xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "codegen"
82 
83 static cl::opt<unsigned> AlignAllFunctions(
84     "align-all-functions",
85     cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86              "means align on 16B boundaries)."),
87     cl::init(0), cl::Hidden);
88 
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90   using P = MachineFunctionProperties::Property;
91 
92   // clang-format off
93   switch(Prop) {
94   case P::FailedISel: return "FailedISel";
95   case P::IsSSA: return "IsSSA";
96   case P::Legalized: return "Legalized";
97   case P::NoPHIs: return "NoPHIs";
98   case P::NoVRegs: return "NoVRegs";
99   case P::RegBankSelected: return "RegBankSelected";
100   case P::Selected: return "Selected";
101   case P::TracksLiveness: return "TracksLiveness";
102   case P::TiedOpsRewritten: return "TiedOpsRewritten";
103   case P::FailsVerification: return "FailsVerification";
104   case P::TracksDebugUserValues: return "TracksDebugUserValues";
105   }
106   // clang-format on
107   llvm_unreachable("Invalid machine function property");
108 }
109 
110 // Pin the vtable to this file.
111 void MachineFunction::Delegate::anchor() {}
112 
113 void MachineFunctionProperties::print(raw_ostream &OS) const {
114   const char *Separator = "";
115   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
116     if (!Properties[I])
117       continue;
118     OS << Separator << getPropertyName(static_cast<Property>(I));
119     Separator = ", ";
120   }
121 }
122 
123 //===----------------------------------------------------------------------===//
124 // MachineFunction implementation
125 //===----------------------------------------------------------------------===//
126 
127 // Out-of-line virtual method.
128 MachineFunctionInfo::~MachineFunctionInfo() = default;
129 
130 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
131   MBB->getParent()->deleteMachineBasicBlock(MBB);
132 }
133 
134 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
135                                            const Function &F) {
136   if (auto MA = F.getFnStackAlign())
137     return MA->value();
138   return STI->getFrameLowering()->getStackAlign().value();
139 }
140 
141 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
142                                  const TargetSubtargetInfo &STI,
143                                  unsigned FunctionNum, MachineModuleInfo &mmi)
144     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
145   FunctionNumber = FunctionNum;
146   init();
147 }
148 
149 void MachineFunction::handleInsertion(MachineInstr &MI) {
150   if (TheDelegate)
151     TheDelegate->MF_HandleInsertion(MI);
152 }
153 
154 void MachineFunction::handleRemoval(MachineInstr &MI) {
155   if (TheDelegate)
156     TheDelegate->MF_HandleRemoval(MI);
157 }
158 
159 void MachineFunction::init() {
160   // Assume the function starts in SSA form with correct liveness.
161   Properties.set(MachineFunctionProperties::Property::IsSSA);
162   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
163   if (STI->getRegisterInfo())
164     RegInfo = new (Allocator) MachineRegisterInfo(this);
165   else
166     RegInfo = nullptr;
167 
168   MFInfo = nullptr;
169   // We can realign the stack if the target supports it and the user hasn't
170   // explicitly asked us not to.
171   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
172                       !F.hasFnAttribute("no-realign-stack");
173   FrameInfo = new (Allocator) MachineFrameInfo(
174       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
175       /*ForcedRealign=*/CanRealignSP &&
176           F.hasFnAttribute(Attribute::StackAlignment));
177 
178   if (F.hasFnAttribute(Attribute::StackAlignment))
179     FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
180 
181   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
182   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
183 
184   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
185   // FIXME: Use Function::hasOptSize().
186   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
187     Alignment = std::max(Alignment,
188                          STI->getTargetLowering()->getPrefFunctionAlignment());
189 
190   if (AlignAllFunctions)
191     Alignment = Align(1ULL << AlignAllFunctions);
192 
193   JumpTableInfo = nullptr;
194 
195   if (isFuncletEHPersonality(classifyEHPersonality(
196           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
197     WinEHInfo = new (Allocator) WinEHFuncInfo();
198   }
199 
200   if (isScopedEHPersonality(classifyEHPersonality(
201           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
202     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
203   }
204 
205   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
206          "Can't create a MachineFunction using a Module with a "
207          "Target-incompatible DataLayout attached\n");
208 
209   PSVManager =
210     std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
211                                                   getInstrInfo()));
212 }
213 
214 MachineFunction::~MachineFunction() {
215   clear();
216 }
217 
218 void MachineFunction::clear() {
219   Properties.reset();
220   // Don't call destructors on MachineInstr and MachineOperand. All of their
221   // memory comes from the BumpPtrAllocator which is about to be purged.
222   //
223   // Do call MachineBasicBlock destructors, it contains std::vectors.
224   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
225     I->Insts.clearAndLeakNodesUnsafely();
226   MBBNumbering.clear();
227 
228   InstructionRecycler.clear(Allocator);
229   OperandRecycler.clear(Allocator);
230   BasicBlockRecycler.clear(Allocator);
231   CodeViewAnnotations.clear();
232   VariableDbgInfos.clear();
233   if (RegInfo) {
234     RegInfo->~MachineRegisterInfo();
235     Allocator.Deallocate(RegInfo);
236   }
237   if (MFInfo) {
238     MFInfo->~MachineFunctionInfo();
239     Allocator.Deallocate(MFInfo);
240   }
241 
242   FrameInfo->~MachineFrameInfo();
243   Allocator.Deallocate(FrameInfo);
244 
245   ConstantPool->~MachineConstantPool();
246   Allocator.Deallocate(ConstantPool);
247 
248   if (JumpTableInfo) {
249     JumpTableInfo->~MachineJumpTableInfo();
250     Allocator.Deallocate(JumpTableInfo);
251   }
252 
253   if (WinEHInfo) {
254     WinEHInfo->~WinEHFuncInfo();
255     Allocator.Deallocate(WinEHInfo);
256   }
257 
258   if (WasmEHInfo) {
259     WasmEHInfo->~WasmEHFuncInfo();
260     Allocator.Deallocate(WasmEHInfo);
261   }
262 }
263 
264 const DataLayout &MachineFunction::getDataLayout() const {
265   return F.getParent()->getDataLayout();
266 }
267 
268 /// Get the JumpTableInfo for this function.
