18bcb0991SDimitry Andric //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 28bcb0991SDimitry Andric // 38bcb0991SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48bcb0991SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 58bcb0991SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68bcb0991SDimitry Andric // 78bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 88bcb0991SDimitry Andric 98bcb0991SDimitry Andric #include "llvm/CodeGen/ModuloSchedule.h" 108bcb0991SDimitry Andric #include "llvm/ADT/StringExtras.h" 115ffd83dbSDimitry Andric #include "llvm/Analysis/MemoryLocation.h" 128bcb0991SDimitry Andric #include "llvm/CodeGen/LiveIntervals.h" 138bcb0991SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 148bcb0991SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 15480093f4SDimitry Andric #include "llvm/InitializePasses.h" 168bcb0991SDimitry Andric #include "llvm/MC/MCContext.h" 178bcb0991SDimitry Andric #include "llvm/Support/Debug.h" 188bcb0991SDimitry Andric #include "llvm/Support/ErrorHandling.h" 198bcb0991SDimitry Andric #include "llvm/Support/raw_ostream.h" 208bcb0991SDimitry Andric 218bcb0991SDimitry Andric #define DEBUG_TYPE "pipeliner" 228bcb0991SDimitry Andric using namespace llvm; 238bcb0991SDimitry Andric 248bcb0991SDimitry Andric void ModuloSchedule::print(raw_ostream &OS) { 258bcb0991SDimitry Andric for (MachineInstr *MI : ScheduledInstrs) 268bcb0991SDimitry Andric OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 278bcb0991SDimitry Andric } 288bcb0991SDimitry Andric 298bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 308bcb0991SDimitry Andric // ModuloScheduleExpander implementation 318bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 328bcb0991SDimitry Andric 338bcb0991SDimitry Andric /// Return the register values for the operands of a Phi instruction. 348bcb0991SDimitry Andric /// This function assume the instruction is a Phi. 358bcb0991SDimitry Andric static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 368bcb0991SDimitry Andric unsigned &InitVal, unsigned &LoopVal) { 378bcb0991SDimitry Andric assert(Phi.isPHI() && "Expecting a Phi."); 388bcb0991SDimitry Andric 398bcb0991SDimitry Andric InitVal = 0; 408bcb0991SDimitry Andric LoopVal = 0; 418bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 428bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != Loop) 438bcb0991SDimitry Andric InitVal = Phi.getOperand(i).getReg(); 448bcb0991SDimitry Andric else 458bcb0991SDimitry Andric LoopVal = Phi.getOperand(i).getReg(); 468bcb0991SDimitry Andric 478bcb0991SDimitry Andric assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 488bcb0991SDimitry Andric } 498bcb0991SDimitry Andric 508bcb0991SDimitry Andric /// Return the Phi register value that comes from the incoming block. 518bcb0991SDimitry Andric static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 528bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 538bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != LoopBB) 548bcb0991SDimitry Andric return Phi.getOperand(i).getReg(); 558bcb0991SDimitry Andric return 0; 568bcb0991SDimitry Andric } 578bcb0991SDimitry Andric 588bcb0991SDimitry Andric /// Return the Phi register value that comes the loop block. 598bcb0991SDimitry Andric static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 608bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 618bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() == LoopBB) 628bcb0991SDimitry Andric return Phi.getOperand(i).getReg(); 638bcb0991SDimitry Andric return 0; 648bcb0991SDimitry Andric } 658bcb0991SDimitry Andric 668bcb0991SDimitry Andric void ModuloScheduleExpander::expand() { 678bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 688bcb0991SDimitry Andric Preheader = *BB->pred_begin(); 698bcb0991SDimitry Andric if (Preheader == BB) 708bcb0991SDimitry Andric Preheader = *std::next(BB->pred_begin()); 718bcb0991SDimitry Andric 728bcb0991SDimitry Andric // Iterate over the definitions in each instruction, and compute the 738bcb0991SDimitry Andric // stage difference for each use. Keep the maximum value. 748bcb0991SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) { 758bcb0991SDimitry Andric int DefStage = Schedule.getStage(MI); 76*4824e7fdSDimitry Andric for (const MachineOperand &Op : MI->operands()) { 778bcb0991SDimitry Andric if (!Op.isReg() || !Op.isDef()) 788bcb0991SDimitry Andric continue; 798bcb0991SDimitry Andric 808bcb0991SDimitry Andric Register Reg = Op.getReg(); 818bcb0991SDimitry Andric unsigned MaxDiff = 0; 828bcb0991SDimitry Andric bool PhiIsSwapped = false; 83349cc55cSDimitry Andric for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 848bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent(); 858bcb0991SDimitry Andric int UseStage = Schedule.getStage(UseMI); 868bcb0991SDimitry Andric unsigned Diff = 0; 878bcb0991SDimitry Andric if (UseStage != -1 && UseStage >= DefStage) 888bcb0991SDimitry Andric Diff = UseStage - DefStage; 898bcb0991SDimitry Andric if (MI->isPHI()) { 908bcb0991SDimitry Andric if (isLoopCarried(*MI)) 918bcb0991SDimitry Andric ++Diff; 928bcb0991SDimitry Andric else 938bcb0991SDimitry Andric PhiIsSwapped = true; 948bcb0991SDimitry Andric } 958bcb0991SDimitry Andric MaxDiff = std::max(Diff, MaxDiff); 968bcb0991SDimitry Andric } 978bcb0991SDimitry Andric RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 988bcb0991SDimitry Andric } 998bcb0991SDimitry Andric } 1008bcb0991SDimitry Andric 1018bcb0991SDimitry Andric generatePipelinedLoop(); 1028bcb0991SDimitry Andric } 1038bcb0991SDimitry Andric 1048bcb0991SDimitry Andric void ModuloScheduleExpander::generatePipelinedLoop() { 1058bcb0991SDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB); 1068bcb0991SDimitry Andric assert(LoopInfo && "Must be able to analyze loop!"); 1078bcb0991SDimitry Andric 1088bcb0991SDimitry Andric // Create a new basic block for the kernel and add it to the CFG. 1098bcb0991SDimitry Andric MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1108bcb0991SDimitry Andric 1118bcb0991SDimitry Andric unsigned MaxStageCount = Schedule.getNumStages() - 1; 1128bcb0991SDimitry Andric 1138bcb0991SDimitry Andric // Remember the registers that are used in different stages. The index is 1148bcb0991SDimitry Andric // the iteration, or stage, that the instruction is scheduled in. This is 1158bcb0991SDimitry Andric // a map between register names in the original block and the names created 1168bcb0991SDimitry Andric // in each stage of the pipelined loop. 1178bcb0991SDimitry Andric ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 1188bcb0991SDimitry Andric InstrMapTy InstrMap; 1198bcb0991SDimitry Andric 1208bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> PrologBBs; 1218bcb0991SDimitry Andric 1228bcb0991SDimitry Andric // Generate the prolog instructions that set up the pipeline. 1238bcb0991SDimitry Andric generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 1248bcb0991SDimitry Andric MF.insert(BB->getIterator(), KernelBB); 1258bcb0991SDimitry Andric 1268bcb0991SDimitry Andric // Rearrange the instructions to generate the new, pipelined loop, 1278bcb0991SDimitry Andric // and update register names as needed. 1288bcb0991SDimitry Andric for (MachineInstr *CI : Schedule.getInstructions()) { 1298bcb0991SDimitry Andric if (CI->isPHI()) 1308bcb0991SDimitry Andric continue; 1318bcb0991SDimitry Andric unsigned StageNum = Schedule.getStage(CI); 1328bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 1338bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 1348bcb0991SDimitry Andric KernelBB->push_back(NewMI); 1358bcb0991SDimitry Andric InstrMap[NewMI] = CI; 1368bcb0991SDimitry Andric } 1378bcb0991SDimitry Andric 1388bcb0991SDimitry Andric // Copy any terminator instructions to the new kernel, and update 1398bcb0991SDimitry Andric // names as needed. 140349cc55cSDimitry Andric for (MachineInstr &MI : BB->terminators()) { 141349cc55cSDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 1428bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 1438bcb0991SDimitry Andric KernelBB->push_back(NewMI); 144349cc55cSDimitry Andric InstrMap[NewMI] = &MI; 1458bcb0991SDimitry Andric } 1468bcb0991SDimitry Andric 1478bcb0991SDimitry Andric NewKernel = KernelBB; 1488bcb0991SDimitry Andric KernelBB->transferSuccessors(BB); 1498bcb0991SDimitry Andric KernelBB->replaceSuccessor(BB, KernelBB); 1508bcb0991SDimitry Andric 1518bcb0991SDimitry Andric generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 1528bcb0991SDimitry Andric InstrMap, MaxStageCount, MaxStageCount, false); 1538bcb0991SDimitry Andric generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, 1548bcb0991SDimitry Andric MaxStageCount, MaxStageCount, false); 1558bcb0991SDimitry Andric 1568bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 1578bcb0991SDimitry Andric 1588bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> EpilogBBs; 1598bcb0991SDimitry Andric // Generate the epilog instructions to complete the pipeline. 1608bcb0991SDimitry Andric generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); 1618bcb0991SDimitry Andric 1628bcb0991SDimitry Andric // We need this step because the register allocation doesn't handle some 1638bcb0991SDimitry Andric // situations well, so we insert copies to help out. 1648bcb0991SDimitry Andric splitLifetimes(KernelBB, EpilogBBs); 1658bcb0991SDimitry Andric 1668bcb0991SDimitry Andric // Remove dead instructions due to loop induction variables. 1678bcb0991SDimitry Andric removeDeadInstructions(KernelBB, EpilogBBs); 1688bcb0991SDimitry Andric 1698bcb0991SDimitry Andric // Add branches between prolog and epilog blocks. 1708bcb0991SDimitry Andric addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 1718bcb0991SDimitry Andric 1728bcb0991SDimitry Andric delete[] VRMap; 1738bcb0991SDimitry Andric } 1748bcb0991SDimitry Andric 1758bcb0991SDimitry Andric void ModuloScheduleExpander::cleanup() { 1768bcb0991SDimitry Andric // Remove the original loop since it's no longer referenced. 1778bcb0991SDimitry Andric for (auto &I : *BB) 1788bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(I); 1798bcb0991SDimitry Andric BB->clear(); 1808bcb0991SDimitry Andric BB->eraseFromParent(); 1818bcb0991SDimitry Andric } 1828bcb0991SDimitry Andric 1838bcb0991SDimitry Andric /// Generate the pipeline prolog code. 1848bcb0991SDimitry Andric void ModuloScheduleExpander::generateProlog(unsigned LastStage, 1858bcb0991SDimitry Andric MachineBasicBlock *KernelBB, 1868bcb0991SDimitry Andric ValueMapTy *VRMap, 1878bcb0991SDimitry Andric MBBVectorTy &PrologBBs) { 1888bcb0991SDimitry Andric MachineBasicBlock *PredBB = Preheader; 1898bcb0991SDimitry Andric InstrMapTy InstrMap; 1908bcb0991SDimitry Andric 1918bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage, 1928bcb0991SDimitry Andric // which will be generated in the kernel. Each basic block may contain 1938bcb0991SDimitry Andric // instructions from multiple stages/iterations. 1948bcb0991SDimitry Andric for (unsigned i = 0; i < LastStage; ++i) { 1958bcb0991SDimitry Andric // Create and insert the prolog basic block prior to the original loop 1968bcb0991SDimitry Andric // basic block. The original loop is removed later. 1978bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1988bcb0991SDimitry Andric PrologBBs.push_back(NewBB); 1998bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB); 2008bcb0991SDimitry Andric NewBB->transferSuccessors(PredBB); 2018bcb0991SDimitry Andric PredBB->addSuccessor(NewBB); 2028bcb0991SDimitry Andric PredBB = NewBB; 2038bcb0991SDimitry Andric 2048bcb0991SDimitry Andric // Generate instructions for each appropriate stage. Process instructions 2058bcb0991SDimitry Andric // in original program order. 2068bcb0991SDimitry Andric for (int StageNum = i; StageNum >= 0; --StageNum) { 2078bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2088bcb0991SDimitry Andric BBE = BB->getFirstTerminator(); 2098bcb0991SDimitry Andric BBI != BBE; ++BBI) { 2108bcb0991SDimitry Andric if (Schedule.getStage(&*BBI) == StageNum) { 2118bcb0991SDimitry Andric if (BBI->isPHI()) 2128bcb0991SDimitry Andric continue; 2138bcb0991SDimitry Andric MachineInstr *NewMI = 2148bcb0991SDimitry Andric cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 2158bcb0991SDimitry Andric updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 2168bcb0991SDimitry Andric NewBB->push_back(NewMI); 2178bcb0991SDimitry Andric InstrMap[NewMI] = &*BBI; 2188bcb0991SDimitry Andric } 2198bcb0991SDimitry Andric } 2208bcb0991SDimitry Andric } 2218bcb0991SDimitry Andric rewritePhiValues(NewBB, i, VRMap, InstrMap); 2228bcb0991SDimitry Andric LLVM_DEBUG({ 2238bcb0991SDimitry Andric dbgs() << "prolog:\n"; 2248bcb0991SDimitry Andric NewBB->dump(); 2258bcb0991SDimitry Andric }); 2268bcb0991SDimitry Andric } 2278bcb0991SDimitry Andric 2288bcb0991SDimitry Andric PredBB->replaceSuccessor(BB, KernelBB); 2298bcb0991SDimitry Andric 2308bcb0991SDimitry Andric // Check if we need to remove the branch from the preheader to the original 2318bcb0991SDimitry Andric // loop, and replace it with a branch to the new loop. 2328bcb0991SDimitry Andric unsigned numBranches = TII->removeBranch(*Preheader); 2338bcb0991SDimitry Andric if (numBranches) { 2348bcb0991SDimitry Andric SmallVector<MachineOperand, 0> Cond; 2358bcb0991SDimitry Andric TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 2368bcb0991SDimitry Andric } 2378bcb0991SDimitry Andric } 2388bcb0991SDimitry Andric 2398bcb0991SDimitry Andric /// Generate the pipeline epilog code. The epilog code finishes the iterations 2408bcb0991SDimitry Andric /// that were started in either the prolog or the kernel. We create a basic 2418bcb0991SDimitry Andric /// block for each stage that needs to complete. 2428bcb0991SDimitry Andric void ModuloScheduleExpander::generateEpilog(unsigned LastStage, 2438bcb0991SDimitry Andric MachineBasicBlock *KernelBB, 2448bcb0991SDimitry Andric ValueMapTy *VRMap, 2458bcb0991SDimitry Andric MBBVectorTy &EpilogBBs, 2468bcb0991SDimitry Andric MBBVectorTy &PrologBBs) { 2478bcb0991SDimitry Andric // We need to change the branch from the kernel to the first epilog block, so 2488bcb0991SDimitry Andric // this call to analyze branch uses the kernel rather than the original BB. 2498bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2508bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 2518bcb0991SDimitry Andric bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2528bcb0991SDimitry Andric assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2538bcb0991SDimitry Andric if (checkBranch) 2548bcb0991SDimitry Andric return; 2558bcb0991SDimitry Andric 2568bcb0991SDimitry Andric MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2578bcb0991SDimitry Andric if (*LoopExitI == KernelBB) 2588bcb0991SDimitry Andric ++LoopExitI; 2598bcb0991SDimitry Andric assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2608bcb0991SDimitry Andric MachineBasicBlock *LoopExitBB = *LoopExitI; 2618bcb0991SDimitry Andric 2628bcb0991SDimitry Andric MachineBasicBlock *PredBB = KernelBB; 2638bcb0991SDimitry Andric MachineBasicBlock *EpilogStart = LoopExitBB; 2648bcb0991SDimitry Andric InstrMapTy InstrMap; 2658bcb0991SDimitry Andric 2668bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage, 2678bcb0991SDimitry Andric // which was generated for the kernel. Each basic block may contain 2688bcb0991SDimitry Andric // instructions from multiple stages/iterations. 2698bcb0991SDimitry Andric int EpilogStage = LastStage + 1; 2708bcb0991SDimitry Andric for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2718bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2728bcb0991SDimitry Andric EpilogBBs.push_back(NewBB); 2738bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB); 2748bcb0991SDimitry Andric 2758bcb0991SDimitry Andric PredBB->replaceSuccessor(LoopExitBB, NewBB); 2768bcb0991SDimitry Andric NewBB->addSuccessor(LoopExitBB); 2778bcb0991SDimitry Andric 2788bcb0991SDimitry Andric if (EpilogStart == LoopExitBB) 2798bcb0991SDimitry Andric EpilogStart = NewBB; 2808bcb0991SDimitry Andric 2818bcb0991SDimitry Andric // Add instructions to the epilog depending on the current block. 