xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function.  This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "codegen"
80 
81 static cl::opt<unsigned>
82 AlignAllFunctions("align-all-functions",
83                   cl::desc("Force the alignment of all functions."),
84                   cl::init(0), cl::Hidden);
85 
86 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
87   using P = MachineFunctionProperties::Property;
88 
89   switch(Prop) {
90   case P::FailedISel: return "FailedISel";
91   case P::IsSSA: return "IsSSA";
92   case P::Legalized: return "Legalized";
93   case P::NoPHIs: return "NoPHIs";
94   case P::NoVRegs: return "NoVRegs";
95   case P::RegBankSelected: return "RegBankSelected";
96   case P::Selected: return "Selected";
97   case P::TracksLiveness: return "TracksLiveness";
98   }
99   llvm_unreachable("Invalid machine function property");
100 }
101 
102 // Pin the vtable to this file.
103 void MachineFunction::Delegate::anchor() {}
104 
105 void MachineFunctionProperties::print(raw_ostream &OS) const {
106   const char *Separator = "";
107   for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
108     if (!Properties[I])
109       continue;
110     OS << Separator << getPropertyName(static_cast<Property>(I));
111     Separator = ", ";
112   }
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // MachineFunction implementation
117 //===----------------------------------------------------------------------===//
118 
119 // Out-of-line virtual method.
120 MachineFunctionInfo::~MachineFunctionInfo() = default;
121 
122 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
123   MBB->getParent()->DeleteMachineBasicBlock(MBB);
124 }
125 
126 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
127                                            const Function &F) {
128   if (F.hasFnAttribute(Attribute::StackAlignment))
129     return F.getFnStackAlignment();
130   return STI->getFrameLowering()->getStackAlignment();
131 }
132 
133 MachineFunction::MachineFunction(const Function &F,
134                                  const LLVMTargetMachine &Target,
135                                  const TargetSubtargetInfo &STI,
136                                  unsigned FunctionNum, MachineModuleInfo &mmi)
137     : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
138   FunctionNumber = FunctionNum;
139   init();
140 }
141 
142 void MachineFunction::handleInsertion(MachineInstr &MI) {
143   if (TheDelegate)
144     TheDelegate->MF_HandleInsertion(MI);
145 }
146 
147 void MachineFunction::handleRemoval(MachineInstr &MI) {
148   if (TheDelegate)
149     TheDelegate->MF_HandleRemoval(MI);
150 }
151 
152 void MachineFunction::init() {
153   // Assume the function starts in SSA form with correct liveness.
154   Properties.set(MachineFunctionProperties::Property::IsSSA);
155   Properties.set(MachineFunctionProperties::Property::TracksLiveness);
156   if (STI->getRegisterInfo())
157     RegInfo = new (Allocator) MachineRegisterInfo(this);
158   else
159     RegInfo = nullptr;
160 
161   MFInfo = nullptr;
162   // We can realign the stack if the target supports it and the user hasn't
163   // explicitly asked us not to.
164   bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
165                       !F.hasFnAttribute("no-realign-stack");
166   FrameInfo = new (Allocator) MachineFrameInfo(
167       getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
168       /*ForcedRealign=*/CanRealignSP &&
169           F.hasFnAttribute(Attribute::StackAlignment));
170 
171   if (F.hasFnAttribute(Attribute::StackAlignment))
172     FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
173 
174   ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
175   Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
176 
177   // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
178   // FIXME: Use Function::hasOptSize().
179   if (!F.hasFnAttribute(Attribute::OptimizeForSize))
180     Alignment = std::max(Alignment,
181                          STI->getTargetLowering()->getPrefFunctionAlignment());
182 
183   if (AlignAllFunctions)
184     Alignment = AlignAllFunctions;
185 
186   JumpTableInfo = nullptr;
187 
188   if (isFuncletEHPersonality(classifyEHPersonality(
189           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
190     WinEHInfo = new (Allocator) WinEHFuncInfo();
191   }
192 
193   if (isScopedEHPersonality(classifyEHPersonality(
194           F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
195     WasmEHInfo = new (Allocator) WasmEHFuncInfo();
196   }
197 
198   assert(Target.isCompatibleDataLayout(getDataLayout()) &&
199          "Can't create a MachineFunction using a Module with a "
200          "Target-incompatible DataLayout attached\n");
201 
202   PSVManager =
203     llvm::make_unique<PseudoSourceValueManager>(*(getSubtarget().
