = Node->getValueType(0);
1368     LHS =
1369         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1370                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1371                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1372     LHS->setFlags(Node->getFlags());
1373   }
1374 
1375   Results.push_back(LHS);
1376 }
1377 
1378 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1379                                      SmallVectorImpl<SDValue> &Results) {
1380   SDValue Result, Overflow;
1381   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1382   Results.push_back(Result);
1383   Results.push_back(Overflow);
1384 }
1385 
1386 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1387                                      SmallVectorImpl<SDValue> &Results) {
1388   SDValue Result, Overflow;
1389   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1390   Results.push_back(Result);
1391   Results.push_back(Overflow);
1392 }
1393 
1394 void VectorLegalizer::ExpandMULO(SDNode *Node,
1395                                  SmallVectorImpl<SDValue> &Results) {
1396   SDValue Result, Overflow;
1397   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1398     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1399 
1400   Results.push_back(Result);
1401   Results.push_back(Overflow);
1402 }
1403 
1404 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1405                                           SmallVectorImpl<SDValue> &Results) {
1406   SDNode *N = Node;
1407   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1408           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1409     Results.push_back(Expanded);
1410 }
1411 
1412 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1413                                        SmallVectorImpl<SDValue> &Results) {
1414   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1415     ExpandUINT_TO_FLOAT(Node, Results);
1416     return;
1417   }
1418   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1419     ExpandFP_TO_UINT(Node, Results);
1420     return;
1421   }
1422 
1423   UnrollStrictFPOp(Node, Results);
1424 }
1425 
1426 void VectorLegalizer::ExpandREM(SDNode *Node,
1427                                 SmallVectorImpl<SDValue> &Results) {
1428   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1429          "Expected REM node");
1430 
1431   SDValue Result;
1432   if (!TLI.expandREM(Node, Result, DAG))
1433     Result = DAG.UnrollVectorOp(Node);
1434   Results.push_back(Result);
1435 }
1436 
1437 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1438                                        SmallVectorImpl<SDValue> &Results) {
1439   EVT VT = Node->getValueType(0);
1440   EVT EltVT = VT.getVectorElementType();
1441   unsigned NumElems = VT.getVectorNumElements();
1442   unsigned NumOpers = Node->getNumOperands();
1443   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1444 
1445   EVT TmpEltVT = EltVT;
1446   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1447       Node->getOpcode() == ISD::STRICT_FSETCCS)
1448     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1449                                       *DAG.getContext(), TmpEltVT);
1450 
1451   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1452   SDValue Chain = Node->getOperand(0);
1453   SDLoc dl(Node);
1454 
1455   SmallVector<SDValue, 32> OpValues;
1456   SmallVector<SDValue, 32> OpChains;
1457   for (unsigned i = 0; i < NumElems; ++i) {
1458     SmallVector<SDValue, 4> Opers;
1459     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1460 
1461     // The Chain is the first operand.
1462     Opers.push_back(Chain);
1463 
1464     // Now process the remaining operands.
1465     for (unsigned j = 1; j < NumOpers; ++j) {
1466       SDValue Oper = Node->getOperand(j);
1467       EVT OperVT = Oper.getValueType();
1468 
1469       if (OperVT.isVector())
1470         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1471                            OperVT.getVectorElementType(), Oper, Idx);
1472 
1473       Opers.push_back(Oper);
1474     }
1475 
1476     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1477     SDValue ScalarResult = ScalarOp.getValue(0);
1478     SDValue ScalarChain = ScalarOp.getValue(1);
1479 
1480     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1481         Node->getOpcode() == ISD::STRICT_FSETCCS)
1482       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1483                                    DAG.getAllOnesConstant(dl, EltVT),
1484                                    DAG.getConstant(0, dl, EltVT));
1485 
1486     OpValues.push_back(ScalarResult);
1487     OpChains.push_back(ScalarChain);
1488   }
1489 
1490   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1491   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1492 
1493   Results.push_back(Result);
1494   Results.push_back(NewChain);
1495 }
1496 
1497 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1498   EVT VT = Node->getValueType(0);
1499   unsigned NumElems = VT.getVectorNumElements();
1500   EVT EltVT = VT.getVectorElementType();
1501   SDValue LHS = Node->getOperand(0);
1502   SDValue RHS = Node->getOperand(1);
1503   SDValue CC = Node->getOperand(2);
1504   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1505   SDLoc dl(Node);
1506   SmallVector<SDValue, 8> Ops(NumElems);
1507   for (unsigned i = 0; i < NumElems; ++i) {
1508     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1509                                   DAG.getVectorIdxConstant(i, dl));
1510     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1511                                   DAG.getVectorIdxConstant(i, dl));
1512     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1513                          TLI.getSetCCResultType(DAG.getDataLayout(),
1514                                                 *DAG.getContext(), TmpEltVT),
1515                          LHSElem, RHSElem, CC);
1516     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1517                            DAG.getConstant(0, dl, EltVT));
1518   }
1519   return DAG.getBuildVector(VT, dl, Ops);
1520 }
1521 
1522 bool SelectionDAG::LegalizeVectors() {
1523   return VectorLegalizer(*this).Run();
1524 }
1525