2828bcb0991SDimitry Andric // Process instructions in original program order. 2838bcb0991SDimitry Andric for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2848bcb0991SDimitry Andric for (auto &BBI : *BB) { 2858bcb0991SDimitry Andric if (BBI.isPHI()) 2868bcb0991SDimitry Andric continue; 2878bcb0991SDimitry Andric MachineInstr *In = &BBI; 2888bcb0991SDimitry Andric if ((unsigned)Schedule.getStage(In) == StageNum) { 2898bcb0991SDimitry Andric // Instructions with memoperands in the epilog are updated with 2908bcb0991SDimitry Andric // conservative values. 2918bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 2928bcb0991SDimitry Andric updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 2938bcb0991SDimitry Andric NewBB->push_back(NewMI); 2948bcb0991SDimitry Andric InstrMap[NewMI] = In; 2958bcb0991SDimitry Andric } 2968bcb0991SDimitry Andric } 2978bcb0991SDimitry Andric } 2988bcb0991SDimitry Andric generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 2998bcb0991SDimitry Andric InstrMap, LastStage, EpilogStage, i == 1); 3008bcb0991SDimitry Andric generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, 3018bcb0991SDimitry Andric LastStage, EpilogStage, i == 1); 3028bcb0991SDimitry Andric PredBB = NewBB; 3038bcb0991SDimitry Andric 3048bcb0991SDimitry Andric LLVM_DEBUG({ 3058bcb0991SDimitry Andric dbgs() << "epilog:\n"; 3068bcb0991SDimitry Andric NewBB->dump(); 3078bcb0991SDimitry Andric }); 3088bcb0991SDimitry Andric } 3098bcb0991SDimitry Andric 3108bcb0991SDimitry Andric // Fix any Phi nodes in the loop exit block. 3118bcb0991SDimitry Andric LoopExitBB->replacePhiUsesWith(BB, PredBB); 3128bcb0991SDimitry Andric 3138bcb0991SDimitry Andric // Create a branch to the new epilog from the kernel. 3148bcb0991SDimitry Andric // Remove the original branch and add a new branch to the epilog. 3158bcb0991SDimitry Andric TII->removeBranch(*KernelBB); 3168bcb0991SDimitry Andric TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 3178bcb0991SDimitry Andric // Add a branch to the loop exit. 3188bcb0991SDimitry Andric if (EpilogBBs.size() > 0) { 3198bcb0991SDimitry Andric MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 3208bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond1; 3218bcb0991SDimitry Andric TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 3228bcb0991SDimitry Andric } 3238bcb0991SDimitry Andric } 3248bcb0991SDimitry Andric 3258bcb0991SDimitry Andric /// Replace all uses of FromReg that appear outside the specified 3268bcb0991SDimitry Andric /// basic block with ToReg. 3278bcb0991SDimitry Andric static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 3288bcb0991SDimitry Andric MachineBasicBlock *MBB, 3298bcb0991SDimitry Andric MachineRegisterInfo &MRI, 3308bcb0991SDimitry Andric LiveIntervals &LIS) { 331349cc55cSDimitry Andric for (MachineOperand &O : 332349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(FromReg))) 3338bcb0991SDimitry Andric if (O.getParent()->getParent() != MBB) 3348bcb0991SDimitry Andric O.setReg(ToReg); 3358bcb0991SDimitry Andric if (!LIS.hasInterval(ToReg)) 3368bcb0991SDimitry Andric LIS.createEmptyInterval(ToReg); 3378bcb0991SDimitry Andric } 3388bcb0991SDimitry Andric 3398bcb0991SDimitry Andric /// Return true if the register has a use that occurs outside the 3408bcb0991SDimitry Andric /// specified loop. 3418bcb0991SDimitry Andric static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 3428bcb0991SDimitry Andric MachineRegisterInfo &MRI) { 343349cc55cSDimitry Andric for (const MachineOperand &MO : MRI.use_operands(Reg)) 344349cc55cSDimitry Andric if (MO.getParent()->getParent() != BB) 3458bcb0991SDimitry Andric return true; 3468bcb0991SDimitry Andric return false; 3478bcb0991SDimitry Andric } 3488bcb0991SDimitry Andric 3498bcb0991SDimitry Andric /// Generate Phis for the specific block in the generated pipelined code. 3508bcb0991SDimitry Andric /// This function looks at the Phis from the original code to guide the 3518bcb0991SDimitry Andric /// creation of new Phis. 3528bcb0991SDimitry Andric void ModuloScheduleExpander::generateExistingPhis( 3538bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 3548bcb0991SDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 3558bcb0991SDimitry Andric unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 3568bcb0991SDimitry Andric // Compute the stage number for the initial value of the Phi, which 3578bcb0991SDimitry Andric // comes from the prolog. The prolog to use depends on to which kernel/ 3588bcb0991SDimitry Andric // epilog that we're adding the Phi. 3598bcb0991SDimitry Andric unsigned PrologStage = 0; 3608bcb0991SDimitry Andric unsigned PrevStage = 0; 3618bcb0991SDimitry Andric bool InKernel = (LastStageNum == CurStageNum); 3628bcb0991SDimitry Andric if (InKernel) { 3638bcb0991SDimitry Andric PrologStage = LastStageNum - 1; 3648bcb0991SDimitry Andric PrevStage = CurStageNum; 3658bcb0991SDimitry Andric } else { 3668bcb0991SDimitry Andric PrologStage = LastStageNum - (CurStageNum - LastStageNum); 3678bcb0991SDimitry Andric PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 3688bcb0991SDimitry Andric } 3698bcb0991SDimitry Andric 3708bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3718bcb0991SDimitry Andric BBE = BB->getFirstNonPHI(); 3728bcb0991SDimitry Andric BBI != BBE; ++BBI) { 3738bcb0991SDimitry Andric Register Def = BBI->getOperand(0).getReg(); 3748bcb0991SDimitry Andric 3758bcb0991SDimitry Andric unsigned InitVal = 0; 3768bcb0991SDimitry Andric unsigned LoopVal = 0; 3778bcb0991SDimitry Andric getPhiRegs(*BBI, BB, InitVal, LoopVal); 3788bcb0991SDimitry Andric 3798bcb0991SDimitry Andric unsigned PhiOp1 = 0; 3808bcb0991SDimitry Andric // The Phi value from the loop body typically is defined in the loop, but 3818bcb0991SDimitry Andric // not always. So, we need to check if the value is defined in the loop. 3828bcb0991SDimitry Andric unsigned PhiOp2 = LoopVal; 3838bcb0991SDimitry Andric if (VRMap[LastStageNum].count(LoopVal)) 3848bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum][LoopVal]; 3858bcb0991SDimitry Andric 3868bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI); 3878bcb0991SDimitry Andric int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 3888bcb0991SDimitry Andric unsigned NumStages = getStagesForReg(Def, CurStageNum); 3898bcb0991SDimitry Andric if (NumStages == 0) { 3908bcb0991SDimitry Andric // We don't need to generate a Phi anymore, but we need to rename any uses 3918bcb0991SDimitry Andric // of the Phi value. 3928bcb0991SDimitry Andric unsigned NewReg = VRMap[PrevStage][LoopVal]; 3938bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 3948bcb0991SDimitry Andric InitVal, NewReg); 3958bcb0991SDimitry Andric if (VRMap[CurStageNum].count(LoopVal)) 3968bcb0991SDimitry Andric VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 3978bcb0991SDimitry Andric } 3988bcb0991SDimitry Andric // Adjust the number of Phis needed depending on the number of prologs left, 3998bcb0991SDimitry Andric // and the distance from where the Phi is first scheduled. The number of 4008bcb0991SDimitry Andric // Phis cannot exceed the number of prolog stages. Each stage can 4018bcb0991SDimitry Andric // potentially define two values. 4028bcb0991SDimitry Andric unsigned MaxPhis = PrologStage + 2; 4038bcb0991SDimitry Andric if (!InKernel && (int)PrologStage <= LoopValStage) 4048bcb0991SDimitry Andric MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 4058bcb0991SDimitry Andric unsigned NumPhis = std::min(NumStages, MaxPhis); 4068bcb0991SDimitry Andric 4078bcb0991SDimitry Andric unsigned NewReg = 0; 4088bcb0991SDimitry Andric unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 4098bcb0991SDimitry Andric // In the epilog, we may need to look back one stage to get the correct 4105ffd83dbSDimitry Andric // Phi name, because the epilog and prolog blocks execute the same stage. 4118bcb0991SDimitry Andric // The correct name is from the previous block only when the Phi has 4128bcb0991SDimitry Andric // been completely scheduled prior to the epilog, and Phi value is not 4138bcb0991SDimitry Andric // needed in multiple stages. 4148bcb0991SDimitry Andric int StageDiff = 0; 4158bcb0991SDimitry Andric if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 4168bcb0991SDimitry Andric NumPhis == 1) 4178bcb0991SDimitry Andric StageDiff = 1; 4188bcb0991SDimitry Andric // Adjust the computations below when the phi and the loop definition 4198bcb0991SDimitry Andric // are scheduled in different stages. 4208bcb0991SDimitry Andric if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 4218bcb0991SDimitry Andric StageDiff = StageScheduled - LoopValStage; 4228bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) { 4238bcb0991SDimitry Andric // If the Phi hasn't been scheduled, then use the initial Phi operand 4248bcb0991SDimitry Andric // value. Otherwise, use the scheduled version of the instruction. This 4258bcb0991SDimitry Andric // is a little complicated when a Phi references another Phi. 4268bcb0991SDimitry Andric if (np > PrologStage || StageScheduled >= (int)LastStageNum) 4278bcb0991SDimitry Andric PhiOp1 = InitVal; 4288bcb0991SDimitry Andric // Check if the Phi has already been scheduled in a prolog stage. 4298bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np && 4308bcb0991SDimitry Andric VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 4318bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 4328bcb0991SDimitry Andric // Check if the Phi has already been scheduled, but the loop instruction 4338bcb0991SDimitry Andric // is either another Phi, or doesn't occur in the loop. 4348bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np) { 4358bcb0991SDimitry Andric // If the Phi references another Phi, we need to examine the other 4368bcb0991SDimitry Andric // Phi to get the correct value. 4378bcb0991SDimitry Andric PhiOp1 = LoopVal; 4388bcb0991SDimitry Andric MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 4398bcb0991SDimitry Andric int Indirects = 1; 4408bcb0991SDimitry Andric while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 4418bcb0991SDimitry Andric int PhiStage = Schedule.getStage(InstOp1); 4428bcb0991SDimitry Andric if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 4438bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, BB); 4448bcb0991SDimitry Andric else 4458bcb0991SDimitry Andric PhiOp1 = getLoopPhiReg(*InstOp1, BB); 4468bcb0991SDimitry Andric InstOp1 = MRI.getVRegDef(PhiOp1); 4478bcb0991SDimitry Andric int PhiOpStage = Schedule.getStage(InstOp1); 4488bcb0991SDimitry Andric int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 4498bcb0991SDimitry Andric if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 4508bcb0991SDimitry Andric VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 4518bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 4528bcb0991SDimitry Andric break; 4538bcb0991SDimitry Andric } 4548bcb0991SDimitry Andric ++Indirects; 4558bcb0991SDimitry Andric } 4568bcb0991SDimitry Andric } else 4578bcb0991SDimitry Andric PhiOp1 = InitVal; 4588bcb0991SDimitry Andric // If this references a generated Phi in the kernel, get the Phi operand 4598bcb0991SDimitry Andric // from the incoming block. 4608bcb0991SDimitry Andric if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 4618bcb0991SDimitry Andric if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 4628bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 4638bcb0991SDimitry Andric 4648bcb0991SDimitry Andric MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 4658bcb0991SDimitry Andric bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 4668bcb0991SDimitry Andric // In the epilog, a map lookup is needed to get the value from the kernel, 4678bcb0991SDimitry Andric // or previous epilog block. How is does this depends on if the 4688bcb0991SDimitry Andric // instruction is scheduled in the previous block. 4698bcb0991SDimitry Andric if (!InKernel) { 4708bcb0991SDimitry Andric int StageDiffAdj = 0; 4718bcb0991SDimitry Andric if (LoopValStage != -1 && StageScheduled > LoopValStage) 4728bcb0991SDimitry Andric StageDiffAdj = StageScheduled - LoopValStage; 4738bcb0991SDimitry Andric // Use the loop value defined in the kernel, unless the kernel 4748bcb0991SDimitry Andric // contains the last definition of the Phi. 4758bcb0991SDimitry Andric if (np == 0 && PrevStage == LastStageNum && 4768bcb0991SDimitry Andric (StageScheduled != 0 || LoopValStage != 0) && 4778bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 4788bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 4798bcb0991SDimitry Andric // Use the value defined by the Phi. We add one because we switch 4808bcb0991SDimitry Andric // from looking at the loop value to the Phi definition. 4818bcb0991SDimitry Andric else if (np > 0 && PrevStage == LastStageNum && 4828bcb0991SDimitry Andric VRMap[PrevStage - np + 1].count(Def)) 4838bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np + 1][Def]; 4848bcb0991SDimitry Andric // Use the loop value defined in the kernel. 4858bcb0991SDimitry Andric else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 4868bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 4878bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 4888bcb0991SDimitry Andric // Use the value defined by the Phi, unless we're generating the first 4898bcb0991SDimitry Andric // epilog and the Phi refers to a Phi in a different stage. 4908bcb0991SDimitry Andric else if (VRMap[PrevStage - np].count(Def) && 4918bcb0991SDimitry Andric (!LoopDefIsPhi || (PrevStage != LastStageNum) || 4928bcb0991SDimitry Andric (LoopValStage == StageScheduled))) 4938bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np][Def]; 4948bcb0991SDimitry Andric } 4958bcb0991SDimitry Andric 4968bcb0991SDimitry Andric // Check if we can reuse an existing Phi. This occurs when a Phi 4978bcb0991SDimitry Andric // references another Phi, and the other Phi is scheduled in an 4988bcb0991SDimitry Andric // earlier stage. We can try to reuse an existing Phi up until the last 4998bcb0991SDimitry Andric // stage of the current Phi. 5008bcb0991SDimitry Andric if (LoopDefIsPhi) { 5018bcb0991SDimitry Andric if (static_cast<int>(PrologStage - np) >= StageScheduled) { 5028bcb0991SDimitry Andric int LVNumStages = getStagesForPhi(LoopVal); 5038bcb0991SDimitry Andric int StageDiff = (StageScheduled - LoopValStage); 5048bcb0991SDimitry Andric LVNumStages -= StageDiff; 5058bcb0991SDimitry Andric // Make sure the loop value Phi has been processed already. 5068bcb0991SDimitry Andric if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 5078bcb0991SDimitry Andric NewReg = PhiOp2; 5088bcb0991SDimitry Andric unsigned ReuseStage = CurStageNum; 5098bcb0991SDimitry Andric if (isLoopCarried(*PhiInst)) 5108bcb0991SDimitry Andric ReuseStage -= LVNumStages; 5118bcb0991SDimitry Andric // Check if the Phi to reuse has been generated yet. If not, then 5128bcb0991SDimitry Andric // there is nothing to reuse. 5138bcb0991SDimitry Andric if (VRMap[ReuseStage - np].count(LoopVal)) { 5148bcb0991SDimitry Andric NewReg = VRMap[ReuseStage - np][LoopVal]; 5158bcb0991SDimitry Andric 5168bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 5178bcb0991SDimitry Andric Def, NewReg); 5188bcb0991SDimitry Andric // Update the map with the new Phi name. 5198bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg; 5208bcb0991SDimitry Andric PhiOp2 = NewReg; 5218bcb0991SDimitry Andric if (VRMap[LastStageNum - np - 1].count(LoopVal)) 5228bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 5238bcb0991SDimitry Andric 5248bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 5258bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 5268bcb0991SDimitry Andric continue; 5278bcb0991SDimitry Andric } 5288bcb0991SDimitry Andric } 5298bcb0991SDimitry Andric } 5308bcb0991SDimitry Andric if (InKernel && StageDiff > 0 && 5318bcb0991SDimitry Andric VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 5328bcb0991SDimitry Andric PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 5338bcb0991SDimitry Andric } 5348bcb0991SDimitry Andric 5358bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def); 5368bcb0991SDimitry Andric NewReg = MRI.createVirtualRegister(RC); 5378bcb0991SDimitry Andric 5388bcb0991SDimitry Andric MachineInstrBuilder NewPhi = 5398bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 5408bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg); 5418bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1); 5428bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2); 5438bcb0991SDimitry Andric if (np == 0) 5448bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI; 5458bcb0991SDimitry Andric 5468bcb0991SDimitry Andric // We define the Phis after creating the new pipelined code, so 5478bcb0991SDimitry Andric // we need to rename the Phi values in scheduled instructions. 