1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/EHPersonalities.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/WasmEHFuncInfo.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/MC/SectionKind.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/DOTGraphTraits.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <type_traits> 76 #include <utility> 77 #include <vector> 78 79 using namespace llvm; 80 81 #define DEBUG_TYPE "codegen" 82 83 static cl::opt<unsigned> AlignAllFunctions( 84 "align-all-functions", 85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 86 "means align on 16B boundaries)."), 87 cl::init(0), cl::Hidden); 88 89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 90 using P = MachineFunctionProperties::Property; 91 92 switch(Prop) { 93 case P::FailedISel: return "FailedISel"; 94 case P::IsSSA: return "IsSSA"; 95 case P::Legalized: return "Legalized"; 96 case P::NoPHIs: return "NoPHIs"; 97 case P::NoVRegs: return "NoVRegs"; 98 case P::RegBankSelected: return "RegBankSelected"; 99 case P::Selected: return "Selected"; 100 case P::TracksLiveness: return "TracksLiveness"; 101 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 102 case P::FailsVerification: return "FailsVerification"; 103 } 104 llvm_unreachable("Invalid machine function property"); 105 } 106 107 // Pin the vtable to this file. 108 void MachineFunction::Delegate::anchor() {} 109 110 void MachineFunctionProperties::print(raw_ostream &OS) const { 111 const char *Separator = ""; 112 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 113 if (!Properties[I]) 114 continue; 115 OS << Separator << getPropertyName(static_cast<Property>(I)); 116 Separator = ", "; 117 } 118 } 119 120 //===----------------------------------------------------------------------===// 121 // MachineFunction implementation 122 //===----------------------------------------------------------------------===// 123 124 // Out-of-line virtual method. 125 MachineFunctionInfo::~MachineFunctionInfo() = default; 126 127 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 128 MBB->getParent()->DeleteMachineBasicBlock(MBB); 129 } 130 131 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI, 132 const Function &F) { 133 if (auto MA = F.getFnStackAlign()) 134 return MA->value(); 135 return STI->getFrameLowering()->getStackAlign().value(); 136 } 137 138 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target, 139 const TargetSubtargetInfo &STI, 140 unsigned FunctionNum, MachineModuleInfo &mmi) 141 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) { 142 FunctionNumber = FunctionNum; 143 init(); 144 } 145 146 void MachineFunction::handleInsertion(MachineInstr &MI) { 147 if (TheDelegate) 148 TheDelegate->MF_HandleInsertion(MI); 149 } 150 151 void MachineFunction::handleRemoval(MachineInstr &MI) { 152 if (TheDelegate) 153 TheDelegate->MF_HandleRemoval(MI); 154 } 155 156 void MachineFunction::init() { 157 // Assume the function starts in SSA form with correct liveness. 158 Properties.set(MachineFunctionProperties::Property::IsSSA); 159 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 160 if (STI->getRegisterInfo()) 161 RegInfo = new (Allocator) MachineRegisterInfo(this); 162 else 163 RegInfo = nullptr; 164 165 MFInfo = nullptr; 166 // We can realign the stack if the target supports it and the user hasn't 167 // explicitly asked us not to. 168 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 169 !F.hasFnAttribute("no-realign-stack"); 170 FrameInfo = new (Allocator) MachineFrameInfo( 171 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 172 /*ForcedRealign=*/CanRealignSP && 173 F.hasFnAttribute(Attribute::StackAlignment)); 174 175 if (F.hasFnAttribute(Attribute::StackAlignment)) 176 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 177 178 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 179 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 180 181 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 182 // FIXME: Use Function::hasOptSize(). 183 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 184 Alignment = std::max(Alignment, 185 STI->getTargetLowering()->getPrefFunctionAlignment()); 186 187 if (AlignAllFunctions) 188 Alignment = Align(1ULL << AlignAllFunctions); 189 190 JumpTableInfo = nullptr; 191 192 if (isFuncletEHPersonality(classifyEHPersonality( 193 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 194 WinEHInfo = new (Allocator) WinEHFuncInfo(); 195 } 196 197 if (isScopedEHPersonality(classifyEHPersonality( 198 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 199 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 200 } 201 202 assert(Target.isCompatibleDataLayout(getDataLayout()) && 203 "Can't create a MachineFunction using a Module with a " 204 "Target-incompatible DataLayout attached\n"); 205 206 PSVManager = 207 std::make_unique<PseudoSourceValueManager>(*(getSubtarget(). 208 getInstrInfo())); 209 } 210 211 MachineFunction::~MachineFunction() { 212 clear(); 213 } 214 215 void MachineFunction::clear() { 216 Properties.reset(); 217 // Don't call destructors on MachineInstr and MachineOperand. All of their 218 // memory comes from the BumpPtrAllocator which is about to be purged. 219 // 220 // Do call MachineBasicBlock destructors, it contains std::vectors. 221 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 222 I->Insts.clearAndLeakNodesUnsafely(); 223 MBBNumbering.clear(); 224 225 InstructionRecycler.clear(Allocator); 226 OperandRecycler.clear(Allocator); 227 BasicBlockRecycler.clear(Allocator); 228 CodeViewAnnotations.clear(); 229 VariableDbgInfos.clear(); 230 if (RegInfo) { 231 RegInfo->~MachineRegisterInfo(); 232 Allocator.Deallocate(RegInfo); 233 } 234 if (MFInfo) { 235 MFInfo->~MachineFunctionInfo(); 236 Allocator.Deallocate(MFInfo); 237 } 238 239 FrameInfo->~MachineFrameInfo(); 240 Allocator.Deallocate(FrameInfo); 241 242 ConstantPool->~MachineConstantPool(); 243 Allocator.Deallocate(ConstantPool); 244 245 if (JumpTableInfo) { 246 JumpTableInfo->~MachineJumpTableInfo(); 247 Allocator.Deallocate(JumpTableInfo); 248 } 249 250 if (WinEHInfo) { 251 WinEHInfo->~WinEHFuncInfo(); 252 Allocator.Deallocate(WinEHInfo); 253 } 254 255 if (WasmEHInfo) { 256 WasmEHInfo->~WasmEHFuncInfo(); 257 Allocator.Deallocate(WasmEHInfo); 258 } 259 } 260 261 const DataLayout &MachineFunction::getDataLayout() const { 262 return F.getParent()->getDataLayout(); 263 } 264 265 /// Get the JumpTableInfo for this function. 