10b57cec5SDimitry Andric //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric // This SMS implementation is a target-independent back-end pass. When enabled, 120b57cec5SDimitry Andric // the pass runs just prior to the register allocation pass, while the machine 130b57cec5SDimitry Andric // IR is in SSA form. If software pipelining is successful, then the original 140b57cec5SDimitry Andric // loop is replaced by the optimized loop. The optimized loop contains one or 150b57cec5SDimitry Andric // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 160b57cec5SDimitry Andric // the instructions cannot be scheduled in a given MII, we increase the MII by 170b57cec5SDimitry Andric // one and try again. 180b57cec5SDimitry Andric // 190b57cec5SDimitry Andric // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 200b57cec5SDimitry Andric // represent loop carried dependences in the DAG as order edges to the Phi 210b57cec5SDimitry Andric // nodes. We also perform several passes over the DAG to eliminate unnecessary 220b57cec5SDimitry Andric // edges that inhibit the ability to pipeline. The implementation uses the 230b57cec5SDimitry Andric // DFAPacketizer class to compute the minimum initiation interval and the check 240b57cec5SDimitry Andric // where an instruction may be inserted in the pipelined schedule. 250b57cec5SDimitry Andric // 260b57cec5SDimitry Andric // In order for the SMS pass to work, several target specific hooks need to be 270b57cec5SDimitry Andric // implemented to get information about the loop structure and to rewrite 280b57cec5SDimitry Andric // instructions. 290b57cec5SDimitry Andric // 300b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 310b57cec5SDimitry Andric 3281ad6265SDimitry Andric #include "llvm/CodeGen/MachinePipeliner.h" 330b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 340b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h" 350b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 360b57cec5SDimitry Andric #include "llvm/ADT/MapVector.h" 370b57cec5SDimitry Andric #include "llvm/ADT/PriorityQueue.h" 387a6dacacSDimitry Andric #include "llvm/ADT/STLExtras.h" 39fe6060f1SDimitry Andric #include "llvm/ADT/SetOperations.h" 400b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h" 410b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 420b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h" 430b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 440b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 450b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h" 460b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h" 47bdd1243dSDimitry Andric #include "llvm/Analysis/CycleAnalysis.h" 480b57cec5SDimitry Andric #include "llvm/Analysis/MemoryLocation.h" 4981ad6265SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 500b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 510b57cec5SDimitry Andric #include "llvm/CodeGen/DFAPacketizer.h" 520b57cec5SDimitry Andric #include "llvm/CodeGen/LiveIntervals.h" 530b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h" 540b57cec5SDimitry Andric #include "llvm/CodeGen/MachineDominators.h" 550b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h" 560b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h" 570b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h" 580b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 590b57cec5SDimitry Andric #include "llvm/CodeGen/MachineLoopInfo.h" 600b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h" 610b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h" 620b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 638bcb0991SDimitry Andric #include "llvm/CodeGen/ModuloSchedule.h" 647a6dacacSDimitry Andric #include "llvm/CodeGen/Register.h" 657a6dacacSDimitry Andric #include "llvm/CodeGen/RegisterClassInfo.h" 660b57cec5SDimitry Andric #include "llvm/CodeGen/RegisterPressure.h" 670b57cec5SDimitry Andric #include "llvm/CodeGen/ScheduleDAG.h" 680b57cec5SDimitry Andric #include "llvm/CodeGen/ScheduleDAGMutation.h" 697a6dacacSDimitry Andric #include "llvm/CodeGen/TargetInstrInfo.h" 700b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h" 710fca6ea1SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 720b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h" 730b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h" 740b57cec5SDimitry Andric #include "llvm/Config/llvm-config.h" 750b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 760b57cec5SDimitry Andric #include "llvm/IR/Function.h" 770b57cec5SDimitry Andric #include "llvm/MC/LaneBitmask.h" 780b57cec5SDimitry Andric #include "llvm/MC/MCInstrDesc.h" 790b57cec5SDimitry Andric #include "llvm/MC/MCInstrItineraries.h" 800b57cec5SDimitry Andric #include "llvm/MC/MCRegisterInfo.h" 810b57cec5SDimitry Andric #include "llvm/Pass.h" 820b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 830b57cec5SDimitry Andric #include "llvm/Support/Compiler.h" 840b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 850b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 860b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 870b57cec5SDimitry Andric #include <algorithm> 880b57cec5SDimitry Andric #include <cassert> 890b57cec5SDimitry Andric #include <climits> 900b57cec5SDimitry Andric #include <cstdint> 910b57cec5SDimitry Andric #include <deque> 920b57cec5SDimitry Andric #include <functional> 93bdd1243dSDimitry Andric #include <iomanip> 940b57cec5SDimitry Andric #include <iterator> 950b57cec5SDimitry Andric #include <map> 960b57cec5SDimitry Andric #include <memory> 97bdd1243dSDimitry Andric #include <sstream> 980b57cec5SDimitry Andric #include <tuple> 990b57cec5SDimitry Andric #include <utility> 1000b57cec5SDimitry Andric #include <vector> 1010b57cec5SDimitry Andric 1020b57cec5SDimitry Andric using namespace llvm; 1030b57cec5SDimitry Andric 1040b57cec5SDimitry Andric #define DEBUG_TYPE "pipeliner" 1050b57cec5SDimitry Andric 1060b57cec5SDimitry Andric STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 1070b57cec5SDimitry Andric STATISTIC(NumPipelined, "Number of loops software pipelined"); 1080b57cec5SDimitry Andric STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); 1090b57cec5SDimitry Andric STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); 1100b57cec5SDimitry Andric STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); 1110b57cec5SDimitry Andric STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); 1120b57cec5SDimitry Andric STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); 1130b57cec5SDimitry Andric STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); 1140b57cec5SDimitry Andric STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); 1150b57cec5SDimitry Andric STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); 1160b57cec5SDimitry Andric STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); 1170b57cec5SDimitry Andric 1180b57cec5SDimitry Andric /// A command line option to turn software pipelining on or off. 1190b57cec5SDimitry Andric static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 1200b57cec5SDimitry Andric cl::desc("Enable Software Pipelining")); 1210b57cec5SDimitry Andric 1220b57cec5SDimitry Andric /// A command line option to enable SWP at -Os. 1230b57cec5SDimitry Andric static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 1240b57cec5SDimitry Andric cl::desc("Enable SWP at Os."), cl::Hidden, 1250b57cec5SDimitry Andric cl::init(false)); 1260b57cec5SDimitry Andric 1270b57cec5SDimitry Andric /// A command line argument to limit minimum initial interval for pipelining. 1280b57cec5SDimitry Andric static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 1290b57cec5SDimitry Andric cl::desc("Size limit for the MII."), 1300b57cec5SDimitry Andric cl::Hidden, cl::init(27)); 1310b57cec5SDimitry Andric 132bdd1243dSDimitry Andric /// A command line argument to force pipeliner to use specified initial 133bdd1243dSDimitry Andric /// interval. 134bdd1243dSDimitry Andric static cl::opt<int> SwpForceII("pipeliner-force-ii", 135bdd1243dSDimitry Andric cl::desc("Force pipeliner to use specified II."), 136bdd1243dSDimitry Andric cl::Hidden, cl::init(-1)); 137bdd1243dSDimitry Andric 1380b57cec5SDimitry Andric /// A command line argument to limit the number of stages in the pipeline. 1390b57cec5SDimitry Andric static cl::opt<int> 1400b57cec5SDimitry Andric SwpMaxStages("pipeliner-max-stages", 1410b57cec5SDimitry Andric cl::desc("Maximum stages allowed in the generated scheduled."), 1420b57cec5SDimitry Andric cl::Hidden, cl::init(3)); 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric /// A command line option to disable the pruning of chain dependences due to 1450b57cec5SDimitry Andric /// an unrelated Phi. 1460b57cec5SDimitry Andric static cl::opt<bool> 1470b57cec5SDimitry Andric SwpPruneDeps("pipeliner-prune-deps", 1480b57cec5SDimitry Andric cl::desc("Prune dependences between unrelated Phi nodes."), 1490b57cec5SDimitry Andric cl::Hidden, cl::init(true)); 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric /// A command line option to disable the pruning of loop carried order 1520b57cec5SDimitry Andric /// dependences. 1530b57cec5SDimitry Andric static cl::opt<bool> 1540b57cec5SDimitry Andric SwpPruneLoopCarried("pipeliner-prune-loop-carried", 1550b57cec5SDimitry Andric cl::desc("Prune loop carried order dependences."), 1560b57cec5SDimitry Andric cl::Hidden, cl::init(true)); 1570b57cec5SDimitry Andric 1580b57cec5SDimitry Andric #ifndef NDEBUG 1590b57cec5SDimitry Andric static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 1600b57cec5SDimitry Andric #endif 1610b57cec5SDimitry Andric 1620b57cec5SDimitry Andric static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 16381ad6265SDimitry Andric cl::ReallyHidden, 16481ad6265SDimitry Andric cl::desc("Ignore RecMII")); 1650b57cec5SDimitry Andric 1660b57cec5SDimitry Andric static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, 1670b57cec5SDimitry Andric cl::init(false)); 1680b57cec5SDimitry Andric static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, 1690b57cec5SDimitry Andric cl::init(false)); 1700b57cec5SDimitry Andric 1718bcb0991SDimitry Andric static cl::opt<bool> EmitTestAnnotations( 1728bcb0991SDimitry Andric "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), 1738bcb0991SDimitry Andric cl::desc("Instead of emitting the pipelined code, annotate instructions " 1748bcb0991SDimitry Andric "with the generated schedule for feeding into the " 1758bcb0991SDimitry Andric "-modulo-schedule-test pass")); 1768bcb0991SDimitry Andric 1778bcb0991SDimitry Andric static cl::opt<bool> ExperimentalCodeGen( 1788bcb0991SDimitry Andric "pipeliner-experimental-cg", cl::Hidden, cl::init(false), 1798bcb0991SDimitry Andric cl::desc( 1808bcb0991SDimitry Andric "Use the experimental peeling code generator for software pipelining")); 1818bcb0991SDimitry Andric 1827a6dacacSDimitry Andric static cl::opt<int> SwpIISearchRange("pipeliner-ii-search-range", 1837a6dacacSDimitry Andric cl::desc("Range to search for II"), 1847a6dacacSDimitry Andric cl::Hidden, cl::init(10)); 1857a6dacacSDimitry Andric 1867a6dacacSDimitry Andric static cl::opt<bool> 1877a6dacacSDimitry Andric LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), 1887a6dacacSDimitry Andric cl::desc("Limit register pressure of scheduled loop")); 1897a6dacacSDimitry Andric 1907a6dacacSDimitry Andric static cl::opt<int> 1917a6dacacSDimitry Andric RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, 1927a6dacacSDimitry Andric cl::init(5), 1937a6dacacSDimitry Andric cl::desc("Margin representing the unused percentage of " 1947a6dacacSDimitry Andric "the register pressure limit")); 1957a6dacacSDimitry Andric 1960fca6ea1SDimitry Andric static cl::opt<bool> 1970fca6ea1SDimitry Andric MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), 1980fca6ea1SDimitry Andric cl::desc("Use the MVE code generator for software pipelining")); 1990fca6ea1SDimitry Andric 2000b57cec5SDimitry Andric namespace llvm { 2010b57cec5SDimitry Andric 2020b57cec5SDimitry Andric // A command line option to enable the CopyToPhi DAG mutation. 20381ad6265SDimitry Andric cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, 20481ad6265SDimitry Andric cl::init(true), 2050b57cec5SDimitry Andric cl::desc("Enable CopyToPhi DAG Mutation")); 2060b57cec5SDimitry Andric 207bdd1243dSDimitry Andric /// A command line argument to force pipeliner to use specified issue 208bdd1243dSDimitry Andric /// width. 209bdd1243dSDimitry Andric cl::opt<int> SwpForceIssueWidth( 210bdd1243dSDimitry Andric "pipeliner-force-issue-width", 211bdd1243dSDimitry Andric cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, 212bdd1243dSDimitry Andric cl::init(-1)); 213bdd1243dSDimitry Andric 2140fca6ea1SDimitry Andric /// A command line argument to set the window scheduling option. 2150fca6ea1SDimitry Andric cl::opt<WindowSchedulingFlag> WindowSchedulingOption( 2160fca6ea1SDimitry Andric "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), 2170fca6ea1SDimitry Andric cl::desc("Set how to use window scheduling algorithm."), 2180fca6ea1SDimitry Andric cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", 2190fca6ea1SDimitry Andric "Turn off window algorithm."), 2200fca6ea1SDimitry Andric clEnumValN(WindowSchedulingFlag::WS_On, "on", 2210fca6ea1SDimitry Andric "Use window algorithm after SMS algorithm fails."), 2220fca6ea1SDimitry Andric clEnumValN(WindowSchedulingFlag::WS_Force, "force", 2230fca6ea1SDimitry Andric "Use window algorithm instead of SMS algorithm."))); 2240fca6ea1SDimitry Andric 2250b57cec5SDimitry Andric } // end namespace llvm 2260b57cec5SDimitry Andric 2270b57cec5SDimitry Andric unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 2280b57cec5SDimitry Andric char MachinePipeliner::ID = 0; 2290b57cec5SDimitry Andric #ifndef NDEBUG 2300b57cec5SDimitry Andric int MachinePipeliner::NumTries = 0; 2310b57cec5SDimitry Andric #endif 2320b57cec5SDimitry Andric char &llvm::MachinePipelinerID = MachinePipeliner::ID; 2330b57cec5SDimitry Andric 2340b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, 2350b57cec5SDimitry Andric "Modulo Software Pipelining", false, false) 2360b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2370fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 2380fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 2390fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 2400b57cec5SDimitry Andric INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, 2410b57cec5SDimitry Andric "Modulo Software Pipelining", false, false) 2420b57cec5SDimitry Andric 2430b57cec5SDimitry Andric /// The "main" function for implementing Swing Modulo Scheduling. 2440b57cec5SDimitry Andric bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 2450b57cec5SDimitry Andric if (skipFunction(mf.getFunction())) 2460b57cec5SDimitry Andric return false; 2470b57cec5SDimitry Andric 2480b57cec5SDimitry Andric if (!EnableSWP) 2490b57cec5SDimitry Andric return false; 2500b57cec5SDimitry Andric 251349cc55cSDimitry Andric if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && 2520b57cec5SDimitry Andric !EnableSWPOptSize.getPosition()) 2530b57cec5SDimitry Andric return false; 2540b57cec5SDimitry Andric 2550b57cec5SDimitry Andric if (!mf.getSubtarget().enableMachinePipeliner()) 2560b57cec5SDimitry Andric return false; 2570b57cec5SDimitry Andric 2580b57cec5SDimitry Andric // Cannot pipeline loops without instruction itineraries if we are using 2590b57cec5SDimitry Andric // DFA for the pipeliner. 2600b57cec5SDimitry Andric if (mf.getSubtarget().useDFAforSMS() && 2610b57cec5SDimitry Andric (!mf.getSubtarget().getInstrItineraryData() || 2620b57cec5SDimitry Andric mf.getSubtarget().getInstrItineraryData()->isEmpty())) 2630b57cec5SDimitry Andric return false; 2640b57cec5SDimitry Andric 2650b57cec5SDimitry Andric MF = &mf; 2660fca6ea1SDimitry Andric MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 2670fca6ea1SDimitry Andric MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 2685ffd83dbSDimitry Andric ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2690b57cec5SDimitry Andric TII = MF->getSubtarget().getInstrInfo(); 2700b57cec5SDimitry Andric RegClassInfo.runOnMachineFunction(*MF); 2710b57cec5SDimitry Andric 272fcaf7f86SDimitry Andric for (const auto &L : *MLI) 2730b57cec5SDimitry Andric scheduleLoop(*L); 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric return false; 2760b57cec5SDimitry Andric } 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric /// Attempt to perform the SMS algorithm on the specified loop. This function is 2790b57cec5SDimitry Andric /// the main entry point for the algorithm. The function identifies candidate 2800b57cec5SDimitry Andric /// loops, calculates the minimum initiation interval, and attempts to schedule 2810b57cec5SDimitry Andric /// the loop. 2820b57cec5SDimitry Andric bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 2830b57cec5SDimitry Andric bool Changed = false; 284fcaf7f86SDimitry Andric for (const auto &InnerLoop : L) 2850b57cec5SDimitry Andric Changed |= scheduleLoop(*InnerLoop); 2860b57cec5SDimitry Andric 2870b57cec5SDimitry Andric #ifndef NDEBUG 2880b57cec5SDimitry Andric // Stop trying after reaching the limit (if any). 2890b57cec5SDimitry Andric int Limit = SwpLoopLimit; 2900b57cec5SDimitry Andric if (Limit >= 0) { 2910b57cec5SDimitry Andric if (NumTries >= SwpLoopLimit) 2920b57cec5SDimitry Andric return Changed; 2930b57cec5SDimitry Andric NumTries++; 2940b57cec5SDimitry Andric } 2950b57cec5SDimitry Andric #endif 2960b57cec5SDimitry Andric 2970b57cec5SDimitry Andric setPragmaPipelineOptions(L); 2980b57cec5SDimitry Andric if (!canPipelineLoop(L)) { 2990b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); 3005ffd83dbSDimitry Andric ORE->emit([&]() { 3015ffd83dbSDimitry Andric return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", 3025ffd83dbSDimitry Andric L.getStartLoc(), L.getHeader()) 3035ffd83dbSDimitry Andric << "Failed to pipeline loop"; 3045ffd83dbSDimitry Andric }); 3055ffd83dbSDimitry Andric 30681ad6265SDimitry Andric LI.LoopPipelinerInfo.reset(); 3070b57cec5SDimitry Andric return Changed; 3080b57cec5SDimitry Andric } 3090b57cec5SDimitry Andric 3100b57cec5SDimitry Andric ++NumTrytoPipeline; 3110fca6ea1SDimitry Andric if (useSwingModuloScheduler()) 3120b57cec5SDimitry Andric Changed = swingModuloScheduler(L); 3130b57cec5SDimitry Andric 3140fca6ea1SDimitry Andric if (useWindowScheduler(Changed)) 3150fca6ea1SDimitry Andric Changed = runWindowScheduler(L); 3160fca6ea1SDimitry Andric 31781ad6265SDimitry Andric LI.LoopPipelinerInfo.reset(); 3180b57cec5SDimitry Andric return Changed; 3190b57cec5SDimitry Andric } 3200b57cec5SDimitry Andric 3210b57cec5SDimitry Andric void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { 3225ffd83dbSDimitry Andric // Reset the pragma for the next loop in iteration. 3235ffd83dbSDimitry Andric disabledByPragma = false; 324e8d8bef9SDimitry Andric II_setByPragma = 0; 3255ffd83dbSDimitry Andric 3260b57cec5SDimitry Andric MachineBasicBlock *LBLK = L.getTopBlock(); 3270b57cec5SDimitry Andric 3280b57cec5SDimitry Andric if (LBLK == nullptr) 3290b57cec5SDimitry Andric return; 3300b57cec5SDimitry Andric 3310b57cec5SDimitry Andric const BasicBlock *BBLK = LBLK->getBasicBlock(); 3320b57cec5SDimitry Andric if (BBLK == nullptr) 3330b57cec5SDimitry Andric return; 3340b57cec5SDimitry Andric 3350b57cec5SDimitry Andric const Instruction *TI = BBLK->getTerminator(); 3360b57cec5SDimitry Andric if (TI == nullptr) 3370b57cec5SDimitry Andric return; 3380b57cec5SDimitry Andric 3390b57cec5SDimitry Andric MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); 3400b57cec5SDimitry Andric if (LoopID == nullptr) 3410b57cec5SDimitry Andric return; 3420b57cec5SDimitry Andric 3430b57cec5SDimitry Andric assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); 3440b57cec5SDimitry Andric assert(LoopID->getOperand(0) == LoopID && "invalid loop"); 3450b57cec5SDimitry Andric 3460fca6ea1SDimitry Andric for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 3470fca6ea1SDimitry Andric MDNode *MD = dyn_cast<MDNode>(MDO); 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric if (MD == nullptr) 3500b57cec5SDimitry Andric continue; 3510b57cec5SDimitry Andric 3520b57cec5SDimitry Andric MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 3530b57cec5SDimitry Andric 3540b57cec5SDimitry Andric if (S == nullptr) 3550b57cec5SDimitry Andric continue; 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric if (S->getString() == "llvm.loop.pipeline.initiationinterval") { 3580b57cec5SDimitry Andric assert(MD->getNumOperands() == 2 && 3590b57cec5SDimitry Andric "Pipeline initiation interval hint metadata should have two operands."); 3600b57cec5SDimitry Andric II_setByPragma = 3610b57cec5SDimitry Andric mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 3620b57cec5SDimitry Andric assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); 3630b57cec5SDimitry Andric } else if (S->getString() == "llvm.loop.pipeline.disable") { 3640b57cec5SDimitry Andric disabledByPragma = true; 3650b57cec5SDimitry Andric } 3660b57cec5SDimitry Andric } 3670b57cec5SDimitry Andric } 3680b57cec5SDimitry Andric 3690b57cec5SDimitry Andric /// Return true if the loop can be software pipelined. The algorithm is 3700b57cec5SDimitry Andric /// restricted to loops with a single basic block. Make sure that the 3710b57cec5SDimitry Andric /// branch in the loop can be analyzed. 3720b57cec5SDimitry Andric bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 3735ffd83dbSDimitry Andric if (L.getNumBlocks() != 1) { 3745ffd83dbSDimitry Andric ORE->emit([&]() { 3755ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 3765ffd83dbSDimitry Andric L.getStartLoc(), L.getHeader()) 3775ffd83dbSDimitry Andric << "Not a single basic block: " 3785ffd83dbSDimitry Andric << ore::NV("NumBlocks", L.getNumBlocks()); 3795ffd83dbSDimitry Andric }); 3800b57cec5SDimitry Andric return false; 3815ffd83dbSDimitry Andric } 3820b57cec5SDimitry Andric 3835ffd83dbSDimitry Andric if (disabledByPragma) { 3845ffd83dbSDimitry Andric ORE->emit([&]() { 3855ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 3865ffd83dbSDimitry Andric L.getStartLoc(), L.getHeader()) 3875ffd83dbSDimitry Andric << "Disabled by Pragma."; 3885ffd83dbSDimitry Andric }); 3890b57cec5SDimitry Andric return false; 3905ffd83dbSDimitry Andric } 3910b57cec5SDimitry Andric 3920b57cec5SDimitry Andric // Check if the branch can't be understood because we can't do pipelining 3930b57cec5SDimitry Andric // if that's the case. 3940b57cec5SDimitry Andric LI.TBB = nullptr; 3950b57cec5SDimitry Andric LI.FBB = nullptr; 3960b57cec5SDimitry Andric LI.BrCond.clear(); 3970b57cec5SDimitry Andric if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { 3985ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); 3990b57cec5SDimitry Andric NumFailBranch++; 4005ffd83dbSDimitry Andric ORE->emit([&]() { 4015ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 4025ffd83dbSDimitry Andric L.getStartLoc(), L.getHeader()) 4035ffd83dbSDimitry Andric << "The branch can't be understood"; 4045ffd83dbSDimitry Andric }); 4050b57cec5SDimitry Andric return false; 4060b57cec5SDimitry Andric } 4070b57cec5SDimitry Andric 4080b57cec5SDimitry Andric LI.LoopInductionVar = nullptr; 4090b57cec5SDimitry Andric LI.LoopCompare = nullptr; 41081ad6265SDimitry Andric LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); 41181ad6265SDimitry Andric if (!LI.LoopPipelinerInfo) { 4125ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); 4130b57cec5SDimitry Andric NumFailLoop++; 4145ffd83dbSDimitry Andric ORE->emit([&]() { 4155ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 4165ffd83dbSDimitry Andric L.getStartLoc(), L.getHeader()) 4175ffd83dbSDimitry Andric << "The loop structure is not supported"; 4185ffd83dbSDimitry Andric }); 4190b57cec5SDimitry Andric return false; 4200b57cec5SDimitry Andric } 4210b57cec5SDimitry Andric 4220b57cec5SDimitry Andric if (!L.getLoopPreheader()) { 4235ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); 4240b57cec5SDimitry Andric NumFailPreheader++; 4255ffd83dbSDimitry Andric ORE->emit([&]() { 4265ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", 4275ffd83dbSDimitry Andric L.getStartLoc(), L.getHeader()) 4285ffd83dbSDimitry Andric << "No loop preheader found"; 4295ffd83dbSDimitry Andric }); 4300b57cec5SDimitry Andric return false; 4310b57cec5SDimitry Andric } 4320b57cec5SDimitry Andric 4330b57cec5SDimitry Andric // Remove any subregisters from inputs to phi nodes. 4340b57cec5SDimitry Andric preprocessPhiNodes(*L.getHeader()); 4350b57cec5SDimitry Andric return true; 4360b57cec5SDimitry Andric } 4370b57cec5SDimitry Andric 4380b57cec5SDimitry Andric void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { 4390b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF->getRegInfo(); 4400fca6ea1SDimitry Andric SlotIndexes &Slots = 4410fca6ea1SDimitry Andric *getAnalysis<LiveIntervalsWrapperPass>().getLIS().getSlotIndexes(); 4420b57cec5SDimitry Andric 443349cc55cSDimitry Andric for (MachineInstr &PI : B.phis()) { 4440b57cec5SDimitry Andric MachineOperand &DefOp = PI.getOperand(0); 4450b57cec5SDimitry Andric assert(DefOp.getSubReg() == 0); 4460b57cec5SDimitry Andric auto *RC = MRI.getRegClass(DefOp.getReg()); 4470b57cec5SDimitry Andric 4480b57cec5SDimitry Andric for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { 4490b57cec5SDimitry Andric MachineOperand &RegOp = PI.getOperand(i); 4500b57cec5SDimitry Andric if (RegOp.getSubReg() == 0) 4510b57cec5SDimitry Andric continue; 4520b57cec5SDimitry Andric 4530b57cec5SDimitry Andric // If the operand uses a subregister, replace it with a new register 4540b57cec5SDimitry Andric // without subregisters, and generate a copy to the new register. 4558bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 4560b57cec5SDimitry Andric MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); 4570b57cec5SDimitry Andric MachineBasicBlock::iterator At = PredB.getFirstTerminator(); 4580b57cec5SDimitry Andric const DebugLoc &DL = PredB.findDebugLoc(At); 4590b57cec5SDimitry Andric auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) 4600b57cec5SDimitry Andric .addReg(RegOp.getReg(), getRegState(RegOp), 4610b57cec5SDimitry Andric RegOp.getSubReg()); 4620b57cec5SDimitry Andric Slots.insertMachineInstrInMaps(*Copy); 4630b57cec5SDimitry Andric RegOp.setReg(NewReg); 4640b57cec5SDimitry Andric RegOp.setSubReg(0); 4650b57cec5SDimitry Andric } 4660b57cec5SDimitry Andric } 4670b57cec5SDimitry Andric } 4680b57cec5SDimitry Andric 4690b57cec5SDimitry Andric /// The SMS algorithm consists of the following main steps: 4700b57cec5SDimitry Andric /// 1. Computation and analysis of the dependence graph. 4710b57cec5SDimitry Andric /// 2. Ordering of the nodes (instructions). 4720b57cec5SDimitry Andric /// 3. Attempt to Schedule the loop. 4730b57cec5SDimitry Andric bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 4740b57cec5SDimitry Andric assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 4750b57cec5SDimitry Andric 4760fca6ea1SDimitry Andric SwingSchedulerDAG SMS( 4770fca6ea1SDimitry Andric *this, L, getAnalysis<LiveIntervalsWrapperPass>().getLIS(), RegClassInfo, 47881ad6265SDimitry Andric II_setByPragma, LI.LoopPipelinerInfo.get()); 4790b57cec5SDimitry Andric 4800b57cec5SDimitry Andric MachineBasicBlock *MBB = L.getHeader(); 4810b57cec5SDimitry Andric // The kernel should not include any terminator instructions. These 4820b57cec5SDimitry Andric // will be added back later. 