18bcb0991SDimitry Andric //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 28bcb0991SDimitry Andric // 38bcb0991SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48bcb0991SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 58bcb0991SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68bcb0991SDimitry Andric // 78bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 88bcb0991SDimitry Andric 98bcb0991SDimitry Andric #include "llvm/CodeGen/ModuloSchedule.h" 108bcb0991SDimitry Andric #include "llvm/ADT/StringExtras.h" 115ffd83dbSDimitry Andric #include "llvm/Analysis/MemoryLocation.h" 128bcb0991SDimitry Andric #include "llvm/CodeGen/LiveIntervals.h" 138bcb0991SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 1481ad6265SDimitry Andric #include "llvm/CodeGen/MachineLoopInfo.h" 158bcb0991SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 16480093f4SDimitry Andric #include "llvm/InitializePasses.h" 178bcb0991SDimitry Andric #include "llvm/MC/MCContext.h" 188bcb0991SDimitry Andric #include "llvm/Support/Debug.h" 198bcb0991SDimitry Andric #include "llvm/Support/ErrorHandling.h" 208bcb0991SDimitry Andric #include "llvm/Support/raw_ostream.h" 218bcb0991SDimitry Andric 228bcb0991SDimitry Andric #define DEBUG_TYPE "pipeliner" 238bcb0991SDimitry Andric using namespace llvm; 248bcb0991SDimitry Andric 258bcb0991SDimitry Andric void ModuloSchedule::print(raw_ostream &OS) { 268bcb0991SDimitry Andric for (MachineInstr *MI : ScheduledInstrs) 278bcb0991SDimitry Andric OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 288bcb0991SDimitry Andric } 298bcb0991SDimitry Andric 308bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 318bcb0991SDimitry Andric // ModuloScheduleExpander implementation 328bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 338bcb0991SDimitry Andric 348bcb0991SDimitry Andric /// Return the register values for the operands of a Phi instruction. 358bcb0991SDimitry Andric /// This function assume the instruction is a Phi. 368bcb0991SDimitry Andric static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 378bcb0991SDimitry Andric unsigned &InitVal, unsigned &LoopVal) { 388bcb0991SDimitry Andric assert(Phi.isPHI() && "Expecting a Phi."); 398bcb0991SDimitry Andric 408bcb0991SDimitry Andric InitVal = 0; 418bcb0991SDimitry Andric LoopVal = 0; 428bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 438bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != Loop) 448bcb0991SDimitry Andric InitVal = Phi.getOperand(i).getReg(); 458bcb0991SDimitry Andric else 468bcb0991SDimitry Andric LoopVal = Phi.getOperand(i).getReg(); 478bcb0991SDimitry Andric 488bcb0991SDimitry Andric assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 498bcb0991SDimitry Andric } 508bcb0991SDimitry Andric 518bcb0991SDimitry Andric /// Return the Phi register value that comes from the incoming block. 528bcb0991SDimitry Andric static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 538bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 548bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != LoopBB) 558bcb0991SDimitry Andric return Phi.getOperand(i).getReg(); 568bcb0991SDimitry Andric return 0; 578bcb0991SDimitry Andric } 588bcb0991SDimitry Andric 598bcb0991SDimitry Andric /// Return the Phi register value that comes the loop block. 608bcb0991SDimitry Andric static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 618bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 628bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() == LoopBB) 638bcb0991SDimitry Andric return Phi.getOperand(i).getReg(); 648bcb0991SDimitry Andric return 0; 658bcb0991SDimitry Andric } 668bcb0991SDimitry Andric 678bcb0991SDimitry Andric void ModuloScheduleExpander::expand() { 688bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 698bcb0991SDimitry Andric Preheader = *BB->pred_begin(); 708bcb0991SDimitry Andric if (Preheader == BB) 718bcb0991SDimitry Andric Preheader = *std::next(BB->pred_begin()); 728bcb0991SDimitry Andric 738bcb0991SDimitry Andric // Iterate over the definitions in each instruction, and compute the 748bcb0991SDimitry Andric // stage difference for each use. Keep the maximum value. 758bcb0991SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) { 768bcb0991SDimitry Andric int DefStage = Schedule.getStage(MI); 774824e7fdSDimitry Andric for (const MachineOperand &Op : MI->operands()) { 788bcb0991SDimitry Andric if (!Op.isReg() || !Op.isDef()) 798bcb0991SDimitry Andric continue; 808bcb0991SDimitry Andric 818bcb0991SDimitry Andric Register Reg = Op.getReg(); 828bcb0991SDimitry Andric unsigned MaxDiff = 0; 838bcb0991SDimitry Andric bool PhiIsSwapped = false; 84349cc55cSDimitry Andric for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 858bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent(); 868bcb0991SDimitry Andric int UseStage = Schedule.getStage(UseMI); 878bcb0991SDimitry Andric unsigned Diff = 0; 888bcb0991SDimitry Andric if (UseStage != -1 && UseStage >= DefStage) 898bcb0991SDimitry Andric Diff = UseStage - DefStage; 908bcb0991SDimitry Andric if (MI->isPHI()) { 918bcb0991SDimitry Andric if (isLoopCarried(*MI)) 928bcb0991SDimitry Andric ++Diff; 938bcb0991SDimitry Andric else 948bcb0991SDimitry Andric PhiIsSwapped = true; 958bcb0991SDimitry Andric } 968bcb0991SDimitry Andric MaxDiff = std::max(Diff, MaxDiff); 978bcb0991SDimitry Andric } 988bcb0991SDimitry Andric RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 998bcb0991SDimitry Andric } 1008bcb0991SDimitry Andric } 1018bcb0991SDimitry Andric 1028bcb0991SDimitry Andric generatePipelinedLoop(); 1038bcb0991SDimitry Andric } 1048bcb0991SDimitry Andric 1058bcb0991SDimitry Andric void ModuloScheduleExpander::generatePipelinedLoop() { 1068bcb0991SDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB); 1078bcb0991SDimitry Andric assert(LoopInfo && "Must be able to analyze loop!"); 1088bcb0991SDimitry Andric 1098bcb0991SDimitry Andric // Create a new basic block for the kernel and add it to the CFG. 1108bcb0991SDimitry Andric MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1118bcb0991SDimitry Andric 1128bcb0991SDimitry Andric unsigned MaxStageCount = Schedule.getNumStages() - 1; 1138bcb0991SDimitry Andric 1148bcb0991SDimitry Andric // Remember the registers that are used in different stages. The index is 1158bcb0991SDimitry Andric // the iteration, or stage, that the instruction is scheduled in. This is 1168bcb0991SDimitry Andric // a map between register names in the original block and the names created 1178bcb0991SDimitry Andric // in each stage of the pipelined loop. 1188bcb0991SDimitry Andric ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 119*bdd1243dSDimitry Andric 120*bdd1243dSDimitry Andric // The renaming destination by Phis for the registers across stages. 121*bdd1243dSDimitry Andric // This map is updated during Phis generation to point to the most recent 122*bdd1243dSDimitry Andric // renaming destination. 123*bdd1243dSDimitry Andric ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2]; 124*bdd1243dSDimitry Andric 1258bcb0991SDimitry Andric InstrMapTy InstrMap; 1268bcb0991SDimitry Andric 1278bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> PrologBBs; 1288bcb0991SDimitry Andric 1298bcb0991SDimitry Andric // Generate the prolog instructions that set up the pipeline. 1308bcb0991SDimitry Andric generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 1318bcb0991SDimitry Andric MF.insert(BB->getIterator(), KernelBB); 1328bcb0991SDimitry Andric 1338bcb0991SDimitry Andric // Rearrange the instructions to generate the new, pipelined loop, 1348bcb0991SDimitry Andric // and update register names as needed. 1358bcb0991SDimitry Andric for (MachineInstr *CI : Schedule.getInstructions()) { 1368bcb0991SDimitry Andric if (CI->isPHI()) 1378bcb0991SDimitry Andric continue; 1388bcb0991SDimitry Andric unsigned StageNum = Schedule.getStage(CI); 1398bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 1408bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 1418bcb0991SDimitry Andric KernelBB->push_back(NewMI); 1428bcb0991SDimitry Andric InstrMap[NewMI] = CI; 1438bcb0991SDimitry Andric } 1448bcb0991SDimitry Andric 1458bcb0991SDimitry Andric // Copy any terminator instructions to the new kernel, and update 1468bcb0991SDimitry Andric // names as needed. 147349cc55cSDimitry Andric for (MachineInstr &MI : BB->terminators()) { 148349cc55cSDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 1498bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 1508bcb0991SDimitry Andric KernelBB->push_back(NewMI); 151349cc55cSDimitry Andric InstrMap[NewMI] = &MI; 1528bcb0991SDimitry Andric } 1538bcb0991SDimitry Andric 1548bcb0991SDimitry Andric NewKernel = KernelBB; 1558bcb0991SDimitry Andric KernelBB->transferSuccessors(BB); 1568bcb0991SDimitry Andric KernelBB->replaceSuccessor(BB, KernelBB); 1578bcb0991SDimitry Andric 1588bcb0991SDimitry Andric generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 1598bcb0991SDimitry Andric InstrMap, MaxStageCount, MaxStageCount, false); 160*bdd1243dSDimitry Andric generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi, 161*bdd1243dSDimitry Andric InstrMap, MaxStageCount, MaxStageCount, false); 1628bcb0991SDimitry Andric 1638bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 1648bcb0991SDimitry Andric 1658bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> EpilogBBs; 1668bcb0991SDimitry Andric // Generate the epilog instructions to complete the pipeline. 167*bdd1243dSDimitry Andric generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs, 168*bdd1243dSDimitry Andric PrologBBs); 1698bcb0991SDimitry Andric 1708bcb0991SDimitry Andric // We need this step because the register allocation doesn't handle some 1718bcb0991SDimitry Andric // situations well, so we insert copies to help out. 1728bcb0991SDimitry Andric splitLifetimes(KernelBB, EpilogBBs); 1738bcb0991SDimitry Andric 1748bcb0991SDimitry Andric // Remove dead instructions due to loop induction variables. 1758bcb0991SDimitry Andric removeDeadInstructions(KernelBB, EpilogBBs); 1768bcb0991SDimitry Andric 1778bcb0991SDimitry Andric // Add branches between prolog and epilog blocks. 1788bcb0991SDimitry Andric addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 1798bcb0991SDimitry Andric 1808bcb0991SDimitry Andric delete[] VRMap; 181*bdd1243dSDimitry Andric delete[] VRMapPhi; 1828bcb0991SDimitry Andric } 1838bcb0991SDimitry Andric 1848bcb0991SDimitry Andric void ModuloScheduleExpander::cleanup() { 1858bcb0991SDimitry Andric // Remove the original loop since it's no longer referenced. 1868bcb0991SDimitry Andric for (auto &I : *BB) 1878bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(I); 1888bcb0991SDimitry Andric BB->clear(); 1898bcb0991SDimitry Andric BB->eraseFromParent(); 1908bcb0991SDimitry Andric } 1918bcb0991SDimitry Andric 1928bcb0991SDimitry Andric /// Generate the pipeline prolog code. 1938bcb0991SDimitry Andric void ModuloScheduleExpander::generateProlog(unsigned LastStage, 1948bcb0991SDimitry Andric MachineBasicBlock *KernelBB, 1958bcb0991SDimitry Andric ValueMapTy *VRMap, 1968bcb0991SDimitry Andric MBBVectorTy &PrologBBs) { 1978bcb0991SDimitry Andric MachineBasicBlock *PredBB = Preheader; 1988bcb0991SDimitry Andric InstrMapTy InstrMap; 1998bcb0991SDimitry Andric 2008bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage, 2018bcb0991SDimitry Andric // which will be generated in the kernel. Each basic block may contain 2028bcb0991SDimitry Andric // instructions from multiple stages/iterations. 2038bcb0991SDimitry Andric for (unsigned i = 0; i < LastStage; ++i) { 2048bcb0991SDimitry Andric // Create and insert the prolog basic block prior to the original loop 2058bcb0991SDimitry Andric // basic block. The original loop is removed later. 2068bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2078bcb0991SDimitry Andric PrologBBs.push_back(NewBB); 2088bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB); 2098bcb0991SDimitry Andric NewBB->transferSuccessors(PredBB); 2108bcb0991SDimitry Andric PredBB->addSuccessor(NewBB); 2118bcb0991SDimitry Andric PredBB = NewBB; 2128bcb0991SDimitry Andric 2138bcb0991SDimitry Andric // Generate instructions for each appropriate stage. Process instructions 2148bcb0991SDimitry Andric // in original program order. 2158bcb0991SDimitry Andric for (int StageNum = i; StageNum >= 0; --StageNum) { 2168bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2178bcb0991SDimitry Andric BBE = BB->getFirstTerminator(); 2188bcb0991SDimitry Andric BBI != BBE; ++BBI) { 2198bcb0991SDimitry Andric if (Schedule.getStage(&*BBI) == StageNum) { 2208bcb0991SDimitry Andric if (BBI->isPHI()) 2218bcb0991SDimitry Andric continue; 2228bcb0991SDimitry Andric MachineInstr *NewMI = 2238bcb0991SDimitry Andric cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 2248bcb0991SDimitry Andric updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 2258bcb0991SDimitry Andric NewBB->push_back(NewMI); 2268bcb0991SDimitry Andric InstrMap[NewMI] = &*BBI; 2278bcb0991SDimitry Andric } 2288bcb0991SDimitry Andric } 2298bcb0991SDimitry Andric } 2308bcb0991SDimitry Andric rewritePhiValues(NewBB, i, VRMap, InstrMap); 2318bcb0991SDimitry Andric LLVM_DEBUG({ 2328bcb0991SDimitry Andric dbgs() << "prolog:\n"; 2338bcb0991SDimitry Andric NewBB->dump(); 2348bcb0991SDimitry Andric }); 2358bcb0991SDimitry Andric } 2368bcb0991SDimitry Andric 2378bcb0991SDimitry Andric PredBB->replaceSuccessor(BB, KernelBB); 2388bcb0991SDimitry Andric 2398bcb0991SDimitry Andric // Check if we need to remove the branch from the preheader to the original 2408bcb0991SDimitry Andric // loop, and replace it with a branch to the new loop. 2418bcb0991SDimitry Andric unsigned numBranches = TII->removeBranch(*Preheader); 2428bcb0991SDimitry Andric if (numBranches) { 2438bcb0991SDimitry Andric SmallVector<MachineOperand, 0> Cond; 2448bcb0991SDimitry Andric TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 2458bcb0991SDimitry Andric } 2468bcb0991SDimitry Andric } 2478bcb0991SDimitry Andric 2488bcb0991SDimitry Andric /// Generate the pipeline epilog code. The epilog code finishes the iterations 2498bcb0991SDimitry Andric /// that were started in either the prolog or the kernel. We create a basic 2508bcb0991SDimitry Andric /// block for each stage that needs to complete. 25181ad6265SDimitry Andric void ModuloScheduleExpander::generateEpilog( 25281ad6265SDimitry Andric unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB, 253*bdd1243dSDimitry Andric ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, 254*bdd1243dSDimitry Andric MBBVectorTy &PrologBBs) { 2558bcb0991SDimitry Andric // We need to change the branch from the kernel to the first epilog block, so 2568bcb0991SDimitry Andric // this call to analyze branch uses the kernel rather than the original BB. 2578bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2588bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 2598bcb0991SDimitry Andric bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2608bcb0991SDimitry Andric assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2618bcb0991SDimitry Andric if (checkBranch) 2628bcb0991SDimitry Andric return; 2638bcb0991SDimitry Andric 2648bcb0991SDimitry Andric MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2658bcb0991SDimitry Andric if (*LoopExitI == KernelBB) 2668bcb0991SDimitry Andric ++LoopExitI; 2678bcb0991SDimitry Andric assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2688bcb0991SDimitry Andric MachineBasicBlock *LoopExitBB = *LoopExitI; 2698bcb0991SDimitry Andric 2708bcb0991SDimitry Andric MachineBasicBlock *PredBB = KernelBB; 2718bcb0991SDimitry Andric MachineBasicBlock *EpilogStart = LoopExitBB; 2728bcb0991SDimitry Andric InstrMapTy InstrMap; 2738bcb0991SDimitry Andric 2748bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage, 2758bcb0991SDimitry Andric // which was generated for the kernel. Each basic block may contain 2768bcb0991SDimitry Andric // instructions from multiple stages/iterations. 2778bcb0991SDimitry Andric int EpilogStage = LastStage + 1; 2788bcb0991SDimitry Andric for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2798bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2808bcb0991SDimitry Andric EpilogBBs.push_back(NewBB); 2818bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB); 2828bcb0991SDimitry Andric 2838bcb0991SDimitry Andric PredBB->replaceSuccessor(LoopExitBB, NewBB); 2848bcb0991SDimitry Andric NewBB->addSuccessor(LoopExitBB); 2858bcb0991SDimitry Andric 2868bcb0991SDimitry Andric if (EpilogStart == LoopExitBB) 2878bcb0991SDimitry Andric EpilogStart = NewBB; 2888bcb0991SDimitry Andric 2898bcb0991SDimitry Andric // Add instructions to the epilog depending on the current block. 