1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 863 case TargetOpcode::G_ADD: { 864 // FIXME: add support for when SizeOp0 isn't an exact multiple of 865 // NarrowSize. 866 if (SizeOp0 % NarrowSize != 0) 867 return UnableToLegalize; 868 // Expand in terms of carry-setting/consuming G_ADDE instructions. 869 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 870 871 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 872 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 873 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 874 875 Register CarryIn; 876 for (int i = 0; i < NumParts; ++i) { 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 880 if (i == 0) 881 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 882 else { 883 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 884 Src2Regs[i], CarryIn); 885 } 886 887 DstRegs.push_back(DstReg); 888 CarryIn = CarryOut; 889 } 890 Register DstReg = MI.getOperand(0).getReg(); 891 if(MRI.getType(DstReg).isVector()) 892 MIRBuilder.buildBuildVector(DstReg, DstRegs); 893 else 894 MIRBuilder.buildMerge(DstReg, DstRegs); 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 case TargetOpcode::G_SUB: { 899 // FIXME: add support for when SizeOp0 isn't an exact multiple of 900 // NarrowSize. 901 if (SizeOp0 % NarrowSize != 0) 902 return UnableToLegalize; 903 904 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 905 906 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 907 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 908 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 909 910 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 911 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 912 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 913 {Src1Regs[0], Src2Regs[0]}); 914 DstRegs.push_back(DstReg); 915 Register BorrowIn = BorrowOut; 916 for (int i = 1; i < NumParts; ++i) { 917 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 918 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 919 920 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 921 {Src1Regs[i], Src2Regs[i], BorrowIn}); 922 923 DstRegs.push_back(DstReg); 924 BorrowIn = BorrowOut; 925 } 926 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 927 MI.eraseFromParent(); 928 return Legalized; 929 } 930 case TargetOpcode::G_MUL: 931 case TargetOpcode::G_UMULH: 932 return narrowScalarMul(MI, NarrowTy); 933 case TargetOpcode::G_EXTRACT: 934 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 935 case TargetOpcode::G_INSERT: 936 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 937 case TargetOpcode::G_LOAD: { 938 auto &MMO = **MI.memoperands_begin(); 939 Register DstReg = MI.getOperand(0).getReg(); 940 LLT DstTy = MRI.getType(DstReg); 941 if (DstTy.isVector()) 942 return UnableToLegalize; 943 944 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 945 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 946 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 947 MIRBuilder.buildAnyExt(DstReg, TmpReg); 948 MI.eraseFromParent(); 949 return Legalized; 950 } 951 952 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 953 } 954 case TargetOpcode::G_ZEXTLOAD: 955 case TargetOpcode::G_SEXTLOAD: { 956 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 957 Register DstReg = MI.getOperand(0).getReg(); 958 Register PtrReg = MI.getOperand(1).getReg(); 959 960 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 961 auto &MMO = **MI.memoperands_begin(); 962 unsigned MemSize = MMO.getSizeInBits(); 963 964 if (MemSize == NarrowSize) { 965 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 966 } else if (MemSize < NarrowSize) { 967 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 968 } else if (MemSize > NarrowSize) { 969 // FIXME: Need to split the load. 970 return UnableToLegalize; 971 } 972 973 if (ZExt) 974 MIRBuilder.buildZExt(DstReg, TmpReg); 975 else 976 MIRBuilder.buildSExt(DstReg, TmpReg); 977 978 MI.eraseFromParent(); 979 return Legalized; 980 } 981 case TargetOpcode::G_STORE: { 982 const auto &MMO = **MI.memoperands_begin(); 983 984 Register SrcReg = MI.getOperand(0).getReg(); 985 LLT SrcTy = MRI.getType(SrcReg); 986 if (SrcTy.isVector()) 987 return UnableToLegalize; 988 989 int NumParts = SizeOp0 / NarrowSize; 990 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 991 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 992 if (SrcTy.isVector() && LeftoverBits != 0) 993 return UnableToLegalize; 994 995 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 996 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 997 auto &MMO = **MI.memoperands_begin(); 998 MIRBuilder.buildTrunc(TmpReg, SrcReg); 999 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 1000 MI.eraseFromParent(); 1001 return Legalized; 1002 } 1003 1004 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1005 } 1006 case TargetOpcode::G_SELECT: 1007 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1008 case TargetOpcode::G_AND: 1009 case TargetOpcode::G_OR: 1010 case TargetOpcode::G_XOR: { 1011 // Legalize bitwise operation: 1012 // A = BinOp<Ty> B, C 1013 // into: 1014 // B1, ..., BN = G_UNMERGE_VALUES B 1015 // C1, ..., CN = G_UNMERGE_VALUES C 1016 // A1 = BinOp<Ty/N> B1, C2 1017 // ... 1018 // AN = BinOp<Ty/N> BN, CN 1019 // A = G_MERGE_VALUES A1, ..., AN 1020 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1021 } 1022 case TargetOpcode::G_SHL: 1023 case TargetOpcode::G_LSHR: 1024 case TargetOpcode::G_ASHR: 1025 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTLZ: 1027 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1028 case TargetOpcode::G_CTTZ: 1029 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1030 case TargetOpcode::G_CTPOP: 1031 if (TypeIdx == 1) 1032 switch (MI.getOpcode()) { 1033 case TargetOpcode::G_CTLZ: 1034 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1035 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1036 case TargetOpcode::G_CTTZ: 1037 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1038 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1039 case TargetOpcode::G_CTPOP: 1040 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1041 default: 1042 return UnableToLegalize; 1043 } 1044 1045 Observer.changingInstr(MI); 1046 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1047 Observer.changedInstr(MI); 1048 return Legalized; 1049 case TargetOpcode::G_INTTOPTR: 1050 if (TypeIdx != 1) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 narrowScalarSrc(MI, NarrowTy, 1); 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_PTRTOINT: 1058 if (TypeIdx != 0) 1059 return UnableToLegalize; 1060 1061 Observer.changingInstr(MI); 1062 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 case TargetOpcode::G_PHI: { 1066 unsigned NumParts = SizeOp0 / NarrowSize; 1067 SmallVector<Register, 2> DstRegs(NumParts); 1068 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1069 Observer.changingInstr(MI); 1070 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1071 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1072 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1073 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1074 SrcRegs[i / 2]); 1075 } 1076 MachineBasicBlock &MBB = *MI.getParent(); 1077 MIRBuilder.setInsertPt(MBB, MI); 1078 for (unsigned i = 0; i < NumParts; ++i) { 1079 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1080 MachineInstrBuilder MIB = 1081 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1082 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1083 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1084 } 1085 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1086 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1087 Observer.changedInstr(MI); 1088 MI.eraseFromParent(); 1089 return Legalized; 1090 } 1091 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1092 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1093 if (TypeIdx != 2) 1094 return UnableToLegalize; 1095 1096 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1097 Observer.changingInstr(MI); 1098 narrowScalarSrc(MI, NarrowTy, OpIdx); 1099 Observer.changedInstr(MI); 1100 return Legalized; 1101 } 1102 case TargetOpcode::G_ICMP: { 1103 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1104 if (NarrowSize * 2 != SrcSize) 1105 return UnableToLegalize; 1106 1107 Observer.changingInstr(MI); 1108 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1109 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1110 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1111 1112 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1113 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1114 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1115 1116 CmpInst::Predicate Pred = 1117 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1118 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1119 1120 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1121 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1122 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1123 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1124 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1125 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1126 } else { 1127 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1128 MachineInstrBuilder CmpHEQ = 1129 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1130 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1131 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1132 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1133 } 1134 Observer.changedInstr(MI); 1135 MI.eraseFromParent(); 1136 return Legalized; 1137 } 1138 case TargetOpcode::G_SEXT_INREG: { 1139 if (TypeIdx != 0) 1140 return UnableToLegalize; 1141 1142 int64_t SizeInBits = MI.getOperand(2).getImm(); 1143 1144 // So long as the new type has more bits than the bits we're extending we 1145 // don't need to break it apart. 1146 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1147 Observer.changingInstr(MI); 1148 // We don't lose any non-extension bits by truncating the src and 1149 // sign-extending the dst. 1150 MachineOperand &MO1 = MI.getOperand(1); 1151 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1152 MO1.setReg(TruncMIB.getReg(0)); 1153 1154 MachineOperand &MO2 = MI.getOperand(0); 1155 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1156 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1157 MIRBuilder.buildSExt(MO2, DstExt); 1158 MO2.setReg(DstExt); 1159 Observer.changedInstr(MI); 1160 return Legalized; 1161 } 1162 1163 // Break it apart. Components below the extension point are unmodified. The 1164 // component containing the extension point becomes a narrower SEXT_INREG. 1165 // Components above it are ashr'd from the component containing the 1166 // extension point. 1167 if (SizeOp0 % NarrowSize != 0) 1168 return UnableToLegalize; 1169 int NumParts = SizeOp0 / NarrowSize; 1170 1171 // List the registers where the destination will be scattered. 1172 SmallVector<Register, 2> DstRegs; 1173 // List the registers where the source will be split. 1174 SmallVector<Register, 2> SrcRegs; 1175 1176 // Create all the temporary registers. 1177 for (int i = 0; i < NumParts; ++i) { 1178 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1179 1180 SrcRegs.push_back(SrcReg); 1181 } 1182 1183 // Explode the big arguments into smaller chunks. 1184 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1185 1186 Register AshrCstReg = 1187 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1188 .getReg(0); 1189 Register FullExtensionReg = 0; 1190 Register PartialExtensionReg = 0; 1191 1192 // Do the operation on each small part. 1193 for (int i = 0; i < NumParts; ++i) { 1194 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1195 DstRegs.push_back(SrcRegs[i]); 1196 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1197 assert(PartialExtensionReg && 1198 "Expected to visit partial extension before full"); 1199 if (FullExtensionReg) { 1200 DstRegs.push_back(FullExtensionReg); 1201 continue; 1202 } 1203 DstRegs.push_back( 1204 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1205 .getReg(0)); 1206 FullExtensionReg = DstRegs.back(); 1207 } else { 1208 DstRegs.push_back( 1209 MIRBuilder 1210 .buildInstr( 1211 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1212 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1213 .getReg(0)); 1214 PartialExtensionReg = DstRegs.back(); 1215 } 1216 } 1217 1218 // Gather the destination registers into the final destination. 1219 Register DstReg = MI.getOperand(0).getReg(); 1220 MIRBuilder.buildMerge(DstReg, DstRegs); 1221 MI.eraseFromParent(); 1222 return Legalized; 1223 } 1224 case TargetOpcode::G_BSWAP: 1225 case TargetOpcode::G_BITREVERSE: { 1226 if (SizeOp0 % NarrowSize != 0) 1227 return UnableToLegalize; 1228 1229 Observer.changingInstr(MI); 1230 SmallVector<Register, 2> SrcRegs, DstRegs; 1231 unsigned NumParts = SizeOp0 / NarrowSize; 1232 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1233 1234 for (unsigned i = 0; i < NumParts; ++i) { 1235 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1236 {SrcRegs[NumParts - 1 - i]}); 1237 DstRegs.push_back(DstPart.getReg(0)); 1238 } 1239 1240 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1241 1242 Observer.changedInstr(MI); 1243 MI.eraseFromParent(); 1244 return Legalized; 1245 } 1246 case TargetOpcode::G_PTR_ADD: 1247 case TargetOpcode::G_PTRMASK: { 1248 if (TypeIdx != 1) 1249 return UnableToLegalize; 1250 Observer.changingInstr(MI); 1251 narrowScalarSrc(MI, NarrowTy, 2); 1252 Observer.changedInstr(MI); 1253 return Legalized; 1254 } 1255 case TargetOpcode::G_FPTOUI: { 1256 if (TypeIdx != 0) 1257 return UnableToLegalize; 1258 Observer.changingInstr(MI); 1259 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1260 Observer.changedInstr(MI); 1261 return Legalized; 1262 } 1263 case TargetOpcode::G_FPTOSI: { 1264 if (TypeIdx != 0) 1265 return UnableToLegalize; 1266 Observer.changingInstr(MI); 1267 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1268 Observer.changedInstr(MI); 1269 return Legalized; 1270 } 1271 case TargetOpcode::G_FPEXT: 1272 if (TypeIdx != 0) 1273 return UnableToLegalize; 1274 Observer.changingInstr(MI); 1275 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1276 Observer.changedInstr(MI); 1277 return Legalized; 1278 } 1279 } 1280 1281 Register LegalizerHelper::coerceToScalar(Register Val) { 1282 LLT Ty = MRI.getType(Val); 1283 if (Ty.isScalar()) 1284 return Val; 1285 1286 const DataLayout &DL = MIRBuilder.getDataLayout(); 1287 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1288 if (Ty.isPointer()) { 1289 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1290 return Register(); 1291 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1292 } 1293 1294 Register NewVal = Val; 1295 1296 assert(Ty.isVector()); 1297 LLT EltTy = Ty.getElementType(); 1298 if (EltTy.isPointer()) 1299 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1300 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1301 } 1302 1303 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1304 unsigned OpIdx, unsigned ExtOpcode) { 1305 MachineOperand &MO = MI.getOperand(OpIdx); 1306 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1307 MO.setReg(ExtB.getReg(0)); 1308 } 1309 1310 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1311 unsigned OpIdx) { 1312 MachineOperand &MO = MI.getOperand(OpIdx); 1313 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1314 MO.setReg(ExtB.getReg(0)); 1315 } 1316 1317 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1318 unsigned OpIdx, unsigned TruncOpcode) { 1319 MachineOperand &MO = MI.getOperand(OpIdx); 1320 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1321 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1322 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1323 MO.setReg(DstExt); 1324 } 1325 1326 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1327 unsigned OpIdx, unsigned ExtOpcode) { 1328 MachineOperand &MO = MI.getOperand(OpIdx); 1329 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1330 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1331 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1332 MO.setReg(DstTrunc); 1333 } 1334 1335 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1336 unsigned OpIdx) { 1337 MachineOperand &MO = MI.getOperand(OpIdx); 1338 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1339 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1340 } 1341 1342 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1343 unsigned OpIdx) { 1344 MachineOperand &MO = MI.getOperand(OpIdx); 1345 1346 LLT OldTy = MRI.getType(MO.getReg()); 1347 unsigned OldElts = OldTy.getNumElements(); 1348 unsigned NewElts = MoreTy.getNumElements(); 1349 1350 unsigned NumParts = NewElts / OldElts; 1351 1352 // Use concat_vectors if the result is a multiple of the number of elements. 1353 if (NumParts * OldElts == NewElts) { 1354 SmallVector<Register, 8> Parts; 1355 Parts.push_back(MO.getReg()); 1356 1357 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1358 for (unsigned I = 1; I != NumParts; ++I) 1359 Parts.push_back(ImpDef); 1360 1361 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1362 MO.setReg(Concat.getReg(0)); 1363 return; 1364 } 1365 1366 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1367 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1368 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1369 MO.setReg(MoreReg); 1370 } 1371 1372 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1373 MachineOperand &Op = MI.getOperand(OpIdx); 1374 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1375 } 1376 1377 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1378 MachineOperand &MO = MI.getOperand(OpIdx); 1379 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1380 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1381 MIRBuilder.buildBitcast(MO, CastDst); 1382 MO.setReg(CastDst); 1383 } 1384 1385 LegalizerHelper::LegalizeResult 1386 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1387 LLT WideTy) { 1388 if (TypeIdx != 1) 1389 return UnableToLegalize; 1390 1391 Register DstReg = MI.getOperand(0).getReg(); 1392 LLT DstTy = MRI.getType(DstReg); 1393 if (DstTy.isVector()) 1394 return UnableToLegalize; 1395 1396 Register Src1 = MI.getOperand(1).getReg(); 1397 LLT SrcTy = MRI.getType(Src1); 1398 const int DstSize = DstTy.getSizeInBits(); 1399 const int SrcSize = SrcTy.getSizeInBits(); 1400 const int WideSize = WideTy.getSizeInBits(); 1401 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1402 1403 unsigned NumOps = MI.getNumOperands(); 1404 unsigned NumSrc = MI.getNumOperands() - 1; 1405 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1406 1407 if (WideSize >= DstSize) { 1408 // Directly pack the bits in the target type. 1409 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1410 1411 for (unsigned I = 2; I != NumOps; ++I) { 1412 const unsigned Offset = (I - 1) * PartSize; 1413 1414 Register SrcReg = MI.getOperand(I).getReg(); 1415 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1416 1417 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1418 1419 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1420 MRI.createGenericVirtualRegister(WideTy); 1421 1422 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1423 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1424 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1425 ResultReg = NextResult; 1426 } 1427 1428 if (WideSize > DstSize) 1429 MIRBuilder.buildTrunc(DstReg, ResultReg); 1430 else if (DstTy.isPointer()) 1431 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1432 1433 MI.eraseFromParent(); 1434 return Legalized; 1435 } 1436 1437 // Unmerge the original values to the GCD type, and recombine to the next 1438 // multiple greater than the original type. 1439 // 1440 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1441 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1442 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1443 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1444 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1445 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1446 // %12:_(s12) = G_MERGE_VALUES %10, %11 1447 // 1448 // Padding with undef if necessary: 1449 // 1450 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1451 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1452 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1453 // %7:_(s2) = G_IMPLICIT_DEF 1454 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1455 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1456 // %10:_(s12) = G_MERGE_VALUES %8, %9 1457 1458 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1459 LLT GCDTy = LLT::scalar(GCD); 1460 1461 SmallVector<Register, 8> Parts; 1462 SmallVector<Register, 8> NewMergeRegs; 1463 SmallVector<Register, 8> Unmerges; 1464 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1465 1466 // Decompose the original operands if they don't evenly divide. 1467 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1468 Register SrcReg = MI.getOperand(I).getReg(); 1469 if (GCD == SrcSize) { 1470 Unmerges.push_back(SrcReg); 1471 } else { 1472 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1473 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1474 Unmerges.push_back(Unmerge.getReg(J)); 1475 } 1476 } 1477 1478 // Pad with undef to the next size that is a multiple of the requested size. 1479 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1480 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1481 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1482 Unmerges.push_back(UndefReg); 1483 } 1484 1485 const int PartsPerGCD = WideSize / GCD; 1486 1487 // Build merges of each piece. 