1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is SSA construction, where 15 /// each debug instruction assigns the *value* that a variable has, and every 16 /// instruction where the variable is in scope uses that variable. The resulting 17 /// map of instruction-to-value is then translated into a register (or spill) 18 /// location for each variable over each instruction. 19 /// 20 /// The primary difference from normal SSA construction is that we cannot 21 /// _create_ PHI values that contain variable values. CodeGen has already 22 /// completed, and we can't alter it just to make debug-info complete. Thus: 23 /// we can identify function positions where we would like a PHI value for a 24 /// variable, but must search the MachineFunction to see whether such a PHI is 25 /// available. If no such PHI exists, the variable location must be dropped. 26 /// 27 /// To achieve this, we perform two kinds of analysis. First, we identify 28 /// every value defined by every instruction (ignoring those that only move 29 /// another value), then re-compute an SSA-form representation of the 30 /// MachineFunction, using value propagation to eliminate any un-necessary 31 /// PHI values. This gives us a map of every value computed in the function, 32 /// and its location within the register file / stack. 33 /// 34 /// Secondly, for each variable we perform the same analysis, where each debug 35 /// instruction is considered a def, and every instruction where the variable 36 /// is in lexical scope as a use. Value propagation is used again to eliminate 37 /// any un-necessary PHIs. This gives us a map of each variable to the value 38 /// it should have in a block. 39 /// 40 /// Once both are complete, we have two maps for each block: 41 /// * Variables to the values they should have, 42 /// * Values to the register / spill slot they are located in. 43 /// After which we can marry-up variable values with a location, and emit 44 /// DBG_VALUE instructions specifying those locations. Variable locations may 45 /// be dropped in this process due to the desired variable value not being 46 /// resident in any machine location, or because there is no PHI value in any 47 /// location that accurately represents the desired value. The building of 48 /// location lists for each block is left to DbgEntityHistoryCalculator. 49 /// 50 /// This pass is kept efficient because the size of the first SSA problem 51 /// is proportional to the working-set size of the function, which the compiler 52 /// tries to keep small. (It's also proportional to the number of blocks). 53 /// Additionally, we repeatedly perform the second SSA problem analysis with 54 /// only the variables and blocks in a single lexical scope, exploiting their 55 /// locality. 56 /// 57 /// ### Terminology 58 /// 59 /// A machine location is a register or spill slot, a value is something that's 60 /// defined by an instruction or PHI node, while a variable value is the value 61 /// assigned to a variable. A variable location is a machine location, that must 62 /// contain the appropriate variable value. A value that is a PHI node is 63 /// occasionally called an mphi. 64 /// 65 /// The first SSA problem is the "machine value location" problem, 66 /// because we're determining which machine locations contain which values. 67 /// The "locations" are constant: what's unknown is what value they contain. 68 /// 69 /// The second SSA problem (the one for variables) is the "variable value 70 /// problem", because it's determining what values a variable has, rather than 71 /// what location those values are placed in. 72 /// 73 /// TODO: 74 /// Overlapping fragments 75 /// Entry values 76 /// Add back DEBUG statements for debugging this 77 /// Collect statistics 78 /// 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/ADT/DenseMap.h" 82 #include "llvm/ADT/PostOrderIterator.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include "llvm/ADT/SmallPtrSet.h" 85 #include "llvm/ADT/SmallSet.h" 86 #include "llvm/ADT/SmallVector.h" 87 #include "llvm/ADT/Statistic.h" 88 #include "llvm/Analysis/IteratedDominanceFrontier.h" 89 #include "llvm/CodeGen/LexicalScopes.h" 90 #include "llvm/CodeGen/MachineBasicBlock.h" 91 #include "llvm/CodeGen/MachineDominators.h" 92 #include "llvm/CodeGen/MachineFrameInfo.h" 93 #include "llvm/CodeGen/MachineFunction.h" 94 #include "llvm/CodeGen/MachineFunctionPass.h" 95 #include "llvm/CodeGen/MachineInstr.h" 96 #include "llvm/CodeGen/MachineInstrBuilder.h" 97 #include "llvm/CodeGen/MachineInstrBundle.h" 98 #include "llvm/CodeGen/MachineMemOperand.h" 99 #include "llvm/CodeGen/MachineOperand.h" 100 #include "llvm/CodeGen/PseudoSourceValue.h" 101 #include "llvm/CodeGen/RegisterScavenging.h" 102 #include "llvm/CodeGen/TargetFrameLowering.h" 103 #include "llvm/CodeGen/TargetInstrInfo.h" 104 #include "llvm/CodeGen/TargetLowering.h" 105 #include "llvm/CodeGen/TargetPassConfig.h" 106 #include "llvm/CodeGen/TargetRegisterInfo.h" 107 #include "llvm/CodeGen/TargetSubtargetInfo.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/IR/DIBuilder.h" 110 #include "llvm/IR/DebugInfoMetadata.h" 111 #include "llvm/IR/DebugLoc.h" 112 #include "llvm/IR/Function.h" 113 #include "llvm/IR/Module.h" 114 #include "llvm/InitializePasses.h" 115 #include "llvm/MC/MCRegisterInfo.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/TypeSize.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cstdint> 127 #include <functional> 128 #include <limits.h> 129 #include <limits> 130 #include <queue> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 #include "InstrRefBasedImpl.h" 136 #include "LiveDebugValues.h" 137 138 using namespace llvm; 139 using namespace LiveDebugValues; 140 141 // SSAUpdaterImple sets DEBUG_TYPE, change it. 142 #undef DEBUG_TYPE 143 #define DEBUG_TYPE "livedebugvalues" 144 145 // Act more like the VarLoc implementation, by propagating some locations too 146 // far and ignoring some transfers. 147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 148 cl::desc("Act like old LiveDebugValues did"), 149 cl::init(false)); 150 151 /// Tracker for converting machine value locations and variable values into 152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 153 /// specifying block live-in locations and transfers within blocks. 154 /// 155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 156 /// and must be initialized with the set of variable values that are live-in to 157 /// the block. The caller then repeatedly calls process(). TransferTracker picks 158 /// out variable locations for the live-in variable values (if there _is_ a 159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 160 /// stepped through, transfers of values between machine locations are 161 /// identified and if profitable, a DBG_VALUE created. 162 /// 163 /// This is where debug use-before-defs would be resolved: a variable with an 164 /// unavailable value could materialize in the middle of a block, when the 165 /// value becomes available. Or, we could detect clobbers and re-specify the 166 /// variable in a backup location. (XXX these are unimplemented). 167 class TransferTracker { 168 public: 169 const TargetInstrInfo *TII; 170 const TargetLowering *TLI; 171 /// This machine location tracker is assumed to always contain the up-to-date 172 /// value mapping for all machine locations. TransferTracker only reads 173 /// information from it. (XXX make it const?) 174 MLocTracker *MTracker; 175 MachineFunction &MF; 176 bool ShouldEmitDebugEntryValues; 177 178 /// Record of all changes in variable locations at a block position. Awkwardly 179 /// we allow inserting either before or after the point: MBB != nullptr 180 /// indicates it's before, otherwise after. 181 struct Transfer { 182 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 183 MachineBasicBlock *MBB; /// non-null if we should insert after. 184 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 185 }; 186 187 struct LocAndProperties { 188 LocIdx Loc; 189 DbgValueProperties Properties; 190 }; 191 192 /// Collection of transfers (DBG_VALUEs) to be inserted. 193 SmallVector<Transfer, 32> Transfers; 194 195 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 196 /// between TransferTrackers view of variable locations and MLocTrackers. For 197 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 198 /// does not. 199 SmallVector<ValueIDNum, 32> VarLocs; 200 201 /// Map from LocIdxes to which DebugVariables are based that location. 202 /// Mantained while stepping through the block. Not accurate if 203 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 204 DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 205 206 /// Map from DebugVariable to it's current location and qualifying meta 207 /// information. To be used in conjunction with ActiveMLocs to construct 208 /// enough information for the DBG_VALUEs for a particular LocIdx. 209 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 210 211 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 212 SmallVector<MachineInstr *, 4> PendingDbgValues; 213 214 /// Record of a use-before-def: created when a value that's live-in to the 215 /// current block isn't available in any machine location, but it will be 216 /// defined in this block. 217 struct UseBeforeDef { 218 /// Value of this variable, def'd in block. 219 ValueIDNum ID; 220 /// Identity of this variable. 221 DebugVariable Var; 222 /// Additional variable properties. 223 DbgValueProperties Properties; 224 }; 225 226 /// Map from instruction index (within the block) to the set of UseBeforeDefs 227 /// that become defined at that instruction. 228 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 229 230 /// The set of variables that are in UseBeforeDefs and can become a location 231 /// once the relevant value is defined. An element being erased from this 232 /// collection prevents the use-before-def materializing. 233 DenseSet<DebugVariable> UseBeforeDefVariables; 234 235 const TargetRegisterInfo &TRI; 236 const BitVector &CalleeSavedRegs; 237 238 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 239 MachineFunction &MF, const TargetRegisterInfo &TRI, 240 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 241 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 242 CalleeSavedRegs(CalleeSavedRegs) { 243 TLI = MF.getSubtarget().getTargetLowering(); 244 auto &TM = TPC.getTM<TargetMachine>(); 245 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 246 } 247 248 /// Load object with live-in variable values. \p mlocs contains the live-in 249 /// values in each machine location, while \p vlocs the live-in variable 250 /// values. This method picks variable locations for the live-in variables, 251 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 252 /// object fields to track variable locations as we step through the block. 253 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 254 void 255 loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 256 const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 257 unsigned NumLocs) { 258 ActiveMLocs.clear(); 259 ActiveVLocs.clear(); 260 VarLocs.clear(); 261 VarLocs.reserve(NumLocs); 262 UseBeforeDefs.clear(); 263 UseBeforeDefVariables.clear(); 264 265 auto isCalleeSaved = [&](LocIdx L) { 266 unsigned Reg = MTracker->LocIdxToLocID[L]; 267 if (Reg >= MTracker->NumRegs) 268 return false; 269 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 270 if (CalleeSavedRegs.test(*RAI)) 271 return true; 272 return false; 273 }; 274 275 // Map of the preferred location for each value. 276 DenseMap<ValueIDNum, LocIdx> ValueToLoc; 277 278 // Initialized the preferred-location map with illegal locations, to be 279 // filled in later. 280 for (auto &VLoc : VLocs) 281 if (VLoc.second.Kind == DbgValue::Def) 282 ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()}); 283 284 ActiveMLocs.reserve(VLocs.size()); 285 ActiveVLocs.reserve(VLocs.size()); 286 287 // Produce a map of value numbers to the current machine locs they live 288 // in. When emulating VarLocBasedImpl, there should only be one 289 // location; when not, we get to pick. 290 for (auto Location : MTracker->locations()) { 291 LocIdx Idx = Location.Idx; 292 ValueIDNum &VNum = MLocs[Idx.asU64()]; 293 VarLocs.push_back(VNum); 294 295 // Is there a variable that wants a location for this value? If not, skip. 296 auto VIt = ValueToLoc.find(VNum); 297 if (VIt == ValueToLoc.end()) 298 continue; 299 300 LocIdx CurLoc = VIt->second; 301 // In order of preference, pick: 302 // * Callee saved registers, 303 // * Other registers, 304 // * Spill slots. 305 if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) || 306 (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) { 307 // Insert, or overwrite if insertion failed. 308 VIt->second = Idx; 309 } 310 } 311 312 // Now map variables to their picked LocIdxes. 313 for (const auto &Var : VLocs) { 314 if (Var.second.Kind == DbgValue::Const) { 315 PendingDbgValues.push_back( 316 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties)); 317 continue; 318 } 319 320 // If the value has no location, we can't make a variable location. 321 const ValueIDNum &Num = Var.second.ID; 322 auto ValuesPreferredLoc = ValueToLoc.find(Num); 323 if (ValuesPreferredLoc->second.isIllegal()) { 324 // If it's a def that occurs in this block, register it as a 325 // use-before-def to be resolved as we step through the block. 326 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 327 addUseBeforeDef(Var.first, Var.second.Properties, Num); 328 else 329 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 330 continue; 331 } 332 333 LocIdx M = ValuesPreferredLoc->second; 334 auto NewValue = LocAndProperties{M, Var.second.Properties}; 335 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 336 if (!Result.second) 337 Result.first->second = NewValue; 338 ActiveMLocs[M].insert(Var.first); 339 PendingDbgValues.push_back( 340 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 341 } 342 flushDbgValues(MBB.begin(), &MBB); 343 } 344 345 /// Record that \p Var has value \p ID, a value that becomes available 346 /// later in the function. 347 void addUseBeforeDef(const DebugVariable &Var, 348 const DbgValueProperties &Properties, ValueIDNum ID) { 349 UseBeforeDef UBD = {ID, Var, Properties}; 350 UseBeforeDefs[ID.getInst()].push_back(UBD); 351 UseBeforeDefVariables.insert(Var); 352 } 353 354 /// After the instruction at index \p Inst and position \p pos has been 355 /// processed, check whether it defines a variable value in a use-before-def. 356 /// If so, and the variable value hasn't changed since the start of the 357 /// block, create a DBG_VALUE. 358 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 359 auto MIt = UseBeforeDefs.find(Inst); 360 if (MIt == UseBeforeDefs.end()) 361 return; 362 363 for (auto &Use : MIt->second) { 364 LocIdx L = Use.ID.getLoc(); 365 366 // If something goes very wrong, we might end up labelling a COPY 367 // instruction or similar with an instruction number, where it doesn't 368 // actually define a new value, instead it moves a value. In case this 369 // happens, discard. 370 if (MTracker->readMLoc(L) != Use.ID) 371 continue; 372 373 // If a different debug instruction defined the variable value / location 374 // since the start of the block, don't materialize this use-before-def. 375 if (!UseBeforeDefVariables.count(Use.Var)) 376 continue; 377 378 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 379 } 380 flushDbgValues(pos, nullptr); 381 } 382 383 /// Helper to move created DBG_VALUEs into Transfers collection. 384 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 385 if (PendingDbgValues.size() == 0) 386 return; 387 388 // Pick out the instruction start position. 389 MachineBasicBlock::instr_iterator BundleStart; 390 if (MBB && Pos == MBB->begin()) 391 BundleStart = MBB->instr_begin(); 392 else 393 BundleStart = getBundleStart(Pos->getIterator()); 394 395 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 396 PendingDbgValues.clear(); 397 } 398 399 bool isEntryValueVariable(const DebugVariable &Var, 400 const DIExpression *Expr) const { 401 if (!Var.getVariable()->isParameter()) 402 return false; 403 404 if (Var.getInlinedAt()) 405 return false; 406 407 if (Expr->getNumElements() > 0) 408 return false; 409 410 return true; 411 } 412 413 bool isEntryValueValue(const ValueIDNum &Val) const { 414 // Must be in entry block (block number zero), and be a PHI / live-in value. 415 if (Val.getBlock() || !Val.isPHI()) 416 return false; 417 418 // Entry values must enter in a register. 