204                                                   getInstrInfo()));
205 }
206 
207 MachineFunction::~MachineFunction() {
208   clear();
209 }
210 
211 void MachineFunction::clear() {
212   Properties.reset();
213   // Don't call destructors on MachineInstr and MachineOperand. All of their
214   // memory comes from the BumpPtrAllocator which is about to be purged.
215   //
216   // Do call MachineBasicBlock destructors, it contains std::vectors.
217   for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
218     I->Insts.clearAndLeakNodesUnsafely();
219   MBBNumbering.clear();
220 
221   InstructionRecycler.clear(Allocator);
222   OperandRecycler.clear(Allocator);
223   BasicBlockRecycler.clear(Allocator);
224   CodeViewAnnotations.clear();
225   VariableDbgInfos.clear();
226   if (RegInfo) {
227     RegInfo->~MachineRegisterInfo();
228     Allocator.Deallocate(RegInfo);
229   }
230   if (MFInfo) {
231     MFInfo->~MachineFunctionInfo();
232     Allocator.Deallocate(MFInfo);
233   }
234 
235   FrameInfo->~MachineFrameInfo();
236   Allocator.Deallocate(FrameInfo);
237 
238   ConstantPool->~MachineConstantPool();
239   Allocator.Deallocate(ConstantPool);
240 
241   if (JumpTableInfo) {
242     JumpTableInfo->~MachineJumpTableInfo();
243     Allocator.Deallocate(JumpTableInfo);
244   }
245 
246   if (WinEHInfo) {
247     WinEHInfo->~WinEHFuncInfo();
248     Allocator.Deallocate(WinEHInfo);
249   }
250 
251   if (WasmEHInfo) {
252     WasmEHInfo->~WasmEHFuncInfo();
253     Allocator.Deallocate(WasmEHInfo);
254   }
255 }
256 
257 const DataLayout &MachineFunction::getDataLayout() const {
258   return F.getParent()->getDataLayout();
259 }
260 
261 /// Get the JumpTableInfo for this function.
262 /// If it does not already exist, allocate one.
263 MachineJumpTableInfo *MachineFunction::
264 getOrCreateJumpTableInfo(unsigned EntryKind) {
265   if (JumpTableInfo) return JumpTableInfo;
266 
267   JumpTableInfo = new (Allocator)
268     MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
269   return JumpTableInfo;
270 }
271 
272 /// Should we be emitting segmented stack stuff for the function
273 bool MachineFunction::shouldSplitStack() const {
274   return getFunction().hasFnAttribute("split-stack");
275 }
276 
277 LLVM_NODISCARD unsigned
278 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
279   FrameInstructions.push_back(Inst);
280   return FrameInstructions.size() - 1;
281 }
282 
283 /// This discards all of the MachineBasicBlock numbers and recomputes them.
284 /// This guarantees that the MBB numbers are sequential, dense, and match the
285 /// ordering of the blocks within the function.  If a specific MachineBasicBlock
286 /// is specified, only that block and those after it are renumbered.
287 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
288   if (empty()) { MBBNumbering.clear(); return; }
289   MachineFunction::iterator MBBI, E = end();
290   if (MBB == nullptr)
291     MBBI = begin();
292   else
293     MBBI = MBB->getIterator();
294 
295   // Figure out the block number this should have.
296   unsigned BlockNo = 0;
297   if (MBBI != begin())
298     BlockNo = std::prev(MBBI)->getNumber() + 1;
299 
300   for (; MBBI != E; ++MBBI, ++BlockNo) {
301     if (MBBI->getNumber() != (int)BlockNo) {
302       // Remove use of the old number.
303       if (MBBI->getNumber() != -1) {
304         assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
305                "MBB number mismatch!");
306         MBBNumbering[MBBI->getNumber()] = nullptr;
307       }
308 
309       // If BlockNo is already taken, set that block's number to -1.