4830b57cec5SDimitry Andric SMS.startBlock(MBB); 4840b57cec5SDimitry Andric 4850b57cec5SDimitry Andric // Compute the number of 'real' instructions in the basic block by 4860b57cec5SDimitry Andric // ignoring terminators. 4870b57cec5SDimitry Andric unsigned size = MBB->size(); 4880b57cec5SDimitry Andric for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 4890b57cec5SDimitry Andric E = MBB->instr_end(); 4900b57cec5SDimitry Andric I != E; ++I, --size) 4910b57cec5SDimitry Andric ; 4920b57cec5SDimitry Andric 4930b57cec5SDimitry Andric SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 4940b57cec5SDimitry Andric SMS.schedule(); 4950b57cec5SDimitry Andric SMS.exitRegion(); 4960b57cec5SDimitry Andric 4970b57cec5SDimitry Andric SMS.finishBlock(); 4980b57cec5SDimitry Andric return SMS.hasNewSchedule(); 4990b57cec5SDimitry Andric } 5000b57cec5SDimitry Andric 501e8d8bef9SDimitry Andric void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { 502e8d8bef9SDimitry Andric AU.addRequired<AAResultsWrapperPass>(); 503e8d8bef9SDimitry Andric AU.addPreserved<AAResultsWrapperPass>(); 5040fca6ea1SDimitry Andric AU.addRequired<MachineLoopInfoWrapperPass>(); 5050fca6ea1SDimitry Andric AU.addRequired<MachineDominatorTreeWrapperPass>(); 5060fca6ea1SDimitry Andric AU.addRequired<LiveIntervalsWrapperPass>(); 507e8d8bef9SDimitry Andric AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 5080fca6ea1SDimitry Andric AU.addRequired<TargetPassConfig>(); 509e8d8bef9SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU); 510e8d8bef9SDimitry Andric } 511e8d8bef9SDimitry Andric 5120fca6ea1SDimitry Andric bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { 5130fca6ea1SDimitry Andric MachineSchedContext Context; 5140fca6ea1SDimitry Andric Context.MF = MF; 5150fca6ea1SDimitry Andric Context.MLI = MLI; 5160fca6ea1SDimitry Andric Context.MDT = MDT; 5170fca6ea1SDimitry Andric Context.PassConfig = &getAnalysis<TargetPassConfig>(); 5180fca6ea1SDimitry Andric Context.AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5190fca6ea1SDimitry Andric Context.LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 5200fca6ea1SDimitry Andric Context.RegClassInfo->runOnMachineFunction(*MF); 5210fca6ea1SDimitry Andric WindowScheduler WS(&Context, L); 5220fca6ea1SDimitry Andric return WS.run(); 5230fca6ea1SDimitry Andric } 5240fca6ea1SDimitry Andric 5250fca6ea1SDimitry Andric bool MachinePipeliner::useSwingModuloScheduler() { 5260fca6ea1SDimitry Andric // SwingModuloScheduler does not work when WindowScheduler is forced. 5270fca6ea1SDimitry Andric return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; 5280fca6ea1SDimitry Andric } 5290fca6ea1SDimitry Andric 5300fca6ea1SDimitry Andric bool MachinePipeliner::useWindowScheduler(bool Changed) { 531*6c4b055cSDimitry Andric // WindowScheduler does not work for following cases: 532*6c4b055cSDimitry Andric // 1. when it is off. 533*6c4b055cSDimitry Andric // 2. when SwingModuloScheduler is successfully scheduled. 534*6c4b055cSDimitry Andric // 3. when pragma II is enabled. 535*6c4b055cSDimitry Andric if (II_setByPragma) { 536*6c4b055cSDimitry Andric LLVM_DEBUG(dbgs() << "Window scheduling is disabled when " 537*6c4b055cSDimitry Andric "llvm.loop.pipeline.initiationinterval is set.\n"); 538*6c4b055cSDimitry Andric return false; 539*6c4b055cSDimitry Andric } 540*6c4b055cSDimitry Andric 5410fca6ea1SDimitry Andric return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || 5420fca6ea1SDimitry Andric (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); 5430fca6ea1SDimitry Andric } 5440fca6ea1SDimitry Andric 5450b57cec5SDimitry Andric void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { 546bdd1243dSDimitry Andric if (SwpForceII > 0) 547bdd1243dSDimitry Andric MII = SwpForceII; 548bdd1243dSDimitry Andric else if (II_setByPragma > 0) 5490b57cec5SDimitry Andric MII = II_setByPragma; 5500b57cec5SDimitry Andric else 5510b57cec5SDimitry Andric MII = std::max(ResMII, RecMII); 5520b57cec5SDimitry Andric } 5530b57cec5SDimitry Andric 5540b57cec5SDimitry Andric void SwingSchedulerDAG::setMAX_II() { 555bdd1243dSDimitry Andric if (SwpForceII > 0) 556bdd1243dSDimitry Andric MAX_II = SwpForceII; 557bdd1243dSDimitry Andric else if (II_setByPragma > 0) 5580b57cec5SDimitry Andric MAX_II = II_setByPragma; 5590b57cec5SDimitry Andric else 5607a6dacacSDimitry Andric MAX_II = MII + SwpIISearchRange; 5610b57cec5SDimitry Andric } 5620b57cec5SDimitry Andric 5630b57cec5SDimitry Andric /// We override the schedule function in ScheduleDAGInstrs to implement the 5640b57cec5SDimitry Andric /// scheduling part of the Swing Modulo Scheduling algorithm. 5650b57cec5SDimitry Andric void SwingSchedulerDAG::schedule() { 5660b57cec5SDimitry Andric AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 5670b57cec5SDimitry Andric buildSchedGraph(AA); 5680b57cec5SDimitry Andric addLoopCarriedDependences(AA); 5690b57cec5SDimitry Andric updatePhiDependences(); 5700b57cec5SDimitry Andric Topo.InitDAGTopologicalSorting(); 5710b57cec5SDimitry Andric changeDependences(); 57206c3fb27SDimitry Andric postProcessDAG(); 5730b57cec5SDimitry Andric LLVM_DEBUG(dump()); 5740b57cec5SDimitry Andric 5750b57cec5SDimitry Andric NodeSetType NodeSets; 5760b57cec5SDimitry Andric findCircuits(NodeSets); 5770b57cec5SDimitry Andric NodeSetType Circuits = NodeSets; 5780b57cec5SDimitry Andric 5790b57cec5SDimitry Andric // Calculate the MII. 5800b57cec5SDimitry Andric unsigned ResMII = calculateResMII(); 5810b57cec5SDimitry Andric unsigned RecMII = calculateRecMII(NodeSets); 5820b57cec5SDimitry Andric 5830b57cec5SDimitry Andric fuseRecs(NodeSets); 5840b57cec5SDimitry Andric 5850b57cec5SDimitry Andric // This flag is used for testing and can cause correctness problems. 5860b57cec5SDimitry Andric if (SwpIgnoreRecMII) 5870b57cec5SDimitry Andric RecMII = 0; 5880b57cec5SDimitry Andric 5890b57cec5SDimitry Andric setMII(ResMII, RecMII); 5900b57cec5SDimitry Andric setMAX_II(); 5910b57cec5SDimitry Andric 5920b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II 5930b57cec5SDimitry Andric << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); 5940b57cec5SDimitry Andric 5950b57cec5SDimitry Andric // Can't schedule a loop without a valid MII. 5960b57cec5SDimitry Andric if (MII == 0) { 5975ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); 5980b57cec5SDimitry Andric NumFailZeroMII++; 5995ffd83dbSDimitry Andric Pass.ORE->emit([&]() { 6005ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis( 6015ffd83dbSDimitry Andric DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 6025ffd83dbSDimitry Andric << "Invalid Minimal Initiation Interval: 0"; 6035ffd83dbSDimitry Andric }); 6040b57cec5SDimitry Andric return; 6050b57cec5SDimitry Andric } 6060b57cec5SDimitry Andric 6070b57cec5SDimitry Andric // Don't pipeline large loops. 6080b57cec5SDimitry Andric if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { 6090b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii 61081ad6265SDimitry Andric << ", we don't pipeline large loops\n"); 6110b57cec5SDimitry Andric NumFailLargeMaxMII++; 6125ffd83dbSDimitry Andric Pass.ORE->emit([&]() { 6135ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis( 6145ffd83dbSDimitry Andric DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 6155ffd83dbSDimitry Andric << "Minimal Initiation Interval too large: " 6165ffd83dbSDimitry Andric << ore::NV("MII", (int)MII) << " > " 6175ffd83dbSDimitry Andric << ore::NV("SwpMaxMii", SwpMaxMii) << "." 6185ffd83dbSDimitry Andric << "Refer to -pipeliner-max-mii."; 6195ffd83dbSDimitry Andric }); 6200b57cec5SDimitry Andric return; 6210b57cec5SDimitry Andric } 6220b57cec5SDimitry Andric 6230b57cec5SDimitry Andric computeNodeFunctions(NodeSets); 6240b57cec5SDimitry Andric 6250b57cec5SDimitry Andric registerPressureFilter(NodeSets); 6260b57cec5SDimitry Andric 6270b57cec5SDimitry Andric colocateNodeSets(NodeSets); 6280b57cec5SDimitry Andric 6290b57cec5SDimitry Andric checkNodeSets(NodeSets); 6300b57cec5SDimitry Andric 6310b57cec5SDimitry Andric LLVM_DEBUG({ 6320b57cec5SDimitry Andric for (auto &I : NodeSets) { 6330b57cec5SDimitry Andric dbgs() << " Rec NodeSet "; 6340b57cec5SDimitry Andric I.dump(); 6350b57cec5SDimitry Andric } 6360b57cec5SDimitry Andric }); 6370b57cec5SDimitry Andric 6380b57cec5SDimitry Andric llvm::stable_sort(NodeSets, std::greater<NodeSet>()); 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric groupRemainingNodes(NodeSets); 6410b57cec5SDimitry Andric 6420b57cec5SDimitry Andric removeDuplicateNodes(NodeSets); 6430b57cec5SDimitry Andric 6440b57cec5SDimitry Andric LLVM_DEBUG({ 6450b57cec5SDimitry Andric for (auto &I : NodeSets) { 6460b57cec5SDimitry Andric dbgs() << " NodeSet "; 6470b57cec5SDimitry Andric I.dump(); 6480b57cec5SDimitry Andric } 6490b57cec5SDimitry Andric }); 6500b57cec5SDimitry Andric 6510b57cec5SDimitry Andric computeNodeOrder(NodeSets); 6520b57cec5SDimitry Andric 6530b57cec5SDimitry Andric // check for node order issues 6540b57cec5SDimitry Andric checkValidNodeOrder(Circuits); 6550b57cec5SDimitry Andric 656bdd1243dSDimitry Andric SMSchedule Schedule(Pass.MF, this); 6570b57cec5SDimitry Andric Scheduled = schedulePipeline(Schedule); 6580b57cec5SDimitry Andric 6590b57cec5SDimitry Andric if (!Scheduled){ 6600b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "No schedule found, return\n"); 6610b57cec5SDimitry Andric NumFailNoSchedule++; 6625ffd83dbSDimitry Andric Pass.ORE->emit([&]() { 6635ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis( 6645ffd83dbSDimitry Andric DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 6655ffd83dbSDimitry Andric << "Unable to find schedule"; 6665ffd83dbSDimitry Andric }); 6670b57cec5SDimitry Andric return; 6680b57cec5SDimitry Andric } 6690b57cec5SDimitry Andric 6700b57cec5SDimitry Andric unsigned numStages = Schedule.getMaxStageCount(); 6710b57cec5SDimitry Andric // No need to generate pipeline if there are no overlapped iterations. 6720b57cec5SDimitry Andric if (numStages == 0) { 6735ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); 6740b57cec5SDimitry Andric NumFailZeroStage++; 6755ffd83dbSDimitry Andric Pass.ORE->emit([&]() { 6765ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis( 6775ffd83dbSDimitry Andric DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 6785ffd83dbSDimitry Andric << "No need to pipeline - no overlapped iterations in schedule."; 6795ffd83dbSDimitry Andric }); 6800b57cec5SDimitry Andric return; 6810b57cec5SDimitry Andric } 6820b57cec5SDimitry Andric // Check that the maximum stage count is less than user-defined limit. 6830b57cec5SDimitry Andric if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { 6840b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages 6850b57cec5SDimitry Andric << " : too many stages, abort\n"); 6860b57cec5SDimitry Andric NumFailLargeMaxStage++; 6875ffd83dbSDimitry Andric Pass.ORE->emit([&]() { 6885ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis( 6895ffd83dbSDimitry Andric DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 6905ffd83dbSDimitry Andric << "Too many stages in schedule: " 6915ffd83dbSDimitry Andric << ore::NV("numStages", (int)numStages) << " > " 6925ffd83dbSDimitry Andric << ore::NV("SwpMaxStages", SwpMaxStages) 6935ffd83dbSDimitry Andric << ". Refer to -pipeliner-max-stages."; 6945ffd83dbSDimitry Andric }); 6950b57cec5SDimitry Andric return; 6960b57cec5SDimitry Andric } 6970b57cec5SDimitry Andric 6985ffd83dbSDimitry Andric Pass.ORE->emit([&]() { 6995ffd83dbSDimitry Andric return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), 7005ffd83dbSDimitry Andric Loop.getHeader()) 7015ffd83dbSDimitry Andric << "Pipelined succesfully!"; 7025ffd83dbSDimitry Andric }); 7035ffd83dbSDimitry Andric 7048bcb0991SDimitry Andric // Generate the schedule as a ModuloSchedule. 7058bcb0991SDimitry Andric DenseMap<MachineInstr *, int> Cycles, Stages; 7068bcb0991SDimitry Andric std::vector<MachineInstr *> OrderedInsts; 7078bcb0991SDimitry Andric for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 7088bcb0991SDimitry Andric ++Cycle) { 7098bcb0991SDimitry Andric for (SUnit *SU : Schedule.getInstructions(Cycle)) { 7108bcb0991SDimitry Andric OrderedInsts.push_back(SU->getInstr()); 7118bcb0991SDimitry Andric Cycles[SU->getInstr()] = Cycle; 7128bcb0991SDimitry Andric Stages[SU->getInstr()] = Schedule.stageScheduled(SU); 7138bcb0991SDimitry Andric } 7148bcb0991SDimitry Andric } 7158bcb0991SDimitry Andric DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; 7168bcb0991SDimitry Andric for (auto &KV : NewMIs) { 7178bcb0991SDimitry Andric Cycles[KV.first] = Cycles[KV.second]; 7188bcb0991SDimitry Andric Stages[KV.first] = Stages[KV.second]; 7198bcb0991SDimitry Andric NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; 7208bcb0991SDimitry Andric } 7218bcb0991SDimitry Andric 7228bcb0991SDimitry Andric ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), 7238bcb0991SDimitry Andric std::move(Stages)); 7248bcb0991SDimitry Andric if (EmitTestAnnotations) { 7258bcb0991SDimitry Andric assert(NewInstrChanges.empty() && 7268bcb0991SDimitry Andric "Cannot serialize a schedule with InstrChanges!"); 7278bcb0991SDimitry Andric ModuloScheduleTestAnnotater MSTI(MF, MS); 7288bcb0991SDimitry Andric MSTI.annotate(); 7298bcb0991SDimitry Andric return; 7308bcb0991SDimitry Andric } 7318bcb0991SDimitry Andric // The experimental code generator can't work if there are InstChanges. 7328bcb0991SDimitry Andric if (ExperimentalCodeGen && NewInstrChanges.empty()) { 7338bcb0991SDimitry Andric PeelingModuloScheduleExpander MSE(MF, MS, &LIS); 7348bcb0991SDimitry Andric MSE.expand(); 7350fca6ea1SDimitry Andric } else if (MVECodeGen && NewInstrChanges.empty() && 7360fca6ea1SDimitry Andric LoopPipelinerInfo->isMVEExpanderSupported() && 7370fca6ea1SDimitry Andric ModuloScheduleExpanderMVE::canApply(Loop)) { 7380fca6ea1SDimitry Andric ModuloScheduleExpanderMVE MSE(MF, MS, LIS); 7390fca6ea1SDimitry Andric MSE.expand(); 7408bcb0991SDimitry Andric } else { 7418bcb0991SDimitry Andric ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); 7428bcb0991SDimitry Andric MSE.expand(); 7438bcb0991SDimitry Andric MSE.cleanup(); 7448bcb0991SDimitry Andric } 7450b57cec5SDimitry Andric ++NumPipelined; 7460b57cec5SDimitry Andric } 7470b57cec5SDimitry Andric 7480b57cec5SDimitry Andric /// Clean up after the software pipeliner runs. 7490b57cec5SDimitry Andric void SwingSchedulerDAG::finishBlock() { 7508bcb0991SDimitry Andric for (auto &KV : NewMIs) 7510eae32dcSDimitry Andric MF.deleteMachineInstr(KV.second); 7520b57cec5SDimitry Andric NewMIs.clear(); 7530b57cec5SDimitry Andric 7540b57cec5SDimitry Andric // Call the superclass. 7550b57cec5SDimitry Andric ScheduleDAGInstrs::finishBlock(); 7560b57cec5SDimitry Andric } 7570b57cec5SDimitry Andric 7580b57cec5SDimitry Andric /// Return the register values for the operands of a Phi instruction. 7590b57cec5SDimitry Andric /// This function assume the instruction is a Phi. 7600b57cec5SDimitry Andric static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 7610b57cec5SDimitry Andric unsigned &InitVal, unsigned &LoopVal) { 7620b57cec5SDimitry Andric assert(Phi.isPHI() && "Expecting a Phi."); 7630b57cec5SDimitry Andric 7640b57cec5SDimitry Andric InitVal = 0; 7650b57cec5SDimitry Andric LoopVal = 0; 7660b57cec5SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 7670b57cec5SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != Loop) 7680b57cec5SDimitry Andric InitVal = Phi.getOperand(i).getReg(); 7690b57cec5SDimitry Andric else 7700b57cec5SDimitry Andric LoopVal = Phi.getOperand(i).getReg(); 7710b57cec5SDimitry Andric 7720b57cec5SDimitry Andric assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 7730b57cec5SDimitry Andric } 7740b57cec5SDimitry Andric 7750b57cec5SDimitry Andric /// Return the Phi register value that comes the loop block. 7767a6dacacSDimitry Andric static unsigned getLoopPhiReg(const MachineInstr &Phi, 7777a6dacacSDimitry Andric const MachineBasicBlock *LoopBB) { 7780b57cec5SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 7790b57cec5SDimitry Andric if (Phi.getOperand(i + 1).getMBB() == LoopBB) 7800b57cec5SDimitry Andric return Phi.getOperand(i).getReg(); 7810b57cec5SDimitry Andric return 0; 7820b57cec5SDimitry Andric } 7830b57cec5SDimitry Andric 7840b57cec5SDimitry Andric /// Return true if SUb can be reached from SUa following the chain edges. 7850b57cec5SDimitry Andric static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 7860b57cec5SDimitry Andric SmallPtrSet<SUnit *, 8> Visited; 7870b57cec5SDimitry Andric SmallVector<SUnit *, 8> Worklist; 7880b57cec5SDimitry Andric Worklist.push_back(SUa); 7890b57cec5SDimitry Andric while (!Worklist.empty()) { 7900b57cec5SDimitry Andric const SUnit *SU = Worklist.pop_back_val(); 791fcaf7f86SDimitry Andric for (const auto &SI : SU->Succs) { 7920b57cec5SDimitry Andric SUnit *SuccSU = SI.getSUnit(); 7930b57cec5SDimitry Andric if (SI.getKind() == SDep::Order) { 7940b57cec5SDimitry Andric if (Visited.count(SuccSU)) 7950b57cec5SDimitry Andric continue; 7960b57cec5SDimitry Andric if (SuccSU == SUb) 7970b57cec5SDimitry Andric return true; 7980b57cec5SDimitry Andric Worklist.push_back(SuccSU); 7990b57cec5SDimitry Andric Visited.insert(SuccSU); 8000b57cec5SDimitry Andric } 8010b57cec5SDimitry Andric } 8020b57cec5SDimitry Andric } 8030b57cec5SDimitry Andric return false; 8040b57cec5SDimitry Andric } 8050b57cec5SDimitry Andric 8060b57cec5SDimitry Andric /// Return true if the instruction causes a chain between memory 8070b57cec5SDimitry Andric /// references before and after it. 808fcaf7f86SDimitry Andric static bool isDependenceBarrier(MachineInstr &MI) { 8090b57cec5SDimitry Andric return MI.isCall() || MI.mayRaiseFPException() || 8100b57cec5SDimitry Andric MI.hasUnmodeledSideEffects() || 8110b57cec5SDimitry Andric (MI.hasOrderedMemoryRef() && 812fcaf7f86SDimitry Andric (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); 8130b57cec5SDimitry Andric } 8140b57cec5SDimitry Andric 8150b57cec5SDimitry Andric /// Return the underlying objects for the memory references of an instruction. 8160b57cec5SDimitry Andric /// This function calls the code in ValueTracking, but first checks that the 8170b57cec5SDimitry Andric /// instruction has a memory operand. 8180b57cec5SDimitry Andric static void getUnderlyingObjects(const MachineInstr *MI, 819e8d8bef9SDimitry Andric SmallVectorImpl<const Value *> &Objs) { 8200b57cec5SDimitry Andric if (!MI->hasOneMemOperand()) 8210b57cec5SDimitry Andric return; 8220b57cec5SDimitry Andric MachineMemOperand *MM = *MI->memoperands_begin(); 8230b57cec5SDimitry Andric if (!MM->getValue()) 8240b57cec5SDimitry Andric return; 825e8d8bef9SDimitry Andric getUnderlyingObjects(MM->getValue(), Objs); 8260b57cec5SDimitry Andric for (const Value *V : Objs) { 8270b57cec5SDimitry Andric if (!isIdentifiedObject(V)) { 8280b57cec5SDimitry Andric Objs.clear(); 8290b57cec5SDimitry Andric return; 8300b57cec5SDimitry Andric } 8310b57cec5SDimitry Andric } 8320b57cec5SDimitry Andric } 8330b57cec5SDimitry Andric 8340b57cec5SDimitry Andric /// Add a chain edge between a load and store if the store can be an 8350b57cec5SDimitry Andric /// alias of the load on a subsequent iteration, i.e., a loop carried 8360b57cec5SDimitry Andric /// dependence. This code is very similar to the code in ScheduleDAGInstrs 8370b57cec5SDimitry Andric /// but that code doesn't create loop carried dependences. 8380b57cec5SDimitry Andric void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 8390b57cec5SDimitry Andric MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; 8400b57cec5SDimitry Andric Value *UnknownValue = 8410b57cec5SDimitry Andric UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); 8420b57cec5SDimitry Andric for (auto &SU : SUnits) { 8430b57cec5SDimitry Andric MachineInstr &MI = *SU.getInstr(); 844fcaf7f86SDimitry Andric if (isDependenceBarrier(MI)) 8450b57cec5SDimitry Andric PendingLoads.clear(); 8460b57cec5SDimitry Andric else if (MI.mayLoad()) { 8470b57cec5SDimitry Andric SmallVector<const Value *, 4> Objs; 848e8d8bef9SDimitry Andric ::getUnderlyingObjects(&MI, Objs); 8490b57cec5SDimitry Andric if (Objs.empty()) 8500b57cec5SDimitry Andric Objs.push_back(UnknownValue); 851fcaf7f86SDimitry Andric for (const auto *V : Objs) { 8520b57cec5SDimitry Andric SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 8530b57cec5SDimitry Andric SUs.push_back(&SU); 8540b57cec5SDimitry Andric } 8550b57cec5SDimitry Andric } else if (MI.mayStore()) { 8560b57cec5SDimitry Andric SmallVector<const Value *, 4> Objs; 857e8d8bef9SDimitry Andric ::getUnderlyingObjects(&MI, Objs); 8580b57cec5SDimitry Andric if (Objs.empty()) 8590b57cec5SDimitry Andric Objs.push_back(UnknownValue); 860fcaf7f86SDimitry Andric for (const auto *V : Objs) { 8610b57cec5SDimitry Andric MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = 8620b57cec5SDimitry Andric PendingLoads.find(V); 8630b57cec5SDimitry Andric if (I == PendingLoads.end()) 8640b57cec5SDimitry Andric continue; 865fcaf7f86SDimitry Andric for (auto *Load : I->second) { 8660b57cec5SDimitry Andric if (isSuccOrder(Load, &SU)) 8670b57cec5SDimitry Andric continue; 8680b57cec5SDimitry Andric MachineInstr &LdMI = *Load->getInstr(); 8690b57cec5SDimitry Andric // First, perform the cheaper check that compares the base register. 8700b57cec5SDimitry Andric // If they are the same and the load offset is less than the store 8710b57cec5SDimitry Andric // offset, then mark the dependence as loop carried potentially. 8720b57cec5SDimitry Andric const MachineOperand *BaseOp1, *BaseOp2; 8730b57cec5SDimitry Andric int64_t Offset1, Offset2; 8745ffd83dbSDimitry Andric bool Offset1IsScalable, Offset2IsScalable; 8755ffd83dbSDimitry Andric if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, 8765ffd83dbSDimitry Andric Offset1IsScalable, TRI) && 8775ffd83dbSDimitry Andric TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, 8785ffd83dbSDimitry Andric Offset2IsScalable, TRI)) { 8790b57cec5SDimitry Andric if (BaseOp1->isIdenticalTo(*BaseOp2) && 8805ffd83dbSDimitry Andric Offset1IsScalable == Offset2IsScalable && 8810b57cec5SDimitry Andric (int)Offset1 < (int)Offset2) { 8828bcb0991SDimitry Andric assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && 8830b57cec5SDimitry Andric "What happened to the chain edge?"); 8840b57cec5SDimitry Andric SDep Dep(Load, SDep::Barrier); 8850b57cec5SDimitry Andric Dep.setLatency(1); 8860b57cec5SDimitry Andric SU.addPred(Dep); 8870b57cec5SDimitry Andric continue; 8880b57cec5SDimitry Andric } 8890b57cec5SDimitry Andric } 8900b57cec5SDimitry Andric // Second, the more expensive check that uses alias analysis on the 8910b57cec5SDimitry Andric // base registers. If they alias, and the load offset is less than 8920b57cec5SDimitry Andric // the store offset, the mark the dependence as loop carried. 8930b57cec5SDimitry Andric if (!AA) { 8940b57cec5SDimitry Andric SDep Dep(Load, SDep::Barrier); 8950b57cec5SDimitry Andric Dep.setLatency(1); 8960b57cec5SDimitry Andric SU.addPred(Dep); 8970b57cec5SDimitry Andric continue; 8980b57cec5SDimitry Andric } 8990b57cec5SDimitry Andric MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 9000b57cec5SDimitry Andric MachineMemOperand *MMO2 = *MI.memoperands_begin(); 9010b57cec5SDimitry Andric if (!MMO1->getValue() || !MMO2->getValue()) { 9020b57cec5SDimitry Andric SDep Dep(Load, SDep::Barrier); 9030b57cec5SDimitry Andric Dep.setLatency(1); 9040b57cec5SDimitry Andric SU.addPred(Dep); 9050b57cec5SDimitry Andric continue; 9060b57cec5SDimitry Andric } 9070b57cec5SDimitry Andric if (MMO1->getValue() == MMO2->getValue() && 9080b57cec5SDimitry Andric MMO1->getOffset() <= MMO2->getOffset()) { 9090b57cec5SDimitry Andric SDep Dep(Load, SDep::Barrier); 9100b57cec5SDimitry Andric Dep.setLatency(1); 9110b57cec5SDimitry Andric SU.addPred(Dep); 9120b57cec5SDimitry Andric continue; 9130b57cec5SDimitry Andric } 914fe6060f1SDimitry Andric if (!AA->isNoAlias( 915e8d8bef9SDimitry Andric MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 916fe6060f1SDimitry Andric MemoryLocation::getAfter(MMO2->getValue(), 917fe6060f1SDimitry Andric MMO2->getAAInfo()))) { 9180b57cec5SDimitry Andric SDep Dep(Load, SDep::Barrier); 9190b57cec5SDimitry Andric Dep.setLatency(1); 9200b57cec5SDimitry Andric SU.addPred(Dep); 9210b57cec5SDimitry Andric } 9220b57cec5SDimitry Andric } 9230b57cec5SDimitry Andric } 9240b57cec5SDimitry Andric } 9250b57cec5SDimitry Andric } 9260b57cec5SDimitry Andric } 9270b57cec5SDimitry Andric 9280b57cec5SDimitry Andric /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 9290b57cec5SDimitry Andric /// processes dependences for PHIs. This function adds true dependences 9300b57cec5SDimitry Andric /// from a PHI to a use, and a loop carried dependence from the use to the 9310b57cec5SDimitry Andric /// PHI. The loop carried dependence is represented as an anti dependence 9320b57cec5SDimitry Andric /// edge. This function also removes chain dependences between unrelated 9330b57cec5SDimitry Andric /// PHIs. 9340b57cec5SDimitry Andric void SwingSchedulerDAG::updatePhiDependences() { 9350b57cec5SDimitry Andric SmallVector<SDep, 4> RemoveDeps; 9360b57cec5SDimitry Andric const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 9370b57cec5SDimitry Andric 9380b57cec5SDimitry Andric // Iterate over each DAG node. 9390b57cec5SDimitry Andric for (SUnit &I : SUnits) { 9400b57cec5SDimitry Andric RemoveDeps.clear(); 9410b57cec5SDimitry Andric // Set to true if the instruction has an operand defined by a Phi. 9420b57cec5SDimitry Andric unsigned HasPhiUse = 0; 9430b57cec5SDimitry Andric unsigned HasPhiDef = 0; 9440b57cec5SDimitry Andric MachineInstr *MI = I.getInstr(); 9450b57cec5SDimitry Andric // Iterate over each operand, and we process the definitions. 94606c3fb27SDimitry Andric for (const MachineOperand &MO : MI->operands()) { 94706c3fb27SDimitry Andric if (!MO.isReg()) 9480b57cec5SDimitry Andric continue; 94906c3fb27SDimitry Andric Register Reg = MO.getReg(); 95006c3fb27SDimitry Andric if (MO.isDef()) { 9510b57cec5SDimitry Andric // If the register is used by a Phi, then create an anti dependence. 9520b57cec5SDimitry Andric for (MachineRegisterInfo::use_instr_iterator 9530b57cec5SDimitry Andric UI = MRI.use_instr_begin(Reg), 9540b57cec5SDimitry Andric UE = MRI.use_instr_end(); 9550b57cec5SDimitry Andric UI != UE; ++UI) { 9560b57cec5SDimitry Andric MachineInstr *UseMI = &*UI; 9570b57cec5SDimitry Andric SUnit *SU = getSUnit(UseMI); 9580b57cec5SDimitry Andric if (SU != nullptr && UseMI->isPHI()) { 9590b57cec5SDimitry Andric if (!MI->isPHI()) { 9600b57cec5SDimitry Andric SDep Dep(SU, SDep::Anti, Reg); 9610b57cec5SDimitry Andric Dep.setLatency(1); 9620b57cec5SDimitry Andric I.addPred(Dep); 9630b57cec5SDimitry Andric } else { 9640b57cec5SDimitry Andric HasPhiDef = Reg; 9650b57cec5SDimitry Andric // Add a chain edge to a dependent Phi that isn't an existing 9660b57cec5SDimitry Andric // predecessor. 