5488bcb0991SDimitry Andric 5498bcb0991SDimitry Andric unsigned PrevReg = 0; 5508bcb0991SDimitry Andric if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 5518bcb0991SDimitry Andric PrevReg = VRMap[PrevStage - np][LoopVal]; 5528bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 5538bcb0991SDimitry Andric NewReg, PrevReg); 5548bcb0991SDimitry Andric // If the Phi has been scheduled, use the new name for rewriting. 5558bcb0991SDimitry Andric if (VRMap[CurStageNum - np].count(Def)) { 5568bcb0991SDimitry Andric unsigned R = VRMap[CurStageNum - np][Def]; 5578bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 5588bcb0991SDimitry Andric NewReg); 5598bcb0991SDimitry Andric } 5608bcb0991SDimitry Andric 5618bcb0991SDimitry Andric // Check if we need to rename any uses that occurs after the loop. The 5628bcb0991SDimitry Andric // register to replace depends on whether the Phi is scheduled in the 5638bcb0991SDimitry Andric // epilog. 5648bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 5658bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 5668bcb0991SDimitry Andric 5678bcb0991SDimitry Andric // In the kernel, a dependent Phi uses the value from this Phi. 5688bcb0991SDimitry Andric if (InKernel) 5698bcb0991SDimitry Andric PhiOp2 = NewReg; 5708bcb0991SDimitry Andric 5718bcb0991SDimitry Andric // Update the map with the new Phi name. 5728bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg; 5738bcb0991SDimitry Andric } 5748bcb0991SDimitry Andric 5758bcb0991SDimitry Andric while (NumPhis++ < NumStages) { 5768bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 5778bcb0991SDimitry Andric NewReg, 0); 5788bcb0991SDimitry Andric } 5798bcb0991SDimitry Andric 5808bcb0991SDimitry Andric // Check if we need to rename a Phi that has been eliminated due to 5818bcb0991SDimitry Andric // scheduling. 5828bcb0991SDimitry Andric if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 5838bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 5848bcb0991SDimitry Andric } 5858bcb0991SDimitry Andric } 5868bcb0991SDimitry Andric 5878bcb0991SDimitry Andric /// Generate Phis for the specified block in the generated pipelined code. 5888bcb0991SDimitry Andric /// These are new Phis needed because the definition is scheduled after the 5898bcb0991SDimitry Andric /// use in the pipelined sequence. 5908bcb0991SDimitry Andric void ModuloScheduleExpander::generatePhis( 5918bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 5928bcb0991SDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 5938bcb0991SDimitry Andric unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 5948bcb0991SDimitry Andric // Compute the stage number that contains the initial Phi value, and 5958bcb0991SDimitry Andric // the Phi from the previous stage. 5968bcb0991SDimitry Andric unsigned PrologStage = 0; 5978bcb0991SDimitry Andric unsigned PrevStage = 0; 5988bcb0991SDimitry Andric unsigned StageDiff = CurStageNum - LastStageNum; 5998bcb0991SDimitry Andric bool InKernel = (StageDiff == 0); 6008bcb0991SDimitry Andric if (InKernel) { 6018bcb0991SDimitry Andric PrologStage = LastStageNum - 1; 6028bcb0991SDimitry Andric PrevStage = CurStageNum; 6038bcb0991SDimitry Andric } else { 6048bcb0991SDimitry Andric PrologStage = LastStageNum - StageDiff; 6058bcb0991SDimitry Andric PrevStage = LastStageNum + StageDiff - 1; 6068bcb0991SDimitry Andric } 6078bcb0991SDimitry Andric 6088bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 6098bcb0991SDimitry Andric BBE = BB->instr_end(); 6108bcb0991SDimitry Andric BBI != BBE; ++BBI) { 6118bcb0991SDimitry Andric for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 6128bcb0991SDimitry Andric MachineOperand &MO = BBI->getOperand(i); 6138bcb0991SDimitry Andric if (!MO.isReg() || !MO.isDef() || 6148bcb0991SDimitry Andric !Register::isVirtualRegister(MO.getReg())) 6158bcb0991SDimitry Andric continue; 6168bcb0991SDimitry Andric 6178bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI); 6188bcb0991SDimitry Andric assert(StageScheduled != -1 && "Expecting scheduled instruction."); 6198bcb0991SDimitry Andric Register Def = MO.getReg(); 6208bcb0991SDimitry Andric unsigned NumPhis = getStagesForReg(Def, CurStageNum); 6218bcb0991SDimitry Andric // An instruction scheduled in stage 0 and is used after the loop 6228bcb0991SDimitry Andric // requires a phi in the epilog for the last definition from either 6238bcb0991SDimitry Andric // the kernel or prolog. 6248bcb0991SDimitry Andric if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 6258bcb0991SDimitry Andric hasUseAfterLoop(Def, BB, MRI)) 6268bcb0991SDimitry Andric NumPhis = 1; 6278bcb0991SDimitry Andric if (!InKernel && (unsigned)StageScheduled > PrologStage) 6288bcb0991SDimitry Andric continue; 6298bcb0991SDimitry Andric 6308bcb0991SDimitry Andric unsigned PhiOp2 = VRMap[PrevStage][Def]; 6318bcb0991SDimitry Andric if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 6328bcb0991SDimitry Andric if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 6338bcb0991SDimitry Andric PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 6348bcb0991SDimitry Andric // The number of Phis can't exceed the number of prolog stages. The 6358bcb0991SDimitry Andric // prolog stage number is zero based. 6368bcb0991SDimitry Andric if (NumPhis > PrologStage + 1 - StageScheduled) 6378bcb0991SDimitry Andric NumPhis = PrologStage + 1 - StageScheduled; 6388bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) { 6398bcb0991SDimitry Andric unsigned PhiOp1 = VRMap[PrologStage][Def]; 6408bcb0991SDimitry Andric if (np <= PrologStage) 6418bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - np][Def]; 6428bcb0991SDimitry Andric if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 6438bcb0991SDimitry Andric if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 6448bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 6458bcb0991SDimitry Andric if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 6468bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 6478bcb0991SDimitry Andric } 6488bcb0991SDimitry Andric if (!InKernel) 6498bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np][Def]; 6508bcb0991SDimitry Andric 6518bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def); 6528bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 6538bcb0991SDimitry Andric 6548bcb0991SDimitry Andric MachineInstrBuilder NewPhi = 6558bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 6568bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg); 6578bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1); 6588bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2); 6598bcb0991SDimitry Andric if (np == 0) 6608bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI; 6618bcb0991SDimitry Andric 6628bcb0991SDimitry Andric // Rewrite uses and update the map. The actions depend upon whether 6638bcb0991SDimitry Andric // we generating code for the kernel or epilog blocks. 6648bcb0991SDimitry Andric if (InKernel) { 6658bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 6668bcb0991SDimitry Andric NewReg); 6678bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 6688bcb0991SDimitry Andric NewReg); 6698bcb0991SDimitry Andric 6708bcb0991SDimitry Andric PhiOp2 = NewReg; 6718bcb0991SDimitry Andric VRMap[PrevStage - np - 1][Def] = NewReg; 6728bcb0991SDimitry Andric } else { 6738bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg; 6748bcb0991SDimitry Andric if (np == NumPhis - 1) 6758bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 6768bcb0991SDimitry Andric NewReg); 6778bcb0991SDimitry Andric } 6788bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 6798bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 6808bcb0991SDimitry Andric } 6818bcb0991SDimitry Andric } 6828bcb0991SDimitry Andric } 6838bcb0991SDimitry Andric } 6848bcb0991SDimitry Andric 6858bcb0991SDimitry Andric /// Remove instructions that generate values with no uses. 6868bcb0991SDimitry Andric /// Typically, these are induction variable operations that generate values 6878bcb0991SDimitry Andric /// used in the loop itself. A dead instruction has a definition with 6888bcb0991SDimitry Andric /// no uses, or uses that occur in the original loop only. 6898bcb0991SDimitry Andric void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 6908bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) { 6918bcb0991SDimitry Andric // For each epilog block, check that the value defined by each instruction 6928bcb0991SDimitry Andric // is used. If not, delete it. 693349cc55cSDimitry Andric for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 694349cc55cSDimitry Andric for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 695349cc55cSDimitry Andric ME = MBB->instr_rend(); 6968bcb0991SDimitry Andric MI != ME;) { 6978bcb0991SDimitry Andric // From DeadMachineInstructionElem. Don't delete inline assembly. 6988bcb0991SDimitry Andric if (MI->isInlineAsm()) { 6998bcb0991SDimitry Andric ++MI; 7008bcb0991SDimitry Andric continue; 7018bcb0991SDimitry Andric } 7028bcb0991SDimitry Andric bool SawStore = false; 7038bcb0991SDimitry Andric // Check if it's safe to remove the instruction due to side effects. 7048bcb0991SDimitry Andric // We can, and want to, remove Phis here. 7058bcb0991SDimitry Andric if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 7068bcb0991SDimitry Andric ++MI; 7078bcb0991SDimitry Andric continue; 7088bcb0991SDimitry Andric } 7098bcb0991SDimitry Andric bool used = true; 710349cc55cSDimitry Andric for (const MachineOperand &MO : MI->operands()) { 711349cc55cSDimitry Andric if (!MO.isReg() || !MO.isDef()) 7128bcb0991SDimitry Andric continue; 713349cc55cSDimitry Andric Register reg = MO.getReg(); 7148bcb0991SDimitry Andric // Assume physical registers are used, unless they are marked dead. 7158bcb0991SDimitry Andric if (Register::isPhysicalRegister(reg)) { 716349cc55cSDimitry Andric used = !MO.isDead(); 7178bcb0991SDimitry Andric if (used) 7188bcb0991SDimitry Andric break; 7198bcb0991SDimitry Andric continue; 7208bcb0991SDimitry Andric } 7218bcb0991SDimitry Andric unsigned realUses = 0; 722349cc55cSDimitry Andric for (const MachineOperand &U : MRI.use_operands(reg)) { 7238bcb0991SDimitry Andric // Check if there are any uses that occur only in the original 7248bcb0991SDimitry Andric // loop. If so, that's not a real use. 725349cc55cSDimitry Andric if (U.getParent()->getParent() != BB) { 7268bcb0991SDimitry Andric realUses++; 7278bcb0991SDimitry Andric used = true; 7288bcb0991SDimitry Andric break; 7298bcb0991SDimitry Andric } 7308bcb0991SDimitry Andric } 7318bcb0991SDimitry Andric if (realUses > 0) 7328bcb0991SDimitry Andric break; 7338bcb0991SDimitry Andric used = false; 7348bcb0991SDimitry Andric } 7358bcb0991SDimitry Andric if (!used) { 7368bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(*MI); 7378bcb0991SDimitry Andric MI++->eraseFromParent(); 7388bcb0991SDimitry Andric continue; 7398bcb0991SDimitry Andric } 7408bcb0991SDimitry Andric ++MI; 7418bcb0991SDimitry Andric } 7428bcb0991SDimitry Andric // In the kernel block, check if we can remove a Phi that generates a value 7438bcb0991SDimitry Andric // used in an instruction removed in the epilog block. 744349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 745349cc55cSDimitry Andric Register reg = MI.getOperand(0).getReg(); 7468bcb0991SDimitry Andric if (MRI.use_begin(reg) == MRI.use_end()) { 747349cc55cSDimitry Andric LIS.RemoveMachineInstrFromMaps(MI); 748349cc55cSDimitry Andric MI.eraseFromParent(); 7498bcb0991SDimitry Andric } 7508bcb0991SDimitry Andric } 7518bcb0991SDimitry Andric } 7528bcb0991SDimitry Andric 7538bcb0991SDimitry Andric /// For loop carried definitions, we split the lifetime of a virtual register 7548bcb0991SDimitry Andric /// that has uses past the definition in the next iteration. A copy with a new 7558bcb0991SDimitry Andric /// virtual register is inserted before the definition, which helps with 7568bcb0991SDimitry Andric /// generating a better register assignment. 7578bcb0991SDimitry Andric /// 7588bcb0991SDimitry Andric /// v1 = phi(a, v2) v1 = phi(a, v2) 7598bcb0991SDimitry Andric /// v2 = phi(b, v3) v2 = phi(b, v3) 7608bcb0991SDimitry Andric /// v3 = .. v4 = copy v1 7618bcb0991SDimitry Andric /// .. = V1 v3 = .. 7628bcb0991SDimitry Andric /// .. = v4 7638bcb0991SDimitry Andric void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 7648bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) { 7658bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7668bcb0991SDimitry Andric for (auto &PHI : KernelBB->phis()) { 7678bcb0991SDimitry Andric Register Def = PHI.getOperand(0).getReg(); 7688bcb0991SDimitry Andric // Check for any Phi definition that used as an operand of another Phi 7698bcb0991SDimitry Andric // in the same block. 7708bcb0991SDimitry Andric for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 7718bcb0991SDimitry Andric E = MRI.use_instr_end(); 7728bcb0991SDimitry Andric I != E; ++I) { 7738bcb0991SDimitry Andric if (I->isPHI() && I->getParent() == KernelBB) { 7748bcb0991SDimitry Andric // Get the loop carried definition. 7758bcb0991SDimitry Andric unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 7768bcb0991SDimitry Andric if (!LCDef) 7778bcb0991SDimitry Andric continue; 7788bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(LCDef); 7798bcb0991SDimitry Andric if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 7808bcb0991SDimitry Andric continue; 7818bcb0991SDimitry Andric // Search through the rest of the block looking for uses of the Phi 7828bcb0991SDimitry Andric // definition. If one occurs, then split the lifetime. 7838bcb0991SDimitry Andric unsigned SplitReg = 0; 7848bcb0991SDimitry Andric for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 7858bcb0991SDimitry Andric KernelBB->instr_end())) 7868bcb0991SDimitry Andric if (BBJ.readsRegister(Def)) { 7878bcb0991SDimitry Andric // We split the lifetime when we find the first use. 7888bcb0991SDimitry Andric if (SplitReg == 0) { 7898bcb0991SDimitry Andric SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 7908bcb0991SDimitry Andric BuildMI(*KernelBB, MI, MI->getDebugLoc(), 7918bcb0991SDimitry Andric TII->get(TargetOpcode::COPY), SplitReg) 7928bcb0991SDimitry Andric .addReg(Def); 7938bcb0991SDimitry Andric } 7948bcb0991SDimitry Andric BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 7958bcb0991SDimitry Andric } 7968bcb0991SDimitry Andric if (!SplitReg) 7978bcb0991SDimitry Andric continue; 7988bcb0991SDimitry Andric // Search through each of the epilog blocks for any uses to be renamed. 7998bcb0991SDimitry Andric for (auto &Epilog : EpilogBBs) 8008bcb0991SDimitry Andric for (auto &I : *Epilog) 8018bcb0991SDimitry Andric if (I.readsRegister(Def)) 8028bcb0991SDimitry Andric I.substituteRegister(Def, SplitReg, 0, *TRI); 8038bcb0991SDimitry Andric break; 8048bcb0991SDimitry Andric } 8058bcb0991SDimitry Andric } 8068bcb0991SDimitry Andric } 8078bcb0991SDimitry Andric } 8088bcb0991SDimitry Andric 8098bcb0991SDimitry Andric /// Remove the incoming block from the Phis in a basic block. 