419 if (MTracker->isSpill(Val.getLoc())) 420 return false; 421 422 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 423 Register FP = TRI.getFrameRegister(MF); 424 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 425 return Reg != SP && Reg != FP; 426 } 427 428 bool recoverAsEntryValue(const DebugVariable &Var, 429 const DbgValueProperties &Prop, 430 const ValueIDNum &Num) { 431 // Is this variable location a candidate to be an entry value. First, 432 // should we be trying this at all? 433 if (!ShouldEmitDebugEntryValues) 434 return false; 435 436 // Is the variable appropriate for entry values (i.e., is a parameter). 437 if (!isEntryValueVariable(Var, Prop.DIExpr)) 438 return false; 439 440 // Is the value assigned to this variable still the entry value? 441 if (!isEntryValueValue(Num)) 442 return false; 443 444 // Emit a variable location using an entry value expression. 445 DIExpression *NewExpr = 446 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 447 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 448 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 449 450 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 451 return true; 452 } 453 454 /// Change a variable value after encountering a DBG_VALUE inside a block. 455 void redefVar(const MachineInstr &MI) { 456 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 457 MI.getDebugLoc()->getInlinedAt()); 458 DbgValueProperties Properties(MI); 459 460 const MachineOperand &MO = MI.getOperand(0); 461 462 // Ignore non-register locations, we don't transfer those. 463 if (!MO.isReg() || MO.getReg() == 0) { 464 auto It = ActiveVLocs.find(Var); 465 if (It != ActiveVLocs.end()) { 466 ActiveMLocs[It->second.Loc].erase(Var); 467 ActiveVLocs.erase(It); 468 } 469 // Any use-before-defs no longer apply. 470 UseBeforeDefVariables.erase(Var); 471 return; 472 } 473 474 Register Reg = MO.getReg(); 475 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 476 redefVar(MI, Properties, NewLoc); 477 } 478 479 /// Handle a change in variable location within a block. Terminate the 480 /// variables current location, and record the value it now refers to, so 481 /// that we can detect location transfers later on. 482 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 483 Optional<LocIdx> OptNewLoc) { 484 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 485 MI.getDebugLoc()->getInlinedAt()); 486 // Any use-before-defs no longer apply. 487 UseBeforeDefVariables.erase(Var); 488 489 // Erase any previous location, 490 auto It = ActiveVLocs.find(Var); 491 if (It != ActiveVLocs.end()) 492 ActiveMLocs[It->second.Loc].erase(Var); 493 494 // If there _is_ no new location, all we had to do was erase. 495 if (!OptNewLoc) 496 return; 497 LocIdx NewLoc = *OptNewLoc; 498 499 // Check whether our local copy of values-by-location in #VarLocs is out of 500 // date. Wipe old tracking data for the location if it's been clobbered in 501 // the meantime. 502 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { 503 for (auto &P : ActiveMLocs[NewLoc]) { 504 ActiveVLocs.erase(P); 505 } 506 ActiveMLocs[NewLoc.asU64()].clear(); 507 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); 508 } 509 510 ActiveMLocs[NewLoc].insert(Var); 511 if (It == ActiveVLocs.end()) { 512 ActiveVLocs.insert( 513 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 514 } else { 515 It->second.Loc = NewLoc; 516 It->second.Properties = Properties; 517 } 518 } 519 520 /// Account for a location \p mloc being clobbered. Examine the variable 521 /// locations that will be terminated: and try to recover them by using 522 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 523 /// explicitly terminate a location if it can't be recovered. 524 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 525 bool MakeUndef = true) { 526 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 527 if (ActiveMLocIt == ActiveMLocs.end()) 528 return; 529 530 // What was the old variable value? 531 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 532 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 533 534 // Examine the remaining variable locations: if we can find the same value 535 // again, we can recover the location. 536 Optional<LocIdx> NewLoc = None; 537 for (auto Loc : MTracker->locations()) 538 if (Loc.Value == OldValue) 539 NewLoc = Loc.Idx; 540 541 // If there is no location, and we weren't asked to make the variable 542 // explicitly undef, then stop here. 543 if (!NewLoc && !MakeUndef) { 544 // Try and recover a few more locations with entry values. 545 for (auto &Var : ActiveMLocIt->second) { 546 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 547 recoverAsEntryValue(Var, Prop, OldValue); 548 } 549 flushDbgValues(Pos, nullptr); 550 return; 551 } 552 553 // Examine all the variables based on this location. 554 DenseSet<DebugVariable> NewMLocs; 555 for (auto &Var : ActiveMLocIt->second) { 556 auto ActiveVLocIt = ActiveVLocs.find(Var); 557 // Re-state the variable location: if there's no replacement then NewLoc 558 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 559 // identifying the alternative location will be emitted. 560 const DbgValueProperties &Properties = ActiveVLocIt->second.Properties; 561 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 562 563 // Update machine locations <=> variable locations maps. Defer updating 564 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 565 if (!NewLoc) { 566 ActiveVLocs.erase(ActiveVLocIt); 567 } else { 568 ActiveVLocIt->second.Loc = *NewLoc; 569 NewMLocs.insert(Var); 570 } 571 } 572 573 // Commit any deferred ActiveMLoc changes. 574 if (!NewMLocs.empty()) 575 for (auto &Var : NewMLocs) 576 ActiveMLocs[*NewLoc].insert(Var); 577 578 // We lazily track what locations have which values; if we've found a new 579 // location for the clobbered value, remember it. 580 if (NewLoc) 581 VarLocs[NewLoc->asU64()] = OldValue; 582 583 flushDbgValues(Pos, nullptr); 584 585 // Re-find ActiveMLocIt, iterator could have been invalidated. 586 ActiveMLocIt = ActiveMLocs.find(MLoc); 587 ActiveMLocIt->second.clear(); 588 } 589 590 /// Transfer variables based on \p Src to be based on \p Dst. This handles 591 /// both register copies as well as spills and restores. Creates DBG_VALUEs 592 /// describing the movement. 593 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 594 // Does Src still contain the value num we expect? If not, it's been 595 // clobbered in the meantime, and our variable locations are stale. 596 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) 597 return; 598 599 // assert(ActiveMLocs[Dst].size() == 0); 600 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 601 602 // Move set of active variables from one location to another. 603 auto MovingVars = ActiveMLocs[Src]; 604 ActiveMLocs[Dst] = MovingVars; 605 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 606 607 // For each variable based on Src; create a location at Dst. 608 for (auto &Var : MovingVars) { 609 auto ActiveVLocIt = ActiveVLocs.find(Var); 610 assert(ActiveVLocIt != ActiveVLocs.end()); 611 ActiveVLocIt->second.Loc = Dst; 612 613 MachineInstr *MI = 614 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 615 PendingDbgValues.push_back(MI); 616 } 617 ActiveMLocs[Src].clear(); 618 flushDbgValues(Pos, nullptr); 619 620 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 621 // about the old location. 622 if (EmulateOldLDV) 623 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 624 } 625 626 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 627 const DebugVariable &Var, 628 const DbgValueProperties &Properties) { 629 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 630 Var.getVariable()->getScope(), 631 const_cast<DILocation *>(Var.getInlinedAt())); 632 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 633 MIB.add(MO); 634 if (Properties.Indirect) 635 MIB.addImm(0); 636 else 637 MIB.addReg(0); 638 MIB.addMetadata(Var.getVariable()); 639 MIB.addMetadata(Properties.DIExpr); 640 return MIB; 641 } 642 }; 643 644 //===----------------------------------------------------------------------===// 645 // Implementation 646 //===----------------------------------------------------------------------===// 647 648 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 649 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1}; 650 651 #ifndef NDEBUG 652 void DbgValue::dump(const MLocTracker *MTrack) const { 653 if (Kind == Const) { 654 MO->dump(); 655 } else if (Kind == NoVal) { 656 dbgs() << "NoVal(" << BlockNo << ")"; 657 } else if (Kind == VPHI) { 658 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")"; 659 } else { 660 assert(Kind == Def); 661 dbgs() << MTrack->IDAsString(ID); 662 } 663 if (Properties.Indirect) 664 dbgs() << " indir"; 665 if (Properties.DIExpr) 666 dbgs() << " " << *Properties.DIExpr; 667 } 668 #endif 669 670 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 671 const TargetRegisterInfo &TRI, 672 const TargetLowering &TLI) 673 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 674 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 675 NumRegs = TRI.getNumRegs(); 676 reset(); 677 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 678 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 679 680 // Always track SP. This avoids the implicit clobbering caused by regmasks 681 // from affectings its values. (LiveDebugValues disbelieves calls and 682 // regmasks that claim to clobber SP). 683 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 684 if (SP) { 685 unsigned ID = getLocID(SP); 686 (void)lookupOrTrackRegister(ID); 687 688 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) 689 SPAliases.insert(*RAI); 690 } 691 692 // Build some common stack positions -- full registers being spilt to the 693 // stack. 694 StackSlotIdxes.insert({{8, 0}, 0}); 695 StackSlotIdxes.insert({{16, 0}, 1}); 696 StackSlotIdxes.insert({{32, 0}, 2}); 697 StackSlotIdxes.insert({{64, 0}, 3}); 698 StackSlotIdxes.insert({{128, 0}, 4}); 699 StackSlotIdxes.insert({{256, 0}, 5}); 700 StackSlotIdxes.insert({{512, 0}, 6}); 701 702 // Traverse all the subregister idxes, and ensure there's an index for them. 703 // Duplicates are no problem: we're interested in their position in the 704 // stack slot, we don't want to type the slot. 705 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { 706 unsigned Size = TRI.getSubRegIdxSize(I); 707 unsigned Offs = TRI.getSubRegIdxOffset(I); 708 unsigned Idx = StackSlotIdxes.size(); 709 710 // Some subregs have -1, -2 and so forth fed into their fields, to mean 711 // special backend things. Ignore those. 712 if (Size > 60000 || Offs > 60000) 713 continue; 714 715 StackSlotIdxes.insert({{Size, Offs}, Idx}); 716 } 717 718 for (auto &Idx : StackSlotIdxes) 719 StackIdxesToPos[Idx.second] = Idx.first; 720 721 NumSlotIdxes = StackSlotIdxes.size(); 722 } 723 724 LocIdx MLocTracker::trackRegister(unsigned ID) { 725 assert(ID != 0); 726 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 727 LocIdxToIDNum.grow(NewIdx); 728 LocIdxToLocID.grow(NewIdx); 729 730 // Default: it's an mphi. 731 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 732 // Was this reg ever touched by a regmask? 733 for (const auto &MaskPair : reverse(Masks)) { 734 if (MaskPair.first->clobbersPhysReg(ID)) { 735 // There was an earlier def we skipped. 736 ValNum = {CurBB, MaskPair.second, NewIdx}; 737 break; 738 } 739 } 740 741 LocIdxToIDNum[NewIdx] = ValNum; 742 LocIdxToLocID[NewIdx] = ID; 743 return NewIdx; 744 } 745 746 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 747 unsigned InstID) { 748 // Def any register we track have that isn't preserved. The regmask 749 // terminates the liveness of a register, meaning its value can't be 750 // relied upon -- we represent this by giving it a new value. 751 for (auto Location : locations()) { 752 unsigned ID = LocIdxToLocID[Location.Idx]; 753 // Don't clobber SP, even if the mask says it's clobbered. 754 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) 755 defReg(ID, CurBB, InstID); 756 } 757 Masks.push_back(std::make_pair(MO, InstID)); 758 } 759 760 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 761 SpillLocationNo SpillID(SpillLocs.idFor(L)); 762 if (SpillID.id() == 0) { 763 // Spill location is untracked: create record for this one, and all 764 // subregister slots too. 765 SpillID = SpillLocationNo(SpillLocs.insert(L)); 766 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { 767 unsigned L = getSpillIDWithIdx(SpillID, StackIdx); 768 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 769 LocIdxToIDNum.grow(Idx); 770 LocIdxToLocID.grow(Idx); 771 LocIDToLocIdx.push_back(Idx); 772 LocIdxToLocID[Idx] = L; 773 // Initialize to PHI value; corresponds to the location's live-in value 774 // during transfer function construction. 775 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); 776 } 777 } 778 return SpillID; 779 } 780 781 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 782 unsigned ID = LocIdxToLocID[Idx]; 783 if (ID >= NumRegs) { 784 StackSlotPos Pos = locIDToSpillIdx(ID); 785 ID -= NumRegs; 786 unsigned Slot = ID / NumSlotIdxes; 787 return Twine("slot ") 788 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first) 789 .concat(Twine(" offs ").concat(Twine(Pos.second)))))) 790 .str(); 791 } else { 792 return TRI.getRegAsmName(ID).str(); 793 } 794 } 795 796 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 797 std::string DefName = LocIdxToName(Num.getLoc()); 798 return Num.asString(DefName); 799 } 800 801 #ifndef NDEBUG 802 LLVM_DUMP_METHOD void MLocTracker::dump() { 803 for (auto Location : locations()) { 804 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 805 std::string DefName = Location.Value.asString(MLocName); 806 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 807 } 808 } 809 810 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 811 for (auto Location : locations()) { 812 std::string foo = LocIdxToName(Location.Idx); 813 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 814 } 815 } 816 #endif 817 818 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 819 const DebugVariable &Var, 820 const DbgValueProperties &Properties) { 821 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 822 Var.getVariable()->getScope(), 823 const_cast<DILocation *>(Var.getInlinedAt())); 824 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 825 826 const DIExpression *Expr = Properties.DIExpr; 827 if (!MLoc) { 828 // No location -> DBG_VALUE $noreg 829 MIB.addReg(0); 830 MIB.addReg(0); 831 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 832 unsigned LocID = LocIdxToLocID[*MLoc]; 833 SpillLocationNo SpillID = locIDToSpill(LocID); 834 StackSlotPos StackIdx = locIDToSpillIdx(LocID); 835 unsigned short Offset = StackIdx.second; 836 837 // TODO: support variables that are located in spill slots, with non-zero 838 // offsets from the start of the spill slot. It would require some more 839 // complex DIExpression calculations. This doesn't seem to be produced by 840 // LLVM right now, so don't try and support it. 841 // Accept no-subregister slots and subregisters where the offset is zero. 842 // The consumer should already have type information to work out how large 843 // the variable is. 844 if (Offset == 0) { 845 const SpillLoc &Spill = SpillLocs[SpillID.id()]; 846 Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset, 847 Spill.SpillOffset); 848 unsigned Base = Spill.SpillBase; 849 MIB.addReg(Base); 850 MIB.addImm(0); 851 852 // Being on the stack makes this location indirect; if it was _already_ 853 // indirect though, we need to add extra indirection. See this test for 854 // a scenario where this happens: 855 // llvm/test/DebugInfo/X86/spill-nontrivial-param.ll 856 if (Properties.Indirect) { 857 std::vector<uint64_t> Elts = {dwarf::DW_OP_deref}; 858 Expr = DIExpression::append(Expr, Elts); 859 } 860 } else { 861 // This is a stack location with a weird subregister offset: emit an undef 862 // DBG_VALUE instead. 863 MIB.addReg(0); 864 MIB.addReg(0); 865 } 866 } else { 867 // Non-empty, non-stack slot, must be a plain register. 868 unsigned LocID = LocIdxToLocID[*MLoc]; 869 MIB.addReg(LocID); 870 if (Properties.Indirect) 871 MIB.addImm(0); 872 else 873 MIB.addReg(0); 874 } 875 876 MIB.addMetadata(Var.getVariable()); 877 MIB.addMetadata(Expr); 878 return MIB; 879 } 880 881 /// Default construct and initialize the pass. 882 InstrRefBasedLDV::InstrRefBasedLDV() {} 883 884 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 885 unsigned Reg = MTracker->LocIdxToLocID[L]; 886 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 887 if (CalleeSavedRegs.test(*RAI)) 888 return true; 889 return false; 890 } 891 892 //===----------------------------------------------------------------------===// 893 // Debug Range Extension Implementation 894 //===----------------------------------------------------------------------===// 895 896 #ifndef NDEBUG 897 // Something to restore in the future. 