1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is SSA construction, where 15 /// each debug instruction assigns the *value* that a variable has, and every 16 /// instruction where the variable is in scope uses that variable. The resulting 17 /// map of instruction-to-value is then translated into a register (or spill) 18 /// location for each variable over each instruction. 19 /// 20 /// The primary difference from normal SSA construction is that we cannot 21 /// _create_ PHI values that contain variable values. CodeGen has already 22 /// completed, and we can't alter it just to make debug-info complete. Thus: 23 /// we can identify function positions where we would like a PHI value for a 24 /// variable, but must search the MachineFunction to see whether such a PHI is 25 /// available. If no such PHI exists, the variable location must be dropped. 26 /// 27 /// To achieve this, we perform two kinds of analysis. First, we identify 28 /// every value defined by every instruction (ignoring those that only move 29 /// another value), then re-compute an SSA-form representation of the 30 /// MachineFunction, using value propagation to eliminate any un-necessary 31 /// PHI values. This gives us a map of every value computed in the function, 32 /// and its location within the register file / stack. 33 /// 34 /// Secondly, for each variable we perform the same analysis, where each debug 35 /// instruction is considered a def, and every instruction where the variable 36 /// is in lexical scope as a use. Value propagation is used again to eliminate 37 /// any un-necessary PHIs. This gives us a map of each variable to the value 38 /// it should have in a block. 39 /// 40 /// Once both are complete, we have two maps for each block: 41 /// * Variables to the values they should have, 42 /// * Values to the register / spill slot they are located in. 43 /// After which we can marry-up variable values with a location, and emit 44 /// DBG_VALUE instructions specifying those locations. Variable locations may 45 /// be dropped in this process due to the desired variable value not being 46 /// resident in any machine location, or because there is no PHI value in any 47 /// location that accurately represents the desired value. The building of 48 /// location lists for each block is left to DbgEntityHistoryCalculator. 49 /// 50 /// This pass is kept efficient because the size of the first SSA problem 51 /// is proportional to the working-set size of the function, which the compiler 52 /// tries to keep small. (It's also proportional to the number of blocks). 53 /// Additionally, we repeatedly perform the second SSA problem analysis with 54 /// only the variables and blocks in a single lexical scope, exploiting their 55 /// locality. 56 /// 57 /// ### Terminology 58 /// 59 /// A machine location is a register or spill slot, a value is something that's 60 /// defined by an instruction or PHI node, while a variable value is the value 61 /// assigned to a variable. A variable location is a machine location, that must 62 /// contain the appropriate variable value. A value that is a PHI node is 63 /// occasionally called an mphi. 64 /// 65 /// The first SSA problem is the "machine value location" problem, 66 /// because we're determining which machine locations contain which values. 67 /// The "locations" are constant: what's unknown is what value they contain. 68 /// 69 /// The second SSA problem (the one for variables) is the "variable value 70 /// problem", because it's determining what values a variable has, rather than 71 /// what location those values are placed in. 72 /// 73 /// TODO: 74 /// Overlapping fragments 75 /// Entry values 76 /// Add back DEBUG statements for debugging this 77 /// Collect statistics 78 /// 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/ADT/DenseMap.h" 82 #include "llvm/ADT/PostOrderIterator.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include "llvm/ADT/SmallPtrSet.h" 85 #include "llvm/ADT/SmallSet.h" 86 #include "llvm/ADT/SmallVector.h" 87 #include "llvm/ADT/Statistic.h" 88 #include "llvm/Analysis/IteratedDominanceFrontier.h" 89 #include "llvm/CodeGen/LexicalScopes.h" 90 #include "llvm/CodeGen/MachineBasicBlock.h" 91 #include "llvm/CodeGen/MachineDominators.h" 92 #include "llvm/CodeGen/MachineFrameInfo.h" 93 #include "llvm/CodeGen/MachineFunction.h" 94 #include "llvm/CodeGen/MachineFunctionPass.h" 95 #include "llvm/CodeGen/MachineInstr.h" 96 #include "llvm/CodeGen/MachineInstrBuilder.h" 97 #include "llvm/CodeGen/MachineInstrBundle.h" 98 #include "llvm/CodeGen/MachineMemOperand.h" 99 #include "llvm/CodeGen/MachineOperand.h" 100 #include "llvm/CodeGen/PseudoSourceValue.h" 101 #include "llvm/CodeGen/RegisterScavenging.h" 102 #include "llvm/CodeGen/TargetFrameLowering.h" 103 #include "llvm/CodeGen/TargetInstrInfo.h" 104 #include "llvm/CodeGen/TargetLowering.h" 105 #include "llvm/CodeGen/TargetPassConfig.h" 106 #include "llvm/CodeGen/TargetRegisterInfo.h" 107 #include "llvm/CodeGen/TargetSubtargetInfo.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/IR/DIBuilder.h" 110 #include "llvm/IR/DebugInfoMetadata.h" 111 #include "llvm/IR/DebugLoc.h" 112 #include "llvm/IR/Function.h" 113 #include "llvm/IR/Module.h" 114 #include "llvm/InitializePasses.h" 115 #include "llvm/MC/MCRegisterInfo.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/TypeSize.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cstdint> 127 #include <functional> 128 #include <limits.h> 129 #include <limits> 130 #include <queue> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 #include "InstrRefBasedImpl.h" 136 #include "LiveDebugValues.h" 137 138 using namespace llvm; 139 using namespace LiveDebugValues; 140 141 // SSAUpdaterImple sets DEBUG_TYPE, change it. 142 #undef DEBUG_TYPE 143 #define DEBUG_TYPE "livedebugvalues" 144 145 // Act more like the VarLoc implementation, by propagating some locations too 146 // far and ignoring some transfers. 147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 148 cl::desc("Act like old LiveDebugValues did"), 149 cl::init(false)); 150 151 /// Tracker for converting machine value locations and variable values into 152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 153 /// specifying block live-in locations and transfers within blocks. 154 /// 155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 156 /// and must be initialized with the set of variable values that are live-in to 157 /// the block. The caller then repeatedly calls process(). TransferTracker picks 158 /// out variable locations for the live-in variable values (if there _is_ a 159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 160 /// stepped through, transfers of values between machine locations are 161 /// identified and if profitable, a DBG_VALUE created. 162 /// 163 /// This is where debug use-before-defs would be resolved: a variable with an 164 /// unavailable value could materialize in the middle of a block, when the 165 /// value becomes available. Or, we could detect clobbers and re-specify the 166 /// variable in a backup location. (XXX these are unimplemented). 167 class TransferTracker { 168 public: 169 const TargetInstrInfo *TII; 170 const TargetLowering *TLI; 171 /// This machine location tracker is assumed to always contain the up-to-date 172 /// value mapping for all machine locations. TransferTracker only reads 173 /// information from it. (XXX make it const?) 174 MLocTracker *MTracker; 175 MachineFunction &MF; 176 bool ShouldEmitDebugEntryValues; 177 178 /// Record of all changes in variable locations at a block position. Awkwardly 179 /// we allow inserting either before or after the point: MBB != nullptr 180 /// indicates it's before, otherwise after. 181 struct Transfer { 182 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 183 MachineBasicBlock *MBB; /// non-null if we should insert after. 184 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 185 }; 186 187 struct LocAndProperties { 188 LocIdx Loc; 189 DbgValueProperties Properties; 190 }; 191 192 /// Collection of transfers (DBG_VALUEs) to be inserted. 193 SmallVector<Transfer, 32> Transfers; 194 195 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 196 /// between TransferTrackers view of variable locations and MLocTrackers. For 197 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 198 /// does not. 199 SmallVector<ValueIDNum, 32> VarLocs; 200 201 /// Map from LocIdxes to which DebugVariables are based that location. 202 /// Mantained while stepping through the block. Not accurate if 203 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 204 DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 205 206 /// Map from DebugVariable to it's current location and qualifying meta 207 /// information. To be used in conjunction with ActiveMLocs to construct 208 /// enough information for the DBG_VALUEs for a particular LocIdx. 209 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 210 211 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 212 SmallVector<MachineInstr *, 4> PendingDbgValues; 213 214 /// Record of a use-before-def: created when a value that's live-in to the 215 /// current block isn't available in any machine location, but it will be 216 /// defined in this block. 217 struct UseBeforeDef { 218 /// Value of this variable, def'd in block. 219 ValueIDNum ID; 220 /// Identity of this variable. 221 DebugVariable Var; 222 /// Additional variable properties. 223 DbgValueProperties Properties; 224 }; 225 226 /// Map from instruction index (within the block) to the set of UseBeforeDefs 227 /// that become defined at that instruction. 228 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 229 230 /// The set of variables that are in UseBeforeDefs and can become a location 231 /// once the relevant value is defined. An element being erased from this 232 /// collection prevents the use-before-def materializing. 233 DenseSet<DebugVariable> UseBeforeDefVariables; 234 235 const TargetRegisterInfo &TRI; 236 const BitVector &CalleeSavedRegs; 237 238 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 239 MachineFunction &MF, const TargetRegisterInfo &TRI, 240 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 241 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 242 CalleeSavedRegs(CalleeSavedRegs) { 243 TLI = MF.getSubtarget().getTargetLowering(); 244 auto &TM = TPC.getTM<TargetMachine>(); 245 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 246 } 247 248 /// Load object with live-in variable values. \p mlocs contains the live-in 249 /// values in each machine location, while \p vlocs the live-in variable 250 /// values. This method picks variable locations for the live-in variables, 251 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 252 /// object fields to track variable locations as we step through the block. 253 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 254 void 255 loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 256 const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 257 unsigned NumLocs) { 258 ActiveMLocs.clear(); 259 ActiveVLocs.clear(); 260 VarLocs.clear(); 261 VarLocs.reserve(NumLocs); 262 UseBeforeDefs.clear(); 263 UseBeforeDefVariables.clear(); 264 265 auto isCalleeSaved = [&](LocIdx L) { 266 unsigned Reg = MTracker->LocIdxToLocID[L]; 267 if (Reg >= MTracker->NumRegs) 268 return false; 269 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 270 if (CalleeSavedRegs.test(*RAI)) 271 return true; 272 return false; 273 }; 274 275 // Map of the preferred location for each value. 276 DenseMap<ValueIDNum, LocIdx> ValueToLoc; 277 ActiveMLocs.reserve(VLocs.size()); 278 ActiveVLocs.reserve(VLocs.size()); 279 280 // Produce a map of value numbers to the current machine locs they live 281 // in. When emulating VarLocBasedImpl, there should only be one 282 // location; when not, we get to pick. 283 for (auto Location : MTracker->locations()) { 284 LocIdx Idx = Location.Idx; 285 ValueIDNum &VNum = MLocs[Idx.asU64()]; 286 VarLocs.push_back(VNum); 287 288 // Short-circuit unnecessary preferred location update. 289 if (VLocs.empty()) 290 continue; 291 292 auto it = ValueToLoc.find(VNum); 293 // In order of preference, pick: 294 // * Callee saved registers, 295 // * Other registers, 296 // * Spill slots. 297 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 298 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 299 // Insert, or overwrite if insertion failed. 300 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 301 if (!PrefLocRes.second) 302 PrefLocRes.first->second = Idx; 303 } 304 } 305 306 // Now map variables to their picked LocIdxes. 307 for (const auto &Var : VLocs) { 308 if (Var.second.Kind == DbgValue::Const) { 309 PendingDbgValues.push_back( 310 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties)); 311 continue; 312 } 313 314 // If the value has no location, we can't make a variable location. 315 const ValueIDNum &Num = Var.second.ID; 316 auto ValuesPreferredLoc = ValueToLoc.find(Num); 317 if (ValuesPreferredLoc == ValueToLoc.end()) { 318 // If it's a def that occurs in this block, register it as a 319 // use-before-def to be resolved as we step through the block. 320 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 321 addUseBeforeDef(Var.first, Var.second.Properties, Num); 322 else 323 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 324 continue; 325 } 326 327 LocIdx M = ValuesPreferredLoc->second; 328 auto NewValue = LocAndProperties{M, Var.second.Properties}; 329 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 330 if (!Result.second) 331 Result.first->second = NewValue; 332 ActiveMLocs[M].insert(Var.first); 333 PendingDbgValues.push_back( 334 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 335 } 336 flushDbgValues(MBB.begin(), &MBB); 337 } 338 339 /// Record that \p Var has value \p ID, a value that becomes available 340 /// later in the function. 341 void addUseBeforeDef(const DebugVariable &Var, 342 const DbgValueProperties &Properties, ValueIDNum ID) { 343 UseBeforeDef UBD = {ID, Var, Properties}; 344 UseBeforeDefs[ID.getInst()].push_back(UBD); 345 UseBeforeDefVariables.insert(Var); 346 } 347 348 /// After the instruction at index \p Inst and position \p pos has been 349 /// processed, check whether it defines a variable value in a use-before-def. 350 /// If so, and the variable value hasn't changed since the start of the 351 /// block, create a DBG_VALUE. 352 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 353 auto MIt = UseBeforeDefs.find(Inst); 354 if (MIt == UseBeforeDefs.end()) 355 return; 356 357 for (auto &Use : MIt->second) { 358 LocIdx L = Use.ID.getLoc(); 359 360 // If something goes very wrong, we might end up labelling a COPY 361 // instruction or similar with an instruction number, where it doesn't 362 // actually define a new value, instead it moves a value. In case this 363 // happens, discard. 364 if (MTracker->readMLoc(L) != Use.ID) 365 continue; 366 367 // If a different debug instruction defined the variable value / location 368 // since the start of the block, don't materialize this use-before-def. 369 if (!UseBeforeDefVariables.count(Use.Var)) 370 continue; 371 372 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 373 } 374 flushDbgValues(pos, nullptr); 375 } 376 377 /// Helper to move created DBG_VALUEs into Transfers collection. 378 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 379 if (PendingDbgValues.size() == 0) 380 return; 381 382 // Pick out the instruction start position. 383 MachineBasicBlock::instr_iterator BundleStart; 384 if (MBB && Pos == MBB->begin()) 385 BundleStart = MBB->instr_begin(); 386 else 387 BundleStart = getBundleStart(Pos->getIterator()); 388 389 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 390 PendingDbgValues.clear(); 391 } 392 393 bool isEntryValueVariable(const DebugVariable &Var, 394 const DIExpression *Expr) const { 395 if (!Var.getVariable()->isParameter()) 396 return false; 397 398 if (Var.getInlinedAt()) 399 return false; 400 401 if (Expr->getNumElements() > 0) 402 return false; 403 404 return true; 405 } 406 407 bool isEntryValueValue(const ValueIDNum &Val) const { 408 // Must be in entry block (block number zero), and be a PHI / live-in value. 409 if (Val.getBlock() || !Val.isPHI()) 410 return false; 411 412 // Entry values must enter in a register. 