1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveIntervals.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/LiveStacks.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineInstrBundle.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/SlotIndexes.h" 41 #include "llvm/CodeGen/Spiller.h" 42 #include "llvm/CodeGen/StackMaps.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 static cl::opt<bool> 79 RestrictStatepointRemat("restrict-statepoint-remat", 80 cl::init(false), cl::Hidden, 81 cl::desc("Restrict remat for statepoint operands")); 82 83 namespace { 84 85 class HoistSpillHelper : private LiveRangeEdit::Delegate { 86 MachineFunction &MF; 87 LiveIntervals &LIS; 88 LiveStacks &LSS; 89 AliasAnalysis *AA; 90 MachineDominatorTree &MDT; 91 MachineLoopInfo &Loops; 92 VirtRegMap &VRM; 93 MachineRegisterInfo &MRI; 94 const TargetInstrInfo &TII; 95 const TargetRegisterInfo &TRI; 96 const MachineBlockFrequencyInfo &MBFI; 97 98 InsertPointAnalysis IPA; 99 100 // Map from StackSlot to the LiveInterval of the original register. 101 // Note the LiveInterval of the original register may have been deleted 102 // after it is spilled. We keep a copy here to track the range where 103 // spills can be moved. 104 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 105 106 // Map from pair of (StackSlot and Original VNI) to a set of spills which 107 // have the same stackslot and have equal values defined by Original VNI. 108 // These spills are mergeable and are hoist candiates. 109 using MergeableSpillsMap = 110 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 111 MergeableSpillsMap MergeableSpills; 112 113 /// This is the map from original register to a set containing all its 114 /// siblings. To hoist a spill to another BB, we need to find out a live 115 /// sibling there and use it as the source of the new spill. 116 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 117 118 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 119 MachineBasicBlock &BB, Register &LiveReg); 120 121 void rmRedundantSpills( 122 SmallPtrSet<MachineInstr *, 16> &Spills, 123 SmallVectorImpl<MachineInstr *> &SpillsToRm, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void getVisitOrders( 127 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineDomTreeNode *> &Orders, 129 SmallVectorImpl<MachineInstr *> &SpillsToRm, 130 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 131 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 132 133 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 134 SmallPtrSet<MachineInstr *, 16> &Spills, 135 SmallVectorImpl<MachineInstr *> &SpillsToRm, 136 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 137 138 public: 139 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 140 VirtRegMap &vrm) 141 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 142 LSS(pass.getAnalysis<LiveStacks>()), 143 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 144 MDT(pass.getAnalysis<MachineDominatorTree>()), 145 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 146 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 147 TRI(*mf.getSubtarget().getRegisterInfo()), 148 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 149 IPA(LIS, mf.getNumBlockIDs()) {} 150 151 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 152 unsigned Original); 153 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 154 void hoistAllSpills(); 155 void LRE_DidCloneVirtReg(Register, Register) override; 156 }; 157 158 class InlineSpiller : public Spiller { 159 MachineFunction &MF; 160 LiveIntervals &LIS; 161 LiveStacks &LSS; 162 AliasAnalysis *AA; 163 MachineDominatorTree &MDT; 164 MachineLoopInfo &Loops; 165 VirtRegMap &VRM; 166 MachineRegisterInfo &MRI; 167 const TargetInstrInfo &TII; 168 const TargetRegisterInfo &TRI; 169 const MachineBlockFrequencyInfo &MBFI; 170 171 // Variables that are valid during spill(), but used by multiple methods. 172 LiveRangeEdit *Edit; 173 LiveInterval *StackInt; 174 int StackSlot; 175 Register Original; 176 177 // All registers to spill to StackSlot, including the main register. 178 SmallVector<Register, 8> RegsToSpill; 179 180 // All COPY instructions to/from snippets. 181 // They are ignored since both operands refer to the same stack slot. 182 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 183 184 // Values that failed to remat at some point. 185 SmallPtrSet<VNInfo*, 8> UsedValues; 186 187 // Dead defs generated during spilling. 188 SmallVector<MachineInstr*, 8> DeadDefs; 189 190 // Object records spills information and does the hoisting. 191 HoistSpillHelper HSpiller; 192 193 // Live range weight calculator. 194 VirtRegAuxInfo &VRAI; 195 196 ~InlineSpiller() override = default; 197 198 public: 199 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 200 VirtRegAuxInfo &VRAI) 201 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), 202 LSS(Pass.getAnalysis<LiveStacks>()), 203 AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 204 MDT(Pass.getAnalysis<MachineDominatorTree>()), 205 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM), 206 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 207 TRI(*MF.getSubtarget().getRegisterInfo()), 208 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), 209 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 210 211 void spill(LiveRangeEdit &) override; 212 void postOptimization() override; 213 214 private: 215 bool isSnippet(const LiveInterval &SnipLI); 216 void collectRegsToSpill(); 217 218 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 219 220 bool isSibling(Register Reg); 221 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 222 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 223 224 void markValueUsed(LiveInterval*, VNInfo*); 225 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 226 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 227 void reMaterializeAll(); 228 229 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 230 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 231 MachineInstr *LoadMI = nullptr); 232 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 233 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 234 235 void spillAroundUses(Register Reg); 236 void spillAll(); 237 }; 238 239 } // end anonymous namespace 240 241 Spiller::~Spiller() = default; 242 243 void Spiller::anchor() {} 244 245 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 246 MachineFunction &MF, VirtRegMap &VRM, 247 VirtRegAuxInfo &VRAI) { 248 return new InlineSpiller(Pass, MF, VRM, VRAI); 249 } 250 251 //===----------------------------------------------------------------------===// 252 // Snippets 253 //===----------------------------------------------------------------------===// 254 255 // When spilling a virtual register, we also spill any snippets it is connected 256 // to. The snippets are small live ranges that only have a single real use, 257 // leftovers from live range splitting. Spilling them enables memory operand 258 // folding or tightens the live range around the single use. 259 // 260 // This minimizes register pressure and maximizes the store-to-load distance for 261 // spill slots which can be important in tight loops. 262 263 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 264 /// otherwise return 0. 