1488 ArrayRef<Register> Slicer(Unmerges); 1489 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1490 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1491 NewMergeRegs.push_back(Merge.getReg(0)); 1492 } 1493 1494 // A truncate may be necessary if the requested type doesn't evenly divide the 1495 // original result type. 1496 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1497 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1498 } else { 1499 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1500 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1501 } 1502 1503 MI.eraseFromParent(); 1504 return Legalized; 1505 } 1506 1507 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1508 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1509 LLT OrigTy = MRI.getType(OrigReg); 1510 LLT LCMTy = getLCMType(WideTy, OrigTy); 1511 1512 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1513 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1514 1515 Register UnmergeSrc = WideReg; 1516 1517 // Create a merge to the LCM type, padding with undef 1518 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1519 // => 1520 // %1:_(<4 x s32>) = G_FOO 1521 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1522 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1523 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1524 if (NumMergeParts > 1) { 1525 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1526 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1527 MergeParts[0] = WideReg; 1528 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1529 } 1530 1531 // Unmerge to the original register and pad with dead defs. 1532 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1533 UnmergeResults[0] = OrigReg; 1534 for (int I = 1; I != NumUnmergeParts; ++I) 1535 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1536 1537 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1538 return WideReg; 1539 } 1540 1541 LegalizerHelper::LegalizeResult 1542 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1543 LLT WideTy) { 1544 if (TypeIdx != 0) 1545 return UnableToLegalize; 1546 1547 int NumDst = MI.getNumOperands() - 1; 1548 Register SrcReg = MI.getOperand(NumDst).getReg(); 1549 LLT SrcTy = MRI.getType(SrcReg); 1550 if (SrcTy.isVector()) 1551 return UnableToLegalize; 1552 1553 Register Dst0Reg = MI.getOperand(0).getReg(); 1554 LLT DstTy = MRI.getType(Dst0Reg); 1555 if (!DstTy.isScalar()) 1556 return UnableToLegalize; 1557 1558 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1559 if (SrcTy.isPointer()) { 1560 const DataLayout &DL = MIRBuilder.getDataLayout(); 1561 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1562 LLVM_DEBUG( 1563 dbgs() << "Not casting non-integral address space integer\n"); 1564 return UnableToLegalize; 1565 } 1566 1567 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1568 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1569 } 1570 1571 // Widen SrcTy to WideTy. This does not affect the result, but since the 1572 // user requested this size, it is probably better handled than SrcTy and 1573 // should reduce the total number of legalization artifacts 1574 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1575 SrcTy = WideTy; 1576 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1577 } 1578 1579 // Theres no unmerge type to target. Directly extract the bits from the 1580 // source type 1581 unsigned DstSize = DstTy.getSizeInBits(); 1582 1583 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1584 for (int I = 1; I != NumDst; ++I) { 1585 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1586 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1587 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1588 } 1589 1590 MI.eraseFromParent(); 1591 return Legalized; 1592 } 1593 1594 // Extend the source to a wider type. 1595 LLT LCMTy = getLCMType(SrcTy, WideTy); 1596 1597 Register WideSrc = SrcReg; 1598 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1599 // TODO: If this is an integral address space, cast to integer and anyext. 1600 if (SrcTy.isPointer()) { 1601 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1602 return UnableToLegalize; 1603 } 1604 1605 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1606 } 1607 1608 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1609 1610 // Create a sequence of unmerges and merges to the original results. Since we 1611 // may have widened the source, we will need to pad the results with dead defs 1612 // to cover the source register. 1613 // e.g. widen s48 to s64: 1614 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1615 // 1616 // => 1617 // %4:_(s192) = G_ANYEXT %0:_(s96) 1618 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1619 // ; unpack to GCD type, with extra dead defs 1620 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1621 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1622 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1623 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1624 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1625 const LLT GCDTy = getGCDType(WideTy, DstTy); 1626 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1627 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1628 1629 // Directly unmerge to the destination without going through a GCD type 1630 // if possible 1631 if (PartsPerRemerge == 1) { 1632 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1633 1634 for (int I = 0; I != NumUnmerge; ++I) { 1635 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1636 1637 for (int J = 0; J != PartsPerUnmerge; ++J) { 1638 int Idx = I * PartsPerUnmerge + J; 1639 if (Idx < NumDst) 1640 MIB.addDef(MI.getOperand(Idx).getReg()); 1641 else { 1642 // Create dead def for excess components. 1643 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1644 } 1645 } 1646 1647 MIB.addUse(Unmerge.getReg(I)); 1648 } 1649 } else { 1650 SmallVector<Register, 16> Parts; 1651 for (int J = 0; J != NumUnmerge; ++J) 1652 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1653 1654 SmallVector<Register, 8> RemergeParts; 1655 for (int I = 0; I != NumDst; ++I) { 1656 for (int J = 0; J < PartsPerRemerge; ++J) { 1657 const int Idx = I * PartsPerRemerge + J; 1658 RemergeParts.emplace_back(Parts[Idx]); 1659 } 1660 1661 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1662 RemergeParts.clear(); 1663 } 1664 } 1665 1666 MI.eraseFromParent(); 1667 return Legalized; 1668 } 1669 1670 LegalizerHelper::LegalizeResult 1671 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1672 LLT WideTy) { 1673 Register DstReg = MI.getOperand(0).getReg(); 1674 Register SrcReg = MI.getOperand(1).getReg(); 1675 LLT SrcTy = MRI.getType(SrcReg); 1676 1677 LLT DstTy = MRI.getType(DstReg); 1678 unsigned Offset = MI.getOperand(2).getImm(); 1679 1680 if (TypeIdx == 0) { 1681 if (SrcTy.isVector() || DstTy.isVector()) 1682 return UnableToLegalize; 1683 1684 SrcOp Src(SrcReg); 1685 if (SrcTy.isPointer()) { 1686 // Extracts from pointers can be handled only if they are really just 1687 // simple integers. 1688 const DataLayout &DL = MIRBuilder.getDataLayout(); 1689 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1690 return UnableToLegalize; 1691 1692 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1693 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1694 SrcTy = SrcAsIntTy; 1695 } 1696 1697 if (DstTy.isPointer()) 1698 return UnableToLegalize; 1699 1700 if (Offset == 0) { 1701 // Avoid a shift in the degenerate case. 1702 MIRBuilder.buildTrunc(DstReg, 1703 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1704 MI.eraseFromParent(); 1705 return Legalized; 1706 } 1707 1708 // Do a shift in the source type. 1709 LLT ShiftTy = SrcTy; 1710 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1711 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1712 ShiftTy = WideTy; 1713 } 1714 1715 auto LShr = MIRBuilder.buildLShr( 1716 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1717 MIRBuilder.buildTrunc(DstReg, LShr); 1718 MI.eraseFromParent(); 1719 return Legalized; 1720 } 1721 1722 if (SrcTy.isScalar()) { 1723 Observer.changingInstr(MI); 1724 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1725 Observer.changedInstr(MI); 1726 return Legalized; 1727 } 1728 1729 if (!SrcTy.isVector()) 1730 return UnableToLegalize; 1731 1732 if (DstTy != SrcTy.getElementType()) 1733 return UnableToLegalize; 1734 1735 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1736 return UnableToLegalize; 1737 1738 Observer.changingInstr(MI); 1739 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1740 1741 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1742 Offset); 1743 widenScalarDst(MI, WideTy.getScalarType(), 0); 1744 Observer.changedInstr(MI); 1745 return Legalized; 1746 } 1747 1748 LegalizerHelper::LegalizeResult 1749 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1750 LLT WideTy) { 1751 if (TypeIdx != 0 || WideTy.isVector()) 1752 return UnableToLegalize; 1753 Observer.changingInstr(MI); 1754 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1755 widenScalarDst(MI, WideTy); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 } 1759 1760 LegalizerHelper::LegalizeResult 1761 LegalizerHelper::widenScalarAddoSubo(MachineInstr &MI, unsigned TypeIdx, 1762 LLT WideTy) { 1763 if (TypeIdx == 1) 1764 return UnableToLegalize; // TODO 1765 unsigned Op = MI.getOpcode(); 1766 unsigned Opcode = Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_SADDO 1767 ? TargetOpcode::G_ADD 1768 : TargetOpcode::G_SUB; 1769 unsigned ExtOpcode = 1770 Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_USUBO 1771 ? TargetOpcode::G_ZEXT 1772 : TargetOpcode::G_SEXT; 1773 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1774 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1775 // Do the arithmetic in the larger type. 1776 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}); 1777 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1778 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1779 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1780 // There is no overflow if the ExtOp is the same as NewOp. 1781 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1782 // Now trunc the NewOp to the original result. 1783 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1784 MI.eraseFromParent(); 1785 return Legalized; 1786 } 1787 1788 LegalizerHelper::LegalizeResult 1789 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1790 LLT WideTy) { 1791 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1792 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1793 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1794 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1795 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1796 // We can convert this to: 1797 // 1. Any extend iN to iM 1798 // 2. SHL by M-N 1799 // 3. [US][ADD|SUB|SHL]SAT 1800 // 4. L/ASHR by M-N 1801 // 1802 // It may be more efficient to lower this to a min and a max operation in 1803 // the higher precision arithmetic if the promoted operation isn't legal, 1804 // but this decision is up to the target's lowering request. 1805 Register DstReg = MI.getOperand(0).getReg(); 1806 1807 unsigned NewBits = WideTy.getScalarSizeInBits(); 1808 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1809 1810 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1811 // must not left shift the RHS to preserve the shift amount. 1812 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1813 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1814 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1815 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1816 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1817 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1818 1819 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1820 {ShiftL, ShiftR}, MI.getFlags()); 1821 1822 // Use a shift that will preserve the number of sign bits when the trunc is 1823 // folded away. 1824 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1825 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1826 1827 MIRBuilder.buildTrunc(DstReg, Result); 1828 MI.eraseFromParent(); 1829 return Legalized; 1830 } 1831 1832 LegalizerHelper::LegalizeResult 1833 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1834 switch (MI.getOpcode()) { 1835 default: 1836 return UnableToLegalize; 1837 case TargetOpcode::G_EXTRACT: 1838 return widenScalarExtract(MI, TypeIdx, WideTy); 1839 case TargetOpcode::G_INSERT: 1840 return widenScalarInsert(MI, TypeIdx, WideTy); 1841 case TargetOpcode::G_MERGE_VALUES: 1842 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1843 case TargetOpcode::G_UNMERGE_VALUES: 1844 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1845 case TargetOpcode::G_SADDO: 1846 case TargetOpcode::G_SSUBO: 1847 case TargetOpcode::G_UADDO: 1848 case TargetOpcode::G_USUBO: 1849 return widenScalarAddoSubo(MI, TypeIdx, WideTy); 1850 case TargetOpcode::G_SADDSAT: 1851 case TargetOpcode::G_SSUBSAT: 1852 case TargetOpcode::G_SSHLSAT: 1853 case TargetOpcode::G_UADDSAT: 1854 case TargetOpcode::G_USUBSAT: 1855 case TargetOpcode::G_USHLSAT: 1856 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1857 case TargetOpcode::G_CTTZ: 1858 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1859 case TargetOpcode::G_CTLZ: 1860 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1861 case TargetOpcode::G_CTPOP: { 1862 if (TypeIdx == 0) { 1863 Observer.changingInstr(MI); 1864 widenScalarDst(MI, WideTy, 0); 1865 Observer.changedInstr(MI); 1866 return Legalized; 1867 } 1868 1869 Register SrcReg = MI.getOperand(1).getReg(); 1870 1871 // First ZEXT the input. 1872 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1873 LLT CurTy = MRI.getType(SrcReg); 1874 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1875 // The count is the same in the larger type except if the original 1876 // value was zero. This can be handled by setting the bit just off 1877 // the top of the original type. 1878 auto TopBit = 1879 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1880 MIBSrc = MIRBuilder.buildOr( 1881 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1882 } 1883 1884 // Perform the operation at the larger size. 1885 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1886 // This is already the correct result for CTPOP and CTTZs 1887 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1888 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1889 // The correct result is NewOp - (Difference in widety and current ty). 1890 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1891 MIBNewOp = MIRBuilder.buildSub( 1892 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1893 } 1894 1895 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1896 MI.eraseFromParent(); 1897 return Legalized; 1898 } 1899 case TargetOpcode::G_BSWAP: { 1900 Observer.changingInstr(MI); 1901 Register DstReg = MI.getOperand(0).getReg(); 1902 1903 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1904 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1905 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1906 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1907 1908 MI.getOperand(0).setReg(DstExt); 1909 1910 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1911 1912 LLT Ty = MRI.getType(DstReg); 1913 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1914 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1915 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1916 1917 MIRBuilder.buildTrunc(DstReg, ShrReg); 1918 Observer.changedInstr(MI); 1919 return Legalized; 1920 } 1921 case TargetOpcode::G_BITREVERSE: { 1922 Observer.changingInstr(MI); 1923 1924 Register DstReg = MI.getOperand(0).getReg(); 1925 LLT Ty = MRI.getType(DstReg); 1926 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1927 1928 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1929 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1930 MI.getOperand(0).setReg(DstExt); 1931 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1932 1933 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1934 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1935 MIRBuilder.buildTrunc(DstReg, Shift); 1936 Observer.changedInstr(MI); 1937 return Legalized; 1938 } 1939 case TargetOpcode::G_FREEZE: 1940 Observer.changingInstr(MI); 1941 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1942 widenScalarDst(MI, WideTy); 1943 Observer.changedInstr(MI); 1944 return Legalized; 1945 1946 case TargetOpcode::G_ADD: 1947 case TargetOpcode::G_AND: 1948 case TargetOpcode::G_MUL: 1949 case TargetOpcode::G_OR: 1950 case TargetOpcode::G_XOR: 1951 case TargetOpcode::G_SUB: 1952 // Perform operation at larger width (any extension is fines here, high bits 1953 // don't affect the result) and then truncate the result back to the 1954 // original type. 1955 Observer.changingInstr(MI); 1956 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1957 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1958 widenScalarDst(MI, WideTy); 1959 Observer.changedInstr(MI); 1960 return Legalized; 1961 1962 case TargetOpcode::G_SHL: 1963 Observer.changingInstr(MI); 1964 1965 if (TypeIdx == 0) { 1966 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1967 widenScalarDst(MI, WideTy); 1968 } else { 1969 assert(TypeIdx == 1); 1970 // The "number of bits to shift" operand must preserve its value as an 1971 // unsigned integer: 1972 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1973 } 1974 1975 Observer.changedInstr(MI); 1976 return Legalized; 1977 1978 case TargetOpcode::G_SDIV: 1979 case TargetOpcode::G_SREM: 1980 case TargetOpcode::G_SMIN: 1981 case TargetOpcode::G_SMAX: 1982 Observer.changingInstr(MI); 1983 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1984 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1985 widenScalarDst(MI, WideTy); 1986 Observer.changedInstr(MI); 1987 return Legalized; 1988 1989 case TargetOpcode::G_ASHR: 1990 case TargetOpcode::G_LSHR: 1991 Observer.changingInstr(MI); 1992 1993 if (TypeIdx == 0) { 1994 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1995 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1996 1997 widenScalarSrc(MI, WideTy, 1, CvtOp); 1998 widenScalarDst(MI, WideTy); 1999 } else { 2000 assert(TypeIdx == 1); 2001 // The "number of bits to shift" operand must preserve its value as an 2002 // unsigned integer: 2003 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2004 } 2005 2006 Observer.changedInstr(MI); 2007 return Legalized; 2008 case TargetOpcode::G_UDIV: 2009 case TargetOpcode::G_UREM: 2010 case TargetOpcode::G_UMIN: 2011 case TargetOpcode::G_UMAX: 2012 Observer.changingInstr(MI); 2013 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2014 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2015 widenScalarDst(MI, WideTy); 2016 Observer.changedInstr(MI); 2017 return Legalized; 2018 2019 case TargetOpcode::G_SELECT: 2020 Observer.changingInstr(MI); 2021 if (TypeIdx == 0) { 2022 // Perform operation at larger width (any extension is fine here, high 2023 // bits don't affect the result) and then truncate the result back to the 2024 // original type. 2025 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2026 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2027 widenScalarDst(MI, WideTy); 2028 } else { 2029 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2030 // Explicit extension is required here since high bits affect the result. 2031 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2032 } 2033 Observer.changedInstr(MI); 2034 return Legalized; 2035 2036 case TargetOpcode::G_FPTOSI: 2037 case TargetOpcode::G_FPTOUI: 2038 Observer.changingInstr(MI); 2039 2040 if (TypeIdx == 0) 2041 widenScalarDst(MI, WideTy); 2042 else 2043 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2044 2045 Observer.changedInstr(MI); 2046 return Legalized; 2047 case TargetOpcode::G_SITOFP: 2048 Observer.changingInstr(MI); 2049 2050 if (TypeIdx == 0) 2051 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2052 else 2053 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2054 2055 Observer.changedInstr(MI); 2056 return Legalized; 2057 case TargetOpcode::G_UITOFP: 2058 Observer.changingInstr(MI); 2059 2060 if (TypeIdx == 0) 2061 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2062 else 2063 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2064 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 case TargetOpcode::G_LOAD: 2068 case TargetOpcode::G_SEXTLOAD: 2069 case TargetOpcode::G_ZEXTLOAD: 2070 Observer.changingInstr(MI); 2071 widenScalarDst(MI, WideTy); 2072 Observer.changedInstr(MI); 2073 return Legalized; 2074 2075 case TargetOpcode::G_STORE: { 2076 if (TypeIdx != 0) 2077 return UnableToLegalize; 2078 2079 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2080 if (!Ty.isScalar()) 2081 return UnableToLegalize; 2082 2083 Observer.changingInstr(MI); 2084 2085 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2086 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2087 widenScalarSrc(MI, WideTy, 0, ExtType); 2088 2089 Observer.changedInstr(MI); 2090 return Legalized; 2091 } 2092 case TargetOpcode::G_CONSTANT: { 2093 MachineOperand &SrcMO = MI.getOperand(1); 2094 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2095 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2096 MRI.getType(MI.getOperand(0).getReg())); 2097 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2098 ExtOpc == TargetOpcode::G_ANYEXT) && 2099 "Illegal Extend"); 2100 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2101 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2102 ? SrcVal.sext(WideTy.getSizeInBits()) 2103 : SrcVal.zext(WideTy.getSizeInBits()); 2104 Observer.changingInstr(MI); 2105 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2106 2107 widenScalarDst(MI, WideTy); 2108 Observer.changedInstr(MI); 2109 return Legalized; 2110 } 2111 case TargetOpcode::G_FCONSTANT: { 2112 MachineOperand &SrcMO = MI.getOperand(1); 2113 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2114 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2115 bool LosesInfo; 2116 switch (WideTy.getSizeInBits()) { 2117 case 32: 2118 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2119 &LosesInfo); 2120 break; 2121 case 64: 2122 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2123 &LosesInfo); 2124 break; 2125 default: 2126 return UnableToLegalize; 2127 } 2128 2129 assert(!LosesInfo && "extend should always be lossless"); 2130 2131 Observer.changingInstr(MI); 2132 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2133 2134 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2135 Observer.changedInstr(MI); 2136 return Legalized; 2137 } 2138 case TargetOpcode::G_IMPLICIT_DEF: { 2139 Observer.changingInstr(MI); 2140 widenScalarDst(MI, WideTy); 2141 Observer.changedInstr(MI); 2142 return Legalized; 2143 } 2144 case TargetOpcode::G_BRCOND: 2145 Observer.changingInstr(MI); 2146 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2147 Observer.changedInstr(MI); 2148 return Legalized; 2149 2150 case TargetOpcode::G_FCMP: 2151 Observer.changingInstr(MI); 2152 if (TypeIdx == 0) 2153 widenScalarDst(MI, WideTy); 2154 else { 2155 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2156 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2157 } 2158 Observer.changedInstr(MI); 2159 return Legalized; 2160 2161 case TargetOpcode::G_ICMP: 2162 Observer.changingInstr(MI); 2163 if (TypeIdx == 0) 2164 widenScalarDst(MI, WideTy); 2165 else { 2166 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2167 MI.getOperand(1).getPredicate())) 2168 ? TargetOpcode::G_SEXT 2169 : TargetOpcode::G_ZEXT; 2170 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2171 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2172 } 2173 Observer.changedInstr(MI); 2174 return Legalized; 2175 2176 case TargetOpcode::G_PTR_ADD: 2177 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2178 Observer.changingInstr(MI); 2179 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 2183 case TargetOpcode::G_PHI: { 2184 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2185 2186 Observer.changingInstr(MI); 2187 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2188 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2189 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2190 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2191 } 2192 2193 MachineBasicBlock &MBB = *MI.getParent(); 2194 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2195 widenScalarDst(MI, WideTy); 2196 Observer.changedInstr(MI); 2197 return Legalized; 2198 } 2199 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2200 if (TypeIdx == 0) { 2201 Register VecReg = MI.getOperand(1).getReg(); 2202 LLT VecTy = MRI.getType(VecReg); 2203 Observer.changingInstr(MI); 2204 2205 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2206 WideTy.getSizeInBits()), 2207 1, TargetOpcode::G_SEXT); 2208 2209 widenScalarDst(MI, WideTy, 0); 2210 Observer.changedInstr(MI); 2211 return Legalized; 2212 } 2213 2214 if (TypeIdx != 2) 2215 return UnableToLegalize; 2216 Observer.changingInstr(MI); 2217 // TODO: Probably should be zext 2218 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2219 Observer.changedInstr(MI); 2220 return Legalized; 2221 } 2222 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2223 if (TypeIdx == 1) { 2224 Observer.changingInstr(MI); 2225 2226 Register VecReg = MI.getOperand(1).getReg(); 2227 LLT VecTy = MRI.getType(VecReg); 2228 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2229 2230 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2231 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2232 widenScalarDst(MI, WideVecTy, 0); 2233 Observer.changedInstr(MI); 2234 return Legalized; 2235 } 2236 2237 if (TypeIdx == 2) { 2238 Observer.changingInstr(MI); 2239 // TODO: Probably should be zext 2240 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2241 Observer.changedInstr(MI); 2242 return Legalized; 2243 } 2244 2245 return UnableToLegalize; 2246 } 2247 case TargetOpcode::G_FADD: 2248 case TargetOpcode::G_FMUL: 2249 case TargetOpcode::G_FSUB: 2250 case TargetOpcode::G_FMA: 2251 case TargetOpcode::G_FMAD: 2252 case TargetOpcode::G_FNEG: 2253 case TargetOpcode::G_FABS: 2254 case TargetOpcode::G_FCANONICALIZE: 2255 case TargetOpcode::G_FMINNUM: 2256 case TargetOpcode::G_FMAXNUM: 2257 case TargetOpcode::G_FMINNUM_IEEE: 2258 case TargetOpcode::G_FMAXNUM_IEEE: 2259 case TargetOpcode::G_FMINIMUM: 2260 case TargetOpcode::G_FMAXIMUM: 2261 case TargetOpcode::G_FDIV: 2262 case TargetOpcode::G_FREM: 2263 case TargetOpcode::G_FCEIL: 2264 case TargetOpcode::G_FFLOOR: 2265 case TargetOpcode::G_FCOS: 2266 case TargetOpcode::G_FSIN: 2267 case TargetOpcode::G_FLOG10: 2268 case TargetOpcode::G_FLOG: 2269 case TargetOpcode::G_FLOG2: 2270 case TargetOpcode::G_FRINT: 2271 case TargetOpcode::G_FNEARBYINT: 2272 case TargetOpcode::G_FSQRT: 2273 case TargetOpcode::G_FEXP: 2274 case TargetOpcode::G_FEXP2: 2275 case TargetOpcode::G_FPOW: 2276 case TargetOpcode::G_INTRINSIC_TRUNC: 2277 case TargetOpcode::G_INTRINSIC_ROUND: 2278 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2279 assert(TypeIdx == 0); 2280 Observer.changingInstr(MI); 2281 2282 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2283 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2284 2285 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2286 Observer.changedInstr(MI); 2287 return Legalized; 2288 case TargetOpcode::G_FPOWI: { 2289 if (TypeIdx != 0) 2290 return UnableToLegalize; 2291 Observer.changingInstr(MI); 2292 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2293 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2294 Observer.changedInstr(MI); 2295 return Legalized; 2296 } 2297 case TargetOpcode::G_INTTOPTR: 2298 if (TypeIdx != 1) 2299 return UnableToLegalize; 2300 2301 Observer.changingInstr(MI); 2302 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2303 Observer.changedInstr(MI); 2304 return Legalized; 2305 case TargetOpcode::G_PTRTOINT: 2306 if (TypeIdx != 0) 2307 return UnableToLegalize; 2308 2309 Observer.changingInstr(MI); 2310 widenScalarDst(MI, WideTy, 0); 2311 Observer.changedInstr(MI); 2312 return Legalized; 2313 case TargetOpcode::G_BUILD_VECTOR: { 2314 Observer.changingInstr(MI); 2315 2316 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2317 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2318 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2319 2320 // Avoid changing the result vector type if the source element type was 2321 // requested. 