413 if (MTracker->isSpill(Val.getLoc())) 414 return false; 415 416 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 417 Register FP = TRI.getFrameRegister(MF); 418 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 419 return Reg != SP && Reg != FP; 420 } 421 422 bool recoverAsEntryValue(const DebugVariable &Var, 423 const DbgValueProperties &Prop, 424 const ValueIDNum &Num) { 425 // Is this variable location a candidate to be an entry value. First, 426 // should we be trying this at all? 427 if (!ShouldEmitDebugEntryValues) 428 return false; 429 430 // Is the variable appropriate for entry values (i.e., is a parameter). 431 if (!isEntryValueVariable(Var, Prop.DIExpr)) 432 return false; 433 434 // Is the value assigned to this variable still the entry value? 435 if (!isEntryValueValue(Num)) 436 return false; 437 438 // Emit a variable location using an entry value expression. 439 DIExpression *NewExpr = 440 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 441 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 442 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 443 444 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 445 return true; 446 } 447 448 /// Change a variable value after encountering a DBG_VALUE inside a block. 449 void redefVar(const MachineInstr &MI) { 450 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 451 MI.getDebugLoc()->getInlinedAt()); 452 DbgValueProperties Properties(MI); 453 454 const MachineOperand &MO = MI.getOperand(0); 455 456 // Ignore non-register locations, we don't transfer those. 457 if (!MO.isReg() || MO.getReg() == 0) { 458 auto It = ActiveVLocs.find(Var); 459 if (It != ActiveVLocs.end()) { 460 ActiveMLocs[It->second.Loc].erase(Var); 461 ActiveVLocs.erase(It); 462 } 463 // Any use-before-defs no longer apply. 464 UseBeforeDefVariables.erase(Var); 465 return; 466 } 467 468 Register Reg = MO.getReg(); 469 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 470 redefVar(MI, Properties, NewLoc); 471 } 472 473 /// Handle a change in variable location within a block. Terminate the 474 /// variables current location, and record the value it now refers to, so 475 /// that we can detect location transfers later on. 476 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 477 Optional<LocIdx> OptNewLoc) { 478 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 479 MI.getDebugLoc()->getInlinedAt()); 480 // Any use-before-defs no longer apply. 481 UseBeforeDefVariables.erase(Var); 482 483 // Erase any previous location, 484 auto It = ActiveVLocs.find(Var); 485 if (It != ActiveVLocs.end()) 486 ActiveMLocs[It->second.Loc].erase(Var); 487 488 // If there _is_ no new location, all we had to do was erase. 489 if (!OptNewLoc) 490 return; 491 LocIdx NewLoc = *OptNewLoc; 492 493 // Check whether our local copy of values-by-location in #VarLocs is out of 494 // date. Wipe old tracking data for the location if it's been clobbered in 495 // the meantime. 496 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { 497 for (auto &P : ActiveMLocs[NewLoc]) { 498 ActiveVLocs.erase(P); 499 } 500 ActiveMLocs[NewLoc.asU64()].clear(); 501 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); 502 } 503 504 ActiveMLocs[NewLoc].insert(Var); 505 if (It == ActiveVLocs.end()) { 506 ActiveVLocs.insert( 507 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 508 } else { 509 It->second.Loc = NewLoc; 510 It->second.Properties = Properties; 511 } 512 } 513 514 /// Account for a location \p mloc being clobbered. Examine the variable 515 /// locations that will be terminated: and try to recover them by using 516 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 517 /// explicitly terminate a location if it can't be recovered. 518 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 519 bool MakeUndef = true) { 520 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 521 if (ActiveMLocIt == ActiveMLocs.end()) 522 return; 523 524 // What was the old variable value? 525 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 526 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 527 528 // Examine the remaining variable locations: if we can find the same value 529 // again, we can recover the location. 530 Optional<LocIdx> NewLoc = None; 531 for (auto Loc : MTracker->locations()) 532 if (Loc.Value == OldValue) 533 NewLoc = Loc.Idx; 534 535 // If there is no location, and we weren't asked to make the variable 536 // explicitly undef, then stop here. 537 if (!NewLoc && !MakeUndef) { 538 // Try and recover a few more locations with entry values. 539 for (auto &Var : ActiveMLocIt->second) { 540 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 541 recoverAsEntryValue(Var, Prop, OldValue); 542 } 543 flushDbgValues(Pos, nullptr); 544 return; 545 } 546 547 // Examine all the variables based on this location. 548 DenseSet<DebugVariable> NewMLocs; 549 for (auto &Var : ActiveMLocIt->second) { 550 auto ActiveVLocIt = ActiveVLocs.find(Var); 551 // Re-state the variable location: if there's no replacement then NewLoc 552 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 553 // identifying the alternative location will be emitted. 554 const DbgValueProperties &Properties = ActiveVLocIt->second.Properties; 555 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 556 557 // Update machine locations <=> variable locations maps. Defer updating 558 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 559 if (!NewLoc) { 560 ActiveVLocs.erase(ActiveVLocIt); 561 } else { 562 ActiveVLocIt->second.Loc = *NewLoc; 563 NewMLocs.insert(Var); 564 } 565 } 566 567 // Commit any deferred ActiveMLoc changes. 568 if (!NewMLocs.empty()) 569 for (auto &Var : NewMLocs) 570 ActiveMLocs[*NewLoc].insert(Var); 571 572 // We lazily track what locations have which values; if we've found a new 573 // location for the clobbered value, remember it. 574 if (NewLoc) 575 VarLocs[NewLoc->asU64()] = OldValue; 576 577 flushDbgValues(Pos, nullptr); 578 579 // Re-find ActiveMLocIt, iterator could have been invalidated. 580 ActiveMLocIt = ActiveMLocs.find(MLoc); 581 ActiveMLocIt->second.clear(); 582 } 583 584 /// Transfer variables based on \p Src to be based on \p Dst. This handles 585 /// both register copies as well as spills and restores. Creates DBG_VALUEs 586 /// describing the movement. 587 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 588 // Does Src still contain the value num we expect? If not, it's been 589 // clobbered in the meantime, and our variable locations are stale. 590 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) 591 return; 592 593 // assert(ActiveMLocs[Dst].size() == 0); 594 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 595 596 // Move set of active variables from one location to another. 597 auto MovingVars = ActiveMLocs[Src]; 598 ActiveMLocs[Dst] = MovingVars; 599 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 600 601 // For each variable based on Src; create a location at Dst. 602 for (auto &Var : MovingVars) { 603 auto ActiveVLocIt = ActiveVLocs.find(Var); 604 assert(ActiveVLocIt != ActiveVLocs.end()); 605 ActiveVLocIt->second.Loc = Dst; 606 607 MachineInstr *MI = 608 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 609 PendingDbgValues.push_back(MI); 610 } 611 ActiveMLocs[Src].clear(); 612 flushDbgValues(Pos, nullptr); 613 614 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 615 // about the old location. 616 if (EmulateOldLDV) 617 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 618 } 619 620 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 621 const DebugVariable &Var, 622 const DbgValueProperties &Properties) { 623 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 624 Var.getVariable()->getScope(), 625 const_cast<DILocation *>(Var.getInlinedAt())); 626 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 627 MIB.add(MO); 628 if (Properties.Indirect) 629 MIB.addImm(0); 630 else 631 MIB.addReg(0); 632 MIB.addMetadata(Var.getVariable()); 633 MIB.addMetadata(Properties.DIExpr); 634 return MIB; 635 } 636 }; 637 638 //===----------------------------------------------------------------------===// 639 // Implementation 640 //===----------------------------------------------------------------------===// 641 642 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 643 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1}; 644 645 #ifndef NDEBUG 646 void DbgValue::dump(const MLocTracker *MTrack) const { 647 if (Kind == Const) { 648 MO->dump(); 649 } else if (Kind == NoVal) { 650 dbgs() << "NoVal(" << BlockNo << ")"; 651 } else if (Kind == VPHI) { 652 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")"; 653 } else { 654 assert(Kind == Def); 655 dbgs() << MTrack->IDAsString(ID); 656 } 657 if (Properties.Indirect) 658 dbgs() << " indir"; 659 if (Properties.DIExpr) 660 dbgs() << " " << *Properties.DIExpr; 661 } 662 #endif 663 664 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 665 const TargetRegisterInfo &TRI, 666 const TargetLowering &TLI) 667 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 668 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 669 NumRegs = TRI.getNumRegs(); 670 reset(); 671 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 672 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 673 674 // Always track SP. This avoids the implicit clobbering caused by regmasks 675 // from affectings its values. (LiveDebugValues disbelieves calls and 676 // regmasks that claim to clobber SP). 677 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 678 if (SP) { 679 unsigned ID = getLocID(SP); 680 (void)lookupOrTrackRegister(ID); 681 682 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) 683 SPAliases.insert(*RAI); 684 } 685 686 // Build some common stack positions -- full registers being spilt to the 687 // stack. 688 StackSlotIdxes.insert({{8, 0}, 0}); 689 StackSlotIdxes.insert({{16, 0}, 1}); 690 StackSlotIdxes.insert({{32, 0}, 2}); 691 StackSlotIdxes.insert({{64, 0}, 3}); 692 StackSlotIdxes.insert({{128, 0}, 4}); 693 StackSlotIdxes.insert({{256, 0}, 5}); 694 StackSlotIdxes.insert({{512, 0}, 6}); 695 696 // Traverse all the subregister idxes, and ensure there's an index for them. 697 // Duplicates are no problem: we're interested in their position in the 698 // stack slot, we don't want to type the slot. 699 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { 700 unsigned Size = TRI.getSubRegIdxSize(I); 701 unsigned Offs = TRI.getSubRegIdxOffset(I); 702 unsigned Idx = StackSlotIdxes.size(); 703 704 // Some subregs have -1, -2 and so forth fed into their fields, to mean 705 // special backend things. Ignore those. 706 if (Size > 60000 || Offs > 60000) 707 continue; 708 709 StackSlotIdxes.insert({{Size, Offs}, Idx}); 710 } 711 712 for (auto &Idx : StackSlotIdxes) 713 StackIdxesToPos[Idx.second] = Idx.first; 714 715 NumSlotIdxes = StackSlotIdxes.size(); 716 } 717 718 LocIdx MLocTracker::trackRegister(unsigned ID) { 719 assert(ID != 0); 720 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 721 LocIdxToIDNum.grow(NewIdx); 722 LocIdxToLocID.grow(NewIdx); 723 724 // Default: it's an mphi. 725 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 726 // Was this reg ever touched by a regmask? 727 for (const auto &MaskPair : reverse(Masks)) { 728 if (MaskPair.first->clobbersPhysReg(ID)) { 729 // There was an earlier def we skipped. 730 ValNum = {CurBB, MaskPair.second, NewIdx}; 731 break; 732 } 733 } 734 735 LocIdxToIDNum[NewIdx] = ValNum; 736 LocIdxToLocID[NewIdx] = ID; 737 return NewIdx; 738 } 739 740 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 741 unsigned InstID) { 742 // Def any register we track have that isn't preserved. The regmask 743 // terminates the liveness of a register, meaning its value can't be 744 // relied upon -- we represent this by giving it a new value. 745 for (auto Location : locations()) { 746 unsigned ID = LocIdxToLocID[Location.Idx]; 747 // Don't clobber SP, even if the mask says it's clobbered. 748 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) 749 defReg(ID, CurBB, InstID); 750 } 751 Masks.push_back(std::make_pair(MO, InstID)); 752 } 753 754 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 755 SpillLocationNo SpillID(SpillLocs.idFor(L)); 756 if (SpillID.id() == 0) { 757 // Spill location is untracked: create record for this one, and all 758 // subregister slots too. 759 SpillID = SpillLocationNo(SpillLocs.insert(L)); 760 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { 761 unsigned L = getSpillIDWithIdx(SpillID, StackIdx); 762 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 763 LocIdxToIDNum.grow(Idx); 764 LocIdxToLocID.grow(Idx); 765 LocIDToLocIdx.push_back(Idx); 766 LocIdxToLocID[Idx] = L; 767 // Initialize to PHI value; corresponds to the location's live-in value 768 // during transfer function construction. 769 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); 770 } 771 } 772 return SpillID; 773 } 774 775 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 776 unsigned ID = LocIdxToLocID[Idx]; 777 if (ID >= NumRegs) { 778 StackSlotPos Pos = locIDToSpillIdx(ID); 779 ID -= NumRegs; 780 unsigned Slot = ID / NumSlotIdxes; 781 return Twine("slot ") 782 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first) 783 .concat(Twine(" offs ").concat(Twine(Pos.second)))))) 784 .str(); 785 } else { 786 return TRI.getRegAsmName(ID).str(); 787 } 788 } 789 790 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 791 std::string DefName = LocIdxToName(Num.getLoc()); 792 return Num.asString(DefName); 793 } 794 795 #ifndef NDEBUG 796 LLVM_DUMP_METHOD void MLocTracker::dump() { 797 for (auto Location : locations()) { 798 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 799 std::string DefName = Location.Value.asString(MLocName); 800 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 801 } 802 } 803 804 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 805 for (auto Location : locations()) { 806 std::string foo = LocIdxToName(Location.Idx); 807 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 808 } 809 } 810 #endif 811 812 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 813 const DebugVariable &Var, 814 const DbgValueProperties &Properties) { 815 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 816 Var.getVariable()->getScope(), 817 const_cast<DILocation *>(Var.getInlinedAt())); 818 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 819 820 const DIExpression *Expr = Properties.DIExpr; 821 if (!MLoc) { 822 // No location -> DBG_VALUE $noreg 823 MIB.addReg(0); 824 MIB.addReg(0); 825 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 826 unsigned LocID = LocIdxToLocID[*MLoc]; 827 SpillLocationNo SpillID = locIDToSpill(LocID); 828 StackSlotPos StackIdx = locIDToSpillIdx(LocID); 829 unsigned short Offset = StackIdx.second; 830 831 // TODO: support variables that are located in spill slots, with non-zero 832 // offsets from the start of the spill slot. It would require some more 833 // complex DIExpression calculations. This doesn't seem to be produced by 834 // LLVM right now, so don't try and support it. 835 // Accept no-subregister slots and subregisters where the offset is zero. 836 // The consumer should already have type information to work out how large 837 // the variable is. 838 if (Offset == 0) { 839 const SpillLoc &Spill = SpillLocs[SpillID.id()]; 840 Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset, 841 Spill.SpillOffset); 842 unsigned Base = Spill.SpillBase; 843 MIB.addReg(Base); 844 MIB.addImm(0); 845 846 // Being on the stack makes this location indirect; if it was _already_ 847 // indirect though, we need to add extra indirection. See this test for 848 // a scenario where this happens: 849 // llvm/test/DebugInfo/X86/spill-nontrivial-param.ll 850 if (Properties.Indirect) { 851 std::vector<uint64_t> Elts = {dwarf::DW_OP_deref}; 852 Expr = DIExpression::append(Expr, Elts); 853 } 854 } else { 855 // This is a stack location with a weird subregister offset: emit an undef 856 // DBG_VALUE instead. 857 MIB.addReg(0); 858 MIB.addReg(0); 859 } 860 } else { 861 // Non-empty, non-stack slot, must be a plain register. 862 unsigned LocID = LocIdxToLocID[*MLoc]; 863 MIB.addReg(LocID); 864 if (Properties.Indirect) 865 MIB.addImm(0); 866 else 867 MIB.addReg(0); 868 } 869 870 MIB.addMetadata(Var.getVariable()); 871 MIB.addMetadata(Expr); 872 return MIB; 873 } 874 875 /// Default construct and initialize the pass. 876 InstrRefBasedLDV::InstrRefBasedLDV() {} 877 878 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 879 unsigned Reg = MTracker->LocIdxToLocID[L]; 880 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 881 if (CalleeSavedRegs.test(*RAI)) 882 return true; 883 return false; 884 } 885 886 //===----------------------------------------------------------------------===// 887 // Debug Range Extension Implementation 888 //===----------------------------------------------------------------------===// 889 890 #ifndef NDEBUG 891 // Something to restore in the future. 