898 // void InstrRefBasedLDV::printVarLocInMBB(..) 899 #endif 900 901 SpillLocationNo 902 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 903 assert(MI.hasOneMemOperand() && 904 "Spill instruction does not have exactly one memory operand?"); 905 auto MMOI = MI.memoperands_begin(); 906 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 907 assert(PVal->kind() == PseudoSourceValue::FixedStack && 908 "Inconsistent memory operand in spill instruction"); 909 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 910 const MachineBasicBlock *MBB = MI.getParent(); 911 Register Reg; 912 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 913 return MTracker->getOrTrackSpillLoc({Reg, Offset}); 914 } 915 916 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { 917 SpillLocationNo SpillLoc = extractSpillBaseRegAndOffset(MI); 918 919 // Where in the stack slot is this value defined -- i.e., what size of value 920 // is this? An important question, because it could be loaded into a register 921 // from the stack at some point. Happily the memory operand will tell us 922 // the size written to the stack. 923 auto *MemOperand = *MI.memoperands_begin(); 924 unsigned SizeInBits = MemOperand->getSizeInBits(); 925 926 // Find that position in the stack indexes we're tracking. 927 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0}); 928 if (IdxIt == MTracker->StackSlotIdxes.end()) 929 // That index is not tracked. This is suprising, and unlikely to ever 930 // occur, but the safe action is to indicate the variable is optimised out. 931 return None; 932 933 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second); 934 return MTracker->getSpillMLoc(SpillID); 935 } 936 937 /// End all previous ranges related to @MI and start a new range from @MI 938 /// if it is a DBG_VALUE instr. 939 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 940 if (!MI.isDebugValue()) 941 return false; 942 943 const DILocalVariable *Var = MI.getDebugVariable(); 944 const DIExpression *Expr = MI.getDebugExpression(); 945 const DILocation *DebugLoc = MI.getDebugLoc(); 946 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 947 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 948 "Expected inlined-at fields to agree"); 949 950 DebugVariable V(Var, Expr, InlinedAt); 951 DbgValueProperties Properties(MI); 952 953 // If there are no instructions in this lexical scope, do no location tracking 954 // at all, this variable shouldn't get a legitimate location range. 955 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 956 if (Scope == nullptr) 957 return true; // handled it; by doing nothing 958 959 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 960 // contribute to locations in this block, but don't propagate further. 961 // Interpret it like a DBG_VALUE $noreg. 962 if (MI.isDebugValueList()) { 963 if (VTracker) 964 VTracker->defVar(MI, Properties, None); 965 if (TTracker) 966 TTracker->redefVar(MI, Properties, None); 967 return true; 968 } 969 970 const MachineOperand &MO = MI.getOperand(0); 971 972 // MLocTracker needs to know that this register is read, even if it's only 973 // read by a debug inst. 974 if (MO.isReg() && MO.getReg() != 0) 975 (void)MTracker->readReg(MO.getReg()); 976 977 // If we're preparing for the second analysis (variables), the machine value 978 // locations are already solved, and we report this DBG_VALUE and the value 979 // it refers to to VLocTracker. 980 if (VTracker) { 981 if (MO.isReg()) { 982 // Feed defVar the new variable location, or if this is a 983 // DBG_VALUE $noreg, feed defVar None. 984 if (MO.getReg()) 985 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 986 else 987 VTracker->defVar(MI, Properties, None); 988 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 989 MI.getOperand(0).isCImm()) { 990 VTracker->defVar(MI, MI.getOperand(0)); 991 } 992 } 993 994 // If performing final tracking of transfers, report this variable definition 995 // to the TransferTracker too. 996 if (TTracker) 997 TTracker->redefVar(MI); 998 return true; 999 } 1000 1001 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 1002 ValueIDNum **MLiveOuts, 1003 ValueIDNum **MLiveIns) { 1004 if (!MI.isDebugRef()) 1005 return false; 1006 1007 // Only handle this instruction when we are building the variable value 1008 // transfer function. 1009 if (!VTracker) 1010 return false; 1011 1012 unsigned InstNo = MI.getOperand(0).getImm(); 1013 unsigned OpNo = MI.getOperand(1).getImm(); 1014 1015 const DILocalVariable *Var = MI.getDebugVariable(); 1016 const DIExpression *Expr = MI.getDebugExpression(); 1017 const DILocation *DebugLoc = MI.getDebugLoc(); 1018 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1019 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1020 "Expected inlined-at fields to agree"); 1021 1022 DebugVariable V(Var, Expr, InlinedAt); 1023 1024 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1025 if (Scope == nullptr) 1026 return true; // Handled by doing nothing. This variable is never in scope. 1027 1028 const MachineFunction &MF = *MI.getParent()->getParent(); 1029 1030 // Various optimizations may have happened to the value during codegen, 1031 // recorded in the value substitution table. Apply any substitutions to 1032 // the instruction / operand number in this DBG_INSTR_REF, and collect 1033 // any subregister extractions performed during optimization. 1034 1035 // Create dummy substitution with Src set, for lookup. 1036 auto SoughtSub = 1037 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1038 1039 SmallVector<unsigned, 4> SeenSubregs; 1040 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1041 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1042 LowerBoundIt->Src == SoughtSub.Src) { 1043 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1044 SoughtSub.Src = LowerBoundIt->Dest; 1045 if (unsigned Subreg = LowerBoundIt->Subreg) 1046 SeenSubregs.push_back(Subreg); 1047 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1048 } 1049 1050 // Default machine value number is <None> -- if no instruction defines 1051 // the corresponding value, it must have been optimized out. 1052 Optional<ValueIDNum> NewID = None; 1053 1054 // Try to lookup the instruction number, and find the machine value number 1055 // that it defines. It could be an instruction, or a PHI. 1056 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1057 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1058 DebugPHINumToValue.end(), InstNo); 1059 if (InstrIt != DebugInstrNumToInstr.end()) { 1060 const MachineInstr &TargetInstr = *InstrIt->second.first; 1061 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1062 1063 // Pick out the designated operand. It might be a memory reference, if 1064 // a register def was folded into a stack store. 1065 if (OpNo == MachineFunction::DebugOperandMemNumber && 1066 TargetInstr.hasOneMemOperand()) { 1067 Optional<LocIdx> L = findLocationForMemOperand(TargetInstr); 1068 if (L) 1069 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); 1070 } else if (OpNo != MachineFunction::DebugOperandMemNumber) { 1071 assert(OpNo < TargetInstr.getNumOperands()); 1072 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1073 1074 // Today, this can only be a register. 1075 assert(MO.isReg() && MO.isDef()); 1076 1077 unsigned LocID = MTracker->getLocID(MO.getReg()); 1078 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1079 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1080 } 1081 // else: NewID is left as None. 1082 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1083 // It's actually a PHI value. Which value it is might not be obvious, use 1084 // the resolver helper to find out. 1085 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1086 MI, InstNo); 1087 } 1088 1089 // Apply any subregister extractions, in reverse. We might have seen code 1090 // like this: 1091 // CALL64 @foo, implicit-def $rax 1092 // %0:gr64 = COPY $rax 1093 // %1:gr32 = COPY %0.sub_32bit 1094 // %2:gr16 = COPY %1.sub_16bit 1095 // %3:gr8 = COPY %2.sub_8bit 1096 // In which case each copy would have been recorded as a substitution with 1097 // a subregister qualifier. Apply those qualifiers now. 1098 if (NewID && !SeenSubregs.empty()) { 1099 unsigned Offset = 0; 1100 unsigned Size = 0; 1101 1102 // Look at each subregister that we passed through, and progressively 1103 // narrow in, accumulating any offsets that occur. Substitutions should 1104 // only ever be the same or narrower width than what they read from; 1105 // iterate in reverse order so that we go from wide to small. 1106 for (unsigned Subreg : reverse(SeenSubregs)) { 1107 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1108 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1109 Offset += ThisOffset; 1110 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1111 } 1112 1113 // If that worked, look for an appropriate subregister with the register 1114 // where the define happens. Don't look at values that were defined during 1115 // a stack write: we can't currently express register locations within 1116 // spills. 1117 LocIdx L = NewID->getLoc(); 1118 if (NewID && !MTracker->isSpill(L)) { 1119 // Find the register class for the register where this def happened. 1120 // FIXME: no index for this? 1121 Register Reg = MTracker->LocIdxToLocID[L]; 1122 const TargetRegisterClass *TRC = nullptr; 1123 for (auto *TRCI : TRI->regclasses()) 1124 if (TRCI->contains(Reg)) 1125 TRC = TRCI; 1126 assert(TRC && "Couldn't find target register class?"); 1127 1128 // If the register we have isn't the right size or in the right place, 1129 // Try to find a subregister inside it. 1130 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1131 if (Size != MainRegSize || Offset) { 1132 // Enumerate all subregisters, searching. 1133 Register NewReg = 0; 1134 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1135 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1136 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1137 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1138 if (SubregSize == Size && SubregOffset == Offset) { 1139 NewReg = *SRI; 1140 break; 1141 } 1142 } 1143 1144 // If we didn't find anything: there's no way to express our value. 1145 if (!NewReg) { 1146 NewID = None; 1147 } else { 1148 // Re-state the value as being defined within the subregister 1149 // that we found. 1150 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1151 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1152 } 1153 } 1154 } else { 1155 // If we can't handle subregisters, unset the new value. 1156 NewID = None; 1157 } 1158 } 1159 1160 // We, we have a value number or None. Tell the variable value tracker about 1161 // it. The rest of this LiveDebugValues implementation acts exactly the same 1162 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1163 // aren't immediately available). 1164 DbgValueProperties Properties(Expr, false); 1165 VTracker->defVar(MI, Properties, NewID); 1166 1167 // If we're on the final pass through the function, decompose this INSTR_REF 1168 // into a plain DBG_VALUE. 1169 if (!TTracker) 1170 return true; 1171 1172 // Pick a location for the machine value number, if such a location exists. 1173 // (This information could be stored in TransferTracker to make it faster). 1174 Optional<LocIdx> FoundLoc = None; 1175 for (auto Location : MTracker->locations()) { 1176 LocIdx CurL = Location.Idx; 1177 ValueIDNum ID = MTracker->readMLoc(CurL); 1178 if (NewID && ID == NewID) { 1179 // If this is the first location with that value, pick it. Otherwise, 1180 // consider whether it's a "longer term" location. 1181 if (!FoundLoc) { 1182 FoundLoc = CurL; 1183 continue; 1184 } 1185 1186 if (MTracker->isSpill(CurL)) 1187 FoundLoc = CurL; // Spills are a longer term location. 1188 else if (!MTracker->isSpill(*FoundLoc) && 1189 !MTracker->isSpill(CurL) && 1190 !isCalleeSaved(*FoundLoc) && 1191 isCalleeSaved(CurL)) 1192 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1193 } 1194 } 1195 1196 // Tell transfer tracker that the variable value has changed. 1197 TTracker->redefVar(MI, Properties, FoundLoc); 1198 1199 // If there was a value with no location; but the value is defined in a 1200 // later instruction in this block, this is a block-local use-before-def. 1201 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1202 NewID->getInst() > CurInst) 1203 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1204 1205 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1206 // This DBG_VALUE is potentially a $noreg / undefined location, if 1207 // FoundLoc is None. 1208 // (XXX -- could morph the DBG_INSTR_REF in the future). 1209 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1210 TTracker->PendingDbgValues.push_back(DbgMI); 1211 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1212 return true; 1213 } 1214 1215 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1216 if (!MI.isDebugPHI()) 1217 return false; 1218 1219 // Analyse these only when solving the machine value location problem. 1220 if (VTracker || TTracker) 1221 return true; 1222 1223 // First operand is the value location, either a stack slot or register. 1224 // Second is the debug instruction number of the original PHI. 1225 const MachineOperand &MO = MI.getOperand(0); 1226 unsigned InstrNum = MI.getOperand(1).getImm(); 1227 1228 if (MO.isReg()) { 1229 // The value is whatever's currently in the register. Read and record it, 1230 // to be analysed later. 1231 Register Reg = MO.getReg(); 1232 ValueIDNum Num = MTracker->readReg(Reg); 1233 auto PHIRec = DebugPHIRecord( 1234 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1235 DebugPHINumToValue.push_back(PHIRec); 1236 1237 // Ensure this register is tracked. 1238 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1239 MTracker->lookupOrTrackRegister(*RAI); 1240 } else { 1241 // The value is whatever's in this stack slot. 1242 assert(MO.isFI()); 1243 unsigned FI = MO.getIndex(); 1244 1245 // If the stack slot is dead, then this was optimized away. 1246 // FIXME: stack slot colouring should account for slots that get merged. 1247 if (MFI->isDeadObjectIndex(FI)) 1248 return true; 1249 1250 // Identify this spill slot, ensure it's tracked. 1251 Register Base; 1252 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1253 SpillLoc SL = {Base, Offs}; 1254 SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL); 1255 1256 // Problem: what value should we extract from the stack? LLVM does not 1257 // record what size the last store to the slot was, and it would become 1258 // sketchy after stack slot colouring anyway. Take a look at what values 1259 // are stored on the stack, and pick the largest one that wasn't def'd 1260 // by a spill (i.e., the value most likely to have been def'd in a register 1261 // and then spilt. 1262 std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8}; 1263 Optional<ValueIDNum> Result = None; 1264 Optional<LocIdx> SpillLoc = None; 1265 for (unsigned CS : CandidateSizes) { 1266 unsigned SpillID = MTracker->getLocID(SpillNo, {CS, 0}); 1267 SpillLoc = MTracker->getSpillMLoc(SpillID); 1268 ValueIDNum Val = MTracker->readMLoc(*SpillLoc); 1269 // If this value was defined in it's own position, then it was probably 1270 // an aliasing index of a small value that was spilt. 1271 if (Val.getLoc() != SpillLoc->asU64()) { 1272 Result = Val; 1273 break; 1274 } 1275 } 1276 1277 // If we didn't find anything, we're probably looking at a PHI, or a memory 1278 // store folded into an instruction. FIXME: Take a guess that's it's 64 1279 // bits. This isn't ideal, but tracking the size that the spill is 1280 // "supposed" to be is more complex, and benefits a small number of 1281 // locations. 1282 if (!Result) { 1283 unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0}); 1284 SpillLoc = MTracker->getSpillMLoc(SpillID); 1285 Result = MTracker->readMLoc(*SpillLoc); 1286 } 1287 1288 // Record this DBG_PHI for later analysis. 1289 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc}); 1290 DebugPHINumToValue.push_back(DbgPHI); 1291 } 1292 1293 return true; 1294 } 1295 1296 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1297 // Meta Instructions do not affect the debug liveness of any register they 1298 // define. 