1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveIntervalCalc.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeEdit.h" 29 #include "llvm/CodeGen/LiveStacks.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineInstrBundle.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/Spiller.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Config/llvm-config.h" 50 #include "llvm/Support/BlockFrequency.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <iterator> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "regalloc" 66 67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 68 STATISTIC(NumSnippets, "Number of spilled snippets"); 69 STATISTIC(NumSpills, "Number of spills inserted"); 70 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 71 STATISTIC(NumReloads, "Number of reloads inserted"); 72 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 73 STATISTIC(NumFolded, "Number of folded stack accesses"); 74 STATISTIC(NumFoldedLoads, "Number of folded loads"); 75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 76 77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 78 cl::desc("Disable inline spill hoisting")); 79 static cl::opt<bool> 80 RestrictStatepointRemat("restrict-statepoint-remat", 81 cl::init(false), cl::Hidden, 82 cl::desc("Restrict remat for statepoint operands")); 83 84 namespace { 85 86 class HoistSpillHelper : private LiveRangeEdit::Delegate { 87 MachineFunction &MF; 88 LiveIntervals &LIS; 89 LiveStacks &LSS; 90 AliasAnalysis *AA; 91 MachineDominatorTree &MDT; 92 MachineLoopInfo &Loops; 93 VirtRegMap &VRM; 94 MachineRegisterInfo &MRI; 95 const TargetInstrInfo &TII; 96 const TargetRegisterInfo &TRI; 97 const MachineBlockFrequencyInfo &MBFI; 98 99 InsertPointAnalysis IPA; 100 101 // Map from StackSlot to the LiveInterval of the original register. 102 // Note the LiveInterval of the original register may have been deleted 103 // after it is spilled. We keep a copy here to track the range where 104 // spills can be moved. 105 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 106 107 // Map from pair of (StackSlot and Original VNI) to a set of spills which 108 // have the same stackslot and have equal values defined by Original VNI. 109 // These spills are mergeable and are hoist candiates. 110 using MergeableSpillsMap = 111 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 112 MergeableSpillsMap MergeableSpills; 113 114 /// This is the map from original register to a set containing all its 115 /// siblings. To hoist a spill to another BB, we need to find out a live 116 /// sibling there and use it as the source of the new spill. 117 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 118 119 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 120 MachineBasicBlock &BB, Register &LiveReg); 121 122 void rmRedundantSpills( 123 SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineInstr *> &SpillsToRm, 125 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 126 127 void getVisitOrders( 128 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 129 SmallVectorImpl<MachineDomTreeNode *> &Orders, 130 SmallVectorImpl<MachineInstr *> &SpillsToRm, 131 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 132 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 133 134 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 135 SmallPtrSet<MachineInstr *, 16> &Spills, 136 SmallVectorImpl<MachineInstr *> &SpillsToRm, 137 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 138 139 public: 140 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 141 VirtRegMap &vrm) 142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 143 LSS(pass.getAnalysis<LiveStacks>()), 144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 145 MDT(pass.getAnalysis<MachineDominatorTree>()), 146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 147 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 148 TRI(*mf.getSubtarget().getRegisterInfo()), 149 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 150 IPA(LIS, mf.getNumBlockIDs()) {} 151 152 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 153 unsigned Original); 154 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 155 void hoistAllSpills(); 156 void LRE_DidCloneVirtReg(Register, Register) override; 157 }; 158 159 class InlineSpiller : public Spiller { 160 MachineFunction &MF; 161 LiveIntervals &LIS; 162 LiveStacks &LSS; 163 AliasAnalysis *AA; 164 MachineDominatorTree &MDT; 165 MachineLoopInfo &Loops; 166 VirtRegMap &VRM; 167 MachineRegisterInfo &MRI; 168 const TargetInstrInfo &TII; 169 const TargetRegisterInfo &TRI; 170 const MachineBlockFrequencyInfo &MBFI; 171 172 // Variables that are valid during spill(), but used by multiple methods. 173 LiveRangeEdit *Edit; 174 LiveInterval *StackInt; 175 int StackSlot; 176 Register Original; 177 178 // All registers to spill to StackSlot, including the main register. 179 SmallVector<Register, 8> RegsToSpill; 180 181 // All COPY instructions to/from snippets. 182 // They are ignored since both operands refer to the same stack slot. 183 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 184 185 // Values that failed to remat at some point. 186 SmallPtrSet<VNInfo*, 8> UsedValues; 187 188 // Dead defs generated during spilling. 189 SmallVector<MachineInstr*, 8> DeadDefs; 190 191 // Object records spills information and does the hoisting. 192 HoistSpillHelper HSpiller; 193 194 // Live range weight calculator. 195 VirtRegAuxInfo &VRAI; 196 197 ~InlineSpiller() override = default; 198 199 public: 200 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 201 VirtRegAuxInfo &VRAI) 202 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), 203 LSS(Pass.getAnalysis<LiveStacks>()), 204 AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 205 MDT(Pass.getAnalysis<MachineDominatorTree>()), 206 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM), 207 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 208 TRI(*MF.getSubtarget().getRegisterInfo()), 209 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), 210 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 211 212 void spill(LiveRangeEdit &) override; 213 void postOptimization() override; 214 215 private: 216 bool isSnippet(const LiveInterval &SnipLI); 217 void collectRegsToSpill(); 218 219 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 220 221 bool isSibling(Register Reg); 222 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 223 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 224 225 void markValueUsed(LiveInterval*, VNInfo*); 226 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 227 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 228 void reMaterializeAll(); 229 230 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 231 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 232 MachineInstr *LoadMI = nullptr); 233 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 234 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 235 236 void spillAroundUses(Register Reg); 237 void spillAll(); 238 }; 239 240 } // end anonymous namespace 241 242 Spiller::~Spiller() = default; 243 244 void Spiller::anchor() {} 245 246 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 247 MachineFunction &MF, VirtRegMap &VRM, 248 VirtRegAuxInfo &VRAI) { 249 return new InlineSpiller(Pass, MF, VRM, VRAI); 250 } 251 252 //===----------------------------------------------------------------------===// 253 // Snippets 254 //===----------------------------------------------------------------------===// 255 256 // When spilling a virtual register, we also spill any snippets it is connected 257 // to. The snippets are small live ranges that only have a single real use, 258 // leftovers from live range splitting. Spilling them enables memory operand 259 // folding or tightens the live range around the single use. 260 // 261 // This minimizes register pressure and maximizes the store-to-load distance for 262 // spill slots which can be important in tight loops. 