266 /// If it does not already exist, allocate one. 267 MachineJumpTableInfo *MachineFunction:: 268 getOrCreateJumpTableInfo(unsigned EntryKind) { 269 if (JumpTableInfo) return JumpTableInfo; 270 271 JumpTableInfo = new (Allocator) 272 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 273 return JumpTableInfo; 274 } 275 276 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 277 return F.getDenormalMode(FPType); 278 } 279 280 /// Should we be emitting segmented stack stuff for the function 281 bool MachineFunction::shouldSplitStack() const { 282 return getFunction().hasFnAttribute("split-stack"); 283 } 284 285 LLVM_NODISCARD unsigned 286 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 287 FrameInstructions.push_back(Inst); 288 return FrameInstructions.size() - 1; 289 } 290 291 /// This discards all of the MachineBasicBlock numbers and recomputes them. 292 /// This guarantees that the MBB numbers are sequential, dense, and match the 293 /// ordering of the blocks within the function. If a specific MachineBasicBlock 294 /// is specified, only that block and those after it are renumbered. 295 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 296 if (empty()) { MBBNumbering.clear(); return; } 297 MachineFunction::iterator MBBI, E = end(); 298 if (MBB == nullptr) 299 MBBI = begin(); 300 else 301 MBBI = MBB->getIterator(); 302 303 // Figure out the block number this should have. 304 unsigned BlockNo = 0; 305 if (MBBI != begin()) 306 BlockNo = std::prev(MBBI)->getNumber() + 1; 307 308 for (; MBBI != E; ++MBBI, ++BlockNo) { 309 if (MBBI->getNumber() != (int)BlockNo) { 310 // Remove use of the old number. 311 if (MBBI->getNumber() != -1) { 312 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 313 "MBB number mismatch!"); 314 MBBNumbering[MBBI->getNumber()] = nullptr; 315 } 316 317 // If BlockNo is already taken, set that block's number to -1. 318 if (MBBNumbering[BlockNo]) 319 MBBNumbering[BlockNo]->setNumber(-1); 320 321 MBBNumbering[BlockNo] = &*MBBI; 322 MBBI->setNumber(BlockNo); 323 } 324 } 325 326 // Okay, all the blocks are renumbered. If we have compactified the block 327 // numbering, shrink MBBNumbering now. 328 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 329 MBBNumbering.resize(BlockNo); 330 } 331 332 /// This method iterates over the basic blocks and assigns their IsBeginSection 333 /// and IsEndSection fields. This must be called after MBB layout is finalized 334 /// and the SectionID's are assigned to MBBs. 335 void MachineFunction::assignBeginEndSections() { 336 front().setIsBeginSection(); 337 auto CurrentSectionID = front().getSectionID(); 338 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 339 if (MBBI->getSectionID() == CurrentSectionID) 340 continue; 341 MBBI->setIsBeginSection(); 342 std::prev(MBBI)->setIsEndSection(); 343 CurrentSectionID = MBBI->getSectionID(); 344 } 345 back().setIsEndSection(); 346 } 347 348 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 349 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 350 const DebugLoc &DL, 351 bool NoImplicit) { 352 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 353 MachineInstr(*this, MCID, DL, NoImplicit); 354 } 355 356 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 357 /// identical in all ways except the instruction has no parent, prev, or next. 358 MachineInstr * 359 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 360 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 361 MachineInstr(*this, *Orig); 362 } 363 364 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB, 365 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) { 366 MachineInstr *FirstClone = nullptr; 367 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 368 while (true) { 369 MachineInstr *Cloned = CloneMachineInstr(&*I); 370 MBB.insert(InsertBefore, Cloned); 371 if (FirstClone == nullptr) { 372 FirstClone = Cloned; 373 } else { 374 Cloned->bundleWithPred(); 375 } 376 377 if (!I->isBundledWithSucc()) 378 break; 379 ++I; 380 } 381 // Copy over call site info to the cloned instruction if needed. If Orig is in 382 // a bundle, copyCallSiteInfo takes care of finding the call instruction in 383 // the bundle. 384 if (Orig.shouldUpdateCallSiteInfo()) 385 copyCallSiteInfo(&Orig, FirstClone); 386 return *FirstClone; 387 } 388 389 /// Delete the given MachineInstr. 390 /// 391 /// This function also serves as the MachineInstr destructor - the real 392 /// ~MachineInstr() destructor must be empty. 393 void 394 MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 395 // Verify that a call site info is at valid state. This assertion should 396 // be triggered during the implementation of support for the 397 // call site info of a new architecture. If the assertion is triggered, 398 // back trace will tell where to insert a call to updateCallSiteInfo(). 399 assert((!MI->isCandidateForCallSiteEntry() || 400 CallSitesInfo.find(MI) == CallSitesInfo.end()) && 401 "Call site info was not updated!"); 402 // Strip it for parts. The operand array and the MI object itself are 403 // independently recyclable. 404 if (MI->Operands) 405 deallocateOperandArray(MI->CapOperands, MI->Operands); 406 // Don't call ~MachineInstr() which must be trivial anyway because 407 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 408 // destructors. 409 InstructionRecycler.Deallocate(Allocator, MI); 410 } 411 412 /// Allocate a new MachineBasicBlock. Use this instead of 413 /// `new MachineBasicBlock'. 414 MachineBasicBlock * 415 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 416 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 417 MachineBasicBlock(*this, bb); 418 } 419 420 /// Delete the given MachineBasicBlock. 