xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "RegAllocEvictionAdvisor.h"
19 #include "SpillPlacement.h"
20 #include "SplitKit.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/CodeGen/CalcSpillWeights.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalUnion.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeEdit.h"
40 #include "llvm/CodeGen/LiveRegMatrix.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RegAllocRegistry.h"
54 #include "llvm/CodeGen/RegisterClassInfo.h"
55 #include "llvm/CodeGen/SlotIndexes.h"
56 #include "llvm/CodeGen/Spiller.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/VirtRegMap.h"
61 #include "llvm/IR/DebugInfoMetadata.h"
62 #include "llvm/IR/Function.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/BlockFrequency.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/Timer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <memory>
78 #include <queue>
79 #include <tuple>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 #define DEBUG_TYPE "regalloc"
85 
86 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
87 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
88 STATISTIC(NumEvicted,      "Number of interferences evicted");
89 
90 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
91     "split-spill-mode", cl::Hidden,
92     cl::desc("Spill mode for splitting live ranges"),
93     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
94                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
95                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
96     cl::init(SplitEditor::SM_Speed));
97 
98 static cl::opt<unsigned>
99 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
100                              cl::desc("Last chance recoloring max depth"),
101                              cl::init(5));
102 
103 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
104     "lcr-max-interf", cl::Hidden,
105     cl::desc("Last chance recoloring maximum number of considered"
106              " interference at a time"),
107     cl::init(8));
108 
109 static cl::opt<bool> ExhaustiveSearch(
110     "exhaustive-register-search", cl::NotHidden,
111     cl::desc("Exhaustive Search for registers bypassing the depth "
112              "and interference cutoffs of last chance recoloring"),
113     cl::Hidden);
114 
115 static cl::opt<bool> EnableDeferredSpilling(
116     "enable-deferred-spilling", cl::Hidden,
117     cl::desc("Instead of spilling a variable right away, defer the actual "
118              "code insertion to the end of the allocation. That way the "
119              "allocator might still find a suitable coloring for this "
120              "variable because of other evicted variables."),
121     cl::init(false));
122 
123 // FIXME: Find a good default for this flag and remove the flag.
124 static cl::opt<unsigned>
125 CSRFirstTimeCost("regalloc-csr-first-time-cost",
126               cl::desc("Cost for first time use of callee-saved register."),
127               cl::init(0), cl::Hidden);
128 
129 static cl::opt<bool> ConsiderLocalIntervalCost(
130     "consider-local-interval-cost", cl::Hidden,
131     cl::desc("Consider the cost of local intervals created by a split "
132              "candidate when choosing the best split candidate."),
133     cl::init(false));
134 
135 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
136                                        createGreedyRegisterAllocator);
137 
138 namespace {
139 
140 class RAGreedy : public MachineFunctionPass,
141                  public RegAllocBase,
142                  private LiveRangeEdit::Delegate {
143   // Convenient shortcuts.
144   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
145   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
146 
147   // context
148   MachineFunction *MF;
149 
150   // Shortcuts to some useful interface.
151   const TargetInstrInfo *TII;
152   const TargetRegisterInfo *TRI;
153   RegisterClassInfo RCI;
154 
155   // analyses
156   SlotIndexes *Indexes;
157   MachineBlockFrequencyInfo *MBFI;
158   MachineDominatorTree *DomTree;
159   MachineLoopInfo *Loops;
160   MachineOptimizationRemarkEmitter *ORE;
161   EdgeBundles *Bundles;
162   SpillPlacement *SpillPlacer;
163   LiveDebugVariables *DebugVars;
164   AliasAnalysis *AA;
165 
166   // state
167   std::unique_ptr<Spiller> SpillerInstance;
168   PQueue Queue;
169   std::unique_ptr<VirtRegAuxInfo> VRAI;
170   Optional<ExtraRegInfo> ExtraInfo;
171   std::unique_ptr<RegAllocEvictionAdvisor> EvictAdvisor;
172 
173   // Enum CutOffStage to keep a track whether the register allocation failed
174   // because of the cutoffs encountered in last chance recoloring.
175   // Note: This is used as bitmask. New value should be next power of 2.
176   enum CutOffStage {
177     // No cutoffs encountered
178     CO_None = 0,
179 
180     // lcr-max-depth cutoff encountered
181     CO_Depth = 1,
182 
183     // lcr-max-interf cutoff encountered
184     CO_Interf = 2
185   };
186 
187   uint8_t CutOffInfo;
188 
189 #ifndef NDEBUG
190   static const char *const StageName[];
191 #endif
192 
193   /// EvictionTrack - Keeps track of past evictions in order to optimize region
194   /// split decision.
195   class EvictionTrack {
196 
197   public:
198     using EvictorInfo =
199         std::pair<Register /* evictor */, MCRegister /* physreg */>;
200     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
201 
202   private:
203     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
204     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
205     EvicteeInfo Evictees;
206 
207   public:
208     /// Clear all eviction information.
209     void clear() { Evictees.clear(); }
210 
211     ///  Clear eviction information for the given evictee Vreg.
212     /// E.g. when Vreg get's a new allocation, the old eviction info is no
213     /// longer relevant.
214     /// \param Evictee The evictee Vreg for whom we want to clear collected
215     /// eviction info.
216     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
217 
218     /// Track new eviction.
219     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
220     /// \param PhysReg The physical register Evictee was evicted from.
221     /// \param Evictor The evictor Vreg that evicted Evictee.
222     /// \param Evictee The evictee Vreg.
223     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
224       Evictees[Evictee].first = Evictor;
225       Evictees[Evictee].second = PhysReg;
226     }
227 
228     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
229     /// \param Evictee The evictee vreg.
230     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
231     /// nobody has evicted Evictee from PhysReg.
232     EvictorInfo getEvictor(Register Evictee) {
233       if (Evictees.count(Evictee)) {
234         return Evictees[Evictee];
235       }
236 
237       return EvictorInfo(0, 0);
238     }
239   };
240 
241   // Keeps track of past evictions in order to optimize region split decision.
242   EvictionTrack LastEvicted;
243 
244   // splitting state.
245   std::unique_ptr<SplitAnalysis> SA;
246   std::unique_ptr<SplitEditor> SE;
247 
248   /// Cached per-block interference maps
249   InterferenceCache IntfCache;
250 
251   /// All basic blocks where the current register has uses.
252   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
253 
254   /// Global live range splitting candidate info.
255   struct GlobalSplitCandidate {
256     // Register intended for assignment, or 0.
257     MCRegister PhysReg;
258 
259     // SplitKit interval index for this candidate.
260     unsigned IntvIdx;
261 
262     // Interference for PhysReg.
263     InterferenceCache::Cursor Intf;
264 
265     // Bundles where this candidate should be live.
266     BitVector LiveBundles;
267     SmallVector<unsigned, 8> ActiveBlocks;
268 
269     void reset(InterferenceCache &Cache, MCRegister Reg) {
270       PhysReg = Reg;
271       IntvIdx = 0;
272       Intf.setPhysReg(Cache, Reg);
273       LiveBundles.clear();
274       ActiveBlocks.clear();
275     }
276 
277     // Set B[I] = C for every live bundle where B[I] was NoCand.
278     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
279       unsigned Count = 0;
280       for (unsigned I : LiveBundles.set_bits())
281         if (B[I] == NoCand) {
282           B[I] = C;
283           Count++;
284         }
285       return Count;
286     }
287   };
288 
289   /// Candidate info for each PhysReg in AllocationOrder.
290   /// This vector never shrinks, but grows to the size of the largest register
291   /// class.
292   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
293 
294   enum : unsigned { NoCand = ~0u };
295 
296   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
297   /// NoCand which indicates the stack interval.
298   SmallVector<unsigned, 32> BundleCand;
299 
300   /// Callee-save register cost, calculated once per machine function.
301   BlockFrequency CSRCost;
302 
303   /// Enable or not the consideration of the cost of local intervals created
304   /// by a split candidate when choosing the best split candidate.
305   bool EnableAdvancedRASplitCost;
306 
307   /// Set of broken hints that may be reconciled later because of eviction.
308   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
309 
310   /// The register cost values. This list will be recreated for each Machine
311   /// Function
312   ArrayRef<uint8_t> RegCosts;
313 
314 public:
315   RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses);
316 
317   /// Return the pass name.
318   StringRef getPassName() const override { return "Greedy Register Allocator"; }
319 
320   /// RAGreedy analysis usage.
321   void getAnalysisUsage(AnalysisUsage &AU) const override;
322   void releaseMemory() override;
323   Spiller &spiller() override { return *SpillerInstance; }
324   void enqueueImpl(LiveInterval *LI) override;
325   LiveInterval *dequeue() override;
326   MCRegister selectOrSplit(LiveInterval &,
327                            SmallVectorImpl<Register> &) override;
328   void aboutToRemoveInterval(LiveInterval &) override;
329 
330   /// Perform register allocation.
331   bool runOnMachineFunction(MachineFunction &mf) override;
332 
333   MachineFunctionProperties getRequiredProperties() const override {
334     return MachineFunctionProperties().set(
335         MachineFunctionProperties::Property::NoPHIs);
336   }
337 
338   MachineFunctionProperties getClearedProperties() const override {
339     return MachineFunctionProperties().set(
340       MachineFunctionProperties::Property::IsSSA);
341   }
342 
343   static char ID;
344 
345 private:
346   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
347                                SmallVirtRegSet &, unsigned = 0);
348 
349   bool LRE_CanEraseVirtReg(Register) override;
350   void LRE_WillShrinkVirtReg(Register) override;
351   void LRE_DidCloneVirtReg(Register, Register) override;
352   void enqueue(PQueue &CurQueue, LiveInterval *LI);
353   LiveInterval *dequeue(PQueue &CurQueue);
354 
355   BlockFrequency calcSpillCost();
356   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
357   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
358   bool growRegion(GlobalSplitCandidate &Cand);
359   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
360                                   unsigned BBNumber,
361                                   const AllocationOrder &Order);
362   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
363                                GlobalSplitCandidate &Cand, unsigned BBNumber,
364                                const AllocationOrder &Order);
365   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
366                                      const AllocationOrder &Order,
367                                      bool *CanCauseEvictionChain);
368   bool calcCompactRegion(GlobalSplitCandidate&);
369   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
370   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
371   bool canEvictInterferenceInRange(const LiveInterval &VirtReg,
372                                    MCRegister PhysReg, SlotIndex Start,
373                                    SlotIndex End, EvictionCost &MaxCost) const;
374   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
375                                       const LiveInterval &VirtReg,
376                                       SlotIndex Start, SlotIndex End,
377                                       float *BestEvictWeight) const;
378   void evictInterference(LiveInterval &, MCRegister,
379                          SmallVectorImpl<Register> &);
380   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
381                                   SmallLISet &RecoloringCandidates,
382                                   const SmallVirtRegSet &FixedRegisters);
383 
384   MCRegister tryAssign(LiveInterval&, AllocationOrder&,
385                      SmallVectorImpl<Register>&,
386                      const SmallVirtRegSet&);
387   MCRegister tryFindEvictionCandidate(LiveInterval &, const AllocationOrder &,
388                                       uint8_t, const SmallVirtRegSet &) const;
389   MCRegister tryEvict(LiveInterval &, AllocationOrder &,
390                     SmallVectorImpl<Register> &, uint8_t,
391                     const SmallVirtRegSet &);
392   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
393                             SmallVectorImpl<Register> &);
394   /// Calculate cost of region splitting.
395   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
396                                     AllocationOrder &Order,
397                                     BlockFrequency &BestCost,
398                                     unsigned &NumCands, bool IgnoreCSR,
399                                     bool *CanCauseEvictionChain = nullptr);
400   /// Perform region splitting.
401   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
402                          bool HasCompact,
403                          SmallVectorImpl<Register> &NewVRegs);
404   /// Check other options before using a callee-saved register for the first
405   /// time.
406   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
407                                    AllocationOrder &Order, MCRegister PhysReg,
408                                    uint8_t &CostPerUseLimit,
409                                    SmallVectorImpl<Register> &NewVRegs);
410   void initializeCSRCost();
411   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
412                          SmallVectorImpl<Register>&);
413   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
414                                SmallVectorImpl<Register>&);
415   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
416     SmallVectorImpl<Register>&);
417   unsigned trySplit(LiveInterval&, AllocationOrder&,
418                     SmallVectorImpl<Register>&,
419                     const SmallVirtRegSet&);
420   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
421                                    SmallVectorImpl<Register> &,
422                                    SmallVirtRegSet &, unsigned);
423   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
424                                SmallVirtRegSet &, unsigned);
425   void tryHintRecoloring(LiveInterval &);
426   void tryHintsRecoloring();
427 
428   /// Model the information carried by one end of a copy.
429   struct HintInfo {
430     /// The frequency of the copy.
431     BlockFrequency Freq;
432     /// The virtual register or physical register.
433     Register Reg;
434     /// Its currently assigned register.
435     /// In case of a physical register Reg == PhysReg.
436     MCRegister PhysReg;
437 
438     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
439         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
440   };
441   using HintsInfo = SmallVector<HintInfo, 4>;
442 
443   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
444   void collectHintInfo(Register, HintsInfo &);
445 
446   /// Greedy RA statistic to remark.