892 // void InstrRefBasedLDV::printVarLocInMBB(..) 893 #endif 894 895 SpillLocationNo 896 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 897 assert(MI.hasOneMemOperand() && 898 "Spill instruction does not have exactly one memory operand?"); 899 auto MMOI = MI.memoperands_begin(); 900 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 901 assert(PVal->kind() == PseudoSourceValue::FixedStack && 902 "Inconsistent memory operand in spill instruction"); 903 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 904 const MachineBasicBlock *MBB = MI.getParent(); 905 Register Reg; 906 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 907 return MTracker->getOrTrackSpillLoc({Reg, Offset}); 908 } 909 910 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { 911 SpillLocationNo SpillLoc = extractSpillBaseRegAndOffset(MI); 912 913 // Where in the stack slot is this value defined -- i.e., what size of value 914 // is this? An important question, because it could be loaded into a register 915 // from the stack at some point. Happily the memory operand will tell us 916 // the size written to the stack. 917 auto *MemOperand = *MI.memoperands_begin(); 918 unsigned SizeInBits = MemOperand->getSizeInBits(); 919 920 // Find that position in the stack indexes we're tracking. 921 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0}); 922 if (IdxIt == MTracker->StackSlotIdxes.end()) 923 // That index is not tracked. This is suprising, and unlikely to ever 924 // occur, but the safe action is to indicate the variable is optimised out. 925 return None; 926 927 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second); 928 return MTracker->getSpillMLoc(SpillID); 929 } 930 931 /// End all previous ranges related to @MI and start a new range from @MI 932 /// if it is a DBG_VALUE instr. 933 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 934 if (!MI.isDebugValue()) 935 return false; 936 937 const DILocalVariable *Var = MI.getDebugVariable(); 938 const DIExpression *Expr = MI.getDebugExpression(); 939 const DILocation *DebugLoc = MI.getDebugLoc(); 940 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 941 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 942 "Expected inlined-at fields to agree"); 943 944 DebugVariable V(Var, Expr, InlinedAt); 945 DbgValueProperties Properties(MI); 946 947 // If there are no instructions in this lexical scope, do no location tracking 948 // at all, this variable shouldn't get a legitimate location range. 949 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 950 if (Scope == nullptr) 951 return true; // handled it; by doing nothing 952 953 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 954 // contribute to locations in this block, but don't propagate further. 955 // Interpret it like a DBG_VALUE $noreg. 956 if (MI.isDebugValueList()) { 957 if (VTracker) 958 VTracker->defVar(MI, Properties, None); 959 if (TTracker) 960 TTracker->redefVar(MI, Properties, None); 961 return true; 962 } 963 964 const MachineOperand &MO = MI.getOperand(0); 965 966 // MLocTracker needs to know that this register is read, even if it's only 967 // read by a debug inst. 968 if (MO.isReg() && MO.getReg() != 0) 969 (void)MTracker->readReg(MO.getReg()); 970 971 // If we're preparing for the second analysis (variables), the machine value 972 // locations are already solved, and we report this DBG_VALUE and the value 973 // it refers to to VLocTracker. 974 if (VTracker) { 975 if (MO.isReg()) { 976 // Feed defVar the new variable location, or if this is a 977 // DBG_VALUE $noreg, feed defVar None. 978 if (MO.getReg()) 979 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 980 else 981 VTracker->defVar(MI, Properties, None); 982 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 983 MI.getOperand(0).isCImm()) { 984 VTracker->defVar(MI, MI.getOperand(0)); 985 } 986 } 987 988 // If performing final tracking of transfers, report this variable definition 989 // to the TransferTracker too. 990 if (TTracker) 991 TTracker->redefVar(MI); 992 return true; 993 } 994 995 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 996 ValueIDNum **MLiveOuts, 997 ValueIDNum **MLiveIns) { 998 if (!MI.isDebugRef()) 999 return false; 1000 1001 // Only handle this instruction when we are building the variable value 1002 // transfer function. 1003 if (!VTracker) 1004 return false; 1005 1006 unsigned InstNo = MI.getOperand(0).getImm(); 1007 unsigned OpNo = MI.getOperand(1).getImm(); 1008 1009 const DILocalVariable *Var = MI.getDebugVariable(); 1010 const DIExpression *Expr = MI.getDebugExpression(); 1011 const DILocation *DebugLoc = MI.getDebugLoc(); 1012 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1013 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1014 "Expected inlined-at fields to agree"); 1015 1016 DebugVariable V(Var, Expr, InlinedAt); 1017 1018 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1019 if (Scope == nullptr) 1020 return true; // Handled by doing nothing. This variable is never in scope. 1021 1022 const MachineFunction &MF = *MI.getParent()->getParent(); 1023 1024 // Various optimizations may have happened to the value during codegen, 1025 // recorded in the value substitution table. Apply any substitutions to 1026 // the instruction / operand number in this DBG_INSTR_REF, and collect 1027 // any subregister extractions performed during optimization. 1028 1029 // Create dummy substitution with Src set, for lookup. 1030 auto SoughtSub = 1031 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1032 1033 SmallVector<unsigned, 4> SeenSubregs; 1034 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1035 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1036 LowerBoundIt->Src == SoughtSub.Src) { 1037 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1038 SoughtSub.Src = LowerBoundIt->Dest; 1039 if (unsigned Subreg = LowerBoundIt->Subreg) 1040 SeenSubregs.push_back(Subreg); 1041 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1042 } 1043 1044 // Default machine value number is <None> -- if no instruction defines 1045 // the corresponding value, it must have been optimized out. 1046 Optional<ValueIDNum> NewID = None; 1047 1048 // Try to lookup the instruction number, and find the machine value number 1049 // that it defines. It could be an instruction, or a PHI. 1050 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1051 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1052 DebugPHINumToValue.end(), InstNo); 1053 if (InstrIt != DebugInstrNumToInstr.end()) { 1054 const MachineInstr &TargetInstr = *InstrIt->second.first; 1055 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1056 1057 // Pick out the designated operand. It might be a memory reference, if 1058 // a register def was folded into a stack store. 1059 if (OpNo == MachineFunction::DebugOperandMemNumber && 1060 TargetInstr.hasOneMemOperand()) { 1061 Optional<LocIdx> L = findLocationForMemOperand(TargetInstr); 1062 if (L) 1063 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); 1064 } else if (OpNo != MachineFunction::DebugOperandMemNumber) { 1065 assert(OpNo < TargetInstr.getNumOperands()); 1066 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1067 1068 // Today, this can only be a register. 1069 assert(MO.isReg() && MO.isDef()); 1070 1071 unsigned LocID = MTracker->getLocID(MO.getReg()); 1072 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1073 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1074 } 1075 // else: NewID is left as None. 1076 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1077 // It's actually a PHI value. Which value it is might not be obvious, use 1078 // the resolver helper to find out. 1079 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1080 MI, InstNo); 1081 } 1082 1083 // Apply any subregister extractions, in reverse. We might have seen code 1084 // like this: 1085 // CALL64 @foo, implicit-def $rax 1086 // %0:gr64 = COPY $rax 1087 // %1:gr32 = COPY %0.sub_32bit 1088 // %2:gr16 = COPY %1.sub_16bit 1089 // %3:gr8 = COPY %2.sub_8bit 1090 // In which case each copy would have been recorded as a substitution with 1091 // a subregister qualifier. Apply those qualifiers now. 1092 if (NewID && !SeenSubregs.empty()) { 1093 unsigned Offset = 0; 1094 unsigned Size = 0; 1095 1096 // Look at each subregister that we passed through, and progressively 1097 // narrow in, accumulating any offsets that occur. Substitutions should 1098 // only ever be the same or narrower width than what they read from; 1099 // iterate in reverse order so that we go from wide to small. 1100 for (unsigned Subreg : reverse(SeenSubregs)) { 1101 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1102 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1103 Offset += ThisOffset; 1104 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1105 } 1106 1107 // If that worked, look for an appropriate subregister with the register 1108 // where the define happens. Don't look at values that were defined during 1109 // a stack write: we can't currently express register locations within 1110 // spills. 1111 LocIdx L = NewID->getLoc(); 1112 if (NewID && !MTracker->isSpill(L)) { 1113 // Find the register class for the register where this def happened. 1114 // FIXME: no index for this? 1115 Register Reg = MTracker->LocIdxToLocID[L]; 1116 const TargetRegisterClass *TRC = nullptr; 1117 for (auto *TRCI : TRI->regclasses()) 1118 if (TRCI->contains(Reg)) 1119 TRC = TRCI; 1120 assert(TRC && "Couldn't find target register class?"); 1121 1122 // If the register we have isn't the right size or in the right place, 1123 // Try to find a subregister inside it. 1124 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1125 if (Size != MainRegSize || Offset) { 1126 // Enumerate all subregisters, searching. 1127 Register NewReg = 0; 1128 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1129 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1130 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1131 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1132 if (SubregSize == Size && SubregOffset == Offset) { 1133 NewReg = *SRI; 1134 break; 1135 } 1136 } 1137 1138 // If we didn't find anything: there's no way to express our value. 1139 if (!NewReg) { 1140 NewID = None; 1141 } else { 1142 // Re-state the value as being defined within the subregister 1143 // that we found. 1144 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1145 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1146 } 1147 } 1148 } else { 1149 // If we can't handle subregisters, unset the new value. 1150 NewID = None; 1151 } 1152 } 1153 1154 // We, we have a value number or None. Tell the variable value tracker about 1155 // it. The rest of this LiveDebugValues implementation acts exactly the same 1156 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1157 // aren't immediately available). 1158 DbgValueProperties Properties(Expr, false); 1159 VTracker->defVar(MI, Properties, NewID); 1160 1161 // If we're on the final pass through the function, decompose this INSTR_REF 1162 // into a plain DBG_VALUE. 1163 if (!TTracker) 1164 return true; 1165 1166 // Pick a location for the machine value number, if such a location exists. 1167 // (This information could be stored in TransferTracker to make it faster). 1168 Optional<LocIdx> FoundLoc = None; 1169 for (auto Location : MTracker->locations()) { 1170 LocIdx CurL = Location.Idx; 1171 ValueIDNum ID = MTracker->readMLoc(CurL); 1172 if (NewID && ID == NewID) { 1173 // If this is the first location with that value, pick it. Otherwise, 1174 // consider whether it's a "longer term" location. 1175 if (!FoundLoc) { 1176 FoundLoc = CurL; 1177 continue; 1178 } 1179 1180 if (MTracker->isSpill(CurL)) 1181 FoundLoc = CurL; // Spills are a longer term location. 1182 else if (!MTracker->isSpill(*FoundLoc) && 1183 !MTracker->isSpill(CurL) && 1184 !isCalleeSaved(*FoundLoc) && 1185 isCalleeSaved(CurL)) 1186 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1187 } 1188 } 1189 1190 // Tell transfer tracker that the variable value has changed. 1191 TTracker->redefVar(MI, Properties, FoundLoc); 1192 1193 // If there was a value with no location; but the value is defined in a 1194 // later instruction in this block, this is a block-local use-before-def. 1195 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1196 NewID->getInst() > CurInst) 1197 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1198 1199 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1200 // This DBG_VALUE is potentially a $noreg / undefined location, if 1201 // FoundLoc is None. 1202 // (XXX -- could morph the DBG_INSTR_REF in the future). 1203 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1204 TTracker->PendingDbgValues.push_back(DbgMI); 1205 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1206 return true; 1207 } 1208 1209 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1210 if (!MI.isDebugPHI()) 1211 return false; 1212 1213 // Analyse these only when solving the machine value location problem. 1214 if (VTracker || TTracker) 1215 return true; 1216 1217 // First operand is the value location, either a stack slot or register. 1218 // Second is the debug instruction number of the original PHI. 1219 const MachineOperand &MO = MI.getOperand(0); 1220 unsigned InstrNum = MI.getOperand(1).getImm(); 1221 1222 if (MO.isReg()) { 1223 // The value is whatever's currently in the register. Read and record it, 1224 // to be analysed later. 1225 Register Reg = MO.getReg(); 1226 ValueIDNum Num = MTracker->readReg(Reg); 1227 auto PHIRec = DebugPHIRecord( 1228 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1229 DebugPHINumToValue.push_back(PHIRec); 1230 1231 // Ensure this register is tracked. 1232 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1233 MTracker->lookupOrTrackRegister(*RAI); 1234 } else { 1235 // The value is whatever's in this stack slot. 1236 assert(MO.isFI()); 1237 unsigned FI = MO.getIndex(); 1238 1239 // If the stack slot is dead, then this was optimized away. 1240 // FIXME: stack slot colouring should account for slots that get merged. 1241 if (MFI->isDeadObjectIndex(FI)) 1242 return true; 1243 1244 // Identify this spill slot, ensure it's tracked. 1245 Register Base; 1246 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1247 SpillLoc SL = {Base, Offs}; 1248 SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL); 1249 1250 // Problem: what value should we extract from the stack? LLVM does not 1251 // record what size the last store to the slot was, and it would become 1252 // sketchy after stack slot colouring anyway. Take a look at what values 1253 // are stored on the stack, and pick the largest one that wasn't def'd 1254 // by a spill (i.e., the value most likely to have been def'd in a register 1255 // and then spilt. 1256 std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8}; 1257 Optional<ValueIDNum> Result = None; 1258 Optional<LocIdx> SpillLoc = None; 1259 for (unsigned CS : CandidateSizes) { 1260 unsigned SpillID = MTracker->getLocID(SpillNo, {CS, 0}); 1261 SpillLoc = MTracker->getSpillMLoc(SpillID); 1262 ValueIDNum Val = MTracker->readMLoc(*SpillLoc); 1263 // If this value was defined in it's own position, then it was probably 1264 // an aliasing index of a small value that was spilt. 1265 if (Val.getLoc() != SpillLoc->asU64()) { 1266 Result = Val; 1267 break; 1268 } 1269 } 1270 1271 // If we didn't find anything, we're probably looking at a PHI, or a memory 1272 // store folded into an instruction. FIXME: Take a guess that's it's 64 1273 // bits. This isn't ideal, but tracking the size that the spill is 1274 // "supposed" to be is more complex, and benefits a small number of 1275 // locations. 1276 if (!Result) { 1277 unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0}); 1278 SpillLoc = MTracker->getSpillMLoc(SpillID); 1279 Result = MTracker->readMLoc(*SpillLoc); 1280 } 1281 1282 // Record this DBG_PHI for later analysis. 1283 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc}); 1284 DebugPHINumToValue.push_back(DbgPHI); 1285 } 1286 1287 return true; 1288 } 1289 1290 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1291 // Meta Instructions do not affect the debug liveness of any register they 1292 // define. 