1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the FastISel class. 10 // 11 // "Fast" instruction selection is designed to emit very poor code quickly. 12 // Also, it is not designed to be able to do much lowering, so most illegal 13 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 14 // also not intended to be able to do much optimization, except in a few cases 15 // where doing optimizations reduces overall compile time. For example, folding 16 // constants into immediate fields is often done, because it's cheap and it 17 // reduces the number of instructions later phases have to examine. 18 // 19 // "Fast" instruction selection is able to fail gracefully and transfer 20 // control to the SelectionDAG selector for operations that it doesn't 21 // support. In many cases, this allows us to avoid duplicating a lot of 22 // the complicated lowering logic that SelectionDAG currently has. 23 // 24 // The intended use for "fast" instruction selection is "-O0" mode 25 // compilation, where the quality of the generated code is irrelevant when 26 // weighed against the speed at which the code can be generated. Also, 27 // at -O0, the LLVM optimizers are not running, and this makes the 28 // compile time of codegen a much higher portion of the overall compile 29 // time. Despite its limitations, "fast" instruction selection is able to 30 // handle enough code on its own to provide noticeable overall speedups 31 // in -O0 compiles. 32 // 33 // Basic operations are supported in a target-independent way, by reading 34 // the same instruction descriptions that the SelectionDAG selector reads, 35 // and identifying simple arithmetic operations that can be directly selected 36 // from simple operators. More complicated operations currently require 37 // target-specific code. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #include "llvm/CodeGen/FastISel.h" 42 #include "llvm/ADT/APFloat.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/DenseMap.h" 45 #include "llvm/ADT/Optional.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallString.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/Analysis/BranchProbabilityInfo.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/CodeGen/Analysis.h" 53 #include "llvm/CodeGen/FunctionLoweringInfo.h" 54 #include "llvm/CodeGen/ISDOpcodes.h" 55 #include "llvm/CodeGen/MachineBasicBlock.h" 56 #include "llvm/CodeGen/MachineFrameInfo.h" 57 #include "llvm/CodeGen/MachineInstr.h" 58 #include "llvm/CodeGen/MachineInstrBuilder.h" 59 #include "llvm/CodeGen/MachineMemOperand.h" 60 #include "llvm/CodeGen/MachineModuleInfo.h" 61 #include "llvm/CodeGen/MachineOperand.h" 62 #include "llvm/CodeGen/MachineRegisterInfo.h" 63 #include "llvm/CodeGen/StackMaps.h" 64 #include "llvm/CodeGen/TargetInstrInfo.h" 65 #include "llvm/CodeGen/TargetLowering.h" 66 #include "llvm/CodeGen/TargetSubtargetInfo.h" 67 #include "llvm/CodeGen/ValueTypes.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfo.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/GlobalValue.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Mangler.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Type.h" 92 #include "llvm/IR/User.h" 93 #include "llvm/IR/Value.h" 94 #include "llvm/MC/MCContext.h" 95 #include "llvm/MC/MCInstrDesc.h" 96 #include "llvm/MC/MCRegisterInfo.h" 97 #include "llvm/Support/Casting.h" 98 #include "llvm/Support/Debug.h" 99 #include "llvm/Support/ErrorHandling.h" 100 #include "llvm/Support/MachineValueType.h" 101 #include "llvm/Support/MathExtras.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetMachine.h" 104 #include "llvm/Target/TargetOptions.h" 105 #include <algorithm> 106 #include <cassert> 107 #include <cstdint> 108 #include <iterator> 109 #include <utility> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 114 #define DEBUG_TYPE "isel" 115 116 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 117 "target-independent selector"); 118 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 119 "target-specific selector"); 120 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 121 122 /// Set the current block to which generated machine instructions will be 123 /// appended. 124 void FastISel::startNewBlock() { 125 assert(LocalValueMap.empty() && 126 "local values should be cleared after finishing a BB"); 127 128 // Instructions are appended to FuncInfo.MBB. If the basic block already 129 // contains labels or copies, use the last instruction as the last local 130 // value. 131 EmitStartPt = nullptr; 132 if (!FuncInfo.MBB->empty()) 133 EmitStartPt = &FuncInfo.MBB->back(); 134 LastLocalValue = EmitStartPt; 135 } 136 137 void FastISel::finishBasicBlock() { flushLocalValueMap(); } 138 139 bool FastISel::lowerArguments() { 140 if (!FuncInfo.CanLowerReturn) 141 // Fallback to SDISel argument lowering code to deal with sret pointer 142 // parameter. 143 return false; 144 145 if (!fastLowerArguments()) 146 return false; 147 148 // Enter arguments into ValueMap for uses in non-entry BBs. 149 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 150 E = FuncInfo.Fn->arg_end(); 151 I != E; ++I) { 152 DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I); 153 assert(VI != LocalValueMap.end() && "Missed an argument?"); 154 FuncInfo.ValueMap[&*I] = VI->second; 155 } 156 return true; 157 } 158 159 /// Return the defined register if this instruction defines exactly one 160 /// virtual register and uses no other virtual registers. Otherwise return 0. 161 static Register findLocalRegDef(MachineInstr &MI) { 162 Register RegDef; 163 for (const MachineOperand &MO : MI.operands()) { 164 if (!MO.isReg()) 165 continue; 166 if (MO.isDef()) { 167 if (RegDef) 168 return Register(); 169 RegDef = MO.getReg(); 170 } else if (MO.getReg().isVirtual()) { 171 // This is another use of a vreg. Don't delete it. 172 return Register(); 173 } 174 } 175 return RegDef; 176 } 177 178 static bool isRegUsedByPhiNodes(Register DefReg, 179 FunctionLoweringInfo &FuncInfo) { 180 for (auto &P : FuncInfo.PHINodesToUpdate) 181 if (P.second == DefReg) 182 return true; 183 return false; 184 } 185 186 void FastISel::flushLocalValueMap() { 187 // If FastISel bails out, it could leave local value instructions behind 188 // that aren't used for anything. Detect and erase those. 189 if (LastLocalValue != EmitStartPt) { 190 // Save the first instruction after local values, for later. 191 MachineBasicBlock::iterator FirstNonValue(LastLocalValue); 192 ++FirstNonValue; 193 194 MachineBasicBlock::reverse_iterator RE = 195 EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) 196 : FuncInfo.MBB->rend(); 197 MachineBasicBlock::reverse_iterator RI(LastLocalValue); 198 for (; RI != RE;) { 199 MachineInstr &LocalMI = *RI; 200 // Increment before erasing what it points to. 201 ++RI; 202 Register DefReg = findLocalRegDef(LocalMI); 203 if (!DefReg) 204 continue; 205 if (FuncInfo.RegsWithFixups.count(DefReg)) 206 continue; 207 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); 208 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { 209 if (EmitStartPt == &LocalMI) 210 EmitStartPt = EmitStartPt->getPrevNode(); 211 LLVM_DEBUG(dbgs() << "removing dead local value materialization" 212 << LocalMI); 213 LocalMI.eraseFromParent(); 214 } 215 } 216 217 if (FirstNonValue != FuncInfo.MBB->end()) { 218 // See if there are any local value instructions left. If so, we want to 219 // make sure the first one has a debug location; if it doesn't, use the 220 // first non-value instruction's debug location. 221 222 // If EmitStartPt is non-null, this block had copies at the top before 223 // FastISel started doing anything; it points to the last one, so the 224 // first local value instruction is the one after EmitStartPt. 225 // If EmitStartPt is null, the first local value instruction is at the 226 // top of the block. 227 MachineBasicBlock::iterator FirstLocalValue = 228 EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) 229 : FuncInfo.MBB->begin(); 230 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) 231 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); 232 } 233 } 234 235 LocalValueMap.clear(); 236 LastLocalValue = EmitStartPt; 237 recomputeInsertPt(); 238 SavedInsertPt = FuncInfo.InsertPt; 239 } 240 241 bool FastISel::hasTrivialKill(const Value *V) { 242 // Don't consider constants or arguments to have trivial kills. 243 const Instruction *I = dyn_cast<Instruction>(V); 244 if (!I) 245 return false; 246 247 // No-op casts are trivially coalesced by fast-isel. 248 if (const auto *Cast = dyn_cast<CastInst>(I)) 249 if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) 250 return false; 251 252 // Even the value might have only one use in the LLVM IR, it is possible that 253 // FastISel might fold the use into another instruction and now there is more 254 // than one use at the Machine Instruction level. 255 Register Reg = lookUpRegForValue(V); 256 if (Reg && !MRI.use_empty(Reg)) 257 return false; 258 259 // GEPs with all zero indices are trivially coalesced by fast-isel. 260 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) 261 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 262 return false; 263 264 // Only instructions with a single use in the same basic block are considered 265 // to have trivial kills. 266 return I->hasOneUse() && 267 !(I->getOpcode() == Instruction::BitCast || 268 I->getOpcode() == Instruction::PtrToInt || 269 I->getOpcode() == Instruction::IntToPtr) && 270 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 271 } 272 273 Register FastISel::getRegForValue(const Value *V) { 274 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); 275 // Don't handle non-simple values in FastISel. 276 if (!RealVT.isSimple()) 277 return Register(); 278 279 // Ignore illegal types. We must do this before looking up the value 280 // in ValueMap because Arguments are given virtual registers regardless 281 // of whether FastISel can handle them. 282 MVT VT = RealVT.getSimpleVT(); 283 if (!TLI.isTypeLegal(VT)) { 284 // Handle integer promotions, though, because they're common and easy. 285 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 286 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 287 else 288 return Register(); 289 } 290 291 // Look up the value to see if we already have a register for it. 292 Register Reg = lookUpRegForValue(V); 293 if (Reg) 294 return Reg; 295 296 // In bottom-up mode, just create the virtual register which will be used 297 // to hold the value. It will be materialized later. 