1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PointerIntPair.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachinePostDominators.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/RegisterClassInfo.h" 39 #include "llvm/CodeGen/RegisterPressure.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/BranchProbability.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdint> 56 #include <map> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "machine-sink" 63 64 static cl::opt<bool> 65 SplitEdges("machine-sink-split", 66 cl::desc("Split critical edges during machine sinking"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> 70 UseBlockFreqInfo("machine-sink-bfi", 71 cl::desc("Use block frequency info to find successors to sink"), 72 cl::init(true), cl::Hidden); 73 74 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 75 "machine-sink-split-probability-threshold", 76 cl::desc( 77 "Percentage threshold for splitting single-instruction critical edge. " 78 "If the branch threshold is higher than this threshold, we allow " 79 "speculative execution of up to 1 instruction to avoid branching to " 80 "splitted critical edge"), 81 cl::init(40), cl::Hidden); 82 83 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 84 "machine-sink-load-instrs-threshold", 85 cl::desc("Do not try to find alias store for a load if there is a in-path " 86 "block whose instruction number is higher than this threshold."), 87 cl::init(2000), cl::Hidden); 88 89 static cl::opt<unsigned> SinkLoadBlocksThreshold( 90 "machine-sink-load-blocks-threshold", 91 cl::desc("Do not try to find alias store for a load if the block number in " 92 "the straight line is higher than this threshold."), 93 cl::init(20), cl::Hidden); 94 95 static cl::opt<bool> 96 SinkInstsIntoLoop("sink-insts-to-avoid-spills", 97 cl::desc("Sink instructions into loops to avoid " 98 "register spills"), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<unsigned> SinkIntoLoopLimit( 102 "machine-sink-loop-limit", 103 cl::desc("The maximum number of instructions considered for loop sinking."), 104 cl::init(50), cl::Hidden); 105 106 STATISTIC(NumSunk, "Number of machine instructions sunk"); 107 STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop"); 108 STATISTIC(NumSplit, "Number of critical edges split"); 109 STATISTIC(NumCoalesces, "Number of copies coalesced"); 110 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 111 112 namespace { 113 114 class MachineSinking : public MachineFunctionPass { 115 const TargetInstrInfo *TII; 116 const TargetRegisterInfo *TRI; 117 MachineRegisterInfo *MRI; // Machine register information 118 MachineDominatorTree *DT; // Machine dominator tree 119 MachinePostDominatorTree *PDT; // Machine post dominator tree 120 MachineLoopInfo *LI; 121 MachineBlockFrequencyInfo *MBFI; 122 const MachineBranchProbabilityInfo *MBPI; 123 AliasAnalysis *AA; 124 RegisterClassInfo RegClassInfo; 125 126 // Remember which edges have been considered for breaking. 127 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 128 CEBCandidates; 129 // Remember which edges we are about to split. 130 // This is different from CEBCandidates since those edges 131 // will be split. 132 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 133 134 DenseSet<Register> RegsToClearKillFlags; 135 136 using AllSuccsCache = 137 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 138 139 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 140 /// post-dominated by another DBG_VALUE of the same variable location. 141 /// This is necessary to detect sequences such as: 142 /// %0 = someinst 143 /// DBG_VALUE %0, !123, !DIExpression() 144 /// %1 = anotherinst 145 /// DBG_VALUE %1, !123, !DIExpression() 146 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 147 /// would re-order assignments. 148 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 149 150 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 151 /// debug instructions to sink. 152 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 153 154 /// Record of debug variables that have had their locations set in the 155 /// current block. 156 DenseSet<DebugVariable> SeenDbgVars; 157 158 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 159 HasStoreCache; 160 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 161 std::vector<MachineInstr *>> 162 StoreInstrCache; 163 164 /// Cached BB's register pressure. 165 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 166 167 public: 168 static char ID; // Pass identification 169 170 MachineSinking() : MachineFunctionPass(ID) { 171 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnMachineFunction(MachineFunction &MF) override; 175 176 void getAnalysisUsage(AnalysisUsage &AU) const override { 177 MachineFunctionPass::getAnalysisUsage(AU); 178 AU.addRequired<AAResultsWrapperPass>(); 179 AU.addRequired<MachineDominatorTree>(); 180 AU.addRequired<MachinePostDominatorTree>(); 181 AU.addRequired<MachineLoopInfo>(); 182 AU.addRequired<MachineBranchProbabilityInfo>(); 183 AU.addPreserved<MachineLoopInfo>(); 184 if (UseBlockFreqInfo) 185 AU.addRequired<MachineBlockFrequencyInfo>(); 186 } 187 188 void releaseMemory() override { 189 CEBCandidates.clear(); 190 } 191 192 private: 193 bool ProcessBlock(MachineBasicBlock &MBB); 194 void ProcessDbgInst(MachineInstr &MI); 195 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 196 MachineBasicBlock *From, 197 MachineBasicBlock *To); 198 199 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 200 MachineInstr &MI); 201 202 /// Postpone the splitting of the given critical 203 /// edge (\p From, \p To). 204 /// 205 /// We do not split the edges on the fly. Indeed, this invalidates 206 /// the dominance information and thus triggers a lot of updates 207 /// of that information underneath. 208 /// Instead, we postpone all the splits after each iteration of 209 /// the main loop. That way, the information is at least valid 210 /// for the lifetime of an iteration. 211 /// 212 /// \return True if the edge is marked as toSplit, false otherwise. 213 /// False can be returned if, for instance, this is not profitable. 214 bool PostponeSplitCriticalEdge(MachineInstr &MI, 215 MachineBasicBlock *From, 216 MachineBasicBlock *To, 217 bool BreakPHIEdge); 218 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 219 AllSuccsCache &AllSuccessors); 220 221 /// If we sink a COPY inst, some debug users of it's destination may no 222 /// longer be dominated by the COPY, and will eventually be dropped. 223 /// This is easily rectified by forwarding the non-dominated debug uses 224 /// to the copy source. 225 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 226 MachineBasicBlock *TargetBlock); 227 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 228 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 229 bool &LocalUse) const; 230 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 231 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 232 233 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 234 SmallVectorImpl<MachineInstr *> &Candidates); 235 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I); 236 237 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 238 MachineBasicBlock *MBB, 239 MachineBasicBlock *SuccToSinkTo, 240 AllSuccsCache &AllSuccessors); 241 242 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 243 MachineBasicBlock *MBB); 244 245 SmallVector<MachineBasicBlock *, 4> & 246 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 247 AllSuccsCache &AllSuccessors) const; 248 249 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 250 }; 251 252 } // end anonymous namespace 253 254 char MachineSinking::ID = 0; 255 256 char &llvm::MachineSinkingID = MachineSinking::ID; 257 258 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 259 "Machine code sinking", false, false) 260 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 262 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 264 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 265 "Machine code sinking", false, false) 266 267 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 268 MachineBasicBlock *MBB) { 269 if (!MI.isCopy()) 270 return false; 271 272 Register SrcReg = MI.getOperand(1).getReg(); 273 Register DstReg = MI.getOperand(0).getReg(); 274 if (!Register::isVirtualRegister(SrcReg) || 275 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 276 return false; 277 278 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 279 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 280 if (SRC != DRC) 281 return false; 282 283 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 284 if (DefMI->isCopyLike()) 285 return false; 286 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 287 LLVM_DEBUG(dbgs() << "*** to: " << MI); 288 MRI->replaceRegWith(DstReg, SrcReg); 289 MI.eraseFromParent(); 290 291 // Conservatively, clear any kill flags, since it's possible that they are no 292 // longer correct. 