263 264 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 265 /// otherwise return 0. 266 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) { 267 if (!MI.isFullCopy()) 268 return Register(); 269 if (MI.getOperand(0).getReg() == Reg) 270 return MI.getOperand(1).getReg(); 271 if (MI.getOperand(1).getReg() == Reg) 272 return MI.getOperand(0).getReg(); 273 return Register(); 274 } 275 276 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 277 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 278 const MachineOperand &MO = MI.getOperand(I); 279 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 280 LIS.getInterval(MO.getReg()); 281 } 282 } 283 284 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 285 /// It is assumed that SnipLI is a virtual register with the same original as 286 /// Edit->getReg(). 287 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 288 Register Reg = Edit->getReg(); 289 290 // A snippet is a tiny live range with only a single instruction using it 291 // besides copies to/from Reg or spills/fills. We accept: 292 // 293 // %snip = COPY %Reg / FILL fi# 294 // %snip = USE %snip 295 // %Reg = COPY %snip / SPILL %snip, fi# 296 // 297 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 298 return false; 299 300 MachineInstr *UseMI = nullptr; 301 302 // Check that all uses satisfy our criteria. 303 for (MachineRegisterInfo::reg_instr_nodbg_iterator 304 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()), 305 E = MRI.reg_instr_nodbg_end(); 306 RI != E;) { 307 MachineInstr &MI = *RI++; 308 309 // Allow copies to/from Reg. 310 if (isFullCopyOf(MI, Reg)) 311 continue; 312 313 // Allow stack slot loads. 314 int FI; 315 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 316 continue; 317 318 // Allow stack slot stores. 319 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 320 continue; 321 322 // Allow a single additional instruction. 323 if (UseMI && &MI != UseMI) 324 return false; 325 UseMI = &MI; 326 } 327 return true; 328 } 329 330 /// collectRegsToSpill - Collect live range snippets that only have a single 331 /// real use. 332 void InlineSpiller::collectRegsToSpill() { 333 Register Reg = Edit->getReg(); 334 335 // Main register always spills. 336 RegsToSpill.assign(1, Reg); 337 SnippetCopies.clear(); 338 339 // Snippets all have the same original, so there can't be any for an original 340 // register. 341 if (Original == Reg) 342 return; 343 344 for (MachineInstr &MI : 345 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 346 Register SnipReg = isFullCopyOf(MI, Reg); 347 if (!isSibling(SnipReg)) 348 continue; 349 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 350 if (!isSnippet(SnipLI)) 351 continue; 352 SnippetCopies.insert(&MI); 353 if (isRegToSpill(SnipReg)) 354 continue; 355 RegsToSpill.push_back(SnipReg); 356 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 357 ++NumSnippets; 358 } 359 } 360 361 bool InlineSpiller::isSibling(Register Reg) { 362 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 363 } 364 365 /// It is beneficial to spill to earlier place in the same BB in case 366 /// as follows: 367 /// There is an alternative def earlier in the same MBB. 368 /// Hoist the spill as far as possible in SpillMBB. This can ease 369 /// register pressure: 370 /// 371 /// x = def 372 /// y = use x 373 /// s = copy x 374 /// 375 /// Hoisting the spill of s to immediately after the def removes the 376 /// interference between x and y: 377 /// 378 /// x = def 379 /// spill x 380 /// y = use killed x 381 /// 382 /// This hoist only helps when the copy kills its source. 383 /// 384 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 385 MachineInstr &CopyMI) { 386 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 387 #ifndef NDEBUG 388 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 389 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 390 #endif 391 392 Register SrcReg = CopyMI.getOperand(1).getReg(); 393 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 394 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 395 LiveQueryResult SrcQ = SrcLI.Query(Idx); 396 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 397 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 398 return false; 399 400 // Conservatively extend the stack slot range to the range of the original 401 // value. We may be able to do better with stack slot coloring by being more 402 // careful here. 403 assert(StackInt && "No stack slot assigned yet."); 404 LiveInterval &OrigLI = LIS.getInterval(Original); 405 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 406 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 407 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 408 << *StackInt << '\n'); 409 410 // We are going to spill SrcVNI immediately after its def, so clear out 411 // any later spills of the same value. 412 eliminateRedundantSpills(SrcLI, SrcVNI); 413 414 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 415 MachineBasicBlock::iterator MII; 416 if (SrcVNI->isPHIDef()) 417 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 418 else { 419 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 420 assert(DefMI && "Defining instruction disappeared"); 421 MII = DefMI; 422 ++MII; 423 } 424 MachineInstrSpan MIS(MII, MBB); 425 // Insert spill without kill flag immediately after def. 426 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 427 MRI.getRegClass(SrcReg), &TRI); 428 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 429 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 430 getVDefInterval(MI, LIS); 431 --MII; // Point to store instruction. 432 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 433 434 // If there is only 1 store instruction is required for spill, add it 435 // to mergeable list. In X86 AMX, 2 intructions are required to store. 436 // We disable the merge for this case. 437 if (MIS.begin() == MII) 438 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 439 ++NumSpills; 440 return true; 441 } 442 443 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 444 /// redundant spills of this value in SLI.reg and sibling copies. 445 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 446 assert(VNI && "Missing value"); 447 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 448 WorkList.push_back(std::make_pair(&SLI, VNI)); 449 assert(StackInt && "No stack slot assigned yet."); 450 451 do { 452 LiveInterval *LI; 453 std::tie(LI, VNI) = WorkList.pop_back_val(); 454 Register Reg = LI->reg(); 455 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 456 << VNI->def << " in " << *LI << '\n'); 457 458 // Regs to spill are taken care of. 459 if (isRegToSpill(Reg)) 460 continue; 461 462 // Add all of VNI's live range to StackInt. 