1293 if (MI.isImplicitDef()) { 1294 // Except when there's an implicit def, and the location it's defining has 1295 // no value number. The whole point of an implicit def is to announce that 1296 // the register is live, without be specific about it's value. So define 1297 // a value if there isn't one already. 1298 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1299 // Has a legitimate value -> ignore the implicit def. 1300 if (Num.getLoc() != 0) 1301 return; 1302 // Otherwise, def it here. 1303 } else if (MI.isMetaInstruction()) 1304 return; 1305 1306 // We always ignore SP defines on call instructions, they don't actually 1307 // change the value of the stack pointer... except for win32's _chkstk. This 1308 // is rare: filter quickly for the common case (no stack adjustments, not a 1309 // call, etc). If it is a call that modifies SP, recognise the SP register 1310 // defs. 1311 bool CallChangesSP = false; 1312 if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() && 1313 !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data())) 1314 CallChangesSP = true; 1315 1316 // Test whether we should ignore a def of this register due to it being part 1317 // of the stack pointer. 1318 auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool { 1319 if (CallChangesSP) 1320 return false; 1321 return MI.isCall() && MTracker->SPAliases.count(R); 1322 }; 1323 1324 // Find the regs killed by MI, and find regmasks of preserved regs. 1325 // Max out the number of statically allocated elements in `DeadRegs`, as this 1326 // prevents fallback to std::set::count() operations. 1327 SmallSet<uint32_t, 32> DeadRegs; 1328 SmallVector<const uint32_t *, 4> RegMasks; 1329 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1330 for (const MachineOperand &MO : MI.operands()) { 1331 // Determine whether the operand is a register def. 1332 if (MO.isReg() && MO.isDef() && MO.getReg() && 1333 Register::isPhysicalRegister(MO.getReg()) && 1334 !IgnoreSPAlias(MO.getReg())) { 1335 // Remove ranges of all aliased registers. 1336 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1337 // FIXME: Can we break out of this loop early if no insertion occurs? 1338 DeadRegs.insert(*RAI); 1339 } else if (MO.isRegMask()) { 1340 RegMasks.push_back(MO.getRegMask()); 1341 RegMaskPtrs.push_back(&MO); 1342 } 1343 } 1344 1345 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1346 for (uint32_t DeadReg : DeadRegs) 1347 MTracker->defReg(DeadReg, CurBB, CurInst); 1348 1349 for (auto *MO : RegMaskPtrs) 1350 MTracker->writeRegMask(MO, CurBB, CurInst); 1351 1352 // If this instruction writes to a spill slot, def that slot. 1353 if (hasFoldedStackStore(MI)) { 1354 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1355 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1356 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1357 LocIdx L = MTracker->getSpillMLoc(SpillID); 1358 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L)); 1359 } 1360 } 1361 1362 if (!TTracker) 1363 return; 1364 1365 // When committing variable values to locations: tell transfer tracker that 1366 // we've clobbered things. It may be able to recover the variable from a 1367 // different location. 1368 1369 // Inform TTracker about any direct clobbers. 1370 for (uint32_t DeadReg : DeadRegs) { 1371 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1372 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1373 } 1374 1375 // Look for any clobbers performed by a register mask. Only test locations 1376 // that are actually being tracked. 1377 for (auto L : MTracker->locations()) { 1378 // Stack locations can't be clobbered by regmasks. 1379 if (MTracker->isSpill(L.Idx)) 1380 continue; 1381 1382 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1383 if (IgnoreSPAlias(Reg)) 1384 continue; 1385 1386 for (auto *MO : RegMaskPtrs) 1387 if (MO->clobbersPhysReg(Reg)) 1388 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1389 } 1390 1391 // Tell TTracker about any folded stack store. 1392 if (hasFoldedStackStore(MI)) { 1393 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1394 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1395 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1396 LocIdx L = MTracker->getSpillMLoc(SpillID); 1397 TTracker->clobberMloc(L, MI.getIterator(), true); 1398 } 1399 } 1400 } 1401 1402 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1403 // In all circumstances, re-def all aliases. It's definitely a new value now. 1404 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) 1405 MTracker->defReg(*RAI, CurBB, CurInst); 1406 1407 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1408 MTracker->setReg(DstRegNum, SrcValue); 1409 1410 // Copy subregisters from one location to another. 1411 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1412 unsigned SrcSubReg = SRI.getSubReg(); 1413 unsigned SubRegIdx = SRI.getSubRegIndex(); 1414 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1415 if (!DstSubReg) 1416 continue; 1417 1418 // Do copy. There are two matching subregisters, the source value should 1419 // have been def'd when the super-reg was, the latter might not be tracked 1420 // yet. 1421 // This will force SrcSubReg to be tracked, if it isn't yet. Will read 1422 // mphi values if it wasn't tracked. 1423 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); 1424 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); 1425 (void)SrcL; 1426 (void)DstL; 1427 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); 1428 1429 MTracker->setReg(DstSubReg, CpyValue); 1430 } 1431 } 1432 1433 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1434 MachineFunction *MF) { 1435 // TODO: Handle multiple stores folded into one. 1436 if (!MI.hasOneMemOperand()) 1437 return false; 1438 1439 // Reject any memory operand that's aliased -- we can't guarantee its value. 1440 auto MMOI = MI.memoperands_begin(); 1441 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1442 if (PVal->isAliased(MFI)) 1443 return false; 1444 1445 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1446 return false; // This is not a spill instruction, since no valid size was 1447 // returned from either function. 1448 1449 return true; 1450 } 1451 1452 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1453 MachineFunction *MF, unsigned &Reg) { 1454 if (!isSpillInstruction(MI, MF)) 1455 return false; 1456 1457 int FI; 1458 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1459 return Reg != 0; 1460 } 1461 1462 Optional<SpillLocationNo> 1463 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1464 MachineFunction *MF, unsigned &Reg) { 1465 if (!MI.hasOneMemOperand()) 1466 return None; 1467 1468 // FIXME: Handle folded restore instructions with more than one memory 1469 // operand. 1470 if (MI.getRestoreSize(TII)) { 1471 Reg = MI.getOperand(0).getReg(); 1472 return extractSpillBaseRegAndOffset(MI); 1473 } 1474 return None; 1475 } 1476 1477 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1478 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1479 // limitations under the new model. Therefore, when comparing them, compare 1480 // versions that don't attempt spills or restores at all. 1481 if (EmulateOldLDV) 1482 return false; 1483 1484 // Strictly limit ourselves to plain loads and stores, not all instructions 1485 // that can access the stack. 1486 int DummyFI = -1; 1487 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) && 1488 !TII->isLoadFromStackSlotPostFE(MI, DummyFI)) 1489 return false; 1490 1491 MachineFunction *MF = MI.getMF(); 1492 unsigned Reg; 1493 1494 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1495 1496 // Strictly limit ourselves to plain loads and stores, not all instructions 1497 // that can access the stack. 1498 int FIDummy; 1499 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) && 1500 !TII->isLoadFromStackSlotPostFE(MI, FIDummy)) 1501 return false; 1502 1503 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1504 // written to, terminate that variable location. The value in memory 1505 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1506 if (isSpillInstruction(MI, MF)) { 1507 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1508 1509 // Un-set this location and clobber, so that earlier locations don't 1510 // continue past this store. 1511 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { 1512 unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx); 1513 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); 1514 if (!MLoc) 1515 continue; 1516 1517 // We need to over-write the stack slot with something (here, a def at 1518 // this instruction) to ensure no values are preserved in this stack slot 1519 // after the spill. It also prevents TTracker from trying to recover the 1520 // location and re-installing it in the same place. 1521 ValueIDNum Def(CurBB, CurInst, *MLoc); 1522 MTracker->setMLoc(*MLoc, Def); 1523 if (TTracker) 1524 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1525 } 1526 } 1527 1528 // Try to recognise spill and restore instructions that may transfer a value. 1529 if (isLocationSpill(MI, MF, Reg)) { 1530 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1531 1532 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { 1533 auto ReadValue = MTracker->readReg(SrcReg); 1534 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); 1535 MTracker->setMLoc(DstLoc, ReadValue); 1536 1537 if (TTracker) { 1538 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg); 1539 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator()); 1540 } 1541 }; 1542 1543 // Then, transfer subreg bits. 1544 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1545 // Ensure this reg is tracked, 1546 (void)MTracker->lookupOrTrackRegister(*SRI); 1547 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI); 1548 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx); 1549 DoTransfer(*SRI, SpillID); 1550 } 1551 1552 // Directly lookup size of main source reg, and transfer. 1553 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1554 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1555 DoTransfer(Reg, SpillID); 1556 } else { 1557 Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg); 1558 if (!OptLoc) 1559 return false; 1560 SpillLocationNo Loc = *OptLoc; 1561 1562 // Assumption: we're reading from the base of the stack slot, not some 1563 // offset into it. It seems very unlikely LLVM would ever generate 1564 // restores where this wasn't true. This then becomes a question of what 1565 // subregisters in the destination register line up with positions in the 1566 // stack slot. 1567 1568 // Def all registers that alias the destination. 1569 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1570 MTracker->defReg(*RAI, CurBB, CurInst); 1571 1572 // Now find subregisters within the destination register, and load values 1573 // from stack slot positions. 1574 auto DoTransfer = [&](Register DestReg, unsigned SpillID) { 1575 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); 1576 auto ReadValue = MTracker->readMLoc(SrcIdx); 1577 MTracker->setReg(DestReg, ReadValue); 1578 1579 if (TTracker) { 1580 LocIdx DstLoc = MTracker->getRegMLoc(DestReg); 1581 TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator()); 1582 } 1583 }; 1584 1585 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1586 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1587 unsigned SpillID = MTracker->getLocID(Loc, Subreg); 1588 DoTransfer(*SRI, SpillID); 1589 } 1590 1591 // Directly look up this registers slot idx by size, and transfer. 1592 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1593 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1594 DoTransfer(Reg, SpillID); 1595 } 1596 return true; 1597 } 1598 1599 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1600 auto DestSrc = TII->isCopyInstr(MI); 1601 if (!DestSrc) 1602 return false; 1603 1604 const MachineOperand *DestRegOp = DestSrc->Destination; 1605 const MachineOperand *SrcRegOp = DestSrc->Source; 1606 1607 auto isCalleeSavedReg = [&](unsigned Reg) { 1608 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1609 if (CalleeSavedRegs.test(*RAI)) 1610 return true; 1611 return false; 1612 }; 1613 1614 Register SrcReg = SrcRegOp->getReg(); 1615 Register DestReg = DestRegOp->getReg(); 1616 1617 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1618 if (SrcReg == DestReg) 1619 return true; 1620 1621 // For emulating VarLocBasedImpl: 1622 // We want to recognize instructions where destination register is callee 1623 // saved register. If register that could be clobbered by the call is 1624 // included, there would be a great chance that it is going to be clobbered 1625 // soon. It is more likely that previous register, which is callee saved, is 1626 // going to stay unclobbered longer, even if it is killed. 1627 // 1628 // For InstrRefBasedImpl, we can track multiple locations per value, so 1629 // ignore this condition. 1630 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1631 return false; 1632 1633 // InstrRefBasedImpl only followed killing copies. 1634 if (EmulateOldLDV && !SrcRegOp->isKill()) 1635 return false; 1636 1637 // Copy MTracker info, including subregs if available. 1638 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1639 1640 // Only produce a transfer of DBG_VALUE within a block where old LDV 1641 // would have. We might make use of the additional value tracking in some 1642 // other way, later. 1643 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1644 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1645 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1646 1647 // VarLocBasedImpl would quit tracking the old location after copying. 1648 if (EmulateOldLDV && SrcReg != DestReg) 1649 MTracker->defReg(SrcReg, CurBB, CurInst); 1650 1651 // Finally, the copy might have clobbered variables based on the destination 1652 // register. Tell TTracker about it, in case a backup location exists. 1653 if (TTracker) { 1654 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1655 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1656 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1657 } 1658 } 1659 1660 return true; 1661 } 1662 1663 /// Accumulate a mapping between each DILocalVariable fragment and other 1664 /// fragments of that DILocalVariable which overlap. This reduces work during 1665 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1666 /// known-to-overlap fragments are present". 1667 /// \param MI A previously unprocessed debug instruction to analyze for 1668 /// fragment usage. 1669 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1670 assert(MI.isDebugValue() || MI.isDebugRef()); 1671 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1672 MI.getDebugLoc()->getInlinedAt()); 1673 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1674 1675 // If this is the first sighting of this variable, then we are guaranteed 1676 // there are currently no overlapping fragments either. Initialize the set 1677 // of seen fragments, record no overlaps for the current one, and return. 1678 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1679 if (SeenIt == SeenFragments.end()) { 1680 SmallSet<FragmentInfo, 4> OneFragment; 1681 OneFragment.insert(ThisFragment); 1682 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1683 1684 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1685 return; 1686 } 1687 1688 // If this particular Variable/Fragment pair already exists in the overlap 1689 // map, it has already been accounted for. 1690 auto IsInOLapMap = 1691 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1692 if (!IsInOLapMap.second) 1693 return; 1694 1695 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1696 auto &AllSeenFragments = SeenIt->second; 1697 1698 // Otherwise, examine all other seen fragments for this variable, with "this" 1699 // fragment being a previously unseen fragment. Record any pair of 1700 // overlapping fragments. 1701 for (auto &ASeenFragment : AllSeenFragments) { 1702 // Does this previously seen fragment overlap? 1703 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1704 // Yes: Mark the current fragment as being overlapped. 1705 ThisFragmentsOverlaps.push_back(ASeenFragment); 1706 // Mark the previously seen fragment as being overlapped by the current 1707 // one. 1708 auto ASeenFragmentsOverlaps = 1709 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1710 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1711 "Previously seen var fragment has no vector of overlaps"); 1712 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1713 } 1714 } 1715 1716 AllSeenFragments.insert(ThisFragment); 1717 } 1718 1719 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 1720 ValueIDNum **MLiveIns) { 1721 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1722 // none of these should we interpret it's register defs as new value 1723 // definitions. 