293 MRI->clearKillFlags(SrcReg); 294 295 ++NumCoalesces; 296 return true; 297 } 298 299 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 300 /// occur in blocks dominated by the specified block. If any use is in the 301 /// definition block, then return false since it is never legal to move def 302 /// after uses. 303 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 304 MachineBasicBlock *MBB, 305 MachineBasicBlock *DefMBB, 306 bool &BreakPHIEdge, 307 bool &LocalUse) const { 308 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 309 310 // Ignore debug uses because debug info doesn't affect the code. 311 if (MRI->use_nodbg_empty(Reg)) 312 return true; 313 314 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 315 // into and they are all PHI nodes. In this case, machine-sink must break 316 // the critical edge first. e.g. 317 // 318 // %bb.1: 319 // Predecessors according to CFG: %bb.0 320 // ... 321 // %def = DEC64_32r %x, implicit-def dead %eflags 322 // ... 323 // JE_4 <%bb.37>, implicit %eflags 324 // Successors according to CFG: %bb.37 %bb.2 325 // 326 // %bb.2: 327 // %p = PHI %y, %bb.0, %def, %bb.1 328 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 329 MachineInstr *UseInst = MO.getParent(); 330 unsigned OpNo = UseInst->getOperandNo(&MO); 331 MachineBasicBlock *UseBlock = UseInst->getParent(); 332 return UseBlock == MBB && UseInst->isPHI() && 333 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 334 })) { 335 BreakPHIEdge = true; 336 return true; 337 } 338 339 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 340 // Determine the block of the use. 341 MachineInstr *UseInst = MO.getParent(); 342 unsigned OpNo = &MO - &UseInst->getOperand(0); 343 MachineBasicBlock *UseBlock = UseInst->getParent(); 344 if (UseInst->isPHI()) { 345 // PHI nodes use the operand in the predecessor block, not the block with 346 // the PHI. 347 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 348 } else if (UseBlock == DefMBB) { 349 LocalUse = true; 350 return false; 351 } 352 353 // Check that it dominates. 354 if (!DT->dominates(MBB, UseBlock)) 355 return false; 356 } 357 358 return true; 359 } 360 361 /// Return true if this machine instruction loads from global offset table or 362 /// constant pool. 363 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 364 assert(MI.mayLoad() && "Expected MI that loads!"); 365 366 // If we lost memory operands, conservatively assume that the instruction 367 // reads from everything.. 368 if (MI.memoperands_empty()) 369 return true; 370 371 for (MachineMemOperand *MemOp : MI.memoperands()) 372 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 373 if (PSV->isGOT() || PSV->isConstantPool()) 374 return true; 375 376 return false; 377 } 378 379 void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 380 SmallVectorImpl<MachineInstr *> &Candidates) { 381 for (auto &MI : *BB) { 382 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI); 383 if (!TII->shouldSink(MI)) { 384 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this " 385 "target\n"); 386 continue; 387 } 388 if (!L->isLoopInvariant(MI)) { 389 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n"); 390 continue; 391 } 392 bool DontMoveAcrossStore = true; 393 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 394 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n"); 395 continue; 396 } 397 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 398 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n"); 399 continue; 400 } 401 if (MI.isConvergent()) 402 continue; 403 404 const MachineOperand &MO = MI.getOperand(0); 405 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 406 continue; 407 if (!MRI->hasOneDef(MO.getReg())) 408 continue; 409 410 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n"); 411 Candidates.push_back(&MI); 412 } 413 } 414 415 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 416 if (skipFunction(MF.getFunction())) 417 return false; 418 419 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 420 421 TII = MF.getSubtarget().getInstrInfo(); 422 TRI = MF.getSubtarget().getRegisterInfo(); 423 MRI = &MF.getRegInfo(); 424 DT = &getAnalysis<MachineDominatorTree>(); 425 PDT = &getAnalysis<MachinePostDominatorTree>(); 426 LI = &getAnalysis<MachineLoopInfo>(); 427 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 428 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 429 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 430 RegClassInfo.runOnMachineFunction(MF); 431 432 bool EverMadeChange = false; 433 434 while (true) { 435 bool MadeChange = false; 436 437 // Process all basic blocks. 438 CEBCandidates.clear(); 439 ToSplit.clear(); 440 for (auto &MBB: MF) 441 MadeChange |= ProcessBlock(MBB); 442 443 // If we have anything we marked as toSplit, split it now. 444 for (auto &Pair : ToSplit) { 445 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 446 if (NewSucc != nullptr) { 447 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 448 << printMBBReference(*Pair.first) << " -- " 449 << printMBBReference(*NewSucc) << " -- " 450 << printMBBReference(*Pair.second) << '\n'); 451 if (MBFI) 452 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 453 454 MadeChange = true; 455 ++NumSplit; 456 } else 457 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 458 } 459 // If this iteration over the code changed anything, keep iterating. 460 if (!MadeChange) break; 461 EverMadeChange = true; 462 } 463 464 if (SinkInstsIntoLoop) { 465 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end()); 466 for (auto *L : Loops) { 467 MachineBasicBlock *Preheader = LI->findLoopPreheader(L); 468 if (!Preheader) { 469 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n"); 470 continue; 471 } 472 SmallVector<MachineInstr *, 8> Candidates; 473 FindLoopSinkCandidates(L, Preheader, Candidates); 474 475 // Walk the candidates in reverse order so that we start with the use 476 // of a def-use chain, if there is any. 477 // TODO: Sort the candidates using a cost-model. 478 unsigned i = 0; 479 for (MachineInstr *I : llvm::reverse(Candidates)) { 480 if (i++ == SinkIntoLoopLimit) { 481 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to " 482 "be analysed."); 483 break; 484 } 485 486 if (!SinkIntoLoop(L, *I)) 487 break; 488 EverMadeChange = true; 489 ++NumLoopSunk; 490 } 491 } 492 } 493 494 HasStoreCache.clear(); 495 StoreInstrCache.clear(); 496 497 // Now clear any kill flags for recorded registers. 498 for (auto I : RegsToClearKillFlags) 499 MRI->clearKillFlags(I); 500 RegsToClearKillFlags.clear(); 501 502 return EverMadeChange; 503 } 504 505 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 506 // Can't sink anything out of a block that has less than two successors. 