1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/RuntimeLibcalls.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 146 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, 147 RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128, 148 RTLIB::Libcall Call_IEXT); 149 void ExpandArgFPLibCall(SDNode *Node, 150 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 151 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 152 RTLIB::Libcall Call_PPCF128, 153 SmallVectorImpl<SDValue> &Results); 154 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 155 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 158 const SDLoc &dl); 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl, SDValue ChainIn); 161 SDValue ExpandBUILD_VECTOR(SDNode *Node); 162 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 163 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 164 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 165 SmallVectorImpl<SDValue> &Results); 166 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 167 SDValue Value) const; 168 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 169 SDValue NewIntValue) const; 170 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 171 SDValue ExpandFABS(SDNode *Node) const; 172 SDValue ExpandFNEG(SDNode *Node) const; 173 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 174 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 175 SmallVectorImpl<SDValue> &Results); 176 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 179 180 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 181 182 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 183 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 184 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 185 186 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 187 SDValue ExpandConstant(ConstantSDNode *CP); 188 189 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 190 bool ExpandNode(SDNode *Node); 191 void ConvertNodeToLibcall(SDNode *Node); 192 void PromoteNode(SDNode *Node); 193 194 public: 195 // Node replacement helpers 196 197 void ReplacedNode(SDNode *N) { 198 LegalizedNodes.erase(N); 199 if (UpdatedNodes) 200 UpdatedNodes->insert(N); 201 } 202 203 void ReplaceNode(SDNode *Old, SDNode *New) { 204 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 205 dbgs() << " with: "; New->dump(&DAG)); 206 207 assert(Old->getNumValues() == New->getNumValues() && 208 "Replacing one node with another that produces a different number " 209 "of values!"); 210 DAG.ReplaceAllUsesWith(Old, New); 211 if (UpdatedNodes) 212 UpdatedNodes->insert(New); 213 ReplacedNode(Old); 214 } 215 216 void ReplaceNode(SDValue Old, SDValue New) { 217 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 218 dbgs() << " with: "; New->dump(&DAG)); 219 220 DAG.ReplaceAllUsesWith(Old, New); 221 if (UpdatedNodes) 222 UpdatedNodes->insert(New.getNode()); 223 ReplacedNode(Old.getNode()); 224 } 225 226 void ReplaceNode(SDNode *Old, const SDValue *New) { 227 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 228 229 DAG.ReplaceAllUsesWith(Old, New); 230 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 231 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 232 New[i]->dump(&DAG)); 233 if (UpdatedNodes) 234 UpdatedNodes->insert(New[i].getNode()); 235 } 236 ReplacedNode(Old); 237 } 238 239 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 240 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 241 dbgs() << " with: "; New->dump(&DAG)); 242 243 DAG.ReplaceAllUsesOfValueWith(Old, New); 244 if (UpdatedNodes) 245 UpdatedNodes->insert(New.getNode()); 246 ReplacedNode(Old.getNode()); 247 } 248 }; 249 250 } // end anonymous namespace 251 252 /// Return a vector shuffle operation which 253 /// performs the same shuffle in terms of order or result bytes, but on a type 254 /// whose vector element type is narrower than the original shuffle type. 255 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 256 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 257 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 258 ArrayRef<int> Mask) const { 259 unsigned NumMaskElts = VT.getVectorNumElements(); 260 unsigned NumDestElts = NVT.getVectorNumElements(); 261 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 262 263 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 264 265 if (NumEltsGrowth == 1) 266 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 267 268 SmallVector<int, 8> NewMask; 269 for (unsigned i = 0; i != NumMaskElts; ++i) { 270 int Idx = Mask[i]; 271 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 272 if (Idx < 0) 273 NewMask.push_back(-1); 274 else 275 NewMask.push_back(Idx * NumEltsGrowth + j); 276 } 277 } 278 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 279 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 280 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 281 } 282 283 /// Expands the ConstantFP node to an integer constant or 284 /// a load from the constant pool. 285 SDValue 286 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 287 bool Extend = false; 288 SDLoc dl(CFP); 289 290 // If a FP immediate is precise when represented as a float and if the 291 // target can do an extending load from float to double, we put it into 292 // the constant pool as a float, even if it's is statically typed as a 293 // double. This shrinks FP constants and canonicalizes them for targets where 294 // an FP extending load is the same cost as a normal load (such as on the x87 295 // fp stack or PPC FP unit). 296 EVT VT = CFP->getValueType(0); 297 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 298 if (!UseCP) { 299 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 300 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 301 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 302 } 303 304 APFloat APF = CFP->getValueAPF(); 305 EVT OrigVT = VT; 306 EVT SVT = VT; 307 308 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 309 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 310 if (!APF.isSignaling()) { 311 while (SVT != MVT::f32 && SVT != MVT::f16) { 312 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 313 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 314 // Only do this if the target has a native EXTLOAD instruction from 315 // smaller type. 316 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 317 TLI.ShouldShrinkFPConstant(OrigVT)) { 318 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 319 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 320 VT = SVT; 321 Extend = true; 322 } 323 } 324 } 325 326 SDValue CPIdx = 327 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 328 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 329 if (Extend) { 330 SDValue Result = DAG.getExtLoad( 331 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 332 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 333 Alignment); 334 return Result; 335 } 336 SDValue Result = DAG.getLoad( 337 OrigVT, dl, DAG.getEntryNode(), CPIdx, 338 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 339 return Result; 340 } 341 342 /// Expands the Constant node to a load from the constant pool. 343 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 344 SDLoc dl(CP); 345 EVT VT = CP->getValueType(0); 346 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 347 TLI.getPointerTy(DAG.getDataLayout())); 348 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 349 SDValue Result = DAG.getLoad( 350 VT, dl, DAG.getEntryNode(), CPIdx, 351 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 352 return Result; 353 } 354 355 /// Some target cannot handle a variable insertion index for the 356 /// INSERT_VECTOR_ELT instruction. In this case, it 357 /// is necessary to spill the vector being inserted into to memory, perform 358 /// the insert there, and then read the result back. 359 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 360 SDValue Val, 361 SDValue Idx, 362 const SDLoc &dl) { 363 SDValue Tmp1 = Vec; 364 SDValue Tmp2 = Val; 365 SDValue Tmp3 = Idx; 366 367 // If the target doesn't support this, we have to spill the input vector 368 // to a temporary stack slot, update the element, then reload it. This is 369 // badness. We could also load the value into a vector register (either 370 // with a "move to register" or "extload into register" instruction, then 371 // permute it into place, if the idx is a constant and if the idx is 372 // supported by the target. 373 EVT VT = Tmp1.getValueType(); 374 EVT EltVT = VT.getVectorElementType(); 375 SDValue StackPtr = DAG.CreateStackTemporary(VT); 376 377 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 378 379 // Store the vector. 380 SDValue Ch = DAG.getStore( 381 DAG.getEntryNode(), dl, Tmp1, StackPtr, 382 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 383 384 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 385 386 // Store the scalar value. 387 Ch = DAG.getTruncStore( 388 Ch, dl, Tmp2, StackPtr2, 389 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 390 // Load the updated vector. 391 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 392 DAG.getMachineFunction(), SPFI)); 393 } 394 395 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 396 SDValue Idx, 397 const SDLoc &dl) { 398 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 399 // SCALAR_TO_VECTOR requires that the type of the value being inserted 400 // match the element type of the vector being created, except for 401 // integers in which case the inserted value can be over width. 402 EVT EltVT = Vec.getValueType().getVectorElementType(); 403 if (Val.getValueType() == EltVT || 404 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 405 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 406 Vec.getValueType(), Val); 407 408 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 409 // We generate a shuffle of InVec and ScVec, so the shuffle mask 410 // should be 0,1,2,3,4,5... with the appropriate element replaced with 411 // elt 0 of the RHS. 412 SmallVector<int, 8> ShufOps; 413 for (unsigned i = 0; i != NumElts; ++i) 414 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 415 416 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 417 } 418 } 419 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 420 } 421 422 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 423 if (!ISD::isNormalStore(ST)) 424 return SDValue(); 425 426 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 427 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 428 // FIXME: move this to the DAG Combiner! Note that we can't regress due 429 // to phase ordering between legalized code and the dag combiner. This 430 // probably means that we need to integrate dag combiner and legalizer 431 // together. 432 // We generally can't do this one for long doubles. 433 SDValue Chain = ST->getChain(); 434 SDValue Ptr = ST->getBasePtr(); 435 SDValue Value = ST->getValue(); 436 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 437 AAMDNodes AAInfo = ST->getAAInfo(); 438 SDLoc dl(ST); 439 440 // Don't optimise TargetConstantFP 441 if (Value.getOpcode() == ISD::TargetConstantFP) 442 return SDValue(); 443 444 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 445 if (CFP->getValueType(0) == MVT::f32 && 446 TLI.isTypeLegal(MVT::i32)) { 447 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 448 bitcastToAPInt().zextOrTrunc(32), 449 SDLoc(CFP), MVT::i32); 450 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 451 ST->getOriginalAlign(), MMOFlags, AAInfo); 452 } 453 454 if (CFP->getValueType(0) == MVT::f64) { 455 // If this target supports 64-bit registers, do a single 64-bit store. 456 if (TLI.isTypeLegal(MVT::i64)) { 457 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 458 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 459 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 460 ST->getOriginalAlign(), MMOFlags, AAInfo); 461 } 462 463 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 464 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 465 // stores. If the target supports neither 32- nor 64-bits, this 466 // xform is certainly not worth it. 467 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 468 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 469 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 470 if (DAG.getDataLayout().isBigEndian()) 471 std::swap(Lo, Hi); 472 473 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 474 ST->getOriginalAlign(), MMOFlags, AAInfo); 475 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 476 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 477 ST->getPointerInfo().getWithOffset(4), 478 ST->getOriginalAlign(), MMOFlags, AAInfo); 479 480 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 481 } 482 } 483 } 484 return SDValue(); 485 } 486 487 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 488 StoreSDNode *ST = cast<StoreSDNode>(Node); 489 SDValue Chain = ST->getChain(); 490 SDValue Ptr = ST->getBasePtr(); 491 SDLoc dl(Node); 492 493 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 494 AAMDNodes AAInfo = ST->getAAInfo(); 495 496 if (!ST->isTruncatingStore()) { 497 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 498 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 499 ReplaceNode(ST, OptStore); 500 return; 501 } 502 503 SDValue Value = ST->getValue(); 504 MVT VT = Value.getSimpleValueType(); 505 switch (TLI.getOperationAction(ISD::STORE, VT)) { 506 default: llvm_unreachable("This action is not supported yet!"); 507 case TargetLowering::Legal: { 508 // If this is an unaligned store and the target doesn't support it, 509 // expand it. 510 EVT MemVT = ST->getMemoryVT(); 511 const DataLayout &DL = DAG.getDataLayout(); 512 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 513 *ST->getMemOperand())) { 514 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 515 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 516 ReplaceNode(SDValue(ST, 0), Result); 517 } else 518 LLVM_DEBUG(dbgs() << "Legal store\n"); 519 break; 520 } 521 case TargetLowering::Custom: { 522 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 523 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 524 if (Res && Res != SDValue(Node, 0)) 525 ReplaceNode(SDValue(Node, 0), Res); 526 return; 527 } 528 case TargetLowering::Promote: { 529 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 530 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 531 "Can only promote stores to same size type"); 532 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 533 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 534 ST->getOriginalAlign(), MMOFlags, AAInfo); 535 ReplaceNode(SDValue(Node, 0), Result); 536 break; 537 } 538 } 539 return; 540 } 541 542 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 543 SDValue Value = ST->getValue(); 544 EVT StVT = ST->getMemoryVT(); 545 TypeSize StWidth = StVT.getSizeInBits(); 546 TypeSize StSize = StVT.getStoreSizeInBits(); 547 auto &DL = DAG.getDataLayout(); 548 549 if (StWidth != StSize) { 550 // Promote to a byte-sized store with upper bits zero if not 551 // storing an integral number of bytes. For example, promote 552 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 553 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 554 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 555 SDValue Result = 556 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 557 ST->getOriginalAlign(), MMOFlags, AAInfo); 558 ReplaceNode(SDValue(Node, 0), Result); 559 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 560 // If not storing a power-of-2 number of bits, expand as two stores. 561 assert(!StVT.isVector() && "Unsupported truncstore!"); 562 unsigned StWidthBits = StWidth.getFixedSize(); 563 unsigned LogStWidth = Log2_32(StWidthBits); 564 assert(LogStWidth < 32); 565 unsigned RoundWidth = 1 << LogStWidth; 566 assert(RoundWidth < StWidthBits); 567 unsigned ExtraWidth = StWidthBits - RoundWidth; 568 assert(ExtraWidth < RoundWidth); 569 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 570 "Store size not an integral number of bytes!"); 571 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 572 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 573 SDValue Lo, Hi; 574 unsigned IncrementSize; 575 576 if (DL.isLittleEndian()) { 577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 578 // Store the bottom RoundWidth bits. 579 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 580 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 581 582 // Store the remaining ExtraWidth bits. 583 IncrementSize = RoundWidth / 8; 584 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 585 Hi = DAG.getNode( 586 ISD::SRL, dl, Value.getValueType(), Value, 587 DAG.getConstant(RoundWidth, dl, 588 TLI.getShiftAmountTy(Value.getValueType(), DL))); 589 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 590 ST->getPointerInfo().getWithOffset(IncrementSize), 591 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 592 } else { 593 // Big endian - avoid unaligned stores. 594 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 595 // Store the top RoundWidth bits. 596 Hi = DAG.getNode( 597 ISD::SRL, dl, Value.getValueType(), Value, 598 DAG.getConstant(ExtraWidth, dl, 599 TLI.getShiftAmountTy(Value.getValueType(), DL))); 600 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 601 ST->getOriginalAlign(), MMOFlags, AAInfo); 602 603 // Store the remaining ExtraWidth bits. 604 IncrementSize = RoundWidth / 8; 605 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 606 DAG.getConstant(IncrementSize, dl, 607 Ptr.getValueType())); 608 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), 610 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 ST->getOriginalAlign(), MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = 654 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 655 ST->getOriginalAlign(), MMOFlags, AAInfo); 656 } 657 658 ReplaceNode(SDValue(Node, 0), Result); 659 break; 660 } 661 } 662 } 663 664 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 665 LoadSDNode *LD = cast<LoadSDNode>(Node); 666 SDValue Chain = LD->getChain(); // The chain. 667 SDValue Ptr = LD->getBasePtr(); // The base pointer. 668 SDValue Value; // The value returned by the load op. 669 SDLoc dl(Node); 670 671 ISD::LoadExtType ExtType = LD->getExtensionType(); 672 if (ExtType == ISD::NON_EXTLOAD) { 673 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 674 MVT VT = Node->getSimpleValueType(0); 675 SDValue RVal = SDValue(Node, 0); 676 SDValue RChain = SDValue(Node, 1); 677 678 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 679 default: llvm_unreachable("This action is not supported yet!"); 680 case TargetLowering::Legal: { 681 EVT MemVT = LD->getMemoryVT(); 682 const DataLayout &DL = DAG.getDataLayout(); 683 // If this is an unaligned load and the target doesn't support it, 684 // expand it. 685 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 686 *LD->getMemOperand())) { 687 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 688 } 689 break; 690 } 691 case TargetLowering::Custom: 692 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 693 RVal = Res; 694 RChain = Res.getValue(1); 695 } 696 break; 697 698 case TargetLowering::Promote: { 699 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 700 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 701 "Can only promote loads to same size type"); 702 703 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 704 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 705 RChain = Res.getValue(1); 706 break; 707 } 708 } 709 if (RChain.getNode() != Node) { 710 assert(RVal.getNode() != Node && "Load must be completely replaced"); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 712 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 713 if (UpdatedNodes) { 714 UpdatedNodes->insert(RVal.getNode()); 715 UpdatedNodes->insert(RChain.getNode()); 716 } 717 ReplacedNode(Node); 718 } 719 return; 720 } 721 722 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 723 EVT SrcVT = LD->getMemoryVT(); 724 TypeSize SrcWidth = SrcVT.getSizeInBits(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 752 Chain, Ptr, LD->getPointerInfo(), NVT, 753 LD->getOriginalAlign(), MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 774 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 775 assert(LogSrcWidth < 32); 776 unsigned RoundWidth = 1 << LogSrcWidth; 777 assert(RoundWidth < SrcWidthBits); 778 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 779 assert(ExtraWidth < RoundWidth); 780 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 781 "Load size not an integral number of bytes!"); 782 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 783 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 784 SDValue Lo, Hi, Ch; 785 unsigned IncrementSize; 786 auto &DL = DAG.getDataLayout(); 787 788 if (DL.isLittleEndian()) { 789 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 790 // Load the bottom RoundWidth bits. 791 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 792 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 793 MMOFlags, AAInfo); 794 795 // Load the remaining ExtraWidth bits. 796 IncrementSize = RoundWidth / 8; 797 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 798 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 799 LD->getPointerInfo().getWithOffset(IncrementSize), 800 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 821 MMOFlags, AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 829 830 // Build a factor node to remember that this load is independent of 831 // the other one. 832 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 833 Hi.getValue(1)); 834 835 // Move the top bits to the right place. 836 Hi = DAG.getNode( 837 ISD::SHL, dl, Hi.getValueType(), Hi, 838 DAG.getConstant(ExtraWidth, dl, 839 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 840 841 // Join the hi and lo parts. 