1299 if (MI.isImplicitDef()) { 1300 // Except when there's an implicit def, and the location it's defining has 1301 // no value number. The whole point of an implicit def is to announce that 1302 // the register is live, without be specific about it's value. So define 1303 // a value if there isn't one already. 1304 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1305 // Has a legitimate value -> ignore the implicit def. 1306 if (Num.getLoc() != 0) 1307 return; 1308 // Otherwise, def it here. 1309 } else if (MI.isMetaInstruction()) 1310 return; 1311 1312 // We always ignore SP defines on call instructions, they don't actually 1313 // change the value of the stack pointer... except for win32's _chkstk. This 1314 // is rare: filter quickly for the common case (no stack adjustments, not a 1315 // call, etc). If it is a call that modifies SP, recognise the SP register 1316 // defs. 1317 bool CallChangesSP = false; 1318 if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() && 1319 !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data())) 1320 CallChangesSP = true; 1321 1322 // Test whether we should ignore a def of this register due to it being part 1323 // of the stack pointer. 1324 auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool { 1325 if (CallChangesSP) 1326 return false; 1327 return MI.isCall() && MTracker->SPAliases.count(R); 1328 }; 1329 1330 // Find the regs killed by MI, and find regmasks of preserved regs. 1331 // Max out the number of statically allocated elements in `DeadRegs`, as this 1332 // prevents fallback to std::set::count() operations. 1333 SmallSet<uint32_t, 32> DeadRegs; 1334 SmallVector<const uint32_t *, 4> RegMasks; 1335 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1336 for (const MachineOperand &MO : MI.operands()) { 1337 // Determine whether the operand is a register def. 1338 if (MO.isReg() && MO.isDef() && MO.getReg() && 1339 Register::isPhysicalRegister(MO.getReg()) && 1340 !IgnoreSPAlias(MO.getReg())) { 1341 // Remove ranges of all aliased registers. 1342 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1343 // FIXME: Can we break out of this loop early if no insertion occurs? 1344 DeadRegs.insert(*RAI); 1345 } else if (MO.isRegMask()) { 1346 RegMasks.push_back(MO.getRegMask()); 1347 RegMaskPtrs.push_back(&MO); 1348 } 1349 } 1350 1351 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1352 for (uint32_t DeadReg : DeadRegs) 1353 MTracker->defReg(DeadReg, CurBB, CurInst); 1354 1355 for (auto *MO : RegMaskPtrs) 1356 MTracker->writeRegMask(MO, CurBB, CurInst); 1357 1358 // If this instruction writes to a spill slot, def that slot. 1359 if (hasFoldedStackStore(MI)) { 1360 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1361 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1362 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1363 LocIdx L = MTracker->getSpillMLoc(SpillID); 1364 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L)); 1365 } 1366 } 1367 1368 if (!TTracker) 1369 return; 1370 1371 // When committing variable values to locations: tell transfer tracker that 1372 // we've clobbered things. It may be able to recover the variable from a 1373 // different location. 1374 1375 // Inform TTracker about any direct clobbers. 1376 for (uint32_t DeadReg : DeadRegs) { 1377 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1378 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1379 } 1380 1381 // Look for any clobbers performed by a register mask. Only test locations 1382 // that are actually being tracked. 1383 if (!RegMaskPtrs.empty()) { 1384 for (auto L : MTracker->locations()) { 1385 // Stack locations can't be clobbered by regmasks. 1386 if (MTracker->isSpill(L.Idx)) 1387 continue; 1388 1389 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1390 if (IgnoreSPAlias(Reg)) 1391 continue; 1392 1393 for (auto *MO : RegMaskPtrs) 1394 if (MO->clobbersPhysReg(Reg)) 1395 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1396 } 1397 } 1398 1399 // Tell TTracker about any folded stack store. 1400 if (hasFoldedStackStore(MI)) { 1401 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1402 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1403 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1404 LocIdx L = MTracker->getSpillMLoc(SpillID); 1405 TTracker->clobberMloc(L, MI.getIterator(), true); 1406 } 1407 } 1408 } 1409 1410 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1411 // In all circumstances, re-def all aliases. It's definitely a new value now. 1412 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) 1413 MTracker->defReg(*RAI, CurBB, CurInst); 1414 1415 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1416 MTracker->setReg(DstRegNum, SrcValue); 1417 1418 // Copy subregisters from one location to another. 1419 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1420 unsigned SrcSubReg = SRI.getSubReg(); 1421 unsigned SubRegIdx = SRI.getSubRegIndex(); 1422 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1423 if (!DstSubReg) 1424 continue; 1425 1426 // Do copy. There are two matching subregisters, the source value should 1427 // have been def'd when the super-reg was, the latter might not be tracked 1428 // yet. 1429 // This will force SrcSubReg to be tracked, if it isn't yet. Will read 1430 // mphi values if it wasn't tracked. 1431 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); 1432 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); 1433 (void)SrcL; 1434 (void)DstL; 1435 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); 1436 1437 MTracker->setReg(DstSubReg, CpyValue); 1438 } 1439 } 1440 1441 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1442 MachineFunction *MF) { 1443 // TODO: Handle multiple stores folded into one. 1444 if (!MI.hasOneMemOperand()) 1445 return false; 1446 1447 // Reject any memory operand that's aliased -- we can't guarantee its value. 1448 auto MMOI = MI.memoperands_begin(); 1449 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1450 if (PVal->isAliased(MFI)) 1451 return false; 1452 1453 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1454 return false; // This is not a spill instruction, since no valid size was 1455 // returned from either function. 1456 1457 return true; 1458 } 1459 1460 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1461 MachineFunction *MF, unsigned &Reg) { 1462 if (!isSpillInstruction(MI, MF)) 1463 return false; 1464 1465 int FI; 1466 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1467 return Reg != 0; 1468 } 1469 1470 Optional<SpillLocationNo> 1471 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1472 MachineFunction *MF, unsigned &Reg) { 1473 if (!MI.hasOneMemOperand()) 1474 return None; 1475 1476 // FIXME: Handle folded restore instructions with more than one memory 1477 // operand. 1478 if (MI.getRestoreSize(TII)) { 1479 Reg = MI.getOperand(0).getReg(); 1480 return extractSpillBaseRegAndOffset(MI); 1481 } 1482 return None; 1483 } 1484 1485 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1486 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1487 // limitations under the new model. Therefore, when comparing them, compare 1488 // versions that don't attempt spills or restores at all. 1489 if (EmulateOldLDV) 1490 return false; 1491 1492 // Strictly limit ourselves to plain loads and stores, not all instructions 1493 // that can access the stack. 1494 int DummyFI = -1; 1495 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) && 1496 !TII->isLoadFromStackSlotPostFE(MI, DummyFI)) 1497 return false; 1498 1499 MachineFunction *MF = MI.getMF(); 1500 unsigned Reg; 1501 1502 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1503 1504 // Strictly limit ourselves to plain loads and stores, not all instructions 1505 // that can access the stack. 1506 int FIDummy; 1507 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) && 1508 !TII->isLoadFromStackSlotPostFE(MI, FIDummy)) 1509 return false; 1510 1511 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1512 // written to, terminate that variable location. The value in memory 1513 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1514 if (isSpillInstruction(MI, MF)) { 1515 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1516 1517 // Un-set this location and clobber, so that earlier locations don't 1518 // continue past this store. 1519 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { 1520 unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx); 1521 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); 1522 if (!MLoc) 1523 continue; 1524 1525 // We need to over-write the stack slot with something (here, a def at 1526 // this instruction) to ensure no values are preserved in this stack slot 1527 // after the spill. It also prevents TTracker from trying to recover the 1528 // location and re-installing it in the same place. 1529 ValueIDNum Def(CurBB, CurInst, *MLoc); 1530 MTracker->setMLoc(*MLoc, Def); 1531 if (TTracker) 1532 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1533 } 1534 } 1535 1536 // Try to recognise spill and restore instructions that may transfer a value. 1537 if (isLocationSpill(MI, MF, Reg)) { 1538 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1539 1540 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { 1541 auto ReadValue = MTracker->readReg(SrcReg); 1542 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); 1543 MTracker->setMLoc(DstLoc, ReadValue); 1544 1545 if (TTracker) { 1546 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg); 1547 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator()); 1548 } 1549 }; 1550 1551 // Then, transfer subreg bits. 1552 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1553 // Ensure this reg is tracked, 1554 (void)MTracker->lookupOrTrackRegister(*SRI); 1555 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI); 1556 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx); 1557 DoTransfer(*SRI, SpillID); 1558 } 1559 1560 // Directly lookup size of main source reg, and transfer. 1561 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1562 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1563 DoTransfer(Reg, SpillID); 1564 } else { 1565 Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg); 1566 if (!OptLoc) 1567 return false; 1568 SpillLocationNo Loc = *OptLoc; 1569 1570 // Assumption: we're reading from the base of the stack slot, not some 1571 // offset into it. It seems very unlikely LLVM would ever generate 1572 // restores where this wasn't true. This then becomes a question of what 1573 // subregisters in the destination register line up with positions in the 1574 // stack slot. 1575 1576 // Def all registers that alias the destination. 1577 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1578 MTracker->defReg(*RAI, CurBB, CurInst); 1579 1580 // Now find subregisters within the destination register, and load values 1581 // from stack slot positions. 1582 auto DoTransfer = [&](Register DestReg, unsigned SpillID) { 1583 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); 1584 auto ReadValue = MTracker->readMLoc(SrcIdx); 1585 MTracker->setReg(DestReg, ReadValue); 1586 1587 if (TTracker) { 1588 LocIdx DstLoc = MTracker->getRegMLoc(DestReg); 1589 TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator()); 1590 } 1591 }; 1592 1593 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1594 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1595 unsigned SpillID = MTracker->getLocID(Loc, Subreg); 1596 DoTransfer(*SRI, SpillID); 1597 } 1598 1599 // Directly look up this registers slot idx by size, and transfer. 1600 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1601 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1602 DoTransfer(Reg, SpillID); 1603 } 1604 return true; 1605 } 1606 1607 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1608 auto DestSrc = TII->isCopyInstr(MI); 1609 if (!DestSrc) 1610 return false; 1611 1612 const MachineOperand *DestRegOp = DestSrc->Destination; 1613 const MachineOperand *SrcRegOp = DestSrc->Source; 1614 1615 auto isCalleeSavedReg = [&](unsigned Reg) { 1616 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1617 if (CalleeSavedRegs.test(*RAI)) 1618 return true; 1619 return false; 1620 }; 1621 1622 Register SrcReg = SrcRegOp->getReg(); 1623 Register DestReg = DestRegOp->getReg(); 1624 1625 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1626 if (SrcReg == DestReg) 1627 return true; 1628 1629 // For emulating VarLocBasedImpl: 1630 // We want to recognize instructions where destination register is callee 1631 // saved register. If register that could be clobbered by the call is 1632 // included, there would be a great chance that it is going to be clobbered 1633 // soon. It is more likely that previous register, which is callee saved, is 1634 // going to stay unclobbered longer, even if it is killed. 1635 // 1636 // For InstrRefBasedImpl, we can track multiple locations per value, so 1637 // ignore this condition. 1638 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1639 return false; 1640 1641 // InstrRefBasedImpl only followed killing copies. 1642 if (EmulateOldLDV && !SrcRegOp->isKill()) 1643 return false; 1644 1645 // Copy MTracker info, including subregs if available. 1646 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1647 1648 // Only produce a transfer of DBG_VALUE within a block where old LDV 1649 // would have. We might make use of the additional value tracking in some 1650 // other way, later. 1651 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1652 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1653 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1654 1655 // VarLocBasedImpl would quit tracking the old location after copying. 1656 if (EmulateOldLDV && SrcReg != DestReg) 1657 MTracker->defReg(SrcReg, CurBB, CurInst); 1658 1659 // Finally, the copy might have clobbered variables based on the destination 1660 // register. Tell TTracker about it, in case a backup location exists. 1661 if (TTracker) { 1662 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1663 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1664 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1665 } 1666 } 1667 1668 return true; 1669 } 1670 1671 /// Accumulate a mapping between each DILocalVariable fragment and other 1672 /// fragments of that DILocalVariable which overlap. This reduces work during 1673 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1674 /// known-to-overlap fragments are present". 1675 /// \param MI A previously unprocessed debug instruction to analyze for 1676 /// fragment usage. 1677 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1678 assert(MI.isDebugValue() || MI.isDebugRef()); 1679 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1680 MI.getDebugLoc()->getInlinedAt()); 1681 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1682 1683 // If this is the first sighting of this variable, then we are guaranteed 1684 // there are currently no overlapping fragments either. Initialize the set 1685 // of seen fragments, record no overlaps for the current one, and return. 1686 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1687 if (SeenIt == SeenFragments.end()) { 1688 SmallSet<FragmentInfo, 4> OneFragment; 1689 OneFragment.insert(ThisFragment); 1690 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1691 1692 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1693 return; 1694 } 1695 1696 // If this particular Variable/Fragment pair already exists in the overlap 1697 // map, it has already been accounted for. 1698 auto IsInOLapMap = 1699 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1700 if (!IsInOLapMap.second) 1701 return; 1702 1703 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1704 auto &AllSeenFragments = SeenIt->second; 1705 1706 // Otherwise, examine all other seen fragments for this variable, with "this" 1707 // fragment being a previously unseen fragment. Record any pair of 1708 // overlapping fragments. 1709 for (auto &ASeenFragment : AllSeenFragments) { 1710 // Does this previously seen fragment overlap? 1711 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1712 // Yes: Mark the current fragment as being overlapped. 1713 ThisFragmentsOverlaps.push_back(ASeenFragment); 1714 // Mark the previously seen fragment as being overlapped by the current 1715 // one. 1716 auto ASeenFragmentsOverlaps = 1717 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1718 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1719 "Previously seen var fragment has no vector of overlaps"); 1720 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1721 } 1722 } 1723 1724 AllSeenFragments.insert(ThisFragment); 1725 } 1726 1727 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 1728 ValueIDNum **MLiveIns) { 1729 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1730 // none of these should we interpret it's register defs as new value 1731 // definitions. 