507 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 508 509 // Don't bother sinking code out of unreachable blocks. In addition to being 510 // unprofitable, it can also lead to infinite looping, because in an 511 // unreachable loop there may be nowhere to stop. 512 if (!DT->isReachableFromEntry(&MBB)) return false; 513 514 bool MadeChange = false; 515 516 // Cache all successors, sorted by frequency info and loop depth. 517 AllSuccsCache AllSuccessors; 518 519 // Walk the basic block bottom-up. Remember if we saw a store. 520 MachineBasicBlock::iterator I = MBB.end(); 521 --I; 522 bool ProcessedBegin, SawStore = false; 523 do { 524 MachineInstr &MI = *I; // The instruction to sink. 525 526 // Predecrement I (if it's not begin) so that it isn't invalidated by 527 // sinking. 528 ProcessedBegin = I == MBB.begin(); 529 if (!ProcessedBegin) 530 --I; 531 532 if (MI.isDebugOrPseudoInstr()) { 533 if (MI.isDebugValue()) 534 ProcessDbgInst(MI); 535 continue; 536 } 537 538 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 539 if (Joined) { 540 MadeChange = true; 541 continue; 542 } 543 544 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 545 ++NumSunk; 546 MadeChange = true; 547 } 548 549 // If we just processed the first instruction in the block, we're done. 550 } while (!ProcessedBegin); 551 552 SeenDbgUsers.clear(); 553 SeenDbgVars.clear(); 554 // recalculate the bb register pressure after sinking one BB. 555 CachedRegisterPressure.clear(); 556 557 return MadeChange; 558 } 559 560 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 561 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 562 // we know what to sink if the vreg def sinks. 563 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 564 565 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 566 MI.getDebugLoc()->getInlinedAt()); 567 bool SeenBefore = SeenDbgVars.contains(Var); 568 569 for (MachineOperand &MO : MI.debug_operands()) { 570 if (MO.isReg() && MO.getReg().isVirtual()) 571 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 572 } 573 574 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 575 SeenDbgVars.insert(Var); 576 } 577 578 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 579 MachineBasicBlock *From, 580 MachineBasicBlock *To) { 581 // FIXME: Need much better heuristics. 582 583 // If the pass has already considered breaking this edge (during this pass 584 // through the function), then let's go ahead and break it. This means 585 // sinking multiple "cheap" instructions into the same block. 586 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 587 return true; 588 589 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 590 return true; 591 592 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 593 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 594 return true; 595 596 // MI is cheap, we probably don't want to break the critical edge for it. 597 // However, if this would allow some definitions of its source operands 598 // to be sunk then it's probably worth it. 599 for (const MachineOperand &MO : MI.operands()) { 600 if (!MO.isReg() || !MO.isUse()) 601 continue; 602 Register Reg = MO.getReg(); 603 if (Reg == 0) 604 continue; 605 606 // We don't move live definitions of physical registers, 607 // so sinking their uses won't enable any opportunities. 608 if (Register::isPhysicalRegister(Reg)) 609 continue; 610 611 // If this instruction is the only user of a virtual register, 612 // check if breaking the edge will enable sinking 613 // both this instruction and the defining instruction. 614 if (MRI->hasOneNonDBGUse(Reg)) { 615 // If the definition resides in same MBB, 616 // claim it's likely we can sink these together. 617 // If definition resides elsewhere, we aren't 618 // blocking it from being sunk so don't break the edge. 619 MachineInstr *DefMI = MRI->getVRegDef(Reg); 620 if (DefMI->getParent() == MI.getParent()) 621 return true; 622 } 623 } 624 625 return false; 626 } 627 628 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 629 MachineBasicBlock *FromBB, 630 MachineBasicBlock *ToBB, 631 bool BreakPHIEdge) { 632 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 633 return false; 634 635 // Avoid breaking back edge. From == To means backedge for single BB loop. 636 if (!SplitEdges || FromBB == ToBB) 637 return false; 638 639 // Check for backedges of more "complex" loops. 640 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 641 LI->isLoopHeader(ToBB)) 642 return false; 643 644 // It's not always legal to break critical edges and sink the computation 645 // to the edge. 646 // 647 // %bb.1: 648 // v1024 649 // Beq %bb.3 650 // <fallthrough> 651 // %bb.2: 652 // ... no uses of v1024 653 // <fallthrough> 654 // %bb.3: 655 // ... 656 // = v1024 657 // 658 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 659 // 660 // %bb.1: 661 // ... 662 // Bne %bb.2 663 // %bb.4: 664 // v1024 = 665 // B %bb.3 666 // %bb.2: 667 // ... no uses of v1024 668 // <fallthrough> 669 // %bb.3: 670 // ... 671 // = v1024 672 // 673 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 674 // flow. We need to ensure the new basic block where the computation is 675 // sunk to dominates all the uses. 676 // It's only legal to break critical edge and sink the computation to the 677 // new block if all the predecessors of "To", except for "From", are 678 // not dominated by "From". Given SSA property, this means these 679 // predecessors are dominated by "To". 680 // 681 // There is no need to do this check if all the uses are PHI nodes. PHI 682 // sources are only defined on the specific predecessor edges. 683 if (!BreakPHIEdge) { 684 for (MachineBasicBlock *Pred : ToBB->predecessors()) 685 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 686 return false; 687 } 688 689 ToSplit.insert(std::make_pair(FromBB, ToBB)); 690 691 return true; 692 } 693 694 std::vector<unsigned> & 695 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 696 // Currently to save compiling time, MBB's register pressure will not change 697 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 698 // register pressure is changed after sinking any instructions into it. 699 // FIXME: need a accurate and cheap register pressure estiminate model here. 700 auto RP = CachedRegisterPressure.find(&MBB); 701 if (RP != CachedRegisterPressure.end()) 702 return RP->second; 703 704 RegionPressure Pressure; 705 RegPressureTracker RPTracker(Pressure); 706 707 // Initialize the register pressure tracker. 708 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 709 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 710 711 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 712 MIE = MBB.instr_begin(); 713 MII != MIE; --MII) { 714 MachineInstr &MI = *std::prev(MII); 715 if (MI.isDebugInstr() || MI.isPseudoProbe()) 716 continue; 717 RegisterOperands RegOpers; 718 RegOpers.collect(MI, *TRI, *MRI, false, false); 719 RPTracker.recedeSkipDebugValues(); 720 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 721 RPTracker.recede(RegOpers); 722 } 723 724 RPTracker.closeRegion(); 725 auto It = CachedRegisterPressure.insert( 726 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 727 return It.first->second; 728 } 729 730 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 731 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 732 MachineBasicBlock *MBB, 733 MachineBasicBlock *SuccToSinkTo, 734 AllSuccsCache &AllSuccessors) { 735 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 736 737 if (MBB == SuccToSinkTo) 738 return false; 739 740 // It is profitable if SuccToSinkTo does not post dominate current block. 741 if (!PDT->dominates(SuccToSinkTo, MBB)) 742 return true; 743 744 // It is profitable to sink an instruction from a deeper loop to a shallower 745 // loop, even if the latter post-dominates the former (PR21115). 746 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 747 return true; 748 749 // Check if only use in post dominated block is PHI instruction. 