842 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 843 } 844 845 Chain = Ch; 846 } else { 847 bool isCustom = false; 848 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 849 SrcVT.getSimpleVT())) { 850 default: llvm_unreachable("This action is not supported yet!"); 851 case TargetLowering::Custom: 852 isCustom = true; 853 LLVM_FALLTHROUGH; 854 case TargetLowering::Legal: 855 Value = SDValue(Node, 0); 856 Chain = SDValue(Node, 1); 857 858 if (isCustom) { 859 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 860 Value = Res; 861 Chain = Res.getValue(1); 862 } 863 } else { 864 // If this is an unaligned load and the target doesn't support it, 865 // expand it. 866 EVT MemVT = LD->getMemoryVT(); 867 const DataLayout &DL = DAG.getDataLayout(); 868 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 869 *LD->getMemOperand())) { 870 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 871 } 872 } 873 break; 874 875 case TargetLowering::Expand: { 876 EVT DestVT = Node->getValueType(0); 877 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 878 // If the source type is not legal, see if there is a legal extload to 879 // an intermediate type that we can then extend further. 880 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 881 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 882 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 883 // If we are loading a legal type, this is a non-extload followed by a 884 // full extend. 885 ISD::LoadExtType MidExtType = 886 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 887 888 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 889 SrcVT, LD->getMemOperand()); 890 unsigned ExtendOp = 891 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 892 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 893 Chain = Load.getValue(1); 894 break; 895 } 896 897 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 898 // normal undefined upper bits behavior to allow using an in-reg extend 899 // with the illegal FP type, so load as an integer and do the 900 // from-integer conversion. 901 if (SrcVT.getScalarType() == MVT::f16) { 902 EVT ISrcVT = SrcVT.changeTypeToInteger(); 903 EVT IDestVT = DestVT.changeTypeToInteger(); 904 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 905 906 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 907 Ptr, ISrcVT, LD->getMemOperand()); 908 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 909 Chain = Result.getValue(1); 910 break; 911 } 912 } 913 914 assert(!SrcVT.isVector() && 915 "Vector Loads are handled in LegalizeVectorOps"); 916 917 // FIXME: This does not work for vectors on most targets. Sign- 918 // and zero-extend operations are currently folded into extending 919 // loads, whether they are legal or not, and then we end up here 920 // without any support for legalizing them. 921 assert(ExtType != ISD::EXTLOAD && 922 "EXTLOAD should always be supported!"); 923 // Turn the unsupported load into an EXTLOAD followed by an 924 // explicit zero/sign extend inreg. 925 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 926 Node->getValueType(0), 927 Chain, Ptr, SrcVT, 928 LD->getMemOperand()); 929 SDValue ValRes; 930 if (ExtType == ISD::SEXTLOAD) 931 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 932 Result.getValueType(), 933 Result, DAG.getValueType(SrcVT)); 934 else 935 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 936 Value = ValRes; 937 Chain = Result.getValue(1); 938 break; 939 } 940 } 941 } 942 943 // Since loads produce two values, make sure to remember that we legalized 944 // both of them. 945 if (Chain.getNode() != Node) { 946 assert(Value.getNode() != Node && "Load must be completely replaced"); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 949 if (UpdatedNodes) { 950 UpdatedNodes->insert(Value.getNode()); 951 UpdatedNodes->insert(Chain.getNode()); 952 } 953 ReplacedNode(Node); 954 } 955 } 956 957 /// Return a legal replacement for the given operation, with all legal operands. 958 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 959 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 960 961 // Allow illegal target nodes and illegal registers. 962 if (Node->getOpcode() == ISD::TargetConstant || 963 Node->getOpcode() == ISD::Register) 964 return; 965 966 #ifndef NDEBUG 967 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 968 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 969 TargetLowering::TypeLegal && 970 "Unexpected illegal type!"); 971 972 for (const SDValue &Op : Node->op_values()) 973 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 974 TargetLowering::TypeLegal || 975 Op.getOpcode() == ISD::TargetConstant || 976 Op.getOpcode() == ISD::Register) && 977 "Unexpected illegal type!"); 978 #endif 979 980 // Figure out the correct action; the way to query this varies by opcode 981 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 982 bool SimpleFinishLegalizing = true; 983 switch (Node->getOpcode()) { 984 case ISD::INTRINSIC_W_CHAIN: 985 case ISD::INTRINSIC_WO_CHAIN: 986 case ISD::INTRINSIC_VOID: 987 case ISD::STACKSAVE: 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::GET_DYNAMIC_AREA_OFFSET: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 break; 994 case ISD::VAARG: 995 Action = TLI.getOperationAction(Node->getOpcode(), 996 Node->getValueType(0)); 997 if (Action != TargetLowering::Promote) 998 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 999 break; 1000 case ISD::FP_TO_FP16: 1001 case ISD::FP_TO_BF16: 1002 case ISD::SINT_TO_FP: 1003 case ISD::UINT_TO_FP: 1004 case ISD::EXTRACT_VECTOR_ELT: 1005 case ISD::LROUND: 1006 case ISD::LLROUND: 1007 case ISD::LRINT: 1008 case ISD::LLRINT: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getOperand(0).getValueType()); 1011 break; 1012 case ISD::STRICT_FP_TO_FP16: 1013 case ISD::STRICT_SINT_TO_FP: 1014 case ISD::STRICT_UINT_TO_FP: 1015 case ISD::STRICT_LRINT: 1016 case ISD::STRICT_LLRINT: 1017 case ISD::STRICT_LROUND: 1018 case ISD::STRICT_LLROUND: 1019 // These pseudo-ops are the same as the other STRICT_ ops except 1020 // they are registered with setOperationAction() using the input type 1021 // instead of the output type. 1022 Action = TLI.getOperationAction(Node->getOpcode(), 1023 Node->getOperand(1).getValueType()); 1024 break; 1025 case ISD::SIGN_EXTEND_INREG: { 1026 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1027 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1028 break; 1029 } 1030 case ISD::ATOMIC_STORE: 1031 Action = TLI.getOperationAction(Node->getOpcode(), 1032 Node->getOperand(2).getValueType()); 1033 break; 1034 case ISD::SELECT_CC: 1035 case ISD::STRICT_FSETCC: 1036 case ISD::STRICT_FSETCCS: 1037 case ISD::SETCC: 1038 case ISD::VP_SETCC: 1039 case ISD::BR_CC: { 1040 unsigned Opc = Node->getOpcode(); 1041 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1042 : Opc == ISD::STRICT_FSETCC ? 3 1043 : Opc == ISD::STRICT_FSETCCS ? 3 1044 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1045 : 1; 1046 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1047 : Opc == ISD::STRICT_FSETCC ? 1 1048 : Opc == ISD::STRICT_FSETCCS ? 1 1049 : 0; 1050 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1051 ISD::CondCode CCCode = 1052 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1053 Action = TLI.getCondCodeAction(CCCode, OpVT); 1054 if (Action == TargetLowering::Legal) { 1055 if (Node->getOpcode() == ISD::SELECT_CC) 1056 Action = TLI.getOperationAction(Node->getOpcode(), 1057 Node->getValueType(0)); 1058 else 1059 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1060 } 1061 break; 1062 } 1063 case ISD::LOAD: 1064 case ISD::STORE: 1065 // FIXME: Model these properly. LOAD and STORE are complicated, and 1066 // STORE expects the unlegalized operand in some cases. 1067 SimpleFinishLegalizing = false; 1068 break; 1069 case ISD::CALLSEQ_START: 1070 case ISD::CALLSEQ_END: 1071 // FIXME: This shouldn't be necessary. These nodes have special properties 1072 // dealing with the recursive nature of legalization. Removing this 1073 // special case should be done as part of making LegalizeDAG non-recursive. 1074 SimpleFinishLegalizing = false; 1075 break; 1076 case ISD::EXTRACT_ELEMENT: 1077 case ISD::FLT_ROUNDS_: 1078 case ISD::MERGE_VALUES: 1079 case ISD::EH_RETURN: 1080 case ISD::FRAME_TO_ARGS_OFFSET: 1081 case ISD::EH_DWARF_CFA: 1082 case ISD::EH_SJLJ_SETJMP: 1083 case ISD::EH_SJLJ_LONGJMP: 1084 case ISD::EH_SJLJ_SETUP_DISPATCH: 1085 // These operations lie about being legal: when they claim to be legal, 1086 // they should actually be expanded. 1087 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1088 if (Action == TargetLowering::Legal) 1089 Action = TargetLowering::Expand; 1090 break; 1091 case ISD::INIT_TRAMPOLINE: 1092 case ISD::ADJUST_TRAMPOLINE: 1093 case ISD::FRAMEADDR: 1094 case ISD::RETURNADDR: 1095 case ISD::ADDROFRETURNADDR: 1096 case ISD::SPONENTRY: 1097 // These operations lie about being legal: when they claim to be legal, 1098 // they should actually be custom-lowered. 1099 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1100 if (Action == TargetLowering::Legal) 1101 Action = TargetLowering::Custom; 1102 break; 1103 case ISD::READCYCLECOUNTER: 1104 // READCYCLECOUNTER returns an i64, even if type legalization might have 1105 // expanded that to several smaller types. 1106 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1107 break; 1108 case ISD::READ_REGISTER: 1109 case ISD::WRITE_REGISTER: 1110 // Named register is legal in the DAG, but blocked by register name 1111 // selection if not implemented by target (to chose the correct register) 1112 // They'll be converted to Copy(To/From)Reg. 1113 Action = TargetLowering::Legal; 1114 break; 1115 case ISD::UBSANTRAP: 1116 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1117 if (Action == TargetLowering::Expand) { 1118 // replace ISD::UBSANTRAP with ISD::TRAP 1119 SDValue NewVal; 1120 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1121 Node->getOperand(0)); 1122 ReplaceNode(Node, NewVal.getNode()); 1123 LegalizeOp(NewVal.getNode()); 1124 return; 1125 } 1126 break; 1127 case ISD::DEBUGTRAP: 1128 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1129 if (Action == TargetLowering::Expand) { 1130 // replace ISD::DEBUGTRAP with ISD::TRAP 1131 SDValue NewVal; 1132 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1133 Node->getOperand(0)); 1134 ReplaceNode(Node, NewVal.getNode()); 1135 LegalizeOp(NewVal.getNode()); 1136 return; 1137 } 1138 break; 1139 case ISD::SADDSAT: 1140 case ISD::UADDSAT: 1141 case ISD::SSUBSAT: 1142 case ISD::USUBSAT: 1143 case ISD::SSHLSAT: 1144 case ISD::USHLSAT: 1145 case ISD::FP_TO_SINT_SAT: 1146 case ISD::FP_TO_UINT_SAT: 1147 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1148 break; 1149 case ISD::SMULFIX: 1150 case ISD::SMULFIXSAT: 1151 case ISD::UMULFIX: 1152 case ISD::UMULFIXSAT: 1153 case ISD::SDIVFIX: 1154 case ISD::SDIVFIXSAT: 1155 case ISD::UDIVFIX: 1156 case ISD::UDIVFIXSAT: { 1157 unsigned Scale = Node->getConstantOperandVal(2); 1158 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1159 Node->getValueType(0), Scale); 1160 break; 1161 } 1162 case ISD::MSCATTER: 1163 Action = TLI.getOperationAction(Node->getOpcode(), 1164 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1165 break; 1166 case ISD::MSTORE: 1167 Action = TLI.getOperationAction(Node->getOpcode(), 1168 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1169 break; 1170 case ISD::VP_SCATTER: 1171 Action = TLI.getOperationAction( 1172 Node->getOpcode(), 1173 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1174 break; 1175 case ISD::VP_STORE: 1176 Action = TLI.getOperationAction( 1177 Node->getOpcode(), 1178 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1179 break; 1180 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1181 Action = TLI.getOperationAction( 1182 Node->getOpcode(), 1183 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1184 break; 1185 case ISD::VECREDUCE_FADD: 1186 case ISD::VECREDUCE_FMUL: 1187 case ISD::VECREDUCE_ADD: 1188 case ISD::VECREDUCE_MUL: 1189 case ISD::VECREDUCE_AND: 1190 case ISD::VECREDUCE_OR: 1191 case ISD::VECREDUCE_XOR: 1192 case ISD::VECREDUCE_SMAX: 1193 case ISD::VECREDUCE_SMIN: 1194 case ISD::VECREDUCE_UMAX: 1195 case ISD::VECREDUCE_UMIN: 1196 case ISD::VECREDUCE_FMAX: 1197 case ISD::VECREDUCE_FMIN: 1198 case ISD::IS_FPCLASS: 1199 Action = TLI.getOperationAction( 1200 Node->getOpcode(), Node->getOperand(0).getValueType()); 1201 break; 1202 case ISD::VECREDUCE_SEQ_FADD: 1203 case ISD::VECREDUCE_SEQ_FMUL: 1204 case ISD::VP_REDUCE_FADD: 1205 case ISD::VP_REDUCE_FMUL: 1206 case ISD::VP_REDUCE_ADD: 1207 case ISD::VP_REDUCE_MUL: 1208 case ISD::VP_REDUCE_AND: 1209 case ISD::VP_REDUCE_OR: 1210 case ISD::VP_REDUCE_XOR: 1211 case ISD::VP_REDUCE_SMAX: 1212 case ISD::VP_REDUCE_SMIN: 1213 case ISD::VP_REDUCE_UMAX: 1214 case ISD::VP_REDUCE_UMIN: 1215 case ISD::VP_REDUCE_FMAX: 1216 case ISD::VP_REDUCE_FMIN: 1217 case ISD::VP_REDUCE_SEQ_FADD: 1218 case ISD::VP_REDUCE_SEQ_FMUL: 1219 Action = TLI.getOperationAction( 1220 Node->getOpcode(), Node->getOperand(1).getValueType()); 1221 break; 1222 default: 1223 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1224 Action = TLI.getCustomOperationAction(*Node); 1225 } else { 1226 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1227 } 1228 break; 1229 } 1230 1231 if (SimpleFinishLegalizing) { 1232 SDNode *NewNode = Node; 1233 switch (Node->getOpcode()) { 1234 default: break; 1235 case ISD::SHL: 1236 case ISD::SRL: 1237 case ISD::SRA: 1238 case ISD::ROTL: 1239 case ISD::ROTR: { 1240 // Legalizing shifts/rotates requires adjusting the shift amount 1241 // to the appropriate width. 1242 SDValue Op0 = Node->getOperand(0); 1243 SDValue Op1 = Node->getOperand(1); 1244 if (!Op1.getValueType().isVector()) { 1245 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1246 // The getShiftAmountOperand() may create a new operand node or 1247 // return the existing one. If new operand is created we need 1248 // to update the parent node. 1249 // Do not try to legalize SAO here! It will be automatically legalized 1250 // in the next round. 1251 if (SAO != Op1) 1252 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1253 } 1254 } 1255 break; 1256 case ISD::FSHL: 1257 case ISD::FSHR: 1258 case ISD::SRL_PARTS: 1259 case ISD::SRA_PARTS: 1260 case ISD::SHL_PARTS: { 1261 // Legalizing shifts/rotates requires adjusting the shift amount 1262 // to the appropriate width. 1263 SDValue Op0 = Node->getOperand(0); 1264 SDValue Op1 = Node->getOperand(1); 1265 SDValue Op2 = Node->getOperand(2); 1266 if (!Op2.getValueType().isVector()) { 1267 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1268 // The getShiftAmountOperand() may create a new operand node or 1269 // return the existing one. If new operand is created we need 1270 // to update the parent node. 1271 if (SAO != Op2) 1272 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1273 } 1274 break; 1275 } 1276 } 1277 1278 if (NewNode != Node) { 1279 ReplaceNode(Node, NewNode); 1280 Node = NewNode; 1281 } 1282 switch (Action) { 1283 case TargetLowering::Legal: 1284 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1285 return; 1286 case TargetLowering::Custom: 1287 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1288 // FIXME: The handling for custom lowering with multiple results is 1289 // a complete mess. 1290 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1291 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1292 return; 1293 1294 if (Node->getNumValues() == 1) { 1295 // Verify the new types match the original. Glue is waived because 1296 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1297 assert((Res.getValueType() == Node->getValueType(0) || 1298 Node->getValueType(0) == MVT::Glue) && 1299 "Type mismatch for custom legalized operation"); 1300 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1301 // We can just directly replace this node with the lowered value. 1302 ReplaceNode(SDValue(Node, 0), Res); 1303 return; 1304 } 1305 1306 SmallVector<SDValue, 8> ResultVals; 1307 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1308 // Verify the new types match the original. Glue is waived because 1309 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1310 assert((Res->getValueType(i) == Node->getValueType(i) || 1311 Node->getValueType(i) == MVT::Glue) && 1312 "Type mismatch for custom legalized operation"); 1313 ResultVals.push_back(Res.getValue(i)); 1314 } 1315 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1316 ReplaceNode(Node, ResultVals.data()); 1317 return; 1318 } 1319 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1320 LLVM_FALLTHROUGH; 1321 case TargetLowering::Expand: 1322 if (ExpandNode(Node)) 1323 return; 1324 LLVM_FALLTHROUGH; 1325 case TargetLowering::LibCall: 1326 ConvertNodeToLibcall(Node); 1327 return; 1328 case TargetLowering::Promote: 1329 PromoteNode(Node); 1330 return; 1331 } 1332 } 1333 1334 switch (Node->getOpcode()) { 1335 default: 1336 #ifndef NDEBUG 1337 dbgs() << "NODE: "; 1338 Node->dump( &DAG); 1339 dbgs() << "\n"; 1340 #endif 1341 llvm_unreachable("Do not know how to legalize this operator!"); 1342 1343 case ISD::CALLSEQ_START: 1344 case ISD::CALLSEQ_END: 1345 break; 1346 case ISD::LOAD: 1347 return LegalizeLoadOps(Node); 1348 case ISD::STORE: 1349 return LegalizeStoreOps(Node); 1350 } 1351 } 1352 1353 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1354 SDValue Vec = Op.getOperand(0); 1355 SDValue Idx = Op.getOperand(1); 1356 SDLoc dl(Op); 1357 1358 // Before we generate a new store to a temporary stack slot, see if there is 1359 // already one that we can use. There often is because when we scalarize 1360 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1361 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1362 // the vector. If all are expanded here, we don't want one store per vector 1363 // element. 1364 1365 // Caches for hasPredecessorHelper 1366 SmallPtrSet<const SDNode *, 32> Visited; 1367 SmallVector<const SDNode *, 16> Worklist; 1368 Visited.insert(Op.getNode()); 1369 Worklist.push_back(Idx.getNode()); 1370 SDValue StackPtr, Ch; 1371 for (SDNode *User : Vec.getNode()->uses()) { 1372 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1373 if (ST->isIndexed() || ST->isTruncatingStore() || 1374 ST->getValue() != Vec) 1375 continue; 1376 1377 // Make sure that nothing else could have stored into the destination of 1378 // this store. 1379 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1380 continue; 1381 1382 // If the index is dependent on the store we will introduce a cycle when 1383 // creating the load (the load uses the index, and by replacing the chain 1384 // we will make the index dependent on the load). Also, the store might be 1385 // dependent on the extractelement and introduce a cycle when creating 1386 // the load. 1387 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1388 ST->hasPredecessor(Op.getNode())) 1389 continue; 1390 1391 StackPtr = ST->getBasePtr(); 1392 Ch = SDValue(ST, 0); 1393 break; 1394 } 1395 } 1396 1397 EVT VecVT = Vec.getValueType(); 1398 1399 if (!Ch.getNode()) { 1400 // Store the value to a temporary stack slot, then LOAD the returned part. 1401 StackPtr = DAG.CreateStackTemporary(VecVT); 1402 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1403 MachinePointerInfo()); 1404 } 1405 1406 SDValue NewLoad; 1407 1408 if (Op.getValueType().isVector()) { 1409 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1410 Op.getValueType(), Idx); 1411 NewLoad = 1412 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); 1413 } else { 1414 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1415 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1416 MachinePointerInfo(), 1417 VecVT.getVectorElementType()); 1418 } 1419 1420 // Replace the chain going out of the store, by the one out of the load. 1421 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1422 1423 // We introduced a cycle though, so update the loads operands, making sure 1424 // to use the original store's chain as an incoming chain. 1425 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1426 NewLoad->op_end()); 1427 NewLoadOperands[0] = Ch; 1428 NewLoad = 1429 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1430 return NewLoad; 1431 } 1432 1433 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1434 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1435 1436 SDValue Vec = Op.getOperand(0); 1437 SDValue Part = Op.getOperand(1); 1438 SDValue Idx = Op.getOperand(2); 1439 SDLoc dl(Op); 1440 1441 // Store the value to a temporary stack slot, then LOAD the returned part. 1442 EVT VecVT = Vec.getValueType(); 1443 EVT SubVecVT = Part.getValueType(); 1444 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1445 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1446 MachinePointerInfo PtrInfo = 1447 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1448 1449 // First store the whole vector. 1450 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1451 1452 // Then store the inserted part. 1453 SDValue SubStackPtr = 1454 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1455 1456 // Store the subvector. 1457 Ch = DAG.getStore( 1458 Ch, dl, Part, SubStackPtr, 1459 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1460 1461 // Finally, load the updated vector. 1462 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1463 } 1464 1465 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1466 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1467 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1468 "Unexpected opcode!"); 1469 1470 // We can't handle this case efficiently. Allocate a sufficiently 1471 // aligned object on the stack, store each operand into it, then load 1472 // the result as a vector. 1473 // Create the stack frame object. 