269 /// If it does not already exist, allocate one.
270 MachineJumpTableInfo *MachineFunction::
271 getOrCreateJumpTableInfo(unsigned EntryKind) {
272   if (JumpTableInfo) return JumpTableInfo;
273 
274   JumpTableInfo = new (Allocator)
275     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
276   return JumpTableInfo;
277 }
278 
279 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
280   return F.getDenormalMode(FPType);
281 }
282 
283 /// Should we be emitting segmented stack stuff for the function
284 bool MachineFunction::shouldSplitStack() const {
285   return getFunction().hasFnAttribute("split-stack");
286 }
287 
288 LLVM_NODISCARD unsigned
289 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
290   FrameInstructions.push_back(Inst);
291   return FrameInstructions.size() - 1;
292 }
293 
294 /// This discards all of the MachineBasicBlock numbers and recomputes them.
295 /// This guarantees that the MBB numbers are sequential, dense, and match the
296 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
297 /// is specified, only that block and those after it are renumbered.
298 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
299   if (empty()) { MBBNumbering.clear(); return; }
300   MachineFunction::iterator MBBI, E = end();
301   if (MBB == nullptr)
302     MBBI = begin();
303   else
304     MBBI = MBB->getIterator();
305 
306   // Figure out the block number this should have.
307   unsigned BlockNo = 0;
308   if (MBBI != begin())
309     BlockNo = std::prev(MBBI)->getNumber() + 1;
310 
311   for (; MBBI != E; ++MBBI, ++BlockNo) {
312     if (MBBI->getNumber() != (int)BlockNo) {
313       // Remove use of the old number.
314       if (MBBI->getNumber() != -1) {
315         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
316                "MBB number mismatch!");
317         MBBNumbering[MBBI->getNumber()] = nullptr;
318       }
319 
320       // If BlockNo is already taken, set that block's number to -1.
321       if (MBBNumbering[BlockNo])
322         MBBNumbering[BlockNo]->setNumber(-1);
323 
324       MBBNumbering[BlockNo] = &*MBBI;
325       MBBI->setNumber(BlockNo);
326     }
327   }
328 
329   // Okay, all the blocks are renumbered.  If we have compactified the block
330   // numbering, shrink MBBNumbering now.
331   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
332   MBBNumbering.resize(BlockNo);
333 }
334 
335 /// This method iterates over the basic blocks and assigns their IsBeginSection
336 /// and IsEndSection fields. This must be called after MBB layout is finalized
337 /// and the SectionID's are assigned to MBBs.
338 void MachineFunction::assignBeginEndSections() {
339   front().setIsBeginSection();
340   auto CurrentSectionID = front().getSectionID();
341   for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
342     if (MBBI->getSectionID() == CurrentSectionID)
343       continue;
344     MBBI->setIsBeginSection();
345     std::prev(MBBI)->setIsEndSection();
346     CurrentSectionID = MBBI->getSectionID();
347   }
348   back().setIsEndSection();
349 }
350 
351 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
352 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
353                                                   DebugLoc DL,
354                                                   bool NoImplicit) {
355   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
356       MachineInstr(*this, MCID, std::move(DL), NoImplicit);
357 }
358 
359 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
360 /// identical in all ways except the instruction has no parent, prev, or next.
361 MachineInstr *
362 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
363   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
364              MachineInstr(*this, *Orig);
365 }
366 
367 MachineInstr &MachineFunction::cloneMachineInstrBundle(
368     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
369     const MachineInstr &Orig) {
370   MachineInstr *FirstClone = nullptr;
371   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
372   while (true) {
373     MachineInstr *Cloned = CloneMachineInstr(&*I);
374     MBB.insert(InsertBefore, Cloned);
375     if (FirstClone == nullptr) {
376       FirstClone = Cloned;
377     } else {
378       Cloned->bundleWithPred();
379     }
380 
381     if (!I->isBundledWithSucc())
382       break;
383     ++I;
384   }
385   // Copy over call site info to the cloned instruction if needed. If Orig is in
386   // a bundle, copyCallSiteInfo takes care of finding the call instruction in
387   // the bundle.
388   if (Orig.shouldUpdateCallSiteInfo())
389     copyCallSiteInfo(&Orig, FirstClone);
390   return *FirstClone;
391 }
392 
393 /// Delete the given MachineInstr.
394 ///
395 /// This function also serves as the MachineInstr destructor - the real
396 /// ~MachineInstr() destructor must be empty.
397 void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
398   // Verify that a call site info is at valid state. This assertion should
399   // be triggered during the implementation of support for the
400   // call site info of a new architecture. If the assertion is triggered,
401   // back trace will tell where to insert a call to updateCallSiteInfo().
402   assert((!MI->isCandidateForCallSiteEntry() ||
403           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
404          "Call site info was not updated!");
405   // Strip it for parts. The operand array and the MI object itself are
406   // independently recyclable.
407   if (MI->Operands)
408     deallocateOperandArray(MI->CapOperands, MI->Operands);
409   // Don't call ~MachineInstr() which must be trivial anyway because
410   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
411   // destructors.
412   InstructionRecycler.Deallocate(Allocator, MI);
413 }
414 
415 /// Allocate a new MachineBasicBlock. Use this instead of
416 /// `new MachineBasicBlock'.
417 MachineBasicBlock *
418 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
419   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
420              MachineBasicBlock(*this, bb);
421 }
422 
423 /// Delete the given MachineBasicBlock.
424 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
425   assert(MBB->getParent() == this && "MBB parent mismatch!");
426   // Clean up any references to MBB in jump tables before deleting it.