447   struct RAGreedyStats {
448     unsigned Reloads = 0;
449     unsigned FoldedReloads = 0;
450     unsigned ZeroCostFoldedReloads = 0;
451     unsigned Spills = 0;
452     unsigned FoldedSpills = 0;
453     unsigned Copies = 0;
454     float ReloadsCost = 0.0f;
455     float FoldedReloadsCost = 0.0f;
456     float SpillsCost = 0.0f;
457     float FoldedSpillsCost = 0.0f;
458     float CopiesCost = 0.0f;
459 
460     bool isEmpty() {
461       return !(Reloads || FoldedReloads || Spills || FoldedSpills ||
462                ZeroCostFoldedReloads || Copies);
463     }
464 
465     void add(RAGreedyStats other) {
466       Reloads += other.Reloads;
467       FoldedReloads += other.FoldedReloads;
468       ZeroCostFoldedReloads += other.ZeroCostFoldedReloads;
469       Spills += other.Spills;
470       FoldedSpills += other.FoldedSpills;
471       Copies += other.Copies;
472       ReloadsCost += other.ReloadsCost;
473       FoldedReloadsCost += other.FoldedReloadsCost;
474       SpillsCost += other.SpillsCost;
475       FoldedSpillsCost += other.FoldedSpillsCost;
476       CopiesCost += other.CopiesCost;
477     }
478 
479     void report(MachineOptimizationRemarkMissed &R);
480   };
481 
482   /// Compute statistic for a basic block.
483   RAGreedyStats computeStats(MachineBasicBlock &MBB);
484 
485   /// Compute and report statistic through a remark.
486   RAGreedyStats reportStats(MachineLoop *L);
487 
488   /// Report the statistic for each loop.
489   void reportStats();
490 };
491 
492 } // end anonymous namespace
493 
494 char RAGreedy::ID = 0;
495 char &llvm::RAGreedyID = RAGreedy::ID;
496 
497 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
498                 "Greedy Register Allocator", false, false)
499 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
500 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
501 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
502 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
503 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
504 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
505 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
506 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
507 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
508 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
509 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
510 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
511 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
512 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
513 INITIALIZE_PASS_END(RAGreedy, "greedy",
514                 "Greedy Register Allocator", false, false)
515 
516 #ifndef NDEBUG
517 const char *const RAGreedy::StageName[] = {
518     "RS_New",
519     "RS_Assign",
520     "RS_Split",
521     "RS_Split2",
522     "RS_Spill",
523     "RS_Memory",
524     "RS_Done"
525 };
526 #endif
527 
528 // Hysteresis to use when comparing floats.
529 // This helps stabilize decisions based on float comparisons.
530 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
531 
532 FunctionPass* llvm::createGreedyRegisterAllocator() {
533   return new RAGreedy();
534 }
535 
536 namespace llvm {
537 FunctionPass* createGreedyRegisterAllocator(
538   std::function<bool(const TargetRegisterInfo &TRI,
539                      const TargetRegisterClass &RC)> Ftor);
540 
541 }
542 
543 FunctionPass* llvm::createGreedyRegisterAllocator(
544   std::function<bool(const TargetRegisterInfo &TRI,
545                      const TargetRegisterClass &RC)> Ftor) {
546   return new RAGreedy(Ftor);
547 }
548 
549 RAGreedy::RAGreedy(RegClassFilterFunc F):
550   MachineFunctionPass(ID),
551   RegAllocBase(F) {
552 }
553 
554 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
555   AU.setPreservesCFG();
556   AU.addRequired<MachineBlockFrequencyInfo>();
557   AU.addPreserved<MachineBlockFrequencyInfo>();
558   AU.addRequired<AAResultsWrapperPass>();
559   AU.addPreserved<AAResultsWrapperPass>();
560   AU.addRequired<LiveIntervals>();
561   AU.addPreserved<LiveIntervals>();
562   AU.addRequired<SlotIndexes>();
563   AU.addPreserved<SlotIndexes>();
564   AU.addRequired<LiveDebugVariables>();
565   AU.addPreserved<LiveDebugVariables>();
566   AU.addRequired<LiveStacks>();
567   AU.addPreserved<LiveStacks>();
568   AU.addRequired<MachineDominatorTree>();
569   AU.addPreserved<MachineDominatorTree>();
570   AU.addRequired<MachineLoopInfo>();
571   AU.addPreserved<MachineLoopInfo>();
572   AU.addRequired<VirtRegMap>();
573   AU.addPreserved<VirtRegMap>();
574   AU.addRequired<LiveRegMatrix>();
575   AU.addPreserved<LiveRegMatrix>();
576   AU.addRequired<EdgeBundles>();
577   AU.addRequired<SpillPlacement>();
578   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
579   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
580   MachineFunctionPass::getAnalysisUsage(AU);
581 }
582 
583 //===----------------------------------------------------------------------===//
584 //                     LiveRangeEdit delegate methods
585 //===----------------------------------------------------------------------===//
586 
587 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
588   LiveInterval &LI = LIS->getInterval(VirtReg);
589   if (VRM->hasPhys(VirtReg)) {
590     Matrix->unassign(LI);
591     aboutToRemoveInterval(LI);
592     return true;
593   }
594   // Unassigned virtreg is probably in the priority queue.
595   // RegAllocBase will erase it after dequeueing.
596   // Nonetheless, clear the live-range so that the debug
597   // dump will show the right state for that VirtReg.
598   LI.clear();
599   return false;
600 }
601 
602 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
603   if (!VRM->hasPhys(VirtReg))
604     return;
605 
606   // Register is assigned, put it back on the queue for reassignment.
607   LiveInterval &LI = LIS->getInterval(VirtReg);
608   Matrix->unassign(LI);
609   RegAllocBase::enqueue(&LI);
610 }
611 
612 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
613   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
614 }
615 
616 void ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
617   // Cloning a register we haven't even heard about yet?  Just ignore it.
618   if (!Info.inBounds(Old))
619     return;
620 
621   // LRE may clone a virtual register because dead code elimination causes it to
622   // be split into connected components. The new components are much smaller
623   // than the original, so they should get a new chance at being assigned.
624   // same stage as the parent.
625   Info[Old].Stage = RS_Assign;
626   Info.grow(New.id());
627   Info[New] = Info[Old];
628 }
629 
630 void RAGreedy::releaseMemory() {
631   SpillerInstance.reset();
632   GlobalCand.clear();
633 }
634 
635 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); }
636 
637 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
638   // Prioritize live ranges by size, assigning larger ranges first.
639   // The queue holds (size, reg) pairs.
640   const unsigned Size = LI->getSize();
641   const Register Reg = LI->reg();
642   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
643   unsigned Prio;
644 
645   auto Stage = ExtraInfo->getOrInitStage(Reg);
646   if (Stage == RS_New) {
647     Stage = RS_Assign;
648     ExtraInfo->setStage(Reg, Stage);
649   }
650   if (Stage == RS_Split) {
651     // Unsplit ranges that couldn't be allocated immediately are deferred until
652     // everything else has been allocated.
653     Prio = Size;
654   } else if (Stage == RS_Memory) {
655     // Memory operand should be considered last.
656     // Change the priority such that Memory operand are assigned in
657     // the reverse order that they came in.
658     // TODO: Make this a member variable and probably do something about hints.
659     static unsigned MemOp = 0;
660     Prio = MemOp++;
661   } else {
662     // Giant live ranges fall back to the global assignment heuristic, which
663     // prevents excessive spilling in pathological cases.
664     bool ReverseLocal = TRI->reverseLocalAssignment();
665     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
666     bool ForceGlobal = !ReverseLocal &&
667       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
668 
669     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
670         LIS->intervalIsInOneMBB(*LI)) {
671       // Allocate original local ranges in linear instruction order. Since they
672       // are singly defined, this produces optimal coloring in the absence of
673       // global interference and other constraints.
674       if (!ReverseLocal)
675         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
676       else {
677         // Allocating bottom up may allow many short LRGs to be assigned first
678         // to one of the cheap registers. This could be much faster for very
679         // large blocks on targets with many physical registers.
680         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
681       }
682       Prio |= RC.AllocationPriority << 24;
683     } else {
684       // Allocate global and split ranges in long->short order. Long ranges that
685       // don't fit should be spilled (or split) ASAP so they don't create
686       // interference.  Mark a bit to prioritize global above local ranges.
687       Prio = (1u << 29) + Size;
688 
689       Prio |= RC.AllocationPriority << 24;
690     }
691     // Mark a higher bit to prioritize global and local above RS_Split.
692     Prio |= (1u << 31);
693 
694     // Boost ranges that have a physical register hint.
695     if (VRM->hasKnownPreference(Reg))
696       Prio |= (1u << 30);
697   }
698   // The virtual register number is a tie breaker for same-sized ranges.
699   // Give lower vreg numbers higher priority to assign them first.
700   CurQueue.push(std::make_pair(Prio, ~Reg));
701 }
702 
703 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
704 
705 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
706   if (CurQueue.empty())
707     return nullptr;
708   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
709   CurQueue.pop();
710   return LI;
711 }
712 
713 //===----------------------------------------------------------------------===//
714 //                            Direct Assignment
715 //===----------------------------------------------------------------------===//
716 
717 /// tryAssign - Try to assign VirtReg to an available register.
718 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
719                              AllocationOrder &Order,
720                              SmallVectorImpl<Register> &NewVRegs,
721                              const SmallVirtRegSet &FixedRegisters) {
722   MCRegister PhysReg;
723   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
724     assert(*I);
725     if (!Matrix->checkInterference(VirtReg, *I)) {
726       if (I.isHint())
727         return *I;
728       else
729         PhysReg = *I;
730     }
731   }
732   if (!PhysReg.isValid())
733     return PhysReg;
734 
735   // PhysReg is available, but there may be a better choice.
736 
737   // If we missed a simple hint, try to cheaply evict interference from the
738   // preferred register.
739   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
740     if (Order.isHint(Hint)) {
741       MCRegister PhysHint = Hint.asMCReg();
742       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
743 
744       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
745                                                  FixedRegisters)) {
746         evictInterference(VirtReg, PhysHint, NewVRegs);
747         return PhysHint;
748       }
749       // Record the missed hint, we may be able to recover
750       // at the end if the surrounding allocation changed.
751       SetOfBrokenHints.insert(&VirtReg);
752     }
753 
754   // Try to evict interference from a cheaper alternative.
755   uint8_t Cost = RegCosts[PhysReg];
756 
757   // Most registers have 0 additional cost.
758   if (!Cost)
759     return PhysReg;
760 
761   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
762                     << (unsigned)Cost << '\n');
763   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
764   return CheapReg ? CheapReg : PhysReg;
765 }
766 
767 //===----------------------------------------------------------------------===//
768 //                         Interference eviction
769 //===----------------------------------------------------------------------===//
770 
771 Register RegAllocEvictionAdvisor::canReassign(LiveInterval &VirtReg,
772                                               Register PrevReg) const {
773   auto Order =
774       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
775   MCRegister PhysReg;
776   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
777     if ((*I).id() == PrevReg.id())
778       continue;
779 
780     MCRegUnitIterator Units(*I, TRI);
781     for (; Units.isValid(); ++Units) {
782       // Instantiate a "subquery", not to be confused with the Queries array.
783       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
784       if (subQ.checkInterference())
785         break;
786     }
787     // If no units have interference, break out with the current PhysReg.
788     if (!Units.isValid())
789       PhysReg = *I;
790   }
791   if (PhysReg)
792     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
793                       << printReg(PrevReg, TRI) << " to "
794                       << printReg(PhysReg, TRI) << '\n');
795   return PhysReg;
796 }
797 
798 /// shouldEvict - determine if A should evict the assigned live range B. The
799 /// eviction policy defined by this function together with the allocation order
800 /// defined by enqueue() decides which registers ultimately end up being split
801 /// and spilled.
802 ///
803 /// Cascade numbers are used to prevent infinite loops if this function is a
804 /// cyclic relation.
805 ///
806 /// @param A          The live range to be assigned.
807 /// @param IsHint     True when A is about to be assigned to its preferred
808 ///                   register.
809 /// @param B          The live range to be evicted.
810 /// @param BreaksHint True when B is already assigned to its preferred register.
811 bool DefaultEvictionAdvisor::shouldEvict(LiveInterval &A, bool IsHint,
812                                          LiveInterval &B,
813                                          bool BreaksHint) const {
814   bool CanSplit = ExtraInfo->getStage(B) < RS_Spill;
815 
816   // Be fairly aggressive about following hints as long as the evictee can be
817   // split.
818   if (CanSplit && IsHint && !BreaksHint)
819     return true;
820 
821   if (A.weight() > B.weight()) {
822     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
823     return true;
824   }
825   return false;
826 }
827 
828 /// canEvictHintInterference - return true if the interference for VirtReg
829 /// on the PhysReg, which is VirtReg's hint, can be evicted in favor of VirtReg.
830 bool DefaultEvictionAdvisor::canEvictHintInterference(
831     LiveInterval &VirtReg, MCRegister PhysReg,
832     const SmallVirtRegSet &FixedRegisters) const {
833   EvictionCost MaxCost;
834   MaxCost.setBrokenHints(1);
835   return canEvictInterferenceBasedOnCost(VirtReg, PhysReg, true, MaxCost,
836                                          FixedRegisters);
837 }
838 
839 /// canEvictInterferenceBasedOnCost - Return true if all interferences between
840 /// VirtReg and PhysReg can be evicted.
841 ///
842 /// @param VirtReg Live range that is about to be assigned.
843 /// @param PhysReg Desired register for assignment.
844 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
845 /// @param MaxCost Only look for cheaper candidates and update with new cost
846 ///                when returning true.
847 /// @returns True when interference can be evicted cheaper than MaxCost.
848 bool DefaultEvictionAdvisor::canEvictInterferenceBasedOnCost(
849     LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
850     EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const {
851   // It is only possible to evict virtual register interference.