1474 EVT VT = Node->getValueType(0); 1475 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1476 : Node->getOperand(0).getValueType(); 1477 SDLoc dl(Node); 1478 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1479 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1480 MachinePointerInfo PtrInfo = 1481 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1482 1483 // Emit a store of each element to the stack slot. 1484 SmallVector<SDValue, 8> Stores; 1485 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1486 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1487 1488 // If the destination vector element type of a BUILD_VECTOR is narrower than 1489 // the source element type, only store the bits necessary. 1490 bool Truncate = isa<BuildVectorSDNode>(Node) && 1491 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1492 1493 // Store (in the right endianness) the elements to memory. 1494 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1495 // Ignore undef elements. 1496 if (Node->getOperand(i).isUndef()) continue; 1497 1498 unsigned Offset = TypeByteSize*i; 1499 1500 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1501 1502 if (Truncate) 1503 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1504 Node->getOperand(i), Idx, 1505 PtrInfo.getWithOffset(Offset), MemVT)); 1506 else 1507 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1508 Idx, PtrInfo.getWithOffset(Offset))); 1509 } 1510 1511 SDValue StoreChain; 1512 if (!Stores.empty()) // Not all undef elements? 1513 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1514 else 1515 StoreChain = DAG.getEntryNode(); 1516 1517 // Result is a load from the stack slot. 1518 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1519 } 1520 1521 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1522 /// containing the sign bit if the target has no integer value capable of 1523 /// holding all bits of the floating-point value. 1524 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1525 const SDLoc &DL, 1526 SDValue Value) const { 1527 EVT FloatVT = Value.getValueType(); 1528 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1529 State.FloatVT = FloatVT; 1530 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1531 // Convert to an integer of the same size. 1532 if (TLI.isTypeLegal(IVT)) { 1533 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1534 State.SignMask = APInt::getSignMask(NumBits); 1535 State.SignBit = NumBits - 1; 1536 return; 1537 } 1538 1539 auto &DataLayout = DAG.getDataLayout(); 1540 // Store the float to memory, then load the sign part out as an integer. 1541 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1542 // First create a temporary that is aligned for both the load and store. 1543 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1544 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1545 // Then store the float to it. 1546 State.FloatPtr = StackPtr; 1547 MachineFunction &MF = DAG.getMachineFunction(); 1548 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1549 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1550 State.FloatPointerInfo); 1551 1552 SDValue IntPtr; 1553 if (DataLayout.isBigEndian()) { 1554 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1555 // Load out a legal integer with the same sign bit as the float. 1556 IntPtr = StackPtr; 1557 State.IntPointerInfo = State.FloatPointerInfo; 1558 } else { 1559 // Advance the pointer so that the loaded byte will contain the sign bit. 1560 unsigned ByteOffset = (NumBits / 8) - 1; 1561 IntPtr = 1562 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1563 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1564 ByteOffset); 1565 } 1566 1567 State.IntPtr = IntPtr; 1568 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1569 State.IntPointerInfo, MVT::i8); 1570 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1571 State.SignBit = 7; 1572 } 1573 1574 /// Replace the integer value produced by getSignAsIntValue() with a new value 1575 /// and cast the result back to a floating-point type. 1576 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1577 const SDLoc &DL, 1578 SDValue NewIntValue) const { 1579 if (!State.Chain) 1580 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1581 1582 // Override the part containing the sign bit in the value stored on the stack. 1583 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1584 State.IntPointerInfo, MVT::i8); 1585 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1586 State.FloatPointerInfo); 1587 } 1588 1589 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1590 SDLoc DL(Node); 1591 SDValue Mag = Node->getOperand(0); 1592 SDValue Sign = Node->getOperand(1); 1593 1594 // Get sign bit into an integer value. 1595 FloatSignAsInt SignAsInt; 1596 getSignAsIntValue(SignAsInt, DL, Sign); 1597 1598 EVT IntVT = SignAsInt.IntValue.getValueType(); 1599 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1600 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1601 SignMask); 1602 1603 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1604 EVT FloatVT = Mag.getValueType(); 1605 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1606 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1607 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1608 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1609 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1610 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1611 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1612 } 1613 1614 // Transform Mag value to integer, and clear the sign bit. 1615 FloatSignAsInt MagAsInt; 1616 getSignAsIntValue(MagAsInt, DL, Mag); 1617 EVT MagVT = MagAsInt.IntValue.getValueType(); 1618 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1619 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1620 ClearSignMask); 1621 1622 // Get the signbit at the right position for MagAsInt. 1623 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1624 EVT ShiftVT = IntVT; 1625 if (SignBit.getScalarValueSizeInBits() < 1626 ClearedSign.getScalarValueSizeInBits()) { 1627 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1628 ShiftVT = MagVT; 1629 } 1630 if (ShiftAmount > 0) { 1631 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1632 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1633 } else if (ShiftAmount < 0) { 1634 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1635 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1636 } 1637 if (SignBit.getScalarValueSizeInBits() > 1638 ClearedSign.getScalarValueSizeInBits()) { 1639 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1640 } 1641 1642 // Store the part with the modified sign and convert back to float. 1643 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1644 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1645 } 1646 1647 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1648 // Get the sign bit as an integer. 1649 SDLoc DL(Node); 1650 FloatSignAsInt SignAsInt; 1651 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1652 EVT IntVT = SignAsInt.IntValue.getValueType(); 1653 1654 // Flip the sign. 1655 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1656 SDValue SignFlip = 1657 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1658 1659 // Convert back to float. 1660 return modifySignAsInt(SignAsInt, DL, SignFlip); 1661 } 1662 1663 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1664 SDLoc DL(Node); 1665 SDValue Value = Node->getOperand(0); 1666 1667 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1668 EVT FloatVT = Value.getValueType(); 1669 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1670 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1671 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1672 } 1673 1674 // Transform value to integer, clear the sign bit and transform back. 1675 FloatSignAsInt ValueAsInt; 1676 getSignAsIntValue(ValueAsInt, DL, Value); 1677 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1678 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1679 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1680 ClearSignMask); 1681 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1682 } 1683 1684 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1685 SmallVectorImpl<SDValue> &Results) { 1686 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1687 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1688 " not tell us which reg is the stack pointer!"); 1689 SDLoc dl(Node); 1690 EVT VT = Node->getValueType(0); 1691 SDValue Tmp1 = SDValue(Node, 0); 1692 SDValue Tmp2 = SDValue(Node, 1); 1693 SDValue Tmp3 = Node->getOperand(2); 1694 SDValue Chain = Tmp1.getOperand(0); 1695 1696 // Chain the dynamic stack allocation so that it doesn't modify the stack 1697 // pointer when other instructions are using the stack. 1698 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1699 1700 SDValue Size = Tmp2.getOperand(1); 1701 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1702 Chain = SP.getValue(1); 1703 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1704 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1705 unsigned Opc = 1706 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1707 ISD::ADD : ISD::SUB; 1708 1709 Align StackAlign = TFL->getStackAlign(); 1710 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1711 if (Alignment > StackAlign) 1712 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1713 DAG.getConstant(-Alignment.value(), dl, VT)); 1714 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1715 1716 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1717 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1718 1719 Results.push_back(Tmp1); 1720 Results.push_back(Tmp2); 1721 } 1722 1723 /// Emit a store/load combination to the stack. This stores 1724 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1725 /// a load from the stack slot to DestVT, extending it if needed. 1726 /// The resultant code need not be legal. 1727 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1728 EVT DestVT, const SDLoc &dl) { 1729 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1730 } 1731 1732 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1733 EVT DestVT, const SDLoc &dl, 1734 SDValue Chain) { 1735 EVT SrcVT = SrcOp.getValueType(); 1736 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1737 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1738 1739 // Don't convert with stack if the load/store is expensive. 1740 if ((SrcVT.bitsGT(SlotVT) && 1741 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1742 (SlotVT.bitsLT(DestVT) && 1743 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1744 return SDValue(); 1745 1746 // Create the stack frame object. 1747 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1748 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1749 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1750 1751 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1752 int SPFI = StackPtrFI->getIndex(); 1753 MachinePointerInfo PtrInfo = 1754 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1755 1756 // Emit a store to the stack slot. Use a truncstore if the input value is 1757 // later than DestVT. 1758 SDValue Store; 1759 1760 if (SrcVT.bitsGT(SlotVT)) 1761 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1762 SlotVT, SrcAlign); 1763 else { 1764 assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); 1765 Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1766 } 1767 1768 // Result is a load from the stack slot. 1769 if (SlotVT.bitsEq(DestVT)) 1770 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1771 1772 assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); 1773 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1774 DestAlign); 1775 } 1776 1777 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1778 SDLoc dl(Node); 1779 // Create a vector sized/aligned stack slot, store the value to element #0, 1780 // then load the whole vector back out. 1781 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1782 1783 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1784 int SPFI = StackPtrFI->getIndex(); 1785 1786 SDValue Ch = DAG.getTruncStore( 1787 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1788 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1789 Node->getValueType(0).getVectorElementType()); 1790 return DAG.getLoad( 1791 Node->getValueType(0), dl, Ch, StackPtr, 1792 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1793 } 1794 1795 static bool 1796 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1797 const TargetLowering &TLI, SDValue &Res) { 1798 unsigned NumElems = Node->getNumOperands(); 1799 SDLoc dl(Node); 1800 EVT VT = Node->getValueType(0); 1801 1802 // Try to group the scalars into pairs, shuffle the pairs together, then 1803 // shuffle the pairs of pairs together, etc. until the vector has 1804 // been built. This will work only if all of the necessary shuffle masks 1805 // are legal. 1806 1807 // We do this in two phases; first to check the legality of the shuffles, 1808 // and next, assuming that all shuffles are legal, to create the new nodes. 1809 for (int Phase = 0; Phase < 2; ++Phase) { 1810 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1811 NewIntermedVals; 1812 for (unsigned i = 0; i < NumElems; ++i) { 1813 SDValue V = Node->getOperand(i); 1814 if (V.isUndef()) 1815 continue; 1816 1817 SDValue Vec; 1818 if (Phase) 1819 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1820 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1821 } 1822 1823 while (IntermedVals.size() > 2) { 1824 NewIntermedVals.clear(); 1825 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1826 // This vector and the next vector are shuffled together (simply to 1827 // append the one to the other). 1828 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1829 1830 SmallVector<int, 16> FinalIndices; 1831 FinalIndices.reserve(IntermedVals[i].second.size() + 1832 IntermedVals[i+1].second.size()); 1833 1834 int k = 0; 1835 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1836 ++j, ++k) { 1837 ShuffleVec[k] = j; 1838 FinalIndices.push_back(IntermedVals[i].second[j]); 1839 } 1840 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1841 ++j, ++k) { 1842 ShuffleVec[k] = NumElems + j; 1843 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1844 } 1845 1846 SDValue Shuffle; 1847 if (Phase) 1848 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1849 IntermedVals[i+1].first, 1850 ShuffleVec); 1851 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1852 return false; 1853 NewIntermedVals.push_back( 1854 std::make_pair(Shuffle, std::move(FinalIndices))); 1855 } 1856 1857 // If we had an odd number of defined values, then append the last 1858 // element to the array of new vectors. 1859 if ((IntermedVals.size() & 1) != 0) 1860 NewIntermedVals.push_back(IntermedVals.back()); 1861 1862 IntermedVals.swap(NewIntermedVals); 1863 } 1864 1865 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1866 "Invalid number of intermediate vectors"); 1867 SDValue Vec1 = IntermedVals[0].first; 1868 SDValue Vec2; 1869 if (IntermedVals.size() > 1) 1870 Vec2 = IntermedVals[1].first; 1871 else if (Phase) 1872 Vec2 = DAG.getUNDEF(VT); 1873 1874 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1875 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1876 ShuffleVec[IntermedVals[0].second[i]] = i; 1877 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1878 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1879 1880 if (Phase) 1881 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1882 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1883 return false; 1884 } 1885 1886 return true; 1887 } 1888 1889 /// Expand a BUILD_VECTOR node on targets that don't 1890 /// support the operation, but do support the resultant vector type. 1891 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1892 unsigned NumElems = Node->getNumOperands(); 1893 SDValue Value1, Value2; 1894 SDLoc dl(Node); 1895 EVT VT = Node->getValueType(0); 1896 EVT OpVT = Node->getOperand(0).getValueType(); 1897 EVT EltVT = VT.getVectorElementType(); 1898 1899 // If the only non-undef value is the low element, turn this into a 1900 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1901 bool isOnlyLowElement = true; 1902 bool MoreThanTwoValues = false; 1903 bool isConstant = true; 1904 for (unsigned i = 0; i < NumElems; ++i) { 1905 SDValue V = Node->getOperand(i); 1906 if (V.isUndef()) 1907 continue; 1908 if (i > 0) 1909 isOnlyLowElement = false; 1910 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1911 isConstant = false; 1912 1913 if (!Value1.getNode()) { 1914 Value1 = V; 1915 } else if (!Value2.getNode()) { 1916 if (V != Value1) 1917 Value2 = V; 1918 } else if (V != Value1 && V != Value2) { 1919 MoreThanTwoValues = true; 1920 } 1921 } 1922 1923 if (!Value1.getNode()) 1924 return DAG.getUNDEF(VT); 1925 1926 if (isOnlyLowElement) 1927 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1928 1929 // If all elements are constants, create a load from the constant pool. 1930 if (isConstant) { 1931 SmallVector<Constant*, 16> CV; 1932 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1933 if (ConstantFPSDNode *V = 1934 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1935 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1936 } else if (ConstantSDNode *V = 1937 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1938 if (OpVT==EltVT) 1939 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1940 else { 1941 // If OpVT and EltVT don't match, EltVT is not legal and the 1942 // element values have been promoted/truncated earlier. Undo this; 1943 // we don't want a v16i8 to become a v16i32 for example. 1944 const ConstantInt *CI = V->getConstantIntValue(); 1945 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1946 CI->getZExtValue())); 1947 } 1948 } else { 1949 assert(Node->getOperand(i).isUndef()); 1950 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1951 CV.push_back(UndefValue::get(OpNTy)); 1952 } 1953 } 1954 Constant *CP = ConstantVector::get(CV); 1955 SDValue CPIdx = 1956 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1957 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1958 return DAG.getLoad( 1959 VT, dl, DAG.getEntryNode(), CPIdx, 1960 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1961 Alignment); 1962 } 1963 1964 SmallSet<SDValue, 16> DefinedValues; 1965 for (unsigned i = 0; i < NumElems; ++i) { 1966 if (Node->getOperand(i).isUndef()) 1967 continue; 1968 DefinedValues.insert(Node->getOperand(i)); 1969 } 1970 1971 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1972 if (!MoreThanTwoValues) { 1973 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1974 for (unsigned i = 0; i < NumElems; ++i) { 1975 SDValue V = Node->getOperand(i); 1976 if (V.isUndef()) 1977 continue; 1978 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1979 } 1980 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1981 // Get the splatted value into the low element of a vector register. 1982 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1983 SDValue Vec2; 1984 if (Value2.getNode()) 1985 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1986 else 1987 Vec2 = DAG.getUNDEF(VT); 1988 1989 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1990 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1991 } 1992 } else { 1993 SDValue Res; 1994 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1995 return Res; 1996 } 1997 } 1998 1999 // Otherwise, we can't handle this case efficiently. 2000 return ExpandVectorBuildThroughStack(Node); 2001 } 2002 2003 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2004 SDLoc DL(Node); 2005 EVT VT = Node->getValueType(0); 2006 SDValue SplatVal = Node->getOperand(0); 2007 2008 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2009 } 2010 2011 // Expand a node into a call to a libcall. If the result value 2012 // does not fit into a register, return the lo part and set the hi part to the 2013 // by-reg argument. If it does fit into a single register, return the result 2014 // and leave the Hi part unset. 2015 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2016 bool isSigned) { 2017 TargetLowering::ArgListTy Args; 2018 TargetLowering::ArgListEntry Entry; 2019 for (const SDValue &Op : Node->op_values()) { 2020 EVT ArgVT = Op.getValueType(); 2021 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2022 Entry.Node = Op; 2023 Entry.Ty = ArgTy; 2024 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2025 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2026 Args.push_back(Entry); 2027 } 2028 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2029 TLI.getPointerTy(DAG.getDataLayout())); 2030 2031 EVT RetVT = Node->getValueType(0); 2032 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2033 2034 // By default, the input chain to this libcall is the entry node of the 2035 // function. If the libcall is going to be emitted as a tail call then 2036 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2037 // node which is being folded has a non-entry input chain. 2038 SDValue InChain = DAG.getEntryNode(); 2039 2040 // isTailCall may be true since the callee does not reference caller stack 2041 // frame. Check if it's in the right position and that the return types match. 2042 SDValue TCChain = InChain; 2043 const Function &F = DAG.getMachineFunction().getFunction(); 2044 bool isTailCall = 2045 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2046 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2047 if (isTailCall) 2048 InChain = TCChain; 2049 2050 TargetLowering::CallLoweringInfo CLI(DAG); 2051 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2052 CLI.setDebugLoc(SDLoc(Node)) 2053 .setChain(InChain) 2054 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2055 std::move(Args)) 2056 .setTailCall(isTailCall) 2057 .setSExtResult(signExtend) 2058 .setZExtResult(!signExtend) 2059 .setIsPostTypeLegalization(true); 2060 2061 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2062 2063 if (!CallInfo.second.getNode()) { 2064 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2065 // It's a tailcall, return the chain (which is the DAG root). 