265 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) { 266 if (!MI.isFullCopy()) 267 return Register(); 268 if (MI.getOperand(0).getReg() == Reg) 269 return MI.getOperand(1).getReg(); 270 if (MI.getOperand(1).getReg() == Reg) 271 return MI.getOperand(0).getReg(); 272 return Register(); 273 } 274 275 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 276 for (const MachineOperand &MO : MI.operands()) 277 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 278 LIS.getInterval(MO.getReg()); 279 } 280 281 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 282 /// It is assumed that SnipLI is a virtual register with the same original as 283 /// Edit->getReg(). 284 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 285 Register Reg = Edit->getReg(); 286 287 // A snippet is a tiny live range with only a single instruction using it 288 // besides copies to/from Reg or spills/fills. We accept: 289 // 290 // %snip = COPY %Reg / FILL fi# 291 // %snip = USE %snip 292 // %Reg = COPY %snip / SPILL %snip, fi# 293 // 294 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 295 return false; 296 297 MachineInstr *UseMI = nullptr; 298 299 // Check that all uses satisfy our criteria. 300 for (MachineRegisterInfo::reg_instr_nodbg_iterator 301 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()), 302 E = MRI.reg_instr_nodbg_end(); 303 RI != E;) { 304 MachineInstr &MI = *RI++; 305 306 // Allow copies to/from Reg. 307 if (isFullCopyOf(MI, Reg)) 308 continue; 309 310 // Allow stack slot loads. 311 int FI; 312 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 313 continue; 314 315 // Allow stack slot stores. 316 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 317 continue; 318 319 // Allow a single additional instruction. 320 if (UseMI && &MI != UseMI) 321 return false; 322 UseMI = &MI; 323 } 324 return true; 325 } 326 327 /// collectRegsToSpill - Collect live range snippets that only have a single 328 /// real use. 329 void InlineSpiller::collectRegsToSpill() { 330 Register Reg = Edit->getReg(); 331 332 // Main register always spills. 333 RegsToSpill.assign(1, Reg); 334 SnippetCopies.clear(); 335 336 // Snippets all have the same original, so there can't be any for an original 337 // register. 338 if (Original == Reg) 339 return; 340 341 for (MachineInstr &MI : 342 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 343 Register SnipReg = isFullCopyOf(MI, Reg); 344 if (!isSibling(SnipReg)) 345 continue; 346 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 347 if (!isSnippet(SnipLI)) 348 continue; 349 SnippetCopies.insert(&MI); 350 if (isRegToSpill(SnipReg)) 351 continue; 352 RegsToSpill.push_back(SnipReg); 353 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 354 ++NumSnippets; 355 } 356 } 357 358 bool InlineSpiller::isSibling(Register Reg) { 359 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 360 } 361 362 /// It is beneficial to spill to earlier place in the same BB in case 363 /// as follows: 364 /// There is an alternative def earlier in the same MBB. 365 /// Hoist the spill as far as possible in SpillMBB. This can ease 366 /// register pressure: 367 /// 368 /// x = def 369 /// y = use x 370 /// s = copy x 371 /// 372 /// Hoisting the spill of s to immediately after the def removes the 373 /// interference between x and y: 374 /// 375 /// x = def 376 /// spill x 377 /// y = use killed x 378 /// 379 /// This hoist only helps when the copy kills its source. 380 /// 381 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 382 MachineInstr &CopyMI) { 383 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 384 #ifndef NDEBUG 385 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 386 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 387 #endif 388 389 Register SrcReg = CopyMI.getOperand(1).getReg(); 390 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 391 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 392 LiveQueryResult SrcQ = SrcLI.Query(Idx); 393 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 394 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 395 return false; 396 397 // Conservatively extend the stack slot range to the range of the original 398 // value. We may be able to do better with stack slot coloring by being more 399 // careful here. 400 assert(StackInt && "No stack slot assigned yet."); 401 LiveInterval &OrigLI = LIS.getInterval(Original); 402 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 403 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 404 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 405 << *StackInt << '\n'); 406 407 // We are going to spill SrcVNI immediately after its def, so clear out 408 // any later spills of the same value. 409 eliminateRedundantSpills(SrcLI, SrcVNI); 410 411 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 412 MachineBasicBlock::iterator MII; 413 if (SrcVNI->isPHIDef()) 414 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 415 else { 416 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 417 assert(DefMI && "Defining instruction disappeared"); 418 MII = DefMI; 419 ++MII; 420 } 421 MachineInstrSpan MIS(MII, MBB); 422 // Insert spill without kill flag immediately after def. 423 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 424 MRI.getRegClass(SrcReg), &TRI); 425 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 426 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 427 getVDefInterval(MI, LIS); 428 --MII; // Point to store instruction. 429 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 430 431 // If there is only 1 store instruction is required for spill, add it 432 // to mergeable list. In X86 AMX, 2 intructions are required to store. 433 // We disable the merge for this case. 434 if (MIS.begin() == MII) 435 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 436 ++NumSpills; 437 return true; 438 } 439 440 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 441 /// redundant spills of this value in SLI.reg and sibling copies. 442 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 443 assert(VNI && "Missing value"); 444 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 445 WorkList.push_back(std::make_pair(&SLI, VNI)); 446 assert(StackInt && "No stack slot assigned yet."); 447 448 do { 449 LiveInterval *LI; 450 std::tie(LI, VNI) = WorkList.pop_back_val(); 451 Register Reg = LI->reg(); 452 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 453 << VNI->def << " in " << *LI << '\n'); 454 455 // Regs to spill are taken care of. 456 if (isRegToSpill(Reg)) 457 continue; 458 459 // Add all of VNI's live range to StackInt. 460 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 461 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 462 463 // Find all spills and copies of VNI. 464 for (MachineInstr &MI : 465 llvm::make_early_inc_range(MRI.use_nodbg_instructions(Reg))) { 466 if (!MI.isCopy() && !MI.mayStore()) 467 continue; 468 SlotIndex Idx = LIS.getInstructionIndex(MI); 469 if (LI->getVNInfoAt(Idx) != VNI) 470 continue; 471 472 // Follow sibling copies down the dominator tree. 473 if (Register DstReg = isFullCopyOf(MI, Reg)) { 474 if (isSibling(DstReg)) { 475 LiveInterval &DstLI = LIS.getInterval(DstReg); 476 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 477 assert(DstVNI && "Missing defined value"); 478 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 479 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 480 } 481 continue; 482 } 483 484 // Erase spills. 