750 bool NonPHIUse = false; 751 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 752 MachineBasicBlock *UseBlock = UseInst.getParent(); 753 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 754 NonPHIUse = true; 755 } 756 if (!NonPHIUse) 757 return true; 758 759 // If SuccToSinkTo post dominates then also it may be profitable if MI 760 // can further profitably sinked into another block in next round. 761 bool BreakPHIEdge = false; 762 // FIXME - If finding successor is compile time expensive then cache results. 763 if (MachineBasicBlock *MBB2 = 764 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 765 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 766 767 MachineLoop *ML = LI->getLoopFor(MBB); 768 769 // If the instruction is not inside a loop, it is not profitable to sink MI to 770 // a post dominate block SuccToSinkTo. 771 if (!ML) 772 return false; 773 774 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 775 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 776 const int *PS = TRI->getRegClassPressureSets(RC); 777 // Get register pressure for block SuccToSinkTo. 778 std::vector<unsigned> BBRegisterPressure = 779 getBBRegisterPressure(*SuccToSinkTo); 780 for (; *PS != -1; PS++) 781 // check if any register pressure set exceeds limit in block SuccToSinkTo 782 // after sinking. 783 if (Weight + BBRegisterPressure[*PS] >= 784 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 785 return true; 786 return false; 787 }; 788 789 // If this instruction is inside a loop and sinking this instruction can make 790 // more registers live range shorten, it is still prifitable. 791 for (const MachineOperand &MO : MI.operands()) { 792 // Ignore non-register operands. 793 if (!MO.isReg()) 794 continue; 795 Register Reg = MO.getReg(); 796 if (Reg == 0) 797 continue; 798 799 // Don't handle physical register. 800 if (Register::isPhysicalRegister(Reg)) 801 return false; 802 803 // Users for the defs are all dominated by SuccToSinkTo. 804 if (MO.isDef()) { 805 // This def register's live range is shortened after sinking. 806 bool LocalUse = false; 807 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 808 LocalUse)) 809 return false; 810 } else { 811 MachineInstr *DefMI = MRI->getVRegDef(Reg); 812 // DefMI is defined outside of loop. There should be no live range 813 // impact for this operand. Defination outside of loop means: 814 // 1: defination is outside of loop. 815 // 2: defination is in this loop, but it is a PHI in the loop header. 816 if (LI->getLoopFor(DefMI->getParent()) != ML || 817 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 818 continue; 819 // The DefMI is defined inside the loop. 820 // If sinking this operand makes some register pressure set exceed limit, 821 // it is not profitable. 822 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 823 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 824 return false; 825 } 826 } 827 } 828 829 // If MI is in loop and all its operands are alive across the whole loop or if 830 // no operand sinking make register pressure set exceed limit, it is 831 // profitable to sink MI. 832 return true; 833 } 834 835 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 836 /// computing it if it was not already cached. 837 SmallVector<MachineBasicBlock *, 4> & 838 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 839 AllSuccsCache &AllSuccessors) const { 840 // Do we have the sorted successors in cache ? 841 auto Succs = AllSuccessors.find(MBB); 842 if (Succs != AllSuccessors.end()) 843 return Succs->second; 844 845 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 846 847 // Handle cases where sinking can happen but where the sink point isn't a 848 // successor. For example: 849 // 850 // x = computation 851 // if () {} else {} 852 // use x 853 // 854 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 855 // DomTree children of MBB that have MBB as immediate dominator are added. 856 if (DTChild->getIDom()->getBlock() == MI.getParent() && 857 // Skip MBBs already added to the AllSuccs vector above. 858 !MBB->isSuccessor(DTChild->getBlock())) 859 AllSuccs.push_back(DTChild->getBlock()); 860 } 861 862 // Sort Successors according to their loop depth or block frequency info. 863 llvm::stable_sort( 864 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 865 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 866 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 867 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 868 return HasBlockFreq ? LHSFreq < RHSFreq 869 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 870 }); 871 872 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 873 874 return it.first->second; 875 } 876 877 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 878 MachineBasicBlock * 879 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 880 bool &BreakPHIEdge, 881 AllSuccsCache &AllSuccessors) { 882 assert (MBB && "Invalid MachineBasicBlock!"); 883 884 // Loop over all the operands of the specified instruction. If there is 885 // anything we can't handle, bail out. 886 887 // SuccToSinkTo - This is the successor to sink this instruction to, once we 888 // decide. 889 MachineBasicBlock *SuccToSinkTo = nullptr; 890 for (const MachineOperand &MO : MI.operands()) { 891 if (!MO.isReg()) continue; // Ignore non-register operands. 892 893 Register Reg = MO.getReg(); 894 if (Reg == 0) continue; 895 896 if (Register::isPhysicalRegister(Reg)) { 897 if (MO.isUse()) { 898 // If the physreg has no defs anywhere, it's just an ambient register 899 // and we can freely move its uses. Alternatively, if it's allocatable, 900 // it could get allocated to something with a def during allocation. 901 if (!MRI->isConstantPhysReg(Reg)) 902 return nullptr; 903 } else if (!MO.isDead()) { 904 // A def that isn't dead. We can't move it. 905 return nullptr; 906 } 907 } else { 908 // Virtual register uses are always safe to sink. 909 if (MO.isUse()) continue; 910 911 // If it's not safe to move defs of the register class, then abort. 912 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 913 return nullptr; 914 915 // Virtual register defs can only be sunk if all their uses are in blocks 916 // dominated by one of the successors. 917 if (SuccToSinkTo) { 918 // If a previous operand picked a block to sink to, then this operand 919 // must be sinkable to the same block. 920 bool LocalUse = false; 921 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 922 BreakPHIEdge, LocalUse)) 923 return nullptr; 924 925 continue; 926 } 927 928 // Otherwise, we should look at all the successors and decide which one 929 // we should sink to. If we have reliable block frequency information 930 // (frequency != 0) available, give successors with smaller frequencies 931 // higher priority, otherwise prioritize smaller loop depths. 932 for (MachineBasicBlock *SuccBlock : 933 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 934 bool LocalUse = false; 935 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 936 BreakPHIEdge, LocalUse)) { 937 SuccToSinkTo = SuccBlock; 938 break; 939 } 940 if (LocalUse) 941 // Def is used locally, it's never safe to move this def. 942 return nullptr; 943 } 944 945 // If we couldn't find a block to sink to, ignore this instruction. 946 if (!SuccToSinkTo) 947 return nullptr; 948 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 949 return nullptr; 950 } 951 } 952 953 // It is not possible to sink an instruction into its own block. This can 954 // happen with loops. 955 if (MBB == SuccToSinkTo) 956 return nullptr; 957 958 // It's not safe to sink instructions to EH landing pad. Control flow into 959 // landing pad is implicitly defined. 960 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 961 return nullptr; 962 963 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 964 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 965 // the source block (which this code does not yet do). So for now, forbid 966 // doing so. 967 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 968 return nullptr; 969 970 return SuccToSinkTo; 971 } 972 973 /// Return true if MI is likely to be usable as a memory operation by the 974 /// implicit null check optimization. 