2322 if (TypeIdx == 1) { 2323 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2324 } else { 2325 widenScalarDst(MI, WideTy, 0); 2326 } 2327 2328 Observer.changedInstr(MI); 2329 return Legalized; 2330 } 2331 case TargetOpcode::G_SEXT_INREG: 2332 if (TypeIdx != 0) 2333 return UnableToLegalize; 2334 2335 Observer.changingInstr(MI); 2336 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2337 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2338 Observer.changedInstr(MI); 2339 return Legalized; 2340 case TargetOpcode::G_PTRMASK: { 2341 if (TypeIdx != 1) 2342 return UnableToLegalize; 2343 Observer.changingInstr(MI); 2344 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2345 Observer.changedInstr(MI); 2346 return Legalized; 2347 } 2348 } 2349 } 2350 2351 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2352 MachineIRBuilder &B, Register Src, LLT Ty) { 2353 auto Unmerge = B.buildUnmerge(Ty, Src); 2354 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2355 Pieces.push_back(Unmerge.getReg(I)); 2356 } 2357 2358 LegalizerHelper::LegalizeResult 2359 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2360 Register Dst = MI.getOperand(0).getReg(); 2361 Register Src = MI.getOperand(1).getReg(); 2362 LLT DstTy = MRI.getType(Dst); 2363 LLT SrcTy = MRI.getType(Src); 2364 2365 if (SrcTy.isVector()) { 2366 LLT SrcEltTy = SrcTy.getElementType(); 2367 SmallVector<Register, 8> SrcRegs; 2368 2369 if (DstTy.isVector()) { 2370 int NumDstElt = DstTy.getNumElements(); 2371 int NumSrcElt = SrcTy.getNumElements(); 2372 2373 LLT DstEltTy = DstTy.getElementType(); 2374 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2375 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2376 2377 // If there's an element size mismatch, insert intermediate casts to match 2378 // the result element type. 2379 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2380 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2381 // 2382 // => 2383 // 2384 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2385 // %3:_(<2 x s8>) = G_BITCAST %2 2386 // %4:_(<2 x s8>) = G_BITCAST %3 2387 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2388 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2389 SrcPartTy = SrcEltTy; 2390 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2391 // 2392 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2393 // 2394 // => 2395 // 2396 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2397 // %3:_(s16) = G_BITCAST %2 2398 // %4:_(s16) = G_BITCAST %3 2399 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2400 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2401 DstCastTy = DstEltTy; 2402 } 2403 2404 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2405 for (Register &SrcReg : SrcRegs) 2406 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2407 } else 2408 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2409 2410 MIRBuilder.buildMerge(Dst, SrcRegs); 2411 MI.eraseFromParent(); 2412 return Legalized; 2413 } 2414 2415 if (DstTy.isVector()) { 2416 SmallVector<Register, 8> SrcRegs; 2417 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2418 MIRBuilder.buildMerge(Dst, SrcRegs); 2419 MI.eraseFromParent(); 2420 return Legalized; 2421 } 2422 2423 return UnableToLegalize; 2424 } 2425 2426 /// Figure out the bit offset into a register when coercing a vector index for 2427 /// the wide element type. This is only for the case when promoting vector to 2428 /// one with larger elements. 2429 // 2430 /// 2431 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2432 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2433 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2434 Register Idx, 2435 unsigned NewEltSize, 2436 unsigned OldEltSize) { 2437 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2438 LLT IdxTy = B.getMRI()->getType(Idx); 2439 2440 // Now figure out the amount we need to shift to get the target bits. 2441 auto OffsetMask = B.buildConstant( 2442 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2443 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2444 return B.buildShl(IdxTy, OffsetIdx, 2445 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2446 } 2447 2448 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2449 /// is casting to a vector with a smaller element size, perform multiple element 2450 /// extracts and merge the results. If this is coercing to a vector with larger 2451 /// elements, index the bitcasted vector and extract the target element with bit 2452 /// operations. This is intended to force the indexing in the native register 2453 /// size for architectures that can dynamically index the register file. 2454 LegalizerHelper::LegalizeResult 2455 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2456 LLT CastTy) { 2457 if (TypeIdx != 1) 2458 return UnableToLegalize; 2459 2460 Register Dst = MI.getOperand(0).getReg(); 2461 Register SrcVec = MI.getOperand(1).getReg(); 2462 Register Idx = MI.getOperand(2).getReg(); 2463 LLT SrcVecTy = MRI.getType(SrcVec); 2464 LLT IdxTy = MRI.getType(Idx); 2465 2466 LLT SrcEltTy = SrcVecTy.getElementType(); 2467 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2468 unsigned OldNumElts = SrcVecTy.getNumElements(); 2469 2470 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2471 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2472 2473 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2474 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2475 if (NewNumElts > OldNumElts) { 2476 // Decreasing the vector element size 2477 // 2478 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2479 // => 2480 // v4i32:castx = bitcast x:v2i64 2481 // 2482 // i64 = bitcast 2483 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2484 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2485 // 2486 if (NewNumElts % OldNumElts != 0) 2487 return UnableToLegalize; 2488 2489 // Type of the intermediate result vector. 2490 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2491 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2492 2493 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2494 2495 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2496 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2497 2498 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2499 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2500 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2501 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2502 NewOps[I] = Elt.getReg(0); 2503 } 2504 2505 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2506 MIRBuilder.buildBitcast(Dst, NewVec); 2507 MI.eraseFromParent(); 2508 return Legalized; 2509 } 2510 2511 if (NewNumElts < OldNumElts) { 2512 if (NewEltSize % OldEltSize != 0) 2513 return UnableToLegalize; 2514 2515 // This only depends on powers of 2 because we use bit tricks to figure out 2516 // the bit offset we need to shift to get the target element. A general 2517 // expansion could emit division/multiply. 2518 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2519 return UnableToLegalize; 2520 2521 // Increasing the vector element size. 2522 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2523 // 2524 // => 2525 // 2526 // %cast = G_BITCAST %vec 2527 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2528 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2529 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2530 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2531 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2532 // %elt = G_TRUNC %elt_bits 2533 2534 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2535 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2536 2537 // Divide to get the index in the wider element type. 2538 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2539 2540 Register WideElt = CastVec; 2541 if (CastTy.isVector()) { 2542 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2543 ScaledIdx).getReg(0); 2544 } 2545 2546 // Compute the bit offset into the register of the target element. 2547 Register OffsetBits = getBitcastWiderVectorElementOffset( 2548 MIRBuilder, Idx, NewEltSize, OldEltSize); 2549 2550 // Shift the wide element to get the target element. 2551 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2552 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2553 MI.eraseFromParent(); 2554 return Legalized; 2555 } 2556 2557 return UnableToLegalize; 2558 } 2559 2560 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2561 /// TargetReg, while preserving other bits in \p TargetReg. 2562 /// 2563 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2564 static Register buildBitFieldInsert(MachineIRBuilder &B, 2565 Register TargetReg, Register InsertReg, 2566 Register OffsetBits) { 2567 LLT TargetTy = B.getMRI()->getType(TargetReg); 2568 LLT InsertTy = B.getMRI()->getType(InsertReg); 2569 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2570 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2571 2572 // Produce a bitmask of the value to insert 2573 auto EltMask = B.buildConstant( 2574 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2575 InsertTy.getSizeInBits())); 2576 // Shift it into position 2577 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2578 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2579 2580 // Clear out the bits in the wide element 2581 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2582 2583 // The value to insert has all zeros already, so stick it into the masked 2584 // wide element. 2585 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2586 } 2587 2588 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2589 /// is increasing the element size, perform the indexing in the target element 2590 /// type, and use bit operations to insert at the element position. This is 2591 /// intended for architectures that can dynamically index the register file and 2592 /// want to force indexing in the native register size. 2593 LegalizerHelper::LegalizeResult 2594 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2595 LLT CastTy) { 2596 if (TypeIdx != 0) 2597 return UnableToLegalize; 2598 2599 Register Dst = MI.getOperand(0).getReg(); 2600 Register SrcVec = MI.getOperand(1).getReg(); 2601 Register Val = MI.getOperand(2).getReg(); 2602 Register Idx = MI.getOperand(3).getReg(); 2603 2604 LLT VecTy = MRI.getType(Dst); 2605 LLT IdxTy = MRI.getType(Idx); 2606 2607 LLT VecEltTy = VecTy.getElementType(); 2608 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2609 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2610 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2611 2612 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2613 unsigned OldNumElts = VecTy.getNumElements(); 2614 2615 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2616 if (NewNumElts < OldNumElts) { 2617 if (NewEltSize % OldEltSize != 0) 2618 return UnableToLegalize; 2619 2620 // This only depends on powers of 2 because we use bit tricks to figure out 2621 // the bit offset we need to shift to get the target element. A general 2622 // expansion could emit division/multiply. 2623 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2624 return UnableToLegalize; 2625 2626 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2627 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2628 2629 // Divide to get the index in the wider element type. 2630 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2631 2632 Register ExtractedElt = CastVec; 2633 if (CastTy.isVector()) { 2634 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2635 ScaledIdx).getReg(0); 2636 } 2637 2638 // Compute the bit offset into the register of the target element. 2639 Register OffsetBits = getBitcastWiderVectorElementOffset( 2640 MIRBuilder, Idx, NewEltSize, OldEltSize); 2641 2642 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2643 Val, OffsetBits); 2644 if (CastTy.isVector()) { 2645 InsertedElt = MIRBuilder.buildInsertVectorElement( 2646 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2647 } 2648 2649 MIRBuilder.buildBitcast(Dst, InsertedElt); 2650 MI.eraseFromParent(); 2651 return Legalized; 2652 } 2653 2654 return UnableToLegalize; 2655 } 2656 2657 LegalizerHelper::LegalizeResult 2658 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2659 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2660 Register DstReg = MI.getOperand(0).getReg(); 2661 Register PtrReg = MI.getOperand(1).getReg(); 2662 LLT DstTy = MRI.getType(DstReg); 2663 auto &MMO = **MI.memoperands_begin(); 2664 2665 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2666 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2667 // This load needs splitting into power of 2 sized loads. 2668 if (DstTy.isVector()) 2669 return UnableToLegalize; 2670 if (isPowerOf2_32(DstTy.getSizeInBits())) 2671 return UnableToLegalize; // Don't know what we're being asked to do. 2672 2673 // Our strategy here is to generate anyextending loads for the smaller 2674 // types up to next power-2 result type, and then combine the two larger 2675 // result values together, before truncating back down to the non-pow-2 2676 // type. 2677 // E.g. v1 = i24 load => 2678 // v2 = i32 zextload (2 byte) 2679 // v3 = i32 load (1 byte) 2680 // v4 = i32 shl v3, 16 2681 // v5 = i32 or v4, v2 2682 // v1 = i24 trunc v5 2683 // By doing this we generate the correct truncate which should get 2684 // combined away as an artifact with a matching extend. 2685 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2686 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2687 2688 MachineFunction &MF = MIRBuilder.getMF(); 2689 MachineMemOperand *LargeMMO = 2690 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2691 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2692 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2693 2694 LLT PtrTy = MRI.getType(PtrReg); 2695 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2696 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2697 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2698 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2699 auto LargeLoad = MIRBuilder.buildLoadInstr( 2700 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2701 2702 auto OffsetCst = MIRBuilder.buildConstant( 2703 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2704 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2705 auto SmallPtr = 2706 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2707 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2708 *SmallMMO); 2709 2710 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2711 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2712 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2713 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2714 MI.eraseFromParent(); 2715 return Legalized; 2716 } 2717 2718 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2719 MI.eraseFromParent(); 2720 return Legalized; 2721 } 2722 2723 if (DstTy.isScalar()) { 2724 Register TmpReg = 2725 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2726 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2727 switch (MI.getOpcode()) { 2728 default: 2729 llvm_unreachable("Unexpected opcode"); 2730 case TargetOpcode::G_LOAD: 2731 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2732 break; 2733 case TargetOpcode::G_SEXTLOAD: 2734 MIRBuilder.buildSExt(DstReg, TmpReg); 2735 break; 2736 case TargetOpcode::G_ZEXTLOAD: 2737 MIRBuilder.buildZExt(DstReg, TmpReg); 2738 break; 2739 } 2740 2741 MI.eraseFromParent(); 2742 return Legalized; 2743 } 2744 2745 return UnableToLegalize; 2746 } 2747 2748 LegalizerHelper::LegalizeResult 2749 LegalizerHelper::lowerStore(MachineInstr &MI) { 2750 // Lower a non-power of 2 store into multiple pow-2 stores. 2751 // E.g. split an i24 store into an i16 store + i8 store. 2752 // We do this by first extending the stored value to the next largest power 2753 // of 2 type, and then using truncating stores to store the components. 2754 // By doing this, likewise with G_LOAD, generate an extend that can be 2755 // artifact-combined away instead of leaving behind extracts. 2756 Register SrcReg = MI.getOperand(0).getReg(); 2757 Register PtrReg = MI.getOperand(1).getReg(); 2758 LLT SrcTy = MRI.getType(SrcReg); 2759 MachineMemOperand &MMO = **MI.memoperands_begin(); 2760 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2761 return UnableToLegalize; 2762 if (SrcTy.isVector()) 2763 return UnableToLegalize; 2764 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2765 return UnableToLegalize; // Don't know what we're being asked to do. 2766 2767 // Extend to the next pow-2. 2768 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2769 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2770 2771 // Obtain the smaller value by shifting away the larger value. 2772 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2773 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2774 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2775 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2776 2777 // Generate the PtrAdd and truncating stores. 2778 LLT PtrTy = MRI.getType(PtrReg); 2779 auto OffsetCst = MIRBuilder.buildConstant( 2780 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2781 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2782 auto SmallPtr = 2783 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2784 2785 MachineFunction &MF = MIRBuilder.getMF(); 2786 MachineMemOperand *LargeMMO = 2787 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2788 MachineMemOperand *SmallMMO = 2789 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2790 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2791 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2792 MI.eraseFromParent(); 2793 return Legalized; 2794 } 2795 2796 LegalizerHelper::LegalizeResult 2797 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2798 switch (MI.getOpcode()) { 2799 case TargetOpcode::G_LOAD: { 2800 if (TypeIdx != 0) 2801 return UnableToLegalize; 2802 2803 Observer.changingInstr(MI); 2804 bitcastDst(MI, CastTy, 0); 2805 Observer.changedInstr(MI); 2806 return Legalized; 2807 } 2808 case TargetOpcode::G_STORE: { 2809 if (TypeIdx != 0) 2810 return UnableToLegalize; 2811 2812 Observer.changingInstr(MI); 2813 bitcastSrc(MI, CastTy, 0); 2814 Observer.changedInstr(MI); 2815 return Legalized; 2816 } 2817 case TargetOpcode::G_SELECT: { 2818 if (TypeIdx != 0) 2819 return UnableToLegalize; 2820 2821 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2822 LLVM_DEBUG( 2823 dbgs() << "bitcast action not implemented for vector select\n"); 2824 return UnableToLegalize; 2825 } 2826 2827 Observer.changingInstr(MI); 2828 bitcastSrc(MI, CastTy, 2); 2829 bitcastSrc(MI, CastTy, 3); 2830 bitcastDst(MI, CastTy, 0); 2831 Observer.changedInstr(MI); 2832 return Legalized; 2833 } 2834 case TargetOpcode::G_AND: 2835 case TargetOpcode::G_OR: 2836 case TargetOpcode::G_XOR: { 2837 Observer.changingInstr(MI); 2838 bitcastSrc(MI, CastTy, 1); 2839 bitcastSrc(MI, CastTy, 2); 2840 bitcastDst(MI, CastTy, 0); 2841 Observer.changedInstr(MI); 2842 return Legalized; 2843 } 2844 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2845 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2846 case TargetOpcode::G_INSERT_VECTOR_ELT: 2847 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2848 default: 2849 return UnableToLegalize; 2850 } 2851 } 2852 2853 // Legalize an instruction by changing the opcode in place. 2854 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2855 Observer.changingInstr(MI); 2856 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2857 Observer.changedInstr(MI); 2858 } 2859 2860 LegalizerHelper::LegalizeResult 2861 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2862 using namespace TargetOpcode; 2863 2864 switch(MI.getOpcode()) { 2865 default: 2866 return UnableToLegalize; 2867 case TargetOpcode::G_BITCAST: 2868 return lowerBitcast(MI); 2869 case TargetOpcode::G_SREM: 2870 case TargetOpcode::G_UREM: { 2871 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2872 auto Quot = 2873 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2874 {MI.getOperand(1), MI.getOperand(2)}); 2875 2876 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2877 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2878 MI.eraseFromParent(); 2879 return Legalized; 2880 } 2881 case TargetOpcode::G_SADDO: 2882 case TargetOpcode::G_SSUBO: 2883 return lowerSADDO_SSUBO(MI); 2884 case TargetOpcode::G_UMULH: 2885 case TargetOpcode::G_SMULH: 2886 return lowerSMULH_UMULH(MI); 2887 case TargetOpcode::G_SMULO: 2888 case TargetOpcode::G_UMULO: { 2889 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2890 // result. 