2908bcb0991SDimitry Andric // Process instructions in original program order. 2918bcb0991SDimitry Andric for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2928bcb0991SDimitry Andric for (auto &BBI : *BB) { 2938bcb0991SDimitry Andric if (BBI.isPHI()) 2948bcb0991SDimitry Andric continue; 2958bcb0991SDimitry Andric MachineInstr *In = &BBI; 2968bcb0991SDimitry Andric if ((unsigned)Schedule.getStage(In) == StageNum) { 2978bcb0991SDimitry Andric // Instructions with memoperands in the epilog are updated with 2988bcb0991SDimitry Andric // conservative values. 2998bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 3008bcb0991SDimitry Andric updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 3018bcb0991SDimitry Andric NewBB->push_back(NewMI); 3028bcb0991SDimitry Andric InstrMap[NewMI] = In; 3038bcb0991SDimitry Andric } 3048bcb0991SDimitry Andric } 3058bcb0991SDimitry Andric } 3068bcb0991SDimitry Andric generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 3078bcb0991SDimitry Andric InstrMap, LastStage, EpilogStage, i == 1); 308*bdd1243dSDimitry Andric generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi, 309*bdd1243dSDimitry Andric InstrMap, LastStage, EpilogStage, i == 1); 3108bcb0991SDimitry Andric PredBB = NewBB; 3118bcb0991SDimitry Andric 3128bcb0991SDimitry Andric LLVM_DEBUG({ 3138bcb0991SDimitry Andric dbgs() << "epilog:\n"; 3148bcb0991SDimitry Andric NewBB->dump(); 3158bcb0991SDimitry Andric }); 3168bcb0991SDimitry Andric } 3178bcb0991SDimitry Andric 3188bcb0991SDimitry Andric // Fix any Phi nodes in the loop exit block. 3198bcb0991SDimitry Andric LoopExitBB->replacePhiUsesWith(BB, PredBB); 3208bcb0991SDimitry Andric 3218bcb0991SDimitry Andric // Create a branch to the new epilog from the kernel. 3228bcb0991SDimitry Andric // Remove the original branch and add a new branch to the epilog. 3238bcb0991SDimitry Andric TII->removeBranch(*KernelBB); 32481ad6265SDimitry Andric assert((OrigBB == TBB || OrigBB == FBB) && 32581ad6265SDimitry Andric "Unable to determine looping branch direction"); 32681ad6265SDimitry Andric if (OrigBB != TBB) 32781ad6265SDimitry Andric TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc()); 32881ad6265SDimitry Andric else 3298bcb0991SDimitry Andric TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 3308bcb0991SDimitry Andric // Add a branch to the loop exit. 3318bcb0991SDimitry Andric if (EpilogBBs.size() > 0) { 3328bcb0991SDimitry Andric MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 3338bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond1; 3348bcb0991SDimitry Andric TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 3358bcb0991SDimitry Andric } 3368bcb0991SDimitry Andric } 3378bcb0991SDimitry Andric 3388bcb0991SDimitry Andric /// Replace all uses of FromReg that appear outside the specified 3398bcb0991SDimitry Andric /// basic block with ToReg. 3408bcb0991SDimitry Andric static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 3418bcb0991SDimitry Andric MachineBasicBlock *MBB, 3428bcb0991SDimitry Andric MachineRegisterInfo &MRI, 3438bcb0991SDimitry Andric LiveIntervals &LIS) { 344349cc55cSDimitry Andric for (MachineOperand &O : 345349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(FromReg))) 3468bcb0991SDimitry Andric if (O.getParent()->getParent() != MBB) 3478bcb0991SDimitry Andric O.setReg(ToReg); 3488bcb0991SDimitry Andric if (!LIS.hasInterval(ToReg)) 3498bcb0991SDimitry Andric LIS.createEmptyInterval(ToReg); 3508bcb0991SDimitry Andric } 3518bcb0991SDimitry Andric 3528bcb0991SDimitry Andric /// Return true if the register has a use that occurs outside the 3538bcb0991SDimitry Andric /// specified loop. 3548bcb0991SDimitry Andric static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 3558bcb0991SDimitry Andric MachineRegisterInfo &MRI) { 356349cc55cSDimitry Andric for (const MachineOperand &MO : MRI.use_operands(Reg)) 357349cc55cSDimitry Andric if (MO.getParent()->getParent() != BB) 3588bcb0991SDimitry Andric return true; 3598bcb0991SDimitry Andric return false; 3608bcb0991SDimitry Andric } 3618bcb0991SDimitry Andric 3628bcb0991SDimitry Andric /// Generate Phis for the specific block in the generated pipelined code. 3638bcb0991SDimitry Andric /// This function looks at the Phis from the original code to guide the 3648bcb0991SDimitry Andric /// creation of new Phis. 3658bcb0991SDimitry Andric void ModuloScheduleExpander::generateExistingPhis( 3668bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 3678bcb0991SDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 3688bcb0991SDimitry Andric unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 3698bcb0991SDimitry Andric // Compute the stage number for the initial value of the Phi, which 3708bcb0991SDimitry Andric // comes from the prolog. The prolog to use depends on to which kernel/ 3718bcb0991SDimitry Andric // epilog that we're adding the Phi. 3728bcb0991SDimitry Andric unsigned PrologStage = 0; 3738bcb0991SDimitry Andric unsigned PrevStage = 0; 3748bcb0991SDimitry Andric bool InKernel = (LastStageNum == CurStageNum); 3758bcb0991SDimitry Andric if (InKernel) { 3768bcb0991SDimitry Andric PrologStage = LastStageNum - 1; 3778bcb0991SDimitry Andric PrevStage = CurStageNum; 3788bcb0991SDimitry Andric } else { 3798bcb0991SDimitry Andric PrologStage = LastStageNum - (CurStageNum - LastStageNum); 3808bcb0991SDimitry Andric PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 3818bcb0991SDimitry Andric } 3828bcb0991SDimitry Andric 3838bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3848bcb0991SDimitry Andric BBE = BB->getFirstNonPHI(); 3858bcb0991SDimitry Andric BBI != BBE; ++BBI) { 3868bcb0991SDimitry Andric Register Def = BBI->getOperand(0).getReg(); 3878bcb0991SDimitry Andric 3888bcb0991SDimitry Andric unsigned InitVal = 0; 3898bcb0991SDimitry Andric unsigned LoopVal = 0; 3908bcb0991SDimitry Andric getPhiRegs(*BBI, BB, InitVal, LoopVal); 3918bcb0991SDimitry Andric 3928bcb0991SDimitry Andric unsigned PhiOp1 = 0; 3938bcb0991SDimitry Andric // The Phi value from the loop body typically is defined in the loop, but 3948bcb0991SDimitry Andric // not always. So, we need to check if the value is defined in the loop. 3958bcb0991SDimitry Andric unsigned PhiOp2 = LoopVal; 3968bcb0991SDimitry Andric if (VRMap[LastStageNum].count(LoopVal)) 3978bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum][LoopVal]; 3988bcb0991SDimitry Andric 3998bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI); 4008bcb0991SDimitry Andric int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 4018bcb0991SDimitry Andric unsigned NumStages = getStagesForReg(Def, CurStageNum); 4028bcb0991SDimitry Andric if (NumStages == 0) { 4038bcb0991SDimitry Andric // We don't need to generate a Phi anymore, but we need to rename any uses 4048bcb0991SDimitry Andric // of the Phi value. 4058bcb0991SDimitry Andric unsigned NewReg = VRMap[PrevStage][LoopVal]; 4068bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 4078bcb0991SDimitry Andric InitVal, NewReg); 4088bcb0991SDimitry Andric if (VRMap[CurStageNum].count(LoopVal)) 4098bcb0991SDimitry Andric VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 4108bcb0991SDimitry Andric } 4118bcb0991SDimitry Andric // Adjust the number of Phis needed depending on the number of prologs left, 4128bcb0991SDimitry Andric // and the distance from where the Phi is first scheduled. The number of 4138bcb0991SDimitry Andric // Phis cannot exceed the number of prolog stages. Each stage can 4148bcb0991SDimitry Andric // potentially define two values. 4158bcb0991SDimitry Andric unsigned MaxPhis = PrologStage + 2; 4168bcb0991SDimitry Andric if (!InKernel && (int)PrologStage <= LoopValStage) 4178bcb0991SDimitry Andric MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 4188bcb0991SDimitry Andric unsigned NumPhis = std::min(NumStages, MaxPhis); 4198bcb0991SDimitry Andric 4208bcb0991SDimitry Andric unsigned NewReg = 0; 4218bcb0991SDimitry Andric unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 4228bcb0991SDimitry Andric // In the epilog, we may need to look back one stage to get the correct 4235ffd83dbSDimitry Andric // Phi name, because the epilog and prolog blocks execute the same stage. 4248bcb0991SDimitry Andric // The correct name is from the previous block only when the Phi has 4258bcb0991SDimitry Andric // been completely scheduled prior to the epilog, and Phi value is not 4268bcb0991SDimitry Andric // needed in multiple stages. 4278bcb0991SDimitry Andric int StageDiff = 0; 4288bcb0991SDimitry Andric if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 4298bcb0991SDimitry Andric NumPhis == 1) 4308bcb0991SDimitry Andric StageDiff = 1; 4318bcb0991SDimitry Andric // Adjust the computations below when the phi and the loop definition 4328bcb0991SDimitry Andric // are scheduled in different stages. 4338bcb0991SDimitry Andric if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 4348bcb0991SDimitry Andric StageDiff = StageScheduled - LoopValStage; 4358bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) { 4368bcb0991SDimitry Andric // If the Phi hasn't been scheduled, then use the initial Phi operand 4378bcb0991SDimitry Andric // value. Otherwise, use the scheduled version of the instruction. This 4388bcb0991SDimitry Andric // is a little complicated when a Phi references another Phi. 4398bcb0991SDimitry Andric if (np > PrologStage || StageScheduled >= (int)LastStageNum) 4408bcb0991SDimitry Andric PhiOp1 = InitVal; 4418bcb0991SDimitry Andric // Check if the Phi has already been scheduled in a prolog stage. 4428bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np && 4438bcb0991SDimitry Andric VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 4448bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 4458bcb0991SDimitry Andric // Check if the Phi has already been scheduled, but the loop instruction 4468bcb0991SDimitry Andric // is either another Phi, or doesn't occur in the loop. 4478bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np) { 4488bcb0991SDimitry Andric // If the Phi references another Phi, we need to examine the other 4498bcb0991SDimitry Andric // Phi to get the correct value. 4508bcb0991SDimitry Andric PhiOp1 = LoopVal; 4518bcb0991SDimitry Andric MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 4528bcb0991SDimitry Andric int Indirects = 1; 4538bcb0991SDimitry Andric while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 4548bcb0991SDimitry Andric int PhiStage = Schedule.getStage(InstOp1); 4558bcb0991SDimitry Andric if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 4568bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, BB); 4578bcb0991SDimitry Andric else 4588bcb0991SDimitry Andric PhiOp1 = getLoopPhiReg(*InstOp1, BB); 4598bcb0991SDimitry Andric InstOp1 = MRI.getVRegDef(PhiOp1); 4608bcb0991SDimitry Andric int PhiOpStage = Schedule.getStage(InstOp1); 4618bcb0991SDimitry Andric int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 4628bcb0991SDimitry Andric if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 4638bcb0991SDimitry Andric VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 4648bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 4658bcb0991SDimitry Andric break; 4668bcb0991SDimitry Andric } 4678bcb0991SDimitry Andric ++Indirects; 4688bcb0991SDimitry Andric } 4698bcb0991SDimitry Andric } else 4708bcb0991SDimitry Andric PhiOp1 = InitVal; 4718bcb0991SDimitry Andric // If this references a generated Phi in the kernel, get the Phi operand 4728bcb0991SDimitry Andric // from the incoming block. 4738bcb0991SDimitry Andric if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 4748bcb0991SDimitry Andric if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 4758bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 4768bcb0991SDimitry Andric 4778bcb0991SDimitry Andric MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 4788bcb0991SDimitry Andric bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 4798bcb0991SDimitry Andric // In the epilog, a map lookup is needed to get the value from the kernel, 4808bcb0991SDimitry Andric // or previous epilog block. How is does this depends on if the 4818bcb0991SDimitry Andric // instruction is scheduled in the previous block. 4828bcb0991SDimitry Andric if (!InKernel) { 4838bcb0991SDimitry Andric int StageDiffAdj = 0; 4848bcb0991SDimitry Andric if (LoopValStage != -1 && StageScheduled > LoopValStage) 4858bcb0991SDimitry Andric StageDiffAdj = StageScheduled - LoopValStage; 4868bcb0991SDimitry Andric // Use the loop value defined in the kernel, unless the kernel 4878bcb0991SDimitry Andric // contains the last definition of the Phi. 4888bcb0991SDimitry Andric if (np == 0 && PrevStage == LastStageNum && 4898bcb0991SDimitry Andric (StageScheduled != 0 || LoopValStage != 0) && 4908bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 4918bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 4928bcb0991SDimitry Andric // Use the value defined by the Phi. We add one because we switch 4938bcb0991SDimitry Andric // from looking at the loop value to the Phi definition. 4948bcb0991SDimitry Andric else if (np > 0 && PrevStage == LastStageNum && 4958bcb0991SDimitry Andric VRMap[PrevStage - np + 1].count(Def)) 4968bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np + 1][Def]; 4978bcb0991SDimitry Andric // Use the loop value defined in the kernel. 4988bcb0991SDimitry Andric else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 4998bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 5008bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 5018bcb0991SDimitry Andric // Use the value defined by the Phi, unless we're generating the first 5028bcb0991SDimitry Andric // epilog and the Phi refers to a Phi in a different stage. 5038bcb0991SDimitry Andric else if (VRMap[PrevStage - np].count(Def) && 5048bcb0991SDimitry Andric (!LoopDefIsPhi || (PrevStage != LastStageNum) || 5058bcb0991SDimitry Andric (LoopValStage == StageScheduled))) 5068bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np][Def]; 5078bcb0991SDimitry Andric } 5088bcb0991SDimitry Andric 5098bcb0991SDimitry Andric // Check if we can reuse an existing Phi. This occurs when a Phi 5108bcb0991SDimitry Andric // references another Phi, and the other Phi is scheduled in an 5118bcb0991SDimitry Andric // earlier stage. We can try to reuse an existing Phi up until the last 5128bcb0991SDimitry Andric // stage of the current Phi. 5138bcb0991SDimitry Andric if (LoopDefIsPhi) { 5148bcb0991SDimitry Andric if (static_cast<int>(PrologStage - np) >= StageScheduled) { 5158bcb0991SDimitry Andric int LVNumStages = getStagesForPhi(LoopVal); 5168bcb0991SDimitry Andric int StageDiff = (StageScheduled - LoopValStage); 5178bcb0991SDimitry Andric LVNumStages -= StageDiff; 5188bcb0991SDimitry Andric // Make sure the loop value Phi has been processed already. 5198bcb0991SDimitry Andric if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 5208bcb0991SDimitry Andric NewReg = PhiOp2; 5218bcb0991SDimitry Andric unsigned ReuseStage = CurStageNum; 5228bcb0991SDimitry Andric if (isLoopCarried(*PhiInst)) 5238bcb0991SDimitry Andric ReuseStage -= LVNumStages; 5248bcb0991SDimitry Andric // Check if the Phi to reuse has been generated yet. If not, then 5258bcb0991SDimitry Andric // there is nothing to reuse. 