8108bcb0991SDimitry Andric static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 8118bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 8128bcb0991SDimitry Andric if (!MI.isPHI()) 8138bcb0991SDimitry Andric break; 8148bcb0991SDimitry Andric for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 8158bcb0991SDimitry Andric if (MI.getOperand(i + 1).getMBB() == Incoming) { 8168bcb0991SDimitry Andric MI.RemoveOperand(i + 1); 8178bcb0991SDimitry Andric MI.RemoveOperand(i); 8188bcb0991SDimitry Andric break; 8198bcb0991SDimitry Andric } 8208bcb0991SDimitry Andric } 8218bcb0991SDimitry Andric } 8228bcb0991SDimitry Andric 8238bcb0991SDimitry Andric /// Create branches from each prolog basic block to the appropriate epilog 8248bcb0991SDimitry Andric /// block. These edges are needed if the loop ends before reaching the 8258bcb0991SDimitry Andric /// kernel. 8268bcb0991SDimitry Andric void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 8278bcb0991SDimitry Andric MBBVectorTy &PrologBBs, 8288bcb0991SDimitry Andric MachineBasicBlock *KernelBB, 8298bcb0991SDimitry Andric MBBVectorTy &EpilogBBs, 8308bcb0991SDimitry Andric ValueMapTy *VRMap) { 8318bcb0991SDimitry Andric assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 8328bcb0991SDimitry Andric MachineBasicBlock *LastPro = KernelBB; 8338bcb0991SDimitry Andric MachineBasicBlock *LastEpi = KernelBB; 8348bcb0991SDimitry Andric 8358bcb0991SDimitry Andric // Start from the blocks connected to the kernel and work "out" 8368bcb0991SDimitry Andric // to the first prolog and the last epilog blocks. 8378bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> PrevInsts; 8388bcb0991SDimitry Andric unsigned MaxIter = PrologBBs.size() - 1; 8398bcb0991SDimitry Andric for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 8408bcb0991SDimitry Andric // Add branches to the prolog that go to the corresponding 8418bcb0991SDimitry Andric // epilog, and the fall-thru prolog/kernel block. 8428bcb0991SDimitry Andric MachineBasicBlock *Prolog = PrologBBs[j]; 8438bcb0991SDimitry Andric MachineBasicBlock *Epilog = EpilogBBs[i]; 8448bcb0991SDimitry Andric 8458bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 8468bcb0991SDimitry Andric Optional<bool> StaticallyGreater = 8478bcb0991SDimitry Andric LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 8488bcb0991SDimitry Andric unsigned numAdded = 0; 8498bcb0991SDimitry Andric if (!StaticallyGreater.hasValue()) { 8508bcb0991SDimitry Andric Prolog->addSuccessor(Epilog); 8518bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 8528bcb0991SDimitry Andric } else if (*StaticallyGreater == false) { 8538bcb0991SDimitry Andric Prolog->addSuccessor(Epilog); 8548bcb0991SDimitry Andric Prolog->removeSuccessor(LastPro); 8558bcb0991SDimitry Andric LastEpi->removeSuccessor(Epilog); 8568bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 8578bcb0991SDimitry Andric removePhis(Epilog, LastEpi); 8588bcb0991SDimitry Andric // Remove the blocks that are no longer referenced. 8598bcb0991SDimitry Andric if (LastPro != LastEpi) { 8608bcb0991SDimitry Andric LastEpi->clear(); 8618bcb0991SDimitry Andric LastEpi->eraseFromParent(); 8628bcb0991SDimitry Andric } 8638bcb0991SDimitry Andric if (LastPro == KernelBB) { 8648bcb0991SDimitry Andric LoopInfo->disposed(); 8658bcb0991SDimitry Andric NewKernel = nullptr; 8668bcb0991SDimitry Andric } 8678bcb0991SDimitry Andric LastPro->clear(); 8688bcb0991SDimitry Andric LastPro->eraseFromParent(); 8698bcb0991SDimitry Andric } else { 8708bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 8718bcb0991SDimitry Andric removePhis(Epilog, Prolog); 8728bcb0991SDimitry Andric } 8738bcb0991SDimitry Andric LastPro = Prolog; 8748bcb0991SDimitry Andric LastEpi = Epilog; 8758bcb0991SDimitry Andric for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 8768bcb0991SDimitry Andric E = Prolog->instr_rend(); 8778bcb0991SDimitry Andric I != E && numAdded > 0; ++I, --numAdded) 8788bcb0991SDimitry Andric updateInstruction(&*I, false, j, 0, VRMap); 8798bcb0991SDimitry Andric } 8808bcb0991SDimitry Andric 8818bcb0991SDimitry Andric if (NewKernel) { 8828bcb0991SDimitry Andric LoopInfo->setPreheader(PrologBBs[MaxIter]); 8838bcb0991SDimitry Andric LoopInfo->adjustTripCount(-(MaxIter + 1)); 8848bcb0991SDimitry Andric } 8858bcb0991SDimitry Andric } 8868bcb0991SDimitry Andric 8878bcb0991SDimitry Andric /// Return true if we can compute the amount the instruction changes 8888bcb0991SDimitry Andric /// during each iteration. Set Delta to the amount of the change. 8898bcb0991SDimitry Andric bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 8908bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 8918bcb0991SDimitry Andric const MachineOperand *BaseOp; 8928bcb0991SDimitry Andric int64_t Offset; 8935ffd83dbSDimitry Andric bool OffsetIsScalable; 8945ffd83dbSDimitry Andric if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 8955ffd83dbSDimitry Andric return false; 8965ffd83dbSDimitry Andric 8975ffd83dbSDimitry Andric // FIXME: This algorithm assumes instructions have fixed-size offsets. 8985ffd83dbSDimitry Andric if (OffsetIsScalable) 8998bcb0991SDimitry Andric return false; 9008bcb0991SDimitry Andric 9018bcb0991SDimitry Andric if (!BaseOp->isReg()) 9028bcb0991SDimitry Andric return false; 9038bcb0991SDimitry Andric 9048bcb0991SDimitry Andric Register BaseReg = BaseOp->getReg(); 9058bcb0991SDimitry Andric 9068bcb0991SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 9078bcb0991SDimitry Andric // Check if there is a Phi. If so, get the definition in the loop. 9088bcb0991SDimitry Andric MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 9098bcb0991SDimitry Andric if (BaseDef && BaseDef->isPHI()) { 9108bcb0991SDimitry Andric BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 9118bcb0991SDimitry Andric BaseDef = MRI.getVRegDef(BaseReg); 9128bcb0991SDimitry Andric } 9138bcb0991SDimitry Andric if (!BaseDef) 9148bcb0991SDimitry Andric return false; 9158bcb0991SDimitry Andric 9168bcb0991SDimitry Andric int D = 0; 9178bcb0991SDimitry Andric if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 9188bcb0991SDimitry Andric return false; 9198bcb0991SDimitry Andric 9208bcb0991SDimitry Andric Delta = D; 9218bcb0991SDimitry Andric return true; 9228bcb0991SDimitry Andric } 9238bcb0991SDimitry Andric 9248bcb0991SDimitry Andric /// Update the memory operand with a new offset when the pipeliner 9258bcb0991SDimitry Andric /// generates a new copy of the instruction that refers to a 9268bcb0991SDimitry Andric /// different memory location. 9278bcb0991SDimitry Andric void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 9288bcb0991SDimitry Andric MachineInstr &OldMI, 9298bcb0991SDimitry Andric unsigned Num) { 9308bcb0991SDimitry Andric if (Num == 0) 9318bcb0991SDimitry Andric return; 9328bcb0991SDimitry Andric // If the instruction has memory operands, then adjust the offset 9338bcb0991SDimitry Andric // when the instruction appears in different stages. 9348bcb0991SDimitry Andric if (NewMI.memoperands_empty()) 9358bcb0991SDimitry Andric return; 9368bcb0991SDimitry Andric SmallVector<MachineMemOperand *, 2> NewMMOs; 9378bcb0991SDimitry Andric for (MachineMemOperand *MMO : NewMI.memoperands()) { 9388bcb0991SDimitry Andric // TODO: Figure out whether isAtomic is really necessary (see D57601). 9398bcb0991SDimitry Andric if (MMO->isVolatile() || MMO->isAtomic() || 9408bcb0991SDimitry Andric (MMO->isInvariant() && MMO->isDereferenceable()) || 9418bcb0991SDimitry Andric (!MMO->getValue())) { 9428bcb0991SDimitry Andric NewMMOs.push_back(MMO); 9438bcb0991SDimitry Andric continue; 9448bcb0991SDimitry Andric } 9458bcb0991SDimitry Andric unsigned Delta; 9468bcb0991SDimitry Andric if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 9478bcb0991SDimitry Andric int64_t AdjOffset = Delta * Num; 9488bcb0991SDimitry Andric NewMMOs.push_back( 9498bcb0991SDimitry Andric MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 9508bcb0991SDimitry Andric } else { 9518bcb0991SDimitry Andric NewMMOs.push_back( 9528bcb0991SDimitry Andric MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); 9538bcb0991SDimitry Andric } 9548bcb0991SDimitry Andric } 9558bcb0991SDimitry Andric NewMI.setMemRefs(MF, NewMMOs); 9568bcb0991SDimitry Andric } 9578bcb0991SDimitry Andric 9588bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop and update the 9598bcb0991SDimitry Andric /// memory operands, if needed. 9608bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 9618bcb0991SDimitry Andric unsigned CurStageNum, 9628bcb0991SDimitry Andric unsigned InstStageNum) { 9638bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 9648bcb0991SDimitry Andric // Check for tied operands in inline asm instructions. This should be handled 9658bcb0991SDimitry Andric // elsewhere, but I'm not sure of the best solution. 9668bcb0991SDimitry Andric if (OldMI->isInlineAsm()) 9678bcb0991SDimitry Andric for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 9688bcb0991SDimitry Andric const auto &MO = OldMI->getOperand(i); 9698bcb0991SDimitry Andric if (MO.isReg() && MO.isUse()) 9708bcb0991SDimitry Andric break; 9718bcb0991SDimitry Andric unsigned UseIdx; 9728bcb0991SDimitry Andric if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 9738bcb0991SDimitry Andric NewMI->tieOperands(i, UseIdx); 9748bcb0991SDimitry Andric } 9758bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 9768bcb0991SDimitry Andric return NewMI; 9778bcb0991SDimitry Andric } 9788bcb0991SDimitry Andric 9798bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop. If needed, this 9808bcb0991SDimitry Andric /// function updates the instruction using the values saved in the 9818bcb0991SDimitry Andric /// InstrChanges structure. 9828bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 9838bcb0991SDimitry Andric MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 9848bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 9858bcb0991SDimitry Andric auto It = InstrChanges.find(OldMI); 9868bcb0991SDimitry Andric if (It != InstrChanges.end()) { 9878bcb0991SDimitry Andric std::pair<unsigned, int64_t> RegAndOffset = It->second; 9888bcb0991SDimitry Andric unsigned BasePos, OffsetPos; 9898bcb0991SDimitry Andric if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 9908bcb0991SDimitry Andric return nullptr; 9918bcb0991SDimitry Andric int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 9928bcb0991SDimitry Andric MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 9938bcb0991SDimitry Andric if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 9948bcb0991SDimitry Andric NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 9958bcb0991SDimitry Andric NewMI->getOperand(OffsetPos).setImm(NewOffset); 9968bcb0991SDimitry Andric } 9978bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 9988bcb0991SDimitry Andric return NewMI; 9998bcb0991SDimitry Andric } 10008bcb0991SDimitry Andric 10018bcb0991SDimitry Andric /// Update the machine instruction with new virtual registers. This 10028bcb0991SDimitry Andric /// function may change the defintions and/or uses. 10038bcb0991SDimitry Andric void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 10048bcb0991SDimitry Andric bool LastDef, 10058bcb0991SDimitry Andric unsigned CurStageNum, 10068bcb0991SDimitry Andric unsigned InstrStageNum, 10078bcb0991SDimitry Andric ValueMapTy *VRMap) { 1008*4824e7fdSDimitry Andric for (MachineOperand &MO : NewMI->operands()) { 10098bcb0991SDimitry Andric if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) 10108bcb0991SDimitry Andric continue; 10118bcb0991SDimitry Andric Register reg = MO.getReg(); 10128bcb0991SDimitry Andric if (MO.isDef()) { 10138bcb0991SDimitry Andric // Create a new virtual register for the definition. 10148bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(reg); 10158bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 10168bcb0991SDimitry Andric MO.setReg(NewReg); 10178bcb0991SDimitry Andric VRMap[CurStageNum][reg] = NewReg; 10188bcb0991SDimitry Andric if (LastDef) 10198bcb0991SDimitry Andric replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 10208bcb0991SDimitry Andric } else if (MO.isUse()) { 10218bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(reg); 10228bcb0991SDimitry Andric // Compute the stage that contains the last definition for instruction. 10238bcb0991SDimitry Andric int DefStageNum = Schedule.getStage(Def); 10248bcb0991SDimitry Andric unsigned StageNum = CurStageNum; 10258bcb0991SDimitry Andric if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 10268bcb0991SDimitry Andric // Compute the difference in stages between the defintion and the use. 10278bcb0991SDimitry Andric unsigned StageDiff = (InstrStageNum - DefStageNum); 10288bcb0991SDimitry Andric // Make an adjustment to get the last definition. 10298bcb0991SDimitry Andric StageNum -= StageDiff; 10308bcb0991SDimitry Andric } 10318bcb0991SDimitry Andric if (VRMap[StageNum].count(reg)) 10328bcb0991SDimitry Andric MO.setReg(VRMap[StageNum][reg]); 10338bcb0991SDimitry Andric } 10348bcb0991SDimitry Andric } 10358bcb0991SDimitry Andric } 10368bcb0991SDimitry Andric 10378bcb0991SDimitry Andric /// Return the instruction in the loop that defines the register. 10388bcb0991SDimitry Andric /// If the definition is a Phi, then follow the Phi operand to 10398bcb0991SDimitry Andric /// the instruction in the loop. 10408bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 10418bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 8> Visited; 10428bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(Reg); 10438bcb0991SDimitry Andric while (Def->isPHI()) { 10448bcb0991SDimitry Andric if (!Visited.insert(Def).second) 10458bcb0991SDimitry Andric break; 10468bcb0991SDimitry Andric for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 10478bcb0991SDimitry Andric if (Def->getOperand(i + 1).getMBB() == BB) { 10488bcb0991SDimitry Andric Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 10498bcb0991SDimitry Andric break; 10508bcb0991SDimitry Andric } 10518bcb0991SDimitry Andric } 10528bcb0991SDimitry Andric return Def; 10538bcb0991SDimitry Andric } 10548bcb0991SDimitry Andric 10558bcb0991SDimitry Andric /// Return the new name for the value from the previous stage. 10568bcb0991SDimitry Andric unsigned ModuloScheduleExpander::getPrevMapVal( 10578bcb0991SDimitry Andric unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 10588bcb0991SDimitry Andric ValueMapTy *VRMap, MachineBasicBlock *BB) { 10598bcb0991SDimitry Andric unsigned PrevVal = 0; 10608bcb0991SDimitry Andric if (StageNum > PhiStage) { 10618bcb0991SDimitry Andric MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 10628bcb0991SDimitry Andric if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 10638bcb0991SDimitry Andric // The name is defined in the previous stage. 10648bcb0991SDimitry Andric PrevVal = VRMap[StageNum - 1][LoopVal]; 10658bcb0991SDimitry Andric else if (VRMap[StageNum].count(LoopVal)) 10668bcb0991SDimitry Andric // The previous name is defined in the current stage when the instruction 10678bcb0991SDimitry Andric // order is swapped. 10688bcb0991SDimitry Andric PrevVal = VRMap[StageNum][LoopVal]; 10698bcb0991SDimitry Andric else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 10708bcb0991SDimitry Andric // The loop value hasn't yet been scheduled. 10718bcb0991SDimitry Andric PrevVal = LoopVal; 10728bcb0991SDimitry Andric else if (StageNum == PhiStage + 1) 10738bcb0991SDimitry Andric // The loop value is another phi, which has not been scheduled. 10748bcb0991SDimitry Andric PrevVal = getInitPhiReg(*LoopInst, BB); 10758bcb0991SDimitry Andric else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 10768bcb0991SDimitry Andric // The loop value is another phi, which has been scheduled. 10778bcb0991SDimitry Andric PrevVal = 10788bcb0991SDimitry Andric getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 10798bcb0991SDimitry Andric LoopStage, VRMap, BB); 10808bcb0991SDimitry Andric } 10818bcb0991SDimitry Andric return PrevVal; 10828bcb0991SDimitry Andric } 10838bcb0991SDimitry Andric 10848bcb0991SDimitry Andric /// Rewrite the Phi values in the specified block to use the mappings 10858bcb0991SDimitry Andric /// from the initial operand. Once the Phi is scheduled, we switch 10868bcb0991SDimitry Andric /// to using the loop value instead of the Phi value, so those names 10878bcb0991SDimitry Andric /// do not need to be rewritten. 