421 void 422 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 423 assert(MBB->getParent() == this && "MBB parent mismatch!"); 424 // Clean up any references to MBB in jump tables before deleting it. 425 if (JumpTableInfo) 426 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 427 MBB->~MachineBasicBlock(); 428 BasicBlockRecycler.Deallocate(Allocator, MBB); 429 } 430 431 MachineMemOperand *MachineFunction::getMachineMemOperand( 432 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 433 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 434 SyncScope::ID SSID, AtomicOrdering Ordering, 435 AtomicOrdering FailureOrdering) { 436 return new (Allocator) 437 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges, 438 SSID, Ordering, FailureOrdering); 439 } 440 441 MachineMemOperand *MachineFunction::getMachineMemOperand( 442 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 443 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 444 SyncScope::ID SSID, AtomicOrdering Ordering, 445 AtomicOrdering FailureOrdering) { 446 return new (Allocator) 447 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 448 Ordering, FailureOrdering); 449 } 450 451 MachineMemOperand *MachineFunction::getMachineMemOperand( 452 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) { 453 return new (Allocator) 454 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 455 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 456 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 457 } 458 459 MachineMemOperand *MachineFunction::getMachineMemOperand( 460 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 461 return new (Allocator) 462 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 463 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 464 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 465 } 466 467 MachineMemOperand * 468 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 469 int64_t Offset, LLT Ty) { 470 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 471 472 // If there is no pointer value, the offset isn't tracked so we need to adjust 473 // the base alignment. 474 Align Alignment = PtrInfo.V.isNull() 475 ? commonAlignment(MMO->getBaseAlign(), Offset) 476 : MMO->getBaseAlign(); 477 478 // Do not preserve ranges, since we don't necessarily know what the high bits 479 // are anymore. 480 return new (Allocator) MachineMemOperand( 481 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 482 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 483 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 484 } 485 486 MachineMemOperand * 487 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 488 const AAMDNodes &AAInfo) { 489 MachinePointerInfo MPI = MMO->getValue() ? 490 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 491 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 492 493 return new (Allocator) MachineMemOperand( 494 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 495 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 496 MMO->getFailureOrdering()); 497 } 498 499 MachineMemOperand * 500 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 501 MachineMemOperand::Flags Flags) { 502 return new (Allocator) MachineMemOperand( 503 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 504 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 505 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 506 } 507 508 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 509 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 510 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) { 511 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 512 PostInstrSymbol, HeapAllocMarker); 513 } 514 515 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 516 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 517 llvm::copy(Name, Dest); 518 Dest[Name.size()] = 0; 519 return Dest; 520 } 521 522 uint32_t *MachineFunction::allocateRegMask() { 523 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 524 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 525 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 526 memset(Mask, 0, Size * sizeof(Mask[0])); 527 return Mask; 528 } 529 530 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 531 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 532 copy(Mask, AllocMask); 533 return {AllocMask, Mask.size()}; 534 } 535 536 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 537 LLVM_DUMP_METHOD void MachineFunction::dump() const { 538 print(dbgs()); 539 } 540 #endif 541 542 StringRef MachineFunction::getName() const { 543 return getFunction().getName(); 544 } 545 546 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 547 OS << "# Machine code for function " << getName() << ": "; 548 getProperties().print(OS); 549 OS << '\n'; 550 551 // Print Frame Information 552 FrameInfo->print(*this, OS); 553 554 // Print JumpTable Information 555 if (JumpTableInfo) 556 JumpTableInfo->print(OS); 557 558 // Print Constant Pool 559 ConstantPool->print(OS); 560 561 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 562 563 if (RegInfo && !RegInfo->livein_empty()) { 564 OS << "Function Live Ins: "; 565 for (MachineRegisterInfo::livein_iterator 566 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 567 OS << printReg(I->first, TRI); 568 if (I->second) 569 OS << " in " << printReg(I->second, TRI); 570 if (std::next(I) != E) 571 OS << ", "; 572 } 573 OS << '\n'; 574 } 575 576 ModuleSlotTracker MST(getFunction().getParent()); 577 MST.incorporateFunction(getFunction()); 578 for (const auto &BB : *this) { 579 OS << '\n'; 580 // If we print the whole function, print it at its most verbose level. 581 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 582 } 583 584 OS << "\n# End machine code for function " << getName() << ".\n\n"; 585 } 586 587 /// True if this function needs frame moves for debug or exceptions. 588 bool MachineFunction::needsFrameMoves() const { 589 return getMMI().hasDebugInfo() || 590 getTarget().Options.ForceDwarfFrameSection || 591 F.needsUnwindTableEntry(); 592 } 593 594 namespace llvm { 595 596 template<> 597 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 598 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 599 600 static std::string getGraphName(const MachineFunction *F) { 601 return ("CFG for '" + F->getName() + "' function").str(); 602 } 603 604 std::string getNodeLabel(const MachineBasicBlock *Node, 605 const MachineFunction *Graph) { 606 std::string OutStr; 607 { 608 raw_string_ostream OSS(OutStr); 609 610 if (isSimple()) { 611 OSS << printMBBReference(*Node); 612 if (const BasicBlock *BB = Node->getBasicBlock()) 613 OSS << ": " << BB->getName(); 614 } else 615 Node->print(OSS); 616 } 617 618 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 619 620 // Process string output to make it nicer... 