5268bcb0991SDimitry Andric if (VRMap[ReuseStage - np].count(LoopVal)) { 5278bcb0991SDimitry Andric NewReg = VRMap[ReuseStage - np][LoopVal]; 5288bcb0991SDimitry Andric 5298bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 5308bcb0991SDimitry Andric Def, NewReg); 5318bcb0991SDimitry Andric // Update the map with the new Phi name. 5328bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg; 5338bcb0991SDimitry Andric PhiOp2 = NewReg; 5348bcb0991SDimitry Andric if (VRMap[LastStageNum - np - 1].count(LoopVal)) 5358bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 5368bcb0991SDimitry Andric 5378bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 5388bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 5398bcb0991SDimitry Andric continue; 5408bcb0991SDimitry Andric } 5418bcb0991SDimitry Andric } 5428bcb0991SDimitry Andric } 5438bcb0991SDimitry Andric if (InKernel && StageDiff > 0 && 5448bcb0991SDimitry Andric VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 5458bcb0991SDimitry Andric PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 5468bcb0991SDimitry Andric } 5478bcb0991SDimitry Andric 5488bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def); 5498bcb0991SDimitry Andric NewReg = MRI.createVirtualRegister(RC); 5508bcb0991SDimitry Andric 5518bcb0991SDimitry Andric MachineInstrBuilder NewPhi = 5528bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 5538bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg); 5548bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1); 5558bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2); 5568bcb0991SDimitry Andric if (np == 0) 5578bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI; 5588bcb0991SDimitry Andric 5598bcb0991SDimitry Andric // We define the Phis after creating the new pipelined code, so 5608bcb0991SDimitry Andric // we need to rename the Phi values in scheduled instructions. 5618bcb0991SDimitry Andric 5628bcb0991SDimitry Andric unsigned PrevReg = 0; 5638bcb0991SDimitry Andric if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 5648bcb0991SDimitry Andric PrevReg = VRMap[PrevStage - np][LoopVal]; 5658bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 5668bcb0991SDimitry Andric NewReg, PrevReg); 5678bcb0991SDimitry Andric // If the Phi has been scheduled, use the new name for rewriting. 5688bcb0991SDimitry Andric if (VRMap[CurStageNum - np].count(Def)) { 5698bcb0991SDimitry Andric unsigned R = VRMap[CurStageNum - np][Def]; 5708bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 5718bcb0991SDimitry Andric NewReg); 5728bcb0991SDimitry Andric } 5738bcb0991SDimitry Andric 5748bcb0991SDimitry Andric // Check if we need to rename any uses that occurs after the loop. The 5758bcb0991SDimitry Andric // register to replace depends on whether the Phi is scheduled in the 5768bcb0991SDimitry Andric // epilog. 5778bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 5788bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 5798bcb0991SDimitry Andric 5808bcb0991SDimitry Andric // In the kernel, a dependent Phi uses the value from this Phi. 5818bcb0991SDimitry Andric if (InKernel) 5828bcb0991SDimitry Andric PhiOp2 = NewReg; 5838bcb0991SDimitry Andric 5848bcb0991SDimitry Andric // Update the map with the new Phi name. 5858bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg; 5868bcb0991SDimitry Andric } 5878bcb0991SDimitry Andric 5888bcb0991SDimitry Andric while (NumPhis++ < NumStages) { 5898bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 5908bcb0991SDimitry Andric NewReg, 0); 5918bcb0991SDimitry Andric } 5928bcb0991SDimitry Andric 5938bcb0991SDimitry Andric // Check if we need to rename a Phi that has been eliminated due to 5948bcb0991SDimitry Andric // scheduling. 5958bcb0991SDimitry Andric if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 5968bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 5978bcb0991SDimitry Andric } 5988bcb0991SDimitry Andric } 5998bcb0991SDimitry Andric 6008bcb0991SDimitry Andric /// Generate Phis for the specified block in the generated pipelined code. 6018bcb0991SDimitry Andric /// These are new Phis needed because the definition is scheduled after the 6028bcb0991SDimitry Andric /// use in the pipelined sequence. 6038bcb0991SDimitry Andric void ModuloScheduleExpander::generatePhis( 6048bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 605*bdd1243dSDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi, 606*bdd1243dSDimitry Andric InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 607*bdd1243dSDimitry Andric bool IsLast) { 6088bcb0991SDimitry Andric // Compute the stage number that contains the initial Phi value, and 6098bcb0991SDimitry Andric // the Phi from the previous stage. 6108bcb0991SDimitry Andric unsigned PrologStage = 0; 6118bcb0991SDimitry Andric unsigned PrevStage = 0; 6128bcb0991SDimitry Andric unsigned StageDiff = CurStageNum - LastStageNum; 6138bcb0991SDimitry Andric bool InKernel = (StageDiff == 0); 6148bcb0991SDimitry Andric if (InKernel) { 6158bcb0991SDimitry Andric PrologStage = LastStageNum - 1; 6168bcb0991SDimitry Andric PrevStage = CurStageNum; 6178bcb0991SDimitry Andric } else { 6188bcb0991SDimitry Andric PrologStage = LastStageNum - StageDiff; 6198bcb0991SDimitry Andric PrevStage = LastStageNum + StageDiff - 1; 6208bcb0991SDimitry Andric } 6218bcb0991SDimitry Andric 6228bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 6238bcb0991SDimitry Andric BBE = BB->instr_end(); 6248bcb0991SDimitry Andric BBI != BBE; ++BBI) { 6258bcb0991SDimitry Andric for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 6268bcb0991SDimitry Andric MachineOperand &MO = BBI->getOperand(i); 627*bdd1243dSDimitry Andric if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 6288bcb0991SDimitry Andric continue; 6298bcb0991SDimitry Andric 6308bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI); 6318bcb0991SDimitry Andric assert(StageScheduled != -1 && "Expecting scheduled instruction."); 6328bcb0991SDimitry Andric Register Def = MO.getReg(); 6338bcb0991SDimitry Andric unsigned NumPhis = getStagesForReg(Def, CurStageNum); 6348bcb0991SDimitry Andric // An instruction scheduled in stage 0 and is used after the loop 6358bcb0991SDimitry Andric // requires a phi in the epilog for the last definition from either 6368bcb0991SDimitry Andric // the kernel or prolog. 6378bcb0991SDimitry Andric if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 6388bcb0991SDimitry Andric hasUseAfterLoop(Def, BB, MRI)) 6398bcb0991SDimitry Andric NumPhis = 1; 6408bcb0991SDimitry Andric if (!InKernel && (unsigned)StageScheduled > PrologStage) 6418bcb0991SDimitry Andric continue; 6428bcb0991SDimitry Andric 643*bdd1243dSDimitry Andric unsigned PhiOp2; 644*bdd1243dSDimitry Andric if (InKernel) { 645*bdd1243dSDimitry Andric PhiOp2 = VRMap[PrevStage][Def]; 6468bcb0991SDimitry Andric if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 6478bcb0991SDimitry Andric if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 6488bcb0991SDimitry Andric PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 649*bdd1243dSDimitry Andric } 6508bcb0991SDimitry Andric // The number of Phis can't exceed the number of prolog stages. The 6518bcb0991SDimitry Andric // prolog stage number is zero based. 6528bcb0991SDimitry Andric if (NumPhis > PrologStage + 1 - StageScheduled) 6538bcb0991SDimitry Andric NumPhis = PrologStage + 1 - StageScheduled; 6548bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) { 655*bdd1243dSDimitry Andric // Example for 656*bdd1243dSDimitry Andric // Org: 657*bdd1243dSDimitry Andric // %Org = ... (Scheduled at Stage#0, NumPhi = 2) 658*bdd1243dSDimitry Andric // 659*bdd1243dSDimitry Andric // Prolog0 (Stage0): 660*bdd1243dSDimitry Andric // %Clone0 = ... 661*bdd1243dSDimitry Andric // Prolog1 (Stage1): 662*bdd1243dSDimitry Andric // %Clone1 = ... 663*bdd1243dSDimitry Andric // Kernel (Stage2): 664*bdd1243dSDimitry Andric // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel 665*bdd1243dSDimitry Andric // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel 666*bdd1243dSDimitry Andric // %Clone2 = ... 667*bdd1243dSDimitry Andric // Epilog0 (Stage3): 668*bdd1243dSDimitry Andric // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel 669*bdd1243dSDimitry Andric // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel 670*bdd1243dSDimitry Andric // Epilog1 (Stage4): 671*bdd1243dSDimitry Andric // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0 672*bdd1243dSDimitry Andric // 673*bdd1243dSDimitry Andric // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2} 674*bdd1243dSDimitry Andric // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0} 675*bdd1243dSDimitry Andric // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2} 676*bdd1243dSDimitry Andric 6778bcb0991SDimitry Andric unsigned PhiOp1 = VRMap[PrologStage][Def]; 6788bcb0991SDimitry Andric if (np <= PrologStage) 6798bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - np][Def]; 680*bdd1243dSDimitry Andric if (!InKernel) { 681*bdd1243dSDimitry Andric if (PrevStage == LastStageNum && np == 0) 682*bdd1243dSDimitry Andric PhiOp2 = VRMap[LastStageNum][Def]; 683*bdd1243dSDimitry Andric else 684*bdd1243dSDimitry Andric PhiOp2 = VRMapPhi[PrevStage - np][Def]; 6858bcb0991SDimitry Andric } 6868bcb0991SDimitry Andric 6878bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def); 6888bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 6898bcb0991SDimitry Andric 6908bcb0991SDimitry Andric MachineInstrBuilder NewPhi = 6918bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 6928bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg); 6938bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1); 6948bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2); 6958bcb0991SDimitry Andric if (np == 0) 6968bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI; 6978bcb0991SDimitry Andric 6988bcb0991SDimitry Andric // Rewrite uses and update the map. The actions depend upon whether 6998bcb0991SDimitry Andric // we generating code for the kernel or epilog blocks. 7008bcb0991SDimitry Andric if (InKernel) { 7018bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 7028bcb0991SDimitry Andric NewReg); 7038bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 7048bcb0991SDimitry Andric NewReg); 7058bcb0991SDimitry Andric 7068bcb0991SDimitry Andric PhiOp2 = NewReg; 707*bdd1243dSDimitry Andric VRMapPhi[PrevStage - np - 1][Def] = NewReg; 7088bcb0991SDimitry Andric } else { 709*bdd1243dSDimitry Andric VRMapPhi[CurStageNum - np][Def] = NewReg; 7108bcb0991SDimitry Andric if (np == NumPhis - 1) 7118bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 7128bcb0991SDimitry Andric NewReg); 7138bcb0991SDimitry Andric } 7148bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 7158bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 7168bcb0991SDimitry Andric } 7178bcb0991SDimitry Andric } 7188bcb0991SDimitry Andric } 7198bcb0991SDimitry Andric } 7208bcb0991SDimitry Andric 7218bcb0991SDimitry Andric /// Remove instructions that generate values with no uses. 7228bcb0991SDimitry Andric /// Typically, these are induction variable operations that generate values 7238bcb0991SDimitry Andric /// used in the loop itself. A dead instruction has a definition with 7248bcb0991SDimitry Andric /// no uses, or uses that occur in the original loop only. 7258bcb0991SDimitry Andric void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 7268bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) { 7278bcb0991SDimitry Andric // For each epilog block, check that the value defined by each instruction 7288bcb0991SDimitry Andric // is used. If not, delete it. 729349cc55cSDimitry Andric for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 730349cc55cSDimitry Andric for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 731349cc55cSDimitry Andric ME = MBB->instr_rend(); 7328bcb0991SDimitry Andric MI != ME;) { 7338bcb0991SDimitry Andric // From DeadMachineInstructionElem. Don't delete inline assembly. 7348bcb0991SDimitry Andric if (MI->isInlineAsm()) { 7358bcb0991SDimitry Andric ++MI; 7368bcb0991SDimitry Andric continue; 7378bcb0991SDimitry Andric } 7388bcb0991SDimitry Andric bool SawStore = false; 7398bcb0991SDimitry Andric // Check if it's safe to remove the instruction due to side effects. 7408bcb0991SDimitry Andric // We can, and want to, remove Phis here. 7418bcb0991SDimitry Andric if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 7428bcb0991SDimitry Andric ++MI; 7438bcb0991SDimitry Andric continue; 7448bcb0991SDimitry Andric } 7458bcb0991SDimitry Andric bool used = true; 746349cc55cSDimitry Andric for (const MachineOperand &MO : MI->operands()) { 747349cc55cSDimitry Andric if (!MO.isReg() || !MO.isDef()) 7488bcb0991SDimitry Andric continue; 749349cc55cSDimitry Andric Register reg = MO.getReg(); 7508bcb0991SDimitry Andric // Assume physical registers are used, unless they are marked dead. 751*bdd1243dSDimitry Andric if (reg.isPhysical()) { 752349cc55cSDimitry Andric used = !MO.isDead(); 7538bcb0991SDimitry Andric if (used) 7548bcb0991SDimitry Andric break; 7558bcb0991SDimitry Andric continue; 7568bcb0991SDimitry Andric } 7578bcb0991SDimitry Andric unsigned realUses = 0; 758349cc55cSDimitry Andric for (const MachineOperand &U : MRI.use_operands(reg)) { 7598bcb0991SDimitry Andric // Check if there are any uses that occur only in the original 7608bcb0991SDimitry Andric // loop. If so, that's not a real use. 761349cc55cSDimitry Andric if (U.getParent()->getParent() != BB) { 7628bcb0991SDimitry Andric realUses++; 7638bcb0991SDimitry Andric used = true; 7648bcb0991SDimitry Andric break; 7658bcb0991SDimitry Andric } 7668bcb0991SDimitry Andric } 7678bcb0991SDimitry Andric if (realUses > 0) 7688bcb0991SDimitry Andric break; 7698bcb0991SDimitry Andric used = false; 7708bcb0991SDimitry Andric } 7718bcb0991SDimitry Andric if (!used) { 7728bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(*MI); 7738bcb0991SDimitry Andric MI++->eraseFromParent(); 7748bcb0991SDimitry Andric continue; 7758bcb0991SDimitry Andric } 7768bcb0991SDimitry Andric ++MI; 7778bcb0991SDimitry Andric } 7788bcb0991SDimitry Andric // In the kernel block, check if we can remove a Phi that generates a value 7798bcb0991SDimitry Andric // used in an instruction removed in the epilog block. 780349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 781349cc55cSDimitry Andric Register reg = MI.getOperand(0).getReg(); 7828bcb0991SDimitry Andric if (MRI.use_begin(reg) == MRI.use_end()) { 783349cc55cSDimitry Andric LIS.RemoveMachineInstrFromMaps(MI); 784349cc55cSDimitry Andric MI.eraseFromParent(); 7858bcb0991SDimitry Andric } 7868bcb0991SDimitry Andric } 7878bcb0991SDimitry Andric } 7888bcb0991SDimitry Andric 7898bcb0991SDimitry Andric /// For loop carried definitions, we split the lifetime of a virtual register 7908bcb0991SDimitry Andric /// that has uses past the definition in the next iteration. A copy with a new 7918bcb0991SDimitry Andric /// virtual register is inserted before the definition, which helps with 7928bcb0991SDimitry Andric /// generating a better register assignment. 7938bcb0991SDimitry Andric /// 7948bcb0991SDimitry Andric /// v1 = phi(a, v2) v1 = phi(a, v2) 7958bcb0991SDimitry Andric /// v2 = phi(b, v3) v2 = phi(b, v3) 7968bcb0991SDimitry Andric /// v3 = .. v4 = copy v1 7978bcb0991SDimitry Andric /// .. = V1 v3 = .. 7988bcb0991SDimitry Andric /// .. = v4 7998bcb0991SDimitry Andric void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 8008bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) { 8018bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 8028bcb0991SDimitry Andric for (auto &PHI : KernelBB->phis()) { 8038bcb0991SDimitry Andric Register Def = PHI.getOperand(0).getReg(); 8048bcb0991SDimitry Andric // Check for any Phi definition that used as an operand of another Phi 8058bcb0991SDimitry Andric // in the same block. 8068bcb0991SDimitry Andric for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 8078bcb0991SDimitry Andric E = MRI.use_instr_end(); 8088bcb0991SDimitry Andric I != E; ++I) { 8098bcb0991SDimitry Andric if (I->isPHI() && I->getParent() == KernelBB) { 8108bcb0991SDimitry Andric // Get the loop carried definition. 8118bcb0991SDimitry Andric unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 8128bcb0991SDimitry Andric if (!LCDef) 8138bcb0991SDimitry Andric continue; 8148bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(LCDef); 8158bcb0991SDimitry Andric if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 8168bcb0991SDimitry Andric continue; 8178bcb0991SDimitry Andric // Search through the rest of the block looking for uses of the Phi 8188bcb0991SDimitry Andric // definition. If one occurs, then split the lifetime. 8198bcb0991SDimitry Andric unsigned SplitReg = 0; 8208bcb0991SDimitry Andric for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 8218bcb0991SDimitry Andric KernelBB->instr_end())) 8228bcb0991SDimitry Andric if (BBJ.readsRegister(Def)) { 8238bcb0991SDimitry Andric // We split the lifetime when we find the first use. 8248bcb0991SDimitry Andric if (SplitReg == 0) { 8258bcb0991SDimitry Andric SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 8268bcb0991SDimitry Andric BuildMI(*KernelBB, MI, MI->getDebugLoc(), 8278bcb0991SDimitry Andric TII->get(TargetOpcode::COPY), SplitReg) 8288bcb0991SDimitry Andric .addReg(Def); 8298bcb0991SDimitry Andric } 8308bcb0991SDimitry Andric BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 8318bcb0991SDimitry Andric } 8328bcb0991SDimitry Andric if (!SplitReg) 8338bcb0991SDimitry Andric continue; 8348bcb0991SDimitry Andric // Search through each of the epilog blocks for any uses to be renamed. 