1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "RegAllocEvictionAdvisor.h" 19 #include "SpillPlacement.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalUnion.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/Spiller.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <memory> 78 #include <queue> 79 #include <tuple> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "regalloc" 85 86 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 87 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 88 STATISTIC(NumEvicted, "Number of interferences evicted"); 89 90 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 91 "split-spill-mode", cl::Hidden, 92 cl::desc("Spill mode for splitting live ranges"), 93 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 94 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 95 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 96 cl::init(SplitEditor::SM_Speed)); 97 98 static cl::opt<unsigned> 99 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 100 cl::desc("Last chance recoloring max depth"), 101 cl::init(5)); 102 103 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 104 "lcr-max-interf", cl::Hidden, 105 cl::desc("Last chance recoloring maximum number of considered" 106 " interference at a time"), 107 cl::init(8)); 108 109 static cl::opt<bool> ExhaustiveSearch( 110 "exhaustive-register-search", cl::NotHidden, 111 cl::desc("Exhaustive Search for registers bypassing the depth " 112 "and interference cutoffs of last chance recoloring"), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableLocalReassignment( 116 "enable-local-reassign", cl::Hidden, 117 cl::desc("Local reassignment can yield better allocation decisions, but " 118 "may be compile time intensive"), 119 cl::init(false)); 120 121 static cl::opt<bool> EnableDeferredSpilling( 122 "enable-deferred-spilling", cl::Hidden, 123 cl::desc("Instead of spilling a variable right away, defer the actual " 124 "code insertion to the end of the allocation. That way the " 125 "allocator might still find a suitable coloring for this " 126 "variable because of other evicted variables."), 127 cl::init(false)); 128 129 // FIXME: Find a good default for this flag and remove the flag. 130 static cl::opt<unsigned> 131 CSRFirstTimeCost("regalloc-csr-first-time-cost", 132 cl::desc("Cost for first time use of callee-saved register."), 133 cl::init(0), cl::Hidden); 134 135 static cl::opt<bool> ConsiderLocalIntervalCost( 136 "consider-local-interval-cost", cl::Hidden, 137 cl::desc("Consider the cost of local intervals created by a split " 138 "candidate when choosing the best split candidate."), 139 cl::init(false)); 140 141 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 142 createGreedyRegisterAllocator); 143 144 namespace { 145 146 class RAGreedy : public MachineFunctionPass, 147 public RegAllocBase, 148 private LiveRangeEdit::Delegate { 149 // Convenient shortcuts. 150 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 151 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Enum CutOffStage to keep a track whether the register allocation failed 179 // because of the cutoffs encountered in last chance recoloring. 180 // Note: This is used as bitmask. New value should be next power of 2. 181 enum CutOffStage { 182 // No cutoffs encountered 183 CO_None = 0, 184 185 // lcr-max-depth cutoff encountered 186 CO_Depth = 1, 187 188 // lcr-max-interf cutoff encountered 189 CO_Interf = 2 190 }; 191 192 uint8_t CutOffInfo; 193 194 #ifndef NDEBUG 195 static const char *const StageName[]; 196 #endif 197 198 // RegInfo - Keep additional information about each live range. 199 struct RegInfo { 200 LiveRangeStage Stage = RS_New; 201 202 // Cascade - Eviction loop prevention. See canEvictInterference(). 203 unsigned Cascade = 0; 204 205 RegInfo() = default; 206 }; 207 208 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 209 210 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 211 return ExtraRegInfo[VirtReg.reg()].Stage; 212 } 213 214 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 215 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 216 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 217 } 218 219 template<typename Iterator> 220 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 221 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 222 for (;Begin != End; ++Begin) { 223 Register Reg = *Begin; 224 if (ExtraRegInfo[Reg].Stage == RS_New) 225 ExtraRegInfo[Reg].Stage = NewStage; 226 } 227 } 228 229 /// EvictionTrack - Keeps track of past evictions in order to optimize region 230 /// split decision. 231 class EvictionTrack { 232 233 public: 234 using EvictorInfo = 235 std::pair<Register /* evictor */, MCRegister /* physreg */>; 236 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 237 238 private: 239 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 240 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 241 EvicteeInfo Evictees; 242 243 public: 244 /// Clear all eviction information. 245 void clear() { Evictees.clear(); } 246 247 /// Clear eviction information for the given evictee Vreg. 248 /// E.g. when Vreg get's a new allocation, the old eviction info is no 249 /// longer relevant. 250 /// \param Evictee The evictee Vreg for whom we want to clear collected 251 /// eviction info. 252 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 253 254 /// Track new eviction. 255 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 256 /// \param PhysReg The physical register Evictee was evicted from. 257 /// \param Evictor The evictor Vreg that evicted Evictee. 258 /// \param Evictee The evictee Vreg. 259 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 260 Evictees[Evictee].first = Evictor; 261 Evictees[Evictee].second = PhysReg; 262 } 263 264 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 265 /// \param Evictee The evictee vreg. 266 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 267 /// nobody has evicted Evictee from PhysReg. 268 EvictorInfo getEvictor(Register Evictee) { 269 if (Evictees.count(Evictee)) { 270 return Evictees[Evictee]; 271 } 272 273 return EvictorInfo(0, 0); 274 } 275 }; 276 277 // Keeps track of past evictions in order to optimize region split decision. 278 EvictionTrack LastEvicted; 279 280 // splitting state. 281 std::unique_ptr<SplitAnalysis> SA; 282 std::unique_ptr<SplitEditor> SE; 283 284 /// Cached per-block interference maps 285 InterferenceCache IntfCache; 286 287 /// All basic blocks where the current register has uses. 288 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 289 290 /// Global live range splitting candidate info. 291 struct GlobalSplitCandidate { 292 // Register intended for assignment, or 0. 293 MCRegister PhysReg; 294 295 // SplitKit interval index for this candidate. 296 unsigned IntvIdx; 297 298 // Interference for PhysReg. 299 InterferenceCache::Cursor Intf; 300 301 // Bundles where this candidate should be live. 302 BitVector LiveBundles; 303 SmallVector<unsigned, 8> ActiveBlocks; 304 305 void reset(InterferenceCache &Cache, MCRegister Reg) { 306 PhysReg = Reg; 307 IntvIdx = 0; 308 Intf.setPhysReg(Cache, Reg); 309 LiveBundles.clear(); 310 ActiveBlocks.clear(); 311 } 312 313 // Set B[I] = C for every live bundle where B[I] was NoCand. 314 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 315 unsigned Count = 0; 316 for (unsigned I : LiveBundles.set_bits()) 317 if (B[I] == NoCand) { 318 B[I] = C; 319 Count++; 320 } 321 return Count; 322 } 323 }; 324 325 /// Candidate info for each PhysReg in AllocationOrder. 326 /// This vector never shrinks, but grows to the size of the largest register 327 /// class. 328 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 329 330 enum : unsigned { NoCand = ~0u }; 331 332 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 333 /// NoCand which indicates the stack interval. 334 SmallVector<unsigned, 32> BundleCand; 335 336 /// Callee-save register cost, calculated once per machine function. 337 BlockFrequency CSRCost; 338 339 /// Run or not the local reassignment heuristic. This information is 340 /// obtained from the TargetSubtargetInfo. 341 bool EnableLocalReassign; 342 343 /// Enable or not the consideration of the cost of local intervals created 344 /// by a split candidate when choosing the best split candidate. 345 bool EnableAdvancedRASplitCost; 346 347 /// Set of broken hints that may be reconciled later because of eviction. 348 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 349 350 /// The register cost values. This list will be recreated for each Machine 351 /// Function 352 ArrayRef<uint8_t> RegCosts; 353 354 public: 355 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 356 357 /// Return the pass name. 358 StringRef getPassName() const override { return "Greedy Register Allocator"; } 359 360 /// RAGreedy analysis usage. 361 void getAnalysisUsage(AnalysisUsage &AU) const override; 362 void releaseMemory() override; 363 Spiller &spiller() override { return *SpillerInstance; } 364 void enqueueImpl(LiveInterval *LI) override; 365 LiveInterval *dequeue() override; 366 MCRegister selectOrSplit(LiveInterval &, 367 SmallVectorImpl<Register> &) override; 368 void aboutToRemoveInterval(LiveInterval &) override; 369 370 /// Perform register allocation. 371 bool runOnMachineFunction(MachineFunction &mf) override; 372 373 MachineFunctionProperties getRequiredProperties() const override { 374 return MachineFunctionProperties().set( 375 MachineFunctionProperties::Property::NoPHIs); 376 } 377 378 MachineFunctionProperties getClearedProperties() const override { 379 return MachineFunctionProperties().set( 380 MachineFunctionProperties::Property::IsSSA); 381 } 382 383 static char ID; 384 385 private: 386 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 387 SmallVirtRegSet &, unsigned = 0); 388 389 bool LRE_CanEraseVirtReg(Register) override; 390 void LRE_WillShrinkVirtReg(Register) override; 391 void LRE_DidCloneVirtReg(Register, Register) override; 392 void enqueue(PQueue &CurQueue, LiveInterval *LI); 393 LiveInterval *dequeue(PQueue &CurQueue); 394 395 BlockFrequency calcSpillCost(); 396 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 397 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 398 bool growRegion(GlobalSplitCandidate &Cand); 399 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 400 unsigned BBNumber, 401 const AllocationOrder &Order); 402 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 403 GlobalSplitCandidate &Cand, unsigned BBNumber, 404 const AllocationOrder &Order); 405 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 406 const AllocationOrder &Order, 407 bool *CanCauseEvictionChain); 408 bool calcCompactRegion(GlobalSplitCandidate&); 409 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 410 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 411 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 412 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 413 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 414 const SmallVirtRegSet &) const; 415 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 416 MCRegister PhysReg, SlotIndex Start, 417 SlotIndex End, EvictionCost &MaxCost) const; 418 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 419 const LiveInterval &VirtReg, 420 SlotIndex Start, SlotIndex End, 421 float *BestEvictWeight) const; 422 void evictInterference(LiveInterval &, MCRegister, 423 SmallVectorImpl<Register> &); 424 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 425 SmallLISet &RecoloringCandidates, 426 const SmallVirtRegSet &FixedRegisters); 427 428 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 429 SmallVectorImpl<Register>&, 430 const SmallVirtRegSet&); 431 MCRegister tryFindEvictionCandidate(LiveInterval &, const AllocationOrder &, 432 uint8_t, const SmallVirtRegSet &) const; 433 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 434 SmallVectorImpl<Register> &, uint8_t, 435 const SmallVirtRegSet &); 436 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 437 SmallVectorImpl<Register> &); 438 /// Calculate cost of region splitting. 439 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 440 AllocationOrder &Order, 441 BlockFrequency &BestCost, 442 unsigned &NumCands, bool IgnoreCSR, 443 bool *CanCauseEvictionChain = nullptr); 444 /// Perform region splitting. 445 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 446 bool HasCompact, 447 SmallVectorImpl<Register> &NewVRegs); 448 /// Check other options before using a callee-saved register for the first 449 /// time. 450 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 451 AllocationOrder &Order, MCRegister PhysReg, 452 uint8_t &CostPerUseLimit, 453 SmallVectorImpl<Register> &NewVRegs); 454 void initializeCSRCost(); 455 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 456 SmallVectorImpl<Register>&); 457 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 458 SmallVectorImpl<Register>&); 459 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 460 SmallVectorImpl<Register>&); 461 unsigned trySplit(LiveInterval&, AllocationOrder&, 462 SmallVectorImpl<Register>&, 463 const SmallVirtRegSet&); 464 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 465 SmallVectorImpl<Register> &, 466 SmallVirtRegSet &, unsigned); 467 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 468 SmallVirtRegSet &, unsigned); 469 void tryHintRecoloring(LiveInterval &); 470 void tryHintsRecoloring(); 471 472 /// Model the information carried by one end of a copy. 473 struct HintInfo { 474 /// The frequency of the copy. 475 BlockFrequency Freq; 476 /// The virtual register or physical register. 477 Register Reg; 478 /// Its currently assigned register. 479 /// In case of a physical register Reg == PhysReg. 480 MCRegister PhysReg; 481 482 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 483 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 484 }; 485 using HintsInfo = SmallVector<HintInfo, 4>; 486 487 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 488 void collectHintInfo(Register, HintsInfo &); 489 490 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 491 492 /// Greedy RA statistic to remark. 493 struct RAGreedyStats { 494 unsigned Reloads = 0; 495 unsigned FoldedReloads = 0; 496 unsigned ZeroCostFoldedReloads = 0; 497 unsigned Spills = 0; 498 unsigned FoldedSpills = 0; 499 unsigned Copies = 0; 500 float ReloadsCost = 0.0f; 501 float FoldedReloadsCost = 0.0f; 502 float SpillsCost = 0.0f; 503 float FoldedSpillsCost = 0.0f; 504 float CopiesCost = 0.0f; 505 506 bool isEmpty() { 507 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 508 ZeroCostFoldedReloads || Copies); 509 } 510 511 void add(RAGreedyStats other) { 512 Reloads += other.Reloads; 513 FoldedReloads += other.FoldedReloads; 514 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 515 Spills += other.Spills; 516 FoldedSpills += other.FoldedSpills; 517 Copies += other.Copies; 518 ReloadsCost += other.ReloadsCost; 519 FoldedReloadsCost += other.FoldedReloadsCost; 520 SpillsCost += other.SpillsCost; 521 FoldedSpillsCost += other.FoldedSpillsCost; 522 CopiesCost += other.CopiesCost; 523 } 524 525 void report(MachineOptimizationRemarkMissed &R); 526 }; 527 528 /// Compute statistic for a basic block. 