621 for (unsigned i = 0; i != OutStr.length(); ++i) 622 if (OutStr[i] == '\n') { // Left justify 623 OutStr[i] = '\\'; 624 OutStr.insert(OutStr.begin()+i+1, 'l'); 625 } 626 return OutStr; 627 } 628 }; 629 630 } // end namespace llvm 631 632 void MachineFunction::viewCFG() const 633 { 634 #ifndef NDEBUG 635 ViewGraph(this, "mf" + getName()); 636 #else 637 errs() << "MachineFunction::viewCFG is only available in debug builds on " 638 << "systems with Graphviz or gv!\n"; 639 #endif // NDEBUG 640 } 641 642 void MachineFunction::viewCFGOnly() const 643 { 644 #ifndef NDEBUG 645 ViewGraph(this, "mf" + getName(), true); 646 #else 647 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 648 << "systems with Graphviz or gv!\n"; 649 #endif // NDEBUG 650 } 651 652 /// Add the specified physical register as a live-in value and 653 /// create a corresponding virtual register for it. 654 Register MachineFunction::addLiveIn(MCRegister PReg, 655 const TargetRegisterClass *RC) { 656 MachineRegisterInfo &MRI = getRegInfo(); 657 Register VReg = MRI.getLiveInVirtReg(PReg); 658 if (VReg) { 659 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 660 (void)VRegRC; 661 // A physical register can be added several times. 662 // Between two calls, the register class of the related virtual register 663 // may have been constrained to match some operation constraints. 664 // In that case, check that the current register class includes the 665 // physical register and is a sub class of the specified RC. 666 assert((VRegRC == RC || (VRegRC->contains(PReg) && 667 RC->hasSubClassEq(VRegRC))) && 668 "Register class mismatch!"); 669 return VReg; 670 } 671 VReg = MRI.createVirtualRegister(RC); 672 MRI.addLiveIn(PReg, VReg); 673 return VReg; 674 } 675 676 /// Return the MCSymbol for the specified non-empty jump table. 677 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 678 /// normal 'L' label is returned. 679 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 680 bool isLinkerPrivate) const { 681 const DataLayout &DL = getDataLayout(); 682 assert(JumpTableInfo && "No jump tables"); 683 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 684 685 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 686 : DL.getPrivateGlobalPrefix(); 687 SmallString<60> Name; 688 raw_svector_ostream(Name) 689 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 690 return Ctx.getOrCreateSymbol(Name); 691 } 692 693 /// Return a function-local symbol to represent the PIC base. 694 MCSymbol *MachineFunction::getPICBaseSymbol() const { 695 const DataLayout &DL = getDataLayout(); 696 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 697 Twine(getFunctionNumber()) + "$pb"); 698 } 699 700 /// \name Exception Handling 701 /// \{ 702 703 LandingPadInfo & 704 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 705 unsigned N = LandingPads.size(); 706 for (unsigned i = 0; i < N; ++i) { 707 LandingPadInfo &LP = LandingPads[i]; 708 if (LP.LandingPadBlock == LandingPad) 709 return LP; 710 } 711 712 LandingPads.push_back(LandingPadInfo(LandingPad)); 713 return LandingPads[N]; 714 } 715 716 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 717 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 718 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 719 LP.BeginLabels.push_back(BeginLabel); 720 LP.EndLabels.push_back(EndLabel); 721 } 722 723 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 724 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 725 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 726 LP.LandingPadLabel = LandingPadLabel; 727 728 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI(); 729 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 730 if (const auto *PF = 731 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts())) 732 getMMI().addPersonality(PF); 733 734 if (LPI->isCleanup()) 735 addCleanup(LandingPad); 736 737 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 738 // correct, but we need to do it this way because of how the DWARF EH 739 // emitter processes the clauses. 740 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 741 Value *Val = LPI->getClause(I - 1); 742 if (LPI->isCatch(I - 1)) { 743 addCatchTypeInfo(LandingPad, 744 dyn_cast<GlobalValue>(Val->stripPointerCasts())); 745 } else { 746 // Add filters in a list. 747 auto *CVal = cast<Constant>(Val); 748 SmallVector<const GlobalValue *, 4> FilterList; 749 for (const Use &U : CVal->operands()) 750 FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts())); 751 752 addFilterTypeInfo(LandingPad, FilterList); 753 } 754 } 755 756 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 757 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) { 758 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts(); 759 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo)); 760 } 761 762 } else { 763 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 764 } 765 766 return LandingPadLabel; 767 } 768 769 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad, 770 ArrayRef<const GlobalValue *> TyInfo) { 771 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 772 for (unsigned N = TyInfo.size(); N; --N) 773 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1])); 774 } 775 776 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad, 777 ArrayRef<const GlobalValue *> TyInfo) { 778 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 779 std::vector<unsigned> IdsInFilter(TyInfo.size()); 780 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I) 781 IdsInFilter[I] = getTypeIDFor(TyInfo[I]); 782 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter)); 783 } 784 785 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap, 786 bool TidyIfNoBeginLabels) { 787 for (unsigned i = 0; i != LandingPads.size(); ) { 788 LandingPadInfo &LandingPad = LandingPads[i]; 789 if (LandingPad.LandingPadLabel && 790 !LandingPad.LandingPadLabel->isDefined() && 791 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0)) 792 LandingPad.LandingPadLabel = nullptr; 793 794 // Special case: we *should* emit LPs with null LP MBB. This indicates 795 // "nounwind" case. 796 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) { 797 LandingPads.erase(LandingPads.begin() + i); 798 continue; 799 } 800 801 if (TidyIfNoBeginLabels) { 802 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) { 803 MCSymbol *BeginLabel = LandingPad.BeginLabels[j]; 804 MCSymbol *EndLabel = LandingPad.EndLabels[j]; 805 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) && 806 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0))) 807 continue; 808 809 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j); 810 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j); 811 --j; 812 --e; 813 } 814 815 // Remove landing pads with no try-ranges. 