852   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
853     return false;
854 
855   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
856 
857   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
858   // involved in an eviction before. If a cascade number was assigned, deny
859   // evicting anything with the same or a newer cascade number. This prevents
860   // infinite eviction loops.
861   //
862   // This works out so a register without a cascade number is allowed to evict
863   // anything, and it can be evicted by anything.
864   unsigned Cascade = ExtraInfo->getCascadeOrCurrentNext(VirtReg.reg());
865 
866   EvictionCost Cost;
867   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
868     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
869     // If there is 10 or more interferences, chances are one is heavier.
870     const auto &Interferences = Q.interferingVRegs(10);
871     if (Interferences.size() >= 10)
872       return false;
873 
874     // Check if any interfering live range is heavier than MaxWeight.
875     for (LiveInterval *Intf : reverse(Interferences)) {
876       assert(Register::isVirtualRegister(Intf->reg()) &&
877              "Only expecting virtual register interference from query");
878 
879       // Do not allow eviction of a virtual register if we are in the middle
880       // of last-chance recoloring and this virtual register is one that we
881       // have scavenged a physical register for.
882       if (FixedRegisters.count(Intf->reg()))
883         return false;
884 
885       // Never evict spill products. They cannot split or spill.
886       if (ExtraInfo->getStage(*Intf) == RS_Done)
887         return false;
888       // Once a live range becomes small enough, it is urgent that we find a
889       // register for it. This is indicated by an infinite spill weight. These
890       // urgent live ranges get to evict almost anything.
891       //
892       // Also allow urgent evictions of unspillable ranges from a strictly
893       // larger allocation order.
894       bool Urgent =
895           !VirtReg.isSpillable() &&
896           (Intf->isSpillable() ||
897            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
898                RegClassInfo.getNumAllocatableRegs(
899                    MRI->getRegClass(Intf->reg())));
900       // Only evict older cascades or live ranges without a cascade.
901       unsigned IntfCascade = ExtraInfo->getCascade(Intf->reg());
902       if (Cascade <= IntfCascade) {
903         if (!Urgent)
904           return false;
905         // We permit breaking cascades for urgent evictions. It should be the
906         // last resort, though, so make it really expensive.
907         Cost.BrokenHints += 10;
908       }
909       // Would this break a satisfied hint?
910       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
911       // Update eviction cost.
912       Cost.BrokenHints += BreaksHint;
913       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
914       // Abort if this would be too expensive.
915       if (!(Cost < MaxCost))
916         return false;
917       if (Urgent)
918         continue;
919       // Apply the eviction policy for non-urgent evictions.
920       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
921         return false;
922       // If !MaxCost.isMax(), then we're just looking for a cheap register.
923       // Evicting another local live range in this case could lead to suboptimal
924       // coloring.
925       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
926           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
927         return false;
928       }
929     }
930   }
931   MaxCost = Cost;
932   return true;
933 }
934 
935 /// Return true if all interferences between VirtReg and PhysReg between
936 /// Start and End can be evicted.
937 ///
938 /// \param VirtReg Live range that is about to be assigned.
939 /// \param PhysReg Desired register for assignment.
940 /// \param Start   Start of range to look for interferences.
941 /// \param End     End of range to look for interferences.
942 /// \param MaxCost Only look for cheaper candidates and update with new cost
943 ///                when returning true.
944 /// \return True when interference can be evicted cheaper than MaxCost.
945 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
946                                            MCRegister PhysReg, SlotIndex Start,
947                                            SlotIndex End,
948                                            EvictionCost &MaxCost) const {
949   EvictionCost Cost;
950 
951   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
952     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
953 
954     // Check if any interfering live range is heavier than MaxWeight.
955     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
956       // Check if interference overlast the segment in interest.
957       if (!Intf->overlaps(Start, End))
958         continue;
959 
960       // Cannot evict non virtual reg interference.
961       if (!Register::isVirtualRegister(Intf->reg()))
962         return false;
963       // Never evict spill products. They cannot split or spill.
964       if (ExtraInfo->getStage(*Intf) == RS_Done)
965         return false;
966 
967       // Would this break a satisfied hint?
968       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
969       // Update eviction cost.
970       Cost.BrokenHints += BreaksHint;
971       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
972       // Abort if this would be too expensive.
973       if (!(Cost < MaxCost))
974         return false;
975     }
976   }
977 
978   if (Cost.MaxWeight == 0)
979     return false;
980 
981   MaxCost = Cost;
982   return true;
983 }
984 
985 /// Return the physical register that will be best
986 /// candidate for eviction by a local split interval that will be created
987 /// between Start and End.
988 ///
989 /// \param Order            The allocation order
990 /// \param VirtReg          Live range that is about to be assigned.
991 /// \param Start            Start of range to look for interferences
992 /// \param End              End of range to look for interferences
993 /// \param BestEvictweight  The eviction cost of that eviction
994 /// \return The PhysReg which is the best candidate for eviction and the
995 /// eviction cost in BestEvictweight
996 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
997                                               const LiveInterval &VirtReg,
998                                               SlotIndex Start, SlotIndex End,
999                                               float *BestEvictweight) const {
1000   EvictionCost BestEvictCost;
1001   BestEvictCost.setMax();
1002   BestEvictCost.MaxWeight = VirtReg.weight();
1003   MCRegister BestEvicteePhys;
1004 
1005   // Go over all physical registers and find the best candidate for eviction
1006   for (MCRegister PhysReg : Order.getOrder()) {
1007 
1008     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1009                                      BestEvictCost))
1010       continue;
1011 
1012     // Best so far.
1013     BestEvicteePhys = PhysReg;
1014   }
1015   *BestEvictweight = BestEvictCost.MaxWeight;
1016   return BestEvicteePhys;
1017 }
1018 
1019 /// evictInterference - Evict any interferring registers that prevent VirtReg
1020 /// from being assigned to Physreg. This assumes that canEvictInterference
1021 /// returned true.
1022 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1023                                  SmallVectorImpl<Register> &NewVRegs) {
1024   // Make sure that VirtReg has a cascade number, and assign that cascade
1025   // number to every evicted register. These live ranges than then only be
1026   // evicted by a newer cascade, preventing infinite loops.
1027   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
1028 
1029   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1030                     << " interference: Cascade " << Cascade << '\n');
1031 
1032   // Collect all interfering virtregs first.
1033   SmallVector<LiveInterval*, 8> Intfs;
1034   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1035     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1036     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1037     // should be fast, we may need to recalculate if when different physregs
1038     // overlap the same register unit so we had different SubRanges queried
1039     // against it.
1040     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1041     Intfs.append(IVR.begin(), IVR.end());
1042   }
1043 
1044   // Evict them second. This will invalidate the queries.
1045   for (LiveInterval *Intf : Intfs) {
1046     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1047     if (!VRM->hasPhys(Intf->reg()))
1048       continue;
1049 
1050     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1051 
1052     Matrix->unassign(*Intf);
1053     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
1054             VirtReg.isSpillable() < Intf->isSpillable()) &&
1055            "Cannot decrease cascade number, illegal eviction");
1056     ExtraInfo->setCascade(Intf->reg(), Cascade);
1057     ++NumEvicted;
1058     NewVRegs.push_back(Intf->reg());
1059   }
1060 }
1061 
1062 /// Returns true if the given \p PhysReg is a callee saved register and has not
1063 /// been used for allocation yet.
1064 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1065   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1066   if (!CSR)
1067     return false;
1068 
1069   return !Matrix->isPhysRegUsed(PhysReg);
1070 }
1071 
1072 MCRegister DefaultEvictionAdvisor::tryFindEvictionCandidate(
1073     LiveInterval &VirtReg, const AllocationOrder &Order,
1074     uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
1075   // Keep track of the cheapest interference seen so far.
1076   EvictionCost BestCost;
1077   BestCost.setMax();
1078   MCRegister BestPhys;
1079   unsigned OrderLimit = Order.getOrder().size();
1080 
1081   // When we are just looking for a reduced cost per use, don't break any
1082   // hints, and only evict smaller spill weights.
1083   if (CostPerUseLimit < uint8_t(~0u)) {
1084     BestCost.BrokenHints = 0;
1085     BestCost.MaxWeight = VirtReg.weight();
1086 
1087     // Check of any registers in RC are below CostPerUseLimit.
1088     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1089     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1090     if (MinCost >= CostPerUseLimit) {
1091       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1092                         << MinCost << ", no cheaper registers to be found.\n");
1093       return 0;
1094     }
1095 
1096     // It is normal for register classes to have a long tail of registers with
1097     // the same cost. We don't need to look at them if they're too expensive.
1098     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1099       OrderLimit = RegClassInfo.getLastCostChange(RC);
1100       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1101                         << " regs.\n");
1102     }
1103   }
1104 
1105   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1106        ++I) {
1107     MCRegister PhysReg = *I;
1108     assert(PhysReg);
1109     if (RegCosts[PhysReg] >= CostPerUseLimit)
1110       continue;
1111     // The first use of a callee-saved register in a function has cost 1.
1112     // Don't start using a CSR when the CostPerUseLimit is low.
1113     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1114       LLVM_DEBUG(
1115           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1116                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1117                  << '\n');
1118       continue;
1119     }
1120 
1121     if (!canEvictInterferenceBasedOnCost(VirtReg, PhysReg, false, BestCost,
1122                                          FixedRegisters))
1123       continue;
1124 
1125     // Best so far.
1126     BestPhys = PhysReg;
1127 
1128     // Stop if the hint can be used.
1129     if (I.isHint())
1130       break;
1131   }
1132   return BestPhys;
1133 }
1134 
1135 /// tryEvict - Try to evict all interferences for a physreg.
1136 /// @param  VirtReg Currently unassigned virtual register.
1137 /// @param  Order   Physregs to try.
1138 /// @return         Physreg to assign VirtReg, or 0.
1139 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1140                               SmallVectorImpl<Register> &NewVRegs,
1141                               uint8_t CostPerUseLimit,
1142                               const SmallVirtRegSet &FixedRegisters) {
1143   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1144                      TimePassesIsEnabled);
1145 
1146   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
1147       VirtReg, Order, CostPerUseLimit, FixedRegisters);
1148   if (BestPhys.isValid())
1149     evictInterference(VirtReg, BestPhys, NewVRegs);
1150   return BestPhys;
1151 }
1152 
1153 //===----------------------------------------------------------------------===//
1154 //                              Region Splitting
1155 //===----------------------------------------------------------------------===//
1156 
1157 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1158 /// interference pattern in Physreg and its aliases. Add the constraints to
1159 /// SpillPlacement and return the static cost of this split in Cost, assuming
1160 /// that all preferences in SplitConstraints are met.
1161 /// Return false if there are no bundles with positive bias.
1162 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1163                                    BlockFrequency &Cost) {
1164   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1165 
1166   // Reset interference dependent info.
1167   SplitConstraints.resize(UseBlocks.size());
1168   BlockFrequency StaticCost = 0;
1169   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1170     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1171     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1172 
1173     BC.Number = BI.MBB->getNumber();
1174     Intf.moveToBlock(BC.Number);
1175     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1176     BC.Exit = (BI.LiveOut &&
1177                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1178                   ? SpillPlacement::PrefReg
1179                   : SpillPlacement::DontCare;
1180     BC.ChangesValue = BI.FirstDef.isValid();
1181 
1182     if (!Intf.hasInterference())
1183       continue;
1184 
1185     // Number of spill code instructions to insert.
1186     unsigned Ins = 0;
1187 
1188     // Interference for the live-in value.
1189     if (BI.LiveIn) {
1190       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1191         BC.Entry = SpillPlacement::MustSpill;
1192         ++Ins;
1193       } else if (Intf.first() < BI.FirstInstr) {
1194         BC.Entry = SpillPlacement::PrefSpill;
1195         ++Ins;
1196       } else if (Intf.first() < BI.LastInstr) {
1197         ++Ins;
1198       }
1199 
1200       // Abort if the spill cannot be inserted at the MBB' start
1201       if (((BC.Entry == SpillPlacement::MustSpill) ||
1202            (BC.Entry == SpillPlacement::PrefSpill)) &&
1203           SlotIndex::isEarlierInstr(BI.FirstInstr,
1204                                     SA->getFirstSplitPoint(BC.Number)))
1205         return false;
1206     }
1207 
1208     // Interference for the live-out value.
1209     if (BI.LiveOut) {
1210       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1211         BC.Exit = SpillPlacement::MustSpill;
1212         ++Ins;
1213       } else if (Intf.last() > BI.LastInstr) {
1214         BC.Exit = SpillPlacement::PrefSpill;
1215         ++Ins;
1216       } else if (Intf.last() > BI.FirstInstr) {
1217         ++Ins;
1218       }
1219     }
1220 
1221     // Accumulate the total frequency of inserted spill code.
1222     while (Ins--)
1223       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1224   }
1225   Cost = StaticCost;
1226 
1227   // Add constraints for use-blocks. Note that these are the only constraints
1228   // that may add a positive bias, it is downhill from here.
1229   SpillPlacer->addConstraints(SplitConstraints);
1230   return SpillPlacer->scanActiveBundles();
1231 }
1232 
1233 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1234 /// live-through blocks in Blocks.
1235 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1236                                      ArrayRef<unsigned> Blocks) {
1237   const unsigned GroupSize = 8;
1238   SpillPlacement::BlockConstraint BCS[GroupSize];
1239   unsigned TBS[GroupSize];
1240   unsigned B = 0, T = 0;
1241 
1242   for (unsigned Number : Blocks) {
1243     Intf.moveToBlock(Number);
1244 
1245     if (!Intf.hasInterference()) {
1246       assert(T < GroupSize && "Array overflow");
1247       TBS[T] = Number;
1248       if (++T == GroupSize) {
1249         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1250         T = 0;
1251       }
1252       continue;
1253     }
1254 
1255     assert(B < GroupSize && "Array overflow");
1256     BCS[B].Number = Number;
1257 
1258     // Abort if the spill cannot be inserted at the MBB' start
1259     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1260     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
1261     if (FirstNonDebugInstr != MBB->end() &&
1262         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
1263                                   SA->getFirstSplitPoint(Number)))
1264       return false;
1265     // Interference for the live-in value.