2066 return DAG.getRoot(); 2067 } 2068 2069 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2070 return CallInfo.first; 2071 } 2072 2073 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2074 RTLIB::Libcall LC, 2075 SmallVectorImpl<SDValue> &Results) { 2076 if (LC == RTLIB::UNKNOWN_LIBCALL) 2077 llvm_unreachable("Can't create an unknown libcall!"); 2078 2079 if (Node->isStrictFPOpcode()) { 2080 EVT RetVT = Node->getValueType(0); 2081 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2082 TargetLowering::MakeLibCallOptions CallOptions; 2083 // FIXME: This doesn't support tail calls. 2084 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2085 Ops, CallOptions, 2086 SDLoc(Node), 2087 Node->getOperand(0)); 2088 Results.push_back(Tmp.first); 2089 Results.push_back(Tmp.second); 2090 } else { 2091 SDValue Tmp = ExpandLibCall(LC, Node, false); 2092 Results.push_back(Tmp); 2093 } 2094 } 2095 2096 /// Expand the node to a libcall based on the result type. 2097 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2098 RTLIB::Libcall Call_F32, 2099 RTLIB::Libcall Call_F64, 2100 RTLIB::Libcall Call_F80, 2101 RTLIB::Libcall Call_F128, 2102 RTLIB::Libcall Call_PPCF128, 2103 SmallVectorImpl<SDValue> &Results) { 2104 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2105 Call_F32, Call_F64, Call_F80, 2106 Call_F128, Call_PPCF128); 2107 ExpandFPLibCall(Node, LC, Results); 2108 } 2109 2110 SDValue SelectionDAGLegalize::ExpandIntLibCall( 2111 SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 2112 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, 2113 RTLIB::Libcall Call_I128, RTLIB::Libcall Call_IEXT) { 2114 RTLIB::Libcall LC; 2115 switch (Node->getSimpleValueType(0).SimpleTy) { 2116 2117 default: 2118 LC = Call_IEXT; 2119 break; 2120 2121 case MVT::i8: LC = Call_I8; break; 2122 case MVT::i16: LC = Call_I16; break; 2123 case MVT::i32: LC = Call_I32; break; 2124 case MVT::i64: LC = Call_I64; break; 2125 case MVT::i128: LC = Call_I128; break; 2126 } 2127 return ExpandLibCall(LC, Node, isSigned); 2128 } 2129 2130 /// Expand the node to a libcall based on first argument type (for instance 2131 /// lround and its variant). 2132 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2133 RTLIB::Libcall Call_F32, 2134 RTLIB::Libcall Call_F64, 2135 RTLIB::Libcall Call_F80, 2136 RTLIB::Libcall Call_F128, 2137 RTLIB::Libcall Call_PPCF128, 2138 SmallVectorImpl<SDValue> &Results) { 2139 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2140 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2141 Call_F32, Call_F64, Call_F80, 2142 Call_F128, Call_PPCF128); 2143 ExpandFPLibCall(Node, LC, Results); 2144 } 2145 2146 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2147 void 2148 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2149 SmallVectorImpl<SDValue> &Results) { 2150 unsigned Opcode = Node->getOpcode(); 2151 bool isSigned = Opcode == ISD::SDIVREM; 2152 2153 RTLIB::Libcall LC; 2154 switch (Node->getSimpleValueType(0).SimpleTy) { 2155 2156 default: 2157 LC = isSigned ? RTLIB::SDIVREM_IEXT : RTLIB::UDIVREM_IEXT; 2158 break; 2159 2160 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2161 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2162 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2163 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2164 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2165 } 2166 2167 // The input chain to this libcall is the entry node of the function. 2168 // Legalizing the call will automatically add the previous call to the 2169 // dependence. 2170 SDValue InChain = DAG.getEntryNode(); 2171 2172 EVT RetVT = Node->getValueType(0); 2173 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2174 2175 TargetLowering::ArgListTy Args; 2176 TargetLowering::ArgListEntry Entry; 2177 for (const SDValue &Op : Node->op_values()) { 2178 EVT ArgVT = Op.getValueType(); 2179 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2180 Entry.Node = Op; 2181 Entry.Ty = ArgTy; 2182 Entry.IsSExt = isSigned; 2183 Entry.IsZExt = !isSigned; 2184 Args.push_back(Entry); 2185 } 2186 2187 // Also pass the return address of the remainder. 2188 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2189 Entry.Node = FIPtr; 2190 Entry.Ty = RetTy->getPointerTo(); 2191 Entry.IsSExt = isSigned; 2192 Entry.IsZExt = !isSigned; 2193 Args.push_back(Entry); 2194 2195 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2196 TLI.getPointerTy(DAG.getDataLayout())); 2197 2198 SDLoc dl(Node); 2199 TargetLowering::CallLoweringInfo CLI(DAG); 2200 CLI.setDebugLoc(dl) 2201 .setChain(InChain) 2202 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2203 std::move(Args)) 2204 .setSExtResult(isSigned) 2205 .setZExtResult(!isSigned); 2206 2207 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2208 2209 // Remainder is loaded back from the stack frame. 2210 SDValue Rem = 2211 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2212 Results.push_back(CallInfo.first); 2213 Results.push_back(Rem); 2214 } 2215 2216 /// Return true if sincos libcall is available. 2217 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2218 RTLIB::Libcall LC; 2219 switch (Node->getSimpleValueType(0).SimpleTy) { 2220 default: llvm_unreachable("Unexpected request for libcall!"); 2221 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2222 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2223 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2224 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2225 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2226 } 2227 return TLI.getLibcallName(LC) != nullptr; 2228 } 2229 2230 /// Only issue sincos libcall if both sin and cos are needed. 2231 static bool useSinCos(SDNode *Node) { 2232 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2233 ? ISD::FCOS : ISD::FSIN; 2234 2235 SDValue Op0 = Node->getOperand(0); 2236 for (const SDNode *User : Op0.getNode()->uses()) { 2237 if (User == Node) 2238 continue; 2239 // The other user might have been turned into sincos already. 2240 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /// Issue libcalls to sincos to compute sin / cos pairs. 2247 void 2248 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2249 SmallVectorImpl<SDValue> &Results) { 2250 RTLIB::Libcall LC; 2251 switch (Node->getSimpleValueType(0).SimpleTy) { 2252 default: llvm_unreachable("Unexpected request for libcall!"); 2253 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2254 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2255 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2256 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2257 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2258 } 2259 2260 // The input chain to this libcall is the entry node of the function. 2261 // Legalizing the call will automatically add the previous call to the 2262 // dependence. 2263 SDValue InChain = DAG.getEntryNode(); 2264 2265 EVT RetVT = Node->getValueType(0); 2266 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2267 2268 TargetLowering::ArgListTy Args; 2269 TargetLowering::ArgListEntry Entry; 2270 2271 // Pass the argument. 2272 Entry.Node = Node->getOperand(0); 2273 Entry.Ty = RetTy; 2274 Entry.IsSExt = false; 2275 Entry.IsZExt = false; 2276 Args.push_back(Entry); 2277 2278 // Pass the return address of sin. 2279 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2280 Entry.Node = SinPtr; 2281 Entry.Ty = RetTy->getPointerTo(); 2282 Entry.IsSExt = false; 2283 Entry.IsZExt = false; 2284 Args.push_back(Entry); 2285 2286 // Also pass the return address of the cos. 2287 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2288 Entry.Node = CosPtr; 2289 Entry.Ty = RetTy->getPointerTo(); 2290 Entry.IsSExt = false; 2291 Entry.IsZExt = false; 2292 Args.push_back(Entry); 2293 2294 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2295 TLI.getPointerTy(DAG.getDataLayout())); 2296 2297 SDLoc dl(Node); 2298 TargetLowering::CallLoweringInfo CLI(DAG); 2299 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2300 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2301 std::move(Args)); 2302 2303 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2304 2305 Results.push_back( 2306 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2307 Results.push_back( 2308 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2309 } 2310 2311 /// This function is responsible for legalizing a 2312 /// INT_TO_FP operation of the specified operand when the target requests that 2313 /// we expand it. At this point, we know that the result and operand types are 2314 /// legal for the target. 2315 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2316 SDValue &Chain) { 2317 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2318 Node->getOpcode() == ISD::SINT_TO_FP); 2319 EVT DestVT = Node->getValueType(0); 2320 SDLoc dl(Node); 2321 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2322 SDValue Op0 = Node->getOperand(OpNo); 2323 EVT SrcVT = Op0.getValueType(); 2324 2325 // TODO: Should any fast-math-flags be set for the created nodes? 2326 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2327 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2328 (DestVT.bitsLE(MVT::f64) || 2329 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2330 : ISD::FP_EXTEND, 2331 DestVT))) { 2332 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2333 "expansion\n"); 2334 2335 // Get the stack frame index of a 8 byte buffer. 2336 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2337 2338 SDValue Lo = Op0; 2339 // if signed map to unsigned space 2340 if (isSigned) { 2341 // Invert sign bit (signed to unsigned mapping). 2342 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2343 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2344 } 2345 // Initial hi portion of constructed double. 2346 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2347 2348 // If this a big endian target, swap the lo and high data. 2349 if (DAG.getDataLayout().isBigEndian()) 2350 std::swap(Lo, Hi); 2351 2352 SDValue MemChain = DAG.getEntryNode(); 2353 2354 // Store the lo of the constructed double. 2355 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2356 MachinePointerInfo()); 2357 // Store the hi of the constructed double. 2358 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2359 SDValue Store2 = 2360 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2361 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2362 2363 // load the constructed double 2364 SDValue Load = 2365 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2366 // FP constant to bias correct the final result 2367 SDValue Bias = DAG.getConstantFP(isSigned ? 2368 BitsToDouble(0x4330000080000000ULL) : 2369 BitsToDouble(0x4330000000000000ULL), 2370 dl, MVT::f64); 2371 // Subtract the bias and get the final result. 2372 SDValue Sub; 2373 SDValue Result; 2374 if (Node->isStrictFPOpcode()) { 2375 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2376 {Node->getOperand(0), Load, Bias}); 2377 Chain = Sub.getValue(1); 2378 if (DestVT != Sub.getValueType()) { 2379 std::pair<SDValue, SDValue> ResultPair; 2380 ResultPair = 2381 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2382 Result = ResultPair.first; 2383 Chain = ResultPair.second; 2384 } 2385 else 2386 Result = Sub; 2387 } else { 2388 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2389 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2390 } 2391 return Result; 2392 } 2393 2394 if (isSigned) 2395 return SDValue(); 2396 2397 // TODO: Generalize this for use with other types. 2398 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2399 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2400 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2401 // For unsigned conversions, convert them to signed conversions using the 2402 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2403 // should be valid for i32->f32 as well. 2404 2405 // More generally this transform should be valid if there are 3 more bits 2406 // in the integer type than the significand. Rounding uses the first bit 2407 // after the width of the significand and the OR of all bits after that. So 2408 // we need to be able to OR the shifted out bit into one of the bits that 2409 // participate in the OR. 2410 2411 // TODO: This really should be implemented using a branch rather than a 2412 // select. We happen to get lucky and machinesink does the right 2413 // thing most of the time. This would be a good candidate for a 2414 // pseudo-op, or, even better, for whole-function isel. 2415 EVT SetCCVT = getSetCCResultType(SrcVT); 2416 2417 SDValue SignBitTest = DAG.getSetCC( 2418 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2419 2420 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2421 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2422 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2423 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2424 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2425 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2426 2427 SDValue Slow, Fast; 2428 if (Node->isStrictFPOpcode()) { 2429 // In strict mode, we must avoid spurious exceptions, and therefore 2430 // must make sure to only emit a single STRICT_SINT_TO_FP. 2431 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2432 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2433 { Node->getOperand(0), InCvt }); 2434 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2435 { Fast.getValue(1), Fast, Fast }); 2436 Chain = Slow.getValue(1); 2437 // The STRICT_SINT_TO_FP inherits the exception mode from the 2438 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2439 // never raise any exception. 2440 SDNodeFlags Flags; 2441 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2442 Fast->setFlags(Flags); 2443 Flags.setNoFPExcept(true); 2444 Slow->setFlags(Flags); 2445 } else { 2446 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2447 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2448 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2449 } 2450 2451 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2452 } 2453 2454 // Don't expand it if there isn't cheap fadd. 2455 if (!TLI.isOperationLegalOrCustom( 2456 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2457 return SDValue(); 2458 2459 // The following optimization is valid only if every value in SrcVT (when 2460 // treated as signed) is representable in DestVT. Check that the mantissa 2461 // size of DestVT is >= than the number of bits in SrcVT -1. 2462 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2463 SrcVT.getSizeInBits() - 1 && 2464 "Cannot perform lossless SINT_TO_FP!"); 2465 2466 SDValue Tmp1; 2467 if (Node->isStrictFPOpcode()) { 2468 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2469 { Node->getOperand(0), Op0 }); 2470 } else 2471 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2472 2473 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2474 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2475 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2476 Four = DAG.getIntPtrConstant(4, dl); 2477 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2478 SignSet, Four, Zero); 2479 2480 // If the sign bit of the integer is set, the large number will be treated 2481 // as a negative number. To counteract this, the dynamic code adds an 2482 // offset depending on the data type. 2483 uint64_t FF; 2484 switch (SrcVT.getSimpleVT().SimpleTy) { 2485 default: 2486 return SDValue(); 2487 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2488 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2489 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2490 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2491 } 2492 if (DAG.getDataLayout().isLittleEndian()) 2493 FF <<= 32; 2494 Constant *FudgeFactor = ConstantInt::get( 2495 Type::getInt64Ty(*DAG.getContext()), FF); 2496 2497 SDValue CPIdx = 2498 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2499 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2500 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2501 Alignment = commonAlignment(Alignment, 4); 2502 SDValue FudgeInReg; 2503 if (DestVT == MVT::f32) 2504 FudgeInReg = DAG.getLoad( 2505 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2506 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2507 Alignment); 2508 else { 2509 SDValue Load = DAG.getExtLoad( 2510 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2511 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2512 Alignment); 2513 HandleSDNode Handle(Load); 2514 LegalizeOp(Load.getNode()); 2515 FudgeInReg = Handle.getValue(); 2516 } 2517 2518 if (Node->isStrictFPOpcode()) { 2519 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2520 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2521 Chain = Result.getValue(1); 2522 return Result; 2523 } 2524 2525 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2526 } 2527 2528 /// This function is responsible for legalizing a 2529 /// *INT_TO_FP operation of the specified operand when the target requests that 2530 /// we promote it. At this point, we know that the result and operand types are 2531 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2532 /// operation that takes a larger input. 2533 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2534 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2535 bool IsStrict = N->isStrictFPOpcode(); 2536 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2537 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2538 EVT DestVT = N->getValueType(0); 2539 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2540 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2541 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2542 2543 // First step, figure out the appropriate *INT_TO_FP operation to use. 2544 EVT NewInTy = LegalOp.getValueType(); 2545 2546 unsigned OpToUse = 0; 2547 2548 // Scan for the appropriate larger type to use. 2549 while (true) { 2550 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2551 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2552 2553 // If the target supports SINT_TO_FP of this type, use it. 2554 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2555 OpToUse = SIntOp; 2556 break; 2557 } 2558 if (IsSigned) 2559 continue; 2560 2561 // If the target supports UINT_TO_FP of this type, use it. 2562 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2563 OpToUse = UIntOp; 2564 break; 2565 } 2566 2567 // Otherwise, try a larger type. 2568 } 2569 2570 // Okay, we found the operation and type to use. Zero extend our input to the 2571 // desired type then run the operation on it. 2572 if (IsStrict) { 2573 SDValue Res = 2574 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2575 {N->getOperand(0), 2576 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2577 dl, NewInTy, LegalOp)}); 2578 Results.push_back(Res); 2579 Results.push_back(Res.getValue(1)); 2580 return; 2581 } 2582 2583 Results.push_back( 2584 DAG.getNode(OpToUse, dl, DestVT, 2585 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2586 dl, NewInTy, LegalOp))); 2587 } 2588 2589 /// This function is responsible for legalizing a 2590 /// FP_TO_*INT operation of the specified operand when the target requests that 2591 /// we promote it. At this point, we know that the result and operand types are 2592 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2593 /// operation that returns a larger result. 2594 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2595 SmallVectorImpl<SDValue> &Results) { 2596 bool IsStrict = N->isStrictFPOpcode(); 2597 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2598 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2599 EVT DestVT = N->getValueType(0); 2600 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2601 // First step, figure out the appropriate FP_TO*INT operation to use. 2602 EVT NewOutTy = DestVT; 2603 2604 unsigned OpToUse = 0; 2605 2606 // Scan for the appropriate larger type to use. 2607 while (true) { 2608 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2609 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2610 2611 // A larger signed type can hold all unsigned values of the requested type, 2612 // so using FP_TO_SINT is valid 2613 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2614 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2615 break; 2616 2617 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2618 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2619 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2620 break; 2621 2622 // Otherwise, try a larger type. 2623 } 2624 2625 // Okay, we found the operation and type to use. 2626 SDValue Operation; 2627 if (IsStrict) { 2628 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2629 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2630 } else 2631 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2632 2633 // Truncate the result of the extended FP_TO_*INT operation to the desired 2634 // size. 2635 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2636 Results.push_back(Trunc); 2637 if (IsStrict) 2638 Results.push_back(Operation.getValue(1)); 2639 } 2640 2641 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2642 /// the result and operand types are legal and there must be a legal 2643 /// FP_TO_*INT_SAT operation for a larger result type. 2644 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2645 const SDLoc &dl) { 2646 unsigned Opcode = Node->getOpcode(); 2647 2648 // Scan for the appropriate larger type to use. 2649 EVT NewOutTy = Node->getValueType(0); 2650 while (true) { 2651 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2652 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2653 2654 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2655 break; 2656 } 2657 2658 // Saturation width is determined by second operand, so we don't have to 2659 // perform any fixup and can directly truncate the result. 