816 if (LandingPads[i].BeginLabels.empty()) { 817 LandingPads.erase(LandingPads.begin() + i); 818 continue; 819 } 820 } 821 822 // If there is no landing pad, ensure that the list of typeids is empty. 823 // If the only typeid is a cleanup, this is the same as having no typeids. 824 if (!LandingPad.LandingPadBlock || 825 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0])) 826 LandingPad.TypeIds.clear(); 827 ++i; 828 } 829 } 830 831 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) { 832 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 833 LP.TypeIds.push_back(0); 834 } 835 836 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad, 837 const Function *Filter, 838 const BlockAddress *RecoverBA) { 839 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 840 SEHHandler Handler; 841 Handler.FilterOrFinally = Filter; 842 Handler.RecoverBA = RecoverBA; 843 LP.SEHHandlers.push_back(Handler); 844 } 845 846 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad, 847 const Function *Cleanup) { 848 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 849 SEHHandler Handler; 850 Handler.FilterOrFinally = Cleanup; 851 Handler.RecoverBA = nullptr; 852 LP.SEHHandlers.push_back(Handler); 853 } 854 855 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 856 ArrayRef<unsigned> Sites) { 857 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 858 } 859 860 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 861 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 862 if (TypeInfos[i] == TI) return i + 1; 863 864 TypeInfos.push_back(TI); 865 return TypeInfos.size(); 866 } 867 868 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) { 869 // If the new filter coincides with the tail of an existing filter, then 870 // re-use the existing filter. Folding filters more than this requires 871 // re-ordering filters and/or their elements - probably not worth it. 872 for (unsigned i : FilterEnds) { 873 unsigned j = TyIds.size(); 874 875 while (i && j) 876 if (FilterIds[--i] != TyIds[--j]) 877 goto try_next; 878 879 if (!j) 880 // The new filter coincides with range [i, end) of the existing filter. 881 return -(1 + i); 882 883 try_next:; 884 } 885 886 // Add the new filter. 887 int FilterID = -(1 + FilterIds.size()); 888 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 889 llvm::append_range(FilterIds, TyIds); 890 FilterEnds.push_back(FilterIds.size()); 891 FilterIds.push_back(0); // terminator 892 return FilterID; 893 } 894 895 MachineFunction::CallSiteInfoMap::iterator 896 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 897 assert(MI->isCandidateForCallSiteEntry() && 898 "Call site info refers only to call (MI) candidates"); 899 900 if (!Target.Options.EmitCallSiteInfo) 901 return CallSitesInfo.end(); 902 return CallSitesInfo.find(MI); 903 } 904 905 /// Return the call machine instruction or find a call within bundle. 906 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 907 if (!MI->isBundle()) 908 return MI; 909 910 for (auto &BMI : make_range(getBundleStart(MI->getIterator()), 911 getBundleEnd(MI->getIterator()))) 912 if (BMI.isCandidateForCallSiteEntry()) 913 return &BMI; 914 915 llvm_unreachable("Unexpected bundle without a call site candidate"); 916 } 917 918 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) { 919 assert(MI->shouldUpdateCallSiteInfo() && 920 "Call site info refers only to call (MI) candidates or " 921 "candidates inside bundles"); 922 923 const MachineInstr *CallMI = getCallInstr(MI); 924 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 925 if (CSIt == CallSitesInfo.end()) 926 return; 927 CallSitesInfo.erase(CSIt); 928 } 929 930 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old, 931 const MachineInstr *New) { 932 assert(Old->shouldUpdateCallSiteInfo() && 933 "Call site info refers only to call (MI) candidates or " 934 "candidates inside bundles"); 935 936 if (!New->isCandidateForCallSiteEntry()) 937 return eraseCallSiteInfo(Old); 938 939 const MachineInstr *OldCallMI = getCallInstr(Old); 940 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 941 if (CSIt == CallSitesInfo.end()) 942 return; 943 944 CallSiteInfo CSInfo = CSIt->second; 945 CallSitesInfo[New] = CSInfo; 946 } 947 948 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old, 949 const MachineInstr *New) { 950 assert(Old->shouldUpdateCallSiteInfo() && 951 "Call site info refers only to call (MI) candidates or " 952 "candidates inside bundles"); 953 954 if (!New->isCandidateForCallSiteEntry()) 955 return eraseCallSiteInfo(Old); 956 957 const MachineInstr *OldCallMI = getCallInstr(Old); 958 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 959 if (CSIt == CallSitesInfo.end()) 960 return; 961 962 CallSiteInfo CSInfo = std::move(CSIt->second); 963 CallSitesInfo.erase(CSIt); 964 CallSitesInfo[New] = CSInfo; 965 } 966 967 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 968 DebugInstrNumberingCount = Num; 969 } 970 971 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 972 DebugInstrOperandPair B, 973 unsigned Subreg) { 974 // Catch any accidental self-loops. 975 assert(A.first != B.first); 976 // Don't allow any substitutions _from_ the memory operand number. 977 assert(A.second != DebugOperandMemNumber); 978 979 DebugValueSubstitutions.push_back({A, B, Subreg}); 980 } 981 982 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 983 MachineInstr &New, 984 unsigned MaxOperand) { 985 // If the Old instruction wasn't tracked at all, there is no work to do. 986 unsigned OldInstrNum = Old.peekDebugInstrNum(); 987 if (!OldInstrNum) 988 return; 989 990 // Iterate over all operands looking for defs to create substitutions for. 991 // Avoid creating new instr numbers unless we create a new substitution. 992 // While this has no functional effect, it risks confusing someone reading 993 // MIR output. 994 // Examine all the operands, or the first N specified by the caller. 