485 int FI; 486 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 487 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 488 // eliminateDeadDefs won't normally remove stores, so switch opcode. 489 MI.setDesc(TII.get(TargetOpcode::KILL)); 490 DeadDefs.push_back(&MI); 491 ++NumSpillsRemoved; 492 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 493 --NumSpills; 494 } 495 } 496 } while (!WorkList.empty()); 497 } 498 499 //===----------------------------------------------------------------------===// 500 // Rematerialization 501 //===----------------------------------------------------------------------===// 502 503 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 504 /// instruction cannot be eliminated. See through snippet copies 505 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 506 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 507 WorkList.push_back(std::make_pair(LI, VNI)); 508 do { 509 std::tie(LI, VNI) = WorkList.pop_back_val(); 510 if (!UsedValues.insert(VNI).second) 511 continue; 512 513 if (VNI->isPHIDef()) { 514 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 515 for (MachineBasicBlock *P : MBB->predecessors()) { 516 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 517 if (PVNI) 518 WorkList.push_back(std::make_pair(LI, PVNI)); 519 } 520 continue; 521 } 522 523 // Follow snippet copies. 524 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 525 if (!SnippetCopies.count(MI)) 526 continue; 527 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 528 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 529 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 530 assert(SnipVNI && "Snippet undefined before copy"); 531 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 532 } while (!WorkList.empty()); 533 } 534 535 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 536 MachineInstr &MI) { 537 if (!RestrictStatepointRemat) 538 return true; 539 // Here's a quick explanation of the problem we're trying to handle here: 540 // * There are some pseudo instructions with more vreg uses than there are 541 // physical registers on the machine. 542 // * This is normally handled by spilling the vreg, and folding the reload 543 // into the user instruction. (Thus decreasing the number of used vregs 544 // until the remainder can be assigned to physregs.) 545 // * However, since we may try to spill vregs in any order, we can end up 546 // trying to spill each operand to the instruction, and then rematting it 547 // instead. When that happens, the new live intervals (for the remats) are 548 // expected to be trivially assignable (i.e. RS_Done). However, since we 549 // may have more remats than physregs, we're guaranteed to fail to assign 550 // one. 551 // At the moment, we only handle this for STATEPOINTs since they're the only 552 // pseudo op where we've seen this. If we start seeing other instructions 553 // with the same problem, we need to revisit this. 554 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 555 return true; 556 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 557 // that number of physical registers is enough to cover all fixed arguments. 558 // If it is not true we need to revisit it. 559 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 560 EndIdx = MI.getNumOperands(); 561 Idx < EndIdx; ++Idx) { 562 MachineOperand &MO = MI.getOperand(Idx); 563 if (MO.isReg() && MO.getReg() == VReg) 564 return false; 565 } 566 return true; 567 } 568 569 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 570 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 571 // Analyze instruction 572 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 573 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 574 575 if (!RI.Reads) 576 return false; 577 578 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 579 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 580 581 if (!ParentVNI) { 582 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 583 for (MachineOperand &MO : MI.operands()) 584 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) 585 MO.setIsUndef(); 586 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 587 return true; 588 } 589 590 if (SnippetCopies.count(&MI)) 591 return false; 592 593 LiveInterval &OrigLI = LIS.getInterval(Original); 594 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 595 LiveRangeEdit::Remat RM(ParentVNI); 596 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 597 598 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 599 markValueUsed(&VirtReg, ParentVNI); 600 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 601 return false; 602 } 603 604 // If the instruction also writes VirtReg.reg, it had better not require the 605 // same register for uses and defs. 606 if (RI.Tied) { 607 markValueUsed(&VirtReg, ParentVNI); 608 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 609 return false; 610 } 611 612 // Before rematerializing into a register for a single instruction, try to 613 // fold a load into the instruction. That avoids allocating a new register. 614 if (RM.OrigMI->canFoldAsLoad() && 615 foldMemoryOperand(Ops, RM.OrigMI)) { 616 Edit->markRematerialized(RM.ParentVNI); 617 ++NumFoldedLoads; 618 return true; 619 } 620 621 // If we can't guarantee that we'll be able to actually assign the new vreg, 622 // we can't remat. 623 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 624 markValueUsed(&VirtReg, ParentVNI); 625 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 626 return false; 627 } 628 629 // Allocate a new register for the remat. 630 Register NewVReg = Edit->createFrom(Original); 631 632 // Finally we can rematerialize OrigMI before MI. 633 SlotIndex DefIdx = 634 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 635 636 // We take the DebugLoc from MI, since OrigMI may be attributed to a 637 // different source location. 638 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 639 NewMI->setDebugLoc(MI.getDebugLoc()); 640 641 (void)DefIdx; 642 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 643 << *LIS.getInstructionFromIndex(DefIdx)); 644 645 // Replace operands 646 for (const auto &OpPair : Ops) { 647 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 648 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 649 MO.setReg(NewVReg); 650 MO.setIsKill(); 651 } 652 } 653 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 654 655 ++NumRemats; 656 return true; 657 } 658 659 /// reMaterializeAll - Try to rematerialize as many uses as possible, 660 /// and trim the live ranges after. 661 void InlineSpiller::reMaterializeAll() { 662 if (!Edit->anyRematerializable(AA)) 663 return; 664 665 UsedValues.clear(); 666 667 // Try to remat before all uses of snippets. 668 bool anyRemat = false; 669 for (Register Reg : RegsToSpill) { 670 LiveInterval &LI = LIS.getInterval(Reg); 671 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 672 // Debug values are not allowed to affect codegen. 673 if (MI.isDebugValue()) 674 continue; 675 676 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 677 "instruction that isn't a DBG_VALUE"); 678 679 anyRemat |= reMaterializeFor(LI, MI); 680 } 681 } 682 if (!anyRemat) 683 return; 684 685 // Remove any values that were completely rematted. 