975 /// 976 /// This is a "best effort" heuristic, and should not be relied upon for 977 /// correctness. This returning true does not guarantee that the implicit null 978 /// check optimization is legal over MI, and this returning false does not 979 /// guarantee MI cannot possibly be used to do a null check. 980 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 981 const TargetInstrInfo *TII, 982 const TargetRegisterInfo *TRI) { 983 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 984 985 auto *MBB = MI.getParent(); 986 if (MBB->pred_size() != 1) 987 return false; 988 989 auto *PredMBB = *MBB->pred_begin(); 990 auto *PredBB = PredMBB->getBasicBlock(); 991 992 // Frontends that don't use implicit null checks have no reason to emit 993 // branches with make.implicit metadata, and this function should always 994 // return false for them. 995 if (!PredBB || 996 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 997 return false; 998 999 const MachineOperand *BaseOp; 1000 int64_t Offset; 1001 bool OffsetIsScalable; 1002 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1003 return false; 1004 1005 if (!BaseOp->isReg()) 1006 return false; 1007 1008 if (!(MI.mayLoad() && !MI.isPredicable())) 1009 return false; 1010 1011 MachineBranchPredicate MBP; 1012 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1013 return false; 1014 1015 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1016 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1017 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1018 MBP.LHS.getReg() == BaseOp->getReg(); 1019 } 1020 1021 /// If the sunk instruction is a copy, try to forward the copy instead of 1022 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1023 /// there's any subregister weirdness involved. Returns true if copy 1024 /// propagation occurred. 1025 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1026 Register Reg) { 1027 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1028 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1029 1030 // Copy DBG_VALUE operand and set the original to undef. We then check to 1031 // see whether this is something that can be copy-forwarded. If it isn't, 1032 // continue around the loop. 1033 1034 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1035 auto CopyOperands = TII.isCopyInstr(SinkInst); 1036 if (!CopyOperands) 1037 return false; 1038 SrcMO = CopyOperands->Source; 1039 DstMO = CopyOperands->Destination; 1040 1041 // Check validity of forwarding this copy. 1042 bool PostRA = MRI.getNumVirtRegs() == 0; 1043 1044 // Trying to forward between physical and virtual registers is too hard. 1045 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1046 return false; 1047 1048 // Only try virtual register copy-forwarding before regalloc, and physical 1049 // register copy-forwarding after regalloc. 1050 bool arePhysRegs = !Reg.isVirtual(); 1051 if (arePhysRegs != PostRA) 1052 return false; 1053 1054 // Pre-regalloc, only forward if all subregisters agree (or there are no 1055 // subregs at all). More analysis might recover some forwardable copies. 1056 if (!PostRA) 1057 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1058 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1059 DbgMO.getSubReg() != DstMO->getSubReg()) 1060 return false; 1061 1062 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1063 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1064 // matches the copy destination. 1065 if (PostRA && Reg != DstMO->getReg()) 1066 return false; 1067 1068 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1069 DbgMO.setReg(SrcMO->getReg()); 1070 DbgMO.setSubReg(SrcMO->getSubReg()); 1071 } 1072 return true; 1073 } 1074 1075 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1076 /// Sink an instruction and its associated debug instructions. 1077 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1078 MachineBasicBlock::iterator InsertPos, 1079 SmallVectorImpl<MIRegs> &DbgValuesToSink) { 1080 1081 // If we cannot find a location to use (merge with), then we erase the debug 1082 // location to prevent debug-info driven tools from potentially reporting 1083 // wrong location information. 1084 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1085 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1086 InsertPos->getDebugLoc())); 1087 else 1088 MI.setDebugLoc(DebugLoc()); 1089 1090 // Move the instruction. 1091 MachineBasicBlock *ParentBlock = MI.getParent(); 1092 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1093 ++MachineBasicBlock::iterator(MI)); 1094 1095 // Sink a copy of debug users to the insert position. Mark the original 1096 // DBG_VALUE location as 'undef', indicating that any earlier variable 1097 // location should be terminated as we've optimised away the value at this 1098 // point. 1099 for (auto DbgValueToSink : DbgValuesToSink) { 1100 MachineInstr *DbgMI = DbgValueToSink.first; 1101 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1102 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1103 1104 bool PropagatedAllSunkOps = true; 1105 for (unsigned Reg : DbgValueToSink.second) { 1106 if (DbgMI->hasDebugOperandForReg(Reg)) { 1107 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1108 PropagatedAllSunkOps = false; 1109 break; 1110 } 1111 } 1112 } 1113 if (!PropagatedAllSunkOps) 1114 DbgMI->setDebugValueUndef(); 1115 } 1116 } 1117 1118 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1119 /// and To. 1120 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1121 MachineBasicBlock *To, MachineInstr &MI) { 1122 // Make sure From and To are in straight line which means From dominates To 1123 // and To post dominates From. 1124 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1125 return true; 1126 1127 auto BlockPair = std::make_pair(From, To); 1128 1129 // Does these two blocks pair be queried before and have a definite cached 1130 // result? 1131 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1132 return HasStoreCache[BlockPair]; 1133 1134 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1135 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1136 return I->mayAlias(AA, MI, false); 1137 }); 1138 1139 bool SawStore = false; 1140 bool HasAliasedStore = false; 1141 DenseSet<MachineBasicBlock *> HandledBlocks; 1142 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1143 // Go through all reachable blocks from From. 1144 for (MachineBasicBlock *BB : depth_first(From)) { 1145 // We insert the instruction at the start of block To, so no need to worry 1146 // about stores inside To. 1147 // Store in block From should be already considered when just enter function 1148 // SinkInstruction. 1149 if (BB == To || BB == From) 1150 continue; 1151 1152 // We already handle this BB in previous iteration. 1153 if (HandledBlocks.count(BB)) 1154 continue; 1155 1156 HandledBlocks.insert(BB); 1157 // To post dominates BB, it must be a path from block From. 1158 if (PDT->dominates(To, BB)) { 1159 if (!HandledDomBlocks.count(BB)) 1160 HandledDomBlocks.insert(BB); 1161 1162 // If this BB is too big or the block number in straight line between From 1163 // and To is too big, stop searching to save compiling time. 1164 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1165 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1166 for (auto *DomBB : HandledDomBlocks) { 1167 if (DomBB != BB && DT->dominates(DomBB, BB)) 1168 HasStoreCache[std::make_pair(DomBB, To)] = true; 1169 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1170 HasStoreCache[std::make_pair(From, DomBB)] = true; 1171 } 1172 HasStoreCache[BlockPair] = true; 1173 return true; 1174 } 1175 1176 for (MachineInstr &I : *BB) { 1177 // Treat as alias conservatively for a call or an ordered memory 1178 // operation. 