995 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 996 for (unsigned int I = 0; I < MaxOperand; ++I) { 997 const auto &OldMO = Old.getOperand(I); 998 auto &NewMO = New.getOperand(I); 999 (void)NewMO; 1000 1001 if (!OldMO.isReg() || !OldMO.isDef()) 1002 continue; 1003 assert(NewMO.isDef()); 1004 1005 unsigned NewInstrNum = New.getDebugInstrNum(); 1006 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1007 std::make_pair(NewInstrNum, I)); 1008 } 1009 } 1010 1011 auto MachineFunction::salvageCopySSA(MachineInstr &MI) 1012 -> DebugInstrOperandPair { 1013 MachineRegisterInfo &MRI = getRegInfo(); 1014 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1015 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1016 1017 // Chase the value read by a copy-like instruction back to the instruction 1018 // that ultimately _defines_ that value. This may pass: 1019 // * Through multiple intermediate copies, including subregister moves / 1020 // copies, 1021 // * Copies from physical registers that must then be traced back to the 1022 // defining instruction, 1023 // * Or, physical registers may be live-in to (only) the entry block, which 1024 // requires a DBG_PHI to be created. 1025 // We can pursue this problem in that order: trace back through copies, 1026 // optionally through a physical register, to a defining instruction. We 1027 // should never move from physreg to vreg. As we're still in SSA form, no need 1028 // to worry about partial definitions of registers. 1029 1030 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1031 // returns the register read and any subregister identifying which part is 1032 // read. 1033 auto GetRegAndSubreg = 1034 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1035 Register NewReg, OldReg; 1036 unsigned SubReg; 1037 if (Cpy.isCopy()) { 1038 OldReg = Cpy.getOperand(0).getReg(); 1039 NewReg = Cpy.getOperand(1).getReg(); 1040 SubReg = Cpy.getOperand(1).getSubReg(); 1041 } else if (Cpy.isSubregToReg()) { 1042 OldReg = Cpy.getOperand(0).getReg(); 1043 NewReg = Cpy.getOperand(2).getReg(); 1044 SubReg = Cpy.getOperand(3).getImm(); 1045 } else { 1046 auto CopyDetails = *TII.isCopyInstr(Cpy); 1047 const MachineOperand &Src = *CopyDetails.Source; 1048 const MachineOperand &Dest = *CopyDetails.Destination; 1049 OldReg = Dest.getReg(); 1050 NewReg = Src.getReg(); 1051 SubReg = Src.getSubReg(); 1052 } 1053 1054 return {NewReg, SubReg}; 1055 }; 1056 1057 // First seek either the defining instruction, or a copy from a physreg. 1058 // During search, the current state is the current copy instruction, and which 1059 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1060 // deal with those later. 1061 auto State = GetRegAndSubreg(MI); 1062 auto CurInst = MI.getIterator(); 1063 SmallVector<unsigned, 4> SubregsSeen; 1064 while (true) { 1065 // If we've found a copy from a physreg, first portion of search is over. 1066 if (!State.first.isVirtual()) 1067 break; 1068 1069 // Record any subregister qualifier. 1070 if (State.second) 1071 SubregsSeen.push_back(State.second); 1072 1073 assert(MRI.hasOneDef(State.first)); 1074 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1075 CurInst = Inst.getIterator(); 1076 1077 // Any non-copy instruction is the defining instruction we're seeking. 1078 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst)) 1079 break; 1080 State = GetRegAndSubreg(Inst); 1081 }; 1082 1083 // Helper lambda to apply additional subregister substitutions to a known 1084 // instruction/operand pair. Adds new (fake) substitutions so that we can 1085 // record the subregister. FIXME: this isn't very space efficient if multiple 1086 // values are tracked back through the same copies; cache something later. 1087 auto ApplySubregisters = 1088 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1089 for (unsigned Subreg : reverse(SubregsSeen)) { 1090 // Fetch a new instruction number, not attached to an actual instruction. 1091 unsigned NewInstrNumber = getNewDebugInstrNum(); 1092 // Add a substitution from the "new" number to the known one, with a 1093 // qualifying subreg. 1094 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1095 // Return the new number; to find the underlying value, consumers need to 1096 // deal with the qualifying subreg. 1097 P = {NewInstrNumber, 0}; 1098 } 1099 return P; 1100 }; 1101 1102 // If we managed to find the defining instruction after COPYs, return an 1103 // instruction / operand pair after adding subregister qualifiers. 1104 if (State.first.isVirtual()) { 1105 // Virtual register def -- we can just look up where this happens. 1106 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1107 for (auto &MO : Inst->operands()) { 1108 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first) 1109 continue; 1110 return ApplySubregisters( 1111 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)}); 1112 } 1113 1114 llvm_unreachable("Vreg def with no corresponding operand?"); 1115 } 1116 1117 // Our search ended in a copy from a physreg: walk back up the function 1118 // looking for whatever defines the physreg. 1119 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1120 State = GetRegAndSubreg(*CurInst); 1121 Register RegToSeek = State.first; 1122 1123 auto RMII = CurInst->getReverseIterator(); 1124 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1125 for (auto &ToExamine : PrevInstrs) { 1126 for (auto &MO : ToExamine.operands()) { 1127 // Test for operand that defines something aliasing RegToSeek. 1128 if (!MO.isReg() || !MO.isDef() || 1129 !TRI.regsOverlap(RegToSeek, MO.getReg())) 1130 continue; 1131 1132 return ApplySubregisters( 1133 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)}); 1134 } 1135 } 1136 1137 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1138 1139 // We reached the start of the block before finding a defining instruction. 1140 // It could be from a constant register, otherwise it must be an argument. 1141 if (TRI.isConstantPhysReg(State.first)) { 1142 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't 1143 // matter where we put it, as it's constant valued. 1144 assert(CurInst->isCopy()); 1145 } else if (State.first == TRI.getFrameRegister(*this)) { 1146 // LLVM IR is allowed to read the framepointer by calling a 1147 // llvm.frameaddress.* intrinsic. We can support this by emitting a 1148 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours / 1149 // position that DBG_PHIs appear at, limiting what can be done later. 1150 // TODO: see if there's a better way of expressing these variable 1151 // locations. 1152 ; 1153 } else { 1154 // Assert that this is the entry block, or an EH pad. If it isn't, then 1155 // there is some code construct we don't recognise that deals with physregs 1156 // across blocks. 