427   if (JumpTableInfo)
428     JumpTableInfo->RemoveMBBFromJumpTables(MBB);
429   MBB->~MachineBasicBlock();
430   BasicBlockRecycler.Deallocate(Allocator, MBB);
431 }
432 
433 MachineMemOperand *MachineFunction::getMachineMemOperand(
434     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
435     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
436     SyncScope::ID SSID, AtomicOrdering Ordering,
437     AtomicOrdering FailureOrdering) {
438   return new (Allocator)
439       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
440                         SSID, Ordering, FailureOrdering);
441 }
442 
443 MachineMemOperand *MachineFunction::getMachineMemOperand(
444     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
445     Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
446     SyncScope::ID SSID, AtomicOrdering Ordering,
447     AtomicOrdering FailureOrdering) {
448   return new (Allocator)
449       MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
450                         Ordering, FailureOrdering);
451 }
452 
453 MachineMemOperand *MachineFunction::getMachineMemOperand(
454     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
455   return new (Allocator)
456       MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
457                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
458                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
459 }
460 
461 MachineMemOperand *MachineFunction::getMachineMemOperand(
462     const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
463   return new (Allocator)
464       MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
465                         AAMDNodes(), nullptr, MMO->getSyncScopeID(),
466                         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
467 }
468 
469 MachineMemOperand *
470 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
471                                       int64_t Offset, LLT Ty) {
472   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
473 
474   // If there is no pointer value, the offset isn't tracked so we need to adjust
475   // the base alignment.
476   Align Alignment = PtrInfo.V.isNull()
477                         ? commonAlignment(MMO->getBaseAlign(), Offset)
478                         : MMO->getBaseAlign();
479 
480   // Do not preserve ranges, since we don't necessarily know what the high bits
481   // are anymore.
482   return new (Allocator) MachineMemOperand(
483       PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
484       MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
485       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
486 }
487 
488 MachineMemOperand *
489 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
490                                       const AAMDNodes &AAInfo) {
491   MachinePointerInfo MPI = MMO->getValue() ?
492              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
493              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
494 
495   return new (Allocator) MachineMemOperand(
496       MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
497       MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
498       MMO->getFailureOrdering());
499 }
500 
501 MachineMemOperand *
502 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
503                                       MachineMemOperand::Flags Flags) {
504   return new (Allocator) MachineMemOperand(
505       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
506       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
507       MMO->getSuccessOrdering(), MMO->getFailureOrdering());
508 }
509 
510 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
511     ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
512     MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
513   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
514                                          PostInstrSymbol, HeapAllocMarker);
515 }
516 
517 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
518   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
519   llvm::copy(Name, Dest);
520   Dest[Name.size()] = 0;
521   return Dest;
522 }
523 
524 uint32_t *MachineFunction::allocateRegMask() {
525   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
526   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
527   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
528   memset(Mask, 0, Size * sizeof(Mask[0]));
529   return Mask;
530 }
531 
532 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
533   int* AllocMask = Allocator.Allocate<int>(Mask.size());
534   copy(Mask, AllocMask);
535   return {AllocMask, Mask.size()};
536 }
537 
538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
539 LLVM_DUMP_METHOD void MachineFunction::dump() const {
540   print(dbgs());
541 }
542 #endif
543 
544 StringRef MachineFunction::getName() const {
545   return getFunction().getName();
546 }
547 
548 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
549   OS << "# Machine code for function " << getName() << ": ";
550   getProperties().print(OS);
551   OS << '\n';
552 
553   // Print Frame Information
554   FrameInfo->print(*this, OS);
555 
556   // Print JumpTable Information
557   if (JumpTableInfo)
558     JumpTableInfo->print(OS);
559 
560   // Print Constant Pool
561   ConstantPool->print(OS);
562 
563   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
564 
565   if (RegInfo && !RegInfo->livein_empty()) {
566     OS << "Function Live Ins: ";
567     for (MachineRegisterInfo::livein_iterator
568          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
569       OS << printReg(I->first, TRI);
570       if (I->second)
571         OS << " in " << printReg(I->second, TRI);
572       if (std::next(I) != E)
573         OS << ", ";
574     }
575     OS << '\n';
576   }
577 
578   ModuleSlotTracker MST(getFunction().getParent());
579   MST.incorporateFunction(getFunction());
580   for (const auto &BB : *this) {
581     OS << '\n';
582     // If we print the whole function, print it at its most verbose level.
583     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
584   }
585 
586   OS << "\n# End machine code for function " << getName() << ".\n\n";
587 }
588 
589 /// True if this function needs frame moves for debug or exceptions.
590 bool MachineFunction::needsFrameMoves() const {
591   return getMMI().hasDebugInfo() ||
592          getTarget().Options.ForceDwarfFrameSection ||
593          F.needsUnwindTableEntry();
594 }
595 
596 namespace llvm {
597 
598   template<>
599   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
600     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
601 
602     static std::string getGraphName(const MachineFunction *F) {
603       return ("CFG for '" + F->getName() + "' function").str();
604     }
605 
606     std::string getNodeLabel(const MachineBasicBlock *Node,
607                              const MachineFunction *Graph) {
608       std::string OutStr;
609       {
610         raw_string_ostream OSS(OutStr);
611 
612         if (isSimple()) {
613           OSS << printMBBReference(*Node);
614           if (const BasicBlock *BB = Node->getBasicBlock())
615             OSS << ": " << BB->getName();
616         } else
617           Node->print(OSS);
618       }
619 
620       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
621 
622       // Process string output to make it nicer...