2660 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2661 Node->getOperand(1)); 2662 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2663 } 2664 2665 /// Open code the operations for PARITY of the specified operation. 2666 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2667 EVT VT = Op.getValueType(); 2668 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2669 unsigned Sz = VT.getScalarSizeInBits(); 2670 2671 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2672 SDValue Result; 2673 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2674 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2675 } else { 2676 Result = Op; 2677 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2678 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2679 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2680 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2681 } 2682 } 2683 2684 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2685 } 2686 2687 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2688 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2689 SmallVector<SDValue, 8> Results; 2690 SDLoc dl(Node); 2691 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2692 bool NeedInvert; 2693 switch (Node->getOpcode()) { 2694 case ISD::ABS: 2695 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2696 Results.push_back(Tmp1); 2697 break; 2698 case ISD::CTPOP: 2699 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2700 Results.push_back(Tmp1); 2701 break; 2702 case ISD::CTLZ: 2703 case ISD::CTLZ_ZERO_UNDEF: 2704 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 2705 Results.push_back(Tmp1); 2706 break; 2707 case ISD::CTTZ: 2708 case ISD::CTTZ_ZERO_UNDEF: 2709 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 2710 Results.push_back(Tmp1); 2711 break; 2712 case ISD::BITREVERSE: 2713 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2714 Results.push_back(Tmp1); 2715 break; 2716 case ISD::BSWAP: 2717 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2718 Results.push_back(Tmp1); 2719 break; 2720 case ISD::PARITY: 2721 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2722 break; 2723 case ISD::FRAMEADDR: 2724 case ISD::RETURNADDR: 2725 case ISD::FRAME_TO_ARGS_OFFSET: 2726 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2727 break; 2728 case ISD::EH_DWARF_CFA: { 2729 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2730 TLI.getPointerTy(DAG.getDataLayout())); 2731 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2732 CfaArg.getValueType(), 2733 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2734 CfaArg.getValueType()), 2735 CfaArg); 2736 SDValue FA = DAG.getNode( 2737 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2738 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2739 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2740 FA, Offset)); 2741 break; 2742 } 2743 case ISD::FLT_ROUNDS_: 2744 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2745 Results.push_back(Node->getOperand(0)); 2746 break; 2747 case ISD::EH_RETURN: 2748 case ISD::EH_LABEL: 2749 case ISD::PREFETCH: 2750 case ISD::VAEND: 2751 case ISD::EH_SJLJ_LONGJMP: 2752 // If the target didn't expand these, there's nothing to do, so just 2753 // preserve the chain and be done. 2754 Results.push_back(Node->getOperand(0)); 2755 break; 2756 case ISD::READCYCLECOUNTER: 2757 // If the target didn't expand this, just return 'zero' and preserve the 2758 // chain. 2759 Results.append(Node->getNumValues() - 1, 2760 DAG.getConstant(0, dl, Node->getValueType(0))); 2761 Results.push_back(Node->getOperand(0)); 2762 break; 2763 case ISD::EH_SJLJ_SETJMP: 2764 // If the target didn't expand this, just return 'zero' and preserve the 2765 // chain. 2766 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2767 Results.push_back(Node->getOperand(0)); 2768 break; 2769 case ISD::ATOMIC_LOAD: { 2770 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2771 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2772 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2773 SDValue Swap = DAG.getAtomicCmpSwap( 2774 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2775 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2776 cast<AtomicSDNode>(Node)->getMemOperand()); 2777 Results.push_back(Swap.getValue(0)); 2778 Results.push_back(Swap.getValue(1)); 2779 break; 2780 } 2781 case ISD::ATOMIC_STORE: { 2782 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2783 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2784 cast<AtomicSDNode>(Node)->getMemoryVT(), 2785 Node->getOperand(0), 2786 Node->getOperand(1), Node->getOperand(2), 2787 cast<AtomicSDNode>(Node)->getMemOperand()); 2788 Results.push_back(Swap.getValue(1)); 2789 break; 2790 } 2791 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2792 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2793 // splits out the success value as a comparison. Expanding the resulting 2794 // ATOMIC_CMP_SWAP will produce a libcall. 2795 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2796 SDValue Res = DAG.getAtomicCmpSwap( 2797 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2798 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2799 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2800 2801 SDValue ExtRes = Res; 2802 SDValue LHS = Res; 2803 SDValue RHS = Node->getOperand(1); 2804 2805 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2806 EVT OuterType = Node->getValueType(0); 2807 switch (TLI.getExtendForAtomicOps()) { 2808 case ISD::SIGN_EXTEND: 2809 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2810 DAG.getValueType(AtomicType)); 2811 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2812 Node->getOperand(2), DAG.getValueType(AtomicType)); 2813 ExtRes = LHS; 2814 break; 2815 case ISD::ZERO_EXTEND: 2816 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2817 DAG.getValueType(AtomicType)); 2818 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2819 ExtRes = LHS; 2820 break; 2821 case ISD::ANY_EXTEND: 2822 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2823 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2824 break; 2825 default: 2826 llvm_unreachable("Invalid atomic op extension"); 2827 } 2828 2829 SDValue Success = 2830 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2831 2832 Results.push_back(ExtRes.getValue(0)); 2833 Results.push_back(Success); 2834 Results.push_back(Res.getValue(1)); 2835 break; 2836 } 2837 case ISD::DYNAMIC_STACKALLOC: 2838 ExpandDYNAMIC_STACKALLOC(Node, Results); 2839 break; 2840 case ISD::MERGE_VALUES: 2841 for (unsigned i = 0; i < Node->getNumValues(); i++) 2842 Results.push_back(Node->getOperand(i)); 2843 break; 2844 case ISD::UNDEF: { 2845 EVT VT = Node->getValueType(0); 2846 if (VT.isInteger()) 2847 Results.push_back(DAG.getConstant(0, dl, VT)); 2848 else { 2849 assert(VT.isFloatingPoint() && "Unknown value type!"); 2850 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2851 } 2852 break; 2853 } 2854 case ISD::STRICT_FP_ROUND: 2855 // When strict mode is enforced we can't do expansion because it 2856 // does not honor the "strict" properties. Only libcall is allowed. 2857 if (TLI.isStrictFPEnabled()) 2858 break; 2859 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2860 // since this operation is more efficient than stack operation. 2861 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2862 Node->getValueType(0)) 2863 == TargetLowering::Legal) 2864 break; 2865 // We fall back to use stack operation when the FP_ROUND operation 2866 // isn't available. 2867 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2868 Node->getValueType(0), dl, 2869 Node->getOperand(0)))) { 2870 ReplaceNode(Node, Tmp1.getNode()); 2871 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2872 return true; 2873 } 2874 break; 2875 case ISD::FP_ROUND: 2876 case ISD::BITCAST: 2877 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2878 Node->getValueType(0), dl))) 2879 Results.push_back(Tmp1); 2880 break; 2881 case ISD::STRICT_FP_EXTEND: 2882 // When strict mode is enforced we can't do expansion because it 2883 // does not honor the "strict" properties. Only libcall is allowed. 2884 if (TLI.isStrictFPEnabled()) 2885 break; 2886 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2887 // since this operation is more efficient than stack operation. 2888 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2889 Node->getValueType(0)) 2890 == TargetLowering::Legal) 2891 break; 2892 // We fall back to use stack operation when the FP_EXTEND operation 2893 // isn't available. 2894 if ((Tmp1 = EmitStackConvert( 2895 Node->getOperand(1), Node->getOperand(1).getValueType(), 2896 Node->getValueType(0), dl, Node->getOperand(0)))) { 2897 ReplaceNode(Node, Tmp1.getNode()); 2898 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2899 return true; 2900 } 2901 break; 2902 case ISD::FP_EXTEND: 2903 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2904 Node->getOperand(0).getValueType(), 2905 Node->getValueType(0), dl))) 2906 Results.push_back(Tmp1); 2907 break; 2908 case ISD::BF16_TO_FP: { 2909 // Always expand bf16 to f32 casts, they lower to ext + shift. 2910 SDValue Op = DAG.getNode(ISD::BITCAST, dl, MVT::i16, Node->getOperand(0)); 2911 Op = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op); 2912 Op = DAG.getNode( 2913 ISD::SHL, dl, MVT::i32, Op, 2914 DAG.getConstant(16, dl, 2915 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 2916 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op); 2917 Results.push_back(Op); 2918 break; 2919 } 2920 case ISD::SIGN_EXTEND_INREG: { 2921 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2922 EVT VT = Node->getValueType(0); 2923 2924 // An in-register sign-extend of a boolean is a negation: 2925 // 'true' (1) sign-extended is -1. 2926 // 'false' (0) sign-extended is 0. 2927 // However, we must mask the high bits of the source operand because the 2928 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2929 2930 // TODO: Do this for vectors too? 2931 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 2932 SDValue One = DAG.getConstant(1, dl, VT); 2933 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2934 SDValue Zero = DAG.getConstant(0, dl, VT); 2935 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2936 Results.push_back(Neg); 2937 break; 2938 } 2939 2940 // NOTE: we could fall back on load/store here too for targets without 2941 // SRA. However, it is doubtful that any exist. 2942 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2943 unsigned BitsDiff = VT.getScalarSizeInBits() - 2944 ExtraVT.getScalarSizeInBits(); 2945 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2946 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2947 Node->getOperand(0), ShiftCst); 2948 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2949 Results.push_back(Tmp1); 2950 break; 2951 } 2952 case ISD::UINT_TO_FP: 2953 case ISD::STRICT_UINT_TO_FP: 2954 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2955 Results.push_back(Tmp1); 2956 if (Node->isStrictFPOpcode()) 2957 Results.push_back(Tmp2); 2958 break; 2959 } 2960 LLVM_FALLTHROUGH; 2961 case ISD::SINT_TO_FP: 2962 case ISD::STRICT_SINT_TO_FP: 2963 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2964 Results.push_back(Tmp1); 2965 if (Node->isStrictFPOpcode()) 2966 Results.push_back(Tmp2); 2967 } 2968 break; 2969 case ISD::FP_TO_SINT: 2970 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2971 Results.push_back(Tmp1); 2972 break; 2973 case ISD::STRICT_FP_TO_SINT: 2974 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2975 ReplaceNode(Node, Tmp1.getNode()); 2976 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2977 return true; 2978 } 2979 break; 2980 case ISD::FP_TO_UINT: 2981 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2982 Results.push_back(Tmp1); 2983 break; 2984 case ISD::STRICT_FP_TO_UINT: 2985 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2986 // Relink the chain. 2987 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2988 // Replace the new UINT result. 2989 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2990 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2991 return true; 2992 } 2993 break; 2994 case ISD::FP_TO_SINT_SAT: 2995 case ISD::FP_TO_UINT_SAT: 2996 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 2997 break; 2998 case ISD::VAARG: 2999 Results.push_back(DAG.expandVAArg(Node)); 3000 Results.push_back(Results[0].getValue(1)); 3001 break; 3002 case ISD::VACOPY: 3003 Results.push_back(DAG.expandVACopy(Node)); 3004 break; 3005 case ISD::EXTRACT_VECTOR_ELT: 3006 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3007 // This must be an access of the only element. Return it. 3008 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3009 Node->getOperand(0)); 3010 else 3011 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3012 Results.push_back(Tmp1); 3013 break; 3014 case ISD::EXTRACT_SUBVECTOR: 3015 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3016 break; 3017 case ISD::INSERT_SUBVECTOR: 3018 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3019 break; 3020 case ISD::CONCAT_VECTORS: 3021 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3022 break; 3023 case ISD::SCALAR_TO_VECTOR: 3024 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3025 break; 3026 case ISD::INSERT_VECTOR_ELT: 3027 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3028 Node->getOperand(1), 3029 Node->getOperand(2), dl)); 3030 break; 3031 case ISD::VECTOR_SHUFFLE: { 3032 SmallVector<int, 32> NewMask; 3033 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3034 3035 EVT VT = Node->getValueType(0); 3036 EVT EltVT = VT.getVectorElementType(); 3037 SDValue Op0 = Node->getOperand(0); 3038 SDValue Op1 = Node->getOperand(1); 3039 if (!TLI.isTypeLegal(EltVT)) { 3040 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3041 3042 // BUILD_VECTOR operands are allowed to be wider than the element type. 3043 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3044 // it. 3045 if (NewEltVT.bitsLT(EltVT)) { 3046 // Convert shuffle node. 3047 // If original node was v4i64 and the new EltVT is i32, 3048 // cast operands to v8i32 and re-build the mask. 3049 3050 // Calculate new VT, the size of the new VT should be equal to original. 3051 EVT NewVT = 3052 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3053 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3054 assert(NewVT.bitsEq(VT)); 3055 3056 // cast operands to new VT 3057 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3058 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3059 3060 // Convert the shuffle mask 3061 unsigned int factor = 3062 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3063 3064 // EltVT gets smaller 3065 assert(factor > 0); 3066 3067 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3068 if (Mask[i] < 0) { 3069 for (unsigned fi = 0; fi < factor; ++fi) 3070 NewMask.push_back(Mask[i]); 3071 } 3072 else { 3073 for (unsigned fi = 0; fi < factor; ++fi) 3074 NewMask.push_back(Mask[i]*factor+fi); 3075 } 3076 } 3077 Mask = NewMask; 3078 VT = NewVT; 3079 } 3080 EltVT = NewEltVT; 3081 } 3082 unsigned NumElems = VT.getVectorNumElements(); 3083 SmallVector<SDValue, 16> Ops; 3084 for (unsigned i = 0; i != NumElems; ++i) { 3085 if (Mask[i] < 0) { 3086 Ops.push_back(DAG.getUNDEF(EltVT)); 3087 continue; 3088 } 3089 unsigned Idx = Mask[i]; 3090 if (Idx < NumElems) 3091 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3092 DAG.getVectorIdxConstant(Idx, dl))); 3093 else 3094 Ops.push_back( 3095 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3096 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3097 } 3098 3099 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3100 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3101 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3102 Results.push_back(Tmp1); 3103 break; 3104 } 3105 case ISD::VECTOR_SPLICE: { 3106 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3107 break; 3108 } 3109 case ISD::EXTRACT_ELEMENT: { 3110 EVT OpTy = Node->getOperand(0).getValueType(); 3111 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3112 // 1 -> Hi 3113 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3114 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3115 TLI.getShiftAmountTy( 3116 Node->getOperand(0).getValueType(), 3117 DAG.getDataLayout()))); 3118 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3119 } else { 3120 // 0 -> Lo 3121 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3122 Node->getOperand(0)); 3123 } 3124 Results.push_back(Tmp1); 3125 break; 3126 } 3127 case ISD::STACKSAVE: 3128 // Expand to CopyFromReg if the target set 3129 // StackPointerRegisterToSaveRestore. 3130 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3131 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3132 Node->getValueType(0))); 3133 Results.push_back(Results[0].getValue(1)); 3134 } else { 3135 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3136 Results.push_back(Node->getOperand(0)); 3137 } 3138 break; 3139 case ISD::STACKRESTORE: 3140 // Expand to CopyToReg if the target set 3141 // StackPointerRegisterToSaveRestore. 3142 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3143 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3144 Node->getOperand(1))); 3145 } else { 3146 Results.push_back(Node->getOperand(0)); 3147 } 3148 break; 3149 case ISD::GET_DYNAMIC_AREA_OFFSET: 3150 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3151 Results.push_back(Results[0].getValue(0)); 3152 break; 3153 case ISD::FCOPYSIGN: 3154 Results.push_back(ExpandFCOPYSIGN(Node)); 3155 break; 3156 case ISD::FNEG: 3157 Results.push_back(ExpandFNEG(Node)); 3158 break; 3159 case ISD::FABS: 3160 Results.push_back(ExpandFABS(Node)); 3161 break; 3162 case ISD::IS_FPCLASS: { 3163 auto CNode = cast<ConstantSDNode>(Node->getOperand(1)); 3164 auto Test = static_cast<FPClassTest>(CNode->getZExtValue()); 3165 if (SDValue Expanded = 3166 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3167 Test, Node->getFlags(), SDLoc(Node), DAG)) 3168 Results.push_back(Expanded); 3169 break; 3170 } 3171 case ISD::SMIN: 3172 case ISD::SMAX: 3173 case ISD::UMIN: 3174 case ISD::UMAX: { 3175 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3176 ISD::CondCode Pred; 3177 switch (Node->getOpcode()) { 3178 default: llvm_unreachable("How did we get here?"); 3179 case ISD::SMAX: Pred = ISD::SETGT; break; 3180 case ISD::SMIN: Pred = ISD::SETLT; break; 3181 case ISD::UMAX: Pred = ISD::SETUGT; break; 3182 case ISD::UMIN: Pred = ISD::SETULT; break; 3183 } 3184 Tmp1 = Node->getOperand(0); 3185 Tmp2 = Node->getOperand(1); 3186 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3187 Results.push_back(Tmp1); 3188 break; 3189 } 3190 case ISD::FMINNUM: 3191 case ISD::FMAXNUM: { 3192 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3193 Results.push_back(Expanded); 3194 break; 3195 } 3196 case ISD::FSIN: 3197 case ISD::FCOS: { 3198 EVT VT = Node->getValueType(0); 3199 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3200 // fcos which share the same operand and both are used. 3201 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3202 isSinCosLibcallAvailable(Node, TLI)) 3203 && useSinCos(Node)) { 3204 SDVTList VTs = DAG.getVTList(VT, VT); 3205 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3206 if (Node->getOpcode() == ISD::FCOS) 3207 Tmp1 = Tmp1.getValue(1); 3208 Results.push_back(Tmp1); 3209 } 3210 break; 3211 } 3212 case ISD::FMAD: 3213 llvm_unreachable("Illegal fmad should never be formed"); 3214 3215 case ISD::FP16_TO_FP: 3216 if (Node->getValueType(0) != MVT::f32) { 3217 // We can extend to types bigger than f32 in two steps without changing 3218 // the result. Since "f16 -> f32" is much more commonly available, give 3219 // CodeGen the option of emitting that before resorting to a libcall. 3220 SDValue Res = 3221 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3222 Results.push_back( 3223 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3224 } 3225 break; 3226 case ISD::STRICT_FP16_TO_FP: 3227 if (Node->getValueType(0) != MVT::f32) { 3228 // We can extend to types bigger than f32 in two steps without changing 3229 // the result. Since "f16 -> f32" is much more commonly available, give 3230 // CodeGen the option of emitting that before resorting to a libcall. 3231 SDValue Res = 3232 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3233 {Node->getOperand(0), Node->getOperand(1)}); 3234 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3235 {Node->getValueType(0), MVT::Other}, 3236 {Res.getValue(1), Res}); 3237 Results.push_back(Res); 3238 Results.push_back(Res.getValue(1)); 3239 } 3240 break; 3241 case ISD::FP_TO_FP16: 3242 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3243 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3244 SDValue Op = Node->getOperand(0); 3245 MVT SVT = Op.getSimpleValueType(); 3246 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3247 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3248 // Under fastmath, we can expand this node into a fround followed by 3249 // a float-half conversion. 3250 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3251 DAG.getIntPtrConstant(0, dl)); 3252 Results.push_back( 3253 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3254 } 3255 } 3256 break; 3257 case ISD::ConstantFP: { 3258 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3259 // Check to see if this FP immediate is already legal. 