1724 if (transferDebugValue(MI)) 1725 return; 1726 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1727 return; 1728 if (transferDebugPHI(MI)) 1729 return; 1730 if (transferRegisterCopy(MI)) 1731 return; 1732 if (transferSpillOrRestoreInst(MI)) 1733 return; 1734 transferRegisterDef(MI); 1735 } 1736 1737 void InstrRefBasedLDV::produceMLocTransferFunction( 1738 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1739 unsigned MaxNumBlocks) { 1740 // Because we try to optimize around register mask operands by ignoring regs 1741 // that aren't currently tracked, we set up something ugly for later: RegMask 1742 // operands that are seen earlier than the first use of a register, still need 1743 // to clobber that register in the transfer function. But this information 1744 // isn't actively recorded. Instead, we track each RegMask used in each block, 1745 // and accumulated the clobbered but untracked registers in each block into 1746 // the following bitvector. Later, if new values are tracked, we can add 1747 // appropriate clobbers. 1748 SmallVector<BitVector, 32> BlockMasks; 1749 BlockMasks.resize(MaxNumBlocks); 1750 1751 // Reserve one bit per register for the masks described above. 1752 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1753 for (auto &BV : BlockMasks) 1754 BV.resize(TRI->getNumRegs(), true); 1755 1756 // Step through all instructions and inhale the transfer function. 1757 for (auto &MBB : MF) { 1758 // Object fields that are read by trackers to know where we are in the 1759 // function. 1760 CurBB = MBB.getNumber(); 1761 CurInst = 1; 1762 1763 // Set all machine locations to a PHI value. For transfer function 1764 // production only, this signifies the live-in value to the block. 1765 MTracker->reset(); 1766 MTracker->setMPhis(CurBB); 1767 1768 // Step through each instruction in this block. 1769 for (auto &MI : MBB) { 1770 process(MI); 1771 // Also accumulate fragment map. 1772 if (MI.isDebugValue() || MI.isDebugRef()) 1773 accumulateFragmentMap(MI); 1774 1775 // Create a map from the instruction number (if present) to the 1776 // MachineInstr and its position. 1777 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1778 auto InstrAndPos = std::make_pair(&MI, CurInst); 1779 auto InsertResult = 1780 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1781 1782 // There should never be duplicate instruction numbers. 1783 assert(InsertResult.second); 1784 (void)InsertResult; 1785 } 1786 1787 ++CurInst; 1788 } 1789 1790 // Produce the transfer function, a map of machine location to new value. If 1791 // any machine location has the live-in phi value from the start of the 1792 // block, it's live-through and doesn't need recording in the transfer 1793 // function. 1794 for (auto Location : MTracker->locations()) { 1795 LocIdx Idx = Location.Idx; 1796 ValueIDNum &P = Location.Value; 1797 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1798 continue; 1799 1800 // Insert-or-update. 1801 auto &TransferMap = MLocTransfer[CurBB]; 1802 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1803 if (!Result.second) 1804 Result.first->second = P; 1805 } 1806 1807 // Accumulate any bitmask operands into the clobberred reg mask for this 1808 // block. 1809 for (auto &P : MTracker->Masks) { 1810 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1811 } 1812 } 1813 1814 // Compute a bitvector of all the registers that are tracked in this block. 1815 BitVector UsedRegs(TRI->getNumRegs()); 1816 for (auto Location : MTracker->locations()) { 1817 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1818 // Ignore stack slots, and aliases of the stack pointer. 1819 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) 1820 continue; 1821 UsedRegs.set(ID); 1822 } 1823 1824 // Check that any regmask-clobber of a register that gets tracked, is not 1825 // live-through in the transfer function. It needs to be clobbered at the 1826 // very least. 1827 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1828 BitVector &BV = BlockMasks[I]; 1829 BV.flip(); 1830 BV &= UsedRegs; 1831 // This produces all the bits that we clobber, but also use. Check that 1832 // they're all clobbered or at least set in the designated transfer 1833 // elem. 1834 for (unsigned Bit : BV.set_bits()) { 1835 unsigned ID = MTracker->getLocID(Bit); 1836 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1837 auto &TransferMap = MLocTransfer[I]; 1838 1839 // Install a value representing the fact that this location is effectively 1840 // written to in this block. As there's no reserved value, instead use 1841 // a value number that is never generated. Pick the value number for the 1842 // first instruction in the block, def'ing this location, which we know 1843 // this block never used anyway. 1844 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1845 auto Result = 1846 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1847 if (!Result.second) { 1848 ValueIDNum &ValueID = Result.first->second; 1849 if (ValueID.getBlock() == I && ValueID.isPHI()) 1850 // It was left as live-through. Set it to clobbered. 1851 ValueID = NotGeneratedNum; 1852 } 1853 } 1854 } 1855 } 1856 1857 bool InstrRefBasedLDV::mlocJoin( 1858 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1859 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 1860 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1861 bool Changed = false; 1862 1863 // Handle value-propagation when control flow merges on entry to a block. For 1864 // any location without a PHI already placed, the location has the same value 1865 // as its predecessors. If a PHI is placed, test to see whether it's now a 1866 // redundant PHI that we can eliminate. 1867 1868 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1869 for (auto Pred : MBB.predecessors()) 1870 BlockOrders.push_back(Pred); 1871 1872 // Visit predecessors in RPOT order. 1873 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1874 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1875 }; 1876 llvm::sort(BlockOrders, Cmp); 1877 1878 // Skip entry block. 1879 if (BlockOrders.size() == 0) 1880 return false; 1881 1882 // Step through all machine locations, look at each predecessor and test 1883 // whether we can eliminate redundant PHIs. 1884 for (auto Location : MTracker->locations()) { 1885 LocIdx Idx = Location.Idx; 1886 1887 // Pick out the first predecessors live-out value for this location. It's 1888 // guaranteed to not be a backedge, as we order by RPO. 1889 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1890 1891 // If we've already eliminated a PHI here, do no further checking, just 1892 // propagate the first live-in value into this block. 1893 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { 1894 if (InLocs[Idx.asU64()] != FirstVal) { 1895 InLocs[Idx.asU64()] = FirstVal; 1896 Changed |= true; 1897 } 1898 continue; 1899 } 1900 1901 // We're now examining a PHI to see whether it's un-necessary. Loop around 1902 // the other live-in values and test whether they're all the same. 1903 bool Disagree = false; 1904 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1905 const MachineBasicBlock *PredMBB = BlockOrders[I]; 1906 const ValueIDNum &PredLiveOut = 1907 OutLocs[PredMBB->getNumber()][Idx.asU64()]; 1908 1909 // Incoming values agree, continue trying to eliminate this PHI. 1910 if (FirstVal == PredLiveOut) 1911 continue; 1912 1913 // We can also accept a PHI value that feeds back into itself. 1914 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) 1915 continue; 1916 1917 // Live-out of a predecessor disagrees with the first predecessor. 1918 Disagree = true; 1919 } 1920 1921 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. 1922 if (!Disagree) { 1923 InLocs[Idx.asU64()] = FirstVal; 1924 Changed |= true; 1925 } 1926 } 1927 1928 // TODO: Reimplement NumInserted and NumRemoved. 1929 return Changed; 1930 } 1931 1932 void InstrRefBasedLDV::findStackIndexInterference( 1933 SmallVectorImpl<unsigned> &Slots) { 1934 // We could spend a bit of time finding the exact, minimal, set of stack 1935 // indexes that interfere with each other, much like reg units. Or, we can 1936 // rely on the fact that: 1937 // * The smallest / lowest index will interfere with everything at zero 1938 // offset, which will be the largest set of registers, 1939 // * Most indexes with non-zero offset will end up being interference units 1940 // anyway. 1941 // So just pick those out and return them. 1942 1943 // We can rely on a single-byte stack index existing already, because we 1944 // initialize them in MLocTracker. 1945 auto It = MTracker->StackSlotIdxes.find({8, 0}); 1946 assert(It != MTracker->StackSlotIdxes.end()); 1947 Slots.push_back(It->second); 1948 1949 // Find anything that has a non-zero offset and add that too. 1950 for (auto &Pair : MTracker->StackSlotIdxes) { 1951 // Is offset zero? If so, ignore. 1952 if (!Pair.first.second) 1953 continue; 1954 Slots.push_back(Pair.second); 1955 } 1956 } 1957 1958 void InstrRefBasedLDV::placeMLocPHIs( 1959 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1960 ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1961 SmallVector<unsigned, 4> StackUnits; 1962 findStackIndexInterference(StackUnits); 1963 1964 // To avoid repeatedly running the PHI placement algorithm, leverage the 1965 // fact that a def of register MUST also def its register units. Find the 1966 // units for registers, place PHIs for them, and then replicate them for 1967 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of 1968 // arguments) don't lead to register units being tracked, just place PHIs for 1969 // those registers directly. Stack slots have their own form of "unit", 1970 // store them to one side. 1971 SmallSet<Register, 32> RegUnitsToPHIUp; 1972 SmallSet<LocIdx, 32> NormalLocsToPHI; 1973 SmallSet<SpillLocationNo, 32> StackSlots; 1974 for (auto Location : MTracker->locations()) { 1975 LocIdx L = Location.Idx; 1976 if (MTracker->isSpill(L)) { 1977 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L])); 1978 continue; 1979 } 1980 1981 Register R = MTracker->LocIdxToLocID[L]; 1982 SmallSet<Register, 8> FoundRegUnits; 1983 bool AnyIllegal = false; 1984 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) { 1985 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){ 1986 if (!MTracker->isRegisterTracked(*URoot)) { 1987 // Not all roots were loaded into the tracking map: this register 1988 // isn't actually def'd anywhere, we only read from it. Generate PHIs 1989 // for this reg, but don't iterate units. 1990 AnyIllegal = true; 1991 } else { 1992 FoundRegUnits.insert(*URoot); 1993 } 1994 } 1995 } 1996 1997 if (AnyIllegal) { 1998 NormalLocsToPHI.insert(L); 1999 continue; 2000 } 2001 2002 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); 2003 } 2004 2005 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks 2006 // collection. 2007 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2008 auto CollectPHIsForLoc = [&](LocIdx L) { 2009 // Collect the set of defs. 2010 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2011 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2012 MachineBasicBlock *MBB = OrderToBB[I]; 2013 const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; 2014 if (TransferFunc.find(L) != TransferFunc.end()) 2015 DefBlocks.insert(MBB); 2016 } 2017 2018 // The entry block defs the location too: it's the live-in / argument value. 2019 // Only insert if there are other defs though; everything is trivially live 2020 // through otherwise. 2021 if (!DefBlocks.empty()) 2022 DefBlocks.insert(&*MF.begin()); 2023 2024 // Ask the SSA construction algorithm where we should put PHIs. Clear 2025 // anything that might have been hanging around from earlier. 2026 PHIBlocks.clear(); 2027 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); 2028 }; 2029 2030 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { 2031 for (const MachineBasicBlock *MBB : PHIBlocks) 2032 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 2033 }; 2034 2035 // For locations with no reg units, just place PHIs. 2036 for (LocIdx L : NormalLocsToPHI) { 2037 CollectPHIsForLoc(L); 2038 // Install those PHI values into the live-in value array. 2039 InstallPHIsAtLoc(L); 2040 } 2041 2042 // For stack slots, calculate PHIs for the equivalent of the units, then 2043 // install for each index. 2044 for (SpillLocationNo Slot : StackSlots) { 2045 for (unsigned Idx : StackUnits) { 2046 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx); 2047 LocIdx L = MTracker->getSpillMLoc(SpillID); 2048 CollectPHIsForLoc(L); 2049 InstallPHIsAtLoc(L); 2050 2051 // Find anything that aliases this stack index, install PHIs for it too. 2052 unsigned Size, Offset; 2053 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx]; 2054 for (auto &Pair : MTracker->StackSlotIdxes) { 2055 unsigned ThisSize, ThisOffset; 2056 std::tie(ThisSize, ThisOffset) = Pair.first; 2057 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) 2058 continue; 2059 2060 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second); 2061 LocIdx ThisL = MTracker->getSpillMLoc(ThisID); 2062 InstallPHIsAtLoc(ThisL); 2063 } 2064 } 2065 } 2066 2067 // For reg units, place PHIs, and then place them for any aliasing registers. 2068 for (Register R : RegUnitsToPHIUp) { 2069 LocIdx L = MTracker->lookupOrTrackRegister(R); 2070 CollectPHIsForLoc(L); 2071 2072 // Install those PHI values into the live-in value array. 2073 InstallPHIsAtLoc(L); 2074 2075 // Now find aliases and install PHIs for those. 2076 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { 2077 // Super-registers that are "above" the largest register read/written by 2078 // the function will alias, but will not be tracked. 2079 if (!MTracker->isRegisterTracked(*RAI)) 2080 continue; 2081 2082 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); 2083 InstallPHIsAtLoc(AliasLoc); 2084 } 2085 } 2086 } 2087 2088 void InstrRefBasedLDV::buildMLocValueMap( 2089 MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2090 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2091 std::priority_queue<unsigned int, std::vector<unsigned int>, 2092 std::greater<unsigned int>> 2093 Worklist, Pending; 2094 2095 // We track what is on the current and pending worklist to avoid inserting 2096 // the same thing twice. We could avoid this with a custom priority queue, 2097 // but this is probably not worth it. 2098 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2099 2100 // Initialize worklist with every block to be visited. Also produce list of 2101 // all blocks. 2102 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; 2103 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2104 Worklist.push(I); 2105 OnWorklist.insert(OrderToBB[I]); 2106 AllBlocks.insert(OrderToBB[I]); 2107 } 2108 2109 // Initialize entry block to PHIs. These represent arguments. 2110 for (auto Location : MTracker->locations()) 2111 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx); 2112 2113 MTracker->reset(); 2114 2115 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider 2116 // any machine-location that isn't live-through a block to be def'd in that 2117 // block. 2118 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); 2119 2120 // Propagate values to eliminate redundant PHIs. At the same time, this 2121 // produces the table of Block x Location => Value for the entry to each 2122 // block. 2123 // The kind of PHIs we can eliminate are, for example, where one path in a 2124 // conditional spills and restores a register, and the register still has 2125 // the same value once control flow joins, unbeknowns to the PHI placement 2126 // code. Propagating values allows us to identify such un-necessary PHIs and 2127 // remove them. 2128 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2129 while (!Worklist.empty() || !Pending.empty()) { 2130 // Vector for storing the evaluated block transfer function. 2131 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2132 2133 while (!Worklist.empty()) { 2134 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2135 CurBB = MBB->getNumber(); 2136 Worklist.pop(); 2137 2138 // Join the values in all predecessor blocks. 2139 bool InLocsChanged; 2140 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2141 InLocsChanged |= Visited.insert(MBB).second; 2142 2143 // Don't examine transfer function if we've visited this loc at least 2144 // once, and inlocs haven't changed. 