298 if (isa<Instruction>(V) && 299 (!isa<AllocaInst>(V) || 300 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 301 return FuncInfo.InitializeRegForValue(V); 302 303 SavePoint SaveInsertPt = enterLocalValueArea(); 304 305 // Materialize the value in a register. Emit any instructions in the 306 // local value area. 307 Reg = materializeRegForValue(V, VT); 308 309 leaveLocalValueArea(SaveInsertPt); 310 311 return Reg; 312 } 313 314 Register FastISel::materializeConstant(const Value *V, MVT VT) { 315 Register Reg; 316 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 317 if (CI->getValue().getActiveBits() <= 64) 318 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 319 } else if (isa<AllocaInst>(V)) 320 Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); 321 else if (isa<ConstantPointerNull>(V)) 322 // Translate this as an integer zero so that it can be 323 // local-CSE'd with actual integer zeros. 324 Reg = 325 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType()))); 326 else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 327 if (CF->isNullValue()) 328 Reg = fastMaterializeFloatZero(CF); 329 else 330 // Try to emit the constant directly. 331 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); 332 333 if (!Reg) { 334 // Try to emit the constant by using an integer constant with a cast. 335 const APFloat &Flt = CF->getValueAPF(); 336 EVT IntVT = TLI.getPointerTy(DL); 337 uint32_t IntBitWidth = IntVT.getSizeInBits(); 338 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); 339 bool isExact; 340 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); 341 if (isExact) { 342 Register IntegerReg = 343 getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); 344 if (IntegerReg) 345 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, 346 /*Op0IsKill=*/false); 347 } 348 } 349 } else if (const auto *Op = dyn_cast<Operator>(V)) { 350 if (!selectOperator(Op, Op->getOpcode())) 351 if (!isa<Instruction>(Op) || 352 !fastSelectInstruction(cast<Instruction>(Op))) 353 return 0; 354 Reg = lookUpRegForValue(Op); 355 } else if (isa<UndefValue>(V)) { 356 Reg = createResultReg(TLI.getRegClassFor(VT)); 357 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 358 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 359 } 360 return Reg; 361 } 362 363 /// Helper for getRegForValue. This function is called when the value isn't 364 /// already available in a register and must be materialized with new 365 /// instructions. 366 Register FastISel::materializeRegForValue(const Value *V, MVT VT) { 367 Register Reg; 368 // Give the target-specific code a try first. 369 if (isa<Constant>(V)) 370 Reg = fastMaterializeConstant(cast<Constant>(V)); 371 372 // If target-specific code couldn't or didn't want to handle the value, then 373 // give target-independent code a try. 374 if (!Reg) 375 Reg = materializeConstant(V, VT); 376 377 // Don't cache constant materializations in the general ValueMap. 378 // To do so would require tracking what uses they dominate. 379 if (Reg) { 380 LocalValueMap[V] = Reg; 381 LastLocalValue = MRI.getVRegDef(Reg); 382 } 383 return Reg; 384 } 385 386 Register FastISel::lookUpRegForValue(const Value *V) { 387 // Look up the value to see if we already have a register for it. We 388 // cache values defined by Instructions across blocks, and other values 389 // only locally. This is because Instructions already have the SSA 390 // def-dominates-use requirement enforced. 391 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V); 392 if (I != FuncInfo.ValueMap.end()) 393 return I->second; 394 return LocalValueMap[V]; 395 } 396 397 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { 398 if (!isa<Instruction>(I)) { 399 LocalValueMap[I] = Reg; 400 return; 401 } 402 403 Register &AssignedReg = FuncInfo.ValueMap[I]; 404 if (!AssignedReg) 405 // Use the new register. 406 AssignedReg = Reg; 407 else if (Reg != AssignedReg) { 408 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 409 for (unsigned i = 0; i < NumRegs; i++) { 410 FuncInfo.RegFixups[AssignedReg + i] = Reg + i; 411 FuncInfo.RegsWithFixups.insert(Reg + i); 412 } 413 414 AssignedReg = Reg; 415 } 416 } 417 418 std::pair<Register, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 419 Register IdxN = getRegForValue(Idx); 420 if (!IdxN) 421 // Unhandled operand. Halt "fast" selection and bail. 422 return std::pair<Register, bool>(Register(), false); 423 424 bool IdxNIsKill = hasTrivialKill(Idx); 425 426 // If the index is smaller or larger than intptr_t, truncate or extend it. 427 MVT PtrVT = TLI.getPointerTy(DL); 428 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 429 if (IdxVT.bitsLT(PtrVT)) { 430 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, 431 IdxNIsKill); 432 IdxNIsKill = true; 433 } else if (IdxVT.bitsGT(PtrVT)) { 434 IdxN = 435 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); 436 IdxNIsKill = true; 437 } 438 return std::pair<Register, bool>(IdxN, IdxNIsKill); 439 } 440 441 void FastISel::recomputeInsertPt() { 442 if (getLastLocalValue()) { 443 FuncInfo.InsertPt = getLastLocalValue(); 444 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 445 ++FuncInfo.InsertPt; 446 } else 447 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 448 449 // Now skip past any EH_LABELs, which must remain at the beginning. 450 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 451 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 452 ++FuncInfo.InsertPt; 453 } 454 455 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 456 MachineBasicBlock::iterator E) { 457 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && 458 "Invalid iterator!"); 459 while (I != E) { 460 if (SavedInsertPt == I) 461 SavedInsertPt = E; 462 if (EmitStartPt == I) 463 EmitStartPt = E.isValid() ? &*E : nullptr; 464 if (LastLocalValue == I) 465 LastLocalValue = E.isValid() ? &*E : nullptr; 466 467 MachineInstr *Dead = &*I; 468 ++I; 469 Dead->eraseFromParent(); 470 ++NumFastIselDead; 471 } 472 recomputeInsertPt(); 473 } 474 475 FastISel::SavePoint FastISel::enterLocalValueArea() { 476 SavePoint OldInsertPt = FuncInfo.InsertPt; 477 recomputeInsertPt(); 478 return OldInsertPt; 479 } 480 481 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 482 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 483 LastLocalValue = &*std::prev(FuncInfo.InsertPt); 484 485 // Restore the previous insert position. 486 FuncInfo.InsertPt = OldInsertPt; 487 } 488 489 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { 490 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 491 if (VT == MVT::Other || !VT.isSimple()) 492 // Unhandled type. Halt "fast" selection and bail. 493 return false; 494 495 // We only handle legal types. For example, on x86-32 the instruction 496 // selector contains all of the 64-bit instructions from x86-64, 497 // under the assumption that i64 won't be used if the target doesn't 498 // support it. 499 if (!TLI.isTypeLegal(VT)) { 500 // MVT::i1 is special. Allow AND, OR, or XOR because they 501 // don't require additional zeroing, which makes them easy. 502 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 503 ISDOpcode == ISD::XOR)) 504 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 505 else 506 return false; 507 } 508 509 // Check if the first operand is a constant, and handle it as "ri". At -O0, 510 // we don't have anything that canonicalizes operand order. 511 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 512 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 513 Register Op1 = getRegForValue(I->getOperand(1)); 514 if (!Op1) 515 return false; 516 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 517 518 Register ResultReg = 519 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, 520 CI->getZExtValue(), VT.getSimpleVT()); 521 if (!ResultReg) 522 return false; 523 524 // We successfully emitted code for the given LLVM Instruction. 525 updateValueMap(I, ResultReg); 526 return true; 527 } 528 529 Register Op0 = getRegForValue(I->getOperand(0)); 530 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 531 return false; 532 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 533 534 // Check if the second operand is a constant and handle it appropriately. 535 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 536 uint64_t Imm = CI->getSExtValue(); 537 538 // Transform "sdiv exact X, 8" -> "sra X, 3". 539 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 540 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { 541 Imm = Log2_64(Imm); 542 ISDOpcode = ISD::SRA; 543 } 544 545 // Transform "urem x, pow2" -> "and x, pow2-1". 546 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 547 isPowerOf2_64(Imm)) { 548 --Imm; 549 ISDOpcode = ISD::AND; 550 } 551 552 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 553 Op0IsKill, Imm, VT.getSimpleVT()); 554 if (!ResultReg) 555 return false; 556 557 // We successfully emitted code for the given LLVM Instruction. 558 updateValueMap(I, ResultReg); 559 return true; 560 } 561 562 Register Op1 = getRegForValue(I->getOperand(1)); 563 if (!Op1) // Unhandled operand. Halt "fast" selection and bail. 564 return false; 565 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 566 567 // Now we have both operands in registers. Emit the instruction. 568 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 569 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); 570 if (!ResultReg) 571 // Target-specific code wasn't able to find a machine opcode for 572 // the given ISD opcode and type. Halt "fast" selection and bail. 573 return false; 574 575 // We successfully emitted code for the given LLVM Instruction. 576 updateValueMap(I, ResultReg); 577 return true; 578 } 579 580 bool FastISel::selectGetElementPtr(const User *I) { 581 Register N = getRegForValue(I->getOperand(0)); 582 if (!N) // Unhandled operand. Halt "fast" selection and bail. 583 return false; 584 585 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection 586 // and bail. 587 if (isa<VectorType>(I->getType())) 588 return false; 589 590 bool NIsKill = hasTrivialKill(I->getOperand(0)); 591 592 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 593 // into a single N = N + TotalOffset. 594 uint64_t TotalOffs = 0; 595 // FIXME: What's a good SWAG number for MaxOffs? 596 uint64_t MaxOffs = 2048; 597 MVT VT = TLI.getPointerTy(DL); 598 for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); 599 GTI != E; ++GTI) { 600 const Value *Idx = GTI.getOperand(); 601 if (StructType *StTy = GTI.getStructTypeOrNull()) { 602 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); 603 if (Field) { 604 // N = N + Offset 605 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 606 if (TotalOffs >= MaxOffs) { 607 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 608 if (!N) // Unhandled operand. Halt "fast" selection and bail. 609 return false; 610 NIsKill = true; 611 TotalOffs = 0; 612 } 613 } 614 } else { 615 Type *Ty = GTI.getIndexedType(); 616 617 // If this is a constant subscript, handle it quickly. 