3260 // If this is a legal constant, turn it into a TargetConstantFP node. 3261 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3262 DAG.shouldOptForSize())) 3263 Results.push_back(ExpandConstantFP(CFP, true)); 3264 break; 3265 } 3266 case ISD::Constant: { 3267 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3268 Results.push_back(ExpandConstant(CP)); 3269 break; 3270 } 3271 case ISD::FSUB: { 3272 EVT VT = Node->getValueType(0); 3273 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3274 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3275 const SDNodeFlags Flags = Node->getFlags(); 3276 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3277 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3278 Results.push_back(Tmp1); 3279 } 3280 break; 3281 } 3282 case ISD::SUB: { 3283 EVT VT = Node->getValueType(0); 3284 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3285 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3286 "Don't know how to expand this subtraction!"); 3287 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3288 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3289 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3290 break; 3291 } 3292 case ISD::UREM: 3293 case ISD::SREM: 3294 if (TLI.expandREM(Node, Tmp1, DAG)) 3295 Results.push_back(Tmp1); 3296 break; 3297 case ISD::UDIV: 3298 case ISD::SDIV: { 3299 bool isSigned = Node->getOpcode() == ISD::SDIV; 3300 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3301 EVT VT = Node->getValueType(0); 3302 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3303 SDVTList VTs = DAG.getVTList(VT, VT); 3304 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3305 Node->getOperand(1)); 3306 Results.push_back(Tmp1); 3307 } 3308 break; 3309 } 3310 case ISD::MULHU: 3311 case ISD::MULHS: { 3312 unsigned ExpandOpcode = 3313 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3314 EVT VT = Node->getValueType(0); 3315 SDVTList VTs = DAG.getVTList(VT, VT); 3316 3317 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3318 Node->getOperand(1)); 3319 Results.push_back(Tmp1.getValue(1)); 3320 break; 3321 } 3322 case ISD::UMUL_LOHI: 3323 case ISD::SMUL_LOHI: { 3324 SDValue LHS = Node->getOperand(0); 3325 SDValue RHS = Node->getOperand(1); 3326 MVT VT = LHS.getSimpleValueType(); 3327 unsigned MULHOpcode = 3328 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3329 3330 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3331 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3332 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3333 break; 3334 } 3335 3336 SmallVector<SDValue, 4> Halves; 3337 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3338 assert(TLI.isTypeLegal(HalfType)); 3339 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3340 HalfType, DAG, 3341 TargetLowering::MulExpansionKind::Always)) { 3342 for (unsigned i = 0; i < 2; ++i) { 3343 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3344 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3345 SDValue Shift = DAG.getConstant( 3346 HalfType.getScalarSizeInBits(), dl, 3347 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3348 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3349 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3350 } 3351 break; 3352 } 3353 break; 3354 } 3355 case ISD::MUL: { 3356 EVT VT = Node->getValueType(0); 3357 SDVTList VTs = DAG.getVTList(VT, VT); 3358 // See if multiply or divide can be lowered using two-result operations. 3359 // We just need the low half of the multiply; try both the signed 3360 // and unsigned forms. If the target supports both SMUL_LOHI and 3361 // UMUL_LOHI, form a preference by checking which forms of plain 3362 // MULH it supports. 3363 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3364 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3365 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3366 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3367 unsigned OpToUse = 0; 3368 if (HasSMUL_LOHI && !HasMULHS) { 3369 OpToUse = ISD::SMUL_LOHI; 3370 } else if (HasUMUL_LOHI && !HasMULHU) { 3371 OpToUse = ISD::UMUL_LOHI; 3372 } else if (HasSMUL_LOHI) { 3373 OpToUse = ISD::SMUL_LOHI; 3374 } else if (HasUMUL_LOHI) { 3375 OpToUse = ISD::UMUL_LOHI; 3376 } 3377 if (OpToUse) { 3378 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3379 Node->getOperand(1))); 3380 break; 3381 } 3382 3383 SDValue Lo, Hi; 3384 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3385 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3386 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3387 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3388 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3389 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3390 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3391 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3392 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3393 SDValue Shift = 3394 DAG.getConstant(HalfType.getSizeInBits(), dl, 3395 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3396 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3397 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3398 } 3399 break; 3400 } 3401 case ISD::FSHL: 3402 case ISD::FSHR: 3403 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3404 Results.push_back(Expanded); 3405 break; 3406 case ISD::ROTL: 3407 case ISD::ROTR: 3408 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3409 Results.push_back(Expanded); 3410 break; 3411 case ISD::SADDSAT: 3412 case ISD::UADDSAT: 3413 case ISD::SSUBSAT: 3414 case ISD::USUBSAT: 3415 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3416 break; 3417 case ISD::SSHLSAT: 3418 case ISD::USHLSAT: 3419 Results.push_back(TLI.expandShlSat(Node, DAG)); 3420 break; 3421 case ISD::SMULFIX: 3422 case ISD::SMULFIXSAT: 3423 case ISD::UMULFIX: 3424 case ISD::UMULFIXSAT: 3425 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3426 break; 3427 case ISD::SDIVFIX: 3428 case ISD::SDIVFIXSAT: 3429 case ISD::UDIVFIX: 3430 case ISD::UDIVFIXSAT: 3431 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3432 Node->getOperand(0), 3433 Node->getOperand(1), 3434 Node->getConstantOperandVal(2), 3435 DAG)) { 3436 Results.push_back(V); 3437 break; 3438 } 3439 // FIXME: We might want to retry here with a wider type if we fail, if that 3440 // type is legal. 3441 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3442 // <= 128 (which is the case for all of the default Embedded-C types), 3443 // we will only get here with types and scales that we could always expand 3444 // if we were allowed to generate libcalls to division functions of illegal 3445 // type. But we cannot do that. 3446 llvm_unreachable("Cannot expand DIVFIX!"); 3447 case ISD::ADDCARRY: 3448 case ISD::SUBCARRY: { 3449 SDValue LHS = Node->getOperand(0); 3450 SDValue RHS = Node->getOperand(1); 3451 SDValue Carry = Node->getOperand(2); 3452 3453 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3454 3455 // Initial add of the 2 operands. 3456 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3457 EVT VT = LHS.getValueType(); 3458 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3459 3460 // Initial check for overflow. 3461 EVT CarryType = Node->getValueType(1); 3462 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3463 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3464 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3465 3466 // Add of the sum and the carry. 3467 SDValue One = DAG.getConstant(1, dl, VT); 3468 SDValue CarryExt = 3469 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3470 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3471 3472 // Second check for overflow. If we are adding, we can only overflow if the 3473 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3474 // If we are subtracting, we can only overflow if the initial sum is 0 and 3475 // the carry is set, resulting in a new sum of all 1s. 3476 SDValue Zero = DAG.getConstant(0, dl, VT); 3477 SDValue Overflow2 = 3478 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3479 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3480 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3481 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3482 3483 SDValue ResultCarry = 3484 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3485 3486 Results.push_back(Sum2); 3487 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3488 break; 3489 } 3490 case ISD::SADDO: 3491 case ISD::SSUBO: { 3492 SDValue Result, Overflow; 3493 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3494 Results.push_back(Result); 3495 Results.push_back(Overflow); 3496 break; 3497 } 3498 case ISD::UADDO: 3499 case ISD::USUBO: { 3500 SDValue Result, Overflow; 3501 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3502 Results.push_back(Result); 3503 Results.push_back(Overflow); 3504 break; 3505 } 3506 case ISD::UMULO: 3507 case ISD::SMULO: { 3508 SDValue Result, Overflow; 3509 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3510 Results.push_back(Result); 3511 Results.push_back(Overflow); 3512 } 3513 break; 3514 } 3515 case ISD::BUILD_PAIR: { 3516 EVT PairTy = Node->getValueType(0); 3517 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3518 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3519 Tmp2 = DAG.getNode( 3520 ISD::SHL, dl, PairTy, Tmp2, 3521 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3522 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3523 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3524 break; 3525 } 3526 case ISD::SELECT: 3527 Tmp1 = Node->getOperand(0); 3528 Tmp2 = Node->getOperand(1); 3529 Tmp3 = Node->getOperand(2); 3530 if (Tmp1.getOpcode() == ISD::SETCC) { 3531 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3532 Tmp2, Tmp3, 3533 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3534 } else { 3535 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3536 DAG.getConstant(0, dl, Tmp1.getValueType()), 3537 Tmp2, Tmp3, ISD::SETNE); 3538 } 3539 Tmp1->setFlags(Node->getFlags()); 3540 Results.push_back(Tmp1); 3541 break; 3542 case ISD::BR_JT: { 3543 SDValue Chain = Node->getOperand(0); 3544 SDValue Table = Node->getOperand(1); 3545 SDValue Index = Node->getOperand(2); 3546 3547 const DataLayout &TD = DAG.getDataLayout(); 3548 EVT PTy = TLI.getPointerTy(TD); 3549 3550 unsigned EntrySize = 3551 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3552 3553 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3554 // This transformation needs to be done here since otherwise the MIPS 3555 // backend will end up emitting a three instruction multiply sequence 3556 // instead of a single shift and MSP430 will call a runtime function. 3557 if (llvm::isPowerOf2_32(EntrySize)) 3558 Index = DAG.getNode( 3559 ISD::SHL, dl, Index.getValueType(), Index, 3560 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3561 else 3562 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3563 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3564 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3565 Index, Table); 3566 3567 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3568 SDValue LD = DAG.getExtLoad( 3569 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3570 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3571 Addr = LD; 3572 if (TLI.isJumpTableRelative()) { 3573 // For PIC, the sequence is: 3574 // BRIND(load(Jumptable + index) + RelocBase) 3575 // RelocBase can be JumpTable, GOT or some sort of global base. 3576 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3577 TLI.getPICJumpTableRelocBase(Table, DAG)); 3578 } 3579 3580 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3581 Results.push_back(Tmp1); 3582 break; 3583 } 3584 case ISD::BRCOND: 3585 // Expand brcond's setcc into its constituent parts and create a BR_CC 3586 // Node. 3587 Tmp1 = Node->getOperand(0); 3588 Tmp2 = Node->getOperand(1); 3589 if (Tmp2.getOpcode() == ISD::SETCC && 3590 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3591 Tmp2.getOperand(0).getValueType())) { 3592 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3593 Tmp2.getOperand(0), Tmp2.getOperand(1), 3594 Node->getOperand(2)); 3595 } else { 3596 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3597 if (Tmp2.isUndef() || 3598 (Tmp2.getOpcode() == ISD::AND && 3599 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3600 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3601 Tmp3 = Tmp2; 3602 else 3603 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3604 DAG.getConstant(1, dl, Tmp2.getValueType())); 3605 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3606 DAG.getCondCode(ISD::SETNE), Tmp3, 3607 DAG.getConstant(0, dl, Tmp3.getValueType()), 3608 Node->getOperand(2)); 3609 } 3610 Results.push_back(Tmp1); 3611 break; 3612 case ISD::SETCC: 3613 case ISD::VP_SETCC: 3614 case ISD::STRICT_FSETCC: 3615 case ISD::STRICT_FSETCCS: { 3616 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 3617 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 3618 Node->getOpcode() == ISD::STRICT_FSETCCS; 3619 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3620 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3621 unsigned Offset = IsStrict ? 1 : 0; 3622 Tmp1 = Node->getOperand(0 + Offset); 3623 Tmp2 = Node->getOperand(1 + Offset); 3624 Tmp3 = Node->getOperand(2 + Offset); 3625 SDValue Mask, EVL; 3626 if (IsVP) { 3627 Mask = Node->getOperand(3 + Offset); 3628 EVL = Node->getOperand(4 + Offset); 3629 } 3630 bool Legalized = TLI.LegalizeSetCCCondCode( 3631 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 3632 Chain, IsSignaling); 3633 3634 if (Legalized) { 3635 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3636 // condition code, create a new SETCC node. 3637 if (Tmp3.getNode()) { 3638 if (IsStrict) { 3639 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3640 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 3641 Chain = Tmp1.getValue(1); 3642 } else if (IsVP) { 3643 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 3644 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 3645 } else { 3646 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 3647 Tmp2, Tmp3, Node->getFlags()); 3648 } 3649 } 3650 3651 // If we expanded the SETCC by inverting the condition code, then wrap 3652 // the existing SETCC in a NOT to restore the intended condition. 3653 if (NeedInvert) { 3654 if (!IsVP) 3655 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3656 else 3657 Tmp1 = 3658 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 3659 } 3660 3661 Results.push_back(Tmp1); 3662 if (IsStrict) 3663 Results.push_back(Chain); 3664 3665 break; 3666 } 3667 3668 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3669 // understand if this code is useful for strict nodes. 3670 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3671 3672 // Otherwise, SETCC for the given comparison type must be completely 3673 // illegal; expand it into a SELECT_CC. 3674 // FIXME: This drops the mask/evl for VP_SETCC. 3675 EVT VT = Node->getValueType(0); 3676 EVT Tmp1VT = Tmp1.getValueType(); 3677 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3678 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 3679 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 3680 Tmp1->setFlags(Node->getFlags()); 3681 Results.push_back(Tmp1); 3682 break; 3683 } 3684 case ISD::SELECT_CC: { 3685 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3686 Tmp1 = Node->getOperand(0); // LHS 3687 Tmp2 = Node->getOperand(1); // RHS 3688 Tmp3 = Node->getOperand(2); // True 3689 Tmp4 = Node->getOperand(3); // False 3690 EVT VT = Node->getValueType(0); 3691 SDValue Chain; 3692 SDValue CC = Node->getOperand(4); 3693 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3694 3695 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3696 // If the condition code is legal, then we need to expand this 3697 // node using SETCC and SELECT. 3698 EVT CmpVT = Tmp1.getValueType(); 3699 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3700 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3701 "expanded."); 3702 EVT CCVT = getSetCCResultType(CmpVT); 3703 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3704 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3705 break; 3706 } 3707 3708 // SELECT_CC is legal, so the condition code must not be. 3709 bool Legalized = false; 3710 // Try to legalize by inverting the condition. This is for targets that 3711 // might support an ordered version of a condition, but not the unordered 3712 // version (or vice versa). 3713 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3714 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3715 // Use the new condition code and swap true and false 3716 Legalized = true; 3717 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3718 Tmp1->setFlags(Node->getFlags()); 3719 } else { 3720 // If The inverse is not legal, then try to swap the arguments using 3721 // the inverse condition code. 3722 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3723 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3724 // The swapped inverse condition is legal, so swap true and false, 3725 // lhs and rhs. 3726 Legalized = true; 3727 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3728 Tmp1->setFlags(Node->getFlags()); 3729 } 3730 } 3731 3732 if (!Legalized) { 3733 Legalized = TLI.LegalizeSetCCCondCode( 3734 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3735 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3736 3737 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3738 3739 // If we expanded the SETCC by inverting the condition code, then swap 3740 // the True/False operands to match. 3741 if (NeedInvert) 3742 std::swap(Tmp3, Tmp4); 3743 3744 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3745 // condition code, create a new SELECT_CC node. 3746 if (CC.getNode()) { 3747 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3748 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3749 } else { 3750 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3751 CC = DAG.getCondCode(ISD::SETNE); 3752 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3753 Tmp2, Tmp3, Tmp4, CC); 3754 } 3755 Tmp1->setFlags(Node->getFlags()); 3756 } 3757 Results.push_back(Tmp1); 3758 break; 3759 } 3760 case ISD::BR_CC: { 3761 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3762 SDValue Chain; 3763 Tmp1 = Node->getOperand(0); // Chain 3764 Tmp2 = Node->getOperand(2); // LHS 3765 Tmp3 = Node->getOperand(3); // RHS 3766 Tmp4 = Node->getOperand(1); // CC 3767 3768 bool Legalized = TLI.LegalizeSetCCCondCode( 3769 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 3770 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3771 (void)Legalized; 3772 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3773 3774 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3775 // node. 3776 if (Tmp4.getNode()) { 3777 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3778 3779 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3780 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3781 } else { 3782 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3783 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3784 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3785 Tmp2, Tmp3, Node->getOperand(4)); 3786 } 3787 Results.push_back(Tmp1); 3788 break; 3789 } 3790 case ISD::BUILD_VECTOR: 3791 Results.push_back(ExpandBUILD_VECTOR(Node)); 3792 break; 3793 case ISD::SPLAT_VECTOR: 3794 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3795 break; 3796 case ISD::SRA: 3797 case ISD::SRL: 3798 case ISD::SHL: { 3799 // Scalarize vector SRA/SRL/SHL. 3800 EVT VT = Node->getValueType(0); 3801 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3802 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3803 unsigned NumElem = VT.getVectorNumElements(); 3804 3805 SmallVector<SDValue, 8> Scalars; 3806 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3807 SDValue Ex = 3808 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3809 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3810 SDValue Sh = 3811 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3812 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3813 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3814 VT.getScalarType(), Ex, Sh)); 3815 } 3816 3817 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3818 Results.push_back(Result); 3819 break; 3820 } 3821 case ISD::VECREDUCE_FADD: 3822 case ISD::VECREDUCE_FMUL: 3823 case ISD::VECREDUCE_ADD: 3824 case ISD::VECREDUCE_MUL: 3825 case ISD::VECREDUCE_AND: 3826 case ISD::VECREDUCE_OR: 3827 case ISD::VECREDUCE_XOR: 3828 case ISD::VECREDUCE_SMAX: 3829 case ISD::VECREDUCE_SMIN: 3830 case ISD::VECREDUCE_UMAX: 3831 case ISD::VECREDUCE_UMIN: 3832 case ISD::VECREDUCE_FMAX: 3833 case ISD::VECREDUCE_FMIN: 3834 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3835 break; 3836 case ISD::GLOBAL_OFFSET_TABLE: 3837 case ISD::GlobalAddress: 3838 case ISD::GlobalTLSAddress: 3839 case ISD::ExternalSymbol: 3840 case ISD::ConstantPool: 3841 case ISD::JumpTable: 3842 case ISD::INTRINSIC_W_CHAIN: 3843 case ISD::INTRINSIC_WO_CHAIN: 3844 case ISD::INTRINSIC_VOID: 3845 // FIXME: Custom lowering for these operations shouldn't return null! 3846 // Return true so that we don't call ConvertNodeToLibcall which also won't 3847 // do anything. 3848 return true; 3849 } 3850 3851 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3852 // FIXME: We were asked to expand a strict floating-point operation, 3853 // but there is currently no expansion implemented that would preserve 3854 // the "strict" properties. For now, we just fall back to the non-strict 3855 // version if that is legal on the target. The actual mutation of the 3856 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3857 switch (Node->getOpcode()) { 3858 default: 3859 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3860 Node->getValueType(0)) 3861 == TargetLowering::Legal) 3862 return true; 3863 break; 3864 case ISD::STRICT_FSUB: { 3865 if (TLI.getStrictFPOperationAction( 3866 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3867 return true; 3868 if (TLI.getStrictFPOperationAction( 3869 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3870 break; 3871 3872 EVT VT = Node->getValueType(0); 3873 const SDNodeFlags Flags = Node->getFlags(); 3874 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3875 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3876 {Node->getOperand(0), Node->getOperand(1), Neg}, 3877 Flags); 3878 3879 Results.push_back(Fadd); 3880 Results.push_back(Fadd.getValue(1)); 3881 break; 3882 } 3883 case ISD::STRICT_SINT_TO_FP: 3884 case ISD::STRICT_UINT_TO_FP: 3885 case ISD::STRICT_LRINT: 3886 case ISD::STRICT_LLRINT: 3887 case ISD::STRICT_LROUND: 3888 case ISD::STRICT_LLROUND: 3889 // These are registered by the operand type instead of the value 3890 // type. Reflect that here. 3891 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3892 Node->getOperand(1).getValueType()) 3893 == TargetLowering::Legal) 3894 return true; 3895 break; 3896 } 3897 } 3898 3899 // Replace the original node with the legalized result. 