xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862 
863   case TargetOpcode::G_ADD: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868     // Expand in terms of carry-setting/consuming G_ADDE instructions.
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register CarryIn;
876     for (int i = 0; i < NumParts; ++i) {
877       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879 
880       if (i == 0)
881         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
882       else {
883         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
884                               Src2Regs[i], CarryIn);
885       }
886 
887       DstRegs.push_back(DstReg);
888       CarryIn = CarryOut;
889     }
890     Register DstReg = MI.getOperand(0).getReg();
891     if(MRI.getType(DstReg).isVector())
892       MIRBuilder.buildBuildVector(DstReg, DstRegs);
893     else
894       MIRBuilder.buildMerge(DstReg, DstRegs);
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SUB: {
899     // FIXME: add support for when SizeOp0 isn't an exact multiple of
900     // NarrowSize.
901     if (SizeOp0 % NarrowSize != 0)
902       return UnableToLegalize;
903 
904     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
905 
906     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
907     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
908     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
909 
910     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
911     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
912     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
913                           {Src1Regs[0], Src2Regs[0]});
914     DstRegs.push_back(DstReg);
915     Register BorrowIn = BorrowOut;
916     for (int i = 1; i < NumParts; ++i) {
917       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
918       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
919 
920       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
921                             {Src1Regs[i], Src2Regs[i], BorrowIn});
922 
923       DstRegs.push_back(DstReg);
924       BorrowIn = BorrowOut;
925     }
926     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
927     MI.eraseFromParent();
928     return Legalized;
929   }
930   case TargetOpcode::G_MUL:
931   case TargetOpcode::G_UMULH:
932     return narrowScalarMul(MI, NarrowTy);
933   case TargetOpcode::G_EXTRACT:
934     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
935   case TargetOpcode::G_INSERT:
936     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
937   case TargetOpcode::G_LOAD: {
938     auto &MMO = **MI.memoperands_begin();
939     Register DstReg = MI.getOperand(0).getReg();
940     LLT DstTy = MRI.getType(DstReg);
941     if (DstTy.isVector())
942       return UnableToLegalize;
943 
944     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
945       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
946       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
947       MIRBuilder.buildAnyExt(DstReg, TmpReg);
948       MI.eraseFromParent();
949       return Legalized;
950     }
951 
952     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
953   }
954   case TargetOpcode::G_ZEXTLOAD:
955   case TargetOpcode::G_SEXTLOAD: {
956     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
957     Register DstReg = MI.getOperand(0).getReg();
958     Register PtrReg = MI.getOperand(1).getReg();
959 
960     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
961     auto &MMO = **MI.memoperands_begin();
962     unsigned MemSize = MMO.getSizeInBits();
963 
964     if (MemSize == NarrowSize) {
965       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
966     } else if (MemSize < NarrowSize) {
967       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
968     } else if (MemSize > NarrowSize) {
969       // FIXME: Need to split the load.
970       return UnableToLegalize;
971     }
972 
973     if (ZExt)
974       MIRBuilder.buildZExt(DstReg, TmpReg);
975     else
976       MIRBuilder.buildSExt(DstReg, TmpReg);
977 
978     MI.eraseFromParent();
979     return Legalized;
980   }
981   case TargetOpcode::G_STORE: {
982     const auto &MMO = **MI.memoperands_begin();
983 
984     Register SrcReg = MI.getOperand(0).getReg();
985     LLT SrcTy = MRI.getType(SrcReg);
986     if (SrcTy.isVector())
987       return UnableToLegalize;
988 
989     int NumParts = SizeOp0 / NarrowSize;
990     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
991     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
992     if (SrcTy.isVector() && LeftoverBits != 0)
993       return UnableToLegalize;
994 
995     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
996       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
997       auto &MMO = **MI.memoperands_begin();
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
1000       MI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     unsigned NumParts = SizeOp0 / NarrowSize;
1067     SmallVector<Register, 2> DstRegs(NumParts);
1068     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1069     Observer.changingInstr(MI);
1070     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1071       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1072       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1073       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1074                    SrcRegs[i / 2]);
1075     }
1076     MachineBasicBlock &MBB = *MI.getParent();
1077     MIRBuilder.setInsertPt(MBB, MI);
1078     for (unsigned i = 0; i < NumParts; ++i) {
1079       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1080       MachineInstrBuilder MIB =
1081           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1082       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1083         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1084     }
1085     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1086     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1087     Observer.changedInstr(MI);
1088     MI.eraseFromParent();
1089     return Legalized;
1090   }
1091   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1092   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1093     if (TypeIdx != 2)
1094       return UnableToLegalize;
1095 
1096     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1097     Observer.changingInstr(MI);
1098     narrowScalarSrc(MI, NarrowTy, OpIdx);
1099     Observer.changedInstr(MI);
1100     return Legalized;
1101   }
1102   case TargetOpcode::G_ICMP: {
1103     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1104     if (NarrowSize * 2 != SrcSize)
1105       return UnableToLegalize;
1106 
1107     Observer.changingInstr(MI);
1108     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1109     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1110     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1111 
1112     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1113     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1114     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1115 
1116     CmpInst::Predicate Pred =
1117         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1118     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1119 
1120     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1121       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1122       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1123       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1124       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1125       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1126     } else {
1127       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1128       MachineInstrBuilder CmpHEQ =
1129           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1130       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1131           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1132       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1133     }
1134     Observer.changedInstr(MI);
1135     MI.eraseFromParent();
1136     return Legalized;
1137   }
1138   case TargetOpcode::G_SEXT_INREG: {
1139     if (TypeIdx != 0)
1140       return UnableToLegalize;
1141 
1142     int64_t SizeInBits = MI.getOperand(2).getImm();
1143 
1144     // So long as the new type has more bits than the bits we're extending we
1145     // don't need to break it apart.
1146     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1147       Observer.changingInstr(MI);
1148       // We don't lose any non-extension bits by truncating the src and
1149       // sign-extending the dst.
1150       MachineOperand &MO1 = MI.getOperand(1);
1151       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1152       MO1.setReg(TruncMIB.getReg(0));
1153 
1154       MachineOperand &MO2 = MI.getOperand(0);
1155       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1156       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1157       MIRBuilder.buildSExt(MO2, DstExt);
1158       MO2.setReg(DstExt);
1159       Observer.changedInstr(MI);
1160       return Legalized;
1161     }
1162 
1163     // Break it apart. Components below the extension point are unmodified. The
1164     // component containing the extension point becomes a narrower SEXT_INREG.
1165     // Components above it are ashr'd from the component containing the
1166     // extension point.
1167     if (SizeOp0 % NarrowSize != 0)
1168       return UnableToLegalize;
1169     int NumParts = SizeOp0 / NarrowSize;
1170 
1171     // List the registers where the destination will be scattered.
1172     SmallVector<Register, 2> DstRegs;
1173     // List the registers where the source will be split.
1174     SmallVector<Register, 2> SrcRegs;
1175 
1176     // Create all the temporary registers.
1177     for (int i = 0; i < NumParts; ++i) {
1178       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1179 
1180       SrcRegs.push_back(SrcReg);
1181     }
1182 
1183     // Explode the big arguments into smaller chunks.
1184     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1185 
1186     Register AshrCstReg =
1187         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1188             .getReg(0);
1189     Register FullExtensionReg = 0;
1190     Register PartialExtensionReg = 0;
1191 
1192     // Do the operation on each small part.
1193     for (int i = 0; i < NumParts; ++i) {
1194       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1195         DstRegs.push_back(SrcRegs[i]);
1196       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1197         assert(PartialExtensionReg &&
1198                "Expected to visit partial extension before full");
1199         if (FullExtensionReg) {
1200           DstRegs.push_back(FullExtensionReg);
1201           continue;
1202         }
1203         DstRegs.push_back(
1204             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1205                 .getReg(0));
1206         FullExtensionReg = DstRegs.back();
1207       } else {
1208         DstRegs.push_back(
1209             MIRBuilder
1210                 .buildInstr(
1211                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1212                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1213                 .getReg(0));
1214         PartialExtensionReg = DstRegs.back();
1215       }
1216     }
1217 
1218     // Gather the destination registers into the final destination.
1219     Register DstReg = MI.getOperand(0).getReg();
1220     MIRBuilder.buildMerge(DstReg, DstRegs);
1221     MI.eraseFromParent();
1222     return Legalized;
1223   }
1224   case TargetOpcode::G_BSWAP:
1225   case TargetOpcode::G_BITREVERSE: {
1226     if (SizeOp0 % NarrowSize != 0)
1227       return UnableToLegalize;
1228 
1229     Observer.changingInstr(MI);
1230     SmallVector<Register, 2> SrcRegs, DstRegs;
1231     unsigned NumParts = SizeOp0 / NarrowSize;
1232     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1233 
1234     for (unsigned i = 0; i < NumParts; ++i) {
1235       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1236                                            {SrcRegs[NumParts - 1 - i]});
1237       DstRegs.push_back(DstPart.getReg(0));
1238     }
1239 
1240     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1241 
1242     Observer.changedInstr(MI);
1243     MI.eraseFromParent();
1244     return Legalized;
1245   }
1246   case TargetOpcode::G_PTR_ADD:
1247   case TargetOpcode::G_PTRMASK: {
1248     if (TypeIdx != 1)
1249       return UnableToLegalize;
1250     Observer.changingInstr(MI);
1251     narrowScalarSrc(MI, NarrowTy, 2);
1252     Observer.changedInstr(MI);
1253     return Legalized;
1254   }
1255   case TargetOpcode::G_FPTOUI: {
1256     if (TypeIdx != 0)
1257       return UnableToLegalize;
1258     Observer.changingInstr(MI);
1259     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1260     Observer.changedInstr(MI);
1261     return Legalized;
1262   }
1263   case TargetOpcode::G_FPTOSI: {
1264     if (TypeIdx != 0)
1265       return UnableToLegalize;
1266     Observer.changingInstr(MI);
1267     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1268     Observer.changedInstr(MI);
1269     return Legalized;
1270   }
1271   case TargetOpcode::G_FPEXT:
1272     if (TypeIdx != 0)
1273       return UnableToLegalize;
1274     Observer.changingInstr(MI);
1275     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1276     Observer.changedInstr(MI);
1277     return Legalized;
1278   }
1279 }
1280 
1281 Register LegalizerHelper::coerceToScalar(Register Val) {
1282   LLT Ty = MRI.getType(Val);
1283   if (Ty.isScalar())
1284     return Val;
1285 
1286   const DataLayout &DL = MIRBuilder.getDataLayout();
1287   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1288   if (Ty.isPointer()) {
1289     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1290       return Register();
1291     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1292   }
1293 
1294   Register NewVal = Val;
1295 
1296   assert(Ty.isVector());
1297   LLT EltTy = Ty.getElementType();
1298   if (EltTy.isPointer())
1299     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1300   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1301 }
1302 
1303 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1304                                      unsigned OpIdx, unsigned ExtOpcode) {
1305   MachineOperand &MO = MI.getOperand(OpIdx);
1306   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1307   MO.setReg(ExtB.getReg(0));
1308 }
1309 
1310 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1311                                       unsigned OpIdx) {
1312   MachineOperand &MO = MI.getOperand(OpIdx);
1313   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1314   MO.setReg(ExtB.getReg(0));
1315 }
1316 
1317 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1318                                      unsigned OpIdx, unsigned TruncOpcode) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1323   MO.setReg(DstExt);
1324 }
1325 
1326 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1327                                       unsigned OpIdx, unsigned ExtOpcode) {
1328   MachineOperand &MO = MI.getOperand(OpIdx);
1329   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1332   MO.setReg(DstTrunc);
1333 }
1334 
1335 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1336                                             unsigned OpIdx) {
1337   MachineOperand &MO = MI.getOperand(OpIdx);
1338   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1339   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1340 }
1341 
1342 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1343                                             unsigned OpIdx) {
1344   MachineOperand &MO = MI.getOperand(OpIdx);
1345 
1346   LLT OldTy = MRI.getType(MO.getReg());
1347   unsigned OldElts = OldTy.getNumElements();
1348   unsigned NewElts = MoreTy.getNumElements();
1349 
1350   unsigned NumParts = NewElts / OldElts;
1351 
1352   // Use concat_vectors if the result is a multiple of the number of elements.
1353   if (NumParts * OldElts == NewElts) {
1354     SmallVector<Register, 8> Parts;
1355     Parts.push_back(MO.getReg());
1356 
1357     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1358     for (unsigned I = 1; I != NumParts; ++I)
1359       Parts.push_back(ImpDef);
1360 
1361     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1362     MO.setReg(Concat.getReg(0));
1363     return;
1364   }
1365 
1366   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1367   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1368   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1369   MO.setReg(MoreReg);
1370 }
1371 
1372 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1373   MachineOperand &Op = MI.getOperand(OpIdx);
1374   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1375 }
1376 
1377 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1378   MachineOperand &MO = MI.getOperand(OpIdx);
1379   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1380   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1381   MIRBuilder.buildBitcast(MO, CastDst);
1382   MO.setReg(CastDst);
1383 }
1384 
1385 LegalizerHelper::LegalizeResult
1386 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1387                                         LLT WideTy) {
1388   if (TypeIdx != 1)
1389     return UnableToLegalize;
1390 
1391   Register DstReg = MI.getOperand(0).getReg();
1392   LLT DstTy = MRI.getType(DstReg);
1393   if (DstTy.isVector())
1394     return UnableToLegalize;
1395 
1396   Register Src1 = MI.getOperand(1).getReg();
1397   LLT SrcTy = MRI.getType(Src1);
1398   const int DstSize = DstTy.getSizeInBits();
1399   const int SrcSize = SrcTy.getSizeInBits();
1400   const int WideSize = WideTy.getSizeInBits();
1401   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1402 
1403   unsigned NumOps = MI.getNumOperands();
1404   unsigned NumSrc = MI.getNumOperands() - 1;
1405   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1406 
1407   if (WideSize >= DstSize) {
1408     // Directly pack the bits in the target type.
1409     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1410 
1411     for (unsigned I = 2; I != NumOps; ++I) {
1412       const unsigned Offset = (I - 1) * PartSize;
1413 
1414       Register SrcReg = MI.getOperand(I).getReg();
1415       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1416 
1417       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1418 
1419       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1420         MRI.createGenericVirtualRegister(WideTy);
1421 
1422       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1423       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1424       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1425       ResultReg = NextResult;
1426     }
1427 
1428     if (WideSize > DstSize)
1429       MIRBuilder.buildTrunc(DstReg, ResultReg);
1430     else if (DstTy.isPointer())
1431       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1432 
1433     MI.eraseFromParent();
1434     return Legalized;
1435   }
1436 
1437   // Unmerge the original values to the GCD type, and recombine to the next
1438   // multiple greater than the original type.
1439   //
1440   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1441   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1442   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1443   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1444   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1445   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1446   // %12:_(s12) = G_MERGE_VALUES %10, %11
1447   //
1448   // Padding with undef if necessary:
1449   //
1450   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1451   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1452   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1453   // %7:_(s2) = G_IMPLICIT_DEF
1454   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1455   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1456   // %10:_(s12) = G_MERGE_VALUES %8, %9
1457 
1458   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1459   LLT GCDTy = LLT::scalar(GCD);
1460 
1461   SmallVector<Register, 8> Parts;
1462   SmallVector<Register, 8> NewMergeRegs;
1463   SmallVector<Register, 8> Unmerges;
1464   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1465 
1466   // Decompose the original operands if they don't evenly divide.
1467   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1468     Register SrcReg = MI.getOperand(I).getReg();
1469     if (GCD == SrcSize) {
1470       Unmerges.push_back(SrcReg);
1471     } else {
1472       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1473       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1474         Unmerges.push_back(Unmerge.getReg(J));
1475     }
1476   }
1477 
1478   // Pad with undef to the next size that is a multiple of the requested size.
1479   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1480     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1481     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1482       Unmerges.push_back(UndefReg);
1483   }
1484 
1485   const int PartsPerGCD = WideSize / GCD;
1486 
1487   // Build merges of each piece.
1488   ArrayRef<Register> Slicer(Unmerges);
1489   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1490     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1491     NewMergeRegs.push_back(Merge.getReg(0));
1492   }
1493 
1494   // A truncate may be necessary if the requested type doesn't evenly divide the
1495   // original result type.
1496   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1497     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1498   } else {
1499     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1500     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1501   }
1502 
1503   MI.eraseFromParent();
1504   return Legalized;
1505 }
1506 
1507 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1508   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1509   LLT OrigTy = MRI.getType(OrigReg);
1510   LLT LCMTy = getLCMType(WideTy, OrigTy);
1511 
1512   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1513   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1514 
1515   Register UnmergeSrc = WideReg;
1516 
1517   // Create a merge to the LCM type, padding with undef
1518   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1519   // =>
1520   // %1:_(<4 x s32>) = G_FOO
1521   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1522   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1523   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1524   if (NumMergeParts > 1) {
1525     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1526     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1527     MergeParts[0] = WideReg;
1528     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1529   }
1530 
1531   // Unmerge to the original register and pad with dead defs.
1532   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1533   UnmergeResults[0] = OrigReg;
1534   for (int I = 1; I != NumUnmergeParts; ++I)
1535     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1536 
1537   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1538   return WideReg;
1539 }
1540 
1541 LegalizerHelper::LegalizeResult
1542 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1543                                           LLT WideTy) {
1544   if (TypeIdx != 0)
1545     return UnableToLegalize;
1546 
1547   int NumDst = MI.getNumOperands() - 1;
1548   Register SrcReg = MI.getOperand(NumDst).getReg();
1549   LLT SrcTy = MRI.getType(SrcReg);
1550   if (SrcTy.isVector())
1551     return UnableToLegalize;
1552 
1553   Register Dst0Reg = MI.getOperand(0).getReg();
1554   LLT DstTy = MRI.getType(Dst0Reg);
1555   if (!DstTy.isScalar())
1556     return UnableToLegalize;
1557 
1558   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1559     if (SrcTy.isPointer()) {
1560       const DataLayout &DL = MIRBuilder.getDataLayout();
1561       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1562         LLVM_DEBUG(
1563             dbgs() << "Not casting non-integral address space integer\n");
1564         return UnableToLegalize;
1565       }
1566 
1567       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1568       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1569     }
1570 
1571     // Widen SrcTy to WideTy. This does not affect the result, but since the
1572     // user requested this size, it is probably better handled than SrcTy and
1573     // should reduce the total number of legalization artifacts
1574     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1575       SrcTy = WideTy;
1576       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1577     }
1578 
1579     // Theres no unmerge type to target. Directly extract the bits from the
1580     // source type
1581     unsigned DstSize = DstTy.getSizeInBits();
1582 
1583     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1584     for (int I = 1; I != NumDst; ++I) {
1585       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1586       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1587       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1588     }
1589 
1590     MI.eraseFromParent();
1591     return Legalized;
1592   }
1593 
1594   // Extend the source to a wider type.
1595   LLT LCMTy = getLCMType(SrcTy, WideTy);
1596 
1597   Register WideSrc = SrcReg;
1598   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1599     // TODO: If this is an integral address space, cast to integer and anyext.
1600     if (SrcTy.isPointer()) {
1601       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1602       return UnableToLegalize;
1603     }
1604 
1605     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1606   }
1607 
1608   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1609 
1610   // Create a sequence of unmerges and merges to the original results. Since we
1611   // may have widened the source, we will need to pad the results with dead defs
1612   // to cover the source register.