2891 Register Res = MI.getOperand(0).getReg(); 2892 Register Overflow = MI.getOperand(1).getReg(); 2893 Register LHS = MI.getOperand(2).getReg(); 2894 Register RHS = MI.getOperand(3).getReg(); 2895 LLT Ty = MRI.getType(Res); 2896 2897 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2898 ? TargetOpcode::G_SMULH 2899 : TargetOpcode::G_UMULH; 2900 2901 Observer.changingInstr(MI); 2902 const auto &TII = MIRBuilder.getTII(); 2903 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2904 MI.RemoveOperand(1); 2905 Observer.changedInstr(MI); 2906 2907 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2908 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2909 2910 // Move insert point forward so we can use the Res register if needed. 2911 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2912 2913 // For *signed* multiply, overflow is detected by checking: 2914 // (hi != (lo >> bitwidth-1)) 2915 if (Opcode == TargetOpcode::G_SMULH) { 2916 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2917 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2918 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2919 } else { 2920 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2921 } 2922 return Legalized; 2923 } 2924 case TargetOpcode::G_FNEG: { 2925 Register Res = MI.getOperand(0).getReg(); 2926 LLT Ty = MRI.getType(Res); 2927 2928 // TODO: Handle vector types once we are able to 2929 // represent them. 2930 if (Ty.isVector()) 2931 return UnableToLegalize; 2932 auto SignMask = 2933 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2934 Register SubByReg = MI.getOperand(1).getReg(); 2935 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2936 MI.eraseFromParent(); 2937 return Legalized; 2938 } 2939 case TargetOpcode::G_FSUB: { 2940 Register Res = MI.getOperand(0).getReg(); 2941 LLT Ty = MRI.getType(Res); 2942 2943 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2944 // First, check if G_FNEG is marked as Lower. If so, we may 2945 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2946 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2947 return UnableToLegalize; 2948 Register LHS = MI.getOperand(1).getReg(); 2949 Register RHS = MI.getOperand(2).getReg(); 2950 Register Neg = MRI.createGenericVirtualRegister(Ty); 2951 MIRBuilder.buildFNeg(Neg, RHS); 2952 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2953 MI.eraseFromParent(); 2954 return Legalized; 2955 } 2956 case TargetOpcode::G_FMAD: 2957 return lowerFMad(MI); 2958 case TargetOpcode::G_FFLOOR: 2959 return lowerFFloor(MI); 2960 case TargetOpcode::G_INTRINSIC_ROUND: 2961 return lowerIntrinsicRound(MI); 2962 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2963 // Since round even is the assumed rounding mode for unconstrained FP 2964 // operations, rint and roundeven are the same operation. 2965 changeOpcode(MI, TargetOpcode::G_FRINT); 2966 return Legalized; 2967 } 2968 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2969 Register OldValRes = MI.getOperand(0).getReg(); 2970 Register SuccessRes = MI.getOperand(1).getReg(); 2971 Register Addr = MI.getOperand(2).getReg(); 2972 Register CmpVal = MI.getOperand(3).getReg(); 2973 Register NewVal = MI.getOperand(4).getReg(); 2974 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2975 **MI.memoperands_begin()); 2976 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2977 MI.eraseFromParent(); 2978 return Legalized; 2979 } 2980 case TargetOpcode::G_LOAD: 2981 case TargetOpcode::G_SEXTLOAD: 2982 case TargetOpcode::G_ZEXTLOAD: 2983 return lowerLoad(MI); 2984 case TargetOpcode::G_STORE: 2985 return lowerStore(MI); 2986 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2987 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2988 case TargetOpcode::G_CTLZ: 2989 case TargetOpcode::G_CTTZ: 2990 case TargetOpcode::G_CTPOP: 2991 return lowerBitCount(MI); 2992 case G_UADDO: { 2993 Register Res = MI.getOperand(0).getReg(); 2994 Register CarryOut = MI.getOperand(1).getReg(); 2995 Register LHS = MI.getOperand(2).getReg(); 2996 Register RHS = MI.getOperand(3).getReg(); 2997 2998 MIRBuilder.buildAdd(Res, LHS, RHS); 2999 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3000 3001 MI.eraseFromParent(); 3002 return Legalized; 3003 } 3004 case G_UADDE: { 3005 Register Res = MI.getOperand(0).getReg(); 3006 Register CarryOut = MI.getOperand(1).getReg(); 3007 Register LHS = MI.getOperand(2).getReg(); 3008 Register RHS = MI.getOperand(3).getReg(); 3009 Register CarryIn = MI.getOperand(4).getReg(); 3010 LLT Ty = MRI.getType(Res); 3011 3012 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3013 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3014 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3015 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3016 3017 MI.eraseFromParent(); 3018 return Legalized; 3019 } 3020 case G_USUBO: { 3021 Register Res = MI.getOperand(0).getReg(); 3022 Register BorrowOut = MI.getOperand(1).getReg(); 3023 Register LHS = MI.getOperand(2).getReg(); 3024 Register RHS = MI.getOperand(3).getReg(); 3025 3026 MIRBuilder.buildSub(Res, LHS, RHS); 3027 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3028 3029 MI.eraseFromParent(); 3030 return Legalized; 3031 } 3032 case G_USUBE: { 3033 Register Res = MI.getOperand(0).getReg(); 3034 Register BorrowOut = MI.getOperand(1).getReg(); 3035 Register LHS = MI.getOperand(2).getReg(); 3036 Register RHS = MI.getOperand(3).getReg(); 3037 Register BorrowIn = MI.getOperand(4).getReg(); 3038 const LLT CondTy = MRI.getType(BorrowOut); 3039 const LLT Ty = MRI.getType(Res); 3040 3041 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3042 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3043 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3044 3045 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3046 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3047 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3048 3049 MI.eraseFromParent(); 3050 return Legalized; 3051 } 3052 case G_UITOFP: 3053 return lowerUITOFP(MI); 3054 case G_SITOFP: 3055 return lowerSITOFP(MI); 3056 case G_FPTOUI: 3057 return lowerFPTOUI(MI); 3058 case G_FPTOSI: 3059 return lowerFPTOSI(MI); 3060 case G_FPTRUNC: 3061 return lowerFPTRUNC(MI); 3062 case G_FPOWI: 3063 return lowerFPOWI(MI); 3064 case G_SMIN: 3065 case G_SMAX: 3066 case G_UMIN: 3067 case G_UMAX: 3068 return lowerMinMax(MI); 3069 case G_FCOPYSIGN: 3070 return lowerFCopySign(MI); 3071 case G_FMINNUM: 3072 case G_FMAXNUM: 3073 return lowerFMinNumMaxNum(MI); 3074 case G_MERGE_VALUES: 3075 return lowerMergeValues(MI); 3076 case G_UNMERGE_VALUES: 3077 return lowerUnmergeValues(MI); 3078 case TargetOpcode::G_SEXT_INREG: { 3079 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3080 int64_t SizeInBits = MI.getOperand(2).getImm(); 3081 3082 Register DstReg = MI.getOperand(0).getReg(); 3083 Register SrcReg = MI.getOperand(1).getReg(); 3084 LLT DstTy = MRI.getType(DstReg); 3085 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3086 3087 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3088 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3089 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3090 MI.eraseFromParent(); 3091 return Legalized; 3092 } 3093 case G_EXTRACT_VECTOR_ELT: 3094 case G_INSERT_VECTOR_ELT: 3095 return lowerExtractInsertVectorElt(MI); 3096 case G_SHUFFLE_VECTOR: 3097 return lowerShuffleVector(MI); 3098 case G_DYN_STACKALLOC: 3099 return lowerDynStackAlloc(MI); 3100 case G_EXTRACT: 3101 return lowerExtract(MI); 3102 case G_INSERT: 3103 return lowerInsert(MI); 3104 case G_BSWAP: 3105 return lowerBswap(MI); 3106 case G_BITREVERSE: 3107 return lowerBitreverse(MI); 3108 case G_READ_REGISTER: 3109 case G_WRITE_REGISTER: 3110 return lowerReadWriteRegister(MI); 3111 case G_UADDSAT: 3112 case G_USUBSAT: { 3113 // Try to make a reasonable guess about which lowering strategy to use. The 3114 // target can override this with custom lowering and calling the 3115 // implementation functions. 3116 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3117 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3118 return lowerAddSubSatToMinMax(MI); 3119 return lowerAddSubSatToAddoSubo(MI); 3120 } 3121 case G_SADDSAT: 3122 case G_SSUBSAT: { 3123 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3124 3125 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3126 // since it's a shorter expansion. However, we would need to figure out the 3127 // preferred boolean type for the carry out for the query. 3128 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3129 return lowerAddSubSatToMinMax(MI); 3130 return lowerAddSubSatToAddoSubo(MI); 3131 } 3132 case G_SSHLSAT: 3133 case G_USHLSAT: 3134 return lowerShlSat(MI); 3135 case G_ABS: { 3136 // Expand %res = G_ABS %a into: 3137 // %v1 = G_ASHR %a, scalar_size-1 3138 // %v2 = G_ADD %a, %v1 3139 // %res = G_XOR %v2, %v1 3140 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3141 Register OpReg = MI.getOperand(1).getReg(); 3142 auto ShiftAmt = 3143 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3144 auto Shift = 3145 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3146 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3147 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3148 MI.eraseFromParent(); 3149 return Legalized; 3150 } 3151 case G_SELECT: 3152 return lowerSelect(MI); 3153 } 3154 } 3155 3156 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3157 Align MinAlign) const { 3158 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3159 // datalayout for the preferred alignment. Also there should be a target hook 3160 // for this to allow targets to reduce the alignment and ignore the 3161 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3162 // the type. 3163 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3164 } 3165 3166 MachineInstrBuilder 3167 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3168 MachinePointerInfo &PtrInfo) { 3169 MachineFunction &MF = MIRBuilder.getMF(); 3170 const DataLayout &DL = MIRBuilder.getDataLayout(); 3171 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3172 3173 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3174 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3175 3176 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3177 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3178 } 3179 3180 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3181 LLT VecTy) { 3182 int64_t IdxVal; 3183 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3184 return IdxReg; 3185 3186 LLT IdxTy = B.getMRI()->getType(IdxReg); 3187 unsigned NElts = VecTy.getNumElements(); 3188 if (isPowerOf2_32(NElts)) { 3189 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3190 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3191 } 3192 3193 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3194 .getReg(0); 3195 } 3196 3197 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3198 Register Index) { 3199 LLT EltTy = VecTy.getElementType(); 3200 3201 // Calculate the element offset and add it to the pointer. 3202 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3203 assert(EltSize * 8 == EltTy.getSizeInBits() && 3204 "Converting bits to bytes lost precision"); 3205 3206 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3207 3208 LLT IdxTy = MRI.getType(Index); 3209 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3210 MIRBuilder.buildConstant(IdxTy, EltSize)); 3211 3212 LLT PtrTy = MRI.getType(VecPtr); 3213 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3214 } 3215 3216 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3217 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3218 Register DstReg = MI.getOperand(0).getReg(); 3219 LLT DstTy = MRI.getType(DstReg); 3220 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3221 3222 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3223 3224 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3225 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3226 3227 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3228 MI.eraseFromParent(); 3229 return Legalized; 3230 } 3231 3232 // Handle splitting vector operations which need to have the same number of 3233 // elements in each type index, but each type index may have a different element 3234 // type. 3235 // 3236 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3237 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3238 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3239 // 3240 // Also handles some irregular breakdown cases, e.g. 3241 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3242 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3243 // s64 = G_SHL s64, s32 3244 LegalizerHelper::LegalizeResult 3245 LegalizerHelper::fewerElementsVectorMultiEltType( 3246 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3247 if (TypeIdx != 0) 3248 return UnableToLegalize; 3249 3250 const LLT NarrowTy0 = NarrowTyArg; 3251 const unsigned NewNumElts = 3252 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3253 3254 const Register DstReg = MI.getOperand(0).getReg(); 3255 LLT DstTy = MRI.getType(DstReg); 3256 LLT LeftoverTy0; 3257 3258 // All of the operands need to have the same number of elements, so if we can 3259 // determine a type breakdown for the result type, we can for all of the 3260 // source types. 3261 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3262 if (NumParts < 0) 3263 return UnableToLegalize; 3264 3265 SmallVector<MachineInstrBuilder, 4> NewInsts; 3266 3267 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3268 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3269 3270 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3271 Register SrcReg = MI.getOperand(I).getReg(); 3272 LLT SrcTyI = MRI.getType(SrcReg); 3273 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3274 LLT LeftoverTyI; 3275 3276 // Split this operand into the requested typed registers, and any leftover 3277 // required to reproduce the original type. 3278 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3279 LeftoverRegs)) 3280 return UnableToLegalize; 3281 3282 if (I == 1) { 3283 // For the first operand, create an instruction for each part and setup 3284 // the result. 3285 for (Register PartReg : PartRegs) { 3286 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3287 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3288 .addDef(PartDstReg) 3289 .addUse(PartReg)); 3290 DstRegs.push_back(PartDstReg); 3291 } 3292 3293 for (Register LeftoverReg : LeftoverRegs) { 3294 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3295 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3296 .addDef(PartDstReg) 3297 .addUse(LeftoverReg)); 3298 LeftoverDstRegs.push_back(PartDstReg); 3299 } 3300 } else { 3301 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3302 3303 // Add the newly created operand splits to the existing instructions. The 3304 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3305 // pieces. 3306 unsigned InstCount = 0; 3307 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3308 NewInsts[InstCount++].addUse(PartRegs[J]); 3309 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3310 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3311 } 3312 3313 PartRegs.clear(); 3314 LeftoverRegs.clear(); 3315 } 3316 3317 // Insert the newly built operations and rebuild the result register. 3318 for (auto &MIB : NewInsts) 3319 MIRBuilder.insertInstr(MIB); 3320 3321 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3322 3323 MI.eraseFromParent(); 3324 return Legalized; 3325 } 3326 3327 LegalizerHelper::LegalizeResult 3328 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3329 LLT NarrowTy) { 3330 if (TypeIdx != 0) 3331 return UnableToLegalize; 3332 3333 Register DstReg = MI.getOperand(0).getReg(); 3334 Register SrcReg = MI.getOperand(1).getReg(); 3335 LLT DstTy = MRI.getType(DstReg); 3336 LLT SrcTy = MRI.getType(SrcReg); 3337 3338 LLT NarrowTy0 = NarrowTy; 3339 LLT NarrowTy1; 3340 unsigned NumParts; 3341 3342 if (NarrowTy.isVector()) { 3343 // Uneven breakdown not handled. 3344 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3345 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3346 return UnableToLegalize; 3347 3348 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3349 } else { 3350 NumParts = DstTy.getNumElements(); 3351 NarrowTy1 = SrcTy.getElementType(); 3352 } 3353 3354 SmallVector<Register, 4> SrcRegs, DstRegs; 3355 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3356 3357 for (unsigned I = 0; I < NumParts; ++I) { 3358 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3359 MachineInstr *NewInst = 3360 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3361 3362 NewInst->setFlags(MI.getFlags()); 3363 DstRegs.push_back(DstReg); 3364 } 3365 3366 if (NarrowTy.isVector()) 3367 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3368 else 3369 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3370 3371 MI.eraseFromParent(); 3372 return Legalized; 3373 } 3374 3375 LegalizerHelper::LegalizeResult 3376 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3377 LLT NarrowTy) { 3378 Register DstReg = MI.getOperand(0).getReg(); 3379 Register Src0Reg = MI.getOperand(2).getReg(); 3380 LLT DstTy = MRI.getType(DstReg); 3381 LLT SrcTy = MRI.getType(Src0Reg); 3382 3383 unsigned NumParts; 3384 LLT NarrowTy0, NarrowTy1; 3385 3386 if (TypeIdx == 0) { 3387 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3388 unsigned OldElts = DstTy.getNumElements(); 3389 3390 NarrowTy0 = NarrowTy; 3391 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3392 NarrowTy1 = NarrowTy.isVector() ? 3393 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3394 SrcTy.getElementType(); 3395 3396 } else { 3397 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3398 unsigned OldElts = SrcTy.getNumElements(); 3399 3400 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3401 NarrowTy.getNumElements(); 3402 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3403 DstTy.getScalarSizeInBits()); 3404 NarrowTy1 = NarrowTy; 3405 } 3406 3407 // FIXME: Don't know how to handle the situation where the small vectors 3408 // aren't all the same size yet. 3409 if (NarrowTy1.isVector() && 3410 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3411 return UnableToLegalize; 3412 3413 CmpInst::Predicate Pred 3414 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3415 3416 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3417 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3418 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3419 3420 for (unsigned I = 0; I < NumParts; ++I) { 3421 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3422 DstRegs.push_back(DstReg); 3423 3424 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3425 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3426 else { 3427 MachineInstr *NewCmp 3428 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3429 NewCmp->setFlags(MI.getFlags()); 3430 } 3431 } 3432 3433 if (NarrowTy1.isVector()) 3434 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3435 else 3436 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3437 3438 MI.eraseFromParent(); 3439 return Legalized; 3440 } 3441 3442 LegalizerHelper::LegalizeResult 3443 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3444 LLT NarrowTy) { 3445 Register DstReg = MI.getOperand(0).getReg(); 3446 Register CondReg = MI.getOperand(1).getReg(); 3447 3448 unsigned NumParts = 0; 3449 LLT NarrowTy0, NarrowTy1; 3450 3451 LLT DstTy = MRI.getType(DstReg); 3452 LLT CondTy = MRI.getType(CondReg); 3453 unsigned Size = DstTy.getSizeInBits(); 3454 3455 assert(TypeIdx == 0 || CondTy.isVector()); 3456 3457 if (TypeIdx == 0) { 3458 NarrowTy0 = NarrowTy; 3459 NarrowTy1 = CondTy; 3460 3461 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3462 // FIXME: Don't know how to handle the situation where the small vectors 3463 // aren't all the same size yet. 3464 if (Size % NarrowSize != 0) 3465 return UnableToLegalize; 3466 3467 NumParts = Size / NarrowSize; 3468 3469 // Need to break down the condition type 3470 if (CondTy.isVector()) { 3471 if (CondTy.getNumElements() == NumParts) 3472 NarrowTy1 = CondTy.getElementType(); 3473 else 3474 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3475 CondTy.getScalarSizeInBits()); 3476 } 3477 } else { 3478 NumParts = CondTy.getNumElements(); 3479 if (NarrowTy.isVector()) { 3480 // TODO: Handle uneven breakdown. 3481 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3482 return UnableToLegalize; 3483 3484 return UnableToLegalize; 3485 } else { 3486 NarrowTy0 = DstTy.getElementType(); 3487 NarrowTy1 = NarrowTy; 3488 } 3489 } 3490 3491 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3492 if (CondTy.isVector()) 3493 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3494 3495 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3496 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3497 3498 for (unsigned i = 0; i < NumParts; ++i) { 3499 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3500 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3501 Src1Regs[i], Src2Regs[i]); 3502 DstRegs.push_back(DstReg); 3503 } 3504 3505 if (NarrowTy0.isVector()) 3506 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3507 else 3508 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3509 3510 MI.eraseFromParent(); 3511 return Legalized; 3512 } 3513 3514 LegalizerHelper::LegalizeResult 3515 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3516 LLT NarrowTy) { 3517 const Register DstReg = MI.getOperand(0).getReg(); 3518 LLT PhiTy = MRI.getType(DstReg); 3519 LLT LeftoverTy; 3520 3521 // All of the operands need to have the same number of elements, so if we can 3522 // determine a type breakdown for the result type, we can for all of the 3523 // source types. 3524 int NumParts, NumLeftover; 3525 std::tie(NumParts, NumLeftover) 3526 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3527 if (NumParts < 0) 3528 return UnableToLegalize; 3529 3530 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3531 SmallVector<MachineInstrBuilder, 4> NewInsts; 3532 3533 const int TotalNumParts = NumParts + NumLeftover; 3534 3535 // Insert the new phis in the result block first. 3536 for (int I = 0; I != TotalNumParts; ++I) { 3537 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3538 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3539 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3540 .addDef(PartDstReg)); 3541 if (I < NumParts) 3542 DstRegs.push_back(PartDstReg); 3543 else 3544 LeftoverDstRegs.push_back(PartDstReg); 3545 } 3546 3547 MachineBasicBlock *MBB = MI.getParent(); 3548 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3549 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3550 3551 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3552 3553 // Insert code to extract the incoming values in each predecessor block. 3554 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3555 PartRegs.clear(); 3556 LeftoverRegs.clear(); 3557 3558 Register SrcReg = MI.getOperand(I).getReg(); 3559 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3560 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3561 3562 LLT Unused; 3563 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3564 LeftoverRegs)) 3565 return UnableToLegalize; 3566 3567 // Add the newly created operand splits to the existing instructions. The 3568 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3569 // pieces. 