1179 if (I.isCall() || I.hasOrderedMemoryRef()) { 1180 for (auto *DomBB : HandledDomBlocks) { 1181 if (DomBB != BB && DT->dominates(DomBB, BB)) 1182 HasStoreCache[std::make_pair(DomBB, To)] = true; 1183 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1184 HasStoreCache[std::make_pair(From, DomBB)] = true; 1185 } 1186 HasStoreCache[BlockPair] = true; 1187 return true; 1188 } 1189 1190 if (I.mayStore()) { 1191 SawStore = true; 1192 // We still have chance to sink MI if all stores between are not 1193 // aliased to MI. 1194 // Cache all store instructions, so that we don't need to go through 1195 // all From reachable blocks for next load instruction. 1196 if (I.mayAlias(AA, MI, false)) 1197 HasAliasedStore = true; 1198 StoreInstrCache[BlockPair].push_back(&I); 1199 } 1200 } 1201 } 1202 } 1203 // If there is no store at all, cache the result. 1204 if (!SawStore) 1205 HasStoreCache[BlockPair] = false; 1206 return HasAliasedStore; 1207 } 1208 1209 /// Sink instructions into loops if profitable. This especially tries to prevent 1210 /// register spills caused by register pressure if there is little to no 1211 /// overhead moving instructions into loops. 1212 bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) { 1213 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I); 1214 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1215 assert(Preheader && "Loop sink needs a preheader block"); 1216 MachineBasicBlock *SinkBlock = nullptr; 1217 bool CanSink = true; 1218 const MachineOperand &MO = I.getOperand(0); 1219 1220 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1221 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI); 1222 if (!L->contains(&MI)) { 1223 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n"); 1224 CanSink = false; 1225 break; 1226 } 1227 1228 // FIXME: Come up with a proper cost model that estimates whether sinking 1229 // the instruction (and thus possibly executing it on every loop 1230 // iteration) is more expensive than a register. 1231 // For now assumes that copies are cheap and thus almost always worth it. 1232 if (!MI.isCopy()) { 1233 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n"); 1234 CanSink = false; 1235 break; 1236 } 1237 if (!SinkBlock) { 1238 SinkBlock = MI.getParent(); 1239 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: " 1240 << printMBBReference(*SinkBlock) << "\n"); 1241 continue; 1242 } 1243 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1244 if (!SinkBlock) { 1245 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n"); 1246 CanSink = false; 1247 break; 1248 } 1249 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " << 1250 printMBBReference(*SinkBlock) << "\n"); 1251 } 1252 1253 if (!CanSink) { 1254 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n"); 1255 return false; 1256 } 1257 if (!SinkBlock) { 1258 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n"); 1259 return false; 1260 } 1261 if (SinkBlock == Preheader) { 1262 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n"); 1263 return false; 1264 } 1265 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) { 1266 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n"); 1267 return false; 1268 } 1269 1270 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n"); 1271 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I); 1272 1273 // The instruction is moved from its basic block, so do not retain the 1274 // debug information. 1275 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1276 I.setDebugLoc(DebugLoc()); 1277 return true; 1278 } 1279 1280 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1281 /// instruction out of its current block into a successor. 1282 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1283 AllSuccsCache &AllSuccessors) { 1284 // Don't sink instructions that the target prefers not to sink. 1285 if (!TII->shouldSink(MI)) 1286 return false; 1287 1288 // Check if it's safe to move the instruction. 1289 if (!MI.isSafeToMove(AA, SawStore)) 1290 return false; 1291 1292 // Convergent operations may not be made control-dependent on additional 1293 // values. 1294 if (MI.isConvergent()) 1295 return false; 1296 1297 // Don't break implicit null checks. This is a performance heuristic, and not 1298 // required for correctness. 1299 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1300 return false; 1301 1302 // FIXME: This should include support for sinking instructions within the 1303 // block they are currently in to shorten the live ranges. We often get 1304 // instructions sunk into the top of a large block, but it would be better to 1305 // also sink them down before their first use in the block. This xform has to 1306 // be careful not to *increase* register pressure though, e.g. sinking 1307 // "x = y + z" down if it kills y and z would increase the live ranges of y 1308 // and z and only shrink the live range of x. 1309 1310 bool BreakPHIEdge = false; 1311 MachineBasicBlock *ParentBlock = MI.getParent(); 1312 MachineBasicBlock *SuccToSinkTo = 1313 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1314 1315 // If there are no outputs, it must have side-effects. 1316 if (!SuccToSinkTo) 1317 return false; 1318 1319 // If the instruction to move defines a dead physical register which is live 1320 // when leaving the basic block, don't move it because it could turn into a 1321 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1322 for (const MachineOperand &MO : MI.operands()) { 1323 if (!MO.isReg() || MO.isUse()) 1324 continue; 1325 Register Reg = MO.getReg(); 1326 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1327 continue; 1328 if (SuccToSinkTo->isLiveIn(Reg)) 1329 return false; 1330 } 1331 1332 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1333 1334 // If the block has multiple predecessors, this is a critical edge. 1335 // Decide if we can sink along it or need to break the edge. 1336 if (SuccToSinkTo->pred_size() > 1) { 1337 // We cannot sink a load across a critical edge - there may be stores in 1338 // other code paths. 1339 bool TryBreak = false; 1340 bool Store = 1341 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1342 if (!MI.isSafeToMove(AA, Store)) { 1343 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1344 TryBreak = true; 1345 } 1346 1347 // We don't want to sink across a critical edge if we don't dominate the 1348 // successor. We could be introducing calculations to new code paths. 1349 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1350 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1351 TryBreak = true; 1352 } 1353 1354 // Don't sink instructions into a loop. 1355 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1356 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1357 TryBreak = true; 1358 } 1359 1360 // Otherwise we are OK with sinking along a critical edge. 1361 if (!TryBreak) 1362 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1363 else { 1364 // Mark this edge as to be split. 1365 // If the edge can actually be split, the next iteration of the main loop 1366 // will sink MI in the newly created block. 1367 bool Status = 1368 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1369 if (!Status) 1370 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1371 "break critical edge\n"); 1372 // The instruction will not be sunk this time. 1373 return false; 1374 } 1375 } 1376 1377 if (BreakPHIEdge) { 1378 // BreakPHIEdge is true if all the uses are in the successor MBB being 1379 // sunken into and they are all PHI nodes. In this case, machine-sink must 1380 // break the critical edge first. 1381 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1382 SuccToSinkTo, BreakPHIEdge); 1383 if (!Status) 1384 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1385 "break critical edge\n"); 1386 // The instruction will not be sunk this time. 1387 return false; 1388 } 1389 1390 // Determine where to insert into. Skip phi nodes. 