2145 if (!InLocsChanged) 2146 continue; 2147 2148 // Load the current set of live-ins into MLocTracker. 2149 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2150 2151 // Each element of the transfer function can be a new def, or a read of 2152 // a live-in value. Evaluate each element, and store to "ToRemap". 2153 ToRemap.clear(); 2154 for (auto &P : MLocTransfer[CurBB]) { 2155 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2156 // This is a movement of whatever was live in. Read it. 2157 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); 2158 ToRemap.push_back(std::make_pair(P.first, NewID)); 2159 } else { 2160 // It's a def. Just set it. 2161 assert(P.second.getBlock() == CurBB); 2162 ToRemap.push_back(std::make_pair(P.first, P.second)); 2163 } 2164 } 2165 2166 // Commit the transfer function changes into mloc tracker, which 2167 // transforms the contents of the MLocTracker into the live-outs. 2168 for (auto &P : ToRemap) 2169 MTracker->setMLoc(P.first, P.second); 2170 2171 // Now copy out-locs from mloc tracker into out-loc vector, checking 2172 // whether changes have occurred. These changes can have come from both 2173 // the transfer function, and mlocJoin. 2174 bool OLChanged = false; 2175 for (auto Location : MTracker->locations()) { 2176 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2177 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2178 } 2179 2180 MTracker->reset(); 2181 2182 // No need to examine successors again if out-locs didn't change. 2183 if (!OLChanged) 2184 continue; 2185 2186 // All successors should be visited: put any back-edges on the pending 2187 // list for the next pass-through, and any other successors to be 2188 // visited this pass, if they're not going to be already. 2189 for (auto s : MBB->successors()) { 2190 // Does branching to this successor represent a back-edge? 2191 if (BBToOrder[s] > BBToOrder[MBB]) { 2192 // No: visit it during this dataflow iteration. 2193 if (OnWorklist.insert(s).second) 2194 Worklist.push(BBToOrder[s]); 2195 } else { 2196 // Yes: visit it on the next iteration. 2197 if (OnPending.insert(s).second) 2198 Pending.push(BBToOrder[s]); 2199 } 2200 } 2201 } 2202 2203 Worklist.swap(Pending); 2204 std::swap(OnPending, OnWorklist); 2205 OnPending.clear(); 2206 // At this point, pending must be empty, since it was just the empty 2207 // worklist 2208 assert(Pending.empty() && "Pending should be empty"); 2209 } 2210 2211 // Once all the live-ins don't change on mlocJoin(), we've eliminated all 2212 // redundant PHIs. 2213 } 2214 2215 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide 2216 // template specialisations for graph traits and a successor enumerator. 2217 namespace llvm { 2218 template <> struct GraphTraits<MachineBasicBlock> { 2219 using NodeRef = MachineBasicBlock *; 2220 using ChildIteratorType = MachineBasicBlock::succ_iterator; 2221 2222 static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } 2223 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2224 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2225 }; 2226 2227 template <> struct GraphTraits<const MachineBasicBlock> { 2228 using NodeRef = const MachineBasicBlock *; 2229 using ChildIteratorType = MachineBasicBlock::const_succ_iterator; 2230 2231 static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } 2232 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2233 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2234 }; 2235 2236 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType; 2237 using MachineDomTreeChildGetter = 2238 typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>; 2239 2240 namespace IDFCalculatorDetail { 2241 template <> 2242 typename MachineDomTreeChildGetter::ChildrenTy 2243 MachineDomTreeChildGetter::get(const NodeRef &N) { 2244 return {N->succ_begin(), N->succ_end()}; 2245 } 2246 } // namespace IDFCalculatorDetail 2247 } // namespace llvm 2248 2249 void InstrRefBasedLDV::BlockPHIPlacement( 2250 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 2251 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 2252 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { 2253 // Apply IDF calculator to the designated set of location defs, storing 2254 // required PHIs into PHIBlocks. Uses the dominator tree stored in the 2255 // InstrRefBasedLDV object. 2256 IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo; 2257 IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo); 2258 2259 IDF.setLiveInBlocks(AllBlocks); 2260 IDF.setDefiningBlocks(DefBlocks); 2261 IDF.calculate(PHIBlocks); 2262 } 2263 2264 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc( 2265 const MachineBasicBlock &MBB, const DebugVariable &Var, 2266 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 2267 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { 2268 // Collect a set of locations from predecessor where its live-out value can 2269 // be found. 2270 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2271 SmallVector<const DbgValueProperties *, 4> Properties; 2272 unsigned NumLocs = MTracker->getNumLocs(); 2273 2274 // No predecessors means no PHIs. 2275 if (BlockOrders.empty()) 2276 return None; 2277 2278 for (auto p : BlockOrders) { 2279 unsigned ThisBBNum = p->getNumber(); 2280 auto OutValIt = LiveOuts.find(p); 2281 if (OutValIt == LiveOuts.end()) 2282 // If we have a predecessor not in scope, we'll never find a PHI position. 2283 return None; 2284 const DbgValue &OutVal = *OutValIt->second; 2285 2286 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2287 // Consts and no-values cannot have locations we can join on. 2288 return None; 2289 2290 Properties.push_back(&OutVal.Properties); 2291 2292 // Create new empty vector of locations. 2293 Locs.resize(Locs.size() + 1); 2294 2295 // If the live-in value is a def, find the locations where that value is 2296 // present. Do the same for VPHIs where we know the VPHI value. 2297 if (OutVal.Kind == DbgValue::Def || 2298 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && 2299 OutVal.ID != ValueIDNum::EmptyValue)) { 2300 ValueIDNum ValToLookFor = OutVal.ID; 2301 // Search the live-outs of the predecessor for the specified value. 2302 for (unsigned int I = 0; I < NumLocs; ++I) { 2303 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2304 Locs.back().push_back(LocIdx(I)); 2305 } 2306 } else { 2307 assert(OutVal.Kind == DbgValue::VPHI); 2308 // For VPHIs where we don't know the location, we definitely can't find 2309 // a join loc. 2310 if (OutVal.BlockNo != MBB.getNumber()) 2311 return None; 2312 2313 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. 2314 // a value that's live-through the whole loop. (It has to be a backedge, 2315 // because a block can't dominate itself). We can accept as a PHI location 2316 // any location where the other predecessors agree, _and_ the machine 2317 // locations feed back into themselves. Therefore, add all self-looping 2318 // machine-value PHI locations. 2319 for (unsigned int I = 0; I < NumLocs; ++I) { 2320 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); 2321 if (MOutLocs[ThisBBNum][I] == MPHI) 2322 Locs.back().push_back(LocIdx(I)); 2323 } 2324 } 2325 } 2326 2327 // We should have found locations for all predecessors, or returned. 2328 assert(Locs.size() == BlockOrders.size()); 2329 2330 // Check that all properties are the same. We can't pick a location if they're 2331 // not. 2332 const DbgValueProperties *Properties0 = Properties[0]; 2333 for (auto *Prop : Properties) 2334 if (*Prop != *Properties0) 2335 return None; 2336 2337 // Starting with the first set of locations, take the intersection with 2338 // subsequent sets. 2339 SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; 2340 for (unsigned int I = 1; I < Locs.size(); ++I) { 2341 auto &LocVec = Locs[I]; 2342 SmallVector<LocIdx, 4> NewCandidates; 2343 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), 2344 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); 2345 CandidateLocs = NewCandidates; 2346 } 2347 if (CandidateLocs.empty()) 2348 return None; 2349 2350 // We now have a set of LocIdxes that contain the right output value in 2351 // each of the predecessors. Pick the lowest; if there's a register loc, 2352 // that'll be it. 2353 LocIdx L = *CandidateLocs.begin(); 2354 2355 // Return a PHI-value-number for the found location. 2356 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2357 return PHIVal; 2358 } 2359 2360 bool InstrRefBasedLDV::vlocJoin( 2361 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 2362 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2363 DbgValue &LiveIn) { 2364 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2365 bool Changed = false; 2366 2367 // Order predecessors by RPOT order, for exploring them in that order. 2368 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2369 2370 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2371 return BBToOrder[A] < BBToOrder[B]; 2372 }; 2373 2374 llvm::sort(BlockOrders, Cmp); 2375 2376 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2377 2378 // Collect all the incoming DbgValues for this variable, from predecessor 2379 // live-out values. 2380 SmallVector<InValueT, 8> Values; 2381 bool Bail = false; 2382 int BackEdgesStart = 0; 2383 for (auto p : BlockOrders) { 2384 // If the predecessor isn't in scope / to be explored, we'll never be 2385 // able to join any locations. 2386 if (!BlocksToExplore.contains(p)) { 2387 Bail = true; 2388 break; 2389 } 2390 2391 // All Live-outs will have been initialized. 2392 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; 2393 2394 // Keep track of where back-edges begin in the Values vector. Relies on 2395 // BlockOrders being sorted by RPO. 2396 unsigned ThisBBRPONum = BBToOrder[p]; 2397 if (ThisBBRPONum < CurBlockRPONum) 2398 ++BackEdgesStart; 2399 2400 Values.push_back(std::make_pair(p, &OutLoc)); 2401 } 2402 2403 // If there were no values, or one of the predecessors couldn't have a 2404 // value, then give up immediately. It's not safe to produce a live-in 2405 // value. Leave as whatever it was before. 2406 if (Bail || Values.size() == 0) 2407 return false; 2408 2409 // All (non-entry) blocks have at least one non-backedge predecessor. 2410 // Pick the variable value from the first of these, to compare against 2411 // all others. 2412 const DbgValue &FirstVal = *Values[0].second; 2413 2414 // If the old live-in value is not a PHI then either a) no PHI is needed 2415 // here, or b) we eliminated the PHI that was here. If so, we can just 2416 // propagate in the first parent's incoming value. 2417 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { 2418 Changed = LiveIn != FirstVal; 2419 if (Changed) 2420 LiveIn = FirstVal; 2421 return Changed; 2422 } 2423 2424 // Scan for variable values that can never be resolved: if they have 2425 // different DIExpressions, different indirectness, or are mixed constants / 2426 // non-constants. 2427 for (auto &V : Values) { 2428 if (V.second->Properties != FirstVal.Properties) 2429 return false; 2430 if (V.second->Kind == DbgValue::NoVal) 2431 return false; 2432 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2433 return false; 2434 } 2435 2436 // Try to eliminate this PHI. Do the incoming values all agree? 2437 bool Disagree = false; 2438 for (auto &V : Values) { 2439 if (*V.second == FirstVal) 2440 continue; // No disagreement. 2441 2442 // Eliminate if a backedge feeds a VPHI back into itself. 2443 if (V.second->Kind == DbgValue::VPHI && 2444 V.second->BlockNo == MBB.getNumber() && 2445 // Is this a backedge? 2446 std::distance(Values.begin(), &V) >= BackEdgesStart) 2447 continue; 2448 2449 Disagree = true; 2450 } 2451 2452 // No disagreement -> live-through value. 2453 if (!Disagree) { 2454 Changed = LiveIn != FirstVal; 2455 if (Changed) 2456 LiveIn = FirstVal; 2457 return Changed; 2458 } else { 2459 // Otherwise use a VPHI. 2460 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); 2461 Changed = LiveIn != VPHI; 2462 if (Changed) 2463 LiveIn = VPHI; 2464 return Changed; 2465 } 2466 } 2467 2468 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc, 2469 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2470 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2471 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2472 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2473 // This method is much like buildMLocValueMap: but focuses on a single 2474 // LexicalScope at a time. Pick out a set of blocks and variables that are 2475 // to have their value assignments solved, then run our dataflow algorithm 2476 // until a fixedpoint is reached. 2477 std::priority_queue<unsigned int, std::vector<unsigned int>, 2478 std::greater<unsigned int>> 2479 Worklist, Pending; 2480 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2481 2482 // The set of blocks we'll be examining. 2483 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2484 2485 // The order in which to examine them (RPO). 2486 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2487 2488 // RPO ordering function. 2489 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2490 return BBToOrder[A] < BBToOrder[B]; 2491 }; 2492 2493 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2494 2495 // A separate container to distinguish "blocks we're exploring" versus 2496 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2497 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2498 2499 // VarLoc LiveDebugValues tracks variable locations that are defined in 2500 // blocks not in scope. This is something we could legitimately ignore, but 2501 // lets allow it for now for the sake of coverage. 2502 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2503 2504 // We also need to propagate variable values through any artificial blocks 2505 // that immediately follow blocks in scope. 2506 DenseSet<const MachineBasicBlock *> ToAdd; 2507 2508 // Helper lambda: For a given block in scope, perform a depth first search 2509 // of all the artificial successors, adding them to the ToAdd collection. 2510 auto AccumulateArtificialBlocks = 2511 [this, &ToAdd, &BlocksToExplore, 2512 &InScopeBlocks](const MachineBasicBlock *MBB) { 2513 // Depth-first-search state: each node is a block and which successor 2514 // we're currently exploring. 2515 SmallVector<std::pair<const MachineBasicBlock *, 2516 MachineBasicBlock::const_succ_iterator>, 2517 8> 2518 DFS; 2519 2520 // Find any artificial successors not already tracked. 2521 for (auto *succ : MBB->successors()) { 2522 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2523 continue; 2524 if (!ArtificialBlocks.count(succ)) 2525 continue; 2526 ToAdd.insert(succ); 2527 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2528 } 2529 2530 // Search all those blocks, depth first. 2531 while (!DFS.empty()) { 2532 const MachineBasicBlock *CurBB = DFS.back().first; 2533 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2534 // Walk back if we've explored this blocks successors to the end. 2535 if (CurSucc == CurBB->succ_end()) { 2536 DFS.pop_back(); 2537 continue; 2538 } 2539 2540 // If the current successor is artificial and unexplored, descend into 2541 // it. 2542 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2543 ToAdd.insert(*CurSucc); 2544 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2545 continue; 2546 } 2547 2548 ++CurSucc; 2549 } 2550 }; 2551 2552 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2553 // for artificial successors. 2554 for (auto *MBB : BlocksToExplore) 2555 AccumulateArtificialBlocks(MBB); 2556 for (auto *MBB : InScopeBlocks) 2557 AccumulateArtificialBlocks(MBB); 2558 2559 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2560 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2561 2562 // Single block scope: not interesting! No propagation at all. Note that 2563 // this could probably go above ArtificialBlocks without damage, but 2564 // that then produces output differences from original-live-debug-values, 2565 // which propagates from a single block into many artificial ones. 2566 if (BlocksToExplore.size() == 1) 2567 return; 2568 2569 // Convert a const set to a non-const set. LexicalScopes 2570 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. 2571 // (Neither of them mutate anything). 