9670b57cec5SDimitry Andric if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 9680b57cec5SDimitry Andric I.addPred(SDep(SU, SDep::Barrier)); 9690b57cec5SDimitry Andric } 9700b57cec5SDimitry Andric } 9710b57cec5SDimitry Andric } 97206c3fb27SDimitry Andric } else if (MO.isUse()) { 9730b57cec5SDimitry Andric // If the register is defined by a Phi, then create a true dependence. 9740b57cec5SDimitry Andric MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 9750b57cec5SDimitry Andric if (DefMI == nullptr) 9760b57cec5SDimitry Andric continue; 9770b57cec5SDimitry Andric SUnit *SU = getSUnit(DefMI); 9780b57cec5SDimitry Andric if (SU != nullptr && DefMI->isPHI()) { 9790b57cec5SDimitry Andric if (!MI->isPHI()) { 9800b57cec5SDimitry Andric SDep Dep(SU, SDep::Data, Reg); 9810b57cec5SDimitry Andric Dep.setLatency(0); 9820fca6ea1SDimitry Andric ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, 9830fca6ea1SDimitry Andric &SchedModel); 9840b57cec5SDimitry Andric I.addPred(Dep); 9850b57cec5SDimitry Andric } else { 9860b57cec5SDimitry Andric HasPhiUse = Reg; 9870b57cec5SDimitry Andric // Add a chain edge to a dependent Phi that isn't an existing 9880b57cec5SDimitry Andric // predecessor. 9890b57cec5SDimitry Andric if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 9900b57cec5SDimitry Andric I.addPred(SDep(SU, SDep::Barrier)); 9910b57cec5SDimitry Andric } 9920b57cec5SDimitry Andric } 9930b57cec5SDimitry Andric } 9940b57cec5SDimitry Andric } 9950b57cec5SDimitry Andric // Remove order dependences from an unrelated Phi. 9960b57cec5SDimitry Andric if (!SwpPruneDeps) 9970b57cec5SDimitry Andric continue; 9980b57cec5SDimitry Andric for (auto &PI : I.Preds) { 9990b57cec5SDimitry Andric MachineInstr *PMI = PI.getSUnit()->getInstr(); 10000b57cec5SDimitry Andric if (PMI->isPHI() && PI.getKind() == SDep::Order) { 10010b57cec5SDimitry Andric if (I.getInstr()->isPHI()) { 10020b57cec5SDimitry Andric if (PMI->getOperand(0).getReg() == HasPhiUse) 10030b57cec5SDimitry Andric continue; 10040b57cec5SDimitry Andric if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 10050b57cec5SDimitry Andric continue; 10060b57cec5SDimitry Andric } 10070b57cec5SDimitry Andric RemoveDeps.push_back(PI); 10080b57cec5SDimitry Andric } 10090b57cec5SDimitry Andric } 10100fca6ea1SDimitry Andric for (const SDep &D : RemoveDeps) 10110fca6ea1SDimitry Andric I.removePred(D); 10120b57cec5SDimitry Andric } 10130b57cec5SDimitry Andric } 10140b57cec5SDimitry Andric 10150b57cec5SDimitry Andric /// Iterate over each DAG node and see if we can change any dependences 10160b57cec5SDimitry Andric /// in order to reduce the recurrence MII. 10170b57cec5SDimitry Andric void SwingSchedulerDAG::changeDependences() { 10180b57cec5SDimitry Andric // See if an instruction can use a value from the previous iteration. 10190b57cec5SDimitry Andric // If so, we update the base and offset of the instruction and change 10200b57cec5SDimitry Andric // the dependences. 10210b57cec5SDimitry Andric for (SUnit &I : SUnits) { 10220b57cec5SDimitry Andric unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 10230b57cec5SDimitry Andric int64_t NewOffset = 0; 10240b57cec5SDimitry Andric if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 10250b57cec5SDimitry Andric NewOffset)) 10260b57cec5SDimitry Andric continue; 10270b57cec5SDimitry Andric 10280b57cec5SDimitry Andric // Get the MI and SUnit for the instruction that defines the original base. 10298bcb0991SDimitry Andric Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 10300b57cec5SDimitry Andric MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 10310b57cec5SDimitry Andric if (!DefMI) 10320b57cec5SDimitry Andric continue; 10330b57cec5SDimitry Andric SUnit *DefSU = getSUnit(DefMI); 10340b57cec5SDimitry Andric if (!DefSU) 10350b57cec5SDimitry Andric continue; 10360b57cec5SDimitry Andric // Get the MI and SUnit for the instruction that defins the new base. 10370b57cec5SDimitry Andric MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 10380b57cec5SDimitry Andric if (!LastMI) 10390b57cec5SDimitry Andric continue; 10400b57cec5SDimitry Andric SUnit *LastSU = getSUnit(LastMI); 10410b57cec5SDimitry Andric if (!LastSU) 10420b57cec5SDimitry Andric continue; 10430b57cec5SDimitry Andric 10440b57cec5SDimitry Andric if (Topo.IsReachable(&I, LastSU)) 10450b57cec5SDimitry Andric continue; 10460b57cec5SDimitry Andric 10470b57cec5SDimitry Andric // Remove the dependence. The value now depends on a prior iteration. 10480b57cec5SDimitry Andric SmallVector<SDep, 4> Deps; 1049fe6060f1SDimitry Andric for (const SDep &P : I.Preds) 1050fe6060f1SDimitry Andric if (P.getSUnit() == DefSU) 1051fe6060f1SDimitry Andric Deps.push_back(P); 10520fca6ea1SDimitry Andric for (const SDep &D : Deps) { 10530fca6ea1SDimitry Andric Topo.RemovePred(&I, D.getSUnit()); 10540fca6ea1SDimitry Andric I.removePred(D); 10550b57cec5SDimitry Andric } 10560b57cec5SDimitry Andric // Remove the chain dependence between the instructions. 10570b57cec5SDimitry Andric Deps.clear(); 10580b57cec5SDimitry Andric for (auto &P : LastSU->Preds) 10590b57cec5SDimitry Andric if (P.getSUnit() == &I && P.getKind() == SDep::Order) 10600b57cec5SDimitry Andric Deps.push_back(P); 10610fca6ea1SDimitry Andric for (const SDep &D : Deps) { 10620fca6ea1SDimitry Andric Topo.RemovePred(LastSU, D.getSUnit()); 10630fca6ea1SDimitry Andric LastSU->removePred(D); 10640b57cec5SDimitry Andric } 10650b57cec5SDimitry Andric 10660b57cec5SDimitry Andric // Add a dependence between the new instruction and the instruction 10670b57cec5SDimitry Andric // that defines the new base. 10680b57cec5SDimitry Andric SDep Dep(&I, SDep::Anti, NewBase); 10690b57cec5SDimitry Andric Topo.AddPred(LastSU, &I); 10700b57cec5SDimitry Andric LastSU->addPred(Dep); 10710b57cec5SDimitry Andric 10720b57cec5SDimitry Andric // Remember the base and offset information so that we can update the 10730b57cec5SDimitry Andric // instruction during code generation. 10740b57cec5SDimitry Andric InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 10750b57cec5SDimitry Andric } 10760b57cec5SDimitry Andric } 10770b57cec5SDimitry Andric 10787a6dacacSDimitry Andric /// Create an instruction stream that represents a single iteration and stage of 10797a6dacacSDimitry Andric /// each instruction. This function differs from SMSchedule::finalizeSchedule in 10807a6dacacSDimitry Andric /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this 10817a6dacacSDimitry Andric /// function is an approximation of SMSchedule::finalizeSchedule with all 10827a6dacacSDimitry Andric /// non-const operations removed. 10837a6dacacSDimitry Andric static void computeScheduledInsts(const SwingSchedulerDAG *SSD, 10847a6dacacSDimitry Andric SMSchedule &Schedule, 10857a6dacacSDimitry Andric std::vector<MachineInstr *> &OrderedInsts, 10867a6dacacSDimitry Andric DenseMap<MachineInstr *, unsigned> &Stages) { 10877a6dacacSDimitry Andric DenseMap<int, std::deque<SUnit *>> Instrs; 10887a6dacacSDimitry Andric 10897a6dacacSDimitry Andric // Move all instructions to the first stage from the later stages. 10907a6dacacSDimitry Andric for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 10917a6dacacSDimitry Andric ++Cycle) { 10927a6dacacSDimitry Andric for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); 10937a6dacacSDimitry Andric Stage <= LastStage; ++Stage) { 10947a6dacacSDimitry Andric for (SUnit *SU : llvm::reverse(Schedule.getInstructions( 10957a6dacacSDimitry Andric Cycle + Stage * Schedule.getInitiationInterval()))) { 10967a6dacacSDimitry Andric Instrs[Cycle].push_front(SU); 10977a6dacacSDimitry Andric } 10987a6dacacSDimitry Andric } 10997a6dacacSDimitry Andric } 11007a6dacacSDimitry Andric 11017a6dacacSDimitry Andric for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); 11027a6dacacSDimitry Andric ++Cycle) { 11037a6dacacSDimitry Andric std::deque<SUnit *> &CycleInstrs = Instrs[Cycle]; 11047a6dacacSDimitry Andric CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); 11057a6dacacSDimitry Andric for (SUnit *SU : CycleInstrs) { 11067a6dacacSDimitry Andric MachineInstr *MI = SU->getInstr(); 11077a6dacacSDimitry Andric OrderedInsts.push_back(MI); 11087a6dacacSDimitry Andric Stages[MI] = Schedule.stageScheduled(SU); 11097a6dacacSDimitry Andric } 11107a6dacacSDimitry Andric } 11117a6dacacSDimitry Andric } 11127a6dacacSDimitry Andric 11130b57cec5SDimitry Andric namespace { 11140b57cec5SDimitry Andric 11150b57cec5SDimitry Andric // FuncUnitSorter - Comparison operator used to sort instructions by 11160b57cec5SDimitry Andric // the number of functional unit choices. 11170b57cec5SDimitry Andric struct FuncUnitSorter { 11180b57cec5SDimitry Andric const InstrItineraryData *InstrItins; 11190b57cec5SDimitry Andric const MCSubtargetInfo *STI; 11205ffd83dbSDimitry Andric DenseMap<InstrStage::FuncUnits, unsigned> Resources; 11210b57cec5SDimitry Andric 11220b57cec5SDimitry Andric FuncUnitSorter(const TargetSubtargetInfo &TSI) 11230b57cec5SDimitry Andric : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} 11240b57cec5SDimitry Andric 11250b57cec5SDimitry Andric // Compute the number of functional unit alternatives needed 11260b57cec5SDimitry Andric // at each stage, and take the minimum value. We prioritize the 11270b57cec5SDimitry Andric // instructions by the least number of choices first. 11285ffd83dbSDimitry Andric unsigned minFuncUnits(const MachineInstr *Inst, 11295ffd83dbSDimitry Andric InstrStage::FuncUnits &F) const { 11300b57cec5SDimitry Andric unsigned SchedClass = Inst->getDesc().getSchedClass(); 11310b57cec5SDimitry Andric unsigned min = UINT_MAX; 11320b57cec5SDimitry Andric if (InstrItins && !InstrItins->isEmpty()) { 11330b57cec5SDimitry Andric for (const InstrStage &IS : 11340b57cec5SDimitry Andric make_range(InstrItins->beginStage(SchedClass), 11350b57cec5SDimitry Andric InstrItins->endStage(SchedClass))) { 11365ffd83dbSDimitry Andric InstrStage::FuncUnits funcUnits = IS.getUnits(); 1137bdd1243dSDimitry Andric unsigned numAlternatives = llvm::popcount(funcUnits); 11380b57cec5SDimitry Andric if (numAlternatives < min) { 11390b57cec5SDimitry Andric min = numAlternatives; 11400b57cec5SDimitry Andric F = funcUnits; 11410b57cec5SDimitry Andric } 11420b57cec5SDimitry Andric } 11430b57cec5SDimitry Andric return min; 11440b57cec5SDimitry Andric } 11450b57cec5SDimitry Andric if (STI && STI->getSchedModel().hasInstrSchedModel()) { 11460b57cec5SDimitry Andric const MCSchedClassDesc *SCDesc = 11470b57cec5SDimitry Andric STI->getSchedModel().getSchedClassDesc(SchedClass); 11480b57cec5SDimitry Andric if (!SCDesc->isValid()) 11490b57cec5SDimitry Andric // No valid Schedule Class Desc for schedClass, should be 11500b57cec5SDimitry Andric // Pseudo/PostRAPseudo 11510b57cec5SDimitry Andric return min; 11520b57cec5SDimitry Andric 11530b57cec5SDimitry Andric for (const MCWriteProcResEntry &PRE : 11540b57cec5SDimitry Andric make_range(STI->getWriteProcResBegin(SCDesc), 11550b57cec5SDimitry Andric STI->getWriteProcResEnd(SCDesc))) { 11565f757f3fSDimitry Andric if (!PRE.ReleaseAtCycle) 11570b57cec5SDimitry Andric continue; 11580b57cec5SDimitry Andric const MCProcResourceDesc *ProcResource = 11590b57cec5SDimitry Andric STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); 11600b57cec5SDimitry Andric unsigned NumUnits = ProcResource->NumUnits; 11610b57cec5SDimitry Andric if (NumUnits < min) { 11620b57cec5SDimitry Andric min = NumUnits; 11630b57cec5SDimitry Andric F = PRE.ProcResourceIdx; 11640b57cec5SDimitry Andric } 11650b57cec5SDimitry Andric } 11660b57cec5SDimitry Andric return min; 11670b57cec5SDimitry Andric } 11680b57cec5SDimitry Andric llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 11690b57cec5SDimitry Andric } 11700b57cec5SDimitry Andric 11710b57cec5SDimitry Andric // Compute the critical resources needed by the instruction. This 11720b57cec5SDimitry Andric // function records the functional units needed by instructions that 11730b57cec5SDimitry Andric // must use only one functional unit. We use this as a tie breaker 11740b57cec5SDimitry Andric // for computing the resource MII. The instrutions that require 11750b57cec5SDimitry Andric // the same, highly used, functional unit have high priority. 11760b57cec5SDimitry Andric void calcCriticalResources(MachineInstr &MI) { 11770b57cec5SDimitry Andric unsigned SchedClass = MI.getDesc().getSchedClass(); 11780b57cec5SDimitry Andric if (InstrItins && !InstrItins->isEmpty()) { 11790b57cec5SDimitry Andric for (const InstrStage &IS : 11800b57cec5SDimitry Andric make_range(InstrItins->beginStage(SchedClass), 11810b57cec5SDimitry Andric InstrItins->endStage(SchedClass))) { 11825ffd83dbSDimitry Andric InstrStage::FuncUnits FuncUnits = IS.getUnits(); 1183bdd1243dSDimitry Andric if (llvm::popcount(FuncUnits) == 1) 11840b57cec5SDimitry Andric Resources[FuncUnits]++; 11850b57cec5SDimitry Andric } 11860b57cec5SDimitry Andric return; 11870b57cec5SDimitry Andric } 11880b57cec5SDimitry Andric if (STI && STI->getSchedModel().hasInstrSchedModel()) { 11890b57cec5SDimitry Andric const MCSchedClassDesc *SCDesc = 11900b57cec5SDimitry Andric STI->getSchedModel().getSchedClassDesc(SchedClass); 11910b57cec5SDimitry Andric if (!SCDesc->isValid()) 11920b57cec5SDimitry Andric // No valid Schedule Class Desc for schedClass, should be 11930b57cec5SDimitry Andric // Pseudo/PostRAPseudo 11940b57cec5SDimitry Andric return; 11950b57cec5SDimitry Andric 11960b57cec5SDimitry Andric for (const MCWriteProcResEntry &PRE : 11970b57cec5SDimitry Andric make_range(STI->getWriteProcResBegin(SCDesc), 11980b57cec5SDimitry Andric STI->getWriteProcResEnd(SCDesc))) { 11995f757f3fSDimitry Andric if (!PRE.ReleaseAtCycle) 12000b57cec5SDimitry Andric continue; 12010b57cec5SDimitry Andric Resources[PRE.ProcResourceIdx]++; 12020b57cec5SDimitry Andric } 12030b57cec5SDimitry Andric return; 12040b57cec5SDimitry Andric } 12050b57cec5SDimitry Andric llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); 12060b57cec5SDimitry Andric } 12070b57cec5SDimitry Andric 12080b57cec5SDimitry Andric /// Return true if IS1 has less priority than IS2. 12090b57cec5SDimitry Andric bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 12105ffd83dbSDimitry Andric InstrStage::FuncUnits F1 = 0, F2 = 0; 12110b57cec5SDimitry Andric unsigned MFUs1 = minFuncUnits(IS1, F1); 12120b57cec5SDimitry Andric unsigned MFUs2 = minFuncUnits(IS2, F2); 12138bcb0991SDimitry Andric if (MFUs1 == MFUs2) 12140b57cec5SDimitry Andric return Resources.lookup(F1) < Resources.lookup(F2); 12150b57cec5SDimitry Andric return MFUs1 > MFUs2; 12160b57cec5SDimitry Andric } 12170b57cec5SDimitry Andric }; 12180b57cec5SDimitry Andric 12197a6dacacSDimitry Andric /// Calculate the maximum register pressure of the scheduled instructions stream 12207a6dacacSDimitry Andric class HighRegisterPressureDetector { 12217a6dacacSDimitry Andric MachineBasicBlock *OrigMBB; 12227a6dacacSDimitry Andric const MachineFunction &MF; 12237a6dacacSDimitry Andric const MachineRegisterInfo &MRI; 12247a6dacacSDimitry Andric const TargetRegisterInfo *TRI; 12257a6dacacSDimitry Andric 12267a6dacacSDimitry Andric const unsigned PSetNum; 12277a6dacacSDimitry Andric 12287a6dacacSDimitry Andric // Indexed by PSet ID 12297a6dacacSDimitry Andric // InitSetPressure takes into account the register pressure of live-in 12307a6dacacSDimitry Andric // registers. It's not depend on how the loop is scheduled, so it's enough to 12317a6dacacSDimitry Andric // calculate them once at the beginning. 12327a6dacacSDimitry Andric std::vector<unsigned> InitSetPressure; 12337a6dacacSDimitry Andric 12347a6dacacSDimitry Andric // Indexed by PSet ID 12357a6dacacSDimitry Andric // Upper limit for each register pressure set 12367a6dacacSDimitry Andric std::vector<unsigned> PressureSetLimit; 12377a6dacacSDimitry Andric 12387a6dacacSDimitry Andric DenseMap<MachineInstr *, RegisterOperands> ROMap; 12397a6dacacSDimitry Andric 12407a6dacacSDimitry Andric using Instr2LastUsesTy = DenseMap<MachineInstr *, SmallDenseSet<Register, 4>>; 12417a6dacacSDimitry Andric 12427a6dacacSDimitry Andric public: 12437a6dacacSDimitry Andric using OrderedInstsTy = std::vector<MachineInstr *>; 12447a6dacacSDimitry Andric using Instr2StageTy = DenseMap<MachineInstr *, unsigned>; 12457a6dacacSDimitry Andric 12467a6dacacSDimitry Andric private: 12477a6dacacSDimitry Andric static void dumpRegisterPressures(const std::vector<unsigned> &Pressures) { 12487a6dacacSDimitry Andric if (Pressures.size() == 0) { 12497a6dacacSDimitry Andric dbgs() << "[]"; 12507a6dacacSDimitry Andric } else { 12517a6dacacSDimitry Andric char Prefix = '['; 12527a6dacacSDimitry Andric for (unsigned P : Pressures) { 12537a6dacacSDimitry Andric dbgs() << Prefix << P; 12547a6dacacSDimitry Andric Prefix = ' '; 12557a6dacacSDimitry Andric } 12567a6dacacSDimitry Andric dbgs() << ']'; 12577a6dacacSDimitry Andric } 12587a6dacacSDimitry Andric } 12597a6dacacSDimitry Andric 12607a6dacacSDimitry Andric void dumpPSet(Register Reg) const { 12617a6dacacSDimitry Andric dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; 12627a6dacacSDimitry Andric for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); 12637a6dacacSDimitry Andric ++PSetIter) { 12647a6dacacSDimitry Andric dbgs() << *PSetIter << ' '; 12657a6dacacSDimitry Andric } 12667a6dacacSDimitry Andric dbgs() << '\n'; 12677a6dacacSDimitry Andric } 12687a6dacacSDimitry Andric 12697a6dacacSDimitry Andric void increaseRegisterPressure(std::vector<unsigned> &Pressure, 12707a6dacacSDimitry Andric Register Reg) const { 12717a6dacacSDimitry Andric auto PSetIter = MRI.getPressureSets(Reg); 12727a6dacacSDimitry Andric unsigned Weight = PSetIter.getWeight(); 12737a6dacacSDimitry Andric for (; PSetIter.isValid(); ++PSetIter) 12747a6dacacSDimitry Andric Pressure[*PSetIter] += Weight; 12757a6dacacSDimitry Andric } 12767a6dacacSDimitry Andric 12777a6dacacSDimitry Andric void decreaseRegisterPressure(std::vector<unsigned> &Pressure, 12787a6dacacSDimitry Andric Register Reg) const { 12797a6dacacSDimitry Andric auto PSetIter = MRI.getPressureSets(Reg); 12807a6dacacSDimitry Andric unsigned Weight = PSetIter.getWeight(); 12817a6dacacSDimitry Andric for (; PSetIter.isValid(); ++PSetIter) { 12827a6dacacSDimitry Andric auto &P = Pressure[*PSetIter]; 12837a6dacacSDimitry Andric assert(P >= Weight && 12847a6dacacSDimitry Andric "register pressure must be greater than or equal weight"); 12857a6dacacSDimitry Andric P -= Weight; 12867a6dacacSDimitry Andric } 12877a6dacacSDimitry Andric } 12887a6dacacSDimitry Andric 12897a6dacacSDimitry Andric // Return true if Reg is fixed one, for example, stack pointer 12907a6dacacSDimitry Andric bool isFixedRegister(Register Reg) const { 12917a6dacacSDimitry Andric return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); 12927a6dacacSDimitry Andric } 12937a6dacacSDimitry Andric 12947a6dacacSDimitry Andric bool isDefinedInThisLoop(Register Reg) const { 12957a6dacacSDimitry Andric return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; 12967a6dacacSDimitry Andric } 12977a6dacacSDimitry Andric 12987a6dacacSDimitry Andric // Search for live-in variables. They are factored into the register pressure 12997a6dacacSDimitry Andric // from the begining. Live-in variables used by every iteration should be 13007a6dacacSDimitry Andric // considered as alive throughout the loop. For example, the variable `c` in 13017a6dacacSDimitry Andric // following code. \code 13027a6dacacSDimitry Andric // int c = ...; 13037a6dacacSDimitry Andric // for (int i = 0; i < n; i++) 13047a6dacacSDimitry Andric // a[i] += b[i] + c; 13057a6dacacSDimitry Andric // \endcode 13067a6dacacSDimitry Andric void computeLiveIn() { 13077a6dacacSDimitry Andric DenseSet<Register> Used; 13087a6dacacSDimitry Andric for (auto &MI : *OrigMBB) { 13097a6dacacSDimitry Andric if (MI.isDebugInstr()) 13107a6dacacSDimitry Andric continue; 13110fca6ea1SDimitry Andric for (auto &Use : ROMap[&MI].Uses) { 13127a6dacacSDimitry Andric auto Reg = Use.RegUnit; 13137a6dacacSDimitry Andric // Ignore the variable that appears only on one side of phi instruction 13147a6dacacSDimitry Andric // because it's used only at the first iteration. 13157a6dacacSDimitry Andric if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) 13167a6dacacSDimitry Andric continue; 13177a6dacacSDimitry Andric if (isFixedRegister(Reg)) 13187a6dacacSDimitry Andric continue; 13197a6dacacSDimitry Andric if (isDefinedInThisLoop(Reg)) 13207a6dacacSDimitry Andric continue; 13217a6dacacSDimitry Andric Used.insert(Reg); 13227a6dacacSDimitry Andric } 13237a6dacacSDimitry Andric } 13247a6dacacSDimitry Andric 13257a6dacacSDimitry Andric for (auto LiveIn : Used) 13267a6dacacSDimitry Andric increaseRegisterPressure(InitSetPressure, LiveIn); 13277a6dacacSDimitry Andric } 13287a6dacacSDimitry Andric 13297a6dacacSDimitry Andric // Calculate the upper limit of each pressure set 13307a6dacacSDimitry Andric void computePressureSetLimit(const RegisterClassInfo &RCI) { 13317a6dacacSDimitry Andric for (unsigned PSet = 0; PSet < PSetNum; PSet++) 13320fca6ea1SDimitry Andric PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet); 13337a6dacacSDimitry Andric 13347a6dacacSDimitry Andric // We assume fixed registers, such as stack pointer, are already in use. 13357a6dacacSDimitry Andric // Therefore subtracting the weight of the fixed registers from the limit of 13367a6dacacSDimitry Andric // each pressure set in advance. 13377a6dacacSDimitry Andric SmallDenseSet<Register, 8> FixedRegs; 13387a6dacacSDimitry Andric for (const TargetRegisterClass *TRC : TRI->regclasses()) { 13397a6dacacSDimitry Andric for (const MCPhysReg Reg : *TRC) 13407a6dacacSDimitry Andric if (isFixedRegister(Reg)) 13417a6dacacSDimitry Andric FixedRegs.insert(Reg); 13427a6dacacSDimitry Andric } 13437a6dacacSDimitry Andric 13447a6dacacSDimitry Andric LLVM_DEBUG({ 13457a6dacacSDimitry Andric for (auto Reg : FixedRegs) { 13467a6dacacSDimitry Andric dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; 13477a6dacacSDimitry Andric const int *Sets = TRI->getRegUnitPressureSets(Reg); 13487a6dacacSDimitry Andric for (; *Sets != -1; Sets++) { 13497a6dacacSDimitry Andric dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; 13507a6dacacSDimitry Andric } 13517a6dacacSDimitry Andric dbgs() << "]\n"; 13527a6dacacSDimitry Andric } 13537a6dacacSDimitry Andric }); 13547a6dacacSDimitry Andric 13557a6dacacSDimitry Andric for (auto Reg : FixedRegs) { 13567a6dacacSDimitry Andric LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) 13577a6dacacSDimitry Andric << "\n"); 13587a6dacacSDimitry Andric auto PSetIter = MRI.getPressureSets(Reg); 13597a6dacacSDimitry Andric unsigned Weight = PSetIter.getWeight(); 13607a6dacacSDimitry Andric for (; PSetIter.isValid(); ++PSetIter) { 13617a6dacacSDimitry Andric unsigned &Limit = PressureSetLimit[*PSetIter]; 13627a6dacacSDimitry Andric assert(Limit >= Weight && 13637a6dacacSDimitry Andric "register pressure limit must be greater than or equal weight"); 13647a6dacacSDimitry Andric Limit -= Weight; 13657a6dacacSDimitry Andric LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit 13667a6dacacSDimitry Andric << " (decreased by " << Weight << ")\n"); 13677a6dacacSDimitry Andric } 13687a6dacacSDimitry Andric } 13697a6dacacSDimitry Andric } 13707a6dacacSDimitry Andric 13717a6dacacSDimitry Andric // There are two patterns of last-use. 13727a6dacacSDimitry Andric // - by an instruction of the current iteration 13737a6dacacSDimitry Andric // - by a phi instruction of the next iteration (loop carried value) 13747a6dacacSDimitry Andric // 13757a6dacacSDimitry Andric // Furthermore, following two groups of instructions are executed 13767a6dacacSDimitry Andric // simultaneously 13777a6dacacSDimitry Andric // - next iteration's phi instructions in i-th stage 13787a6dacacSDimitry Andric // - current iteration's instructions in i+1-th stage 13797a6dacacSDimitry Andric // 13807a6dacacSDimitry Andric // This function calculates the last-use of each register while taking into 13817a6dacacSDimitry Andric // account the above two patterns. 13827a6dacacSDimitry Andric Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, 13837a6dacacSDimitry Andric Instr2StageTy &Stages) const { 13847a6dacacSDimitry Andric // We treat virtual registers that are defined and used in this loop. 13857a6dacacSDimitry Andric // Following virtual register will be ignored 13867a6dacacSDimitry Andric // - live-in one 13877a6dacacSDimitry Andric // - defined but not used in the loop (potentially live-out) 13887a6dacacSDimitry Andric DenseSet<Register> TargetRegs; 13897a6dacacSDimitry Andric const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { 13907a6dacacSDimitry Andric if (isDefinedInThisLoop(Reg)) 13917a6dacacSDimitry Andric TargetRegs.insert(Reg); 13927a6dacacSDimitry Andric }; 13937a6dacacSDimitry Andric for (MachineInstr *MI : OrderedInsts) { 13947a6dacacSDimitry Andric if (MI->isPHI()) { 13957a6dacacSDimitry Andric Register Reg = getLoopPhiReg(*MI, OrigMBB); 13967a6dacacSDimitry Andric UpdateTargetRegs(Reg); 13977a6dacacSDimitry Andric } else { 13980fca6ea1SDimitry Andric for (auto &Use : ROMap.find(MI)->getSecond().Uses) 13997a6dacacSDimitry Andric UpdateTargetRegs(Use.RegUnit); 14007a6dacacSDimitry Andric } 14017a6dacacSDimitry Andric } 14027a6dacacSDimitry Andric 14037a6dacacSDimitry Andric const auto InstrScore = [&Stages](MachineInstr *MI) { 14047a6dacacSDimitry Andric return Stages[MI] + MI->isPHI(); 14057a6dacacSDimitry Andric }; 14067a6dacacSDimitry Andric 14077a6dacacSDimitry Andric DenseMap<Register, MachineInstr *> LastUseMI; 14087a6dacacSDimitry Andric for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { 14090fca6ea1SDimitry Andric for (auto &Use : ROMap.find(MI)->getSecond().Uses) { 14107a6dacacSDimitry Andric auto Reg = Use.RegUnit; 14117a6dacacSDimitry Andric if (!TargetRegs.contains(Reg)) 14127a6dacacSDimitry Andric continue; 14137a6dacacSDimitry Andric auto Ite = LastUseMI.find(Reg); 14147a6dacacSDimitry Andric if (Ite == LastUseMI.end()) { 14157a6dacacSDimitry Andric LastUseMI[Reg] = MI; 14167a6dacacSDimitry Andric } else { 14177a6dacacSDimitry Andric MachineInstr *Orig = Ite->second; 14187a6dacacSDimitry Andric MachineInstr *New = MI; 14197a6dacacSDimitry Andric if (InstrScore(Orig) < InstrScore(New)) 14207a6dacacSDimitry Andric LastUseMI[Reg] = New; 14217a6dacacSDimitry Andric } 14227a6dacacSDimitry Andric } 14237a6dacacSDimitry Andric } 14247a6dacacSDimitry Andric 14257a6dacacSDimitry Andric Instr2LastUsesTy LastUses; 14267a6dacacSDimitry Andric for (auto &Entry : LastUseMI) 14277a6dacacSDimitry Andric LastUses[Entry.second].insert(Entry.first); 14287a6dacacSDimitry Andric return LastUses; 14297a6dacacSDimitry Andric } 14307a6dacacSDimitry Andric 14317a6dacacSDimitry Andric // Compute the maximum register pressure of the kernel. We'll simulate #Stage 14327a6dacacSDimitry Andric // iterations and check the register pressure at the point where all stages 14337a6dacacSDimitry Andric // overlapping. 14347a6dacacSDimitry Andric // 14357a6dacacSDimitry Andric // An example of unrolled loop where #Stage is 4.. 