10888bcb0991SDimitry Andric void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 10898bcb0991SDimitry Andric unsigned StageNum, 10908bcb0991SDimitry Andric ValueMapTy *VRMap, 10918bcb0991SDimitry Andric InstrMapTy &InstrMap) { 10928bcb0991SDimitry Andric for (auto &PHI : BB->phis()) { 10938bcb0991SDimitry Andric unsigned InitVal = 0; 10948bcb0991SDimitry Andric unsigned LoopVal = 0; 10958bcb0991SDimitry Andric getPhiRegs(PHI, BB, InitVal, LoopVal); 10968bcb0991SDimitry Andric Register PhiDef = PHI.getOperand(0).getReg(); 10978bcb0991SDimitry Andric 10988bcb0991SDimitry Andric unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 10998bcb0991SDimitry Andric unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 11008bcb0991SDimitry Andric unsigned NumPhis = getStagesForPhi(PhiDef); 11018bcb0991SDimitry Andric if (NumPhis > StageNum) 11028bcb0991SDimitry Andric NumPhis = StageNum; 11038bcb0991SDimitry Andric for (unsigned np = 0; np <= NumPhis; ++np) { 11048bcb0991SDimitry Andric unsigned NewVal = 11058bcb0991SDimitry Andric getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 11068bcb0991SDimitry Andric if (!NewVal) 11078bcb0991SDimitry Andric NewVal = InitVal; 11088bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 11098bcb0991SDimitry Andric NewVal); 11108bcb0991SDimitry Andric } 11118bcb0991SDimitry Andric } 11128bcb0991SDimitry Andric } 11138bcb0991SDimitry Andric 11148bcb0991SDimitry Andric /// Rewrite a previously scheduled instruction to use the register value 11158bcb0991SDimitry Andric /// from the new instruction. Make sure the instruction occurs in the 11168bcb0991SDimitry Andric /// basic block, and we don't change the uses in the new instruction. 11178bcb0991SDimitry Andric void ModuloScheduleExpander::rewriteScheduledInstr( 11188bcb0991SDimitry Andric MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 11198bcb0991SDimitry Andric unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 11208bcb0991SDimitry Andric unsigned PrevReg) { 11218bcb0991SDimitry Andric bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 11228bcb0991SDimitry Andric int StagePhi = Schedule.getStage(Phi) + PhiNum; 11238bcb0991SDimitry Andric // Rewrite uses that have been scheduled already to use the new 11248bcb0991SDimitry Andric // Phi register. 1125349cc55cSDimitry Andric for (MachineOperand &UseOp : 1126349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 11278bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent(); 11288bcb0991SDimitry Andric if (UseMI->getParent() != BB) 11298bcb0991SDimitry Andric continue; 11308bcb0991SDimitry Andric if (UseMI->isPHI()) { 11318bcb0991SDimitry Andric if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 11328bcb0991SDimitry Andric continue; 11338bcb0991SDimitry Andric if (getLoopPhiReg(*UseMI, BB) != OldReg) 11348bcb0991SDimitry Andric continue; 11358bcb0991SDimitry Andric } 11368bcb0991SDimitry Andric InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 11378bcb0991SDimitry Andric assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 11388bcb0991SDimitry Andric MachineInstr *OrigMI = OrigInstr->second; 11398bcb0991SDimitry Andric int StageSched = Schedule.getStage(OrigMI); 11408bcb0991SDimitry Andric int CycleSched = Schedule.getCycle(OrigMI); 11418bcb0991SDimitry Andric unsigned ReplaceReg = 0; 11428bcb0991SDimitry Andric // This is the stage for the scheduled instruction. 11438bcb0991SDimitry Andric if (StagePhi == StageSched && Phi->isPHI()) { 11448bcb0991SDimitry Andric int CyclePhi = Schedule.getCycle(Phi); 11458bcb0991SDimitry Andric if (PrevReg && InProlog) 11468bcb0991SDimitry Andric ReplaceReg = PrevReg; 11478bcb0991SDimitry Andric else if (PrevReg && !isLoopCarried(*Phi) && 11488bcb0991SDimitry Andric (CyclePhi <= CycleSched || OrigMI->isPHI())) 11498bcb0991SDimitry Andric ReplaceReg = PrevReg; 11508bcb0991SDimitry Andric else 11518bcb0991SDimitry Andric ReplaceReg = NewReg; 11528bcb0991SDimitry Andric } 11538bcb0991SDimitry Andric // The scheduled instruction occurs before the scheduled Phi, and the 11548bcb0991SDimitry Andric // Phi is not loop carried. 11558bcb0991SDimitry Andric if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 11568bcb0991SDimitry Andric ReplaceReg = NewReg; 11578bcb0991SDimitry Andric if (StagePhi > StageSched && Phi->isPHI()) 11588bcb0991SDimitry Andric ReplaceReg = NewReg; 11598bcb0991SDimitry Andric if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 11608bcb0991SDimitry Andric ReplaceReg = NewReg; 11618bcb0991SDimitry Andric if (ReplaceReg) { 11628bcb0991SDimitry Andric MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 11638bcb0991SDimitry Andric UseOp.setReg(ReplaceReg); 11648bcb0991SDimitry Andric } 11658bcb0991SDimitry Andric } 11668bcb0991SDimitry Andric } 11678bcb0991SDimitry Andric 11688bcb0991SDimitry Andric bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 11698bcb0991SDimitry Andric if (!Phi.isPHI()) 11708bcb0991SDimitry Andric return false; 1171480093f4SDimitry Andric int DefCycle = Schedule.getCycle(&Phi); 11728bcb0991SDimitry Andric int DefStage = Schedule.getStage(&Phi); 11738bcb0991SDimitry Andric 11748bcb0991SDimitry Andric unsigned InitVal = 0; 11758bcb0991SDimitry Andric unsigned LoopVal = 0; 11768bcb0991SDimitry Andric getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 11778bcb0991SDimitry Andric MachineInstr *Use = MRI.getVRegDef(LoopVal); 11788bcb0991SDimitry Andric if (!Use || Use->isPHI()) 11798bcb0991SDimitry Andric return true; 1180480093f4SDimitry Andric int LoopCycle = Schedule.getCycle(Use); 11818bcb0991SDimitry Andric int LoopStage = Schedule.getStage(Use); 11828bcb0991SDimitry Andric return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 11838bcb0991SDimitry Andric } 11848bcb0991SDimitry Andric 11858bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 11868bcb0991SDimitry Andric // PeelingModuloScheduleExpander implementation 11878bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 11888bcb0991SDimitry Andric // This is a reimplementation of ModuloScheduleExpander that works by creating 11898bcb0991SDimitry Andric // a fully correct steady-state kernel and peeling off the prolog and epilogs. 11908bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 11918bcb0991SDimitry Andric 11928bcb0991SDimitry Andric namespace { 11938bcb0991SDimitry Andric // Remove any dead phis in MBB. Dead phis either have only one block as input 11948bcb0991SDimitry Andric // (in which case they are the identity) or have no uses. 11958bcb0991SDimitry Andric void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1196480093f4SDimitry Andric LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 11978bcb0991SDimitry Andric bool Changed = true; 11988bcb0991SDimitry Andric while (Changed) { 11998bcb0991SDimitry Andric Changed = false; 1200349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 12018bcb0991SDimitry Andric assert(MI.isPHI()); 12028bcb0991SDimitry Andric if (MRI.use_empty(MI.getOperand(0).getReg())) { 12038bcb0991SDimitry Andric if (LIS) 12048bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI); 12058bcb0991SDimitry Andric MI.eraseFromParent(); 12068bcb0991SDimitry Andric Changed = true; 1207480093f4SDimitry Andric } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 12088bcb0991SDimitry Andric MRI.constrainRegClass(MI.getOperand(1).getReg(), 12098bcb0991SDimitry Andric MRI.getRegClass(MI.getOperand(0).getReg())); 12108bcb0991SDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(), 12118bcb0991SDimitry Andric MI.getOperand(1).getReg()); 12128bcb0991SDimitry Andric if (LIS) 12138bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI); 12148bcb0991SDimitry Andric MI.eraseFromParent(); 12158bcb0991SDimitry Andric Changed = true; 12168bcb0991SDimitry Andric } 12178bcb0991SDimitry Andric } 12188bcb0991SDimitry Andric } 12198bcb0991SDimitry Andric } 12208bcb0991SDimitry Andric 12218bcb0991SDimitry Andric /// Rewrites the kernel block in-place to adhere to the given schedule. 12228bcb0991SDimitry Andric /// KernelRewriter holds all of the state required to perform the rewriting. 12238bcb0991SDimitry Andric class KernelRewriter { 12248bcb0991SDimitry Andric ModuloSchedule &S; 12258bcb0991SDimitry Andric MachineBasicBlock *BB; 12268bcb0991SDimitry Andric MachineBasicBlock *PreheaderBB, *ExitBB; 12278bcb0991SDimitry Andric MachineRegisterInfo &MRI; 12288bcb0991SDimitry Andric const TargetInstrInfo *TII; 12298bcb0991SDimitry Andric LiveIntervals *LIS; 12308bcb0991SDimitry Andric 12318bcb0991SDimitry Andric // Map from register class to canonical undef register for that class. 12328bcb0991SDimitry Andric DenseMap<const TargetRegisterClass *, Register> Undefs; 12338bcb0991SDimitry Andric // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 12348bcb0991SDimitry Andric // this map is only used when InitReg is non-undef. 12358bcb0991SDimitry Andric DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 12368bcb0991SDimitry Andric // Map from LoopReg to phi register where the InitReg is undef. 12378bcb0991SDimitry Andric DenseMap<Register, Register> UndefPhis; 12388bcb0991SDimitry Andric 12398bcb0991SDimitry Andric // Reg is used by MI. Return the new register MI should use to adhere to the 12408bcb0991SDimitry Andric // schedule. Insert phis as necessary. 12418bcb0991SDimitry Andric Register remapUse(Register Reg, MachineInstr &MI); 12428bcb0991SDimitry Andric // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 12438bcb0991SDimitry Andric // If InitReg is not given it is chosen arbitrarily. It will either be undef 12448bcb0991SDimitry Andric // or will be chosen so as to share another phi. 12458bcb0991SDimitry Andric Register phi(Register LoopReg, Optional<Register> InitReg = {}, 12468bcb0991SDimitry Andric const TargetRegisterClass *RC = nullptr); 12478bcb0991SDimitry Andric // Create an undef register of the given register class. 12488bcb0991SDimitry Andric Register undef(const TargetRegisterClass *RC); 12498bcb0991SDimitry Andric 12508bcb0991SDimitry Andric public: 1251fe6060f1SDimitry Andric KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 12528bcb0991SDimitry Andric LiveIntervals *LIS = nullptr); 12538bcb0991SDimitry Andric void rewrite(); 12548bcb0991SDimitry Andric }; 12558bcb0991SDimitry Andric } // namespace 12568bcb0991SDimitry Andric 12578bcb0991SDimitry Andric KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1258fe6060f1SDimitry Andric MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1259fe6060f1SDimitry Andric : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 12608bcb0991SDimitry Andric ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 12618bcb0991SDimitry Andric TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 12628bcb0991SDimitry Andric PreheaderBB = *BB->pred_begin(); 12638bcb0991SDimitry Andric if (PreheaderBB == BB) 12648bcb0991SDimitry Andric PreheaderBB = *std::next(BB->pred_begin()); 12658bcb0991SDimitry Andric } 12668bcb0991SDimitry Andric 12678bcb0991SDimitry Andric void KernelRewriter::rewrite() { 12688bcb0991SDimitry Andric // Rearrange the loop to be in schedule order. Note that the schedule may 12698bcb0991SDimitry Andric // contain instructions that are not owned by the loop block (InstrChanges and 12708bcb0991SDimitry Andric // friends), so we gracefully handle unowned instructions and delete any 12718bcb0991SDimitry Andric // instructions that weren't in the schedule. 12728bcb0991SDimitry Andric auto InsertPt = BB->getFirstTerminator(); 12738bcb0991SDimitry Andric MachineInstr *FirstMI = nullptr; 12748bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) { 12758bcb0991SDimitry Andric if (MI->isPHI()) 12768bcb0991SDimitry Andric continue; 12778bcb0991SDimitry Andric if (MI->getParent()) 12788bcb0991SDimitry Andric MI->removeFromParent(); 12798bcb0991SDimitry Andric BB->insert(InsertPt, MI); 12808bcb0991SDimitry Andric if (!FirstMI) 12818bcb0991SDimitry Andric FirstMI = MI; 12828bcb0991SDimitry Andric } 12838bcb0991SDimitry Andric assert(FirstMI && "Failed to find first MI in schedule"); 12848bcb0991SDimitry Andric 12858bcb0991SDimitry Andric // At this point all of the scheduled instructions are between FirstMI 12868bcb0991SDimitry Andric // and the end of the block. Kill from the first non-phi to FirstMI. 12878bcb0991SDimitry Andric for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 12888bcb0991SDimitry Andric if (LIS) 12898bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*I); 12908bcb0991SDimitry Andric (I++)->eraseFromParent(); 12918bcb0991SDimitry Andric } 12928bcb0991SDimitry Andric 12938bcb0991SDimitry Andric // Now remap every instruction in the loop. 12948bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 12958bcb0991SDimitry Andric if (MI.isPHI() || MI.isTerminator()) 12968bcb0991SDimitry Andric continue; 12978bcb0991SDimitry Andric for (MachineOperand &MO : MI.uses()) { 12988bcb0991SDimitry Andric if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 12998bcb0991SDimitry Andric continue; 13008bcb0991SDimitry Andric Register Reg = remapUse(MO.getReg(), MI); 13018bcb0991SDimitry Andric MO.setReg(Reg); 13028bcb0991SDimitry Andric } 13038bcb0991SDimitry Andric } 13048bcb0991SDimitry Andric EliminateDeadPhis(BB, MRI, LIS); 13058bcb0991SDimitry Andric 13068bcb0991SDimitry Andric // Ensure a phi exists for all instructions that are either referenced by 13078bcb0991SDimitry Andric // an illegal phi or by an instruction outside the loop. This allows us to 13088bcb0991SDimitry Andric // treat remaps of these values the same as "normal" values that come from 13098bcb0991SDimitry Andric // loop-carried phis. 13108bcb0991SDimitry Andric for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 13118bcb0991SDimitry Andric if (MI->isPHI()) { 13128bcb0991SDimitry Andric Register R = MI->getOperand(0).getReg(); 13138bcb0991SDimitry Andric phi(R); 13148bcb0991SDimitry Andric continue; 13158bcb0991SDimitry Andric } 13168bcb0991SDimitry Andric 13178bcb0991SDimitry Andric for (MachineOperand &Def : MI->defs()) { 13188bcb0991SDimitry Andric for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 13198bcb0991SDimitry Andric if (MI.getParent() != BB) { 13208bcb0991SDimitry Andric phi(Def.getReg()); 13218bcb0991SDimitry Andric break; 13228bcb0991SDimitry Andric } 13238bcb0991SDimitry Andric } 13248bcb0991SDimitry Andric } 13258bcb0991SDimitry Andric } 13268bcb0991SDimitry Andric } 13278bcb0991SDimitry Andric 13288bcb0991SDimitry Andric Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 13298bcb0991SDimitry Andric MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 13308bcb0991SDimitry Andric if (!Producer) 13318bcb0991SDimitry Andric return Reg; 13328bcb0991SDimitry Andric 13338bcb0991SDimitry Andric int ConsumerStage = S.getStage(&MI); 13348bcb0991SDimitry Andric if (!Producer->isPHI()) { 13358bcb0991SDimitry Andric // Non-phi producers are simple to remap. Insert as many phis as the 13368bcb0991SDimitry Andric // difference between the consumer and producer stages. 13378bcb0991SDimitry Andric if (Producer->getParent() != BB) 13388bcb0991SDimitry Andric // Producer was not inside the loop. Use the register as-is. 13398bcb0991SDimitry Andric return Reg; 13408bcb0991SDimitry Andric int ProducerStage = S.getStage(Producer); 13418bcb0991SDimitry Andric assert(ConsumerStage != -1 && 13428bcb0991SDimitry Andric "In-loop consumer should always be scheduled!"); 13438bcb0991SDimitry Andric assert(ConsumerStage >= ProducerStage); 13448bcb0991SDimitry Andric unsigned StageDiff = ConsumerStage - ProducerStage; 13458bcb0991SDimitry Andric 13468bcb0991SDimitry Andric for (unsigned I = 0; I < StageDiff; ++I) 13478bcb0991SDimitry Andric Reg = phi(Reg); 13488bcb0991SDimitry Andric return Reg; 13498bcb0991SDimitry Andric } 13508bcb0991SDimitry Andric 13518bcb0991SDimitry Andric // First, dive through the phi chain to find the defaults for the generated 13528bcb0991SDimitry Andric // phis. 13538bcb0991SDimitry Andric SmallVector<Optional<Register>, 4> Defaults; 13548bcb0991SDimitry Andric Register LoopReg = Reg; 13558bcb0991SDimitry Andric auto LoopProducer = Producer; 13568bcb0991SDimitry Andric while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 13578bcb0991SDimitry Andric LoopReg = getLoopPhiReg(*LoopProducer, BB); 13588bcb0991SDimitry Andric Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 13598bcb0991SDimitry Andric LoopProducer = MRI.getUniqueVRegDef(LoopReg); 13608bcb0991SDimitry Andric assert(LoopProducer); 13618bcb0991SDimitry Andric } 13628bcb0991SDimitry Andric int LoopProducerStage = S.getStage(LoopProducer); 13638bcb0991SDimitry Andric 13648bcb0991SDimitry Andric Optional<Register> IllegalPhiDefault; 13658bcb0991SDimitry Andric 13668bcb0991SDimitry Andric if (LoopProducerStage == -1) { 13678bcb0991SDimitry Andric // Do nothing. 