1613   // e.g. widen s48 to s64:
1614   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1615   //
1616   // =>
1617   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1618   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1619   //  ; unpack to GCD type, with extra dead defs
1620   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1621   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1622   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1623   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1624   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1625   const LLT GCDTy = getGCDType(WideTy, DstTy);
1626   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1627   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1628 
1629   // Directly unmerge to the destination without going through a GCD type
1630   // if possible
1631   if (PartsPerRemerge == 1) {
1632     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1633 
1634     for (int I = 0; I != NumUnmerge; ++I) {
1635       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1636 
1637       for (int J = 0; J != PartsPerUnmerge; ++J) {
1638         int Idx = I * PartsPerUnmerge + J;
1639         if (Idx < NumDst)
1640           MIB.addDef(MI.getOperand(Idx).getReg());
1641         else {
1642           // Create dead def for excess components.
1643           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1644         }
1645       }
1646 
1647       MIB.addUse(Unmerge.getReg(I));
1648     }
1649   } else {
1650     SmallVector<Register, 16> Parts;
1651     for (int J = 0; J != NumUnmerge; ++J)
1652       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1653 
1654     SmallVector<Register, 8> RemergeParts;
1655     for (int I = 0; I != NumDst; ++I) {
1656       for (int J = 0; J < PartsPerRemerge; ++J) {
1657         const int Idx = I * PartsPerRemerge + J;
1658         RemergeParts.emplace_back(Parts[Idx]);
1659       }
1660 
1661       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1662       RemergeParts.clear();
1663     }
1664   }
1665 
1666   MI.eraseFromParent();
1667   return Legalized;
1668 }
1669 
1670 LegalizerHelper::LegalizeResult
1671 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1672                                     LLT WideTy) {
1673   Register DstReg = MI.getOperand(0).getReg();
1674   Register SrcReg = MI.getOperand(1).getReg();
1675   LLT SrcTy = MRI.getType(SrcReg);
1676 
1677   LLT DstTy = MRI.getType(DstReg);
1678   unsigned Offset = MI.getOperand(2).getImm();
1679 
1680   if (TypeIdx == 0) {
1681     if (SrcTy.isVector() || DstTy.isVector())
1682       return UnableToLegalize;
1683 
1684     SrcOp Src(SrcReg);
1685     if (SrcTy.isPointer()) {
1686       // Extracts from pointers can be handled only if they are really just
1687       // simple integers.
1688       const DataLayout &DL = MIRBuilder.getDataLayout();
1689       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1690         return UnableToLegalize;
1691 
1692       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1693       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1694       SrcTy = SrcAsIntTy;
1695     }
1696 
1697     if (DstTy.isPointer())
1698       return UnableToLegalize;
1699 
1700     if (Offset == 0) {
1701       // Avoid a shift in the degenerate case.
1702       MIRBuilder.buildTrunc(DstReg,
1703                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1704       MI.eraseFromParent();
1705       return Legalized;
1706     }
1707 
1708     // Do a shift in the source type.
1709     LLT ShiftTy = SrcTy;
1710     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1711       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1712       ShiftTy = WideTy;
1713     }
1714 
1715     auto LShr = MIRBuilder.buildLShr(
1716       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1717     MIRBuilder.buildTrunc(DstReg, LShr);
1718     MI.eraseFromParent();
1719     return Legalized;
1720   }
1721 
1722   if (SrcTy.isScalar()) {
1723     Observer.changingInstr(MI);
1724     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1725     Observer.changedInstr(MI);
1726     return Legalized;
1727   }
1728 
1729   if (!SrcTy.isVector())
1730     return UnableToLegalize;
1731 
1732   if (DstTy != SrcTy.getElementType())
1733     return UnableToLegalize;
1734 
1735   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1736     return UnableToLegalize;
1737 
1738   Observer.changingInstr(MI);
1739   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1740 
1741   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1742                           Offset);
1743   widenScalarDst(MI, WideTy.getScalarType(), 0);
1744   Observer.changedInstr(MI);
1745   return Legalized;
1746 }
1747 
1748 LegalizerHelper::LegalizeResult
1749 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1750                                    LLT WideTy) {
1751   if (TypeIdx != 0 || WideTy.isVector())
1752     return UnableToLegalize;
1753   Observer.changingInstr(MI);
1754   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1755   widenScalarDst(MI, WideTy);
1756   Observer.changedInstr(MI);
1757   return Legalized;
1758 }
1759 
1760 LegalizerHelper::LegalizeResult
1761 LegalizerHelper::widenScalarAddoSubo(MachineInstr &MI, unsigned TypeIdx,
1762                                      LLT WideTy) {
1763   if (TypeIdx == 1)
1764     return UnableToLegalize; // TODO
1765   unsigned Op = MI.getOpcode();
1766   unsigned Opcode = Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_SADDO
1767                         ? TargetOpcode::G_ADD
1768                         : TargetOpcode::G_SUB;
1769   unsigned ExtOpcode =
1770       Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_USUBO
1771           ? TargetOpcode::G_ZEXT
1772           : TargetOpcode::G_SEXT;
1773   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1774   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1775   // Do the arithmetic in the larger type.
1776   auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt});
1777   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1778   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1779   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1780   // There is no overflow if the ExtOp is the same as NewOp.
1781   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1782   // Now trunc the NewOp to the original result.
1783   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1784   MI.eraseFromParent();
1785   return Legalized;
1786 }
1787 
1788 LegalizerHelper::LegalizeResult
1789 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1790                                          LLT WideTy) {
1791   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1792                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1793                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1794   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1795                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1796   // We can convert this to:
1797   //   1. Any extend iN to iM
1798   //   2. SHL by M-N
1799   //   3. [US][ADD|SUB|SHL]SAT
1800   //   4. L/ASHR by M-N
1801   //
1802   // It may be more efficient to lower this to a min and a max operation in
1803   // the higher precision arithmetic if the promoted operation isn't legal,
1804   // but this decision is up to the target's lowering request.
1805   Register DstReg = MI.getOperand(0).getReg();
1806 
1807   unsigned NewBits = WideTy.getScalarSizeInBits();
1808   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1809 
1810   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1811   // must not left shift the RHS to preserve the shift amount.
1812   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1813   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1814                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1815   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1816   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1817   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1818 
1819   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1820                                         {ShiftL, ShiftR}, MI.getFlags());
1821 
1822   // Use a shift that will preserve the number of sign bits when the trunc is
1823   // folded away.
1824   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1825                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1826 
1827   MIRBuilder.buildTrunc(DstReg, Result);
1828   MI.eraseFromParent();
1829   return Legalized;
1830 }
1831 
1832 LegalizerHelper::LegalizeResult
1833 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1834   switch (MI.getOpcode()) {
1835   default:
1836     return UnableToLegalize;
1837   case TargetOpcode::G_EXTRACT:
1838     return widenScalarExtract(MI, TypeIdx, WideTy);
1839   case TargetOpcode::G_INSERT:
1840     return widenScalarInsert(MI, TypeIdx, WideTy);
1841   case TargetOpcode::G_MERGE_VALUES:
1842     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1843   case TargetOpcode::G_UNMERGE_VALUES:
1844     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1845   case TargetOpcode::G_SADDO:
1846   case TargetOpcode::G_SSUBO:
1847   case TargetOpcode::G_UADDO:
1848   case TargetOpcode::G_USUBO:
1849     return widenScalarAddoSubo(MI, TypeIdx, WideTy);
1850   case TargetOpcode::G_SADDSAT:
1851   case TargetOpcode::G_SSUBSAT:
1852   case TargetOpcode::G_SSHLSAT:
1853   case TargetOpcode::G_UADDSAT:
1854   case TargetOpcode::G_USUBSAT:
1855   case TargetOpcode::G_USHLSAT:
1856     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1857   case TargetOpcode::G_CTTZ:
1858   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1859   case TargetOpcode::G_CTLZ:
1860   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1861   case TargetOpcode::G_CTPOP: {
1862     if (TypeIdx == 0) {
1863       Observer.changingInstr(MI);
1864       widenScalarDst(MI, WideTy, 0);
1865       Observer.changedInstr(MI);
1866       return Legalized;
1867     }
1868 
1869     Register SrcReg = MI.getOperand(1).getReg();
1870 
1871     // First ZEXT the input.
1872     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1873     LLT CurTy = MRI.getType(SrcReg);
1874     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1875       // The count is the same in the larger type except if the original
1876       // value was zero.  This can be handled by setting the bit just off
1877       // the top of the original type.
1878       auto TopBit =
1879           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1880       MIBSrc = MIRBuilder.buildOr(
1881         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1882     }
1883 
1884     // Perform the operation at the larger size.
1885     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1886     // This is already the correct result for CTPOP and CTTZs
1887     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1888         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1889       // The correct result is NewOp - (Difference in widety and current ty).
1890       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1891       MIBNewOp = MIRBuilder.buildSub(
1892           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1893     }
1894 
1895     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1896     MI.eraseFromParent();
1897     return Legalized;
1898   }
1899   case TargetOpcode::G_BSWAP: {
1900     Observer.changingInstr(MI);
1901     Register DstReg = MI.getOperand(0).getReg();
1902 
1903     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1904     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1905     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1906     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1907 
1908     MI.getOperand(0).setReg(DstExt);
1909 
1910     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1911 
1912     LLT Ty = MRI.getType(DstReg);
1913     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1914     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1915     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1916 
1917     MIRBuilder.buildTrunc(DstReg, ShrReg);
1918     Observer.changedInstr(MI);
1919     return Legalized;
1920   }
1921   case TargetOpcode::G_BITREVERSE: {
1922     Observer.changingInstr(MI);
1923 
1924     Register DstReg = MI.getOperand(0).getReg();
1925     LLT Ty = MRI.getType(DstReg);
1926     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1927 
1928     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1929     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1930     MI.getOperand(0).setReg(DstExt);
1931     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1932 
1933     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1934     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1935     MIRBuilder.buildTrunc(DstReg, Shift);
1936     Observer.changedInstr(MI);
1937     return Legalized;
1938   }
1939   case TargetOpcode::G_FREEZE:
1940     Observer.changingInstr(MI);
1941     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1942     widenScalarDst(MI, WideTy);
1943     Observer.changedInstr(MI);
1944     return Legalized;
1945 
1946   case TargetOpcode::G_ADD:
1947   case TargetOpcode::G_AND:
1948   case TargetOpcode::G_MUL:
1949   case TargetOpcode::G_OR:
1950   case TargetOpcode::G_XOR:
1951   case TargetOpcode::G_SUB:
1952     // Perform operation at larger width (any extension is fines here, high bits
1953     // don't affect the result) and then truncate the result back to the
1954     // original type.
1955     Observer.changingInstr(MI);
1956     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1957     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1958     widenScalarDst(MI, WideTy);
1959     Observer.changedInstr(MI);
1960     return Legalized;
1961 
1962   case TargetOpcode::G_SHL:
1963     Observer.changingInstr(MI);
1964 
1965     if (TypeIdx == 0) {
1966       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1967       widenScalarDst(MI, WideTy);
1968     } else {
1969       assert(TypeIdx == 1);
1970       // The "number of bits to shift" operand must preserve its value as an
1971       // unsigned integer:
1972       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1973     }
1974 
1975     Observer.changedInstr(MI);
1976     return Legalized;
1977 
1978   case TargetOpcode::G_SDIV:
1979   case TargetOpcode::G_SREM:
1980   case TargetOpcode::G_SMIN:
1981   case TargetOpcode::G_SMAX:
1982     Observer.changingInstr(MI);
1983     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1984     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1985     widenScalarDst(MI, WideTy);
1986     Observer.changedInstr(MI);
1987     return Legalized;
1988 
1989   case TargetOpcode::G_ASHR:
1990   case TargetOpcode::G_LSHR:
1991     Observer.changingInstr(MI);
1992 
1993     if (TypeIdx == 0) {
1994       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1995         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1996 
1997       widenScalarSrc(MI, WideTy, 1, CvtOp);
1998       widenScalarDst(MI, WideTy);
1999     } else {
2000       assert(TypeIdx == 1);
2001       // The "number of bits to shift" operand must preserve its value as an
2002       // unsigned integer:
2003       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2004     }
2005 
2006     Observer.changedInstr(MI);
2007     return Legalized;
2008   case TargetOpcode::G_UDIV:
2009   case TargetOpcode::G_UREM:
2010   case TargetOpcode::G_UMIN:
2011   case TargetOpcode::G_UMAX:
2012     Observer.changingInstr(MI);
2013     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2014     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2015     widenScalarDst(MI, WideTy);
2016     Observer.changedInstr(MI);
2017     return Legalized;
2018 
2019   case TargetOpcode::G_SELECT:
2020     Observer.changingInstr(MI);
2021     if (TypeIdx == 0) {
2022       // Perform operation at larger width (any extension is fine here, high
2023       // bits don't affect the result) and then truncate the result back to the
2024       // original type.
2025       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2026       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2027       widenScalarDst(MI, WideTy);
2028     } else {
2029       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2030       // Explicit extension is required here since high bits affect the result.
2031       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2032     }
2033     Observer.changedInstr(MI);
2034     return Legalized;
2035 
2036   case TargetOpcode::G_FPTOSI:
2037   case TargetOpcode::G_FPTOUI:
2038     Observer.changingInstr(MI);
2039 
2040     if (TypeIdx == 0)
2041       widenScalarDst(MI, WideTy);
2042     else
2043       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2044 
2045     Observer.changedInstr(MI);
2046     return Legalized;
2047   case TargetOpcode::G_SITOFP:
2048     Observer.changingInstr(MI);
2049 
2050     if (TypeIdx == 0)
2051       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2052     else
2053       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2054 
2055     Observer.changedInstr(MI);
2056     return Legalized;
2057   case TargetOpcode::G_UITOFP:
2058     Observer.changingInstr(MI);
2059 
2060     if (TypeIdx == 0)
2061       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2062     else
2063       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2064 
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067   case TargetOpcode::G_LOAD:
2068   case TargetOpcode::G_SEXTLOAD:
2069   case TargetOpcode::G_ZEXTLOAD:
2070     Observer.changingInstr(MI);
2071     widenScalarDst(MI, WideTy);
2072     Observer.changedInstr(MI);
2073     return Legalized;
2074 
2075   case TargetOpcode::G_STORE: {
2076     if (TypeIdx != 0)
2077       return UnableToLegalize;
2078 
2079     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2080     if (!Ty.isScalar())
2081       return UnableToLegalize;
2082 
2083     Observer.changingInstr(MI);
2084 
2085     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2086       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2087     widenScalarSrc(MI, WideTy, 0, ExtType);
2088 
2089     Observer.changedInstr(MI);
2090     return Legalized;
2091   }
2092   case TargetOpcode::G_CONSTANT: {
2093     MachineOperand &SrcMO = MI.getOperand(1);
2094     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2095     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2096         MRI.getType(MI.getOperand(0).getReg()));
2097     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2098             ExtOpc == TargetOpcode::G_ANYEXT) &&
2099            "Illegal Extend");
2100     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2101     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2102                            ? SrcVal.sext(WideTy.getSizeInBits())
2103                            : SrcVal.zext(WideTy.getSizeInBits());
2104     Observer.changingInstr(MI);
2105     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2106 
2107     widenScalarDst(MI, WideTy);
2108     Observer.changedInstr(MI);
2109     return Legalized;
2110   }
2111   case TargetOpcode::G_FCONSTANT: {
2112     MachineOperand &SrcMO = MI.getOperand(1);
2113     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2114     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2115     bool LosesInfo;
2116     switch (WideTy.getSizeInBits()) {
2117     case 32:
2118       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2119                   &LosesInfo);
2120       break;
2121     case 64:
2122       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2123                   &LosesInfo);
2124       break;
2125     default:
2126       return UnableToLegalize;
2127     }
2128 
2129     assert(!LosesInfo && "extend should always be lossless");
2130 
2131     Observer.changingInstr(MI);
2132     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2133 
2134     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2135     Observer.changedInstr(MI);
2136     return Legalized;
2137   }
2138   case TargetOpcode::G_IMPLICIT_DEF: {
2139     Observer.changingInstr(MI);
2140     widenScalarDst(MI, WideTy);
2141     Observer.changedInstr(MI);
2142     return Legalized;
2143   }
2144   case TargetOpcode::G_BRCOND:
2145     Observer.changingInstr(MI);
2146     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2147     Observer.changedInstr(MI);
2148     return Legalized;
2149 
2150   case TargetOpcode::G_FCMP:
2151     Observer.changingInstr(MI);
2152     if (TypeIdx == 0)
2153       widenScalarDst(MI, WideTy);
2154     else {
2155       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2156       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2157     }
2158     Observer.changedInstr(MI);
2159     return Legalized;
2160 
2161   case TargetOpcode::G_ICMP:
2162     Observer.changingInstr(MI);
2163     if (TypeIdx == 0)
2164       widenScalarDst(MI, WideTy);
2165     else {
2166       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2167                                MI.getOperand(1).getPredicate()))
2168                                ? TargetOpcode::G_SEXT
2169                                : TargetOpcode::G_ZEXT;
2170       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2171       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2172     }
2173     Observer.changedInstr(MI);
2174     return Legalized;
2175 
2176   case TargetOpcode::G_PTR_ADD:
2177     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2178     Observer.changingInstr(MI);
2179     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2180     Observer.changedInstr(MI);
2181     return Legalized;
2182 
2183   case TargetOpcode::G_PHI: {
2184     assert(TypeIdx == 0 && "Expecting only Idx 0");
2185 
2186     Observer.changingInstr(MI);
2187     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2188       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2189       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2190       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2191     }
2192 
2193     MachineBasicBlock &MBB = *MI.getParent();
2194     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2195     widenScalarDst(MI, WideTy);
2196     Observer.changedInstr(MI);
2197     return Legalized;
2198   }
2199   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2200     if (TypeIdx == 0) {
2201       Register VecReg = MI.getOperand(1).getReg();
2202       LLT VecTy = MRI.getType(VecReg);
2203       Observer.changingInstr(MI);
2204 
2205       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2206                                      WideTy.getSizeInBits()),
2207                      1, TargetOpcode::G_SEXT);
2208 
2209       widenScalarDst(MI, WideTy, 0);
2210       Observer.changedInstr(MI);
2211       return Legalized;
2212     }
2213 
2214     if (TypeIdx != 2)
2215       return UnableToLegalize;
2216     Observer.changingInstr(MI);
2217     // TODO: Probably should be zext
2218     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2219     Observer.changedInstr(MI);
2220     return Legalized;
2221   }
2222   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2223     if (TypeIdx == 1) {
2224       Observer.changingInstr(MI);
2225 
2226       Register VecReg = MI.getOperand(1).getReg();
2227       LLT VecTy = MRI.getType(VecReg);
2228       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2229 
2230       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2231       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2232       widenScalarDst(MI, WideVecTy, 0);
2233       Observer.changedInstr(MI);
2234       return Legalized;
2235     }
2236 
2237     if (TypeIdx == 2) {
2238       Observer.changingInstr(MI);
2239       // TODO: Probably should be zext
2240       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2241       Observer.changedInstr(MI);
2242       return Legalized;
2243     }
2244 
2245     return UnableToLegalize;
2246   }
2247   case TargetOpcode::G_FADD:
2248   case TargetOpcode::G_FMUL:
2249   case TargetOpcode::G_FSUB:
2250   case TargetOpcode::G_FMA:
2251   case TargetOpcode::G_FMAD:
2252   case TargetOpcode::G_FNEG:
2253   case TargetOpcode::G_FABS:
2254   case TargetOpcode::G_FCANONICALIZE:
2255   case TargetOpcode::G_FMINNUM:
2256   case TargetOpcode::G_FMAXNUM:
2257   case TargetOpcode::G_FMINNUM_IEEE:
2258   case TargetOpcode::G_FMAXNUM_IEEE:
2259   case TargetOpcode::G_FMINIMUM:
2260   case TargetOpcode::G_FMAXIMUM:
2261   case TargetOpcode::G_FDIV:
2262   case TargetOpcode::G_FREM:
2263   case TargetOpcode::G_FCEIL:
2264   case TargetOpcode::G_FFLOOR:
2265   case TargetOpcode::G_FCOS:
2266   case TargetOpcode::G_FSIN:
2267   case TargetOpcode::G_FLOG10:
2268   case TargetOpcode::G_FLOG:
2269   case TargetOpcode::G_FLOG2:
2270   case TargetOpcode::G_FRINT:
2271   case TargetOpcode::G_FNEARBYINT:
2272   case TargetOpcode::G_FSQRT:
2273   case TargetOpcode::G_FEXP:
2274   case TargetOpcode::G_FEXP2:
2275   case TargetOpcode::G_FPOW:
2276   case TargetOpcode::G_INTRINSIC_TRUNC:
2277   case TargetOpcode::G_INTRINSIC_ROUND:
2278   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2279     assert(TypeIdx == 0);
2280     Observer.changingInstr(MI);
2281 
2282     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2283       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2284 
2285     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288   case TargetOpcode::G_FPOWI: {
2289     if (TypeIdx != 0)
2290       return UnableToLegalize;
2291     Observer.changingInstr(MI);
2292     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2293     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2294     Observer.changedInstr(MI);
2295     return Legalized;
2296   }
2297   case TargetOpcode::G_INTTOPTR:
2298     if (TypeIdx != 1)
2299       return UnableToLegalize;
2300 
2301     Observer.changingInstr(MI);
2302     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2303     Observer.changedInstr(MI);
2304     return Legalized;
2305   case TargetOpcode::G_PTRTOINT:
2306     if (TypeIdx != 0)
2307       return UnableToLegalize;
2308 
2309     Observer.changingInstr(MI);
2310     widenScalarDst(MI, WideTy, 0);
2311     Observer.changedInstr(MI);
2312     return Legalized;
2313   case TargetOpcode::G_BUILD_VECTOR: {
2314     Observer.changingInstr(MI);
2315 
2316     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2317     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2318       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2319 
2320     // Avoid changing the result vector type if the source element type was
2321     // requested.