2572 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; 2573 for (const auto *MBB : BlocksToExplore) 2574 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); 2575 2576 // Picks out relevants blocks RPO order and sort them. 2577 for (auto *MBB : BlocksToExplore) 2578 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2579 2580 llvm::sort(BlockOrders, Cmp); 2581 unsigned NumBlocks = BlockOrders.size(); 2582 2583 // Allocate some vectors for storing the live ins and live outs. Large. 2584 SmallVector<DbgValue, 32> LiveIns, LiveOuts; 2585 LiveIns.reserve(NumBlocks); 2586 LiveOuts.reserve(NumBlocks); 2587 2588 // Initialize all values to start as NoVals. This signifies "it's live 2589 // through, but we don't know what it is". 2590 DbgValueProperties EmptyProperties(EmptyExpr, false); 2591 for (unsigned int I = 0; I < NumBlocks; ++I) { 2592 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2593 LiveIns.push_back(EmptyDbgValue); 2594 LiveOuts.push_back(EmptyDbgValue); 2595 } 2596 2597 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2598 // vlocJoin. 2599 LiveIdxT LiveOutIdx, LiveInIdx; 2600 LiveOutIdx.reserve(NumBlocks); 2601 LiveInIdx.reserve(NumBlocks); 2602 for (unsigned I = 0; I < NumBlocks; ++I) { 2603 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2604 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2605 } 2606 2607 // Loop over each variable and place PHIs for it, then propagate values 2608 // between blocks. This keeps the locality of working on one lexical scope at 2609 // at time, but avoids re-processing variable values because some other 2610 // variable has been assigned. 2611 for (auto &Var : VarsWeCareAbout) { 2612 // Re-initialize live-ins and live-outs, to clear the remains of previous 2613 // variables live-ins / live-outs. 2614 for (unsigned int I = 0; I < NumBlocks; ++I) { 2615 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2616 LiveIns[I] = EmptyDbgValue; 2617 LiveOuts[I] = EmptyDbgValue; 2618 } 2619 2620 // Place PHIs for variable values, using the LLVM IDF calculator. 2621 // Collect the set of blocks where variables are def'd. 2622 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2623 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { 2624 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; 2625 if (TransferFunc.find(Var) != TransferFunc.end()) 2626 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); 2627 } 2628 2629 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2630 2631 // Request the set of PHIs we should insert for this variable. 2632 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); 2633 2634 // Insert PHIs into the per-block live-in tables for this variable. 2635 for (MachineBasicBlock *PHIMBB : PHIBlocks) { 2636 unsigned BlockNo = PHIMBB->getNumber(); 2637 DbgValue *LiveIn = LiveInIdx[PHIMBB]; 2638 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); 2639 } 2640 2641 for (auto *MBB : BlockOrders) { 2642 Worklist.push(BBToOrder[MBB]); 2643 OnWorklist.insert(MBB); 2644 } 2645 2646 // Iterate over all the blocks we selected, propagating the variables value. 2647 // This loop does two things: 2648 // * Eliminates un-necessary VPHIs in vlocJoin, 2649 // * Evaluates the blocks transfer function (i.e. variable assignments) and 2650 // stores the result to the blocks live-outs. 2651 // Always evaluate the transfer function on the first iteration, and when 2652 // the live-ins change thereafter. 2653 bool FirstTrip = true; 2654 while (!Worklist.empty() || !Pending.empty()) { 2655 while (!Worklist.empty()) { 2656 auto *MBB = OrderToBB[Worklist.top()]; 2657 CurBB = MBB->getNumber(); 2658 Worklist.pop(); 2659 2660 auto LiveInsIt = LiveInIdx.find(MBB); 2661 assert(LiveInsIt != LiveInIdx.end()); 2662 DbgValue *LiveIn = LiveInsIt->second; 2663 2664 // Join values from predecessors. Updates LiveInIdx, and writes output 2665 // into JoinedInLocs. 2666 bool InLocsChanged = 2667 vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn); 2668 2669 SmallVector<const MachineBasicBlock *, 8> Preds; 2670 for (const auto *Pred : MBB->predecessors()) 2671 Preds.push_back(Pred); 2672 2673 // If this block's live-in value is a VPHI, try to pick a machine-value 2674 // for it. This makes the machine-value available and propagated 2675 // through all blocks by the time value propagation finishes. We can't 2676 // do this any earlier as it needs to read the block live-outs. 2677 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { 2678 // There's a small possibility that on a preceeding path, a VPHI is 2679 // eliminated and transitions from VPHI-with-location to 2680 // live-through-value. As a result, the selected location of any VPHI 2681 // might change, so we need to re-compute it on each iteration. 2682 Optional<ValueIDNum> ValueNum = 2683 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds); 2684 2685 if (ValueNum) { 2686 InLocsChanged |= LiveIn->ID != *ValueNum; 2687 LiveIn->ID = *ValueNum; 2688 } 2689 } 2690 2691 if (!InLocsChanged && !FirstTrip) 2692 continue; 2693 2694 DbgValue *LiveOut = LiveOutIdx[MBB]; 2695 bool OLChanged = false; 2696 2697 // Do transfer function. 2698 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2699 auto TransferIt = VTracker.Vars.find(Var); 2700 if (TransferIt != VTracker.Vars.end()) { 2701 // Erase on empty transfer (DBG_VALUE $noreg). 2702 if (TransferIt->second.Kind == DbgValue::Undef) { 2703 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); 2704 if (*LiveOut != NewVal) { 2705 *LiveOut = NewVal; 2706 OLChanged = true; 2707 } 2708 } else { 2709 // Insert new variable value; or overwrite. 2710 if (*LiveOut != TransferIt->second) { 2711 *LiveOut = TransferIt->second; 2712 OLChanged = true; 2713 } 2714 } 2715 } else { 2716 // Just copy live-ins to live-outs, for anything not transferred. 2717 if (*LiveOut != *LiveIn) { 2718 *LiveOut = *LiveIn; 2719 OLChanged = true; 2720 } 2721 } 2722 2723 // If no live-out value changed, there's no need to explore further. 2724 if (!OLChanged) 2725 continue; 2726 2727 // We should visit all successors. Ensure we'll visit any non-backedge 2728 // successors during this dataflow iteration; book backedge successors 2729 // to be visited next time around. 2730 for (auto s : MBB->successors()) { 2731 // Ignore out of scope / not-to-be-explored successors. 2732 if (LiveInIdx.find(s) == LiveInIdx.end()) 2733 continue; 2734 2735 if (BBToOrder[s] > BBToOrder[MBB]) { 2736 if (OnWorklist.insert(s).second) 2737 Worklist.push(BBToOrder[s]); 2738 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2739 Pending.push(BBToOrder[s]); 2740 } 2741 } 2742 } 2743 Worklist.swap(Pending); 2744 std::swap(OnWorklist, OnPending); 2745 OnPending.clear(); 2746 assert(Pending.empty()); 2747 FirstTrip = false; 2748 } 2749 2750 // Save live-ins to output vector. Ignore any that are still marked as being 2751 // VPHIs with no location -- those are variables that we know the value of, 2752 // but are not actually available in the register file. 2753 for (auto *MBB : BlockOrders) { 2754 DbgValue *BlockLiveIn = LiveInIdx[MBB]; 2755 if (BlockLiveIn->Kind == DbgValue::NoVal) 2756 continue; 2757 if (BlockLiveIn->Kind == DbgValue::VPHI && 2758 BlockLiveIn->ID == ValueIDNum::EmptyValue) 2759 continue; 2760 if (BlockLiveIn->Kind == DbgValue::VPHI) 2761 BlockLiveIn->Kind = DbgValue::Def; 2762 assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() == 2763 Var.getFragment() && "Fragment info missing during value prop"); 2764 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); 2765 } 2766 } // Per-variable loop. 2767 2768 BlockOrders.clear(); 2769 BlocksToExplore.clear(); 2770 } 2771 2772 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2773 void InstrRefBasedLDV::dump_mloc_transfer( 2774 const MLocTransferMap &mloc_transfer) const { 2775 for (auto &P : mloc_transfer) { 2776 std::string foo = MTracker->LocIdxToName(P.first); 2777 std::string bar = MTracker->IDAsString(P.second); 2778 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2779 } 2780 } 2781 #endif 2782 2783 void InstrRefBasedLDV::emitLocations( 2784 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 2785 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2786 const TargetPassConfig &TPC) { 2787 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2788 unsigned NumLocs = MTracker->getNumLocs(); 2789 2790 // For each block, load in the machine value locations and variable value 2791 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2792 // to be inserted will be created along the way. 2793 for (MachineBasicBlock &MBB : MF) { 2794 unsigned bbnum = MBB.getNumber(); 2795 MTracker->reset(); 2796 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2797 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2798 NumLocs); 2799 2800 CurBB = bbnum; 2801 CurInst = 1; 2802 for (auto &MI : MBB) { 2803 process(MI, MOutLocs, MInLocs); 2804 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2805 ++CurInst; 2806 } 2807 } 2808 2809 // Go through all the transfers recorded in the TransferTracker -- this is 2810 // both the live-ins to a block, and any movements of values that happen 2811 // in the middle. 2812 for (const auto &P : TTracker->Transfers) { 2813 // We have to insert DBG_VALUEs in a consistent order, otherwise they 2814 // appear in DWARF in different orders. Use the order that they appear 2815 // when walking through each block / each instruction, stored in 2816 // AllVarsNumbering. 2817 SmallVector<std::pair<unsigned, MachineInstr *>> Insts; 2818 for (MachineInstr *MI : P.Insts) { 2819 DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(), 2820 MI->getDebugLoc()->getInlinedAt()); 2821 Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI); 2822 } 2823 llvm::sort(Insts, 2824 [](const auto &A, const auto &B) { return A.first < B.first; }); 2825 2826 // Insert either before or after the designated point... 2827 if (P.MBB) { 2828 MachineBasicBlock &MBB = *P.MBB; 2829 for (const auto &Pair : Insts) 2830 MBB.insert(P.Pos, Pair.second); 2831 } else { 2832 // Terminators, like tail calls, can clobber things. Don't try and place 2833 // transfers after them. 2834 if (P.Pos->isTerminator()) 2835 continue; 2836 2837 MachineBasicBlock &MBB = *P.Pos->getParent(); 2838 for (const auto &Pair : Insts) 2839 MBB.insertAfterBundle(P.Pos, Pair.second); 2840 } 2841 } 2842 } 2843 2844 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2845 // Build some useful data structures. 2846 2847 LLVMContext &Context = MF.getFunction().getContext(); 2848 EmptyExpr = DIExpression::get(Context, {}); 2849 2850 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2851 if (const DebugLoc &DL = MI.getDebugLoc()) 2852 return DL.getLine() != 0; 2853 return false; 2854 }; 2855 // Collect a set of all the artificial blocks. 2856 for (auto &MBB : MF) 2857 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2858 ArtificialBlocks.insert(&MBB); 2859 2860 // Compute mappings of block <=> RPO order. 2861 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2862 unsigned int RPONumber = 0; 2863 for (MachineBasicBlock *MBB : RPOT) { 2864 OrderToBB[RPONumber] = MBB; 2865 BBToOrder[MBB] = RPONumber; 2866 BBNumToRPO[MBB->getNumber()] = RPONumber; 2867 ++RPONumber; 2868 } 2869 2870 // Order value substitutions by their "source" operand pair, for quick lookup. 2871 llvm::sort(MF.DebugValueSubstitutions); 2872 2873 #ifdef EXPENSIVE_CHECKS 2874 // As an expensive check, test whether there are any duplicate substitution 2875 // sources in the collection. 2876 if (MF.DebugValueSubstitutions.size() > 2) { 2877 for (auto It = MF.DebugValueSubstitutions.begin(); 2878 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2879 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2880 "substitution seen"); 2881 } 2882 } 2883 #endif 2884 } 2885 2886 /// Calculate the liveness information for the given machine function and 2887 /// extend ranges across basic blocks. 2888 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 2889 MachineDominatorTree *DomTree, 2890 TargetPassConfig *TPC, 2891 unsigned InputBBLimit, 2892 unsigned InputDbgValLimit) { 2893 // No subprogram means this function contains no debuginfo. 2894 if (!MF.getFunction().getSubprogram()) 2895 return false; 2896 2897 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2898 this->TPC = TPC; 2899 2900 this->DomTree = DomTree; 2901 TRI = MF.getSubtarget().getRegisterInfo(); 2902 MRI = &MF.getRegInfo(); 2903 TII = MF.getSubtarget().getInstrInfo(); 2904 TFI = MF.getSubtarget().getFrameLowering(); 2905 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2906 MFI = &MF.getFrameInfo(); 2907 LS.initialize(MF); 2908 2909 const auto &STI = MF.getSubtarget(); 2910 AdjustsStackInCalls = MFI->adjustsStack() && 2911 STI.getFrameLowering()->stackProbeFunctionModifiesSP(); 2912 if (AdjustsStackInCalls) 2913 StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF); 2914 2915 MTracker = 2916 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 2917 VTracker = nullptr; 2918 TTracker = nullptr; 2919 2920 SmallVector<MLocTransferMap, 32> MLocTransfer; 2921 SmallVector<VLocTracker, 8> vlocs; 2922 LiveInsT SavedLiveIns; 2923 2924 int MaxNumBlocks = -1; 2925 for (auto &MBB : MF) 2926 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 2927 assert(MaxNumBlocks >= 0); 2928 ++MaxNumBlocks; 2929 2930 MLocTransfer.resize(MaxNumBlocks); 2931 vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr)); 2932 SavedLiveIns.resize(MaxNumBlocks); 2933 2934 initialSetup(MF); 2935 2936 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 2937 2938 // Allocate and initialize two array-of-arrays for the live-in and live-out 2939 // machine values. The outer dimension is the block number; while the inner 2940 // dimension is a LocIdx from MLocTracker. 2941 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 2942 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 2943 unsigned NumLocs = MTracker->getNumLocs(); 2944 for (int i = 0; i < MaxNumBlocks; ++i) { 2945 // These all auto-initialize to ValueIDNum::EmptyValue 2946 MOutLocs[i] = new ValueIDNum[NumLocs]; 2947 MInLocs[i] = new ValueIDNum[NumLocs]; 2948 } 2949 2950 // Solve the machine value dataflow problem using the MLocTransfer function, 2951 // storing the computed live-ins / live-outs into the array-of-arrays. We use 2952 // both live-ins and live-outs for decision making in the variable value 2953 // dataflow problem. 2954 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); 2955 2956 // Patch up debug phi numbers, turning unknown block-live-in values into 2957 // either live-through machine values, or PHIs. 2958 for (auto &DBG_PHI : DebugPHINumToValue) { 2959 // Identify unresolved block-live-ins. 2960 ValueIDNum &Num = DBG_PHI.ValueRead; 2961 if (!Num.isPHI()) 2962 continue; 2963 2964 unsigned BlockNo = Num.getBlock(); 2965 LocIdx LocNo = Num.getLoc(); 2966 Num = MInLocs[BlockNo][LocNo.asU64()]; 2967 } 2968 // Later, we'll be looking up ranges of instruction numbers. 2969 llvm::sort(DebugPHINumToValue); 2970 2971 // Walk back through each block / instruction, collecting DBG_VALUE 2972 // instructions and recording what machine value their operands refer to. 2973 for (auto &OrderPair : OrderToBB) { 2974 MachineBasicBlock &MBB = *OrderPair.second; 2975 CurBB = MBB.getNumber(); 2976 VTracker = &vlocs[CurBB]; 2977 VTracker->MBB = &MBB; 2978 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2979 CurInst = 1; 2980 for (auto &MI : MBB) { 2981 process(MI, MOutLocs, MInLocs); 2982 ++CurInst; 2983 } 2984 MTracker->reset(); 2985 } 2986 2987 // Number all variables in the order that they appear, to be used as a stable 2988 // insertion order later. 2989 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 2990 2991 // Map from one LexicalScope to all the variables in that scope. 2992 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 2993 2994 // Map from One lexical scope to all blocks in that scope. 2995 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 2996 ScopeToBlocks; 2997 2998 // Store a DILocation that describes a scope. 2999 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 3000 3001 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3002 // the order is unimportant, it just has to be stable. 3003 unsigned VarAssignCount = 0; 3004 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3005 auto *MBB = OrderToBB[I]; 3006 auto *VTracker = &vlocs[MBB->getNumber()]; 3007 // Collect each variable with a DBG_VALUE in this block. 3008 for (auto &idx : VTracker->Vars) { 3009 const auto &Var = idx.first; 3010 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3011 assert(ScopeLoc != nullptr); 3012 auto *Scope = LS.findLexicalScope(ScopeLoc); 3013 3014 // No insts in scope -> shouldn't have been recorded. 