1266     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1267       BCS[B].Entry = SpillPlacement::MustSpill;
1268     else
1269       BCS[B].Entry = SpillPlacement::PrefSpill;
1270 
1271     // Interference for the live-out value.
1272     if (Intf.last() >= SA->getLastSplitPoint(Number))
1273       BCS[B].Exit = SpillPlacement::MustSpill;
1274     else
1275       BCS[B].Exit = SpillPlacement::PrefSpill;
1276 
1277     if (++B == GroupSize) {
1278       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1279       B = 0;
1280     }
1281   }
1282 
1283   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1284   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1285   return true;
1286 }
1287 
1288 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1289   // Keep track of through blocks that have not been added to SpillPlacer.
1290   BitVector Todo = SA->getThroughBlocks();
1291   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1292   unsigned AddedTo = 0;
1293 #ifndef NDEBUG
1294   unsigned Visited = 0;
1295 #endif
1296 
1297   while (true) {
1298     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1299     // Find new through blocks in the periphery of PrefRegBundles.
1300     for (unsigned Bundle : NewBundles) {
1301       // Look at all blocks connected to Bundle in the full graph.
1302       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1303       for (unsigned Block : Blocks) {
1304         if (!Todo.test(Block))
1305           continue;
1306         Todo.reset(Block);
1307         // This is a new through block. Add it to SpillPlacer later.
1308         ActiveBlocks.push_back(Block);
1309 #ifndef NDEBUG
1310         ++Visited;
1311 #endif
1312       }
1313     }
1314     // Any new blocks to add?
1315     if (ActiveBlocks.size() == AddedTo)
1316       break;
1317 
1318     // Compute through constraints from the interference, or assume that all
1319     // through blocks prefer spilling when forming compact regions.
1320     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1321     if (Cand.PhysReg) {
1322       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1323         return false;
1324     } else
1325       // Provide a strong negative bias on through blocks to prevent unwanted
1326       // liveness on loop backedges.
1327       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1328     AddedTo = ActiveBlocks.size();
1329 
1330     // Perhaps iterating can enable more bundles?
1331     SpillPlacer->iterate();
1332   }
1333   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1334   return true;
1335 }
1336 
1337 /// calcCompactRegion - Compute the set of edge bundles that should be live
1338 /// when splitting the current live range into compact regions.  Compact
1339 /// regions can be computed without looking at interference.  They are the
1340 /// regions formed by removing all the live-through blocks from the live range.
1341 ///
1342 /// Returns false if the current live range is already compact, or if the
1343 /// compact regions would form single block regions anyway.
1344 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1345   // Without any through blocks, the live range is already compact.
1346   if (!SA->getNumThroughBlocks())
1347     return false;
1348 
1349   // Compact regions don't correspond to any physreg.
1350   Cand.reset(IntfCache, MCRegister::NoRegister);
1351 
1352   LLVM_DEBUG(dbgs() << "Compact region bundles");
1353 
1354   // Use the spill placer to determine the live bundles. GrowRegion pretends
1355   // that all the through blocks have interference when PhysReg is unset.
1356   SpillPlacer->prepare(Cand.LiveBundles);
1357 
1358   // The static split cost will be zero since Cand.Intf reports no interference.
1359   BlockFrequency Cost;
1360   if (!addSplitConstraints(Cand.Intf, Cost)) {
1361     LLVM_DEBUG(dbgs() << ", none.\n");
1362     return false;
1363   }
1364 
1365   if (!growRegion(Cand)) {
1366     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1367     return false;
1368   }
1369 
1370   SpillPlacer->finish();
1371 
1372   if (!Cand.LiveBundles.any()) {
1373     LLVM_DEBUG(dbgs() << ", none.\n");
1374     return false;
1375   }
1376 
1377   LLVM_DEBUG({
1378     for (int I : Cand.LiveBundles.set_bits())
1379       dbgs() << " EB#" << I;
1380     dbgs() << ".\n";
1381   });
1382   return true;
1383 }
1384 
1385 /// calcSpillCost - Compute how expensive it would be to split the live range in
1386 /// SA around all use blocks instead of forming bundle regions.
1387 BlockFrequency RAGreedy::calcSpillCost() {
1388   BlockFrequency Cost = 0;
1389   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1390   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1391     unsigned Number = BI.MBB->getNumber();
1392     // We normally only need one spill instruction - a load or a store.
1393     Cost += SpillPlacer->getBlockFrequency(Number);
1394 
1395     // Unless the value is redefined in the block.
1396     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1397       Cost += SpillPlacer->getBlockFrequency(Number);
1398   }
1399   return Cost;
1400 }
1401 
1402 /// Check if splitting Evictee will create a local split interval in
1403 /// basic block number BBNumber that may cause a bad eviction chain. This is
1404 /// intended to prevent bad eviction sequences like:
1405 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1406 /// movl	%ecx, %ebp
1407 /// movl	%ebx, %ecx
1408 /// movl	%edi, %ebx
1409 /// movl	%edx, %edi
1410 /// cltd
1411 /// idivl	%esi
1412 /// movl	%edi, %edx
1413 /// movl	%ebx, %edi
1414 /// movl	%ecx, %ebx
1415 /// movl	%ebp, %ecx
1416 /// movl	16(%esp), %ebp          # 4 - byte Reload
1417 ///
1418 /// Such sequences are created in 2 scenarios:
1419 ///
1420 /// Scenario #1:
1421 /// %0 is evicted from physreg0 by %1.
1422 /// Evictee %0 is intended for region splitting with split candidate
1423 /// physreg0 (the reg %0 was evicted from).
1424 /// Region splitting creates a local interval because of interference with the
1425 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1426 /// and "by stack" intervals and local interval created when interference
1427 /// occurs).
1428 /// One of the split intervals ends up evicting %2 from physreg1.
1429 /// Evictee %2 is intended for region splitting with split candidate
1430 /// physreg1.
1431 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1432 ///
1433 /// Scenario #2
1434 /// %0 is evicted from physreg0 by %1.
1435 /// %2 is evicted from physreg2 by %3 etc.
1436 /// Evictee %0 is intended for region splitting with split candidate
1437 /// physreg1.
1438 /// Region splitting creates a local interval because of interference with the
1439 /// evictor %1.
1440 /// One of the split intervals ends up evicting back original evictor %1
1441 /// from physreg0 (the reg %0 was evicted from).
1442 /// Another evictee %2 is intended for region splitting with split candidate
1443 /// physreg1.
1444 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1445 ///
1446 /// \param Evictee  The register considered to be split.
1447 /// \param Cand     The split candidate that determines the physical register
1448 ///                 we are splitting for and the interferences.
1449 /// \param BBNumber The number of a BB for which the region split process will
1450 ///                 create a local split interval.
1451 /// \param Order    The physical registers that may get evicted by a split
1452 ///                 artifact of Evictee.
1453 /// \return True if splitting Evictee may cause a bad eviction chain, false
1454 /// otherwise.
1455 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1456                                           GlobalSplitCandidate &Cand,
1457                                           unsigned BBNumber,
1458                                           const AllocationOrder &Order) {
1459   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1460   unsigned Evictor = VregEvictorInfo.first;
1461   MCRegister PhysReg = VregEvictorInfo.second;
1462 
1463   // No actual evictor.
1464   if (!Evictor || !PhysReg)
1465     return false;
1466 
1467   float MaxWeight = 0;
1468   MCRegister FutureEvictedPhysReg =
1469       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1470                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1471 
1472   // The bad eviction chain occurs when either the split candidate is the
1473   // evicting reg or one of the split artifact will evict the evicting reg.
1474   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1475     return false;
1476 
1477   Cand.Intf.moveToBlock(BBNumber);
1478 
1479   // Check to see if the Evictor contains interference (with Evictee) in the
1480   // given BB. If so, this interference caused the eviction of Evictee from
1481   // PhysReg. This suggest that we will create a local interval during the
1482   // region split to avoid this interference This local interval may cause a bad
1483   // eviction chain.
1484   if (!LIS->hasInterval(Evictor))
1485     return false;
1486   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1487   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1488     return false;
1489 
1490   // Now, check to see if the local interval we will create is going to be
1491   // expensive enough to evict somebody If so, this may cause a bad eviction
1492   // chain.
1493   float splitArtifactWeight =
1494       VRAI->futureWeight(LIS->getInterval(Evictee),
1495                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1496   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1497     return false;
1498 
1499   return true;
1500 }
1501 
1502 /// Check if splitting VirtRegToSplit will create a local split interval
1503 /// in basic block number BBNumber that may cause a spill.
1504 ///
1505 /// \param VirtRegToSplit The register considered to be split.
1506 /// \param Cand           The split candidate that determines the physical
1507 ///                       register we are splitting for and the interferences.
1508 /// \param BBNumber       The number of a BB for which the region split process
1509 ///                       will create a local split interval.
1510 /// \param Order          The physical registers that may get evicted by a
1511 ///                       split artifact of VirtRegToSplit.
1512 /// \return True if splitting VirtRegToSplit may cause a spill, false
1513 /// otherwise.
1514 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1515                                        GlobalSplitCandidate &Cand,
1516                                        unsigned BBNumber,
1517                                        const AllocationOrder &Order) {
1518   Cand.Intf.moveToBlock(BBNumber);
1519 
1520   // Check if the local interval will find a non interfereing assignment.
1521   for (auto PhysReg : Order.getOrder()) {
1522     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1523                                    Cand.Intf.last(), PhysReg))
1524       return false;
1525   }
1526 
1527   // The local interval is not able to find non interferencing assignment
1528   // and not able to evict a less worthy interval, therfore, it can cause a
1529   // spill.
1530   return true;
1531 }
1532 
1533 /// calcGlobalSplitCost - Return the global split cost of following the split
1534 /// pattern in LiveBundles. This cost should be added to the local cost of the
1535 /// interference pattern in SplitConstraints.
1536 ///
1537 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1538                                              const AllocationOrder &Order,
1539                                              bool *CanCauseEvictionChain) {
1540   BlockFrequency GlobalCost = 0;
1541   const BitVector &LiveBundles = Cand.LiveBundles;
1542   Register VirtRegToSplit = SA->getParent().reg();
1543   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1544   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1545     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1546     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1547     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1548     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1549     unsigned Ins = 0;
1550 
1551     Cand.Intf.moveToBlock(BC.Number);
1552     // Check wheather a local interval is going to be created during the region
1553     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1554     // is enabled.
1555     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1556         BI.LiveOut && RegIn && RegOut) {
1557 
1558       if (CanCauseEvictionChain &&
1559           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1560         // This interference causes our eviction from this assignment, we might
1561         // evict somebody else and eventually someone will spill, add that cost.
1562         // See splitCanCauseEvictionChain for detailed description of scenarios.
1563         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1564         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1565 
1566         *CanCauseEvictionChain = true;
1567 
1568       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1569                                          Order)) {
1570         // This interference causes local interval to spill, add that cost.
1571         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1572         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1573       }
1574     }
1575 
1576     if (BI.LiveIn)
1577       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1578     if (BI.LiveOut)
1579       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1580     while (Ins--)
1581       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1582   }
1583 
1584   for (unsigned Number : Cand.ActiveBlocks) {
1585     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1586     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1587     if (!RegIn && !RegOut)
1588       continue;
1589     if (RegIn && RegOut) {
1590       // We need double spill code if this block has interference.
1591       Cand.Intf.moveToBlock(Number);
1592       if (Cand.Intf.hasInterference()) {
1593         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1594         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1595 
1596         // Check wheather a local interval is going to be created during the
1597         // region split.
1598         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1599             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1600           // This interference cause our eviction from this assignment, we might
1601           // evict somebody else, add that cost.
1602           // See splitCanCauseEvictionChain for detailed description of
1603           // scenarios.
1604           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1605           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1606 
1607           *CanCauseEvictionChain = true;
1608         }
1609       }
1610       continue;
1611     }
1612     // live-in / stack-out or stack-in live-out.
1613     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1614   }
1615   return GlobalCost;
1616 }
1617 
1618 /// splitAroundRegion - Split the current live range around the regions
1619 /// determined by BundleCand and GlobalCand.
1620 ///
1621 /// Before calling this function, GlobalCand and BundleCand must be initialized
1622 /// so each bundle is assigned to a valid candidate, or NoCand for the
1623 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1624 /// objects must be initialized for the current live range, and intervals
1625 /// created for the used candidates.
1626 ///
1627 /// @param LREdit    The LiveRangeEdit object handling the current split.
1628 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1629 ///                  must appear in this list.
1630 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1631                                  ArrayRef<unsigned> UsedCands) {
1632   // These are the intervals created for new global ranges. We may create more
1633   // intervals for local ranges.
1634   const unsigned NumGlobalIntvs = LREdit.size();
1635   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1636                     << " globals.\n");
1637   assert(NumGlobalIntvs && "No global intervals configured");
1638 
1639   // Isolate even single instructions when dealing with a proper sub-class.
1640   // That guarantees register class inflation for the stack interval because it
1641   // is all copies.
1642   Register Reg = SA->getParent().reg();
1643   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1644 
1645   // First handle all the blocks with uses.