529 RAGreedyStats computeStats(MachineBasicBlock &MBB); 530 531 /// Compute and report statistic through a remark. 532 RAGreedyStats reportStats(MachineLoop *L); 533 534 /// Report the statistic for each loop. 535 void reportStats(); 536 }; 537 538 } // end anonymous namespace 539 540 char RAGreedy::ID = 0; 541 char &llvm::RAGreedyID = RAGreedy::ID; 542 543 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 544 "Greedy Register Allocator", false, false) 545 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 546 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 547 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 548 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 549 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 550 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 551 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 552 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 553 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 554 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 555 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 556 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 557 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 558 INITIALIZE_PASS_END(RAGreedy, "greedy", 559 "Greedy Register Allocator", false, false) 560 561 #ifndef NDEBUG 562 const char *const RAGreedy::StageName[] = { 563 "RS_New", 564 "RS_Assign", 565 "RS_Split", 566 "RS_Split2", 567 "RS_Spill", 568 "RS_Memory", 569 "RS_Done" 570 }; 571 #endif 572 573 // Hysteresis to use when comparing floats. 574 // This helps stabilize decisions based on float comparisons. 575 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 576 577 FunctionPass* llvm::createGreedyRegisterAllocator() { 578 return new RAGreedy(); 579 } 580 581 namespace llvm { 582 FunctionPass* createGreedyRegisterAllocator( 583 std::function<bool(const TargetRegisterInfo &TRI, 584 const TargetRegisterClass &RC)> Ftor); 585 586 } 587 588 FunctionPass* llvm::createGreedyRegisterAllocator( 589 std::function<bool(const TargetRegisterInfo &TRI, 590 const TargetRegisterClass &RC)> Ftor) { 591 return new RAGreedy(Ftor); 592 } 593 594 RAGreedy::RAGreedy(RegClassFilterFunc F): 595 MachineFunctionPass(ID), 596 RegAllocBase(F) { 597 } 598 599 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 600 AU.setPreservesCFG(); 601 AU.addRequired<MachineBlockFrequencyInfo>(); 602 AU.addPreserved<MachineBlockFrequencyInfo>(); 603 AU.addRequired<AAResultsWrapperPass>(); 604 AU.addPreserved<AAResultsWrapperPass>(); 605 AU.addRequired<LiveIntervals>(); 606 AU.addPreserved<LiveIntervals>(); 607 AU.addRequired<SlotIndexes>(); 608 AU.addPreserved<SlotIndexes>(); 609 AU.addRequired<LiveDebugVariables>(); 610 AU.addPreserved<LiveDebugVariables>(); 611 AU.addRequired<LiveStacks>(); 612 AU.addPreserved<LiveStacks>(); 613 AU.addRequired<MachineDominatorTree>(); 614 AU.addPreserved<MachineDominatorTree>(); 615 AU.addRequired<MachineLoopInfo>(); 616 AU.addPreserved<MachineLoopInfo>(); 617 AU.addRequired<VirtRegMap>(); 618 AU.addPreserved<VirtRegMap>(); 619 AU.addRequired<LiveRegMatrix>(); 620 AU.addPreserved<LiveRegMatrix>(); 621 AU.addRequired<EdgeBundles>(); 622 AU.addRequired<SpillPlacement>(); 623 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 624 MachineFunctionPass::getAnalysisUsage(AU); 625 } 626 627 //===----------------------------------------------------------------------===// 628 // LiveRangeEdit delegate methods 629 //===----------------------------------------------------------------------===// 630 631 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 632 LiveInterval &LI = LIS->getInterval(VirtReg); 633 if (VRM->hasPhys(VirtReg)) { 634 Matrix->unassign(LI); 635 aboutToRemoveInterval(LI); 636 return true; 637 } 638 // Unassigned virtreg is probably in the priority queue. 639 // RegAllocBase will erase it after dequeueing. 640 // Nonetheless, clear the live-range so that the debug 641 // dump will show the right state for that VirtReg. 642 LI.clear(); 643 return false; 644 } 645 646 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 647 if (!VRM->hasPhys(VirtReg)) 648 return; 649 650 // Register is assigned, put it back on the queue for reassignment. 651 LiveInterval &LI = LIS->getInterval(VirtReg); 652 Matrix->unassign(LI); 653 RegAllocBase::enqueue(&LI); 654 } 655 656 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 657 // Cloning a register we haven't even heard about yet? Just ignore it. 658 if (!ExtraRegInfo.inBounds(Old)) 659 return; 660 661 // LRE may clone a virtual register because dead code elimination causes it to 662 // be split into connected components. The new components are much smaller 663 // than the original, so they should get a new chance at being assigned. 664 // same stage as the parent. 665 ExtraRegInfo[Old].Stage = RS_Assign; 666 ExtraRegInfo.grow(New); 667 ExtraRegInfo[New] = ExtraRegInfo[Old]; 668 } 669 670 void RAGreedy::releaseMemory() { 671 SpillerInstance.reset(); 672 ExtraRegInfo.clear(); 673 GlobalCand.clear(); 674 } 675 676 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 677 678 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 679 // Prioritize live ranges by size, assigning larger ranges first. 680 // The queue holds (size, reg) pairs. 681 const unsigned Size = LI->getSize(); 682 const Register Reg = LI->reg(); 683 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 684 unsigned Prio; 685 686 ExtraRegInfo.grow(Reg); 687 if (ExtraRegInfo[Reg].Stage == RS_New) 688 ExtraRegInfo[Reg].Stage = RS_Assign; 689 690 if (ExtraRegInfo[Reg].Stage == RS_Split) { 691 // Unsplit ranges that couldn't be allocated immediately are deferred until 692 // everything else has been allocated. 693 Prio = Size; 694 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 695 // Memory operand should be considered last. 696 // Change the priority such that Memory operand are assigned in 697 // the reverse order that they came in. 698 // TODO: Make this a member variable and probably do something about hints. 699 static unsigned MemOp = 0; 700 Prio = MemOp++; 701 } else { 702 // Giant live ranges fall back to the global assignment heuristic, which 703 // prevents excessive spilling in pathological cases. 704 bool ReverseLocal = TRI->reverseLocalAssignment(); 705 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 706 bool ForceGlobal = !ReverseLocal && 707 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 708 709 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 710 LIS->intervalIsInOneMBB(*LI)) { 711 // Allocate original local ranges in linear instruction order. Since they 712 // are singly defined, this produces optimal coloring in the absence of 713 // global interference and other constraints. 714 if (!ReverseLocal) 715 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 716 else { 717 // Allocating bottom up may allow many short LRGs to be assigned first 718 // to one of the cheap registers. This could be much faster for very 719 // large blocks on targets with many physical registers. 720 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 721 } 722 Prio |= RC.AllocationPriority << 24; 723 } else { 724 // Allocate global and split ranges in long->short order. Long ranges that 725 // don't fit should be spilled (or split) ASAP so they don't create 726 // interference. Mark a bit to prioritize global above local ranges. 727 Prio = (1u << 29) + Size; 728 729 Prio |= RC.AllocationPriority << 24; 730 } 731 // Mark a higher bit to prioritize global and local above RS_Split. 732 Prio |= (1u << 31); 733 734 // Boost ranges that have a physical register hint. 735 if (VRM->hasKnownPreference(Reg)) 736 Prio |= (1u << 30); 737 } 738 // The virtual register number is a tie breaker for same-sized ranges. 739 // Give lower vreg numbers higher priority to assign them first. 740 CurQueue.push(std::make_pair(Prio, ~Reg)); 741 } 742 743 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 744 745 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 746 if (CurQueue.empty()) 747 return nullptr; 748 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 749 CurQueue.pop(); 750 return LI; 751 } 752 753 //===----------------------------------------------------------------------===// 754 // Direct Assignment 755 //===----------------------------------------------------------------------===// 756 757 /// tryAssign - Try to assign VirtReg to an available register. 758 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 759 AllocationOrder &Order, 760 SmallVectorImpl<Register> &NewVRegs, 761 const SmallVirtRegSet &FixedRegisters) { 762 MCRegister PhysReg; 763 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 764 assert(*I); 765 if (!Matrix->checkInterference(VirtReg, *I)) { 766 if (I.isHint()) 767 return *I; 768 else 769 PhysReg = *I; 770 } 771 } 772 if (!PhysReg.isValid()) 773 return PhysReg; 774 775 // PhysReg is available, but there may be a better choice. 776 777 // If we missed a simple hint, try to cheaply evict interference from the 778 // preferred register. 779 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 780 if (Order.isHint(Hint)) { 781 MCRegister PhysHint = Hint.asMCReg(); 782 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 783 EvictionCost MaxCost; 784 MaxCost.setBrokenHints(1); 785 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 786 FixedRegisters)) { 787 evictInterference(VirtReg, PhysHint, NewVRegs); 788 return PhysHint; 789 } 790 // Record the missed hint, we may be able to recover 791 // at the end if the surrounding allocation changed. 792 SetOfBrokenHints.insert(&VirtReg); 793 } 794 795 // Try to evict interference from a cheaper alternative. 796 uint8_t Cost = RegCosts[PhysReg]; 797 798 // Most registers have 0 additional cost. 799 if (!Cost) 800 return PhysReg; 801 802 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 803 << (unsigned)Cost << '\n'); 804 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 805 return CheapReg ? CheapReg : PhysReg; 806 } 807 808 //===----------------------------------------------------------------------===// 809 // Interference eviction 810 //===----------------------------------------------------------------------===// 811 812 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 813 auto Order = 814 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 815 MCRegister PhysReg; 816 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 817 if ((*I).id() == PrevReg.id()) 818 continue; 819 820 MCRegUnitIterator Units(*I, TRI); 821 for (; Units.isValid(); ++Units) { 822 // Instantiate a "subquery", not to be confused with the Queries array. 823 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 824 if (subQ.checkInterference()) 825 break; 826 } 827 // If no units have interference, break out with the current PhysReg. 828 if (!Units.isValid()) 829 PhysReg = *I; 830 } 831 if (PhysReg) 832 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 833 << printReg(PrevReg, TRI) << " to " 834 << printReg(PhysReg, TRI) << '\n'); 835 return PhysReg; 836 } 837 838 /// shouldEvict - determine if A should evict the assigned live range B. The 839 /// eviction policy defined by this function together with the allocation order 840 /// defined by enqueue() decides which registers ultimately end up being split 841 /// and spilled. 842 /// 843 /// Cascade numbers are used to prevent infinite loops if this function is a 844 /// cyclic relation. 845 /// 846 /// @param A The live range to be assigned. 847 /// @param IsHint True when A is about to be assigned to its preferred 848 /// register. 849 /// @param B The live range to be evicted. 850 /// @param BreaksHint True when B is already assigned to its preferred register. 851 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 852 LiveInterval &B, bool BreaksHint) const { 853 bool CanSplit = getStage(B) < RS_Spill; 854 855 // Be fairly aggressive about following hints as long as the evictee can be 856 // split. 857 if (CanSplit && IsHint && !BreaksHint) 858 return true; 859 860 if (A.weight() > B.weight()) { 861 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 862 return true; 863 } 864 return false; 865 } 866 867 /// canEvictInterference - Return true if all interferences between VirtReg and 868 /// PhysReg can be evicted. 869 /// 870 /// @param VirtReg Live range that is about to be assigned. 871 /// @param PhysReg Desired register for assignment. 872 /// @param IsHint True when PhysReg is VirtReg's preferred register. 873 /// @param MaxCost Only look for cheaper candidates and update with new cost 874 /// when returning true. 875 /// @returns True when interference can be evicted cheaper than MaxCost. 876 bool RAGreedy::canEvictInterference( 877 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 878 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 879 // It is only possible to evict virtual register interference. 880 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 881 return false; 882 883 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 884 885 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 886 // involved in an eviction before. If a cascade number was assigned, deny 887 // evicting anything with the same or a newer cascade number. This prevents 888 // infinite eviction loops. 889 // 890 // This works out so a register without a cascade number is allowed to evict 891 // anything, and it can be evicted by anything. 892 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 893 if (!Cascade) 894 Cascade = NextCascade; 895 896 EvictionCost Cost; 897 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 898 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 899 // If there is 10 or more interferences, chances are one is heavier. 900 const auto &Interferences = Q.interferingVRegs(10); 901 if (Interferences.size() >= 10) 902 return false; 903 904 // Check if any interfering live range is heavier than MaxWeight. 905 for (LiveInterval *Intf : reverse(Interferences)) { 906 assert(Register::isVirtualRegister(Intf->reg()) && 907 "Only expecting virtual register interference from query"); 908 909 // Do not allow eviction of a virtual register if we are in the middle 910 // of last-chance recoloring and this virtual register is one that we 911 // have scavenged a physical register for. 912 if (FixedRegisters.count(Intf->reg())) 913 return false; 914 915 // Never evict spill products. They cannot split or spill. 916 if (getStage(*Intf) == RS_Done) 917 return false; 918 // Once a live range becomes small enough, it is urgent that we find a 919 // register for it. This is indicated by an infinite spill weight. These 920 // urgent live ranges get to evict almost anything. 921 // 922 // Also allow urgent evictions of unspillable ranges from a strictly 923 // larger allocation order. 