686 for (Register Reg : RegsToSpill) { 687 LiveInterval &LI = LIS.getInterval(Reg); 688 for (VNInfo *VNI : LI.vnis()) { 689 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 690 continue; 691 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 692 MI->addRegisterDead(Reg, &TRI); 693 if (!MI->allDefsAreDead()) 694 continue; 695 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 696 DeadDefs.push_back(MI); 697 } 698 } 699 700 // Eliminate dead code after remat. Note that some snippet copies may be 701 // deleted here. 702 if (DeadDefs.empty()) 703 return; 704 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 705 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 706 707 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 708 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 709 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 710 // removed, PHI VNI are still left in the LiveInterval. 711 // So to get rid of unused reg, we need to check whether it has non-dbg 712 // reference instead of whether it has non-empty interval. 713 unsigned ResultPos = 0; 714 for (Register Reg : RegsToSpill) { 715 if (MRI.reg_nodbg_empty(Reg)) { 716 Edit->eraseVirtReg(Reg); 717 continue; 718 } 719 720 assert(LIS.hasInterval(Reg) && 721 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 722 "Empty and not used live-range?!"); 723 724 RegsToSpill[ResultPos++] = Reg; 725 } 726 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 727 LLVM_DEBUG(dbgs() << RegsToSpill.size() 728 << " registers to spill after remat.\n"); 729 } 730 731 //===----------------------------------------------------------------------===// 732 // Spilling 733 //===----------------------------------------------------------------------===// 734 735 /// If MI is a load or store of StackSlot, it can be removed. 736 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 737 int FI = 0; 738 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 739 bool IsLoad = InstrReg; 740 if (!IsLoad) 741 InstrReg = TII.isStoreToStackSlot(*MI, FI); 742 743 // We have a stack access. Is it the right register and slot? 744 if (InstrReg != Reg || FI != StackSlot) 745 return false; 746 747 if (!IsLoad) 748 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 749 750 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 751 LIS.RemoveMachineInstrFromMaps(*MI); 752 MI->eraseFromParent(); 753 754 if (IsLoad) { 755 ++NumReloadsRemoved; 756 --NumReloads; 757 } else { 758 ++NumSpillsRemoved; 759 --NumSpills; 760 } 761 762 return true; 763 } 764 765 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 766 LLVM_DUMP_METHOD 767 // Dump the range of instructions from B to E with their slot indexes. 768 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 769 MachineBasicBlock::iterator E, 770 LiveIntervals const &LIS, 771 const char *const header, 772 Register VReg = Register()) { 773 char NextLine = '\n'; 774 char SlotIndent = '\t'; 775 776 if (std::next(B) == E) { 777 NextLine = ' '; 778 SlotIndent = ' '; 779 } 780 781 dbgs() << '\t' << header << ": " << NextLine; 782 783 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 784 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 785 786 // If a register was passed in and this instruction has it as a 787 // destination that is marked as an early clobber, print the 788 // early-clobber slot index. 789 if (VReg) { 790 MachineOperand *MO = I->findRegisterDefOperand(VReg); 791 if (MO && MO->isEarlyClobber()) 792 Idx = Idx.getRegSlot(true); 793 } 794 795 dbgs() << SlotIndent << Idx << '\t' << *I; 796 } 797 } 798 #endif 799 800 /// foldMemoryOperand - Try folding stack slot references in Ops into their 801 /// instructions. 802 /// 803 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 804 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 805 /// @return True on success. 806 bool InlineSpiller:: 807 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 808 MachineInstr *LoadMI) { 809 if (Ops.empty()) 810 return false; 811 // Don't attempt folding in bundles. 812 MachineInstr *MI = Ops.front().first; 813 if (Ops.back().first != MI || MI->isBundled()) 814 return false; 815 816 bool WasCopy = MI->isCopy(); 817 Register ImpReg; 818 819 // TII::foldMemoryOperand will do what we need here for statepoint 820 // (fold load into use and remove corresponding def). We will replace 821 // uses of removed def with loads (spillAroundUses). 822 // For that to work we need to untie def and use to pass it through 823 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 824 // fold them. 825 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 826 827 // Spill subregs if the target allows it. 828 // We always want to spill subregs for stackmap/patchpoint pseudos. 829 bool SpillSubRegs = TII.isSubregFoldable() || 830 MI->getOpcode() == TargetOpcode::STATEPOINT || 831 MI->getOpcode() == TargetOpcode::PATCHPOINT || 832 MI->getOpcode() == TargetOpcode::STACKMAP; 833 834 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 835 // operands. 836 SmallVector<unsigned, 8> FoldOps; 837 for (const auto &OpPair : Ops) { 838 unsigned Idx = OpPair.second; 839 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 840 MachineOperand &MO = MI->getOperand(Idx); 841 842 // No point restoring an undef read, and we'll produce an invalid live 843 // interval. 844 // TODO: Is this really the correct way to handle undef tied uses? 845 if (MO.isUse() && !MO.readsReg() && !MO.isTied()) 846 continue; 847 848 if (MO.isImplicit()) { 849 ImpReg = MO.getReg(); 850 continue; 851 } 852 853 if (!SpillSubRegs && MO.getSubReg()) 854 return false; 855 // We cannot fold a load instruction into a def. 856 if (LoadMI && MO.isDef()) 857 return false; 858 // Tied use operands should not be passed to foldMemoryOperand. 859 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 860 FoldOps.push_back(Idx); 861 } 862 863 // If we only have implicit uses, we won't be able to fold that. 864 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 865 if (FoldOps.empty()) 866 return false; 867 868 MachineInstrSpan MIS(MI, MI->getParent()); 869 870 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 871 if (UntieRegs) 872 for (unsigned Idx : FoldOps) { 873 MachineOperand &MO = MI->getOperand(Idx); 874 if (!MO.isTied()) 875 continue; 876 unsigned Tied = MI->findTiedOperandIdx(Idx); 877 if (MO.isUse()) 878 TiedOps.emplace_back(Tied, Idx); 879 else { 880 assert(MO.isDef() && "Tied to not use and def?"); 881 TiedOps.emplace_back(Idx, Tied); 882 } 883 MI->untieRegOperand(Idx); 884 } 885 886 MachineInstr *FoldMI = 887 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 888 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 889 if (!FoldMI) { 890 // Re-tie operands. 891 for (auto Tied : TiedOps) 892 MI->tieOperands(Tied.first, Tied.second); 893 return false; 894 } 895 896 // Remove LIS for any dead defs in the original MI not in FoldMI. 897 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 898 if (!MO->isReg()) 899 continue; 900 Register Reg = MO->getReg(); 901 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 902 continue; 903 } 904 // Skip non-Defs, including undef uses and internal reads. 905 if (MO->isUse()) 906 continue; 907 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 908 if (RI.FullyDefined) 909 continue; 910 // FoldMI does not define this physreg. Remove the LI segment. 