1732 if (transferDebugValue(MI)) 1733 return; 1734 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1735 return; 1736 if (transferDebugPHI(MI)) 1737 return; 1738 if (transferRegisterCopy(MI)) 1739 return; 1740 if (transferSpillOrRestoreInst(MI)) 1741 return; 1742 transferRegisterDef(MI); 1743 } 1744 1745 void InstrRefBasedLDV::produceMLocTransferFunction( 1746 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1747 unsigned MaxNumBlocks) { 1748 // Because we try to optimize around register mask operands by ignoring regs 1749 // that aren't currently tracked, we set up something ugly for later: RegMask 1750 // operands that are seen earlier than the first use of a register, still need 1751 // to clobber that register in the transfer function. But this information 1752 // isn't actively recorded. Instead, we track each RegMask used in each block, 1753 // and accumulated the clobbered but untracked registers in each block into 1754 // the following bitvector. Later, if new values are tracked, we can add 1755 // appropriate clobbers. 1756 SmallVector<BitVector, 32> BlockMasks; 1757 BlockMasks.resize(MaxNumBlocks); 1758 1759 // Reserve one bit per register for the masks described above. 1760 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1761 for (auto &BV : BlockMasks) 1762 BV.resize(TRI->getNumRegs(), true); 1763 1764 // Step through all instructions and inhale the transfer function. 1765 for (auto &MBB : MF) { 1766 // Object fields that are read by trackers to know where we are in the 1767 // function. 1768 CurBB = MBB.getNumber(); 1769 CurInst = 1; 1770 1771 // Set all machine locations to a PHI value. For transfer function 1772 // production only, this signifies the live-in value to the block. 1773 MTracker->reset(); 1774 MTracker->setMPhis(CurBB); 1775 1776 // Step through each instruction in this block. 1777 for (auto &MI : MBB) { 1778 process(MI); 1779 // Also accumulate fragment map. 1780 if (MI.isDebugValue() || MI.isDebugRef()) 1781 accumulateFragmentMap(MI); 1782 1783 // Create a map from the instruction number (if present) to the 1784 // MachineInstr and its position. 1785 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1786 auto InstrAndPos = std::make_pair(&MI, CurInst); 1787 auto InsertResult = 1788 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1789 1790 // There should never be duplicate instruction numbers. 1791 assert(InsertResult.second); 1792 (void)InsertResult; 1793 } 1794 1795 ++CurInst; 1796 } 1797 1798 // Produce the transfer function, a map of machine location to new value. If 1799 // any machine location has the live-in phi value from the start of the 1800 // block, it's live-through and doesn't need recording in the transfer 1801 // function. 1802 for (auto Location : MTracker->locations()) { 1803 LocIdx Idx = Location.Idx; 1804 ValueIDNum &P = Location.Value; 1805 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1806 continue; 1807 1808 // Insert-or-update. 1809 auto &TransferMap = MLocTransfer[CurBB]; 1810 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1811 if (!Result.second) 1812 Result.first->second = P; 1813 } 1814 1815 // Accumulate any bitmask operands into the clobberred reg mask for this 1816 // block. 1817 for (auto &P : MTracker->Masks) { 1818 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1819 } 1820 } 1821 1822 // Compute a bitvector of all the registers that are tracked in this block. 1823 BitVector UsedRegs(TRI->getNumRegs()); 1824 for (auto Location : MTracker->locations()) { 1825 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1826 // Ignore stack slots, and aliases of the stack pointer. 1827 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) 1828 continue; 1829 UsedRegs.set(ID); 1830 } 1831 1832 // Check that any regmask-clobber of a register that gets tracked, is not 1833 // live-through in the transfer function. It needs to be clobbered at the 1834 // very least. 1835 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1836 BitVector &BV = BlockMasks[I]; 1837 BV.flip(); 1838 BV &= UsedRegs; 1839 // This produces all the bits that we clobber, but also use. Check that 1840 // they're all clobbered or at least set in the designated transfer 1841 // elem. 1842 for (unsigned Bit : BV.set_bits()) { 1843 unsigned ID = MTracker->getLocID(Bit); 1844 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1845 auto &TransferMap = MLocTransfer[I]; 1846 1847 // Install a value representing the fact that this location is effectively 1848 // written to in this block. As there's no reserved value, instead use 1849 // a value number that is never generated. Pick the value number for the 1850 // first instruction in the block, def'ing this location, which we know 1851 // this block never used anyway. 1852 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1853 auto Result = 1854 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1855 if (!Result.second) { 1856 ValueIDNum &ValueID = Result.first->second; 1857 if (ValueID.getBlock() == I && ValueID.isPHI()) 1858 // It was left as live-through. Set it to clobbered. 1859 ValueID = NotGeneratedNum; 1860 } 1861 } 1862 } 1863 } 1864 1865 bool InstrRefBasedLDV::mlocJoin( 1866 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1867 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 1868 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1869 bool Changed = false; 1870 1871 // Handle value-propagation when control flow merges on entry to a block. For 1872 // any location without a PHI already placed, the location has the same value 1873 // as its predecessors. If a PHI is placed, test to see whether it's now a 1874 // redundant PHI that we can eliminate. 1875 1876 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1877 for (auto Pred : MBB.predecessors()) 1878 BlockOrders.push_back(Pred); 1879 1880 // Visit predecessors in RPOT order. 1881 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1882 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1883 }; 1884 llvm::sort(BlockOrders, Cmp); 1885 1886 // Skip entry block. 1887 if (BlockOrders.size() == 0) 1888 return false; 1889 1890 // Step through all machine locations, look at each predecessor and test 1891 // whether we can eliminate redundant PHIs. 1892 for (auto Location : MTracker->locations()) { 1893 LocIdx Idx = Location.Idx; 1894 1895 // Pick out the first predecessors live-out value for this location. It's 1896 // guaranteed to not be a backedge, as we order by RPO. 1897 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1898 1899 // If we've already eliminated a PHI here, do no further checking, just 1900 // propagate the first live-in value into this block. 1901 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { 1902 if (InLocs[Idx.asU64()] != FirstVal) { 1903 InLocs[Idx.asU64()] = FirstVal; 1904 Changed |= true; 1905 } 1906 continue; 1907 } 1908 1909 // We're now examining a PHI to see whether it's un-necessary. Loop around 1910 // the other live-in values and test whether they're all the same. 1911 bool Disagree = false; 1912 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1913 const MachineBasicBlock *PredMBB = BlockOrders[I]; 1914 const ValueIDNum &PredLiveOut = 1915 OutLocs[PredMBB->getNumber()][Idx.asU64()]; 1916 1917 // Incoming values agree, continue trying to eliminate this PHI. 1918 if (FirstVal == PredLiveOut) 1919 continue; 1920 1921 // We can also accept a PHI value that feeds back into itself. 1922 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) 1923 continue; 1924 1925 // Live-out of a predecessor disagrees with the first predecessor. 1926 Disagree = true; 1927 } 1928 1929 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. 1930 if (!Disagree) { 1931 InLocs[Idx.asU64()] = FirstVal; 1932 Changed |= true; 1933 } 1934 } 1935 1936 // TODO: Reimplement NumInserted and NumRemoved. 1937 return Changed; 1938 } 1939 1940 void InstrRefBasedLDV::findStackIndexInterference( 1941 SmallVectorImpl<unsigned> &Slots) { 1942 // We could spend a bit of time finding the exact, minimal, set of stack 1943 // indexes that interfere with each other, much like reg units. Or, we can 1944 // rely on the fact that: 1945 // * The smallest / lowest index will interfere with everything at zero 1946 // offset, which will be the largest set of registers, 1947 // * Most indexes with non-zero offset will end up being interference units 1948 // anyway. 1949 // So just pick those out and return them. 1950 1951 // We can rely on a single-byte stack index existing already, because we 1952 // initialize them in MLocTracker. 1953 auto It = MTracker->StackSlotIdxes.find({8, 0}); 1954 assert(It != MTracker->StackSlotIdxes.end()); 1955 Slots.push_back(It->second); 1956 1957 // Find anything that has a non-zero offset and add that too. 1958 for (auto &Pair : MTracker->StackSlotIdxes) { 1959 // Is offset zero? If so, ignore. 1960 if (!Pair.first.second) 1961 continue; 1962 Slots.push_back(Pair.second); 1963 } 1964 } 1965 1966 void InstrRefBasedLDV::placeMLocPHIs( 1967 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1968 ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1969 SmallVector<unsigned, 4> StackUnits; 1970 findStackIndexInterference(StackUnits); 1971 1972 // To avoid repeatedly running the PHI placement algorithm, leverage the 1973 // fact that a def of register MUST also def its register units. Find the 1974 // units for registers, place PHIs for them, and then replicate them for 1975 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of 1976 // arguments) don't lead to register units being tracked, just place PHIs for 1977 // those registers directly. Stack slots have their own form of "unit", 1978 // store them to one side. 1979 SmallSet<Register, 32> RegUnitsToPHIUp; 1980 SmallSet<LocIdx, 32> NormalLocsToPHI; 1981 SmallSet<SpillLocationNo, 32> StackSlots; 1982 for (auto Location : MTracker->locations()) { 1983 LocIdx L = Location.Idx; 1984 if (MTracker->isSpill(L)) { 1985 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L])); 1986 continue; 1987 } 1988 1989 Register R = MTracker->LocIdxToLocID[L]; 1990 SmallSet<Register, 8> FoundRegUnits; 1991 bool AnyIllegal = false; 1992 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) { 1993 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){ 1994 if (!MTracker->isRegisterTracked(*URoot)) { 1995 // Not all roots were loaded into the tracking map: this register 1996 // isn't actually def'd anywhere, we only read from it. Generate PHIs 1997 // for this reg, but don't iterate units. 1998 AnyIllegal = true; 1999 } else { 2000 FoundRegUnits.insert(*URoot); 2001 } 2002 } 2003 } 2004 2005 if (AnyIllegal) { 2006 NormalLocsToPHI.insert(L); 2007 continue; 2008 } 2009 2010 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); 2011 } 2012 2013 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks 2014 // collection. 2015 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2016 auto CollectPHIsForLoc = [&](LocIdx L) { 2017 // Collect the set of defs. 2018 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2019 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2020 MachineBasicBlock *MBB = OrderToBB[I]; 2021 const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; 2022 if (TransferFunc.find(L) != TransferFunc.end()) 2023 DefBlocks.insert(MBB); 2024 } 2025 2026 // The entry block defs the location too: it's the live-in / argument value. 2027 // Only insert if there are other defs though; everything is trivially live 2028 // through otherwise. 2029 if (!DefBlocks.empty()) 2030 DefBlocks.insert(&*MF.begin()); 2031 2032 // Ask the SSA construction algorithm where we should put PHIs. Clear 2033 // anything that might have been hanging around from earlier. 2034 PHIBlocks.clear(); 2035 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); 2036 }; 2037 2038 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { 2039 for (const MachineBasicBlock *MBB : PHIBlocks) 2040 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 2041 }; 2042 2043 // For locations with no reg units, just place PHIs. 2044 for (LocIdx L : NormalLocsToPHI) { 2045 CollectPHIsForLoc(L); 2046 // Install those PHI values into the live-in value array. 2047 InstallPHIsAtLoc(L); 2048 } 2049 2050 // For stack slots, calculate PHIs for the equivalent of the units, then 2051 // install for each index. 2052 for (SpillLocationNo Slot : StackSlots) { 2053 for (unsigned Idx : StackUnits) { 2054 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx); 2055 LocIdx L = MTracker->getSpillMLoc(SpillID); 2056 CollectPHIsForLoc(L); 2057 InstallPHIsAtLoc(L); 2058 2059 // Find anything that aliases this stack index, install PHIs for it too. 2060 unsigned Size, Offset; 2061 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx]; 2062 for (auto &Pair : MTracker->StackSlotIdxes) { 2063 unsigned ThisSize, ThisOffset; 2064 std::tie(ThisSize, ThisOffset) = Pair.first; 2065 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) 2066 continue; 2067 2068 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second); 2069 LocIdx ThisL = MTracker->getSpillMLoc(ThisID); 2070 InstallPHIsAtLoc(ThisL); 2071 } 2072 } 2073 } 2074 2075 // For reg units, place PHIs, and then place them for any aliasing registers. 2076 for (Register R : RegUnitsToPHIUp) { 2077 LocIdx L = MTracker->lookupOrTrackRegister(R); 2078 CollectPHIsForLoc(L); 2079 2080 // Install those PHI values into the live-in value array. 2081 InstallPHIsAtLoc(L); 2082 2083 // Now find aliases and install PHIs for those. 2084 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { 2085 // Super-registers that are "above" the largest register read/written by 2086 // the function will alias, but will not be tracked. 2087 if (!MTracker->isRegisterTracked(*RAI)) 2088 continue; 2089 2090 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); 2091 InstallPHIsAtLoc(AliasLoc); 2092 } 2093 } 2094 } 2095 2096 void InstrRefBasedLDV::buildMLocValueMap( 2097 MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2098 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2099 std::priority_queue<unsigned int, std::vector<unsigned int>, 2100 std::greater<unsigned int>> 2101 Worklist, Pending; 2102 2103 // We track what is on the current and pending worklist to avoid inserting 2104 // the same thing twice. We could avoid this with a custom priority queue, 2105 // but this is probably not worth it. 2106 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2107 2108 // Initialize worklist with every block to be visited. Also produce list of 2109 // all blocks. 2110 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; 2111 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2112 Worklist.push(I); 2113 OnWorklist.insert(OrderToBB[I]); 2114 AllBlocks.insert(OrderToBB[I]); 2115 } 2116 2117 // Initialize entry block to PHIs. These represent arguments. 2118 for (auto Location : MTracker->locations()) 2119 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx); 2120 2121 MTracker->reset(); 2122 2123 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider 2124 // any machine-location that isn't live-through a block to be def'd in that 2125 // block. 2126 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); 2127 2128 // Propagate values to eliminate redundant PHIs. At the same time, this 2129 // produces the table of Block x Location => Value for the entry to each 2130 // block. 2131 // The kind of PHIs we can eliminate are, for example, where one path in a 2132 // conditional spills and restores a register, and the register still has 2133 // the same value once control flow joins, unbeknowns to the PHI placement 2134 // code. Propagating values allows us to identify such un-necessary PHIs and 2135 // remove them. 2136 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2137 while (!Worklist.empty() || !Pending.empty()) { 2138 // Vector for storing the evaluated block transfer function. 2139 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2140 2141 while (!Worklist.empty()) { 2142 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2143 CurBB = MBB->getNumber(); 2144 Worklist.pop(); 2145 2146 // Join the values in all predecessor blocks. 2147 bool InLocsChanged; 2148 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2149 InLocsChanged |= Visited.insert(MBB).second; 2150 2151 // Don't examine transfer function if we've visited this loc at least 2152 // once, and inlocs haven't changed. 2153 if (!InLocsChanged) 2154 continue; 2155 2156 // Load the current set of live-ins into MLocTracker. 