310       if (MBBNumbering[BlockNo])
311         MBBNumbering[BlockNo]->setNumber(-1);
312 
313       MBBNumbering[BlockNo] = &*MBBI;
314       MBBI->setNumber(BlockNo);
315     }
316   }
317 
318   // Okay, all the blocks are renumbered.  If we have compactified the block
319   // numbering, shrink MBBNumbering now.
320   assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
321   MBBNumbering.resize(BlockNo);
322 }
323 
324 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
325 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
326                                                   const DebugLoc &DL,
327                                                   bool NoImp) {
328   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
329     MachineInstr(*this, MCID, DL, NoImp);
330 }
331 
332 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
333 /// identical in all ways except the instruction has no parent, prev, or next.
334 MachineInstr *
335 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
336   return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
337              MachineInstr(*this, *Orig);
338 }
339 
340 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
341     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
342   MachineInstr *FirstClone = nullptr;
343   MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
344   while (true) {
345     MachineInstr *Cloned = CloneMachineInstr(&*I);
346     MBB.insert(InsertBefore, Cloned);
347     if (FirstClone == nullptr) {
348       FirstClone = Cloned;
349     } else {
350       Cloned->bundleWithPred();
351     }
352 
353     if (!I->isBundledWithSucc())
354       break;
355     ++I;
356   }
357   return *FirstClone;
358 }
359 
360 /// Delete the given MachineInstr.
361 ///
362 /// This function also serves as the MachineInstr destructor - the real
363 /// ~MachineInstr() destructor must be empty.
364 void
365 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
366   // Verify that a call site info is at valid state. This assertion should
367   // be triggered during the implementation of support for the
368   // call site info of a new architecture. If the assertion is triggered,
369   // back trace will tell where to insert a call to updateCallSiteInfo().
370   assert((!MI->isCall(MachineInstr::IgnoreBundle) ||
371           CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
372          "Call site info was not updated!");
373   // Strip it for parts. The operand array and the MI object itself are
374   // independently recyclable.
375   if (MI->Operands)
376     deallocateOperandArray(MI->CapOperands, MI->Operands);
377   // Don't call ~MachineInstr() which must be trivial anyway because
378   // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
379   // destructors.
380   InstructionRecycler.Deallocate(Allocator, MI);
381 }
382 
383 /// Allocate a new MachineBasicBlock. Use this instead of
384 /// `new MachineBasicBlock'.
385 MachineBasicBlock *
386 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
387   return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
388              MachineBasicBlock(*this, bb);
389 }
390 
391 /// Delete the given MachineBasicBlock.
392 void
393 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
394   assert(MBB->getParent() == this && "MBB parent mismatch!");
395   MBB->~MachineBasicBlock();
396   BasicBlockRecycler.Deallocate(Allocator, MBB);
397 }
398 
399 MachineMemOperand *MachineFunction::getMachineMemOperand(
400     MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
401     unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
402     SyncScope::ID SSID, AtomicOrdering Ordering,
403     AtomicOrdering FailureOrdering) {
404   return new (Allocator)
405       MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
406                         SSID, Ordering, FailureOrdering);
407 }
408 
409 MachineMemOperand *
410 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
411                                       int64_t Offset, uint64_t Size) {
412   const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
413 
414   // If there is no pointer value, the offset isn't tracked so we need to adjust
415   // the base alignment.
416   unsigned Align = PtrInfo.V.isNull()
417                        ? MinAlign(MMO->getBaseAlignment(), Offset)
418                        : MMO->getBaseAlignment();
419 
420   return new (Allocator)
421       MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
422                         Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