911 assert(MO->isDead() && "Cannot fold physreg def"); 912 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 913 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 914 } 915 916 int FI; 917 if (TII.isStoreToStackSlot(*MI, FI) && 918 HSpiller.rmFromMergeableSpills(*MI, FI)) 919 --NumSpills; 920 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 921 // Update the call site info. 922 if (MI->isCandidateForCallSiteEntry()) 923 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 924 925 // If we've folded a store into an instruction labelled with debug-info, 926 // record a substitution from the old operand to the memory operand. Handle 927 // the simple common case where operand 0 is the one being folded, plus when 928 // the destination operand is also a tied def. More values could be 929 // substituted / preserved with more analysis. 930 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 931 // Helper lambda. 932 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 933 // Substitute old operand zero to the new instructions memory operand. 934 unsigned OldOperandNum = Ops[0].second; 935 unsigned NewNum = FoldMI->getDebugInstrNum(); 936 unsigned OldNum = MI->getDebugInstrNum(); 937 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 938 {NewNum, MachineFunction::DebugOperandMemNumber}); 939 }; 940 941 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 942 if (Ops.size() == 1 && Op0.isDef()) { 943 MakeSubstitution(); 944 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 945 Op0.getReg() == MI->getOperand(1).getReg()) { 946 MakeSubstitution(); 947 } 948 } else if (MI->peekDebugInstrNum()) { 949 // This is a debug-labelled instruction, but the operand being folded isn't 950 // at operand zero. Most likely this means it's a load being folded in. 951 // Substitute any register defs from operand zero up to the one being 952 // folded -- past that point, we don't know what the new operand indexes 953 // will be. 954 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 955 } 956 957 MI->eraseFromParent(); 958 959 // Insert any new instructions other than FoldMI into the LIS maps. 960 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 961 for (MachineInstr &MI : MIS) 962 if (&MI != FoldMI) 963 LIS.InsertMachineInstrInMaps(MI); 964 965 // TII.foldMemoryOperand may have left some implicit operands on the 966 // instruction. Strip them. 967 if (ImpReg) 968 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 969 MachineOperand &MO = FoldMI->getOperand(i - 1); 970 if (!MO.isReg() || !MO.isImplicit()) 971 break; 972 if (MO.getReg() == ImpReg) 973 FoldMI->removeOperand(i - 1); 974 } 975 976 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 977 "folded")); 978 979 if (!WasCopy) 980 ++NumFolded; 981 else if (Ops.front().second == 0) { 982 ++NumSpills; 983 // If there is only 1 store instruction is required for spill, add it 984 // to mergeable list. In X86 AMX, 2 intructions are required to store. 985 // We disable the merge for this case. 986 if (std::distance(MIS.begin(), MIS.end()) <= 1) 987 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 988 } else 989 ++NumReloads; 990 return true; 991 } 992 993 void InlineSpiller::insertReload(Register NewVReg, 994 SlotIndex Idx, 995 MachineBasicBlock::iterator MI) { 996 MachineBasicBlock &MBB = *MI->getParent(); 997 998 MachineInstrSpan MIS(MI, &MBB); 999 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1000 MRI.getRegClass(NewVReg), &TRI); 1001 1002 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1003 1004 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1005 NewVReg)); 1006 ++NumReloads; 1007 } 1008 1009 /// Check if \p Def fully defines a VReg with an undefined value. 1010 /// If that's the case, that means the value of VReg is actually 1011 /// not relevant. 1012 static bool isRealSpill(const MachineInstr &Def) { 1013 if (!Def.isImplicitDef()) 1014 return true; 1015 assert(Def.getNumOperands() == 1 && 1016 "Implicit def with more than one definition"); 1017 // We can say that the VReg defined by Def is undef, only if it is 1018 // fully defined by Def. Otherwise, some of the lanes may not be 1019 // undef and the value of the VReg matters. 1020 return Def.getOperand(0).getSubReg(); 1021 } 1022 1023 /// insertSpill - Insert a spill of NewVReg after MI. 1024 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1025 MachineBasicBlock::iterator MI) { 1026 // Spill are not terminators, so inserting spills after terminators will 1027 // violate invariants in MachineVerifier. 1028 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1029 MachineBasicBlock &MBB = *MI->getParent(); 1030 1031 MachineInstrSpan MIS(MI, &MBB); 1032 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1033 bool IsRealSpill = isRealSpill(*MI); 1034 1035 if (IsRealSpill) 1036 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1037 MRI.getRegClass(NewVReg), &TRI); 1038 else 1039 // Don't spill undef value. 1040 // Anything works for undef, in particular keeping the memory 1041 // uninitialized is a viable option and it saves code size and 1042 // run time. 1043 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1044 .addReg(NewVReg, getKillRegState(isKill)); 1045 1046 MachineBasicBlock::iterator Spill = std::next(MI); 1047 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1048 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1049 getVDefInterval(MI, LIS); 1050 1051 LLVM_DEBUG( 1052 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1053 ++NumSpills; 1054 // If there is only 1 store instruction is required for spill, add it 1055 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1056 // We disable the merge for this case. 1057 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1058 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1059 } 1060 1061 /// spillAroundUses - insert spill code around each use of Reg. 1062 void InlineSpiller::spillAroundUses(Register Reg) { 1063 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1064 LiveInterval &OldLI = LIS.getInterval(Reg); 1065 1066 // Iterate over instructions using Reg. 1067 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 1068 // Debug values are not allowed to affect codegen. 1069 if (MI.isDebugValue()) { 1070 // Modify DBG_VALUE now that the value is in a spill slot. 1071 MachineBasicBlock *MBB = MI.getParent(); 1072 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); 1073 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg); 1074 MBB->erase(MI); 1075 continue; 1076 } 1077 1078 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 1079 "instruction that isn't a DBG_VALUE"); 1080 1081 // Ignore copies to/from snippets. We'll delete them. 1082 if (SnippetCopies.count(&MI)) 1083 continue; 1084 1085 // Stack slot accesses may coalesce away. 1086 if (coalesceStackAccess(&MI, Reg)) 1087 continue; 1088 1089 // Analyze instruction. 1090 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1091 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops); 1092 1093 // Find the slot index where this instruction reads and writes OldLI. 1094 // This is usually the def slot, except for tied early clobbers. 1095 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1096 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1097 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1098 Idx = VNI->def; 1099 1100 // Check for a sibling copy. 1101 Register SibReg = isFullCopyOf(MI, Reg); 1102 if (SibReg && isSibling(SibReg)) { 1103 // This may actually be a copy between snippets. 