8358bcb0991SDimitry Andric for (auto &Epilog : EpilogBBs) 8368bcb0991SDimitry Andric for (auto &I : *Epilog) 8378bcb0991SDimitry Andric if (I.readsRegister(Def)) 8388bcb0991SDimitry Andric I.substituteRegister(Def, SplitReg, 0, *TRI); 8398bcb0991SDimitry Andric break; 8408bcb0991SDimitry Andric } 8418bcb0991SDimitry Andric } 8428bcb0991SDimitry Andric } 8438bcb0991SDimitry Andric } 8448bcb0991SDimitry Andric 8458bcb0991SDimitry Andric /// Remove the incoming block from the Phis in a basic block. 8468bcb0991SDimitry Andric static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 8478bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 8488bcb0991SDimitry Andric if (!MI.isPHI()) 8498bcb0991SDimitry Andric break; 8508bcb0991SDimitry Andric for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 8518bcb0991SDimitry Andric if (MI.getOperand(i + 1).getMBB() == Incoming) { 85281ad6265SDimitry Andric MI.removeOperand(i + 1); 85381ad6265SDimitry Andric MI.removeOperand(i); 8548bcb0991SDimitry Andric break; 8558bcb0991SDimitry Andric } 8568bcb0991SDimitry Andric } 8578bcb0991SDimitry Andric } 8588bcb0991SDimitry Andric 8598bcb0991SDimitry Andric /// Create branches from each prolog basic block to the appropriate epilog 8608bcb0991SDimitry Andric /// block. These edges are needed if the loop ends before reaching the 8618bcb0991SDimitry Andric /// kernel. 8628bcb0991SDimitry Andric void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 8638bcb0991SDimitry Andric MBBVectorTy &PrologBBs, 8648bcb0991SDimitry Andric MachineBasicBlock *KernelBB, 8658bcb0991SDimitry Andric MBBVectorTy &EpilogBBs, 8668bcb0991SDimitry Andric ValueMapTy *VRMap) { 8678bcb0991SDimitry Andric assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 8688bcb0991SDimitry Andric MachineBasicBlock *LastPro = KernelBB; 8698bcb0991SDimitry Andric MachineBasicBlock *LastEpi = KernelBB; 8708bcb0991SDimitry Andric 8718bcb0991SDimitry Andric // Start from the blocks connected to the kernel and work "out" 8728bcb0991SDimitry Andric // to the first prolog and the last epilog blocks. 8738bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> PrevInsts; 8748bcb0991SDimitry Andric unsigned MaxIter = PrologBBs.size() - 1; 8758bcb0991SDimitry Andric for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 8768bcb0991SDimitry Andric // Add branches to the prolog that go to the corresponding 8778bcb0991SDimitry Andric // epilog, and the fall-thru prolog/kernel block. 8788bcb0991SDimitry Andric MachineBasicBlock *Prolog = PrologBBs[j]; 8798bcb0991SDimitry Andric MachineBasicBlock *Epilog = EpilogBBs[i]; 8808bcb0991SDimitry Andric 8818bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 882*bdd1243dSDimitry Andric std::optional<bool> StaticallyGreater = 8838bcb0991SDimitry Andric LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 8848bcb0991SDimitry Andric unsigned numAdded = 0; 88581ad6265SDimitry Andric if (!StaticallyGreater) { 8868bcb0991SDimitry Andric Prolog->addSuccessor(Epilog); 8878bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 8888bcb0991SDimitry Andric } else if (*StaticallyGreater == false) { 8898bcb0991SDimitry Andric Prolog->addSuccessor(Epilog); 8908bcb0991SDimitry Andric Prolog->removeSuccessor(LastPro); 8918bcb0991SDimitry Andric LastEpi->removeSuccessor(Epilog); 8928bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 8938bcb0991SDimitry Andric removePhis(Epilog, LastEpi); 8948bcb0991SDimitry Andric // Remove the blocks that are no longer referenced. 8958bcb0991SDimitry Andric if (LastPro != LastEpi) { 8968bcb0991SDimitry Andric LastEpi->clear(); 8978bcb0991SDimitry Andric LastEpi->eraseFromParent(); 8988bcb0991SDimitry Andric } 8998bcb0991SDimitry Andric if (LastPro == KernelBB) { 9008bcb0991SDimitry Andric LoopInfo->disposed(); 9018bcb0991SDimitry Andric NewKernel = nullptr; 9028bcb0991SDimitry Andric } 9038bcb0991SDimitry Andric LastPro->clear(); 9048bcb0991SDimitry Andric LastPro->eraseFromParent(); 9058bcb0991SDimitry Andric } else { 9068bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 9078bcb0991SDimitry Andric removePhis(Epilog, Prolog); 9088bcb0991SDimitry Andric } 9098bcb0991SDimitry Andric LastPro = Prolog; 9108bcb0991SDimitry Andric LastEpi = Epilog; 9118bcb0991SDimitry Andric for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 9128bcb0991SDimitry Andric E = Prolog->instr_rend(); 9138bcb0991SDimitry Andric I != E && numAdded > 0; ++I, --numAdded) 9148bcb0991SDimitry Andric updateInstruction(&*I, false, j, 0, VRMap); 9158bcb0991SDimitry Andric } 9168bcb0991SDimitry Andric 9178bcb0991SDimitry Andric if (NewKernel) { 9188bcb0991SDimitry Andric LoopInfo->setPreheader(PrologBBs[MaxIter]); 9198bcb0991SDimitry Andric LoopInfo->adjustTripCount(-(MaxIter + 1)); 9208bcb0991SDimitry Andric } 9218bcb0991SDimitry Andric } 9228bcb0991SDimitry Andric 9238bcb0991SDimitry Andric /// Return true if we can compute the amount the instruction changes 9248bcb0991SDimitry Andric /// during each iteration. Set Delta to the amount of the change. 9258bcb0991SDimitry Andric bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 9268bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 9278bcb0991SDimitry Andric const MachineOperand *BaseOp; 9288bcb0991SDimitry Andric int64_t Offset; 9295ffd83dbSDimitry Andric bool OffsetIsScalable; 9305ffd83dbSDimitry Andric if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 9315ffd83dbSDimitry Andric return false; 9325ffd83dbSDimitry Andric 9335ffd83dbSDimitry Andric // FIXME: This algorithm assumes instructions have fixed-size offsets. 9345ffd83dbSDimitry Andric if (OffsetIsScalable) 9358bcb0991SDimitry Andric return false; 9368bcb0991SDimitry Andric 9378bcb0991SDimitry Andric if (!BaseOp->isReg()) 9388bcb0991SDimitry Andric return false; 9398bcb0991SDimitry Andric 9408bcb0991SDimitry Andric Register BaseReg = BaseOp->getReg(); 9418bcb0991SDimitry Andric 9428bcb0991SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 9438bcb0991SDimitry Andric // Check if there is a Phi. If so, get the definition in the loop. 9448bcb0991SDimitry Andric MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 9458bcb0991SDimitry Andric if (BaseDef && BaseDef->isPHI()) { 9468bcb0991SDimitry Andric BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 9478bcb0991SDimitry Andric BaseDef = MRI.getVRegDef(BaseReg); 9488bcb0991SDimitry Andric } 9498bcb0991SDimitry Andric if (!BaseDef) 9508bcb0991SDimitry Andric return false; 9518bcb0991SDimitry Andric 9528bcb0991SDimitry Andric int D = 0; 9538bcb0991SDimitry Andric if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 9548bcb0991SDimitry Andric return false; 9558bcb0991SDimitry Andric 9568bcb0991SDimitry Andric Delta = D; 9578bcb0991SDimitry Andric return true; 9588bcb0991SDimitry Andric } 9598bcb0991SDimitry Andric 9608bcb0991SDimitry Andric /// Update the memory operand with a new offset when the pipeliner 9618bcb0991SDimitry Andric /// generates a new copy of the instruction that refers to a 9628bcb0991SDimitry Andric /// different memory location. 9638bcb0991SDimitry Andric void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 9648bcb0991SDimitry Andric MachineInstr &OldMI, 9658bcb0991SDimitry Andric unsigned Num) { 9668bcb0991SDimitry Andric if (Num == 0) 9678bcb0991SDimitry Andric return; 9688bcb0991SDimitry Andric // If the instruction has memory operands, then adjust the offset 9698bcb0991SDimitry Andric // when the instruction appears in different stages. 9708bcb0991SDimitry Andric if (NewMI.memoperands_empty()) 9718bcb0991SDimitry Andric return; 9728bcb0991SDimitry Andric SmallVector<MachineMemOperand *, 2> NewMMOs; 9738bcb0991SDimitry Andric for (MachineMemOperand *MMO : NewMI.memoperands()) { 9748bcb0991SDimitry Andric // TODO: Figure out whether isAtomic is really necessary (see D57601). 9758bcb0991SDimitry Andric if (MMO->isVolatile() || MMO->isAtomic() || 9768bcb0991SDimitry Andric (MMO->isInvariant() && MMO->isDereferenceable()) || 9778bcb0991SDimitry Andric (!MMO->getValue())) { 9788bcb0991SDimitry Andric NewMMOs.push_back(MMO); 9798bcb0991SDimitry Andric continue; 9808bcb0991SDimitry Andric } 9818bcb0991SDimitry Andric unsigned Delta; 9828bcb0991SDimitry Andric if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 9838bcb0991SDimitry Andric int64_t AdjOffset = Delta * Num; 9848bcb0991SDimitry Andric NewMMOs.push_back( 9858bcb0991SDimitry Andric MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 9868bcb0991SDimitry Andric } else { 9878bcb0991SDimitry Andric NewMMOs.push_back( 9888bcb0991SDimitry Andric MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 9898bcb0991SDimitry Andric } 9908bcb0991SDimitry Andric } 9918bcb0991SDimitry Andric NewMI.setMemRefs(MF, NewMMOs); 9928bcb0991SDimitry Andric } 9938bcb0991SDimitry Andric 9948bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop and update the 9958bcb0991SDimitry Andric /// memory operands, if needed. 9968bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 9978bcb0991SDimitry Andric unsigned CurStageNum, 9988bcb0991SDimitry Andric unsigned InstStageNum) { 9998bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 10008bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 10018bcb0991SDimitry Andric return NewMI; 10028bcb0991SDimitry Andric } 10038bcb0991SDimitry Andric 10048bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop. If needed, this 10058bcb0991SDimitry Andric /// function updates the instruction using the values saved in the 10068bcb0991SDimitry Andric /// InstrChanges structure. 10078bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 10088bcb0991SDimitry Andric MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 10098bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 10108bcb0991SDimitry Andric auto It = InstrChanges.find(OldMI); 10118bcb0991SDimitry Andric if (It != InstrChanges.end()) { 10128bcb0991SDimitry Andric std::pair<unsigned, int64_t> RegAndOffset = It->second; 10138bcb0991SDimitry Andric unsigned BasePos, OffsetPos; 10148bcb0991SDimitry Andric if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 10158bcb0991SDimitry Andric return nullptr; 10168bcb0991SDimitry Andric int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 10178bcb0991SDimitry Andric MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 10188bcb0991SDimitry Andric if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 10198bcb0991SDimitry Andric NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 10208bcb0991SDimitry Andric NewMI->getOperand(OffsetPos).setImm(NewOffset); 10218bcb0991SDimitry Andric } 10228bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 10238bcb0991SDimitry Andric return NewMI; 10248bcb0991SDimitry Andric } 10258bcb0991SDimitry Andric 10268bcb0991SDimitry Andric /// Update the machine instruction with new virtual registers. This 102781ad6265SDimitry Andric /// function may change the definitions and/or uses. 10288bcb0991SDimitry Andric void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 10298bcb0991SDimitry Andric bool LastDef, 10308bcb0991SDimitry Andric unsigned CurStageNum, 10318bcb0991SDimitry Andric unsigned InstrStageNum, 10328bcb0991SDimitry Andric ValueMapTy *VRMap) { 10334824e7fdSDimitry Andric for (MachineOperand &MO : NewMI->operands()) { 1034*bdd1243dSDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual()) 10358bcb0991SDimitry Andric continue; 10368bcb0991SDimitry Andric Register reg = MO.getReg(); 10378bcb0991SDimitry Andric if (MO.isDef()) { 10388bcb0991SDimitry Andric // Create a new virtual register for the definition. 10398bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(reg); 10408bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 10418bcb0991SDimitry Andric MO.setReg(NewReg); 10428bcb0991SDimitry Andric VRMap[CurStageNum][reg] = NewReg; 10438bcb0991SDimitry Andric if (LastDef) 10448bcb0991SDimitry Andric replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 10458bcb0991SDimitry Andric } else if (MO.isUse()) { 10468bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(reg); 10478bcb0991SDimitry Andric // Compute the stage that contains the last definition for instruction. 10488bcb0991SDimitry Andric int DefStageNum = Schedule.getStage(Def); 10498bcb0991SDimitry Andric unsigned StageNum = CurStageNum; 10508bcb0991SDimitry Andric if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 10518bcb0991SDimitry Andric // Compute the difference in stages between the defintion and the use. 10528bcb0991SDimitry Andric unsigned StageDiff = (InstrStageNum - DefStageNum); 10538bcb0991SDimitry Andric // Make an adjustment to get the last definition. 10548bcb0991SDimitry Andric StageNum -= StageDiff; 10558bcb0991SDimitry Andric } 10568bcb0991SDimitry Andric if (VRMap[StageNum].count(reg)) 10578bcb0991SDimitry Andric MO.setReg(VRMap[StageNum][reg]); 10588bcb0991SDimitry Andric } 10598bcb0991SDimitry Andric } 10608bcb0991SDimitry Andric } 10618bcb0991SDimitry Andric 10628bcb0991SDimitry Andric /// Return the instruction in the loop that defines the register. 10638bcb0991SDimitry Andric /// If the definition is a Phi, then follow the Phi operand to 10648bcb0991SDimitry Andric /// the instruction in the loop. 10658bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 10668bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 8> Visited; 10678bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(Reg); 10688bcb0991SDimitry Andric while (Def->isPHI()) { 10698bcb0991SDimitry Andric if (!Visited.insert(Def).second) 10708bcb0991SDimitry Andric break; 10718bcb0991SDimitry Andric for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 10728bcb0991SDimitry Andric if (Def->getOperand(i + 1).getMBB() == BB) { 10738bcb0991SDimitry Andric Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 10748bcb0991SDimitry Andric break; 10758bcb0991SDimitry Andric } 10768bcb0991SDimitry Andric } 10778bcb0991SDimitry Andric return Def; 10788bcb0991SDimitry Andric } 10798bcb0991SDimitry Andric 10808bcb0991SDimitry Andric /// Return the new name for the value from the previous stage. 10818bcb0991SDimitry Andric unsigned ModuloScheduleExpander::getPrevMapVal( 10828bcb0991SDimitry Andric unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 10838bcb0991SDimitry Andric ValueMapTy *VRMap, MachineBasicBlock *BB) { 10848bcb0991SDimitry Andric unsigned PrevVal = 0; 10858bcb0991SDimitry Andric if (StageNum > PhiStage) { 10868bcb0991SDimitry Andric MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 10878bcb0991SDimitry Andric if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 10888bcb0991SDimitry Andric // The name is defined in the previous stage. 10898bcb0991SDimitry Andric PrevVal = VRMap[StageNum - 1][LoopVal]; 10908bcb0991SDimitry Andric else if (VRMap[StageNum].count(LoopVal)) 10918bcb0991SDimitry Andric // The previous name is defined in the current stage when the instruction 10928bcb0991SDimitry Andric // order is swapped. 10938bcb0991SDimitry Andric PrevVal = VRMap[StageNum][LoopVal]; 10948bcb0991SDimitry Andric else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 10958bcb0991SDimitry Andric // The loop value hasn't yet been scheduled. 10968bcb0991SDimitry Andric PrevVal = LoopVal; 10978bcb0991SDimitry Andric else if (StageNum == PhiStage + 1) 10988bcb0991SDimitry Andric // The loop value is another phi, which has not been scheduled. 10998bcb0991SDimitry Andric PrevVal = getInitPhiReg(*LoopInst, BB); 11008bcb0991SDimitry Andric else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 11018bcb0991SDimitry Andric // The loop value is another phi, which has been scheduled. 11028bcb0991SDimitry Andric PrevVal = 11038bcb0991SDimitry Andric getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 11048bcb0991SDimitry Andric LoopStage, VRMap, BB); 11058bcb0991SDimitry Andric } 11068bcb0991SDimitry Andric return PrevVal; 11078bcb0991SDimitry Andric } 11088bcb0991SDimitry Andric 11098bcb0991SDimitry Andric /// Rewrite the Phi values in the specified block to use the mappings 11108bcb0991SDimitry Andric /// from the initial operand. Once the Phi is scheduled, we switch 11118bcb0991SDimitry Andric /// to using the loop value instead of the Phi value, so those names 11128bcb0991SDimitry Andric /// do not need to be rewritten. 