423                         MMO->getOrdering(), MMO->getFailureOrdering());
424 }
425 
426 MachineMemOperand *
427 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
428                                       const AAMDNodes &AAInfo) {
429   MachinePointerInfo MPI = MMO->getValue() ?
430              MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
431              MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
432 
433   return new (Allocator)
434              MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
435                                MMO->getBaseAlignment(), AAInfo,
436                                MMO->getRanges(), MMO->getSyncScopeID(),
437                                MMO->getOrdering(), MMO->getFailureOrdering());
438 }
439 
440 MachineMemOperand *
441 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
442                                       MachineMemOperand::Flags Flags) {
443   return new (Allocator) MachineMemOperand(
444       MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(),
445       MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
446       MMO->getOrdering(), MMO->getFailureOrdering());
447 }
448 
449 MachineInstr::ExtraInfo *
450 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs,
451                                    MCSymbol *PreInstrSymbol,
452                                    MCSymbol *PostInstrSymbol) {
453   return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
454                                          PostInstrSymbol);
455 }
456 
457 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
458   char *Dest = Allocator.Allocate<char>(Name.size() + 1);
459   llvm::copy(Name, Dest);
460   Dest[Name.size()] = 0;
461   return Dest;
462 }
463 
464 uint32_t *MachineFunction::allocateRegMask() {
465   unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
466   unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
467   uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
468   memset(Mask, 0, Size * sizeof(Mask[0]));
469   return Mask;
470 }
471 
472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
473 LLVM_DUMP_METHOD void MachineFunction::dump() const {
474   print(dbgs());
475 }
476 #endif
477 
478 StringRef MachineFunction::getName() const {
479   return getFunction().getName();
480 }
481 
482 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
483   OS << "# Machine code for function " << getName() << ": ";
484   getProperties().print(OS);
485   OS << '\n';
486 
487   // Print Frame Information
488   FrameInfo->print(*this, OS);
489 
490   // Print JumpTable Information
491   if (JumpTableInfo)
492     JumpTableInfo->print(OS);
493 
494   // Print Constant Pool
495   ConstantPool->print(OS);
496 
497   const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
498 
499   if (RegInfo && !RegInfo->livein_empty()) {
500     OS << "Function Live Ins: ";
501     for (MachineRegisterInfo::livein_iterator
502          I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
503       OS << printReg(I->first, TRI);
504       if (I->second)
505         OS << " in " << printReg(I->second, TRI);
506       if (std::next(I) != E)
507         OS << ", ";
508     }
509     OS << '\n';
510   }
511 
512   ModuleSlotTracker MST(getFunction().getParent());
513   MST.incorporateFunction(getFunction());
514   for (const auto &BB : *this) {
515     OS << '\n';
516     // If we print the whole function, print it at its most verbose level.
517     BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
518   }
519 
520   OS << "\n# End machine code for function " << getName() << ".\n\n";
521 }
522 
523 namespace llvm {
524 
525   template<>
526   struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
527     DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
528 
529     static std::string getGraphName(const MachineFunction *F) {
530       return ("CFG for '" + F->getName() + "' function").str();
531     }
532 
533     std::string getNodeLabel(const MachineBasicBlock *Node,
534                              const MachineFunction *Graph) {
535       std::string OutStr;
536       {
537         raw_string_ostream OSS(OutStr);
538 
539         if (isSimple()) {
540           OSS << printMBBReference(*Node);
541           if (const BasicBlock *BB = Node->getBasicBlock())
542             OSS << ": " << BB->getName();
543         } else
544           Node->print(OSS);
545       }
546 
547       if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
548 
549       // Process string output to make it nicer...
550       for (unsigned i = 0; i != OutStr.length(); ++i)
551         if (OutStr[i] == '\n') {                            // Left justify
552           OutStr[i] = '\\';
553           OutStr.insert(OutStr.begin()+i+1, 'l');
554         }
555       return OutStr;
556     }
557   };
558 
559 } // end namespace llvm
560 
561 void MachineFunction::viewCFG() const
562 {
563 #ifndef NDEBUG
564   ViewGraph(this, "mf" + getName());
565 #else
566   errs() << "MachineFunction::viewCFG is only available in debug builds on "
567          << "systems with Graphviz or gv!\n";
568 #endif // NDEBUG
569 }
570 
571 void MachineFunction::viewCFGOnly() const
572 {
573 #ifndef NDEBUG
574   ViewGraph(this, "mf" + getName(), true);
575 #else
576   errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
577          << "systems with Graphviz or gv!\n";
578 #endif // NDEBUG
579 }
580 
581 /// Add the specified physical register as a live-in value and
582 /// create a corresponding virtual register for it.
583 unsigned MachineFunction::addLiveIn(unsigned PReg,
584                                     const TargetRegisterClass *RC) {
585   MachineRegisterInfo &MRI = getRegInfo();
586   unsigned VReg = MRI.getLiveInVirtReg(PReg);
587   if (VReg) {
588     const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
589     (void)VRegRC;
590     // A physical register can be added several times.