618 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 619 if (CI->isZero()) 620 continue; 621 // N = N + Offset 622 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); 623 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; 624 if (TotalOffs >= MaxOffs) { 625 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 626 if (!N) // Unhandled operand. Halt "fast" selection and bail. 627 return false; 628 NIsKill = true; 629 TotalOffs = 0; 630 } 631 continue; 632 } 633 if (TotalOffs) { 634 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 635 if (!N) // Unhandled operand. Halt "fast" selection and bail. 636 return false; 637 NIsKill = true; 638 TotalOffs = 0; 639 } 640 641 // N = N + Idx * ElementSize; 642 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 643 std::pair<Register, bool> Pair = getRegForGEPIndex(Idx); 644 Register IdxN = Pair.first; 645 bool IdxNIsKill = Pair.second; 646 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 647 return false; 648 649 if (ElementSize != 1) { 650 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 651 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. 652 return false; 653 IdxNIsKill = true; 654 } 655 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 656 if (!N) // Unhandled operand. Halt "fast" selection and bail. 657 return false; 658 } 659 } 660 if (TotalOffs) { 661 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 662 if (!N) // Unhandled operand. Halt "fast" selection and bail. 663 return false; 664 } 665 666 // We successfully emitted code for the given LLVM Instruction. 667 updateValueMap(I, N); 668 return true; 669 } 670 671 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 672 const CallInst *CI, unsigned StartIdx) { 673 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 674 Value *Val = CI->getArgOperand(i); 675 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 676 if (const auto *C = dyn_cast<ConstantInt>(Val)) { 677 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 678 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 679 } else if (isa<ConstantPointerNull>(Val)) { 680 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 681 Ops.push_back(MachineOperand::CreateImm(0)); 682 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 683 // Values coming from a stack location also require a special encoding, 684 // but that is added later on by the target specific frame index 685 // elimination implementation. 686 auto SI = FuncInfo.StaticAllocaMap.find(AI); 687 if (SI != FuncInfo.StaticAllocaMap.end()) 688 Ops.push_back(MachineOperand::CreateFI(SI->second)); 689 else 690 return false; 691 } else { 692 Register Reg = getRegForValue(Val); 693 if (!Reg) 694 return false; 695 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 696 } 697 } 698 return true; 699 } 700 701 bool FastISel::selectStackmap(const CallInst *I) { 702 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 703 // [live variables...]) 704 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 705 "Stackmap cannot return a value."); 706 707 // The stackmap intrinsic only records the live variables (the arguments 708 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 709 // intrinsic, this won't be lowered to a function call. This means we don't 710 // have to worry about calling conventions and target-specific lowering code. 711 // Instead we perform the call lowering right here. 712 // 713 // CALLSEQ_START(0, 0...) 714 // STACKMAP(id, nbytes, ...) 715 // CALLSEQ_END(0, 0) 716 // 717 SmallVector<MachineOperand, 32> Ops; 718 719 // Add the <id> and <numBytes> constants. 720 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 721 "Expected a constant integer."); 722 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 723 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 724 725 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 726 "Expected a constant integer."); 727 const auto *NumBytes = 728 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 729 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 730 731 // Push live variables for the stack map (skipping the first two arguments 732 // <id> and <numBytes>). 733 if (!addStackMapLiveVars(Ops, I, 2)) 734 return false; 735 736 // We are not adding any register mask info here, because the stackmap doesn't 737 // clobber anything. 738 739 // Add scratch registers as implicit def and early clobber. 740 CallingConv::ID CC = I->getCallingConv(); 741 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 742 for (unsigned i = 0; ScratchRegs[i]; ++i) 743 Ops.push_back(MachineOperand::CreateReg( 744 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 745 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 746 747 // Issue CALLSEQ_START 748 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 749 auto Builder = 750 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); 751 const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); 752 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) 753 Builder.addImm(0); 754 755 // Issue STACKMAP. 756 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 757 TII.get(TargetOpcode::STACKMAP)); 758 for (auto const &MO : Ops) 759 MIB.add(MO); 760 761 // Issue CALLSEQ_END 762 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 763 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 764 .addImm(0) 765 .addImm(0); 766 767 // Inform the Frame Information that we have a stackmap in this function. 768 FuncInfo.MF->getFrameInfo().setHasStackMap(); 769 770 return true; 771 } 772 773 /// Lower an argument list according to the target calling convention. 774 /// 775 /// This is a helper for lowering intrinsics that follow a target calling 776 /// convention or require stack pointer adjustment. Only a subset of the 777 /// intrinsic's operands need to participate in the calling convention. 778 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, 779 unsigned NumArgs, const Value *Callee, 780 bool ForceRetVoidTy, CallLoweringInfo &CLI) { 781 ArgListTy Args; 782 Args.reserve(NumArgs); 783 784 // Populate the argument list. 785 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { 786 Value *V = CI->getOperand(ArgI); 787 788 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 789 790 ArgListEntry Entry; 791 Entry.Val = V; 792 Entry.Ty = V->getType(); 793 Entry.setAttributes(CI, ArgI); 794 Args.push_back(Entry); 795 } 796 797 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) 798 : CI->getType(); 799 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); 800 801 return lowerCallTo(CLI); 802 } 803 804 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( 805 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, 806 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { 807 SmallString<32> MangledName; 808 Mangler::getNameWithPrefix(MangledName, Target, DL); 809 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 810 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); 811 } 812 813 bool FastISel::selectPatchpoint(const CallInst *I) { 814 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 815 // i32 <numBytes>, 816 // i8* <target>, 817 // i32 <numArgs>, 818 // [Args...], 819 // [live variables...]) 820 CallingConv::ID CC = I->getCallingConv(); 821 bool IsAnyRegCC = CC == CallingConv::AnyReg; 822 bool HasDef = !I->getType()->isVoidTy(); 823 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); 824 825 // Get the real number of arguments participating in the call <numArgs> 826 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && 827 "Expected a constant integer."); 828 const auto *NumArgsVal = 829 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); 830 unsigned NumArgs = NumArgsVal->getZExtValue(); 831 832 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 833 // This includes all meta-operands up to but not including CC. 834 unsigned NumMetaOpers = PatchPointOpers::CCPos; 835 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && 836 "Not enough arguments provided to the patchpoint intrinsic"); 837 838 // For AnyRegCC the arguments are lowered later on manually. 839 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 840 CallLoweringInfo CLI; 841 CLI.setIsPatchPoint(); 842 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) 843 return false; 844 845 assert(CLI.Call && "No call instruction specified."); 846 847 SmallVector<MachineOperand, 32> Ops; 848 849 // Add an explicit result reg if we use the anyreg calling convention. 850 if (IsAnyRegCC && HasDef) { 851 assert(CLI.NumResultRegs == 0 && "Unexpected result register."); 852 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); 853 CLI.NumResultRegs = 1; 854 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); 855 } 856 857 // Add the <id> and <numBytes> constants. 858 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 859 "Expected a constant integer."); 860 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 861 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 862 863 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 864 "Expected a constant integer."); 865 const auto *NumBytes = 866 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 867 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 868 869 // Add the call target. 870 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { 871 uint64_t CalleeConstAddr = 872 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 873 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 874 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { 875 if (C->getOpcode() == Instruction::IntToPtr) { 876 uint64_t CalleeConstAddr = 877 cast<ConstantInt>(C->getOperand(0))->getZExtValue(); 878 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); 879 } else 880 llvm_unreachable("Unsupported ConstantExpr."); 881 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { 882 Ops.push_back(MachineOperand::CreateGA(GV, 0)); 883 } else if (isa<ConstantPointerNull>(Callee)) 884 Ops.push_back(MachineOperand::CreateImm(0)); 885 else 886 llvm_unreachable("Unsupported callee address."); 887 888 // Adjust <numArgs> to account for any arguments that have been passed on 889 // the stack instead. 890 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); 891 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); 892 893 // Add the calling convention 894 Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); 895 896 // Add the arguments we omitted previously. The register allocator should 897 // place these in any free register. 898 if (IsAnyRegCC) { 899 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { 900 Register Reg = getRegForValue(I->getArgOperand(i)); 901 if (!Reg) 902 return false; 903 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 904 } 905 } 906 907 // Push the arguments from the call instruction. 