463 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 464 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 465 466 // Find all spills and copies of VNI. 467 for (MachineInstr &MI : 468 llvm::make_early_inc_range(MRI.use_nodbg_instructions(Reg))) { 469 if (!MI.isCopy() && !MI.mayStore()) 470 continue; 471 SlotIndex Idx = LIS.getInstructionIndex(MI); 472 if (LI->getVNInfoAt(Idx) != VNI) 473 continue; 474 475 // Follow sibling copies down the dominator tree. 476 if (Register DstReg = isFullCopyOf(MI, Reg)) { 477 if (isSibling(DstReg)) { 478 LiveInterval &DstLI = LIS.getInterval(DstReg); 479 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 480 assert(DstVNI && "Missing defined value"); 481 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 482 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 483 } 484 continue; 485 } 486 487 // Erase spills. 488 int FI; 489 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 490 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 491 // eliminateDeadDefs won't normally remove stores, so switch opcode. 492 MI.setDesc(TII.get(TargetOpcode::KILL)); 493 DeadDefs.push_back(&MI); 494 ++NumSpillsRemoved; 495 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 496 --NumSpills; 497 } 498 } 499 } while (!WorkList.empty()); 500 } 501 502 //===----------------------------------------------------------------------===// 503 // Rematerialization 504 //===----------------------------------------------------------------------===// 505 506 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 507 /// instruction cannot be eliminated. See through snippet copies 508 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 509 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 510 WorkList.push_back(std::make_pair(LI, VNI)); 511 do { 512 std::tie(LI, VNI) = WorkList.pop_back_val(); 513 if (!UsedValues.insert(VNI).second) 514 continue; 515 516 if (VNI->isPHIDef()) { 517 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 518 for (MachineBasicBlock *P : MBB->predecessors()) { 519 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 520 if (PVNI) 521 WorkList.push_back(std::make_pair(LI, PVNI)); 522 } 523 continue; 524 } 525 526 // Follow snippet copies. 527 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 528 if (!SnippetCopies.count(MI)) 529 continue; 530 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 531 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 532 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 533 assert(SnipVNI && "Snippet undefined before copy"); 534 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 535 } while (!WorkList.empty()); 536 } 537 538 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 539 MachineInstr &MI) { 540 if (!RestrictStatepointRemat) 541 return true; 542 // Here's a quick explanation of the problem we're trying to handle here: 543 // * There are some pseudo instructions with more vreg uses than there are 544 // physical registers on the machine. 545 // * This is normally handled by spilling the vreg, and folding the reload 546 // into the user instruction. (Thus decreasing the number of used vregs 547 // until the remainder can be assigned to physregs.) 548 // * However, since we may try to spill vregs in any order, we can end up 549 // trying to spill each operand to the instruction, and then rematting it 550 // instead. When that happens, the new live intervals (for the remats) are 551 // expected to be trivially assignable (i.e. RS_Done). However, since we 552 // may have more remats than physregs, we're guaranteed to fail to assign 553 // one. 554 // At the moment, we only handle this for STATEPOINTs since they're the only 555 // pseudo op where we've seen this. If we start seeing other instructions 556 // with the same problem, we need to revisit this. 557 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 558 return true; 559 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 560 // that number of physical registers is enough to cover all fixed arguments. 561 // If it is not true we need to revisit it. 562 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 563 EndIdx = MI.getNumOperands(); 564 Idx < EndIdx; ++Idx) { 565 MachineOperand &MO = MI.getOperand(Idx); 566 if (MO.isReg() && MO.getReg() == VReg) 567 return false; 568 } 569 return true; 570 } 571 572 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 573 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 574 // Analyze instruction 575 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 576 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 577 578 if (!RI.Reads) 579 return false; 580 581 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 582 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 583 584 if (!ParentVNI) { 585 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 586 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 587 MachineOperand &MO = MI.getOperand(i); 588 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) 589 MO.setIsUndef(); 590 } 591 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 592 return true; 593 } 594 595 if (SnippetCopies.count(&MI)) 596 return false; 597 598 LiveInterval &OrigLI = LIS.getInterval(Original); 599 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 600 LiveRangeEdit::Remat RM(ParentVNI); 601 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 602 603 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 604 markValueUsed(&VirtReg, ParentVNI); 605 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 606 return false; 607 } 608 609 // If the instruction also writes VirtReg.reg, it had better not require the 610 // same register for uses and defs. 611 if (RI.Tied) { 612 markValueUsed(&VirtReg, ParentVNI); 613 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 614 return false; 615 } 616 617 // Before rematerializing into a register for a single instruction, try to 618 // fold a load into the instruction. That avoids allocating a new register. 619 if (RM.OrigMI->canFoldAsLoad() && 620 foldMemoryOperand(Ops, RM.OrigMI)) { 621 Edit->markRematerialized(RM.ParentVNI); 622 ++NumFoldedLoads; 623 return true; 624 } 625 626 // If we can't guarantee that we'll be able to actually assign the new vreg, 627 // we can't remat. 628 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 629 markValueUsed(&VirtReg, ParentVNI); 630 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 631 return false; 632 } 633 634 // Allocate a new register for the remat. 635 Register NewVReg = Edit->createFrom(Original); 636 637 // Finally we can rematerialize OrigMI before MI. 638 SlotIndex DefIdx = 639 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 640 641 // We take the DebugLoc from MI, since OrigMI may be attributed to a 642 // different source location. 643 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 644 NewMI->setDebugLoc(MI.getDebugLoc()); 645 646 (void)DefIdx; 647 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 648 << *LIS.getInstructionFromIndex(DefIdx)); 649 650 // Replace operands 651 for (const auto &OpPair : Ops) { 652 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 653 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 654 MO.setReg(NewVReg); 655 MO.setIsKill(); 656 } 657 } 658 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 659 660 ++NumRemats; 661 return true; 662 } 663 664 /// reMaterializeAll - Try to rematerialize as many uses as possible, 665 /// and trim the live ranges after. 666 void InlineSpiller::reMaterializeAll() { 667 if (!Edit->anyRematerializable(AA)) 668 return; 669 670 UsedValues.clear(); 671 672 // Try to remat before all uses of snippets. 