11138bcb0991SDimitry Andric void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 11148bcb0991SDimitry Andric unsigned StageNum, 11158bcb0991SDimitry Andric ValueMapTy *VRMap, 11168bcb0991SDimitry Andric InstrMapTy &InstrMap) { 11178bcb0991SDimitry Andric for (auto &PHI : BB->phis()) { 11188bcb0991SDimitry Andric unsigned InitVal = 0; 11198bcb0991SDimitry Andric unsigned LoopVal = 0; 11208bcb0991SDimitry Andric getPhiRegs(PHI, BB, InitVal, LoopVal); 11218bcb0991SDimitry Andric Register PhiDef = PHI.getOperand(0).getReg(); 11228bcb0991SDimitry Andric 11238bcb0991SDimitry Andric unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 11248bcb0991SDimitry Andric unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 11258bcb0991SDimitry Andric unsigned NumPhis = getStagesForPhi(PhiDef); 11268bcb0991SDimitry Andric if (NumPhis > StageNum) 11278bcb0991SDimitry Andric NumPhis = StageNum; 11288bcb0991SDimitry Andric for (unsigned np = 0; np <= NumPhis; ++np) { 11298bcb0991SDimitry Andric unsigned NewVal = 11308bcb0991SDimitry Andric getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 11318bcb0991SDimitry Andric if (!NewVal) 11328bcb0991SDimitry Andric NewVal = InitVal; 11338bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 11348bcb0991SDimitry Andric NewVal); 11358bcb0991SDimitry Andric } 11368bcb0991SDimitry Andric } 11378bcb0991SDimitry Andric } 11388bcb0991SDimitry Andric 11398bcb0991SDimitry Andric /// Rewrite a previously scheduled instruction to use the register value 11408bcb0991SDimitry Andric /// from the new instruction. Make sure the instruction occurs in the 11418bcb0991SDimitry Andric /// basic block, and we don't change the uses in the new instruction. 11428bcb0991SDimitry Andric void ModuloScheduleExpander::rewriteScheduledInstr( 11438bcb0991SDimitry Andric MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 11448bcb0991SDimitry Andric unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 11458bcb0991SDimitry Andric unsigned PrevReg) { 11468bcb0991SDimitry Andric bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 11478bcb0991SDimitry Andric int StagePhi = Schedule.getStage(Phi) + PhiNum; 11488bcb0991SDimitry Andric // Rewrite uses that have been scheduled already to use the new 11498bcb0991SDimitry Andric // Phi register. 1150349cc55cSDimitry Andric for (MachineOperand &UseOp : 1151349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 11528bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent(); 11538bcb0991SDimitry Andric if (UseMI->getParent() != BB) 11548bcb0991SDimitry Andric continue; 11558bcb0991SDimitry Andric if (UseMI->isPHI()) { 11568bcb0991SDimitry Andric if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 11578bcb0991SDimitry Andric continue; 11588bcb0991SDimitry Andric if (getLoopPhiReg(*UseMI, BB) != OldReg) 11598bcb0991SDimitry Andric continue; 11608bcb0991SDimitry Andric } 11618bcb0991SDimitry Andric InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 11628bcb0991SDimitry Andric assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 11638bcb0991SDimitry Andric MachineInstr *OrigMI = OrigInstr->second; 11648bcb0991SDimitry Andric int StageSched = Schedule.getStage(OrigMI); 11658bcb0991SDimitry Andric int CycleSched = Schedule.getCycle(OrigMI); 11668bcb0991SDimitry Andric unsigned ReplaceReg = 0; 11678bcb0991SDimitry Andric // This is the stage for the scheduled instruction. 11688bcb0991SDimitry Andric if (StagePhi == StageSched && Phi->isPHI()) { 11698bcb0991SDimitry Andric int CyclePhi = Schedule.getCycle(Phi); 11708bcb0991SDimitry Andric if (PrevReg && InProlog) 11718bcb0991SDimitry Andric ReplaceReg = PrevReg; 11728bcb0991SDimitry Andric else if (PrevReg && !isLoopCarried(*Phi) && 11738bcb0991SDimitry Andric (CyclePhi <= CycleSched || OrigMI->isPHI())) 11748bcb0991SDimitry Andric ReplaceReg = PrevReg; 11758bcb0991SDimitry Andric else 11768bcb0991SDimitry Andric ReplaceReg = NewReg; 11778bcb0991SDimitry Andric } 11788bcb0991SDimitry Andric // The scheduled instruction occurs before the scheduled Phi, and the 11798bcb0991SDimitry Andric // Phi is not loop carried. 11808bcb0991SDimitry Andric if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 11818bcb0991SDimitry Andric ReplaceReg = NewReg; 11828bcb0991SDimitry Andric if (StagePhi > StageSched && Phi->isPHI()) 11838bcb0991SDimitry Andric ReplaceReg = NewReg; 11848bcb0991SDimitry Andric if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 11858bcb0991SDimitry Andric ReplaceReg = NewReg; 11868bcb0991SDimitry Andric if (ReplaceReg) { 118781ad6265SDimitry Andric const TargetRegisterClass *NRC = 11888bcb0991SDimitry Andric MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 118981ad6265SDimitry Andric if (NRC) 11908bcb0991SDimitry Andric UseOp.setReg(ReplaceReg); 119181ad6265SDimitry Andric else { 119281ad6265SDimitry Andric Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 119381ad6265SDimitry Andric BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), 119481ad6265SDimitry Andric SplitReg) 119581ad6265SDimitry Andric .addReg(ReplaceReg); 119681ad6265SDimitry Andric UseOp.setReg(SplitReg); 119781ad6265SDimitry Andric } 11988bcb0991SDimitry Andric } 11998bcb0991SDimitry Andric } 12008bcb0991SDimitry Andric } 12018bcb0991SDimitry Andric 12028bcb0991SDimitry Andric bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 12038bcb0991SDimitry Andric if (!Phi.isPHI()) 12048bcb0991SDimitry Andric return false; 1205480093f4SDimitry Andric int DefCycle = Schedule.getCycle(&Phi); 12068bcb0991SDimitry Andric int DefStage = Schedule.getStage(&Phi); 12078bcb0991SDimitry Andric 12088bcb0991SDimitry Andric unsigned InitVal = 0; 12098bcb0991SDimitry Andric unsigned LoopVal = 0; 12108bcb0991SDimitry Andric getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 12118bcb0991SDimitry Andric MachineInstr *Use = MRI.getVRegDef(LoopVal); 12128bcb0991SDimitry Andric if (!Use || Use->isPHI()) 12138bcb0991SDimitry Andric return true; 1214480093f4SDimitry Andric int LoopCycle = Schedule.getCycle(Use); 12158bcb0991SDimitry Andric int LoopStage = Schedule.getStage(Use); 12168bcb0991SDimitry Andric return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 12178bcb0991SDimitry Andric } 12188bcb0991SDimitry Andric 12198bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 12208bcb0991SDimitry Andric // PeelingModuloScheduleExpander implementation 12218bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 12228bcb0991SDimitry Andric // This is a reimplementation of ModuloScheduleExpander that works by creating 12238bcb0991SDimitry Andric // a fully correct steady-state kernel and peeling off the prolog and epilogs. 12248bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 12258bcb0991SDimitry Andric 12268bcb0991SDimitry Andric namespace { 12278bcb0991SDimitry Andric // Remove any dead phis in MBB. Dead phis either have only one block as input 12288bcb0991SDimitry Andric // (in which case they are the identity) or have no uses. 12298bcb0991SDimitry Andric void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1230480093f4SDimitry Andric LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 12318bcb0991SDimitry Andric bool Changed = true; 12328bcb0991SDimitry Andric while (Changed) { 12338bcb0991SDimitry Andric Changed = false; 1234349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 12358bcb0991SDimitry Andric assert(MI.isPHI()); 12368bcb0991SDimitry Andric if (MRI.use_empty(MI.getOperand(0).getReg())) { 12378bcb0991SDimitry Andric if (LIS) 12388bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI); 12398bcb0991SDimitry Andric MI.eraseFromParent(); 12408bcb0991SDimitry Andric Changed = true; 1241480093f4SDimitry Andric } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 124281ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass = 12438bcb0991SDimitry Andric MRI.constrainRegClass(MI.getOperand(1).getReg(), 12448bcb0991SDimitry Andric MRI.getRegClass(MI.getOperand(0).getReg())); 124581ad6265SDimitry Andric assert(ConstrainRegClass && 124681ad6265SDimitry Andric "Expected a valid constrained register class!"); 124781ad6265SDimitry Andric (void)ConstrainRegClass; 12488bcb0991SDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(), 12498bcb0991SDimitry Andric MI.getOperand(1).getReg()); 12508bcb0991SDimitry Andric if (LIS) 12518bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI); 12528bcb0991SDimitry Andric MI.eraseFromParent(); 12538bcb0991SDimitry Andric Changed = true; 12548bcb0991SDimitry Andric } 12558bcb0991SDimitry Andric } 12568bcb0991SDimitry Andric } 12578bcb0991SDimitry Andric } 12588bcb0991SDimitry Andric 12598bcb0991SDimitry Andric /// Rewrites the kernel block in-place to adhere to the given schedule. 12608bcb0991SDimitry Andric /// KernelRewriter holds all of the state required to perform the rewriting. 12618bcb0991SDimitry Andric class KernelRewriter { 12628bcb0991SDimitry Andric ModuloSchedule &S; 12638bcb0991SDimitry Andric MachineBasicBlock *BB; 12648bcb0991SDimitry Andric MachineBasicBlock *PreheaderBB, *ExitBB; 12658bcb0991SDimitry Andric MachineRegisterInfo &MRI; 12668bcb0991SDimitry Andric const TargetInstrInfo *TII; 12678bcb0991SDimitry Andric LiveIntervals *LIS; 12688bcb0991SDimitry Andric 12698bcb0991SDimitry Andric // Map from register class to canonical undef register for that class. 12708bcb0991SDimitry Andric DenseMap<const TargetRegisterClass *, Register> Undefs; 12718bcb0991SDimitry Andric // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 12728bcb0991SDimitry Andric // this map is only used when InitReg is non-undef. 12738bcb0991SDimitry Andric DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 12748bcb0991SDimitry Andric // Map from LoopReg to phi register where the InitReg is undef. 12758bcb0991SDimitry Andric DenseMap<Register, Register> UndefPhis; 12768bcb0991SDimitry Andric 12778bcb0991SDimitry Andric // Reg is used by MI. Return the new register MI should use to adhere to the 12788bcb0991SDimitry Andric // schedule. Insert phis as necessary. 12798bcb0991SDimitry Andric Register remapUse(Register Reg, MachineInstr &MI); 12808bcb0991SDimitry Andric // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 12818bcb0991SDimitry Andric // If InitReg is not given it is chosen arbitrarily. It will either be undef 12828bcb0991SDimitry Andric // or will be chosen so as to share another phi. 1283*bdd1243dSDimitry Andric Register phi(Register LoopReg, std::optional<Register> InitReg = {}, 12848bcb0991SDimitry Andric const TargetRegisterClass *RC = nullptr); 12858bcb0991SDimitry Andric // Create an undef register of the given register class. 12868bcb0991SDimitry Andric Register undef(const TargetRegisterClass *RC); 12878bcb0991SDimitry Andric 12888bcb0991SDimitry Andric public: 1289fe6060f1SDimitry Andric KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 12908bcb0991SDimitry Andric LiveIntervals *LIS = nullptr); 12918bcb0991SDimitry Andric void rewrite(); 12928bcb0991SDimitry Andric }; 12938bcb0991SDimitry Andric } // namespace 12948bcb0991SDimitry Andric 12958bcb0991SDimitry Andric KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1296fe6060f1SDimitry Andric MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1297fe6060f1SDimitry Andric : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 12988bcb0991SDimitry Andric ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 12998bcb0991SDimitry Andric TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 13008bcb0991SDimitry Andric PreheaderBB = *BB->pred_begin(); 13018bcb0991SDimitry Andric if (PreheaderBB == BB) 13028bcb0991SDimitry Andric PreheaderBB = *std::next(BB->pred_begin()); 13038bcb0991SDimitry Andric } 13048bcb0991SDimitry Andric 13058bcb0991SDimitry Andric void KernelRewriter::rewrite() { 13068bcb0991SDimitry Andric // Rearrange the loop to be in schedule order. Note that the schedule may 13078bcb0991SDimitry Andric // contain instructions that are not owned by the loop block (InstrChanges and 13088bcb0991SDimitry Andric // friends), so we gracefully handle unowned instructions and delete any 13098bcb0991SDimitry Andric // instructions that weren't in the schedule. 13108bcb0991SDimitry Andric auto InsertPt = BB->getFirstTerminator(); 13118bcb0991SDimitry Andric MachineInstr *FirstMI = nullptr; 13128bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) { 13138bcb0991SDimitry Andric if (MI->isPHI()) 13148bcb0991SDimitry Andric continue; 13158bcb0991SDimitry Andric if (MI->getParent()) 13168bcb0991SDimitry Andric MI->removeFromParent(); 13178bcb0991SDimitry Andric BB->insert(InsertPt, MI); 13188bcb0991SDimitry Andric if (!FirstMI) 13198bcb0991SDimitry Andric FirstMI = MI; 13208bcb0991SDimitry Andric } 13218bcb0991SDimitry Andric assert(FirstMI && "Failed to find first MI in schedule"); 13228bcb0991SDimitry Andric 13238bcb0991SDimitry Andric // At this point all of the scheduled instructions are between FirstMI 13248bcb0991SDimitry Andric // and the end of the block. Kill from the first non-phi to FirstMI. 13258bcb0991SDimitry Andric for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 13268bcb0991SDimitry Andric if (LIS) 13278bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*I); 13288bcb0991SDimitry Andric (I++)->eraseFromParent(); 13298bcb0991SDimitry Andric } 13308bcb0991SDimitry Andric 13318bcb0991SDimitry Andric // Now remap every instruction in the loop. 13328bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 13338bcb0991SDimitry Andric if (MI.isPHI() || MI.isTerminator()) 13348bcb0991SDimitry Andric continue; 13358bcb0991SDimitry Andric for (MachineOperand &MO : MI.uses()) { 13368bcb0991SDimitry Andric if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 13378bcb0991SDimitry Andric continue; 13388bcb0991SDimitry Andric Register Reg = remapUse(MO.getReg(), MI); 13398bcb0991SDimitry Andric MO.setReg(Reg); 13408bcb0991SDimitry Andric } 13418bcb0991SDimitry Andric } 13428bcb0991SDimitry Andric EliminateDeadPhis(BB, MRI, LIS); 13438bcb0991SDimitry Andric 13448bcb0991SDimitry Andric // Ensure a phi exists for all instructions that are either referenced by 13458bcb0991SDimitry Andric // an illegal phi or by an instruction outside the loop. This allows us to 13468bcb0991SDimitry Andric // treat remaps of these values the same as "normal" values that come from 13478bcb0991SDimitry Andric // loop-carried phis. 13488bcb0991SDimitry Andric for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 13498bcb0991SDimitry Andric if (MI->isPHI()) { 13508bcb0991SDimitry Andric Register R = MI->getOperand(0).getReg(); 13518bcb0991SDimitry Andric phi(R); 13528bcb0991SDimitry Andric continue; 13538bcb0991SDimitry Andric } 13548bcb0991SDimitry Andric 13558bcb0991SDimitry Andric for (MachineOperand &Def : MI->defs()) { 13568bcb0991SDimitry Andric for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 13578bcb0991SDimitry Andric if (MI.getParent() != BB) { 13588bcb0991SDimitry Andric phi(Def.getReg()); 13598bcb0991SDimitry Andric break; 13608bcb0991SDimitry Andric } 13618bcb0991SDimitry Andric } 13628bcb0991SDimitry Andric } 13638bcb0991SDimitry Andric } 13648bcb0991SDimitry Andric } 13658bcb0991SDimitry Andric 13668bcb0991SDimitry Andric Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 13678bcb0991SDimitry Andric MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 13688bcb0991SDimitry Andric if (!Producer) 13698bcb0991SDimitry Andric return Reg; 13708bcb0991SDimitry Andric 13718bcb0991SDimitry Andric int ConsumerStage = S.getStage(&MI); 13728bcb0991SDimitry Andric if (!Producer->isPHI()) { 13738bcb0991SDimitry Andric // Non-phi producers are simple to remap. Insert as many phis as the 13748bcb0991SDimitry Andric // difference between the consumer and producer stages. 