623       for (unsigned i = 0; i != OutStr.length(); ++i)
624         if (OutStr[i] == '\n') {                            // Left justify
625           OutStr[i] = '\\';
626           OutStr.insert(OutStr.begin()+i+1, 'l');
627         }
628       return OutStr;
629     }
630   };
631 
632 } // end namespace llvm
633 
634 void MachineFunction::viewCFG() const
635 {
636 #ifndef NDEBUG
637   ViewGraph(this, "mf" + getName());
638 #else
639   errs() << "MachineFunction::viewCFG is only available in debug builds on "
640          << "systems with Graphviz or gv!\n";
641 #endif // NDEBUG
642 }
643 
644 void MachineFunction::viewCFGOnly() const
645 {
646 #ifndef NDEBUG
647   ViewGraph(this, "mf" + getName(), true);
648 #else
649   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
650          << "systems with Graphviz or gv!\n";
651 #endif // NDEBUG
652 }
653 
654 /// Add the specified physical register as a live-in value and
655 /// create a corresponding virtual register for it.
656 Register MachineFunction::addLiveIn(MCRegister PReg,
657                                     const TargetRegisterClass *RC) {
658   MachineRegisterInfo &MRI = getRegInfo();
659   Register VReg = MRI.getLiveInVirtReg(PReg);
660   if (VReg) {
661     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
662     (void)VRegRC;
663     // A physical register can be added several times.
664     // Between two calls, the register class of the related virtual register
665     // may have been constrained to match some operation constraints.
666     // In that case, check that the current register class includes the
667     // physical register and is a sub class of the specified RC.
668     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
669                              RC->hasSubClassEq(VRegRC))) &&
670             "Register class mismatch!");
671     return VReg;
672   }
673   VReg = MRI.createVirtualRegister(RC);
674   MRI.addLiveIn(PReg, VReg);
675   return VReg;
676 }
677 
678 /// Return the MCSymbol for the specified non-empty jump table.
679 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
680 /// normal 'L' label is returned.
681 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
682                                         bool isLinkerPrivate) const {
683   const DataLayout &DL = getDataLayout();
684   assert(JumpTableInfo && "No jump tables");
685   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
686 
687   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
688                                      : DL.getPrivateGlobalPrefix();
689   SmallString<60> Name;
690   raw_svector_ostream(Name)
691     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
692   return Ctx.getOrCreateSymbol(Name);
693 }
694 
695 /// Return a function-local symbol to represent the PIC base.
696 MCSymbol *MachineFunction::getPICBaseSymbol() const {
697   const DataLayout &DL = getDataLayout();
698   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
699                                Twine(getFunctionNumber()) + "$pb");
700 }
701 
702 /// \name Exception Handling
703 /// \{
704 
705 LandingPadInfo &
706 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
707   unsigned N = LandingPads.size();
708   for (unsigned i = 0; i < N; ++i) {
709     LandingPadInfo &LP = LandingPads[i];
710     if (LP.LandingPadBlock == LandingPad)
711       return LP;
712   }
713 
714   LandingPads.push_back(LandingPadInfo(LandingPad));
715   return LandingPads[N];
716 }
717 
718 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
719                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
720   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
721   LP.BeginLabels.push_back(BeginLabel);
722   LP.EndLabels.push_back(EndLabel);
723 }
724 
725 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
726   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
727   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
728   LP.LandingPadLabel = LandingPadLabel;
729 
730   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
731   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
732     if (const auto *PF =
733             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
734       getMMI().addPersonality(PF);
735 
736     if (LPI->isCleanup())
737       addCleanup(LandingPad);
738 
739     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
740     //        correct, but we need to do it this way because of how the DWARF EH
741     //        emitter processes the clauses.
742     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
743       Value *Val = LPI->getClause(I - 1);
744       if (LPI->isCatch(I - 1)) {
745         addCatchTypeInfo(LandingPad,
746                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
747       } else {
748         // Add filters in a list.
749         auto *CVal = cast<Constant>(Val);
750         SmallVector<const GlobalValue *, 4> FilterList;
751         for (const Use &U : CVal->operands())
752           FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts()));
753 
754         addFilterTypeInfo(LandingPad, FilterList);
755       }
756     }
757 
758   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
759     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
760       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
761       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
762     }
763 
764   } else {
765     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
766   }
767 
768   return LandingPadLabel;
769 }
770 
771 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
772                                        ArrayRef<const GlobalValue *> TyInfo) {
773   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
774   for (const GlobalValue *GV : llvm::reverse(TyInfo))
775     LP.TypeIds.push_back(getTypeIDFor(GV));
776 }
777 
778 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
779                                         ArrayRef<const GlobalValue *> TyInfo) {
780   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
781   std::vector<unsigned> IdsInFilter(TyInfo.size());
782   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
783     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
784   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
785 }
786 
787 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
788                                       bool TidyIfNoBeginLabels) {
789   for (unsigned i = 0; i != LandingPads.size(); ) {
790     LandingPadInfo &LandingPad = LandingPads[i];
791     if (LandingPad.LandingPadLabel &&
792         !LandingPad.LandingPadLabel->isDefined() &&
793         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
794       LandingPad.LandingPadLabel = nullptr;
795 
796     // Special case: we *should* emit LPs with null LP MBB. This indicates
797     // "nounwind" case.
798     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
799       LandingPads.erase(LandingPads.begin() + i);
800       continue;
801     }
802 
803     if (TidyIfNoBeginLabels) {
804       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
805         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
806         MCSymbol *EndLabel = LandingPad.EndLabels[j];
807         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
808             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
809           continue;
810 
811         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
812         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
813         --j;
814         --e;
815       }
816 
817       // Remove landing pads with no try-ranges.
818       if (LandingPads[i].BeginLabels.empty()) {
819         LandingPads.erase(LandingPads.begin() + i);
820         continue;
821       }
822     }
823 
824     // If there is no landing pad, ensure that the list of typeids is empty.
825     // If the only typeid is a cleanup, this is the same as having no typeids.