2322     if (TypeIdx == 1) {
2323       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2324     } else {
2325       widenScalarDst(MI, WideTy, 0);
2326     }
2327 
2328     Observer.changedInstr(MI);
2329     return Legalized;
2330   }
2331   case TargetOpcode::G_SEXT_INREG:
2332     if (TypeIdx != 0)
2333       return UnableToLegalize;
2334 
2335     Observer.changingInstr(MI);
2336     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2337     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2338     Observer.changedInstr(MI);
2339     return Legalized;
2340   case TargetOpcode::G_PTRMASK: {
2341     if (TypeIdx != 1)
2342       return UnableToLegalize;
2343     Observer.changingInstr(MI);
2344     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2345     Observer.changedInstr(MI);
2346     return Legalized;
2347   }
2348   }
2349 }
2350 
2351 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2352                              MachineIRBuilder &B, Register Src, LLT Ty) {
2353   auto Unmerge = B.buildUnmerge(Ty, Src);
2354   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2355     Pieces.push_back(Unmerge.getReg(I));
2356 }
2357 
2358 LegalizerHelper::LegalizeResult
2359 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2360   Register Dst = MI.getOperand(0).getReg();
2361   Register Src = MI.getOperand(1).getReg();
2362   LLT DstTy = MRI.getType(Dst);
2363   LLT SrcTy = MRI.getType(Src);
2364 
2365   if (SrcTy.isVector()) {
2366     LLT SrcEltTy = SrcTy.getElementType();
2367     SmallVector<Register, 8> SrcRegs;
2368 
2369     if (DstTy.isVector()) {
2370       int NumDstElt = DstTy.getNumElements();
2371       int NumSrcElt = SrcTy.getNumElements();
2372 
2373       LLT DstEltTy = DstTy.getElementType();
2374       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2375       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2376 
2377       // If there's an element size mismatch, insert intermediate casts to match
2378       // the result element type.
2379       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2380         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2381         //
2382         // =>
2383         //
2384         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2385         // %3:_(<2 x s8>) = G_BITCAST %2
2386         // %4:_(<2 x s8>) = G_BITCAST %3
2387         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2388         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2389         SrcPartTy = SrcEltTy;
2390       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2391         //
2392         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2393         //
2394         // =>
2395         //
2396         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2397         // %3:_(s16) = G_BITCAST %2
2398         // %4:_(s16) = G_BITCAST %3
2399         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2400         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2401         DstCastTy = DstEltTy;
2402       }
2403 
2404       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2405       for (Register &SrcReg : SrcRegs)
2406         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2407     } else
2408       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2409 
2410     MIRBuilder.buildMerge(Dst, SrcRegs);
2411     MI.eraseFromParent();
2412     return Legalized;
2413   }
2414 
2415   if (DstTy.isVector()) {
2416     SmallVector<Register, 8> SrcRegs;
2417     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2418     MIRBuilder.buildMerge(Dst, SrcRegs);
2419     MI.eraseFromParent();
2420     return Legalized;
2421   }
2422 
2423   return UnableToLegalize;
2424 }
2425 
2426 /// Figure out the bit offset into a register when coercing a vector index for
2427 /// the wide element type. This is only for the case when promoting vector to
2428 /// one with larger elements.
2429 //
2430 ///
2431 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2432 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2433 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2434                                                    Register Idx,
2435                                                    unsigned NewEltSize,
2436                                                    unsigned OldEltSize) {
2437   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2438   LLT IdxTy = B.getMRI()->getType(Idx);
2439 
2440   // Now figure out the amount we need to shift to get the target bits.
2441   auto OffsetMask = B.buildConstant(
2442     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2443   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2444   return B.buildShl(IdxTy, OffsetIdx,
2445                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2446 }
2447 
2448 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2449 /// is casting to a vector with a smaller element size, perform multiple element
2450 /// extracts and merge the results. If this is coercing to a vector with larger
2451 /// elements, index the bitcasted vector and extract the target element with bit
2452 /// operations. This is intended to force the indexing in the native register
2453 /// size for architectures that can dynamically index the register file.
2454 LegalizerHelper::LegalizeResult
2455 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2456                                          LLT CastTy) {
2457   if (TypeIdx != 1)
2458     return UnableToLegalize;
2459 
2460   Register Dst = MI.getOperand(0).getReg();
2461   Register SrcVec = MI.getOperand(1).getReg();
2462   Register Idx = MI.getOperand(2).getReg();
2463   LLT SrcVecTy = MRI.getType(SrcVec);
2464   LLT IdxTy = MRI.getType(Idx);
2465 
2466   LLT SrcEltTy = SrcVecTy.getElementType();
2467   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2468   unsigned OldNumElts = SrcVecTy.getNumElements();
2469 
2470   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2471   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2472 
2473   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2474   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2475   if (NewNumElts > OldNumElts) {
2476     // Decreasing the vector element size
2477     //
2478     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2479     //  =>
2480     //  v4i32:castx = bitcast x:v2i64
2481     //
2482     // i64 = bitcast
2483     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2484     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2485     //
2486     if (NewNumElts % OldNumElts != 0)
2487       return UnableToLegalize;
2488 
2489     // Type of the intermediate result vector.
2490     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2491     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2492 
2493     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2494 
2495     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2496     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2497 
2498     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2499       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2500       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2501       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2502       NewOps[I] = Elt.getReg(0);
2503     }
2504 
2505     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2506     MIRBuilder.buildBitcast(Dst, NewVec);
2507     MI.eraseFromParent();
2508     return Legalized;
2509   }
2510 
2511   if (NewNumElts < OldNumElts) {
2512     if (NewEltSize % OldEltSize != 0)
2513       return UnableToLegalize;
2514 
2515     // This only depends on powers of 2 because we use bit tricks to figure out
2516     // the bit offset we need to shift to get the target element. A general
2517     // expansion could emit division/multiply.
2518     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2519       return UnableToLegalize;
2520 
2521     // Increasing the vector element size.
2522     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2523     //
2524     //   =>
2525     //
2526     // %cast = G_BITCAST %vec
2527     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2528     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2529     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2530     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2531     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2532     // %elt = G_TRUNC %elt_bits
2533 
2534     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2535     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2536 
2537     // Divide to get the index in the wider element type.
2538     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2539 
2540     Register WideElt = CastVec;
2541     if (CastTy.isVector()) {
2542       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2543                                                      ScaledIdx).getReg(0);
2544     }
2545 
2546     // Compute the bit offset into the register of the target element.
2547     Register OffsetBits = getBitcastWiderVectorElementOffset(
2548       MIRBuilder, Idx, NewEltSize, OldEltSize);
2549 
2550     // Shift the wide element to get the target element.
2551     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2552     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2553     MI.eraseFromParent();
2554     return Legalized;
2555   }
2556 
2557   return UnableToLegalize;
2558 }
2559 
2560 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2561 /// TargetReg, while preserving other bits in \p TargetReg.
2562 ///
2563 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2564 static Register buildBitFieldInsert(MachineIRBuilder &B,
2565                                     Register TargetReg, Register InsertReg,
2566                                     Register OffsetBits) {
2567   LLT TargetTy = B.getMRI()->getType(TargetReg);
2568   LLT InsertTy = B.getMRI()->getType(InsertReg);
2569   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2570   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2571 
2572   // Produce a bitmask of the value to insert
2573   auto EltMask = B.buildConstant(
2574     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2575                                    InsertTy.getSizeInBits()));
2576   // Shift it into position
2577   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2578   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2579 
2580   // Clear out the bits in the wide element
2581   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2582 
2583   // The value to insert has all zeros already, so stick it into the masked
2584   // wide element.
2585   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2586 }
2587 
2588 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2589 /// is increasing the element size, perform the indexing in the target element
2590 /// type, and use bit operations to insert at the element position. This is
2591 /// intended for architectures that can dynamically index the register file and
2592 /// want to force indexing in the native register size.
2593 LegalizerHelper::LegalizeResult
2594 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2595                                         LLT CastTy) {
2596   if (TypeIdx != 0)
2597     return UnableToLegalize;
2598 
2599   Register Dst = MI.getOperand(0).getReg();
2600   Register SrcVec = MI.getOperand(1).getReg();
2601   Register Val = MI.getOperand(2).getReg();
2602   Register Idx = MI.getOperand(3).getReg();
2603 
2604   LLT VecTy = MRI.getType(Dst);
2605   LLT IdxTy = MRI.getType(Idx);
2606 
2607   LLT VecEltTy = VecTy.getElementType();
2608   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2609   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2610   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2611 
2612   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2613   unsigned OldNumElts = VecTy.getNumElements();
2614 
2615   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2616   if (NewNumElts < OldNumElts) {
2617     if (NewEltSize % OldEltSize != 0)
2618       return UnableToLegalize;
2619 
2620     // This only depends on powers of 2 because we use bit tricks to figure out
2621     // the bit offset we need to shift to get the target element. A general
2622     // expansion could emit division/multiply.
2623     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2624       return UnableToLegalize;
2625 
2626     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2627     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2628 
2629     // Divide to get the index in the wider element type.
2630     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2631 
2632     Register ExtractedElt = CastVec;
2633     if (CastTy.isVector()) {
2634       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2635                                                           ScaledIdx).getReg(0);
2636     }
2637 
2638     // Compute the bit offset into the register of the target element.
2639     Register OffsetBits = getBitcastWiderVectorElementOffset(
2640       MIRBuilder, Idx, NewEltSize, OldEltSize);
2641 
2642     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2643                                                Val, OffsetBits);
2644     if (CastTy.isVector()) {
2645       InsertedElt = MIRBuilder.buildInsertVectorElement(
2646         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2647     }
2648 
2649     MIRBuilder.buildBitcast(Dst, InsertedElt);
2650     MI.eraseFromParent();
2651     return Legalized;
2652   }
2653 
2654   return UnableToLegalize;
2655 }
2656 
2657 LegalizerHelper::LegalizeResult
2658 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2659   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2660   Register DstReg = MI.getOperand(0).getReg();
2661   Register PtrReg = MI.getOperand(1).getReg();
2662   LLT DstTy = MRI.getType(DstReg);
2663   auto &MMO = **MI.memoperands_begin();
2664 
2665   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2666     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2667       // This load needs splitting into power of 2 sized loads.
2668       if (DstTy.isVector())
2669         return UnableToLegalize;
2670       if (isPowerOf2_32(DstTy.getSizeInBits()))
2671         return UnableToLegalize; // Don't know what we're being asked to do.
2672 
2673       // Our strategy here is to generate anyextending loads for the smaller
2674       // types up to next power-2 result type, and then combine the two larger
2675       // result values together, before truncating back down to the non-pow-2
2676       // type.
2677       // E.g. v1 = i24 load =>
2678       // v2 = i32 zextload (2 byte)
2679       // v3 = i32 load (1 byte)
2680       // v4 = i32 shl v3, 16
2681       // v5 = i32 or v4, v2
2682       // v1 = i24 trunc v5
2683       // By doing this we generate the correct truncate which should get
2684       // combined away as an artifact with a matching extend.
2685       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2686       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2687 
2688       MachineFunction &MF = MIRBuilder.getMF();
2689       MachineMemOperand *LargeMMO =
2690         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2691       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2692         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2693 
2694       LLT PtrTy = MRI.getType(PtrReg);
2695       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2696       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2697       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2698       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2699       auto LargeLoad = MIRBuilder.buildLoadInstr(
2700         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2701 
2702       auto OffsetCst = MIRBuilder.buildConstant(
2703         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2704       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2705       auto SmallPtr =
2706         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2707       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2708                                             *SmallMMO);
2709 
2710       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2711       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2712       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2713       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2714       MI.eraseFromParent();
2715       return Legalized;
2716     }
2717 
2718     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2719     MI.eraseFromParent();
2720     return Legalized;
2721   }
2722 
2723   if (DstTy.isScalar()) {
2724     Register TmpReg =
2725       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2726     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2727     switch (MI.getOpcode()) {
2728     default:
2729       llvm_unreachable("Unexpected opcode");
2730     case TargetOpcode::G_LOAD:
2731       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2732       break;
2733     case TargetOpcode::G_SEXTLOAD:
2734       MIRBuilder.buildSExt(DstReg, TmpReg);
2735       break;
2736     case TargetOpcode::G_ZEXTLOAD:
2737       MIRBuilder.buildZExt(DstReg, TmpReg);
2738       break;
2739     }
2740 
2741     MI.eraseFromParent();
2742     return Legalized;
2743   }
2744 
2745   return UnableToLegalize;
2746 }
2747 
2748 LegalizerHelper::LegalizeResult
2749 LegalizerHelper::lowerStore(MachineInstr &MI) {
2750   // Lower a non-power of 2 store into multiple pow-2 stores.
2751   // E.g. split an i24 store into an i16 store + i8 store.
2752   // We do this by first extending the stored value to the next largest power
2753   // of 2 type, and then using truncating stores to store the components.
2754   // By doing this, likewise with G_LOAD, generate an extend that can be
2755   // artifact-combined away instead of leaving behind extracts.
2756   Register SrcReg = MI.getOperand(0).getReg();
2757   Register PtrReg = MI.getOperand(1).getReg();
2758   LLT SrcTy = MRI.getType(SrcReg);
2759   MachineMemOperand &MMO = **MI.memoperands_begin();
2760   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2761     return UnableToLegalize;
2762   if (SrcTy.isVector())
2763     return UnableToLegalize;
2764   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2765     return UnableToLegalize; // Don't know what we're being asked to do.
2766 
2767   // Extend to the next pow-2.
2768   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2769   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2770 
2771   // Obtain the smaller value by shifting away the larger value.
2772   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2773   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2774   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2775   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2776 
2777   // Generate the PtrAdd and truncating stores.
2778   LLT PtrTy = MRI.getType(PtrReg);
2779   auto OffsetCst = MIRBuilder.buildConstant(
2780     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2781   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2782   auto SmallPtr =
2783     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2784 
2785   MachineFunction &MF = MIRBuilder.getMF();
2786   MachineMemOperand *LargeMMO =
2787     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2788   MachineMemOperand *SmallMMO =
2789     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2790   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2791   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2792   MI.eraseFromParent();
2793   return Legalized;
2794 }
2795 
2796 LegalizerHelper::LegalizeResult
2797 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2798   switch (MI.getOpcode()) {
2799   case TargetOpcode::G_LOAD: {
2800     if (TypeIdx != 0)
2801       return UnableToLegalize;
2802 
2803     Observer.changingInstr(MI);
2804     bitcastDst(MI, CastTy, 0);
2805     Observer.changedInstr(MI);
2806     return Legalized;
2807   }
2808   case TargetOpcode::G_STORE: {
2809     if (TypeIdx != 0)
2810       return UnableToLegalize;
2811 
2812     Observer.changingInstr(MI);
2813     bitcastSrc(MI, CastTy, 0);
2814     Observer.changedInstr(MI);
2815     return Legalized;
2816   }
2817   case TargetOpcode::G_SELECT: {
2818     if (TypeIdx != 0)
2819       return UnableToLegalize;
2820 
2821     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2822       LLVM_DEBUG(
2823           dbgs() << "bitcast action not implemented for vector select\n");
2824       return UnableToLegalize;
2825     }
2826 
2827     Observer.changingInstr(MI);
2828     bitcastSrc(MI, CastTy, 2);
2829     bitcastSrc(MI, CastTy, 3);
2830     bitcastDst(MI, CastTy, 0);
2831     Observer.changedInstr(MI);
2832     return Legalized;
2833   }
2834   case TargetOpcode::G_AND:
2835   case TargetOpcode::G_OR:
2836   case TargetOpcode::G_XOR: {
2837     Observer.changingInstr(MI);
2838     bitcastSrc(MI, CastTy, 1);
2839     bitcastSrc(MI, CastTy, 2);
2840     bitcastDst(MI, CastTy, 0);
2841     Observer.changedInstr(MI);
2842     return Legalized;
2843   }
2844   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2845     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2846   case TargetOpcode::G_INSERT_VECTOR_ELT:
2847     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2848   default:
2849     return UnableToLegalize;
2850   }
2851 }
2852 
2853 // Legalize an instruction by changing the opcode in place.
2854 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2855     Observer.changingInstr(MI);
2856     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2857     Observer.changedInstr(MI);
2858 }
2859 
2860 LegalizerHelper::LegalizeResult
2861 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2862   using namespace TargetOpcode;
2863 
2864   switch(MI.getOpcode()) {
2865   default:
2866     return UnableToLegalize;
2867   case TargetOpcode::G_BITCAST:
2868     return lowerBitcast(MI);
2869   case TargetOpcode::G_SREM:
2870   case TargetOpcode::G_UREM: {
2871     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2872     auto Quot =
2873         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2874                               {MI.getOperand(1), MI.getOperand(2)});
2875 
2876     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2877     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2878     MI.eraseFromParent();
2879     return Legalized;
2880   }
2881   case TargetOpcode::G_SADDO:
2882   case TargetOpcode::G_SSUBO:
2883     return lowerSADDO_SSUBO(MI);
2884   case TargetOpcode::G_UMULH:
2885   case TargetOpcode::G_SMULH:
2886     return lowerSMULH_UMULH(MI);
2887   case TargetOpcode::G_SMULO:
2888   case TargetOpcode::G_UMULO: {
2889     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2890     // result.
2891     Register Res = MI.getOperand(0).getReg();
2892     Register Overflow = MI.getOperand(1).getReg();
2893     Register LHS = MI.getOperand(2).getReg();
2894     Register RHS = MI.getOperand(3).getReg();
2895     LLT Ty = MRI.getType(Res);
2896 
2897     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2898                           ? TargetOpcode::G_SMULH
2899                           : TargetOpcode::G_UMULH;
2900 
2901     Observer.changingInstr(MI);
2902     const auto &TII = MIRBuilder.getTII();
2903     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2904     MI.RemoveOperand(1);
2905     Observer.changedInstr(MI);
2906 
2907     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2908     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2909 
2910     // Move insert point forward so we can use the Res register if needed.