673 bool anyRemat = false; 674 for (Register Reg : RegsToSpill) { 675 LiveInterval &LI = LIS.getInterval(Reg); 676 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 677 // Debug values are not allowed to affect codegen. 678 if (MI.isDebugValue()) 679 continue; 680 681 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 682 "instruction that isn't a DBG_VALUE"); 683 684 anyRemat |= reMaterializeFor(LI, MI); 685 } 686 } 687 if (!anyRemat) 688 return; 689 690 // Remove any values that were completely rematted. 691 for (Register Reg : RegsToSpill) { 692 LiveInterval &LI = LIS.getInterval(Reg); 693 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 694 I != E; ++I) { 695 VNInfo *VNI = *I; 696 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 697 continue; 698 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 699 MI->addRegisterDead(Reg, &TRI); 700 if (!MI->allDefsAreDead()) 701 continue; 702 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 703 DeadDefs.push_back(MI); 704 } 705 } 706 707 // Eliminate dead code after remat. Note that some snippet copies may be 708 // deleted here. 709 if (DeadDefs.empty()) 710 return; 711 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 712 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 713 714 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 715 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 716 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 717 // removed, PHI VNI are still left in the LiveInterval. 718 // So to get rid of unused reg, we need to check whether it has non-dbg 719 // reference instead of whether it has non-empty interval. 720 unsigned ResultPos = 0; 721 for (Register Reg : RegsToSpill) { 722 if (MRI.reg_nodbg_empty(Reg)) { 723 Edit->eraseVirtReg(Reg); 724 continue; 725 } 726 727 assert(LIS.hasInterval(Reg) && 728 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 729 "Empty and not used live-range?!"); 730 731 RegsToSpill[ResultPos++] = Reg; 732 } 733 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 734 LLVM_DEBUG(dbgs() << RegsToSpill.size() 735 << " registers to spill after remat.\n"); 736 } 737 738 //===----------------------------------------------------------------------===// 739 // Spilling 740 //===----------------------------------------------------------------------===// 741 742 /// If MI is a load or store of StackSlot, it can be removed. 743 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 744 int FI = 0; 745 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 746 bool IsLoad = InstrReg; 747 if (!IsLoad) 748 InstrReg = TII.isStoreToStackSlot(*MI, FI); 749 750 // We have a stack access. Is it the right register and slot? 751 if (InstrReg != Reg || FI != StackSlot) 752 return false; 753 754 if (!IsLoad) 755 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 756 757 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 758 LIS.RemoveMachineInstrFromMaps(*MI); 759 MI->eraseFromParent(); 760 761 if (IsLoad) { 762 ++NumReloadsRemoved; 763 --NumReloads; 764 } else { 765 ++NumSpillsRemoved; 766 --NumSpills; 767 } 768 769 return true; 770 } 771 772 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 773 LLVM_DUMP_METHOD 774 // Dump the range of instructions from B to E with their slot indexes. 775 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 776 MachineBasicBlock::iterator E, 777 LiveIntervals const &LIS, 778 const char *const header, 779 Register VReg = Register()) { 780 char NextLine = '\n'; 781 char SlotIndent = '\t'; 782 783 if (std::next(B) == E) { 784 NextLine = ' '; 785 SlotIndent = ' '; 786 } 787 788 dbgs() << '\t' << header << ": " << NextLine; 789 790 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 791 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 792 793 // If a register was passed in and this instruction has it as a 794 // destination that is marked as an early clobber, print the 795 // early-clobber slot index. 796 if (VReg) { 797 MachineOperand *MO = I->findRegisterDefOperand(VReg); 798 if (MO && MO->isEarlyClobber()) 799 Idx = Idx.getRegSlot(true); 800 } 801 802 dbgs() << SlotIndent << Idx << '\t' << *I; 803 } 804 } 805 #endif 806 807 /// foldMemoryOperand - Try folding stack slot references in Ops into their 808 /// instructions. 809 /// 810 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 811 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 812 /// @return True on success. 813 bool InlineSpiller:: 814 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 815 MachineInstr *LoadMI) { 816 if (Ops.empty()) 817 return false; 818 // Don't attempt folding in bundles. 819 MachineInstr *MI = Ops.front().first; 820 if (Ops.back().first != MI || MI->isBundled()) 821 return false; 822 823 bool WasCopy = MI->isCopy(); 824 Register ImpReg; 825 826 // TII::foldMemoryOperand will do what we need here for statepoint 827 // (fold load into use and remove corresponding def). We will replace 828 // uses of removed def with loads (spillAroundUses). 829 // For that to work we need to untie def and use to pass it through 830 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 831 // fold them. 832 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 833 834 // Spill subregs if the target allows it. 835 // We always want to spill subregs for stackmap/patchpoint pseudos. 836 bool SpillSubRegs = TII.isSubregFoldable() || 837 MI->getOpcode() == TargetOpcode::STATEPOINT || 838 MI->getOpcode() == TargetOpcode::PATCHPOINT || 839 MI->getOpcode() == TargetOpcode::STACKMAP; 840 841 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 842 // operands. 843 SmallVector<unsigned, 8> FoldOps; 844 for (const auto &OpPair : Ops) { 845 unsigned Idx = OpPair.second; 846 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 847 MachineOperand &MO = MI->getOperand(Idx); 848 if (MO.isImplicit()) { 849 ImpReg = MO.getReg(); 850 continue; 851 } 852 853 if (!SpillSubRegs && MO.getSubReg()) 854 return false; 855 // We cannot fold a load instruction into a def. 856 if (LoadMI && MO.isDef()) 857 return false; 858 // Tied use operands should not be passed to foldMemoryOperand. 859 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 860 FoldOps.push_back(Idx); 861 } 862 863 // If we only have implicit uses, we won't be able to fold that. 864 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 865 if (FoldOps.empty()) 866 return false; 867 868 MachineInstrSpan MIS(MI, MI->getParent()); 869 870 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 871 if (UntieRegs) 872 for (unsigned Idx : FoldOps) { 873 MachineOperand &MO = MI->getOperand(Idx); 874 if (!MO.isTied()) 875 continue; 876 unsigned Tied = MI->findTiedOperandIdx(Idx); 877 if (MO.isUse()) 878 TiedOps.emplace_back(Tied, Idx); 879 else { 880 assert(MO.isDef() && "Tied to not use and def?"); 881 TiedOps.emplace_back(Idx, Tied); 882 } 883 MI->untieRegOperand(Idx); 884 } 885 886 MachineInstr *FoldMI = 887 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 888 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 889 if (!FoldMI) { 890 // Re-tie operands. 891 for (auto Tied : TiedOps) 892 MI->tieOperands(Tied.first, Tied.second); 893 return false; 894 } 895 896 // Remove LIS for any dead defs in the original MI not in FoldMI. 897 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 898 if (!MO->isReg()) 899 continue; 900 Register Reg = MO->getReg(); 901 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 902 continue; 903 } 904 // Skip non-Defs, including undef uses and internal reads. 