1104 if (isRegToSpill(SibReg)) { 1105 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); 1106 SnippetCopies.insert(&MI); 1107 continue; 1108 } 1109 if (RI.Writes) { 1110 if (hoistSpillInsideBB(OldLI, MI)) { 1111 // This COPY is now dead, the value is already in the stack slot. 1112 MI.getOperand(0).setIsDead(); 1113 DeadDefs.push_back(&MI); 1114 continue; 1115 } 1116 } else { 1117 // This is a reload for a sib-reg copy. Drop spills downstream. 1118 LiveInterval &SibLI = LIS.getInterval(SibReg); 1119 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1120 // The COPY will fold to a reload below. 1121 } 1122 } 1123 1124 // Attempt to fold memory ops. 1125 if (foldMemoryOperand(Ops)) 1126 continue; 1127 1128 // Create a new virtual register for spill/fill. 1129 // FIXME: Infer regclass from instruction alone. 1130 Register NewVReg = Edit->createFrom(Reg); 1131 1132 if (RI.Reads) 1133 insertReload(NewVReg, Idx, &MI); 1134 1135 // Rewrite instruction operands. 1136 bool hasLiveDef = false; 1137 for (const auto &OpPair : Ops) { 1138 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1139 MO.setReg(NewVReg); 1140 if (MO.isUse()) { 1141 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1142 MO.setIsKill(); 1143 } else { 1144 if (!MO.isDead()) 1145 hasLiveDef = true; 1146 } 1147 } 1148 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); 1149 1150 // FIXME: Use a second vreg if instruction has no tied ops. 1151 if (RI.Writes) 1152 if (hasLiveDef) 1153 insertSpill(NewVReg, true, &MI); 1154 } 1155 } 1156 1157 /// spillAll - Spill all registers remaining after rematerialization. 1158 void InlineSpiller::spillAll() { 1159 // Update LiveStacks now that we are committed to spilling. 1160 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1161 StackSlot = VRM.assignVirt2StackSlot(Original); 1162 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1163 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1164 } else 1165 StackInt = &LSS.getInterval(StackSlot); 1166 1167 if (Original != Edit->getReg()) 1168 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1169 1170 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1171 for (Register Reg : RegsToSpill) 1172 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1173 StackInt->getValNumInfo(0)); 1174 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1175 1176 // Spill around uses of all RegsToSpill. 1177 for (Register Reg : RegsToSpill) 1178 spillAroundUses(Reg); 1179 1180 // Hoisted spills may cause dead code. 1181 if (!DeadDefs.empty()) { 1182 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1183 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1184 } 1185 1186 // Finally delete the SnippetCopies. 1187 for (Register Reg : RegsToSpill) { 1188 for (MachineInstr &MI : 1189 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 1190 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1191 // FIXME: Do this with a LiveRangeEdit callback. 1192 LIS.RemoveMachineInstrFromMaps(MI); 1193 MI.eraseFromParent(); 1194 } 1195 } 1196 1197 // Delete all spilled registers. 1198 for (Register Reg : RegsToSpill) 1199 Edit->eraseVirtReg(Reg); 1200 } 1201 1202 void InlineSpiller::spill(LiveRangeEdit &edit) { 1203 ++NumSpilledRanges; 1204 Edit = &edit; 1205 assert(!Register::isStackSlot(edit.getReg()) && 1206 "Trying to spill a stack slot."); 1207 // Share a stack slot among all descendants of Original. 1208 Original = VRM.getOriginal(edit.getReg()); 1209 StackSlot = VRM.getStackSlot(Original); 1210 StackInt = nullptr; 1211 1212 LLVM_DEBUG(dbgs() << "Inline spilling " 1213 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1214 << ':' << edit.getParent() << "\nFrom original " 1215 << printReg(Original) << '\n'); 1216 assert(edit.getParent().isSpillable() && 1217 "Attempting to spill already spilled value."); 1218 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1219 1220 collectRegsToSpill(); 1221 reMaterializeAll(); 1222 1223 // Remat may handle everything. 1224 if (!RegsToSpill.empty()) 1225 spillAll(); 1226 1227 Edit->calculateRegClassAndHint(MF, VRAI); 1228 } 1229 1230 /// Optimizations after all the reg selections and spills are done. 1231 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1232 1233 /// When a spill is inserted, add the spill to MergeableSpills map. 1234 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1235 unsigned Original) { 1236 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1237 LiveInterval &OrigLI = LIS.getInterval(Original); 1238 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1239 // LiveInterval may be cleared after all its references are spilled. 1240 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1241 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1242 LI->assign(OrigLI, Allocator); 1243 StackSlotToOrigLI[StackSlot] = std::move(LI); 1244 } 1245 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1246 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1247 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1248 MergeableSpills[MIdx].insert(&Spill); 1249 } 1250 1251 /// When a spill is removed, remove the spill from MergeableSpills map. 1252 /// Return true if the spill is removed successfully. 1253 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1254 int StackSlot) { 1255 auto It = StackSlotToOrigLI.find(StackSlot); 1256 if (It == StackSlotToOrigLI.end()) 1257 return false; 1258 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1259 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1260 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1261 return MergeableSpills[MIdx].erase(&Spill); 1262 } 1263 1264 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1265 /// i.e., there should be a living sibling of OrigReg at the insert point. 1266 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1267 MachineBasicBlock &BB, Register &LiveReg) { 1268 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1269 // The original def could be after the last insert point in the root block, 1270 // we can't hoist to here. 1271 if (Idx < OrigVNI.def) { 1272 // TODO: We could be better here. If LI is not alive in landing pad 1273 // we could hoist spill after LIP. 1274 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1275 return false; 1276 } 1277 Register OrigReg = OrigLI.reg(); 1278 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1279 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1280 1281 for (const Register &SibReg : Siblings) { 1282 LiveInterval &LI = LIS.getInterval(SibReg); 1283 VNInfo *VNI = LI.getVNInfoAt(Idx); 1284 if (VNI) { 1285 LiveReg = SibReg; 1286 return true; 1287 } 1288 } 1289 return false; 1290 } 1291 1292 /// Remove redundant spills in the same BB. Save those redundant spills in 1293 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1294 void HoistSpillHelper::rmRedundantSpills( 1295 SmallPtrSet<MachineInstr *, 16> &Spills, 1296 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1297 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1298 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1299 // another spill inside. If a BB contains more than one spill, only keep the 1300 // earlier spill with smaller SlotIndex. 