13688bcb0991SDimitry Andric } else if (LoopProducerStage > ConsumerStage) { 13698bcb0991SDimitry Andric // This schedule is only representable if ProducerStage == ConsumerStage+1. 13708bcb0991SDimitry Andric // In addition, Consumer's cycle must be scheduled after Producer in the 13718bcb0991SDimitry Andric // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 13728bcb0991SDimitry Andric // functions. 13738bcb0991SDimitry Andric #ifndef NDEBUG // Silence unused variables in non-asserts mode. 13748bcb0991SDimitry Andric int LoopProducerCycle = S.getCycle(LoopProducer); 13758bcb0991SDimitry Andric int ConsumerCycle = S.getCycle(&MI); 13768bcb0991SDimitry Andric #endif 13778bcb0991SDimitry Andric assert(LoopProducerCycle <= ConsumerCycle); 13788bcb0991SDimitry Andric assert(LoopProducerStage == ConsumerStage + 1); 13798bcb0991SDimitry Andric // Peel off the first phi from Defaults and insert a phi between producer 13808bcb0991SDimitry Andric // and consumer. This phi will not be at the front of the block so we 13818bcb0991SDimitry Andric // consider it illegal. It will only exist during the rewrite process; it 13828bcb0991SDimitry Andric // needs to exist while we peel off prologs because these could take the 13838bcb0991SDimitry Andric // default value. After that we can replace all uses with the loop producer 13848bcb0991SDimitry Andric // value. 13858bcb0991SDimitry Andric IllegalPhiDefault = Defaults.front(); 13868bcb0991SDimitry Andric Defaults.erase(Defaults.begin()); 13878bcb0991SDimitry Andric } else { 13888bcb0991SDimitry Andric assert(ConsumerStage >= LoopProducerStage); 13898bcb0991SDimitry Andric int StageDiff = ConsumerStage - LoopProducerStage; 13908bcb0991SDimitry Andric if (StageDiff > 0) { 13918bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 13928bcb0991SDimitry Andric << " to " << (Defaults.size() + StageDiff) << "\n"); 13938bcb0991SDimitry Andric // If we need more phis than we have defaults for, pad out with undefs for 13948bcb0991SDimitry Andric // the earliest phis, which are at the end of the defaults chain (the 13958bcb0991SDimitry Andric // chain is in reverse order). 13968bcb0991SDimitry Andric Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() 13978bcb0991SDimitry Andric ? Optional<Register>() 13988bcb0991SDimitry Andric : Defaults.back()); 13998bcb0991SDimitry Andric } 14008bcb0991SDimitry Andric } 14018bcb0991SDimitry Andric 14028bcb0991SDimitry Andric // Now we know the number of stages to jump back, insert the phi chain. 14038bcb0991SDimitry Andric auto DefaultI = Defaults.rbegin(); 14048bcb0991SDimitry Andric while (DefaultI != Defaults.rend()) 14058bcb0991SDimitry Andric LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 14068bcb0991SDimitry Andric 14078bcb0991SDimitry Andric if (IllegalPhiDefault.hasValue()) { 14088bcb0991SDimitry Andric // The consumer optionally consumes LoopProducer in the same iteration 14098bcb0991SDimitry Andric // (because the producer is scheduled at an earlier cycle than the consumer) 14108bcb0991SDimitry Andric // or the initial value. To facilitate this we create an illegal block here 14118bcb0991SDimitry Andric // by embedding a phi in the middle of the block. We will fix this up 14128bcb0991SDimitry Andric // immediately prior to pruning. 14138bcb0991SDimitry Andric auto RC = MRI.getRegClass(Reg); 14148bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 14155ffd83dbSDimitry Andric MachineInstr *IllegalPhi = 14168bcb0991SDimitry Andric BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 14178bcb0991SDimitry Andric .addReg(IllegalPhiDefault.getValue()) 14188bcb0991SDimitry Andric .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 14198bcb0991SDimitry Andric .addReg(LoopReg) 14208bcb0991SDimitry Andric .addMBB(BB); // Block choice is arbitrary and has no effect. 14215ffd83dbSDimitry Andric // Illegal phi should belong to the producer stage so that it can be 14225ffd83dbSDimitry Andric // filtered correctly during peeling. 14235ffd83dbSDimitry Andric S.setStage(IllegalPhi, LoopProducerStage); 14248bcb0991SDimitry Andric return R; 14258bcb0991SDimitry Andric } 14268bcb0991SDimitry Andric 14278bcb0991SDimitry Andric return LoopReg; 14288bcb0991SDimitry Andric } 14298bcb0991SDimitry Andric 14308bcb0991SDimitry Andric Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, 14318bcb0991SDimitry Andric const TargetRegisterClass *RC) { 14328bcb0991SDimitry Andric // If the init register is not undef, try and find an existing phi. 14338bcb0991SDimitry Andric if (InitReg.hasValue()) { 14348bcb0991SDimitry Andric auto I = Phis.find({LoopReg, InitReg.getValue()}); 14358bcb0991SDimitry Andric if (I != Phis.end()) 14368bcb0991SDimitry Andric return I->second; 14378bcb0991SDimitry Andric } else { 14388bcb0991SDimitry Andric for (auto &KV : Phis) { 14398bcb0991SDimitry Andric if (KV.first.first == LoopReg) 14408bcb0991SDimitry Andric return KV.second; 14418bcb0991SDimitry Andric } 14428bcb0991SDimitry Andric } 14438bcb0991SDimitry Andric 14448bcb0991SDimitry Andric // InitReg is either undef or no existing phi takes InitReg as input. Try and 14458bcb0991SDimitry Andric // find a phi that takes undef as input. 14468bcb0991SDimitry Andric auto I = UndefPhis.find(LoopReg); 14478bcb0991SDimitry Andric if (I != UndefPhis.end()) { 14488bcb0991SDimitry Andric Register R = I->second; 14498bcb0991SDimitry Andric if (!InitReg.hasValue()) 14508bcb0991SDimitry Andric // Found a phi taking undef as input, and this input is undef so return 14518bcb0991SDimitry Andric // without any more changes. 14528bcb0991SDimitry Andric return R; 14538bcb0991SDimitry Andric // Found a phi taking undef as input, so rewrite it to take InitReg. 14548bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(R); 14558bcb0991SDimitry Andric MI->getOperand(1).setReg(InitReg.getValue()); 14568bcb0991SDimitry Andric Phis.insert({{LoopReg, InitReg.getValue()}, R}); 14578bcb0991SDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); 14588bcb0991SDimitry Andric UndefPhis.erase(I); 14598bcb0991SDimitry Andric return R; 14608bcb0991SDimitry Andric } 14618bcb0991SDimitry Andric 14628bcb0991SDimitry Andric // Failed to find any existing phi to reuse, so create a new one. 14638bcb0991SDimitry Andric if (!RC) 14648bcb0991SDimitry Andric RC = MRI.getRegClass(LoopReg); 14658bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 14668bcb0991SDimitry Andric if (InitReg.hasValue()) 14678bcb0991SDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 14688bcb0991SDimitry Andric BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 14698bcb0991SDimitry Andric .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) 14708bcb0991SDimitry Andric .addMBB(PreheaderBB) 14718bcb0991SDimitry Andric .addReg(LoopReg) 14728bcb0991SDimitry Andric .addMBB(BB); 14738bcb0991SDimitry Andric if (!InitReg.hasValue()) 14748bcb0991SDimitry Andric UndefPhis[LoopReg] = R; 14758bcb0991SDimitry Andric else 14768bcb0991SDimitry Andric Phis[{LoopReg, *InitReg}] = R; 14778bcb0991SDimitry Andric return R; 14788bcb0991SDimitry Andric } 14798bcb0991SDimitry Andric 14808bcb0991SDimitry Andric Register KernelRewriter::undef(const TargetRegisterClass *RC) { 14818bcb0991SDimitry Andric Register &R = Undefs[RC]; 14828bcb0991SDimitry Andric if (R == 0) { 14838bcb0991SDimitry Andric // Create an IMPLICIT_DEF that defines this register if we need it. 14848bcb0991SDimitry Andric // All uses of this should be removed by the time we have finished unrolling 14858bcb0991SDimitry Andric // prologs and epilogs. 14868bcb0991SDimitry Andric R = MRI.createVirtualRegister(RC); 14878bcb0991SDimitry Andric auto *InsertBB = &PreheaderBB->getParent()->front(); 14888bcb0991SDimitry Andric BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 14898bcb0991SDimitry Andric TII->get(TargetOpcode::IMPLICIT_DEF), R); 14908bcb0991SDimitry Andric } 14918bcb0991SDimitry Andric return R; 14928bcb0991SDimitry Andric } 14938bcb0991SDimitry Andric 14948bcb0991SDimitry Andric namespace { 14958bcb0991SDimitry Andric /// Describes an operand in the kernel of a pipelined loop. Characteristics of 14968bcb0991SDimitry Andric /// the operand are discovered, such as how many in-loop PHIs it has to jump 14978bcb0991SDimitry Andric /// through and defaults for these phis. 14988bcb0991SDimitry Andric class KernelOperandInfo { 14998bcb0991SDimitry Andric MachineBasicBlock *BB; 15008bcb0991SDimitry Andric MachineRegisterInfo &MRI; 15018bcb0991SDimitry Andric SmallVector<Register, 4> PhiDefaults; 15028bcb0991SDimitry Andric MachineOperand *Source; 15038bcb0991SDimitry Andric MachineOperand *Target; 15048bcb0991SDimitry Andric 15058bcb0991SDimitry Andric public: 15068bcb0991SDimitry Andric KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 15078bcb0991SDimitry Andric const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 15088bcb0991SDimitry Andric : MRI(MRI) { 15098bcb0991SDimitry Andric Source = MO; 15108bcb0991SDimitry Andric BB = MO->getParent()->getParent(); 15118bcb0991SDimitry Andric while (isRegInLoop(MO)) { 15128bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 15138bcb0991SDimitry Andric if (MI->isFullCopy()) { 15148bcb0991SDimitry Andric MO = &MI->getOperand(1); 15158bcb0991SDimitry Andric continue; 15168bcb0991SDimitry Andric } 15178bcb0991SDimitry Andric if (!MI->isPHI()) 15188bcb0991SDimitry Andric break; 15198bcb0991SDimitry Andric // If this is an illegal phi, don't count it in distance. 15208bcb0991SDimitry Andric if (IllegalPhis.count(MI)) { 15218bcb0991SDimitry Andric MO = &MI->getOperand(3); 15228bcb0991SDimitry Andric continue; 15238bcb0991SDimitry Andric } 15248bcb0991SDimitry Andric 15258bcb0991SDimitry Andric Register Default = getInitPhiReg(*MI, BB); 15268bcb0991SDimitry Andric MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 15278bcb0991SDimitry Andric : &MI->getOperand(3); 15288bcb0991SDimitry Andric PhiDefaults.push_back(Default); 15298bcb0991SDimitry Andric } 15308bcb0991SDimitry Andric Target = MO; 15318bcb0991SDimitry Andric } 15328bcb0991SDimitry Andric 15338bcb0991SDimitry Andric bool operator==(const KernelOperandInfo &Other) const { 15348bcb0991SDimitry Andric return PhiDefaults.size() == Other.PhiDefaults.size(); 15358bcb0991SDimitry Andric } 15368bcb0991SDimitry Andric 15378bcb0991SDimitry Andric void print(raw_ostream &OS) const { 15388bcb0991SDimitry Andric OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 15398bcb0991SDimitry Andric << *Source->getParent(); 15408bcb0991SDimitry Andric } 15418bcb0991SDimitry Andric 15428bcb0991SDimitry Andric private: 15438bcb0991SDimitry Andric bool isRegInLoop(MachineOperand *MO) { 15448bcb0991SDimitry Andric return MO->isReg() && MO->getReg().isVirtual() && 15458bcb0991SDimitry Andric MRI.getVRegDef(MO->getReg())->getParent() == BB; 15468bcb0991SDimitry Andric } 15478bcb0991SDimitry Andric }; 15488bcb0991SDimitry Andric } // namespace 15498bcb0991SDimitry Andric 15508bcb0991SDimitry Andric MachineBasicBlock * 15518bcb0991SDimitry Andric PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 15528bcb0991SDimitry Andric MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 15538bcb0991SDimitry Andric if (LPD == LPD_Front) 15548bcb0991SDimitry Andric PeeledFront.push_back(NewBB); 15558bcb0991SDimitry Andric else 15568bcb0991SDimitry Andric PeeledBack.push_front(NewBB); 15578bcb0991SDimitry Andric for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 15588bcb0991SDimitry Andric ++I, ++NI) { 15598bcb0991SDimitry Andric CanonicalMIs[&*I] = &*I; 15608bcb0991SDimitry Andric CanonicalMIs[&*NI] = &*I; 15618bcb0991SDimitry Andric BlockMIs[{NewBB, &*I}] = &*NI; 15628bcb0991SDimitry Andric BlockMIs[{BB, &*I}] = &*I; 15638bcb0991SDimitry Andric } 15648bcb0991SDimitry Andric return NewBB; 15658bcb0991SDimitry Andric } 15668bcb0991SDimitry Andric 1567480093f4SDimitry Andric void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1568480093f4SDimitry Andric int MinStage) { 1569480093f4SDimitry Andric for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1570480093f4SDimitry Andric I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1571480093f4SDimitry Andric MachineInstr *MI = &*I++; 1572480093f4SDimitry Andric int Stage = getStage(MI); 1573480093f4SDimitry Andric if (Stage == -1 || Stage >= MinStage) 1574480093f4SDimitry Andric continue; 1575480093f4SDimitry Andric 1576480093f4SDimitry Andric for (MachineOperand &DefMO : MI->defs()) { 1577480093f4SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1578480093f4SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1579480093f4SDimitry Andric // Only PHIs can use values from this block by construction. 1580480093f4SDimitry Andric // Match with the equivalent PHI in B. 1581480093f4SDimitry Andric assert(UseMI.isPHI()); 1582480093f4SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1583480093f4SDimitry Andric MI->getParent()); 1584480093f4SDimitry Andric Subs.emplace_back(&UseMI, Reg); 1585480093f4SDimitry Andric } 1586480093f4SDimitry Andric for (auto &Sub : Subs) 1587480093f4SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1588480093f4SDimitry Andric *MRI.getTargetRegisterInfo()); 1589480093f4SDimitry Andric } 1590480093f4SDimitry Andric if (LIS) 1591480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 1592480093f4SDimitry Andric MI->eraseFromParent(); 1593480093f4SDimitry Andric } 1594480093f4SDimitry Andric } 1595480093f4SDimitry Andric 1596480093f4SDimitry Andric void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1597480093f4SDimitry Andric MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1598480093f4SDimitry Andric auto InsertPt = DestBB->getFirstNonPHI(); 1599480093f4SDimitry Andric DenseMap<Register, Register> Remaps; 1600349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range( 1601349cc55cSDimitry Andric llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1602349cc55cSDimitry Andric if (MI.isPHI()) { 1603480093f4SDimitry Andric // This is an illegal PHI. If we move any instructions using an illegal 16045ffd83dbSDimitry Andric // PHI, we need to create a legal Phi. 1605349cc55cSDimitry Andric if (getStage(&MI) != Stage) { 16065ffd83dbSDimitry Andric // The legal Phi is not necessary if the illegal phi's stage 16075ffd83dbSDimitry Andric // is being moved. 1608349cc55cSDimitry Andric Register PhiR = MI.getOperand(0).getReg(); 1609480093f4SDimitry Andric auto RC = MRI.getRegClass(PhiR); 1610480093f4SDimitry Andric Register NR = MRI.createVirtualRegister(RC); 16115ffd83dbSDimitry Andric MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 16125ffd83dbSDimitry Andric DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1613480093f4SDimitry Andric .addReg(PhiR) 1614480093f4SDimitry Andric .addMBB(SourceBB); 1615349cc55cSDimitry Andric BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1616349cc55cSDimitry Andric CanonicalMIs[NI] = CanonicalMIs[&MI]; 1617480093f4SDimitry Andric Remaps[PhiR] = NR; 16185ffd83dbSDimitry Andric } 1619480093f4SDimitry Andric } 1620349cc55cSDimitry Andric if (getStage(&MI) != Stage) 1621480093f4SDimitry Andric continue; 1622349cc55cSDimitry Andric MI.removeFromParent(); 1623349cc55cSDimitry Andric DestBB->insert(InsertPt, &MI); 1624349cc55cSDimitry Andric auto *KernelMI = CanonicalMIs[&MI]; 1625349cc55cSDimitry Andric BlockMIs[{DestBB, KernelMI}] = &MI; 1626480093f4SDimitry Andric BlockMIs.erase({SourceBB, KernelMI}); 1627480093f4SDimitry Andric } 1628480093f4SDimitry Andric SmallVector<MachineInstr *, 4> PhiToDelete; 1629480093f4SDimitry Andric for (MachineInstr &MI : DestBB->phis()) { 1630480093f4SDimitry Andric assert(MI.getNumOperands() == 3); 1631480093f4SDimitry Andric MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1632480093f4SDimitry Andric // If the instruction referenced by the phi is moved inside the block 1633480093f4SDimitry Andric // we don't need the phi anymore. 