14367a6dacacSDimitry Andric // Iter i+0 i+1 i+2 i+3 14377a6dacacSDimitry Andric // ------------------------ 14387a6dacacSDimitry Andric // Stage 0 14397a6dacacSDimitry Andric // Stage 1 0 14407a6dacacSDimitry Andric // Stage 2 1 0 14417a6dacacSDimitry Andric // Stage 3 2 1 0 <- All stages overlap 14427a6dacacSDimitry Andric // 14437a6dacacSDimitry Andric std::vector<unsigned> 14447a6dacacSDimitry Andric computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, 14457a6dacacSDimitry Andric Instr2StageTy &Stages, 14467a6dacacSDimitry Andric const unsigned StageCount) const { 14477a6dacacSDimitry Andric using RegSetTy = SmallDenseSet<Register, 16>; 14487a6dacacSDimitry Andric 14497a6dacacSDimitry Andric // Indexed by #Iter. To treat "local" variables of each stage separately, we 14507a6dacacSDimitry Andric // manage the liveness of the registers independently by iterations. 14517a6dacacSDimitry Andric SmallVector<RegSetTy> LiveRegSets(StageCount); 14527a6dacacSDimitry Andric 14537a6dacacSDimitry Andric auto CurSetPressure = InitSetPressure; 14547a6dacacSDimitry Andric auto MaxSetPressure = InitSetPressure; 14557a6dacacSDimitry Andric auto LastUses = computeLastUses(OrderedInsts, Stages); 14567a6dacacSDimitry Andric 14577a6dacacSDimitry Andric LLVM_DEBUG({ 14587a6dacacSDimitry Andric dbgs() << "Ordered instructions:\n"; 14597a6dacacSDimitry Andric for (MachineInstr *MI : OrderedInsts) { 14607a6dacacSDimitry Andric dbgs() << "Stage " << Stages[MI] << ": "; 14617a6dacacSDimitry Andric MI->dump(); 14627a6dacacSDimitry Andric } 14637a6dacacSDimitry Andric }); 14647a6dacacSDimitry Andric 14657a6dacacSDimitry Andric const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, 14667a6dacacSDimitry Andric Register Reg) { 14677a6dacacSDimitry Andric if (!Reg.isValid() || isFixedRegister(Reg)) 14687a6dacacSDimitry Andric return; 14697a6dacacSDimitry Andric 14707a6dacacSDimitry Andric bool Inserted = RegSet.insert(Reg).second; 14717a6dacacSDimitry Andric if (!Inserted) 14727a6dacacSDimitry Andric return; 14737a6dacacSDimitry Andric 14747a6dacacSDimitry Andric LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); 14757a6dacacSDimitry Andric increaseRegisterPressure(CurSetPressure, Reg); 14767a6dacacSDimitry Andric LLVM_DEBUG(dumpPSet(Reg)); 14777a6dacacSDimitry Andric }; 14787a6dacacSDimitry Andric 14797a6dacacSDimitry Andric const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, 14807a6dacacSDimitry Andric Register Reg) { 14817a6dacacSDimitry Andric if (!Reg.isValid() || isFixedRegister(Reg)) 14827a6dacacSDimitry Andric return; 14837a6dacacSDimitry Andric 14847a6dacacSDimitry Andric // live-in register 14857a6dacacSDimitry Andric if (!RegSet.contains(Reg)) 14867a6dacacSDimitry Andric return; 14877a6dacacSDimitry Andric 14887a6dacacSDimitry Andric LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); 14897a6dacacSDimitry Andric RegSet.erase(Reg); 14907a6dacacSDimitry Andric decreaseRegisterPressure(CurSetPressure, Reg); 14917a6dacacSDimitry Andric LLVM_DEBUG(dumpPSet(Reg)); 14927a6dacacSDimitry Andric }; 14937a6dacacSDimitry Andric 14947a6dacacSDimitry Andric for (unsigned I = 0; I < StageCount; I++) { 14957a6dacacSDimitry Andric for (MachineInstr *MI : OrderedInsts) { 14967a6dacacSDimitry Andric const auto Stage = Stages[MI]; 14977a6dacacSDimitry Andric if (I < Stage) 14987a6dacacSDimitry Andric continue; 14997a6dacacSDimitry Andric 15007a6dacacSDimitry Andric const unsigned Iter = I - Stage; 15017a6dacacSDimitry Andric 15020fca6ea1SDimitry Andric for (auto &Def : ROMap.find(MI)->getSecond().Defs) 15037a6dacacSDimitry Andric InsertReg(LiveRegSets[Iter], Def.RegUnit); 15047a6dacacSDimitry Andric 15057a6dacacSDimitry Andric for (auto LastUse : LastUses[MI]) { 15067a6dacacSDimitry Andric if (MI->isPHI()) { 15077a6dacacSDimitry Andric if (Iter != 0) 15087a6dacacSDimitry Andric EraseReg(LiveRegSets[Iter - 1], LastUse); 15097a6dacacSDimitry Andric } else { 15107a6dacacSDimitry Andric EraseReg(LiveRegSets[Iter], LastUse); 15117a6dacacSDimitry Andric } 15127a6dacacSDimitry Andric } 15137a6dacacSDimitry Andric 15147a6dacacSDimitry Andric for (unsigned PSet = 0; PSet < PSetNum; PSet++) 15157a6dacacSDimitry Andric MaxSetPressure[PSet] = 15167a6dacacSDimitry Andric std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); 15177a6dacacSDimitry Andric 15187a6dacacSDimitry Andric LLVM_DEBUG({ 15197a6dacacSDimitry Andric dbgs() << "CurSetPressure="; 15207a6dacacSDimitry Andric dumpRegisterPressures(CurSetPressure); 15217a6dacacSDimitry Andric dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; 15227a6dacacSDimitry Andric MI->dump(); 15237a6dacacSDimitry Andric }); 15247a6dacacSDimitry Andric } 15257a6dacacSDimitry Andric } 15267a6dacacSDimitry Andric 15277a6dacacSDimitry Andric return MaxSetPressure; 15287a6dacacSDimitry Andric } 15297a6dacacSDimitry Andric 15307a6dacacSDimitry Andric public: 15317a6dacacSDimitry Andric HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, 15327a6dacacSDimitry Andric const MachineFunction &MF) 15337a6dacacSDimitry Andric : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), 15347a6dacacSDimitry Andric TRI(MF.getSubtarget().getRegisterInfo()), 15357a6dacacSDimitry Andric PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), 15367a6dacacSDimitry Andric PressureSetLimit(PSetNum, 0) {} 15377a6dacacSDimitry Andric 15387a6dacacSDimitry Andric // Used to calculate register pressure, which is independent of loop 15397a6dacacSDimitry Andric // scheduling. 15407a6dacacSDimitry Andric void init(const RegisterClassInfo &RCI) { 15417a6dacacSDimitry Andric for (MachineInstr &MI : *OrigMBB) { 15427a6dacacSDimitry Andric if (MI.isDebugInstr()) 15437a6dacacSDimitry Andric continue; 15447a6dacacSDimitry Andric ROMap[&MI].collect(MI, *TRI, MRI, false, true); 15457a6dacacSDimitry Andric } 15467a6dacacSDimitry Andric 15477a6dacacSDimitry Andric computeLiveIn(); 15487a6dacacSDimitry Andric computePressureSetLimit(RCI); 15497a6dacacSDimitry Andric } 15507a6dacacSDimitry Andric 15517a6dacacSDimitry Andric // Calculate the maximum register pressures of the loop and check if they 15527a6dacacSDimitry Andric // exceed the limit 15537a6dacacSDimitry Andric bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, 15547a6dacacSDimitry Andric const unsigned MaxStage) const { 15557a6dacacSDimitry Andric assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && 15567a6dacacSDimitry Andric "the percentage of the margin must be between 0 to 100"); 15577a6dacacSDimitry Andric 15587a6dacacSDimitry Andric OrderedInstsTy OrderedInsts; 15597a6dacacSDimitry Andric Instr2StageTy Stages; 15607a6dacacSDimitry Andric computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); 15617a6dacacSDimitry Andric const auto MaxSetPressure = 15627a6dacacSDimitry Andric computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); 15637a6dacacSDimitry Andric 15647a6dacacSDimitry Andric LLVM_DEBUG({ 15657a6dacacSDimitry Andric dbgs() << "Dump MaxSetPressure:\n"; 15667a6dacacSDimitry Andric for (unsigned I = 0; I < MaxSetPressure.size(); I++) { 15677a6dacacSDimitry Andric dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); 15687a6dacacSDimitry Andric } 15697a6dacacSDimitry Andric dbgs() << '\n'; 15707a6dacacSDimitry Andric }); 15717a6dacacSDimitry Andric 15727a6dacacSDimitry Andric for (unsigned PSet = 0; PSet < PSetNum; PSet++) { 15737a6dacacSDimitry Andric unsigned Limit = PressureSetLimit[PSet]; 15747a6dacacSDimitry Andric unsigned Margin = Limit * RegPressureMargin / 100; 15757a6dacacSDimitry Andric LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit 15767a6dacacSDimitry Andric << " Margin=" << Margin << "\n"); 15777a6dacacSDimitry Andric if (Limit < MaxSetPressure[PSet] + Margin) { 15787a6dacacSDimitry Andric LLVM_DEBUG( 15797a6dacacSDimitry Andric dbgs() 15807a6dacacSDimitry Andric << "Rejected the schedule because of too high register pressure\n"); 15817a6dacacSDimitry Andric return true; 15827a6dacacSDimitry Andric } 15837a6dacacSDimitry Andric } 15847a6dacacSDimitry Andric return false; 15857a6dacacSDimitry Andric } 15867a6dacacSDimitry Andric }; 15877a6dacacSDimitry Andric 15880b57cec5SDimitry Andric } // end anonymous namespace 15890b57cec5SDimitry Andric 15900b57cec5SDimitry Andric /// Calculate the resource constrained minimum initiation interval for the 15910b57cec5SDimitry Andric /// specified loop. We use the DFA to model the resources needed for 15920b57cec5SDimitry Andric /// each instruction, and we ignore dependences. A different DFA is created 15930b57cec5SDimitry Andric /// for each cycle that is required. When adding a new instruction, we attempt 15940b57cec5SDimitry Andric /// to add it to each existing DFA, until a legal space is found. If the 15950b57cec5SDimitry Andric /// instruction cannot be reserved in an existing DFA, we create a new one. 15960b57cec5SDimitry Andric unsigned SwingSchedulerDAG::calculateResMII() { 15970b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "calculateResMII:\n"); 1598bdd1243dSDimitry Andric ResourceManager RM(&MF.getSubtarget(), this); 1599bdd1243dSDimitry Andric return RM.calculateResMII(); 16000b57cec5SDimitry Andric } 16010b57cec5SDimitry Andric 16020b57cec5SDimitry Andric /// Calculate the recurrence-constrainted minimum initiation interval. 16030b57cec5SDimitry Andric /// Iterate over each circuit. Compute the delay(c) and distance(c) 16040b57cec5SDimitry Andric /// for each circuit. The II needs to satisfy the inequality 16050b57cec5SDimitry Andric /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 16060b57cec5SDimitry Andric /// II that satisfies the inequality, and the RecMII is the maximum 16070b57cec5SDimitry Andric /// of those values. 16080b57cec5SDimitry Andric unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 16090b57cec5SDimitry Andric unsigned RecMII = 0; 16100b57cec5SDimitry Andric 16110b57cec5SDimitry Andric for (NodeSet &Nodes : NodeSets) { 16120b57cec5SDimitry Andric if (Nodes.empty()) 16130b57cec5SDimitry Andric continue; 16140b57cec5SDimitry Andric 16150b57cec5SDimitry Andric unsigned Delay = Nodes.getLatency(); 16160b57cec5SDimitry Andric unsigned Distance = 1; 16170b57cec5SDimitry Andric 16180b57cec5SDimitry Andric // ii = ceil(delay / distance) 16190b57cec5SDimitry Andric unsigned CurMII = (Delay + Distance - 1) / Distance; 16200b57cec5SDimitry Andric Nodes.setRecMII(CurMII); 16210b57cec5SDimitry Andric if (CurMII > RecMII) 16220b57cec5SDimitry Andric RecMII = CurMII; 16230b57cec5SDimitry Andric } 16240b57cec5SDimitry Andric 16250b57cec5SDimitry Andric return RecMII; 16260b57cec5SDimitry Andric } 16270b57cec5SDimitry Andric 16280b57cec5SDimitry Andric /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 16290b57cec5SDimitry Andric /// but we do this to find the circuits, and then change them back. 16300b57cec5SDimitry Andric static void swapAntiDependences(std::vector<SUnit> &SUnits) { 16310b57cec5SDimitry Andric SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 16320eae32dcSDimitry Andric for (SUnit &SU : SUnits) { 16330eae32dcSDimitry Andric for (SDep &Pred : SU.Preds) 16340eae32dcSDimitry Andric if (Pred.getKind() == SDep::Anti) 16350eae32dcSDimitry Andric DepsAdded.push_back(std::make_pair(&SU, Pred)); 16360b57cec5SDimitry Andric } 1637fe6060f1SDimitry Andric for (std::pair<SUnit *, SDep> &P : DepsAdded) { 16380b57cec5SDimitry Andric // Remove this anti dependency and add one in the reverse direction. 1639fe6060f1SDimitry Andric SUnit *SU = P.first; 1640fe6060f1SDimitry Andric SDep &D = P.second; 16410b57cec5SDimitry Andric SUnit *TargetSU = D.getSUnit(); 16420b57cec5SDimitry Andric unsigned Reg = D.getReg(); 16430b57cec5SDimitry Andric unsigned Lat = D.getLatency(); 16440b57cec5SDimitry Andric SU->removePred(D); 16450b57cec5SDimitry Andric SDep Dep(SU, SDep::Anti, Reg); 16460b57cec5SDimitry Andric Dep.setLatency(Lat); 16470b57cec5SDimitry Andric TargetSU->addPred(Dep); 16480b57cec5SDimitry Andric } 16490b57cec5SDimitry Andric } 16500b57cec5SDimitry Andric 16510b57cec5SDimitry Andric /// Create the adjacency structure of the nodes in the graph. 16520b57cec5SDimitry Andric void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 16530b57cec5SDimitry Andric SwingSchedulerDAG *DAG) { 16540b57cec5SDimitry Andric BitVector Added(SUnits.size()); 16550b57cec5SDimitry Andric DenseMap<int, int> OutputDeps; 16560b57cec5SDimitry Andric for (int i = 0, e = SUnits.size(); i != e; ++i) { 16570b57cec5SDimitry Andric Added.reset(); 16580b57cec5SDimitry Andric // Add any successor to the adjacency matrix and exclude duplicates. 16590b57cec5SDimitry Andric for (auto &SI : SUnits[i].Succs) { 16600b57cec5SDimitry Andric // Only create a back-edge on the first and last nodes of a dependence 16610b57cec5SDimitry Andric // chain. This records any chains and adds them later. 16620b57cec5SDimitry Andric if (SI.getKind() == SDep::Output) { 16630b57cec5SDimitry Andric int N = SI.getSUnit()->NodeNum; 16640b57cec5SDimitry Andric int BackEdge = i; 16650b57cec5SDimitry Andric auto Dep = OutputDeps.find(BackEdge); 16660b57cec5SDimitry Andric if (Dep != OutputDeps.end()) { 16670b57cec5SDimitry Andric BackEdge = Dep->second; 16680b57cec5SDimitry Andric OutputDeps.erase(Dep); 16690b57cec5SDimitry Andric } 16700b57cec5SDimitry Andric OutputDeps[N] = BackEdge; 16710b57cec5SDimitry Andric } 16720b57cec5SDimitry Andric // Do not process a boundary node, an artificial node. 16730b57cec5SDimitry Andric // A back-edge is processed only if it goes to a Phi. 16740b57cec5SDimitry Andric if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || 16750b57cec5SDimitry Andric (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 16760b57cec5SDimitry Andric continue; 16770b57cec5SDimitry Andric int N = SI.getSUnit()->NodeNum; 16780b57cec5SDimitry Andric if (!Added.test(N)) { 16790b57cec5SDimitry Andric AdjK[i].push_back(N); 16800b57cec5SDimitry Andric Added.set(N); 16810b57cec5SDimitry Andric } 16820b57cec5SDimitry Andric } 16830b57cec5SDimitry Andric // A chain edge between a store and a load is treated as a back-edge in the 16840b57cec5SDimitry Andric // adjacency matrix. 16850b57cec5SDimitry Andric for (auto &PI : SUnits[i].Preds) { 16860b57cec5SDimitry Andric if (!SUnits[i].getInstr()->mayStore() || 16870b57cec5SDimitry Andric !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) 16880b57cec5SDimitry Andric continue; 16890b57cec5SDimitry Andric if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 16900b57cec5SDimitry Andric int N = PI.getSUnit()->NodeNum; 16910b57cec5SDimitry Andric if (!Added.test(N)) { 16920b57cec5SDimitry Andric AdjK[i].push_back(N); 16930b57cec5SDimitry Andric Added.set(N); 16940b57cec5SDimitry Andric } 16950b57cec5SDimitry Andric } 16960b57cec5SDimitry Andric } 16970b57cec5SDimitry Andric } 16980b57cec5SDimitry Andric // Add back-edges in the adjacency matrix for the output dependences. 16990b57cec5SDimitry Andric for (auto &OD : OutputDeps) 17000b57cec5SDimitry Andric if (!Added.test(OD.second)) { 17010b57cec5SDimitry Andric AdjK[OD.first].push_back(OD.second); 17020b57cec5SDimitry Andric Added.set(OD.second); 17030b57cec5SDimitry Andric } 17040b57cec5SDimitry Andric } 17050b57cec5SDimitry Andric 17060b57cec5SDimitry Andric /// Identify an elementary circuit in the dependence graph starting at the 17070b57cec5SDimitry Andric /// specified node. 17080b57cec5SDimitry Andric bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 17090b57cec5SDimitry Andric bool HasBackedge) { 17100b57cec5SDimitry Andric SUnit *SV = &SUnits[V]; 17110b57cec5SDimitry Andric bool F = false; 17120b57cec5SDimitry Andric Stack.insert(SV); 17130b57cec5SDimitry Andric Blocked.set(V); 17140b57cec5SDimitry Andric 17150b57cec5SDimitry Andric for (auto W : AdjK[V]) { 17160b57cec5SDimitry Andric if (NumPaths > MaxPaths) 17170b57cec5SDimitry Andric break; 17180b57cec5SDimitry Andric if (W < S) 17190b57cec5SDimitry Andric continue; 17200b57cec5SDimitry Andric if (W == S) { 17210b57cec5SDimitry Andric if (!HasBackedge) 17220b57cec5SDimitry Andric NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 17230b57cec5SDimitry Andric F = true; 17240b57cec5SDimitry Andric ++NumPaths; 17250b57cec5SDimitry Andric break; 17260b57cec5SDimitry Andric } else if (!Blocked.test(W)) { 17270b57cec5SDimitry Andric if (circuit(W, S, NodeSets, 17280b57cec5SDimitry Andric Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) 17290b57cec5SDimitry Andric F = true; 17300b57cec5SDimitry Andric } 17310b57cec5SDimitry Andric } 17320b57cec5SDimitry Andric 17330b57cec5SDimitry Andric if (F) 17340b57cec5SDimitry Andric unblock(V); 17350b57cec5SDimitry Andric else { 17360b57cec5SDimitry Andric for (auto W : AdjK[V]) { 17370b57cec5SDimitry Andric if (W < S) 17380b57cec5SDimitry Andric continue; 17390b57cec5SDimitry Andric B[W].insert(SV); 17400b57cec5SDimitry Andric } 17410b57cec5SDimitry Andric } 17420b57cec5SDimitry Andric Stack.pop_back(); 17430b57cec5SDimitry Andric return F; 17440b57cec5SDimitry Andric } 17450b57cec5SDimitry Andric 17460b57cec5SDimitry Andric /// Unblock a node in the circuit finding algorithm. 17470b57cec5SDimitry Andric void SwingSchedulerDAG::Circuits::unblock(int U) { 17480b57cec5SDimitry Andric Blocked.reset(U); 17490b57cec5SDimitry Andric SmallPtrSet<SUnit *, 4> &BU = B[U]; 17500b57cec5SDimitry Andric while (!BU.empty()) { 17510b57cec5SDimitry Andric SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 17520b57cec5SDimitry Andric assert(SI != BU.end() && "Invalid B set."); 17530b57cec5SDimitry Andric SUnit *W = *SI; 17540b57cec5SDimitry Andric BU.erase(W); 17550b57cec5SDimitry Andric if (Blocked.test(W->NodeNum)) 17560b57cec5SDimitry Andric unblock(W->NodeNum); 17570b57cec5SDimitry Andric } 17580b57cec5SDimitry Andric } 17590b57cec5SDimitry Andric 17600b57cec5SDimitry Andric /// Identify all the elementary circuits in the dependence graph using 17610b57cec5SDimitry Andric /// Johnson's circuit algorithm. 17620b57cec5SDimitry Andric void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 17630b57cec5SDimitry Andric // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 17640b57cec5SDimitry Andric // but we do this to find the circuits, and then change them back. 17650b57cec5SDimitry Andric swapAntiDependences(SUnits); 17660b57cec5SDimitry Andric 17670b57cec5SDimitry Andric Circuits Cir(SUnits, Topo); 17680b57cec5SDimitry Andric // Create the adjacency structure. 17690b57cec5SDimitry Andric Cir.createAdjacencyStructure(this); 17700b57cec5SDimitry Andric for (int i = 0, e = SUnits.size(); i != e; ++i) { 17710b57cec5SDimitry Andric Cir.reset(); 17720b57cec5SDimitry Andric Cir.circuit(i, i, NodeSets); 17730b57cec5SDimitry Andric } 17740b57cec5SDimitry Andric 17750b57cec5SDimitry Andric // Change the dependences back so that we've created a DAG again. 17760b57cec5SDimitry Andric swapAntiDependences(SUnits); 17770b57cec5SDimitry Andric } 17780b57cec5SDimitry Andric 17790b57cec5SDimitry Andric // Create artificial dependencies between the source of COPY/REG_SEQUENCE that 17800b57cec5SDimitry Andric // is loop-carried to the USE in next iteration. This will help pipeliner avoid 17810b57cec5SDimitry Andric // additional copies that are needed across iterations. An artificial dependence 17820b57cec5SDimitry Andric // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. 17830b57cec5SDimitry Andric 17840b57cec5SDimitry Andric // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) 17850b57cec5SDimitry Andric // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE 17860b57cec5SDimitry Andric // PHI-------True-Dep------> USEOfPhi 17870b57cec5SDimitry Andric 17880b57cec5SDimitry Andric // The mutation creates 17890b57cec5SDimitry Andric // USEOfPHI -------Artificial-Dep---> SRCOfCopy 17900b57cec5SDimitry Andric 17910b57cec5SDimitry Andric // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy 17920b57cec5SDimitry Andric // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled 17930b57cec5SDimitry Andric // late to avoid additional copies across iterations. The possible scheduling 17940b57cec5SDimitry Andric // order would be 17950b57cec5SDimitry Andric // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. 17960b57cec5SDimitry Andric 17970b57cec5SDimitry Andric void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { 17980b57cec5SDimitry Andric for (SUnit &SU : DAG->SUnits) { 17990b57cec5SDimitry Andric // Find the COPY/REG_SEQUENCE instruction. 18000b57cec5SDimitry Andric if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) 18010b57cec5SDimitry Andric continue; 18020b57cec5SDimitry Andric 18030b57cec5SDimitry Andric // Record the loop carried PHIs. 18040b57cec5SDimitry Andric SmallVector<SUnit *, 4> PHISUs; 18050b57cec5SDimitry Andric // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. 18060b57cec5SDimitry Andric SmallVector<SUnit *, 4> SrcSUs; 18070b57cec5SDimitry Andric 18080b57cec5SDimitry Andric for (auto &Dep : SU.Preds) { 18090b57cec5SDimitry Andric SUnit *TmpSU = Dep.getSUnit(); 18100b57cec5SDimitry Andric MachineInstr *TmpMI = TmpSU->getInstr(); 18110b57cec5SDimitry Andric SDep::Kind DepKind = Dep.getKind(); 18120b57cec5SDimitry Andric // Save the loop carried PHI. 18130b57cec5SDimitry Andric if (DepKind == SDep::Anti && TmpMI->isPHI()) 18140b57cec5SDimitry Andric PHISUs.push_back(TmpSU); 18150b57cec5SDimitry Andric // Save the source of COPY/REG_SEQUENCE. 18160b57cec5SDimitry Andric // If the source has no pre-decessors, we will end up creating cycles. 18170b57cec5SDimitry Andric else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) 18180b57cec5SDimitry Andric SrcSUs.push_back(TmpSU); 18190b57cec5SDimitry Andric } 18200b57cec5SDimitry Andric 18210b57cec5SDimitry Andric if (PHISUs.size() == 0 || SrcSUs.size() == 0) 18220b57cec5SDimitry Andric continue; 18230b57cec5SDimitry Andric 18240b57cec5SDimitry Andric // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this 18250b57cec5SDimitry Andric // SUnit to the container. 18260b57cec5SDimitry Andric SmallVector<SUnit *, 8> UseSUs; 1827480093f4SDimitry Andric // Do not use iterator based loop here as we are updating the container. 1828480093f4SDimitry Andric for (size_t Index = 0; Index < PHISUs.size(); ++Index) { 1829480093f4SDimitry Andric for (auto &Dep : PHISUs[Index]->Succs) { 18300b57cec5SDimitry Andric if (Dep.getKind() != SDep::Data) 18310b57cec5SDimitry Andric continue; 18320b57cec5SDimitry Andric 18330b57cec5SDimitry Andric SUnit *TmpSU = Dep.getSUnit(); 18340b57cec5SDimitry Andric MachineInstr *TmpMI = TmpSU->getInstr(); 18350b57cec5SDimitry Andric if (TmpMI->isPHI() || TmpMI->isRegSequence()) { 18360b57cec5SDimitry Andric PHISUs.push_back(TmpSU); 18370b57cec5SDimitry Andric continue; 18380b57cec5SDimitry Andric } 18390b57cec5SDimitry Andric UseSUs.push_back(TmpSU); 18400b57cec5SDimitry Andric } 18410b57cec5SDimitry Andric } 18420b57cec5SDimitry Andric 18430b57cec5SDimitry Andric if (UseSUs.size() == 0) 18440b57cec5SDimitry Andric continue; 18450b57cec5SDimitry Andric 18460b57cec5SDimitry Andric SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); 18470b57cec5SDimitry Andric // Add the artificial dependencies if it does not form a cycle. 1848fcaf7f86SDimitry Andric for (auto *I : UseSUs) { 1849fcaf7f86SDimitry Andric for (auto *Src : SrcSUs) { 18500b57cec5SDimitry Andric if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { 18510b57cec5SDimitry Andric Src->addPred(SDep(I, SDep::Artificial)); 18520b57cec5SDimitry Andric SDAG->Topo.AddPred(Src, I); 18530b57cec5SDimitry Andric } 18540b57cec5SDimitry Andric } 18550b57cec5SDimitry Andric } 18560b57cec5SDimitry Andric } 18570b57cec5SDimitry Andric } 18580b57cec5SDimitry Andric 18590b57cec5SDimitry Andric /// Return true for DAG nodes that we ignore when computing the cost functions. 18600b57cec5SDimitry Andric /// We ignore the back-edge recurrence in order to avoid unbounded recursion 18610b57cec5SDimitry Andric /// in the calculation of the ASAP, ALAP, etc functions. 18620b57cec5SDimitry Andric static bool ignoreDependence(const SDep &D, bool isPred) { 186381ad6265SDimitry Andric if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) 18640b57cec5SDimitry Andric return true; 18650b57cec5SDimitry Andric return D.getKind() == SDep::Anti && isPred; 18660b57cec5SDimitry Andric } 18670b57cec5SDimitry Andric 18680b57cec5SDimitry Andric /// Compute several functions need to order the nodes for scheduling. 18690b57cec5SDimitry Andric /// ASAP - Earliest time to schedule a node. 18700b57cec5SDimitry Andric /// ALAP - Latest time to schedule a node. 18710b57cec5SDimitry Andric /// MOV - Mobility function, difference between ALAP and ASAP. 18720b57cec5SDimitry Andric /// D - Depth of each node. 18730b57cec5SDimitry Andric /// H - Height of each node. 18740b57cec5SDimitry Andric void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 18750b57cec5SDimitry Andric ScheduleInfo.resize(SUnits.size()); 18760b57cec5SDimitry Andric 18770b57cec5SDimitry Andric LLVM_DEBUG({ 1878fe6060f1SDimitry Andric for (int I : Topo) { 1879fe6060f1SDimitry Andric const SUnit &SU = SUnits[I]; 18800b57cec5SDimitry Andric dumpNode(SU); 18810b57cec5SDimitry Andric } 18820b57cec5SDimitry Andric }); 18830b57cec5SDimitry Andric 18840b57cec5SDimitry Andric int maxASAP = 0; 18850b57cec5SDimitry Andric // Compute ASAP and ZeroLatencyDepth. 1886fe6060f1SDimitry Andric for (int I : Topo) { 18870b57cec5SDimitry Andric int asap = 0; 18880b57cec5SDimitry Andric int zeroLatencyDepth = 0; 1889fe6060f1SDimitry Andric SUnit *SU = &SUnits[I]; 18904824e7fdSDimitry Andric for (const SDep &P : SU->Preds) { 18914824e7fdSDimitry Andric SUnit *pred = P.getSUnit(); 18924824e7fdSDimitry Andric if (P.getLatency() == 0) 18930b57cec5SDimitry Andric zeroLatencyDepth = 18940b57cec5SDimitry Andric std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); 18954824e7fdSDimitry Andric if (ignoreDependence(P, true)) 18960b57cec5SDimitry Andric continue; 18974824e7fdSDimitry Andric asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - 18984824e7fdSDimitry Andric getDistance(pred, SU, P) * MII)); 18990b57cec5SDimitry Andric } 19000b57cec5SDimitry Andric maxASAP = std::max(maxASAP, asap); 1901fe6060f1SDimitry Andric ScheduleInfo[I].ASAP = asap; 1902fe6060f1SDimitry Andric ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; 19030b57cec5SDimitry Andric } 19040b57cec5SDimitry Andric 19050b57cec5SDimitry Andric // Compute ALAP, ZeroLatencyHeight, and MOV. 19060eae32dcSDimitry Andric for (int I : llvm::reverse(Topo)) { 19070b57cec5SDimitry Andric int alap = maxASAP; 19080b57cec5SDimitry Andric int zeroLatencyHeight = 0; 19090eae32dcSDimitry Andric SUnit *SU = &SUnits[I]; 19100eae32dcSDimitry Andric for (const SDep &S : SU->Succs) { 19110eae32dcSDimitry Andric SUnit *succ = S.getSUnit(); 191281ad6265SDimitry Andric if (succ->isBoundaryNode()) 191381ad6265SDimitry Andric continue; 19140eae32dcSDimitry Andric if (S.getLatency() == 0) 19150b57cec5SDimitry Andric zeroLatencyHeight = 19160b57cec5SDimitry Andric std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); 19170eae32dcSDimitry Andric if (ignoreDependence(S, true)) 19180b57cec5SDimitry Andric continue; 19190eae32dcSDimitry Andric alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + 19200eae32dcSDimitry Andric getDistance(SU, succ, S) * MII)); 19210b57cec5SDimitry Andric } 19220b57cec5SDimitry Andric 19230eae32dcSDimitry Andric ScheduleInfo[I].ALAP = alap; 19240eae32dcSDimitry Andric ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; 19250b57cec5SDimitry Andric } 19260b57cec5SDimitry Andric 19270b57cec5SDimitry Andric // After computing the node functions, compute the summary for each node set. 19280b57cec5SDimitry Andric for (NodeSet &I : NodeSets) 19290b57cec5SDimitry Andric I.computeNodeSetInfo(this); 19300b57cec5SDimitry Andric 19310b57cec5SDimitry Andric LLVM_DEBUG({ 19320b57cec5SDimitry Andric for (unsigned i = 0; i < SUnits.size(); i++) { 19330b57cec5SDimitry Andric dbgs() << "\tNode " << i << ":\n"; 19340b57cec5SDimitry Andric dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 19350b57cec5SDimitry Andric dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 19360b57cec5SDimitry Andric dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 19370b57cec5SDimitry Andric dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 19380b57cec5SDimitry Andric dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 19390b57cec5SDimitry Andric dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; 19400b57cec5SDimitry Andric dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; 19410b57cec5SDimitry Andric } 19420b57cec5SDimitry Andric }); 19430b57cec5SDimitry Andric } 19440b57cec5SDimitry Andric 19450b57cec5SDimitry Andric /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 19460b57cec5SDimitry Andric /// as the predecessors of the elements of NodeOrder that are not also in 19470b57cec5SDimitry Andric /// NodeOrder. 