1646   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1647   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1648     unsigned Number = BI.MBB->getNumber();
1649     unsigned IntvIn = 0, IntvOut = 0;
1650     SlotIndex IntfIn, IntfOut;
1651     if (BI.LiveIn) {
1652       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1653       if (CandIn != NoCand) {
1654         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1655         IntvIn = Cand.IntvIdx;
1656         Cand.Intf.moveToBlock(Number);
1657         IntfIn = Cand.Intf.first();
1658       }
1659     }
1660     if (BI.LiveOut) {
1661       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1662       if (CandOut != NoCand) {
1663         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1664         IntvOut = Cand.IntvIdx;
1665         Cand.Intf.moveToBlock(Number);
1666         IntfOut = Cand.Intf.last();
1667       }
1668     }
1669 
1670     // Create separate intervals for isolated blocks with multiple uses.
1671     if (!IntvIn && !IntvOut) {
1672       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1673       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1674         SE->splitSingleBlock(BI);
1675       continue;
1676     }
1677 
1678     if (IntvIn && IntvOut)
1679       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1680     else if (IntvIn)
1681       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1682     else
1683       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1684   }
1685 
1686   // Handle live-through blocks. The relevant live-through blocks are stored in
1687   // the ActiveBlocks list with each candidate. We need to filter out
1688   // duplicates.
1689   BitVector Todo = SA->getThroughBlocks();
1690   for (unsigned UsedCand : UsedCands) {
1691     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1692     for (unsigned Number : Blocks) {
1693       if (!Todo.test(Number))
1694         continue;
1695       Todo.reset(Number);
1696 
1697       unsigned IntvIn = 0, IntvOut = 0;
1698       SlotIndex IntfIn, IntfOut;
1699 
1700       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1701       if (CandIn != NoCand) {
1702         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1703         IntvIn = Cand.IntvIdx;
1704         Cand.Intf.moveToBlock(Number);
1705         IntfIn = Cand.Intf.first();
1706       }
1707 
1708       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1709       if (CandOut != NoCand) {
1710         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1711         IntvOut = Cand.IntvIdx;
1712         Cand.Intf.moveToBlock(Number);
1713         IntfOut = Cand.Intf.last();
1714       }
1715       if (!IntvIn && !IntvOut)
1716         continue;
1717       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1718     }
1719   }
1720 
1721   ++NumGlobalSplits;
1722 
1723   SmallVector<unsigned, 8> IntvMap;
1724   SE->finish(&IntvMap);
1725   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1726 
1727   unsigned OrigBlocks = SA->getNumLiveBlocks();
1728 
1729   // Sort out the new intervals created by splitting. We get four kinds:
1730   // - Remainder intervals should not be split again.
1731   // - Candidate intervals can be assigned to Cand.PhysReg.
1732   // - Block-local splits are candidates for local splitting.
1733   // - DCE leftovers should go back on the queue.
1734   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1735     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1736 
1737     // Ignore old intervals from DCE.
1738     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1739       continue;
1740 
1741     // Remainder interval. Don't try splitting again, spill if it doesn't
1742     // allocate.
1743     if (IntvMap[I] == 0) {
1744       ExtraInfo->setStage(Reg, RS_Spill);
1745       continue;
1746     }
1747 
1748     // Global intervals. Allow repeated splitting as long as the number of live
1749     // blocks is strictly decreasing.
1750     if (IntvMap[I] < NumGlobalIntvs) {
1751       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1752         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1753                           << " blocks as original.\n");
1754         // Don't allow repeated splitting as a safe guard against looping.
1755         ExtraInfo->setStage(Reg, RS_Split2);
1756       }
1757       continue;
1758     }
1759 
1760     // Other intervals are treated as new. This includes local intervals created
1761     // for blocks with multiple uses, and anything created by DCE.
1762   }
1763 
1764   if (VerifyEnabled)
1765     MF->verify(this, "After splitting live range around region");
1766 }
1767 
1768 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1769                                     AllocationOrder &Order,
1770                                     SmallVectorImpl<Register> &NewVRegs) {
1771   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1772     return MCRegister::NoRegister;
1773   unsigned NumCands = 0;
1774   BlockFrequency SpillCost = calcSpillCost();
1775   BlockFrequency BestCost;
1776 
1777   // Check if we can split this live range around a compact region.
1778   bool HasCompact = calcCompactRegion(GlobalCand.front());
1779   if (HasCompact) {
1780     // Yes, keep GlobalCand[0] as the compact region candidate.
1781     NumCands = 1;
1782     BestCost = BlockFrequency::getMaxFrequency();
1783   } else {
1784     // No benefit from the compact region, our fallback will be per-block
1785     // splitting. Make sure we find a solution that is cheaper than spilling.
1786     BestCost = SpillCost;
1787     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1788                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1789   }
1790 
1791   bool CanCauseEvictionChain = false;
1792   unsigned BestCand =
1793       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1794                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1795 
1796   // Split candidates with compact regions can cause a bad eviction sequence.
1797   // See splitCanCauseEvictionChain for detailed description of scenarios.
1798   // To avoid it, we need to comapre the cost with the spill cost and not the
1799   // current max frequency.
1800   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1801     CanCauseEvictionChain) {
1802     return MCRegister::NoRegister;
1803   }
1804 
1805   // No solutions found, fall back to single block splitting.
1806   if (!HasCompact && BestCand == NoCand)
1807     return MCRegister::NoRegister;
1808 
1809   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1810 }
1811 
1812 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1813                                             AllocationOrder &Order,
1814                                             BlockFrequency &BestCost,
1815                                             unsigned &NumCands, bool IgnoreCSR,
1816                                             bool *CanCauseEvictionChain) {
1817   unsigned BestCand = NoCand;
1818   for (MCPhysReg PhysReg : Order) {
1819     assert(PhysReg);
1820     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1821       continue;
1822 
1823     // Discard bad candidates before we run out of interference cache cursors.
1824     // This will only affect register classes with a lot of registers (>32).
1825     if (NumCands == IntfCache.getMaxCursors()) {
1826       unsigned WorstCount = ~0u;
1827       unsigned Worst = 0;
1828       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1829         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1830           continue;
1831         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1832         if (Count < WorstCount) {
1833           Worst = CandIndex;
1834           WorstCount = Count;
1835         }
1836       }
1837       --NumCands;
1838       GlobalCand[Worst] = GlobalCand[NumCands];
1839       if (BestCand == NumCands)
1840         BestCand = Worst;
1841     }
1842 
1843     if (GlobalCand.size() <= NumCands)
1844       GlobalCand.resize(NumCands+1);
1845     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1846     Cand.reset(IntfCache, PhysReg);
1847 
1848     SpillPlacer->prepare(Cand.LiveBundles);
1849     BlockFrequency Cost;
1850     if (!addSplitConstraints(Cand.Intf, Cost)) {
1851       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1852       continue;
1853     }
1854     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1855                MBFI->printBlockFreq(dbgs(), Cost));
1856     if (Cost >= BestCost) {
1857       LLVM_DEBUG({
1858         if (BestCand == NoCand)
1859           dbgs() << " worse than no bundles\n";
1860         else
1861           dbgs() << " worse than "
1862                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1863       });
1864       continue;
1865     }
1866     if (!growRegion(Cand)) {
1867       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1868       continue;
1869     }
1870 
1871     SpillPlacer->finish();
1872 
1873     // No live bundles, defer to splitSingleBlocks().
1874     if (!Cand.LiveBundles.any()) {
1875       LLVM_DEBUG(dbgs() << " no bundles.\n");
1876       continue;
1877     }
1878 
1879     bool HasEvictionChain = false;
1880     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1881     LLVM_DEBUG({
1882       dbgs() << ", total = ";
1883       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1884       for (int I : Cand.LiveBundles.set_bits())
1885         dbgs() << " EB#" << I;
1886       dbgs() << ".\n";
1887     });
1888     if (Cost < BestCost) {
1889       BestCand = NumCands;
1890       BestCost = Cost;
1891       // See splitCanCauseEvictionChain for detailed description of bad
1892       // eviction chain scenarios.
1893       if (CanCauseEvictionChain)
1894         *CanCauseEvictionChain = HasEvictionChain;
1895     }
1896     ++NumCands;
1897   }
1898 
1899   if (CanCauseEvictionChain && BestCand != NoCand) {
1900     // See splitCanCauseEvictionChain for detailed description of bad
1901     // eviction chain scenarios.
1902     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1903                       << printReg(VirtReg.reg(), TRI) << "  may ");
1904     if (!(*CanCauseEvictionChain))
1905       LLVM_DEBUG(dbgs() << "not ");
1906     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1907   }
1908 
1909   return BestCand;
1910 }
1911 
1912 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1913                                  bool HasCompact,
1914                                  SmallVectorImpl<Register> &NewVRegs) {
1915   SmallVector<unsigned, 8> UsedCands;
1916   // Prepare split editor.
1917   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1918   SE->reset(LREdit, SplitSpillMode);
1919 
1920   // Assign all edge bundles to the preferred candidate, or NoCand.
1921   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1922 
1923   // Assign bundles for the best candidate region.
1924   if (BestCand != NoCand) {
1925     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1926     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1927       UsedCands.push_back(BestCand);
1928       Cand.IntvIdx = SE->openIntv();
1929       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1930                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1931       (void)B;
1932     }
1933   }
1934 
1935   // Assign bundles for the compact region.
1936   if (HasCompact) {
1937     GlobalSplitCandidate &Cand = GlobalCand.front();
1938     assert(!Cand.PhysReg && "Compact region has no physreg");
1939     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1940       UsedCands.push_back(0);
1941       Cand.IntvIdx = SE->openIntv();
1942       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1943                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1944       (void)B;
1945     }
1946   }
1947 
1948   splitAroundRegion(LREdit, UsedCands);
1949   return 0;
1950 }
1951 
1952 //===----------------------------------------------------------------------===//
1953 //                            Per-Block Splitting
1954 //===----------------------------------------------------------------------===//
1955 
1956 /// tryBlockSplit - Split a global live range around every block with uses. This
1957 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1958 /// they don't allocate.
1959 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1960                                  SmallVectorImpl<Register> &NewVRegs) {
1961   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1962   Register Reg = VirtReg.reg();
1963   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1964   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1965   SE->reset(LREdit, SplitSpillMode);
1966   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1967   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1968     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1969       SE->splitSingleBlock(BI);
1970   }
1971   // No blocks were split.
1972   if (LREdit.empty())
1973     return 0;
1974 
1975   // We did split for some blocks.
1976   SmallVector<unsigned, 8> IntvMap;
1977   SE->finish(&IntvMap);
1978 
1979   // Tell LiveDebugVariables about the new ranges.
1980   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1981 
1982   // Sort out the new intervals created by splitting. The remainder interval
1983   // goes straight to spilling, the new local ranges get to stay RS_New.
1984   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1985     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1986     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1987       ExtraInfo->setStage(LI, RS_Spill);
1988   }
1989 
1990   if (VerifyEnabled)
1991     MF->verify(this, "After splitting live range around basic blocks");
1992   return 0;
1993 }
1994 
1995 //===----------------------------------------------------------------------===//
1996 //                         Per-Instruction Splitting
1997 //===----------------------------------------------------------------------===//
1998 
1999 /// Get the number of allocatable registers that match the constraints of \p Reg
2000 /// on \p MI and that are also in \p SuperRC.
2001 static unsigned getNumAllocatableRegsForConstraints(
2002     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2003     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2004     const RegisterClassInfo &RCI) {
2005   assert(SuperRC && "Invalid register class");
2006 
2007   const TargetRegisterClass *ConstrainedRC =
2008       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2009                                              /* ExploreBundle */ true);
2010   if (!ConstrainedRC)
2011     return 0;
2012   return RCI.getNumAllocatableRegs(ConstrainedRC);
2013 }
2014 
2015 /// tryInstructionSplit - Split a live range around individual instructions.
2016 /// This is normally not worthwhile since the spiller is doing essentially the
2017 /// same thing. However, when the live range is in a constrained register
2018 /// class, it may help to insert copies such that parts of the live range can
2019 /// be moved to a larger register class.
2020 ///
2021 /// This is similar to spilling to a larger register class.
2022 unsigned
2023 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2024                               SmallVectorImpl<Register> &NewVRegs) {
2025   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2026   // There is no point to this if there are no larger sub-classes.
2027   if (!RegClassInfo.isProperSubClass(CurRC))
2028     return 0;
2029 
2030   // Always enable split spill mode, since we're effectively spilling to a
2031   // register.
2032   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2033   SE->reset(LREdit, SplitEditor::SM_Size);
2034 
2035   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2036   if (Uses.size() <= 1)
2037     return 0;
2038 
2039   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2040                     << " individual instrs.\n");
2041 
2042   const TargetRegisterClass *SuperRC =
2043       TRI->getLargestLegalSuperClass(CurRC, *MF);
2044   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2045   // Split around every non-copy instruction if this split will relax
2046   // the constraints on the virtual register.
2047   // Otherwise, splitting just inserts uncoalescable copies that do not help
2048   // the allocation.
2049   for (const SlotIndex Use : Uses) {
2050     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2051       if (MI->isFullCopy() ||
2052           SuperRCNumAllocatableRegs ==
2053               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2054                                                   TII, TRI, RCI)) {
2055         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2056         continue;
2057       }
2058     SE->openIntv();
2059     SlotIndex SegStart = SE->enterIntvBefore(Use);
2060     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2061     SE->useIntv(SegStart, SegStop);
2062   }
2063 
2064   if (LREdit.empty()) {
2065     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2066     return 0;
2067   }
2068 
2069   SmallVector<unsigned, 8> IntvMap;
2070   SE->finish(&IntvMap);
2071   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2072   // Assign all new registers to RS_Spill. This was the last chance.