924 bool Urgent = 925 !VirtReg.isSpillable() && 926 (Intf->isSpillable() || 927 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 928 RegClassInfo.getNumAllocatableRegs( 929 MRI->getRegClass(Intf->reg()))); 930 // Only evict older cascades or live ranges without a cascade. 931 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 932 if (Cascade <= IntfCascade) { 933 if (!Urgent) 934 return false; 935 // We permit breaking cascades for urgent evictions. It should be the 936 // last resort, though, so make it really expensive. 937 Cost.BrokenHints += 10; 938 } 939 // Would this break a satisfied hint? 940 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 941 // Update eviction cost. 942 Cost.BrokenHints += BreaksHint; 943 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 944 // Abort if this would be too expensive. 945 if (!(Cost < MaxCost)) 946 return false; 947 if (Urgent) 948 continue; 949 // Apply the eviction policy for non-urgent evictions. 950 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 951 return false; 952 // If !MaxCost.isMax(), then we're just looking for a cheap register. 953 // Evicting another local live range in this case could lead to suboptimal 954 // coloring. 955 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 956 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 957 return false; 958 } 959 } 960 } 961 MaxCost = Cost; 962 return true; 963 } 964 965 /// Return true if all interferences between VirtReg and PhysReg between 966 /// Start and End can be evicted. 967 /// 968 /// \param VirtReg Live range that is about to be assigned. 969 /// \param PhysReg Desired register for assignment. 970 /// \param Start Start of range to look for interferences. 971 /// \param End End of range to look for interferences. 972 /// \param MaxCost Only look for cheaper candidates and update with new cost 973 /// when returning true. 974 /// \return True when interference can be evicted cheaper than MaxCost. 975 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 976 MCRegister PhysReg, SlotIndex Start, 977 SlotIndex End, 978 EvictionCost &MaxCost) const { 979 EvictionCost Cost; 980 981 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 982 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 983 984 // Check if any interfering live range is heavier than MaxWeight. 985 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 986 // Check if interference overlast the segment in interest. 987 if (!Intf->overlaps(Start, End)) 988 continue; 989 990 // Cannot evict non virtual reg interference. 991 if (!Register::isVirtualRegister(Intf->reg())) 992 return false; 993 // Never evict spill products. They cannot split or spill. 994 if (getStage(*Intf) == RS_Done) 995 return false; 996 997 // Would this break a satisfied hint? 998 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 999 // Update eviction cost. 1000 Cost.BrokenHints += BreaksHint; 1001 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1002 // Abort if this would be too expensive. 1003 if (!(Cost < MaxCost)) 1004 return false; 1005 } 1006 } 1007 1008 if (Cost.MaxWeight == 0) 1009 return false; 1010 1011 MaxCost = Cost; 1012 return true; 1013 } 1014 1015 /// Return the physical register that will be best 1016 /// candidate for eviction by a local split interval that will be created 1017 /// between Start and End. 1018 /// 1019 /// \param Order The allocation order 1020 /// \param VirtReg Live range that is about to be assigned. 1021 /// \param Start Start of range to look for interferences 1022 /// \param End End of range to look for interferences 1023 /// \param BestEvictweight The eviction cost of that eviction 1024 /// \return The PhysReg which is the best candidate for eviction and the 1025 /// eviction cost in BestEvictweight 1026 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1027 const LiveInterval &VirtReg, 1028 SlotIndex Start, SlotIndex End, 1029 float *BestEvictweight) const { 1030 EvictionCost BestEvictCost; 1031 BestEvictCost.setMax(); 1032 BestEvictCost.MaxWeight = VirtReg.weight(); 1033 MCRegister BestEvicteePhys; 1034 1035 // Go over all physical registers and find the best candidate for eviction 1036 for (MCRegister PhysReg : Order.getOrder()) { 1037 1038 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1039 BestEvictCost)) 1040 continue; 1041 1042 // Best so far. 1043 BestEvicteePhys = PhysReg; 1044 } 1045 *BestEvictweight = BestEvictCost.MaxWeight; 1046 return BestEvicteePhys; 1047 } 1048 1049 /// evictInterference - Evict any interferring registers that prevent VirtReg 1050 /// from being assigned to Physreg. This assumes that canEvictInterference 1051 /// returned true. 1052 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1053 SmallVectorImpl<Register> &NewVRegs) { 1054 // Make sure that VirtReg has a cascade number, and assign that cascade 1055 // number to every evicted register. These live ranges than then only be 1056 // evicted by a newer cascade, preventing infinite loops. 1057 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1058 if (!Cascade) 1059 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1060 1061 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1062 << " interference: Cascade " << Cascade << '\n'); 1063 1064 // Collect all interfering virtregs first. 1065 SmallVector<LiveInterval*, 8> Intfs; 1066 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1067 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1068 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1069 // should be fast, we may need to recalculate if when different physregs 1070 // overlap the same register unit so we had different SubRanges queried 1071 // against it. 1072 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1073 Intfs.append(IVR.begin(), IVR.end()); 1074 } 1075 1076 // Evict them second. This will invalidate the queries. 1077 for (LiveInterval *Intf : Intfs) { 1078 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1079 if (!VRM->hasPhys(Intf->reg())) 1080 continue; 1081 1082 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1083 1084 Matrix->unassign(*Intf); 1085 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1086 VirtReg.isSpillable() < Intf->isSpillable()) && 1087 "Cannot decrease cascade number, illegal eviction"); 1088 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1089 ++NumEvicted; 1090 NewVRegs.push_back(Intf->reg()); 1091 } 1092 } 1093 1094 /// Returns true if the given \p PhysReg is a callee saved register and has not 1095 /// been used for allocation yet. 1096 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1097 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1098 if (!CSR) 1099 return false; 1100 1101 return !Matrix->isPhysRegUsed(PhysReg); 1102 } 1103 1104 MCRegister RAGreedy::tryFindEvictionCandidate( 1105 LiveInterval &VirtReg, const AllocationOrder &Order, 1106 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 1107 // Keep track of the cheapest interference seen so far. 1108 EvictionCost BestCost; 1109 BestCost.setMax(); 1110 MCRegister BestPhys; 1111 unsigned OrderLimit = Order.getOrder().size(); 1112 1113 // When we are just looking for a reduced cost per use, don't break any 1114 // hints, and only evict smaller spill weights. 1115 if (CostPerUseLimit < uint8_t(~0u)) { 1116 BestCost.BrokenHints = 0; 1117 BestCost.MaxWeight = VirtReg.weight(); 1118 1119 // Check of any registers in RC are below CostPerUseLimit. 1120 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1121 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1122 if (MinCost >= CostPerUseLimit) { 1123 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1124 << MinCost << ", no cheaper registers to be found.\n"); 1125 return 0; 1126 } 1127 1128 // It is normal for register classes to have a long tail of registers with 1129 // the same cost. We don't need to look at them if they're too expensive. 1130 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1131 OrderLimit = RegClassInfo.getLastCostChange(RC); 1132 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1133 << " regs.\n"); 1134 } 1135 } 1136 1137 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1138 ++I) { 1139 MCRegister PhysReg = *I; 1140 assert(PhysReg); 1141 if (RegCosts[PhysReg] >= CostPerUseLimit) 1142 continue; 1143 // The first use of a callee-saved register in a function has cost 1. 1144 // Don't start using a CSR when the CostPerUseLimit is low. 1145 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1146 LLVM_DEBUG( 1147 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1148 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1149 << '\n'); 1150 continue; 1151 } 1152 1153 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1154 FixedRegisters)) 1155 continue; 1156 1157 // Best so far. 1158 BestPhys = PhysReg; 1159 1160 // Stop if the hint can be used. 1161 if (I.isHint()) 1162 break; 1163 } 1164 return BestPhys; 1165 } 1166 1167 /// tryEvict - Try to evict all interferences for a physreg. 1168 /// @param VirtReg Currently unassigned virtual register. 1169 /// @param Order Physregs to try. 1170 /// @return Physreg to assign VirtReg, or 0. 1171 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1172 SmallVectorImpl<Register> &NewVRegs, 1173 uint8_t CostPerUseLimit, 1174 const SmallVirtRegSet &FixedRegisters) { 1175 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1176 TimePassesIsEnabled); 1177 1178 MCRegister BestPhys = 1179 tryFindEvictionCandidate(VirtReg, Order, CostPerUseLimit, FixedRegisters); 1180 if (BestPhys.isValid()) 1181 evictInterference(VirtReg, BestPhys, NewVRegs); 1182 return BestPhys; 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // Region Splitting 1187 //===----------------------------------------------------------------------===// 1188 1189 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1190 /// interference pattern in Physreg and its aliases. Add the constraints to 1191 /// SpillPlacement and return the static cost of this split in Cost, assuming 1192 /// that all preferences in SplitConstraints are met. 1193 /// Return false if there are no bundles with positive bias. 1194 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1195 BlockFrequency &Cost) { 1196 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1197 1198 // Reset interference dependent info. 1199 SplitConstraints.resize(UseBlocks.size()); 1200 BlockFrequency StaticCost = 0; 1201 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1202 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1203 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1204 1205 BC.Number = BI.MBB->getNumber(); 1206 Intf.moveToBlock(BC.Number); 1207 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1208 BC.Exit = (BI.LiveOut && 1209 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1210 ? SpillPlacement::PrefReg 1211 : SpillPlacement::DontCare; 1212 BC.ChangesValue = BI.FirstDef.isValid(); 1213 1214 if (!Intf.hasInterference()) 1215 continue; 1216 1217 // Number of spill code instructions to insert. 1218 unsigned Ins = 0; 1219 1220 // Interference for the live-in value. 1221 if (BI.LiveIn) { 1222 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1223 BC.Entry = SpillPlacement::MustSpill; 1224 ++Ins; 1225 } else if (Intf.first() < BI.FirstInstr) { 1226 BC.Entry = SpillPlacement::PrefSpill; 1227 ++Ins; 1228 } else if (Intf.first() < BI.LastInstr) { 1229 ++Ins; 1230 } 1231 1232 // Abort if the spill cannot be inserted at the MBB' start 1233 if (((BC.Entry == SpillPlacement::MustSpill) || 1234 (BC.Entry == SpillPlacement::PrefSpill)) && 1235 SlotIndex::isEarlierInstr(BI.FirstInstr, 1236 SA->getFirstSplitPoint(BC.Number))) 1237 return false; 1238 } 1239 1240 // Interference for the live-out value. 1241 if (BI.LiveOut) { 1242 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1243 BC.Exit = SpillPlacement::MustSpill; 1244 ++Ins; 1245 } else if (Intf.last() > BI.LastInstr) { 1246 BC.Exit = SpillPlacement::PrefSpill; 1247 ++Ins; 1248 } else if (Intf.last() > BI.FirstInstr) { 1249 ++Ins; 1250 } 1251 } 1252 1253 // Accumulate the total frequency of inserted spill code. 1254 while (Ins--) 1255 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1256 } 1257 Cost = StaticCost; 1258 1259 // Add constraints for use-blocks. Note that these are the only constraints 1260 // that may add a positive bias, it is downhill from here. 1261 SpillPlacer->addConstraints(SplitConstraints); 1262 return SpillPlacer->scanActiveBundles(); 1263 } 1264 1265 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1266 /// live-through blocks in Blocks. 1267 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1268 ArrayRef<unsigned> Blocks) { 1269 const unsigned GroupSize = 8; 1270 SpillPlacement::BlockConstraint BCS[GroupSize]; 1271 unsigned TBS[GroupSize]; 1272 unsigned B = 0, T = 0; 1273 1274 for (unsigned Number : Blocks) { 1275 Intf.moveToBlock(Number); 1276 1277 if (!Intf.hasInterference()) { 1278 assert(T < GroupSize && "Array overflow"); 1279 TBS[T] = Number; 1280 if (++T == GroupSize) { 1281 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1282 T = 0; 1283 } 1284 continue; 1285 } 1286 1287 assert(B < GroupSize && "Array overflow"); 1288 BCS[B].Number = Number; 1289 1290 // Abort if the spill cannot be inserted at the MBB' start 1291 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1292 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1293 if (FirstNonDebugInstr != MBB->end() && 1294 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1295 SA->getFirstSplitPoint(Number))) 1296 return false; 1297 // Interference for the live-in value. 1298 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1299 BCS[B].Entry = SpillPlacement::MustSpill; 1300 else 1301 BCS[B].Entry = SpillPlacement::PrefSpill; 1302 1303 // Interference for the live-out value. 1304 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1305 BCS[B].Exit = SpillPlacement::MustSpill; 1306 else 1307 BCS[B].Exit = SpillPlacement::PrefSpill; 1308 1309 if (++B == GroupSize) { 1310 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1311 B = 0; 1312 } 1313 } 1314 1315 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1316 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1317 return true; 1318 } 1319 1320 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1321 // Keep track of through blocks that have not been added to SpillPlacer. 1322 BitVector Todo = SA->getThroughBlocks(); 1323 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1324 unsigned AddedTo = 0; 1325 #ifndef NDEBUG 1326 unsigned Visited = 0; 1327 #endif 1328 1329 while (true) { 1330 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1331 // Find new through blocks in the periphery of PrefRegBundles. 1332 for (unsigned Bundle : NewBundles) { 1333 // Look at all blocks connected to Bundle in the full graph. 1334 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1335 for (unsigned Block : Blocks) { 1336 if (!Todo.test(Block)) 1337 continue; 1338 Todo.reset(Block); 1339 // This is a new through block. Add it to SpillPlacer later. 