826     if (!LandingPad.LandingPadBlock ||
827         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
828       LandingPad.TypeIds.clear();
829     ++i;
830   }
831 }
832 
833 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
834   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
835   LP.TypeIds.push_back(0);
836 }
837 
838 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
839                                          const Function *Filter,
840                                          const BlockAddress *RecoverBA) {
841   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
842   SEHHandler Handler;
843   Handler.FilterOrFinally = Filter;
844   Handler.RecoverBA = RecoverBA;
845   LP.SEHHandlers.push_back(Handler);
846 }
847 
848 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
849                                            const Function *Cleanup) {
850   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
851   SEHHandler Handler;
852   Handler.FilterOrFinally = Cleanup;
853   Handler.RecoverBA = nullptr;
854   LP.SEHHandlers.push_back(Handler);
855 }
856 
857 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
858                                             ArrayRef<unsigned> Sites) {
859   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
860 }
861 
862 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
863   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
864     if (TypeInfos[i] == TI) return i + 1;
865 
866   TypeInfos.push_back(TI);
867   return TypeInfos.size();
868 }
869 
870 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
871   // If the new filter coincides with the tail of an existing filter, then
872   // re-use the existing filter.  Folding filters more than this requires
873   // re-ordering filters and/or their elements - probably not worth it.
874   for (unsigned i : FilterEnds) {
875     unsigned j = TyIds.size();
876 
877     while (i && j)
878       if (FilterIds[--i] != TyIds[--j])
879         goto try_next;
880 
881     if (!j)
882       // The new filter coincides with range [i, end) of the existing filter.
883       return -(1 + i);
884 
885 try_next:;
886   }
887 
888   // Add the new filter.
889   int FilterID = -(1 + FilterIds.size());
890   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
891   llvm::append_range(FilterIds, TyIds);
892   FilterEnds.push_back(FilterIds.size());
893   FilterIds.push_back(0); // terminator
894   return FilterID;
895 }
896 
897 MachineFunction::CallSiteInfoMap::iterator
898 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
899   assert(MI->isCandidateForCallSiteEntry() &&
900          "Call site info refers only to call (MI) candidates");
901 
902   if (!Target.Options.EmitCallSiteInfo)
903     return CallSitesInfo.end();
904   return CallSitesInfo.find(MI);
905 }
906 
907 /// Return the call machine instruction or find a call within bundle.
908 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
909   if (!MI->isBundle())
910     return MI;
911 
912   for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
913                               getBundleEnd(MI->getIterator())))
914     if (BMI.isCandidateForCallSiteEntry())
915       return &BMI;
916 
917   llvm_unreachable("Unexpected bundle without a call site candidate");
918 }
919 
920 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
921   assert(MI->shouldUpdateCallSiteInfo() &&
922          "Call site info refers only to call (MI) candidates or "
923          "candidates inside bundles");
924 
925   const MachineInstr *CallMI = getCallInstr(MI);
926   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
927   if (CSIt == CallSitesInfo.end())
928     return;
929   CallSitesInfo.erase(CSIt);
930 }
931 
932 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
933                                        const MachineInstr *New) {
934   assert(Old->shouldUpdateCallSiteInfo() &&
935          "Call site info refers only to call (MI) candidates or "
936          "candidates inside bundles");
937 
938   if (!New->isCandidateForCallSiteEntry())
939     return eraseCallSiteInfo(Old);
940 
941   const MachineInstr *OldCallMI = getCallInstr(Old);
942   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
943   if (CSIt == CallSitesInfo.end())
944     return;
945 
946   CallSiteInfo CSInfo = CSIt->second;
947   CallSitesInfo[New] = CSInfo;
948 }
949 
950 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
951                                        const MachineInstr *New) {
952   assert(Old->shouldUpdateCallSiteInfo() &&
953          "Call site info refers only to call (MI) candidates or "
954          "candidates inside bundles");
955 
956   if (!New->isCandidateForCallSiteEntry())
957     return eraseCallSiteInfo(Old);
958 
959   const MachineInstr *OldCallMI = getCallInstr(Old);
960   CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
961   if (CSIt == CallSitesInfo.end())
962     return;
963 
964   CallSiteInfo CSInfo = std::move(CSIt->second);
965   CallSitesInfo.erase(CSIt);
966   CallSitesInfo[New] = CSInfo;
967 }
968 
969 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
970   DebugInstrNumberingCount = Num;
971 }
972 
973 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
974                                                  DebugInstrOperandPair B,
975                                                  unsigned Subreg) {
976   // Catch any accidental self-loops.
977   assert(A.first != B.first);
978   // Don't allow any substitutions _from_ the memory operand number.
979   assert(A.second != DebugOperandMemNumber);
980 
981   DebugValueSubstitutions.push_back({A, B, Subreg});
982 }
983 
984 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
985                                                    MachineInstr &New,
986                                                    unsigned MaxOperand) {
987   // If the Old instruction wasn't tracked at all, there is no work to do.
988   unsigned OldInstrNum = Old.peekDebugInstrNum();
989   if (!OldInstrNum)
990     return;
991 
992   // Iterate over all operands looking for defs to create substitutions for.
993   // Avoid creating new instr numbers unless we create a new substitution.
994   // While this has no functional effect, it risks confusing someone reading
995   // MIR output.
996   // Examine all the operands, or the first N specified by the caller.
997   MaxOperand = std::min(MaxOperand, Old.getNumOperands());
998   for (unsigned int I = 0; I < MaxOperand; ++I) {
999     const auto &OldMO = Old.getOperand(I);
1000     auto &NewMO = New.getOperand(I);
1001     (void)NewMO;
1002 
1003     if (!OldMO.isReg() || !OldMO.isDef())
1004       continue;
1005     assert(NewMO.isDef());
1006 
1007     unsigned NewInstrNum = New.getDebugInstrNum();
1008     makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1009                                std::make_pair(NewInstrNum, I));
1010   }
1011 }
1012 
1013 auto MachineFunction::salvageCopySSA(MachineInstr &MI)
1014     -> DebugInstrOperandPair {
1015   MachineRegisterInfo &MRI = getRegInfo();
1016   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1017   const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1018 
1019   // Chase the value read by a copy-like instruction back to the instruction
1020   // that ultimately _defines_ that value. This may pass:
1021   //  * Through multiple intermediate copies, including subregister moves /
1022   //    copies,
1023   //  * Copies from physical registers that must then be traced back to the
1024   //    defining instruction,
1025   //  * Or, physical registers may be live-in to (only) the entry block, which
1026   //    requires a DBG_PHI to be created.