3570 for (int J = 0; J != TotalNumParts; ++J) { 3571 MachineInstrBuilder MIB = NewInsts[J]; 3572 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3573 MIB.addMBB(&OpMBB); 3574 } 3575 } 3576 3577 MI.eraseFromParent(); 3578 return Legalized; 3579 } 3580 3581 LegalizerHelper::LegalizeResult 3582 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3583 unsigned TypeIdx, 3584 LLT NarrowTy) { 3585 if (TypeIdx != 1) 3586 return UnableToLegalize; 3587 3588 const int NumDst = MI.getNumOperands() - 1; 3589 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3590 LLT SrcTy = MRI.getType(SrcReg); 3591 3592 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3593 3594 // TODO: Create sequence of extracts. 3595 if (DstTy == NarrowTy) 3596 return UnableToLegalize; 3597 3598 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3599 if (DstTy == GCDTy) { 3600 // This would just be a copy of the same unmerge. 3601 // TODO: Create extracts, pad with undef and create intermediate merges. 3602 return UnableToLegalize; 3603 } 3604 3605 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3606 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3607 const int PartsPerUnmerge = NumDst / NumUnmerge; 3608 3609 for (int I = 0; I != NumUnmerge; ++I) { 3610 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3611 3612 for (int J = 0; J != PartsPerUnmerge; ++J) 3613 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3614 MIB.addUse(Unmerge.getReg(I)); 3615 } 3616 3617 MI.eraseFromParent(); 3618 return Legalized; 3619 } 3620 3621 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3622 // a vector 3623 // 3624 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3625 // undef as necessary. 3626 // 3627 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3628 // -> <2 x s16> 3629 // 3630 // %4:_(s16) = G_IMPLICIT_DEF 3631 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3632 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3633 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3634 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3635 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3636 LegalizerHelper::LegalizeResult 3637 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3638 LLT NarrowTy) { 3639 Register DstReg = MI.getOperand(0).getReg(); 3640 LLT DstTy = MRI.getType(DstReg); 3641 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3642 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3643 3644 // Break into a common type 3645 SmallVector<Register, 16> Parts; 3646 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3647 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3648 3649 // Build the requested new merge, padding with undef. 3650 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3651 TargetOpcode::G_ANYEXT); 3652 3653 // Pack into the original result register. 3654 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3655 3656 MI.eraseFromParent(); 3657 return Legalized; 3658 } 3659 3660 LegalizerHelper::LegalizeResult 3661 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3662 unsigned TypeIdx, 3663 LLT NarrowVecTy) { 3664 Register DstReg = MI.getOperand(0).getReg(); 3665 Register SrcVec = MI.getOperand(1).getReg(); 3666 Register InsertVal; 3667 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3668 3669 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3670 if (IsInsert) 3671 InsertVal = MI.getOperand(2).getReg(); 3672 3673 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3674 3675 // TODO: Handle total scalarization case. 3676 if (!NarrowVecTy.isVector()) 3677 return UnableToLegalize; 3678 3679 LLT VecTy = MRI.getType(SrcVec); 3680 3681 // If the index is a constant, we can really break this down as you would 3682 // expect, and index into the target size pieces. 3683 int64_t IdxVal; 3684 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3685 // Avoid out of bounds indexing the pieces. 3686 if (IdxVal >= VecTy.getNumElements()) { 3687 MIRBuilder.buildUndef(DstReg); 3688 MI.eraseFromParent(); 3689 return Legalized; 3690 } 3691 3692 SmallVector<Register, 8> VecParts; 3693 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3694 3695 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3696 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3697 TargetOpcode::G_ANYEXT); 3698 3699 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3700 3701 LLT IdxTy = MRI.getType(Idx); 3702 int64_t PartIdx = IdxVal / NewNumElts; 3703 auto NewIdx = 3704 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3705 3706 if (IsInsert) { 3707 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3708 3709 // Use the adjusted index to insert into one of the subvectors. 3710 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3711 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3712 VecParts[PartIdx] = InsertPart.getReg(0); 3713 3714 // Recombine the inserted subvector with the others to reform the result 3715 // vector. 3716 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3717 } else { 3718 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3719 } 3720 3721 MI.eraseFromParent(); 3722 return Legalized; 3723 } 3724 3725 // With a variable index, we can't perform the operation in a smaller type, so 3726 // we're forced to expand this. 3727 // 3728 // TODO: We could emit a chain of compare/select to figure out which piece to 3729 // index. 3730 return lowerExtractInsertVectorElt(MI); 3731 } 3732 3733 LegalizerHelper::LegalizeResult 3734 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3735 LLT NarrowTy) { 3736 // FIXME: Don't know how to handle secondary types yet. 3737 if (TypeIdx != 0) 3738 return UnableToLegalize; 3739 3740 MachineMemOperand *MMO = *MI.memoperands_begin(); 3741 3742 // This implementation doesn't work for atomics. Give up instead of doing 3743 // something invalid. 3744 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3745 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3746 return UnableToLegalize; 3747 3748 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3749 Register ValReg = MI.getOperand(0).getReg(); 3750 Register AddrReg = MI.getOperand(1).getReg(); 3751 LLT ValTy = MRI.getType(ValReg); 3752 3753 // FIXME: Do we need a distinct NarrowMemory legalize action? 3754 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3755 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3756 return UnableToLegalize; 3757 } 3758 3759 int NumParts = -1; 3760 int NumLeftover = -1; 3761 LLT LeftoverTy; 3762 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3763 if (IsLoad) { 3764 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3765 } else { 3766 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3767 NarrowLeftoverRegs)) { 3768 NumParts = NarrowRegs.size(); 3769 NumLeftover = NarrowLeftoverRegs.size(); 3770 } 3771 } 3772 3773 if (NumParts == -1) 3774 return UnableToLegalize; 3775 3776 LLT PtrTy = MRI.getType(AddrReg); 3777 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3778 3779 unsigned TotalSize = ValTy.getSizeInBits(); 3780 3781 // Split the load/store into PartTy sized pieces starting at Offset. If this 3782 // is a load, return the new registers in ValRegs. For a store, each elements 3783 // of ValRegs should be PartTy. Returns the next offset that needs to be 3784 // handled. 3785 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3786 unsigned Offset) -> unsigned { 3787 MachineFunction &MF = MIRBuilder.getMF(); 3788 unsigned PartSize = PartTy.getSizeInBits(); 3789 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3790 Offset += PartSize, ++Idx) { 3791 unsigned ByteSize = PartSize / 8; 3792 unsigned ByteOffset = Offset / 8; 3793 Register NewAddrReg; 3794 3795 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3796 3797 MachineMemOperand *NewMMO = 3798 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3799 3800 if (IsLoad) { 3801 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3802 ValRegs.push_back(Dst); 3803 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3804 } else { 3805 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3806 } 3807 } 3808 3809 return Offset; 3810 }; 3811 3812 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3813 3814 // Handle the rest of the register if this isn't an even type breakdown. 3815 if (LeftoverTy.isValid()) 3816 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3817 3818 if (IsLoad) { 3819 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3820 LeftoverTy, NarrowLeftoverRegs); 3821 } 3822 3823 MI.eraseFromParent(); 3824 return Legalized; 3825 } 3826 3827 LegalizerHelper::LegalizeResult 3828 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3829 LLT NarrowTy) { 3830 assert(TypeIdx == 0 && "only one type index expected"); 3831 3832 const unsigned Opc = MI.getOpcode(); 3833 const int NumOps = MI.getNumOperands() - 1; 3834 const Register DstReg = MI.getOperand(0).getReg(); 3835 const unsigned Flags = MI.getFlags(); 3836 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3837 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3838 3839 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3840 3841 // First of all check whether we are narrowing (changing the element type) 3842 // or reducing the vector elements 3843 const LLT DstTy = MRI.getType(DstReg); 3844 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3845 3846 SmallVector<Register, 8> ExtractedRegs[3]; 3847 SmallVector<Register, 8> Parts; 3848 3849 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3850 3851 // Break down all the sources into NarrowTy pieces we can operate on. This may 3852 // involve creating merges to a wider type, padded with undef. 3853 for (int I = 0; I != NumOps; ++I) { 3854 Register SrcReg = MI.getOperand(I + 1).getReg(); 3855 LLT SrcTy = MRI.getType(SrcReg); 3856 3857 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3858 // For fewerElements, this is a smaller vector with the same element type. 3859 LLT OpNarrowTy; 3860 if (IsNarrow) { 3861 OpNarrowTy = NarrowScalarTy; 3862 3863 // In case of narrowing, we need to cast vectors to scalars for this to 3864 // work properly 3865 // FIXME: Can we do without the bitcast here if we're narrowing? 3866 if (SrcTy.isVector()) { 3867 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3868 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3869 } 3870 } else { 3871 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3872 } 3873 3874 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3875 3876 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3877 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3878 TargetOpcode::G_ANYEXT); 3879 } 3880 3881 SmallVector<Register, 8> ResultRegs; 3882 3883 // Input operands for each sub-instruction. 3884 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3885 3886 int NumParts = ExtractedRegs[0].size(); 3887 const unsigned DstSize = DstTy.getSizeInBits(); 3888 const LLT DstScalarTy = LLT::scalar(DstSize); 3889 3890 // Narrowing needs to use scalar types 3891 LLT DstLCMTy, NarrowDstTy; 3892 if (IsNarrow) { 3893 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3894 NarrowDstTy = NarrowScalarTy; 3895 } else { 3896 DstLCMTy = getLCMType(DstTy, NarrowTy); 3897 NarrowDstTy = NarrowTy; 3898 } 3899 3900 // We widened the source registers to satisfy merge/unmerge size 3901 // constraints. We'll have some extra fully undef parts. 3902 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3903 3904 for (int I = 0; I != NumRealParts; ++I) { 3905 // Emit this instruction on each of the split pieces. 3906 for (int J = 0; J != NumOps; ++J) 3907 InputRegs[J] = ExtractedRegs[J][I]; 3908 3909 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3910 ResultRegs.push_back(Inst.getReg(0)); 3911 } 3912 3913 // Fill out the widened result with undef instead of creating instructions 3914 // with undef inputs. 3915 int NumUndefParts = NumParts - NumRealParts; 3916 if (NumUndefParts != 0) 3917 ResultRegs.append(NumUndefParts, 3918 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3919 3920 // Extract the possibly padded result. Use a scratch register if we need to do 3921 // a final bitcast, otherwise use the original result register. 3922 Register MergeDstReg; 3923 if (IsNarrow && DstTy.isVector()) 3924 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3925 else 3926 MergeDstReg = DstReg; 3927 3928 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3929 3930 // Recast to vector if we narrowed a vector 3931 if (IsNarrow && DstTy.isVector()) 3932 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3933 3934 MI.eraseFromParent(); 3935 return Legalized; 3936 } 3937 3938 LegalizerHelper::LegalizeResult 3939 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3940 LLT NarrowTy) { 3941 Register DstReg = MI.getOperand(0).getReg(); 3942 Register SrcReg = MI.getOperand(1).getReg(); 3943 int64_t Imm = MI.getOperand(2).getImm(); 3944 3945 LLT DstTy = MRI.getType(DstReg); 3946 3947 SmallVector<Register, 8> Parts; 3948 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3949 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3950 3951 for (Register &R : Parts) 3952 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3953 3954 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3955 3956 MI.eraseFromParent(); 3957 return Legalized; 3958 } 3959 3960 LegalizerHelper::LegalizeResult 3961 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3962 LLT NarrowTy) { 3963 using namespace TargetOpcode; 3964 3965 switch (MI.getOpcode()) { 3966 case G_IMPLICIT_DEF: 3967 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3968 case G_TRUNC: 3969 case G_AND: 3970 case G_OR: 3971 case G_XOR: 3972 case G_ADD: 3973 case G_SUB: 3974 case G_MUL: 3975 case G_PTR_ADD: 3976 case G_SMULH: 3977 case G_UMULH: 3978 case G_FADD: 3979 case G_FMUL: 3980 case G_FSUB: 3981 case G_FNEG: 3982 case G_FABS: 3983 case G_FCANONICALIZE: 3984 case G_FDIV: 3985 case G_FREM: 3986 case G_FMA: 3987 case G_FMAD: 3988 case G_FPOW: 3989 case G_FEXP: 3990 case G_FEXP2: 3991 case G_FLOG: 3992 case G_FLOG2: 3993 case G_FLOG10: 3994 case G_FNEARBYINT: 3995 case G_FCEIL: 3996 case G_FFLOOR: 3997 case G_FRINT: 3998 case G_INTRINSIC_ROUND: 3999 case G_INTRINSIC_ROUNDEVEN: 4000 case G_INTRINSIC_TRUNC: 4001 case G_FCOS: 4002 case G_FSIN: 4003 case G_FSQRT: 4004 case G_BSWAP: 4005 case G_BITREVERSE: 4006 case G_SDIV: 4007 case G_UDIV: 4008 case G_SREM: 4009 case G_UREM: 4010 case G_SMIN: 4011 case G_SMAX: 4012 case G_UMIN: 4013 case G_UMAX: 4014 case G_FMINNUM: 4015 case G_FMAXNUM: 4016 case G_FMINNUM_IEEE: 4017 case G_FMAXNUM_IEEE: 4018 case G_FMINIMUM: 4019 case G_FMAXIMUM: 4020 case G_FSHL: 4021 case G_FSHR: 4022 case G_FREEZE: 4023 case G_SADDSAT: 4024 case G_SSUBSAT: 4025 case G_UADDSAT: 4026 case G_USUBSAT: 4027 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4028 case G_SHL: 4029 case G_LSHR: 4030 case G_ASHR: 4031 case G_SSHLSAT: 4032 case G_USHLSAT: 4033 case G_CTLZ: 4034 case G_CTLZ_ZERO_UNDEF: 4035 case G_CTTZ: 4036 case G_CTTZ_ZERO_UNDEF: 4037 case G_CTPOP: 4038 case G_FCOPYSIGN: 4039 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4040 case G_ZEXT: 4041 case G_SEXT: 4042 case G_ANYEXT: 4043 case G_FPEXT: 4044 case G_FPTRUNC: 4045 case G_SITOFP: 4046 case G_UITOFP: 4047 case G_FPTOSI: 4048 case G_FPTOUI: 4049 case G_INTTOPTR: 4050 case G_PTRTOINT: 4051 case G_ADDRSPACE_CAST: 4052 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4053 case G_ICMP: 4054 case G_FCMP: 4055 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4056 case G_SELECT: 4057 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4058 case G_PHI: 4059 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4060 case G_UNMERGE_VALUES: 4061 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4062 case G_BUILD_VECTOR: 4063 assert(TypeIdx == 0 && "not a vector type index"); 4064 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4065 case G_CONCAT_VECTORS: 4066 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4067 return UnableToLegalize; 4068 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4069 case G_EXTRACT_VECTOR_ELT: 4070 case G_INSERT_VECTOR_ELT: 4071 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4072 case G_LOAD: 4073 case G_STORE: 4074 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4075 case G_SEXT_INREG: 4076 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4077 default: 4078 return UnableToLegalize; 4079 } 4080 } 4081 4082 LegalizerHelper::LegalizeResult 4083 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4084 const LLT HalfTy, const LLT AmtTy) { 4085 4086 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4087 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4088 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4089 4090 if (Amt.isNullValue()) { 4091 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4092 MI.eraseFromParent(); 4093 return Legalized; 4094 } 4095 4096 LLT NVT = HalfTy; 4097 unsigned NVTBits = HalfTy.getSizeInBits(); 4098 unsigned VTBits = 2 * NVTBits; 4099 4100 SrcOp Lo(Register(0)), Hi(Register(0)); 4101 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4102 if (Amt.ugt(VTBits)) { 4103 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4104 } else if (Amt.ugt(NVTBits)) { 4105 Lo = MIRBuilder.buildConstant(NVT, 0); 4106 Hi = MIRBuilder.buildShl(NVT, InL, 4107 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4108 } else if (Amt == NVTBits) { 4109 Lo = MIRBuilder.buildConstant(NVT, 0); 4110 Hi = InL; 4111 } else { 4112 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4113 auto OrLHS = 4114 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4115 auto OrRHS = MIRBuilder.buildLShr( 4116 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4117 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4118 } 4119 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4120 if (Amt.ugt(VTBits)) { 4121 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4122 } else if (Amt.ugt(NVTBits)) { 4123 Lo = MIRBuilder.buildLShr(NVT, InH, 4124 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4125 Hi = MIRBuilder.buildConstant(NVT, 0); 4126 } else if (Amt == NVTBits) { 4127 Lo = InH; 4128 Hi = MIRBuilder.buildConstant(NVT, 0); 4129 } else { 4130 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4131 4132 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4133 auto OrRHS = MIRBuilder.buildShl( 4134 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4135 4136 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4137 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4138 } 4139 } else { 4140 if (Amt.ugt(VTBits)) { 4141 Hi = Lo = MIRBuilder.buildAShr( 4142 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4143 } else if (Amt.ugt(NVTBits)) { 4144 Lo = MIRBuilder.buildAShr(NVT, InH, 4145 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4146 Hi = MIRBuilder.buildAShr(NVT, InH, 4147 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4148 } else if (Amt == NVTBits) { 4149 Lo = InH; 4150 Hi = MIRBuilder.buildAShr(NVT, InH, 4151 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4152 } else { 4153 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4154 4155 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4156 auto OrRHS = MIRBuilder.buildShl( 4157 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4158 4159 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4160 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4161 } 4162 } 4163 4164 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4165 MI.eraseFromParent(); 4166 4167 return Legalized; 4168 } 4169 4170 // TODO: Optimize if constant shift amount. 4171 LegalizerHelper::LegalizeResult 4172 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4173 LLT RequestedTy) { 4174 if (TypeIdx == 1) { 4175 Observer.changingInstr(MI); 4176 narrowScalarSrc(MI, RequestedTy, 2); 4177 Observer.changedInstr(MI); 4178 return Legalized; 4179 } 4180 4181 Register DstReg = MI.getOperand(0).getReg(); 4182 LLT DstTy = MRI.getType(DstReg); 4183 if (DstTy.isVector()) 4184 return UnableToLegalize; 4185 4186 Register Amt = MI.getOperand(2).getReg(); 4187 LLT ShiftAmtTy = MRI.getType(Amt); 4188 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4189 if (DstEltSize % 2 != 0) 4190 return UnableToLegalize; 4191 4192 // Ignore the input type. We can only go to exactly half the size of the 4193 // input. If that isn't small enough, the resulting pieces will be further 4194 // legalized. 4195 const unsigned NewBitSize = DstEltSize / 2; 4196 const LLT HalfTy = LLT::scalar(NewBitSize); 4197 const LLT CondTy = LLT::scalar(1); 4198 4199 if (const MachineInstr *KShiftAmt = 4200 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4201 return narrowScalarShiftByConstant( 4202 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4203 } 4204 4205 // TODO: Expand with known bits. 4206 4207 // Handle the fully general expansion by an unknown amount. 