1340 ActiveBlocks.push_back(Block); 1341 #ifndef NDEBUG 1342 ++Visited; 1343 #endif 1344 } 1345 } 1346 // Any new blocks to add? 1347 if (ActiveBlocks.size() == AddedTo) 1348 break; 1349 1350 // Compute through constraints from the interference, or assume that all 1351 // through blocks prefer spilling when forming compact regions. 1352 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1353 if (Cand.PhysReg) { 1354 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1355 return false; 1356 } else 1357 // Provide a strong negative bias on through blocks to prevent unwanted 1358 // liveness on loop backedges. 1359 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1360 AddedTo = ActiveBlocks.size(); 1361 1362 // Perhaps iterating can enable more bundles? 1363 SpillPlacer->iterate(); 1364 } 1365 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1366 return true; 1367 } 1368 1369 /// calcCompactRegion - Compute the set of edge bundles that should be live 1370 /// when splitting the current live range into compact regions. Compact 1371 /// regions can be computed without looking at interference. They are the 1372 /// regions formed by removing all the live-through blocks from the live range. 1373 /// 1374 /// Returns false if the current live range is already compact, or if the 1375 /// compact regions would form single block regions anyway. 1376 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1377 // Without any through blocks, the live range is already compact. 1378 if (!SA->getNumThroughBlocks()) 1379 return false; 1380 1381 // Compact regions don't correspond to any physreg. 1382 Cand.reset(IntfCache, MCRegister::NoRegister); 1383 1384 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1385 1386 // Use the spill placer to determine the live bundles. GrowRegion pretends 1387 // that all the through blocks have interference when PhysReg is unset. 1388 SpillPlacer->prepare(Cand.LiveBundles); 1389 1390 // The static split cost will be zero since Cand.Intf reports no interference. 1391 BlockFrequency Cost; 1392 if (!addSplitConstraints(Cand.Intf, Cost)) { 1393 LLVM_DEBUG(dbgs() << ", none.\n"); 1394 return false; 1395 } 1396 1397 if (!growRegion(Cand)) { 1398 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1399 return false; 1400 } 1401 1402 SpillPlacer->finish(); 1403 1404 if (!Cand.LiveBundles.any()) { 1405 LLVM_DEBUG(dbgs() << ", none.\n"); 1406 return false; 1407 } 1408 1409 LLVM_DEBUG({ 1410 for (int I : Cand.LiveBundles.set_bits()) 1411 dbgs() << " EB#" << I; 1412 dbgs() << ".\n"; 1413 }); 1414 return true; 1415 } 1416 1417 /// calcSpillCost - Compute how expensive it would be to split the live range in 1418 /// SA around all use blocks instead of forming bundle regions. 1419 BlockFrequency RAGreedy::calcSpillCost() { 1420 BlockFrequency Cost = 0; 1421 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1422 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1423 unsigned Number = BI.MBB->getNumber(); 1424 // We normally only need one spill instruction - a load or a store. 1425 Cost += SpillPlacer->getBlockFrequency(Number); 1426 1427 // Unless the value is redefined in the block. 1428 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1429 Cost += SpillPlacer->getBlockFrequency(Number); 1430 } 1431 return Cost; 1432 } 1433 1434 /// Check if splitting Evictee will create a local split interval in 1435 /// basic block number BBNumber that may cause a bad eviction chain. This is 1436 /// intended to prevent bad eviction sequences like: 1437 /// movl %ebp, 8(%esp) # 4-byte Spill 1438 /// movl %ecx, %ebp 1439 /// movl %ebx, %ecx 1440 /// movl %edi, %ebx 1441 /// movl %edx, %edi 1442 /// cltd 1443 /// idivl %esi 1444 /// movl %edi, %edx 1445 /// movl %ebx, %edi 1446 /// movl %ecx, %ebx 1447 /// movl %ebp, %ecx 1448 /// movl 16(%esp), %ebp # 4 - byte Reload 1449 /// 1450 /// Such sequences are created in 2 scenarios: 1451 /// 1452 /// Scenario #1: 1453 /// %0 is evicted from physreg0 by %1. 1454 /// Evictee %0 is intended for region splitting with split candidate 1455 /// physreg0 (the reg %0 was evicted from). 1456 /// Region splitting creates a local interval because of interference with the 1457 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1458 /// and "by stack" intervals and local interval created when interference 1459 /// occurs). 1460 /// One of the split intervals ends up evicting %2 from physreg1. 1461 /// Evictee %2 is intended for region splitting with split candidate 1462 /// physreg1. 1463 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1464 /// 1465 /// Scenario #2 1466 /// %0 is evicted from physreg0 by %1. 1467 /// %2 is evicted from physreg2 by %3 etc. 1468 /// Evictee %0 is intended for region splitting with split candidate 1469 /// physreg1. 1470 /// Region splitting creates a local interval because of interference with the 1471 /// evictor %1. 1472 /// One of the split intervals ends up evicting back original evictor %1 1473 /// from physreg0 (the reg %0 was evicted from). 1474 /// Another evictee %2 is intended for region splitting with split candidate 1475 /// physreg1. 1476 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1477 /// 1478 /// \param Evictee The register considered to be split. 1479 /// \param Cand The split candidate that determines the physical register 1480 /// we are splitting for and the interferences. 1481 /// \param BBNumber The number of a BB for which the region split process will 1482 /// create a local split interval. 1483 /// \param Order The physical registers that may get evicted by a split 1484 /// artifact of Evictee. 1485 /// \return True if splitting Evictee may cause a bad eviction chain, false 1486 /// otherwise. 1487 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1488 GlobalSplitCandidate &Cand, 1489 unsigned BBNumber, 1490 const AllocationOrder &Order) { 1491 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1492 unsigned Evictor = VregEvictorInfo.first; 1493 MCRegister PhysReg = VregEvictorInfo.second; 1494 1495 // No actual evictor. 1496 if (!Evictor || !PhysReg) 1497 return false; 1498 1499 float MaxWeight = 0; 1500 MCRegister FutureEvictedPhysReg = 1501 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1502 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1503 1504 // The bad eviction chain occurs when either the split candidate is the 1505 // evicting reg or one of the split artifact will evict the evicting reg. 1506 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1507 return false; 1508 1509 Cand.Intf.moveToBlock(BBNumber); 1510 1511 // Check to see if the Evictor contains interference (with Evictee) in the 1512 // given BB. If so, this interference caused the eviction of Evictee from 1513 // PhysReg. This suggest that we will create a local interval during the 1514 // region split to avoid this interference This local interval may cause a bad 1515 // eviction chain. 1516 if (!LIS->hasInterval(Evictor)) 1517 return false; 1518 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1519 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1520 return false; 1521 1522 // Now, check to see if the local interval we will create is going to be 1523 // expensive enough to evict somebody If so, this may cause a bad eviction 1524 // chain. 1525 float splitArtifactWeight = 1526 VRAI->futureWeight(LIS->getInterval(Evictee), 1527 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1528 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1529 return false; 1530 1531 return true; 1532 } 1533 1534 /// Check if splitting VirtRegToSplit will create a local split interval 1535 /// in basic block number BBNumber that may cause a spill. 1536 /// 1537 /// \param VirtRegToSplit The register considered to be split. 1538 /// \param Cand The split candidate that determines the physical 1539 /// register we are splitting for and the interferences. 1540 /// \param BBNumber The number of a BB for which the region split process 1541 /// will create a local split interval. 1542 /// \param Order The physical registers that may get evicted by a 1543 /// split artifact of VirtRegToSplit. 1544 /// \return True if splitting VirtRegToSplit may cause a spill, false 1545 /// otherwise. 1546 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1547 GlobalSplitCandidate &Cand, 1548 unsigned BBNumber, 1549 const AllocationOrder &Order) { 1550 Cand.Intf.moveToBlock(BBNumber); 1551 1552 // Check if the local interval will find a non interfereing assignment. 1553 for (auto PhysReg : Order.getOrder()) { 1554 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1555 Cand.Intf.last(), PhysReg)) 1556 return false; 1557 } 1558 1559 // The local interval is not able to find non interferencing assignment 1560 // and not able to evict a less worthy interval, therfore, it can cause a 1561 // spill. 1562 return true; 1563 } 1564 1565 /// calcGlobalSplitCost - Return the global split cost of following the split 1566 /// pattern in LiveBundles. This cost should be added to the local cost of the 1567 /// interference pattern in SplitConstraints. 1568 /// 1569 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1570 const AllocationOrder &Order, 1571 bool *CanCauseEvictionChain) { 1572 BlockFrequency GlobalCost = 0; 1573 const BitVector &LiveBundles = Cand.LiveBundles; 1574 Register VirtRegToSplit = SA->getParent().reg(); 1575 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1576 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1577 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1578 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1579 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1580 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1581 unsigned Ins = 0; 1582 1583 Cand.Intf.moveToBlock(BC.Number); 1584 // Check wheather a local interval is going to be created during the region 1585 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1586 // is enabled. 1587 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1588 BI.LiveOut && RegIn && RegOut) { 1589 1590 if (CanCauseEvictionChain && 1591 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1592 // This interference causes our eviction from this assignment, we might 1593 // evict somebody else and eventually someone will spill, add that cost. 1594 // See splitCanCauseEvictionChain for detailed description of scenarios. 1595 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1596 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1597 1598 *CanCauseEvictionChain = true; 1599 1600 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1601 Order)) { 1602 // This interference causes local interval to spill, add that cost. 1603 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1604 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1605 } 1606 } 1607 1608 if (BI.LiveIn) 1609 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1610 if (BI.LiveOut) 1611 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1612 while (Ins--) 1613 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1614 } 1615 1616 for (unsigned Number : Cand.ActiveBlocks) { 1617 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1618 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1619 if (!RegIn && !RegOut) 1620 continue; 1621 if (RegIn && RegOut) { 1622 // We need double spill code if this block has interference. 1623 Cand.Intf.moveToBlock(Number); 1624 if (Cand.Intf.hasInterference()) { 1625 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1626 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1627 1628 // Check wheather a local interval is going to be created during the 1629 // region split. 1630 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1631 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1632 // This interference cause our eviction from this assignment, we might 1633 // evict somebody else, add that cost. 1634 // See splitCanCauseEvictionChain for detailed description of 1635 // scenarios. 1636 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1637 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1638 1639 *CanCauseEvictionChain = true; 1640 } 1641 } 1642 continue; 1643 } 1644 // live-in / stack-out or stack-in live-out. 1645 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1646 } 1647 return GlobalCost; 1648 } 1649 1650 /// splitAroundRegion - Split the current live range around the regions 1651 /// determined by BundleCand and GlobalCand. 1652 /// 1653 /// Before calling this function, GlobalCand and BundleCand must be initialized 1654 /// so each bundle is assigned to a valid candidate, or NoCand for the 1655 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1656 /// objects must be initialized for the current live range, and intervals 1657 /// created for the used candidates. 1658 /// 1659 /// @param LREdit The LiveRangeEdit object handling the current split. 1660 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1661 /// must appear in this list. 1662 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1663 ArrayRef<unsigned> UsedCands) { 1664 // These are the intervals created for new global ranges. We may create more 1665 // intervals for local ranges. 1666 const unsigned NumGlobalIntvs = LREdit.size(); 1667 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1668 << " globals.\n"); 1669 assert(NumGlobalIntvs && "No global intervals configured"); 1670 1671 // Isolate even single instructions when dealing with a proper sub-class. 1672 // That guarantees register class inflation for the stack interval because it 1673 // is all copies. 1674 Register Reg = SA->getParent().reg(); 1675 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1676 1677 // First handle all the blocks with uses. 1678 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1679 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1680 unsigned Number = BI.MBB->getNumber(); 1681 unsigned IntvIn = 0, IntvOut = 0; 1682 SlotIndex IntfIn, IntfOut; 1683 if (BI.LiveIn) { 1684 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1685 if (CandIn != NoCand) { 1686 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1687 IntvIn = Cand.IntvIdx; 1688 Cand.Intf.moveToBlock(Number); 1689 IntfIn = Cand.Intf.first(); 1690 } 1691 } 1692 if (BI.LiveOut) { 1693 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1694 if (CandOut != NoCand) { 1695 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1696 IntvOut = Cand.IntvIdx; 1697 Cand.Intf.moveToBlock(Number); 1698 IntfOut = Cand.Intf.last(); 1699 } 1700 } 1701 1702 // Create separate intervals for isolated blocks with multiple uses. 1703 if (!IntvIn && !IntvOut) { 1704 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1705 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1706 SE->splitSingleBlock(BI); 1707 continue; 1708 } 1709 1710 if (IntvIn && IntvOut) 1711 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1712 else if (IntvIn) 1713 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1714 else 1715 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1716 } 1717 1718 // Handle live-through blocks. The relevant live-through blocks are stored in 1719 // the ActiveBlocks list with each candidate. We need to filter out 1720 // duplicates. 