2911     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2912 
2913     // For *signed* multiply, overflow is detected by checking:
2914     // (hi != (lo >> bitwidth-1))
2915     if (Opcode == TargetOpcode::G_SMULH) {
2916       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2917       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2918       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2919     } else {
2920       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2921     }
2922     return Legalized;
2923   }
2924   case TargetOpcode::G_FNEG: {
2925     Register Res = MI.getOperand(0).getReg();
2926     LLT Ty = MRI.getType(Res);
2927 
2928     // TODO: Handle vector types once we are able to
2929     // represent them.
2930     if (Ty.isVector())
2931       return UnableToLegalize;
2932     auto SignMask =
2933         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2934     Register SubByReg = MI.getOperand(1).getReg();
2935     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2936     MI.eraseFromParent();
2937     return Legalized;
2938   }
2939   case TargetOpcode::G_FSUB: {
2940     Register Res = MI.getOperand(0).getReg();
2941     LLT Ty = MRI.getType(Res);
2942 
2943     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2944     // First, check if G_FNEG is marked as Lower. If so, we may
2945     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2946     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2947       return UnableToLegalize;
2948     Register LHS = MI.getOperand(1).getReg();
2949     Register RHS = MI.getOperand(2).getReg();
2950     Register Neg = MRI.createGenericVirtualRegister(Ty);
2951     MIRBuilder.buildFNeg(Neg, RHS);
2952     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2953     MI.eraseFromParent();
2954     return Legalized;
2955   }
2956   case TargetOpcode::G_FMAD:
2957     return lowerFMad(MI);
2958   case TargetOpcode::G_FFLOOR:
2959     return lowerFFloor(MI);
2960   case TargetOpcode::G_INTRINSIC_ROUND:
2961     return lowerIntrinsicRound(MI);
2962   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2963     // Since round even is the assumed rounding mode for unconstrained FP
2964     // operations, rint and roundeven are the same operation.
2965     changeOpcode(MI, TargetOpcode::G_FRINT);
2966     return Legalized;
2967   }
2968   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2969     Register OldValRes = MI.getOperand(0).getReg();
2970     Register SuccessRes = MI.getOperand(1).getReg();
2971     Register Addr = MI.getOperand(2).getReg();
2972     Register CmpVal = MI.getOperand(3).getReg();
2973     Register NewVal = MI.getOperand(4).getReg();
2974     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2975                                   **MI.memoperands_begin());
2976     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2977     MI.eraseFromParent();
2978     return Legalized;
2979   }
2980   case TargetOpcode::G_LOAD:
2981   case TargetOpcode::G_SEXTLOAD:
2982   case TargetOpcode::G_ZEXTLOAD:
2983     return lowerLoad(MI);
2984   case TargetOpcode::G_STORE:
2985     return lowerStore(MI);
2986   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2987   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2988   case TargetOpcode::G_CTLZ:
2989   case TargetOpcode::G_CTTZ:
2990   case TargetOpcode::G_CTPOP:
2991     return lowerBitCount(MI);
2992   case G_UADDO: {
2993     Register Res = MI.getOperand(0).getReg();
2994     Register CarryOut = MI.getOperand(1).getReg();
2995     Register LHS = MI.getOperand(2).getReg();
2996     Register RHS = MI.getOperand(3).getReg();
2997 
2998     MIRBuilder.buildAdd(Res, LHS, RHS);
2999     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3000 
3001     MI.eraseFromParent();
3002     return Legalized;
3003   }
3004   case G_UADDE: {
3005     Register Res = MI.getOperand(0).getReg();
3006     Register CarryOut = MI.getOperand(1).getReg();
3007     Register LHS = MI.getOperand(2).getReg();
3008     Register RHS = MI.getOperand(3).getReg();
3009     Register CarryIn = MI.getOperand(4).getReg();
3010     LLT Ty = MRI.getType(Res);
3011 
3012     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3013     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3014     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3015     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3016 
3017     MI.eraseFromParent();
3018     return Legalized;
3019   }
3020   case G_USUBO: {
3021     Register Res = MI.getOperand(0).getReg();
3022     Register BorrowOut = MI.getOperand(1).getReg();
3023     Register LHS = MI.getOperand(2).getReg();
3024     Register RHS = MI.getOperand(3).getReg();
3025 
3026     MIRBuilder.buildSub(Res, LHS, RHS);
3027     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3028 
3029     MI.eraseFromParent();
3030     return Legalized;
3031   }
3032   case G_USUBE: {
3033     Register Res = MI.getOperand(0).getReg();
3034     Register BorrowOut = MI.getOperand(1).getReg();
3035     Register LHS = MI.getOperand(2).getReg();
3036     Register RHS = MI.getOperand(3).getReg();
3037     Register BorrowIn = MI.getOperand(4).getReg();
3038     const LLT CondTy = MRI.getType(BorrowOut);
3039     const LLT Ty = MRI.getType(Res);
3040 
3041     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3042     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3043     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3044 
3045     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3046     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3047     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3048 
3049     MI.eraseFromParent();
3050     return Legalized;
3051   }
3052   case G_UITOFP:
3053     return lowerUITOFP(MI);
3054   case G_SITOFP:
3055     return lowerSITOFP(MI);
3056   case G_FPTOUI:
3057     return lowerFPTOUI(MI);
3058   case G_FPTOSI:
3059     return lowerFPTOSI(MI);
3060   case G_FPTRUNC:
3061     return lowerFPTRUNC(MI);
3062   case G_FPOWI:
3063     return lowerFPOWI(MI);
3064   case G_SMIN:
3065   case G_SMAX:
3066   case G_UMIN:
3067   case G_UMAX:
3068     return lowerMinMax(MI);
3069   case G_FCOPYSIGN:
3070     return lowerFCopySign(MI);
3071   case G_FMINNUM:
3072   case G_FMAXNUM:
3073     return lowerFMinNumMaxNum(MI);
3074   case G_MERGE_VALUES:
3075     return lowerMergeValues(MI);
3076   case G_UNMERGE_VALUES:
3077     return lowerUnmergeValues(MI);
3078   case TargetOpcode::G_SEXT_INREG: {
3079     assert(MI.getOperand(2).isImm() && "Expected immediate");
3080     int64_t SizeInBits = MI.getOperand(2).getImm();
3081 
3082     Register DstReg = MI.getOperand(0).getReg();
3083     Register SrcReg = MI.getOperand(1).getReg();
3084     LLT DstTy = MRI.getType(DstReg);
3085     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3086 
3087     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3088     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3089     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3090     MI.eraseFromParent();
3091     return Legalized;
3092   }
3093   case G_EXTRACT_VECTOR_ELT:
3094   case G_INSERT_VECTOR_ELT:
3095     return lowerExtractInsertVectorElt(MI);
3096   case G_SHUFFLE_VECTOR:
3097     return lowerShuffleVector(MI);
3098   case G_DYN_STACKALLOC:
3099     return lowerDynStackAlloc(MI);
3100   case G_EXTRACT:
3101     return lowerExtract(MI);
3102   case G_INSERT:
3103     return lowerInsert(MI);
3104   case G_BSWAP:
3105     return lowerBswap(MI);
3106   case G_BITREVERSE:
3107     return lowerBitreverse(MI);
3108   case G_READ_REGISTER:
3109   case G_WRITE_REGISTER:
3110     return lowerReadWriteRegister(MI);
3111   case G_UADDSAT:
3112   case G_USUBSAT: {
3113     // Try to make a reasonable guess about which lowering strategy to use. The
3114     // target can override this with custom lowering and calling the
3115     // implementation functions.
3116     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3117     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3118       return lowerAddSubSatToMinMax(MI);
3119     return lowerAddSubSatToAddoSubo(MI);
3120   }
3121   case G_SADDSAT:
3122   case G_SSUBSAT: {
3123     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3124 
3125     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3126     // since it's a shorter expansion. However, we would need to figure out the
3127     // preferred boolean type for the carry out for the query.
3128     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3129       return lowerAddSubSatToMinMax(MI);
3130     return lowerAddSubSatToAddoSubo(MI);
3131   }
3132   case G_SSHLSAT:
3133   case G_USHLSAT:
3134     return lowerShlSat(MI);
3135   case G_ABS: {
3136     // Expand %res = G_ABS %a into:
3137     // %v1 = G_ASHR %a, scalar_size-1
3138     // %v2 = G_ADD %a, %v1
3139     // %res = G_XOR %v2, %v1
3140     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3141     Register OpReg = MI.getOperand(1).getReg();
3142     auto ShiftAmt =
3143         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3144     auto Shift =
3145         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3146     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3147     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3148     MI.eraseFromParent();
3149     return Legalized;
3150   }
3151   case G_SELECT:
3152     return lowerSelect(MI);
3153   }
3154 }
3155 
3156 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3157                                                   Align MinAlign) const {
3158   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3159   // datalayout for the preferred alignment. Also there should be a target hook
3160   // for this to allow targets to reduce the alignment and ignore the
3161   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3162   // the type.
3163   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3164 }
3165 
3166 MachineInstrBuilder
3167 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3168                                       MachinePointerInfo &PtrInfo) {
3169   MachineFunction &MF = MIRBuilder.getMF();
3170   const DataLayout &DL = MIRBuilder.getDataLayout();
3171   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3172 
3173   unsigned AddrSpace = DL.getAllocaAddrSpace();
3174   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3175 
3176   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3177   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3178 }
3179 
3180 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3181                                         LLT VecTy) {
3182   int64_t IdxVal;
3183   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3184     return IdxReg;
3185 
3186   LLT IdxTy = B.getMRI()->getType(IdxReg);
3187   unsigned NElts = VecTy.getNumElements();
3188   if (isPowerOf2_32(NElts)) {
3189     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3190     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3191   }
3192 
3193   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3194       .getReg(0);
3195 }
3196 
3197 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3198                                                   Register Index) {
3199   LLT EltTy = VecTy.getElementType();
3200 
3201   // Calculate the element offset and add it to the pointer.
3202   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3203   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3204          "Converting bits to bytes lost precision");
3205 
3206   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3207 
3208   LLT IdxTy = MRI.getType(Index);
3209   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3210                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3211 
3212   LLT PtrTy = MRI.getType(VecPtr);
3213   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3214 }
3215 
3216 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3217     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3218   Register DstReg = MI.getOperand(0).getReg();
3219   LLT DstTy = MRI.getType(DstReg);
3220   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3221 
3222   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3223 
3224   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3225   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3226 
3227   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3228   MI.eraseFromParent();
3229   return Legalized;
3230 }
3231 
3232 // Handle splitting vector operations which need to have the same number of
3233 // elements in each type index, but each type index may have a different element
3234 // type.
3235 //
3236 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3237 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3238 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3239 //
3240 // Also handles some irregular breakdown cases, e.g.
3241 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3242 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3243 //             s64 = G_SHL s64, s32
3244 LegalizerHelper::LegalizeResult
3245 LegalizerHelper::fewerElementsVectorMultiEltType(
3246   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3247   if (TypeIdx != 0)
3248     return UnableToLegalize;
3249 
3250   const LLT NarrowTy0 = NarrowTyArg;
3251   const unsigned NewNumElts =
3252       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3253 
3254   const Register DstReg = MI.getOperand(0).getReg();
3255   LLT DstTy = MRI.getType(DstReg);
3256   LLT LeftoverTy0;
3257 
3258   // All of the operands need to have the same number of elements, so if we can
3259   // determine a type breakdown for the result type, we can for all of the
3260   // source types.
3261   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3262   if (NumParts < 0)
3263     return UnableToLegalize;
3264 
3265   SmallVector<MachineInstrBuilder, 4> NewInsts;
3266 
3267   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3268   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3269 
3270   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3271     Register SrcReg = MI.getOperand(I).getReg();
3272     LLT SrcTyI = MRI.getType(SrcReg);
3273     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3274     LLT LeftoverTyI;
3275 
3276     // Split this operand into the requested typed registers, and any leftover
3277     // required to reproduce the original type.
3278     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3279                       LeftoverRegs))
3280       return UnableToLegalize;
3281 
3282     if (I == 1) {
3283       // For the first operand, create an instruction for each part and setup
3284       // the result.
3285       for (Register PartReg : PartRegs) {
3286         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3287         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3288                                .addDef(PartDstReg)
3289                                .addUse(PartReg));
3290         DstRegs.push_back(PartDstReg);
3291       }
3292 
3293       for (Register LeftoverReg : LeftoverRegs) {
3294         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3295         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3296                                .addDef(PartDstReg)
3297                                .addUse(LeftoverReg));
3298         LeftoverDstRegs.push_back(PartDstReg);
3299       }
3300     } else {
3301       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3302 
3303       // Add the newly created operand splits to the existing instructions. The
3304       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3305       // pieces.
3306       unsigned InstCount = 0;
3307       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3308         NewInsts[InstCount++].addUse(PartRegs[J]);
3309       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3310         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3311     }
3312 
3313     PartRegs.clear();
3314     LeftoverRegs.clear();
3315   }
3316 
3317   // Insert the newly built operations and rebuild the result register.
3318   for (auto &MIB : NewInsts)
3319     MIRBuilder.insertInstr(MIB);
3320 
3321   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3322 
3323   MI.eraseFromParent();
3324   return Legalized;
3325 }
3326 
3327 LegalizerHelper::LegalizeResult
3328 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3329                                           LLT NarrowTy) {
3330   if (TypeIdx != 0)
3331     return UnableToLegalize;
3332 
3333   Register DstReg = MI.getOperand(0).getReg();
3334   Register SrcReg = MI.getOperand(1).getReg();
3335   LLT DstTy = MRI.getType(DstReg);
3336   LLT SrcTy = MRI.getType(SrcReg);
3337 
3338   LLT NarrowTy0 = NarrowTy;
3339   LLT NarrowTy1;
3340   unsigned NumParts;
3341 
3342   if (NarrowTy.isVector()) {
3343     // Uneven breakdown not handled.
3344     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3345     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3346       return UnableToLegalize;
3347 
3348     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3349   } else {
3350     NumParts = DstTy.getNumElements();
3351     NarrowTy1 = SrcTy.getElementType();
3352   }
3353 
3354   SmallVector<Register, 4> SrcRegs, DstRegs;
3355   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3356 
3357   for (unsigned I = 0; I < NumParts; ++I) {
3358     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3359     MachineInstr *NewInst =
3360         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3361 
3362     NewInst->setFlags(MI.getFlags());
3363     DstRegs.push_back(DstReg);
3364   }
3365 
3366   if (NarrowTy.isVector())
3367     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3368   else
3369     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3370 
3371   MI.eraseFromParent();
3372   return Legalized;
3373 }
3374 
3375 LegalizerHelper::LegalizeResult
3376 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3377                                         LLT NarrowTy) {
3378   Register DstReg = MI.getOperand(0).getReg();
3379   Register Src0Reg = MI.getOperand(2).getReg();
3380   LLT DstTy = MRI.getType(DstReg);
3381   LLT SrcTy = MRI.getType(Src0Reg);
3382 
3383   unsigned NumParts;
3384   LLT NarrowTy0, NarrowTy1;
3385 
3386   if (TypeIdx == 0) {
3387     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3388     unsigned OldElts = DstTy.getNumElements();
3389 
3390     NarrowTy0 = NarrowTy;
3391     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3392     NarrowTy1 = NarrowTy.isVector() ?
3393       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3394       SrcTy.getElementType();
3395 
3396   } else {
3397     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3398     unsigned OldElts = SrcTy.getNumElements();
3399 
3400     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3401       NarrowTy.getNumElements();
3402     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3403                             DstTy.getScalarSizeInBits());
3404     NarrowTy1 = NarrowTy;
3405   }
3406 
3407   // FIXME: Don't know how to handle the situation where the small vectors
3408   // aren't all the same size yet.
3409   if (NarrowTy1.isVector() &&
3410       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3411     return UnableToLegalize;
3412 
3413   CmpInst::Predicate Pred
3414     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3415 
3416   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3417   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3418   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3419 
3420   for (unsigned I = 0; I < NumParts; ++I) {
3421     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3422     DstRegs.push_back(DstReg);
3423 
3424     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3425       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3426     else {
3427       MachineInstr *NewCmp
3428         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3429       NewCmp->setFlags(MI.getFlags());
3430     }
3431   }
3432 
3433   if (NarrowTy1.isVector())
3434     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3435   else
3436     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3437 
3438   MI.eraseFromParent();
3439   return Legalized;
3440 }
3441 
3442 LegalizerHelper::LegalizeResult
3443 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3444                                            LLT NarrowTy) {
3445   Register DstReg = MI.getOperand(0).getReg();
3446   Register CondReg = MI.getOperand(1).getReg();
3447 
3448   unsigned NumParts = 0;
3449   LLT NarrowTy0, NarrowTy1;
3450 
3451   LLT DstTy = MRI.getType(DstReg);
3452   LLT CondTy = MRI.getType(CondReg);
3453   unsigned Size = DstTy.getSizeInBits();
3454 
3455   assert(TypeIdx == 0 || CondTy.isVector());
3456 
3457   if (TypeIdx == 0) {
3458     NarrowTy0 = NarrowTy;
3459     NarrowTy1 = CondTy;
3460 
3461     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3462     // FIXME: Don't know how to handle the situation where the small vectors
3463     // aren't all the same size yet.
3464     if (Size % NarrowSize != 0)
3465       return UnableToLegalize;
3466 
3467     NumParts = Size / NarrowSize;
3468 
3469     // Need to break down the condition type
3470     if (CondTy.isVector()) {
3471       if (CondTy.getNumElements() == NumParts)
3472         NarrowTy1 = CondTy.getElementType();
3473       else
3474         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3475                                 CondTy.getScalarSizeInBits());
3476     }
3477   } else {
3478     NumParts = CondTy.getNumElements();
3479     if (NarrowTy.isVector()) {
3480       // TODO: Handle uneven breakdown.
3481       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3482         return UnableToLegalize;
3483 
3484       return UnableToLegalize;
3485     } else {
3486       NarrowTy0 = DstTy.getElementType();
3487       NarrowTy1 = NarrowTy;
3488     }
3489   }
3490 
3491   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3492   if (CondTy.isVector())
3493     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3494 
3495   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3496   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3497 
3498   for (unsigned i = 0; i < NumParts; ++i) {
3499     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3500     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3501                            Src1Regs[i], Src2Regs[i]);
3502     DstRegs.push_back(DstReg);
3503   }
3504 
3505   if (NarrowTy0.isVector())
3506     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3507   else
3508     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3509 
3510   MI.eraseFromParent();
3511   return Legalized;
3512 }
3513 
3514 LegalizerHelper::LegalizeResult
3515 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3516                                         LLT NarrowTy) {
3517   const Register DstReg = MI.getOperand(0).getReg();
3518   LLT PhiTy = MRI.getType(DstReg);
3519   LLT LeftoverTy;
3520 
3521   // All of the operands need to have the same number of elements, so if we can
3522   // determine a type breakdown for the result type, we can for all of the
3523   // source types.
3524   int NumParts, NumLeftover;
3525   std::tie(NumParts, NumLeftover)
3526     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3527   if (NumParts < 0)
3528     return UnableToLegalize;
3529 
3530   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3531   SmallVector<MachineInstrBuilder, 4> NewInsts;
3532 
3533   const int TotalNumParts = NumParts + NumLeftover;
3534 
3535   // Insert the new phis in the result block first.
3536   for (int I = 0; I != TotalNumParts; ++I) {
3537     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3538     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3539     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3540                        .addDef(PartDstReg));
3541     if (I < NumParts)
3542       DstRegs.push_back(PartDstReg);
3543     else
3544       LeftoverDstRegs.push_back(PartDstReg);
3545   }
3546 
3547   MachineBasicBlock *MBB = MI.getParent();
3548   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3549   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3550 
3551   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3552 
3553   // Insert code to extract the incoming values in each predecessor block.