591     // Between two calls, the register class of the related virtual register
592     // may have been constrained to match some operation constraints.
593     // In that case, check that the current register class includes the
594     // physical register and is a sub class of the specified RC.
595     assert((VRegRC == RC || (VRegRC->contains(PReg) &&
596                              RC->hasSubClassEq(VRegRC))) &&
597             "Register class mismatch!");
598     return VReg;
599   }
600   VReg = MRI.createVirtualRegister(RC);
601   MRI.addLiveIn(PReg, VReg);
602   return VReg;
603 }
604 
605 /// Return the MCSymbol for the specified non-empty jump table.
606 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
607 /// normal 'L' label is returned.
608 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
609                                         bool isLinkerPrivate) const {
610   const DataLayout &DL = getDataLayout();
611   assert(JumpTableInfo && "No jump tables");
612   assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
613 
614   StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
615                                      : DL.getPrivateGlobalPrefix();
616   SmallString<60> Name;
617   raw_svector_ostream(Name)
618     << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
619   return Ctx.getOrCreateSymbol(Name);
620 }
621 
622 /// Return a function-local symbol to represent the PIC base.
623 MCSymbol *MachineFunction::getPICBaseSymbol() const {
624   const DataLayout &DL = getDataLayout();
625   return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
626                                Twine(getFunctionNumber()) + "$pb");
627 }
628 
629 /// \name Exception Handling
630 /// \{
631 
632 LandingPadInfo &
633 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
634   unsigned N = LandingPads.size();
635   for (unsigned i = 0; i < N; ++i) {
636     LandingPadInfo &LP = LandingPads[i];
637     if (LP.LandingPadBlock == LandingPad)
638       return LP;
639   }
640 
641   LandingPads.push_back(LandingPadInfo(LandingPad));
642   return LandingPads[N];
643 }
644 
645 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
646                                 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
647   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
648   LP.BeginLabels.push_back(BeginLabel);
649   LP.EndLabels.push_back(EndLabel);
650 }
651 
652 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
653   MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
654   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
655   LP.LandingPadLabel = LandingPadLabel;
656 
657   const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
658   if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
659     if (const auto *PF =
660             dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
661       getMMI().addPersonality(PF);
662 
663     if (LPI->isCleanup())
664       addCleanup(LandingPad);
665 
666     // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
667     //        correct, but we need to do it this way because of how the DWARF EH
668     //        emitter processes the clauses.
669     for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
670       Value *Val = LPI->getClause(I - 1);
671       if (LPI->isCatch(I - 1)) {
672         addCatchTypeInfo(LandingPad,
673                          dyn_cast<GlobalValue>(Val->stripPointerCasts()));
674       } else {
675         // Add filters in a list.
676         auto *CVal = cast<Constant>(Val);
677         SmallVector<const GlobalValue *, 4> FilterList;
678         for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
679              II != IE; ++II)
680           FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
681 
682         addFilterTypeInfo(LandingPad, FilterList);
683       }
684     }
685 
686   } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
687     for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
688       Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
689       addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
690     }
691 
692   } else {
693     assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
694   }
695 
696   return LandingPadLabel;
697 }
698 
699 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
700                                        ArrayRef<const GlobalValue *> TyInfo) {
701   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
702   for (unsigned N = TyInfo.size(); N; --N)
703     LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
704 }
705 
706 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
707                                         ArrayRef<const GlobalValue *> TyInfo) {
708   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
709   std::vector<unsigned> IdsInFilter(TyInfo.size());
710   for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
711     IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
712   LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
713 }
714 
715 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
716                                       bool TidyIfNoBeginLabels) {
717   for (unsigned i = 0; i != LandingPads.size(); ) {
718     LandingPadInfo &LandingPad = LandingPads[i];
719     if (LandingPad.LandingPadLabel &&
720         !LandingPad.LandingPadLabel->isDefined() &&
721         (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
722       LandingPad.LandingPadLabel = nullptr;
723 
724     // Special case: we *should* emit LPs with null LP MBB. This indicates
725     // "nounwind" case.