19480b57cec5SDimitry Andric static bool pred_L(SetVector<SUnit *> &NodeOrder, 19490b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> &Preds, 19500b57cec5SDimitry Andric const NodeSet *S = nullptr) { 19510b57cec5SDimitry Andric Preds.clear(); 19524824e7fdSDimitry Andric for (const SUnit *SU : NodeOrder) { 19534824e7fdSDimitry Andric for (const SDep &Pred : SU->Preds) { 1954fe6060f1SDimitry Andric if (S && S->count(Pred.getSUnit()) == 0) 19550b57cec5SDimitry Andric continue; 1956fe6060f1SDimitry Andric if (ignoreDependence(Pred, true)) 19570b57cec5SDimitry Andric continue; 1958fe6060f1SDimitry Andric if (NodeOrder.count(Pred.getSUnit()) == 0) 1959fe6060f1SDimitry Andric Preds.insert(Pred.getSUnit()); 19600b57cec5SDimitry Andric } 19610b57cec5SDimitry Andric // Back-edges are predecessors with an anti-dependence. 19624824e7fdSDimitry Andric for (const SDep &Succ : SU->Succs) { 1963fe6060f1SDimitry Andric if (Succ.getKind() != SDep::Anti) 19640b57cec5SDimitry Andric continue; 1965fe6060f1SDimitry Andric if (S && S->count(Succ.getSUnit()) == 0) 19660b57cec5SDimitry Andric continue; 1967fe6060f1SDimitry Andric if (NodeOrder.count(Succ.getSUnit()) == 0) 1968fe6060f1SDimitry Andric Preds.insert(Succ.getSUnit()); 19690b57cec5SDimitry Andric } 19700b57cec5SDimitry Andric } 19710b57cec5SDimitry Andric return !Preds.empty(); 19720b57cec5SDimitry Andric } 19730b57cec5SDimitry Andric 19740b57cec5SDimitry Andric /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 19750b57cec5SDimitry Andric /// as the successors of the elements of NodeOrder that are not also in 19760b57cec5SDimitry Andric /// NodeOrder. 19770b57cec5SDimitry Andric static bool succ_L(SetVector<SUnit *> &NodeOrder, 19780b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> &Succs, 19790b57cec5SDimitry Andric const NodeSet *S = nullptr) { 19800b57cec5SDimitry Andric Succs.clear(); 19810eae32dcSDimitry Andric for (const SUnit *SU : NodeOrder) { 19820eae32dcSDimitry Andric for (const SDep &Succ : SU->Succs) { 1983fe6060f1SDimitry Andric if (S && S->count(Succ.getSUnit()) == 0) 19840b57cec5SDimitry Andric continue; 1985fe6060f1SDimitry Andric if (ignoreDependence(Succ, false)) 19860b57cec5SDimitry Andric continue; 1987fe6060f1SDimitry Andric if (NodeOrder.count(Succ.getSUnit()) == 0) 1988fe6060f1SDimitry Andric Succs.insert(Succ.getSUnit()); 19890b57cec5SDimitry Andric } 19900eae32dcSDimitry Andric for (const SDep &Pred : SU->Preds) { 1991fe6060f1SDimitry Andric if (Pred.getKind() != SDep::Anti) 19920b57cec5SDimitry Andric continue; 1993fe6060f1SDimitry Andric if (S && S->count(Pred.getSUnit()) == 0) 19940b57cec5SDimitry Andric continue; 1995fe6060f1SDimitry Andric if (NodeOrder.count(Pred.getSUnit()) == 0) 1996fe6060f1SDimitry Andric Succs.insert(Pred.getSUnit()); 19970b57cec5SDimitry Andric } 19980b57cec5SDimitry Andric } 19990b57cec5SDimitry Andric return !Succs.empty(); 20000b57cec5SDimitry Andric } 20010b57cec5SDimitry Andric 20020b57cec5SDimitry Andric /// Return true if there is a path from the specified node to any of the nodes 20030b57cec5SDimitry Andric /// in DestNodes. Keep track and return the nodes in any path. 20040b57cec5SDimitry Andric static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 20050b57cec5SDimitry Andric SetVector<SUnit *> &DestNodes, 20060b57cec5SDimitry Andric SetVector<SUnit *> &Exclude, 20070b57cec5SDimitry Andric SmallPtrSet<SUnit *, 8> &Visited) { 20080b57cec5SDimitry Andric if (Cur->isBoundaryNode()) 20090b57cec5SDimitry Andric return false; 2010e8d8bef9SDimitry Andric if (Exclude.contains(Cur)) 20110b57cec5SDimitry Andric return false; 2012e8d8bef9SDimitry Andric if (DestNodes.contains(Cur)) 20130b57cec5SDimitry Andric return true; 20140b57cec5SDimitry Andric if (!Visited.insert(Cur).second) 2015e8d8bef9SDimitry Andric return Path.contains(Cur); 20160b57cec5SDimitry Andric bool FoundPath = false; 20170b57cec5SDimitry Andric for (auto &SI : Cur->Succs) 201881ad6265SDimitry Andric if (!ignoreDependence(SI, false)) 201981ad6265SDimitry Andric FoundPath |= 202081ad6265SDimitry Andric computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 20210b57cec5SDimitry Andric for (auto &PI : Cur->Preds) 20220b57cec5SDimitry Andric if (PI.getKind() == SDep::Anti) 20230b57cec5SDimitry Andric FoundPath |= 20240b57cec5SDimitry Andric computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 20250b57cec5SDimitry Andric if (FoundPath) 20260b57cec5SDimitry Andric Path.insert(Cur); 20270b57cec5SDimitry Andric return FoundPath; 20280b57cec5SDimitry Andric } 20290b57cec5SDimitry Andric 20300b57cec5SDimitry Andric /// Compute the live-out registers for the instructions in a node-set. 20310b57cec5SDimitry Andric /// The live-out registers are those that are defined in the node-set, 20320b57cec5SDimitry Andric /// but not used. Except for use operands of Phis. 20330b57cec5SDimitry Andric static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 20340b57cec5SDimitry Andric NodeSet &NS) { 20350b57cec5SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 20360b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 20370b57cec5SDimitry Andric SmallVector<RegisterMaskPair, 8> LiveOutRegs; 20380b57cec5SDimitry Andric SmallSet<unsigned, 4> Uses; 20390b57cec5SDimitry Andric for (SUnit *SU : NS) { 20400b57cec5SDimitry Andric const MachineInstr *MI = SU->getInstr(); 20410b57cec5SDimitry Andric if (MI->isPHI()) 20420b57cec5SDimitry Andric continue; 204306c3fb27SDimitry Andric for (const MachineOperand &MO : MI->all_uses()) { 20448bcb0991SDimitry Andric Register Reg = MO.getReg(); 2045bdd1243dSDimitry Andric if (Reg.isVirtual()) 20460b57cec5SDimitry Andric Uses.insert(Reg); 20470b57cec5SDimitry Andric else if (MRI.isAllocatable(Reg)) 204806c3fb27SDimitry Andric for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 204906c3fb27SDimitry Andric Uses.insert(Unit); 20500b57cec5SDimitry Andric } 20510b57cec5SDimitry Andric } 20520b57cec5SDimitry Andric for (SUnit *SU : NS) 205306c3fb27SDimitry Andric for (const MachineOperand &MO : SU->getInstr()->all_defs()) 205406c3fb27SDimitry Andric if (!MO.isDead()) { 20558bcb0991SDimitry Andric Register Reg = MO.getReg(); 2056bdd1243dSDimitry Andric if (Reg.isVirtual()) { 20570b57cec5SDimitry Andric if (!Uses.count(Reg)) 20580b57cec5SDimitry Andric LiveOutRegs.push_back(RegisterMaskPair(Reg, 20590b57cec5SDimitry Andric LaneBitmask::getNone())); 20600b57cec5SDimitry Andric } else if (MRI.isAllocatable(Reg)) { 206106c3fb27SDimitry Andric for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) 206206c3fb27SDimitry Andric if (!Uses.count(Unit)) 206306c3fb27SDimitry Andric LiveOutRegs.push_back( 206406c3fb27SDimitry Andric RegisterMaskPair(Unit, LaneBitmask::getNone())); 20650b57cec5SDimitry Andric } 20660b57cec5SDimitry Andric } 20670b57cec5SDimitry Andric RPTracker.addLiveRegs(LiveOutRegs); 20680b57cec5SDimitry Andric } 20690b57cec5SDimitry Andric 20700b57cec5SDimitry Andric /// A heuristic to filter nodes in recurrent node-sets if the register 20710b57cec5SDimitry Andric /// pressure of a set is too high. 20720b57cec5SDimitry Andric void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 20730b57cec5SDimitry Andric for (auto &NS : NodeSets) { 20740b57cec5SDimitry Andric // Skip small node-sets since they won't cause register pressure problems. 20750b57cec5SDimitry Andric if (NS.size() <= 2) 20760b57cec5SDimitry Andric continue; 20770b57cec5SDimitry Andric IntervalPressure RecRegPressure; 20780b57cec5SDimitry Andric RegPressureTracker RecRPTracker(RecRegPressure); 20790b57cec5SDimitry Andric RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 20800b57cec5SDimitry Andric computeLiveOuts(MF, RecRPTracker, NS); 20810b57cec5SDimitry Andric RecRPTracker.closeBottom(); 20820b57cec5SDimitry Andric 20830b57cec5SDimitry Andric std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 20840b57cec5SDimitry Andric llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { 20850b57cec5SDimitry Andric return A->NodeNum > B->NodeNum; 20860b57cec5SDimitry Andric }); 20870b57cec5SDimitry Andric 20880b57cec5SDimitry Andric for (auto &SU : SUnits) { 20890b57cec5SDimitry Andric // Since we're computing the register pressure for a subset of the 20900b57cec5SDimitry Andric // instructions in a block, we need to set the tracker for each 20910b57cec5SDimitry Andric // instruction in the node-set. The tracker is set to the instruction 20920b57cec5SDimitry Andric // just after the one we're interested in. 20930b57cec5SDimitry Andric MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 20940b57cec5SDimitry Andric RecRPTracker.setPos(std::next(CurInstI)); 20950b57cec5SDimitry Andric 20960b57cec5SDimitry Andric RegPressureDelta RPDelta; 20970b57cec5SDimitry Andric ArrayRef<PressureChange> CriticalPSets; 20980b57cec5SDimitry Andric RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 20990b57cec5SDimitry Andric CriticalPSets, 21000b57cec5SDimitry Andric RecRegPressure.MaxSetPressure); 21010b57cec5SDimitry Andric if (RPDelta.Excess.isValid()) { 21020b57cec5SDimitry Andric LLVM_DEBUG( 21030b57cec5SDimitry Andric dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 21040b57cec5SDimitry Andric << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 210581ad6265SDimitry Andric << ":" << RPDelta.Excess.getUnitInc() << "\n"); 21060b57cec5SDimitry Andric NS.setExceedPressure(SU); 21070b57cec5SDimitry Andric break; 21080b57cec5SDimitry Andric } 21090b57cec5SDimitry Andric RecRPTracker.recede(); 21100b57cec5SDimitry Andric } 21110b57cec5SDimitry Andric } 21120b57cec5SDimitry Andric } 21130b57cec5SDimitry Andric 21140b57cec5SDimitry Andric /// A heuristic to colocate node sets that have the same set of 21150b57cec5SDimitry Andric /// successors. 21160b57cec5SDimitry Andric void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 21170b57cec5SDimitry Andric unsigned Colocate = 0; 21180b57cec5SDimitry Andric for (int i = 0, e = NodeSets.size(); i < e; ++i) { 21190b57cec5SDimitry Andric NodeSet &N1 = NodeSets[i]; 21200b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> S1; 21210b57cec5SDimitry Andric if (N1.empty() || !succ_L(N1, S1)) 21220b57cec5SDimitry Andric continue; 21230b57cec5SDimitry Andric for (int j = i + 1; j < e; ++j) { 21240b57cec5SDimitry Andric NodeSet &N2 = NodeSets[j]; 21250b57cec5SDimitry Andric if (N1.compareRecMII(N2) != 0) 21260b57cec5SDimitry Andric continue; 21270b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> S2; 21280b57cec5SDimitry Andric if (N2.empty() || !succ_L(N2, S2)) 21290b57cec5SDimitry Andric continue; 2130fe6060f1SDimitry Andric if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { 21310b57cec5SDimitry Andric N1.setColocate(++Colocate); 21320b57cec5SDimitry Andric N2.setColocate(Colocate); 21330b57cec5SDimitry Andric break; 21340b57cec5SDimitry Andric } 21350b57cec5SDimitry Andric } 21360b57cec5SDimitry Andric } 21370b57cec5SDimitry Andric } 21380b57cec5SDimitry Andric 21390b57cec5SDimitry Andric /// Check if the existing node-sets are profitable. If not, then ignore the 21400b57cec5SDimitry Andric /// recurrent node-sets, and attempt to schedule all nodes together. This is 21410b57cec5SDimitry Andric /// a heuristic. If the MII is large and all the recurrent node-sets are small, 21420b57cec5SDimitry Andric /// then it's best to try to schedule all instructions together instead of 21430b57cec5SDimitry Andric /// starting with the recurrent node-sets. 21440b57cec5SDimitry Andric void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 21450b57cec5SDimitry Andric // Look for loops with a large MII. 21460b57cec5SDimitry Andric if (MII < 17) 21470b57cec5SDimitry Andric return; 21480b57cec5SDimitry Andric // Check if the node-set contains only a simple add recurrence. 21490b57cec5SDimitry Andric for (auto &NS : NodeSets) { 21500b57cec5SDimitry Andric if (NS.getRecMII() > 2) 21510b57cec5SDimitry Andric return; 21520b57cec5SDimitry Andric if (NS.getMaxDepth() > MII) 21530b57cec5SDimitry Andric return; 21540b57cec5SDimitry Andric } 21550b57cec5SDimitry Andric NodeSets.clear(); 21560b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); 21570b57cec5SDimitry Andric } 21580b57cec5SDimitry Andric 21590b57cec5SDimitry Andric /// Add the nodes that do not belong to a recurrence set into groups 216081ad6265SDimitry Andric /// based upon connected components. 21610b57cec5SDimitry Andric void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 21620b57cec5SDimitry Andric SetVector<SUnit *> NodesAdded; 21630b57cec5SDimitry Andric SmallPtrSet<SUnit *, 8> Visited; 21640b57cec5SDimitry Andric // Add the nodes that are on a path between the previous node sets and 21650b57cec5SDimitry Andric // the current node set. 21660b57cec5SDimitry Andric for (NodeSet &I : NodeSets) { 21670b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> N; 21680b57cec5SDimitry Andric // Add the nodes from the current node set to the previous node set. 21690b57cec5SDimitry Andric if (succ_L(I, N)) { 21700b57cec5SDimitry Andric SetVector<SUnit *> Path; 21710b57cec5SDimitry Andric for (SUnit *NI : N) { 21720b57cec5SDimitry Andric Visited.clear(); 21730b57cec5SDimitry Andric computePath(NI, Path, NodesAdded, I, Visited); 21740b57cec5SDimitry Andric } 21750b57cec5SDimitry Andric if (!Path.empty()) 21760b57cec5SDimitry Andric I.insert(Path.begin(), Path.end()); 21770b57cec5SDimitry Andric } 21780b57cec5SDimitry Andric // Add the nodes from the previous node set to the current node set. 21790b57cec5SDimitry Andric N.clear(); 21800b57cec5SDimitry Andric if (succ_L(NodesAdded, N)) { 21810b57cec5SDimitry Andric SetVector<SUnit *> Path; 21820b57cec5SDimitry Andric for (SUnit *NI : N) { 21830b57cec5SDimitry Andric Visited.clear(); 21840b57cec5SDimitry Andric computePath(NI, Path, I, NodesAdded, Visited); 21850b57cec5SDimitry Andric } 21860b57cec5SDimitry Andric if (!Path.empty()) 21870b57cec5SDimitry Andric I.insert(Path.begin(), Path.end()); 21880b57cec5SDimitry Andric } 21890b57cec5SDimitry Andric NodesAdded.insert(I.begin(), I.end()); 21900b57cec5SDimitry Andric } 21910b57cec5SDimitry Andric 21920b57cec5SDimitry Andric // Create a new node set with the connected nodes of any successor of a node 21930b57cec5SDimitry Andric // in a recurrent set. 21940b57cec5SDimitry Andric NodeSet NewSet; 21950b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> N; 21960b57cec5SDimitry Andric if (succ_L(NodesAdded, N)) 21970b57cec5SDimitry Andric for (SUnit *I : N) 21980b57cec5SDimitry Andric addConnectedNodes(I, NewSet, NodesAdded); 21990b57cec5SDimitry Andric if (!NewSet.empty()) 22000b57cec5SDimitry Andric NodeSets.push_back(NewSet); 22010b57cec5SDimitry Andric 22020b57cec5SDimitry Andric // Create a new node set with the connected nodes of any predecessor of a node 22030b57cec5SDimitry Andric // in a recurrent set. 22040b57cec5SDimitry Andric NewSet.clear(); 22050b57cec5SDimitry Andric if (pred_L(NodesAdded, N)) 22060b57cec5SDimitry Andric for (SUnit *I : N) 22070b57cec5SDimitry Andric addConnectedNodes(I, NewSet, NodesAdded); 22080b57cec5SDimitry Andric if (!NewSet.empty()) 22090b57cec5SDimitry Andric NodeSets.push_back(NewSet); 22100b57cec5SDimitry Andric 22110b57cec5SDimitry Andric // Create new nodes sets with the connected nodes any remaining node that 22120b57cec5SDimitry Andric // has no predecessor. 2213fe6060f1SDimitry Andric for (SUnit &SU : SUnits) { 2214fe6060f1SDimitry Andric if (NodesAdded.count(&SU) == 0) { 22150b57cec5SDimitry Andric NewSet.clear(); 2216fe6060f1SDimitry Andric addConnectedNodes(&SU, NewSet, NodesAdded); 22170b57cec5SDimitry Andric if (!NewSet.empty()) 22180b57cec5SDimitry Andric NodeSets.push_back(NewSet); 22190b57cec5SDimitry Andric } 22200b57cec5SDimitry Andric } 22210b57cec5SDimitry Andric } 22220b57cec5SDimitry Andric 22230b57cec5SDimitry Andric /// Add the node to the set, and add all of its connected nodes to the set. 22240b57cec5SDimitry Andric void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 22250b57cec5SDimitry Andric SetVector<SUnit *> &NodesAdded) { 22260b57cec5SDimitry Andric NewSet.insert(SU); 22270b57cec5SDimitry Andric NodesAdded.insert(SU); 22280b57cec5SDimitry Andric for (auto &SI : SU->Succs) { 22290b57cec5SDimitry Andric SUnit *Successor = SI.getSUnit(); 223081ad6265SDimitry Andric if (!SI.isArtificial() && !Successor->isBoundaryNode() && 223181ad6265SDimitry Andric NodesAdded.count(Successor) == 0) 22320b57cec5SDimitry Andric addConnectedNodes(Successor, NewSet, NodesAdded); 22330b57cec5SDimitry Andric } 22340b57cec5SDimitry Andric for (auto &PI : SU->Preds) { 22350b57cec5SDimitry Andric SUnit *Predecessor = PI.getSUnit(); 22360b57cec5SDimitry Andric if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 22370b57cec5SDimitry Andric addConnectedNodes(Predecessor, NewSet, NodesAdded); 22380b57cec5SDimitry Andric } 22390b57cec5SDimitry Andric } 22400b57cec5SDimitry Andric 22410b57cec5SDimitry Andric /// Return true if Set1 contains elements in Set2. The elements in common 22420b57cec5SDimitry Andric /// are returned in a different container. 22430b57cec5SDimitry Andric static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 22440b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> &Result) { 22450b57cec5SDimitry Andric Result.clear(); 224681ad6265SDimitry Andric for (SUnit *SU : Set1) { 22470b57cec5SDimitry Andric if (Set2.count(SU) != 0) 22480b57cec5SDimitry Andric Result.insert(SU); 22490b57cec5SDimitry Andric } 22500b57cec5SDimitry Andric return !Result.empty(); 22510b57cec5SDimitry Andric } 22520b57cec5SDimitry Andric 22530b57cec5SDimitry Andric /// Merge the recurrence node sets that have the same initial node. 22540b57cec5SDimitry Andric void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 22550b57cec5SDimitry Andric for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 22560b57cec5SDimitry Andric ++I) { 22570b57cec5SDimitry Andric NodeSet &NI = *I; 22580b57cec5SDimitry Andric for (NodeSetType::iterator J = I + 1; J != E;) { 22590b57cec5SDimitry Andric NodeSet &NJ = *J; 22600b57cec5SDimitry Andric if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 22610b57cec5SDimitry Andric if (NJ.compareRecMII(NI) > 0) 22620b57cec5SDimitry Andric NI.setRecMII(NJ.getRecMII()); 2263fe6060f1SDimitry Andric for (SUnit *SU : *J) 2264fe6060f1SDimitry Andric I->insert(SU); 22650b57cec5SDimitry Andric NodeSets.erase(J); 22660b57cec5SDimitry Andric E = NodeSets.end(); 22670b57cec5SDimitry Andric } else { 22680b57cec5SDimitry Andric ++J; 22690b57cec5SDimitry Andric } 22700b57cec5SDimitry Andric } 22710b57cec5SDimitry Andric } 22720b57cec5SDimitry Andric } 22730b57cec5SDimitry Andric 22740b57cec5SDimitry Andric /// Remove nodes that have been scheduled in previous NodeSets. 22750b57cec5SDimitry Andric void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 22760b57cec5SDimitry Andric for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 22770b57cec5SDimitry Andric ++I) 22780b57cec5SDimitry Andric for (NodeSetType::iterator J = I + 1; J != E;) { 22790b57cec5SDimitry Andric J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 22800b57cec5SDimitry Andric 22810b57cec5SDimitry Andric if (J->empty()) { 22820b57cec5SDimitry Andric NodeSets.erase(J); 22830b57cec5SDimitry Andric E = NodeSets.end(); 22840b57cec5SDimitry Andric } else { 22850b57cec5SDimitry Andric ++J; 22860b57cec5SDimitry Andric } 22870b57cec5SDimitry Andric } 22880b57cec5SDimitry Andric } 22890b57cec5SDimitry Andric 22900b57cec5SDimitry Andric /// Compute an ordered list of the dependence graph nodes, which 22910b57cec5SDimitry Andric /// indicates the order that the nodes will be scheduled. This is a 22920b57cec5SDimitry Andric /// two-level algorithm. First, a partial order is created, which 22930b57cec5SDimitry Andric /// consists of a list of sets ordered from highest to lowest priority. 22940b57cec5SDimitry Andric void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 22950b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> R; 22960b57cec5SDimitry Andric NodeOrder.clear(); 22970b57cec5SDimitry Andric 22980b57cec5SDimitry Andric for (auto &Nodes : NodeSets) { 22990b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 23000b57cec5SDimitry Andric OrderKind Order; 23010b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> N; 2302fe6060f1SDimitry Andric if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 23030b57cec5SDimitry Andric R.insert(N.begin(), N.end()); 23040b57cec5SDimitry Andric Order = BottomUp; 23050b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Bottom up (preds) "); 2306fe6060f1SDimitry Andric } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { 23070b57cec5SDimitry Andric R.insert(N.begin(), N.end()); 23080b57cec5SDimitry Andric Order = TopDown; 23090b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Top down (succs) "); 23100b57cec5SDimitry Andric } else if (isIntersect(N, Nodes, R)) { 23110b57cec5SDimitry Andric // If some of the successors are in the existing node-set, then use the 23120b57cec5SDimitry Andric // top-down ordering. 23130b57cec5SDimitry Andric Order = TopDown; 23140b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Top down (intersect) "); 23150b57cec5SDimitry Andric } else if (NodeSets.size() == 1) { 2316fcaf7f86SDimitry Andric for (const auto &N : Nodes) 23170b57cec5SDimitry Andric if (N->Succs.size() == 0) 23180b57cec5SDimitry Andric R.insert(N); 23190b57cec5SDimitry Andric Order = BottomUp; 23200b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Bottom up (all) "); 23210b57cec5SDimitry Andric } else { 23220b57cec5SDimitry Andric // Find the node with the highest ASAP. 23230b57cec5SDimitry Andric SUnit *maxASAP = nullptr; 23240b57cec5SDimitry Andric for (SUnit *SU : Nodes) { 23250b57cec5SDimitry Andric if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || 23260b57cec5SDimitry Andric (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) 23270b57cec5SDimitry Andric maxASAP = SU; 23280b57cec5SDimitry Andric } 23290b57cec5SDimitry Andric R.insert(maxASAP); 23300b57cec5SDimitry Andric Order = BottomUp; 23310b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Bottom up (default) "); 23320b57cec5SDimitry Andric } 23330b57cec5SDimitry Andric 23340b57cec5SDimitry Andric while (!R.empty()) { 23350b57cec5SDimitry Andric if (Order == TopDown) { 23360b57cec5SDimitry Andric // Choose the node with the maximum height. If more than one, choose 23370b57cec5SDimitry Andric // the node wiTH the maximum ZeroLatencyHeight. If still more than one, 23380b57cec5SDimitry Andric // choose the node with the lowest MOV. 23390b57cec5SDimitry Andric while (!R.empty()) { 23400b57cec5SDimitry Andric SUnit *maxHeight = nullptr; 23410b57cec5SDimitry Andric for (SUnit *I : R) { 23420b57cec5SDimitry Andric if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) 23430b57cec5SDimitry Andric maxHeight = I; 23440b57cec5SDimitry Andric else if (getHeight(I) == getHeight(maxHeight) && 23450b57cec5SDimitry Andric getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) 23460b57cec5SDimitry Andric maxHeight = I; 23470b57cec5SDimitry Andric else if (getHeight(I) == getHeight(maxHeight) && 23480b57cec5SDimitry Andric getZeroLatencyHeight(I) == 23490b57cec5SDimitry Andric getZeroLatencyHeight(maxHeight) && 23500b57cec5SDimitry Andric getMOV(I) < getMOV(maxHeight)) 23510b57cec5SDimitry Andric maxHeight = I; 23520b57cec5SDimitry Andric } 23530b57cec5SDimitry Andric NodeOrder.insert(maxHeight); 23540b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); 23550b57cec5SDimitry Andric R.remove(maxHeight); 23560b57cec5SDimitry Andric for (const auto &I : maxHeight->Succs) { 23570b57cec5SDimitry Andric if (Nodes.count(I.getSUnit()) == 0) 23580b57cec5SDimitry Andric continue; 2359e8d8bef9SDimitry Andric if (NodeOrder.contains(I.getSUnit())) 23600b57cec5SDimitry Andric continue; 23610b57cec5SDimitry Andric if (ignoreDependence(I, false)) 23620b57cec5SDimitry Andric continue; 23630b57cec5SDimitry Andric R.insert(I.getSUnit()); 23640b57cec5SDimitry Andric } 23650b57cec5SDimitry Andric // Back-edges are predecessors with an anti-dependence. 23660b57cec5SDimitry Andric for (const auto &I : maxHeight->Preds) { 23670b57cec5SDimitry Andric if (I.getKind() != SDep::Anti) 23680b57cec5SDimitry Andric continue; 23690b57cec5SDimitry Andric if (Nodes.count(I.getSUnit()) == 0) 23700b57cec5SDimitry Andric continue; 2371e8d8bef9SDimitry Andric if (NodeOrder.contains(I.getSUnit())) 23720b57cec5SDimitry Andric continue; 23730b57cec5SDimitry Andric R.insert(I.getSUnit()); 23740b57cec5SDimitry Andric } 23750b57cec5SDimitry Andric } 23760b57cec5SDimitry Andric Order = BottomUp; 23770b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); 23780b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> N; 23790b57cec5SDimitry Andric if (pred_L(NodeOrder, N, &Nodes)) 23800b57cec5SDimitry Andric R.insert(N.begin(), N.end()); 23810b57cec5SDimitry Andric } else { 23820b57cec5SDimitry Andric // Choose the node with the maximum depth. If more than one, choose 23830b57cec5SDimitry Andric // the node with the maximum ZeroLatencyDepth. If still more than one, 23840b57cec5SDimitry Andric // choose the node with the lowest MOV. 23850b57cec5SDimitry Andric while (!R.empty()) { 23860b57cec5SDimitry Andric SUnit *maxDepth = nullptr; 23870b57cec5SDimitry Andric for (SUnit *I : R) { 23880b57cec5SDimitry Andric if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) 23890b57cec5SDimitry Andric maxDepth = I; 23900b57cec5SDimitry Andric else if (getDepth(I) == getDepth(maxDepth) && 23910b57cec5SDimitry Andric getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) 23920b57cec5SDimitry Andric maxDepth = I; 23930b57cec5SDimitry Andric else if (getDepth(I) == getDepth(maxDepth) && 23940b57cec5SDimitry Andric getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && 23950b57cec5SDimitry Andric getMOV(I) < getMOV(maxDepth)) 23960b57cec5SDimitry Andric maxDepth = I; 23970b57cec5SDimitry Andric } 23980b57cec5SDimitry Andric NodeOrder.insert(maxDepth); 23990b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); 24000b57cec5SDimitry Andric R.remove(maxDepth); 24010b57cec5SDimitry Andric if (Nodes.isExceedSU(maxDepth)) { 24020b57cec5SDimitry Andric Order = TopDown; 24030b57cec5SDimitry Andric R.clear(); 24040b57cec5SDimitry Andric R.insert(Nodes.getNode(0)); 24050b57cec5SDimitry Andric break; 24060b57cec5SDimitry Andric } 24070b57cec5SDimitry Andric for (const auto &I : maxDepth->Preds) { 24080b57cec5SDimitry Andric if (Nodes.count(I.getSUnit()) == 0) 24090b57cec5SDimitry Andric continue; 2410e8d8bef9SDimitry Andric if (NodeOrder.contains(I.getSUnit())) 24110b57cec5SDimitry Andric continue; 24120b57cec5SDimitry Andric R.insert(I.getSUnit()); 24130b57cec5SDimitry Andric } 24140b57cec5SDimitry Andric // Back-edges are predecessors with an anti-dependence. 