908 for (auto Reg : CLI.OutRegs) 909 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 910 911 // Push live variables for the stack map. 912 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) 913 return false; 914 915 // Push the register mask info. 916 Ops.push_back(MachineOperand::CreateRegMask( 917 TRI.getCallPreservedMask(*FuncInfo.MF, CC))); 918 919 // Add scratch registers as implicit def and early clobber. 920 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 921 for (unsigned i = 0; ScratchRegs[i]; ++i) 922 Ops.push_back(MachineOperand::CreateReg( 923 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, 924 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); 925 926 // Add implicit defs (return values). 927 for (auto Reg : CLI.InRegs) 928 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, 929 /*isImp=*/true)); 930 931 // Insert the patchpoint instruction before the call generated by the target. 932 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, 933 TII.get(TargetOpcode::PATCHPOINT)); 934 935 for (auto &MO : Ops) 936 MIB.add(MO); 937 938 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); 939 940 // Delete the original call instruction. 941 CLI.Call->eraseFromParent(); 942 943 // Inform the Frame Information that we have a patchpoint in this function. 944 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 945 946 if (CLI.NumResultRegs) 947 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); 948 return true; 949 } 950 951 bool FastISel::selectXRayCustomEvent(const CallInst *I) { 952 const auto &Triple = TM.getTargetTriple(); 953 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 954 return true; // don't do anything to this instruction. 955 SmallVector<MachineOperand, 8> Ops; 956 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 957 /*isDef=*/false)); 958 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 959 /*isDef=*/false)); 960 MachineInstrBuilder MIB = 961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 962 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); 963 for (auto &MO : Ops) 964 MIB.add(MO); 965 966 // Insert the Patchable Event Call instruction, that gets lowered properly. 967 return true; 968 } 969 970 bool FastISel::selectXRayTypedEvent(const CallInst *I) { 971 const auto &Triple = TM.getTargetTriple(); 972 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 973 return true; // don't do anything to this instruction. 974 SmallVector<MachineOperand, 8> Ops; 975 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), 976 /*isDef=*/false)); 977 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), 978 /*isDef=*/false)); 979 Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), 980 /*isDef=*/false)); 981 MachineInstrBuilder MIB = 982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 983 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); 984 for (auto &MO : Ops) 985 MIB.add(MO); 986 987 // Insert the Patchable Typed Event Call instruction, that gets lowered properly. 988 return true; 989 } 990 991 /// Returns an AttributeList representing the attributes applied to the return 992 /// value of the given call. 993 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { 994 SmallVector<Attribute::AttrKind, 2> Attrs; 995 if (CLI.RetSExt) 996 Attrs.push_back(Attribute::SExt); 997 if (CLI.RetZExt) 998 Attrs.push_back(Attribute::ZExt); 999 if (CLI.IsInReg) 1000 Attrs.push_back(Attribute::InReg); 1001 1002 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 1003 Attrs); 1004 } 1005 1006 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, 1007 unsigned NumArgs) { 1008 MCContext &Ctx = MF->getContext(); 1009 SmallString<32> MangledName; 1010 Mangler::getNameWithPrefix(MangledName, SymName, DL); 1011 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); 1012 return lowerCallTo(CI, Sym, NumArgs); 1013 } 1014 1015 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, 1016 unsigned NumArgs) { 1017 FunctionType *FTy = CI->getFunctionType(); 1018 Type *RetTy = CI->getType(); 1019 1020 ArgListTy Args; 1021 Args.reserve(NumArgs); 1022 1023 // Populate the argument list. 1024 // Attributes for args start at offset 1, after the return attribute. 1025 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { 1026 Value *V = CI->getOperand(ArgI); 1027 1028 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 1029 1030 ArgListEntry Entry; 1031 Entry.Val = V; 1032 Entry.Ty = V->getType(); 1033 Entry.setAttributes(CI, ArgI); 1034 Args.push_back(Entry); 1035 } 1036 TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args); 1037 1038 CallLoweringInfo CLI; 1039 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs); 1040 1041 return lowerCallTo(CLI); 1042 } 1043 1044 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { 1045 // Handle the incoming return values from the call. 1046 CLI.clearIns(); 1047 SmallVector<EVT, 4> RetTys; 1048 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); 1049 1050 SmallVector<ISD::OutputArg, 4> Outs; 1051 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); 1052 1053 bool CanLowerReturn = TLI.CanLowerReturn( 1054 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 1055 1056 // FIXME: sret demotion isn't supported yet - bail out. 1057 if (!CanLowerReturn) 1058 return false; 1059 1060 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 1061 EVT VT = RetTys[I]; 1062 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); 1063 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); 1064 for (unsigned i = 0; i != NumRegs; ++i) { 1065 ISD::InputArg MyFlags; 1066 MyFlags.VT = RegisterVT; 1067 MyFlags.ArgVT = VT; 1068 MyFlags.Used = CLI.IsReturnValueUsed; 1069 if (CLI.RetSExt) 1070 MyFlags.Flags.setSExt(); 1071 if (CLI.RetZExt) 1072 MyFlags.Flags.setZExt(); 1073 if (CLI.IsInReg) 1074 MyFlags.Flags.setInReg(); 1075 CLI.Ins.push_back(MyFlags); 1076 } 1077 } 1078 1079 // Handle all of the outgoing arguments. 1080 CLI.clearOuts(); 1081 for (auto &Arg : CLI.getArgs()) { 1082 Type *FinalType = Arg.Ty; 1083 if (Arg.IsByVal) 1084 FinalType = cast<PointerType>(Arg.Ty)->getElementType(); 1085 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1086 FinalType, CLI.CallConv, CLI.IsVarArg); 1087 1088 ISD::ArgFlagsTy Flags; 1089 if (Arg.IsZExt) 1090 Flags.setZExt(); 1091 if (Arg.IsSExt) 1092 Flags.setSExt(); 1093 if (Arg.IsInReg) 1094 Flags.setInReg(); 1095 if (Arg.IsSRet) 1096 Flags.setSRet(); 1097 if (Arg.IsSwiftSelf) 1098 Flags.setSwiftSelf(); 1099 if (Arg.IsSwiftError) 1100 Flags.setSwiftError(); 1101 if (Arg.IsCFGuardTarget) 1102 Flags.setCFGuardTarget(); 1103 if (Arg.IsByVal) 1104 Flags.setByVal(); 1105 if (Arg.IsInAlloca) { 1106 Flags.setInAlloca(); 1107 // Set the byval flag for CCAssignFn callbacks that don't know about 1108 // inalloca. This way we can know how many bytes we should've allocated 1109 // and how many bytes a callee cleanup function will pop. If we port 1110 // inalloca to more targets, we'll have to add custom inalloca handling in 1111 // the various CC lowering callbacks. 1112 Flags.setByVal(); 1113 } 1114 if (Arg.IsPreallocated) { 1115 Flags.setPreallocated(); 1116 // Set the byval flag for CCAssignFn callbacks that don't know about 1117 // preallocated. This way we can know how many bytes we should've 1118 // allocated and how many bytes a callee cleanup function will pop. If we 1119 // port preallocated to more targets, we'll have to add custom 1120 // preallocated handling in the various CC lowering callbacks. 1121 Flags.setByVal(); 1122 } 1123 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { 1124 PointerType *Ty = cast<PointerType>(Arg.Ty); 1125 Type *ElementTy = Ty->getElementType(); 1126 unsigned FrameSize = 1127 DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy); 1128 1129 // For ByVal, alignment should come from FE. BE will guess if this info 1130 // is not there, but there are cases it cannot get right. 1131 MaybeAlign FrameAlign = Arg.Alignment; 1132 if (!FrameAlign) 1133 FrameAlign = Align(TLI.getByValTypeAlignment(ElementTy, DL)); 1134 Flags.setByValSize(FrameSize); 1135 Flags.setByValAlign(*FrameAlign); 1136 } 1137 if (Arg.IsNest) 1138 Flags.setNest(); 1139 if (NeedsRegBlock) 1140 Flags.setInConsecutiveRegs(); 1141 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 1142 1143 CLI.OutVals.push_back(Arg.Val); 1144 CLI.OutFlags.push_back(Flags); 1145 } 1146 1147 if (!fastLowerCall(CLI)) 1148 return false; 1149 1150 // Set all unused physreg defs as dead. 1151 assert(CLI.Call && "No call instruction specified."); 1152 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); 1153 1154 if (CLI.NumResultRegs && CLI.CB) 1155 updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs); 1156 1157 // Set labels for heapallocsite call. 1158 if (CLI.CB) 1159 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite")) 1160 CLI.Call->setHeapAllocMarker(*MF, MD); 1161 1162 return true; 1163 } 1164 1165 bool FastISel::lowerCall(const CallInst *CI) { 1166 FunctionType *FuncTy = CI->getFunctionType(); 1167 Type *RetTy = CI->getType(); 1168 1169 ArgListTy Args; 1170 ArgListEntry Entry; 1171 Args.reserve(CI->arg_size()); 1172 1173 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { 1174 Value *V = *i; 1175 1176 // Skip empty types 1177 if (V->getType()->isEmptyTy()) 1178 continue; 1179 1180 Entry.Val = V; 1181 Entry.Ty = V->getType(); 1182 1183 // Skip the first return-type Attribute to get to params. 1184 Entry.setAttributes(CI, i - CI->arg_begin()); 1185 Args.push_back(Entry); 1186 } 1187 1188 // Check if target-independent constraints permit a tail call here. 1189 // Target-dependent constraints are checked within fastLowerCall. 1190 bool IsTailCall = CI->isTailCall(); 1191 if (IsTailCall && !isInTailCallPosition(*CI, TM)) 1192 IsTailCall = false; 1193 if (IsTailCall && MF->getFunction() 1194 .getFnAttribute("disable-tail-calls") 1195 .getValueAsString() == "true") 1196 IsTailCall = false; 1197 1198 CallLoweringInfo CLI; 1199 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI) 1200 .setTailCall(IsTailCall); 1201 1202 return lowerCallTo(CLI); 1203 } 1204 1205 bool FastISel::selectCall(const User *I) { 1206 const CallInst *Call = cast<CallInst>(I); 1207 1208 // Handle simple inline asms. 1209 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) { 1210 // Don't attempt to handle constraints. 1211 if (!IA->getConstraintString().empty()) 1212 return false; 1213 1214 unsigned ExtraInfo = 0; 1215 if (IA->hasSideEffects()) 1216 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1217 if (IA->isAlignStack()) 1218 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 1219 if (Call->isConvergent()) 1220 ExtraInfo |= InlineAsm::Extra_IsConvergent; 1221 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 1222 1223 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1224 TII.get(TargetOpcode::INLINEASM)); 1225 MIB.addExternalSymbol(IA->getAsmString().c_str()); 1226 MIB.addImm(ExtraInfo); 1227 1228 const MDNode *SrcLoc = Call->getMetadata("srcloc"); 1229 if (SrcLoc) 1230 MIB.addMetadata(SrcLoc); 1231 1232 return true; 1233 } 1234 1235 // Handle intrinsic function calls. 