4208 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4209 4210 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4211 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4212 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4213 4214 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4215 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4216 4217 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4218 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4219 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4220 4221 Register ResultRegs[2]; 4222 switch (MI.getOpcode()) { 4223 case TargetOpcode::G_SHL: { 4224 // Short: ShAmt < NewBitSize 4225 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4226 4227 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4228 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4229 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4230 4231 // Long: ShAmt >= NewBitSize 4232 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4233 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4234 4235 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4236 auto Hi = MIRBuilder.buildSelect( 4237 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4238 4239 ResultRegs[0] = Lo.getReg(0); 4240 ResultRegs[1] = Hi.getReg(0); 4241 break; 4242 } 4243 case TargetOpcode::G_LSHR: 4244 case TargetOpcode::G_ASHR: { 4245 // Short: ShAmt < NewBitSize 4246 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4247 4248 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4249 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4250 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4251 4252 // Long: ShAmt >= NewBitSize 4253 MachineInstrBuilder HiL; 4254 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4255 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4256 } else { 4257 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4258 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4259 } 4260 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4261 {InH, AmtExcess}); // Lo from Hi part. 4262 4263 auto Lo = MIRBuilder.buildSelect( 4264 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4265 4266 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4267 4268 ResultRegs[0] = Lo.getReg(0); 4269 ResultRegs[1] = Hi.getReg(0); 4270 break; 4271 } 4272 default: 4273 llvm_unreachable("not a shift"); 4274 } 4275 4276 MIRBuilder.buildMerge(DstReg, ResultRegs); 4277 MI.eraseFromParent(); 4278 return Legalized; 4279 } 4280 4281 LegalizerHelper::LegalizeResult 4282 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4283 LLT MoreTy) { 4284 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4285 4286 Observer.changingInstr(MI); 4287 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4288 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4289 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4290 moreElementsVectorSrc(MI, MoreTy, I); 4291 } 4292 4293 MachineBasicBlock &MBB = *MI.getParent(); 4294 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4295 moreElementsVectorDst(MI, MoreTy, 0); 4296 Observer.changedInstr(MI); 4297 return Legalized; 4298 } 4299 4300 LegalizerHelper::LegalizeResult 4301 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4302 LLT MoreTy) { 4303 unsigned Opc = MI.getOpcode(); 4304 switch (Opc) { 4305 case TargetOpcode::G_IMPLICIT_DEF: 4306 case TargetOpcode::G_LOAD: { 4307 if (TypeIdx != 0) 4308 return UnableToLegalize; 4309 Observer.changingInstr(MI); 4310 moreElementsVectorDst(MI, MoreTy, 0); 4311 Observer.changedInstr(MI); 4312 return Legalized; 4313 } 4314 case TargetOpcode::G_STORE: 4315 if (TypeIdx != 0) 4316 return UnableToLegalize; 4317 Observer.changingInstr(MI); 4318 moreElementsVectorSrc(MI, MoreTy, 0); 4319 Observer.changedInstr(MI); 4320 return Legalized; 4321 case TargetOpcode::G_AND: 4322 case TargetOpcode::G_OR: 4323 case TargetOpcode::G_XOR: 4324 case TargetOpcode::G_SMIN: 4325 case TargetOpcode::G_SMAX: 4326 case TargetOpcode::G_UMIN: 4327 case TargetOpcode::G_UMAX: 4328 case TargetOpcode::G_FMINNUM: 4329 case TargetOpcode::G_FMAXNUM: 4330 case TargetOpcode::G_FMINNUM_IEEE: 4331 case TargetOpcode::G_FMAXNUM_IEEE: 4332 case TargetOpcode::G_FMINIMUM: 4333 case TargetOpcode::G_FMAXIMUM: { 4334 Observer.changingInstr(MI); 4335 moreElementsVectorSrc(MI, MoreTy, 1); 4336 moreElementsVectorSrc(MI, MoreTy, 2); 4337 moreElementsVectorDst(MI, MoreTy, 0); 4338 Observer.changedInstr(MI); 4339 return Legalized; 4340 } 4341 case TargetOpcode::G_EXTRACT: 4342 if (TypeIdx != 1) 4343 return UnableToLegalize; 4344 Observer.changingInstr(MI); 4345 moreElementsVectorSrc(MI, MoreTy, 1); 4346 Observer.changedInstr(MI); 4347 return Legalized; 4348 case TargetOpcode::G_INSERT: 4349 case TargetOpcode::G_FREEZE: 4350 if (TypeIdx != 0) 4351 return UnableToLegalize; 4352 Observer.changingInstr(MI); 4353 moreElementsVectorSrc(MI, MoreTy, 1); 4354 moreElementsVectorDst(MI, MoreTy, 0); 4355 Observer.changedInstr(MI); 4356 return Legalized; 4357 case TargetOpcode::G_SELECT: 4358 if (TypeIdx != 0) 4359 return UnableToLegalize; 4360 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4361 return UnableToLegalize; 4362 4363 Observer.changingInstr(MI); 4364 moreElementsVectorSrc(MI, MoreTy, 2); 4365 moreElementsVectorSrc(MI, MoreTy, 3); 4366 moreElementsVectorDst(MI, MoreTy, 0); 4367 Observer.changedInstr(MI); 4368 return Legalized; 4369 case TargetOpcode::G_UNMERGE_VALUES: { 4370 if (TypeIdx != 1) 4371 return UnableToLegalize; 4372 4373 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4374 int NumDst = MI.getNumOperands() - 1; 4375 moreElementsVectorSrc(MI, MoreTy, NumDst); 4376 4377 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4378 for (int I = 0; I != NumDst; ++I) 4379 MIB.addDef(MI.getOperand(I).getReg()); 4380 4381 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4382 for (int I = NumDst; I != NewNumDst; ++I) 4383 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4384 4385 MIB.addUse(MI.getOperand(NumDst).getReg()); 4386 MI.eraseFromParent(); 4387 return Legalized; 4388 } 4389 case TargetOpcode::G_PHI: 4390 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4391 default: 4392 return UnableToLegalize; 4393 } 4394 } 4395 4396 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4397 ArrayRef<Register> Src1Regs, 4398 ArrayRef<Register> Src2Regs, 4399 LLT NarrowTy) { 4400 MachineIRBuilder &B = MIRBuilder; 4401 unsigned SrcParts = Src1Regs.size(); 4402 unsigned DstParts = DstRegs.size(); 4403 4404 unsigned DstIdx = 0; // Low bits of the result. 4405 Register FactorSum = 4406 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4407 DstRegs[DstIdx] = FactorSum; 4408 4409 unsigned CarrySumPrevDstIdx; 4410 SmallVector<Register, 4> Factors; 4411 4412 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4413 // Collect low parts of muls for DstIdx. 4414 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4415 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4416 MachineInstrBuilder Mul = 4417 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4418 Factors.push_back(Mul.getReg(0)); 4419 } 4420 // Collect high parts of muls from previous DstIdx. 4421 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4422 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4423 MachineInstrBuilder Umulh = 4424 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4425 Factors.push_back(Umulh.getReg(0)); 4426 } 4427 // Add CarrySum from additions calculated for previous DstIdx. 4428 if (DstIdx != 1) { 4429 Factors.push_back(CarrySumPrevDstIdx); 4430 } 4431 4432 Register CarrySum; 4433 // Add all factors and accumulate all carries into CarrySum. 4434 if (DstIdx != DstParts - 1) { 4435 MachineInstrBuilder Uaddo = 4436 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4437 FactorSum = Uaddo.getReg(0); 4438 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4439 for (unsigned i = 2; i < Factors.size(); ++i) { 4440 MachineInstrBuilder Uaddo = 4441 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4442 FactorSum = Uaddo.getReg(0); 4443 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4444 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4445 } 4446 } else { 4447 // Since value for the next index is not calculated, neither is CarrySum. 4448 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4449 for (unsigned i = 2; i < Factors.size(); ++i) 4450 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4451 } 4452 4453 CarrySumPrevDstIdx = CarrySum; 4454 DstRegs[DstIdx] = FactorSum; 4455 Factors.clear(); 4456 } 4457 } 4458 4459 LegalizerHelper::LegalizeResult 4460 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4461 Register DstReg = MI.getOperand(0).getReg(); 4462 Register Src1 = MI.getOperand(1).getReg(); 4463 Register Src2 = MI.getOperand(2).getReg(); 4464 4465 LLT Ty = MRI.getType(DstReg); 4466 if (Ty.isVector()) 4467 return UnableToLegalize; 4468 4469 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4470 unsigned DstSize = Ty.getSizeInBits(); 4471 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4472 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4473 return UnableToLegalize; 4474 4475 unsigned NumDstParts = DstSize / NarrowSize; 4476 unsigned NumSrcParts = SrcSize / NarrowSize; 4477 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4478 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4479 4480 SmallVector<Register, 2> Src1Parts, Src2Parts; 4481 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4482 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4483 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4484 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4485 4486 // Take only high half of registers if this is high mul. 4487 ArrayRef<Register> DstRegs( 4488 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4489 MIRBuilder.buildMerge(DstReg, DstRegs); 4490 MI.eraseFromParent(); 4491 return Legalized; 4492 } 4493 4494 LegalizerHelper::LegalizeResult 4495 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4496 LLT NarrowTy) { 4497 if (TypeIdx != 1) 4498 return UnableToLegalize; 4499 4500 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4501 4502 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4503 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4504 // NarrowSize. 4505 if (SizeOp1 % NarrowSize != 0) 4506 return UnableToLegalize; 4507 int NumParts = SizeOp1 / NarrowSize; 4508 4509 SmallVector<Register, 2> SrcRegs, DstRegs; 4510 SmallVector<uint64_t, 2> Indexes; 4511 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4512 4513 Register OpReg = MI.getOperand(0).getReg(); 4514 uint64_t OpStart = MI.getOperand(2).getImm(); 4515 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4516 for (int i = 0; i < NumParts; ++i) { 4517 unsigned SrcStart = i * NarrowSize; 4518 4519 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4520 // No part of the extract uses this subregister, ignore it. 4521 continue; 4522 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4523 // The entire subregister is extracted, forward the value. 4524 DstRegs.push_back(SrcRegs[i]); 4525 continue; 4526 } 4527 4528 // OpSegStart is where this destination segment would start in OpReg if it 4529 // extended infinitely in both directions. 4530 int64_t ExtractOffset; 4531 uint64_t SegSize; 4532 if (OpStart < SrcStart) { 4533 ExtractOffset = 0; 4534 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4535 } else { 4536 ExtractOffset = OpStart - SrcStart; 4537 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4538 } 4539 4540 Register SegReg = SrcRegs[i]; 4541 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4542 // A genuine extract is needed. 4543 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4544 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4545 } 4546 4547 DstRegs.push_back(SegReg); 4548 } 4549 4550 Register DstReg = MI.getOperand(0).getReg(); 4551 if (MRI.getType(DstReg).isVector()) 4552 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4553 else if (DstRegs.size() > 1) 4554 MIRBuilder.buildMerge(DstReg, DstRegs); 4555 else 4556 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4557 MI.eraseFromParent(); 4558 return Legalized; 4559 } 4560 4561 LegalizerHelper::LegalizeResult 4562 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4563 LLT NarrowTy) { 4564 // FIXME: Don't know how to handle secondary types yet. 4565 if (TypeIdx != 0) 4566 return UnableToLegalize; 4567 4568 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4569 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4570 4571 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4572 // NarrowSize. 4573 if (SizeOp0 % NarrowSize != 0) 4574 return UnableToLegalize; 4575 4576 int NumParts = SizeOp0 / NarrowSize; 4577 4578 SmallVector<Register, 2> SrcRegs, DstRegs; 4579 SmallVector<uint64_t, 2> Indexes; 4580 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4581 4582 Register OpReg = MI.getOperand(2).getReg(); 4583 uint64_t OpStart = MI.getOperand(3).getImm(); 4584 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4585 for (int i = 0; i < NumParts; ++i) { 4586 unsigned DstStart = i * NarrowSize; 4587 4588 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4589 // No part of the insert affects this subregister, forward the original. 4590 DstRegs.push_back(SrcRegs[i]); 4591 continue; 4592 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4593 // The entire subregister is defined by this insert, forward the new 4594 // value. 4595 DstRegs.push_back(OpReg); 4596 continue; 4597 } 4598 4599 // OpSegStart is where this destination segment would start in OpReg if it 4600 // extended infinitely in both directions. 4601 int64_t ExtractOffset, InsertOffset; 4602 uint64_t SegSize; 4603 if (OpStart < DstStart) { 4604 InsertOffset = 0; 4605 ExtractOffset = DstStart - OpStart; 4606 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4607 } else { 4608 InsertOffset = OpStart - DstStart; 4609 ExtractOffset = 0; 4610 SegSize = 4611 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4612 } 4613 4614 Register SegReg = OpReg; 4615 if (ExtractOffset != 0 || SegSize != OpSize) { 4616 // A genuine extract is needed. 4617 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4618 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4619 } 4620 4621 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4622 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4623 DstRegs.push_back(DstReg); 4624 } 4625 4626 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4627 Register DstReg = MI.getOperand(0).getReg(); 4628 if(MRI.getType(DstReg).isVector()) 4629 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4630 else 4631 MIRBuilder.buildMerge(DstReg, DstRegs); 4632 MI.eraseFromParent(); 4633 return Legalized; 4634 } 4635 4636 LegalizerHelper::LegalizeResult 4637 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4638 LLT NarrowTy) { 4639 Register DstReg = MI.getOperand(0).getReg(); 4640 LLT DstTy = MRI.getType(DstReg); 4641 4642 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4643 4644 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4645 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4646 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4647 LLT LeftoverTy; 4648 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4649 Src0Regs, Src0LeftoverRegs)) 4650 return UnableToLegalize; 4651 4652 LLT Unused; 4653 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4654 Src1Regs, Src1LeftoverRegs)) 4655 llvm_unreachable("inconsistent extractParts result"); 4656 4657 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4658 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4659 {Src0Regs[I], Src1Regs[I]}); 4660 DstRegs.push_back(Inst.getReg(0)); 4661 } 4662 4663 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4664 auto Inst = MIRBuilder.buildInstr( 4665 MI.getOpcode(), 4666 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4667 DstLeftoverRegs.push_back(Inst.getReg(0)); 4668 } 4669 4670 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4671 LeftoverTy, DstLeftoverRegs); 4672 4673 MI.eraseFromParent(); 4674 return Legalized; 4675 } 4676 4677 LegalizerHelper::LegalizeResult 4678 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4679 LLT NarrowTy) { 4680 if (TypeIdx != 0) 4681 return UnableToLegalize; 4682 4683 Register DstReg = MI.getOperand(0).getReg(); 4684 Register SrcReg = MI.getOperand(1).getReg(); 4685 4686 LLT DstTy = MRI.getType(DstReg); 4687 if (DstTy.isVector()) 4688 return UnableToLegalize; 4689 4690 SmallVector<Register, 8> Parts; 4691 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4692 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4693 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4694 4695 MI.eraseFromParent(); 4696 return Legalized; 4697 } 4698 4699 LegalizerHelper::LegalizeResult 4700 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4701 LLT NarrowTy) { 4702 if (TypeIdx != 0) 4703 return UnableToLegalize; 4704 4705 Register CondReg = MI.getOperand(1).getReg(); 4706 LLT CondTy = MRI.getType(CondReg); 4707 if (CondTy.isVector()) // TODO: Handle vselect 4708 return UnableToLegalize; 4709 4710 Register DstReg = MI.getOperand(0).getReg(); 4711 LLT DstTy = MRI.getType(DstReg); 4712 4713 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4714 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4715 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4716 LLT LeftoverTy; 4717 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4718 Src1Regs, Src1LeftoverRegs)) 4719 return UnableToLegalize; 4720 4721 LLT Unused; 4722 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4723 Src2Regs, Src2LeftoverRegs)) 4724 llvm_unreachable("inconsistent extractParts result"); 4725 4726 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4727 auto Select = MIRBuilder.buildSelect(NarrowTy, 4728 CondReg, Src1Regs[I], Src2Regs[I]); 4729 DstRegs.push_back(Select.getReg(0)); 4730 } 4731 4732 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4733 auto Select = MIRBuilder.buildSelect( 4734 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4735 DstLeftoverRegs.push_back(Select.getReg(0)); 4736 } 4737 4738 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4739 LeftoverTy, DstLeftoverRegs); 4740 4741 MI.eraseFromParent(); 4742 return Legalized; 4743 } 4744 4745 LegalizerHelper::LegalizeResult 4746 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4747 LLT NarrowTy) { 4748 if (TypeIdx != 1) 4749 return UnableToLegalize; 4750 4751 Register DstReg = MI.getOperand(0).getReg(); 4752 Register SrcReg = MI.getOperand(1).getReg(); 4753 LLT DstTy = MRI.getType(DstReg); 4754 LLT SrcTy = MRI.getType(SrcReg); 4755 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4756 4757 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4758 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4759 4760 MachineIRBuilder &B = MIRBuilder; 4761 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4762 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4763 auto C_0 = B.buildConstant(NarrowTy, 0); 4764 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4765 UnmergeSrc.getReg(1), C_0); 4766 auto LoCTLZ = IsUndef ? 4767 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4768 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4769 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4770 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4771 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4772 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4773 4774 MI.eraseFromParent(); 4775 return Legalized; 4776 } 4777 4778 return UnableToLegalize; 4779 } 4780 4781 LegalizerHelper::LegalizeResult 4782 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4783 LLT NarrowTy) { 4784 if (TypeIdx != 1) 4785 return UnableToLegalize; 4786 4787 Register DstReg = MI.getOperand(0).getReg(); 4788 Register SrcReg = MI.getOperand(1).getReg(); 4789 LLT DstTy = MRI.getType(DstReg); 4790 LLT SrcTy = MRI.getType(SrcReg); 4791 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4792 4793 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4794 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4795 4796 MachineIRBuilder &B = MIRBuilder; 4797 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4798 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4799 auto C_0 = B.buildConstant(NarrowTy, 0); 4800 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4801 UnmergeSrc.getReg(0), C_0); 4802 auto HiCTTZ = IsUndef ? 4803 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4804 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4805 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4806 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4807 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4808 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4809 4810 MI.eraseFromParent(); 4811 return Legalized; 4812 } 4813 4814 return UnableToLegalize; 4815 } 4816 4817 LegalizerHelper::LegalizeResult 4818 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4819 LLT NarrowTy) { 4820 if (TypeIdx != 1) 4821 return UnableToLegalize; 4822 4823 Register DstReg = MI.getOperand(0).getReg(); 4824 LLT DstTy = MRI.getType(DstReg); 4825 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4826 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4827 4828 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4829 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4830 4831 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4832 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4833 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4834 4835 MI.eraseFromParent(); 4836 return Legalized; 4837 } 4838 4839 return UnableToLegalize; 4840 } 4841 4842 LegalizerHelper::LegalizeResult 4843 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4844 unsigned Opc = MI.getOpcode(); 4845 const auto &TII = MIRBuilder.getTII(); 4846 auto isSupported = [this](const LegalityQuery &Q) { 4847 auto QAction = LI.getAction(Q).Action; 4848 return QAction == Legal || QAction == Libcall || QAction == Custom; 4849 }; 4850 switch (Opc) { 4851 default: 4852 return UnableToLegalize; 4853 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4854 // This trivially expands to CTLZ. 4855 Observer.changingInstr(MI); 4856 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4857 Observer.changedInstr(MI); 4858 return Legalized; 4859 } 4860 case TargetOpcode::G_CTLZ: { 4861 Register DstReg = MI.getOperand(0).getReg(); 4862 Register SrcReg = MI.getOperand(1).getReg(); 4863 LLT DstTy = MRI.getType(DstReg); 4864 LLT SrcTy = MRI.getType(SrcReg); 4865 unsigned Len = SrcTy.getSizeInBits(); 4866 4867 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4868 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4869 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4870 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4871 auto ICmp = MIRBuilder.buildICmp( 4872 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4873 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4874 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4875 MI.eraseFromParent(); 4876 return Legalized; 4877 } 4878 // for now, we do this: 4879 // NewLen = NextPowerOf2(Len); 4880 // x = x | (x >> 1); 4881 // x = x | (x >> 2); 4882 // ... 4883 // x = x | (x >>16); 4884 // x = x | (x >>32); // for 64-bit input 4885 // Upto NewLen/2 4886 // return Len - popcount(x); 4887 // 4888 // Ref: "Hacker's Delight" by Henry Warren 4889 Register Op = SrcReg; 4890 unsigned NewLen = PowerOf2Ceil(Len); 4891 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4892 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4893 auto MIBOp = MIRBuilder.buildOr( 4894 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4895 Op = MIBOp.getReg(0); 4896 } 4897 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4898 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4899 MIBPop); 4900 MI.eraseFromParent(); 4901 return Legalized; 4902 } 4903 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4904 // This trivially expands to CTTZ. 4905 Observer.changingInstr(MI); 4906 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4907 Observer.changedInstr(MI); 4908 return Legalized; 4909 } 4910 case TargetOpcode::G_CTTZ: { 4911 Register DstReg = MI.getOperand(0).getReg(); 4912 Register SrcReg = MI.getOperand(1).getReg(); 4913 LLT DstTy = MRI.getType(DstReg); 4914 LLT SrcTy = MRI.getType(SrcReg); 4915 4916 unsigned Len = SrcTy.getSizeInBits(); 4917 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4918 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4919 // zero. 4920 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4921 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4922 auto ICmp = MIRBuilder.buildICmp( 4923 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4924 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4925 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4926 MI.eraseFromParent(); 4927 return Legalized; 4928 } 4929 // for now, we use: { return popcount(~x & (x - 1)); } 4930 // unless the target has ctlz but not ctpop, in which case we use: 4931 // { return 32 - nlz(~x & (x-1)); } 4932 // Ref: "Hacker's Delight" by Henry Warren 4933 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 4934 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 4935 auto MIBTmp = MIRBuilder.buildAnd( 4936 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 4937 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 4938 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 4939 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 4940 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4941 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 4942 MI.eraseFromParent(); 4943 return Legalized; 4944 } 4945 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4946 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4947 return Legalized; 4948 } 4949 case TargetOpcode::G_CTPOP: { 4950 Register SrcReg = MI.getOperand(1).getReg(); 4951 LLT Ty = MRI.getType(SrcReg); 4952 unsigned Size = Ty.getSizeInBits(); 4953 MachineIRBuilder &B = MIRBuilder; 4954 4955 // Count set bits in blocks of 2 bits. Default approach would be 4956 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4957 // We use following formula instead: 4958 // B2Count = val - { (val >> 1) & 0x55555555 } 4959 // since it gives same result in blocks of 2 with one instruction less. 4960 auto C_1 = B.buildConstant(Ty, 1); 4961 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 4962 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4963 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4964 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4965 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 4966 4967 // In order to get count in blocks of 4 add values from adjacent block of 2. 