13758bcb0991SDimitry Andric if (Producer->getParent() != BB) 13768bcb0991SDimitry Andric // Producer was not inside the loop. Use the register as-is. 13778bcb0991SDimitry Andric return Reg; 13788bcb0991SDimitry Andric int ProducerStage = S.getStage(Producer); 13798bcb0991SDimitry Andric assert(ConsumerStage != -1 && 13808bcb0991SDimitry Andric "In-loop consumer should always be scheduled!"); 13818bcb0991SDimitry Andric assert(ConsumerStage >= ProducerStage); 13828bcb0991SDimitry Andric unsigned StageDiff = ConsumerStage - ProducerStage; 13838bcb0991SDimitry Andric 13848bcb0991SDimitry Andric for (unsigned I = 0; I < StageDiff; ++I) 13858bcb0991SDimitry Andric Reg = phi(Reg); 13868bcb0991SDimitry Andric return Reg; 13878bcb0991SDimitry Andric } 13888bcb0991SDimitry Andric 13898bcb0991SDimitry Andric // First, dive through the phi chain to find the defaults for the generated 13908bcb0991SDimitry Andric // phis. 1391*bdd1243dSDimitry Andric SmallVector<std::optional<Register>, 4> Defaults; 13928bcb0991SDimitry Andric Register LoopReg = Reg; 13938bcb0991SDimitry Andric auto LoopProducer = Producer; 13948bcb0991SDimitry Andric while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 13958bcb0991SDimitry Andric LoopReg = getLoopPhiReg(*LoopProducer, BB); 13968bcb0991SDimitry Andric Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 13978bcb0991SDimitry Andric LoopProducer = MRI.getUniqueVRegDef(LoopReg); 13988bcb0991SDimitry Andric assert(LoopProducer); 13998bcb0991SDimitry Andric } 14008bcb0991SDimitry Andric int LoopProducerStage = S.getStage(LoopProducer); 14018bcb0991SDimitry Andric 1402*bdd1243dSDimitry Andric std::optional<Register> IllegalPhiDefault; 14038bcb0991SDimitry Andric 14048bcb0991SDimitry Andric if (LoopProducerStage == -1) { 14058bcb0991SDimitry Andric // Do nothing. 14068bcb0991SDimitry Andric } else if (LoopProducerStage > ConsumerStage) { 14078bcb0991SDimitry Andric // This schedule is only representable if ProducerStage == ConsumerStage+1. 14088bcb0991SDimitry Andric // In addition, Consumer's cycle must be scheduled after Producer in the 14098bcb0991SDimitry Andric // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 14108bcb0991SDimitry Andric // functions. 14118bcb0991SDimitry Andric #ifndef NDEBUG // Silence unused variables in non-asserts mode. 14128bcb0991SDimitry Andric int LoopProducerCycle = S.getCycle(LoopProducer); 14138bcb0991SDimitry Andric int ConsumerCycle = S.getCycle(&MI); 14148bcb0991SDimitry Andric #endif 14158bcb0991SDimitry Andric assert(LoopProducerCycle <= ConsumerCycle); 14168bcb0991SDimitry Andric assert(LoopProducerStage == ConsumerStage + 1); 14178bcb0991SDimitry Andric // Peel off the first phi from Defaults and insert a phi between producer 14188bcb0991SDimitry Andric // and consumer. This phi will not be at the front of the block so we 14198bcb0991SDimitry Andric // consider it illegal. It will only exist during the rewrite process; it 14208bcb0991SDimitry Andric // needs to exist while we peel off prologs because these could take the 14218bcb0991SDimitry Andric // default value. After that we can replace all uses with the loop producer 14228bcb0991SDimitry Andric // value. 14238bcb0991SDimitry Andric IllegalPhiDefault = Defaults.front(); 14248bcb0991SDimitry Andric Defaults.erase(Defaults.begin()); 14258bcb0991SDimitry Andric } else { 14268bcb0991SDimitry Andric assert(ConsumerStage >= LoopProducerStage); 14278bcb0991SDimitry Andric int StageDiff = ConsumerStage - LoopProducerStage; 14288bcb0991SDimitry Andric if (StageDiff > 0) { 14298bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 14308bcb0991SDimitry Andric << " to " << (Defaults.size() + StageDiff) << "\n"); 14318bcb0991SDimitry Andric // If we need more phis than we have defaults for, pad out with undefs for 14328bcb0991SDimitry Andric // the earliest phis, which are at the end of the defaults chain (the 14338bcb0991SDimitry Andric // chain is in reverse order). 1434*bdd1243dSDimitry Andric Defaults.resize(Defaults.size() + StageDiff, 1435*bdd1243dSDimitry Andric Defaults.empty() ? std::optional<Register>() 14368bcb0991SDimitry Andric : Defaults.back()); 14378bcb0991SDimitry Andric } 14388bcb0991SDimitry Andric } 14398bcb0991SDimitry Andric 14408bcb0991SDimitry Andric // Now we know the number of stages to jump back, insert the phi chain. 14418bcb0991SDimitry Andric auto DefaultI = Defaults.rbegin(); 14428bcb0991SDimitry Andric while (DefaultI != Defaults.rend()) 14438bcb0991SDimitry Andric LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 14448bcb0991SDimitry Andric 144581ad6265SDimitry Andric if (IllegalPhiDefault) { 14468bcb0991SDimitry Andric // The consumer optionally consumes LoopProducer in the same iteration 14478bcb0991SDimitry Andric // (because the producer is scheduled at an earlier cycle than the consumer) 14488bcb0991SDimitry Andric // or the initial value. To facilitate this we create an illegal block here 14498bcb0991SDimitry Andric // by embedding a phi in the middle of the block. We will fix this up 14508bcb0991SDimitry Andric // immediately prior to pruning. 14518bcb0991SDimitry Andric auto RC = MRI.getRegClass(Reg); 14528bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 14535ffd83dbSDimitry Andric MachineInstr *IllegalPhi = 14548bcb0991SDimitry Andric BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 145581ad6265SDimitry Andric .addReg(*IllegalPhiDefault) 14568bcb0991SDimitry Andric .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 14578bcb0991SDimitry Andric .addReg(LoopReg) 14588bcb0991SDimitry Andric .addMBB(BB); // Block choice is arbitrary and has no effect. 14595ffd83dbSDimitry Andric // Illegal phi should belong to the producer stage so that it can be 14605ffd83dbSDimitry Andric // filtered correctly during peeling. 14615ffd83dbSDimitry Andric S.setStage(IllegalPhi, LoopProducerStage); 14628bcb0991SDimitry Andric return R; 14638bcb0991SDimitry Andric } 14648bcb0991SDimitry Andric 14658bcb0991SDimitry Andric return LoopReg; 14668bcb0991SDimitry Andric } 14678bcb0991SDimitry Andric 1468*bdd1243dSDimitry Andric Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg, 14698bcb0991SDimitry Andric const TargetRegisterClass *RC) { 14708bcb0991SDimitry Andric // If the init register is not undef, try and find an existing phi. 147181ad6265SDimitry Andric if (InitReg) { 1472*bdd1243dSDimitry Andric auto I = Phis.find({LoopReg, *InitReg}); 14738bcb0991SDimitry Andric if (I != Phis.end()) 14748bcb0991SDimitry Andric return I->second; 14758bcb0991SDimitry Andric } else { 14768bcb0991SDimitry Andric for (auto &KV : Phis) { 14778bcb0991SDimitry Andric if (KV.first.first == LoopReg) 14788bcb0991SDimitry Andric return KV.second; 14798bcb0991SDimitry Andric } 14808bcb0991SDimitry Andric } 14818bcb0991SDimitry Andric 14828bcb0991SDimitry Andric // InitReg is either undef or no existing phi takes InitReg as input. Try and 14838bcb0991SDimitry Andric // find a phi that takes undef as input. 14848bcb0991SDimitry Andric auto I = UndefPhis.find(LoopReg); 14858bcb0991SDimitry Andric if (I != UndefPhis.end()) { 14868bcb0991SDimitry Andric Register R = I->second; 148781ad6265SDimitry Andric if (!InitReg) 14888bcb0991SDimitry Andric // Found a phi taking undef as input, and this input is undef so return 14898bcb0991SDimitry Andric // without any more changes. 14908bcb0991SDimitry Andric return R; 14918bcb0991SDimitry Andric // Found a phi taking undef as input, so rewrite it to take InitReg. 14928bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(R); 1493*bdd1243dSDimitry Andric MI->getOperand(1).setReg(*InitReg); 1494*bdd1243dSDimitry Andric Phis.insert({{LoopReg, *InitReg}, R}); 149581ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass = 1496*bdd1243dSDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 149781ad6265SDimitry Andric assert(ConstrainRegClass && "Expected a valid constrained register class!"); 149881ad6265SDimitry Andric (void)ConstrainRegClass; 14998bcb0991SDimitry Andric UndefPhis.erase(I); 15008bcb0991SDimitry Andric return R; 15018bcb0991SDimitry Andric } 15028bcb0991SDimitry Andric 15038bcb0991SDimitry Andric // Failed to find any existing phi to reuse, so create a new one. 15048bcb0991SDimitry Andric if (!RC) 15058bcb0991SDimitry Andric RC = MRI.getRegClass(LoopReg); 15068bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 150781ad6265SDimitry Andric if (InitReg) { 150881ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass = 15098bcb0991SDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 151081ad6265SDimitry Andric assert(ConstrainRegClass && "Expected a valid constrained register class!"); 151181ad6265SDimitry Andric (void)ConstrainRegClass; 151281ad6265SDimitry Andric } 15138bcb0991SDimitry Andric BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 151481ad6265SDimitry Andric .addReg(InitReg ? *InitReg : undef(RC)) 15158bcb0991SDimitry Andric .addMBB(PreheaderBB) 15168bcb0991SDimitry Andric .addReg(LoopReg) 15178bcb0991SDimitry Andric .addMBB(BB); 151881ad6265SDimitry Andric if (!InitReg) 15198bcb0991SDimitry Andric UndefPhis[LoopReg] = R; 15208bcb0991SDimitry Andric else 15218bcb0991SDimitry Andric Phis[{LoopReg, *InitReg}] = R; 15228bcb0991SDimitry Andric return R; 15238bcb0991SDimitry Andric } 15248bcb0991SDimitry Andric 15258bcb0991SDimitry Andric Register KernelRewriter::undef(const TargetRegisterClass *RC) { 15268bcb0991SDimitry Andric Register &R = Undefs[RC]; 15278bcb0991SDimitry Andric if (R == 0) { 15288bcb0991SDimitry Andric // Create an IMPLICIT_DEF that defines this register if we need it. 15298bcb0991SDimitry Andric // All uses of this should be removed by the time we have finished unrolling 15308bcb0991SDimitry Andric // prologs and epilogs. 15318bcb0991SDimitry Andric R = MRI.createVirtualRegister(RC); 15328bcb0991SDimitry Andric auto *InsertBB = &PreheaderBB->getParent()->front(); 15338bcb0991SDimitry Andric BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 15348bcb0991SDimitry Andric TII->get(TargetOpcode::IMPLICIT_DEF), R); 15358bcb0991SDimitry Andric } 15368bcb0991SDimitry Andric return R; 15378bcb0991SDimitry Andric } 15388bcb0991SDimitry Andric 15398bcb0991SDimitry Andric namespace { 15408bcb0991SDimitry Andric /// Describes an operand in the kernel of a pipelined loop. Characteristics of 15418bcb0991SDimitry Andric /// the operand are discovered, such as how many in-loop PHIs it has to jump 15428bcb0991SDimitry Andric /// through and defaults for these phis. 15438bcb0991SDimitry Andric class KernelOperandInfo { 15448bcb0991SDimitry Andric MachineBasicBlock *BB; 15458bcb0991SDimitry Andric MachineRegisterInfo &MRI; 15468bcb0991SDimitry Andric SmallVector<Register, 4> PhiDefaults; 15478bcb0991SDimitry Andric MachineOperand *Source; 15488bcb0991SDimitry Andric MachineOperand *Target; 15498bcb0991SDimitry Andric 15508bcb0991SDimitry Andric public: 15518bcb0991SDimitry Andric KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 15528bcb0991SDimitry Andric const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 15538bcb0991SDimitry Andric : MRI(MRI) { 15548bcb0991SDimitry Andric Source = MO; 15558bcb0991SDimitry Andric BB = MO->getParent()->getParent(); 15568bcb0991SDimitry Andric while (isRegInLoop(MO)) { 15578bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 15588bcb0991SDimitry Andric if (MI->isFullCopy()) { 15598bcb0991SDimitry Andric MO = &MI->getOperand(1); 15608bcb0991SDimitry Andric continue; 15618bcb0991SDimitry Andric } 15628bcb0991SDimitry Andric if (!MI->isPHI()) 15638bcb0991SDimitry Andric break; 15648bcb0991SDimitry Andric // If this is an illegal phi, don't count it in distance. 15658bcb0991SDimitry Andric if (IllegalPhis.count(MI)) { 15668bcb0991SDimitry Andric MO = &MI->getOperand(3); 15678bcb0991SDimitry Andric continue; 15688bcb0991SDimitry Andric } 15698bcb0991SDimitry Andric 15708bcb0991SDimitry Andric Register Default = getInitPhiReg(*MI, BB); 15718bcb0991SDimitry Andric MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 15728bcb0991SDimitry Andric : &MI->getOperand(3); 15738bcb0991SDimitry Andric PhiDefaults.push_back(Default); 15748bcb0991SDimitry Andric } 15758bcb0991SDimitry Andric Target = MO; 15768bcb0991SDimitry Andric } 15778bcb0991SDimitry Andric 15788bcb0991SDimitry Andric bool operator==(const KernelOperandInfo &Other) const { 15798bcb0991SDimitry Andric return PhiDefaults.size() == Other.PhiDefaults.size(); 15808bcb0991SDimitry Andric } 15818bcb0991SDimitry Andric 15828bcb0991SDimitry Andric void print(raw_ostream &OS) const { 15838bcb0991SDimitry Andric OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 15848bcb0991SDimitry Andric << *Source->getParent(); 15858bcb0991SDimitry Andric } 15868bcb0991SDimitry Andric 15878bcb0991SDimitry Andric private: 15888bcb0991SDimitry Andric bool isRegInLoop(MachineOperand *MO) { 15898bcb0991SDimitry Andric return MO->isReg() && MO->getReg().isVirtual() && 15908bcb0991SDimitry Andric MRI.getVRegDef(MO->getReg())->getParent() == BB; 15918bcb0991SDimitry Andric } 15928bcb0991SDimitry Andric }; 15938bcb0991SDimitry Andric } // namespace 15948bcb0991SDimitry Andric 15958bcb0991SDimitry Andric MachineBasicBlock * 15968bcb0991SDimitry Andric PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 15978bcb0991SDimitry Andric MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 15988bcb0991SDimitry Andric if (LPD == LPD_Front) 15998bcb0991SDimitry Andric PeeledFront.push_back(NewBB); 16008bcb0991SDimitry Andric else 16018bcb0991SDimitry Andric PeeledBack.push_front(NewBB); 16028bcb0991SDimitry Andric for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 16038bcb0991SDimitry Andric ++I, ++NI) { 16048bcb0991SDimitry Andric CanonicalMIs[&*I] = &*I; 16058bcb0991SDimitry Andric CanonicalMIs[&*NI] = &*I; 16068bcb0991SDimitry Andric BlockMIs[{NewBB, &*I}] = &*NI; 16078bcb0991SDimitry Andric BlockMIs[{BB, &*I}] = &*I; 16088bcb0991SDimitry Andric } 16098bcb0991SDimitry Andric return NewBB; 16108bcb0991SDimitry Andric } 16118bcb0991SDimitry Andric 1612480093f4SDimitry Andric void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1613480093f4SDimitry Andric int MinStage) { 1614480093f4SDimitry Andric for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1615480093f4SDimitry Andric I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1616480093f4SDimitry Andric MachineInstr *MI = &*I++; 1617480093f4SDimitry Andric int Stage = getStage(MI); 1618480093f4SDimitry Andric if (Stage == -1 || Stage >= MinStage) 1619480093f4SDimitry Andric continue; 1620480093f4SDimitry Andric 1621480093f4SDimitry Andric for (MachineOperand &DefMO : MI->defs()) { 1622480093f4SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1623480093f4SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1624480093f4SDimitry Andric // Only PHIs can use values from this block by construction. 1625480093f4SDimitry Andric // Match with the equivalent PHI in B. 1626480093f4SDimitry Andric assert(UseMI.isPHI()); 1627480093f4SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1628480093f4SDimitry Andric MI->getParent()); 1629480093f4SDimitry Andric Subs.emplace_back(&UseMI, Reg); 1630480093f4SDimitry Andric } 1631480093f4SDimitry Andric for (auto &Sub : Subs) 1632480093f4SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1633480093f4SDimitry Andric *MRI.getTargetRegisterInfo()); 1634480093f4SDimitry Andric } 1635480093f4SDimitry Andric if (LIS) 1636480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 1637480093f4SDimitry Andric MI->eraseFromParent(); 1638480093f4SDimitry Andric } 1639480093f4SDimitry Andric } 1640480093f4SDimitry Andric 1641480093f4SDimitry Andric void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1642480093f4SDimitry Andric MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1643480093f4SDimitry Andric auto InsertPt = DestBB->getFirstNonPHI(); 1644480093f4SDimitry Andric DenseMap<Register, Register> Remaps; 1645349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range( 1646349cc55cSDimitry Andric llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1647349cc55cSDimitry Andric if (MI.isPHI()) { 1648480093f4SDimitry Andric // This is an illegal PHI. If we move any instructions using an illegal 16495ffd83dbSDimitry Andric // PHI, we need to create a legal Phi. 1650349cc55cSDimitry Andric if (getStage(&MI) != Stage) { 16515ffd83dbSDimitry Andric // The legal Phi is not necessary if the illegal phi's stage 16525ffd83dbSDimitry Andric // is being moved. 