1236 if (const auto *II = dyn_cast<IntrinsicInst>(Call)) 1237 return selectIntrinsicCall(II); 1238 1239 return lowerCall(Call); 1240 } 1241 1242 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { 1243 switch (II->getIntrinsicID()) { 1244 default: 1245 break; 1246 // At -O0 we don't care about the lifetime intrinsics. 1247 case Intrinsic::lifetime_start: 1248 case Intrinsic::lifetime_end: 1249 // The donothing intrinsic does, well, nothing. 1250 case Intrinsic::donothing: 1251 // Neither does the sideeffect intrinsic. 1252 case Intrinsic::sideeffect: 1253 // Neither does the assume intrinsic; it's also OK not to codegen its operand. 1254 case Intrinsic::assume: 1255 // Neither does the llvm.experimental.noalias.scope.decl intrinsic 1256 case Intrinsic::experimental_noalias_scope_decl: 1257 return true; 1258 case Intrinsic::dbg_declare: { 1259 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 1260 assert(DI->getVariable() && "Missing variable"); 1261 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1262 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1263 << " (!hasDebugInfo)\n"); 1264 return true; 1265 } 1266 1267 const Value *Address = DI->getAddress(); 1268 if (!Address || isa<UndefValue>(Address)) { 1269 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1270 << " (bad/undef address)\n"); 1271 return true; 1272 } 1273 1274 // Byval arguments with frame indices were already handled after argument 1275 // lowering and before isel. 1276 const auto *Arg = 1277 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 1278 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 1279 return true; 1280 1281 Optional<MachineOperand> Op; 1282 if (Register Reg = lookUpRegForValue(Address)) 1283 Op = MachineOperand::CreateReg(Reg, false); 1284 1285 // If we have a VLA that has a "use" in a metadata node that's then used 1286 // here but it has no other uses, then we have a problem. E.g., 1287 // 1288 // int foo (const int *x) { 1289 // char a[*x]; 1290 // return 0; 1291 // } 1292 // 1293 // If we assign 'a' a vreg and fast isel later on has to use the selection 1294 // DAG isel, it will want to copy the value to the vreg. However, there are 1295 // no uses, which goes counter to what selection DAG isel expects. 1296 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 1297 (!isa<AllocaInst>(Address) || 1298 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 1299 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 1300 false); 1301 1302 if (Op) { 1303 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1304 "Expected inlined-at fields to agree"); 1305 // A dbg.declare describes the address of a source variable, so lower it 1306 // into an indirect DBG_VALUE. 1307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1308 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, 1309 *Op, DI->getVariable(), DI->getExpression()); 1310 } else { 1311 // We can't yet handle anything else here because it would require 1312 // generating code, thus altering codegen because of debug info. 1313 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI 1314 << " (no materialized reg for address)\n"); 1315 } 1316 return true; 1317 } 1318 case Intrinsic::dbg_value: { 1319 // This form of DBG_VALUE is target-independent. 1320 const DbgValueInst *DI = cast<DbgValueInst>(II); 1321 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 1322 const Value *V = DI->getValue(); 1323 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 1324 "Expected inlined-at fields to agree"); 1325 if (!V || isa<UndefValue>(V)) { 1326 // Currently the optimizer can produce this; insert an undef to 1327 // help debugging. 1328 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, 1329 DI->getVariable(), DI->getExpression()); 1330 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { 1331 if (CI->getBitWidth() > 64) 1332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1333 .addCImm(CI) 1334 .addImm(0U) 1335 .addMetadata(DI->getVariable()) 1336 .addMetadata(DI->getExpression()); 1337 else 1338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1339 .addImm(CI->getZExtValue()) 1340 .addImm(0U) 1341 .addMetadata(DI->getVariable()) 1342 .addMetadata(DI->getExpression()); 1343 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { 1344 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1345 .addFPImm(CF) 1346 .addImm(0U) 1347 .addMetadata(DI->getVariable()) 1348 .addMetadata(DI->getExpression()); 1349 } else if (Register Reg = lookUpRegForValue(V)) { 1350 // FIXME: This does not handle register-indirect values at offset 0. 1351 bool IsIndirect = false; 1352 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, 1353 DI->getVariable(), DI->getExpression()); 1354 } else { 1355 // We don't know how to handle other cases, so we drop. 1356 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1357 } 1358 return true; 1359 } 1360 case Intrinsic::dbg_label: { 1361 const DbgLabelInst *DI = cast<DbgLabelInst>(II); 1362 assert(DI->getLabel() && "Missing label"); 1363 if (!FuncInfo.MF->getMMI().hasDebugInfo()) { 1364 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1365 return true; 1366 } 1367 1368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1369 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); 1370 return true; 1371 } 1372 case Intrinsic::objectsize: 1373 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1374 1375 case Intrinsic::is_constant: 1376 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1377 1378 case Intrinsic::launder_invariant_group: 1379 case Intrinsic::strip_invariant_group: 1380 case Intrinsic::expect: { 1381 Register ResultReg = getRegForValue(II->getArgOperand(0)); 1382 if (!ResultReg) 1383 return false; 1384 updateValueMap(II, ResultReg); 1385 return true; 1386 } 1387 case Intrinsic::experimental_stackmap: 1388 return selectStackmap(II); 1389 case Intrinsic::experimental_patchpoint_void: 1390 case Intrinsic::experimental_patchpoint_i64: 1391 return selectPatchpoint(II); 1392 1393 case Intrinsic::xray_customevent: 1394 return selectXRayCustomEvent(II); 1395 case Intrinsic::xray_typedevent: 1396 return selectXRayTypedEvent(II); 1397 } 1398 1399 return fastLowerIntrinsicCall(II); 1400 } 1401 1402 bool FastISel::selectCast(const User *I, unsigned Opcode) { 1403 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1404 EVT DstVT = TLI.getValueType(DL, I->getType()); 1405 1406 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || 1407 !DstVT.isSimple()) 1408 // Unhandled type. Halt "fast" selection and bail. 1409 return false; 1410 1411 // Check if the destination type is legal. 1412 if (!TLI.isTypeLegal(DstVT)) 1413 return false; 1414 1415 // Check if the source operand is legal. 1416 if (!TLI.isTypeLegal(SrcVT)) 1417 return false; 1418 1419 Register InputReg = getRegForValue(I->getOperand(0)); 1420 if (!InputReg) 1421 // Unhandled operand. Halt "fast" selection and bail. 1422 return false; 1423 1424 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 1425 1426 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), 1427 Opcode, InputReg, InputRegIsKill); 1428 if (!ResultReg) 1429 return false; 1430 1431 updateValueMap(I, ResultReg); 1432 return true; 1433 } 1434 1435 bool FastISel::selectBitCast(const User *I) { 1436 // If the bitcast doesn't change the type, just use the operand value. 1437 if (I->getType() == I->getOperand(0)->getType()) { 1438 Register Reg = getRegForValue(I->getOperand(0)); 1439 if (!Reg) 1440 return false; 1441 updateValueMap(I, Reg); 1442 return true; 1443 } 1444 1445 // Bitcasts of other values become reg-reg copies or BITCAST operators. 1446 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1447 EVT DstEVT = TLI.getValueType(DL, I->getType()); 1448 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 1449 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 1450 // Unhandled type. Halt "fast" selection and bail. 1451 return false; 1452 1453 MVT SrcVT = SrcEVT.getSimpleVT(); 1454 MVT DstVT = DstEVT.getSimpleVT(); 1455 Register Op0 = getRegForValue(I->getOperand(0)); 1456 if (!Op0) // Unhandled operand. Halt "fast" selection and bail. 1457 return false; 1458 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 1459 1460 // First, try to perform the bitcast by inserting a reg-reg copy. 1461 Register ResultReg; 1462 if (SrcVT == DstVT) { 1463 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); 1464 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 1465 // Don't attempt a cross-class copy. It will likely fail. 1466 if (SrcClass == DstClass) { 1467 ResultReg = createResultReg(DstClass); 1468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1469 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 1470 } 1471 } 1472 1473 // If the reg-reg copy failed, select a BITCAST opcode. 1474 if (!ResultReg) 1475 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 1476 1477 if (!ResultReg) 1478 return false; 1479 1480 updateValueMap(I, ResultReg); 1481 return true; 1482 } 1483 1484 bool FastISel::selectFreeze(const User *I) { 1485 Register Reg = getRegForValue(I->getOperand(0)); 1486 if (!Reg) 1487 // Unhandled operand. 1488 return false; 1489 1490 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType()); 1491 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy)) 1492 // Unhandled type, bail out. 1493 return false; 1494 1495 MVT Ty = ETy.getSimpleVT(); 1496 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty); 1497 Register ResultReg = createResultReg(TyRegClass); 1498 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1499 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 1500 1501 updateValueMap(I, ResultReg); 1502 return true; 1503 } 1504 1505 // Remove local value instructions starting from the instruction after 1506 // SavedLastLocalValue to the current function insert point. 1507 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) 1508 { 1509 MachineInstr *CurLastLocalValue = getLastLocalValue(); 1510 if (CurLastLocalValue != SavedLastLocalValue) { 1511 // Find the first local value instruction to be deleted. 1512 // This is the instruction after SavedLastLocalValue if it is non-NULL. 1513 // Otherwise it's the first instruction in the block. 1514 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); 1515 if (SavedLastLocalValue) 1516 ++FirstDeadInst; 1517 else 1518 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); 1519 setLastLocalValue(SavedLastLocalValue); 1520 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); 1521 } 1522 } 1523 1524 bool FastISel::selectInstruction(const Instruction *I) { 1525 // Flush the local value map before starting each instruction. 1526 // This improves locality and debugging, and can reduce spills. 1527 // Reuse of values across IR instructions is relatively uncommon. 