1634480093f4SDimitry Andric if (getStage(Def) == Stage) { 1635480093f4SDimitry Andric Register PhiReg = MI.getOperand(0).getReg(); 16365ffd83dbSDimitry Andric assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); 16375ffd83dbSDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1638480093f4SDimitry Andric MI.getOperand(0).setReg(PhiReg); 1639480093f4SDimitry Andric PhiToDelete.push_back(&MI); 1640480093f4SDimitry Andric } 1641480093f4SDimitry Andric } 1642480093f4SDimitry Andric for (auto *P : PhiToDelete) 1643480093f4SDimitry Andric P->eraseFromParent(); 1644480093f4SDimitry Andric InsertPt = DestBB->getFirstNonPHI(); 1645480093f4SDimitry Andric // Helper to clone Phi instructions into the destination block. We clone Phi 1646480093f4SDimitry Andric // greedily to avoid combinatorial explosion of Phi instructions. 1647480093f4SDimitry Andric auto clonePhi = [&](MachineInstr *Phi) { 1648480093f4SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1649480093f4SDimitry Andric DestBB->insert(InsertPt, NewMI); 1650480093f4SDimitry Andric Register OrigR = Phi->getOperand(0).getReg(); 1651480093f4SDimitry Andric Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1652480093f4SDimitry Andric NewMI->getOperand(0).setReg(R); 1653480093f4SDimitry Andric NewMI->getOperand(1).setReg(OrigR); 1654480093f4SDimitry Andric NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1655480093f4SDimitry Andric Remaps[OrigR] = R; 1656480093f4SDimitry Andric CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1657480093f4SDimitry Andric BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1658480093f4SDimitry Andric PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1659480093f4SDimitry Andric return R; 1660480093f4SDimitry Andric }; 1661480093f4SDimitry Andric for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1662480093f4SDimitry Andric for (MachineOperand &MO : I->uses()) { 1663480093f4SDimitry Andric if (!MO.isReg()) 1664480093f4SDimitry Andric continue; 1665480093f4SDimitry Andric if (Remaps.count(MO.getReg())) 1666480093f4SDimitry Andric MO.setReg(Remaps[MO.getReg()]); 1667480093f4SDimitry Andric else { 1668480093f4SDimitry Andric // If we are using a phi from the source block we need to add a new phi 1669480093f4SDimitry Andric // pointing to the old one. 1670480093f4SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1671480093f4SDimitry Andric if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1672480093f4SDimitry Andric Register R = clonePhi(Use); 1673480093f4SDimitry Andric MO.setReg(R); 1674480093f4SDimitry Andric } 1675480093f4SDimitry Andric } 1676480093f4SDimitry Andric } 1677480093f4SDimitry Andric } 1678480093f4SDimitry Andric } 1679480093f4SDimitry Andric 1680480093f4SDimitry Andric Register 1681480093f4SDimitry Andric PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1682480093f4SDimitry Andric MachineInstr *Phi) { 1683480093f4SDimitry Andric unsigned distance = PhiNodeLoopIteration[Phi]; 1684480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalPhi; 16855ffd83dbSDimitry Andric Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1686480093f4SDimitry Andric for (unsigned I = 0; I < distance; ++I) { 1687480093f4SDimitry Andric assert(CanonicalUse->isPHI()); 1688480093f4SDimitry Andric assert(CanonicalUse->getNumOperands() == 5); 1689480093f4SDimitry Andric unsigned LoopRegIdx = 3, InitRegIdx = 1; 1690480093f4SDimitry Andric if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1691480093f4SDimitry Andric std::swap(LoopRegIdx, InitRegIdx); 16925ffd83dbSDimitry Andric CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 16935ffd83dbSDimitry Andric CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1694480093f4SDimitry Andric } 16955ffd83dbSDimitry Andric return CanonicalUseReg; 1696480093f4SDimitry Andric } 1697480093f4SDimitry Andric 16988bcb0991SDimitry Andric void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 16998bcb0991SDimitry Andric BitVector LS(Schedule.getNumStages(), true); 17008bcb0991SDimitry Andric BitVector AS(Schedule.getNumStages(), true); 17018bcb0991SDimitry Andric LiveStages[BB] = LS; 17028bcb0991SDimitry Andric AvailableStages[BB] = AS; 17038bcb0991SDimitry Andric 17048bcb0991SDimitry Andric // Peel out the prologs. 17058bcb0991SDimitry Andric LS.reset(); 17068bcb0991SDimitry Andric for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 17078bcb0991SDimitry Andric LS[I] = 1; 17088bcb0991SDimitry Andric Prologs.push_back(peelKernel(LPD_Front)); 17098bcb0991SDimitry Andric LiveStages[Prologs.back()] = LS; 17108bcb0991SDimitry Andric AvailableStages[Prologs.back()] = LS; 17118bcb0991SDimitry Andric } 17128bcb0991SDimitry Andric 17138bcb0991SDimitry Andric // Create a block that will end up as the new loop exiting block (dominated by 17148bcb0991SDimitry Andric // all prologs and epilogs). It will only contain PHIs, in the same order as 17158bcb0991SDimitry Andric // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 17168bcb0991SDimitry Andric // that the exiting block is a (sub) clone of BB. This in turn gives us the 17178bcb0991SDimitry Andric // property that any value deffed in BB but used outside of BB is used by a 17188bcb0991SDimitry Andric // PHI in the exiting block. 17198bcb0991SDimitry Andric MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1720480093f4SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 17218bcb0991SDimitry Andric // Push out the epilogs, again in reverse order. 17228bcb0991SDimitry Andric // We can't assume anything about the minumum loop trip count at this point, 1723480093f4SDimitry Andric // so emit a fairly complex epilog. 1724480093f4SDimitry Andric 1725480093f4SDimitry Andric // We first peel number of stages minus one epilogue. Then we remove dead 1726480093f4SDimitry Andric // stages and reorder instructions based on their stage. If we have 3 stages 1727480093f4SDimitry Andric // we generate first: 1728480093f4SDimitry Andric // E0[3, 2, 1] 1729480093f4SDimitry Andric // E1[3', 2'] 1730480093f4SDimitry Andric // E2[3''] 1731480093f4SDimitry Andric // And then we move instructions based on their stages to have: 1732480093f4SDimitry Andric // E0[3] 1733480093f4SDimitry Andric // E1[2, 3'] 1734480093f4SDimitry Andric // E2[1, 2', 3''] 1735480093f4SDimitry Andric // The transformation is legal because we only move instructions past 1736480093f4SDimitry Andric // instructions of a previous loop iteration. 17378bcb0991SDimitry Andric for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1738480093f4SDimitry Andric Epilogs.push_back(peelKernel(LPD_Back)); 1739480093f4SDimitry Andric MachineBasicBlock *B = Epilogs.back(); 1740480093f4SDimitry Andric filterInstructions(B, Schedule.getNumStages() - I); 1741480093f4SDimitry Andric // Keep track at which iteration each phi belongs to. We need it to know 1742480093f4SDimitry Andric // what version of the variable to use during prologue/epilogue stitching. 1743480093f4SDimitry Andric EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1744349cc55cSDimitry Andric for (MachineInstr &Phi : B->phis()) 1745349cc55cSDimitry Andric PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 17468bcb0991SDimitry Andric } 1747480093f4SDimitry Andric for (size_t I = 0; I < Epilogs.size(); I++) { 1748480093f4SDimitry Andric LS.reset(); 1749480093f4SDimitry Andric for (size_t J = I; J < Epilogs.size(); J++) { 1750480093f4SDimitry Andric int Iteration = J; 1751480093f4SDimitry Andric unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1752480093f4SDimitry Andric // Move stage one block at a time so that Phi nodes are updated correctly. 1753480093f4SDimitry Andric for (size_t K = Iteration; K > I; K--) 1754480093f4SDimitry Andric moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 1755480093f4SDimitry Andric LS[Stage] = 1; 1756480093f4SDimitry Andric } 1757480093f4SDimitry Andric LiveStages[Epilogs[I]] = LS; 1758480093f4SDimitry Andric AvailableStages[Epilogs[I]] = AS; 17598bcb0991SDimitry Andric } 17608bcb0991SDimitry Andric 17618bcb0991SDimitry Andric // Now we've defined all the prolog and epilog blocks as a fallthrough 17628bcb0991SDimitry Andric // sequence, add the edges that will be followed if the loop trip count is 17638bcb0991SDimitry Andric // lower than the number of stages (connecting prologs directly with epilogs). 17648bcb0991SDimitry Andric auto PI = Prologs.begin(); 17658bcb0991SDimitry Andric auto EI = Epilogs.begin(); 17668bcb0991SDimitry Andric assert(Prologs.size() == Epilogs.size()); 17678bcb0991SDimitry Andric for (; PI != Prologs.end(); ++PI, ++EI) { 17688bcb0991SDimitry Andric MachineBasicBlock *Pred = *(*EI)->pred_begin(); 17698bcb0991SDimitry Andric (*PI)->addSuccessor(*EI); 17708bcb0991SDimitry Andric for (MachineInstr &MI : (*EI)->phis()) { 17718bcb0991SDimitry Andric Register Reg = MI.getOperand(1).getReg(); 17728bcb0991SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1773480093f4SDimitry Andric if (Use && Use->getParent() == Pred) { 1774480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1775480093f4SDimitry Andric if (CanonicalUse->isPHI()) { 1776480093f4SDimitry Andric // If the use comes from a phi we need to skip as many phi as the 1777480093f4SDimitry Andric // distance between the epilogue and the kernel. Trace through the phi 1778480093f4SDimitry Andric // chain to find the right value. 1779480093f4SDimitry Andric Reg = getPhiCanonicalReg(CanonicalUse, Use); 1780480093f4SDimitry Andric } 17818bcb0991SDimitry Andric Reg = getEquivalentRegisterIn(Reg, *PI); 1782480093f4SDimitry Andric } 17838bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 17848bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateMBB(*PI)); 17858bcb0991SDimitry Andric } 17868bcb0991SDimitry Andric } 17878bcb0991SDimitry Andric 17888bcb0991SDimitry Andric // Create a list of all blocks in order. 17898bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 8> Blocks; 17908bcb0991SDimitry Andric llvm::copy(PeeledFront, std::back_inserter(Blocks)); 17918bcb0991SDimitry Andric Blocks.push_back(BB); 17928bcb0991SDimitry Andric llvm::copy(PeeledBack, std::back_inserter(Blocks)); 17938bcb0991SDimitry Andric 17948bcb0991SDimitry Andric // Iterate in reverse order over all instructions, remapping as we go. 17958bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks)) { 17968bcb0991SDimitry Andric for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); 17978bcb0991SDimitry Andric I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 17988bcb0991SDimitry Andric MachineInstr *MI = &*I++; 17998bcb0991SDimitry Andric rewriteUsesOf(MI); 18008bcb0991SDimitry Andric } 18018bcb0991SDimitry Andric } 1802480093f4SDimitry Andric for (auto *MI : IllegalPhisToDelete) { 1803480093f4SDimitry Andric if (LIS) 1804480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 1805480093f4SDimitry Andric MI->eraseFromParent(); 1806480093f4SDimitry Andric } 1807480093f4SDimitry Andric IllegalPhisToDelete.clear(); 1808480093f4SDimitry Andric 18098bcb0991SDimitry Andric // Now all remapping has been done, we're free to optimize the generated code. 18108bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks)) 18118bcb0991SDimitry Andric EliminateDeadPhis(B, MRI, LIS); 18128bcb0991SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS); 18138bcb0991SDimitry Andric } 18148bcb0991SDimitry Andric 18158bcb0991SDimitry Andric MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 18168bcb0991SDimitry Andric MachineFunction &MF = *BB->getParent(); 18178bcb0991SDimitry Andric MachineBasicBlock *Exit = *BB->succ_begin(); 18188bcb0991SDimitry Andric if (Exit == BB) 18198bcb0991SDimitry Andric Exit = *std::next(BB->succ_begin()); 18208bcb0991SDimitry Andric 18218bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 18228bcb0991SDimitry Andric MF.insert(std::next(BB->getIterator()), NewBB); 18238bcb0991SDimitry Andric 18248bcb0991SDimitry Andric // Clone all phis in BB into NewBB and rewrite. 18258bcb0991SDimitry Andric for (MachineInstr &MI : BB->phis()) { 18268bcb0991SDimitry Andric auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 18278bcb0991SDimitry Andric Register OldR = MI.getOperand(3).getReg(); 18288bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 18298bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> Uses; 18308bcb0991SDimitry Andric for (MachineInstr &Use : MRI.use_instructions(OldR)) 18318bcb0991SDimitry Andric if (Use.getParent() != BB) 18328bcb0991SDimitry Andric Uses.push_back(&Use); 18338bcb0991SDimitry Andric for (MachineInstr *Use : Uses) 18348bcb0991SDimitry Andric Use->substituteRegister(OldR, R, /*SubIdx=*/0, 18358bcb0991SDimitry Andric *MRI.getTargetRegisterInfo()); 18368bcb0991SDimitry Andric MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 18378bcb0991SDimitry Andric .addReg(OldR) 18388bcb0991SDimitry Andric .addMBB(BB); 18398bcb0991SDimitry Andric BlockMIs[{NewBB, &MI}] = NI; 18408bcb0991SDimitry Andric CanonicalMIs[NI] = &MI; 18418bcb0991SDimitry Andric } 18428bcb0991SDimitry Andric BB->replaceSuccessor(Exit, NewBB); 18438bcb0991SDimitry Andric Exit->replacePhiUsesWith(BB, NewBB); 18448bcb0991SDimitry Andric NewBB->addSuccessor(Exit); 18458bcb0991SDimitry Andric 18468bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 18478bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 18488bcb0991SDimitry Andric bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 18498bcb0991SDimitry Andric (void)CanAnalyzeBr; 18508bcb0991SDimitry Andric assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 18518bcb0991SDimitry Andric TII->removeBranch(*BB); 18528bcb0991SDimitry Andric TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 18538bcb0991SDimitry Andric Cond, DebugLoc()); 18548bcb0991SDimitry Andric TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 18558bcb0991SDimitry Andric return NewBB; 18568bcb0991SDimitry Andric } 18578bcb0991SDimitry Andric 18588bcb0991SDimitry Andric Register 18598bcb0991SDimitry Andric PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 18608bcb0991SDimitry Andric MachineBasicBlock *BB) { 18618bcb0991SDimitry Andric MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 18628bcb0991SDimitry Andric unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); 18638bcb0991SDimitry Andric return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 18648bcb0991SDimitry Andric } 18658bcb0991SDimitry Andric 18668bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 18678bcb0991SDimitry Andric if (MI->isPHI()) { 18688bcb0991SDimitry Andric // This is an illegal PHI. The loop-carried (desired) value is operand 3, 18698bcb0991SDimitry Andric // and it is produced by this block. 18708bcb0991SDimitry Andric Register PhiR = MI->getOperand(0).getReg(); 18718bcb0991SDimitry Andric Register R = MI->getOperand(3).getReg(); 18728bcb0991SDimitry Andric int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 18738bcb0991SDimitry Andric if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 18748bcb0991SDimitry Andric R = MI->getOperand(1).getReg(); 18758bcb0991SDimitry Andric MRI.setRegClass(R, MRI.getRegClass(PhiR)); 18768bcb0991SDimitry Andric MRI.replaceRegWith(PhiR, R); 1877480093f4SDimitry Andric // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1878480093f4SDimitry Andric // later to figure out how to remap registers. 