905 if (MO->isUse()) 906 continue; 907 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 908 if (RI.FullyDefined) 909 continue; 910 // FoldMI does not define this physreg. Remove the LI segment. 911 assert(MO->isDead() && "Cannot fold physreg def"); 912 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 913 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 914 } 915 916 int FI; 917 if (TII.isStoreToStackSlot(*MI, FI) && 918 HSpiller.rmFromMergeableSpills(*MI, FI)) 919 --NumSpills; 920 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 921 // Update the call site info. 922 if (MI->isCandidateForCallSiteEntry()) 923 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 924 925 // If we've folded a store into an instruction labelled with debug-info, 926 // record a substitution from the old operand to the memory operand. Handle 927 // the simple common case where operand 0 is the one being folded, plus when 928 // the destination operand is also a tied def. More values could be 929 // substituted / preserved with more analysis. 930 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 931 // Helper lambda. 932 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 933 // Substitute old operand zero to the new instructions memory operand. 934 unsigned OldOperandNum = Ops[0].second; 935 unsigned NewNum = FoldMI->getDebugInstrNum(); 936 unsigned OldNum = MI->getDebugInstrNum(); 937 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 938 {NewNum, MachineFunction::DebugOperandMemNumber}); 939 }; 940 941 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 942 if (Ops.size() == 1 && Op0.isDef()) { 943 MakeSubstitution(); 944 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 945 Op0.getReg() == MI->getOperand(1).getReg()) { 946 MakeSubstitution(); 947 } 948 } else if (MI->peekDebugInstrNum()) { 949 // This is a debug-labelled instruction, but the operand being folded isn't 950 // at operand zero. Most likely this means it's a load being folded in. 951 // Substitute any register defs from operand zero up to the one being 952 // folded -- past that point, we don't know what the new operand indexes 953 // will be. 954 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 955 } 956 957 MI->eraseFromParent(); 958 959 // Insert any new instructions other than FoldMI into the LIS maps. 960 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 961 for (MachineInstr &MI : MIS) 962 if (&MI != FoldMI) 963 LIS.InsertMachineInstrInMaps(MI); 964 965 // TII.foldMemoryOperand may have left some implicit operands on the 966 // instruction. Strip them. 967 if (ImpReg) 968 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 969 MachineOperand &MO = FoldMI->getOperand(i - 1); 970 if (!MO.isReg() || !MO.isImplicit()) 971 break; 972 if (MO.getReg() == ImpReg) 973 FoldMI->RemoveOperand(i - 1); 974 } 975 976 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 977 "folded")); 978 979 if (!WasCopy) 980 ++NumFolded; 981 else if (Ops.front().second == 0) { 982 ++NumSpills; 983 // If there is only 1 store instruction is required for spill, add it 984 // to mergeable list. In X86 AMX, 2 intructions are required to store. 985 // We disable the merge for this case. 986 if (std::distance(MIS.begin(), MIS.end()) <= 1) 987 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 988 } else 989 ++NumReloads; 990 return true; 991 } 992 993 void InlineSpiller::insertReload(Register NewVReg, 994 SlotIndex Idx, 995 MachineBasicBlock::iterator MI) { 996 MachineBasicBlock &MBB = *MI->getParent(); 997 998 MachineInstrSpan MIS(MI, &MBB); 999 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1000 MRI.getRegClass(NewVReg), &TRI); 1001 1002 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1003 1004 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1005 NewVReg)); 1006 ++NumReloads; 1007 } 1008 1009 /// Check if \p Def fully defines a VReg with an undefined value. 1010 /// If that's the case, that means the value of VReg is actually 1011 /// not relevant. 1012 static bool isRealSpill(const MachineInstr &Def) { 1013 if (!Def.isImplicitDef()) 1014 return true; 1015 assert(Def.getNumOperands() == 1 && 1016 "Implicit def with more than one definition"); 1017 // We can say that the VReg defined by Def is undef, only if it is 1018 // fully defined by Def. Otherwise, some of the lanes may not be 1019 // undef and the value of the VReg matters. 1020 return Def.getOperand(0).getSubReg(); 1021 } 1022 1023 /// insertSpill - Insert a spill of NewVReg after MI. 1024 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1025 MachineBasicBlock::iterator MI) { 1026 // Spill are not terminators, so inserting spills after terminators will 1027 // violate invariants in MachineVerifier. 1028 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1029 MachineBasicBlock &MBB = *MI->getParent(); 1030 1031 MachineInstrSpan MIS(MI, &MBB); 1032 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1033 bool IsRealSpill = isRealSpill(*MI); 1034 1035 if (IsRealSpill) 1036 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1037 MRI.getRegClass(NewVReg), &TRI); 1038 else 1039 // Don't spill undef value. 1040 // Anything works for undef, in particular keeping the memory 1041 // uninitialized is a viable option and it saves code size and 1042 // run time. 1043 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1044 .addReg(NewVReg, getKillRegState(isKill)); 1045 1046 MachineBasicBlock::iterator Spill = std::next(MI); 1047 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1048 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1049 getVDefInterval(MI, LIS); 1050 1051 LLVM_DEBUG( 1052 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1053 ++NumSpills; 1054 // If there is only 1 store instruction is required for spill, add it 1055 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1056 // We disable the merge for this case. 1057 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1058 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1059 } 1060 1061 /// spillAroundUses - insert spill code around each use of Reg. 1062 void InlineSpiller::spillAroundUses(Register Reg) { 1063 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1064 LiveInterval &OldLI = LIS.getInterval(Reg); 1065 1066 // Iterate over instructions using Reg. 1067 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) { 1068 // Debug values are not allowed to affect codegen. 1069 if (MI.isDebugValue()) { 1070 // Modify DBG_VALUE now that the value is in a spill slot. 1071 MachineBasicBlock *MBB = MI.getParent(); 1072 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI); 1073 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg); 1074 MBB->erase(MI); 1075 continue; 1076 } 1077 1078 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 1079 "instruction that isn't a DBG_VALUE"); 1080 1081 // Ignore copies to/from snippets. We'll delete them. 1082 if (SnippetCopies.count(&MI)) 1083 continue; 1084 1085 // Stack slot accesses may coalesce away. 1086 if (coalesceStackAccess(&MI, Reg)) 1087 continue; 1088 1089 // Analyze instruction. 1090 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1091 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops); 1092 1093 // Find the slot index where this instruction reads and writes OldLI. 1094 // This is usually the def slot, except for tied early clobbers. 