1528 flushLocalValueMap(); 1529 1530 MachineInstr *SavedLastLocalValue = getLastLocalValue(); 1531 // Just before the terminator instruction, insert instructions to 1532 // feed PHI nodes in successor blocks. 1533 if (I->isTerminator()) { 1534 if (!handlePHINodesInSuccessorBlocks(I->getParent())) { 1535 // PHI node handling may have generated local value instructions, 1536 // even though it failed to handle all PHI nodes. 1537 // We remove these instructions because SelectionDAGISel will generate 1538 // them again. 1539 removeDeadLocalValueCode(SavedLastLocalValue); 1540 return false; 1541 } 1542 } 1543 1544 // FastISel does not handle any operand bundles except OB_funclet. 1545 if (auto *Call = dyn_cast<CallBase>(I)) 1546 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) 1547 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) 1548 return false; 1549 1550 DbgLoc = I->getDebugLoc(); 1551 1552 SavedInsertPt = FuncInfo.InsertPt; 1553 1554 if (const auto *Call = dyn_cast<CallInst>(I)) { 1555 const Function *F = Call->getCalledFunction(); 1556 LibFunc Func; 1557 1558 // As a special case, don't handle calls to builtin library functions that 1559 // may be translated directly to target instructions. 1560 if (F && !F->hasLocalLinkage() && F->hasName() && 1561 LibInfo->getLibFunc(F->getName(), Func) && 1562 LibInfo->hasOptimizedCodeGen(Func)) 1563 return false; 1564 1565 // Don't handle Intrinsic::trap if a trap function is specified. 1566 if (F && F->getIntrinsicID() == Intrinsic::trap && 1567 Call->hasFnAttr("trap-func-name")) 1568 return false; 1569 } 1570 1571 // First, try doing target-independent selection. 1572 if (!SkipTargetIndependentISel) { 1573 if (selectOperator(I, I->getOpcode())) { 1574 ++NumFastIselSuccessIndependent; 1575 DbgLoc = DebugLoc(); 1576 return true; 1577 } 1578 // Remove dead code. 1579 recomputeInsertPt(); 1580 if (SavedInsertPt != FuncInfo.InsertPt) 1581 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1582 SavedInsertPt = FuncInfo.InsertPt; 1583 } 1584 // Next, try calling the target to attempt to handle the instruction. 1585 if (fastSelectInstruction(I)) { 1586 ++NumFastIselSuccessTarget; 1587 DbgLoc = DebugLoc(); 1588 return true; 1589 } 1590 // Remove dead code. 1591 recomputeInsertPt(); 1592 if (SavedInsertPt != FuncInfo.InsertPt) 1593 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 1594 1595 DbgLoc = DebugLoc(); 1596 // Undo phi node updates, because they will be added again by SelectionDAG. 1597 if (I->isTerminator()) { 1598 // PHI node handling may have generated local value instructions. 1599 // We remove them because SelectionDAGISel will generate them again. 1600 removeDeadLocalValueCode(SavedLastLocalValue); 1601 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 1602 } 1603 return false; 1604 } 1605 1606 /// Emit an unconditional branch to the given block, unless it is the immediate 1607 /// (fall-through) successor, and update the CFG. 1608 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, 1609 const DebugLoc &DbgLoc) { 1610 if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && 1611 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 1612 // For more accurate line information if this is the only non-debug 1613 // instruction in the block then emit it, otherwise we have the 1614 // unconditional fall-through case, which needs no instructions. 1615 } else { 1616 // The unconditional branch case. 1617 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, 1618 SmallVector<MachineOperand, 0>(), DbgLoc); 1619 } 1620 if (FuncInfo.BPI) { 1621 auto BranchProbability = FuncInfo.BPI->getEdgeProbability( 1622 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); 1623 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); 1624 } else 1625 FuncInfo.MBB->addSuccessorWithoutProb(MSucc); 1626 } 1627 1628 void FastISel::finishCondBranch(const BasicBlock *BranchBB, 1629 MachineBasicBlock *TrueMBB, 1630 MachineBasicBlock *FalseMBB) { 1631 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can 1632 // happen in degenerate IR and MachineIR forbids to have a block twice in the 1633 // successor/predecessor lists. 1634 if (TrueMBB != FalseMBB) { 1635 if (FuncInfo.BPI) { 1636 auto BranchProbability = 1637 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); 1638 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); 1639 } else 1640 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); 1641 } 1642 1643 fastEmitBranch(FalseMBB, DbgLoc); 1644 } 1645 1646 /// Emit an FNeg operation. 1647 bool FastISel::selectFNeg(const User *I, const Value *In) { 1648 Register OpReg = getRegForValue(In); 1649 if (!OpReg) 1650 return false; 1651 bool OpRegIsKill = hasTrivialKill(In); 1652 1653 // If the target has ISD::FNEG, use it. 1654 EVT VT = TLI.getValueType(DL, I->getType()); 1655 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, 1656 OpReg, OpRegIsKill); 1657 if (ResultReg) { 1658 updateValueMap(I, ResultReg); 1659 return true; 1660 } 1661 1662 // Bitcast the value to integer, twiddle the sign bit with xor, 1663 // and then bitcast it back to floating-point. 1664 if (VT.getSizeInBits() > 64) 1665 return false; 1666 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1667 if (!TLI.isTypeLegal(IntVT)) 1668 return false; 1669 1670 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1671 ISD::BITCAST, OpReg, OpRegIsKill); 1672 if (!IntReg) 1673 return false; 1674 1675 Register IntResultReg = fastEmit_ri_( 1676 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*Op0IsKill=*/true, 1677 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); 1678 if (!IntResultReg) 1679 return false; 1680 1681 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, 1682 IntResultReg, /*Op0IsKill=*/true); 1683 if (!ResultReg) 1684 return false; 1685 1686 updateValueMap(I, ResultReg); 1687 return true; 1688 } 1689 1690 bool FastISel::selectExtractValue(const User *U) { 1691 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1692 if (!EVI) 1693 return false; 1694 1695 // Make sure we only try to handle extracts with a legal result. But also 1696 // allow i1 because it's easy. 1697 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); 1698 if (!RealVT.isSimple()) 1699 return false; 1700 MVT VT = RealVT.getSimpleVT(); 1701 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1702 return false; 1703 1704 const Value *Op0 = EVI->getOperand(0); 1705 Type *AggTy = Op0->getType(); 1706 1707 // Get the base result register. 1708 unsigned ResultReg; 1709 DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0); 1710 if (I != FuncInfo.ValueMap.end()) 1711 ResultReg = I->second; 1712 else if (isa<Instruction>(Op0)) 1713 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1714 else 1715 return false; // fast-isel can't handle aggregate constants at the moment 1716 1717 // Get the actual result register, which is an offset from the base register. 1718 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1719 1720 SmallVector<EVT, 4> AggValueVTs; 1721 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); 1722 1723 for (unsigned i = 0; i < VTIndex; i++) 1724 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1725 1726 updateValueMap(EVI, ResultReg); 1727 return true; 1728 } 1729 1730 bool FastISel::selectOperator(const User *I, unsigned Opcode) { 1731 switch (Opcode) { 1732 case Instruction::Add: 1733 return selectBinaryOp(I, ISD::ADD); 1734 case Instruction::FAdd: 1735 return selectBinaryOp(I, ISD::FADD); 1736 case Instruction::Sub: 1737 return selectBinaryOp(I, ISD::SUB); 1738 case Instruction::FSub: 1739 return selectBinaryOp(I, ISD::FSUB); 1740 case Instruction::Mul: 1741 return selectBinaryOp(I, ISD::MUL); 1742 case Instruction::FMul: 1743 return selectBinaryOp(I, ISD::FMUL); 1744 case Instruction::SDiv: 1745 return selectBinaryOp(I, ISD::SDIV); 1746 case Instruction::UDiv: 1747 return selectBinaryOp(I, ISD::UDIV); 1748 case Instruction::FDiv: 1749 return selectBinaryOp(I, ISD::FDIV); 1750 case Instruction::SRem: 1751 return selectBinaryOp(I, ISD::SREM); 1752 case Instruction::URem: 1753 return selectBinaryOp(I, ISD::UREM); 1754 case Instruction::FRem: 1755 return selectBinaryOp(I, ISD::FREM); 1756 case Instruction::Shl: 1757 return selectBinaryOp(I, ISD::SHL); 1758 case Instruction::LShr: 1759 return selectBinaryOp(I, ISD::SRL); 1760 case Instruction::AShr: 1761 return selectBinaryOp(I, ISD::SRA); 1762 case Instruction::And: 1763 return selectBinaryOp(I, ISD::AND); 1764 case Instruction::Or: 1765 return selectBinaryOp(I, ISD::OR); 1766 case Instruction::Xor: 1767 return selectBinaryOp(I, ISD::XOR); 1768 1769 case Instruction::FNeg: 1770 return selectFNeg(I, I->getOperand(0)); 1771 1772 case Instruction::GetElementPtr: 1773 return selectGetElementPtr(I); 1774 1775 case Instruction::Br: { 1776 const BranchInst *BI = cast<BranchInst>(I); 1777 1778 if (BI->isUnconditional()) { 1779 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1780 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1781 fastEmitBranch(MSucc, BI->getDebugLoc()); 1782 return true; 1783 } 1784 1785 // Conditional branches are not handed yet. 1786 // Halt "fast" selection and bail. 1787 return false; 1788 } 1789 1790 case Instruction::Unreachable: 1791 if (TM.Options.TrapUnreachable) 1792 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1793 else 1794 return true; 1795 1796 case Instruction::Alloca: 1797 // FunctionLowering has the static-sized case covered. 1798 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1799 return true; 1800 1801 // Dynamic-sized alloca is not handled yet. 1802 return false; 1803 1804 case Instruction::Call: 1805 // On AIX, call lowering uses the DAG-ISEL path currently so that the 1806 // callee of the direct function call instruction will be mapped to the 1807 // symbol for the function's entry point, which is distinct from the 1808 // function descriptor symbol. The latter is the symbol whose XCOFF symbol 1809 // name is the C-linkage name of the source level function. 1810 if (TM.getTargetTriple().isOSAIX()) 1811 return false; 1812 return selectCall(I); 1813 1814 case Instruction::BitCast: 1815 return selectBitCast(I); 1816 1817 case Instruction::FPToSI: 1818 return selectCast(I, ISD::FP_TO_SINT); 1819 case Instruction::ZExt: 1820 return selectCast(I, ISD::ZERO_EXTEND); 1821 case Instruction::SExt: 1822 return selectCast(I, ISD::SIGN_EXTEND); 1823 case Instruction::Trunc: 1824 return selectCast(I, ISD::TRUNCATE); 1825 case Instruction::SIToFP: 1826 return selectCast(I, ISD::SINT_TO_FP); 1827 1828 case Instruction::IntToPtr: // Deliberate fall-through. 