4968 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4969 auto C_2 = B.buildConstant(Ty, 2); 4970 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4971 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4972 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4973 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4974 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4975 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4976 4977 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4978 // addition since count value sits in range {0,...,8} and 4 bits are enough 4979 // to hold such binary values. After addition high 4 bits still hold count 4980 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4981 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4982 auto C_4 = B.buildConstant(Ty, 4); 4983 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4984 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4985 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4986 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4987 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4988 4989 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4990 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4991 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4992 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4993 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4994 4995 // Shift count result from 8 high bits to low bits. 4996 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4997 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4998 4999 MI.eraseFromParent(); 5000 return Legalized; 5001 } 5002 } 5003 } 5004 5005 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5006 // representation. 5007 LegalizerHelper::LegalizeResult 5008 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5009 Register Dst = MI.getOperand(0).getReg(); 5010 Register Src = MI.getOperand(1).getReg(); 5011 const LLT S64 = LLT::scalar(64); 5012 const LLT S32 = LLT::scalar(32); 5013 const LLT S1 = LLT::scalar(1); 5014 5015 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5016 5017 // unsigned cul2f(ulong u) { 5018 // uint lz = clz(u); 5019 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5020 // u = (u << lz) & 0x7fffffffffffffffUL; 5021 // ulong t = u & 0xffffffffffUL; 5022 // uint v = (e << 23) | (uint)(u >> 40); 5023 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5024 // return as_float(v + r); 5025 // } 5026 5027 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5028 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5029 5030 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5031 5032 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5033 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5034 5035 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5036 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5037 5038 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5039 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5040 5041 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5042 5043 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5044 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5045 5046 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5047 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5048 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5049 5050 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5051 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5052 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5053 auto One = MIRBuilder.buildConstant(S32, 1); 5054 5055 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5056 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5057 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5058 MIRBuilder.buildAdd(Dst, V, R); 5059 5060 MI.eraseFromParent(); 5061 return Legalized; 5062 } 5063 5064 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5065 Register Dst = MI.getOperand(0).getReg(); 5066 Register Src = MI.getOperand(1).getReg(); 5067 LLT DstTy = MRI.getType(Dst); 5068 LLT SrcTy = MRI.getType(Src); 5069 5070 if (SrcTy == LLT::scalar(1)) { 5071 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5072 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5073 MIRBuilder.buildSelect(Dst, Src, True, False); 5074 MI.eraseFromParent(); 5075 return Legalized; 5076 } 5077 5078 if (SrcTy != LLT::scalar(64)) 5079 return UnableToLegalize; 5080 5081 if (DstTy == LLT::scalar(32)) { 5082 // TODO: SelectionDAG has several alternative expansions to port which may 5083 // be more reasonble depending on the available instructions. If a target 5084 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5085 // intermediate type, this is probably worse. 5086 return lowerU64ToF32BitOps(MI); 5087 } 5088 5089 return UnableToLegalize; 5090 } 5091 5092 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5093 Register Dst = MI.getOperand(0).getReg(); 5094 Register Src = MI.getOperand(1).getReg(); 5095 LLT DstTy = MRI.getType(Dst); 5096 LLT SrcTy = MRI.getType(Src); 5097 5098 const LLT S64 = LLT::scalar(64); 5099 const LLT S32 = LLT::scalar(32); 5100 const LLT S1 = LLT::scalar(1); 5101 5102 if (SrcTy == S1) { 5103 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5104 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5105 MIRBuilder.buildSelect(Dst, Src, True, False); 5106 MI.eraseFromParent(); 5107 return Legalized; 5108 } 5109 5110 if (SrcTy != S64) 5111 return UnableToLegalize; 5112 5113 if (DstTy == S32) { 5114 // signed cl2f(long l) { 5115 // long s = l >> 63; 5116 // float r = cul2f((l + s) ^ s); 5117 // return s ? -r : r; 5118 // } 5119 Register L = Src; 5120 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5121 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5122 5123 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5124 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5125 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5126 5127 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5128 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5129 MIRBuilder.buildConstant(S64, 0)); 5130 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5131 MI.eraseFromParent(); 5132 return Legalized; 5133 } 5134 5135 return UnableToLegalize; 5136 } 5137 5138 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5139 Register Dst = MI.getOperand(0).getReg(); 5140 Register Src = MI.getOperand(1).getReg(); 5141 LLT DstTy = MRI.getType(Dst); 5142 LLT SrcTy = MRI.getType(Src); 5143 const LLT S64 = LLT::scalar(64); 5144 const LLT S32 = LLT::scalar(32); 5145 5146 if (SrcTy != S64 && SrcTy != S32) 5147 return UnableToLegalize; 5148 if (DstTy != S32 && DstTy != S64) 5149 return UnableToLegalize; 5150 5151 // FPTOSI gives same result as FPTOUI for positive signed integers. 5152 // FPTOUI needs to deal with fp values that convert to unsigned integers 5153 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5154 5155 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5156 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5157 : APFloat::IEEEdouble(), 5158 APInt::getNullValue(SrcTy.getSizeInBits())); 5159 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5160 5161 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5162 5163 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5164 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5165 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5166 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5167 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5168 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5169 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5170 5171 const LLT S1 = LLT::scalar(1); 5172 5173 MachineInstrBuilder FCMP = 5174 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5175 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5176 5177 MI.eraseFromParent(); 5178 return Legalized; 5179 } 5180 5181 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5182 Register Dst = MI.getOperand(0).getReg(); 5183 Register Src = MI.getOperand(1).getReg(); 5184 LLT DstTy = MRI.getType(Dst); 5185 LLT SrcTy = MRI.getType(Src); 5186 const LLT S64 = LLT::scalar(64); 5187 const LLT S32 = LLT::scalar(32); 5188 5189 // FIXME: Only f32 to i64 conversions are supported. 5190 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5191 return UnableToLegalize; 5192 5193 // Expand f32 -> i64 conversion 5194 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5195 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5196 5197 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5198 5199 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5200 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5201 5202 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5203 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5204 5205 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5206 APInt::getSignMask(SrcEltBits)); 5207 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5208 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5209 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5210 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5211 5212 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5213 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5214 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5215 5216 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5217 R = MIRBuilder.buildZExt(DstTy, R); 5218 5219 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5220 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5221 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5222 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5223 5224 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5225 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5226 5227 const LLT S1 = LLT::scalar(1); 5228 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5229 S1, Exponent, ExponentLoBit); 5230 5231 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5232 5233 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5234 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5235 5236 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5237 5238 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5239 S1, Exponent, ZeroSrcTy); 5240 5241 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5242 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5243 5244 MI.eraseFromParent(); 5245 return Legalized; 5246 } 5247 5248 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5249 LegalizerHelper::LegalizeResult 5250 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5251 Register Dst = MI.getOperand(0).getReg(); 5252 Register Src = MI.getOperand(1).getReg(); 5253 5254 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5255 return UnableToLegalize; 5256 5257 const unsigned ExpMask = 0x7ff; 5258 const unsigned ExpBiasf64 = 1023; 5259 const unsigned ExpBiasf16 = 15; 5260 const LLT S32 = LLT::scalar(32); 5261 const LLT S1 = LLT::scalar(1); 5262 5263 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5264 Register U = Unmerge.getReg(0); 5265 Register UH = Unmerge.getReg(1); 5266 5267 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5268 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5269 5270 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5271 // add the f16 bias (15) to get the biased exponent for the f16 format. 5272 E = MIRBuilder.buildAdd( 5273 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5274 5275 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5276 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5277 5278 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5279 MIRBuilder.buildConstant(S32, 0x1ff)); 5280 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5281 5282 auto Zero = MIRBuilder.buildConstant(S32, 0); 5283 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5284 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5285 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5286 5287 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5288 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5289 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5290 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5291 5292 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5293 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5294 5295 // N = M | (E << 12); 5296 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5297 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5298 5299 // B = clamp(1-E, 0, 13); 5300 auto One = MIRBuilder.buildConstant(S32, 1); 5301 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5302 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5303 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5304 5305 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5306 MIRBuilder.buildConstant(S32, 0x1000)); 5307 5308 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5309 auto D0 = MIRBuilder.buildShl(S32, D, B); 5310 5311 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5312 D0, SigSetHigh); 5313 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5314 D = MIRBuilder.buildOr(S32, D, D1); 5315 5316 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5317 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5318 5319 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5320 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5321 5322 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5323 MIRBuilder.buildConstant(S32, 3)); 5324 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5325 5326 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5327 MIRBuilder.buildConstant(S32, 5)); 5328 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5329 5330 V1 = MIRBuilder.buildOr(S32, V0, V1); 5331 V = MIRBuilder.buildAdd(S32, V, V1); 5332 5333 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5334 E, MIRBuilder.buildConstant(S32, 30)); 5335 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5336 MIRBuilder.buildConstant(S32, 0x7c00), V); 5337 5338 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5339 E, MIRBuilder.buildConstant(S32, 1039)); 5340 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5341 5342 // Extract the sign bit. 5343 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5344 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5345 5346 // Insert the sign bit 5347 V = MIRBuilder.buildOr(S32, Sign, V); 5348 5349 MIRBuilder.buildTrunc(Dst, V); 5350 MI.eraseFromParent(); 5351 return Legalized; 5352 } 5353 5354 LegalizerHelper::LegalizeResult 5355 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5356 Register Dst = MI.getOperand(0).getReg(); 5357 Register Src = MI.getOperand(1).getReg(); 5358 5359 LLT DstTy = MRI.getType(Dst); 5360 LLT SrcTy = MRI.getType(Src); 5361 const LLT S64 = LLT::scalar(64); 5362 const LLT S16 = LLT::scalar(16); 5363 5364 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5365 return lowerFPTRUNC_F64_TO_F16(MI); 5366 5367 return UnableToLegalize; 5368 } 5369 5370 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5371 // multiplication tree. 5372 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5373 Register Dst = MI.getOperand(0).getReg(); 5374 Register Src0 = MI.getOperand(1).getReg(); 5375 Register Src1 = MI.getOperand(2).getReg(); 5376 LLT Ty = MRI.getType(Dst); 5377 5378 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5379 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5380 MI.eraseFromParent(); 5381 return Legalized; 5382 } 5383 5384 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5385 switch (Opc) { 5386 case TargetOpcode::G_SMIN: 5387 return CmpInst::ICMP_SLT; 5388 case TargetOpcode::G_SMAX: 5389 return CmpInst::ICMP_SGT; 5390 case TargetOpcode::G_UMIN: 5391 return CmpInst::ICMP_ULT; 5392 case TargetOpcode::G_UMAX: 5393 return CmpInst::ICMP_UGT; 5394 default: 5395 llvm_unreachable("not in integer min/max"); 5396 } 5397 } 5398 5399 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5400 Register Dst = MI.getOperand(0).getReg(); 5401 Register Src0 = MI.getOperand(1).getReg(); 5402 Register Src1 = MI.getOperand(2).getReg(); 5403 5404 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5405 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5406 5407 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5408 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5409 5410 MI.eraseFromParent(); 5411 return Legalized; 5412 } 5413 5414 LegalizerHelper::LegalizeResult 5415 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5416 Register Dst = MI.getOperand(0).getReg(); 5417 Register Src0 = MI.getOperand(1).getReg(); 5418 Register Src1 = MI.getOperand(2).getReg(); 5419 5420 const LLT Src0Ty = MRI.getType(Src0); 5421 const LLT Src1Ty = MRI.getType(Src1); 5422 5423 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5424 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5425 5426 auto SignBitMask = MIRBuilder.buildConstant( 5427 Src0Ty, APInt::getSignMask(Src0Size)); 5428 5429 auto NotSignBitMask = MIRBuilder.buildConstant( 5430 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5431 5432 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 5433 MachineInstr *Or; 5434 5435 if (Src0Ty == Src1Ty) { 5436 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 5437 Or = MIRBuilder.buildOr(Dst, And0, And1); 5438 } else if (Src0Size > Src1Size) { 5439 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5440 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5441 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5442 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 5443 Or = MIRBuilder.buildOr(Dst, And0, And1); 5444 } else { 5445 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5446 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5447 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5448 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 5449 Or = MIRBuilder.buildOr(Dst, And0, And1); 5450 } 5451 5452 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5453 // constants are a nan and -0.0, but the final result should preserve 5454 // everything. 5455 if (unsigned Flags = MI.getFlags()) 5456 Or->setFlags(Flags); 5457 5458 MI.eraseFromParent(); 5459 return Legalized; 5460 } 5461 5462 LegalizerHelper::LegalizeResult 5463 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5464 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5465 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5466 5467 Register Dst = MI.getOperand(0).getReg(); 5468 Register Src0 = MI.getOperand(1).getReg(); 5469 Register Src1 = MI.getOperand(2).getReg(); 5470 LLT Ty = MRI.getType(Dst); 5471 5472 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5473 // Insert canonicalizes if it's possible we need to quiet to get correct 5474 // sNaN behavior. 5475 5476 // Note this must be done here, and not as an optimization combine in the 5477 // absence of a dedicate quiet-snan instruction as we're using an 5478 // omni-purpose G_FCANONICALIZE. 5479 if (!isKnownNeverSNaN(Src0, MRI)) 5480 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5481 5482 if (!isKnownNeverSNaN(Src1, MRI)) 5483 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5484 } 5485 5486 // If there are no nans, it's safe to simply replace this with the non-IEEE 5487 // version. 5488 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5489 MI.eraseFromParent(); 5490 return Legalized; 5491 } 5492 5493 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5494 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5495 Register DstReg = MI.getOperand(0).getReg(); 5496 LLT Ty = MRI.getType(DstReg); 5497 unsigned Flags = MI.getFlags(); 5498 5499 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5500 Flags); 5501 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5502 MI.eraseFromParent(); 5503 return Legalized; 5504 } 5505 5506 LegalizerHelper::LegalizeResult 5507 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5508 Register DstReg = MI.getOperand(0).getReg(); 5509 Register X = MI.getOperand(1).getReg(); 5510 const unsigned Flags = MI.getFlags(); 5511 const LLT Ty = MRI.getType(DstReg); 5512 const LLT CondTy = Ty.changeElementSize(1); 5513 5514 // round(x) => 5515 // t = trunc(x); 5516 // d = fabs(x - t); 5517 // o = copysign(1.0f, x); 5518 // return t + (d >= 0.5 ? o : 0.0); 5519 5520 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5521 5522 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5523 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5524 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5525 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5526 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5527 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5528 5529 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5530 Flags); 5531 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5532 5533 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5534 5535 MI.eraseFromParent(); 5536 return Legalized; 5537 } 5538 5539 LegalizerHelper::LegalizeResult 5540 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5541 Register DstReg = MI.getOperand(0).getReg(); 5542 Register SrcReg = MI.getOperand(1).getReg(); 5543 unsigned Flags = MI.getFlags(); 5544 LLT Ty = MRI.getType(DstReg); 5545 const LLT CondTy = Ty.changeElementSize(1); 5546 5547 // result = trunc(src); 5548 // if (src < 0.0 && src != result) 5549 // result += -1.0. 5550 5551 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5552 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5553 5554 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5555 SrcReg, Zero, Flags); 5556 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5557 SrcReg, Trunc, Flags); 5558 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5559 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5560 5561 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5562 MI.eraseFromParent(); 5563 return Legalized; 5564 } 5565 5566 LegalizerHelper::LegalizeResult 5567 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5568 const unsigned NumOps = MI.getNumOperands(); 5569 Register DstReg = MI.getOperand(0).getReg(); 5570 Register Src0Reg = MI.getOperand(1).getReg(); 5571 LLT DstTy = MRI.getType(DstReg); 5572 LLT SrcTy = MRI.getType(Src0Reg); 5573 unsigned PartSize = SrcTy.getSizeInBits(); 5574 5575 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5576 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5577 5578 for (unsigned I = 2; I != NumOps; ++I) { 5579 const unsigned Offset = (I - 1) * PartSize; 5580 5581 Register SrcReg = MI.getOperand(I).getReg(); 5582 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5583 5584 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5585 MRI.createGenericVirtualRegister(WideTy); 5586 5587 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5588 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5589 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5590 ResultReg = NextResult; 5591 } 5592 5593 if (DstTy.isPointer()) { 5594 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5595 DstTy.getAddressSpace())) { 5596 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5597 return UnableToLegalize; 5598 } 5599 5600 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5601 } 5602 5603 MI.eraseFromParent(); 5604 return Legalized; 5605 } 5606 5607 LegalizerHelper::LegalizeResult 5608 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5609 const unsigned NumDst = MI.getNumOperands() - 1; 5610 Register SrcReg = MI.getOperand(NumDst).getReg(); 5611 Register Dst0Reg = MI.getOperand(0).getReg(); 5612 LLT DstTy = MRI.getType(Dst0Reg); 5613 if (DstTy.isPointer()) 5614 return UnableToLegalize; // TODO 5615 5616 SrcReg = coerceToScalar(SrcReg); 5617 if (!SrcReg) 5618 return UnableToLegalize; 5619 5620 // Expand scalarizing unmerge as bitcast to integer and shift. 