2073   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2074   return 0;
2075 }
2076 
2077 //===----------------------------------------------------------------------===//
2078 //                             Local Splitting
2079 //===----------------------------------------------------------------------===//
2080 
2081 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2082 /// in order to use PhysReg between two entries in SA->UseSlots.
2083 ///
2084 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2085 ///
2086 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2087                               SmallVectorImpl<float> &GapWeight) {
2088   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2089   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2090   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2091   const unsigned NumGaps = Uses.size()-1;
2092 
2093   // Start and end points for the interference check.
2094   SlotIndex StartIdx =
2095     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2096   SlotIndex StopIdx =
2097     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2098 
2099   GapWeight.assign(NumGaps, 0.0f);
2100 
2101   // Add interference from each overlapping register.
2102   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2103     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2104           .checkInterference())
2105       continue;
2106 
2107     // We know that VirtReg is a continuous interval from FirstInstr to
2108     // LastInstr, so we don't need InterferenceQuery.
2109     //
2110     // Interference that overlaps an instruction is counted in both gaps
2111     // surrounding the instruction. The exception is interference before
2112     // StartIdx and after StopIdx.
2113     //
2114     LiveIntervalUnion::SegmentIter IntI =
2115       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2116     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2117       // Skip the gaps before IntI.
2118       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2119         if (++Gap == NumGaps)
2120           break;
2121       if (Gap == NumGaps)
2122         break;
2123 
2124       // Update the gaps covered by IntI.
2125       const float weight = IntI.value()->weight();
2126       for (; Gap != NumGaps; ++Gap) {
2127         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2128         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2129           break;
2130       }
2131       if (Gap == NumGaps)
2132         break;
2133     }
2134   }
2135 
2136   // Add fixed interference.
2137   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2138     const LiveRange &LR = LIS->getRegUnit(*Units);
2139     LiveRange::const_iterator I = LR.find(StartIdx);
2140     LiveRange::const_iterator E = LR.end();
2141 
2142     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2143     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2144       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2145         if (++Gap == NumGaps)
2146           break;
2147       if (Gap == NumGaps)
2148         break;
2149 
2150       for (; Gap != NumGaps; ++Gap) {
2151         GapWeight[Gap] = huge_valf;
2152         if (Uses[Gap+1].getBaseIndex() >= I->end)
2153           break;
2154       }
2155       if (Gap == NumGaps)
2156         break;
2157     }
2158   }
2159 }
2160 
2161 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2162 /// basic block.
2163 ///
2164 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2165                                  SmallVectorImpl<Register> &NewVRegs) {
2166   // TODO: the function currently only handles a single UseBlock; it should be
2167   // possible to generalize.
2168   if (SA->getUseBlocks().size() != 1)
2169     return 0;
2170 
2171   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2172 
2173   // Note that it is possible to have an interval that is live-in or live-out
2174   // while only covering a single block - A phi-def can use undef values from
2175   // predecessors, and the block could be a single-block loop.
2176   // We don't bother doing anything clever about such a case, we simply assume
2177   // that the interval is continuous from FirstInstr to LastInstr. We should
2178   // make sure that we don't do anything illegal to such an interval, though.
2179 
2180   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2181   if (Uses.size() <= 2)
2182     return 0;
2183   const unsigned NumGaps = Uses.size()-1;
2184 
2185   LLVM_DEBUG({
2186     dbgs() << "tryLocalSplit: ";
2187     for (const auto &Use : Uses)
2188       dbgs() << ' ' << Use;
2189     dbgs() << '\n';
2190   });
2191 
2192   // If VirtReg is live across any register mask operands, compute a list of
2193   // gaps with register masks.
2194   SmallVector<unsigned, 8> RegMaskGaps;
2195   if (Matrix->checkRegMaskInterference(VirtReg)) {
2196     // Get regmask slots for the whole block.
2197     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2198     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2199     // Constrain to VirtReg's live range.
2200     unsigned RI =
2201         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2202     unsigned RE = RMS.size();
2203     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2204       // Look for Uses[I] <= RMS <= Uses[I + 1].
2205       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2206       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2207         continue;
2208       // Skip a regmask on the same instruction as the last use. It doesn't
2209       // overlap the live range.
2210       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2211         break;
2212       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2213                         << Uses[I + 1]);
2214       RegMaskGaps.push_back(I);
2215       // Advance ri to the next gap. A regmask on one of the uses counts in
2216       // both gaps.
2217       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2218         ++RI;
2219     }
2220     LLVM_DEBUG(dbgs() << '\n');
2221   }
2222 
2223   // Since we allow local split results to be split again, there is a risk of
2224   // creating infinite loops. It is tempting to require that the new live
2225   // ranges have less instructions than the original. That would guarantee
2226   // convergence, but it is too strict. A live range with 3 instructions can be
2227   // split 2+3 (including the COPY), and we want to allow that.
2228   //
2229   // Instead we use these rules:
2230   //
2231   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2232   //    noop split, of course).
2233   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2234   //    the new ranges must have fewer instructions than before the split.
2235   // 3. New ranges with the same number of instructions are marked RS_Split2,
2236   //    smaller ranges are marked RS_New.
2237   //
2238   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2239   // excessive splitting and infinite loops.
2240   //
2241   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
2242 
2243   // Best split candidate.
2244   unsigned BestBefore = NumGaps;
2245   unsigned BestAfter = 0;
2246   float BestDiff = 0;
2247 
2248   const float blockFreq =
2249     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2250     (1.0f / MBFI->getEntryFreq());
2251   SmallVector<float, 8> GapWeight;
2252 
2253   for (MCPhysReg PhysReg : Order) {
2254     assert(PhysReg);
2255     // Keep track of the largest spill weight that would need to be evicted in
2256     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2257     calcGapWeights(PhysReg, GapWeight);
2258 
2259     // Remove any gaps with regmask clobbers.
2260     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2261       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2262         GapWeight[RegMaskGaps[I]] = huge_valf;
2263 
2264     // Try to find the best sequence of gaps to close.
2265     // The new spill weight must be larger than any gap interference.
2266 
2267     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2268     unsigned SplitBefore = 0, SplitAfter = 1;
2269 
2270     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2271     // It is the spill weight that needs to be evicted.
2272     float MaxGap = GapWeight[0];
2273 
2274     while (true) {
2275       // Live before/after split?
2276       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2277       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2278 
2279       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2280                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2281 
2282       // Stop before the interval gets so big we wouldn't be making progress.
2283       if (!LiveBefore && !LiveAfter) {
2284         LLVM_DEBUG(dbgs() << " all\n");
2285         break;
2286       }
2287       // Should the interval be extended or shrunk?
2288       bool Shrink = true;
2289 
2290       // How many gaps would the new range have?
2291       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2292 
2293       // Legally, without causing looping?
2294       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2295 
2296       if (Legal && MaxGap < huge_valf) {
2297         // Estimate the new spill weight. Each instruction reads or writes the
2298         // register. Conservatively assume there are no read-modify-write
2299         // instructions.
2300         //
2301         // Try to guess the size of the new interval.
2302         const float EstWeight = normalizeSpillWeight(
2303             blockFreq * (NewGaps + 1),
2304             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2305                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2306             1);
2307         // Would this split be possible to allocate?
2308         // Never allocate all gaps, we wouldn't be making progress.
2309         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2310         if (EstWeight * Hysteresis >= MaxGap) {
2311           Shrink = false;
2312           float Diff = EstWeight - MaxGap;
2313           if (Diff > BestDiff) {
2314             LLVM_DEBUG(dbgs() << " (best)");
2315             BestDiff = Hysteresis * Diff;
2316             BestBefore = SplitBefore;
2317             BestAfter = SplitAfter;
2318           }
2319         }
2320       }
2321 
2322       // Try to shrink.
2323       if (Shrink) {
2324         if (++SplitBefore < SplitAfter) {
2325           LLVM_DEBUG(dbgs() << " shrink\n");
2326           // Recompute the max when necessary.
2327           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2328             MaxGap = GapWeight[SplitBefore];
2329             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2330               MaxGap = std::max(MaxGap, GapWeight[I]);
2331           }
2332           continue;
2333         }
2334         MaxGap = 0;
2335       }
2336 
2337       // Try to extend the interval.
2338       if (SplitAfter >= NumGaps) {
2339         LLVM_DEBUG(dbgs() << " end\n");
2340         break;
2341       }
2342 
2343       LLVM_DEBUG(dbgs() << " extend\n");
2344       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2345     }
2346   }
2347 
2348   // Didn't find any candidates?
2349   if (BestBefore == NumGaps)
2350     return 0;
2351 
2352   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2353                     << Uses[BestAfter] << ", " << BestDiff << ", "
2354                     << (BestAfter - BestBefore + 1) << " instrs\n");
2355 
2356   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2357   SE->reset(LREdit);
2358 
2359   SE->openIntv();
2360   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2361   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2362   SE->useIntv(SegStart, SegStop);
2363   SmallVector<unsigned, 8> IntvMap;
2364   SE->finish(&IntvMap);
2365   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2366   // If the new range has the same number of instructions as before, mark it as
2367   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2368   // leave the new intervals as RS_New so they can compete.
2369   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2370   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2371   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2372   if (NewGaps >= NumGaps) {
2373     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
2374     assert(!ProgressRequired && "Didn't make progress when it was required.");
2375     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2376       if (IntvMap[I] == 1) {
2377         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2378         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
2379       }
2380     LLVM_DEBUG(dbgs() << '\n');
2381   }
2382   ++NumLocalSplits;
2383 
2384   return 0;
2385 }
2386 
2387 //===----------------------------------------------------------------------===//
2388 //                          Live Range Splitting
2389 //===----------------------------------------------------------------------===//
2390 
2391 /// trySplit - Try to split VirtReg or one of its interferences, making it
2392 /// assignable.
2393 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2394 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2395                             SmallVectorImpl<Register> &NewVRegs,
2396                             const SmallVirtRegSet &FixedRegisters) {
2397   // Ranges must be Split2 or less.
2398   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
2399     return 0;
2400 
2401   // Local intervals are handled separately.
2402   if (LIS->intervalIsInOneMBB(VirtReg)) {
2403     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2404                        TimerGroupDescription, TimePassesIsEnabled);
2405     SA->analyze(&VirtReg);
2406     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2407     if (PhysReg || !NewVRegs.empty())
2408       return PhysReg;
2409     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2410   }
2411 
2412   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2413                      TimerGroupDescription, TimePassesIsEnabled);
2414 
2415   SA->analyze(&VirtReg);
2416 
2417   // First try to split around a region spanning multiple blocks. RS_Split2
2418   // ranges already made dubious progress with region splitting, so they go
2419   // straight to single block splitting.
2420   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
2421     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2422     if (PhysReg || !NewVRegs.empty())
2423       return PhysReg;
2424   }
2425 
2426   // Then isolate blocks.
2427   return tryBlockSplit(VirtReg, Order, NewVRegs);
2428 }
2429 
2430 //===----------------------------------------------------------------------===//
2431 //                          Last Chance Recoloring
2432 //===----------------------------------------------------------------------===//
2433 
2434 /// Return true if \p reg has any tied def operand.
2435 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2436   for (const MachineOperand &MO : MRI->def_operands(reg))
2437     if (MO.isTied())
2438       return true;
2439 
2440   return false;
2441 }
2442 
2443 /// mayRecolorAllInterferences - Check if the virtual registers that
2444 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2445 /// recolored to free \p PhysReg.
2446 /// When true is returned, \p RecoloringCandidates has been augmented with all
2447 /// the live intervals that need to be recolored in order to free \p PhysReg
2448 /// for \p VirtReg.
2449 /// \p FixedRegisters contains all the virtual registers that cannot be
2450 /// recolored.
2451 bool RAGreedy::mayRecolorAllInterferences(
2452     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2453     const SmallVirtRegSet &FixedRegisters) {
2454   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2455 
2456   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2457     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2458     // If there is LastChanceRecoloringMaxInterference or more interferences,
2459     // chances are one would not be recolorable.
2460     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
2461             LastChanceRecoloringMaxInterference &&
2462         !ExhaustiveSearch) {
2463       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2464       CutOffInfo |= CO_Interf;
2465       return false;
2466     }
2467     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2468       // If Intf is done and sit on the same register class as VirtReg,
2469       // it would not be recolorable as it is in the same state as VirtReg.
2470       // However, if VirtReg has tied defs and Intf doesn't, then
2471       // there is still a point in examining if it can be recolorable.
2472       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
2473             MRI->getRegClass(Intf->reg()) == CurRC) &&
2474            !(hasTiedDef(MRI, VirtReg.reg()) &&
2475              !hasTiedDef(MRI, Intf->reg()))) ||
2476           FixedRegisters.count(Intf->reg())) {
2477         LLVM_DEBUG(
2478             dbgs() << "Early abort: the interference is not recolorable.\n");
2479         return false;
2480       }
2481       RecoloringCandidates.insert(Intf);
2482     }
2483   }
2484   return true;
2485 }
2486 
2487 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2488 /// its interferences.
2489 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2490 /// virtual register that was using it. The recoloring process may recursively
2491 /// use the last chance recoloring. Therefore, when a virtual register has been
2492 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2493 /// be last-chance-recolored again during this recoloring "session".
2494 /// E.g.,
2495 /// Let
2496 /// vA can use {R1, R2    }
2497 /// vB can use {    R2, R3}
2498 /// vC can use {R1        }
2499 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2500 /// instance) and they all interfere.
2501 ///
2502 /// vA is assigned R1
2503 /// vB is assigned R2
2504 /// vC tries to evict vA but vA is already done.