1829 case Instruction::PtrToInt: { 1830 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 1831 EVT DstVT = TLI.getValueType(DL, I->getType()); 1832 if (DstVT.bitsGT(SrcVT)) 1833 return selectCast(I, ISD::ZERO_EXTEND); 1834 if (DstVT.bitsLT(SrcVT)) 1835 return selectCast(I, ISD::TRUNCATE); 1836 Register Reg = getRegForValue(I->getOperand(0)); 1837 if (!Reg) 1838 return false; 1839 updateValueMap(I, Reg); 1840 return true; 1841 } 1842 1843 case Instruction::ExtractValue: 1844 return selectExtractValue(I); 1845 1846 case Instruction::Freeze: 1847 return selectFreeze(I); 1848 1849 case Instruction::PHI: 1850 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1851 1852 default: 1853 // Unhandled instruction. Halt "fast" selection and bail. 1854 return false; 1855 } 1856 } 1857 1858 FastISel::FastISel(FunctionLoweringInfo &FuncInfo, 1859 const TargetLibraryInfo *LibInfo, 1860 bool SkipTargetIndependentISel) 1861 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), 1862 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), 1863 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), 1864 TII(*MF->getSubtarget().getInstrInfo()), 1865 TLI(*MF->getSubtarget().getTargetLowering()), 1866 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), 1867 SkipTargetIndependentISel(SkipTargetIndependentISel), 1868 LastLocalValue(nullptr), EmitStartPt(nullptr) {} 1869 1870 FastISel::~FastISel() = default; 1871 1872 bool FastISel::fastLowerArguments() { return false; } 1873 1874 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } 1875 1876 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { 1877 return false; 1878 } 1879 1880 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } 1881 1882 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, 1883 bool /*Op0IsKill*/) { 1884 return 0; 1885 } 1886 1887 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, 1888 bool /*Op0IsKill*/, unsigned /*Op1*/, 1889 bool /*Op1IsKill*/) { 1890 return 0; 1891 } 1892 1893 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1894 return 0; 1895 } 1896 1897 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, 1898 const ConstantFP * /*FPImm*/) { 1899 return 0; 1900 } 1901 1902 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, 1903 bool /*Op0IsKill*/, uint64_t /*Imm*/) { 1904 return 0; 1905 } 1906 1907 /// This method is a wrapper of fastEmit_ri. It first tries to emit an 1908 /// instruction with an immediate operand using fastEmit_ri. 1909 /// If that fails, it materializes the immediate into a register and try 1910 /// fastEmit_rr instead. 1911 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, 1912 bool Op0IsKill, uint64_t Imm, MVT ImmType) { 1913 // If this is a multiply by a power of two, emit this as a shift left. 1914 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1915 Opcode = ISD::SHL; 1916 Imm = Log2_64(Imm); 1917 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1918 // div x, 8 -> srl x, 3 1919 Opcode = ISD::SRL; 1920 Imm = Log2_64(Imm); 1921 } 1922 1923 // Horrible hack (to be removed), check to make sure shift amounts are 1924 // in-range. 1925 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1926 Imm >= VT.getSizeInBits()) 1927 return 0; 1928 1929 // First check if immediate type is legal. If not, we can't use the ri form. 1930 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1931 if (ResultReg) 1932 return ResultReg; 1933 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1934 bool IsImmKill = true; 1935 if (!MaterialReg) { 1936 // This is a bit ugly/slow, but failing here means falling out of 1937 // fast-isel, which would be very slow. 1938 IntegerType *ITy = 1939 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); 1940 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1941 if (!MaterialReg) 1942 return 0; 1943 // FIXME: If the materialized register here has no uses yet then this 1944 // will be the first use and we should be able to mark it as killed. 1945 // However, the local value area for materialising constant expressions 1946 // grows down, not up, which means that any constant expressions we generate 1947 // later which also use 'Imm' could be after this instruction and therefore 1948 // after this kill. 1949 IsImmKill = false; 1950 } 1951 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); 1952 } 1953 1954 Register FastISel::createResultReg(const TargetRegisterClass *RC) { 1955 return MRI.createVirtualRegister(RC); 1956 } 1957 1958 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, 1959 unsigned OpNum) { 1960 if (Op.isVirtual()) { 1961 const TargetRegisterClass *RegClass = 1962 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1963 if (!MRI.constrainRegClass(Op, RegClass)) { 1964 // If it's not legal to COPY between the register classes, something 1965 // has gone very wrong before we got here. 1966 Register NewOp = createResultReg(RegClass); 1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1968 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1969 return NewOp; 1970 } 1971 } 1972 return Op; 1973 } 1974 1975 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, 1976 const TargetRegisterClass *RC) { 1977 Register ResultReg = createResultReg(RC); 1978 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1979 1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1981 return ResultReg; 1982 } 1983 1984 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, 1985 const TargetRegisterClass *RC, unsigned Op0, 1986 bool Op0IsKill) { 1987 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1988 1989 Register ResultReg = createResultReg(RC); 1990 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1991 1992 if (II.getNumDefs() >= 1) 1993 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1994 .addReg(Op0, getKillRegState(Op0IsKill)); 1995 else { 1996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1997 .addReg(Op0, getKillRegState(Op0IsKill)); 1998 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1999 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2000 } 2001 2002 return ResultReg; 2003 } 2004 2005 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2006 const TargetRegisterClass *RC, unsigned Op0, 2007 bool Op0IsKill, unsigned Op1, 2008 bool Op1IsKill) { 2009 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2010 2011 Register ResultReg = createResultReg(RC); 2012 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2013 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2014 2015 if (II.getNumDefs() >= 1) 2016 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2017 .addReg(Op0, getKillRegState(Op0IsKill)) 2018 .addReg(Op1, getKillRegState(Op1IsKill)); 2019 else { 2020 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2021 .addReg(Op0, getKillRegState(Op0IsKill)) 2022 .addReg(Op1, getKillRegState(Op1IsKill)); 2023 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2024 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2025 } 2026 return ResultReg; 2027 } 2028 2029 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 2030 const TargetRegisterClass *RC, unsigned Op0, 2031 bool Op0IsKill, unsigned Op1, 2032 bool Op1IsKill, unsigned Op2, 2033 bool Op2IsKill) { 2034 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2035 2036 Register ResultReg = createResultReg(RC); 2037 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2038 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2039 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 2040 2041 if (II.getNumDefs() >= 1) 2042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2043 .addReg(Op0, getKillRegState(Op0IsKill)) 2044 .addReg(Op1, getKillRegState(Op1IsKill)) 2045 .addReg(Op2, getKillRegState(Op2IsKill)); 2046 else { 2047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2048 .addReg(Op0, getKillRegState(Op0IsKill)) 2049 .addReg(Op1, getKillRegState(Op1IsKill)) 2050 .addReg(Op2, getKillRegState(Op2IsKill)); 2051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2052 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2053 } 2054 return ResultReg; 2055 } 2056 2057 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2058 const TargetRegisterClass *RC, unsigned Op0, 2059 bool Op0IsKill, uint64_t Imm) { 2060 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2061 2062 Register ResultReg = createResultReg(RC); 2063 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2064 2065 if (II.getNumDefs() >= 1) 2066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2067 .addReg(Op0, getKillRegState(Op0IsKill)) 2068 .addImm(Imm); 2069 else { 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2071 .addReg(Op0, getKillRegState(Op0IsKill)) 2072 .addImm(Imm); 2073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2074 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2075 } 2076 return ResultReg; 2077 } 2078 2079 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, 2080 const TargetRegisterClass *RC, unsigned Op0, 2081 bool Op0IsKill, uint64_t Imm1, 2082 uint64_t Imm2) { 2083 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2084 2085 Register ResultReg = createResultReg(RC); 2086 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2087 2088 if (II.getNumDefs() >= 1) 2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2090 .addReg(Op0, getKillRegState(Op0IsKill)) 2091 .addImm(Imm1) 2092 .addImm(Imm2); 2093 else { 2094 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2095 .addReg(Op0, getKillRegState(Op0IsKill)) 2096 .addImm(Imm1) 2097 .addImm(Imm2); 2098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2099 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2100 } 2101 return ResultReg; 2102 } 2103 2104 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, 2105 const TargetRegisterClass *RC, 2106 const ConstantFP *FPImm) { 2107 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2108 2109 Register ResultReg = createResultReg(RC); 2110 2111 if (II.getNumDefs() >= 1) 2112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2113 .addFPImm(FPImm); 2114 else { 2115 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2116 .addFPImm(FPImm); 2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2118 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2119 } 2120 return ResultReg; 2121 } 2122 2123 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 2124 const TargetRegisterClass *RC, unsigned Op0, 2125 bool Op0IsKill, unsigned Op1, 2126 bool Op1IsKill, uint64_t Imm) { 2127 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2128 2129 Register ResultReg = createResultReg(RC); 2130 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 2131 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 2132 2133 if (II.getNumDefs() >= 1) 2134 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2135 .addReg(Op0, getKillRegState(Op0IsKill)) 2136 .addReg(Op1, getKillRegState(Op1IsKill)) 2137 .addImm(Imm); 2138 else { 2139 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2140 .addReg(Op0, getKillRegState(Op0IsKill)) 2141 .addReg(Op1, getKillRegState(Op1IsKill)) 2142 .addImm(Imm); 2143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2144 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2145 } 2146 return ResultReg; 2147 } 2148 2149 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, 2150 const TargetRegisterClass *RC, uint64_t Imm) { 2151 Register ResultReg = createResultReg(RC); 2152 const MCInstrDesc &II = TII.get(MachineInstOpcode); 2153 2154 if (II.getNumDefs() >= 1) 2155 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 2156 .addImm(Imm); 2157 else { 2158 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 2159 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2160 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 2161 } 2162 return ResultReg; 2163 } 2164 2165 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, 2166 bool Op0IsKill, uint32_t Idx) { 2167 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 2168 assert(Register::isVirtualRegister(Op0) && 2169 "Cannot yet extract from physregs"); 2170 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 2171 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 2172 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 2173 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); 2174 return ResultReg; 2175 } 2176 2177 /// Emit MachineInstrs to compute the value of Op with all but the least 2178 /// significant bit set to zero. 2179 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 2180 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 2181 } 2182 2183 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 2184 /// Emit code to ensure constants are copied into registers when needed. 