1027   // We can pursue this problem in that order: trace back through copies,
1028   // optionally through a physical register, to a defining instruction. We
1029   // should never move from physreg to vreg. As we're still in SSA form, no need
1030   // to worry about partial definitions of registers.
1031 
1032   // Helper lambda to interpret a copy-like instruction. Takes instruction,
1033   // returns the register read and any subregister identifying which part is
1034   // read.
1035   auto GetRegAndSubreg =
1036       [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1037     Register NewReg, OldReg;
1038     unsigned SubReg;
1039     if (Cpy.isCopy()) {
1040       OldReg = Cpy.getOperand(0).getReg();
1041       NewReg = Cpy.getOperand(1).getReg();
1042       SubReg = Cpy.getOperand(1).getSubReg();
1043     } else if (Cpy.isSubregToReg()) {
1044       OldReg = Cpy.getOperand(0).getReg();
1045       NewReg = Cpy.getOperand(2).getReg();
1046       SubReg = Cpy.getOperand(3).getImm();
1047     } else {
1048       auto CopyDetails = *TII.isCopyInstr(Cpy);
1049       const MachineOperand &Src = *CopyDetails.Source;
1050       const MachineOperand &Dest = *CopyDetails.Destination;
1051       OldReg = Dest.getReg();
1052       NewReg = Src.getReg();
1053       SubReg = Src.getSubReg();
1054     }
1055 
1056     return {NewReg, SubReg};
1057   };
1058 
1059   // First seek either the defining instruction, or a copy from a physreg.
1060   // During search, the current state is the current copy instruction, and which
1061   // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1062   // deal with those later.
1063   auto State = GetRegAndSubreg(MI);
1064   auto CurInst = MI.getIterator();
1065   SmallVector<unsigned, 4> SubregsSeen;
1066   while (true) {
1067     // If we've found a copy from a physreg, first portion of search is over.
1068     if (!State.first.isVirtual())
1069       break;
1070 
1071     // Record any subregister qualifier.
1072     if (State.second)
1073       SubregsSeen.push_back(State.second);
1074 
1075     assert(MRI.hasOneDef(State.first));
1076     MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1077     CurInst = Inst.getIterator();
1078 
1079     // Any non-copy instruction is the defining instruction we're seeking.
1080     if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1081       break;
1082     State = GetRegAndSubreg(Inst);
1083   };
1084 
1085   // Helper lambda to apply additional subregister substitutions to a known
1086   // instruction/operand pair. Adds new (fake) substitutions so that we can
1087   // record the subregister. FIXME: this isn't very space efficient if multiple
1088   // values are tracked back through the same copies; cache something later.
1089   auto ApplySubregisters =
1090       [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1091     for (unsigned Subreg : reverse(SubregsSeen)) {
1092       // Fetch a new instruction number, not attached to an actual instruction.
1093       unsigned NewInstrNumber = getNewDebugInstrNum();
1094       // Add a substitution from the "new" number to the known one, with a
1095       // qualifying subreg.
1096       makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1097       // Return the new number; to find the underlying value, consumers need to
1098       // deal with the qualifying subreg.
1099       P = {NewInstrNumber, 0};
1100     }
1101     return P;
1102   };
1103 
1104   // If we managed to find the defining instruction after COPYs, return an
1105   // instruction / operand pair after adding subregister qualifiers.
1106   if (State.first.isVirtual()) {
1107     // Virtual register def -- we can just look up where this happens.
1108     MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1109     for (auto &MO : Inst->operands()) {
1110       if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
1111         continue;
1112       return ApplySubregisters(
1113           {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
1114     }
1115 
1116     llvm_unreachable("Vreg def with no corresponding operand?");
1117   }
1118 
1119   // Our search ended in a copy from a physreg: walk back up the function
1120   // looking for whatever defines the physreg.
1121   assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1122   State = GetRegAndSubreg(*CurInst);
1123   Register RegToSeek = State.first;
1124 
1125   auto RMII = CurInst->getReverseIterator();
1126   auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1127   for (auto &ToExamine : PrevInstrs) {
1128     for (auto &MO : ToExamine.operands()) {
1129       // Test for operand that defines something aliasing RegToSeek.
1130       if (!MO.isReg() || !MO.isDef() ||
1131           !TRI.regsOverlap(RegToSeek, MO.getReg()))
1132         continue;
1133 
1134       return ApplySubregisters(
1135           {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
1136     }
1137   }
1138 
1139   MachineBasicBlock &InsertBB = *CurInst->getParent();
1140 
1141   // We reached the start of the block before finding a defining instruction.
1142   // It could be from a constant register, otherwise it must be an argument.
1143   if (TRI.isConstantPhysReg(State.first)) {
1144     // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
1145     // matter where we put it, as it's constant valued.
1146     assert(CurInst->isCopy());
1147   } else if (State.first == TRI.getFrameRegister(*this)) {
1148     // LLVM IR is allowed to read the framepointer by calling a
1149     // llvm.frameaddress.* intrinsic. We can support this by emitting a
1150     // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
1151     // position that DBG_PHIs appear at, limiting what can be done later.
1152     // TODO: see if there's a better way of expressing these variable
1153     // locations.
1154     ;
1155   } else {
1156     // Assert that this is the entry block, or an EH pad. If it isn't, then
1157     // there is some code construct we don't recognise that deals with physregs
1158     // across blocks.