1095 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1096 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1097 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1098 Idx = VNI->def; 1099 1100 // Check for a sibling copy. 1101 Register SibReg = isFullCopyOf(MI, Reg); 1102 if (SibReg && isSibling(SibReg)) { 1103 // This may actually be a copy between snippets. 1104 if (isRegToSpill(SibReg)) { 1105 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI); 1106 SnippetCopies.insert(&MI); 1107 continue; 1108 } 1109 if (RI.Writes) { 1110 if (hoistSpillInsideBB(OldLI, MI)) { 1111 // This COPY is now dead, the value is already in the stack slot. 1112 MI.getOperand(0).setIsDead(); 1113 DeadDefs.push_back(&MI); 1114 continue; 1115 } 1116 } else { 1117 // This is a reload for a sib-reg copy. Drop spills downstream. 1118 LiveInterval &SibLI = LIS.getInterval(SibReg); 1119 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1120 // The COPY will fold to a reload below. 1121 } 1122 } 1123 1124 // Attempt to fold memory ops. 1125 if (foldMemoryOperand(Ops)) 1126 continue; 1127 1128 // Create a new virtual register for spill/fill. 1129 // FIXME: Infer regclass from instruction alone. 1130 Register NewVReg = Edit->createFrom(Reg); 1131 1132 if (RI.Reads) 1133 insertReload(NewVReg, Idx, &MI); 1134 1135 // Rewrite instruction operands. 1136 bool hasLiveDef = false; 1137 for (const auto &OpPair : Ops) { 1138 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1139 MO.setReg(NewVReg); 1140 if (MO.isUse()) { 1141 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1142 MO.setIsKill(); 1143 } else { 1144 if (!MO.isDead()) 1145 hasLiveDef = true; 1146 } 1147 } 1148 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n'); 1149 1150 // FIXME: Use a second vreg if instruction has no tied ops. 1151 if (RI.Writes) 1152 if (hasLiveDef) 1153 insertSpill(NewVReg, true, &MI); 1154 } 1155 } 1156 1157 /// spillAll - Spill all registers remaining after rematerialization. 1158 void InlineSpiller::spillAll() { 1159 // Update LiveStacks now that we are committed to spilling. 1160 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1161 StackSlot = VRM.assignVirt2StackSlot(Original); 1162 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1163 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1164 } else 1165 StackInt = &LSS.getInterval(StackSlot); 1166 1167 if (Original != Edit->getReg()) 1168 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1169 1170 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1171 for (Register Reg : RegsToSpill) 1172 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1173 StackInt->getValNumInfo(0)); 1174 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1175 1176 // Spill around uses of all RegsToSpill. 1177 for (Register Reg : RegsToSpill) 1178 spillAroundUses(Reg); 1179 1180 // Hoisted spills may cause dead code. 1181 if (!DeadDefs.empty()) { 1182 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1183 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1184 } 1185 1186 // Finally delete the SnippetCopies. 1187 for (Register Reg : RegsToSpill) { 1188 for (MachineInstr &MI : 1189 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 1190 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1191 // FIXME: Do this with a LiveRangeEdit callback. 1192 LIS.RemoveMachineInstrFromMaps(MI); 1193 MI.eraseFromParent(); 1194 } 1195 } 1196 1197 // Delete all spilled registers. 1198 for (Register Reg : RegsToSpill) 1199 Edit->eraseVirtReg(Reg); 1200 } 1201 1202 void InlineSpiller::spill(LiveRangeEdit &edit) { 1203 ++NumSpilledRanges; 1204 Edit = &edit; 1205 assert(!Register::isStackSlot(edit.getReg()) && 1206 "Trying to spill a stack slot."); 1207 // Share a stack slot among all descendants of Original. 1208 Original = VRM.getOriginal(edit.getReg()); 1209 StackSlot = VRM.getStackSlot(Original); 1210 StackInt = nullptr; 1211 1212 LLVM_DEBUG(dbgs() << "Inline spilling " 1213 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1214 << ':' << edit.getParent() << "\nFrom original " 1215 << printReg(Original) << '\n'); 1216 assert(edit.getParent().isSpillable() && 1217 "Attempting to spill already spilled value."); 1218 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1219 1220 collectRegsToSpill(); 1221 reMaterializeAll(); 1222 1223 // Remat may handle everything. 1224 if (!RegsToSpill.empty()) 1225 spillAll(); 1226 1227 Edit->calculateRegClassAndHint(MF, VRAI); 1228 } 1229 1230 /// Optimizations after all the reg selections and spills are done. 1231 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1232 1233 /// When a spill is inserted, add the spill to MergeableSpills map. 1234 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1235 unsigned Original) { 1236 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1237 LiveInterval &OrigLI = LIS.getInterval(Original); 1238 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1239 // LiveInterval may be cleared after all its references are spilled. 1240 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1241 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1242 LI->assign(OrigLI, Allocator); 1243 StackSlotToOrigLI[StackSlot] = std::move(LI); 1244 } 1245 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1246 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1247 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1248 MergeableSpills[MIdx].insert(&Spill); 1249 } 1250 1251 /// When a spill is removed, remove the spill from MergeableSpills map. 1252 /// Return true if the spill is removed successfully. 1253 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1254 int StackSlot) { 1255 auto It = StackSlotToOrigLI.find(StackSlot); 1256 if (It == StackSlotToOrigLI.end()) 1257 return false; 1258 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1259 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1260 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1261 return MergeableSpills[MIdx].erase(&Spill); 1262 } 1263 1264 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1265 /// i.e., there should be a living sibling of OrigReg at the insert point. 1266 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1267 MachineBasicBlock &BB, Register &LiveReg) { 1268 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1269 // The original def could be after the last insert point in the root block, 1270 // we can't hoist to here. 1271 if (Idx < OrigVNI.def) { 1272 // TODO: We could be better here. If LI is not alive in landing pad 1273 // we could hoist spill after LIP. 1274 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1275 return false; 1276 } 1277 Register OrigReg = OrigLI.reg(); 1278 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1279 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1280 1281 for (const Register &SibReg : Siblings) { 1282 LiveInterval &LI = LIS.getInterval(SibReg); 1283 VNInfo *VNI = LI.getVNInfoAt(Idx); 1284 if (VNI) { 1285 LiveReg = SibReg; 1286 return true; 1287 } 1288 } 1289 return false; 1290 } 1291 1292 /// Remove redundant spills in the same BB. Save those redundant spills in 1293 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1294 void HoistSpillHelper::rmRedundantSpills( 1295 SmallPtrSet<MachineInstr *, 16> &Spills, 1296 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1297 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1298 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1299 // another spill inside. If a BB contains more than one spill, only keep the 1300 // earlier spill with smaller SlotIndex. 