2505 /// Regular register allocation fails.
2506 ///
2507 /// Last chance recoloring kicks in:
2508 /// vC does as if vA was evicted => vC uses R1.
2509 /// vC is marked as fixed.
2510 /// vA needs to find a color.
2511 /// None are available.
2512 /// vA cannot evict vC: vC is a fixed virtual register now.
2513 /// vA does as if vB was evicted => vA uses R2.
2514 /// vB needs to find a color.
2515 /// R3 is available.
2516 /// Recoloring => vC = R1, vA = R2, vB = R3
2517 ///
2518 /// \p Order defines the preferred allocation order for \p VirtReg.
2519 /// \p NewRegs will contain any new virtual register that have been created
2520 /// (split, spill) during the process and that must be assigned.
2521 /// \p FixedRegisters contains all the virtual registers that cannot be
2522 /// recolored.
2523 /// \p Depth gives the current depth of the last chance recoloring.
2524 /// \return a physical register that can be used for VirtReg or ~0u if none
2525 /// exists.
2526 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2527                                            AllocationOrder &Order,
2528                                            SmallVectorImpl<Register> &NewVRegs,
2529                                            SmallVirtRegSet &FixedRegisters,
2530                                            unsigned Depth) {
2531   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2532     return ~0u;
2533 
2534   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2535   // Ranges must be Done.
2536   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2537          "Last chance recoloring should really be last chance");
2538   // Set the max depth to LastChanceRecoloringMaxDepth.
2539   // We may want to reconsider that if we end up with a too large search space
2540   // for target with hundreds of registers.
2541   // Indeed, in that case we may want to cut the search space earlier.
2542   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2543     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2544     CutOffInfo |= CO_Depth;
2545     return ~0u;
2546   }
2547 
2548   // Set of Live intervals that will need to be recolored.
2549   SmallLISet RecoloringCandidates;
2550   // Record the original mapping virtual register to physical register in case
2551   // the recoloring fails.
2552   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2553   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2554   // this recoloring "session".
2555   assert(!FixedRegisters.count(VirtReg.reg()));
2556   FixedRegisters.insert(VirtReg.reg());
2557   SmallVector<Register, 4> CurrentNewVRegs;
2558 
2559   for (MCRegister PhysReg : Order) {
2560     assert(PhysReg.isValid());
2561     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2562                       << printReg(PhysReg, TRI) << '\n');
2563     RecoloringCandidates.clear();
2564     VirtRegToPhysReg.clear();
2565     CurrentNewVRegs.clear();
2566 
2567     // It is only possible to recolor virtual register interference.
2568     if (Matrix->checkInterference(VirtReg, PhysReg) >
2569         LiveRegMatrix::IK_VirtReg) {
2570       LLVM_DEBUG(
2571           dbgs() << "Some interferences are not with virtual registers.\n");
2572 
2573       continue;
2574     }
2575 
2576     // Early give up on this PhysReg if it is obvious we cannot recolor all
2577     // the interferences.
2578     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2579                                     FixedRegisters)) {
2580       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2581       continue;
2582     }
2583 
2584     // RecoloringCandidates contains all the virtual registers that interfer
2585     // with VirtReg on PhysReg (or one of its aliases).
2586     // Enqueue them for recoloring and perform the actual recoloring.
2587     PQueue RecoloringQueue;
2588     for (LiveInterval *RC : RecoloringCandidates) {
2589       Register ItVirtReg = RC->reg();
2590       enqueue(RecoloringQueue, RC);
2591       assert(VRM->hasPhys(ItVirtReg) &&
2592              "Interferences are supposed to be with allocated variables");
2593 
2594       // Record the current allocation.
2595       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2596       // unset the related struct.
2597       Matrix->unassign(*RC);
2598     }
2599 
2600     // Do as if VirtReg was assigned to PhysReg so that the underlying
2601     // recoloring has the right information about the interferes and
2602     // available colors.
2603     Matrix->assign(VirtReg, PhysReg);
2604 
2605     // Save the current recoloring state.
2606     // If we cannot recolor all the interferences, we will have to start again
2607     // at this point for the next physical register.
2608     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2609     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2610                                 FixedRegisters, Depth)) {
2611       // Push the queued vregs into the main queue.
2612       for (Register NewVReg : CurrentNewVRegs)
2613         NewVRegs.push_back(NewVReg);
2614       // Do not mess up with the global assignment process.
2615       // I.e., VirtReg must be unassigned.
2616       Matrix->unassign(VirtReg);
2617       return PhysReg;
2618     }
2619 
2620     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2621                       << printReg(PhysReg, TRI) << '\n');
2622 
2623     // The recoloring attempt failed, undo the changes.
2624     FixedRegisters = SaveFixedRegisters;
2625     Matrix->unassign(VirtReg);
2626 
2627     // For a newly created vreg which is also in RecoloringCandidates,
2628     // don't add it to NewVRegs because its physical register will be restored
2629     // below. Other vregs in CurrentNewVRegs are created by calling
2630     // selectOrSplit and should be added into NewVRegs.
2631     for (Register &R : CurrentNewVRegs) {
2632       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2633         continue;
2634       NewVRegs.push_back(R);
2635     }
2636 
2637     for (LiveInterval *RC : RecoloringCandidates) {
2638       Register ItVirtReg = RC->reg();
2639       if (VRM->hasPhys(ItVirtReg))
2640         Matrix->unassign(*RC);
2641       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2642       Matrix->assign(*RC, ItPhysReg);
2643     }
2644   }
2645 
2646   // Last chance recoloring did not worked either, give up.
2647   return ~0u;
2648 }
2649 
2650 /// tryRecoloringCandidates - Try to assign a new color to every register
2651 /// in \RecoloringQueue.
2652 /// \p NewRegs will contain any new virtual register created during the
2653 /// recoloring process.
2654 /// \p FixedRegisters[in/out] contains all the registers that have been
2655 /// recolored.
2656 /// \return true if all virtual registers in RecoloringQueue were successfully
2657 /// recolored, false otherwise.
2658 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2659                                        SmallVectorImpl<Register> &NewVRegs,
2660                                        SmallVirtRegSet &FixedRegisters,
2661                                        unsigned Depth) {
2662   while (!RecoloringQueue.empty()) {
2663     LiveInterval *LI = dequeue(RecoloringQueue);
2664     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2665     MCRegister PhysReg =
2666         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2667     // When splitting happens, the live-range may actually be empty.
2668     // In that case, this is okay to continue the recoloring even
2669     // if we did not find an alternative color for it. Indeed,
2670     // there will not be anything to color for LI in the end.
2671     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2672       return false;
2673 
2674     if (!PhysReg) {
2675       assert(LI->empty() && "Only empty live-range do not require a register");
2676       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2677                         << " succeeded. Empty LI.\n");
2678       continue;
2679     }
2680     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2681                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2682 
2683     Matrix->assign(*LI, PhysReg);
2684     FixedRegisters.insert(LI->reg());
2685   }
2686   return true;
2687 }
2688 
2689 //===----------------------------------------------------------------------===//
2690 //                            Main Entry Point
2691 //===----------------------------------------------------------------------===//
2692 
2693 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2694                                    SmallVectorImpl<Register> &NewVRegs) {
2695   CutOffInfo = CO_None;
2696   LLVMContext &Ctx = MF->getFunction().getContext();
2697   SmallVirtRegSet FixedRegisters;
2698   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2699   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2700     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2701     if (CutOffEncountered == CO_Depth)
2702       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2703                     "reached. Use -fexhaustive-register-search to skip "
2704                     "cutoffs");
2705     else if (CutOffEncountered == CO_Interf)
2706       Ctx.emitError("register allocation failed: maximum interference for "
2707                     "recoloring reached. Use -fexhaustive-register-search "
2708                     "to skip cutoffs");
2709     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2710       Ctx.emitError("register allocation failed: maximum interference and "
2711                     "depth for recoloring reached. Use "
2712                     "-fexhaustive-register-search to skip cutoffs");
2713   }
2714   return Reg;
2715 }
2716 
2717 /// Using a CSR for the first time has a cost because it causes push|pop
2718 /// to be added to prologue|epilogue. Splitting a cold section of the live
2719 /// range can have lower cost than using the CSR for the first time;
2720 /// Spilling a live range in the cold path can have lower cost than using
2721 /// the CSR for the first time. Returns the physical register if we decide
2722 /// to use the CSR; otherwise return 0.
2723 MCRegister
2724 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2725                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2726                                 SmallVectorImpl<Register> &NewVRegs) {
2727   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2728     // We choose spill over using the CSR for the first time if the spill cost
2729     // is lower than CSRCost.
2730     SA->analyze(&VirtReg);
2731     if (calcSpillCost() >= CSRCost)
2732       return PhysReg;
2733 
2734     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2735     // we will not use a callee-saved register in tryEvict.
2736     CostPerUseLimit = 1;
2737     return 0;
2738   }
2739   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2740     // We choose pre-splitting over using the CSR for the first time if
2741     // the cost of splitting is lower than CSRCost.
2742     SA->analyze(&VirtReg);
2743     unsigned NumCands = 0;
2744     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2745     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2746                                                  NumCands, true /*IgnoreCSR*/);
2747     if (BestCand == NoCand)
2748       // Use the CSR if we can't find a region split below CSRCost.
2749       return PhysReg;
2750 
2751     // Perform the actual pre-splitting.
2752     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2753     return 0;
2754   }
2755   return PhysReg;
2756 }
2757 
2758 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2759   // Do not keep invalid information around.
2760   SetOfBrokenHints.remove(&LI);
2761 }
2762 
2763 void RAGreedy::initializeCSRCost() {
2764   // We use the larger one out of the command-line option and the value report
2765   // by TRI.
2766   CSRCost = BlockFrequency(
2767       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2768   if (!CSRCost.getFrequency())
2769     return;
2770 
2771   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2772   uint64_t ActualEntry = MBFI->getEntryFreq();
2773   if (!ActualEntry) {
2774     CSRCost = 0;
2775     return;
2776   }
2777   uint64_t FixedEntry = 1 << 14;
2778   if (ActualEntry < FixedEntry)
2779     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2780   else if (ActualEntry <= UINT32_MAX)
2781     // Invert the fraction and divide.
2782     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2783   else
2784     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2785     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2786 }
2787 
2788 /// Collect the hint info for \p Reg.
2789 /// The results are stored into \p Out.
2790 /// \p Out is not cleared before being populated.
2791 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2792   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2793     if (!Instr.isFullCopy())
2794       continue;
2795     // Look for the other end of the copy.
2796     Register OtherReg = Instr.getOperand(0).getReg();
2797     if (OtherReg == Reg) {
2798       OtherReg = Instr.getOperand(1).getReg();
2799       if (OtherReg == Reg)
2800         continue;
2801     }
2802     // Get the current assignment.
2803     MCRegister OtherPhysReg =
2804         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2805     // Push the collected information.
2806     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2807                            OtherPhysReg));
2808   }
2809 }
2810 
2811 /// Using the given \p List, compute the cost of the broken hints if
2812 /// \p PhysReg was used.
2813 /// \return The cost of \p List for \p PhysReg.
2814 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2815                                            MCRegister PhysReg) {
2816   BlockFrequency Cost = 0;
2817   for (const HintInfo &Info : List) {
2818     if (Info.PhysReg != PhysReg)
2819       Cost += Info.Freq;
2820   }
2821   return Cost;
2822 }
2823 
2824 /// Using the register assigned to \p VirtReg, try to recolor
2825 /// all the live ranges that are copy-related with \p VirtReg.
2826 /// The recoloring is then propagated to all the live-ranges that have
2827 /// been recolored and so on, until no more copies can be coalesced or
2828 /// it is not profitable.
2829 /// For a given live range, profitability is determined by the sum of the
2830 /// frequencies of the non-identity copies it would introduce with the old
2831 /// and new register.
2832 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2833   // We have a broken hint, check if it is possible to fix it by
2834   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2835   // some register and PhysReg may be available for the other live-ranges.
2836   SmallSet<Register, 4> Visited;
2837   SmallVector<unsigned, 2> RecoloringCandidates;
2838   HintsInfo Info;
2839   Register Reg = VirtReg.reg();
2840   MCRegister PhysReg = VRM->getPhys(Reg);
2841   // Start the recoloring algorithm from the input live-interval, then
2842   // it will propagate to the ones that are copy-related with it.
2843   Visited.insert(Reg);
2844   RecoloringCandidates.push_back(Reg);
2845 
2846   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2847                     << '(' << printReg(PhysReg, TRI) << ")\n");
2848 
2849   do {
2850     Reg = RecoloringCandidates.pop_back_val();
2851 
2852     // We cannot recolor physical register.
2853     if (Register::isPhysicalRegister(Reg))
2854       continue;
2855 
2856     // This may be a skipped class
2857     if (!VRM->hasPhys(Reg)) {
2858       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2859              "We have an unallocated variable which should have been handled");
2860       continue;
2861     }
2862 
2863     // Get the live interval mapped with this virtual register to be able
2864     // to check for the interference with the new color.
2865     LiveInterval &LI = LIS->getInterval(Reg);
2866     MCRegister CurrPhys = VRM->getPhys(Reg);
2867     // Check that the new color matches the register class constraints and
2868     // that it is free for this live range.
2869     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2870                                 Matrix->checkInterference(LI, PhysReg)))
2871       continue;
2872 
2873     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2874                       << ") is recolorable.\n");
2875 
2876     // Gather the hint info.
2877     Info.clear();
2878     collectHintInfo(Reg, Info);
2879     // Check if recoloring the live-range will increase the cost of the
2880     // non-identity copies.