1157 assert(!State.first.isVirtual()); 1158 assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad()); 1159 } 1160 1161 // Create DBG_PHI for specified physreg. 1162 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1163 TII.get(TargetOpcode::DBG_PHI)); 1164 Builder.addReg(State.first); 1165 unsigned NewNum = getNewDebugInstrNum(); 1166 Builder.addImm(NewNum); 1167 return ApplySubregisters({NewNum, 0u}); 1168 } 1169 1170 void MachineFunction::finalizeDebugInstrRefs() { 1171 auto *TII = getSubtarget().getInstrInfo(); 1172 1173 auto MakeDbgValue = [&](MachineInstr &MI) { 1174 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE); 1175 MI.setDesc(RefII); 1176 MI.getOperand(1).ChangeToRegister(0, false); 1177 }; 1178 1179 if (!useDebugInstrRef()) 1180 return; 1181 1182 for (auto &MBB : *this) { 1183 for (auto &MI : MBB) { 1184 if (!MI.isDebugRef() || !MI.getOperand(0).isReg()) 1185 continue; 1186 1187 Register Reg = MI.getOperand(0).getReg(); 1188 1189 // Some vregs can be deleted as redundant in the meantime. Mark those 1190 // as DBG_VALUE $noreg. 1191 if (Reg == 0) { 1192 MakeDbgValue(MI); 1193 continue; 1194 } 1195 1196 assert(Reg.isVirtual()); 1197 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1198 assert(RegInfo->hasOneDef(Reg)); 1199 1200 // If we've found a copy-like instruction, follow it back to the 1201 // instruction that defines the source value, see salvageCopySSA docs 1202 // for why this is important. 1203 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1204 auto Result = salvageCopySSA(DefMI); 1205 MI.getOperand(0).ChangeToImmediate(Result.first); 1206 MI.getOperand(1).setImm(Result.second); 1207 } else { 1208 // Otherwise, identify the operand number that the VReg refers to. 1209 unsigned OperandIdx = 0; 1210 for (const auto &MO : DefMI.operands()) { 1211 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 1212 break; 1213 ++OperandIdx; 1214 } 1215 assert(OperandIdx < DefMI.getNumOperands()); 1216 1217 // Morph this instr ref to point at the given instruction and operand. 1218 unsigned ID = DefMI.getDebugInstrNum(); 1219 MI.getOperand(0).ChangeToImmediate(ID); 1220 MI.getOperand(1).setImm(OperandIdx); 1221 } 1222 } 1223 } 1224 } 1225 1226 bool MachineFunction::useDebugInstrRef() const { 1227 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1228 // have optimized code inlined into this unoptimized code, however with 1229 // fewer and less aggressive optimizations happening, coverage and accuracy 1230 // should not suffer. 1231 if (getTarget().getOptLevel() == CodeGenOpt::None) 1232 return false; 1233 1234 // Don't use instr-ref if this function is marked optnone. 1235 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1236 return false; 1237 1238 if (getTarget().Options.ValueTrackingVariableLocations) 1239 return true; 1240 1241 return false; 1242 } 1243 1244 // Use one million as a high / reserved number. 1245 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1246 1247 /// \} 1248 1249 //===----------------------------------------------------------------------===// 1250 // MachineJumpTableInfo implementation 1251 //===----------------------------------------------------------------------===// 1252 1253 /// Return the size of each entry in the jump table. 1254 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1255 // The size of a jump table entry is 4 bytes unless the entry is just the 1256 // address of a block, in which case it is the pointer size. 1257 switch (getEntryKind()) { 1258 case MachineJumpTableInfo::EK_BlockAddress: 1259 return TD.getPointerSize(); 1260 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1261 return 8; 1262 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1263 case MachineJumpTableInfo::EK_LabelDifference32: 1264 case MachineJumpTableInfo::EK_Custom32: 1265 return 4; 1266 case MachineJumpTableInfo::EK_Inline: 1267 return 0; 1268 } 1269 llvm_unreachable("Unknown jump table encoding!"); 1270 } 1271 1272 /// Return the alignment of each entry in the jump table. 1273 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1274 // The alignment of a jump table entry is the alignment of int32 unless the 1275 // entry is just the address of a block, in which case it is the pointer 1276 // alignment. 1277 switch (getEntryKind()) { 1278 case MachineJumpTableInfo::EK_BlockAddress: 1279 return TD.getPointerABIAlignment(0).value(); 1280 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1281 return TD.getABIIntegerTypeAlignment(64).value(); 1282 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1283 case MachineJumpTableInfo::EK_LabelDifference32: 1284 case MachineJumpTableInfo::EK_Custom32: 1285 return TD.getABIIntegerTypeAlignment(32).value(); 1286 case MachineJumpTableInfo::EK_Inline: 1287 return 1; 1288 } 1289 llvm_unreachable("Unknown jump table encoding!"); 1290 } 1291 1292 /// Create a new jump table entry in the jump table info. 1293 unsigned MachineJumpTableInfo::createJumpTableIndex( 1294 const std::vector<MachineBasicBlock*> &DestBBs) { 1295 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1296 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1297 return JumpTables.size()-1; 1298 } 1299 1300 /// If Old is the target of any jump tables, update the jump tables to branch 1301 /// to New instead. 1302 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1303 MachineBasicBlock *New) { 1304 assert(Old != New && "Not making a change?"); 1305 bool MadeChange = false; 1306 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1307 ReplaceMBBInJumpTable(i, Old, New); 1308 return MadeChange; 1309 } 1310 1311 /// If MBB is present in any jump tables, remove it. 1312 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1313 bool MadeChange = false; 1314 for (MachineJumpTableEntry &JTE : JumpTables) { 1315 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1316 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1317 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1318 } 1319 return MadeChange; 1320 } 1321 1322 /// If Old is a target of the jump tables, update the jump table to branch to 1323 /// New instead. 