726     if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
727       LandingPads.erase(LandingPads.begin() + i);
728       continue;
729     }
730 
731     if (TidyIfNoBeginLabels) {
732       for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
733         MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
734         MCSymbol *EndLabel = LandingPad.EndLabels[j];
735         if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
736             (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
737           continue;
738 
739         LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
740         LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
741         --j;
742         --e;
743       }
744 
745       // Remove landing pads with no try-ranges.
746       if (LandingPads[i].BeginLabels.empty()) {
747         LandingPads.erase(LandingPads.begin() + i);
748         continue;
749       }
750     }
751 
752     // If there is no landing pad, ensure that the list of typeids is empty.
753     // If the only typeid is a cleanup, this is the same as having no typeids.
754     if (!LandingPad.LandingPadBlock ||
755         (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
756       LandingPad.TypeIds.clear();
757     ++i;
758   }
759 }
760 
761 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
762   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
763   LP.TypeIds.push_back(0);
764 }
765 
766 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
767                                          const Function *Filter,
768                                          const BlockAddress *RecoverBA) {
769   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
770   SEHHandler Handler;
771   Handler.FilterOrFinally = Filter;
772   Handler.RecoverBA = RecoverBA;
773   LP.SEHHandlers.push_back(Handler);
774 }
775 
776 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
777                                            const Function *Cleanup) {
778   LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
779   SEHHandler Handler;
780   Handler.FilterOrFinally = Cleanup;
781   Handler.RecoverBA = nullptr;
782   LP.SEHHandlers.push_back(Handler);
783 }
784 
785 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
786                                             ArrayRef<unsigned> Sites) {
787   LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
788 }
789 
790 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
791   for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
792     if (TypeInfos[i] == TI) return i + 1;
793 
794   TypeInfos.push_back(TI);
795   return TypeInfos.size();
796 }
797 
798 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
799   // If the new filter coincides with the tail of an existing filter, then
800   // re-use the existing filter.  Folding filters more than this requires
801   // re-ordering filters and/or their elements - probably not worth it.
802   for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
803        E = FilterEnds.end(); I != E; ++I) {
804     unsigned i = *I, j = TyIds.size();
805 
806     while (i && j)
807       if (FilterIds[--i] != TyIds[--j])
808         goto try_next;
809 
810     if (!j)
811       // The new filter coincides with range [i, end) of the existing filter.
812       return -(1 + i);
813 
814 try_next:;
815   }
816 
817   // Add the new filter.
818   int FilterID = -(1 + FilterIds.size());
819   FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
820   FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
821   FilterEnds.push_back(FilterIds.size());
822   FilterIds.push_back(0); // terminator
823   return FilterID;
824 }
825 
826 void MachineFunction::addCodeViewHeapAllocSite(MachineInstr *I, MDNode *MD) {
827   MCSymbol *BeginLabel = Ctx.createTempSymbol("heapallocsite", true);
828   MCSymbol *EndLabel = Ctx.createTempSymbol("heapallocsite", true);
829   I->setPreInstrSymbol(*this, BeginLabel);
830   I->setPostInstrSymbol(*this, EndLabel);
831 
832   DIType *DI = dyn_cast<DIType>(MD);
833   CodeViewHeapAllocSites.push_back(std::make_tuple(BeginLabel, EndLabel, DI));
834 }
835 
836 void MachineFunction::updateCallSiteInfo(const MachineInstr *Old,
837                                          const MachineInstr *New) {
838   if (!Target.Options.EnableDebugEntryValues || Old == New)
839     return;
840 
841   assert(Old->isCall() && (!New || New->isCall()) &&
842          "Call site info referes only to call instructions!");
843   CallSiteInfoMap::iterator CSIt = CallSitesInfo.find(Old);
844   if (CSIt == CallSitesInfo.end())
845     return;
846   CallSiteInfo CSInfo = std::move(CSIt->second);
847   CallSitesInfo.erase(CSIt);
848   if (New)
849     CallSitesInfo[New] = CSInfo;
850 }
851 
852 /// \}
853 
854 //===----------------------------------------------------------------------===//
855 //  MachineJumpTableInfo implementation
856 //===----------------------------------------------------------------------===//
857 
858 /// Return the size of each entry in the jump table.