1721 BitVector Todo = SA->getThroughBlocks(); 1722 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1723 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1724 for (unsigned Number : Blocks) { 1725 if (!Todo.test(Number)) 1726 continue; 1727 Todo.reset(Number); 1728 1729 unsigned IntvIn = 0, IntvOut = 0; 1730 SlotIndex IntfIn, IntfOut; 1731 1732 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1733 if (CandIn != NoCand) { 1734 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1735 IntvIn = Cand.IntvIdx; 1736 Cand.Intf.moveToBlock(Number); 1737 IntfIn = Cand.Intf.first(); 1738 } 1739 1740 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1741 if (CandOut != NoCand) { 1742 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1743 IntvOut = Cand.IntvIdx; 1744 Cand.Intf.moveToBlock(Number); 1745 IntfOut = Cand.Intf.last(); 1746 } 1747 if (!IntvIn && !IntvOut) 1748 continue; 1749 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1750 } 1751 } 1752 1753 ++NumGlobalSplits; 1754 1755 SmallVector<unsigned, 8> IntvMap; 1756 SE->finish(&IntvMap); 1757 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1758 1759 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1760 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1761 1762 // Sort out the new intervals created by splitting. We get four kinds: 1763 // - Remainder intervals should not be split again. 1764 // - Candidate intervals can be assigned to Cand.PhysReg. 1765 // - Block-local splits are candidates for local splitting. 1766 // - DCE leftovers should go back on the queue. 1767 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1768 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1769 1770 // Ignore old intervals from DCE. 1771 if (getStage(Reg) != RS_New) 1772 continue; 1773 1774 // Remainder interval. Don't try splitting again, spill if it doesn't 1775 // allocate. 1776 if (IntvMap[I] == 0) { 1777 setStage(Reg, RS_Spill); 1778 continue; 1779 } 1780 1781 // Global intervals. Allow repeated splitting as long as the number of live 1782 // blocks is strictly decreasing. 1783 if (IntvMap[I] < NumGlobalIntvs) { 1784 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1785 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1786 << " blocks as original.\n"); 1787 // Don't allow repeated splitting as a safe guard against looping. 1788 setStage(Reg, RS_Split2); 1789 } 1790 continue; 1791 } 1792 1793 // Other intervals are treated as new. This includes local intervals created 1794 // for blocks with multiple uses, and anything created by DCE. 1795 } 1796 1797 if (VerifyEnabled) 1798 MF->verify(this, "After splitting live range around region"); 1799 } 1800 1801 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1802 AllocationOrder &Order, 1803 SmallVectorImpl<Register> &NewVRegs) { 1804 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1805 return MCRegister::NoRegister; 1806 unsigned NumCands = 0; 1807 BlockFrequency SpillCost = calcSpillCost(); 1808 BlockFrequency BestCost; 1809 1810 // Check if we can split this live range around a compact region. 1811 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1812 if (HasCompact) { 1813 // Yes, keep GlobalCand[0] as the compact region candidate. 1814 NumCands = 1; 1815 BestCost = BlockFrequency::getMaxFrequency(); 1816 } else { 1817 // No benefit from the compact region, our fallback will be per-block 1818 // splitting. Make sure we find a solution that is cheaper than spilling. 1819 BestCost = SpillCost; 1820 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1821 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1822 } 1823 1824 bool CanCauseEvictionChain = false; 1825 unsigned BestCand = 1826 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1827 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1828 1829 // Split candidates with compact regions can cause a bad eviction sequence. 1830 // See splitCanCauseEvictionChain for detailed description of scenarios. 1831 // To avoid it, we need to comapre the cost with the spill cost and not the 1832 // current max frequency. 1833 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1834 CanCauseEvictionChain) { 1835 return MCRegister::NoRegister; 1836 } 1837 1838 // No solutions found, fall back to single block splitting. 1839 if (!HasCompact && BestCand == NoCand) 1840 return MCRegister::NoRegister; 1841 1842 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1843 } 1844 1845 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1846 AllocationOrder &Order, 1847 BlockFrequency &BestCost, 1848 unsigned &NumCands, bool IgnoreCSR, 1849 bool *CanCauseEvictionChain) { 1850 unsigned BestCand = NoCand; 1851 for (MCPhysReg PhysReg : Order) { 1852 assert(PhysReg); 1853 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1854 continue; 1855 1856 // Discard bad candidates before we run out of interference cache cursors. 1857 // This will only affect register classes with a lot of registers (>32). 1858 if (NumCands == IntfCache.getMaxCursors()) { 1859 unsigned WorstCount = ~0u; 1860 unsigned Worst = 0; 1861 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1862 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1863 continue; 1864 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1865 if (Count < WorstCount) { 1866 Worst = CandIndex; 1867 WorstCount = Count; 1868 } 1869 } 1870 --NumCands; 1871 GlobalCand[Worst] = GlobalCand[NumCands]; 1872 if (BestCand == NumCands) 1873 BestCand = Worst; 1874 } 1875 1876 if (GlobalCand.size() <= NumCands) 1877 GlobalCand.resize(NumCands+1); 1878 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1879 Cand.reset(IntfCache, PhysReg); 1880 1881 SpillPlacer->prepare(Cand.LiveBundles); 1882 BlockFrequency Cost; 1883 if (!addSplitConstraints(Cand.Intf, Cost)) { 1884 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1885 continue; 1886 } 1887 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1888 MBFI->printBlockFreq(dbgs(), Cost)); 1889 if (Cost >= BestCost) { 1890 LLVM_DEBUG({ 1891 if (BestCand == NoCand) 1892 dbgs() << " worse than no bundles\n"; 1893 else 1894 dbgs() << " worse than " 1895 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1896 }); 1897 continue; 1898 } 1899 if (!growRegion(Cand)) { 1900 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1901 continue; 1902 } 1903 1904 SpillPlacer->finish(); 1905 1906 // No live bundles, defer to splitSingleBlocks(). 1907 if (!Cand.LiveBundles.any()) { 1908 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1909 continue; 1910 } 1911 1912 bool HasEvictionChain = false; 1913 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1914 LLVM_DEBUG({ 1915 dbgs() << ", total = "; 1916 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1917 for (int I : Cand.LiveBundles.set_bits()) 1918 dbgs() << " EB#" << I; 1919 dbgs() << ".\n"; 1920 }); 1921 if (Cost < BestCost) { 1922 BestCand = NumCands; 1923 BestCost = Cost; 1924 // See splitCanCauseEvictionChain for detailed description of bad 1925 // eviction chain scenarios. 1926 if (CanCauseEvictionChain) 1927 *CanCauseEvictionChain = HasEvictionChain; 1928 } 1929 ++NumCands; 1930 } 1931 1932 if (CanCauseEvictionChain && BestCand != NoCand) { 1933 // See splitCanCauseEvictionChain for detailed description of bad 1934 // eviction chain scenarios. 1935 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1936 << printReg(VirtReg.reg(), TRI) << " may "); 1937 if (!(*CanCauseEvictionChain)) 1938 LLVM_DEBUG(dbgs() << "not "); 1939 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1940 } 1941 1942 return BestCand; 1943 } 1944 1945 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1946 bool HasCompact, 1947 SmallVectorImpl<Register> &NewVRegs) { 1948 SmallVector<unsigned, 8> UsedCands; 1949 // Prepare split editor. 1950 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1951 SE->reset(LREdit, SplitSpillMode); 1952 1953 // Assign all edge bundles to the preferred candidate, or NoCand. 1954 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1955 1956 // Assign bundles for the best candidate region. 1957 if (BestCand != NoCand) { 1958 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1959 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1960 UsedCands.push_back(BestCand); 1961 Cand.IntvIdx = SE->openIntv(); 1962 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1963 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1964 (void)B; 1965 } 1966 } 1967 1968 // Assign bundles for the compact region. 1969 if (HasCompact) { 1970 GlobalSplitCandidate &Cand = GlobalCand.front(); 1971 assert(!Cand.PhysReg && "Compact region has no physreg"); 1972 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1973 UsedCands.push_back(0); 1974 Cand.IntvIdx = SE->openIntv(); 1975 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1976 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1977 (void)B; 1978 } 1979 } 1980 1981 splitAroundRegion(LREdit, UsedCands); 1982 return 0; 1983 } 1984 1985 //===----------------------------------------------------------------------===// 1986 // Per-Block Splitting 1987 //===----------------------------------------------------------------------===// 1988 1989 /// tryBlockSplit - Split a global live range around every block with uses. This 1990 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1991 /// they don't allocate. 1992 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1993 SmallVectorImpl<Register> &NewVRegs) { 1994 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1995 Register Reg = VirtReg.reg(); 1996 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1997 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1998 SE->reset(LREdit, SplitSpillMode); 1999 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2000 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2001 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2002 SE->splitSingleBlock(BI); 2003 } 2004 // No blocks were split. 2005 if (LREdit.empty()) 2006 return 0; 2007 2008 // We did split for some blocks. 2009 SmallVector<unsigned, 8> IntvMap; 2010 SE->finish(&IntvMap); 2011 2012 // Tell LiveDebugVariables about the new ranges. 2013 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2014 2015 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2016 2017 // Sort out the new intervals created by splitting. The remainder interval 2018 // goes straight to spilling, the new local ranges get to stay RS_New. 2019 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2020 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2021 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2022 setStage(LI, RS_Spill); 2023 } 2024 2025 if (VerifyEnabled) 2026 MF->verify(this, "After splitting live range around basic blocks"); 2027 return 0; 2028 } 2029 2030 //===----------------------------------------------------------------------===// 2031 // Per-Instruction Splitting 2032 //===----------------------------------------------------------------------===// 2033 2034 /// Get the number of allocatable registers that match the constraints of \p Reg 2035 /// on \p MI and that are also in \p SuperRC. 2036 static unsigned getNumAllocatableRegsForConstraints( 2037 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2038 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2039 const RegisterClassInfo &RCI) { 2040 assert(SuperRC && "Invalid register class"); 2041 2042 const TargetRegisterClass *ConstrainedRC = 2043 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2044 /* ExploreBundle */ true); 2045 if (!ConstrainedRC) 2046 return 0; 2047 return RCI.getNumAllocatableRegs(ConstrainedRC); 2048 } 2049 2050 /// tryInstructionSplit - Split a live range around individual instructions. 2051 /// This is normally not worthwhile since the spiller is doing essentially the 2052 /// same thing. However, when the live range is in a constrained register 2053 /// class, it may help to insert copies such that parts of the live range can 2054 /// be moved to a larger register class. 2055 /// 2056 /// This is similar to spilling to a larger register class. 2057 unsigned 2058 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2059 SmallVectorImpl<Register> &NewVRegs) { 2060 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2061 // There is no point to this if there are no larger sub-classes. 2062 if (!RegClassInfo.isProperSubClass(CurRC)) 2063 return 0; 2064 2065 // Always enable split spill mode, since we're effectively spilling to a 2066 // register. 2067 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2068 SE->reset(LREdit, SplitEditor::SM_Size); 2069 2070 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2071 if (Uses.size() <= 1) 2072 return 0; 2073 2074 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2075 << " individual instrs.\n"); 2076 2077 const TargetRegisterClass *SuperRC = 2078 TRI->getLargestLegalSuperClass(CurRC, *MF); 2079 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2080 // Split around every non-copy instruction if this split will relax 2081 // the constraints on the virtual register. 2082 // Otherwise, splitting just inserts uncoalescable copies that do not help 2083 // the allocation. 2084 for (const SlotIndex Use : Uses) { 2085 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2086 if (MI->isFullCopy() || 2087 SuperRCNumAllocatableRegs == 2088 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2089 TII, TRI, RCI)) { 2090 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2091 continue; 2092 } 2093 SE->openIntv(); 2094 SlotIndex SegStart = SE->enterIntvBefore(Use); 2095 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2096 SE->useIntv(SegStart, SegStop); 2097 } 2098 2099 if (LREdit.empty()) { 2100 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2101 return 0; 2102 } 2103 2104 SmallVector<unsigned, 8> IntvMap; 2105 SE->finish(&IntvMap); 2106 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2107 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2108 2109 // Assign all new registers to RS_Spill. This was the last chance. 2110 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2111 return 0; 2112 } 2113 2114 //===----------------------------------------------------------------------===// 2115 // Local Splitting 2116 //===----------------------------------------------------------------------===// 2117 2118 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2119 /// in order to use PhysReg between two entries in SA->UseSlots. 2120 /// 2121 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2122 /// 2123 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2124 SmallVectorImpl<float> &GapWeight) { 2125 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2126 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2127 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2128 const unsigned NumGaps = Uses.size()-1; 2129 2130 // Start and end points for the interference check. 