1653349cc55cSDimitry Andric Register PhiR = MI.getOperand(0).getReg(); 1654480093f4SDimitry Andric auto RC = MRI.getRegClass(PhiR); 1655480093f4SDimitry Andric Register NR = MRI.createVirtualRegister(RC); 16565ffd83dbSDimitry Andric MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 16575ffd83dbSDimitry Andric DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1658480093f4SDimitry Andric .addReg(PhiR) 1659480093f4SDimitry Andric .addMBB(SourceBB); 1660349cc55cSDimitry Andric BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1661349cc55cSDimitry Andric CanonicalMIs[NI] = CanonicalMIs[&MI]; 1662480093f4SDimitry Andric Remaps[PhiR] = NR; 16635ffd83dbSDimitry Andric } 1664480093f4SDimitry Andric } 1665349cc55cSDimitry Andric if (getStage(&MI) != Stage) 1666480093f4SDimitry Andric continue; 1667349cc55cSDimitry Andric MI.removeFromParent(); 1668349cc55cSDimitry Andric DestBB->insert(InsertPt, &MI); 1669349cc55cSDimitry Andric auto *KernelMI = CanonicalMIs[&MI]; 1670349cc55cSDimitry Andric BlockMIs[{DestBB, KernelMI}] = &MI; 1671480093f4SDimitry Andric BlockMIs.erase({SourceBB, KernelMI}); 1672480093f4SDimitry Andric } 1673480093f4SDimitry Andric SmallVector<MachineInstr *, 4> PhiToDelete; 1674480093f4SDimitry Andric for (MachineInstr &MI : DestBB->phis()) { 1675480093f4SDimitry Andric assert(MI.getNumOperands() == 3); 1676480093f4SDimitry Andric MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1677480093f4SDimitry Andric // If the instruction referenced by the phi is moved inside the block 1678480093f4SDimitry Andric // we don't need the phi anymore. 1679480093f4SDimitry Andric if (getStage(Def) == Stage) { 1680480093f4SDimitry Andric Register PhiReg = MI.getOperand(0).getReg(); 16815ffd83dbSDimitry Andric assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 16825ffd83dbSDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1683480093f4SDimitry Andric MI.getOperand(0).setReg(PhiReg); 1684480093f4SDimitry Andric PhiToDelete.push_back(&MI); 1685480093f4SDimitry Andric } 1686480093f4SDimitry Andric } 1687480093f4SDimitry Andric for (auto *P : PhiToDelete) 1688480093f4SDimitry Andric P->eraseFromParent(); 1689480093f4SDimitry Andric InsertPt = DestBB->getFirstNonPHI(); 1690480093f4SDimitry Andric // Helper to clone Phi instructions into the destination block. We clone Phi 1691480093f4SDimitry Andric // greedily to avoid combinatorial explosion of Phi instructions. 1692480093f4SDimitry Andric auto clonePhi = [&](MachineInstr *Phi) { 1693480093f4SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1694480093f4SDimitry Andric DestBB->insert(InsertPt, NewMI); 1695480093f4SDimitry Andric Register OrigR = Phi->getOperand(0).getReg(); 1696480093f4SDimitry Andric Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1697480093f4SDimitry Andric NewMI->getOperand(0).setReg(R); 1698480093f4SDimitry Andric NewMI->getOperand(1).setReg(OrigR); 1699480093f4SDimitry Andric NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1700480093f4SDimitry Andric Remaps[OrigR] = R; 1701480093f4SDimitry Andric CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1702480093f4SDimitry Andric BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1703480093f4SDimitry Andric PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1704480093f4SDimitry Andric return R; 1705480093f4SDimitry Andric }; 1706480093f4SDimitry Andric for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1707480093f4SDimitry Andric for (MachineOperand &MO : I->uses()) { 1708480093f4SDimitry Andric if (!MO.isReg()) 1709480093f4SDimitry Andric continue; 1710480093f4SDimitry Andric if (Remaps.count(MO.getReg())) 1711480093f4SDimitry Andric MO.setReg(Remaps[MO.getReg()]); 1712480093f4SDimitry Andric else { 1713480093f4SDimitry Andric // If we are using a phi from the source block we need to add a new phi 1714480093f4SDimitry Andric // pointing to the old one. 1715480093f4SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1716480093f4SDimitry Andric if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1717480093f4SDimitry Andric Register R = clonePhi(Use); 1718480093f4SDimitry Andric MO.setReg(R); 1719480093f4SDimitry Andric } 1720480093f4SDimitry Andric } 1721480093f4SDimitry Andric } 1722480093f4SDimitry Andric } 1723480093f4SDimitry Andric } 1724480093f4SDimitry Andric 1725480093f4SDimitry Andric Register 1726480093f4SDimitry Andric PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1727480093f4SDimitry Andric MachineInstr *Phi) { 1728480093f4SDimitry Andric unsigned distance = PhiNodeLoopIteration[Phi]; 1729480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalPhi; 17305ffd83dbSDimitry Andric Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1731480093f4SDimitry Andric for (unsigned I = 0; I < distance; ++I) { 1732480093f4SDimitry Andric assert(CanonicalUse->isPHI()); 1733480093f4SDimitry Andric assert(CanonicalUse->getNumOperands() == 5); 1734480093f4SDimitry Andric unsigned LoopRegIdx = 3, InitRegIdx = 1; 1735480093f4SDimitry Andric if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1736480093f4SDimitry Andric std::swap(LoopRegIdx, InitRegIdx); 17375ffd83dbSDimitry Andric CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 17385ffd83dbSDimitry Andric CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1739480093f4SDimitry Andric } 17405ffd83dbSDimitry Andric return CanonicalUseReg; 1741480093f4SDimitry Andric } 1742480093f4SDimitry Andric 17438bcb0991SDimitry Andric void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 17448bcb0991SDimitry Andric BitVector LS(Schedule.getNumStages(), true); 17458bcb0991SDimitry Andric BitVector AS(Schedule.getNumStages(), true); 17468bcb0991SDimitry Andric LiveStages[BB] = LS; 17478bcb0991SDimitry Andric AvailableStages[BB] = AS; 17488bcb0991SDimitry Andric 17498bcb0991SDimitry Andric // Peel out the prologs. 17508bcb0991SDimitry Andric LS.reset(); 17518bcb0991SDimitry Andric for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 175204eeddc0SDimitry Andric LS[I] = true; 17538bcb0991SDimitry Andric Prologs.push_back(peelKernel(LPD_Front)); 17548bcb0991SDimitry Andric LiveStages[Prologs.back()] = LS; 17558bcb0991SDimitry Andric AvailableStages[Prologs.back()] = LS; 17568bcb0991SDimitry Andric } 17578bcb0991SDimitry Andric 17588bcb0991SDimitry Andric // Create a block that will end up as the new loop exiting block (dominated by 17598bcb0991SDimitry Andric // all prologs and epilogs). It will only contain PHIs, in the same order as 17608bcb0991SDimitry Andric // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 17618bcb0991SDimitry Andric // that the exiting block is a (sub) clone of BB. This in turn gives us the 17628bcb0991SDimitry Andric // property that any value deffed in BB but used outside of BB is used by a 17638bcb0991SDimitry Andric // PHI in the exiting block. 17648bcb0991SDimitry Andric MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1765480093f4SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 17668bcb0991SDimitry Andric // Push out the epilogs, again in reverse order. 17678bcb0991SDimitry Andric // We can't assume anything about the minumum loop trip count at this point, 1768480093f4SDimitry Andric // so emit a fairly complex epilog. 1769480093f4SDimitry Andric 1770480093f4SDimitry Andric // We first peel number of stages minus one epilogue. Then we remove dead 1771480093f4SDimitry Andric // stages and reorder instructions based on their stage. If we have 3 stages 1772480093f4SDimitry Andric // we generate first: 1773480093f4SDimitry Andric // E0[3, 2, 1] 1774480093f4SDimitry Andric // E1[3', 2'] 1775480093f4SDimitry Andric // E2[3''] 1776480093f4SDimitry Andric // And then we move instructions based on their stages to have: 1777480093f4SDimitry Andric // E0[3] 1778480093f4SDimitry Andric // E1[2, 3'] 1779480093f4SDimitry Andric // E2[1, 2', 3''] 1780480093f4SDimitry Andric // The transformation is legal because we only move instructions past 1781480093f4SDimitry Andric // instructions of a previous loop iteration. 17828bcb0991SDimitry Andric for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1783480093f4SDimitry Andric Epilogs.push_back(peelKernel(LPD_Back)); 1784480093f4SDimitry Andric MachineBasicBlock *B = Epilogs.back(); 1785480093f4SDimitry Andric filterInstructions(B, Schedule.getNumStages() - I); 1786480093f4SDimitry Andric // Keep track at which iteration each phi belongs to. We need it to know 1787480093f4SDimitry Andric // what version of the variable to use during prologue/epilogue stitching. 1788480093f4SDimitry Andric EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1789349cc55cSDimitry Andric for (MachineInstr &Phi : B->phis()) 1790349cc55cSDimitry Andric PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 17918bcb0991SDimitry Andric } 1792480093f4SDimitry Andric for (size_t I = 0; I < Epilogs.size(); I++) { 1793480093f4SDimitry Andric LS.reset(); 1794480093f4SDimitry Andric for (size_t J = I; J < Epilogs.size(); J++) { 1795480093f4SDimitry Andric int Iteration = J; 1796480093f4SDimitry Andric unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1797480093f4SDimitry Andric // Move stage one block at a time so that Phi nodes are updated correctly. 1798480093f4SDimitry Andric for (size_t K = Iteration; K > I; K--) 1799480093f4SDimitry Andric moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 180004eeddc0SDimitry Andric LS[Stage] = true; 1801480093f4SDimitry Andric } 1802480093f4SDimitry Andric LiveStages[Epilogs[I]] = LS; 1803480093f4SDimitry Andric AvailableStages[Epilogs[I]] = AS; 18048bcb0991SDimitry Andric } 18058bcb0991SDimitry Andric 18068bcb0991SDimitry Andric // Now we've defined all the prolog and epilog blocks as a fallthrough 18078bcb0991SDimitry Andric // sequence, add the edges that will be followed if the loop trip count is 18088bcb0991SDimitry Andric // lower than the number of stages (connecting prologs directly with epilogs). 18098bcb0991SDimitry Andric auto PI = Prologs.begin(); 18108bcb0991SDimitry Andric auto EI = Epilogs.begin(); 18118bcb0991SDimitry Andric assert(Prologs.size() == Epilogs.size()); 18128bcb0991SDimitry Andric for (; PI != Prologs.end(); ++PI, ++EI) { 18138bcb0991SDimitry Andric MachineBasicBlock *Pred = *(*EI)->pred_begin(); 18148bcb0991SDimitry Andric (*PI)->addSuccessor(*EI); 18158bcb0991SDimitry Andric for (MachineInstr &MI : (*EI)->phis()) { 18168bcb0991SDimitry Andric Register Reg = MI.getOperand(1).getReg(); 18178bcb0991SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1818480093f4SDimitry Andric if (Use && Use->getParent() == Pred) { 1819480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1820480093f4SDimitry Andric if (CanonicalUse->isPHI()) { 1821480093f4SDimitry Andric // If the use comes from a phi we need to skip as many phi as the 1822480093f4SDimitry Andric // distance between the epilogue and the kernel. Trace through the phi 1823480093f4SDimitry Andric // chain to find the right value. 1824480093f4SDimitry Andric Reg = getPhiCanonicalReg(CanonicalUse, Use); 1825480093f4SDimitry Andric } 18268bcb0991SDimitry Andric Reg = getEquivalentRegisterIn(Reg, *PI); 1827480093f4SDimitry Andric } 18288bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 18298bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateMBB(*PI)); 18308bcb0991SDimitry Andric } 18318bcb0991SDimitry Andric } 18328bcb0991SDimitry Andric 18338bcb0991SDimitry Andric // Create a list of all blocks in order. 18348bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 8> Blocks; 18358bcb0991SDimitry Andric llvm::copy(PeeledFront, std::back_inserter(Blocks)); 18368bcb0991SDimitry Andric Blocks.push_back(BB); 18378bcb0991SDimitry Andric llvm::copy(PeeledBack, std::back_inserter(Blocks)); 18388bcb0991SDimitry Andric 18398bcb0991SDimitry Andric // Iterate in reverse order over all instructions, remapping as we go. 18408bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks)) { 184181ad6265SDimitry Andric for (auto I = B->instr_rbegin(); 18428bcb0991SDimitry Andric I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 184381ad6265SDimitry Andric MachineBasicBlock::reverse_instr_iterator MI = I++; 184481ad6265SDimitry Andric rewriteUsesOf(&*MI); 18458bcb0991SDimitry Andric } 18468bcb0991SDimitry Andric } 1847480093f4SDimitry Andric for (auto *MI : IllegalPhisToDelete) { 1848480093f4SDimitry Andric if (LIS) 1849480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 1850480093f4SDimitry Andric MI->eraseFromParent(); 1851480093f4SDimitry Andric } 1852480093f4SDimitry Andric IllegalPhisToDelete.clear(); 1853480093f4SDimitry Andric 18548bcb0991SDimitry Andric // Now all remapping has been done, we're free to optimize the generated code. 18558bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks)) 18568bcb0991SDimitry Andric EliminateDeadPhis(B, MRI, LIS); 18578bcb0991SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS); 18588bcb0991SDimitry Andric } 18598bcb0991SDimitry Andric 18608bcb0991SDimitry Andric MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 18618bcb0991SDimitry Andric MachineFunction &MF = *BB->getParent(); 18628bcb0991SDimitry Andric MachineBasicBlock *Exit = *BB->succ_begin(); 18638bcb0991SDimitry Andric if (Exit == BB) 18648bcb0991SDimitry Andric Exit = *std::next(BB->succ_begin()); 18658bcb0991SDimitry Andric 18668bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 18678bcb0991SDimitry Andric MF.insert(std::next(BB->getIterator()), NewBB); 18688bcb0991SDimitry Andric 18698bcb0991SDimitry Andric // Clone all phis in BB into NewBB and rewrite. 18708bcb0991SDimitry Andric for (MachineInstr &MI : BB->phis()) { 18718bcb0991SDimitry Andric auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 18728bcb0991SDimitry Andric Register OldR = MI.getOperand(3).getReg(); 18738bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 18748bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> Uses; 18758bcb0991SDimitry Andric for (MachineInstr &Use : MRI.use_instructions(OldR)) 18768bcb0991SDimitry Andric if (Use.getParent() != BB) 18778bcb0991SDimitry Andric Uses.push_back(&Use); 18788bcb0991SDimitry Andric for (MachineInstr *Use : Uses) 18798bcb0991SDimitry Andric Use->substituteRegister(OldR, R, /*SubIdx=*/0, 18808bcb0991SDimitry Andric *MRI.getTargetRegisterInfo()); 18818bcb0991SDimitry Andric MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 18828bcb0991SDimitry Andric .addReg(OldR) 18838bcb0991SDimitry Andric .addMBB(BB); 18848bcb0991SDimitry Andric BlockMIs[{NewBB, &MI}] = NI; 18858bcb0991SDimitry Andric CanonicalMIs[NI] = &MI; 18868bcb0991SDimitry Andric } 18878bcb0991SDimitry Andric BB->replaceSuccessor(Exit, NewBB); 18888bcb0991SDimitry Andric Exit->replacePhiUsesWith(BB, NewBB); 18898bcb0991SDimitry Andric NewBB->addSuccessor(Exit); 18908bcb0991SDimitry Andric 18918bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 18928bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 18938bcb0991SDimitry Andric bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 18948bcb0991SDimitry Andric (void)CanAnalyzeBr; 18958bcb0991SDimitry Andric assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 18968bcb0991SDimitry Andric TII->removeBranch(*BB); 18978bcb0991SDimitry Andric TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 18988bcb0991SDimitry Andric Cond, DebugLoc()); 18998bcb0991SDimitry Andric TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 19008bcb0991SDimitry Andric return NewBB; 19018bcb0991SDimitry Andric } 19028bcb0991SDimitry Andric 19038bcb0991SDimitry Andric Register 19048bcb0991SDimitry Andric PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 19058bcb0991SDimitry Andric MachineBasicBlock *BB) { 19068bcb0991SDimitry Andric MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 19078bcb0991SDimitry Andric unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 19088bcb0991SDimitry Andric return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 19098bcb0991SDimitry Andric } 19108bcb0991SDimitry Andric 19118bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 19128bcb0991SDimitry Andric if (MI->isPHI()) { 19138bcb0991SDimitry Andric // This is an illegal PHI. The loop-carried (desired) value is operand 3, 19148bcb0991SDimitry Andric // and it is produced by this block. 19158bcb0991SDimitry Andric Register PhiR = MI->getOperand(0).getReg(); 19168bcb0991SDimitry Andric Register R = MI->getOperand(3).getReg(); 19178bcb0991SDimitry Andric int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 19188bcb0991SDimitry Andric if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 19198bcb0991SDimitry Andric R = MI->getOperand(1).getReg(); 19208bcb0991SDimitry Andric MRI.setRegClass(R, MRI.getRegClass(PhiR)); 19218bcb0991SDimitry Andric MRI.replaceRegWith(PhiR, R); 1922480093f4SDimitry Andric // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1923480093f4SDimitry Andric // later to figure out how to remap registers. 