1391 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1392 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1393 ++InsertPos; 1394 1395 // Collect debug users of any vreg that this inst defines. 1396 SmallVector<MIRegs, 4> DbgUsersToSink; 1397 for (auto &MO : MI.operands()) { 1398 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1399 continue; 1400 if (!SeenDbgUsers.count(MO.getReg())) 1401 continue; 1402 1403 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1404 auto &Users = SeenDbgUsers[MO.getReg()]; 1405 for (auto &User : Users) { 1406 MachineInstr *DbgMI = User.getPointer(); 1407 if (User.getInt()) { 1408 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1409 // it, it can't be recovered. Set it undef. 1410 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1411 DbgMI->setDebugValueUndef(); 1412 } else { 1413 DbgUsersToSink.push_back( 1414 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1415 } 1416 } 1417 } 1418 1419 // After sinking, some debug users may not be dominated any more. If possible, 1420 // copy-propagate their operands. As it's expensive, don't do this if there's 1421 // no debuginfo in the program. 1422 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1423 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1424 1425 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1426 1427 // Conservatively, clear any kill flags, since it's possible that they are no 1428 // longer correct. 1429 // Note that we have to clear the kill flags for any register this instruction 1430 // uses as we may sink over another instruction which currently kills the 1431 // used registers. 1432 for (MachineOperand &MO : MI.operands()) { 1433 if (MO.isReg() && MO.isUse()) 1434 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1435 } 1436 1437 return true; 1438 } 1439 1440 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1441 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1442 assert(MI.isCopy()); 1443 assert(MI.getOperand(1).isReg()); 1444 1445 // Enumerate all users of vreg operands that are def'd. Skip those that will 1446 // be sunk. For the rest, if they are not dominated by the block we will sink 1447 // MI into, propagate the copy source to them. 1448 SmallVector<MachineInstr *, 4> DbgDefUsers; 1449 SmallVector<Register, 4> DbgUseRegs; 1450 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1451 for (auto &MO : MI.operands()) { 1452 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1453 continue; 1454 DbgUseRegs.push_back(MO.getReg()); 1455 for (auto &User : MRI.use_instructions(MO.getReg())) { 1456 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1457 continue; 1458 1459 // If is in same block, will either sink or be use-before-def. 1460 if (User.getParent() == MI.getParent()) 1461 continue; 1462 1463 assert(User.hasDebugOperandForReg(MO.getReg()) && 1464 "DBG_VALUE user of vreg, but has no operand for it?"); 1465 DbgDefUsers.push_back(&User); 1466 } 1467 } 1468 1469 // Point the users of this copy that are no longer dominated, at the source 1470 // of the copy. 1471 for (auto *User : DbgDefUsers) { 1472 for (auto &Reg : DbgUseRegs) { 1473 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1474 DbgOp.setReg(MI.getOperand(1).getReg()); 1475 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1476 } 1477 } 1478 } 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // This pass is not intended to be a replacement or a complete alternative 1483 // for the pre-ra machine sink pass. It is only designed to sink COPY 1484 // instructions which should be handled after RA. 1485 // 1486 // This pass sinks COPY instructions into a successor block, if the COPY is not 1487 // used in the current block and the COPY is live-in to a single successor 1488 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1489 // copy on paths where their results aren't needed. This also exposes 1490 // additional opportunites for dead copy elimination and shrink wrapping. 1491 // 1492 // These copies were either not handled by or are inserted after the MachineSink 1493 // pass. As an example of the former case, the MachineSink pass cannot sink 1494 // COPY instructions with allocatable source registers; for AArch64 these type 1495 // of copy instructions are frequently used to move function parameters (PhyReg) 1496 // into virtual registers in the entry block. 1497 // 1498 // For the machine IR below, this pass will sink %w19 in the entry into its 1499 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1500 // %bb.0: 1501 // %wzr = SUBSWri %w1, 1 1502 // %w19 = COPY %w0 1503 // Bcc 11, %bb.2 1504 // %bb.1: 1505 // Live Ins: %w19 1506 // BL @fun 1507 // %w0 = ADDWrr %w0, %w19 1508 // RET %w0 1509 // %bb.2: 1510 // %w0 = COPY %wzr 1511 // RET %w0 1512 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1513 // able to see %bb.0 as a candidate. 1514 //===----------------------------------------------------------------------===// 1515 namespace { 1516 1517 class PostRAMachineSinking : public MachineFunctionPass { 1518 public: 1519 bool runOnMachineFunction(MachineFunction &MF) override; 1520 1521 static char ID; 1522 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1523 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1524 1525 void getAnalysisUsage(AnalysisUsage &AU) const override { 1526 AU.setPreservesCFG(); 1527 MachineFunctionPass::getAnalysisUsage(AU); 1528 } 1529 1530 MachineFunctionProperties getRequiredProperties() const override { 1531 return MachineFunctionProperties().set( 1532 MachineFunctionProperties::Property::NoVRegs); 1533 } 1534 1535 private: 1536 /// Track which register units have been modified and used. 1537 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1538 1539 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1540 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1541 /// consists of a pointer to the instruction itself, and a vector of registers 1542 /// referred to by the instruction that overlap the key register unit. 1543 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1544 1545 /// Sink Copy instructions unused in the same block close to their uses in 1546 /// successors. 1547 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1548 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1549 }; 1550 } // namespace 1551 1552 char PostRAMachineSinking::ID = 0; 1553 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1554 1555 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1556 "PostRA Machine Sink", false, false) 1557 1558 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1559 const TargetRegisterInfo *TRI) { 1560 LiveRegUnits LiveInRegUnits(*TRI); 1561 LiveInRegUnits.addLiveIns(MBB); 1562 return !LiveInRegUnits.available(Reg); 1563 } 1564 1565 static MachineBasicBlock * 1566 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1567 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1568 unsigned Reg, const TargetRegisterInfo *TRI) { 1569 // Try to find a single sinkable successor in which Reg is live-in. 1570 MachineBasicBlock *BB = nullptr; 1571 for (auto *SI : SinkableBBs) { 1572 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1573 // If BB is set here, Reg is live-in to at least two sinkable successors, 1574 // so quit. 1575 if (BB) 1576 return nullptr; 1577 BB = SI; 1578 } 1579 } 1580 // Reg is not live-in to any sinkable successors. 1581 if (!BB) 1582 return nullptr; 1583 1584 // Check if any register aliased with Reg is live-in in other successors. 