2157 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2158 2159 // Each element of the transfer function can be a new def, or a read of 2160 // a live-in value. Evaluate each element, and store to "ToRemap". 2161 ToRemap.clear(); 2162 for (auto &P : MLocTransfer[CurBB]) { 2163 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2164 // This is a movement of whatever was live in. Read it. 2165 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); 2166 ToRemap.push_back(std::make_pair(P.first, NewID)); 2167 } else { 2168 // It's a def. Just set it. 2169 assert(P.second.getBlock() == CurBB); 2170 ToRemap.push_back(std::make_pair(P.first, P.second)); 2171 } 2172 } 2173 2174 // Commit the transfer function changes into mloc tracker, which 2175 // transforms the contents of the MLocTracker into the live-outs. 2176 for (auto &P : ToRemap) 2177 MTracker->setMLoc(P.first, P.second); 2178 2179 // Now copy out-locs from mloc tracker into out-loc vector, checking 2180 // whether changes have occurred. These changes can have come from both 2181 // the transfer function, and mlocJoin. 2182 bool OLChanged = false; 2183 for (auto Location : MTracker->locations()) { 2184 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2185 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2186 } 2187 2188 MTracker->reset(); 2189 2190 // No need to examine successors again if out-locs didn't change. 2191 if (!OLChanged) 2192 continue; 2193 2194 // All successors should be visited: put any back-edges on the pending 2195 // list for the next pass-through, and any other successors to be 2196 // visited this pass, if they're not going to be already. 2197 for (auto s : MBB->successors()) { 2198 // Does branching to this successor represent a back-edge? 2199 if (BBToOrder[s] > BBToOrder[MBB]) { 2200 // No: visit it during this dataflow iteration. 2201 if (OnWorklist.insert(s).second) 2202 Worklist.push(BBToOrder[s]); 2203 } else { 2204 // Yes: visit it on the next iteration. 2205 if (OnPending.insert(s).second) 2206 Pending.push(BBToOrder[s]); 2207 } 2208 } 2209 } 2210 2211 Worklist.swap(Pending); 2212 std::swap(OnPending, OnWorklist); 2213 OnPending.clear(); 2214 // At this point, pending must be empty, since it was just the empty 2215 // worklist 2216 assert(Pending.empty() && "Pending should be empty"); 2217 } 2218 2219 // Once all the live-ins don't change on mlocJoin(), we've eliminated all 2220 // redundant PHIs. 2221 } 2222 2223 void InstrRefBasedLDV::BlockPHIPlacement( 2224 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 2225 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 2226 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { 2227 // Apply IDF calculator to the designated set of location defs, storing 2228 // required PHIs into PHIBlocks. Uses the dominator tree stored in the 2229 // InstrRefBasedLDV object. 2230 IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase()); 2231 2232 IDF.setLiveInBlocks(AllBlocks); 2233 IDF.setDefiningBlocks(DefBlocks); 2234 IDF.calculate(PHIBlocks); 2235 } 2236 2237 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc( 2238 const MachineBasicBlock &MBB, const DebugVariable &Var, 2239 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 2240 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { 2241 // Collect a set of locations from predecessor where its live-out value can 2242 // be found. 2243 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2244 SmallVector<const DbgValueProperties *, 4> Properties; 2245 unsigned NumLocs = MTracker->getNumLocs(); 2246 2247 // No predecessors means no PHIs. 2248 if (BlockOrders.empty()) 2249 return None; 2250 2251 for (auto p : BlockOrders) { 2252 unsigned ThisBBNum = p->getNumber(); 2253 auto OutValIt = LiveOuts.find(p); 2254 if (OutValIt == LiveOuts.end()) 2255 // If we have a predecessor not in scope, we'll never find a PHI position. 2256 return None; 2257 const DbgValue &OutVal = *OutValIt->second; 2258 2259 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2260 // Consts and no-values cannot have locations we can join on. 2261 return None; 2262 2263 Properties.push_back(&OutVal.Properties); 2264 2265 // Create new empty vector of locations. 2266 Locs.resize(Locs.size() + 1); 2267 2268 // If the live-in value is a def, find the locations where that value is 2269 // present. Do the same for VPHIs where we know the VPHI value. 2270 if (OutVal.Kind == DbgValue::Def || 2271 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && 2272 OutVal.ID != ValueIDNum::EmptyValue)) { 2273 ValueIDNum ValToLookFor = OutVal.ID; 2274 // Search the live-outs of the predecessor for the specified value. 2275 for (unsigned int I = 0; I < NumLocs; ++I) { 2276 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2277 Locs.back().push_back(LocIdx(I)); 2278 } 2279 } else { 2280 assert(OutVal.Kind == DbgValue::VPHI); 2281 // For VPHIs where we don't know the location, we definitely can't find 2282 // a join loc. 2283 if (OutVal.BlockNo != MBB.getNumber()) 2284 return None; 2285 2286 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. 2287 // a value that's live-through the whole loop. (It has to be a backedge, 2288 // because a block can't dominate itself). We can accept as a PHI location 2289 // any location where the other predecessors agree, _and_ the machine 2290 // locations feed back into themselves. Therefore, add all self-looping 2291 // machine-value PHI locations. 2292 for (unsigned int I = 0; I < NumLocs; ++I) { 2293 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); 2294 if (MOutLocs[ThisBBNum][I] == MPHI) 2295 Locs.back().push_back(LocIdx(I)); 2296 } 2297 } 2298 } 2299 2300 // We should have found locations for all predecessors, or returned. 2301 assert(Locs.size() == BlockOrders.size()); 2302 2303 // Check that all properties are the same. We can't pick a location if they're 2304 // not. 2305 const DbgValueProperties *Properties0 = Properties[0]; 2306 for (auto *Prop : Properties) 2307 if (*Prop != *Properties0) 2308 return None; 2309 2310 // Starting with the first set of locations, take the intersection with 2311 // subsequent sets. 2312 SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; 2313 for (unsigned int I = 1; I < Locs.size(); ++I) { 2314 auto &LocVec = Locs[I]; 2315 SmallVector<LocIdx, 4> NewCandidates; 2316 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), 2317 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); 2318 CandidateLocs = NewCandidates; 2319 } 2320 if (CandidateLocs.empty()) 2321 return None; 2322 2323 // We now have a set of LocIdxes that contain the right output value in 2324 // each of the predecessors. Pick the lowest; if there's a register loc, 2325 // that'll be it. 2326 LocIdx L = *CandidateLocs.begin(); 2327 2328 // Return a PHI-value-number for the found location. 2329 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2330 return PHIVal; 2331 } 2332 2333 bool InstrRefBasedLDV::vlocJoin( 2334 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 2335 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2336 DbgValue &LiveIn) { 2337 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2338 bool Changed = false; 2339 2340 // Order predecessors by RPOT order, for exploring them in that order. 2341 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2342 2343 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2344 return BBToOrder[A] < BBToOrder[B]; 2345 }; 2346 2347 llvm::sort(BlockOrders, Cmp); 2348 2349 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2350 2351 // Collect all the incoming DbgValues for this variable, from predecessor 2352 // live-out values. 2353 SmallVector<InValueT, 8> Values; 2354 bool Bail = false; 2355 int BackEdgesStart = 0; 2356 for (auto p : BlockOrders) { 2357 // If the predecessor isn't in scope / to be explored, we'll never be 2358 // able to join any locations. 2359 if (!BlocksToExplore.contains(p)) { 2360 Bail = true; 2361 break; 2362 } 2363 2364 // All Live-outs will have been initialized. 2365 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; 2366 2367 // Keep track of where back-edges begin in the Values vector. Relies on 2368 // BlockOrders being sorted by RPO. 2369 unsigned ThisBBRPONum = BBToOrder[p]; 2370 if (ThisBBRPONum < CurBlockRPONum) 2371 ++BackEdgesStart; 2372 2373 Values.push_back(std::make_pair(p, &OutLoc)); 2374 } 2375 2376 // If there were no values, or one of the predecessors couldn't have a 2377 // value, then give up immediately. It's not safe to produce a live-in 2378 // value. Leave as whatever it was before. 2379 if (Bail || Values.size() == 0) 2380 return false; 2381 2382 // All (non-entry) blocks have at least one non-backedge predecessor. 2383 // Pick the variable value from the first of these, to compare against 2384 // all others. 2385 const DbgValue &FirstVal = *Values[0].second; 2386 2387 // If the old live-in value is not a PHI then either a) no PHI is needed 2388 // here, or b) we eliminated the PHI that was here. If so, we can just 2389 // propagate in the first parent's incoming value. 2390 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { 2391 Changed = LiveIn != FirstVal; 2392 if (Changed) 2393 LiveIn = FirstVal; 2394 return Changed; 2395 } 2396 2397 // Scan for variable values that can never be resolved: if they have 2398 // different DIExpressions, different indirectness, or are mixed constants / 2399 // non-constants. 2400 for (auto &V : Values) { 2401 if (V.second->Properties != FirstVal.Properties) 2402 return false; 2403 if (V.second->Kind == DbgValue::NoVal) 2404 return false; 2405 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2406 return false; 2407 } 2408 2409 // Try to eliminate this PHI. Do the incoming values all agree? 2410 bool Disagree = false; 2411 for (auto &V : Values) { 2412 if (*V.second == FirstVal) 2413 continue; // No disagreement. 2414 2415 // Eliminate if a backedge feeds a VPHI back into itself. 2416 if (V.second->Kind == DbgValue::VPHI && 2417 V.second->BlockNo == MBB.getNumber() && 2418 // Is this a backedge? 2419 std::distance(Values.begin(), &V) >= BackEdgesStart) 2420 continue; 2421 2422 Disagree = true; 2423 } 2424 2425 // No disagreement -> live-through value. 2426 if (!Disagree) { 2427 Changed = LiveIn != FirstVal; 2428 if (Changed) 2429 LiveIn = FirstVal; 2430 return Changed; 2431 } else { 2432 // Otherwise use a VPHI. 2433 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); 2434 Changed = LiveIn != VPHI; 2435 if (Changed) 2436 LiveIn = VPHI; 2437 return Changed; 2438 } 2439 } 2440 2441 void InstrRefBasedLDV::getBlocksForScope( 2442 const DILocation *DILoc, 2443 SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore, 2444 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) { 2445 // Get the set of "normal" in-lexical-scope blocks. 2446 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2447 2448 // VarLoc LiveDebugValues tracks variable locations that are defined in 2449 // blocks not in scope. This is something we could legitimately ignore, but 2450 // lets allow it for now for the sake of coverage. 2451 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2452 2453 // Storage for artificial blocks we intend to add to BlocksToExplore. 2454 DenseSet<const MachineBasicBlock *> ToAdd; 2455 2456 // To avoid needlessly dropping large volumes of variable locations, propagate 2457 // variables through aritifical blocks, i.e. those that don't have any 2458 // instructions in scope at all. To accurately replicate VarLoc 2459 // LiveDebugValues, this means exploring all artificial successors too. 2460 // Perform a depth-first-search to enumerate those blocks. 2461 for (auto *MBB : BlocksToExplore) { 2462 // Depth-first-search state: each node is a block and which successor 2463 // we're currently exploring. 2464 SmallVector<std::pair<const MachineBasicBlock *, 2465 MachineBasicBlock::const_succ_iterator>, 2466 8> 2467 DFS; 2468 2469 // Find any artificial successors not already tracked. 2470 for (auto *succ : MBB->successors()) { 2471 if (BlocksToExplore.count(succ)) 2472 continue; 2473 if (!ArtificialBlocks.count(succ)) 2474 continue; 2475 ToAdd.insert(succ); 2476 DFS.push_back({succ, succ->succ_begin()}); 2477 } 2478 2479 // Search all those blocks, depth first. 2480 while (!DFS.empty()) { 2481 const MachineBasicBlock *CurBB = DFS.back().first; 2482 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2483 // Walk back if we've explored this blocks successors to the end. 2484 if (CurSucc == CurBB->succ_end()) { 2485 DFS.pop_back(); 2486 continue; 2487 } 2488 2489 // If the current successor is artificial and unexplored, descend into 2490 // it. 2491 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2492 ToAdd.insert(*CurSucc); 2493 DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()}); 2494 continue; 2495 } 2496 2497 ++CurSucc; 2498 } 2499 }; 2500 2501 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2502 } 2503 2504 void InstrRefBasedLDV::buildVLocValueMap( 2505 const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2506 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2507 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2508 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2509 // This method is much like buildMLocValueMap: but focuses on a single 2510 // LexicalScope at a time. Pick out a set of blocks and variables that are 2511 // to have their value assignments solved, then run our dataflow algorithm 2512 // until a fixedpoint is reached. 2513 std::priority_queue<unsigned int, std::vector<unsigned int>, 2514 std::greater<unsigned int>> 2515 Worklist, Pending; 2516 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2517 2518 // The set of blocks we'll be examining. 2519 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2520 2521 // The order in which to examine them (RPO). 2522 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2523 2524 // RPO ordering function. 2525 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2526 return BBToOrder[A] < BBToOrder[B]; 2527 }; 2528 2529 getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks); 2530 2531 // Single block scope: not interesting! No propagation at all. Note that 2532 // this could probably go above ArtificialBlocks without damage, but 2533 // that then produces output differences from original-live-debug-values, 2534 // which propagates from a single block into many artificial ones. 2535 if (BlocksToExplore.size() == 1) 2536 return; 2537 2538 // Convert a const set to a non-const set. LexicalScopes 2539 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. 2540 // (Neither of them mutate anything). 2541 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; 2542 for (const auto *MBB : BlocksToExplore) 2543 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); 2544 2545 // Picks out relevants blocks RPO order and sort them. 2546 for (auto *MBB : BlocksToExplore) 2547 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2548 2549 llvm::sort(BlockOrders, Cmp); 2550 unsigned NumBlocks = BlockOrders.size(); 2551 2552 // Allocate some vectors for storing the live ins and live outs. Large. 2553 SmallVector<DbgValue, 32> LiveIns, LiveOuts; 2554 LiveIns.reserve(NumBlocks); 2555 LiveOuts.reserve(NumBlocks); 2556 2557 // Initialize all values to start as NoVals. This signifies "it's live 2558 // through, but we don't know what it is". 2559 DbgValueProperties EmptyProperties(EmptyExpr, false); 2560 for (unsigned int I = 0; I < NumBlocks; ++I) { 2561 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2562 LiveIns.push_back(EmptyDbgValue); 2563 LiveOuts.push_back(EmptyDbgValue); 2564 } 2565 2566 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2567 // vlocJoin. 2568 LiveIdxT LiveOutIdx, LiveInIdx; 2569 LiveOutIdx.reserve(NumBlocks); 2570 LiveInIdx.reserve(NumBlocks); 2571 for (unsigned I = 0; I < NumBlocks; ++I) { 2572 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2573 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2574 } 2575 2576 // Loop over each variable and place PHIs for it, then propagate values 2577 // between blocks. This keeps the locality of working on one lexical scope at 2578 // at time, but avoids re-processing variable values because some other 2579 // variable has been assigned. 2580 for (auto &Var : VarsWeCareAbout) { 2581 // Re-initialize live-ins and live-outs, to clear the remains of previous 2582 // variables live-ins / live-outs. 2583 for (unsigned int I = 0; I < NumBlocks; ++I) { 2584 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2585 LiveIns[I] = EmptyDbgValue; 2586 LiveOuts[I] = EmptyDbgValue; 2587 } 2588 2589 // Place PHIs for variable values, using the LLVM IDF calculator. 