2131 SlotIndex StartIdx = 2132 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2133 SlotIndex StopIdx = 2134 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2135 2136 GapWeight.assign(NumGaps, 0.0f); 2137 2138 // Add interference from each overlapping register. 2139 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2140 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2141 .checkInterference()) 2142 continue; 2143 2144 // We know that VirtReg is a continuous interval from FirstInstr to 2145 // LastInstr, so we don't need InterferenceQuery. 2146 // 2147 // Interference that overlaps an instruction is counted in both gaps 2148 // surrounding the instruction. The exception is interference before 2149 // StartIdx and after StopIdx. 2150 // 2151 LiveIntervalUnion::SegmentIter IntI = 2152 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2153 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2154 // Skip the gaps before IntI. 2155 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2156 if (++Gap == NumGaps) 2157 break; 2158 if (Gap == NumGaps) 2159 break; 2160 2161 // Update the gaps covered by IntI. 2162 const float weight = IntI.value()->weight(); 2163 for (; Gap != NumGaps; ++Gap) { 2164 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2165 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2166 break; 2167 } 2168 if (Gap == NumGaps) 2169 break; 2170 } 2171 } 2172 2173 // Add fixed interference. 2174 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2175 const LiveRange &LR = LIS->getRegUnit(*Units); 2176 LiveRange::const_iterator I = LR.find(StartIdx); 2177 LiveRange::const_iterator E = LR.end(); 2178 2179 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2180 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2181 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2182 if (++Gap == NumGaps) 2183 break; 2184 if (Gap == NumGaps) 2185 break; 2186 2187 for (; Gap != NumGaps; ++Gap) { 2188 GapWeight[Gap] = huge_valf; 2189 if (Uses[Gap+1].getBaseIndex() >= I->end) 2190 break; 2191 } 2192 if (Gap == NumGaps) 2193 break; 2194 } 2195 } 2196 } 2197 2198 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2199 /// basic block. 2200 /// 2201 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2202 SmallVectorImpl<Register> &NewVRegs) { 2203 // TODO: the function currently only handles a single UseBlock; it should be 2204 // possible to generalize. 2205 if (SA->getUseBlocks().size() != 1) 2206 return 0; 2207 2208 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2209 2210 // Note that it is possible to have an interval that is live-in or live-out 2211 // while only covering a single block - A phi-def can use undef values from 2212 // predecessors, and the block could be a single-block loop. 2213 // We don't bother doing anything clever about such a case, we simply assume 2214 // that the interval is continuous from FirstInstr to LastInstr. We should 2215 // make sure that we don't do anything illegal to such an interval, though. 2216 2217 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2218 if (Uses.size() <= 2) 2219 return 0; 2220 const unsigned NumGaps = Uses.size()-1; 2221 2222 LLVM_DEBUG({ 2223 dbgs() << "tryLocalSplit: "; 2224 for (const auto &Use : Uses) 2225 dbgs() << ' ' << Use; 2226 dbgs() << '\n'; 2227 }); 2228 2229 // If VirtReg is live across any register mask operands, compute a list of 2230 // gaps with register masks. 2231 SmallVector<unsigned, 8> RegMaskGaps; 2232 if (Matrix->checkRegMaskInterference(VirtReg)) { 2233 // Get regmask slots for the whole block. 2234 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2235 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2236 // Constrain to VirtReg's live range. 2237 unsigned RI = 2238 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2239 unsigned RE = RMS.size(); 2240 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2241 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2242 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2243 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2244 continue; 2245 // Skip a regmask on the same instruction as the last use. It doesn't 2246 // overlap the live range. 2247 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2248 break; 2249 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2250 << Uses[I + 1]); 2251 RegMaskGaps.push_back(I); 2252 // Advance ri to the next gap. A regmask on one of the uses counts in 2253 // both gaps. 2254 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2255 ++RI; 2256 } 2257 LLVM_DEBUG(dbgs() << '\n'); 2258 } 2259 2260 // Since we allow local split results to be split again, there is a risk of 2261 // creating infinite loops. It is tempting to require that the new live 2262 // ranges have less instructions than the original. That would guarantee 2263 // convergence, but it is too strict. A live range with 3 instructions can be 2264 // split 2+3 (including the COPY), and we want to allow that. 2265 // 2266 // Instead we use these rules: 2267 // 2268 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2269 // noop split, of course). 2270 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2271 // the new ranges must have fewer instructions than before the split. 2272 // 3. New ranges with the same number of instructions are marked RS_Split2, 2273 // smaller ranges are marked RS_New. 2274 // 2275 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2276 // excessive splitting and infinite loops. 2277 // 2278 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2279 2280 // Best split candidate. 2281 unsigned BestBefore = NumGaps; 2282 unsigned BestAfter = 0; 2283 float BestDiff = 0; 2284 2285 const float blockFreq = 2286 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2287 (1.0f / MBFI->getEntryFreq()); 2288 SmallVector<float, 8> GapWeight; 2289 2290 for (MCPhysReg PhysReg : Order) { 2291 assert(PhysReg); 2292 // Keep track of the largest spill weight that would need to be evicted in 2293 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2294 calcGapWeights(PhysReg, GapWeight); 2295 2296 // Remove any gaps with regmask clobbers. 2297 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2298 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2299 GapWeight[RegMaskGaps[I]] = huge_valf; 2300 2301 // Try to find the best sequence of gaps to close. 2302 // The new spill weight must be larger than any gap interference. 2303 2304 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2305 unsigned SplitBefore = 0, SplitAfter = 1; 2306 2307 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2308 // It is the spill weight that needs to be evicted. 2309 float MaxGap = GapWeight[0]; 2310 2311 while (true) { 2312 // Live before/after split? 2313 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2314 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2315 2316 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2317 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2318 2319 // Stop before the interval gets so big we wouldn't be making progress. 2320 if (!LiveBefore && !LiveAfter) { 2321 LLVM_DEBUG(dbgs() << " all\n"); 2322 break; 2323 } 2324 // Should the interval be extended or shrunk? 2325 bool Shrink = true; 2326 2327 // How many gaps would the new range have? 2328 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2329 2330 // Legally, without causing looping? 2331 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2332 2333 if (Legal && MaxGap < huge_valf) { 2334 // Estimate the new spill weight. Each instruction reads or writes the 2335 // register. Conservatively assume there are no read-modify-write 2336 // instructions. 2337 // 2338 // Try to guess the size of the new interval. 2339 const float EstWeight = normalizeSpillWeight( 2340 blockFreq * (NewGaps + 1), 2341 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2342 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2343 1); 2344 // Would this split be possible to allocate? 2345 // Never allocate all gaps, we wouldn't be making progress. 2346 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2347 if (EstWeight * Hysteresis >= MaxGap) { 2348 Shrink = false; 2349 float Diff = EstWeight - MaxGap; 2350 if (Diff > BestDiff) { 2351 LLVM_DEBUG(dbgs() << " (best)"); 2352 BestDiff = Hysteresis * Diff; 2353 BestBefore = SplitBefore; 2354 BestAfter = SplitAfter; 2355 } 2356 } 2357 } 2358 2359 // Try to shrink. 2360 if (Shrink) { 2361 if (++SplitBefore < SplitAfter) { 2362 LLVM_DEBUG(dbgs() << " shrink\n"); 2363 // Recompute the max when necessary. 2364 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2365 MaxGap = GapWeight[SplitBefore]; 2366 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2367 MaxGap = std::max(MaxGap, GapWeight[I]); 2368 } 2369 continue; 2370 } 2371 MaxGap = 0; 2372 } 2373 2374 // Try to extend the interval. 2375 if (SplitAfter >= NumGaps) { 2376 LLVM_DEBUG(dbgs() << " end\n"); 2377 break; 2378 } 2379 2380 LLVM_DEBUG(dbgs() << " extend\n"); 2381 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2382 } 2383 } 2384 2385 // Didn't find any candidates? 2386 if (BestBefore == NumGaps) 2387 return 0; 2388 2389 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2390 << Uses[BestAfter] << ", " << BestDiff << ", " 2391 << (BestAfter - BestBefore + 1) << " instrs\n"); 2392 2393 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2394 SE->reset(LREdit); 2395 2396 SE->openIntv(); 2397 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2398 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2399 SE->useIntv(SegStart, SegStop); 2400 SmallVector<unsigned, 8> IntvMap; 2401 SE->finish(&IntvMap); 2402 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2403 2404 // If the new range has the same number of instructions as before, mark it as 2405 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2406 // leave the new intervals as RS_New so they can compete. 2407 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2408 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2409 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2410 if (NewGaps >= NumGaps) { 2411 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2412 assert(!ProgressRequired && "Didn't make progress when it was required."); 2413 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2414 if (IntvMap[I] == 1) { 2415 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2416 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2417 } 2418 LLVM_DEBUG(dbgs() << '\n'); 2419 } 2420 ++NumLocalSplits; 2421 2422 return 0; 2423 } 2424 2425 //===----------------------------------------------------------------------===// 2426 // Live Range Splitting 2427 //===----------------------------------------------------------------------===// 2428 2429 /// trySplit - Try to split VirtReg or one of its interferences, making it 2430 /// assignable. 2431 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2432 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2433 SmallVectorImpl<Register> &NewVRegs, 2434 const SmallVirtRegSet &FixedRegisters) { 2435 // Ranges must be Split2 or less. 2436 if (getStage(VirtReg) >= RS_Spill) 2437 return 0; 2438 2439 // Local intervals are handled separately. 2440 if (LIS->intervalIsInOneMBB(VirtReg)) { 2441 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2442 TimerGroupDescription, TimePassesIsEnabled); 2443 SA->analyze(&VirtReg); 2444 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2445 if (PhysReg || !NewVRegs.empty()) 2446 return PhysReg; 2447 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2448 } 2449 2450 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2451 TimerGroupDescription, TimePassesIsEnabled); 2452 2453 SA->analyze(&VirtReg); 2454 2455 // First try to split around a region spanning multiple blocks. RS_Split2 2456 // ranges already made dubious progress with region splitting, so they go 2457 // straight to single block splitting. 2458 if (getStage(VirtReg) < RS_Split2) { 2459 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2460 if (PhysReg || !NewVRegs.empty()) 2461 return PhysReg; 2462 } 2463 2464 // Then isolate blocks. 2465 return tryBlockSplit(VirtReg, Order, NewVRegs); 2466 } 2467 2468 //===----------------------------------------------------------------------===// 2469 // Last Chance Recoloring 2470 //===----------------------------------------------------------------------===// 2471 2472 /// Return true if \p reg has any tied def operand. 2473 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2474 for (const MachineOperand &MO : MRI->def_operands(reg)) 2475 if (MO.isTied()) 2476 return true; 2477 2478 return false; 2479 } 2480 2481 /// mayRecolorAllInterferences - Check if the virtual registers that 2482 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2483 /// recolored to free \p PhysReg. 2484 /// When true is returned, \p RecoloringCandidates has been augmented with all 2485 /// the live intervals that need to be recolored in order to free \p PhysReg 2486 /// for \p VirtReg. 2487 /// \p FixedRegisters contains all the virtual registers that cannot be 2488 /// recolored. 2489 bool RAGreedy::mayRecolorAllInterferences( 2490 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2491 const SmallVirtRegSet &FixedRegisters) { 2492 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2493 2494 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2495 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2496 // If there is LastChanceRecoloringMaxInterference or more interferences, 2497 // chances are one would not be recolorable. 2498 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 2499 LastChanceRecoloringMaxInterference && 2500 !ExhaustiveSearch) { 2501 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2502 CutOffInfo |= CO_Interf; 2503 return false; 2504 } 2505 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2506 // If Intf is done and sit on the same register class as VirtReg, 2507 // it would not be recolorable as it is in the same state as VirtReg. 2508 // However, if VirtReg has tied defs and Intf doesn't, then 2509 // there is still a point in examining if it can be recolorable. 2510 if (((getStage(*Intf) == RS_Done && 2511 MRI->getRegClass(Intf->reg()) == CurRC) && 2512 !(hasTiedDef(MRI, VirtReg.reg()) && 2513 !hasTiedDef(MRI, Intf->reg()))) || 2514 FixedRegisters.count(Intf->reg())) { 2515 LLVM_DEBUG( 2516 dbgs() << "Early abort: the interference is not recolorable.\n"); 2517 return false; 2518 } 2519 RecoloringCandidates.insert(Intf); 2520 } 2521 } 2522 return true; 2523 } 2524 2525 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2526 /// its interferences. 2527 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2528 /// virtual register that was using it. The recoloring process may recursively 2529 /// use the last chance recoloring. Therefore, when a virtual register has been 2530 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2531 /// be last-chance-recolored again during this recoloring "session". 