3554   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3555     PartRegs.clear();
3556     LeftoverRegs.clear();
3557 
3558     Register SrcReg = MI.getOperand(I).getReg();
3559     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3560     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3561 
3562     LLT Unused;
3563     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3564                       LeftoverRegs))
3565       return UnableToLegalize;
3566 
3567     // Add the newly created operand splits to the existing instructions. The
3568     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3569     // pieces.
3570     for (int J = 0; J != TotalNumParts; ++J) {
3571       MachineInstrBuilder MIB = NewInsts[J];
3572       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3573       MIB.addMBB(&OpMBB);
3574     }
3575   }
3576 
3577   MI.eraseFromParent();
3578   return Legalized;
3579 }
3580 
3581 LegalizerHelper::LegalizeResult
3582 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3583                                                   unsigned TypeIdx,
3584                                                   LLT NarrowTy) {
3585   if (TypeIdx != 1)
3586     return UnableToLegalize;
3587 
3588   const int NumDst = MI.getNumOperands() - 1;
3589   const Register SrcReg = MI.getOperand(NumDst).getReg();
3590   LLT SrcTy = MRI.getType(SrcReg);
3591 
3592   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3593 
3594   // TODO: Create sequence of extracts.
3595   if (DstTy == NarrowTy)
3596     return UnableToLegalize;
3597 
3598   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3599   if (DstTy == GCDTy) {
3600     // This would just be a copy of the same unmerge.
3601     // TODO: Create extracts, pad with undef and create intermediate merges.
3602     return UnableToLegalize;
3603   }
3604 
3605   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3606   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3607   const int PartsPerUnmerge = NumDst / NumUnmerge;
3608 
3609   for (int I = 0; I != NumUnmerge; ++I) {
3610     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3611 
3612     for (int J = 0; J != PartsPerUnmerge; ++J)
3613       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3614     MIB.addUse(Unmerge.getReg(I));
3615   }
3616 
3617   MI.eraseFromParent();
3618   return Legalized;
3619 }
3620 
3621 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3622 // a vector
3623 //
3624 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3625 // undef as necessary.
3626 //
3627 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3628 //   -> <2 x s16>
3629 //
3630 // %4:_(s16) = G_IMPLICIT_DEF
3631 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3632 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3633 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3634 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3635 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3636 LegalizerHelper::LegalizeResult
3637 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3638                                           LLT NarrowTy) {
3639   Register DstReg = MI.getOperand(0).getReg();
3640   LLT DstTy = MRI.getType(DstReg);
3641   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3642   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3643 
3644   // Break into a common type
3645   SmallVector<Register, 16> Parts;
3646   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3647     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3648 
3649   // Build the requested new merge, padding with undef.
3650   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3651                                   TargetOpcode::G_ANYEXT);
3652 
3653   // Pack into the original result register.
3654   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3655 
3656   MI.eraseFromParent();
3657   return Legalized;
3658 }
3659 
3660 LegalizerHelper::LegalizeResult
3661 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3662                                                            unsigned TypeIdx,
3663                                                            LLT NarrowVecTy) {
3664   Register DstReg = MI.getOperand(0).getReg();
3665   Register SrcVec = MI.getOperand(1).getReg();
3666   Register InsertVal;
3667   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3668 
3669   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3670   if (IsInsert)
3671     InsertVal = MI.getOperand(2).getReg();
3672 
3673   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3674 
3675   // TODO: Handle total scalarization case.
3676   if (!NarrowVecTy.isVector())
3677     return UnableToLegalize;
3678 
3679   LLT VecTy = MRI.getType(SrcVec);
3680 
3681   // If the index is a constant, we can really break this down as you would
3682   // expect, and index into the target size pieces.
3683   int64_t IdxVal;
3684   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3685     // Avoid out of bounds indexing the pieces.
3686     if (IdxVal >= VecTy.getNumElements()) {
3687       MIRBuilder.buildUndef(DstReg);
3688       MI.eraseFromParent();
3689       return Legalized;
3690     }
3691 
3692     SmallVector<Register, 8> VecParts;
3693     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3694 
3695     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3696     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3697                                     TargetOpcode::G_ANYEXT);
3698 
3699     unsigned NewNumElts = NarrowVecTy.getNumElements();
3700 
3701     LLT IdxTy = MRI.getType(Idx);
3702     int64_t PartIdx = IdxVal / NewNumElts;
3703     auto NewIdx =
3704         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3705 
3706     if (IsInsert) {
3707       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3708 
3709       // Use the adjusted index to insert into one of the subvectors.
3710       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3711           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3712       VecParts[PartIdx] = InsertPart.getReg(0);
3713 
3714       // Recombine the inserted subvector with the others to reform the result
3715       // vector.
3716       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3717     } else {
3718       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3719     }
3720 
3721     MI.eraseFromParent();
3722     return Legalized;
3723   }
3724 
3725   // With a variable index, we can't perform the operation in a smaller type, so
3726   // we're forced to expand this.
3727   //
3728   // TODO: We could emit a chain of compare/select to figure out which piece to
3729   // index.
3730   return lowerExtractInsertVectorElt(MI);
3731 }
3732 
3733 LegalizerHelper::LegalizeResult
3734 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3735                                       LLT NarrowTy) {
3736   // FIXME: Don't know how to handle secondary types yet.
3737   if (TypeIdx != 0)
3738     return UnableToLegalize;
3739 
3740   MachineMemOperand *MMO = *MI.memoperands_begin();
3741 
3742   // This implementation doesn't work for atomics. Give up instead of doing
3743   // something invalid.
3744   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3745       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3746     return UnableToLegalize;
3747 
3748   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3749   Register ValReg = MI.getOperand(0).getReg();
3750   Register AddrReg = MI.getOperand(1).getReg();
3751   LLT ValTy = MRI.getType(ValReg);
3752 
3753   // FIXME: Do we need a distinct NarrowMemory legalize action?
3754   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3755     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3756     return UnableToLegalize;
3757   }
3758 
3759   int NumParts = -1;
3760   int NumLeftover = -1;
3761   LLT LeftoverTy;
3762   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3763   if (IsLoad) {
3764     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3765   } else {
3766     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3767                      NarrowLeftoverRegs)) {
3768       NumParts = NarrowRegs.size();
3769       NumLeftover = NarrowLeftoverRegs.size();
3770     }
3771   }
3772 
3773   if (NumParts == -1)
3774     return UnableToLegalize;
3775 
3776   LLT PtrTy = MRI.getType(AddrReg);
3777   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3778 
3779   unsigned TotalSize = ValTy.getSizeInBits();
3780 
3781   // Split the load/store into PartTy sized pieces starting at Offset. If this
3782   // is a load, return the new registers in ValRegs. For a store, each elements
3783   // of ValRegs should be PartTy. Returns the next offset that needs to be
3784   // handled.
3785   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3786                              unsigned Offset) -> unsigned {
3787     MachineFunction &MF = MIRBuilder.getMF();
3788     unsigned PartSize = PartTy.getSizeInBits();
3789     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3790          Offset += PartSize, ++Idx) {
3791       unsigned ByteSize = PartSize / 8;
3792       unsigned ByteOffset = Offset / 8;
3793       Register NewAddrReg;
3794 
3795       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3796 
3797       MachineMemOperand *NewMMO =
3798         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3799 
3800       if (IsLoad) {
3801         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3802         ValRegs.push_back(Dst);
3803         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3804       } else {
3805         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3806       }
3807     }
3808 
3809     return Offset;
3810   };
3811 
3812   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3813 
3814   // Handle the rest of the register if this isn't an even type breakdown.
3815   if (LeftoverTy.isValid())
3816     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3817 
3818   if (IsLoad) {
3819     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3820                 LeftoverTy, NarrowLeftoverRegs);
3821   }
3822 
3823   MI.eraseFromParent();
3824   return Legalized;
3825 }
3826 
3827 LegalizerHelper::LegalizeResult
3828 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3829                                       LLT NarrowTy) {
3830   assert(TypeIdx == 0 && "only one type index expected");
3831 
3832   const unsigned Opc = MI.getOpcode();
3833   const int NumOps = MI.getNumOperands() - 1;
3834   const Register DstReg = MI.getOperand(0).getReg();
3835   const unsigned Flags = MI.getFlags();
3836   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3837   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3838 
3839   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3840 
3841   // First of all check whether we are narrowing (changing the element type)
3842   // or reducing the vector elements
3843   const LLT DstTy = MRI.getType(DstReg);
3844   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3845 
3846   SmallVector<Register, 8> ExtractedRegs[3];
3847   SmallVector<Register, 8> Parts;
3848 
3849   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3850 
3851   // Break down all the sources into NarrowTy pieces we can operate on. This may
3852   // involve creating merges to a wider type, padded with undef.
3853   for (int I = 0; I != NumOps; ++I) {
3854     Register SrcReg = MI.getOperand(I + 1).getReg();
3855     LLT SrcTy = MRI.getType(SrcReg);
3856 
3857     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3858     // For fewerElements, this is a smaller vector with the same element type.
3859     LLT OpNarrowTy;
3860     if (IsNarrow) {
3861       OpNarrowTy = NarrowScalarTy;
3862 
3863       // In case of narrowing, we need to cast vectors to scalars for this to
3864       // work properly
3865       // FIXME: Can we do without the bitcast here if we're narrowing?
3866       if (SrcTy.isVector()) {
3867         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3868         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3869       }
3870     } else {
3871       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3872     }
3873 
3874     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3875 
3876     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3877     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3878                         TargetOpcode::G_ANYEXT);
3879   }
3880 
3881   SmallVector<Register, 8> ResultRegs;
3882 
3883   // Input operands for each sub-instruction.
3884   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3885 
3886   int NumParts = ExtractedRegs[0].size();
3887   const unsigned DstSize = DstTy.getSizeInBits();
3888   const LLT DstScalarTy = LLT::scalar(DstSize);
3889 
3890   // Narrowing needs to use scalar types
3891   LLT DstLCMTy, NarrowDstTy;
3892   if (IsNarrow) {
3893     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3894     NarrowDstTy = NarrowScalarTy;
3895   } else {
3896     DstLCMTy = getLCMType(DstTy, NarrowTy);
3897     NarrowDstTy = NarrowTy;
3898   }
3899 
3900   // We widened the source registers to satisfy merge/unmerge size
3901   // constraints. We'll have some extra fully undef parts.
3902   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3903 
3904   for (int I = 0; I != NumRealParts; ++I) {
3905     // Emit this instruction on each of the split pieces.
3906     for (int J = 0; J != NumOps; ++J)
3907       InputRegs[J] = ExtractedRegs[J][I];
3908 
3909     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3910     ResultRegs.push_back(Inst.getReg(0));
3911   }
3912 
3913   // Fill out the widened result with undef instead of creating instructions
3914   // with undef inputs.
3915   int NumUndefParts = NumParts - NumRealParts;
3916   if (NumUndefParts != 0)
3917     ResultRegs.append(NumUndefParts,
3918                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3919 
3920   // Extract the possibly padded result. Use a scratch register if we need to do
3921   // a final bitcast, otherwise use the original result register.
3922   Register MergeDstReg;
3923   if (IsNarrow && DstTy.isVector())
3924     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3925   else
3926     MergeDstReg = DstReg;
3927 
3928   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3929 
3930   // Recast to vector if we narrowed a vector
3931   if (IsNarrow && DstTy.isVector())
3932     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3933 
3934   MI.eraseFromParent();
3935   return Legalized;
3936 }
3937 
3938 LegalizerHelper::LegalizeResult
3939 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3940                                               LLT NarrowTy) {
3941   Register DstReg = MI.getOperand(0).getReg();
3942   Register SrcReg = MI.getOperand(1).getReg();
3943   int64_t Imm = MI.getOperand(2).getImm();
3944 
3945   LLT DstTy = MRI.getType(DstReg);
3946 
3947   SmallVector<Register, 8> Parts;
3948   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3949   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3950 
3951   for (Register &R : Parts)
3952     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3953 
3954   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3955 
3956   MI.eraseFromParent();
3957   return Legalized;
3958 }
3959 
3960 LegalizerHelper::LegalizeResult
3961 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3962                                      LLT NarrowTy) {
3963   using namespace TargetOpcode;
3964 
3965   switch (MI.getOpcode()) {
3966   case G_IMPLICIT_DEF:
3967     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3968   case G_TRUNC:
3969   case G_AND:
3970   case G_OR:
3971   case G_XOR:
3972   case G_ADD:
3973   case G_SUB:
3974   case G_MUL:
3975   case G_PTR_ADD:
3976   case G_SMULH:
3977   case G_UMULH:
3978   case G_FADD:
3979   case G_FMUL:
3980   case G_FSUB:
3981   case G_FNEG:
3982   case G_FABS:
3983   case G_FCANONICALIZE:
3984   case G_FDIV:
3985   case G_FREM:
3986   case G_FMA:
3987   case G_FMAD:
3988   case G_FPOW:
3989   case G_FEXP:
3990   case G_FEXP2:
3991   case G_FLOG:
3992   case G_FLOG2:
3993   case G_FLOG10:
3994   case G_FNEARBYINT:
3995   case G_FCEIL:
3996   case G_FFLOOR:
3997   case G_FRINT:
3998   case G_INTRINSIC_ROUND:
3999   case G_INTRINSIC_ROUNDEVEN:
4000   case G_INTRINSIC_TRUNC:
4001   case G_FCOS:
4002   case G_FSIN:
4003   case G_FSQRT:
4004   case G_BSWAP:
4005   case G_BITREVERSE:
4006   case G_SDIV:
4007   case G_UDIV:
4008   case G_SREM:
4009   case G_UREM:
4010   case G_SMIN:
4011   case G_SMAX:
4012   case G_UMIN:
4013   case G_UMAX:
4014   case G_FMINNUM:
4015   case G_FMAXNUM:
4016   case G_FMINNUM_IEEE:
4017   case G_FMAXNUM_IEEE:
4018   case G_FMINIMUM:
4019   case G_FMAXIMUM:
4020   case G_FSHL:
4021   case G_FSHR:
4022   case G_FREEZE:
4023   case G_SADDSAT:
4024   case G_SSUBSAT:
4025   case G_UADDSAT:
4026   case G_USUBSAT:
4027     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4028   case G_SHL:
4029   case G_LSHR:
4030   case G_ASHR:
4031   case G_SSHLSAT:
4032   case G_USHLSAT:
4033   case G_CTLZ:
4034   case G_CTLZ_ZERO_UNDEF:
4035   case G_CTTZ:
4036   case G_CTTZ_ZERO_UNDEF:
4037   case G_CTPOP:
4038   case G_FCOPYSIGN:
4039     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4040   case G_ZEXT:
4041   case G_SEXT:
4042   case G_ANYEXT:
4043   case G_FPEXT:
4044   case G_FPTRUNC:
4045   case G_SITOFP:
4046   case G_UITOFP:
4047   case G_FPTOSI:
4048   case G_FPTOUI:
4049   case G_INTTOPTR:
4050   case G_PTRTOINT:
4051   case G_ADDRSPACE_CAST:
4052     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4053   case G_ICMP:
4054   case G_FCMP:
4055     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4056   case G_SELECT:
4057     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4058   case G_PHI:
4059     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4060   case G_UNMERGE_VALUES:
4061     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4062   case G_BUILD_VECTOR:
4063     assert(TypeIdx == 0 && "not a vector type index");
4064     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4065   case G_CONCAT_VECTORS:
4066     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4067       return UnableToLegalize;
4068     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4069   case G_EXTRACT_VECTOR_ELT:
4070   case G_INSERT_VECTOR_ELT:
4071     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4072   case G_LOAD:
4073   case G_STORE:
4074     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4075   case G_SEXT_INREG:
4076     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4077   default:
4078     return UnableToLegalize;
4079   }
4080 }
4081 
4082 LegalizerHelper::LegalizeResult
4083 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4084                                              const LLT HalfTy, const LLT AmtTy) {
4085 
4086   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4087   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4088   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4089 
4090   if (Amt.isNullValue()) {
4091     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4092     MI.eraseFromParent();
4093     return Legalized;
4094   }
4095 
4096   LLT NVT = HalfTy;
4097   unsigned NVTBits = HalfTy.getSizeInBits();
4098   unsigned VTBits = 2 * NVTBits;
4099 
4100   SrcOp Lo(Register(0)), Hi(Register(0));
4101   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4102     if (Amt.ugt(VTBits)) {
4103       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4104     } else if (Amt.ugt(NVTBits)) {
4105       Lo = MIRBuilder.buildConstant(NVT, 0);
4106       Hi = MIRBuilder.buildShl(NVT, InL,
4107                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4108     } else if (Amt == NVTBits) {
4109       Lo = MIRBuilder.buildConstant(NVT, 0);
4110       Hi = InL;
4111     } else {
4112       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4113       auto OrLHS =
4114           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4115       auto OrRHS = MIRBuilder.buildLShr(
4116           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4117       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4118     }
4119   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4120     if (Amt.ugt(VTBits)) {
4121       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4122     } else if (Amt.ugt(NVTBits)) {
4123       Lo = MIRBuilder.buildLShr(NVT, InH,
4124                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4125       Hi = MIRBuilder.buildConstant(NVT, 0);
4126     } else if (Amt == NVTBits) {
4127       Lo = InH;
4128       Hi = MIRBuilder.buildConstant(NVT, 0);
4129     } else {
4130       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4131 
4132       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4133       auto OrRHS = MIRBuilder.buildShl(
4134           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4135 
4136       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4137       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4138     }
4139   } else {
4140     if (Amt.ugt(VTBits)) {
4141       Hi = Lo = MIRBuilder.buildAShr(
4142           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4143     } else if (Amt.ugt(NVTBits)) {
4144       Lo = MIRBuilder.buildAShr(NVT, InH,
4145                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4146       Hi = MIRBuilder.buildAShr(NVT, InH,
4147                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4148     } else if (Amt == NVTBits) {
4149       Lo = InH;
4150       Hi = MIRBuilder.buildAShr(NVT, InH,
4151                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4152     } else {
4153       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4154 
4155       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4156       auto OrRHS = MIRBuilder.buildShl(
4157           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4158 
4159       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4160       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4161     }
4162   }
4163 
4164   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4165   MI.eraseFromParent();
4166 
4167   return Legalized;
4168 }
4169 
4170 // TODO: Optimize if constant shift amount.
4171 LegalizerHelper::LegalizeResult
4172 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4173                                    LLT RequestedTy) {
4174   if (TypeIdx == 1) {
4175     Observer.changingInstr(MI);
4176     narrowScalarSrc(MI, RequestedTy, 2);
4177     Observer.changedInstr(MI);
4178     return Legalized;
4179   }
4180 
4181   Register DstReg = MI.getOperand(0).getReg();
4182   LLT DstTy = MRI.getType(DstReg);
4183   if (DstTy.isVector())
4184     return UnableToLegalize;
4185 
4186   Register Amt = MI.getOperand(2).getReg();
4187   LLT ShiftAmtTy = MRI.getType(Amt);
4188   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4189   if (DstEltSize % 2 != 0)
4190     return UnableToLegalize;
4191 
4192   // Ignore the input type. We can only go to exactly half the size of the
4193   // input. If that isn't small enough, the resulting pieces will be further
4194   // legalized.
4195   const unsigned NewBitSize = DstEltSize / 2;
4196   const LLT HalfTy = LLT::scalar(NewBitSize);
4197   const LLT CondTy = LLT::scalar(1);
4198 
4199   if (const MachineInstr *KShiftAmt =
4200           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4201     return narrowScalarShiftByConstant(
4202         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4203   }
4204 
4205   // TODO: Expand with known bits.