2590 // Collect the set of blocks where variables are def'd. 2591 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2592 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { 2593 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; 2594 if (TransferFunc.find(Var) != TransferFunc.end()) 2595 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); 2596 } 2597 2598 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2599 2600 // Request the set of PHIs we should insert for this variable. If there's 2601 // only one value definition, things are very simple. 2602 if (DefBlocks.size() == 1) { 2603 placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(), 2604 AllTheVLocs, Var, Output); 2605 continue; 2606 } 2607 2608 // Otherwise: we need to place PHIs through SSA and propagate values. 2609 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); 2610 2611 // Insert PHIs into the per-block live-in tables for this variable. 2612 for (MachineBasicBlock *PHIMBB : PHIBlocks) { 2613 unsigned BlockNo = PHIMBB->getNumber(); 2614 DbgValue *LiveIn = LiveInIdx[PHIMBB]; 2615 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); 2616 } 2617 2618 for (auto *MBB : BlockOrders) { 2619 Worklist.push(BBToOrder[MBB]); 2620 OnWorklist.insert(MBB); 2621 } 2622 2623 // Iterate over all the blocks we selected, propagating the variables value. 2624 // This loop does two things: 2625 // * Eliminates un-necessary VPHIs in vlocJoin, 2626 // * Evaluates the blocks transfer function (i.e. variable assignments) and 2627 // stores the result to the blocks live-outs. 2628 // Always evaluate the transfer function on the first iteration, and when 2629 // the live-ins change thereafter. 2630 bool FirstTrip = true; 2631 while (!Worklist.empty() || !Pending.empty()) { 2632 while (!Worklist.empty()) { 2633 auto *MBB = OrderToBB[Worklist.top()]; 2634 CurBB = MBB->getNumber(); 2635 Worklist.pop(); 2636 2637 auto LiveInsIt = LiveInIdx.find(MBB); 2638 assert(LiveInsIt != LiveInIdx.end()); 2639 DbgValue *LiveIn = LiveInsIt->second; 2640 2641 // Join values from predecessors. Updates LiveInIdx, and writes output 2642 // into JoinedInLocs. 2643 bool InLocsChanged = 2644 vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn); 2645 2646 SmallVector<const MachineBasicBlock *, 8> Preds; 2647 for (const auto *Pred : MBB->predecessors()) 2648 Preds.push_back(Pred); 2649 2650 // If this block's live-in value is a VPHI, try to pick a machine-value 2651 // for it. This makes the machine-value available and propagated 2652 // through all blocks by the time value propagation finishes. We can't 2653 // do this any earlier as it needs to read the block live-outs. 2654 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { 2655 // There's a small possibility that on a preceeding path, a VPHI is 2656 // eliminated and transitions from VPHI-with-location to 2657 // live-through-value. As a result, the selected location of any VPHI 2658 // might change, so we need to re-compute it on each iteration. 2659 Optional<ValueIDNum> ValueNum = 2660 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds); 2661 2662 if (ValueNum) { 2663 InLocsChanged |= LiveIn->ID != *ValueNum; 2664 LiveIn->ID = *ValueNum; 2665 } 2666 } 2667 2668 if (!InLocsChanged && !FirstTrip) 2669 continue; 2670 2671 DbgValue *LiveOut = LiveOutIdx[MBB]; 2672 bool OLChanged = false; 2673 2674 // Do transfer function. 2675 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2676 auto TransferIt = VTracker.Vars.find(Var); 2677 if (TransferIt != VTracker.Vars.end()) { 2678 // Erase on empty transfer (DBG_VALUE $noreg). 2679 if (TransferIt->second.Kind == DbgValue::Undef) { 2680 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); 2681 if (*LiveOut != NewVal) { 2682 *LiveOut = NewVal; 2683 OLChanged = true; 2684 } 2685 } else { 2686 // Insert new variable value; or overwrite. 2687 if (*LiveOut != TransferIt->second) { 2688 *LiveOut = TransferIt->second; 2689 OLChanged = true; 2690 } 2691 } 2692 } else { 2693 // Just copy live-ins to live-outs, for anything not transferred. 2694 if (*LiveOut != *LiveIn) { 2695 *LiveOut = *LiveIn; 2696 OLChanged = true; 2697 } 2698 } 2699 2700 // If no live-out value changed, there's no need to explore further. 2701 if (!OLChanged) 2702 continue; 2703 2704 // We should visit all successors. Ensure we'll visit any non-backedge 2705 // successors during this dataflow iteration; book backedge successors 2706 // to be visited next time around. 2707 for (auto s : MBB->successors()) { 2708 // Ignore out of scope / not-to-be-explored successors. 2709 if (LiveInIdx.find(s) == LiveInIdx.end()) 2710 continue; 2711 2712 if (BBToOrder[s] > BBToOrder[MBB]) { 2713 if (OnWorklist.insert(s).second) 2714 Worklist.push(BBToOrder[s]); 2715 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2716 Pending.push(BBToOrder[s]); 2717 } 2718 } 2719 } 2720 Worklist.swap(Pending); 2721 std::swap(OnWorklist, OnPending); 2722 OnPending.clear(); 2723 assert(Pending.empty()); 2724 FirstTrip = false; 2725 } 2726 2727 // Save live-ins to output vector. Ignore any that are still marked as being 2728 // VPHIs with no location -- those are variables that we know the value of, 2729 // but are not actually available in the register file. 2730 for (auto *MBB : BlockOrders) { 2731 DbgValue *BlockLiveIn = LiveInIdx[MBB]; 2732 if (BlockLiveIn->Kind == DbgValue::NoVal) 2733 continue; 2734 if (BlockLiveIn->Kind == DbgValue::VPHI && 2735 BlockLiveIn->ID == ValueIDNum::EmptyValue) 2736 continue; 2737 if (BlockLiveIn->Kind == DbgValue::VPHI) 2738 BlockLiveIn->Kind = DbgValue::Def; 2739 assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() == 2740 Var.getFragment() && "Fragment info missing during value prop"); 2741 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); 2742 } 2743 } // Per-variable loop. 2744 2745 BlockOrders.clear(); 2746 BlocksToExplore.clear(); 2747 } 2748 2749 void InstrRefBasedLDV::placePHIsForSingleVarDefinition( 2750 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks, 2751 MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs, 2752 const DebugVariable &Var, LiveInsT &Output) { 2753 // If there is a single definition of the variable, then working out it's 2754 // value everywhere is very simple: it's every block dominated by the 2755 // definition. At the dominance frontier, the usual algorithm would: 2756 // * Place PHIs, 2757 // * Propagate values into them, 2758 // * Find there's no incoming variable value from the other incoming branches 2759 // of the dominance frontier, 2760 // * Specify there's no variable value in blocks past the frontier. 2761 // This is a common case, hence it's worth special-casing it. 2762 2763 // Pick out the variables value from the block transfer function. 2764 VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()]; 2765 auto ValueIt = VLocs.Vars.find(Var); 2766 const DbgValue &Value = ValueIt->second; 2767 2768 // Assign the variable value to entry to each dominated block that's in scope. 2769 // Skip the definition block -- it's assigned the variable value in the middle 2770 // of the block somewhere. 2771 for (auto *ScopeBlock : InScopeBlocks) { 2772 if (!DomTree->properlyDominates(AssignMBB, ScopeBlock)) 2773 continue; 2774 2775 Output[ScopeBlock->getNumber()].push_back({Var, Value}); 2776 } 2777 2778 // All blocks that aren't dominated have no live-in value, thus no variable 2779 // value will be given to them. 2780 } 2781 2782 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2783 void InstrRefBasedLDV::dump_mloc_transfer( 2784 const MLocTransferMap &mloc_transfer) const { 2785 for (auto &P : mloc_transfer) { 2786 std::string foo = MTracker->LocIdxToName(P.first); 2787 std::string bar = MTracker->IDAsString(P.second); 2788 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2789 } 2790 } 2791 #endif 2792 2793 void InstrRefBasedLDV::emitLocations( 2794 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 2795 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2796 const TargetPassConfig &TPC) { 2797 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2798 unsigned NumLocs = MTracker->getNumLocs(); 2799 2800 // For each block, load in the machine value locations and variable value 2801 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2802 // to be inserted will be created along the way. 2803 for (MachineBasicBlock &MBB : MF) { 2804 unsigned bbnum = MBB.getNumber(); 2805 MTracker->reset(); 2806 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2807 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2808 NumLocs); 2809 2810 CurBB = bbnum; 2811 CurInst = 1; 2812 for (auto &MI : MBB) { 2813 process(MI, MOutLocs, MInLocs); 2814 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2815 ++CurInst; 2816 } 2817 } 2818 2819 emitTransfers(AllVarsNumbering); 2820 } 2821 2822 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2823 // Build some useful data structures. 2824 2825 LLVMContext &Context = MF.getFunction().getContext(); 2826 EmptyExpr = DIExpression::get(Context, {}); 2827 2828 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2829 if (const DebugLoc &DL = MI.getDebugLoc()) 2830 return DL.getLine() != 0; 2831 return false; 2832 }; 2833 // Collect a set of all the artificial blocks. 2834 for (auto &MBB : MF) 2835 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2836 ArtificialBlocks.insert(&MBB); 2837 2838 // Compute mappings of block <=> RPO order. 2839 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2840 unsigned int RPONumber = 0; 2841 for (MachineBasicBlock *MBB : RPOT) { 2842 OrderToBB[RPONumber] = MBB; 2843 BBToOrder[MBB] = RPONumber; 2844 BBNumToRPO[MBB->getNumber()] = RPONumber; 2845 ++RPONumber; 2846 } 2847 2848 // Order value substitutions by their "source" operand pair, for quick lookup. 2849 llvm::sort(MF.DebugValueSubstitutions); 2850 2851 #ifdef EXPENSIVE_CHECKS 2852 // As an expensive check, test whether there are any duplicate substitution 2853 // sources in the collection. 2854 if (MF.DebugValueSubstitutions.size() > 2) { 2855 for (auto It = MF.DebugValueSubstitutions.begin(); 2856 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2857 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2858 "substitution seen"); 2859 } 2860 } 2861 #endif 2862 } 2863 2864 bool InstrRefBasedLDV::emitTransfers( 2865 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { 2866 // Go through all the transfers recorded in the TransferTracker -- this is 2867 // both the live-ins to a block, and any movements of values that happen 2868 // in the middle. 2869 for (const auto &P : TTracker->Transfers) { 2870 // We have to insert DBG_VALUEs in a consistent order, otherwise they 2871 // appear in DWARF in different orders. Use the order that they appear 2872 // when walking through each block / each instruction, stored in 2873 // AllVarsNumbering. 2874 SmallVector<std::pair<unsigned, MachineInstr *>> Insts; 2875 for (MachineInstr *MI : P.Insts) { 2876 DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(), 2877 MI->getDebugLoc()->getInlinedAt()); 2878 Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI); 2879 } 2880 llvm::sort(Insts, 2881 [](const auto &A, const auto &B) { return A.first < B.first; }); 2882 2883 // Insert either before or after the designated point... 2884 if (P.MBB) { 2885 MachineBasicBlock &MBB = *P.MBB; 2886 for (const auto &Pair : Insts) 2887 MBB.insert(P.Pos, Pair.second); 2888 } else { 2889 // Terminators, like tail calls, can clobber things. Don't try and place 2890 // transfers after them. 2891 if (P.Pos->isTerminator()) 2892 continue; 2893 2894 MachineBasicBlock &MBB = *P.Pos->getParent(); 2895 for (const auto &Pair : Insts) 2896 MBB.insertAfterBundle(P.Pos, Pair.second); 2897 } 2898 } 2899 2900 return TTracker->Transfers.size() != 0; 2901 } 2902 2903 /// Calculate the liveness information for the given machine function and 2904 /// extend ranges across basic blocks. 2905 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 2906 MachineDominatorTree *DomTree, 2907 TargetPassConfig *TPC, 2908 unsigned InputBBLimit, 2909 unsigned InputDbgValLimit) { 2910 // No subprogram means this function contains no debuginfo. 2911 if (!MF.getFunction().getSubprogram()) 2912 return false; 2913 2914 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2915 this->TPC = TPC; 2916 2917 this->DomTree = DomTree; 2918 TRI = MF.getSubtarget().getRegisterInfo(); 2919 MRI = &MF.getRegInfo(); 2920 TII = MF.getSubtarget().getInstrInfo(); 2921 TFI = MF.getSubtarget().getFrameLowering(); 2922 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2923 MFI = &MF.getFrameInfo(); 2924 LS.initialize(MF); 2925 2926 const auto &STI = MF.getSubtarget(); 2927 AdjustsStackInCalls = MFI->adjustsStack() && 2928 STI.getFrameLowering()->stackProbeFunctionModifiesSP(); 2929 if (AdjustsStackInCalls) 2930 StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF); 2931 2932 MTracker = 2933 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 2934 VTracker = nullptr; 2935 TTracker = nullptr; 2936 2937 SmallVector<MLocTransferMap, 32> MLocTransfer; 2938 SmallVector<VLocTracker, 8> vlocs; 2939 LiveInsT SavedLiveIns; 2940 2941 int MaxNumBlocks = -1; 2942 for (auto &MBB : MF) 2943 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 2944 assert(MaxNumBlocks >= 0); 2945 ++MaxNumBlocks; 2946 2947 MLocTransfer.resize(MaxNumBlocks); 2948 vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr)); 2949 SavedLiveIns.resize(MaxNumBlocks); 2950 2951 initialSetup(MF); 2952 2953 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 2954 2955 // Allocate and initialize two array-of-arrays for the live-in and live-out 2956 // machine values. The outer dimension is the block number; while the inner 2957 // dimension is a LocIdx from MLocTracker. 2958 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 2959 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 2960 unsigned NumLocs = MTracker->getNumLocs(); 2961 for (int i = 0; i < MaxNumBlocks; ++i) { 2962 // These all auto-initialize to ValueIDNum::EmptyValue 2963 MOutLocs[i] = new ValueIDNum[NumLocs]; 2964 MInLocs[i] = new ValueIDNum[NumLocs]; 2965 } 2966 2967 // Solve the machine value dataflow problem using the MLocTransfer function, 2968 // storing the computed live-ins / live-outs into the array-of-arrays. We use 2969 // both live-ins and live-outs for decision making in the variable value 2970 // dataflow problem. 2971 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); 2972 2973 // Patch up debug phi numbers, turning unknown block-live-in values into 2974 // either live-through machine values, or PHIs. 2975 for (auto &DBG_PHI : DebugPHINumToValue) { 2976 // Identify unresolved block-live-ins. 2977 ValueIDNum &Num = DBG_PHI.ValueRead; 2978 if (!Num.isPHI()) 2979 continue; 2980 2981 unsigned BlockNo = Num.getBlock(); 2982 LocIdx LocNo = Num.getLoc(); 2983 Num = MInLocs[BlockNo][LocNo.asU64()]; 2984 } 2985 // Later, we'll be looking up ranges of instruction numbers. 2986 llvm::sort(DebugPHINumToValue); 2987 2988 // Walk back through each block / instruction, collecting DBG_VALUE 2989 // instructions and recording what machine value their operands refer to. 2990 for (auto &OrderPair : OrderToBB) { 2991 MachineBasicBlock &MBB = *OrderPair.second; 2992 CurBB = MBB.getNumber(); 2993 VTracker = &vlocs[CurBB]; 2994 VTracker->MBB = &MBB; 2995 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2996 CurInst = 1; 2997 for (auto &MI : MBB) { 2998 process(MI, MOutLocs, MInLocs); 2999 ++CurInst; 3000 } 3001 MTracker->reset(); 3002 } 3003 3004 // Number all variables in the order that they appear, to be used as a stable 3005 // insertion order later. 3006 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 3007 3008 // Map from one LexicalScope to all the variables in that scope. 3009 ScopeToVarsT ScopeToVars; 3010 3011 // Map from One lexical scope to all blocks where assignments happen for 3012 // that scope. 3013 ScopeToAssignBlocksT ScopeToAssignBlocks; 3014 3015 // Store map of DILocations that describes scopes. 3016 ScopeToDILocT ScopeToDILocation; 3017 3018 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3019 // the order is unimportant, it just has to be stable. 3020 unsigned VarAssignCount = 0; 3021 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3022 auto *MBB = OrderToBB[I]; 3023 auto *VTracker = &vlocs[MBB->getNumber()]; 3024 // Collect each variable with a DBG_VALUE in this block. 3025 for (auto &idx : VTracker->Vars) { 3026 const auto &Var = idx.first; 3027 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3028 assert(ScopeLoc != nullptr); 3029 auto *Scope = LS.findLexicalScope(ScopeLoc); 3030 3031 // No insts in scope -> shouldn't have been recorded. 