24150b57cec5SDimitry Andric for (const auto &I : maxDepth->Succs) { 24160b57cec5SDimitry Andric if (I.getKind() != SDep::Anti) 24170b57cec5SDimitry Andric continue; 24180b57cec5SDimitry Andric if (Nodes.count(I.getSUnit()) == 0) 24190b57cec5SDimitry Andric continue; 2420e8d8bef9SDimitry Andric if (NodeOrder.contains(I.getSUnit())) 24210b57cec5SDimitry Andric continue; 24220b57cec5SDimitry Andric R.insert(I.getSUnit()); 24230b57cec5SDimitry Andric } 24240b57cec5SDimitry Andric } 24250b57cec5SDimitry Andric Order = TopDown; 24260b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\n Switching order to top down "); 24270b57cec5SDimitry Andric SmallSetVector<SUnit *, 8> N; 24280b57cec5SDimitry Andric if (succ_L(NodeOrder, N, &Nodes)) 24290b57cec5SDimitry Andric R.insert(N.begin(), N.end()); 24300b57cec5SDimitry Andric } 24310b57cec5SDimitry Andric } 24320b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); 24330b57cec5SDimitry Andric } 24340b57cec5SDimitry Andric 24350b57cec5SDimitry Andric LLVM_DEBUG({ 24360b57cec5SDimitry Andric dbgs() << "Node order: "; 24370b57cec5SDimitry Andric for (SUnit *I : NodeOrder) 24380b57cec5SDimitry Andric dbgs() << " " << I->NodeNum << " "; 24390b57cec5SDimitry Andric dbgs() << "\n"; 24400b57cec5SDimitry Andric }); 24410b57cec5SDimitry Andric } 24420b57cec5SDimitry Andric 24430b57cec5SDimitry Andric /// Process the nodes in the computed order and create the pipelined schedule 24440b57cec5SDimitry Andric /// of the instructions, if possible. Return true if a schedule is found. 24450b57cec5SDimitry Andric bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 24460b57cec5SDimitry Andric 24470b57cec5SDimitry Andric if (NodeOrder.empty()){ 24480b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); 24490b57cec5SDimitry Andric return false; 24500b57cec5SDimitry Andric } 24510b57cec5SDimitry Andric 24520b57cec5SDimitry Andric bool scheduleFound = false; 24537a6dacacSDimitry Andric std::unique_ptr<HighRegisterPressureDetector> HRPDetector; 24547a6dacacSDimitry Andric if (LimitRegPressure) { 24557a6dacacSDimitry Andric HRPDetector = 24567a6dacacSDimitry Andric std::make_unique<HighRegisterPressureDetector>(Loop.getHeader(), MF); 24577a6dacacSDimitry Andric HRPDetector->init(RegClassInfo); 24587a6dacacSDimitry Andric } 24590b57cec5SDimitry Andric // Keep increasing II until a valid schedule is found. 2460fe6060f1SDimitry Andric for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { 24610b57cec5SDimitry Andric Schedule.reset(); 24620b57cec5SDimitry Andric Schedule.setInitiationInterval(II); 24630b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 24640b57cec5SDimitry Andric 24650b57cec5SDimitry Andric SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 24660b57cec5SDimitry Andric SetVector<SUnit *>::iterator NE = NodeOrder.end(); 24670b57cec5SDimitry Andric do { 24680b57cec5SDimitry Andric SUnit *SU = *NI; 24690b57cec5SDimitry Andric 24700b57cec5SDimitry Andric // Compute the schedule time for the instruction, which is based 24710b57cec5SDimitry Andric // upon the scheduled time for any predecessors/successors. 24720b57cec5SDimitry Andric int EarlyStart = INT_MIN; 24730b57cec5SDimitry Andric int LateStart = INT_MAX; 24740fca6ea1SDimitry Andric Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this); 24750b57cec5SDimitry Andric LLVM_DEBUG({ 24760b57cec5SDimitry Andric dbgs() << "\n"; 24770b57cec5SDimitry Andric dbgs() << "Inst (" << SU->NodeNum << ") "; 24780b57cec5SDimitry Andric SU->getInstr()->dump(); 24790b57cec5SDimitry Andric dbgs() << "\n"; 24800b57cec5SDimitry Andric }); 24810fca6ea1SDimitry Andric LLVM_DEBUG( 24820fca6ea1SDimitry Andric dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart)); 24830b57cec5SDimitry Andric 24840fca6ea1SDimitry Andric if (EarlyStart > LateStart) 24850b57cec5SDimitry Andric scheduleFound = false; 24860fca6ea1SDimitry Andric else if (EarlyStart != INT_MIN && LateStart == INT_MAX) 24870fca6ea1SDimitry Andric scheduleFound = 24880fca6ea1SDimitry Andric Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II); 24890fca6ea1SDimitry Andric else if (EarlyStart == INT_MIN && LateStart != INT_MAX) 24900fca6ea1SDimitry Andric scheduleFound = 24910fca6ea1SDimitry Andric Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II); 24920fca6ea1SDimitry Andric else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 24930fca6ea1SDimitry Andric LateStart = std::min(LateStart, EarlyStart + (int)II - 1); 24940fca6ea1SDimitry Andric // When scheduling a Phi it is better to start at the late cycle and 24950fca6ea1SDimitry Andric // go backwards. The default order may insert the Phi too far away 24960fca6ea1SDimitry Andric // from its first dependence. 24970fca6ea1SDimitry Andric // Also, do backward search when all scheduled predecessors are 24980fca6ea1SDimitry Andric // loop-carried output/order dependencies. Empirically, there are also 24990fca6ea1SDimitry Andric // cases where scheduling becomes possible with backward search. 25000fca6ea1SDimitry Andric if (SU->getInstr()->isPHI() || 25010fca6ea1SDimitry Andric Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this)) 25020fca6ea1SDimitry Andric scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II); 25030b57cec5SDimitry Andric else 25040fca6ea1SDimitry Andric scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II); 25050b57cec5SDimitry Andric } else { 25060b57cec5SDimitry Andric int FirstCycle = Schedule.getFirstCycle(); 25070b57cec5SDimitry Andric scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 25080b57cec5SDimitry Andric FirstCycle + getASAP(SU) + II - 1, II); 25090b57cec5SDimitry Andric } 25100fca6ea1SDimitry Andric 25110b57cec5SDimitry Andric // Even if we find a schedule, make sure the schedule doesn't exceed the 25120b57cec5SDimitry Andric // allowable number of stages. We keep trying if this happens. 25130b57cec5SDimitry Andric if (scheduleFound) 25140b57cec5SDimitry Andric if (SwpMaxStages > -1 && 25150b57cec5SDimitry Andric Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 25160b57cec5SDimitry Andric scheduleFound = false; 25170b57cec5SDimitry Andric 25180b57cec5SDimitry Andric LLVM_DEBUG({ 25190b57cec5SDimitry Andric if (!scheduleFound) 25200b57cec5SDimitry Andric dbgs() << "\tCan't schedule\n"; 25210b57cec5SDimitry Andric }); 25220b57cec5SDimitry Andric } while (++NI != NE && scheduleFound); 25230b57cec5SDimitry Andric 252481ad6265SDimitry Andric // If a schedule is found, ensure non-pipelined instructions are in stage 0 252581ad6265SDimitry Andric if (scheduleFound) 252681ad6265SDimitry Andric scheduleFound = 252781ad6265SDimitry Andric Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); 252881ad6265SDimitry Andric 25290b57cec5SDimitry Andric // If a schedule is found, check if it is a valid schedule too. 25300b57cec5SDimitry Andric if (scheduleFound) 25310b57cec5SDimitry Andric scheduleFound = Schedule.isValidSchedule(this); 25327a6dacacSDimitry Andric 25337a6dacacSDimitry Andric // If a schedule was found and the option is enabled, check if the schedule 25347a6dacacSDimitry Andric // might generate additional register spills/fills. 25357a6dacacSDimitry Andric if (scheduleFound && LimitRegPressure) 25367a6dacacSDimitry Andric scheduleFound = 25377a6dacacSDimitry Andric !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); 25380b57cec5SDimitry Andric } 25390b57cec5SDimitry Andric 2540fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound 2541fe6060f1SDimitry Andric << " (II=" << Schedule.getInitiationInterval() 25420b57cec5SDimitry Andric << ")\n"); 25430b57cec5SDimitry Andric 25445ffd83dbSDimitry Andric if (scheduleFound) { 2545bdd1243dSDimitry Andric scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); 2546bdd1243dSDimitry Andric if (!scheduleFound) 2547bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); 2548bdd1243dSDimitry Andric } 2549bdd1243dSDimitry Andric 2550bdd1243dSDimitry Andric if (scheduleFound) { 25510b57cec5SDimitry Andric Schedule.finalizeSchedule(this); 25525ffd83dbSDimitry Andric Pass.ORE->emit([&]() { 25535ffd83dbSDimitry Andric return MachineOptimizationRemarkAnalysis( 25545ffd83dbSDimitry Andric DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) 2555fe6060f1SDimitry Andric << "Schedule found with Initiation Interval: " 2556fe6060f1SDimitry Andric << ore::NV("II", Schedule.getInitiationInterval()) 25575ffd83dbSDimitry Andric << ", MaxStageCount: " 25585ffd83dbSDimitry Andric << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); 25595ffd83dbSDimitry Andric }); 25605ffd83dbSDimitry Andric } else 25610b57cec5SDimitry Andric Schedule.reset(); 25620b57cec5SDimitry Andric 25630b57cec5SDimitry Andric return scheduleFound && Schedule.getMaxStageCount() > 0; 25640b57cec5SDimitry Andric } 25650b57cec5SDimitry Andric 25660b57cec5SDimitry Andric /// Return true if we can compute the amount the instruction changes 25670b57cec5SDimitry Andric /// during each iteration. Set Delta to the amount of the change. 25680b57cec5SDimitry Andric bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 25690b57cec5SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 25700b57cec5SDimitry Andric const MachineOperand *BaseOp; 25710b57cec5SDimitry Andric int64_t Offset; 25725ffd83dbSDimitry Andric bool OffsetIsScalable; 25735ffd83dbSDimitry Andric if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 25745ffd83dbSDimitry Andric return false; 25755ffd83dbSDimitry Andric 25765ffd83dbSDimitry Andric // FIXME: This algorithm assumes instructions have fixed-size offsets. 25775ffd83dbSDimitry Andric if (OffsetIsScalable) 25780b57cec5SDimitry Andric return false; 25790b57cec5SDimitry Andric 25800b57cec5SDimitry Andric if (!BaseOp->isReg()) 25810b57cec5SDimitry Andric return false; 25820b57cec5SDimitry Andric 25838bcb0991SDimitry Andric Register BaseReg = BaseOp->getReg(); 25840b57cec5SDimitry Andric 25850b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 25860b57cec5SDimitry Andric // Check if there is a Phi. If so, get the definition in the loop. 25870b57cec5SDimitry Andric MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 25880b57cec5SDimitry Andric if (BaseDef && BaseDef->isPHI()) { 25890b57cec5SDimitry Andric BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 25900b57cec5SDimitry Andric BaseDef = MRI.getVRegDef(BaseReg); 25910b57cec5SDimitry Andric } 25920b57cec5SDimitry Andric if (!BaseDef) 25930b57cec5SDimitry Andric return false; 25940b57cec5SDimitry Andric 25950b57cec5SDimitry Andric int D = 0; 25960b57cec5SDimitry Andric if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 25970b57cec5SDimitry Andric return false; 25980b57cec5SDimitry Andric 25990b57cec5SDimitry Andric Delta = D; 26000b57cec5SDimitry Andric return true; 26010b57cec5SDimitry Andric } 26020b57cec5SDimitry Andric 26030b57cec5SDimitry Andric /// Check if we can change the instruction to use an offset value from the 26040b57cec5SDimitry Andric /// previous iteration. If so, return true and set the base and offset values 26050b57cec5SDimitry Andric /// so that we can rewrite the load, if necessary. 26060b57cec5SDimitry Andric /// v1 = Phi(v0, v3) 26070b57cec5SDimitry Andric /// v2 = load v1, 0 26080b57cec5SDimitry Andric /// v3 = post_store v1, 4, x 26090b57cec5SDimitry Andric /// This function enables the load to be rewritten as v2 = load v3, 4. 26100b57cec5SDimitry Andric bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 26110b57cec5SDimitry Andric unsigned &BasePos, 26120b57cec5SDimitry Andric unsigned &OffsetPos, 26130b57cec5SDimitry Andric unsigned &NewBase, 26140b57cec5SDimitry Andric int64_t &Offset) { 26150b57cec5SDimitry Andric // Get the load instruction. 26160b57cec5SDimitry Andric if (TII->isPostIncrement(*MI)) 26170b57cec5SDimitry Andric return false; 26180b57cec5SDimitry Andric unsigned BasePosLd, OffsetPosLd; 26190b57cec5SDimitry Andric if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) 26200b57cec5SDimitry Andric return false; 26218bcb0991SDimitry Andric Register BaseReg = MI->getOperand(BasePosLd).getReg(); 26220b57cec5SDimitry Andric 26230b57cec5SDimitry Andric // Look for the Phi instruction. 26240b57cec5SDimitry Andric MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 26250b57cec5SDimitry Andric MachineInstr *Phi = MRI.getVRegDef(BaseReg); 26260b57cec5SDimitry Andric if (!Phi || !Phi->isPHI()) 26270b57cec5SDimitry Andric return false; 26280b57cec5SDimitry Andric // Get the register defined in the loop block. 26290b57cec5SDimitry Andric unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 26300b57cec5SDimitry Andric if (!PrevReg) 26310b57cec5SDimitry Andric return false; 26320b57cec5SDimitry Andric 26330b57cec5SDimitry Andric // Check for the post-increment load/store instruction. 26340b57cec5SDimitry Andric MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 26350b57cec5SDimitry Andric if (!PrevDef || PrevDef == MI) 26360b57cec5SDimitry Andric return false; 26370b57cec5SDimitry Andric 26380b57cec5SDimitry Andric if (!TII->isPostIncrement(*PrevDef)) 26390b57cec5SDimitry Andric return false; 26400b57cec5SDimitry Andric 26410b57cec5SDimitry Andric unsigned BasePos1 = 0, OffsetPos1 = 0; 26420b57cec5SDimitry Andric if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) 26430b57cec5SDimitry Andric return false; 26440b57cec5SDimitry Andric 26450b57cec5SDimitry Andric // Make sure that the instructions do not access the same memory location in 26460b57cec5SDimitry Andric // the next iteration. 26470b57cec5SDimitry Andric int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 26480b57cec5SDimitry Andric int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 26490b57cec5SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(MI); 26500b57cec5SDimitry Andric NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); 26510b57cec5SDimitry Andric bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); 26520eae32dcSDimitry Andric MF.deleteMachineInstr(NewMI); 26530b57cec5SDimitry Andric if (!Disjoint) 26540b57cec5SDimitry Andric return false; 26550b57cec5SDimitry Andric 26560b57cec5SDimitry Andric // Set the return value once we determine that we return true. 26570b57cec5SDimitry Andric BasePos = BasePosLd; 26580b57cec5SDimitry Andric OffsetPos = OffsetPosLd; 26590b57cec5SDimitry Andric NewBase = PrevReg; 26600b57cec5SDimitry Andric Offset = StoreOffset; 26610b57cec5SDimitry Andric return true; 26620b57cec5SDimitry Andric } 26630b57cec5SDimitry Andric 26640b57cec5SDimitry Andric /// Apply changes to the instruction if needed. The changes are need 26650b57cec5SDimitry Andric /// to improve the scheduling and depend up on the final schedule. 26660b57cec5SDimitry Andric void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 26670b57cec5SDimitry Andric SMSchedule &Schedule) { 26680b57cec5SDimitry Andric SUnit *SU = getSUnit(MI); 26690b57cec5SDimitry Andric DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 26700b57cec5SDimitry Andric InstrChanges.find(SU); 26710b57cec5SDimitry Andric if (It != InstrChanges.end()) { 26720b57cec5SDimitry Andric std::pair<unsigned, int64_t> RegAndOffset = It->second; 26730b57cec5SDimitry Andric unsigned BasePos, OffsetPos; 26740b57cec5SDimitry Andric if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 26750b57cec5SDimitry Andric return; 26768bcb0991SDimitry Andric Register BaseReg = MI->getOperand(BasePos).getReg(); 26770b57cec5SDimitry Andric MachineInstr *LoopDef = findDefInLoop(BaseReg); 26780b57cec5SDimitry Andric int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 26790b57cec5SDimitry Andric int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 26800b57cec5SDimitry Andric int BaseStageNum = Schedule.stageScheduled(SU); 26810b57cec5SDimitry Andric int BaseCycleNum = Schedule.cycleScheduled(SU); 26820b57cec5SDimitry Andric if (BaseStageNum < DefStageNum) { 26830b57cec5SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(MI); 26840b57cec5SDimitry Andric int OffsetDiff = DefStageNum - BaseStageNum; 26850b57cec5SDimitry Andric if (DefCycleNum < BaseCycleNum) { 26860b57cec5SDimitry Andric NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 26870b57cec5SDimitry Andric if (OffsetDiff > 0) 26880b57cec5SDimitry Andric --OffsetDiff; 26890b57cec5SDimitry Andric } 26900b57cec5SDimitry Andric int64_t NewOffset = 26910b57cec5SDimitry Andric MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 26920b57cec5SDimitry Andric NewMI->getOperand(OffsetPos).setImm(NewOffset); 26930b57cec5SDimitry Andric SU->setInstr(NewMI); 26940b57cec5SDimitry Andric MISUnitMap[NewMI] = SU; 26958bcb0991SDimitry Andric NewMIs[MI] = NewMI; 26960b57cec5SDimitry Andric } 26970b57cec5SDimitry Andric } 26980b57cec5SDimitry Andric } 26990b57cec5SDimitry Andric 27008bcb0991SDimitry Andric /// Return the instruction in the loop that defines the register. 27018bcb0991SDimitry Andric /// If the definition is a Phi, then follow the Phi operand to 27028bcb0991SDimitry Andric /// the instruction in the loop. 2703e8d8bef9SDimitry Andric MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { 27048bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 8> Visited; 27058bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(Reg); 27068bcb0991SDimitry Andric while (Def->isPHI()) { 27078bcb0991SDimitry Andric if (!Visited.insert(Def).second) 27088bcb0991SDimitry Andric break; 27098bcb0991SDimitry Andric for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 27108bcb0991SDimitry Andric if (Def->getOperand(i + 1).getMBB() == BB) { 27118bcb0991SDimitry Andric Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 27128bcb0991SDimitry Andric break; 27138bcb0991SDimitry Andric } 27148bcb0991SDimitry Andric } 27158bcb0991SDimitry Andric return Def; 27168bcb0991SDimitry Andric } 27178bcb0991SDimitry Andric 27180b57cec5SDimitry Andric /// Return true for an order or output dependence that is loop carried 27195f757f3fSDimitry Andric /// potentially. A dependence is loop carried if the destination defines a value 27200b57cec5SDimitry Andric /// that may be used or defined by the source in a subsequent iteration. 27210b57cec5SDimitry Andric bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, 27220b57cec5SDimitry Andric bool isSucc) { 27230b57cec5SDimitry Andric if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || 272481ad6265SDimitry Andric Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) 27250b57cec5SDimitry Andric return false; 27260b57cec5SDimitry Andric 27270b57cec5SDimitry Andric if (!SwpPruneLoopCarried) 27280b57cec5SDimitry Andric return true; 27290b57cec5SDimitry Andric 27300b57cec5SDimitry Andric if (Dep.getKind() == SDep::Output) 27310b57cec5SDimitry Andric return true; 27320b57cec5SDimitry Andric 27330b57cec5SDimitry Andric MachineInstr *SI = Source->getInstr(); 27340b57cec5SDimitry Andric MachineInstr *DI = Dep.getSUnit()->getInstr(); 27350b57cec5SDimitry Andric if (!isSucc) 27360b57cec5SDimitry Andric std::swap(SI, DI); 27370b57cec5SDimitry Andric assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 27380b57cec5SDimitry Andric 27390b57cec5SDimitry Andric // Assume ordered loads and stores may have a loop carried dependence. 27400b57cec5SDimitry Andric if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 27410b57cec5SDimitry Andric SI->mayRaiseFPException() || DI->mayRaiseFPException() || 27420b57cec5SDimitry Andric SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 27430b57cec5SDimitry Andric return true; 27440b57cec5SDimitry Andric 27455f757f3fSDimitry Andric if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) 27460b57cec5SDimitry Andric return false; 27470b57cec5SDimitry Andric 27485f757f3fSDimitry Andric // The conservative assumption is that a dependence between memory operations 27495f757f3fSDimitry Andric // may be loop carried. The following code checks when it can be proved that 27505f757f3fSDimitry Andric // there is no loop carried dependence. 27510b57cec5SDimitry Andric unsigned DeltaS, DeltaD; 27520b57cec5SDimitry Andric if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 27530b57cec5SDimitry Andric return true; 27540b57cec5SDimitry Andric 27550b57cec5SDimitry Andric const MachineOperand *BaseOpS, *BaseOpD; 27560b57cec5SDimitry Andric int64_t OffsetS, OffsetD; 27575ffd83dbSDimitry Andric bool OffsetSIsScalable, OffsetDIsScalable; 27580b57cec5SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 27595ffd83dbSDimitry Andric if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, 27605ffd83dbSDimitry Andric TRI) || 27615ffd83dbSDimitry Andric !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, 27625ffd83dbSDimitry Andric TRI)) 27630b57cec5SDimitry Andric return true; 27640b57cec5SDimitry Andric 27655ffd83dbSDimitry Andric assert(!OffsetSIsScalable && !OffsetDIsScalable && 27665ffd83dbSDimitry Andric "Expected offsets to be byte offsets"); 27675ffd83dbSDimitry Andric 2768bdd1243dSDimitry Andric MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); 2769bdd1243dSDimitry Andric MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); 2770bdd1243dSDimitry Andric if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) 2771bdd1243dSDimitry Andric return true; 2772bdd1243dSDimitry Andric 2773bdd1243dSDimitry Andric unsigned InitValS = 0; 2774bdd1243dSDimitry Andric unsigned LoopValS = 0; 2775bdd1243dSDimitry Andric unsigned InitValD = 0; 2776bdd1243dSDimitry Andric unsigned LoopValD = 0; 2777bdd1243dSDimitry Andric getPhiRegs(*DefS, BB, InitValS, LoopValS); 2778bdd1243dSDimitry Andric getPhiRegs(*DefD, BB, InitValD, LoopValD); 2779bdd1243dSDimitry Andric MachineInstr *InitDefS = MRI.getVRegDef(InitValS); 2780bdd1243dSDimitry Andric MachineInstr *InitDefD = MRI.getVRegDef(InitValD); 2781bdd1243dSDimitry Andric 2782bdd1243dSDimitry Andric if (!InitDefS->isIdenticalTo(*InitDefD)) 27830b57cec5SDimitry Andric return true; 27840b57cec5SDimitry Andric 27850b57cec5SDimitry Andric // Check that the base register is incremented by a constant value for each 27860b57cec5SDimitry Andric // iteration. 2787bdd1243dSDimitry Andric MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); 27880b57cec5SDimitry Andric int D = 0; 2789bdd1243dSDimitry Andric if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) 27900b57cec5SDimitry Andric return true; 27910b57cec5SDimitry Andric 27920fca6ea1SDimitry Andric LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); 27930fca6ea1SDimitry Andric LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); 27940b57cec5SDimitry Andric 27950b57cec5SDimitry Andric // This is the main test, which checks the offset values and the loop 27960b57cec5SDimitry Andric // increment value to determine if the accesses may be loop carried. 27970fca6ea1SDimitry Andric if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) 27980b57cec5SDimitry Andric return true; 27990b57cec5SDimitry Andric 28000fca6ea1SDimitry Andric if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || 28010fca6ea1SDimitry Andric DeltaD < AccessSizeD.getValue()) 28020b57cec5SDimitry Andric return true; 28030b57cec5SDimitry Andric 28040fca6ea1SDimitry Andric return (OffsetS + (int64_t)AccessSizeS.getValue() < 28050fca6ea1SDimitry Andric OffsetD + (int64_t)AccessSizeD.getValue()); 28060b57cec5SDimitry Andric } 28070b57cec5SDimitry Andric 280806c3fb27SDimitry Andric void SwingSchedulerDAG::postProcessDAG() { 28090b57cec5SDimitry Andric for (auto &M : Mutations) 28100b57cec5SDimitry Andric M->apply(this); 28110b57cec5SDimitry Andric } 28120b57cec5SDimitry Andric 28130b57cec5SDimitry Andric /// Try to schedule the node at the specified StartCycle and continue 28140b57cec5SDimitry Andric /// until the node is schedule or the EndCycle is reached. This function 28150b57cec5SDimitry Andric /// returns true if the node is scheduled. This routine may search either 28160b57cec5SDimitry Andric /// forward or backward for a place to insert the instruction based upon 28170b57cec5SDimitry Andric /// the relative values of StartCycle and EndCycle. 28180b57cec5SDimitry Andric bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 28190b57cec5SDimitry Andric bool forward = true; 28200b57cec5SDimitry Andric LLVM_DEBUG({ 28210b57cec5SDimitry Andric dbgs() << "Trying to insert node between " << StartCycle << " and " 28220b57cec5SDimitry Andric << EndCycle << " II: " << II << "\n"; 28230b57cec5SDimitry Andric }); 28240b57cec5SDimitry Andric if (StartCycle > EndCycle) 28250b57cec5SDimitry Andric forward = false; 28260b57cec5SDimitry Andric 28270b57cec5SDimitry Andric // The terminating condition depends on the direction. 28280b57cec5SDimitry Andric int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 28290b57cec5SDimitry Andric for (int curCycle = StartCycle; curCycle != termCycle; 28300b57cec5SDimitry Andric forward ? ++curCycle : --curCycle) { 28310b57cec5SDimitry Andric 28320b57cec5SDimitry Andric if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 2833bdd1243dSDimitry Andric ProcItinResources.canReserveResources(*SU, curCycle)) { 28340b57cec5SDimitry Andric LLVM_DEBUG({ 28350b57cec5SDimitry Andric dbgs() << "\tinsert at cycle " << curCycle << " "; 28360b57cec5SDimitry Andric SU->getInstr()->dump(); 28370b57cec5SDimitry Andric }); 28380b57cec5SDimitry Andric 2839bdd1243dSDimitry Andric if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 2840bdd1243dSDimitry Andric ProcItinResources.reserveResources(*SU, curCycle); 28410b57cec5SDimitry Andric ScheduledInstrs[curCycle].push_back(SU); 28420b57cec5SDimitry Andric InstrToCycle.insert(std::make_pair(SU, curCycle)); 28430b57cec5SDimitry Andric if (curCycle > LastCycle) 28440b57cec5SDimitry Andric LastCycle = curCycle; 28450b57cec5SDimitry Andric if (curCycle < FirstCycle) 28460b57cec5SDimitry Andric FirstCycle = curCycle; 28470b57cec5SDimitry Andric return true; 28480b57cec5SDimitry Andric } 28490b57cec5SDimitry Andric LLVM_DEBUG({ 28500b57cec5SDimitry Andric dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 28510b57cec5SDimitry Andric SU->getInstr()->dump(); 28520b57cec5SDimitry Andric }); 28530b57cec5SDimitry Andric } 28540b57cec5SDimitry Andric return false; 28550b57cec5SDimitry Andric } 28560b57cec5SDimitry Andric 28570b57cec5SDimitry Andric // Return the cycle of the earliest scheduled instruction in the chain. 