4206 
4207   // Handle the fully general expansion by an unknown amount.
4208   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4209 
4210   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4211   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4212   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4213 
4214   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4215   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4216 
4217   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4218   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4219   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4220 
4221   Register ResultRegs[2];
4222   switch (MI.getOpcode()) {
4223   case TargetOpcode::G_SHL: {
4224     // Short: ShAmt < NewBitSize
4225     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4226 
4227     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4228     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4229     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4230 
4231     // Long: ShAmt >= NewBitSize
4232     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4233     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4234 
4235     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4236     auto Hi = MIRBuilder.buildSelect(
4237         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4238 
4239     ResultRegs[0] = Lo.getReg(0);
4240     ResultRegs[1] = Hi.getReg(0);
4241     break;
4242   }
4243   case TargetOpcode::G_LSHR:
4244   case TargetOpcode::G_ASHR: {
4245     // Short: ShAmt < NewBitSize
4246     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4247 
4248     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4249     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4250     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4251 
4252     // Long: ShAmt >= NewBitSize
4253     MachineInstrBuilder HiL;
4254     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4255       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4256     } else {
4257       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4258       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4259     }
4260     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4261                                      {InH, AmtExcess});     // Lo from Hi part.
4262 
4263     auto Lo = MIRBuilder.buildSelect(
4264         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4265 
4266     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4267 
4268     ResultRegs[0] = Lo.getReg(0);
4269     ResultRegs[1] = Hi.getReg(0);
4270     break;
4271   }
4272   default:
4273     llvm_unreachable("not a shift");
4274   }
4275 
4276   MIRBuilder.buildMerge(DstReg, ResultRegs);
4277   MI.eraseFromParent();
4278   return Legalized;
4279 }
4280 
4281 LegalizerHelper::LegalizeResult
4282 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4283                                        LLT MoreTy) {
4284   assert(TypeIdx == 0 && "Expecting only Idx 0");
4285 
4286   Observer.changingInstr(MI);
4287   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4288     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4289     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4290     moreElementsVectorSrc(MI, MoreTy, I);
4291   }
4292 
4293   MachineBasicBlock &MBB = *MI.getParent();
4294   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4295   moreElementsVectorDst(MI, MoreTy, 0);
4296   Observer.changedInstr(MI);
4297   return Legalized;
4298 }
4299 
4300 LegalizerHelper::LegalizeResult
4301 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4302                                     LLT MoreTy) {
4303   unsigned Opc = MI.getOpcode();
4304   switch (Opc) {
4305   case TargetOpcode::G_IMPLICIT_DEF:
4306   case TargetOpcode::G_LOAD: {
4307     if (TypeIdx != 0)
4308       return UnableToLegalize;
4309     Observer.changingInstr(MI);
4310     moreElementsVectorDst(MI, MoreTy, 0);
4311     Observer.changedInstr(MI);
4312     return Legalized;
4313   }
4314   case TargetOpcode::G_STORE:
4315     if (TypeIdx != 0)
4316       return UnableToLegalize;
4317     Observer.changingInstr(MI);
4318     moreElementsVectorSrc(MI, MoreTy, 0);
4319     Observer.changedInstr(MI);
4320     return Legalized;
4321   case TargetOpcode::G_AND:
4322   case TargetOpcode::G_OR:
4323   case TargetOpcode::G_XOR:
4324   case TargetOpcode::G_SMIN:
4325   case TargetOpcode::G_SMAX:
4326   case TargetOpcode::G_UMIN:
4327   case TargetOpcode::G_UMAX:
4328   case TargetOpcode::G_FMINNUM:
4329   case TargetOpcode::G_FMAXNUM:
4330   case TargetOpcode::G_FMINNUM_IEEE:
4331   case TargetOpcode::G_FMAXNUM_IEEE:
4332   case TargetOpcode::G_FMINIMUM:
4333   case TargetOpcode::G_FMAXIMUM: {
4334     Observer.changingInstr(MI);
4335     moreElementsVectorSrc(MI, MoreTy, 1);
4336     moreElementsVectorSrc(MI, MoreTy, 2);
4337     moreElementsVectorDst(MI, MoreTy, 0);
4338     Observer.changedInstr(MI);
4339     return Legalized;
4340   }
4341   case TargetOpcode::G_EXTRACT:
4342     if (TypeIdx != 1)
4343       return UnableToLegalize;
4344     Observer.changingInstr(MI);
4345     moreElementsVectorSrc(MI, MoreTy, 1);
4346     Observer.changedInstr(MI);
4347     return Legalized;
4348   case TargetOpcode::G_INSERT:
4349   case TargetOpcode::G_FREEZE:
4350     if (TypeIdx != 0)
4351       return UnableToLegalize;
4352     Observer.changingInstr(MI);
4353     moreElementsVectorSrc(MI, MoreTy, 1);
4354     moreElementsVectorDst(MI, MoreTy, 0);
4355     Observer.changedInstr(MI);
4356     return Legalized;
4357   case TargetOpcode::G_SELECT:
4358     if (TypeIdx != 0)
4359       return UnableToLegalize;
4360     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4361       return UnableToLegalize;
4362 
4363     Observer.changingInstr(MI);
4364     moreElementsVectorSrc(MI, MoreTy, 2);
4365     moreElementsVectorSrc(MI, MoreTy, 3);
4366     moreElementsVectorDst(MI, MoreTy, 0);
4367     Observer.changedInstr(MI);
4368     return Legalized;
4369   case TargetOpcode::G_UNMERGE_VALUES: {
4370     if (TypeIdx != 1)
4371       return UnableToLegalize;
4372 
4373     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4374     int NumDst = MI.getNumOperands() - 1;
4375     moreElementsVectorSrc(MI, MoreTy, NumDst);
4376 
4377     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4378     for (int I = 0; I != NumDst; ++I)
4379       MIB.addDef(MI.getOperand(I).getReg());
4380 
4381     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4382     for (int I = NumDst; I != NewNumDst; ++I)
4383       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4384 
4385     MIB.addUse(MI.getOperand(NumDst).getReg());
4386     MI.eraseFromParent();
4387     return Legalized;
4388   }
4389   case TargetOpcode::G_PHI:
4390     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4391   default:
4392     return UnableToLegalize;
4393   }
4394 }
4395 
4396 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4397                                         ArrayRef<Register> Src1Regs,
4398                                         ArrayRef<Register> Src2Regs,
4399                                         LLT NarrowTy) {
4400   MachineIRBuilder &B = MIRBuilder;
4401   unsigned SrcParts = Src1Regs.size();
4402   unsigned DstParts = DstRegs.size();
4403 
4404   unsigned DstIdx = 0; // Low bits of the result.
4405   Register FactorSum =
4406       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4407   DstRegs[DstIdx] = FactorSum;
4408 
4409   unsigned CarrySumPrevDstIdx;
4410   SmallVector<Register, 4> Factors;
4411 
4412   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4413     // Collect low parts of muls for DstIdx.
4414     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4415          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4416       MachineInstrBuilder Mul =
4417           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4418       Factors.push_back(Mul.getReg(0));
4419     }
4420     // Collect high parts of muls from previous DstIdx.
4421     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4422          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4423       MachineInstrBuilder Umulh =
4424           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4425       Factors.push_back(Umulh.getReg(0));
4426     }
4427     // Add CarrySum from additions calculated for previous DstIdx.
4428     if (DstIdx != 1) {
4429       Factors.push_back(CarrySumPrevDstIdx);
4430     }
4431 
4432     Register CarrySum;
4433     // Add all factors and accumulate all carries into CarrySum.
4434     if (DstIdx != DstParts - 1) {
4435       MachineInstrBuilder Uaddo =
4436           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4437       FactorSum = Uaddo.getReg(0);
4438       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4439       for (unsigned i = 2; i < Factors.size(); ++i) {
4440         MachineInstrBuilder Uaddo =
4441             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4442         FactorSum = Uaddo.getReg(0);
4443         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4444         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4445       }
4446     } else {
4447       // Since value for the next index is not calculated, neither is CarrySum.
4448       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4449       for (unsigned i = 2; i < Factors.size(); ++i)
4450         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4451     }
4452 
4453     CarrySumPrevDstIdx = CarrySum;
4454     DstRegs[DstIdx] = FactorSum;
4455     Factors.clear();
4456   }
4457 }
4458 
4459 LegalizerHelper::LegalizeResult
4460 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4461   Register DstReg = MI.getOperand(0).getReg();
4462   Register Src1 = MI.getOperand(1).getReg();
4463   Register Src2 = MI.getOperand(2).getReg();
4464 
4465   LLT Ty = MRI.getType(DstReg);
4466   if (Ty.isVector())
4467     return UnableToLegalize;
4468 
4469   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4470   unsigned DstSize = Ty.getSizeInBits();
4471   unsigned NarrowSize = NarrowTy.getSizeInBits();
4472   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4473     return UnableToLegalize;
4474 
4475   unsigned NumDstParts = DstSize / NarrowSize;
4476   unsigned NumSrcParts = SrcSize / NarrowSize;
4477   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4478   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4479 
4480   SmallVector<Register, 2> Src1Parts, Src2Parts;
4481   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4482   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4483   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4484   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4485 
4486   // Take only high half of registers if this is high mul.
4487   ArrayRef<Register> DstRegs(
4488       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4489   MIRBuilder.buildMerge(DstReg, DstRegs);
4490   MI.eraseFromParent();
4491   return Legalized;
4492 }
4493 
4494 LegalizerHelper::LegalizeResult
4495 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4496                                      LLT NarrowTy) {
4497   if (TypeIdx != 1)
4498     return UnableToLegalize;
4499 
4500   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4501 
4502   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4503   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4504   // NarrowSize.
4505   if (SizeOp1 % NarrowSize != 0)
4506     return UnableToLegalize;
4507   int NumParts = SizeOp1 / NarrowSize;
4508 
4509   SmallVector<Register, 2> SrcRegs, DstRegs;
4510   SmallVector<uint64_t, 2> Indexes;
4511   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4512 
4513   Register OpReg = MI.getOperand(0).getReg();
4514   uint64_t OpStart = MI.getOperand(2).getImm();
4515   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4516   for (int i = 0; i < NumParts; ++i) {
4517     unsigned SrcStart = i * NarrowSize;
4518 
4519     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4520       // No part of the extract uses this subregister, ignore it.
4521       continue;
4522     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4523       // The entire subregister is extracted, forward the value.
4524       DstRegs.push_back(SrcRegs[i]);
4525       continue;
4526     }
4527 
4528     // OpSegStart is where this destination segment would start in OpReg if it
4529     // extended infinitely in both directions.
4530     int64_t ExtractOffset;
4531     uint64_t SegSize;
4532     if (OpStart < SrcStart) {
4533       ExtractOffset = 0;
4534       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4535     } else {
4536       ExtractOffset = OpStart - SrcStart;
4537       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4538     }
4539 
4540     Register SegReg = SrcRegs[i];
4541     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4542       // A genuine extract is needed.
4543       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4544       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4545     }
4546 
4547     DstRegs.push_back(SegReg);
4548   }
4549 
4550   Register DstReg = MI.getOperand(0).getReg();
4551   if (MRI.getType(DstReg).isVector())
4552     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4553   else if (DstRegs.size() > 1)
4554     MIRBuilder.buildMerge(DstReg, DstRegs);
4555   else
4556     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4557   MI.eraseFromParent();
4558   return Legalized;
4559 }
4560 
4561 LegalizerHelper::LegalizeResult
4562 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4563                                     LLT NarrowTy) {
4564   // FIXME: Don't know how to handle secondary types yet.
4565   if (TypeIdx != 0)
4566     return UnableToLegalize;
4567 
4568   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4569   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4570 
4571   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4572   // NarrowSize.
4573   if (SizeOp0 % NarrowSize != 0)
4574     return UnableToLegalize;
4575 
4576   int NumParts = SizeOp0 / NarrowSize;
4577 
4578   SmallVector<Register, 2> SrcRegs, DstRegs;
4579   SmallVector<uint64_t, 2> Indexes;
4580   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4581 
4582   Register OpReg = MI.getOperand(2).getReg();
4583   uint64_t OpStart = MI.getOperand(3).getImm();
4584   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4585   for (int i = 0; i < NumParts; ++i) {
4586     unsigned DstStart = i * NarrowSize;
4587 
4588     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4589       // No part of the insert affects this subregister, forward the original.
4590       DstRegs.push_back(SrcRegs[i]);
4591       continue;
4592     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4593       // The entire subregister is defined by this insert, forward the new
4594       // value.
4595       DstRegs.push_back(OpReg);
4596       continue;
4597     }
4598 
4599     // OpSegStart is where this destination segment would start in OpReg if it
4600     // extended infinitely in both directions.
4601     int64_t ExtractOffset, InsertOffset;
4602     uint64_t SegSize;
4603     if (OpStart < DstStart) {
4604       InsertOffset = 0;
4605       ExtractOffset = DstStart - OpStart;
4606       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4607     } else {
4608       InsertOffset = OpStart - DstStart;
4609       ExtractOffset = 0;
4610       SegSize =
4611         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4612     }
4613 
4614     Register SegReg = OpReg;
4615     if (ExtractOffset != 0 || SegSize != OpSize) {
4616       // A genuine extract is needed.
4617       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4618       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4619     }
4620 
4621     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4622     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4623     DstRegs.push_back(DstReg);
4624   }
4625 
4626   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4627   Register DstReg = MI.getOperand(0).getReg();
4628   if(MRI.getType(DstReg).isVector())
4629     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4630   else
4631     MIRBuilder.buildMerge(DstReg, DstRegs);
4632   MI.eraseFromParent();
4633   return Legalized;
4634 }
4635 
4636 LegalizerHelper::LegalizeResult
4637 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4638                                    LLT NarrowTy) {
4639   Register DstReg = MI.getOperand(0).getReg();
4640   LLT DstTy = MRI.getType(DstReg);
4641 
4642   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4643 
4644   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4645   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4646   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4647   LLT LeftoverTy;
4648   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4649                     Src0Regs, Src0LeftoverRegs))
4650     return UnableToLegalize;
4651 
4652   LLT Unused;
4653   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4654                     Src1Regs, Src1LeftoverRegs))
4655     llvm_unreachable("inconsistent extractParts result");
4656 
4657   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4658     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4659                                         {Src0Regs[I], Src1Regs[I]});
4660     DstRegs.push_back(Inst.getReg(0));
4661   }
4662 
4663   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4664     auto Inst = MIRBuilder.buildInstr(
4665       MI.getOpcode(),
4666       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4667     DstLeftoverRegs.push_back(Inst.getReg(0));
4668   }
4669 
4670   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4671               LeftoverTy, DstLeftoverRegs);
4672 
4673   MI.eraseFromParent();
4674   return Legalized;
4675 }
4676 
4677 LegalizerHelper::LegalizeResult
4678 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4679                                  LLT NarrowTy) {
4680   if (TypeIdx != 0)
4681     return UnableToLegalize;
4682 
4683   Register DstReg = MI.getOperand(0).getReg();
4684   Register SrcReg = MI.getOperand(1).getReg();
4685 
4686   LLT DstTy = MRI.getType(DstReg);
4687   if (DstTy.isVector())
4688     return UnableToLegalize;
4689 
4690   SmallVector<Register, 8> Parts;
4691   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4692   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4693   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4694 
4695   MI.eraseFromParent();
4696   return Legalized;
4697 }
4698 
4699 LegalizerHelper::LegalizeResult
4700 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4701                                     LLT NarrowTy) {
4702   if (TypeIdx != 0)
4703     return UnableToLegalize;
4704 
4705   Register CondReg = MI.getOperand(1).getReg();
4706   LLT CondTy = MRI.getType(CondReg);
4707   if (CondTy.isVector()) // TODO: Handle vselect
4708     return UnableToLegalize;
4709 
4710   Register DstReg = MI.getOperand(0).getReg();
4711   LLT DstTy = MRI.getType(DstReg);
4712 
4713   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4714   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4715   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4716   LLT LeftoverTy;
4717   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4718                     Src1Regs, Src1LeftoverRegs))
4719     return UnableToLegalize;
4720 
4721   LLT Unused;
4722   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4723                     Src2Regs, Src2LeftoverRegs))
4724     llvm_unreachable("inconsistent extractParts result");
4725 
4726   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4727     auto Select = MIRBuilder.buildSelect(NarrowTy,
4728                                          CondReg, Src1Regs[I], Src2Regs[I]);
4729     DstRegs.push_back(Select.getReg(0));
4730   }
4731 
4732   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4733     auto Select = MIRBuilder.buildSelect(
4734       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4735     DstLeftoverRegs.push_back(Select.getReg(0));
4736   }
4737 
4738   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4739               LeftoverTy, DstLeftoverRegs);
4740 
4741   MI.eraseFromParent();
4742   return Legalized;
4743 }
4744 
4745 LegalizerHelper::LegalizeResult
4746 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4747                                   LLT NarrowTy) {
4748   if (TypeIdx != 1)
4749     return UnableToLegalize;
4750 
4751   Register DstReg = MI.getOperand(0).getReg();
4752   Register SrcReg = MI.getOperand(1).getReg();
4753   LLT DstTy = MRI.getType(DstReg);
4754   LLT SrcTy = MRI.getType(SrcReg);
4755   unsigned NarrowSize = NarrowTy.getSizeInBits();
4756 
4757   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4758     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4759 
4760     MachineIRBuilder &B = MIRBuilder;
4761     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4762     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4763     auto C_0 = B.buildConstant(NarrowTy, 0);
4764     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4765                                 UnmergeSrc.getReg(1), C_0);
4766     auto LoCTLZ = IsUndef ?
4767       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4768       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4769     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4770     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4771     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4772     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4773 
4774     MI.eraseFromParent();
4775     return Legalized;
4776   }
4777 
4778   return UnableToLegalize;
4779 }
4780 
4781 LegalizerHelper::LegalizeResult
4782 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4783                                   LLT NarrowTy) {
4784   if (TypeIdx != 1)
4785     return UnableToLegalize;
4786 
4787   Register DstReg = MI.getOperand(0).getReg();
4788   Register SrcReg = MI.getOperand(1).getReg();
4789   LLT DstTy = MRI.getType(DstReg);
4790   LLT SrcTy = MRI.getType(SrcReg);
4791   unsigned NarrowSize = NarrowTy.getSizeInBits();
4792 
4793   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4794     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4795 
4796     MachineIRBuilder &B = MIRBuilder;
4797     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4798     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4799     auto C_0 = B.buildConstant(NarrowTy, 0);
4800     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4801                                 UnmergeSrc.getReg(0), C_0);
4802     auto HiCTTZ = IsUndef ?
4803       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4804       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4805     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4806     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4807     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4808     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4809 
4810     MI.eraseFromParent();
4811     return Legalized;
4812   }
4813 
4814   return UnableToLegalize;
4815 }
4816 
4817 LegalizerHelper::LegalizeResult
4818 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4819                                    LLT NarrowTy) {
4820   if (TypeIdx != 1)
4821     return UnableToLegalize;
4822 
4823   Register DstReg = MI.getOperand(0).getReg();
4824   LLT DstTy = MRI.getType(DstReg);
4825   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4826   unsigned NarrowSize = NarrowTy.getSizeInBits();
4827 
4828   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4829     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4830 
4831     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4832     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4833     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4834 
4835     MI.eraseFromParent();
4836     return Legalized;
4837   }
4838 
4839   return UnableToLegalize;
4840 }
4841 
4842 LegalizerHelper::LegalizeResult
4843 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4844   unsigned Opc = MI.getOpcode();
4845   const auto &TII = MIRBuilder.getTII();
4846   auto isSupported = [this](const LegalityQuery &Q) {
4847     auto QAction = LI.getAction(Q).Action;
4848     return QAction == Legal || QAction == Libcall || QAction == Custom;
4849   };
4850   switch (Opc) {
4851   default:
4852     return UnableToLegalize;
4853   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4854     // This trivially expands to CTLZ.