859 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
860   // The size of a jump table entry is 4 bytes unless the entry is just the
861   // address of a block, in which case it is the pointer size.
862   switch (getEntryKind()) {
863   case MachineJumpTableInfo::EK_BlockAddress:
864     return TD.getPointerSize();
865   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
866     return 8;
867   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
868   case MachineJumpTableInfo::EK_LabelDifference32:
869   case MachineJumpTableInfo::EK_Custom32:
870     return 4;
871   case MachineJumpTableInfo::EK_Inline:
872     return 0;
873   }
874   llvm_unreachable("Unknown jump table encoding!");
875 }
876 
877 /// Return the alignment of each entry in the jump table.
878 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
879   // The alignment of a jump table entry is the alignment of int32 unless the
880   // entry is just the address of a block, in which case it is the pointer
881   // alignment.
882   switch (getEntryKind()) {
883   case MachineJumpTableInfo::EK_BlockAddress:
884     return TD.getPointerABIAlignment(0);
885   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
886     return TD.getABIIntegerTypeAlignment(64);
887   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
888   case MachineJumpTableInfo::EK_LabelDifference32:
889   case MachineJumpTableInfo::EK_Custom32:
890     return TD.getABIIntegerTypeAlignment(32);
891   case MachineJumpTableInfo::EK_Inline:
892     return 1;
893   }
894   llvm_unreachable("Unknown jump table encoding!");
895 }
896 
897 /// Create a new jump table entry in the jump table info.
898 unsigned MachineJumpTableInfo::createJumpTableIndex(
899                                const std::vector<MachineBasicBlock*> &DestBBs) {
900   assert(!DestBBs.empty() && "Cannot create an empty jump table!");
901   JumpTables.push_back(MachineJumpTableEntry(DestBBs));
902   return JumpTables.size()-1;
903 }
904 
905 /// If Old is the target of any jump tables, update the jump tables to branch
906 /// to New instead.
907 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
908                                                   MachineBasicBlock *New) {
909   assert(Old != New && "Not making a change?");
910   bool MadeChange = false;
911   for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
912     ReplaceMBBInJumpTable(i, Old, New);
913   return MadeChange;
914 }
915 
916 /// If Old is a target of the jump tables, update the jump table to branch to
917 /// New instead.
918 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
919                                                  MachineBasicBlock *Old,
920                                                  MachineBasicBlock *New) {
921   assert(Old != New && "Not making a change?");
922   bool MadeChange = false;
923   MachineJumpTableEntry &JTE = JumpTables[Idx];
924   for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
925     if (JTE.MBBs[j] == Old) {
926       JTE.MBBs[j] = New;
927       MadeChange = true;
928     }
929   return MadeChange;
930 }
931 
932 void MachineJumpTableInfo::print(raw_ostream &OS) const {
933   if (JumpTables.empty()) return;
934 
935   OS << "Jump Tables:\n";
936 
937   for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
938     OS << printJumpTableEntryReference(i) << ':';
939     for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
940       OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
941     if (i != e)
942       OS << '\n';
943   }
944 
945   OS << '\n';
946 }
947 
948 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
949 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
950 #endif
951 
952 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
953   return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
954 }
955 
956 //===----------------------------------------------------------------------===//
957 //  MachineConstantPool implementation
958 //===----------------------------------------------------------------------===//
959 
960 void MachineConstantPoolValue::anchor() {}
961 
962 Type *MachineConstantPoolEntry::getType() const {
963   if (isMachineConstantPoolEntry())
964     return Val.MachineCPVal->getType();
965   return Val.ConstVal->getType();
966 }
967 
968 bool MachineConstantPoolEntry::needsRelocation() const {
969   if (isMachineConstantPoolEntry())
970     return true;
971   return Val.ConstVal->needsRelocation();
972 }
973 
974 SectionKind
975 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
976   if (needsRelocation())
977     return SectionKind::getReadOnlyWithRel();
978   switch (DL->getTypeAllocSize(getType())) {
979   case 4:
980     return SectionKind::getMergeableConst4();
981   case 8:
982     return SectionKind::getMergeableConst8();
983   case 16:
984     return SectionKind::getMergeableConst16();
985   case 32:
986     return SectionKind::getMergeableConst32();
987   default:
988     return SectionKind::getReadOnly();
989   }
990 }
991 
992 MachineConstantPool::~MachineConstantPool() {
993   // A constant may be a member of both Constants and MachineCPVsSharingEntries,
994   // so keep track of which we've deleted to avoid double deletions.