1879480093f4SDimitry Andric MI->getOperand(0).setReg(PhiR); 1880480093f4SDimitry Andric IllegalPhisToDelete.push_back(MI); 18818bcb0991SDimitry Andric return; 18828bcb0991SDimitry Andric } 18838bcb0991SDimitry Andric 18848bcb0991SDimitry Andric int Stage = getStage(MI); 18858bcb0991SDimitry Andric if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 18868bcb0991SDimitry Andric LiveStages[MI->getParent()].test(Stage)) 18878bcb0991SDimitry Andric // Instruction is live, no rewriting to do. 18888bcb0991SDimitry Andric return; 18898bcb0991SDimitry Andric 18908bcb0991SDimitry Andric for (MachineOperand &DefMO : MI->defs()) { 18918bcb0991SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 18928bcb0991SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 18938bcb0991SDimitry Andric // Only PHIs can use values from this block by construction. 18948bcb0991SDimitry Andric // Match with the equivalent PHI in B. 18958bcb0991SDimitry Andric assert(UseMI.isPHI()); 18968bcb0991SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 18978bcb0991SDimitry Andric MI->getParent()); 18988bcb0991SDimitry Andric Subs.emplace_back(&UseMI, Reg); 18998bcb0991SDimitry Andric } 19008bcb0991SDimitry Andric for (auto &Sub : Subs) 19018bcb0991SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 19028bcb0991SDimitry Andric *MRI.getTargetRegisterInfo()); 19038bcb0991SDimitry Andric } 19048bcb0991SDimitry Andric if (LIS) 19058bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 19068bcb0991SDimitry Andric MI->eraseFromParent(); 19078bcb0991SDimitry Andric } 19088bcb0991SDimitry Andric 19098bcb0991SDimitry Andric void PeelingModuloScheduleExpander::fixupBranches() { 19108bcb0991SDimitry Andric // Work outwards from the kernel. 19118bcb0991SDimitry Andric bool KernelDisposed = false; 19128bcb0991SDimitry Andric int TC = Schedule.getNumStages() - 1; 19138bcb0991SDimitry Andric for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 19148bcb0991SDimitry Andric ++PI, ++EI, --TC) { 19158bcb0991SDimitry Andric MachineBasicBlock *Prolog = *PI; 19168bcb0991SDimitry Andric MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 19178bcb0991SDimitry Andric MachineBasicBlock *Epilog = *EI; 19188bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 19198bcb0991SDimitry Andric TII->removeBranch(*Prolog); 19208bcb0991SDimitry Andric Optional<bool> StaticallyGreater = 19215ffd83dbSDimitry Andric LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 19228bcb0991SDimitry Andric if (!StaticallyGreater.hasValue()) { 19238bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 19248bcb0991SDimitry Andric // Dynamically branch based on Cond. 19258bcb0991SDimitry Andric TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 19268bcb0991SDimitry Andric } else if (*StaticallyGreater == false) { 19278bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 19288bcb0991SDimitry Andric // Prolog never falls through; branch to epilog and orphan interior 19298bcb0991SDimitry Andric // blocks. Leave it to unreachable-block-elim to clean up. 19308bcb0991SDimitry Andric Prolog->removeSuccessor(Fallthrough); 19318bcb0991SDimitry Andric for (MachineInstr &P : Fallthrough->phis()) { 19328bcb0991SDimitry Andric P.RemoveOperand(2); 19338bcb0991SDimitry Andric P.RemoveOperand(1); 19348bcb0991SDimitry Andric } 19358bcb0991SDimitry Andric TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 19368bcb0991SDimitry Andric KernelDisposed = true; 19378bcb0991SDimitry Andric } else { 19388bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 19398bcb0991SDimitry Andric // Prolog always falls through; remove incoming values in epilog. 19408bcb0991SDimitry Andric Prolog->removeSuccessor(Epilog); 19418bcb0991SDimitry Andric for (MachineInstr &P : Epilog->phis()) { 19428bcb0991SDimitry Andric P.RemoveOperand(4); 19438bcb0991SDimitry Andric P.RemoveOperand(3); 19448bcb0991SDimitry Andric } 19458bcb0991SDimitry Andric } 19468bcb0991SDimitry Andric } 19478bcb0991SDimitry Andric 19488bcb0991SDimitry Andric if (!KernelDisposed) { 19495ffd83dbSDimitry Andric LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 19505ffd83dbSDimitry Andric LoopInfo->setPreheader(Prologs.back()); 19518bcb0991SDimitry Andric } else { 19525ffd83dbSDimitry Andric LoopInfo->disposed(); 19538bcb0991SDimitry Andric } 19548bcb0991SDimitry Andric } 19558bcb0991SDimitry Andric 19568bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteKernel() { 1957fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 19588bcb0991SDimitry Andric KR.rewrite(); 19598bcb0991SDimitry Andric } 19608bcb0991SDimitry Andric 19618bcb0991SDimitry Andric void PeelingModuloScheduleExpander::expand() { 19628bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 19638bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader(); 19648bcb0991SDimitry Andric LLVM_DEBUG(Schedule.dump()); 19655ffd83dbSDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB); 19665ffd83dbSDimitry Andric assert(LoopInfo); 19678bcb0991SDimitry Andric 19688bcb0991SDimitry Andric rewriteKernel(); 19698bcb0991SDimitry Andric peelPrologAndEpilogs(); 19708bcb0991SDimitry Andric fixupBranches(); 19718bcb0991SDimitry Andric } 19728bcb0991SDimitry Andric 19738bcb0991SDimitry Andric void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 19748bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 19758bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader(); 19768bcb0991SDimitry Andric 19778bcb0991SDimitry Andric // Dump the schedule before we invalidate and remap all its instructions. 19788bcb0991SDimitry Andric // Stash it in a string so we can print it if we found an error. 19798bcb0991SDimitry Andric std::string ScheduleDump; 19808bcb0991SDimitry Andric raw_string_ostream OS(ScheduleDump); 19818bcb0991SDimitry Andric Schedule.print(OS); 19828bcb0991SDimitry Andric OS.flush(); 19838bcb0991SDimitry Andric 19848bcb0991SDimitry Andric // First, run the normal ModuleScheduleExpander. We don't support any 19858bcb0991SDimitry Andric // InstrChanges. 19868bcb0991SDimitry Andric assert(LIS && "Requires LiveIntervals!"); 19878bcb0991SDimitry Andric ModuloScheduleExpander MSE(MF, Schedule, *LIS, 19888bcb0991SDimitry Andric ModuloScheduleExpander::InstrChangesTy()); 19898bcb0991SDimitry Andric MSE.expand(); 19908bcb0991SDimitry Andric MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 19918bcb0991SDimitry Andric if (!ExpandedKernel) { 19928bcb0991SDimitry Andric // The expander optimized away the kernel. We can't do any useful checking. 19938bcb0991SDimitry Andric MSE.cleanup(); 19948bcb0991SDimitry Andric return; 19958bcb0991SDimitry Andric } 19968bcb0991SDimitry Andric // Before running the KernelRewriter, re-add BB into the CFG. 19978bcb0991SDimitry Andric Preheader->addSuccessor(BB); 19988bcb0991SDimitry Andric 19998bcb0991SDimitry Andric // Now run the new expansion algorithm. 2000fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 20018bcb0991SDimitry Andric KR.rewrite(); 20028bcb0991SDimitry Andric peelPrologAndEpilogs(); 20038bcb0991SDimitry Andric 20048bcb0991SDimitry Andric // Collect all illegal phis that the new algorithm created. We'll give these 20058bcb0991SDimitry Andric // to KernelOperandInfo. 20068bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 4> IllegalPhis; 20078bcb0991SDimitry Andric for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 20088bcb0991SDimitry Andric if (NI->isPHI()) 20098bcb0991SDimitry Andric IllegalPhis.insert(&*NI); 20108bcb0991SDimitry Andric } 20118bcb0991SDimitry Andric 20128bcb0991SDimitry Andric // Co-iterate across both kernels. We expect them to be identical apart from 20138bcb0991SDimitry Andric // phis and full COPYs (we look through both). 20148bcb0991SDimitry Andric SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 20158bcb0991SDimitry Andric auto OI = ExpandedKernel->begin(); 20168bcb0991SDimitry Andric auto NI = BB->begin(); 20178bcb0991SDimitry Andric for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 20188bcb0991SDimitry Andric while (OI->isPHI() || OI->isFullCopy()) 20198bcb0991SDimitry Andric ++OI; 20208bcb0991SDimitry Andric while (NI->isPHI() || NI->isFullCopy()) 20218bcb0991SDimitry Andric ++NI; 20228bcb0991SDimitry Andric assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 20238bcb0991SDimitry Andric // Analyze every operand separately. 20248bcb0991SDimitry Andric for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 20258bcb0991SDimitry Andric OOpI != OI->operands_end(); ++OOpI, ++NOpI) 20268bcb0991SDimitry Andric KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 20278bcb0991SDimitry Andric KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 20288bcb0991SDimitry Andric } 20298bcb0991SDimitry Andric 20308bcb0991SDimitry Andric bool Failed = false; 20318bcb0991SDimitry Andric for (auto &OldAndNew : KOIs) { 20328bcb0991SDimitry Andric if (OldAndNew.first == OldAndNew.second) 20338bcb0991SDimitry Andric continue; 20348bcb0991SDimitry Andric Failed = true; 20358bcb0991SDimitry Andric errs() << "Modulo kernel validation error: [\n"; 20368bcb0991SDimitry Andric errs() << " [golden] "; 20378bcb0991SDimitry Andric OldAndNew.first.print(errs()); 20388bcb0991SDimitry Andric errs() << " "; 20398bcb0991SDimitry Andric OldAndNew.second.print(errs()); 20408bcb0991SDimitry Andric errs() << "]\n"; 20418bcb0991SDimitry Andric } 20428bcb0991SDimitry Andric 20438bcb0991SDimitry Andric if (Failed) { 20448bcb0991SDimitry Andric errs() << "Golden reference kernel:\n"; 20458bcb0991SDimitry Andric ExpandedKernel->print(errs()); 20468bcb0991SDimitry Andric errs() << "New kernel:\n"; 20478bcb0991SDimitry Andric BB->print(errs()); 20488bcb0991SDimitry Andric errs() << ScheduleDump; 20498bcb0991SDimitry Andric report_fatal_error( 20508bcb0991SDimitry Andric "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 20518bcb0991SDimitry Andric } 20528bcb0991SDimitry Andric 20538bcb0991SDimitry Andric // Cleanup by removing BB from the CFG again as the original 20548bcb0991SDimitry Andric // ModuloScheduleExpander intended. 20558bcb0991SDimitry Andric Preheader->removeSuccessor(BB); 20568bcb0991SDimitry Andric MSE.cleanup(); 20578bcb0991SDimitry Andric } 20588bcb0991SDimitry Andric 20598bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 20608bcb0991SDimitry Andric // ModuloScheduleTestPass implementation 20618bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 20628bcb0991SDimitry Andric // This pass constructs a ModuloSchedule from its module and runs 20638bcb0991SDimitry Andric // ModuloScheduleExpander. 20648bcb0991SDimitry Andric // 20658bcb0991SDimitry Andric // The module is expected to contain a single-block analyzable loop. 20668bcb0991SDimitry Andric // The total order of instructions is taken from the loop as-is. 20678bcb0991SDimitry Andric // Instructions are expected to be annotated with a PostInstrSymbol. 20688bcb0991SDimitry Andric // This PostInstrSymbol must have the following format: 20698bcb0991SDimitry Andric // "Stage=%d Cycle=%d". 20708bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 20718bcb0991SDimitry Andric 20728bcb0991SDimitry Andric namespace { 20738bcb0991SDimitry Andric class ModuloScheduleTest : public MachineFunctionPass { 20748bcb0991SDimitry Andric public: 20758bcb0991SDimitry Andric static char ID; 20768bcb0991SDimitry Andric 20778bcb0991SDimitry Andric ModuloScheduleTest() : MachineFunctionPass(ID) { 20788bcb0991SDimitry Andric initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 20798bcb0991SDimitry Andric } 20808bcb0991SDimitry Andric 20818bcb0991SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override; 20828bcb0991SDimitry Andric void runOnLoop(MachineFunction &MF, MachineLoop &L); 20838bcb0991SDimitry Andric 20848bcb0991SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 20858bcb0991SDimitry Andric AU.addRequired<MachineLoopInfo>(); 20868bcb0991SDimitry Andric AU.addRequired<LiveIntervals>(); 20878bcb0991SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU); 20888bcb0991SDimitry Andric } 20898bcb0991SDimitry Andric }; 20908bcb0991SDimitry Andric } // namespace 20918bcb0991SDimitry Andric 20928bcb0991SDimitry Andric char ModuloScheduleTest::ID = 0; 20938bcb0991SDimitry Andric 20948bcb0991SDimitry Andric INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 20958bcb0991SDimitry Andric "Modulo Schedule test pass", false, false) 20968bcb0991SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 20978bcb0991SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 20988bcb0991SDimitry Andric INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 20998bcb0991SDimitry Andric "Modulo Schedule test pass", false, false) 21008bcb0991SDimitry Andric 21018bcb0991SDimitry Andric bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 21028bcb0991SDimitry Andric MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 21038bcb0991SDimitry Andric for (auto *L : MLI) { 21048bcb0991SDimitry Andric if (L->getTopBlock() != L->getBottomBlock()) 21058bcb0991SDimitry Andric continue; 21068bcb0991SDimitry Andric runOnLoop(MF, *L); 21078bcb0991SDimitry Andric return false; 21088bcb0991SDimitry Andric } 21098bcb0991SDimitry Andric return false; 21108bcb0991SDimitry Andric } 21118bcb0991SDimitry Andric 21128bcb0991SDimitry Andric static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 21138bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 21148bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageTokenAndValue = 21158bcb0991SDimitry Andric getToken(StageAndCycle.first, "-"); 21168bcb0991SDimitry Andric std::pair<StringRef, StringRef> CycleTokenAndValue = 21178bcb0991SDimitry Andric getToken(StageAndCycle.second, "-"); 21188bcb0991SDimitry Andric if (StageTokenAndValue.first != "Stage" || 21198bcb0991SDimitry Andric CycleTokenAndValue.first != "_Cycle") { 21208bcb0991SDimitry Andric llvm_unreachable( 21218bcb0991SDimitry Andric "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 21228bcb0991SDimitry Andric return; 21238bcb0991SDimitry Andric } 21248bcb0991SDimitry Andric 21258bcb0991SDimitry Andric StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 21268bcb0991SDimitry Andric CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 21278bcb0991SDimitry Andric 21288bcb0991SDimitry Andric dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 21298bcb0991SDimitry Andric } 21308bcb0991SDimitry Andric 21318bcb0991SDimitry Andric void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 21328bcb0991SDimitry Andric LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 21338bcb0991SDimitry Andric MachineBasicBlock *BB = L.getTopBlock(); 21348bcb0991SDimitry Andric dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 21358bcb0991SDimitry Andric 21368bcb0991SDimitry Andric DenseMap<MachineInstr *, int> Cycle, Stage; 21378bcb0991SDimitry Andric std::vector<MachineInstr *> Instrs; 21388bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 21398bcb0991SDimitry Andric if (MI.isTerminator()) 21408bcb0991SDimitry Andric continue; 21418bcb0991SDimitry Andric Instrs.push_back(&MI); 21428bcb0991SDimitry Andric if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 21438bcb0991SDimitry Andric dbgs() << "Parsing post-instr symbol for " << MI; 21448bcb0991SDimitry Andric parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 21458bcb0991SDimitry Andric } 21468bcb0991SDimitry Andric } 21478bcb0991SDimitry Andric 21488bcb0991SDimitry Andric ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 21498bcb0991SDimitry Andric std::move(Stage)); 21508bcb0991SDimitry Andric ModuloScheduleExpander MSE( 21518bcb0991SDimitry Andric MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 21528bcb0991SDimitry Andric MSE.expand(); 21538bcb0991SDimitry Andric MSE.cleanup(); 21548bcb0991SDimitry Andric } 21558bcb0991SDimitry Andric 21568bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 21578bcb0991SDimitry Andric // ModuloScheduleTestAnnotater implementation 21588bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 21598bcb0991SDimitry Andric 21608bcb0991SDimitry Andric void ModuloScheduleTestAnnotater::annotate() { 21618bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) { 21628bcb0991SDimitry Andric SmallVector<char, 16> SV; 21638bcb0991SDimitry Andric raw_svector_ostream OS(SV); 21648bcb0991SDimitry Andric OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 21658bcb0991SDimitry Andric MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 21668bcb0991SDimitry Andric MI->setPostInstrSymbol(MF, Sym); 21678bcb0991SDimitry Andric } 21688bcb0991SDimitry Andric } 2169