1301 for (const auto CurrentSpill : Spills) { 1302 MachineBasicBlock *Block = CurrentSpill->getParent(); 1303 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1304 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1305 if (PrevSpill) { 1306 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1307 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1308 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1309 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1310 SpillsToRm.push_back(SpillToRm); 1311 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1312 } else { 1313 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1314 } 1315 } 1316 for (const auto SpillToRm : SpillsToRm) 1317 Spills.erase(SpillToRm); 1318 } 1319 1320 /// Starting from \p Root find a top-down traversal order of the dominator 1321 /// tree to visit all basic blocks containing the elements of \p Spills. 1322 /// Redundant spills will be found and put into \p SpillsToRm at the same 1323 /// time. \p SpillBBToSpill will be populated as part of the process and 1324 /// maps a basic block to the first store occurring in the basic block. 1325 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1326 void HoistSpillHelper::getVisitOrders( 1327 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1328 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1329 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1330 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1331 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1332 // The set contains all the possible BB nodes to which we may hoist 1333 // original spills. 1334 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1335 // Save the BB nodes on the path from the first BB node containing 1336 // non-redundant spill to the Root node. 1337 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1338 // All the spills to be hoisted must originate from a single def instruction 1339 // to the OrigReg. It means the def instruction should dominate all the spills 1340 // to be hoisted. We choose the BB where the def instruction is located as 1341 // the Root. 1342 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1343 // For every node on the dominator tree with spill, walk up on the dominator 1344 // tree towards the Root node until it is reached. If there is other node 1345 // containing spill in the middle of the path, the previous spill saw will 1346 // be redundant and the node containing it will be removed. All the nodes on 1347 // the path starting from the first node with non-redundant spill to the Root 1348 // node will be added to the WorkSet, which will contain all the possible 1349 // locations where spills may be hoisted to after the loop below is done. 1350 for (const auto Spill : Spills) { 1351 MachineBasicBlock *Block = Spill->getParent(); 1352 MachineDomTreeNode *Node = MDT[Block]; 1353 MachineInstr *SpillToRm = nullptr; 1354 while (Node != RootIDomNode) { 1355 // If Node dominates Block, and it already contains a spill, the spill in 1356 // Block will be redundant. 1357 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1358 SpillToRm = SpillBBToSpill[MDT[Block]]; 1359 break; 1360 /// If we see the Node already in WorkSet, the path from the Node to 1361 /// the Root node must already be traversed by another spill. 1362 /// Then no need to repeat. 1363 } else if (WorkSet.count(Node)) { 1364 break; 1365 } else { 1366 NodesOnPath.insert(Node); 1367 } 1368 Node = Node->getIDom(); 1369 } 1370 if (SpillToRm) { 1371 SpillsToRm.push_back(SpillToRm); 1372 } else { 1373 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1374 // set the initial status before hoisting start. The value of BBs 1375 // containing original spills is set to 0, in order to descriminate 1376 // with BBs containing hoisted spills which will be inserted to 1377 // SpillsToKeep later during hoisting. 1378 SpillsToKeep[MDT[Block]] = 0; 1379 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1380 } 1381 NodesOnPath.clear(); 1382 } 1383 1384 // Sort the nodes in WorkSet in top-down order and save the nodes 1385 // in Orders. Orders will be used for hoisting in runHoistSpills. 1386 unsigned idx = 0; 1387 Orders.push_back(MDT.getBase().getNode(Root)); 1388 do { 1389 MachineDomTreeNode *Node = Orders[idx++]; 1390 for (MachineDomTreeNode *Child : Node->children()) { 1391 if (WorkSet.count(Child)) 1392 Orders.push_back(Child); 1393 } 1394 } while (idx != Orders.size()); 1395 assert(Orders.size() == WorkSet.size() && 1396 "Orders have different size with WorkSet"); 1397 1398 #ifndef NDEBUG 1399 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1400 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1401 for (; RIt != Orders.rend(); RIt++) 1402 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1403 LLVM_DEBUG(dbgs() << "\n"); 1404 #endif 1405 } 1406 1407 /// Try to hoist spills according to BB hotness. The spills to removed will 1408 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1409 /// \p SpillsToIns. 1410 void HoistSpillHelper::runHoistSpills( 1411 LiveInterval &OrigLI, VNInfo &OrigVNI, 1412 SmallPtrSet<MachineInstr *, 16> &Spills, 1413 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1414 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1415 // Visit order of dominator tree nodes. 1416 SmallVector<MachineDomTreeNode *, 32> Orders; 1417 // SpillsToKeep contains all the nodes where spills are to be inserted 1418 // during hoisting. If the spill to be inserted is an original spill 1419 // (not a hoisted one), the value of the map entry is 0. If the spill 1420 // is a hoisted spill, the value of the map entry is the VReg to be used 1421 // as the source of the spill. 1422 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1423 // Map from BB to the first spill inside of it. 1424 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1425 1426 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1427 1428 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1429 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1430 SpillBBToSpill); 1431 1432 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1433 // nodes set and the cost of all the spills inside those nodes. 1434 // The nodes set are the locations where spills are to be inserted 1435 // in the subtree of current node. 1436 using NodesCostPair = 1437 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1438 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1439 1440 // Iterate Orders set in reverse order, which will be a bottom-up order 1441 // in the dominator tree. Once we visit a dom tree node, we know its 1442 // children have already been visited and the spill locations in the 1443 // subtrees of all the children have been determined. 1444 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1445 for (; RIt != Orders.rend(); RIt++) { 1446 MachineBasicBlock *Block = (*RIt)->getBlock(); 1447 1448 // If Block contains an original spill, simply continue. 1449 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1450 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1451 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1452 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1453 continue; 1454 } 1455 1456 // Collect spills in subtree of current node (*RIt) to 1457 // SpillsInSubTreeMap[*RIt].first. 