1159     assert(!State.first.isVirtual());
1160     assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad());
1161   }
1162 
1163   // Create DBG_PHI for specified physreg.
1164   auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1165                          TII.get(TargetOpcode::DBG_PHI));
1166   Builder.addReg(State.first);
1167   unsigned NewNum = getNewDebugInstrNum();
1168   Builder.addImm(NewNum);
1169   return ApplySubregisters({NewNum, 0u});
1170 }
1171 
1172 void MachineFunction::finalizeDebugInstrRefs() {
1173   auto *TII = getSubtarget().getInstrInfo();
1174 
1175   auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1176     const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
1177     MI.setDesc(RefII);
1178     MI.getOperand(0).setReg(0);
1179     MI.getOperand(1).ChangeToRegister(0, false);
1180   };
1181 
1182   if (!useDebugInstrRef())
1183     return;
1184 
1185   for (auto &MBB : *this) {
1186     for (auto &MI : MBB) {
1187       if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
1188         continue;
1189 
1190       Register Reg = MI.getOperand(0).getReg();
1191 
1192       // Some vregs can be deleted as redundant in the meantime. Mark those
1193       // as DBG_VALUE $noreg. Additionally, some normal instructions are
1194       // quickly deleted, leaving dangling references to vregs with no def.
1195       if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1196         MakeUndefDbgValue(MI);
1197         continue;
1198       }
1199 
1200       assert(Reg.isVirtual());
1201       MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1202 
1203       // If we've found a copy-like instruction, follow it back to the
1204       // instruction that defines the source value, see salvageCopySSA docs
1205       // for why this is important.
1206       if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1207         auto Result = salvageCopySSA(DefMI);
1208         MI.getOperand(0).ChangeToImmediate(Result.first);
1209         MI.getOperand(1).setImm(Result.second);
1210       } else {
1211         // Otherwise, identify the operand number that the VReg refers to.
1212         unsigned OperandIdx = 0;
1213         for (const auto &MO : DefMI.operands()) {
1214           if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
1215             break;
1216           ++OperandIdx;
1217         }
1218         assert(OperandIdx < DefMI.getNumOperands());
1219 
1220         // Morph this instr ref to point at the given instruction and operand.
1221         unsigned ID = DefMI.getDebugInstrNum();
1222         MI.getOperand(0).ChangeToImmediate(ID);
1223         MI.getOperand(1).setImm(OperandIdx);
1224       }
1225     }
1226   }
1227 }
1228 
1229 bool MachineFunction::useDebugInstrRef() const {
1230   // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1231   // have optimized code inlined into this unoptimized code, however with
1232   // fewer and less aggressive optimizations happening, coverage and accuracy
1233   // should not suffer.
1234   if (getTarget().getOptLevel() == CodeGenOpt::None)
1235     return false;
1236 
1237   // Don't use instr-ref if this function is marked optnone.
1238   if (F.hasFnAttribute(Attribute::OptimizeNone))
1239     return false;
1240 
1241   if (getTarget().Options.ValueTrackingVariableLocations)
1242     return true;
1243 
1244   return false;
1245 }
1246 
1247 // Use one million as a high / reserved number.
1248 const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1249 
1250 /// \}
1251 
1252 //===----------------------------------------------------------------------===//
1253 //  MachineJumpTableInfo implementation
1254 //===----------------------------------------------------------------------===//
1255 
1256 /// Return the size of each entry in the jump table.
1257 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1258   // The size of a jump table entry is 4 bytes unless the entry is just the
1259   // address of a block, in which case it is the pointer size.
1260   switch (getEntryKind()) {
1261   case MachineJumpTableInfo::EK_BlockAddress:
1262     return TD.getPointerSize();
1263   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1264     return 8;
1265   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1266   case MachineJumpTableInfo::EK_LabelDifference32:
1267   case MachineJumpTableInfo::EK_Custom32:
1268     return 4;
1269   case MachineJumpTableInfo::EK_Inline:
1270     return 0;
1271   }
1272   llvm_unreachable("Unknown jump table encoding!");
1273 }
1274 
1275 /// Return the alignment of each entry in the jump table.
1276 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1277   // The alignment of a jump table entry is the alignment of int32 unless the
1278   // entry is just the address of a block, in which case it is the pointer
1279   // alignment.
1280   switch (getEntryKind()) {
1281   case MachineJumpTableInfo::EK_BlockAddress:
1282     return TD.getPointerABIAlignment(0).value();
1283   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1284     return TD.getABIIntegerTypeAlignment(64).value();
1285   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1286   case MachineJumpTableInfo::EK_LabelDifference32:
1287   case MachineJumpTableInfo::EK_Custom32:
1288     return TD.getABIIntegerTypeAlignment(32).value();
1289   case MachineJumpTableInfo::EK_Inline:
1290     return 1;
1291   }
1292   llvm_unreachable("Unknown jump table encoding!");
1293 }
1294 
1295 /// Create a new jump table entry in the jump table info.
1296 unsigned MachineJumpTableInfo::createJumpTableIndex(
1297                                const std::vector<MachineBasicBlock*> &DestBBs) {
1298   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1299   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1300   return JumpTables.size()-1;
1301 }
1302 
1303 /// If Old is the target of any jump tables, update the jump tables to branch
1304 /// to New instead.
1305 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1306                                                   MachineBasicBlock *New) {
1307   assert(Old != New && "Not making a change?");
1308   bool MadeChange = false;
1309   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1310     ReplaceMBBInJumpTable(i, Old, New);
1311   return MadeChange;
1312 }
1313 
1314 /// If MBB is present in any jump tables, remove it.
1315 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1316   bool MadeChange = false;
1317   for (MachineJumpTableEntry &JTE : JumpTables) {
1318     auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1319     MadeChange |= (removeBeginItr != JTE.MBBs.end());
1320     JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1321   }
1322   return MadeChange;
1323 }
1324 
1325 /// If Old is a target of the jump tables, update the jump table to branch to
1326 /// New instead.