3900 if (Results.empty()) { 3901 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3902 return false; 3903 } 3904 3905 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3906 ReplaceNode(Node, Results.data()); 3907 return true; 3908 } 3909 3910 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3911 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3912 SmallVector<SDValue, 8> Results; 3913 SDLoc dl(Node); 3914 // FIXME: Check flags on the node to see if we can use a finite call. 3915 unsigned Opc = Node->getOpcode(); 3916 switch (Opc) { 3917 case ISD::ATOMIC_FENCE: { 3918 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3919 // FIXME: handle "fence singlethread" more efficiently. 3920 TargetLowering::ArgListTy Args; 3921 3922 TargetLowering::CallLoweringInfo CLI(DAG); 3923 CLI.setDebugLoc(dl) 3924 .setChain(Node->getOperand(0)) 3925 .setLibCallee( 3926 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3927 DAG.getExternalSymbol("__sync_synchronize", 3928 TLI.getPointerTy(DAG.getDataLayout())), 3929 std::move(Args)); 3930 3931 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3932 3933 Results.push_back(CallResult.second); 3934 break; 3935 } 3936 // By default, atomic intrinsics are marked Legal and lowered. Targets 3937 // which don't support them directly, however, may want libcalls, in which 3938 // case they mark them Expand, and we get here. 3939 case ISD::ATOMIC_SWAP: 3940 case ISD::ATOMIC_LOAD_ADD: 3941 case ISD::ATOMIC_LOAD_SUB: 3942 case ISD::ATOMIC_LOAD_AND: 3943 case ISD::ATOMIC_LOAD_CLR: 3944 case ISD::ATOMIC_LOAD_OR: 3945 case ISD::ATOMIC_LOAD_XOR: 3946 case ISD::ATOMIC_LOAD_NAND: 3947 case ISD::ATOMIC_LOAD_MIN: 3948 case ISD::ATOMIC_LOAD_MAX: 3949 case ISD::ATOMIC_LOAD_UMIN: 3950 case ISD::ATOMIC_LOAD_UMAX: 3951 case ISD::ATOMIC_CMP_SWAP: { 3952 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3953 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3954 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3955 EVT RetVT = Node->getValueType(0); 3956 TargetLowering::MakeLibCallOptions CallOptions; 3957 SmallVector<SDValue, 4> Ops; 3958 if (TLI.getLibcallName(LC)) { 3959 // If outline atomic available, prepare its arguments and expand. 3960 Ops.append(Node->op_begin() + 2, Node->op_end()); 3961 Ops.push_back(Node->getOperand(1)); 3962 3963 } else { 3964 LC = RTLIB::getSYNC(Opc, VT); 3965 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3966 "Unexpected atomic op or value type!"); 3967 // Arguments for expansion to sync libcall 3968 Ops.append(Node->op_begin() + 1, Node->op_end()); 3969 } 3970 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3971 Ops, CallOptions, 3972 SDLoc(Node), 3973 Node->getOperand(0)); 3974 Results.push_back(Tmp.first); 3975 Results.push_back(Tmp.second); 3976 break; 3977 } 3978 case ISD::TRAP: { 3979 // If this operation is not supported, lower it to 'abort()' call 3980 TargetLowering::ArgListTy Args; 3981 TargetLowering::CallLoweringInfo CLI(DAG); 3982 CLI.setDebugLoc(dl) 3983 .setChain(Node->getOperand(0)) 3984 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3985 DAG.getExternalSymbol( 3986 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3987 std::move(Args)); 3988 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3989 3990 Results.push_back(CallResult.second); 3991 break; 3992 } 3993 case ISD::FMINNUM: 3994 case ISD::STRICT_FMINNUM: 3995 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 3996 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 3997 RTLIB::FMIN_PPCF128, Results); 3998 break; 3999 case ISD::FMAXNUM: 4000 case ISD::STRICT_FMAXNUM: 4001 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4002 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4003 RTLIB::FMAX_PPCF128, Results); 4004 break; 4005 case ISD::FSQRT: 4006 case ISD::STRICT_FSQRT: 4007 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4008 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4009 RTLIB::SQRT_PPCF128, Results); 4010 break; 4011 case ISD::FCBRT: 4012 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4013 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4014 RTLIB::CBRT_PPCF128, Results); 4015 break; 4016 case ISD::FSIN: 4017 case ISD::STRICT_FSIN: 4018 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4019 RTLIB::SIN_F80, RTLIB::SIN_F128, 4020 RTLIB::SIN_PPCF128, Results); 4021 break; 4022 case ISD::FCOS: 4023 case ISD::STRICT_FCOS: 4024 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4025 RTLIB::COS_F80, RTLIB::COS_F128, 4026 RTLIB::COS_PPCF128, Results); 4027 break; 4028 case ISD::FSINCOS: 4029 // Expand into sincos libcall. 4030 ExpandSinCosLibCall(Node, Results); 4031 break; 4032 case ISD::FLOG: 4033 case ISD::STRICT_FLOG: 4034 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4035 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4036 break; 4037 case ISD::FLOG2: 4038 case ISD::STRICT_FLOG2: 4039 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4040 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4041 break; 4042 case ISD::FLOG10: 4043 case ISD::STRICT_FLOG10: 4044 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4045 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4046 break; 4047 case ISD::FEXP: 4048 case ISD::STRICT_FEXP: 4049 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4050 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4051 break; 4052 case ISD::FEXP2: 4053 case ISD::STRICT_FEXP2: 4054 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4055 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4056 break; 4057 case ISD::FTRUNC: 4058 case ISD::STRICT_FTRUNC: 4059 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4060 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4061 RTLIB::TRUNC_PPCF128, Results); 4062 break; 4063 case ISD::FFLOOR: 4064 case ISD::STRICT_FFLOOR: 4065 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4066 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4067 RTLIB::FLOOR_PPCF128, Results); 4068 break; 4069 case ISD::FCEIL: 4070 case ISD::STRICT_FCEIL: 4071 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4072 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4073 RTLIB::CEIL_PPCF128, Results); 4074 break; 4075 case ISD::FRINT: 4076 case ISD::STRICT_FRINT: 4077 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4078 RTLIB::RINT_F80, RTLIB::RINT_F128, 4079 RTLIB::RINT_PPCF128, Results); 4080 break; 4081 case ISD::FNEARBYINT: 4082 case ISD::STRICT_FNEARBYINT: 4083 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4084 RTLIB::NEARBYINT_F64, 4085 RTLIB::NEARBYINT_F80, 4086 RTLIB::NEARBYINT_F128, 4087 RTLIB::NEARBYINT_PPCF128, Results); 4088 break; 4089 case ISD::FROUND: 4090 case ISD::STRICT_FROUND: 4091 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4092 RTLIB::ROUND_F64, 4093 RTLIB::ROUND_F80, 4094 RTLIB::ROUND_F128, 4095 RTLIB::ROUND_PPCF128, Results); 4096 break; 4097 case ISD::FROUNDEVEN: 4098 case ISD::STRICT_FROUNDEVEN: 4099 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4100 RTLIB::ROUNDEVEN_F64, 4101 RTLIB::ROUNDEVEN_F80, 4102 RTLIB::ROUNDEVEN_F128, 4103 RTLIB::ROUNDEVEN_PPCF128, Results); 4104 break; 4105 case ISD::FPOWI: 4106 case ISD::STRICT_FPOWI: { 4107 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4108 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4109 if (!TLI.getLibcallName(LC)) { 4110 // Some targets don't have a powi libcall; use pow instead. 4111 if (Node->isStrictFPOpcode()) { 4112 SDValue Exponent = 4113 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4114 {Node->getValueType(0), Node->getValueType(1)}, 4115 {Node->getOperand(0), Node->getOperand(2)}); 4116 SDValue FPOW = 4117 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4118 {Node->getValueType(0), Node->getValueType(1)}, 4119 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4120 Results.push_back(FPOW); 4121 Results.push_back(FPOW.getValue(1)); 4122 } else { 4123 SDValue Exponent = 4124 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4125 Node->getOperand(1)); 4126 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4127 Node->getValueType(0), 4128 Node->getOperand(0), Exponent)); 4129 } 4130 break; 4131 } 4132 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4133 bool ExponentHasSizeOfInt = 4134 DAG.getLibInfo().getIntSize() == 4135 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4136 if (!ExponentHasSizeOfInt) { 4137 // If the exponent does not match with sizeof(int) a libcall to 4138 // RTLIB::POWI would use the wrong type for the argument. 4139 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4140 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4141 break; 4142 } 4143 ExpandFPLibCall(Node, LC, Results); 4144 break; 4145 } 4146 case ISD::FPOW: 4147 case ISD::STRICT_FPOW: 4148 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4149 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4150 break; 4151 case ISD::LROUND: 4152 case ISD::STRICT_LROUND: 4153 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4154 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4155 RTLIB::LROUND_F128, 4156 RTLIB::LROUND_PPCF128, Results); 4157 break; 4158 case ISD::LLROUND: 4159 case ISD::STRICT_LLROUND: 4160 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4161 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4162 RTLIB::LLROUND_F128, 4163 RTLIB::LLROUND_PPCF128, Results); 4164 break; 4165 case ISD::LRINT: 4166 case ISD::STRICT_LRINT: 4167 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4168 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4169 RTLIB::LRINT_F128, 4170 RTLIB::LRINT_PPCF128, Results); 4171 break; 4172 case ISD::LLRINT: 4173 case ISD::STRICT_LLRINT: 4174 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4175 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4176 RTLIB::LLRINT_F128, 4177 RTLIB::LLRINT_PPCF128, Results); 4178 break; 4179 case ISD::FDIV: 4180 case ISD::STRICT_FDIV: 4181 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4182 RTLIB::DIV_F80, RTLIB::DIV_F128, 4183 RTLIB::DIV_PPCF128, Results); 4184 break; 4185 case ISD::FREM: 4186 case ISD::STRICT_FREM: 4187 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4188 RTLIB::REM_F80, RTLIB::REM_F128, 4189 RTLIB::REM_PPCF128, Results); 4190 break; 4191 case ISD::FMA: 4192 case ISD::STRICT_FMA: 4193 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4194 RTLIB::FMA_F80, RTLIB::FMA_F128, 4195 RTLIB::FMA_PPCF128, Results); 4196 break; 4197 case ISD::FADD: 4198 case ISD::STRICT_FADD: 4199 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4200 RTLIB::ADD_F80, RTLIB::ADD_F128, 4201 RTLIB::ADD_PPCF128, Results); 4202 break; 4203 case ISD::FMUL: 4204 case ISD::STRICT_FMUL: 4205 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4206 RTLIB::MUL_F80, RTLIB::MUL_F128, 4207 RTLIB::MUL_PPCF128, Results); 4208 break; 4209 case ISD::FP16_TO_FP: 4210 if (Node->getValueType(0) == MVT::f32) { 4211 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4212 } 4213 break; 4214 case ISD::STRICT_FP16_TO_FP: { 4215 if (Node->getValueType(0) == MVT::f32) { 4216 TargetLowering::MakeLibCallOptions CallOptions; 4217 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4218 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4219 SDLoc(Node), Node->getOperand(0)); 4220 Results.push_back(Tmp.first); 4221 Results.push_back(Tmp.second); 4222 } 4223 break; 4224 } 4225 case ISD::FP_TO_FP16: { 4226 RTLIB::Libcall LC = 4227 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4228 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4229 Results.push_back(ExpandLibCall(LC, Node, false)); 4230 break; 4231 } 4232 case ISD::FP_TO_BF16: { 4233 RTLIB::Libcall LC = 4234 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::bf16); 4235 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_bf16"); 4236 Results.push_back(ExpandLibCall(LC, Node, false)); 4237 break; 4238 } 4239 case ISD::STRICT_SINT_TO_FP: 4240 case ISD::STRICT_UINT_TO_FP: 4241 case ISD::SINT_TO_FP: 4242 case ISD::UINT_TO_FP: { 4243 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4244 bool IsStrict = Node->isStrictFPOpcode(); 4245 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4246 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4247 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4248 EVT RVT = Node->getValueType(0); 4249 EVT NVT = EVT(); 4250 SDLoc dl(Node); 4251 4252 // Even if the input is legal, no libcall may exactly match, eg. we don't 4253 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4254 // eg: i13 -> fp. Then, look for an appropriate libcall. 4255 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4256 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4257 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4258 ++t) { 4259 NVT = (MVT::SimpleValueType)t; 4260 // The source needs to big enough to hold the operand. 4261 if (NVT.bitsGE(SVT)) 4262 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4263 : RTLIB::getUINTTOFP(NVT, RVT); 4264 } 4265 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4266 4267 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4268 // Sign/zero extend the argument if the libcall takes a larger type. 4269 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4270 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4271 TargetLowering::MakeLibCallOptions CallOptions; 4272 CallOptions.setSExt(Signed); 4273 std::pair<SDValue, SDValue> Tmp = 4274 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4275 Results.push_back(Tmp.first); 4276 if (IsStrict) 4277 Results.push_back(Tmp.second); 4278 break; 4279 } 4280 case ISD::FP_TO_SINT: 4281 case ISD::FP_TO_UINT: 4282 case ISD::STRICT_FP_TO_SINT: 4283 case ISD::STRICT_FP_TO_UINT: { 4284 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4285 bool IsStrict = Node->isStrictFPOpcode(); 4286 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4287 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4288 4289 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4290 EVT SVT = Op.getValueType(); 4291 EVT RVT = Node->getValueType(0); 4292 EVT NVT = EVT(); 4293 SDLoc dl(Node); 4294 4295 // Even if the result is legal, no libcall may exactly match, eg. we don't 4296 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4297 // eg: fp -> i32. Then, look for an appropriate libcall. 4298 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4299 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4300 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4301 ++IntVT) { 4302 NVT = (MVT::SimpleValueType)IntVT; 4303 // The type needs to big enough to hold the result. 4304 if (NVT.bitsGE(RVT)) 4305 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4306 : RTLIB::getFPTOUINT(SVT, NVT); 4307 } 4308 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4309 4310 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4311 TargetLowering::MakeLibCallOptions CallOptions; 4312 std::pair<SDValue, SDValue> Tmp = 4313 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4314 4315 // Truncate the result if the libcall returns a larger type. 4316 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4317 if (IsStrict) 4318 Results.push_back(Tmp.second); 4319 break; 4320 } 4321 4322 case ISD::FP_ROUND: 4323 case ISD::STRICT_FP_ROUND: { 4324 // X = FP_ROUND(Y, TRUNC) 4325 // TRUNC is a flag, which is always an integer that is zero or one. 4326 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4327 // is known to not change the value of Y. 4328 // We can only expand it into libcall if the TRUNC is 0. 4329 bool IsStrict = Node->isStrictFPOpcode(); 4330 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4331 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4332 EVT VT = Node->getValueType(0); 4333 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4334 "Unable to expand as libcall if it is not normal rounding"); 4335 4336 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4337 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4338 4339 TargetLowering::MakeLibCallOptions CallOptions; 4340 std::pair<SDValue, SDValue> Tmp = 4341 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4342 Results.push_back(Tmp.first); 4343 if (IsStrict) 4344 Results.push_back(Tmp.second); 4345 break; 4346 } 4347 case ISD::FP_EXTEND: { 4348 Results.push_back( 4349 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4350 Node->getValueType(0)), 4351 Node, false)); 4352 break; 4353 } 4354 case ISD::STRICT_FP_EXTEND: 4355 case ISD::STRICT_FP_TO_FP16: { 4356 RTLIB::Libcall LC = 4357 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4358 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4359 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4360 Node->getValueType(0)); 4361 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4362 4363 TargetLowering::MakeLibCallOptions CallOptions; 4364 std::pair<SDValue, SDValue> Tmp = 4365 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4366 CallOptions, SDLoc(Node), Node->getOperand(0)); 4367 Results.push_back(Tmp.first); 4368 Results.push_back(Tmp.second); 4369 break; 4370 } 4371 case ISD::FSUB: 4372 case ISD::STRICT_FSUB: 4373 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4374 RTLIB::SUB_F80, RTLIB::SUB_F128, 4375 RTLIB::SUB_PPCF128, Results); 4376 break; 4377 case ISD::SREM: 4378 Results.push_back(ExpandIntLibCall( 4379 Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, 4380 RTLIB::SREM_I64, RTLIB::SREM_I128, RTLIB::SREM_IEXT)); 4381 break; 4382 case ISD::UREM: 4383 Results.push_back(ExpandIntLibCall( 4384 Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, 4385 RTLIB::UREM_I64, RTLIB::UREM_I128, RTLIB::UREM_IEXT)); 4386 break; 4387 case ISD::SDIV: 4388 Results.push_back(ExpandIntLibCall( 4389 Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4390 RTLIB::SDIV_I64, RTLIB::SDIV_I128, RTLIB::SDIV_IEXT)); 4391 break; 4392 case ISD::UDIV: 4393 Results.push_back(ExpandIntLibCall( 4394 Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4395 RTLIB::UDIV_I64, RTLIB::UDIV_I128, RTLIB::UDIV_IEXT)); 4396 break; 4397 case ISD::SDIVREM: 4398 case ISD::UDIVREM: 4399 // Expand into divrem libcall 4400 ExpandDivRemLibCall(Node, Results); 4401 break; 4402 case ISD::MUL: 4403 Results.push_back(ExpandIntLibCall( 4404 Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, 4405 RTLIB::MUL_I64, RTLIB::MUL_I128, RTLIB::MUL_IEXT)); 4406 break; 4407 case ISD::CTLZ_ZERO_UNDEF: 4408 switch (Node->getSimpleValueType(0).SimpleTy) { 4409 default: 4410 llvm_unreachable("LibCall explicitly requested, but not available"); 4411 case MVT::i32: 4412 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4413 break; 4414 case MVT::i64: 4415 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4416 break; 4417 case MVT::i128: 4418 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4419 break; 4420 } 4421 break; 4422 } 4423 4424 // Replace the original node with the legalized result. 4425 if (!Results.empty()) { 4426 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4427 ReplaceNode(Node, Results.data()); 4428 } else 4429 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4430 } 4431 4432 // Determine the vector type to use in place of an original scalar element when 4433 // promoting equally sized vectors. 4434 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4435 MVT EltVT, MVT NewEltVT) { 4436 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4437 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4438 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4439 return MidVT; 4440 } 4441 4442 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4443 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4444 SmallVector<SDValue, 8> Results; 4445 MVT OVT = Node->getSimpleValueType(0); 4446 if (Node->getOpcode() == ISD::UINT_TO_FP || 4447 Node->getOpcode() == ISD::SINT_TO_FP || 4448 Node->getOpcode() == ISD::SETCC || 4449 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4450 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4451 OVT = Node->getOperand(0).getSimpleValueType(); 4452 } 4453 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4454 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4455 Node->getOpcode() == ISD::STRICT_FSETCC || 4456 Node->getOpcode() == ISD::STRICT_FSETCCS) 4457 OVT = Node->getOperand(1).getSimpleValueType(); 4458 if (Node->getOpcode() == ISD::BR_CC || 4459 Node->getOpcode() == ISD::SELECT_CC) 4460 OVT = Node->getOperand(2).getSimpleValueType(); 4461 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4462 SDLoc dl(Node); 4463 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4464 switch (Node->getOpcode()) { 4465 case ISD::CTTZ: 4466 case ISD::CTTZ_ZERO_UNDEF: 4467 case ISD::CTLZ: 4468 case ISD::CTLZ_ZERO_UNDEF: 4469 case ISD::CTPOP: 4470 // Zero extend the argument unless its cttz, then use any_extend. 4471 if (Node->getOpcode() == ISD::CTTZ || 4472 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4473 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4474 else 4475 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4476 4477 if (Node->getOpcode() == ISD::CTTZ) { 4478 // The count is the same in the promoted type except if the original 4479 // value was zero. This can be handled by setting the bit just off 4480 // the top of the original type. 4481 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4482 OVT.getSizeInBits()); 4483 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4484 DAG.getConstant(TopBit, dl, NVT)); 4485 } 4486 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4487 // already the correct result. 