1458 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1459 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1460 continue; 1461 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1462 // should be placed before getting the begin and end iterators of 1463 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1464 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1465 // and the map grows and then the original buckets in the map are moved. 1466 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1467 SpillsInSubTreeMap[*RIt].first; 1468 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1469 SubTreeCost += SpillsInSubTreeMap[Child].second; 1470 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1471 auto EI = SpillsInSubTreeMap[Child].first.end(); 1472 SpillsInSubTree.insert(BI, EI); 1473 SpillsInSubTreeMap.erase(Child); 1474 } 1475 1476 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1477 SpillsInSubTreeMap[*RIt].first; 1478 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1479 // No spills in subtree, simply continue. 1480 if (SpillsInSubTree.empty()) 1481 continue; 1482 1483 // Check whether Block is a possible candidate to insert spill. 1484 Register LiveReg; 1485 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1486 continue; 1487 1488 // If there are multiple spills that could be merged, bias a little 1489 // to hoist the spill. 1490 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1491 ? BranchProbability(9, 10) 1492 : BranchProbability(1, 1); 1493 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1494 // Hoist: Move spills to current Block. 1495 for (const auto SpillBB : SpillsInSubTree) { 1496 // When SpillBB is a BB contains original spill, insert the spill 1497 // to SpillsToRm. 1498 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1499 !SpillsToKeep[SpillBB]) { 1500 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1501 SpillsToRm.push_back(SpillToRm); 1502 } 1503 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1504 SpillsToKeep.erase(SpillBB); 1505 } 1506 // Current Block is the BB containing the new hoisted spill. Add it to 1507 // SpillsToKeep. LiveReg is the source of the new spill. 1508 SpillsToKeep[*RIt] = LiveReg; 1509 LLVM_DEBUG({ 1510 dbgs() << "spills in BB: "; 1511 for (const auto Rspill : SpillsInSubTree) 1512 dbgs() << Rspill->getBlock()->getNumber() << " "; 1513 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1514 << "\n"; 1515 }); 1516 SpillsInSubTree.clear(); 1517 SpillsInSubTree.insert(*RIt); 1518 SubTreeCost = MBFI.getBlockFreq(Block); 1519 } 1520 } 1521 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1522 // save them to SpillsToIns. 1523 for (const auto &Ent : SpillsToKeep) { 1524 if (Ent.second) 1525 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1526 } 1527 } 1528 1529 /// For spills with equal values, remove redundant spills and hoist those left 1530 /// to less hot spots. 1531 /// 1532 /// Spills with equal values will be collected into the same set in 1533 /// MergeableSpills when spill is inserted. These equal spills are originated 1534 /// from the same defining instruction and are dominated by the instruction. 1535 /// Before hoisting all the equal spills, redundant spills inside in the same 1536 /// BB are first marked to be deleted. Then starting from the spills left, walk 1537 /// up on the dominator tree towards the Root node where the define instruction 1538 /// is located, mark the dominated spills to be deleted along the way and 1539 /// collect the BB nodes on the path from non-dominated spills to the define 1540 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1541 /// where we are considering to hoist the spills. We iterate the WorkSet in 1542 /// bottom-up order, and for each node, we will decide whether to hoist spills 1543 /// inside its subtree to that node. In this way, we can get benefit locally 1544 /// even if hoisting all the equal spills to one cold place is impossible. 1545 void HoistSpillHelper::hoistAllSpills() { 1546 SmallVector<Register, 4> NewVRegs; 1547 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1548 1549 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1550 Register Reg = Register::index2VirtReg(i); 1551 Register Original = VRM.getPreSplitReg(Reg); 1552 if (!MRI.def_empty(Reg)) 1553 Virt2SiblingsMap[Original].insert(Reg); 1554 } 1555 1556 // Each entry in MergeableSpills contains a spill set with equal values. 1557 for (auto &Ent : MergeableSpills) { 1558 int Slot = Ent.first.first; 1559 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1560 VNInfo *OrigVNI = Ent.first.second; 1561 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1562 if (Ent.second.empty()) 1563 continue; 1564 1565 LLVM_DEBUG({ 1566 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1567 << "Equal spills in BB: "; 1568 for (const auto spill : EqValSpills) 1569 dbgs() << spill->getParent()->getNumber() << " "; 1570 dbgs() << "\n"; 1571 }); 1572 1573 // SpillsToRm is the spill set to be removed from EqValSpills. 1574 SmallVector<MachineInstr *, 16> SpillsToRm; 1575 // SpillsToIns is the spill set to be newly inserted after hoisting. 1576 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1577 1578 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1579 1580 LLVM_DEBUG({ 1581 dbgs() << "Finally inserted spills in BB: "; 1582 for (const auto &Ispill : SpillsToIns) 1583 dbgs() << Ispill.first->getNumber() << " "; 1584 dbgs() << "\nFinally removed spills in BB: "; 1585 for (const auto Rspill : SpillsToRm) 1586 dbgs() << Rspill->getParent()->getNumber() << " "; 1587 dbgs() << "\n"; 1588 }); 1589 1590 // Stack live range update. 1591 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1592 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1593 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1594 StackIntvl.getValNumInfo(0)); 1595 1596 // Insert hoisted spills. 1597 for (auto const &Insert : SpillsToIns) { 1598 MachineBasicBlock *BB = Insert.first; 1599 Register LiveReg = Insert.second; 1600 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1601 MachineInstrSpan MIS(MII, BB); 1602 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1603 MRI.getRegClass(LiveReg), &TRI); 1604 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1605 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1606 getVDefInterval(MI, LIS); 1607 ++NumSpills; 1608 } 1609 1610 // Remove redundant spills or change them to dead instructions. 1611 NumSpills -= SpillsToRm.size(); 1612 for (auto const RMEnt : SpillsToRm) { 1613 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1614 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1615 MachineOperand &MO = RMEnt->getOperand(i - 1); 1616 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1617 RMEnt->RemoveOperand(i - 1); 1618 } 1619 } 1620 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1621 } 1622 } 1623 1624 /// For VirtReg clone, the \p New register should have the same physreg or 1625 /// stackslot as the \p old register. 1626 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1627 if (VRM.hasPhys(Old)) 1628 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1629 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1630 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1631 else 1632 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1633 if (VRM.hasShape(Old)) 1634 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1635 } 1636