2532 /// E.g., 2533 /// Let 2534 /// vA can use {R1, R2 } 2535 /// vB can use { R2, R3} 2536 /// vC can use {R1 } 2537 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2538 /// instance) and they all interfere. 2539 /// 2540 /// vA is assigned R1 2541 /// vB is assigned R2 2542 /// vC tries to evict vA but vA is already done. 2543 /// Regular register allocation fails. 2544 /// 2545 /// Last chance recoloring kicks in: 2546 /// vC does as if vA was evicted => vC uses R1. 2547 /// vC is marked as fixed. 2548 /// vA needs to find a color. 2549 /// None are available. 2550 /// vA cannot evict vC: vC is a fixed virtual register now. 2551 /// vA does as if vB was evicted => vA uses R2. 2552 /// vB needs to find a color. 2553 /// R3 is available. 2554 /// Recoloring => vC = R1, vA = R2, vB = R3 2555 /// 2556 /// \p Order defines the preferred allocation order for \p VirtReg. 2557 /// \p NewRegs will contain any new virtual register that have been created 2558 /// (split, spill) during the process and that must be assigned. 2559 /// \p FixedRegisters contains all the virtual registers that cannot be 2560 /// recolored. 2561 /// \p Depth gives the current depth of the last chance recoloring. 2562 /// \return a physical register that can be used for VirtReg or ~0u if none 2563 /// exists. 2564 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2565 AllocationOrder &Order, 2566 SmallVectorImpl<Register> &NewVRegs, 2567 SmallVirtRegSet &FixedRegisters, 2568 unsigned Depth) { 2569 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2570 return ~0u; 2571 2572 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2573 // Ranges must be Done. 2574 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2575 "Last chance recoloring should really be last chance"); 2576 // Set the max depth to LastChanceRecoloringMaxDepth. 2577 // We may want to reconsider that if we end up with a too large search space 2578 // for target with hundreds of registers. 2579 // Indeed, in that case we may want to cut the search space earlier. 2580 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2581 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2582 CutOffInfo |= CO_Depth; 2583 return ~0u; 2584 } 2585 2586 // Set of Live intervals that will need to be recolored. 2587 SmallLISet RecoloringCandidates; 2588 // Record the original mapping virtual register to physical register in case 2589 // the recoloring fails. 2590 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2591 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2592 // this recoloring "session". 2593 assert(!FixedRegisters.count(VirtReg.reg())); 2594 FixedRegisters.insert(VirtReg.reg()); 2595 SmallVector<Register, 4> CurrentNewVRegs; 2596 2597 for (MCRegister PhysReg : Order) { 2598 assert(PhysReg.isValid()); 2599 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2600 << printReg(PhysReg, TRI) << '\n'); 2601 RecoloringCandidates.clear(); 2602 VirtRegToPhysReg.clear(); 2603 CurrentNewVRegs.clear(); 2604 2605 // It is only possible to recolor virtual register interference. 2606 if (Matrix->checkInterference(VirtReg, PhysReg) > 2607 LiveRegMatrix::IK_VirtReg) { 2608 LLVM_DEBUG( 2609 dbgs() << "Some interferences are not with virtual registers.\n"); 2610 2611 continue; 2612 } 2613 2614 // Early give up on this PhysReg if it is obvious we cannot recolor all 2615 // the interferences. 2616 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2617 FixedRegisters)) { 2618 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2619 continue; 2620 } 2621 2622 // RecoloringCandidates contains all the virtual registers that interfer 2623 // with VirtReg on PhysReg (or one of its aliases). 2624 // Enqueue them for recoloring and perform the actual recoloring. 2625 PQueue RecoloringQueue; 2626 for (LiveInterval *RC : RecoloringCandidates) { 2627 Register ItVirtReg = RC->reg(); 2628 enqueue(RecoloringQueue, RC); 2629 assert(VRM->hasPhys(ItVirtReg) && 2630 "Interferences are supposed to be with allocated variables"); 2631 2632 // Record the current allocation. 2633 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2634 // unset the related struct. 2635 Matrix->unassign(*RC); 2636 } 2637 2638 // Do as if VirtReg was assigned to PhysReg so that the underlying 2639 // recoloring has the right information about the interferes and 2640 // available colors. 2641 Matrix->assign(VirtReg, PhysReg); 2642 2643 // Save the current recoloring state. 2644 // If we cannot recolor all the interferences, we will have to start again 2645 // at this point for the next physical register. 2646 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2647 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2648 FixedRegisters, Depth)) { 2649 // Push the queued vregs into the main queue. 2650 for (Register NewVReg : CurrentNewVRegs) 2651 NewVRegs.push_back(NewVReg); 2652 // Do not mess up with the global assignment process. 2653 // I.e., VirtReg must be unassigned. 2654 Matrix->unassign(VirtReg); 2655 return PhysReg; 2656 } 2657 2658 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2659 << printReg(PhysReg, TRI) << '\n'); 2660 2661 // The recoloring attempt failed, undo the changes. 2662 FixedRegisters = SaveFixedRegisters; 2663 Matrix->unassign(VirtReg); 2664 2665 // For a newly created vreg which is also in RecoloringCandidates, 2666 // don't add it to NewVRegs because its physical register will be restored 2667 // below. Other vregs in CurrentNewVRegs are created by calling 2668 // selectOrSplit and should be added into NewVRegs. 2669 for (Register &R : CurrentNewVRegs) { 2670 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2671 continue; 2672 NewVRegs.push_back(R); 2673 } 2674 2675 for (LiveInterval *RC : RecoloringCandidates) { 2676 Register ItVirtReg = RC->reg(); 2677 if (VRM->hasPhys(ItVirtReg)) 2678 Matrix->unassign(*RC); 2679 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2680 Matrix->assign(*RC, ItPhysReg); 2681 } 2682 } 2683 2684 // Last chance recoloring did not worked either, give up. 2685 return ~0u; 2686 } 2687 2688 /// tryRecoloringCandidates - Try to assign a new color to every register 2689 /// in \RecoloringQueue. 2690 /// \p NewRegs will contain any new virtual register created during the 2691 /// recoloring process. 2692 /// \p FixedRegisters[in/out] contains all the registers that have been 2693 /// recolored. 2694 /// \return true if all virtual registers in RecoloringQueue were successfully 2695 /// recolored, false otherwise. 2696 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2697 SmallVectorImpl<Register> &NewVRegs, 2698 SmallVirtRegSet &FixedRegisters, 2699 unsigned Depth) { 2700 while (!RecoloringQueue.empty()) { 2701 LiveInterval *LI = dequeue(RecoloringQueue); 2702 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2703 MCRegister PhysReg = 2704 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2705 // When splitting happens, the live-range may actually be empty. 2706 // In that case, this is okay to continue the recoloring even 2707 // if we did not find an alternative color for it. Indeed, 2708 // there will not be anything to color for LI in the end. 2709 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2710 return false; 2711 2712 if (!PhysReg) { 2713 assert(LI->empty() && "Only empty live-range do not require a register"); 2714 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2715 << " succeeded. Empty LI.\n"); 2716 continue; 2717 } 2718 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2719 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2720 2721 Matrix->assign(*LI, PhysReg); 2722 FixedRegisters.insert(LI->reg()); 2723 } 2724 return true; 2725 } 2726 2727 //===----------------------------------------------------------------------===// 2728 // Main Entry Point 2729 //===----------------------------------------------------------------------===// 2730 2731 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2732 SmallVectorImpl<Register> &NewVRegs) { 2733 CutOffInfo = CO_None; 2734 LLVMContext &Ctx = MF->getFunction().getContext(); 2735 SmallVirtRegSet FixedRegisters; 2736 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2737 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2738 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2739 if (CutOffEncountered == CO_Depth) 2740 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2741 "reached. Use -fexhaustive-register-search to skip " 2742 "cutoffs"); 2743 else if (CutOffEncountered == CO_Interf) 2744 Ctx.emitError("register allocation failed: maximum interference for " 2745 "recoloring reached. Use -fexhaustive-register-search " 2746 "to skip cutoffs"); 2747 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2748 Ctx.emitError("register allocation failed: maximum interference and " 2749 "depth for recoloring reached. Use " 2750 "-fexhaustive-register-search to skip cutoffs"); 2751 } 2752 return Reg; 2753 } 2754 2755 /// Using a CSR for the first time has a cost because it causes push|pop 2756 /// to be added to prologue|epilogue. Splitting a cold section of the live 2757 /// range can have lower cost than using the CSR for the first time; 2758 /// Spilling a live range in the cold path can have lower cost than using 2759 /// the CSR for the first time. Returns the physical register if we decide 2760 /// to use the CSR; otherwise return 0. 2761 MCRegister 2762 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2763 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2764 SmallVectorImpl<Register> &NewVRegs) { 2765 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2766 // We choose spill over using the CSR for the first time if the spill cost 2767 // is lower than CSRCost. 2768 SA->analyze(&VirtReg); 2769 if (calcSpillCost() >= CSRCost) 2770 return PhysReg; 2771 2772 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2773 // we will not use a callee-saved register in tryEvict. 2774 CostPerUseLimit = 1; 2775 return 0; 2776 } 2777 if (getStage(VirtReg) < RS_Split) { 2778 // We choose pre-splitting over using the CSR for the first time if 2779 // the cost of splitting is lower than CSRCost. 2780 SA->analyze(&VirtReg); 2781 unsigned NumCands = 0; 2782 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2783 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2784 NumCands, true /*IgnoreCSR*/); 2785 if (BestCand == NoCand) 2786 // Use the CSR if we can't find a region split below CSRCost. 2787 return PhysReg; 2788 2789 // Perform the actual pre-splitting. 2790 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2791 return 0; 2792 } 2793 return PhysReg; 2794 } 2795 2796 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2797 // Do not keep invalid information around. 2798 SetOfBrokenHints.remove(&LI); 2799 } 2800 2801 void RAGreedy::initializeCSRCost() { 2802 // We use the larger one out of the command-line option and the value report 2803 // by TRI. 2804 CSRCost = BlockFrequency( 2805 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2806 if (!CSRCost.getFrequency()) 2807 return; 2808 2809 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2810 uint64_t ActualEntry = MBFI->getEntryFreq(); 2811 if (!ActualEntry) { 2812 CSRCost = 0; 2813 return; 2814 } 2815 uint64_t FixedEntry = 1 << 14; 2816 if (ActualEntry < FixedEntry) 2817 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2818 else if (ActualEntry <= UINT32_MAX) 2819 // Invert the fraction and divide. 2820 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2821 else 2822 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2823 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2824 } 2825 2826 /// Collect the hint info for \p Reg. 2827 /// The results are stored into \p Out. 2828 /// \p Out is not cleared before being populated. 2829 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2830 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2831 if (!Instr.isFullCopy()) 2832 continue; 2833 // Look for the other end of the copy. 2834 Register OtherReg = Instr.getOperand(0).getReg(); 2835 if (OtherReg == Reg) { 2836 OtherReg = Instr.getOperand(1).getReg(); 2837 if (OtherReg == Reg) 2838 continue; 2839 } 2840 // Get the current assignment. 2841 MCRegister OtherPhysReg = 2842 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2843 // Push the collected information. 2844 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2845 OtherPhysReg)); 2846 } 2847 } 2848 2849 /// Using the given \p List, compute the cost of the broken hints if 2850 /// \p PhysReg was used. 2851 /// \return The cost of \p List for \p PhysReg. 2852 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2853 MCRegister PhysReg) { 2854 BlockFrequency Cost = 0; 2855 for (const HintInfo &Info : List) { 2856 if (Info.PhysReg != PhysReg) 2857 Cost += Info.Freq; 2858 } 2859 return Cost; 2860 } 2861 2862 /// Using the register assigned to \p VirtReg, try to recolor 2863 /// all the live ranges that are copy-related with \p VirtReg. 2864 /// The recoloring is then propagated to all the live-ranges that have 2865 /// been recolored and so on, until no more copies can be coalesced or 2866 /// it is not profitable. 2867 /// For a given live range, profitability is determined by the sum of the 2868 /// frequencies of the non-identity copies it would introduce with the old 2869 /// and new register. 2870 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2871 // We have a broken hint, check if it is possible to fix it by 2872 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2873 // some register and PhysReg may be available for the other live-ranges. 2874 SmallSet<Register, 4> Visited; 2875 SmallVector<unsigned, 2> RecoloringCandidates; 2876 HintsInfo Info; 2877 Register Reg = VirtReg.reg(); 2878 MCRegister PhysReg = VRM->getPhys(Reg); 2879 // Start the recoloring algorithm from the input live-interval, then 2880 // it will propagate to the ones that are copy-related with it. 2881 Visited.insert(Reg); 2882 RecoloringCandidates.push_back(Reg); 2883 2884 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2885 << '(' << printReg(PhysReg, TRI) << ")\n"); 2886 2887 do { 2888 Reg = RecoloringCandidates.pop_back_val(); 2889 2890 // We cannot recolor physical register. 2891 if (Register::isPhysicalRegister(Reg)) 2892 continue; 2893 2894 // This may be a skipped class 2895 if (!VRM->hasPhys(Reg)) { 2896 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2897 "We have an unallocated variable which should have been handled"); 2898 continue; 2899 } 2900 2901 // Get the live interval mapped with this virtual register to be able 2902 // to check for the interference with the new color. 2903 LiveInterval &LI = LIS->getInterval(Reg); 2904 MCRegister CurrPhys = VRM->getPhys(Reg); 2905 // Check that the new color matches the register class constraints and 2906 // that it is free for this live range. 