2881     if (CurrPhys != PhysReg) {
2882       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2883       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2884       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2885       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2886                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2887                         << '\n');
2888       if (OldCopiesCost < NewCopiesCost) {
2889         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2890         continue;
2891       }
2892       // At this point, the cost is either cheaper or equal. If it is
2893       // equal, we consider this is profitable because it may expose
2894       // more recoloring opportunities.
2895       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2896       // Recolor the live-range.
2897       Matrix->unassign(LI);
2898       Matrix->assign(LI, PhysReg);
2899     }
2900     // Push all copy-related live-ranges to keep reconciling the broken
2901     // hints.
2902     for (const HintInfo &HI : Info) {
2903       if (Visited.insert(HI.Reg).second)
2904         RecoloringCandidates.push_back(HI.Reg);
2905     }
2906   } while (!RecoloringCandidates.empty());
2907 }
2908 
2909 /// Try to recolor broken hints.
2910 /// Broken hints may be repaired by recoloring when an evicted variable
2911 /// freed up a register for a larger live-range.
2912 /// Consider the following example:
2913 /// BB1:
2914 ///   a =
2915 ///   b =
2916 /// BB2:
2917 ///   ...
2918 ///   = b
2919 ///   = a
2920 /// Let us assume b gets split:
2921 /// BB1:
2922 ///   a =
2923 ///   b =
2924 /// BB2:
2925 ///   c = b
2926 ///   ...
2927 ///   d = c
2928 ///   = d
2929 ///   = a
2930 /// Because of how the allocation work, b, c, and d may be assigned different
2931 /// colors. Now, if a gets evicted later:
2932 /// BB1:
2933 ///   a =
2934 ///   st a, SpillSlot
2935 ///   b =
2936 /// BB2:
2937 ///   c = b
2938 ///   ...
2939 ///   d = c
2940 ///   = d
2941 ///   e = ld SpillSlot
2942 ///   = e
2943 /// This is likely that we can assign the same register for b, c, and d,
2944 /// getting rid of 2 copies.
2945 void RAGreedy::tryHintsRecoloring() {
2946   for (LiveInterval *LI : SetOfBrokenHints) {
2947     assert(Register::isVirtualRegister(LI->reg()) &&
2948            "Recoloring is possible only for virtual registers");
2949     // Some dead defs may be around (e.g., because of debug uses).
2950     // Ignore those.
2951     if (!VRM->hasPhys(LI->reg()))
2952       continue;
2953     tryHintRecoloring(*LI);
2954   }
2955 }
2956 
2957 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2958                                        SmallVectorImpl<Register> &NewVRegs,
2959                                        SmallVirtRegSet &FixedRegisters,
2960                                        unsigned Depth) {
2961   uint8_t CostPerUseLimit = uint8_t(~0u);
2962   // First try assigning a free register.
2963   auto Order =
2964       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2965   if (MCRegister PhysReg =
2966           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2967     // If VirtReg got an assignment, the eviction info is no longer relevant.
2968     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2969     // When NewVRegs is not empty, we may have made decisions such as evicting
2970     // a virtual register, go with the earlier decisions and use the physical
2971     // register.
2972     if (CSRCost.getFrequency() &&
2973         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2974       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2975                                                 CostPerUseLimit, NewVRegs);
2976       if (CSRReg || !NewVRegs.empty())
2977         // Return now if we decide to use a CSR or create new vregs due to
2978         // pre-splitting.
2979         return CSRReg;
2980     } else
2981       return PhysReg;
2982   }
2983 
2984   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2985   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2986                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2987 
2988   // Try to evict a less worthy live range, but only for ranges from the primary
2989   // queue. The RS_Split ranges already failed to do this, and they should not
2990   // get a second chance until they have been split.
2991   if (Stage != RS_Split)
2992     if (Register PhysReg =
2993             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2994                      FixedRegisters)) {
2995       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2996       // If VirtReg has a hint and that hint is broken record this
2997       // virtual register as a recoloring candidate for broken hint.
2998       // Indeed, since we evicted a variable in its neighborhood it is
2999       // likely we can at least partially recolor some of the
3000       // copy-related live-ranges.
3001       if (Hint && Hint != PhysReg)
3002         SetOfBrokenHints.insert(&VirtReg);
3003       // If VirtReg eviction someone, the eviction info for it as an evictee is
3004       // no longer relevant.
3005       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3006       return PhysReg;
3007     }
3008 
3009   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3010 
3011   // The first time we see a live range, don't try to split or spill.
3012   // Wait until the second time, when all smaller ranges have been allocated.
3013   // This gives a better picture of the interference to split around.
3014   if (Stage < RS_Split) {
3015     ExtraInfo->setStage(VirtReg, RS_Split);
3016     LLVM_DEBUG(dbgs() << "wait for second round\n");
3017     NewVRegs.push_back(VirtReg.reg());
3018     return 0;
3019   }
3020 
3021   if (Stage < RS_Spill) {
3022     // Try splitting VirtReg or interferences.
3023     unsigned NewVRegSizeBefore = NewVRegs.size();
3024     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3025     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3026       // If VirtReg got split, the eviction info is no longer relevant.
3027       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3028       return PhysReg;
3029     }
3030   }
3031 
3032   // If we couldn't allocate a register from spilling, there is probably some
3033   // invalid inline assembly. The base class will report it.
3034   if (Stage >= RS_Done || !VirtReg.isSpillable())
3035     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3036                                    Depth);
3037 
3038   // Finally spill VirtReg itself.
3039   if ((EnableDeferredSpilling ||
3040        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3041       ExtraInfo->getStage(VirtReg) < RS_Memory) {
3042     // TODO: This is experimental and in particular, we do not model
3043     // the live range splitting done by spilling correctly.
3044     // We would need a deep integration with the spiller to do the
3045     // right thing here. Anyway, that is still good for early testing.
3046     ExtraInfo->setStage(VirtReg, RS_Memory);
3047     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3048     NewVRegs.push_back(VirtReg.reg());
3049   } else {
3050     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3051                        TimerGroupDescription, TimePassesIsEnabled);
3052     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3053     spiller().spill(LRE);
3054     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3055 
3056     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3057     // the new regs are kept in LDV (still mapping to the old register), until
3058     // we rewrite spilled locations in LDV at a later stage.
3059     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3060 
3061     if (VerifyEnabled)
3062       MF->verify(this, "After spilling");
3063   }
3064 
3065   // The live virtual register requesting allocation was spilled, so tell
3066   // the caller not to allocate anything during this round.
3067   return 0;
3068 }
3069 
3070 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
3071   using namespace ore;
3072   if (Spills) {
3073     R << NV("NumSpills", Spills) << " spills ";
3074     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
3075   }
3076   if (FoldedSpills) {
3077     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3078     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
3079       << " total folded spills cost ";
3080   }
3081   if (Reloads) {
3082     R << NV("NumReloads", Reloads) << " reloads ";
3083     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
3084   }
3085   if (FoldedReloads) {
3086     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3087     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
3088       << " total folded reloads cost ";
3089   }
3090   if (ZeroCostFoldedReloads)
3091     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
3092       << " zero cost folded reloads ";
3093   if (Copies) {
3094     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
3095     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
3096   }
3097 }
3098 
3099 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
3100   RAGreedyStats Stats;
3101   const MachineFrameInfo &MFI = MF->getFrameInfo();
3102   int FI;
3103 
3104   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3105     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
3106         A->getPseudoValue())->getFrameIndex());
3107   };
3108   auto isPatchpointInstr = [](const MachineInstr &MI) {
3109     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
3110            MI.getOpcode() == TargetOpcode::STACKMAP ||
3111            MI.getOpcode() == TargetOpcode::STATEPOINT;
3112   };
3113   for (MachineInstr &MI : MBB) {
3114     if (MI.isCopy()) {
3115       MachineOperand &Dest = MI.getOperand(0);
3116       MachineOperand &Src = MI.getOperand(1);
3117       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
3118           Src.getReg().isVirtual())
3119         ++Stats.Copies;
3120       continue;
3121     }
3122 
3123     SmallVector<const MachineMemOperand *, 2> Accesses;
3124     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3125       ++Stats.Reloads;
3126       continue;
3127     }
3128     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3129       ++Stats.Spills;
3130       continue;
3131     }
3132     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3133         llvm::any_of(Accesses, isSpillSlotAccess)) {
3134       if (!isPatchpointInstr(MI)) {
3135         Stats.FoldedReloads += Accesses.size();
3136         continue;
3137       }
3138       // For statepoint there may be folded and zero cost folded stack reloads.
3139       std::pair<unsigned, unsigned> NonZeroCostRange =
3140           TII->getPatchpointUnfoldableRange(MI);
3141       SmallSet<unsigned, 16> FoldedReloads;
3142       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
3143       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
3144         MachineOperand &MO = MI.getOperand(Idx);
3145         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
3146           continue;
3147         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
3148           FoldedReloads.insert(MO.getIndex());
3149         else
3150           ZeroCostFoldedReloads.insert(MO.getIndex());
3151       }
3152       // If stack slot is used in folded reload it is not zero cost then.
3153       for (unsigned Slot : FoldedReloads)
3154         ZeroCostFoldedReloads.erase(Slot);
3155       Stats.FoldedReloads += FoldedReloads.size();
3156       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
3157       continue;
3158     }
3159     Accesses.clear();
3160     if (TII->hasStoreToStackSlot(MI, Accesses) &&
3161         llvm::any_of(Accesses, isSpillSlotAccess)) {
3162       Stats.FoldedSpills += Accesses.size();
3163     }
3164   }
3165   // Set cost of collected statistic by multiplication to relative frequency of
3166   // this basic block.
3167   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
3168   Stats.ReloadsCost = RelFreq * Stats.Reloads;
3169   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
3170   Stats.SpillsCost = RelFreq * Stats.Spills;
3171   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
3172   Stats.CopiesCost = RelFreq * Stats.Copies;
3173   return Stats;
3174 }
3175 
3176 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
3177   RAGreedyStats Stats;
3178 
3179   // Sum up the spill and reloads in subloops.
3180   for (MachineLoop *SubLoop : *L)
3181     Stats.add(reportStats(SubLoop));
3182 
3183   for (MachineBasicBlock *MBB : L->getBlocks())
3184     // Handle blocks that were not included in subloops.
3185     if (Loops->getLoopFor(MBB) == L)
3186       Stats.add(computeStats(*MBB));
3187 
3188   if (!Stats.isEmpty()) {
3189     using namespace ore;
3190 
3191     ORE->emit([&]() {
3192       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
3193                                         L->getStartLoc(), L->getHeader());
3194       Stats.report(R);
3195       R << "generated in loop";
3196       return R;
3197     });
3198   }
3199   return Stats;
3200 }
3201 
3202 void RAGreedy::reportStats() {
3203   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
3204     return;
3205   RAGreedyStats Stats;
3206   for (MachineLoop *L : *Loops)
3207     Stats.add(reportStats(L));
3208   // Process non-loop blocks.
3209   for (MachineBasicBlock &MBB : *MF)
3210     if (!Loops->getLoopFor(&MBB))
3211       Stats.add(computeStats(MBB));
3212   if (!Stats.isEmpty()) {
3213     using namespace ore;
3214 
3215     ORE->emit([&]() {
3216       DebugLoc Loc;
3217       if (auto *SP = MF->getFunction().getSubprogram())
3218         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
3219       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
3220                                         &MF->front());
3221       Stats.report(R);
3222       R << "generated in function";
3223       return R;
3224     });
3225   }
3226 }
3227 
3228 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3229   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3230                     << "********** Function: " << mf.getName() << '\n');
3231 
3232   MF = &mf;
3233   TRI = MF->getSubtarget().getRegisterInfo();
3234   TII = MF->getSubtarget().getInstrInfo();
3235   RCI.runOnMachineFunction(mf);
3236 
3237   EnableAdvancedRASplitCost =
3238       ConsiderLocalIntervalCost.getNumOccurrences()
3239           ? ConsiderLocalIntervalCost
3240           : MF->getSubtarget().enableAdvancedRASplitCost();
3241 
3242   if (VerifyEnabled)
3243     MF->verify(this, "Before greedy register allocator");
3244 
3245   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3246                      getAnalysis<LiveIntervals>(),
3247                      getAnalysis<LiveRegMatrix>());
3248   Indexes = &getAnalysis<SlotIndexes>();
3249   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3250   DomTree = &getAnalysis<MachineDominatorTree>();
3251   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3252   Loops = &getAnalysis<MachineLoopInfo>();
3253   Bundles = &getAnalysis<EdgeBundles>();
3254   SpillPlacer = &getAnalysis<SpillPlacement>();
3255   DebugVars = &getAnalysis<LiveDebugVariables>();
3256   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3257 
3258   initializeCSRCost();
3259 
3260   RegCosts = TRI->getRegisterCosts(*MF);
3261 
3262   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3263   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
3264 
3265   VRAI->calculateSpillWeightsAndHints();
3266 
3267   LLVM_DEBUG(LIS->dump());
3268 
3269   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3270   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
3271   ExtraInfo.emplace();
3272   EvictAdvisor = getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(
3273       *MF, Matrix, LIS, VRM, RegClassInfo, &*ExtraInfo);
3274   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3275   GlobalCand.resize(32);  // This will grow as needed.
3276   SetOfBrokenHints.clear();
3277   LastEvicted.clear();
3278 
3279   allocatePhysRegs();
3280   tryHintsRecoloring();
3281 
3282   if (VerifyEnabled)
3283     MF->verify(this, "Before post optimization");
3284   postOptimization();
3285   reportStats();
3286 
3287   releaseMemory();
3288   return true;
3289 }
3290