1301 for (const auto CurrentSpill : Spills) { 1302 MachineBasicBlock *Block = CurrentSpill->getParent(); 1303 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1304 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1305 if (PrevSpill) { 1306 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1307 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1308 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1309 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1310 SpillsToRm.push_back(SpillToRm); 1311 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1312 } else { 1313 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1314 } 1315 } 1316 for (const auto SpillToRm : SpillsToRm) 1317 Spills.erase(SpillToRm); 1318 } 1319 1320 /// Starting from \p Root find a top-down traversal order of the dominator 1321 /// tree to visit all basic blocks containing the elements of \p Spills. 1322 /// Redundant spills will be found and put into \p SpillsToRm at the same 1323 /// time. \p SpillBBToSpill will be populated as part of the process and 1324 /// maps a basic block to the first store occurring in the basic block. 1325 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1326 void HoistSpillHelper::getVisitOrders( 1327 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1328 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1329 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1330 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1331 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1332 // The set contains all the possible BB nodes to which we may hoist 1333 // original spills. 1334 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1335 // Save the BB nodes on the path from the first BB node containing 1336 // non-redundant spill to the Root node. 1337 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1338 // All the spills to be hoisted must originate from a single def instruction 1339 // to the OrigReg. It means the def instruction should dominate all the spills 1340 // to be hoisted. We choose the BB where the def instruction is located as 1341 // the Root. 1342 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1343 // For every node on the dominator tree with spill, walk up on the dominator 1344 // tree towards the Root node until it is reached. If there is other node 1345 // containing spill in the middle of the path, the previous spill saw will 1346 // be redundant and the node containing it will be removed. All the nodes on 1347 // the path starting from the first node with non-redundant spill to the Root 1348 // node will be added to the WorkSet, which will contain all the possible 1349 // locations where spills may be hoisted to after the loop below is done. 1350 for (const auto Spill : Spills) { 1351 MachineBasicBlock *Block = Spill->getParent(); 1352 MachineDomTreeNode *Node = MDT[Block]; 1353 MachineInstr *SpillToRm = nullptr; 1354 while (Node != RootIDomNode) { 1355 // If Node dominates Block, and it already contains a spill, the spill in 1356 // Block will be redundant. 1357 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1358 SpillToRm = SpillBBToSpill[MDT[Block]]; 1359 break; 1360 /// If we see the Node already in WorkSet, the path from the Node to 1361 /// the Root node must already be traversed by another spill. 1362 /// Then no need to repeat. 1363 } else if (WorkSet.count(Node)) { 1364 break; 1365 } else { 1366 NodesOnPath.insert(Node); 1367 } 1368 Node = Node->getIDom(); 1369 } 1370 if (SpillToRm) { 1371 SpillsToRm.push_back(SpillToRm); 1372 } else { 1373 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1374 // set the initial status before hoisting start. The value of BBs 1375 // containing original spills is set to 0, in order to descriminate 1376 // with BBs containing hoisted spills which will be inserted to 1377 // SpillsToKeep later during hoisting. 1378 SpillsToKeep[MDT[Block]] = 0; 1379 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1380 } 1381 NodesOnPath.clear(); 1382 } 1383 1384 // Sort the nodes in WorkSet in top-down order and save the nodes 1385 // in Orders. Orders will be used for hoisting in runHoistSpills. 1386 unsigned idx = 0; 1387 Orders.push_back(MDT.getBase().getNode(Root)); 1388 do { 1389 MachineDomTreeNode *Node = Orders[idx++]; 1390 for (MachineDomTreeNode *Child : Node->children()) { 1391 if (WorkSet.count(Child)) 1392 Orders.push_back(Child); 1393 } 1394 } while (idx != Orders.size()); 1395 assert(Orders.size() == WorkSet.size() && 1396 "Orders have different size with WorkSet"); 1397 1398 #ifndef NDEBUG 1399 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1400 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1401 for (; RIt != Orders.rend(); RIt++) 1402 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1403 LLVM_DEBUG(dbgs() << "\n"); 1404 #endif 1405 } 1406 1407 /// Try to hoist spills according to BB hotness. The spills to removed will 1408 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1409 /// \p SpillsToIns. 1410 void HoistSpillHelper::runHoistSpills( 1411 LiveInterval &OrigLI, VNInfo &OrigVNI, 1412 SmallPtrSet<MachineInstr *, 16> &Spills, 1413 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1414 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1415 // Visit order of dominator tree nodes. 1416 SmallVector<MachineDomTreeNode *, 32> Orders; 1417 // SpillsToKeep contains all the nodes where spills are to be inserted 1418 // during hoisting. If the spill to be inserted is an original spill 1419 // (not a hoisted one), the value of the map entry is 0. If the spill 1420 // is a hoisted spill, the value of the map entry is the VReg to be used 1421 // as the source of the spill. 1422 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1423 // Map from BB to the first spill inside of it. 1424 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1425 1426 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1427 1428 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1429 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1430 SpillBBToSpill); 1431 1432 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1433 // nodes set and the cost of all the spills inside those nodes. 1434 // The nodes set are the locations where spills are to be inserted 1435 // in the subtree of current node. 1436 using NodesCostPair = 1437 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1438 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1439 1440 // Iterate Orders set in reverse order, which will be a bottom-up order 1441 // in the dominator tree. Once we visit a dom tree node, we know its 1442 // children have already been visited and the spill locations in the 1443 // subtrees of all the children have been determined. 1444 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1445 for (; RIt != Orders.rend(); RIt++) { 1446 MachineBasicBlock *Block = (*RIt)->getBlock(); 1447 1448 // If Block contains an original spill, simply continue. 1449 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1450 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1451 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1452 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1453 continue; 1454 } 1455 1456 // Collect spills in subtree of current node (*RIt) to 1457 // SpillsInSubTreeMap[*RIt].first. 