1585 for (auto *SI : CurBB.successors()) { 1586 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1587 return nullptr; 1588 } 1589 return BB; 1590 } 1591 1592 static MachineBasicBlock * 1593 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1594 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1595 ArrayRef<unsigned> DefedRegsInCopy, 1596 const TargetRegisterInfo *TRI) { 1597 MachineBasicBlock *SingleBB = nullptr; 1598 for (auto DefReg : DefedRegsInCopy) { 1599 MachineBasicBlock *BB = 1600 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1601 if (!BB || (SingleBB && SingleBB != BB)) 1602 return nullptr; 1603 SingleBB = BB; 1604 } 1605 return SingleBB; 1606 } 1607 1608 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1609 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1610 LiveRegUnits &UsedRegUnits, 1611 const TargetRegisterInfo *TRI) { 1612 for (auto U : UsedOpsInCopy) { 1613 MachineOperand &MO = MI->getOperand(U); 1614 Register SrcReg = MO.getReg(); 1615 if (!UsedRegUnits.available(SrcReg)) { 1616 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1617 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1618 if (UI.killsRegister(SrcReg, TRI)) { 1619 UI.clearRegisterKills(SrcReg, TRI); 1620 MO.setIsKill(true); 1621 break; 1622 } 1623 } 1624 } 1625 } 1626 } 1627 1628 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1629 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1630 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1631 MachineFunction &MF = *SuccBB->getParent(); 1632 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1633 for (unsigned DefReg : DefedRegsInCopy) 1634 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1635 SuccBB->removeLiveIn(*S); 1636 for (auto U : UsedOpsInCopy) { 1637 Register SrcReg = MI->getOperand(U).getReg(); 1638 LaneBitmask Mask; 1639 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1640 Mask |= (*S).second; 1641 } 1642 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1643 } 1644 SuccBB->sortUniqueLiveIns(); 1645 } 1646 1647 static bool hasRegisterDependency(MachineInstr *MI, 1648 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1649 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1650 LiveRegUnits &ModifiedRegUnits, 1651 LiveRegUnits &UsedRegUnits) { 1652 bool HasRegDependency = false; 1653 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1654 MachineOperand &MO = MI->getOperand(i); 1655 if (!MO.isReg()) 1656 continue; 1657 Register Reg = MO.getReg(); 1658 if (!Reg) 1659 continue; 1660 if (MO.isDef()) { 1661 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1662 HasRegDependency = true; 1663 break; 1664 } 1665 DefedRegsInCopy.push_back(Reg); 1666 1667 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1668 // For example, we can ignore modifications in reg with undef. However, 1669 // it's not perfectly clear if skipping the internal read is safe in all 1670 // other targets. 1671 } else if (MO.isUse()) { 1672 if (!ModifiedRegUnits.available(Reg)) { 1673 HasRegDependency = true; 1674 break; 1675 } 1676 UsedOpsInCopy.push_back(i); 1677 } 1678 } 1679 return HasRegDependency; 1680 } 1681 1682 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1683 const TargetRegisterInfo *TRI) { 1684 SmallSet<MCRegister, 4> RegUnits; 1685 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1686 RegUnits.insert(*RI); 1687 return RegUnits; 1688 } 1689 1690 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1691 MachineFunction &MF, 1692 const TargetRegisterInfo *TRI, 1693 const TargetInstrInfo *TII) { 1694 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1695 // FIXME: For now, we sink only to a successor which has a single predecessor 1696 // so that we can directly sink COPY instructions to the successor without 1697 // adding any new block or branch instruction. 1698 for (MachineBasicBlock *SI : CurBB.successors()) 1699 if (!SI->livein_empty() && SI->pred_size() == 1) 1700 SinkableBBs.insert(SI); 1701 1702 if (SinkableBBs.empty()) 1703 return false; 1704 1705 bool Changed = false; 1706 1707 // Track which registers have been modified and used between the end of the 1708 // block and the current instruction. 1709 ModifiedRegUnits.clear(); 1710 UsedRegUnits.clear(); 1711 SeenDbgInstrs.clear(); 1712 1713 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 1714 // Track the operand index for use in Copy. 1715 SmallVector<unsigned, 2> UsedOpsInCopy; 1716 // Track the register number defed in Copy. 1717 SmallVector<unsigned, 2> DefedRegsInCopy; 1718 1719 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1720 // for DBG_VALUEs later, record them when they're encountered. 1721 if (MI.isDebugValue()) { 1722 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 1723 bool IsValid = true; 1724 for (MachineOperand &MO : MI.debug_operands()) { 1725 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1726 // Bail if we can already tell the sink would be rejected, rather 1727 // than needlessly accumulating lots of DBG_VALUEs. 1728 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1729 ModifiedRegUnits, UsedRegUnits)) { 1730 IsValid = false; 1731 break; 1732 } 1733 1734 // Record debug use of each reg unit. 1735 SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI); 1736 for (MCRegister Reg : RegUnits) 1737 MIUnits[Reg].push_back(MO.getReg()); 1738 } 1739 } 1740 if (IsValid) { 1741 for (auto RegOps : MIUnits) 1742 SeenDbgInstrs[RegOps.first].push_back({&MI, RegOps.second}); 1743 } 1744 continue; 1745 } 1746 1747 if (MI.isDebugOrPseudoInstr()) 1748 continue; 1749 1750 // Do not move any instruction across function call. 1751 if (MI.isCall()) 1752 return false; 1753 1754 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 1755 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1756 TRI); 1757 continue; 1758 } 1759 1760 // Don't sink the COPY if it would violate a register dependency. 1761 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 1762 ModifiedRegUnits, UsedRegUnits)) { 1763 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1764 TRI); 1765 continue; 1766 } 1767 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1768 "Unexpect SrcReg or DefReg"); 1769 MachineBasicBlock *SuccBB = 1770 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1771 // Don't sink if we cannot find a single sinkable successor in which Reg 1772 // is live-in. 1773 if (!SuccBB) { 1774 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1775 TRI); 1776 continue; 1777 } 1778 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1779 "Unexpected predecessor"); 1780 1781 // Collect DBG_VALUEs that must sink with this copy. We've previously 1782 // recorded which reg units that DBG_VALUEs read, if this instruction 1783 // writes any of those units then the corresponding DBG_VALUEs must sink. 1784 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 1785 for (auto &MO : MI.operands()) { 1786 if (!MO.isReg() || !MO.isDef()) 1787 continue; 1788 1789 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1790 for (MCRegister Reg : Units) { 1791 for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) { 1792 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 1793 for (unsigned Reg : MIRegs.second) 1794 Regs.push_back(Reg); 1795 } 1796 } 1797 } 1798 SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(), 1799 DbgValsToSinkMap.end()); 1800 1801 // Clear the kill flag if SrcReg is killed between MI and the end of the 1802 // block. 1803 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1804 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1805 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 1806 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1807 1808 Changed = true; 1809 ++NumPostRACopySink; 1810 } 1811 return Changed; 1812 } 1813 1814 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1815 if (skipFunction(MF.getFunction())) 1816 return false; 1817 1818 bool Changed = false; 1819 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1820 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1821 1822 ModifiedRegUnits.init(*TRI); 1823 UsedRegUnits.init(*TRI); 1824 for (auto &BB : MF) 1825 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1826 1827 return Changed; 1828 } 1829