5621 LLT IntTy = MRI.getType(SrcReg); 5622 5623 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5624 5625 const unsigned DstSize = DstTy.getSizeInBits(); 5626 unsigned Offset = DstSize; 5627 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5628 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5629 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5630 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5631 } 5632 5633 MI.eraseFromParent(); 5634 return Legalized; 5635 } 5636 5637 /// Lower a vector extract or insert by writing the vector to a stack temporary 5638 /// and reloading the element or vector. 5639 /// 5640 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5641 /// => 5642 /// %stack_temp = G_FRAME_INDEX 5643 /// G_STORE %vec, %stack_temp 5644 /// %idx = clamp(%idx, %vec.getNumElements()) 5645 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5646 /// %dst = G_LOAD %element_ptr 5647 LegalizerHelper::LegalizeResult 5648 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5649 Register DstReg = MI.getOperand(0).getReg(); 5650 Register SrcVec = MI.getOperand(1).getReg(); 5651 Register InsertVal; 5652 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5653 InsertVal = MI.getOperand(2).getReg(); 5654 5655 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5656 5657 LLT VecTy = MRI.getType(SrcVec); 5658 LLT EltTy = VecTy.getElementType(); 5659 if (!EltTy.isByteSized()) { // Not implemented. 5660 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5661 return UnableToLegalize; 5662 } 5663 5664 unsigned EltBytes = EltTy.getSizeInBytes(); 5665 Align VecAlign = getStackTemporaryAlignment(VecTy); 5666 Align EltAlign; 5667 5668 MachinePointerInfo PtrInfo; 5669 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5670 VecAlign, PtrInfo); 5671 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5672 5673 // Get the pointer to the element, and be sure not to hit undefined behavior 5674 // if the index is out of bounds. 5675 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5676 5677 int64_t IdxVal; 5678 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5679 int64_t Offset = IdxVal * EltBytes; 5680 PtrInfo = PtrInfo.getWithOffset(Offset); 5681 EltAlign = commonAlignment(VecAlign, Offset); 5682 } else { 5683 // We lose information with a variable offset. 5684 EltAlign = getStackTemporaryAlignment(EltTy); 5685 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5686 } 5687 5688 if (InsertVal) { 5689 // Write the inserted element 5690 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5691 5692 // Reload the whole vector. 5693 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5694 } else { 5695 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5696 } 5697 5698 MI.eraseFromParent(); 5699 return Legalized; 5700 } 5701 5702 LegalizerHelper::LegalizeResult 5703 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5704 Register DstReg = MI.getOperand(0).getReg(); 5705 Register Src0Reg = MI.getOperand(1).getReg(); 5706 Register Src1Reg = MI.getOperand(2).getReg(); 5707 LLT Src0Ty = MRI.getType(Src0Reg); 5708 LLT DstTy = MRI.getType(DstReg); 5709 LLT IdxTy = LLT::scalar(32); 5710 5711 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5712 5713 if (DstTy.isScalar()) { 5714 if (Src0Ty.isVector()) 5715 return UnableToLegalize; 5716 5717 // This is just a SELECT. 5718 assert(Mask.size() == 1 && "Expected a single mask element"); 5719 Register Val; 5720 if (Mask[0] < 0 || Mask[0] > 1) 5721 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5722 else 5723 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5724 MIRBuilder.buildCopy(DstReg, Val); 5725 MI.eraseFromParent(); 5726 return Legalized; 5727 } 5728 5729 Register Undef; 5730 SmallVector<Register, 32> BuildVec; 5731 LLT EltTy = DstTy.getElementType(); 5732 5733 for (int Idx : Mask) { 5734 if (Idx < 0) { 5735 if (!Undef.isValid()) 5736 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5737 BuildVec.push_back(Undef); 5738 continue; 5739 } 5740 5741 if (Src0Ty.isScalar()) { 5742 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5743 } else { 5744 int NumElts = Src0Ty.getNumElements(); 5745 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5746 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5747 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5748 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5749 BuildVec.push_back(Extract.getReg(0)); 5750 } 5751 } 5752 5753 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5754 MI.eraseFromParent(); 5755 return Legalized; 5756 } 5757 5758 LegalizerHelper::LegalizeResult 5759 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5760 const auto &MF = *MI.getMF(); 5761 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5762 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5763 return UnableToLegalize; 5764 5765 Register Dst = MI.getOperand(0).getReg(); 5766 Register AllocSize = MI.getOperand(1).getReg(); 5767 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5768 5769 LLT PtrTy = MRI.getType(Dst); 5770 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5771 5772 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5773 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5774 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5775 5776 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5777 // have to generate an extra instruction to negate the alloc and then use 5778 // G_PTR_ADD to add the negative offset. 5779 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5780 if (Alignment > Align(1)) { 5781 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5782 AlignMask.negate(); 5783 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5784 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5785 } 5786 5787 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5788 MIRBuilder.buildCopy(SPReg, SPTmp); 5789 MIRBuilder.buildCopy(Dst, SPTmp); 5790 5791 MI.eraseFromParent(); 5792 return Legalized; 5793 } 5794 5795 LegalizerHelper::LegalizeResult 5796 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5797 Register Dst = MI.getOperand(0).getReg(); 5798 Register Src = MI.getOperand(1).getReg(); 5799 unsigned Offset = MI.getOperand(2).getImm(); 5800 5801 LLT DstTy = MRI.getType(Dst); 5802 LLT SrcTy = MRI.getType(Src); 5803 5804 if (DstTy.isScalar() && 5805 (SrcTy.isScalar() || 5806 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5807 LLT SrcIntTy = SrcTy; 5808 if (!SrcTy.isScalar()) { 5809 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5810 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5811 } 5812 5813 if (Offset == 0) 5814 MIRBuilder.buildTrunc(Dst, Src); 5815 else { 5816 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5817 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5818 MIRBuilder.buildTrunc(Dst, Shr); 5819 } 5820 5821 MI.eraseFromParent(); 5822 return Legalized; 5823 } 5824 5825 return UnableToLegalize; 5826 } 5827 5828 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5829 Register Dst = MI.getOperand(0).getReg(); 5830 Register Src = MI.getOperand(1).getReg(); 5831 Register InsertSrc = MI.getOperand(2).getReg(); 5832 uint64_t Offset = MI.getOperand(3).getImm(); 5833 5834 LLT DstTy = MRI.getType(Src); 5835 LLT InsertTy = MRI.getType(InsertSrc); 5836 5837 if (InsertTy.isVector() || 5838 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5839 return UnableToLegalize; 5840 5841 const DataLayout &DL = MIRBuilder.getDataLayout(); 5842 if ((DstTy.isPointer() && 5843 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5844 (InsertTy.isPointer() && 5845 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5846 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5847 return UnableToLegalize; 5848 } 5849 5850 LLT IntDstTy = DstTy; 5851 5852 if (!DstTy.isScalar()) { 5853 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5854 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5855 } 5856 5857 if (!InsertTy.isScalar()) { 5858 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5859 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5860 } 5861 5862 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5863 if (Offset != 0) { 5864 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5865 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5866 } 5867 5868 APInt MaskVal = APInt::getBitsSetWithWrap( 5869 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5870 5871 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5872 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5873 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5874 5875 MIRBuilder.buildCast(Dst, Or); 5876 MI.eraseFromParent(); 5877 return Legalized; 5878 } 5879 5880 LegalizerHelper::LegalizeResult 5881 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5882 Register Dst0 = MI.getOperand(0).getReg(); 5883 Register Dst1 = MI.getOperand(1).getReg(); 5884 Register LHS = MI.getOperand(2).getReg(); 5885 Register RHS = MI.getOperand(3).getReg(); 5886 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5887 5888 LLT Ty = MRI.getType(Dst0); 5889 LLT BoolTy = MRI.getType(Dst1); 5890 5891 if (IsAdd) 5892 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5893 else 5894 MIRBuilder.buildSub(Dst0, LHS, RHS); 5895 5896 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5897 5898 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5899 5900 // For an addition, the result should be less than one of the operands (LHS) 5901 // if and only if the other operand (RHS) is negative, otherwise there will 5902 // be overflow. 5903 // For a subtraction, the result should be less than one of the operands 5904 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5905 // otherwise there will be overflow. 5906 auto ResultLowerThanLHS = 5907 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5908 auto ConditionRHS = MIRBuilder.buildICmp( 5909 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5910 5911 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5912 MI.eraseFromParent(); 5913 return Legalized; 5914 } 5915 5916 LegalizerHelper::LegalizeResult 5917 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 5918 Register Res = MI.getOperand(0).getReg(); 5919 Register LHS = MI.getOperand(1).getReg(); 5920 Register RHS = MI.getOperand(2).getReg(); 5921 LLT Ty = MRI.getType(Res); 5922 bool IsSigned; 5923 bool IsAdd; 5924 unsigned BaseOp; 5925 switch (MI.getOpcode()) { 5926 default: 5927 llvm_unreachable("unexpected addsat/subsat opcode"); 5928 case TargetOpcode::G_UADDSAT: 5929 IsSigned = false; 5930 IsAdd = true; 5931 BaseOp = TargetOpcode::G_ADD; 5932 break; 5933 case TargetOpcode::G_SADDSAT: 5934 IsSigned = true; 5935 IsAdd = true; 5936 BaseOp = TargetOpcode::G_ADD; 5937 break; 5938 case TargetOpcode::G_USUBSAT: 5939 IsSigned = false; 5940 IsAdd = false; 5941 BaseOp = TargetOpcode::G_SUB; 5942 break; 5943 case TargetOpcode::G_SSUBSAT: 5944 IsSigned = true; 5945 IsAdd = false; 5946 BaseOp = TargetOpcode::G_SUB; 5947 break; 5948 } 5949 5950 if (IsSigned) { 5951 // sadd.sat(a, b) -> 5952 // hi = 0x7fffffff - smax(a, 0) 5953 // lo = 0x80000000 - smin(a, 0) 5954 // a + smin(smax(lo, b), hi) 5955 // ssub.sat(a, b) -> 5956 // lo = smax(a, -1) - 0x7fffffff 5957 // hi = smin(a, -1) - 0x80000000 5958 // a - smin(smax(lo, b), hi) 5959 // TODO: AMDGPU can use a "median of 3" instruction here: 5960 // a +/- med3(lo, b, hi) 5961 uint64_t NumBits = Ty.getScalarSizeInBits(); 5962 auto MaxVal = 5963 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 5964 auto MinVal = 5965 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 5966 MachineInstrBuilder Hi, Lo; 5967 if (IsAdd) { 5968 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5969 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 5970 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 5971 } else { 5972 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 5973 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 5974 MaxVal); 5975 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 5976 MinVal); 5977 } 5978 auto RHSClamped = 5979 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 5980 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 5981 } else { 5982 // uadd.sat(a, b) -> a + umin(~a, b) 5983 // usub.sat(a, b) -> a - umin(a, b) 5984 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 5985 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 5986 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 5987 } 5988 5989 MI.eraseFromParent(); 5990 return Legalized; 5991 } 5992 5993 LegalizerHelper::LegalizeResult 5994 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 5995 Register Res = MI.getOperand(0).getReg(); 5996 Register LHS = MI.getOperand(1).getReg(); 5997 Register RHS = MI.getOperand(2).getReg(); 5998 LLT Ty = MRI.getType(Res); 5999 LLT BoolTy = Ty.changeElementSize(1); 6000 bool IsSigned; 6001 bool IsAdd; 6002 unsigned OverflowOp; 6003 switch (MI.getOpcode()) { 6004 default: 6005 llvm_unreachable("unexpected addsat/subsat opcode"); 6006 case TargetOpcode::G_UADDSAT: 6007 IsSigned = false; 6008 IsAdd = true; 6009 OverflowOp = TargetOpcode::G_UADDO; 6010 break; 6011 case TargetOpcode::G_SADDSAT: 6012 IsSigned = true; 6013 IsAdd = true; 6014 OverflowOp = TargetOpcode::G_SADDO; 6015 break; 6016 case TargetOpcode::G_USUBSAT: 6017 IsSigned = false; 6018 IsAdd = false; 6019 OverflowOp = TargetOpcode::G_USUBO; 6020 break; 6021 case TargetOpcode::G_SSUBSAT: 6022 IsSigned = true; 6023 IsAdd = false; 6024 OverflowOp = TargetOpcode::G_SSUBO; 6025 break; 6026 } 6027 6028 auto OverflowRes = 6029 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6030 Register Tmp = OverflowRes.getReg(0); 6031 Register Ov = OverflowRes.getReg(1); 6032 MachineInstrBuilder Clamp; 6033 if (IsSigned) { 6034 // sadd.sat(a, b) -> 6035 // {tmp, ov} = saddo(a, b) 6036 // ov ? (tmp >>s 31) + 0x80000000 : r 6037 // ssub.sat(a, b) -> 6038 // {tmp, ov} = ssubo(a, b) 6039 // ov ? (tmp >>s 31) + 0x80000000 : r 6040 uint64_t NumBits = Ty.getScalarSizeInBits(); 6041 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6042 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6043 auto MinVal = 6044 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6045 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6046 } else { 6047 // uadd.sat(a, b) -> 6048 // {tmp, ov} = uaddo(a, b) 6049 // ov ? 0xffffffff : tmp 6050 // usub.sat(a, b) -> 6051 // {tmp, ov} = usubo(a, b) 6052 // ov ? 0 : tmp 6053 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6054 } 6055 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6056 6057 MI.eraseFromParent(); 6058 return Legalized; 6059 } 6060 6061 LegalizerHelper::LegalizeResult 6062 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6063 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6064 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6065 "Expected shlsat opcode!"); 6066 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6067 Register Res = MI.getOperand(0).getReg(); 6068 Register LHS = MI.getOperand(1).getReg(); 6069 Register RHS = MI.getOperand(2).getReg(); 6070 LLT Ty = MRI.getType(Res); 6071 LLT BoolTy = Ty.changeElementSize(1); 6072 6073 unsigned BW = Ty.getScalarSizeInBits(); 6074 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6075 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6076 : MIRBuilder.buildLShr(Ty, Result, RHS); 6077 6078 MachineInstrBuilder SatVal; 6079 if (IsSigned) { 6080 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6081 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6082 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6083 MIRBuilder.buildConstant(Ty, 0)); 6084 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6085 } else { 6086 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6087 } 6088 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6089 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6090 6091 MI.eraseFromParent(); 6092 return Legalized; 6093 } 6094 6095 LegalizerHelper::LegalizeResult 6096 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6097 Register Dst = MI.getOperand(0).getReg(); 6098 Register Src = MI.getOperand(1).getReg(); 6099 const LLT Ty = MRI.getType(Src); 6100 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6101 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6102 6103 // Swap most and least significant byte, set remaining bytes in Res to zero. 6104 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6105 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6106 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6107 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6108 6109 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6110 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6111 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6112 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6113 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6114 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6115 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6116 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6117 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6118 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6119 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6120 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6121 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6122 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6123 } 6124 Res.getInstr()->getOperand(0).setReg(Dst); 6125 6126 MI.eraseFromParent(); 6127 return Legalized; 6128 } 6129 6130 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6131 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6132 MachineInstrBuilder Src, APInt Mask) { 6133 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6134 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6135 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6136 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6137 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6138 return B.buildOr(Dst, LHS, RHS); 6139 } 6140 6141 LegalizerHelper::LegalizeResult 6142 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6143 Register Dst = MI.getOperand(0).getReg(); 6144 Register Src = MI.getOperand(1).getReg(); 6145 const LLT Ty = MRI.getType(Src); 6146 unsigned Size = Ty.getSizeInBits(); 6147 6148 MachineInstrBuilder BSWAP = 6149 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6150 6151 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6152 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6153 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6154 MachineInstrBuilder Swap4 = 6155 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6156 6157 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6158 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6159 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6160 MachineInstrBuilder Swap2 = 6161 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6162 6163 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6164 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6165 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6166 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6167 6168 MI.eraseFromParent(); 6169 return Legalized; 6170 } 6171 6172 LegalizerHelper::LegalizeResult 6173 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6174 MachineFunction &MF = MIRBuilder.getMF(); 6175 6176 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6177 int NameOpIdx = IsRead ? 1 : 0; 6178 int ValRegIndex = IsRead ? 0 : 1; 6179 6180 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6181 const LLT Ty = MRI.getType(ValReg); 6182 const MDString *RegStr = cast<MDString>( 6183 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6184 6185 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6186 if (!PhysReg.isValid()) 6187 return UnableToLegalize; 6188 6189 if (IsRead) 6190 MIRBuilder.buildCopy(ValReg, PhysReg); 6191 else 6192 MIRBuilder.buildCopy(PhysReg, ValReg); 6193 6194 MI.eraseFromParent(); 6195 return Legalized; 6196 } 6197 6198 LegalizerHelper::LegalizeResult 6199 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6200 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6201 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6202 Register Result = MI.getOperand(0).getReg(); 6203 LLT OrigTy = MRI.getType(Result); 6204 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6205 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6206 6207 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6208 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6209 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6210 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6211 6212 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6213 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6214 MIRBuilder.buildTrunc(Result, Shifted); 6215 6216 MI.eraseFromParent(); 6217 return Legalized; 6218 } 6219 6220 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6221 // Implement vector G_SELECT in terms of XOR, AND, OR. 6222 Register DstReg = MI.getOperand(0).getReg(); 6223 Register MaskReg = MI.getOperand(1).getReg(); 6224 Register Op1Reg = MI.getOperand(2).getReg(); 6225 Register Op2Reg = MI.getOperand(3).getReg(); 6226 LLT DstTy = MRI.getType(DstReg); 6227 LLT MaskTy = MRI.getType(MaskReg); 6228 LLT Op1Ty = MRI.getType(Op1Reg); 6229 if (!DstTy.isVector()) 6230 return UnableToLegalize; 6231 6232 // Vector selects can have a scalar predicate. If so, splat into a vector and 6233 // finish for later legalization attempts to try again. 6234 if (MaskTy.isScalar()) { 6235 Register MaskElt = MaskReg; 6236 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6237 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6238 // Generate a vector splat idiom to be pattern matched later. 6239 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6240 Observer.changingInstr(MI); 6241 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6242 Observer.changedInstr(MI); 6243 return Legalized; 6244 } 6245 6246 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6247 return UnableToLegalize; 6248 } 6249 6250 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6251 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6252 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6253 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6254 MI.eraseFromParent(); 6255 return Legalized; 6256 } 6257