4488 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4489 if (Node->getOpcode() == ISD::CTLZ || 4490 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4491 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4492 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4493 DAG.getConstant(NVT.getSizeInBits() - 4494 OVT.getSizeInBits(), dl, NVT)); 4495 } 4496 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4497 break; 4498 case ISD::BITREVERSE: 4499 case ISD::BSWAP: { 4500 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4501 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4502 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4503 Tmp1 = DAG.getNode( 4504 ISD::SRL, dl, NVT, Tmp1, 4505 DAG.getConstant(DiffBits, dl, 4506 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4507 4508 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4509 break; 4510 } 4511 case ISD::FP_TO_UINT: 4512 case ISD::STRICT_FP_TO_UINT: 4513 case ISD::FP_TO_SINT: 4514 case ISD::STRICT_FP_TO_SINT: 4515 PromoteLegalFP_TO_INT(Node, dl, Results); 4516 break; 4517 case ISD::FP_TO_UINT_SAT: 4518 case ISD::FP_TO_SINT_SAT: 4519 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4520 break; 4521 case ISD::UINT_TO_FP: 4522 case ISD::STRICT_UINT_TO_FP: 4523 case ISD::SINT_TO_FP: 4524 case ISD::STRICT_SINT_TO_FP: 4525 PromoteLegalINT_TO_FP(Node, dl, Results); 4526 break; 4527 case ISD::VAARG: { 4528 SDValue Chain = Node->getOperand(0); // Get the chain. 4529 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4530 4531 unsigned TruncOp; 4532 if (OVT.isVector()) { 4533 TruncOp = ISD::BITCAST; 4534 } else { 4535 assert(OVT.isInteger() 4536 && "VAARG promotion is supported only for vectors or integer types"); 4537 TruncOp = ISD::TRUNCATE; 4538 } 4539 4540 // Perform the larger operation, then convert back 4541 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4542 Node->getConstantOperandVal(3)); 4543 Chain = Tmp1.getValue(1); 4544 4545 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4546 4547 // Modified the chain result - switch anything that used the old chain to 4548 // use the new one. 4549 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4550 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4551 if (UpdatedNodes) { 4552 UpdatedNodes->insert(Tmp2.getNode()); 4553 UpdatedNodes->insert(Chain.getNode()); 4554 } 4555 ReplacedNode(Node); 4556 break; 4557 } 4558 case ISD::MUL: 4559 case ISD::SDIV: 4560 case ISD::SREM: 4561 case ISD::UDIV: 4562 case ISD::UREM: 4563 case ISD::AND: 4564 case ISD::OR: 4565 case ISD::XOR: { 4566 unsigned ExtOp, TruncOp; 4567 if (OVT.isVector()) { 4568 ExtOp = ISD::BITCAST; 4569 TruncOp = ISD::BITCAST; 4570 } else { 4571 assert(OVT.isInteger() && "Cannot promote logic operation"); 4572 4573 switch (Node->getOpcode()) { 4574 default: 4575 ExtOp = ISD::ANY_EXTEND; 4576 break; 4577 case ISD::SDIV: 4578 case ISD::SREM: 4579 ExtOp = ISD::SIGN_EXTEND; 4580 break; 4581 case ISD::UDIV: 4582 case ISD::UREM: 4583 ExtOp = ISD::ZERO_EXTEND; 4584 break; 4585 } 4586 TruncOp = ISD::TRUNCATE; 4587 } 4588 // Promote each of the values to the new type. 4589 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4590 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4591 // Perform the larger operation, then convert back 4592 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4593 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4594 break; 4595 } 4596 case ISD::UMUL_LOHI: 4597 case ISD::SMUL_LOHI: { 4598 // Promote to a multiply in a wider integer type. 4599 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4600 : ISD::SIGN_EXTEND; 4601 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4602 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4603 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4604 4605 auto &DL = DAG.getDataLayout(); 4606 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4607 Tmp2 = DAG.getNode( 4608 ISD::SRL, dl, NVT, Tmp1, 4609 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4610 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4611 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4612 break; 4613 } 4614 case ISD::SELECT: { 4615 unsigned ExtOp, TruncOp; 4616 if (Node->getValueType(0).isVector() || 4617 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4618 ExtOp = ISD::BITCAST; 4619 TruncOp = ISD::BITCAST; 4620 } else if (Node->getValueType(0).isInteger()) { 4621 ExtOp = ISD::ANY_EXTEND; 4622 TruncOp = ISD::TRUNCATE; 4623 } else { 4624 ExtOp = ISD::FP_EXTEND; 4625 TruncOp = ISD::FP_ROUND; 4626 } 4627 Tmp1 = Node->getOperand(0); 4628 // Promote each of the values to the new type. 4629 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4630 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4631 // Perform the larger operation, then round down. 4632 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4633 Tmp1->setFlags(Node->getFlags()); 4634 if (TruncOp != ISD::FP_ROUND) 4635 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4636 else 4637 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4638 DAG.getIntPtrConstant(0, dl)); 4639 Results.push_back(Tmp1); 4640 break; 4641 } 4642 case ISD::VECTOR_SHUFFLE: { 4643 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4644 4645 // Cast the two input vectors. 4646 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4647 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4648 4649 // Convert the shuffle mask to the right # elements. 4650 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4651 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4652 Results.push_back(Tmp1); 4653 break; 4654 } 4655 case ISD::VECTOR_SPLICE: { 4656 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4657 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4658 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4659 Node->getOperand(2)); 4660 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4661 break; 4662 } 4663 case ISD::SELECT_CC: { 4664 SDValue Cond = Node->getOperand(4); 4665 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4666 // Type of the comparison operands. 4667 MVT CVT = Node->getSimpleValueType(0); 4668 assert(CVT == OVT && "not handled"); 4669 4670 unsigned ExtOp = ISD::FP_EXTEND; 4671 if (NVT.isInteger()) { 4672 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4673 } 4674 4675 // Promote the comparison operands, if needed. 4676 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4677 Tmp1 = Node->getOperand(0); 4678 Tmp2 = Node->getOperand(1); 4679 } else { 4680 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4681 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4682 } 4683 // Cast the true/false operands. 4684 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4685 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4686 4687 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4688 Node->getFlags()); 4689 4690 // Cast the result back to the original type. 4691 if (ExtOp != ISD::FP_EXTEND) 4692 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4693 else 4694 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4695 DAG.getIntPtrConstant(0, dl)); 4696 4697 Results.push_back(Tmp1); 4698 break; 4699 } 4700 case ISD::SETCC: 4701 case ISD::STRICT_FSETCC: 4702 case ISD::STRICT_FSETCCS: { 4703 unsigned ExtOp = ISD::FP_EXTEND; 4704 if (NVT.isInteger()) { 4705 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4706 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4707 } 4708 if (Node->isStrictFPOpcode()) { 4709 SDValue InChain = Node->getOperand(0); 4710 std::tie(Tmp1, std::ignore) = 4711 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4712 std::tie(Tmp2, std::ignore) = 4713 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4714 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4715 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4716 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4717 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4718 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4719 Node->getFlags())); 4720 Results.push_back(Results.back().getValue(1)); 4721 break; 4722 } 4723 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4724 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4725 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4726 Tmp2, Node->getOperand(2), Node->getFlags())); 4727 break; 4728 } 4729 case ISD::BR_CC: { 4730 unsigned ExtOp = ISD::FP_EXTEND; 4731 if (NVT.isInteger()) { 4732 ISD::CondCode CCCode = 4733 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4734 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4735 } 4736 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4737 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4738 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4739 Node->getOperand(0), Node->getOperand(1), 4740 Tmp1, Tmp2, Node->getOperand(4))); 4741 break; 4742 } 4743 case ISD::FADD: 4744 case ISD::FSUB: 4745 case ISD::FMUL: 4746 case ISD::FDIV: 4747 case ISD::FREM: 4748 case ISD::FMINNUM: 4749 case ISD::FMAXNUM: 4750 case ISD::FPOW: 4751 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4752 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4753 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4754 Node->getFlags()); 4755 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4756 Tmp3, DAG.getIntPtrConstant(0, dl))); 4757 break; 4758 case ISD::STRICT_FADD: 4759 case ISD::STRICT_FSUB: 4760 case ISD::STRICT_FMUL: 4761 case ISD::STRICT_FDIV: 4762 case ISD::STRICT_FMINNUM: 4763 case ISD::STRICT_FMAXNUM: 4764 case ISD::STRICT_FREM: 4765 case ISD::STRICT_FPOW: 4766 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4767 {Node->getOperand(0), Node->getOperand(1)}); 4768 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4769 {Node->getOperand(0), Node->getOperand(2)}); 4770 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4771 Tmp2.getValue(1)); 4772 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4773 {Tmp3, Tmp1, Tmp2}); 4774 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4775 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4776 Results.push_back(Tmp1); 4777 Results.push_back(Tmp1.getValue(1)); 4778 break; 4779 case ISD::FMA: 4780 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4781 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4782 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4783 Results.push_back( 4784 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4785 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4786 DAG.getIntPtrConstant(0, dl))); 4787 break; 4788 case ISD::STRICT_FMA: 4789 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4790 {Node->getOperand(0), Node->getOperand(1)}); 4791 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4792 {Node->getOperand(0), Node->getOperand(2)}); 4793 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4794 {Node->getOperand(0), Node->getOperand(3)}); 4795 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4796 Tmp2.getValue(1), Tmp3.getValue(1)); 4797 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4798 {Tmp4, Tmp1, Tmp2, Tmp3}); 4799 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4800 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 4801 Results.push_back(Tmp4); 4802 Results.push_back(Tmp4.getValue(1)); 4803 break; 4804 case ISD::FCOPYSIGN: 4805 case ISD::FPOWI: { 4806 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4807 Tmp2 = Node->getOperand(1); 4808 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4809 4810 // fcopysign doesn't change anything but the sign bit, so 4811 // (fp_round (fcopysign (fpext a), b)) 4812 // is as precise as 4813 // (fp_round (fpext a)) 4814 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4815 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4816 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4817 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4818 break; 4819 } 4820 case ISD::STRICT_FPOWI: 4821 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4822 {Node->getOperand(0), Node->getOperand(1)}); 4823 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4824 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 4825 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4826 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4827 Results.push_back(Tmp3); 4828 Results.push_back(Tmp3.getValue(1)); 4829 break; 4830 case ISD::FFLOOR: 4831 case ISD::FCEIL: 4832 case ISD::FRINT: 4833 case ISD::FNEARBYINT: 4834 case ISD::FROUND: 4835 case ISD::FROUNDEVEN: 4836 case ISD::FTRUNC: 4837 case ISD::FNEG: 4838 case ISD::FSQRT: 4839 case ISD::FSIN: 4840 case ISD::FCOS: 4841 case ISD::FLOG: 4842 case ISD::FLOG2: 4843 case ISD::FLOG10: 4844 case ISD::FABS: 4845 case ISD::FEXP: 4846 case ISD::FEXP2: 4847 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4848 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4849 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4850 Tmp2, DAG.getIntPtrConstant(0, dl))); 4851 break; 4852 case ISD::STRICT_FFLOOR: 4853 case ISD::STRICT_FCEIL: 4854 case ISD::STRICT_FRINT: 4855 case ISD::STRICT_FNEARBYINT: 4856 case ISD::STRICT_FROUND: 4857 case ISD::STRICT_FROUNDEVEN: 4858 case ISD::STRICT_FTRUNC: 4859 case ISD::STRICT_FSQRT: 4860 case ISD::STRICT_FSIN: 4861 case ISD::STRICT_FCOS: 4862 case ISD::STRICT_FLOG: 4863 case ISD::STRICT_FLOG2: 4864 case ISD::STRICT_FLOG10: 4865 case ISD::STRICT_FEXP: 4866 case ISD::STRICT_FEXP2: 4867 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4868 {Node->getOperand(0), Node->getOperand(1)}); 4869 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4870 {Tmp1.getValue(1), Tmp1}); 4871 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4872 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4873 Results.push_back(Tmp3); 4874 Results.push_back(Tmp3.getValue(1)); 4875 break; 4876 case ISD::BUILD_VECTOR: { 4877 MVT EltVT = OVT.getVectorElementType(); 4878 MVT NewEltVT = NVT.getVectorElementType(); 4879 4880 // Handle bitcasts to a different vector type with the same total bit size 4881 // 4882 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4883 // => 4884 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4885 4886 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4887 "Invalid promote type for build_vector"); 4888 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4889 4890 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4891 4892 SmallVector<SDValue, 8> NewOps; 4893 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4894 SDValue Op = Node->getOperand(I); 4895 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4896 } 4897 4898 SDLoc SL(Node); 4899 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4900 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4901 Results.push_back(CvtVec); 4902 break; 4903 } 4904 case ISD::EXTRACT_VECTOR_ELT: { 4905 MVT EltVT = OVT.getVectorElementType(); 4906 MVT NewEltVT = NVT.getVectorElementType(); 4907 4908 // Handle bitcasts to a different vector type with the same total bit size. 4909 // 4910 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4911 // => 4912 // v4i32:castx = bitcast x:v2i64 4913 // 4914 // i64 = bitcast 4915 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4916 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4917 // 4918 4919 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4920 "Invalid promote type for extract_vector_elt"); 4921 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4922 4923 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4924 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4925 4926 SDValue Idx = Node->getOperand(1); 4927 EVT IdxVT = Idx.getValueType(); 4928 SDLoc SL(Node); 4929 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4930 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4931 4932 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4933 4934 SmallVector<SDValue, 8> NewOps; 4935 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4936 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4937 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4938 4939 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4940 CastVec, TmpIdx); 4941 NewOps.push_back(Elt); 4942 } 4943 4944 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4945 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4946 break; 4947 } 4948 case ISD::INSERT_VECTOR_ELT: { 4949 MVT EltVT = OVT.getVectorElementType(); 4950 MVT NewEltVT = NVT.getVectorElementType(); 4951 4952 // Handle bitcasts to a different vector type with the same total bit size 4953 // 4954 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4955 // => 4956 // v4i32:castx = bitcast x:v2i64 4957 // v2i32:casty = bitcast y:i64 4958 // 4959 // v2i64 = bitcast 4960 // (v4i32 insert_vector_elt 4961 // (v4i32 insert_vector_elt v4i32:castx, 4962 // (extract_vector_elt casty, 0), 2 * z), 4963 // (extract_vector_elt casty, 1), (2 * z + 1)) 4964 4965 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4966 "Invalid promote type for insert_vector_elt"); 4967 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4968 4969 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4970 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4971 4972 SDValue Val = Node->getOperand(1); 4973 SDValue Idx = Node->getOperand(2); 4974 EVT IdxVT = Idx.getValueType(); 4975 SDLoc SL(Node); 4976 4977 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4978 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4979 4980 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4981 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4982 4983 SDValue NewVec = CastVec; 4984 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4985 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4986 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4987 4988 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4989 CastVal, IdxOffset); 4990 4991 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4992 NewVec, Elt, InEltIdx); 4993 } 4994 4995 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4996 break; 4997 } 4998 case ISD::SCALAR_TO_VECTOR: { 4999 MVT EltVT = OVT.getVectorElementType(); 5000 MVT NewEltVT = NVT.getVectorElementType(); 5001 5002 // Handle bitcasts to different vector type with the same total bit size. 5003 // 5004 // e.g. v2i64 = scalar_to_vector x:i64 5005 // => 5006 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 5007 // 5008 5009 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5010 SDValue Val = Node->getOperand(0); 5011 SDLoc SL(Node); 5012 5013 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5014 SDValue Undef = DAG.getUNDEF(MidVT); 5015 5016 SmallVector<SDValue, 8> NewElts; 5017 NewElts.push_back(CastVal); 5018 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5019 NewElts.push_back(Undef); 5020 5021 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5022 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5023 Results.push_back(CvtVec); 5024 break; 5025 } 5026 case ISD::ATOMIC_SWAP: { 5027 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5028 SDLoc SL(Node); 5029 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5030 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5031 "unexpected promotion type"); 5032 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5033 "unexpected atomic_swap with illegal type"); 5034 5035 SDValue NewAtomic 5036 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5037 DAG.getVTList(NVT, MVT::Other), 5038 { AM->getChain(), AM->getBasePtr(), CastVal }, 5039 AM->getMemOperand()); 5040 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5041 Results.push_back(NewAtomic.getValue(1)); 5042 break; 5043 } 5044 } 5045 5046 // Replace the original node with the legalized result. 5047 if (!Results.empty()) { 5048 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5049 ReplaceNode(Node, Results.data()); 5050 } else 5051 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5052 } 5053 5054 /// This is the entry point for the file. 5055 void SelectionDAG::Legalize() { 5056 AssignTopologicalOrder(); 5057 5058 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5059 // Use a delete listener to remove nodes which were deleted during 5060 // legalization from LegalizeNodes. This is needed to handle the situation 5061 // where a new node is allocated by the object pool to the same address of a 5062 // previously deleted node. 5063 DAGNodeDeletedListener DeleteListener( 5064 *this, 5065 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5066 5067 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5068 5069 // Visit all the nodes. We start in topological order, so that we see 5070 // nodes with their original operands intact. Legalization can produce 5071 // new nodes which may themselves need to be legalized. Iterate until all 5072 // nodes have been legalized. 5073 while (true) { 5074 bool AnyLegalized = false; 5075 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5076 --NI; 5077 5078 SDNode *N = &*NI; 5079 if (N->use_empty() && N != getRoot().getNode()) { 5080 ++NI; 5081 DeleteNode(N); 5082 continue; 5083 } 5084 5085 if (LegalizedNodes.insert(N).second) { 5086 AnyLegalized = true; 5087 Legalizer.LegalizeOp(N); 5088 5089 if (N->use_empty() && N != getRoot().getNode()) { 5090 ++NI; 5091 DeleteNode(N); 5092 } 5093 } 5094 } 5095 if (!AnyLegalized) 5096 break; 5097 5098 } 5099 5100 // Remove dead nodes now. 5101 RemoveDeadNodes(); 5102 } 5103 5104 bool SelectionDAG::LegalizeOp(SDNode *N, 5105 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5106 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5107 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5108 5109 // Directly insert the node in question, and legalize it. This will recurse 5110 // as needed through operands. 5111 LegalizedNodes.insert(N); 5112 Legalizer.LegalizeOp(N); 5113 5114 return LegalizedNodes.count(N); 5115 } 5116