4855     Observer.changingInstr(MI);
4856     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4857     Observer.changedInstr(MI);
4858     return Legalized;
4859   }
4860   case TargetOpcode::G_CTLZ: {
4861     Register DstReg = MI.getOperand(0).getReg();
4862     Register SrcReg = MI.getOperand(1).getReg();
4863     LLT DstTy = MRI.getType(DstReg);
4864     LLT SrcTy = MRI.getType(SrcReg);
4865     unsigned Len = SrcTy.getSizeInBits();
4866 
4867     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4868       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4869       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4870       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4871       auto ICmp = MIRBuilder.buildICmp(
4872           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4873       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4874       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4875       MI.eraseFromParent();
4876       return Legalized;
4877     }
4878     // for now, we do this:
4879     // NewLen = NextPowerOf2(Len);
4880     // x = x | (x >> 1);
4881     // x = x | (x >> 2);
4882     // ...
4883     // x = x | (x >>16);
4884     // x = x | (x >>32); // for 64-bit input
4885     // Upto NewLen/2
4886     // return Len - popcount(x);
4887     //
4888     // Ref: "Hacker's Delight" by Henry Warren
4889     Register Op = SrcReg;
4890     unsigned NewLen = PowerOf2Ceil(Len);
4891     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4892       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4893       auto MIBOp = MIRBuilder.buildOr(
4894           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4895       Op = MIBOp.getReg(0);
4896     }
4897     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4898     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4899                         MIBPop);
4900     MI.eraseFromParent();
4901     return Legalized;
4902   }
4903   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4904     // This trivially expands to CTTZ.
4905     Observer.changingInstr(MI);
4906     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4907     Observer.changedInstr(MI);
4908     return Legalized;
4909   }
4910   case TargetOpcode::G_CTTZ: {
4911     Register DstReg = MI.getOperand(0).getReg();
4912     Register SrcReg = MI.getOperand(1).getReg();
4913     LLT DstTy = MRI.getType(DstReg);
4914     LLT SrcTy = MRI.getType(SrcReg);
4915 
4916     unsigned Len = SrcTy.getSizeInBits();
4917     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4918       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4919       // zero.
4920       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4921       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4922       auto ICmp = MIRBuilder.buildICmp(
4923           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4924       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4925       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4926       MI.eraseFromParent();
4927       return Legalized;
4928     }
4929     // for now, we use: { return popcount(~x & (x - 1)); }
4930     // unless the target has ctlz but not ctpop, in which case we use:
4931     // { return 32 - nlz(~x & (x-1)); }
4932     // Ref: "Hacker's Delight" by Henry Warren
4933     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4934     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4935     auto MIBTmp = MIRBuilder.buildAnd(
4936         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4937     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4938         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4939       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4940       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4941                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4942       MI.eraseFromParent();
4943       return Legalized;
4944     }
4945     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4946     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4947     return Legalized;
4948   }
4949   case TargetOpcode::G_CTPOP: {
4950     Register SrcReg = MI.getOperand(1).getReg();
4951     LLT Ty = MRI.getType(SrcReg);
4952     unsigned Size = Ty.getSizeInBits();
4953     MachineIRBuilder &B = MIRBuilder;
4954 
4955     // Count set bits in blocks of 2 bits. Default approach would be
4956     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4957     // We use following formula instead:
4958     // B2Count = val - { (val >> 1) & 0x55555555 }
4959     // since it gives same result in blocks of 2 with one instruction less.
4960     auto C_1 = B.buildConstant(Ty, 1);
4961     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4962     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4963     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4964     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4965     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4966 
4967     // In order to get count in blocks of 4 add values from adjacent block of 2.
4968     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4969     auto C_2 = B.buildConstant(Ty, 2);
4970     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4971     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4972     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4973     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4974     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4975     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4976 
4977     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4978     // addition since count value sits in range {0,...,8} and 4 bits are enough
4979     // to hold such binary values. After addition high 4 bits still hold count
4980     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4981     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4982     auto C_4 = B.buildConstant(Ty, 4);
4983     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4984     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4985     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4986     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4987     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4988 
4989     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4990     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4991     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4992     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4993     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4994 
4995     // Shift count result from 8 high bits to low bits.
4996     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4997     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4998 
4999     MI.eraseFromParent();
5000     return Legalized;
5001   }
5002   }
5003 }
5004 
5005 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5006 // representation.
5007 LegalizerHelper::LegalizeResult
5008 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5009   Register Dst = MI.getOperand(0).getReg();
5010   Register Src = MI.getOperand(1).getReg();
5011   const LLT S64 = LLT::scalar(64);
5012   const LLT S32 = LLT::scalar(32);
5013   const LLT S1 = LLT::scalar(1);
5014 
5015   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5016 
5017   // unsigned cul2f(ulong u) {
5018   //   uint lz = clz(u);
5019   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5020   //   u = (u << lz) & 0x7fffffffffffffffUL;
5021   //   ulong t = u & 0xffffffffffUL;
5022   //   uint v = (e << 23) | (uint)(u >> 40);
5023   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5024   //   return as_float(v + r);
5025   // }
5026 
5027   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5028   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5029 
5030   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5031 
5032   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5033   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5034 
5035   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5036   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5037 
5038   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5039   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5040 
5041   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5042 
5043   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5044   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5045 
5046   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5047   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5048   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5049 
5050   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5051   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5052   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5053   auto One = MIRBuilder.buildConstant(S32, 1);
5054 
5055   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5056   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5057   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5058   MIRBuilder.buildAdd(Dst, V, R);
5059 
5060   MI.eraseFromParent();
5061   return Legalized;
5062 }
5063 
5064 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5065   Register Dst = MI.getOperand(0).getReg();
5066   Register Src = MI.getOperand(1).getReg();
5067   LLT DstTy = MRI.getType(Dst);
5068   LLT SrcTy = MRI.getType(Src);
5069 
5070   if (SrcTy == LLT::scalar(1)) {
5071     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5072     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5073     MIRBuilder.buildSelect(Dst, Src, True, False);
5074     MI.eraseFromParent();
5075     return Legalized;
5076   }
5077 
5078   if (SrcTy != LLT::scalar(64))
5079     return UnableToLegalize;
5080 
5081   if (DstTy == LLT::scalar(32)) {
5082     // TODO: SelectionDAG has several alternative expansions to port which may
5083     // be more reasonble depending on the available instructions. If a target
5084     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5085     // intermediate type, this is probably worse.
5086     return lowerU64ToF32BitOps(MI);
5087   }
5088 
5089   return UnableToLegalize;
5090 }
5091 
5092 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5093   Register Dst = MI.getOperand(0).getReg();
5094   Register Src = MI.getOperand(1).getReg();
5095   LLT DstTy = MRI.getType(Dst);
5096   LLT SrcTy = MRI.getType(Src);
5097 
5098   const LLT S64 = LLT::scalar(64);
5099   const LLT S32 = LLT::scalar(32);
5100   const LLT S1 = LLT::scalar(1);
5101 
5102   if (SrcTy == S1) {
5103     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5104     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5105     MIRBuilder.buildSelect(Dst, Src, True, False);
5106     MI.eraseFromParent();
5107     return Legalized;
5108   }
5109 
5110   if (SrcTy != S64)
5111     return UnableToLegalize;
5112 
5113   if (DstTy == S32) {
5114     // signed cl2f(long l) {
5115     //   long s = l >> 63;
5116     //   float r = cul2f((l + s) ^ s);
5117     //   return s ? -r : r;
5118     // }
5119     Register L = Src;
5120     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5121     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5122 
5123     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5124     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5125     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5126 
5127     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5128     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5129                                             MIRBuilder.buildConstant(S64, 0));
5130     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5131     MI.eraseFromParent();
5132     return Legalized;
5133   }
5134 
5135   return UnableToLegalize;
5136 }
5137 
5138 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5139   Register Dst = MI.getOperand(0).getReg();
5140   Register Src = MI.getOperand(1).getReg();
5141   LLT DstTy = MRI.getType(Dst);
5142   LLT SrcTy = MRI.getType(Src);
5143   const LLT S64 = LLT::scalar(64);
5144   const LLT S32 = LLT::scalar(32);
5145 
5146   if (SrcTy != S64 && SrcTy != S32)
5147     return UnableToLegalize;
5148   if (DstTy != S32 && DstTy != S64)
5149     return UnableToLegalize;
5150 
5151   // FPTOSI gives same result as FPTOUI for positive signed integers.
5152   // FPTOUI needs to deal with fp values that convert to unsigned integers
5153   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5154 
5155   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5156   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5157                                                 : APFloat::IEEEdouble(),
5158                     APInt::getNullValue(SrcTy.getSizeInBits()));
5159   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5160 
5161   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5162 
5163   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5164   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5165   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5166   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5167   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5168   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5169   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5170 
5171   const LLT S1 = LLT::scalar(1);
5172 
5173   MachineInstrBuilder FCMP =
5174       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5175   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5176 
5177   MI.eraseFromParent();
5178   return Legalized;
5179 }
5180 
5181 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5182   Register Dst = MI.getOperand(0).getReg();
5183   Register Src = MI.getOperand(1).getReg();
5184   LLT DstTy = MRI.getType(Dst);
5185   LLT SrcTy = MRI.getType(Src);
5186   const LLT S64 = LLT::scalar(64);
5187   const LLT S32 = LLT::scalar(32);
5188 
5189   // FIXME: Only f32 to i64 conversions are supported.
5190   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5191     return UnableToLegalize;
5192 
5193   // Expand f32 -> i64 conversion
5194   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5195   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5196 
5197   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5198 
5199   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5200   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5201 
5202   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5203   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5204 
5205   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5206                                            APInt::getSignMask(SrcEltBits));
5207   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5208   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5209   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5210   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5211 
5212   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5213   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5214   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5215 
5216   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5217   R = MIRBuilder.buildZExt(DstTy, R);
5218 
5219   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5220   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5221   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5222   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5223 
5224   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5225   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5226 
5227   const LLT S1 = LLT::scalar(1);
5228   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5229                                     S1, Exponent, ExponentLoBit);
5230 
5231   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5232 
5233   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5234   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5235 
5236   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5237 
5238   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5239                                           S1, Exponent, ZeroSrcTy);
5240 
5241   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5242   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5243 
5244   MI.eraseFromParent();
5245   return Legalized;
5246 }
5247 
5248 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5249 LegalizerHelper::LegalizeResult
5250 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5251   Register Dst = MI.getOperand(0).getReg();
5252   Register Src = MI.getOperand(1).getReg();
5253 
5254   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5255     return UnableToLegalize;
5256 
5257   const unsigned ExpMask = 0x7ff;
5258   const unsigned ExpBiasf64 = 1023;
5259   const unsigned ExpBiasf16 = 15;
5260   const LLT S32 = LLT::scalar(32);
5261   const LLT S1 = LLT::scalar(1);
5262 
5263   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5264   Register U = Unmerge.getReg(0);
5265   Register UH = Unmerge.getReg(1);
5266 
5267   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5268   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5269 
5270   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5271   // add the f16 bias (15) to get the biased exponent for the f16 format.
5272   E = MIRBuilder.buildAdd(
5273     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5274 
5275   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5276   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5277 
5278   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5279                                        MIRBuilder.buildConstant(S32, 0x1ff));
5280   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5281 
5282   auto Zero = MIRBuilder.buildConstant(S32, 0);
5283   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5284   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5285   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5286 
5287   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5288   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5289   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5290   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5291 
5292   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5293   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5294 
5295   // N = M | (E << 12);
5296   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5297   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5298 
5299   // B = clamp(1-E, 0, 13);
5300   auto One = MIRBuilder.buildConstant(S32, 1);
5301   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5302   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5303   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5304 
5305   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5306                                        MIRBuilder.buildConstant(S32, 0x1000));
5307 
5308   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5309   auto D0 = MIRBuilder.buildShl(S32, D, B);
5310 
5311   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5312                                              D0, SigSetHigh);
5313   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5314   D = MIRBuilder.buildOr(S32, D, D1);
5315 
5316   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5317   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5318 
5319   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5320   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5321 
5322   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5323                                        MIRBuilder.buildConstant(S32, 3));
5324   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5325 
5326   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5327                                        MIRBuilder.buildConstant(S32, 5));
5328   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5329 
5330   V1 = MIRBuilder.buildOr(S32, V0, V1);
5331   V = MIRBuilder.buildAdd(S32, V, V1);
5332 
5333   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5334                                        E, MIRBuilder.buildConstant(S32, 30));
5335   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5336                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5337 
5338   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5339                                          E, MIRBuilder.buildConstant(S32, 1039));
5340   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5341 
5342   // Extract the sign bit.
5343   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5344   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5345 
5346   // Insert the sign bit
5347   V = MIRBuilder.buildOr(S32, Sign, V);
5348 
5349   MIRBuilder.buildTrunc(Dst, V);
5350   MI.eraseFromParent();
5351   return Legalized;
5352 }
5353 
5354 LegalizerHelper::LegalizeResult
5355 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5356   Register Dst = MI.getOperand(0).getReg();
5357   Register Src = MI.getOperand(1).getReg();
5358 
5359   LLT DstTy = MRI.getType(Dst);
5360   LLT SrcTy = MRI.getType(Src);
5361   const LLT S64 = LLT::scalar(64);
5362   const LLT S16 = LLT::scalar(16);
5363 
5364   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5365     return lowerFPTRUNC_F64_TO_F16(MI);
5366 
5367   return UnableToLegalize;
5368 }
5369 
5370 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5371 // multiplication tree.
5372 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5373   Register Dst = MI.getOperand(0).getReg();
5374   Register Src0 = MI.getOperand(1).getReg();
5375   Register Src1 = MI.getOperand(2).getReg();
5376   LLT Ty = MRI.getType(Dst);
5377 
5378   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5379   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5380   MI.eraseFromParent();
5381   return Legalized;
5382 }
5383 
5384 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5385   switch (Opc) {
5386   case TargetOpcode::G_SMIN:
5387     return CmpInst::ICMP_SLT;
5388   case TargetOpcode::G_SMAX:
5389     return CmpInst::ICMP_SGT;
5390   case TargetOpcode::G_UMIN:
5391     return CmpInst::ICMP_ULT;
5392   case TargetOpcode::G_UMAX:
5393     return CmpInst::ICMP_UGT;
5394   default:
5395     llvm_unreachable("not in integer min/max");
5396   }
5397 }
5398 
5399 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5400   Register Dst = MI.getOperand(0).getReg();
5401   Register Src0 = MI.getOperand(1).getReg();
5402   Register Src1 = MI.getOperand(2).getReg();
5403 
5404   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5405   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5406 
5407   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5408   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5409 
5410   MI.eraseFromParent();
5411   return Legalized;
5412 }
5413 
5414 LegalizerHelper::LegalizeResult
5415 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5416   Register Dst = MI.getOperand(0).getReg();
5417   Register Src0 = MI.getOperand(1).getReg();
5418   Register Src1 = MI.getOperand(2).getReg();
5419 
5420   const LLT Src0Ty = MRI.getType(Src0);
5421   const LLT Src1Ty = MRI.getType(Src1);
5422 
5423   const int Src0Size = Src0Ty.getScalarSizeInBits();
5424   const int Src1Size = Src1Ty.getScalarSizeInBits();
5425 
5426   auto SignBitMask = MIRBuilder.buildConstant(
5427     Src0Ty, APInt::getSignMask(Src0Size));
5428 
5429   auto NotSignBitMask = MIRBuilder.buildConstant(
5430     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5431 
5432   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5433   MachineInstr *Or;
5434 
5435   if (Src0Ty == Src1Ty) {
5436     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5437     Or = MIRBuilder.buildOr(Dst, And0, And1);
5438   } else if (Src0Size > Src1Size) {
5439     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5440     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5441     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5442     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5443     Or = MIRBuilder.buildOr(Dst, And0, And1);
5444   } else {
5445     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5446     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5447     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5448     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5449     Or = MIRBuilder.buildOr(Dst, And0, And1);
5450   }
5451 
5452   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5453   // constants are a nan and -0.0, but the final result should preserve
5454   // everything.
5455   if (unsigned Flags = MI.getFlags())
5456     Or->setFlags(Flags);
5457 
5458   MI.eraseFromParent();
5459   return Legalized;
5460 }
5461 
5462 LegalizerHelper::LegalizeResult
5463 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5464   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5465     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5466 
5467   Register Dst = MI.getOperand(0).getReg();
5468   Register Src0 = MI.getOperand(1).getReg();
5469   Register Src1 = MI.getOperand(2).getReg();
5470   LLT Ty = MRI.getType(Dst);
5471 
5472   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5473     // Insert canonicalizes if it's possible we need to quiet to get correct
5474     // sNaN behavior.
5475 
5476     // Note this must be done here, and not as an optimization combine in the
5477     // absence of a dedicate quiet-snan instruction as we're using an
5478     // omni-purpose G_FCANONICALIZE.
5479     if (!isKnownNeverSNaN(Src0, MRI))
5480       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5481 
5482     if (!isKnownNeverSNaN(Src1, MRI))
5483       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5484   }
5485 
5486   // If there are no nans, it's safe to simply replace this with the non-IEEE
5487   // version.
5488   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5489   MI.eraseFromParent();
5490   return Legalized;
5491 }
5492 
5493 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5494   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5495   Register DstReg = MI.getOperand(0).getReg();
5496   LLT Ty = MRI.getType(DstReg);
5497   unsigned Flags = MI.getFlags();
5498 
5499   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5500                                   Flags);
5501   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5502   MI.eraseFromParent();
5503   return Legalized;
5504 }
5505 
5506 LegalizerHelper::LegalizeResult
5507 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5508   Register DstReg = MI.getOperand(0).getReg();
5509   Register X = MI.getOperand(1).getReg();
5510   const unsigned Flags = MI.getFlags();
5511   const LLT Ty = MRI.getType(DstReg);
5512   const LLT CondTy = Ty.changeElementSize(1);
5513 
5514   // round(x) =>
5515   //  t = trunc(x);
5516   //  d = fabs(x - t);
5517   //  o = copysign(1.0f, x);
5518   //  return t + (d >= 0.5 ? o : 0.0);
5519 
5520   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5521 
5522   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5523   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5524   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5525   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5526   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5527   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5528 
5529   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5530                                   Flags);
5531   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5532 
5533   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5534 
5535   MI.eraseFromParent();
5536   return Legalized;
5537 }
5538 
5539 LegalizerHelper::LegalizeResult
5540 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5541   Register DstReg = MI.getOperand(0).getReg();
5542   Register SrcReg = MI.getOperand(1).getReg();
5543   unsigned Flags = MI.getFlags();
5544   LLT Ty = MRI.getType(DstReg);
5545   const LLT CondTy = Ty.changeElementSize(1);
5546 
5547   // result = trunc(src);
5548   // if (src < 0.0 && src != result)
5549   //   result += -1.0.