28580b57cec5SDimitry Andric int SMSchedule::earliestCycleInChain(const SDep &Dep) { 28590b57cec5SDimitry Andric SmallPtrSet<SUnit *, 8> Visited; 28600b57cec5SDimitry Andric SmallVector<SDep, 8> Worklist; 28610b57cec5SDimitry Andric Worklist.push_back(Dep); 28620b57cec5SDimitry Andric int EarlyCycle = INT_MAX; 28630b57cec5SDimitry Andric while (!Worklist.empty()) { 28640b57cec5SDimitry Andric const SDep &Cur = Worklist.pop_back_val(); 28650b57cec5SDimitry Andric SUnit *PrevSU = Cur.getSUnit(); 28660b57cec5SDimitry Andric if (Visited.count(PrevSU)) 28670b57cec5SDimitry Andric continue; 28680b57cec5SDimitry Andric std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 28690b57cec5SDimitry Andric if (it == InstrToCycle.end()) 28700b57cec5SDimitry Andric continue; 28710b57cec5SDimitry Andric EarlyCycle = std::min(EarlyCycle, it->second); 28720b57cec5SDimitry Andric for (const auto &PI : PrevSU->Preds) 28735ffd83dbSDimitry Andric if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) 28740b57cec5SDimitry Andric Worklist.push_back(PI); 28750b57cec5SDimitry Andric Visited.insert(PrevSU); 28760b57cec5SDimitry Andric } 28770b57cec5SDimitry Andric return EarlyCycle; 28780b57cec5SDimitry Andric } 28790b57cec5SDimitry Andric 28800b57cec5SDimitry Andric // Return the cycle of the latest scheduled instruction in the chain. 28810b57cec5SDimitry Andric int SMSchedule::latestCycleInChain(const SDep &Dep) { 28820b57cec5SDimitry Andric SmallPtrSet<SUnit *, 8> Visited; 28830b57cec5SDimitry Andric SmallVector<SDep, 8> Worklist; 28840b57cec5SDimitry Andric Worklist.push_back(Dep); 28850b57cec5SDimitry Andric int LateCycle = INT_MIN; 28860b57cec5SDimitry Andric while (!Worklist.empty()) { 28870b57cec5SDimitry Andric const SDep &Cur = Worklist.pop_back_val(); 28880b57cec5SDimitry Andric SUnit *SuccSU = Cur.getSUnit(); 288981ad6265SDimitry Andric if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) 28900b57cec5SDimitry Andric continue; 28910b57cec5SDimitry Andric std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 28920b57cec5SDimitry Andric if (it == InstrToCycle.end()) 28930b57cec5SDimitry Andric continue; 28940b57cec5SDimitry Andric LateCycle = std::max(LateCycle, it->second); 28950b57cec5SDimitry Andric for (const auto &SI : SuccSU->Succs) 28965ffd83dbSDimitry Andric if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) 28970b57cec5SDimitry Andric Worklist.push_back(SI); 28980b57cec5SDimitry Andric Visited.insert(SuccSU); 28990b57cec5SDimitry Andric } 29000b57cec5SDimitry Andric return LateCycle; 29010b57cec5SDimitry Andric } 29020b57cec5SDimitry Andric 29030b57cec5SDimitry Andric /// If an instruction has a use that spans multiple iterations, then 29040b57cec5SDimitry Andric /// return true. These instructions are characterized by having a back-ege 29050b57cec5SDimitry Andric /// to a Phi, which contains a reference to another Phi. 29060b57cec5SDimitry Andric static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 29070b57cec5SDimitry Andric for (auto &P : SU->Preds) 29080b57cec5SDimitry Andric if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 29090b57cec5SDimitry Andric for (auto &S : P.getSUnit()->Succs) 29100b57cec5SDimitry Andric if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) 29110b57cec5SDimitry Andric return P.getSUnit(); 29120b57cec5SDimitry Andric return nullptr; 29130b57cec5SDimitry Andric } 29140b57cec5SDimitry Andric 29150b57cec5SDimitry Andric /// Compute the scheduling start slot for the instruction. The start slot 29160b57cec5SDimitry Andric /// depends on any predecessor or successor nodes scheduled already. 29170b57cec5SDimitry Andric void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 29180fca6ea1SDimitry Andric int II, SwingSchedulerDAG *DAG) { 29190b57cec5SDimitry Andric // Iterate over each instruction that has been scheduled already. The start 29200b57cec5SDimitry Andric // slot computation depends on whether the previously scheduled instruction 29210b57cec5SDimitry Andric // is a predecessor or successor of the specified instruction. 29220b57cec5SDimitry Andric for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 29230b57cec5SDimitry Andric 29240b57cec5SDimitry Andric // Iterate over each instruction in the current cycle. 29250b57cec5SDimitry Andric for (SUnit *I : getInstructions(cycle)) { 29260b57cec5SDimitry Andric // Because we're processing a DAG for the dependences, we recognize 29270b57cec5SDimitry Andric // the back-edge in recurrences by anti dependences. 29280b57cec5SDimitry Andric for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 29290b57cec5SDimitry Andric const SDep &Dep = SU->Preds[i]; 29300b57cec5SDimitry Andric if (Dep.getSUnit() == I) { 29310b57cec5SDimitry Andric if (!DAG->isBackedge(SU, Dep)) { 29320b57cec5SDimitry Andric int EarlyStart = cycle + Dep.getLatency() - 29330b57cec5SDimitry Andric DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 29340b57cec5SDimitry Andric *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 29350b57cec5SDimitry Andric if (DAG->isLoopCarriedDep(SU, Dep, false)) { 29360b57cec5SDimitry Andric int End = earliestCycleInChain(Dep) + (II - 1); 29370fca6ea1SDimitry Andric *MinLateStart = std::min(*MinLateStart, End); 29380b57cec5SDimitry Andric } 29390b57cec5SDimitry Andric } else { 29400b57cec5SDimitry Andric int LateStart = cycle - Dep.getLatency() + 29410b57cec5SDimitry Andric DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 29420b57cec5SDimitry Andric *MinLateStart = std::min(*MinLateStart, LateStart); 29430b57cec5SDimitry Andric } 29440b57cec5SDimitry Andric } 29450b57cec5SDimitry Andric // For instruction that requires multiple iterations, make sure that 29460b57cec5SDimitry Andric // the dependent instruction is not scheduled past the definition. 29470b57cec5SDimitry Andric SUnit *BE = multipleIterations(I, DAG); 29480b57cec5SDimitry Andric if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 29490b57cec5SDimitry Andric !SU->isPred(I)) 29500b57cec5SDimitry Andric *MinLateStart = std::min(*MinLateStart, cycle); 29510b57cec5SDimitry Andric } 29520b57cec5SDimitry Andric for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { 29530b57cec5SDimitry Andric if (SU->Succs[i].getSUnit() == I) { 29540b57cec5SDimitry Andric const SDep &Dep = SU->Succs[i]; 29550b57cec5SDimitry Andric if (!DAG->isBackedge(SU, Dep)) { 29560b57cec5SDimitry Andric int LateStart = cycle - Dep.getLatency() + 29570b57cec5SDimitry Andric DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 29580b57cec5SDimitry Andric *MinLateStart = std::min(*MinLateStart, LateStart); 29590b57cec5SDimitry Andric if (DAG->isLoopCarriedDep(SU, Dep)) { 29600b57cec5SDimitry Andric int Start = latestCycleInChain(Dep) + 1 - II; 29610fca6ea1SDimitry Andric *MaxEarlyStart = std::max(*MaxEarlyStart, Start); 29620b57cec5SDimitry Andric } 29630b57cec5SDimitry Andric } else { 29640b57cec5SDimitry Andric int EarlyStart = cycle + Dep.getLatency() - 29650b57cec5SDimitry Andric DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 29660b57cec5SDimitry Andric *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 29670b57cec5SDimitry Andric } 29680b57cec5SDimitry Andric } 29690b57cec5SDimitry Andric } 29700b57cec5SDimitry Andric } 29710b57cec5SDimitry Andric } 29720b57cec5SDimitry Andric } 29730b57cec5SDimitry Andric 29740b57cec5SDimitry Andric /// Order the instructions within a cycle so that the definitions occur 29750b57cec5SDimitry Andric /// before the uses. Returns true if the instruction is added to the start 29760b57cec5SDimitry Andric /// of the list, or false if added to the end. 29777a6dacacSDimitry Andric void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, 29787a6dacacSDimitry Andric std::deque<SUnit *> &Insts) const { 29790b57cec5SDimitry Andric MachineInstr *MI = SU->getInstr(); 29800b57cec5SDimitry Andric bool OrderBeforeUse = false; 29810b57cec5SDimitry Andric bool OrderAfterDef = false; 29820b57cec5SDimitry Andric bool OrderBeforeDef = false; 29830b57cec5SDimitry Andric unsigned MoveDef = 0; 29840b57cec5SDimitry Andric unsigned MoveUse = 0; 29850b57cec5SDimitry Andric int StageInst1 = stageScheduled(SU); 29860b57cec5SDimitry Andric 29870b57cec5SDimitry Andric unsigned Pos = 0; 29880b57cec5SDimitry Andric for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 29890b57cec5SDimitry Andric ++I, ++Pos) { 29904824e7fdSDimitry Andric for (MachineOperand &MO : MI->operands()) { 2991bdd1243dSDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual()) 29920b57cec5SDimitry Andric continue; 29930b57cec5SDimitry Andric 29948bcb0991SDimitry Andric Register Reg = MO.getReg(); 29950b57cec5SDimitry Andric unsigned BasePos, OffsetPos; 29960b57cec5SDimitry Andric if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) 29970b57cec5SDimitry Andric if (MI->getOperand(BasePos).getReg() == Reg) 29980b57cec5SDimitry Andric if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 29990b57cec5SDimitry Andric Reg = NewReg; 30000b57cec5SDimitry Andric bool Reads, Writes; 30010b57cec5SDimitry Andric std::tie(Reads, Writes) = 30020b57cec5SDimitry Andric (*I)->getInstr()->readsWritesVirtualRegister(Reg); 30030b57cec5SDimitry Andric if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 30040b57cec5SDimitry Andric OrderBeforeUse = true; 30050b57cec5SDimitry Andric if (MoveUse == 0) 30060b57cec5SDimitry Andric MoveUse = Pos; 30070b57cec5SDimitry Andric } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 30080b57cec5SDimitry Andric // Add the instruction after the scheduled instruction. 30090b57cec5SDimitry Andric OrderAfterDef = true; 30100b57cec5SDimitry Andric MoveDef = Pos; 30110b57cec5SDimitry Andric } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 30120b57cec5SDimitry Andric if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 30130b57cec5SDimitry Andric OrderBeforeUse = true; 30140b57cec5SDimitry Andric if (MoveUse == 0) 30150b57cec5SDimitry Andric MoveUse = Pos; 30160b57cec5SDimitry Andric } else { 30170b57cec5SDimitry Andric OrderAfterDef = true; 30180b57cec5SDimitry Andric MoveDef = Pos; 30190b57cec5SDimitry Andric } 30200b57cec5SDimitry Andric } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 30210b57cec5SDimitry Andric OrderBeforeUse = true; 30220b57cec5SDimitry Andric if (MoveUse == 0) 30230b57cec5SDimitry Andric MoveUse = Pos; 30240b57cec5SDimitry Andric if (MoveUse != 0) { 30250b57cec5SDimitry Andric OrderAfterDef = true; 30260b57cec5SDimitry Andric MoveDef = Pos - 1; 30270b57cec5SDimitry Andric } 30280b57cec5SDimitry Andric } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 30290b57cec5SDimitry Andric // Add the instruction before the scheduled instruction. 30300b57cec5SDimitry Andric OrderBeforeUse = true; 30310b57cec5SDimitry Andric if (MoveUse == 0) 30320b57cec5SDimitry Andric MoveUse = Pos; 30330b57cec5SDimitry Andric } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 30340b57cec5SDimitry Andric isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 30350b57cec5SDimitry Andric if (MoveUse == 0) { 30360b57cec5SDimitry Andric OrderBeforeDef = true; 30370b57cec5SDimitry Andric MoveUse = Pos; 30380b57cec5SDimitry Andric } 30390b57cec5SDimitry Andric } 30400b57cec5SDimitry Andric } 30410b57cec5SDimitry Andric // Check for order dependences between instructions. Make sure the source 30420b57cec5SDimitry Andric // is ordered before the destination. 30430b57cec5SDimitry Andric for (auto &S : SU->Succs) { 30440b57cec5SDimitry Andric if (S.getSUnit() != *I) 30450b57cec5SDimitry Andric continue; 30460b57cec5SDimitry Andric if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 30470b57cec5SDimitry Andric OrderBeforeUse = true; 30480b57cec5SDimitry Andric if (Pos < MoveUse) 30490b57cec5SDimitry Andric MoveUse = Pos; 30500b57cec5SDimitry Andric } 30510b57cec5SDimitry Andric // We did not handle HW dependences in previous for loop, 30520b57cec5SDimitry Andric // and we normally set Latency = 0 for Anti deps, 30530b57cec5SDimitry Andric // so may have nodes in same cycle with Anti denpendent on HW regs. 30540b57cec5SDimitry Andric else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { 30550b57cec5SDimitry Andric OrderBeforeUse = true; 30560b57cec5SDimitry Andric if ((MoveUse == 0) || (Pos < MoveUse)) 30570b57cec5SDimitry Andric MoveUse = Pos; 30580b57cec5SDimitry Andric } 30590b57cec5SDimitry Andric } 30600b57cec5SDimitry Andric for (auto &P : SU->Preds) { 30610b57cec5SDimitry Andric if (P.getSUnit() != *I) 30620b57cec5SDimitry Andric continue; 30630b57cec5SDimitry Andric if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { 30640b57cec5SDimitry Andric OrderAfterDef = true; 30650b57cec5SDimitry Andric MoveDef = Pos; 30660b57cec5SDimitry Andric } 30670b57cec5SDimitry Andric } 30680b57cec5SDimitry Andric } 30690b57cec5SDimitry Andric 30700b57cec5SDimitry Andric // A circular dependence. 30710b57cec5SDimitry Andric if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 30720b57cec5SDimitry Andric OrderBeforeUse = false; 30730b57cec5SDimitry Andric 30740b57cec5SDimitry Andric // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 30750b57cec5SDimitry Andric // to a loop-carried dependence. 30760b57cec5SDimitry Andric if (OrderBeforeDef) 30770b57cec5SDimitry Andric OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 30780b57cec5SDimitry Andric 30790b57cec5SDimitry Andric // The uncommon case when the instruction order needs to be updated because 30800b57cec5SDimitry Andric // there is both a use and def. 30810b57cec5SDimitry Andric if (OrderBeforeUse && OrderAfterDef) { 30820b57cec5SDimitry Andric SUnit *UseSU = Insts.at(MoveUse); 30830b57cec5SDimitry Andric SUnit *DefSU = Insts.at(MoveDef); 30840b57cec5SDimitry Andric if (MoveUse > MoveDef) { 30850b57cec5SDimitry Andric Insts.erase(Insts.begin() + MoveUse); 30860b57cec5SDimitry Andric Insts.erase(Insts.begin() + MoveDef); 30870b57cec5SDimitry Andric } else { 30880b57cec5SDimitry Andric Insts.erase(Insts.begin() + MoveDef); 30890b57cec5SDimitry Andric Insts.erase(Insts.begin() + MoveUse); 30900b57cec5SDimitry Andric } 30910b57cec5SDimitry Andric orderDependence(SSD, UseSU, Insts); 30920b57cec5SDimitry Andric orderDependence(SSD, SU, Insts); 30930b57cec5SDimitry Andric orderDependence(SSD, DefSU, Insts); 30940b57cec5SDimitry Andric return; 30950b57cec5SDimitry Andric } 30960b57cec5SDimitry Andric // Put the new instruction first if there is a use in the list. Otherwise, 30970b57cec5SDimitry Andric // put it at the end of the list. 30980b57cec5SDimitry Andric if (OrderBeforeUse) 30990b57cec5SDimitry Andric Insts.push_front(SU); 31000b57cec5SDimitry Andric else 31010b57cec5SDimitry Andric Insts.push_back(SU); 31020b57cec5SDimitry Andric } 31030b57cec5SDimitry Andric 31040b57cec5SDimitry Andric /// Return true if the scheduled Phi has a loop carried operand. 31057a6dacacSDimitry Andric bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, 31067a6dacacSDimitry Andric MachineInstr &Phi) const { 31070b57cec5SDimitry Andric if (!Phi.isPHI()) 31080b57cec5SDimitry Andric return false; 31090b57cec5SDimitry Andric assert(Phi.isPHI() && "Expecting a Phi."); 31100b57cec5SDimitry Andric SUnit *DefSU = SSD->getSUnit(&Phi); 31110b57cec5SDimitry Andric unsigned DefCycle = cycleScheduled(DefSU); 31120b57cec5SDimitry Andric int DefStage = stageScheduled(DefSU); 31130b57cec5SDimitry Andric 31140b57cec5SDimitry Andric unsigned InitVal = 0; 31150b57cec5SDimitry Andric unsigned LoopVal = 0; 31160b57cec5SDimitry Andric getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 31170b57cec5SDimitry Andric SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 31180b57cec5SDimitry Andric if (!UseSU) 31190b57cec5SDimitry Andric return true; 31200b57cec5SDimitry Andric if (UseSU->getInstr()->isPHI()) 31210b57cec5SDimitry Andric return true; 31220b57cec5SDimitry Andric unsigned LoopCycle = cycleScheduled(UseSU); 31230b57cec5SDimitry Andric int LoopStage = stageScheduled(UseSU); 31240b57cec5SDimitry Andric return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 31250b57cec5SDimitry Andric } 31260b57cec5SDimitry Andric 31270b57cec5SDimitry Andric /// Return true if the instruction is a definition that is loop carried 31280b57cec5SDimitry Andric /// and defines the use on the next iteration. 31290b57cec5SDimitry Andric /// v1 = phi(v2, v3) 31300b57cec5SDimitry Andric /// (Def) v3 = op v1 31310b57cec5SDimitry Andric /// (MO) = v1 31325f757f3fSDimitry Andric /// If MO appears before Def, then v1 and v3 may get assigned to the same 31330b57cec5SDimitry Andric /// register. 31347a6dacacSDimitry Andric bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, 31357a6dacacSDimitry Andric MachineInstr *Def, 31367a6dacacSDimitry Andric MachineOperand &MO) const { 31370b57cec5SDimitry Andric if (!MO.isReg()) 31380b57cec5SDimitry Andric return false; 31390b57cec5SDimitry Andric if (Def->isPHI()) 31400b57cec5SDimitry Andric return false; 31410b57cec5SDimitry Andric MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 31420b57cec5SDimitry Andric if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 31430b57cec5SDimitry Andric return false; 31440b57cec5SDimitry Andric if (!isLoopCarried(SSD, *Phi)) 31450b57cec5SDimitry Andric return false; 31460b57cec5SDimitry Andric unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 314706c3fb27SDimitry Andric for (MachineOperand &DMO : Def->all_defs()) { 31480b57cec5SDimitry Andric if (DMO.getReg() == LoopReg) 31490b57cec5SDimitry Andric return true; 31500b57cec5SDimitry Andric } 31510b57cec5SDimitry Andric return false; 31520b57cec5SDimitry Andric } 31530b57cec5SDimitry Andric 31540fca6ea1SDimitry Andric /// Return true if all scheduled predecessors are loop-carried output/order 31550fca6ea1SDimitry Andric /// dependencies. 31560fca6ea1SDimitry Andric bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds( 31570fca6ea1SDimitry Andric SUnit *SU, SwingSchedulerDAG *DAG) const { 31580fca6ea1SDimitry Andric for (const SDep &Pred : SU->Preds) 31590fca6ea1SDimitry Andric if (InstrToCycle.count(Pred.getSUnit()) && !DAG->isBackedge(SU, Pred)) 31600fca6ea1SDimitry Andric return false; 31610fca6ea1SDimitry Andric for (const SDep &Succ : SU->Succs) 31620fca6ea1SDimitry Andric if (InstrToCycle.count(Succ.getSUnit()) && DAG->isBackedge(SU, Succ)) 31630fca6ea1SDimitry Andric return false; 31640fca6ea1SDimitry Andric return true; 31650fca6ea1SDimitry Andric } 31660fca6ea1SDimitry Andric 316781ad6265SDimitry Andric /// Determine transitive dependences of unpipelineable instructions 316881ad6265SDimitry Andric SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes( 316981ad6265SDimitry Andric SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 317081ad6265SDimitry Andric SmallSet<SUnit *, 8> DoNotPipeline; 317181ad6265SDimitry Andric SmallVector<SUnit *, 8> Worklist; 317281ad6265SDimitry Andric 317381ad6265SDimitry Andric for (auto &SU : SSD->SUnits) 317481ad6265SDimitry Andric if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) 317581ad6265SDimitry Andric Worklist.push_back(&SU); 317681ad6265SDimitry Andric 317781ad6265SDimitry Andric while (!Worklist.empty()) { 317881ad6265SDimitry Andric auto SU = Worklist.pop_back_val(); 317981ad6265SDimitry Andric if (DoNotPipeline.count(SU)) 318081ad6265SDimitry Andric continue; 318181ad6265SDimitry Andric LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); 318281ad6265SDimitry Andric DoNotPipeline.insert(SU); 318381ad6265SDimitry Andric for (auto &Dep : SU->Preds) 318481ad6265SDimitry Andric Worklist.push_back(Dep.getSUnit()); 318581ad6265SDimitry Andric if (SU->getInstr()->isPHI()) 318681ad6265SDimitry Andric for (auto &Dep : SU->Succs) 318781ad6265SDimitry Andric if (Dep.getKind() == SDep::Anti) 318881ad6265SDimitry Andric Worklist.push_back(Dep.getSUnit()); 318981ad6265SDimitry Andric } 319081ad6265SDimitry Andric return DoNotPipeline; 319181ad6265SDimitry Andric } 319281ad6265SDimitry Andric 319381ad6265SDimitry Andric // Determine all instructions upon which any unpipelineable instruction depends 319481ad6265SDimitry Andric // and ensure that they are in stage 0. If unable to do so, return false. 319581ad6265SDimitry Andric bool SMSchedule::normalizeNonPipelinedInstructions( 319681ad6265SDimitry Andric SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { 319781ad6265SDimitry Andric SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI); 319881ad6265SDimitry Andric 319981ad6265SDimitry Andric int NewLastCycle = INT_MIN; 320081ad6265SDimitry Andric for (SUnit &SU : SSD->SUnits) { 320181ad6265SDimitry Andric if (!SU.isInstr()) 320281ad6265SDimitry Andric continue; 320381ad6265SDimitry Andric if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { 320481ad6265SDimitry Andric NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); 320581ad6265SDimitry Andric continue; 320681ad6265SDimitry Andric } 320781ad6265SDimitry Andric 320881ad6265SDimitry Andric // Put the non-pipelined instruction as early as possible in the schedule 320981ad6265SDimitry Andric int NewCycle = getFirstCycle(); 321081ad6265SDimitry Andric for (auto &Dep : SU.Preds) 321181ad6265SDimitry Andric NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); 321281ad6265SDimitry Andric 321381ad6265SDimitry Andric int OldCycle = InstrToCycle[&SU]; 321481ad6265SDimitry Andric if (OldCycle != NewCycle) { 321581ad6265SDimitry Andric InstrToCycle[&SU] = NewCycle; 321681ad6265SDimitry Andric auto &OldS = getInstructions(OldCycle); 32175f757f3fSDimitry Andric llvm::erase(OldS, &SU); 321881ad6265SDimitry Andric getInstructions(NewCycle).emplace_back(&SU); 321981ad6265SDimitry Andric LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum 322081ad6265SDimitry Andric << ") is not pipelined; moving from cycle " << OldCycle 322181ad6265SDimitry Andric << " to " << NewCycle << " Instr:" << *SU.getInstr()); 322281ad6265SDimitry Andric } 322381ad6265SDimitry Andric NewLastCycle = std::max(NewLastCycle, NewCycle); 322481ad6265SDimitry Andric } 322581ad6265SDimitry Andric LastCycle = NewLastCycle; 322681ad6265SDimitry Andric return true; 322781ad6265SDimitry Andric } 322881ad6265SDimitry Andric 32290b57cec5SDimitry Andric // Check if the generated schedule is valid. This function checks if 32300b57cec5SDimitry Andric // an instruction that uses a physical register is scheduled in a 32310b57cec5SDimitry Andric // different stage than the definition. The pipeliner does not handle 32320b57cec5SDimitry Andric // physical register values that may cross a basic block boundary. 323381ad6265SDimitry Andric // Furthermore, if a physical def/use pair is assigned to the same 323481ad6265SDimitry Andric // cycle, orderDependence does not guarantee def/use ordering, so that 323581ad6265SDimitry Andric // case should be considered invalid. (The test checks for both 323681ad6265SDimitry Andric // earlier and same-cycle use to be more robust.) 32370b57cec5SDimitry Andric bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3238fe6060f1SDimitry Andric for (SUnit &SU : SSD->SUnits) { 32390b57cec5SDimitry Andric if (!SU.hasPhysRegDefs) 32400b57cec5SDimitry Andric continue; 32410b57cec5SDimitry Andric int StageDef = stageScheduled(&SU); 324281ad6265SDimitry Andric int CycleDef = InstrToCycle[&SU]; 32430b57cec5SDimitry Andric assert(StageDef != -1 && "Instruction should have been scheduled."); 32440b57cec5SDimitry Andric for (auto &SI : SU.Succs) 324581ad6265SDimitry Andric if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) 324681ad6265SDimitry Andric if (Register::isPhysicalRegister(SI.getReg())) { 32470b57cec5SDimitry Andric if (stageScheduled(SI.getSUnit()) != StageDef) 32480b57cec5SDimitry Andric return false; 324981ad6265SDimitry Andric if (InstrToCycle[SI.getSUnit()] <= CycleDef) 325081ad6265SDimitry Andric return false; 325181ad6265SDimitry Andric } 32520b57cec5SDimitry Andric } 32530b57cec5SDimitry Andric return true; 32540b57cec5SDimitry Andric } 32550b57cec5SDimitry Andric 32560b57cec5SDimitry Andric /// A property of the node order in swing-modulo-scheduling is 32570b57cec5SDimitry Andric /// that for nodes outside circuits the following holds: 32580b57cec5SDimitry Andric /// none of them is scheduled after both a successor and a 32590b57cec5SDimitry Andric /// predecessor. 32600b57cec5SDimitry Andric /// The method below checks whether the property is met. 32610b57cec5SDimitry Andric /// If not, debug information is printed and statistics information updated. 32620b57cec5SDimitry Andric /// Note that we do not use an assert statement. 32630b57cec5SDimitry Andric /// The reason is that although an invalid node oder may prevent 32640b57cec5SDimitry Andric /// the pipeliner from finding a pipelined schedule for arbitrary II, 32650b57cec5SDimitry Andric /// it does not lead to the generation of incorrect code. 32660b57cec5SDimitry Andric void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { 32670b57cec5SDimitry Andric 32680b57cec5SDimitry Andric // a sorted vector that maps each SUnit to its index in the NodeOrder 32690b57cec5SDimitry Andric typedef std::pair<SUnit *, unsigned> UnitIndex; 32700b57cec5SDimitry Andric std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); 32710b57cec5SDimitry Andric 32720b57cec5SDimitry Andric for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) 32730b57cec5SDimitry Andric Indices.push_back(std::make_pair(NodeOrder[i], i)); 32740b57cec5SDimitry Andric 32750b57cec5SDimitry Andric auto CompareKey = [](UnitIndex i1, UnitIndex i2) { 32760b57cec5SDimitry Andric return std::get<0>(i1) < std::get<0>(i2); 32770b57cec5SDimitry Andric }; 32780b57cec5SDimitry Andric 32790b57cec5SDimitry Andric // sort, so that we can perform a binary search 32800b57cec5SDimitry Andric llvm::sort(Indices, CompareKey); 32810b57cec5SDimitry Andric 32820b57cec5SDimitry Andric bool Valid = true; 32830b57cec5SDimitry Andric (void)Valid; 32840b57cec5SDimitry Andric // for each SUnit in the NodeOrder, check whether 32850b57cec5SDimitry Andric // it appears after both a successor and a predecessor 32860b57cec5SDimitry Andric // of the SUnit. If this is the case, and the SUnit 32870b57cec5SDimitry Andric // is not part of circuit, then the NodeOrder is not 32880b57cec5SDimitry Andric // valid. 32890b57cec5SDimitry Andric for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { 32900b57cec5SDimitry Andric SUnit *SU = NodeOrder[i]; 32910b57cec5SDimitry Andric unsigned Index = i; 32920b57cec5SDimitry Andric 32930b57cec5SDimitry Andric bool PredBefore = false; 32940b57cec5SDimitry Andric bool SuccBefore = false; 32950b57cec5SDimitry Andric 32960b57cec5SDimitry Andric SUnit *Succ; 32970b57cec5SDimitry Andric SUnit *Pred; 32980b57cec5SDimitry Andric (void)Succ; 32990b57cec5SDimitry Andric (void)Pred; 33000b57cec5SDimitry Andric 33010b57cec5SDimitry Andric for (SDep &PredEdge : SU->Preds) { 33020b57cec5SDimitry Andric SUnit *PredSU = PredEdge.getSUnit(); 33030b57cec5SDimitry Andric unsigned PredIndex = std::get<1>( 33040b57cec5SDimitry Andric *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); 33050b57cec5SDimitry Andric if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { 33060b57cec5SDimitry Andric PredBefore = true; 33070b57cec5SDimitry Andric Pred = PredSU; 33080b57cec5SDimitry Andric break; 33090b57cec5SDimitry Andric } 33100b57cec5SDimitry Andric } 33110b57cec5SDimitry Andric 33120b57cec5SDimitry Andric for (SDep &SuccEdge : SU->Succs) { 33130b57cec5SDimitry Andric SUnit *SuccSU = SuccEdge.getSUnit(); 33140b57cec5SDimitry Andric // Do not process a boundary node, it was not included in NodeOrder, 33150b57cec5SDimitry Andric // hence not in Indices either, call to std::lower_bound() below will 33160b57cec5SDimitry Andric // return Indices.end(). 