995   DenseSet<MachineConstantPoolValue*> Deleted;
996   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
997     if (Constants[i].isMachineConstantPoolEntry()) {
998       Deleted.insert(Constants[i].Val.MachineCPVal);
999       delete Constants[i].Val.MachineCPVal;
1000     }
1001   for (DenseSet<MachineConstantPoolValue*>::iterator I =
1002        MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1003        I != E; ++I) {
1004     if (Deleted.count(*I) == 0)
1005       delete *I;
1006   }
1007 }
1008 
1009 /// Test whether the given two constants can be allocated the same constant pool
1010 /// entry.
1011 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1012                                       const DataLayout &DL) {
1013   // Handle the trivial case quickly.
1014   if (A == B) return true;
1015 
1016   // If they have the same type but weren't the same constant, quickly
1017   // reject them.
1018   if (A->getType() == B->getType()) return false;
1019 
1020   // We can't handle structs or arrays.
1021   if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1022       isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1023     return false;
1024 
1025   // For now, only support constants with the same size.
1026   uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1027   if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1028     return false;
1029 
1030   Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1031 
1032   // Try constant folding a bitcast of both instructions to an integer.  If we
1033   // get two identical ConstantInt's, then we are good to share them.  We use
1034   // the constant folding APIs to do this so that we get the benefit of
1035   // DataLayout.
1036   if (isa<PointerType>(A->getType()))
1037     A = ConstantFoldCastOperand(Instruction::PtrToInt,
1038                                 const_cast<Constant *>(A), IntTy, DL);
1039   else if (A->getType() != IntTy)
1040     A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1041                                 IntTy, DL);
1042   if (isa<PointerType>(B->getType()))
1043     B = ConstantFoldCastOperand(Instruction::PtrToInt,
1044                                 const_cast<Constant *>(B), IntTy, DL);
1045   else if (B->getType() != IntTy)
1046     B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1047                                 IntTy, DL);
1048 
1049   return A == B;
1050 }
1051 
1052 /// Create a new entry in the constant pool or return an existing one.
1053 /// User must specify the log2 of the minimum required alignment for the object.
1054 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1055                                                    unsigned Alignment) {
1056   assert(Alignment && "Alignment must be specified!");
1057   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1058 
1059   // Check to see if we already have this constant.
1060   //
1061   // FIXME, this could be made much more efficient for large constant pools.
1062   for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1063     if (!Constants[i].isMachineConstantPoolEntry() &&
1064         CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1065       if ((unsigned)Constants[i].getAlignment() < Alignment)
1066         Constants[i].Alignment = Alignment;
1067       return i;
1068     }
1069 
1070   Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1071   return Constants.size()-1;
1072 }
1073 
1074 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1075                                                    unsigned Alignment) {
1076   assert(Alignment && "Alignment must be specified!");
1077   if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1078 
1079   // Check to see if we already have this constant.
1080   //
1081   // FIXME, this could be made much more efficient for large constant pools.
1082   int Idx = V->getExistingMachineCPValue(this, Alignment);
1083   if (Idx != -1) {
1084     MachineCPVsSharingEntries.insert(V);
1085     return (unsigned)Idx;
1086   }
1087 
1088   Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1089   return Constants.size()-1;
1090 }
1091 
1092 void MachineConstantPool::print(raw_ostream &OS) const {
1093   if (Constants.empty()) return;
1094 
1095   OS << "Constant Pool:\n";
1096   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1097     OS << "  cp#" << i << ": ";
1098     if (Constants[i].isMachineConstantPoolEntry())
1099       Constants[i].Val.MachineCPVal->print(OS);
1100     else
1101       Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1102     OS << ", align=" << Constants[i].getAlignment();
1103     OS << "\n";
1104   }
1105 }
1106 
1107 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1108 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1109 #endif
1110