5550 
5551   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5552   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5553 
5554   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5555                                   SrcReg, Zero, Flags);
5556   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5557                                       SrcReg, Trunc, Flags);
5558   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5559   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5560 
5561   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5562   MI.eraseFromParent();
5563   return Legalized;
5564 }
5565 
5566 LegalizerHelper::LegalizeResult
5567 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5568   const unsigned NumOps = MI.getNumOperands();
5569   Register DstReg = MI.getOperand(0).getReg();
5570   Register Src0Reg = MI.getOperand(1).getReg();
5571   LLT DstTy = MRI.getType(DstReg);
5572   LLT SrcTy = MRI.getType(Src0Reg);
5573   unsigned PartSize = SrcTy.getSizeInBits();
5574 
5575   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5576   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5577 
5578   for (unsigned I = 2; I != NumOps; ++I) {
5579     const unsigned Offset = (I - 1) * PartSize;
5580 
5581     Register SrcReg = MI.getOperand(I).getReg();
5582     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5583 
5584     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5585       MRI.createGenericVirtualRegister(WideTy);
5586 
5587     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5588     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5589     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5590     ResultReg = NextResult;
5591   }
5592 
5593   if (DstTy.isPointer()) {
5594     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5595           DstTy.getAddressSpace())) {
5596       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5597       return UnableToLegalize;
5598     }
5599 
5600     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5601   }
5602 
5603   MI.eraseFromParent();
5604   return Legalized;
5605 }
5606 
5607 LegalizerHelper::LegalizeResult
5608 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5609   const unsigned NumDst = MI.getNumOperands() - 1;
5610   Register SrcReg = MI.getOperand(NumDst).getReg();
5611   Register Dst0Reg = MI.getOperand(0).getReg();
5612   LLT DstTy = MRI.getType(Dst0Reg);
5613   if (DstTy.isPointer())
5614     return UnableToLegalize; // TODO
5615 
5616   SrcReg = coerceToScalar(SrcReg);
5617   if (!SrcReg)
5618     return UnableToLegalize;
5619 
5620   // Expand scalarizing unmerge as bitcast to integer and shift.
5621   LLT IntTy = MRI.getType(SrcReg);
5622 
5623   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5624 
5625   const unsigned DstSize = DstTy.getSizeInBits();
5626   unsigned Offset = DstSize;
5627   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5628     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5629     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5630     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5631   }
5632 
5633   MI.eraseFromParent();
5634   return Legalized;
5635 }
5636 
5637 /// Lower a vector extract or insert by writing the vector to a stack temporary
5638 /// and reloading the element or vector.
5639 ///
5640 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5641 ///  =>
5642 ///  %stack_temp = G_FRAME_INDEX
5643 ///  G_STORE %vec, %stack_temp
5644 ///  %idx = clamp(%idx, %vec.getNumElements())
5645 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5646 ///  %dst = G_LOAD %element_ptr
5647 LegalizerHelper::LegalizeResult
5648 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5649   Register DstReg = MI.getOperand(0).getReg();
5650   Register SrcVec = MI.getOperand(1).getReg();
5651   Register InsertVal;
5652   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5653     InsertVal = MI.getOperand(2).getReg();
5654 
5655   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5656 
5657   LLT VecTy = MRI.getType(SrcVec);
5658   LLT EltTy = VecTy.getElementType();
5659   if (!EltTy.isByteSized()) { // Not implemented.
5660     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5661     return UnableToLegalize;
5662   }
5663 
5664   unsigned EltBytes = EltTy.getSizeInBytes();
5665   Align VecAlign = getStackTemporaryAlignment(VecTy);
5666   Align EltAlign;
5667 
5668   MachinePointerInfo PtrInfo;
5669   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5670                                         VecAlign, PtrInfo);
5671   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5672 
5673   // Get the pointer to the element, and be sure not to hit undefined behavior
5674   // if the index is out of bounds.
5675   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5676 
5677   int64_t IdxVal;
5678   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5679     int64_t Offset = IdxVal * EltBytes;
5680     PtrInfo = PtrInfo.getWithOffset(Offset);
5681     EltAlign = commonAlignment(VecAlign, Offset);
5682   } else {
5683     // We lose information with a variable offset.
5684     EltAlign = getStackTemporaryAlignment(EltTy);
5685     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5686   }
5687 
5688   if (InsertVal) {
5689     // Write the inserted element
5690     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5691 
5692     // Reload the whole vector.
5693     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5694   } else {
5695     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5696   }
5697 
5698   MI.eraseFromParent();
5699   return Legalized;
5700 }
5701 
5702 LegalizerHelper::LegalizeResult
5703 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5704   Register DstReg = MI.getOperand(0).getReg();
5705   Register Src0Reg = MI.getOperand(1).getReg();
5706   Register Src1Reg = MI.getOperand(2).getReg();
5707   LLT Src0Ty = MRI.getType(Src0Reg);
5708   LLT DstTy = MRI.getType(DstReg);
5709   LLT IdxTy = LLT::scalar(32);
5710 
5711   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5712 
5713   if (DstTy.isScalar()) {
5714     if (Src0Ty.isVector())
5715       return UnableToLegalize;
5716 
5717     // This is just a SELECT.
5718     assert(Mask.size() == 1 && "Expected a single mask element");
5719     Register Val;
5720     if (Mask[0] < 0 || Mask[0] > 1)
5721       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5722     else
5723       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5724     MIRBuilder.buildCopy(DstReg, Val);
5725     MI.eraseFromParent();
5726     return Legalized;
5727   }
5728 
5729   Register Undef;
5730   SmallVector<Register, 32> BuildVec;
5731   LLT EltTy = DstTy.getElementType();
5732 
5733   for (int Idx : Mask) {
5734     if (Idx < 0) {
5735       if (!Undef.isValid())
5736         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5737       BuildVec.push_back(Undef);
5738       continue;
5739     }
5740 
5741     if (Src0Ty.isScalar()) {
5742       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5743     } else {
5744       int NumElts = Src0Ty.getNumElements();
5745       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5746       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5747       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5748       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5749       BuildVec.push_back(Extract.getReg(0));
5750     }
5751   }
5752 
5753   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5754   MI.eraseFromParent();
5755   return Legalized;
5756 }
5757 
5758 LegalizerHelper::LegalizeResult
5759 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5760   const auto &MF = *MI.getMF();
5761   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5762   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5763     return UnableToLegalize;
5764 
5765   Register Dst = MI.getOperand(0).getReg();
5766   Register AllocSize = MI.getOperand(1).getReg();
5767   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5768 
5769   LLT PtrTy = MRI.getType(Dst);
5770   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5771 
5772   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5773   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5774   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5775 
5776   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5777   // have to generate an extra instruction to negate the alloc and then use
5778   // G_PTR_ADD to add the negative offset.
5779   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5780   if (Alignment > Align(1)) {
5781     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5782     AlignMask.negate();
5783     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5784     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5785   }
5786 
5787   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5788   MIRBuilder.buildCopy(SPReg, SPTmp);
5789   MIRBuilder.buildCopy(Dst, SPTmp);
5790 
5791   MI.eraseFromParent();
5792   return Legalized;
5793 }
5794 
5795 LegalizerHelper::LegalizeResult
5796 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5797   Register Dst = MI.getOperand(0).getReg();
5798   Register Src = MI.getOperand(1).getReg();
5799   unsigned Offset = MI.getOperand(2).getImm();
5800 
5801   LLT DstTy = MRI.getType(Dst);
5802   LLT SrcTy = MRI.getType(Src);
5803 
5804   if (DstTy.isScalar() &&
5805       (SrcTy.isScalar() ||
5806        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5807     LLT SrcIntTy = SrcTy;
5808     if (!SrcTy.isScalar()) {
5809       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5810       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5811     }
5812 
5813     if (Offset == 0)
5814       MIRBuilder.buildTrunc(Dst, Src);
5815     else {
5816       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5817       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5818       MIRBuilder.buildTrunc(Dst, Shr);
5819     }
5820 
5821     MI.eraseFromParent();
5822     return Legalized;
5823   }
5824 
5825   return UnableToLegalize;
5826 }
5827 
5828 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5829   Register Dst = MI.getOperand(0).getReg();
5830   Register Src = MI.getOperand(1).getReg();
5831   Register InsertSrc = MI.getOperand(2).getReg();
5832   uint64_t Offset = MI.getOperand(3).getImm();
5833 
5834   LLT DstTy = MRI.getType(Src);
5835   LLT InsertTy = MRI.getType(InsertSrc);
5836 
5837   if (InsertTy.isVector() ||
5838       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5839     return UnableToLegalize;
5840 
5841   const DataLayout &DL = MIRBuilder.getDataLayout();
5842   if ((DstTy.isPointer() &&
5843        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5844       (InsertTy.isPointer() &&
5845        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5846     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5847     return UnableToLegalize;
5848   }
5849 
5850   LLT IntDstTy = DstTy;
5851 
5852   if (!DstTy.isScalar()) {
5853     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5854     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5855   }
5856 
5857   if (!InsertTy.isScalar()) {
5858     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5859     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5860   }
5861 
5862   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5863   if (Offset != 0) {
5864     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5865     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5866   }
5867 
5868   APInt MaskVal = APInt::getBitsSetWithWrap(
5869       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5870 
5871   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5872   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5873   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5874 
5875   MIRBuilder.buildCast(Dst, Or);
5876   MI.eraseFromParent();
5877   return Legalized;
5878 }
5879 
5880 LegalizerHelper::LegalizeResult
5881 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5882   Register Dst0 = MI.getOperand(0).getReg();
5883   Register Dst1 = MI.getOperand(1).getReg();
5884   Register LHS = MI.getOperand(2).getReg();
5885   Register RHS = MI.getOperand(3).getReg();
5886   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5887 
5888   LLT Ty = MRI.getType(Dst0);
5889   LLT BoolTy = MRI.getType(Dst1);
5890 
5891   if (IsAdd)
5892     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5893   else
5894     MIRBuilder.buildSub(Dst0, LHS, RHS);
5895 
5896   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5897 
5898   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5899 
5900   // For an addition, the result should be less than one of the operands (LHS)
5901   // if and only if the other operand (RHS) is negative, otherwise there will
5902   // be overflow.
5903   // For a subtraction, the result should be less than one of the operands
5904   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5905   // otherwise there will be overflow.
5906   auto ResultLowerThanLHS =
5907       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5908   auto ConditionRHS = MIRBuilder.buildICmp(
5909       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5910 
5911   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5912   MI.eraseFromParent();
5913   return Legalized;
5914 }
5915 
5916 LegalizerHelper::LegalizeResult
5917 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5918   Register Res = MI.getOperand(0).getReg();
5919   Register LHS = MI.getOperand(1).getReg();
5920   Register RHS = MI.getOperand(2).getReg();
5921   LLT Ty = MRI.getType(Res);
5922   bool IsSigned;
5923   bool IsAdd;
5924   unsigned BaseOp;
5925   switch (MI.getOpcode()) {
5926   default:
5927     llvm_unreachable("unexpected addsat/subsat opcode");
5928   case TargetOpcode::G_UADDSAT:
5929     IsSigned = false;
5930     IsAdd = true;
5931     BaseOp = TargetOpcode::G_ADD;
5932     break;
5933   case TargetOpcode::G_SADDSAT:
5934     IsSigned = true;
5935     IsAdd = true;
5936     BaseOp = TargetOpcode::G_ADD;
5937     break;
5938   case TargetOpcode::G_USUBSAT:
5939     IsSigned = false;
5940     IsAdd = false;
5941     BaseOp = TargetOpcode::G_SUB;
5942     break;
5943   case TargetOpcode::G_SSUBSAT:
5944     IsSigned = true;
5945     IsAdd = false;
5946     BaseOp = TargetOpcode::G_SUB;
5947     break;
5948   }
5949 
5950   if (IsSigned) {
5951     // sadd.sat(a, b) ->
5952     //   hi = 0x7fffffff - smax(a, 0)
5953     //   lo = 0x80000000 - smin(a, 0)
5954     //   a + smin(smax(lo, b), hi)
5955     // ssub.sat(a, b) ->
5956     //   lo = smax(a, -1) - 0x7fffffff
5957     //   hi = smin(a, -1) - 0x80000000
5958     //   a - smin(smax(lo, b), hi)
5959     // TODO: AMDGPU can use a "median of 3" instruction here:
5960     //   a +/- med3(lo, b, hi)
5961     uint64_t NumBits = Ty.getScalarSizeInBits();
5962     auto MaxVal =
5963         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5964     auto MinVal =
5965         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5966     MachineInstrBuilder Hi, Lo;
5967     if (IsAdd) {
5968       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5969       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5970       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5971     } else {
5972       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5973       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5974                                MaxVal);
5975       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5976                                MinVal);
5977     }
5978     auto RHSClamped =
5979         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5980     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5981   } else {
5982     // uadd.sat(a, b) -> a + umin(~a, b)
5983     // usub.sat(a, b) -> a - umin(a, b)
5984     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5985     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5986     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5987   }
5988 
5989   MI.eraseFromParent();
5990   return Legalized;
5991 }
5992 
5993 LegalizerHelper::LegalizeResult
5994 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5995   Register Res = MI.getOperand(0).getReg();
5996   Register LHS = MI.getOperand(1).getReg();
5997   Register RHS = MI.getOperand(2).getReg();
5998   LLT Ty = MRI.getType(Res);
5999   LLT BoolTy = Ty.changeElementSize(1);
6000   bool IsSigned;
6001   bool IsAdd;
6002   unsigned OverflowOp;
6003   switch (MI.getOpcode()) {
6004   default:
6005     llvm_unreachable("unexpected addsat/subsat opcode");
6006   case TargetOpcode::G_UADDSAT:
6007     IsSigned = false;
6008     IsAdd = true;
6009     OverflowOp = TargetOpcode::G_UADDO;
6010     break;
6011   case TargetOpcode::G_SADDSAT:
6012     IsSigned = true;
6013     IsAdd = true;
6014     OverflowOp = TargetOpcode::G_SADDO;
6015     break;
6016   case TargetOpcode::G_USUBSAT:
6017     IsSigned = false;
6018     IsAdd = false;
6019     OverflowOp = TargetOpcode::G_USUBO;
6020     break;
6021   case TargetOpcode::G_SSUBSAT:
6022     IsSigned = true;
6023     IsAdd = false;
6024     OverflowOp = TargetOpcode::G_SSUBO;
6025     break;
6026   }
6027 
6028   auto OverflowRes =
6029       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6030   Register Tmp = OverflowRes.getReg(0);
6031   Register Ov = OverflowRes.getReg(1);
6032   MachineInstrBuilder Clamp;
6033   if (IsSigned) {
6034     // sadd.sat(a, b) ->
6035     //   {tmp, ov} = saddo(a, b)
6036     //   ov ? (tmp >>s 31) + 0x80000000 : r
6037     // ssub.sat(a, b) ->
6038     //   {tmp, ov} = ssubo(a, b)
6039     //   ov ? (tmp >>s 31) + 0x80000000 : r
6040     uint64_t NumBits = Ty.getScalarSizeInBits();
6041     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6042     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6043     auto MinVal =
6044         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6045     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6046   } else {
6047     // uadd.sat(a, b) ->
6048     //   {tmp, ov} = uaddo(a, b)
6049     //   ov ? 0xffffffff : tmp
6050     // usub.sat(a, b) ->
6051     //   {tmp, ov} = usubo(a, b)
6052     //   ov ? 0 : tmp
6053     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6054   }
6055   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6056 
6057   MI.eraseFromParent();
6058   return Legalized;
6059 }
6060 
6061 LegalizerHelper::LegalizeResult
6062 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6063   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6064           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6065          "Expected shlsat opcode!");
6066   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6067   Register Res = MI.getOperand(0).getReg();
6068   Register LHS = MI.getOperand(1).getReg();
6069   Register RHS = MI.getOperand(2).getReg();
6070   LLT Ty = MRI.getType(Res);
6071   LLT BoolTy = Ty.changeElementSize(1);
6072 
6073   unsigned BW = Ty.getScalarSizeInBits();
6074   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6075   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6076                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6077 
6078   MachineInstrBuilder SatVal;
6079   if (IsSigned) {
6080     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6081     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6082     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6083                                     MIRBuilder.buildConstant(Ty, 0));
6084     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6085   } else {
6086     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6087   }
6088   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6089   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6090 
6091   MI.eraseFromParent();
6092   return Legalized;
6093 }
6094 
6095 LegalizerHelper::LegalizeResult
6096 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6097   Register Dst = MI.getOperand(0).getReg();
6098   Register Src = MI.getOperand(1).getReg();
6099   const LLT Ty = MRI.getType(Src);
6100   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6101   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6102 
6103   // Swap most and least significant byte, set remaining bytes in Res to zero.
6104   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6105   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6106   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6107   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6108 
6109   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6110   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6111     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6112     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6113     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6114     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6115     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6116     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6117     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6118     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6119     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6120     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6121     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6122     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6123   }
6124   Res.getInstr()->getOperand(0).setReg(Dst);
6125 
6126   MI.eraseFromParent();
6127   return Legalized;
6128 }
6129 
6130 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6131 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6132                                  MachineInstrBuilder Src, APInt Mask) {
6133   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6134   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6135   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6136   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6137   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6138   return B.buildOr(Dst, LHS, RHS);
6139 }
6140 
6141 LegalizerHelper::LegalizeResult
6142 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6143   Register Dst = MI.getOperand(0).getReg();
6144   Register Src = MI.getOperand(1).getReg();
6145   const LLT Ty = MRI.getType(Src);
6146   unsigned Size = Ty.getSizeInBits();
6147 
6148   MachineInstrBuilder BSWAP =
6149       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6150 
6151   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6152   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6153   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6154   MachineInstrBuilder Swap4 =
6155       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6156 
6157   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6158   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6159   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6160   MachineInstrBuilder Swap2 =
6161       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6162 
6163   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6164   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6165   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6166   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6167 
6168   MI.eraseFromParent();
6169   return Legalized;
6170 }
6171 
6172 LegalizerHelper::LegalizeResult
6173 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6174   MachineFunction &MF = MIRBuilder.getMF();
6175 
6176   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6177   int NameOpIdx = IsRead ? 1 : 0;
6178   int ValRegIndex = IsRead ? 0 : 1;
6179 
6180   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6181   const LLT Ty = MRI.getType(ValReg);
6182   const MDString *RegStr = cast<MDString>(
6183     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6184 
6185   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6186   if (!PhysReg.isValid())
6187     return UnableToLegalize;
6188 
6189   if (IsRead)
6190     MIRBuilder.buildCopy(ValReg, PhysReg);
6191   else
6192     MIRBuilder.buildCopy(PhysReg, ValReg);
6193 
6194   MI.eraseFromParent();
6195   return Legalized;
6196 }
6197 
6198 LegalizerHelper::LegalizeResult
6199 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6200   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6201   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6202   Register Result = MI.getOperand(0).getReg();
6203   LLT OrigTy = MRI.getType(Result);
6204   auto SizeInBits = OrigTy.getScalarSizeInBits();
6205   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6206 
6207   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6208   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6209   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6210   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6211 
6212   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6213   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6214   MIRBuilder.buildTrunc(Result, Shifted);
6215 
6216   MI.eraseFromParent();
6217   return Legalized;
6218 }
6219 
6220 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6221   // Implement vector G_SELECT in terms of XOR, AND, OR.
6222   Register DstReg = MI.getOperand(0).getReg();
6223   Register MaskReg = MI.getOperand(1).getReg();
6224   Register Op1Reg = MI.getOperand(2).getReg();
6225   Register Op2Reg = MI.getOperand(3).getReg();
6226   LLT DstTy = MRI.getType(DstReg);
6227   LLT MaskTy = MRI.getType(MaskReg);
6228   LLT Op1Ty = MRI.getType(Op1Reg);
6229   if (!DstTy.isVector())
6230     return UnableToLegalize;
6231 
6232   // Vector selects can have a scalar predicate. If so, splat into a vector and
6233   // finish for later legalization attempts to try again.
6234   if (MaskTy.isScalar()) {
6235     Register MaskElt = MaskReg;
6236     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6237       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6238     // Generate a vector splat idiom to be pattern matched later.
6239     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6240     Observer.changingInstr(MI);
6241     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6242     Observer.changedInstr(MI);
6243     return Legalized;
6244   }
6245 
6246   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6247     return UnableToLegalize;
6248   }
6249 
6250   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6251   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6252   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6253   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6254   MI.eraseFromParent();
6255   return Legalized;
6256 }
6257