33170b57cec5SDimitry Andric if (SuccSU->isBoundaryNode()) 33180b57cec5SDimitry Andric continue; 33190b57cec5SDimitry Andric unsigned SuccIndex = std::get<1>( 33200b57cec5SDimitry Andric *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); 33210b57cec5SDimitry Andric if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { 33220b57cec5SDimitry Andric SuccBefore = true; 33230b57cec5SDimitry Andric Succ = SuccSU; 33240b57cec5SDimitry Andric break; 33250b57cec5SDimitry Andric } 33260b57cec5SDimitry Andric } 33270b57cec5SDimitry Andric 33280b57cec5SDimitry Andric if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { 33290b57cec5SDimitry Andric // instructions in circuits are allowed to be scheduled 33300b57cec5SDimitry Andric // after both a successor and predecessor. 33310b57cec5SDimitry Andric bool InCircuit = llvm::any_of( 33320b57cec5SDimitry Andric Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); 33330b57cec5SDimitry Andric if (InCircuit) 33340b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); 33350b57cec5SDimitry Andric else { 33360b57cec5SDimitry Andric Valid = false; 33370b57cec5SDimitry Andric NumNodeOrderIssues++; 33380b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Predecessor ";); 33390b57cec5SDimitry Andric } 33400b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum 33410b57cec5SDimitry Andric << " are scheduled before node " << SU->NodeNum 33420b57cec5SDimitry Andric << "\n";); 33430b57cec5SDimitry Andric } 33440b57cec5SDimitry Andric } 33450b57cec5SDimitry Andric 33460b57cec5SDimitry Andric LLVM_DEBUG({ 33470b57cec5SDimitry Andric if (!Valid) 33480b57cec5SDimitry Andric dbgs() << "Invalid node order found!\n"; 33490b57cec5SDimitry Andric }); 33500b57cec5SDimitry Andric } 33510b57cec5SDimitry Andric 33520b57cec5SDimitry Andric /// Attempt to fix the degenerate cases when the instruction serialization 33530b57cec5SDimitry Andric /// causes the register lifetimes to overlap. For example, 33540b57cec5SDimitry Andric /// p' = store_pi(p, b) 33550b57cec5SDimitry Andric /// = load p, offset 33560b57cec5SDimitry Andric /// In this case p and p' overlap, which means that two registers are needed. 33570b57cec5SDimitry Andric /// Instead, this function changes the load to use p' and updates the offset. 33580b57cec5SDimitry Andric void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { 33590b57cec5SDimitry Andric unsigned OverlapReg = 0; 33600b57cec5SDimitry Andric unsigned NewBaseReg = 0; 33610b57cec5SDimitry Andric for (SUnit *SU : Instrs) { 33620b57cec5SDimitry Andric MachineInstr *MI = SU->getInstr(); 33630b57cec5SDimitry Andric for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 33640b57cec5SDimitry Andric const MachineOperand &MO = MI->getOperand(i); 33650b57cec5SDimitry Andric // Look for an instruction that uses p. The instruction occurs in the 33660b57cec5SDimitry Andric // same cycle but occurs later in the serialized order. 33670b57cec5SDimitry Andric if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { 33680b57cec5SDimitry Andric // Check that the instruction appears in the InstrChanges structure, 33690b57cec5SDimitry Andric // which contains instructions that can have the offset updated. 33700b57cec5SDimitry Andric DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 33710b57cec5SDimitry Andric InstrChanges.find(SU); 33720b57cec5SDimitry Andric if (It != InstrChanges.end()) { 33730b57cec5SDimitry Andric unsigned BasePos, OffsetPos; 33740b57cec5SDimitry Andric // Update the base register and adjust the offset. 33750b57cec5SDimitry Andric if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { 33760b57cec5SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(MI); 33770b57cec5SDimitry Andric NewMI->getOperand(BasePos).setReg(NewBaseReg); 33780b57cec5SDimitry Andric int64_t NewOffset = 33790b57cec5SDimitry Andric MI->getOperand(OffsetPos).getImm() - It->second.second; 33800b57cec5SDimitry Andric NewMI->getOperand(OffsetPos).setImm(NewOffset); 33810b57cec5SDimitry Andric SU->setInstr(NewMI); 33820b57cec5SDimitry Andric MISUnitMap[NewMI] = SU; 33838bcb0991SDimitry Andric NewMIs[MI] = NewMI; 33840b57cec5SDimitry Andric } 33850b57cec5SDimitry Andric } 33860b57cec5SDimitry Andric OverlapReg = 0; 33870b57cec5SDimitry Andric NewBaseReg = 0; 33880b57cec5SDimitry Andric break; 33890b57cec5SDimitry Andric } 33900b57cec5SDimitry Andric // Look for an instruction of the form p' = op(p), which uses and defines 33910b57cec5SDimitry Andric // two virtual registers that get allocated to the same physical register. 33920b57cec5SDimitry Andric unsigned TiedUseIdx = 0; 33930b57cec5SDimitry Andric if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { 33940b57cec5SDimitry Andric // OverlapReg is p in the example above. 33950b57cec5SDimitry Andric OverlapReg = MI->getOperand(TiedUseIdx).getReg(); 33960b57cec5SDimitry Andric // NewBaseReg is p' in the example above. 33970b57cec5SDimitry Andric NewBaseReg = MI->getOperand(i).getReg(); 33980b57cec5SDimitry Andric break; 33990b57cec5SDimitry Andric } 34000b57cec5SDimitry Andric } 34010b57cec5SDimitry Andric } 34020b57cec5SDimitry Andric } 34030b57cec5SDimitry Andric 34047a6dacacSDimitry Andric std::deque<SUnit *> 34057a6dacacSDimitry Andric SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, 34067a6dacacSDimitry Andric const std::deque<SUnit *> &Instrs) const { 34077a6dacacSDimitry Andric std::deque<SUnit *> NewOrderPhi; 34087a6dacacSDimitry Andric for (SUnit *SU : Instrs) { 34097a6dacacSDimitry Andric if (SU->getInstr()->isPHI()) 34107a6dacacSDimitry Andric NewOrderPhi.push_back(SU); 34117a6dacacSDimitry Andric } 34127a6dacacSDimitry Andric std::deque<SUnit *> NewOrderI; 34137a6dacacSDimitry Andric for (SUnit *SU : Instrs) { 34147a6dacacSDimitry Andric if (!SU->getInstr()->isPHI()) 34157a6dacacSDimitry Andric orderDependence(SSD, SU, NewOrderI); 34167a6dacacSDimitry Andric } 34177a6dacacSDimitry Andric llvm::append_range(NewOrderPhi, NewOrderI); 34187a6dacacSDimitry Andric return NewOrderPhi; 34197a6dacacSDimitry Andric } 34207a6dacacSDimitry Andric 34210b57cec5SDimitry Andric /// After the schedule has been formed, call this function to combine 34220b57cec5SDimitry Andric /// the instructions from the different stages/cycles. That is, this 34230b57cec5SDimitry Andric /// function creates a schedule that represents a single iteration. 34240b57cec5SDimitry Andric void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 34250b57cec5SDimitry Andric // Move all instructions to the first stage from later stages. 34260b57cec5SDimitry Andric for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 34270b57cec5SDimitry Andric for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 34280b57cec5SDimitry Andric ++stage) { 34290b57cec5SDimitry Andric std::deque<SUnit *> &cycleInstrs = 34300b57cec5SDimitry Andric ScheduledInstrs[cycle + (stage * InitiationInterval)]; 34310eae32dcSDimitry Andric for (SUnit *SU : llvm::reverse(cycleInstrs)) 34320eae32dcSDimitry Andric ScheduledInstrs[cycle].push_front(SU); 34330b57cec5SDimitry Andric } 34340b57cec5SDimitry Andric } 34350b57cec5SDimitry Andric 34360b57cec5SDimitry Andric // Erase all the elements in the later stages. Only one iteration should 34370b57cec5SDimitry Andric // remain in the scheduled list, and it contains all the instructions. 34380b57cec5SDimitry Andric for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 34390b57cec5SDimitry Andric ScheduledInstrs.erase(cycle); 34400b57cec5SDimitry Andric 34410b57cec5SDimitry Andric // Change the registers in instruction as specified in the InstrChanges 34420b57cec5SDimitry Andric // map. We need to use the new registers to create the correct order. 34430eae32dcSDimitry Andric for (const SUnit &SU : SSD->SUnits) 34440eae32dcSDimitry Andric SSD->applyInstrChange(SU.getInstr(), *this); 34450b57cec5SDimitry Andric 34460b57cec5SDimitry Andric // Reorder the instructions in each cycle to fix and improve the 34470b57cec5SDimitry Andric // generated code. 34480b57cec5SDimitry Andric for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 34490b57cec5SDimitry Andric std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 34507a6dacacSDimitry Andric cycleInstrs = reorderInstructions(SSD, cycleInstrs); 34510b57cec5SDimitry Andric SSD->fixupRegisterOverlaps(cycleInstrs); 34520b57cec5SDimitry Andric } 34530b57cec5SDimitry Andric 34540b57cec5SDimitry Andric LLVM_DEBUG(dump();); 34550b57cec5SDimitry Andric } 34560b57cec5SDimitry Andric 34570b57cec5SDimitry Andric void NodeSet::print(raw_ostream &os) const { 34580b57cec5SDimitry Andric os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 34590b57cec5SDimitry Andric << " depth " << MaxDepth << " col " << Colocate << "\n"; 34600b57cec5SDimitry Andric for (const auto &I : Nodes) 34610b57cec5SDimitry Andric os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 34620b57cec5SDimitry Andric os << "\n"; 34630b57cec5SDimitry Andric } 34640b57cec5SDimitry Andric 34650b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 34660b57cec5SDimitry Andric /// Print the schedule information to the given output. 34670b57cec5SDimitry Andric void SMSchedule::print(raw_ostream &os) const { 34680b57cec5SDimitry Andric // Iterate over each cycle. 34690b57cec5SDimitry Andric for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 34700b57cec5SDimitry Andric // Iterate over each instruction in the cycle. 34710b57cec5SDimitry Andric const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 34720b57cec5SDimitry Andric for (SUnit *CI : cycleInstrs->second) { 34730b57cec5SDimitry Andric os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 34740b57cec5SDimitry Andric os << "(" << CI->NodeNum << ") "; 34750b57cec5SDimitry Andric CI->getInstr()->print(os); 34760b57cec5SDimitry Andric os << "\n"; 34770b57cec5SDimitry Andric } 34780b57cec5SDimitry Andric } 34790b57cec5SDimitry Andric } 34800b57cec5SDimitry Andric 34810b57cec5SDimitry Andric /// Utility function used for debugging to print the schedule. 34820b57cec5SDimitry Andric LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } 34830b57cec5SDimitry Andric LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } 34840b57cec5SDimitry Andric 3485bdd1243dSDimitry Andric void ResourceManager::dumpMRT() const { 3486bdd1243dSDimitry Andric LLVM_DEBUG({ 3487bdd1243dSDimitry Andric if (UseDFA) 3488bdd1243dSDimitry Andric return; 3489bdd1243dSDimitry Andric std::stringstream SS; 3490bdd1243dSDimitry Andric SS << "MRT:\n"; 3491bdd1243dSDimitry Andric SS << std::setw(4) << "Slot"; 3492bdd1243dSDimitry Andric for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3493bdd1243dSDimitry Andric SS << std::setw(3) << I; 3494bdd1243dSDimitry Andric SS << std::setw(7) << "#Mops" 3495bdd1243dSDimitry Andric << "\n"; 3496bdd1243dSDimitry Andric for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3497bdd1243dSDimitry Andric SS << std::setw(4) << Slot; 3498bdd1243dSDimitry Andric for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) 3499bdd1243dSDimitry Andric SS << std::setw(3) << MRT[Slot][I]; 3500bdd1243dSDimitry Andric SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; 3501bdd1243dSDimitry Andric } 3502bdd1243dSDimitry Andric dbgs() << SS.str(); 3503bdd1243dSDimitry Andric }); 3504bdd1243dSDimitry Andric } 35050b57cec5SDimitry Andric #endif 35060b57cec5SDimitry Andric 35070b57cec5SDimitry Andric void ResourceManager::initProcResourceVectors( 35080b57cec5SDimitry Andric const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { 35090b57cec5SDimitry Andric unsigned ProcResourceID = 0; 35100b57cec5SDimitry Andric 35110b57cec5SDimitry Andric // We currently limit the resource kinds to 64 and below so that we can use 35120b57cec5SDimitry Andric // uint64_t for Masks 35130b57cec5SDimitry Andric assert(SM.getNumProcResourceKinds() < 64 && 35140b57cec5SDimitry Andric "Too many kinds of resources, unsupported"); 35150b57cec5SDimitry Andric // Create a unique bitmask for every processor resource unit. 35160b57cec5SDimitry Andric // Skip resource at index 0, since it always references 'InvalidUnit'. 35170b57cec5SDimitry Andric Masks.resize(SM.getNumProcResourceKinds()); 35180b57cec5SDimitry Andric for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 35190b57cec5SDimitry Andric const MCProcResourceDesc &Desc = *SM.getProcResource(I); 35200b57cec5SDimitry Andric if (Desc.SubUnitsIdxBegin) 35210b57cec5SDimitry Andric continue; 35220b57cec5SDimitry Andric Masks[I] = 1ULL << ProcResourceID; 35230b57cec5SDimitry Andric ProcResourceID++; 35240b57cec5SDimitry Andric } 35250b57cec5SDimitry Andric // Create a unique bitmask for every processor resource group. 35260b57cec5SDimitry Andric for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 35270b57cec5SDimitry Andric const MCProcResourceDesc &Desc = *SM.getProcResource(I); 35280b57cec5SDimitry Andric if (!Desc.SubUnitsIdxBegin) 35290b57cec5SDimitry Andric continue; 35300b57cec5SDimitry Andric Masks[I] = 1ULL << ProcResourceID; 35310b57cec5SDimitry Andric for (unsigned U = 0; U < Desc.NumUnits; ++U) 35320b57cec5SDimitry Andric Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; 35330b57cec5SDimitry Andric ProcResourceID++; 35340b57cec5SDimitry Andric } 35350b57cec5SDimitry Andric LLVM_DEBUG({ 35360b57cec5SDimitry Andric if (SwpShowResMask) { 35370b57cec5SDimitry Andric dbgs() << "ProcResourceDesc:\n"; 35380b57cec5SDimitry Andric for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 35390b57cec5SDimitry Andric const MCProcResourceDesc *ProcResource = SM.getProcResource(I); 35400b57cec5SDimitry Andric dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", 35410b57cec5SDimitry Andric ProcResource->Name, I, Masks[I], 35420b57cec5SDimitry Andric ProcResource->NumUnits); 35430b57cec5SDimitry Andric } 35440b57cec5SDimitry Andric dbgs() << " -----------------\n"; 35450b57cec5SDimitry Andric } 35460b57cec5SDimitry Andric }); 35470b57cec5SDimitry Andric } 35480b57cec5SDimitry Andric 3549bdd1243dSDimitry Andric bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { 35500b57cec5SDimitry Andric LLVM_DEBUG({ 35510b57cec5SDimitry Andric if (SwpDebugResource) 35520b57cec5SDimitry Andric dbgs() << "canReserveResources:\n"; 35530b57cec5SDimitry Andric }); 35540b57cec5SDimitry Andric if (UseDFA) 3555bdd1243dSDimitry Andric return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3556bdd1243dSDimitry Andric ->canReserveResources(&SU.getInstr()->getDesc()); 35570b57cec5SDimitry Andric 3558bdd1243dSDimitry Andric const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 35590b57cec5SDimitry Andric if (!SCDesc->isValid()) { 35600b57cec5SDimitry Andric LLVM_DEBUG({ 35610b57cec5SDimitry Andric dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3562bdd1243dSDimitry Andric dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 35630b57cec5SDimitry Andric }); 35640b57cec5SDimitry Andric return true; 35650b57cec5SDimitry Andric } 35660b57cec5SDimitry Andric 3567bdd1243dSDimitry Andric reserveResources(SCDesc, Cycle); 3568bdd1243dSDimitry Andric bool Result = !isOverbooked(); 3569bdd1243dSDimitry Andric unreserveResources(SCDesc, Cycle); 3570bdd1243dSDimitry Andric 3571bdd1243dSDimitry Andric LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); 3572bdd1243dSDimitry Andric return Result; 35730b57cec5SDimitry Andric } 35740b57cec5SDimitry Andric 3575bdd1243dSDimitry Andric void ResourceManager::reserveResources(SUnit &SU, int Cycle) { 35760b57cec5SDimitry Andric LLVM_DEBUG({ 35770b57cec5SDimitry Andric if (SwpDebugResource) 35780b57cec5SDimitry Andric dbgs() << "reserveResources:\n"; 35790b57cec5SDimitry Andric }); 35800b57cec5SDimitry Andric if (UseDFA) 3581bdd1243dSDimitry Andric return DFAResources[positiveModulo(Cycle, InitiationInterval)] 3582bdd1243dSDimitry Andric ->reserveResources(&SU.getInstr()->getDesc()); 35830b57cec5SDimitry Andric 3584bdd1243dSDimitry Andric const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 35850b57cec5SDimitry Andric if (!SCDesc->isValid()) { 35860b57cec5SDimitry Andric LLVM_DEBUG({ 35870b57cec5SDimitry Andric dbgs() << "No valid Schedule Class Desc for schedClass!\n"; 3588bdd1243dSDimitry Andric dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; 35890b57cec5SDimitry Andric }); 35900b57cec5SDimitry Andric return; 35910b57cec5SDimitry Andric } 3592bdd1243dSDimitry Andric 3593bdd1243dSDimitry Andric reserveResources(SCDesc, Cycle); 3594bdd1243dSDimitry Andric 3595bdd1243dSDimitry Andric LLVM_DEBUG({ 3596bdd1243dSDimitry Andric if (SwpDebugResource) { 3597bdd1243dSDimitry Andric dumpMRT(); 3598bdd1243dSDimitry Andric dbgs() << "reserveResources: done!\n\n"; 3599bdd1243dSDimitry Andric } 3600bdd1243dSDimitry Andric }); 3601bdd1243dSDimitry Andric } 3602bdd1243dSDimitry Andric 3603bdd1243dSDimitry Andric void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, 3604bdd1243dSDimitry Andric int Cycle) { 3605bdd1243dSDimitry Andric assert(!UseDFA); 3606bdd1243dSDimitry Andric for (const MCWriteProcResEntry &PRE : make_range( 3607bdd1243dSDimitry Andric STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 36085f757f3fSDimitry Andric for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3609bdd1243dSDimitry Andric ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3610bdd1243dSDimitry Andric 3611bdd1243dSDimitry Andric for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3612bdd1243dSDimitry Andric ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3613bdd1243dSDimitry Andric } 3614bdd1243dSDimitry Andric 3615bdd1243dSDimitry Andric void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, 3616bdd1243dSDimitry Andric int Cycle) { 3617bdd1243dSDimitry Andric assert(!UseDFA); 3618bdd1243dSDimitry Andric for (const MCWriteProcResEntry &PRE : make_range( 3619bdd1243dSDimitry Andric STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) 36205f757f3fSDimitry Andric for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) 3621bdd1243dSDimitry Andric --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; 3622bdd1243dSDimitry Andric 3623bdd1243dSDimitry Andric for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) 3624bdd1243dSDimitry Andric --NumScheduledMops[positiveModulo(C, InitiationInterval)]; 3625bdd1243dSDimitry Andric } 3626bdd1243dSDimitry Andric 3627bdd1243dSDimitry Andric bool ResourceManager::isOverbooked() const { 3628bdd1243dSDimitry Andric assert(!UseDFA); 3629bdd1243dSDimitry Andric for (int Slot = 0; Slot < InitiationInterval; ++Slot) { 3630bdd1243dSDimitry Andric for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3631bdd1243dSDimitry Andric const MCProcResourceDesc *Desc = SM.getProcResource(I); 3632bdd1243dSDimitry Andric if (MRT[Slot][I] > Desc->NumUnits) 3633bdd1243dSDimitry Andric return true; 3634bdd1243dSDimitry Andric } 3635bdd1243dSDimitry Andric if (NumScheduledMops[Slot] > IssueWidth) 3636bdd1243dSDimitry Andric return true; 3637bdd1243dSDimitry Andric } 3638bdd1243dSDimitry Andric return false; 3639bdd1243dSDimitry Andric } 3640bdd1243dSDimitry Andric 3641bdd1243dSDimitry Andric int ResourceManager::calculateResMIIDFA() const { 3642bdd1243dSDimitry Andric assert(UseDFA); 3643bdd1243dSDimitry Andric 3644bdd1243dSDimitry Andric // Sort the instructions by the number of available choices for scheduling, 3645bdd1243dSDimitry Andric // least to most. Use the number of critical resources as the tie breaker. 3646bdd1243dSDimitry Andric FuncUnitSorter FUS = FuncUnitSorter(*ST); 3647bdd1243dSDimitry Andric for (SUnit &SU : DAG->SUnits) 3648bdd1243dSDimitry Andric FUS.calcCriticalResources(*SU.getInstr()); 3649bdd1243dSDimitry Andric PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 3650bdd1243dSDimitry Andric FuncUnitOrder(FUS); 3651bdd1243dSDimitry Andric 3652bdd1243dSDimitry Andric for (SUnit &SU : DAG->SUnits) 3653bdd1243dSDimitry Andric FuncUnitOrder.push(SU.getInstr()); 3654bdd1243dSDimitry Andric 3655bdd1243dSDimitry Andric SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources; 3656bdd1243dSDimitry Andric Resources.push_back( 3657bdd1243dSDimitry Andric std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST))); 3658bdd1243dSDimitry Andric 3659bdd1243dSDimitry Andric while (!FuncUnitOrder.empty()) { 3660bdd1243dSDimitry Andric MachineInstr *MI = FuncUnitOrder.top(); 3661bdd1243dSDimitry Andric FuncUnitOrder.pop(); 3662bdd1243dSDimitry Andric if (TII->isZeroCost(MI->getOpcode())) 3663bdd1243dSDimitry Andric continue; 3664bdd1243dSDimitry Andric 3665bdd1243dSDimitry Andric // Attempt to reserve the instruction in an existing DFA. At least one 3666bdd1243dSDimitry Andric // DFA is needed for each cycle. 3667bdd1243dSDimitry Andric unsigned NumCycles = DAG->getSUnit(MI)->Latency; 3668bdd1243dSDimitry Andric unsigned ReservedCycles = 0; 3669bdd1243dSDimitry Andric auto *RI = Resources.begin(); 3670bdd1243dSDimitry Andric auto *RE = Resources.end(); 3671bdd1243dSDimitry Andric LLVM_DEBUG({ 3672bdd1243dSDimitry Andric dbgs() << "Trying to reserve resource for " << NumCycles 3673bdd1243dSDimitry Andric << " cycles for \n"; 3674bdd1243dSDimitry Andric MI->dump(); 3675bdd1243dSDimitry Andric }); 3676bdd1243dSDimitry Andric for (unsigned C = 0; C < NumCycles; ++C) 3677bdd1243dSDimitry Andric while (RI != RE) { 3678bdd1243dSDimitry Andric if ((*RI)->canReserveResources(*MI)) { 3679bdd1243dSDimitry Andric (*RI)->reserveResources(*MI); 3680bdd1243dSDimitry Andric ++ReservedCycles; 3681bdd1243dSDimitry Andric break; 3682bdd1243dSDimitry Andric } 3683bdd1243dSDimitry Andric RI++; 3684bdd1243dSDimitry Andric } 3685bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles 3686bdd1243dSDimitry Andric << ", NumCycles:" << NumCycles << "\n"); 3687bdd1243dSDimitry Andric // Add new DFAs, if needed, to reserve resources. 3688bdd1243dSDimitry Andric for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 3689bdd1243dSDimitry Andric LLVM_DEBUG(if (SwpDebugResource) dbgs() 3690bdd1243dSDimitry Andric << "NewResource created to reserve resources" 3691bdd1243dSDimitry Andric << "\n"); 3692bdd1243dSDimitry Andric auto *NewResource = TII->CreateTargetScheduleState(*ST); 3693bdd1243dSDimitry Andric assert(NewResource->canReserveResources(*MI) && "Reserve error."); 3694bdd1243dSDimitry Andric NewResource->reserveResources(*MI); 3695bdd1243dSDimitry Andric Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource)); 3696bdd1243dSDimitry Andric } 3697bdd1243dSDimitry Andric } 3698bdd1243dSDimitry Andric 3699bdd1243dSDimitry Andric int Resmii = Resources.size(); 3700bdd1243dSDimitry Andric LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); 3701bdd1243dSDimitry Andric return Resmii; 3702bdd1243dSDimitry Andric } 3703bdd1243dSDimitry Andric 3704bdd1243dSDimitry Andric int ResourceManager::calculateResMII() const { 3705bdd1243dSDimitry Andric if (UseDFA) 3706bdd1243dSDimitry Andric return calculateResMIIDFA(); 3707bdd1243dSDimitry Andric 3708bdd1243dSDimitry Andric // Count each resource consumption and divide it by the number of units. 3709bdd1243dSDimitry Andric // ResMII is the max value among them. 3710bdd1243dSDimitry Andric 3711bdd1243dSDimitry Andric int NumMops = 0; 3712bdd1243dSDimitry Andric SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds()); 3713bdd1243dSDimitry Andric for (SUnit &SU : DAG->SUnits) { 3714bdd1243dSDimitry Andric if (TII->isZeroCost(SU.getInstr()->getOpcode())) 3715bdd1243dSDimitry Andric continue; 3716bdd1243dSDimitry Andric 3717bdd1243dSDimitry Andric const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); 3718bdd1243dSDimitry Andric if (!SCDesc->isValid()) 3719bdd1243dSDimitry Andric continue; 3720bdd1243dSDimitry Andric 3721bdd1243dSDimitry Andric LLVM_DEBUG({ 3722bdd1243dSDimitry Andric if (SwpDebugResource) { 3723bdd1243dSDimitry Andric DAG->dumpNode(SU); 3724bdd1243dSDimitry Andric dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" 3725bdd1243dSDimitry Andric << " WriteProcRes: "; 3726bdd1243dSDimitry Andric } 3727bdd1243dSDimitry Andric }); 3728bdd1243dSDimitry Andric NumMops += SCDesc->NumMicroOps; 37290b57cec5SDimitry Andric for (const MCWriteProcResEntry &PRE : 37300b57cec5SDimitry Andric make_range(STI->getWriteProcResBegin(SCDesc), 37310b57cec5SDimitry Andric STI->getWriteProcResEnd(SCDesc))) { 37320b57cec5SDimitry Andric LLVM_DEBUG({ 37330b57cec5SDimitry Andric if (SwpDebugResource) { 3734bdd1243dSDimitry Andric const MCProcResourceDesc *Desc = 37350b57cec5SDimitry Andric SM.getProcResource(PRE.ProcResourceIdx); 37365f757f3fSDimitry Andric dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; 37370b57cec5SDimitry Andric } 37380b57cec5SDimitry Andric }); 37395f757f3fSDimitry Andric ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; 37400b57cec5SDimitry Andric } 3741bdd1243dSDimitry Andric LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); 3742bdd1243dSDimitry Andric } 3743bdd1243dSDimitry Andric 3744bdd1243dSDimitry Andric int Result = (NumMops + IssueWidth - 1) / IssueWidth; 37450b57cec5SDimitry Andric LLVM_DEBUG({ 37460b57cec5SDimitry Andric if (SwpDebugResource) 3747bdd1243dSDimitry Andric dbgs() << "#Mops: " << NumMops << ", " 3748bdd1243dSDimitry Andric << "IssueWidth: " << IssueWidth << ", " 3749bdd1243dSDimitry Andric << "Cycles: " << Result << "\n"; 37500b57cec5SDimitry Andric }); 3751bdd1243dSDimitry Andric 3752bdd1243dSDimitry Andric LLVM_DEBUG({ 3753bdd1243dSDimitry Andric if (SwpDebugResource) { 3754bdd1243dSDimitry Andric std::stringstream SS; 3755bdd1243dSDimitry Andric SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) 3756bdd1243dSDimitry Andric << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" 3757bdd1243dSDimitry Andric << "\n"; 3758bdd1243dSDimitry Andric dbgs() << SS.str(); 3759bdd1243dSDimitry Andric } 3760bdd1243dSDimitry Andric }); 3761bdd1243dSDimitry Andric for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { 3762bdd1243dSDimitry Andric const MCProcResourceDesc *Desc = SM.getProcResource(I); 3763bdd1243dSDimitry Andric int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; 3764bdd1243dSDimitry Andric LLVM_DEBUG({ 3765bdd1243dSDimitry Andric if (SwpDebugResource) { 3766bdd1243dSDimitry Andric std::stringstream SS; 3767bdd1243dSDimitry Andric SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) 3768bdd1243dSDimitry Andric << Desc->NumUnits << std::setw(10) << ResourceCount[I] 3769bdd1243dSDimitry Andric << std::setw(10) << Cycles << "\n"; 3770bdd1243dSDimitry Andric dbgs() << SS.str(); 3771bdd1243dSDimitry Andric } 3772bdd1243dSDimitry Andric }); 3773bdd1243dSDimitry Andric if (Cycles > Result) 3774bdd1243dSDimitry Andric Result = Cycles; 3775bdd1243dSDimitry Andric } 3776bdd1243dSDimitry Andric return Result; 37770b57cec5SDimitry Andric } 37780b57cec5SDimitry Andric 3779bdd1243dSDimitry Andric void ResourceManager::init(int II) { 3780bdd1243dSDimitry Andric InitiationInterval = II; 3781bdd1243dSDimitry Andric DFAResources.clear(); 3782bdd1243dSDimitry Andric DFAResources.resize(II); 3783bdd1243dSDimitry Andric for (auto &I : DFAResources) 3784bdd1243dSDimitry Andric I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); 3785bdd1243dSDimitry Andric MRT.clear(); 3786bdd1243dSDimitry Andric MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds())); 3787bdd1243dSDimitry Andric NumScheduledMops.clear(); 3788bdd1243dSDimitry Andric NumScheduledMops.resize(II); 37890b57cec5SDimitry Andric } 3790