3015 assert(Scope != nullptr); 3016 3017 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3018 ScopeToVars[Scope].insert(Var); 3019 ScopeToBlocks[Scope].insert(VTracker->MBB); 3020 ScopeToDILocation[Scope] = ScopeLoc; 3021 ++VarAssignCount; 3022 } 3023 } 3024 3025 bool Changed = false; 3026 3027 // If we have an extremely large number of variable assignments and blocks, 3028 // bail out at this point. We've burnt some time doing analysis already, 3029 // however we should cut our losses. 3030 if ((unsigned)MaxNumBlocks > InputBBLimit && 3031 VarAssignCount > InputDbgValLimit) { 3032 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 3033 << " has " << MaxNumBlocks << " basic blocks and " 3034 << VarAssignCount 3035 << " variable assignments, exceeding limits.\n"); 3036 } else { 3037 // Compute the extended ranges, iterating over scopes. There might be 3038 // something to be said for ordering them by size/locality, but that's for 3039 // the future. For each scope, solve the variable value problem, producing 3040 // a map of variables to values in SavedLiveIns. 3041 for (auto &P : ScopeToVars) { 3042 buildVLocValueMap(ScopeToDILocation[P.first], P.second, 3043 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3044 vlocs); 3045 } 3046 3047 // Using the computed value locations and variable values for each block, 3048 // create the DBG_VALUE instructions representing the extended variable 3049 // locations. 3050 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 3051 3052 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3053 Changed = TTracker->Transfers.size() != 0; 3054 } 3055 3056 // Common clean-up of memory. 3057 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3058 delete[] MOutLocs[Idx]; 3059 delete[] MInLocs[Idx]; 3060 } 3061 delete[] MOutLocs; 3062 delete[] MInLocs; 3063 3064 delete MTracker; 3065 delete TTracker; 3066 MTracker = nullptr; 3067 VTracker = nullptr; 3068 TTracker = nullptr; 3069 3070 ArtificialBlocks.clear(); 3071 OrderToBB.clear(); 3072 BBToOrder.clear(); 3073 BBNumToRPO.clear(); 3074 DebugInstrNumToInstr.clear(); 3075 DebugPHINumToValue.clear(); 3076 OverlapFragments.clear(); 3077 SeenFragments.clear(); 3078 3079 return Changed; 3080 } 3081 3082 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3083 return new InstrRefBasedLDV(); 3084 } 3085 3086 namespace { 3087 class LDVSSABlock; 3088 class LDVSSAUpdater; 3089 3090 // Pick a type to identify incoming block values as we construct SSA. We 3091 // can't use anything more robust than an integer unfortunately, as SSAUpdater 3092 // expects to zero-initialize the type. 3093 typedef uint64_t BlockValueNum; 3094 3095 /// Represents an SSA PHI node for the SSA updater class. Contains the block 3096 /// this PHI is in, the value number it would have, and the expected incoming 3097 /// values from parent blocks. 3098 class LDVSSAPhi { 3099 public: 3100 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 3101 LDVSSABlock *ParentBlock; 3102 BlockValueNum PHIValNum; 3103 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 3104 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 3105 3106 LDVSSABlock *getParent() { return ParentBlock; } 3107 }; 3108 3109 /// Thin wrapper around a block predecessor iterator. Only difference from a 3110 /// normal block iterator is that it dereferences to an LDVSSABlock. 3111 class LDVSSABlockIterator { 3112 public: 3113 MachineBasicBlock::pred_iterator PredIt; 3114 LDVSSAUpdater &Updater; 3115 3116 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 3117 LDVSSAUpdater &Updater) 3118 : PredIt(PredIt), Updater(Updater) {} 3119 3120 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 3121 return OtherIt.PredIt != PredIt; 3122 } 3123 3124 LDVSSABlockIterator &operator++() { 3125 ++PredIt; 3126 return *this; 3127 } 3128 3129 LDVSSABlock *operator*(); 3130 }; 3131 3132 /// Thin wrapper around a block for SSA Updater interface. Necessary because 3133 /// we need to track the PHI value(s) that we may have observed as necessary 3134 /// in this block. 3135 class LDVSSABlock { 3136 public: 3137 MachineBasicBlock &BB; 3138 LDVSSAUpdater &Updater; 3139 using PHIListT = SmallVector<LDVSSAPhi, 1>; 3140 /// List of PHIs in this block. There should only ever be one. 3141 PHIListT PHIList; 3142 3143 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3144 : BB(BB), Updater(Updater) {} 3145 3146 LDVSSABlockIterator succ_begin() { 3147 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3148 } 3149 3150 LDVSSABlockIterator succ_end() { 3151 return LDVSSABlockIterator(BB.succ_end(), Updater); 3152 } 3153 3154 /// SSAUpdater has requested a PHI: create that within this block record. 3155 LDVSSAPhi *newPHI(BlockValueNum Value) { 3156 PHIList.emplace_back(Value, this); 3157 return &PHIList.back(); 3158 } 3159 3160 /// SSAUpdater wishes to know what PHIs already exist in this block. 3161 PHIListT &phis() { return PHIList; } 3162 }; 3163 3164 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3165 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3166 // SSAUpdaterTraits<LDVSSAUpdater>. 3167 class LDVSSAUpdater { 3168 public: 3169 /// Map of value numbers to PHI records. 3170 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3171 /// Map of which blocks generate Undef values -- blocks that are not 3172 /// dominated by any Def. 3173 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3174 /// Map of machine blocks to our own records of them. 3175 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3176 /// Machine location where any PHI must occur. 3177 LocIdx Loc; 3178 /// Table of live-in machine value numbers for blocks / locations. 3179 ValueIDNum **MLiveIns; 3180 3181 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 3182 3183 void reset() { 3184 for (auto &Block : BlockMap) 3185 delete Block.second; 3186 3187 PHIs.clear(); 3188 UndefMap.clear(); 3189 BlockMap.clear(); 3190 } 3191 3192 ~LDVSSAUpdater() { reset(); } 3193 3194 /// For a given MBB, create a wrapper block for it. Stores it in the 3195 /// LDVSSAUpdater block map. 3196 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3197 auto it = BlockMap.find(BB); 3198 if (it == BlockMap.end()) { 3199 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3200 it = BlockMap.find(BB); 3201 } 3202 return it->second; 3203 } 3204 3205 /// Find the live-in value number for the given block. Looks up the value at 3206 /// the PHI location on entry. 3207 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3208 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3209 } 3210 }; 3211 3212 LDVSSABlock *LDVSSABlockIterator::operator*() { 3213 return Updater.getSSALDVBlock(*PredIt); 3214 } 3215 3216 #ifndef NDEBUG 3217 3218 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3219 out << "SSALDVPHI " << PHI.PHIValNum; 3220 return out; 3221 } 3222 3223 #endif 3224 3225 } // namespace 3226 3227 namespace llvm { 3228 3229 /// Template specialization to give SSAUpdater access to CFG and value 3230 /// information. SSAUpdater calls methods in these traits, passing in the 3231 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3232 /// It also provides methods to create PHI nodes and track them. 3233 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3234 public: 3235 using BlkT = LDVSSABlock; 3236 using ValT = BlockValueNum; 3237 using PhiT = LDVSSAPhi; 3238 using BlkSucc_iterator = LDVSSABlockIterator; 3239 3240 // Methods to access block successors -- dereferencing to our wrapper class. 3241 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3242 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3243 3244 /// Iterator for PHI operands. 3245 class PHI_iterator { 3246 private: 3247 LDVSSAPhi *PHI; 3248 unsigned Idx; 3249 3250 public: 3251 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3252 : PHI(P), Idx(0) {} 3253 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3254 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3255 3256 PHI_iterator &operator++() { 3257 Idx++; 3258 return *this; 3259 } 3260 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3261 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3262 3263 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3264 3265 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3266 }; 3267 3268 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3269 3270 static inline PHI_iterator PHI_end(PhiT *PHI) { 3271 return PHI_iterator(PHI, true); 3272 } 3273 3274 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3275 /// vector. 3276 static void FindPredecessorBlocks(LDVSSABlock *BB, 3277 SmallVectorImpl<LDVSSABlock *> *Preds) { 3278 for (MachineBasicBlock *Pred : BB->BB.predecessors()) 3279 Preds->push_back(BB->Updater.getSSALDVBlock(Pred)); 3280 } 3281 3282 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3283 /// register. For LiveDebugValues, represents a block identified as not having 3284 /// any DBG_PHI predecessors. 3285 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3286 // Create a value number for this block -- it needs to be unique and in the 3287 // "undef" collection, so that we know it's not real. Use a number 3288 // representing a PHI into this block. 3289 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3290 Updater->UndefMap[&BB->BB] = Num; 3291 return Num; 3292 } 3293 3294 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3295 /// SSAUpdater will populate it with information about incoming values. The 3296 /// value number of this PHI is whatever the machine value number problem 3297 /// solution determined it to be. This includes non-phi values if SSAUpdater 3298 /// tries to create a PHI where the incoming values are identical. 3299 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3300 LDVSSAUpdater *Updater) { 3301 BlockValueNum PHIValNum = Updater->getValue(BB); 3302 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3303 Updater->PHIs[PHIValNum] = PHI; 3304 return PHIValNum; 3305 } 3306 3307 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3308 /// the specified predecessor block. 3309 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3310 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3311 } 3312 3313 /// ValueIsPHI - Check if the instruction that defines the specified value 3314 /// is a PHI instruction. 3315 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3316 auto PHIIt = Updater->PHIs.find(Val); 3317 if (PHIIt == Updater->PHIs.end()) 3318 return nullptr; 3319 return PHIIt->second; 3320 } 3321 3322 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3323 /// operands, i.e., it was just added. 3324 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3325 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3326 if (PHI && PHI->IncomingValues.size() == 0) 3327 return PHI; 3328 return nullptr; 3329 } 3330 3331 /// GetPHIValue - For the specified PHI instruction, return the value 3332 /// that it defines. 3333 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3334 }; 3335 3336 } // end namespace llvm 3337 3338 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3339 ValueIDNum **MLiveOuts, 3340 ValueIDNum **MLiveIns, 3341 MachineInstr &Here, 3342 uint64_t InstrNum) { 3343 // Pick out records of DBG_PHI instructions that have been observed. If there 3344 // are none, then we cannot compute a value number. 3345 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3346 DebugPHINumToValue.end(), InstrNum); 3347 auto LowerIt = RangePair.first; 3348 auto UpperIt = RangePair.second; 3349 3350 // No DBG_PHI means there can be no location. 3351 if (LowerIt == UpperIt) 3352 return None; 3353 3354 // If there's only one DBG_PHI, then that is our value number. 3355 if (std::distance(LowerIt, UpperIt) == 1) 3356 return LowerIt->ValueRead; 3357 3358 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3359 3360 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3361 // technically possible for us to merge values in different registers in each 3362 // block, but highly unlikely that LLVM will generate such code after register 3363 // allocation. 3364 LocIdx Loc = LowerIt->ReadLoc; 3365 3366 // We have several DBG_PHIs, and a use position (the Here inst). All each 3367 // DBG_PHI does is identify a value at a program position. We can treat each 3368 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3369 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3370 // determine which Def is used at the Use, and any PHIs that happen along 3371 // the way. 3372 // Adapted LLVM SSA Updater: 3373 LDVSSAUpdater Updater(Loc, MLiveIns); 3374 // Map of which Def or PHI is the current value in each block. 3375 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3376 // Set of PHIs that we have created along the way. 3377 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3378 3379 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3380 // for the SSAUpdater. 3381 for (const auto &DBG_PHI : DBGPHIRange) { 3382 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3383 const ValueIDNum &Num = DBG_PHI.ValueRead; 3384 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3385 } 3386 3387 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3388 const auto &AvailIt = AvailableValues.find(HereBlock); 3389 if (AvailIt != AvailableValues.end()) { 3390 // Actually, we already know what the value is -- the Use is in the same 3391 // block as the Def. 3392 return ValueIDNum::fromU64(AvailIt->second); 3393 } 3394 3395 // Otherwise, we must use the SSA Updater. It will identify the value number 3396 // that we are to use, and the PHIs that must happen along the way. 3397 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3398 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3399 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3400 3401 // We have the number for a PHI, or possibly live-through value, to be used 3402 // at this Use. There are a number of things we have to check about it though: 3403 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3404 // Use was not completely dominated by DBG_PHIs and we should abort. 3405 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3406 // we've left SSA form. Validate that the inputs to each PHI are the 3407 // expected values. 3408 // * Is a PHI we've created actually a merging of values, or are all the 3409 // predecessor values the same, leading to a non-PHI machine value number? 3410 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3411 // the ValidatedValues collection below to sort this out. 3412 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3413 3414 // Define all the input DBG_PHI values in ValidatedValues. 3415 for (const auto &DBG_PHI : DBGPHIRange) { 3416 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3417 const ValueIDNum &Num = DBG_PHI.ValueRead; 3418 ValidatedValues.insert(std::make_pair(Block, Num)); 3419 } 3420 3421 // Sort PHIs to validate into RPO-order. 3422 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3423 for (auto &PHI : CreatedPHIs) 3424 SortedPHIs.push_back(PHI); 3425 3426 std::sort( 3427 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3428 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3429 }); 3430 3431 for (auto &PHI : SortedPHIs) { 3432 ValueIDNum ThisBlockValueNum = 3433 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3434 3435 // Are all these things actually defined? 3436 for (auto &PHIIt : PHI->IncomingValues) { 3437 // Any undef input means DBG_PHIs didn't dominate the use point. 3438 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3439 return None; 3440 3441 ValueIDNum ValueToCheck; 3442 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3443 3444 auto VVal = ValidatedValues.find(PHIIt.first); 3445 if (VVal == ValidatedValues.end()) { 3446 // We cross a loop, and this is a backedge. LLVMs tail duplication 3447 // happens so late that DBG_PHI instructions should not be able to 3448 // migrate into loops -- meaning we can only be live-through this 3449 // loop. 3450 ValueToCheck = ThisBlockValueNum; 3451 } else { 3452 // Does the block have as a live-out, in the location we're examining, 3453 // the value that we expect? If not, it's been moved or clobbered. 3454 ValueToCheck = VVal->second; 3455 } 3456 3457 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3458 return None; 3459 } 3460 3461 // Record this value as validated. 3462 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3463 } 3464 3465 // All the PHIs are valid: we can return what the SSAUpdater said our value 3466 // number was. 3467 return Result; 3468 } 3469