1924480093f4SDimitry Andric MI->getOperand(0).setReg(PhiR); 1925480093f4SDimitry Andric IllegalPhisToDelete.push_back(MI); 19268bcb0991SDimitry Andric return; 19278bcb0991SDimitry Andric } 19288bcb0991SDimitry Andric 19298bcb0991SDimitry Andric int Stage = getStage(MI); 19308bcb0991SDimitry Andric if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 19318bcb0991SDimitry Andric LiveStages[MI->getParent()].test(Stage)) 19328bcb0991SDimitry Andric // Instruction is live, no rewriting to do. 19338bcb0991SDimitry Andric return; 19348bcb0991SDimitry Andric 19358bcb0991SDimitry Andric for (MachineOperand &DefMO : MI->defs()) { 19368bcb0991SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 19378bcb0991SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 19388bcb0991SDimitry Andric // Only PHIs can use values from this block by construction. 19398bcb0991SDimitry Andric // Match with the equivalent PHI in B. 19408bcb0991SDimitry Andric assert(UseMI.isPHI()); 19418bcb0991SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 19428bcb0991SDimitry Andric MI->getParent()); 19438bcb0991SDimitry Andric Subs.emplace_back(&UseMI, Reg); 19448bcb0991SDimitry Andric } 19458bcb0991SDimitry Andric for (auto &Sub : Subs) 19468bcb0991SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 19478bcb0991SDimitry Andric *MRI.getTargetRegisterInfo()); 19488bcb0991SDimitry Andric } 19498bcb0991SDimitry Andric if (LIS) 19508bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 19518bcb0991SDimitry Andric MI->eraseFromParent(); 19528bcb0991SDimitry Andric } 19538bcb0991SDimitry Andric 19548bcb0991SDimitry Andric void PeelingModuloScheduleExpander::fixupBranches() { 19558bcb0991SDimitry Andric // Work outwards from the kernel. 19568bcb0991SDimitry Andric bool KernelDisposed = false; 19578bcb0991SDimitry Andric int TC = Schedule.getNumStages() - 1; 19588bcb0991SDimitry Andric for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 19598bcb0991SDimitry Andric ++PI, ++EI, --TC) { 19608bcb0991SDimitry Andric MachineBasicBlock *Prolog = *PI; 19618bcb0991SDimitry Andric MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 19628bcb0991SDimitry Andric MachineBasicBlock *Epilog = *EI; 19638bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 19648bcb0991SDimitry Andric TII->removeBranch(*Prolog); 1965*bdd1243dSDimitry Andric std::optional<bool> StaticallyGreater = 19665ffd83dbSDimitry Andric LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 196781ad6265SDimitry Andric if (!StaticallyGreater) { 19688bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 19698bcb0991SDimitry Andric // Dynamically branch based on Cond. 19708bcb0991SDimitry Andric TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 19718bcb0991SDimitry Andric } else if (*StaticallyGreater == false) { 19728bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 19738bcb0991SDimitry Andric // Prolog never falls through; branch to epilog and orphan interior 19748bcb0991SDimitry Andric // blocks. Leave it to unreachable-block-elim to clean up. 19758bcb0991SDimitry Andric Prolog->removeSuccessor(Fallthrough); 19768bcb0991SDimitry Andric for (MachineInstr &P : Fallthrough->phis()) { 197781ad6265SDimitry Andric P.removeOperand(2); 197881ad6265SDimitry Andric P.removeOperand(1); 19798bcb0991SDimitry Andric } 19808bcb0991SDimitry Andric TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 19818bcb0991SDimitry Andric KernelDisposed = true; 19828bcb0991SDimitry Andric } else { 19838bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 19848bcb0991SDimitry Andric // Prolog always falls through; remove incoming values in epilog. 19858bcb0991SDimitry Andric Prolog->removeSuccessor(Epilog); 19868bcb0991SDimitry Andric for (MachineInstr &P : Epilog->phis()) { 198781ad6265SDimitry Andric P.removeOperand(4); 198881ad6265SDimitry Andric P.removeOperand(3); 19898bcb0991SDimitry Andric } 19908bcb0991SDimitry Andric } 19918bcb0991SDimitry Andric } 19928bcb0991SDimitry Andric 19938bcb0991SDimitry Andric if (!KernelDisposed) { 19945ffd83dbSDimitry Andric LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 19955ffd83dbSDimitry Andric LoopInfo->setPreheader(Prologs.back()); 19968bcb0991SDimitry Andric } else { 19975ffd83dbSDimitry Andric LoopInfo->disposed(); 19988bcb0991SDimitry Andric } 19998bcb0991SDimitry Andric } 20008bcb0991SDimitry Andric 20018bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteKernel() { 2002fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 20038bcb0991SDimitry Andric KR.rewrite(); 20048bcb0991SDimitry Andric } 20058bcb0991SDimitry Andric 20068bcb0991SDimitry Andric void PeelingModuloScheduleExpander::expand() { 20078bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 20088bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader(); 20098bcb0991SDimitry Andric LLVM_DEBUG(Schedule.dump()); 20105ffd83dbSDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB); 20115ffd83dbSDimitry Andric assert(LoopInfo); 20128bcb0991SDimitry Andric 20138bcb0991SDimitry Andric rewriteKernel(); 20148bcb0991SDimitry Andric peelPrologAndEpilogs(); 20158bcb0991SDimitry Andric fixupBranches(); 20168bcb0991SDimitry Andric } 20178bcb0991SDimitry Andric 20188bcb0991SDimitry Andric void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 20198bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 20208bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader(); 20218bcb0991SDimitry Andric 20228bcb0991SDimitry Andric // Dump the schedule before we invalidate and remap all its instructions. 20238bcb0991SDimitry Andric // Stash it in a string so we can print it if we found an error. 20248bcb0991SDimitry Andric std::string ScheduleDump; 20258bcb0991SDimitry Andric raw_string_ostream OS(ScheduleDump); 20268bcb0991SDimitry Andric Schedule.print(OS); 20278bcb0991SDimitry Andric OS.flush(); 20288bcb0991SDimitry Andric 20298bcb0991SDimitry Andric // First, run the normal ModuleScheduleExpander. We don't support any 20308bcb0991SDimitry Andric // InstrChanges. 20318bcb0991SDimitry Andric assert(LIS && "Requires LiveIntervals!"); 20328bcb0991SDimitry Andric ModuloScheduleExpander MSE(MF, Schedule, *LIS, 20338bcb0991SDimitry Andric ModuloScheduleExpander::InstrChangesTy()); 20348bcb0991SDimitry Andric MSE.expand(); 20358bcb0991SDimitry Andric MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 20368bcb0991SDimitry Andric if (!ExpandedKernel) { 20378bcb0991SDimitry Andric // The expander optimized away the kernel. We can't do any useful checking. 20388bcb0991SDimitry Andric MSE.cleanup(); 20398bcb0991SDimitry Andric return; 20408bcb0991SDimitry Andric } 20418bcb0991SDimitry Andric // Before running the KernelRewriter, re-add BB into the CFG. 20428bcb0991SDimitry Andric Preheader->addSuccessor(BB); 20438bcb0991SDimitry Andric 20448bcb0991SDimitry Andric // Now run the new expansion algorithm. 2045fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 20468bcb0991SDimitry Andric KR.rewrite(); 20478bcb0991SDimitry Andric peelPrologAndEpilogs(); 20488bcb0991SDimitry Andric 20498bcb0991SDimitry Andric // Collect all illegal phis that the new algorithm created. We'll give these 20508bcb0991SDimitry Andric // to KernelOperandInfo. 20518bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 4> IllegalPhis; 20528bcb0991SDimitry Andric for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 20538bcb0991SDimitry Andric if (NI->isPHI()) 20548bcb0991SDimitry Andric IllegalPhis.insert(&*NI); 20558bcb0991SDimitry Andric } 20568bcb0991SDimitry Andric 20578bcb0991SDimitry Andric // Co-iterate across both kernels. We expect them to be identical apart from 20588bcb0991SDimitry Andric // phis and full COPYs (we look through both). 20598bcb0991SDimitry Andric SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 20608bcb0991SDimitry Andric auto OI = ExpandedKernel->begin(); 20618bcb0991SDimitry Andric auto NI = BB->begin(); 20628bcb0991SDimitry Andric for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 20638bcb0991SDimitry Andric while (OI->isPHI() || OI->isFullCopy()) 20648bcb0991SDimitry Andric ++OI; 20658bcb0991SDimitry Andric while (NI->isPHI() || NI->isFullCopy()) 20668bcb0991SDimitry Andric ++NI; 20678bcb0991SDimitry Andric assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 20688bcb0991SDimitry Andric // Analyze every operand separately. 20698bcb0991SDimitry Andric for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 20708bcb0991SDimitry Andric OOpI != OI->operands_end(); ++OOpI, ++NOpI) 20718bcb0991SDimitry Andric KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 20728bcb0991SDimitry Andric KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 20738bcb0991SDimitry Andric } 20748bcb0991SDimitry Andric 20758bcb0991SDimitry Andric bool Failed = false; 20768bcb0991SDimitry Andric for (auto &OldAndNew : KOIs) { 20778bcb0991SDimitry Andric if (OldAndNew.first == OldAndNew.second) 20788bcb0991SDimitry Andric continue; 20798bcb0991SDimitry Andric Failed = true; 20808bcb0991SDimitry Andric errs() << "Modulo kernel validation error: [\n"; 20818bcb0991SDimitry Andric errs() << " [golden] "; 20828bcb0991SDimitry Andric OldAndNew.first.print(errs()); 20838bcb0991SDimitry Andric errs() << " "; 20848bcb0991SDimitry Andric OldAndNew.second.print(errs()); 20858bcb0991SDimitry Andric errs() << "]\n"; 20868bcb0991SDimitry Andric } 20878bcb0991SDimitry Andric 20888bcb0991SDimitry Andric if (Failed) { 20898bcb0991SDimitry Andric errs() << "Golden reference kernel:\n"; 20908bcb0991SDimitry Andric ExpandedKernel->print(errs()); 20918bcb0991SDimitry Andric errs() << "New kernel:\n"; 20928bcb0991SDimitry Andric BB->print(errs()); 20938bcb0991SDimitry Andric errs() << ScheduleDump; 20948bcb0991SDimitry Andric report_fatal_error( 20958bcb0991SDimitry Andric "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 20968bcb0991SDimitry Andric } 20978bcb0991SDimitry Andric 20988bcb0991SDimitry Andric // Cleanup by removing BB from the CFG again as the original 20998bcb0991SDimitry Andric // ModuloScheduleExpander intended. 21008bcb0991SDimitry Andric Preheader->removeSuccessor(BB); 21018bcb0991SDimitry Andric MSE.cleanup(); 21028bcb0991SDimitry Andric } 21038bcb0991SDimitry Andric 21048bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 21058bcb0991SDimitry Andric // ModuloScheduleTestPass implementation 21068bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 21078bcb0991SDimitry Andric // This pass constructs a ModuloSchedule from its module and runs 21088bcb0991SDimitry Andric // ModuloScheduleExpander. 21098bcb0991SDimitry Andric // 21108bcb0991SDimitry Andric // The module is expected to contain a single-block analyzable loop. 21118bcb0991SDimitry Andric // The total order of instructions is taken from the loop as-is. 21128bcb0991SDimitry Andric // Instructions are expected to be annotated with a PostInstrSymbol. 21138bcb0991SDimitry Andric // This PostInstrSymbol must have the following format: 21148bcb0991SDimitry Andric // "Stage=%d Cycle=%d". 21158bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 21168bcb0991SDimitry Andric 21178bcb0991SDimitry Andric namespace { 21188bcb0991SDimitry Andric class ModuloScheduleTest : public MachineFunctionPass { 21198bcb0991SDimitry Andric public: 21208bcb0991SDimitry Andric static char ID; 21218bcb0991SDimitry Andric 21228bcb0991SDimitry Andric ModuloScheduleTest() : MachineFunctionPass(ID) { 21238bcb0991SDimitry Andric initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 21248bcb0991SDimitry Andric } 21258bcb0991SDimitry Andric 21268bcb0991SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override; 21278bcb0991SDimitry Andric void runOnLoop(MachineFunction &MF, MachineLoop &L); 21288bcb0991SDimitry Andric 21298bcb0991SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 21308bcb0991SDimitry Andric AU.addRequired<MachineLoopInfo>(); 21318bcb0991SDimitry Andric AU.addRequired<LiveIntervals>(); 21328bcb0991SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU); 21338bcb0991SDimitry Andric } 21348bcb0991SDimitry Andric }; 21358bcb0991SDimitry Andric } // namespace 21368bcb0991SDimitry Andric 21378bcb0991SDimitry Andric char ModuloScheduleTest::ID = 0; 21388bcb0991SDimitry Andric 21398bcb0991SDimitry Andric INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 21408bcb0991SDimitry Andric "Modulo Schedule test pass", false, false) 21418bcb0991SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 21428bcb0991SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 21438bcb0991SDimitry Andric INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 21448bcb0991SDimitry Andric "Modulo Schedule test pass", false, false) 21458bcb0991SDimitry Andric 21468bcb0991SDimitry Andric bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 21478bcb0991SDimitry Andric MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 21488bcb0991SDimitry Andric for (auto *L : MLI) { 21498bcb0991SDimitry Andric if (L->getTopBlock() != L->getBottomBlock()) 21508bcb0991SDimitry Andric continue; 21518bcb0991SDimitry Andric runOnLoop(MF, *L); 21528bcb0991SDimitry Andric return false; 21538bcb0991SDimitry Andric } 21548bcb0991SDimitry Andric return false; 21558bcb0991SDimitry Andric } 21568bcb0991SDimitry Andric 21578bcb0991SDimitry Andric static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 21588bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 21598bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageTokenAndValue = 21608bcb0991SDimitry Andric getToken(StageAndCycle.first, "-"); 21618bcb0991SDimitry Andric std::pair<StringRef, StringRef> CycleTokenAndValue = 21628bcb0991SDimitry Andric getToken(StageAndCycle.second, "-"); 21638bcb0991SDimitry Andric if (StageTokenAndValue.first != "Stage" || 21648bcb0991SDimitry Andric CycleTokenAndValue.first != "_Cycle") { 21658bcb0991SDimitry Andric llvm_unreachable( 21668bcb0991SDimitry Andric "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 21678bcb0991SDimitry Andric return; 21688bcb0991SDimitry Andric } 21698bcb0991SDimitry Andric 21708bcb0991SDimitry Andric StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 21718bcb0991SDimitry Andric CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 21728bcb0991SDimitry Andric 21738bcb0991SDimitry Andric dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 21748bcb0991SDimitry Andric } 21758bcb0991SDimitry Andric 21768bcb0991SDimitry Andric void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 21778bcb0991SDimitry Andric LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 21788bcb0991SDimitry Andric MachineBasicBlock *BB = L.getTopBlock(); 21798bcb0991SDimitry Andric dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 21808bcb0991SDimitry Andric 21818bcb0991SDimitry Andric DenseMap<MachineInstr *, int> Cycle, Stage; 21828bcb0991SDimitry Andric std::vector<MachineInstr *> Instrs; 21838bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 21848bcb0991SDimitry Andric if (MI.isTerminator()) 21858bcb0991SDimitry Andric continue; 21868bcb0991SDimitry Andric Instrs.push_back(&MI); 21878bcb0991SDimitry Andric if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 21888bcb0991SDimitry Andric dbgs() << "Parsing post-instr symbol for " << MI; 21898bcb0991SDimitry Andric parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 21908bcb0991SDimitry Andric } 21918bcb0991SDimitry Andric } 21928bcb0991SDimitry Andric 21938bcb0991SDimitry Andric ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 21948bcb0991SDimitry Andric std::move(Stage)); 21958bcb0991SDimitry Andric ModuloScheduleExpander MSE( 21968bcb0991SDimitry Andric MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 21978bcb0991SDimitry Andric MSE.expand(); 21988bcb0991SDimitry Andric MSE.cleanup(); 21998bcb0991SDimitry Andric } 22008bcb0991SDimitry Andric 22018bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 22028bcb0991SDimitry Andric // ModuloScheduleTestAnnotater implementation 22038bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 22048bcb0991SDimitry Andric 22058bcb0991SDimitry Andric void ModuloScheduleTestAnnotater::annotate() { 22068bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) { 22078bcb0991SDimitry Andric SmallVector<char, 16> SV; 22088bcb0991SDimitry Andric raw_svector_ostream OS(SV); 22098bcb0991SDimitry Andric OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 22108bcb0991SDimitry Andric MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 22118bcb0991SDimitry Andric MI->setPostInstrSymbol(MF, Sym); 22128bcb0991SDimitry Andric } 22138bcb0991SDimitry Andric } 2214