1324 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1325 MachineBasicBlock *Old, 1326 MachineBasicBlock *New) { 1327 assert(Old != New && "Not making a change?"); 1328 bool MadeChange = false; 1329 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1330 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 1331 if (JTE.MBBs[j] == Old) { 1332 JTE.MBBs[j] = New; 1333 MadeChange = true; 1334 } 1335 return MadeChange; 1336 } 1337 1338 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1339 if (JumpTables.empty()) return; 1340 1341 OS << "Jump Tables:\n"; 1342 1343 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1344 OS << printJumpTableEntryReference(i) << ':'; 1345 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 1346 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]); 1347 if (i != e) 1348 OS << '\n'; 1349 } 1350 1351 OS << '\n'; 1352 } 1353 1354 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1355 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1356 #endif 1357 1358 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1359 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1360 } 1361 1362 //===----------------------------------------------------------------------===// 1363 // MachineConstantPool implementation 1364 //===----------------------------------------------------------------------===// 1365 1366 void MachineConstantPoolValue::anchor() {} 1367 1368 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1369 return DL.getTypeAllocSize(Ty); 1370 } 1371 1372 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1373 if (isMachineConstantPoolEntry()) 1374 return Val.MachineCPVal->getSizeInBytes(DL); 1375 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1376 } 1377 1378 bool MachineConstantPoolEntry::needsRelocation() const { 1379 if (isMachineConstantPoolEntry()) 1380 return true; 1381 return Val.ConstVal->needsDynamicRelocation(); 1382 } 1383 1384 SectionKind 1385 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1386 if (needsRelocation()) 1387 return SectionKind::getReadOnlyWithRel(); 1388 switch (getSizeInBytes(*DL)) { 1389 case 4: 1390 return SectionKind::getMergeableConst4(); 1391 case 8: 1392 return SectionKind::getMergeableConst8(); 1393 case 16: 1394 return SectionKind::getMergeableConst16(); 1395 case 32: 1396 return SectionKind::getMergeableConst32(); 1397 default: 1398 return SectionKind::getReadOnly(); 1399 } 1400 } 1401 1402 MachineConstantPool::~MachineConstantPool() { 1403 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1404 // so keep track of which we've deleted to avoid double deletions. 1405 DenseSet<MachineConstantPoolValue*> Deleted; 1406 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1407 if (Constants[i].isMachineConstantPoolEntry()) { 1408 Deleted.insert(Constants[i].Val.MachineCPVal); 1409 delete Constants[i].Val.MachineCPVal; 1410 } 1411 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1412 if (Deleted.count(CPV) == 0) 1413 delete CPV; 1414 } 1415 } 1416 1417 /// Test whether the given two constants can be allocated the same constant pool 1418 /// entry. 1419 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1420 const DataLayout &DL) { 1421 // Handle the trivial case quickly. 1422 if (A == B) return true; 1423 1424 // If they have the same type but weren't the same constant, quickly 1425 // reject them. 1426 if (A->getType() == B->getType()) return false; 1427 1428 // We can't handle structs or arrays. 1429 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1430 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1431 return false; 1432 1433 // For now, only support constants with the same size. 1434 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1435 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1436 return false; 1437 1438 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1439 1440 // Try constant folding a bitcast of both instructions to an integer. If we 1441 // get two identical ConstantInt's, then we are good to share them. We use 1442 // the constant folding APIs to do this so that we get the benefit of 1443 // DataLayout. 1444 if (isa<PointerType>(A->getType())) 1445 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1446 const_cast<Constant *>(A), IntTy, DL); 1447 else if (A->getType() != IntTy) 1448 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1449 IntTy, DL); 1450 if (isa<PointerType>(B->getType())) 1451 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1452 const_cast<Constant *>(B), IntTy, DL); 1453 else if (B->getType() != IntTy) 1454 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1455 IntTy, DL); 1456 1457 return A == B; 1458 } 1459 1460 /// Create a new entry in the constant pool or return an existing one. 1461 /// User must specify the log2 of the minimum required alignment for the object. 1462 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1463 Align Alignment) { 1464 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1465 1466 // Check to see if we already have this constant. 1467 // 1468 // FIXME, this could be made much more efficient for large constant pools. 1469 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1470 if (!Constants[i].isMachineConstantPoolEntry() && 1471 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1472 if (Constants[i].getAlign() < Alignment) 1473 Constants[i].Alignment = Alignment; 1474 return i; 1475 } 1476 1477 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1478 return Constants.size()-1; 1479 } 1480 1481 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1482 Align Alignment) { 1483 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1484 1485 // Check to see if we already have this constant. 1486 // 1487 // FIXME, this could be made much more efficient for large constant pools. 1488 int Idx = V->getExistingMachineCPValue(this, Alignment); 1489 if (Idx != -1) { 1490 MachineCPVsSharingEntries.insert(V); 1491 return (unsigned)Idx; 1492 } 1493 1494 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1495 return Constants.size()-1; 1496 } 1497 1498 void MachineConstantPool::print(raw_ostream &OS) const { 1499 if (Constants.empty()) return; 1500 1501 OS << "Constant Pool:\n"; 1502 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1503 OS << " cp#" << i << ": "; 1504 if (Constants[i].isMachineConstantPoolEntry()) 1505 Constants[i].Val.MachineCPVal->print(OS); 1506 else 1507 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1508 OS << ", align=" << Constants[i].getAlign().value(); 1509 OS << "\n"; 1510 } 1511 } 1512 1513 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1514 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1515 #endif 1516