2185 /// Remember the virtual registers that need to be added to the Machine PHI 2186 /// nodes as input. We cannot just directly add them, because expansion 2187 /// might result in multiple MBB's for one BB. As such, the start of the 2188 /// BB might correspond to a different MBB than the end. 2189 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 2190 const Instruction *TI = LLVMBB->getTerminator(); 2191 2192 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 2193 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 2194 2195 // Check successor nodes' PHI nodes that expect a constant to be available 2196 // from this block. 2197 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 2198 const BasicBlock *SuccBB = TI->getSuccessor(succ); 2199 if (!isa<PHINode>(SuccBB->begin())) 2200 continue; 2201 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 2202 2203 // If this terminator has multiple identical successors (common for 2204 // switches), only handle each succ once. 2205 if (!SuccsHandled.insert(SuccMBB).second) 2206 continue; 2207 2208 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 2209 2210 // At this point we know that there is a 1-1 correspondence between LLVM PHI 2211 // nodes and Machine PHI nodes, but the incoming operands have not been 2212 // emitted yet. 2213 for (const PHINode &PN : SuccBB->phis()) { 2214 // Ignore dead phi's. 2215 if (PN.use_empty()) 2216 continue; 2217 2218 // Only handle legal types. Two interesting things to note here. First, 2219 // by bailing out early, we may leave behind some dead instructions, 2220 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 2221 // own moves. Second, this check is necessary because FastISel doesn't 2222 // use CreateRegs to create registers, so it always creates 2223 // exactly one register for each non-void instruction. 2224 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); 2225 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 2226 // Handle integer promotions, though, because they're common and easy. 2227 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { 2228 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2229 return false; 2230 } 2231 } 2232 2233 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 2234 2235 // Set the DebugLoc for the copy. Use the location of the operand if 2236 // there is one; otherwise no location, flushLocalValueMap will fix it. 2237 DbgLoc = DebugLoc(); 2238 if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) 2239 DbgLoc = Inst->getDebugLoc(); 2240 2241 Register Reg = getRegForValue(PHIOp); 2242 if (!Reg) { 2243 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); 2244 return false; 2245 } 2246 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); 2247 DbgLoc = DebugLoc(); 2248 } 2249 } 2250 2251 return true; 2252 } 2253 2254 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 2255 assert(LI->hasOneUse() && 2256 "tryToFoldLoad expected a LoadInst with a single use"); 2257 // We know that the load has a single use, but don't know what it is. If it 2258 // isn't one of the folded instructions, then we can't succeed here. Handle 2259 // this by scanning the single-use users of the load until we get to FoldInst. 2260 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 2261 2262 const Instruction *TheUser = LI->user_back(); 2263 while (TheUser != FoldInst && // Scan up until we find FoldInst. 2264 // Stay in the right block. 2265 TheUser->getParent() == FoldInst->getParent() && 2266 --MaxUsers) { // Don't scan too far. 2267 // If there are multiple or no uses of this instruction, then bail out. 2268 if (!TheUser->hasOneUse()) 2269 return false; 2270 2271 TheUser = TheUser->user_back(); 2272 } 2273 2274 // If we didn't find the fold instruction, then we failed to collapse the 2275 // sequence. 2276 if (TheUser != FoldInst) 2277 return false; 2278 2279 // Don't try to fold volatile loads. Target has to deal with alignment 2280 // constraints. 2281 if (LI->isVolatile()) 2282 return false; 2283 2284 // Figure out which vreg this is going into. If there is no assigned vreg yet 2285 // then there actually was no reference to it. Perhaps the load is referenced 2286 // by a dead instruction. 2287 Register LoadReg = getRegForValue(LI); 2288 if (!LoadReg) 2289 return false; 2290 2291 // We can't fold if this vreg has no uses or more than one use. Multiple uses 2292 // may mean that the instruction got lowered to multiple MIs, or the use of 2293 // the loaded value ended up being multiple operands of the result. 2294 if (!MRI.hasOneUse(LoadReg)) 2295 return false; 2296 2297 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 2298 MachineInstr *User = RI->getParent(); 2299 2300 // Set the insertion point properly. Folding the load can cause generation of 2301 // other random instructions (like sign extends) for addressing modes; make 2302 // sure they get inserted in a logical place before the new instruction. 2303 FuncInfo.InsertPt = User; 2304 FuncInfo.MBB = User->getParent(); 2305 2306 // Ask the target to try folding the load. 2307 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 2308 } 2309 2310 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 2311 // Must be an add. 2312 if (!isa<AddOperator>(Add)) 2313 return false; 2314 // Type size needs to match. 2315 if (DL.getTypeSizeInBits(GEP->getType()) != 2316 DL.getTypeSizeInBits(Add->getType())) 2317 return false; 2318 // Must be in the same basic block. 2319 if (isa<Instruction>(Add) && 2320 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 2321 return false; 2322 // Must have a constant operand. 2323 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 2324 } 2325 2326 MachineMemOperand * 2327 FastISel::createMachineMemOperandFor(const Instruction *I) const { 2328 const Value *Ptr; 2329 Type *ValTy; 2330 MaybeAlign Alignment; 2331 MachineMemOperand::Flags Flags; 2332 bool IsVolatile; 2333 2334 if (const auto *LI = dyn_cast<LoadInst>(I)) { 2335 Alignment = LI->getAlign(); 2336 IsVolatile = LI->isVolatile(); 2337 Flags = MachineMemOperand::MOLoad; 2338 Ptr = LI->getPointerOperand(); 2339 ValTy = LI->getType(); 2340 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 2341 Alignment = SI->getAlign(); 2342 IsVolatile = SI->isVolatile(); 2343 Flags = MachineMemOperand::MOStore; 2344 Ptr = SI->getPointerOperand(); 2345 ValTy = SI->getValueOperand()->getType(); 2346 } else 2347 return nullptr; 2348 2349 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); 2350 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); 2351 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); 2352 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 2353 2354 AAMDNodes AAInfo; 2355 I->getAAMetadata(AAInfo); 2356 2357 if (!Alignment) // Ensure that codegen never sees alignment 0. 2358 Alignment = DL.getABITypeAlign(ValTy); 2359 2360 unsigned Size = DL.getTypeStoreSize(ValTy); 2361 2362 if (IsVolatile) 2363 Flags |= MachineMemOperand::MOVolatile; 2364 if (IsNonTemporal) 2365 Flags |= MachineMemOperand::MONonTemporal; 2366 if (IsDereferenceable) 2367 Flags |= MachineMemOperand::MODereferenceable; 2368 if (IsInvariant) 2369 Flags |= MachineMemOperand::MOInvariant; 2370 2371 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 2372 *Alignment, AAInfo, Ranges); 2373 } 2374 2375 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { 2376 // If both operands are the same, then try to optimize or fold the cmp. 2377 CmpInst::Predicate Predicate = CI->getPredicate(); 2378 if (CI->getOperand(0) != CI->getOperand(1)) 2379 return Predicate; 2380 2381 switch (Predicate) { 2382 default: llvm_unreachable("Invalid predicate!"); 2383 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; 2384 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; 2385 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; 2386 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; 2387 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; 2388 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; 2389 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; 2390 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; 2391 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; 2392 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; 2393 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; 2394 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2395 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; 2396 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2397 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; 2398 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; 2399 2400 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; 2401 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; 2402 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; 2403 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; 2404 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; 2405 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; 2406 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; 2407 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; 2408 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; 2409 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; 2410 } 2411 2412 return Predicate; 2413 } 2414