2907 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2908 Matrix->checkInterference(LI, PhysReg))) 2909 continue; 2910 2911 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2912 << ") is recolorable.\n"); 2913 2914 // Gather the hint info. 2915 Info.clear(); 2916 collectHintInfo(Reg, Info); 2917 // Check if recoloring the live-range will increase the cost of the 2918 // non-identity copies. 2919 if (CurrPhys != PhysReg) { 2920 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2921 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2922 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2923 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2924 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2925 << '\n'); 2926 if (OldCopiesCost < NewCopiesCost) { 2927 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2928 continue; 2929 } 2930 // At this point, the cost is either cheaper or equal. If it is 2931 // equal, we consider this is profitable because it may expose 2932 // more recoloring opportunities. 2933 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2934 // Recolor the live-range. 2935 Matrix->unassign(LI); 2936 Matrix->assign(LI, PhysReg); 2937 } 2938 // Push all copy-related live-ranges to keep reconciling the broken 2939 // hints. 2940 for (const HintInfo &HI : Info) { 2941 if (Visited.insert(HI.Reg).second) 2942 RecoloringCandidates.push_back(HI.Reg); 2943 } 2944 } while (!RecoloringCandidates.empty()); 2945 } 2946 2947 /// Try to recolor broken hints. 2948 /// Broken hints may be repaired by recoloring when an evicted variable 2949 /// freed up a register for a larger live-range. 2950 /// Consider the following example: 2951 /// BB1: 2952 /// a = 2953 /// b = 2954 /// BB2: 2955 /// ... 2956 /// = b 2957 /// = a 2958 /// Let us assume b gets split: 2959 /// BB1: 2960 /// a = 2961 /// b = 2962 /// BB2: 2963 /// c = b 2964 /// ... 2965 /// d = c 2966 /// = d 2967 /// = a 2968 /// Because of how the allocation work, b, c, and d may be assigned different 2969 /// colors. Now, if a gets evicted later: 2970 /// BB1: 2971 /// a = 2972 /// st a, SpillSlot 2973 /// b = 2974 /// BB2: 2975 /// c = b 2976 /// ... 2977 /// d = c 2978 /// = d 2979 /// e = ld SpillSlot 2980 /// = e 2981 /// This is likely that we can assign the same register for b, c, and d, 2982 /// getting rid of 2 copies. 2983 void RAGreedy::tryHintsRecoloring() { 2984 for (LiveInterval *LI : SetOfBrokenHints) { 2985 assert(Register::isVirtualRegister(LI->reg()) && 2986 "Recoloring is possible only for virtual registers"); 2987 // Some dead defs may be around (e.g., because of debug uses). 2988 // Ignore those. 2989 if (!VRM->hasPhys(LI->reg())) 2990 continue; 2991 tryHintRecoloring(*LI); 2992 } 2993 } 2994 2995 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2996 SmallVectorImpl<Register> &NewVRegs, 2997 SmallVirtRegSet &FixedRegisters, 2998 unsigned Depth) { 2999 uint8_t CostPerUseLimit = uint8_t(~0u); 3000 // First try assigning a free register. 3001 auto Order = 3002 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3003 if (MCRegister PhysReg = 3004 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3005 // If VirtReg got an assignment, the eviction info is no longer relevant. 3006 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3007 // When NewVRegs is not empty, we may have made decisions such as evicting 3008 // a virtual register, go with the earlier decisions and use the physical 3009 // register. 3010 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3011 NewVRegs.empty()) { 3012 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3013 CostPerUseLimit, NewVRegs); 3014 if (CSRReg || !NewVRegs.empty()) 3015 // Return now if we decide to use a CSR or create new vregs due to 3016 // pre-splitting. 3017 return CSRReg; 3018 } else 3019 return PhysReg; 3020 } 3021 3022 LiveRangeStage Stage = getStage(VirtReg); 3023 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3024 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3025 3026 // Try to evict a less worthy live range, but only for ranges from the primary 3027 // queue. The RS_Split ranges already failed to do this, and they should not 3028 // get a second chance until they have been split. 3029 if (Stage != RS_Split) 3030 if (Register PhysReg = 3031 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3032 FixedRegisters)) { 3033 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3034 // If VirtReg has a hint and that hint is broken record this 3035 // virtual register as a recoloring candidate for broken hint. 3036 // Indeed, since we evicted a variable in its neighborhood it is 3037 // likely we can at least partially recolor some of the 3038 // copy-related live-ranges. 3039 if (Hint && Hint != PhysReg) 3040 SetOfBrokenHints.insert(&VirtReg); 3041 // If VirtReg eviction someone, the eviction info for it as an evictee is 3042 // no longer relevant. 3043 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3044 return PhysReg; 3045 } 3046 3047 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3048 3049 // The first time we see a live range, don't try to split or spill. 3050 // Wait until the second time, when all smaller ranges have been allocated. 3051 // This gives a better picture of the interference to split around. 3052 if (Stage < RS_Split) { 3053 setStage(VirtReg, RS_Split); 3054 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3055 NewVRegs.push_back(VirtReg.reg()); 3056 return 0; 3057 } 3058 3059 if (Stage < RS_Spill) { 3060 // Try splitting VirtReg or interferences. 3061 unsigned NewVRegSizeBefore = NewVRegs.size(); 3062 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3063 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3064 // If VirtReg got split, the eviction info is no longer relevant. 3065 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3066 return PhysReg; 3067 } 3068 } 3069 3070 // If we couldn't allocate a register from spilling, there is probably some 3071 // invalid inline assembly. The base class will report it. 3072 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3073 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3074 Depth); 3075 3076 // Finally spill VirtReg itself. 3077 if ((EnableDeferredSpilling || 3078 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3079 getStage(VirtReg) < RS_Memory) { 3080 // TODO: This is experimental and in particular, we do not model 3081 // the live range splitting done by spilling correctly. 3082 // We would need a deep integration with the spiller to do the 3083 // right thing here. Anyway, that is still good for early testing. 3084 setStage(VirtReg, RS_Memory); 3085 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3086 NewVRegs.push_back(VirtReg.reg()); 3087 } else { 3088 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3089 TimerGroupDescription, TimePassesIsEnabled); 3090 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3091 spiller().spill(LRE); 3092 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3093 3094 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3095 // the new regs are kept in LDV (still mapping to the old register), until 3096 // we rewrite spilled locations in LDV at a later stage. 3097 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3098 3099 if (VerifyEnabled) 3100 MF->verify(this, "After spilling"); 3101 } 3102 3103 // The live virtual register requesting allocation was spilled, so tell 3104 // the caller not to allocate anything during this round. 3105 return 0; 3106 } 3107 3108 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3109 using namespace ore; 3110 if (Spills) { 3111 R << NV("NumSpills", Spills) << " spills "; 3112 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3113 } 3114 if (FoldedSpills) { 3115 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3116 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3117 << " total folded spills cost "; 3118 } 3119 if (Reloads) { 3120 R << NV("NumReloads", Reloads) << " reloads "; 3121 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3122 } 3123 if (FoldedReloads) { 3124 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3125 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3126 << " total folded reloads cost "; 3127 } 3128 if (ZeroCostFoldedReloads) 3129 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3130 << " zero cost folded reloads "; 3131 if (Copies) { 3132 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3133 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3134 } 3135 } 3136 3137 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3138 RAGreedyStats Stats; 3139 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3140 int FI; 3141 3142 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3143 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3144 A->getPseudoValue())->getFrameIndex()); 3145 }; 3146 auto isPatchpointInstr = [](const MachineInstr &MI) { 3147 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3148 MI.getOpcode() == TargetOpcode::STACKMAP || 3149 MI.getOpcode() == TargetOpcode::STATEPOINT; 3150 }; 3151 for (MachineInstr &MI : MBB) { 3152 if (MI.isCopy()) { 3153 MachineOperand &Dest = MI.getOperand(0); 3154 MachineOperand &Src = MI.getOperand(1); 3155 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3156 Src.getReg().isVirtual()) 3157 ++Stats.Copies; 3158 continue; 3159 } 3160 3161 SmallVector<const MachineMemOperand *, 2> Accesses; 3162 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3163 ++Stats.Reloads; 3164 continue; 3165 } 3166 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3167 ++Stats.Spills; 3168 continue; 3169 } 3170 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3171 llvm::any_of(Accesses, isSpillSlotAccess)) { 3172 if (!isPatchpointInstr(MI)) { 3173 Stats.FoldedReloads += Accesses.size(); 3174 continue; 3175 } 3176 // For statepoint there may be folded and zero cost folded stack reloads. 3177 std::pair<unsigned, unsigned> NonZeroCostRange = 3178 TII->getPatchpointUnfoldableRange(MI); 3179 SmallSet<unsigned, 16> FoldedReloads; 3180 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3181 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3182 MachineOperand &MO = MI.getOperand(Idx); 3183 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3184 continue; 3185 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3186 FoldedReloads.insert(MO.getIndex()); 3187 else 3188 ZeroCostFoldedReloads.insert(MO.getIndex()); 3189 } 3190 // If stack slot is used in folded reload it is not zero cost then. 3191 for (unsigned Slot : FoldedReloads) 3192 ZeroCostFoldedReloads.erase(Slot); 3193 Stats.FoldedReloads += FoldedReloads.size(); 3194 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3195 continue; 3196 } 3197 Accesses.clear(); 3198 if (TII->hasStoreToStackSlot(MI, Accesses) && 3199 llvm::any_of(Accesses, isSpillSlotAccess)) { 3200 Stats.FoldedSpills += Accesses.size(); 3201 } 3202 } 3203 // Set cost of collected statistic by multiplication to relative frequency of 3204 // this basic block. 3205 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3206 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3207 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3208 Stats.SpillsCost = RelFreq * Stats.Spills; 3209 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3210 Stats.CopiesCost = RelFreq * Stats.Copies; 3211 return Stats; 3212 } 3213 3214 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3215 RAGreedyStats Stats; 3216 3217 // Sum up the spill and reloads in subloops. 3218 for (MachineLoop *SubLoop : *L) 3219 Stats.add(reportStats(SubLoop)); 3220 3221 for (MachineBasicBlock *MBB : L->getBlocks()) 3222 // Handle blocks that were not included in subloops. 3223 if (Loops->getLoopFor(MBB) == L) 3224 Stats.add(computeStats(*MBB)); 3225 3226 if (!Stats.isEmpty()) { 3227 using namespace ore; 3228 3229 ORE->emit([&]() { 3230 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3231 L->getStartLoc(), L->getHeader()); 3232 Stats.report(R); 3233 R << "generated in loop"; 3234 return R; 3235 }); 3236 } 3237 return Stats; 3238 } 3239 3240 void RAGreedy::reportStats() { 3241 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3242 return; 3243 RAGreedyStats Stats; 3244 for (MachineLoop *L : *Loops) 3245 Stats.add(reportStats(L)); 3246 // Process non-loop blocks. 3247 for (MachineBasicBlock &MBB : *MF) 3248 if (!Loops->getLoopFor(&MBB)) 3249 Stats.add(computeStats(MBB)); 3250 if (!Stats.isEmpty()) { 3251 using namespace ore; 3252 3253 ORE->emit([&]() { 3254 DebugLoc Loc; 3255 if (auto *SP = MF->getFunction().getSubprogram()) 3256 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3257 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3258 &MF->front()); 3259 Stats.report(R); 3260 R << "generated in function"; 3261 return R; 3262 }); 3263 } 3264 } 3265 3266 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3267 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3268 << "********** Function: " << mf.getName() << '\n'); 3269 3270 MF = &mf; 3271 TRI = MF->getSubtarget().getRegisterInfo(); 3272 TII = MF->getSubtarget().getInstrInfo(); 3273 RCI.runOnMachineFunction(mf); 3274 3275 EnableLocalReassign = EnableLocalReassignment || 3276 MF->getSubtarget().enableRALocalReassignment( 3277 MF->getTarget().getOptLevel()); 3278 3279 EnableAdvancedRASplitCost = 3280 ConsiderLocalIntervalCost.getNumOccurrences() 3281 ? ConsiderLocalIntervalCost 3282 : MF->getSubtarget().enableAdvancedRASplitCost(); 3283 3284 if (VerifyEnabled) 3285 MF->verify(this, "Before greedy register allocator"); 3286 3287 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3288 getAnalysis<LiveIntervals>(), 3289 getAnalysis<LiveRegMatrix>()); 3290 Indexes = &getAnalysis<SlotIndexes>(); 3291 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3292 DomTree = &getAnalysis<MachineDominatorTree>(); 3293 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3294 Loops = &getAnalysis<MachineLoopInfo>(); 3295 Bundles = &getAnalysis<EdgeBundles>(); 3296 SpillPlacer = &getAnalysis<SpillPlacement>(); 3297 DebugVars = &getAnalysis<LiveDebugVariables>(); 3298 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3299 3300 initializeCSRCost(); 3301 3302 RegCosts = TRI->getRegisterCosts(*MF); 3303 3304 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3305 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3306 3307 VRAI->calculateSpillWeightsAndHints(); 3308 3309 LLVM_DEBUG(LIS->dump()); 3310 3311 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3312 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3313 ExtraRegInfo.clear(); 3314 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3315 NextCascade = 1; 3316 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3317 GlobalCand.resize(32); // This will grow as needed. 3318 SetOfBrokenHints.clear(); 3319 LastEvicted.clear(); 3320 3321 allocatePhysRegs(); 3322 tryHintsRecoloring(); 3323 3324 if (VerifyEnabled) 3325 MF->verify(this, "Before post optimization"); 3326 postOptimization(); 3327 reportStats(); 3328 3329 releaseMemory(); 3330 return true; 3331 } 3332