1458 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1459 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1460 continue; 1461 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1462 // should be placed before getting the begin and end iterators of 1463 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1464 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1465 // and the map grows and then the original buckets in the map are moved. 1466 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1467 SpillsInSubTreeMap[*RIt].first; 1468 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1469 SubTreeCost += SpillsInSubTreeMap[Child].second; 1470 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1471 auto EI = SpillsInSubTreeMap[Child].first.end(); 1472 SpillsInSubTree.insert(BI, EI); 1473 SpillsInSubTreeMap.erase(Child); 1474 } 1475 1476 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1477 SpillsInSubTreeMap[*RIt].first; 1478 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1479 // No spills in subtree, simply continue. 1480 if (SpillsInSubTree.empty()) 1481 continue; 1482 1483 // Check whether Block is a possible candidate to insert spill. 1484 Register LiveReg; 1485 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1486 continue; 1487 1488 // If there are multiple spills that could be merged, bias a little 1489 // to hoist the spill. 1490 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1491 ? BranchProbability(9, 10) 1492 : BranchProbability(1, 1); 1493 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1494 // Hoist: Move spills to current Block. 1495 for (const auto SpillBB : SpillsInSubTree) { 1496 // When SpillBB is a BB contains original spill, insert the spill 1497 // to SpillsToRm. 1498 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1499 !SpillsToKeep[SpillBB]) { 1500 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1501 SpillsToRm.push_back(SpillToRm); 1502 } 1503 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1504 SpillsToKeep.erase(SpillBB); 1505 } 1506 // Current Block is the BB containing the new hoisted spill. Add it to 1507 // SpillsToKeep. LiveReg is the source of the new spill. 1508 SpillsToKeep[*RIt] = LiveReg; 1509 LLVM_DEBUG({ 1510 dbgs() << "spills in BB: "; 1511 for (const auto Rspill : SpillsInSubTree) 1512 dbgs() << Rspill->getBlock()->getNumber() << " "; 1513 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1514 << "\n"; 1515 }); 1516 SpillsInSubTree.clear(); 1517 SpillsInSubTree.insert(*RIt); 1518 SubTreeCost = MBFI.getBlockFreq(Block); 1519 } 1520 } 1521 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1522 // save them to SpillsToIns. 1523 for (const auto &Ent : SpillsToKeep) { 1524 if (Ent.second) 1525 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1526 } 1527 } 1528 1529 /// For spills with equal values, remove redundant spills and hoist those left 1530 /// to less hot spots. 1531 /// 1532 /// Spills with equal values will be collected into the same set in 1533 /// MergeableSpills when spill is inserted. These equal spills are originated 1534 /// from the same defining instruction and are dominated by the instruction. 1535 /// Before hoisting all the equal spills, redundant spills inside in the same 1536 /// BB are first marked to be deleted. Then starting from the spills left, walk 1537 /// up on the dominator tree towards the Root node where the define instruction 1538 /// is located, mark the dominated spills to be deleted along the way and 1539 /// collect the BB nodes on the path from non-dominated spills to the define 1540 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1541 /// where we are considering to hoist the spills. We iterate the WorkSet in 1542 /// bottom-up order, and for each node, we will decide whether to hoist spills 1543 /// inside its subtree to that node. In this way, we can get benefit locally 1544 /// even if hoisting all the equal spills to one cold place is impossible. 1545 void HoistSpillHelper::hoistAllSpills() { 1546 SmallVector<Register, 4> NewVRegs; 1547 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1548 1549 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1550 Register Reg = Register::index2VirtReg(i); 1551 Register Original = VRM.getPreSplitReg(Reg); 1552 if (!MRI.def_empty(Reg)) 1553 Virt2SiblingsMap[Original].insert(Reg); 1554 } 1555 1556 // Each entry in MergeableSpills contains a spill set with equal values. 1557 for (auto &Ent : MergeableSpills) { 1558 int Slot = Ent.first.first; 1559 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1560 VNInfo *OrigVNI = Ent.first.second; 1561 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1562 if (Ent.second.empty()) 1563 continue; 1564 1565 LLVM_DEBUG({ 1566 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1567 << "Equal spills in BB: "; 1568 for (const auto spill : EqValSpills) 1569 dbgs() << spill->getParent()->getNumber() << " "; 1570 dbgs() << "\n"; 1571 }); 1572 1573 // SpillsToRm is the spill set to be removed from EqValSpills. 1574 SmallVector<MachineInstr *, 16> SpillsToRm; 1575 // SpillsToIns is the spill set to be newly inserted after hoisting. 1576 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1577 1578 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1579 1580 LLVM_DEBUG({ 1581 dbgs() << "Finally inserted spills in BB: "; 1582 for (const auto &Ispill : SpillsToIns) 1583 dbgs() << Ispill.first->getNumber() << " "; 1584 dbgs() << "\nFinally removed spills in BB: "; 1585 for (const auto Rspill : SpillsToRm) 1586 dbgs() << Rspill->getParent()->getNumber() << " "; 1587 dbgs() << "\n"; 1588 }); 1589 1590 // Stack live range update. 1591 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1592 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1593 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1594 StackIntvl.getValNumInfo(0)); 1595 1596 // Insert hoisted spills. 1597 for (auto const &Insert : SpillsToIns) { 1598 MachineBasicBlock *BB = Insert.first; 1599 Register LiveReg = Insert.second; 1600 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1601 MachineInstrSpan MIS(MII, BB); 1602 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1603 MRI.getRegClass(LiveReg), &TRI); 1604 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1605 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1606 getVDefInterval(MI, LIS); 1607 ++NumSpills; 1608 } 1609 1610 // Remove redundant spills or change them to dead instructions. 1611 NumSpills -= SpillsToRm.size(); 1612 for (auto const RMEnt : SpillsToRm) { 1613 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1614 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1615 MachineOperand &MO = RMEnt->getOperand(i - 1); 1616 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1617 RMEnt->removeOperand(i - 1); 1618 } 1619 } 1620 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1621 } 1622 } 1623 1624 /// For VirtReg clone, the \p New register should have the same physreg or 1625 /// stackslot as the \p old register. 1626 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1627 if (VRM.hasPhys(Old)) 1628 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1629 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1630 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1631 else 1632 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1633 if (VRM.hasShape(Old)) 1634 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1635 } 1636