1327 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1328                                                  MachineBasicBlock *Old,
1329                                                  MachineBasicBlock *New) {
1330   assert(Old != New && "Not making a change?");
1331   bool MadeChange = false;
1332   MachineJumpTableEntry &JTE = JumpTables[Idx];
1333   for (MachineBasicBlock *&MBB : JTE.MBBs)
1334     if (MBB == Old) {
1335       MBB = New;
1336       MadeChange = true;
1337     }
1338   return MadeChange;
1339 }
1340 
1341 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1342   if (JumpTables.empty()) return;
1343 
1344   OS << "Jump Tables:\n";
1345 
1346   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1347     OS << printJumpTableEntryReference(i) << ':';
1348     for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1349       OS << ' ' << printMBBReference(*MBB);
1350     if (i != e)
1351       OS << '\n';
1352   }
1353 
1354   OS << '\n';
1355 }
1356 
1357 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1358 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1359 #endif
1360 
1361 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1362   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1363 }
1364 
1365 //===----------------------------------------------------------------------===//
1366 //  MachineConstantPool implementation
1367 //===----------------------------------------------------------------------===//
1368 
1369 void MachineConstantPoolValue::anchor() {}
1370 
1371 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1372   return DL.getTypeAllocSize(Ty);
1373 }
1374 
1375 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1376   if (isMachineConstantPoolEntry())
1377     return Val.MachineCPVal->getSizeInBytes(DL);
1378   return DL.getTypeAllocSize(Val.ConstVal->getType());
1379 }
1380 
1381 bool MachineConstantPoolEntry::needsRelocation() const {
1382   if (isMachineConstantPoolEntry())
1383     return true;
1384   return Val.ConstVal->needsDynamicRelocation();
1385 }
1386 
1387 SectionKind
1388 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1389   if (needsRelocation())
1390     return SectionKind::getReadOnlyWithRel();
1391   switch (getSizeInBytes(*DL)) {
1392   case 4:
1393     return SectionKind::getMergeableConst4();
1394   case 8:
1395     return SectionKind::getMergeableConst8();
1396   case 16:
1397     return SectionKind::getMergeableConst16();
1398   case 32:
1399     return SectionKind::getMergeableConst32();
1400   default:
1401     return SectionKind::getReadOnly();
1402   }
1403 }
1404 
1405 MachineConstantPool::~MachineConstantPool() {
1406   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1407   // so keep track of which we've deleted to avoid double deletions.
1408   DenseSet<MachineConstantPoolValue*> Deleted;
1409   for (const MachineConstantPoolEntry &C : Constants)
1410     if (C.isMachineConstantPoolEntry()) {
1411       Deleted.insert(C.Val.MachineCPVal);
1412       delete C.Val.MachineCPVal;
1413     }
1414   for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1415     if (Deleted.count(CPV) == 0)
1416       delete CPV;
1417   }
1418 }
1419 
1420 /// Test whether the given two constants can be allocated the same constant pool
1421 /// entry.
1422 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1423                                       const DataLayout &DL) {
1424   // Handle the trivial case quickly.
1425   if (A == B) return true;
1426 
1427   // If they have the same type but weren't the same constant, quickly
1428   // reject them.
1429   if (A->getType() == B->getType()) return false;
1430 
1431   // We can't handle structs or arrays.
1432   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1433       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1434     return false;
1435 
1436   // For now, only support constants with the same size.
1437   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1438   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1439     return false;
1440 
1441   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1442 
1443   // Try constant folding a bitcast of both instructions to an integer.  If we
1444   // get two identical ConstantInt's, then we are good to share them.  We use
1445   // the constant folding APIs to do this so that we get the benefit of
1446   // DataLayout.
1447   if (isa<PointerType>(A->getType()))
1448     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1449                                 const_cast<Constant *>(A), IntTy, DL);
1450   else if (A->getType() != IntTy)
1451     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1452                                 IntTy, DL);
1453   if (isa<PointerType>(B->getType()))
1454     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1455                                 const_cast<Constant *>(B), IntTy, DL);
1456   else if (B->getType() != IntTy)
1457     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1458                                 IntTy, DL);
1459 
1460   return A == B;
1461 }
1462 
1463 /// Create a new entry in the constant pool or return an existing one.
1464 /// User must specify the log2 of the minimum required alignment for the object.
1465 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1466                                                    Align Alignment) {
1467   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1468 
1469   // Check to see if we already have this constant.
1470   //
1471   // FIXME, this could be made much more efficient for large constant pools.
1472   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1473     if (!Constants[i].isMachineConstantPoolEntry() &&
1474         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1475       if (Constants[i].getAlign() < Alignment)
1476         Constants[i].Alignment = Alignment;
1477       return i;
1478     }
1479 
1480   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1481   return Constants.size()-1;
1482 }
1483 
1484 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1485                                                    Align Alignment) {
1486   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1487 
1488   // Check to see if we already have this constant.
1489   //
1490   // FIXME, this could be made much more efficient for large constant pools.
1491   int Idx = V->getExistingMachineCPValue(this, Alignment);
1492   if (Idx != -1) {
1493     MachineCPVsSharingEntries.insert(V);
1494     return (unsigned)Idx;
1495   }
1496 
1497   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1498   return Constants.size()-1;
1499 }
1500 
1501 void MachineConstantPool::print(raw_ostream &OS) const {
1502   if (Constants.empty()) return;
1503 
1504   OS << "Constant Pool:\n";
1505   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1506     OS << "  cp#" << i << ": ";
1507     if (Constants[i].isMachineConstantPoolEntry())
1508       Constants[i].Val.MachineCPVal->print(OS);
1509     else
1510       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1511     OS << ", align=" << Constants[i].getAlign().value();
1512     OS << "\n";
1513   }
1514 }
1515 
1516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1517 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1518 #endif
1519