3032 assert(Scope != nullptr); 3033 3034 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3035 ScopeToVars[Scope].insert(Var); 3036 ScopeToAssignBlocks[Scope].insert(VTracker->MBB); 3037 ScopeToDILocation[Scope] = ScopeLoc; 3038 ++VarAssignCount; 3039 } 3040 } 3041 3042 bool Changed = false; 3043 3044 // If we have an extremely large number of variable assignments and blocks, 3045 // bail out at this point. We've burnt some time doing analysis already, 3046 // however we should cut our losses. 3047 if ((unsigned)MaxNumBlocks > InputBBLimit && 3048 VarAssignCount > InputDbgValLimit) { 3049 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 3050 << " has " << MaxNumBlocks << " basic blocks and " 3051 << VarAssignCount 3052 << " variable assignments, exceeding limits.\n"); 3053 } else { 3054 // Compute the extended ranges, iterating over scopes. There might be 3055 // something to be said for ordering them by size/locality, but that's for 3056 // the future. For each scope, solve the variable value problem, producing 3057 // a map of variables to values in SavedLiveIns. 3058 for (auto &P : ScopeToVars) { 3059 buildVLocValueMap(ScopeToDILocation[P.first], P.second, 3060 ScopeToAssignBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3061 vlocs); 3062 } 3063 3064 // Using the computed value locations and variable values for each block, 3065 // create the DBG_VALUE instructions representing the extended variable 3066 // locations. 3067 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 3068 3069 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3070 Changed = TTracker->Transfers.size() != 0; 3071 } 3072 3073 // Common clean-up of memory. 3074 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3075 delete[] MOutLocs[Idx]; 3076 delete[] MInLocs[Idx]; 3077 } 3078 delete[] MOutLocs; 3079 delete[] MInLocs; 3080 3081 delete MTracker; 3082 delete TTracker; 3083 MTracker = nullptr; 3084 VTracker = nullptr; 3085 TTracker = nullptr; 3086 3087 ArtificialBlocks.clear(); 3088 OrderToBB.clear(); 3089 BBToOrder.clear(); 3090 BBNumToRPO.clear(); 3091 DebugInstrNumToInstr.clear(); 3092 DebugPHINumToValue.clear(); 3093 OverlapFragments.clear(); 3094 SeenFragments.clear(); 3095 3096 return Changed; 3097 } 3098 3099 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3100 return new InstrRefBasedLDV(); 3101 } 3102 3103 namespace { 3104 class LDVSSABlock; 3105 class LDVSSAUpdater; 3106 3107 // Pick a type to identify incoming block values as we construct SSA. We 3108 // can't use anything more robust than an integer unfortunately, as SSAUpdater 3109 // expects to zero-initialize the type. 3110 typedef uint64_t BlockValueNum; 3111 3112 /// Represents an SSA PHI node for the SSA updater class. Contains the block 3113 /// this PHI is in, the value number it would have, and the expected incoming 3114 /// values from parent blocks. 3115 class LDVSSAPhi { 3116 public: 3117 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 3118 LDVSSABlock *ParentBlock; 3119 BlockValueNum PHIValNum; 3120 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 3121 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 3122 3123 LDVSSABlock *getParent() { return ParentBlock; } 3124 }; 3125 3126 /// Thin wrapper around a block predecessor iterator. Only difference from a 3127 /// normal block iterator is that it dereferences to an LDVSSABlock. 3128 class LDVSSABlockIterator { 3129 public: 3130 MachineBasicBlock::pred_iterator PredIt; 3131 LDVSSAUpdater &Updater; 3132 3133 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 3134 LDVSSAUpdater &Updater) 3135 : PredIt(PredIt), Updater(Updater) {} 3136 3137 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 3138 return OtherIt.PredIt != PredIt; 3139 } 3140 3141 LDVSSABlockIterator &operator++() { 3142 ++PredIt; 3143 return *this; 3144 } 3145 3146 LDVSSABlock *operator*(); 3147 }; 3148 3149 /// Thin wrapper around a block for SSA Updater interface. Necessary because 3150 /// we need to track the PHI value(s) that we may have observed as necessary 3151 /// in this block. 3152 class LDVSSABlock { 3153 public: 3154 MachineBasicBlock &BB; 3155 LDVSSAUpdater &Updater; 3156 using PHIListT = SmallVector<LDVSSAPhi, 1>; 3157 /// List of PHIs in this block. There should only ever be one. 3158 PHIListT PHIList; 3159 3160 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3161 : BB(BB), Updater(Updater) {} 3162 3163 LDVSSABlockIterator succ_begin() { 3164 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3165 } 3166 3167 LDVSSABlockIterator succ_end() { 3168 return LDVSSABlockIterator(BB.succ_end(), Updater); 3169 } 3170 3171 /// SSAUpdater has requested a PHI: create that within this block record. 3172 LDVSSAPhi *newPHI(BlockValueNum Value) { 3173 PHIList.emplace_back(Value, this); 3174 return &PHIList.back(); 3175 } 3176 3177 /// SSAUpdater wishes to know what PHIs already exist in this block. 3178 PHIListT &phis() { return PHIList; } 3179 }; 3180 3181 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3182 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3183 // SSAUpdaterTraits<LDVSSAUpdater>. 3184 class LDVSSAUpdater { 3185 public: 3186 /// Map of value numbers to PHI records. 3187 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3188 /// Map of which blocks generate Undef values -- blocks that are not 3189 /// dominated by any Def. 3190 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3191 /// Map of machine blocks to our own records of them. 3192 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3193 /// Machine location where any PHI must occur. 3194 LocIdx Loc; 3195 /// Table of live-in machine value numbers for blocks / locations. 3196 ValueIDNum **MLiveIns; 3197 3198 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 3199 3200 void reset() { 3201 for (auto &Block : BlockMap) 3202 delete Block.second; 3203 3204 PHIs.clear(); 3205 UndefMap.clear(); 3206 BlockMap.clear(); 3207 } 3208 3209 ~LDVSSAUpdater() { reset(); } 3210 3211 /// For a given MBB, create a wrapper block for it. Stores it in the 3212 /// LDVSSAUpdater block map. 3213 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3214 auto it = BlockMap.find(BB); 3215 if (it == BlockMap.end()) { 3216 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3217 it = BlockMap.find(BB); 3218 } 3219 return it->second; 3220 } 3221 3222 /// Find the live-in value number for the given block. Looks up the value at 3223 /// the PHI location on entry. 3224 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3225 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3226 } 3227 }; 3228 3229 LDVSSABlock *LDVSSABlockIterator::operator*() { 3230 return Updater.getSSALDVBlock(*PredIt); 3231 } 3232 3233 #ifndef NDEBUG 3234 3235 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3236 out << "SSALDVPHI " << PHI.PHIValNum; 3237 return out; 3238 } 3239 3240 #endif 3241 3242 } // namespace 3243 3244 namespace llvm { 3245 3246 /// Template specialization to give SSAUpdater access to CFG and value 3247 /// information. SSAUpdater calls methods in these traits, passing in the 3248 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3249 /// It also provides methods to create PHI nodes and track them. 3250 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3251 public: 3252 using BlkT = LDVSSABlock; 3253 using ValT = BlockValueNum; 3254 using PhiT = LDVSSAPhi; 3255 using BlkSucc_iterator = LDVSSABlockIterator; 3256 3257 // Methods to access block successors -- dereferencing to our wrapper class. 3258 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3259 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3260 3261 /// Iterator for PHI operands. 3262 class PHI_iterator { 3263 private: 3264 LDVSSAPhi *PHI; 3265 unsigned Idx; 3266 3267 public: 3268 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3269 : PHI(P), Idx(0) {} 3270 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3271 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3272 3273 PHI_iterator &operator++() { 3274 Idx++; 3275 return *this; 3276 } 3277 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3278 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3279 3280 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3281 3282 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3283 }; 3284 3285 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3286 3287 static inline PHI_iterator PHI_end(PhiT *PHI) { 3288 return PHI_iterator(PHI, true); 3289 } 3290 3291 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3292 /// vector. 3293 static void FindPredecessorBlocks(LDVSSABlock *BB, 3294 SmallVectorImpl<LDVSSABlock *> *Preds) { 3295 for (MachineBasicBlock *Pred : BB->BB.predecessors()) 3296 Preds->push_back(BB->Updater.getSSALDVBlock(Pred)); 3297 } 3298 3299 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3300 /// register. For LiveDebugValues, represents a block identified as not having 3301 /// any DBG_PHI predecessors. 3302 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3303 // Create a value number for this block -- it needs to be unique and in the 3304 // "undef" collection, so that we know it's not real. Use a number 3305 // representing a PHI into this block. 3306 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3307 Updater->UndefMap[&BB->BB] = Num; 3308 return Num; 3309 } 3310 3311 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3312 /// SSAUpdater will populate it with information about incoming values. The 3313 /// value number of this PHI is whatever the machine value number problem 3314 /// solution determined it to be. This includes non-phi values if SSAUpdater 3315 /// tries to create a PHI where the incoming values are identical. 3316 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3317 LDVSSAUpdater *Updater) { 3318 BlockValueNum PHIValNum = Updater->getValue(BB); 3319 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3320 Updater->PHIs[PHIValNum] = PHI; 3321 return PHIValNum; 3322 } 3323 3324 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3325 /// the specified predecessor block. 3326 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3327 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3328 } 3329 3330 /// ValueIsPHI - Check if the instruction that defines the specified value 3331 /// is a PHI instruction. 3332 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3333 auto PHIIt = Updater->PHIs.find(Val); 3334 if (PHIIt == Updater->PHIs.end()) 3335 return nullptr; 3336 return PHIIt->second; 3337 } 3338 3339 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3340 /// operands, i.e., it was just added. 3341 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3342 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3343 if (PHI && PHI->IncomingValues.size() == 0) 3344 return PHI; 3345 return nullptr; 3346 } 3347 3348 /// GetPHIValue - For the specified PHI instruction, return the value 3349 /// that it defines. 3350 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3351 }; 3352 3353 } // end namespace llvm 3354 3355 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3356 ValueIDNum **MLiveOuts, 3357 ValueIDNum **MLiveIns, 3358 MachineInstr &Here, 3359 uint64_t InstrNum) { 3360 // Pick out records of DBG_PHI instructions that have been observed. If there 3361 // are none, then we cannot compute a value number. 3362 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3363 DebugPHINumToValue.end(), InstrNum); 3364 auto LowerIt = RangePair.first; 3365 auto UpperIt = RangePair.second; 3366 3367 // No DBG_PHI means there can be no location. 3368 if (LowerIt == UpperIt) 3369 return None; 3370 3371 // If there's only one DBG_PHI, then that is our value number. 3372 if (std::distance(LowerIt, UpperIt) == 1) 3373 return LowerIt->ValueRead; 3374 3375 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3376 3377 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3378 // technically possible for us to merge values in different registers in each 3379 // block, but highly unlikely that LLVM will generate such code after register 3380 // allocation. 3381 LocIdx Loc = LowerIt->ReadLoc; 3382 3383 // We have several DBG_PHIs, and a use position (the Here inst). All each 3384 // DBG_PHI does is identify a value at a program position. We can treat each 3385 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3386 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3387 // determine which Def is used at the Use, and any PHIs that happen along 3388 // the way. 3389 // Adapted LLVM SSA Updater: 3390 LDVSSAUpdater Updater(Loc, MLiveIns); 3391 // Map of which Def or PHI is the current value in each block. 3392 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3393 // Set of PHIs that we have created along the way. 3394 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3395 3396 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3397 // for the SSAUpdater. 3398 for (const auto &DBG_PHI : DBGPHIRange) { 3399 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3400 const ValueIDNum &Num = DBG_PHI.ValueRead; 3401 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3402 } 3403 3404 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3405 const auto &AvailIt = AvailableValues.find(HereBlock); 3406 if (AvailIt != AvailableValues.end()) { 3407 // Actually, we already know what the value is -- the Use is in the same 3408 // block as the Def. 3409 return ValueIDNum::fromU64(AvailIt->second); 3410 } 3411 3412 // Otherwise, we must use the SSA Updater. It will identify the value number 3413 // that we are to use, and the PHIs that must happen along the way. 3414 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3415 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3416 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3417 3418 // We have the number for a PHI, or possibly live-through value, to be used 3419 // at this Use. There are a number of things we have to check about it though: 3420 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3421 // Use was not completely dominated by DBG_PHIs and we should abort. 3422 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3423 // we've left SSA form. Validate that the inputs to each PHI are the 3424 // expected values. 3425 // * Is a PHI we've created actually a merging of values, or are all the 3426 // predecessor values the same, leading to a non-PHI machine value number? 3427 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3428 // the ValidatedValues collection below to sort this out. 3429 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3430 3431 // Define all the input DBG_PHI values in ValidatedValues. 3432 for (const auto &DBG_PHI : DBGPHIRange) { 3433 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3434 const ValueIDNum &Num = DBG_PHI.ValueRead; 3435 ValidatedValues.insert(std::make_pair(Block, Num)); 3436 } 3437 3438 // Sort PHIs to validate into RPO-order. 3439 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3440 for (auto &PHI : CreatedPHIs) 3441 SortedPHIs.push_back(PHI); 3442 3443 std::sort( 3444 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3445 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3446 }); 3447 3448 for (auto &PHI : SortedPHIs) { 3449 ValueIDNum ThisBlockValueNum = 3450 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3451 3452 // Are all these things actually defined? 3453 for (auto &PHIIt : PHI->IncomingValues) { 3454 // Any undef input means DBG_PHIs didn't dominate the use point. 3455 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3456 return None; 3457 3458 ValueIDNum ValueToCheck; 3459 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3460 3461 auto VVal = ValidatedValues.find(PHIIt.first); 3462 if (VVal == ValidatedValues.end()) { 3463 // We cross a loop, and this is a backedge. LLVMs tail duplication 3464 // happens so late that DBG_PHI instructions should not be able to 3465 // migrate into loops -- meaning we can only be live-through this 3466 // loop. 3467 ValueToCheck = ThisBlockValueNum; 3468 } else { 3469 // Does the block have as a live-out, in the location we're examining, 3470 // the value that we expect? If not, it's been moved or clobbered. 3471 ValueToCheck = VVal->second; 3472 } 3473 3474 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3475 return None; 3476 } 3477 3478 // Record this value as validated. 3479 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3480 } 3481 3482 // All the PHIs are valid: we can return what the SSAUpdater said our value 3483 // number was. 3484 return Result; 3485 } 3486