1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/GlobalISel/Utils.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/CodeGen/TargetOpcodes.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 37 #define DEBUG_TYPE "legalizer" 38 39 using namespace llvm; 40 using namespace LegalizeActions; 41 using namespace MIPatternMatch; 42 43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 44 /// 45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 46 /// with any leftover piece as type \p LeftoverTy 47 /// 48 /// Returns -1 in the first element of the pair if the breakdown is not 49 /// satisfiable. 50 static std::pair<int, int> 51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 52 assert(!LeftoverTy.isValid() && "this is an out argument"); 53 54 unsigned Size = OrigTy.getSizeInBits(); 55 unsigned NarrowSize = NarrowTy.getSizeInBits(); 56 unsigned NumParts = Size / NarrowSize; 57 unsigned LeftoverSize = Size - NumParts * NarrowSize; 58 assert(Size > NarrowSize); 59 60 if (LeftoverSize == 0) 61 return {NumParts, 0}; 62 63 if (NarrowTy.isVector()) { 64 unsigned EltSize = OrigTy.getScalarSizeInBits(); 65 if (LeftoverSize % EltSize != 0) 66 return {-1, -1}; 67 LeftoverTy = LLT::scalarOrVector( 68 ElementCount::getFixed(LeftoverSize / EltSize), EltSize); 69 } else { 70 LeftoverTy = LLT::scalar(LeftoverSize); 71 } 72 73 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 74 return std::make_pair(NumParts, NumLeftover); 75 } 76 77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 78 79 if (!Ty.isScalar()) 80 return nullptr; 81 82 switch (Ty.getSizeInBits()) { 83 case 16: 84 return Type::getHalfTy(Ctx); 85 case 32: 86 return Type::getFloatTy(Ctx); 87 case 64: 88 return Type::getDoubleTy(Ctx); 89 case 80: 90 return Type::getX86_FP80Ty(Ctx); 91 case 128: 92 return Type::getFP128Ty(Ctx); 93 default: 94 return nullptr; 95 } 96 } 97 98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 99 GISelChangeObserver &Observer, 100 MachineIRBuilder &Builder) 101 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 102 LI(*MF.getSubtarget().getLegalizerInfo()), 103 TLI(*MF.getSubtarget().getTargetLowering()) { } 104 105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 106 GISelChangeObserver &Observer, 107 MachineIRBuilder &B) 108 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 109 TLI(*MF.getSubtarget().getTargetLowering()) { } 110 111 LegalizerHelper::LegalizeResult 112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI, 113 LostDebugLocObserver &LocObserver) { 114 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 115 116 MIRBuilder.setInstrAndDebugLoc(MI); 117 118 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 119 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 120 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 121 auto Step = LI.getAction(MI, MRI); 122 switch (Step.Action) { 123 case Legal: 124 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 125 return AlreadyLegal; 126 case Libcall: 127 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 128 return libcall(MI, LocObserver); 129 case NarrowScalar: 130 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 131 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 132 case WidenScalar: 133 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 134 return widenScalar(MI, Step.TypeIdx, Step.NewType); 135 case Bitcast: 136 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 137 return bitcast(MI, Step.TypeIdx, Step.NewType); 138 case Lower: 139 LLVM_DEBUG(dbgs() << ".. Lower\n"); 140 return lower(MI, Step.TypeIdx, Step.NewType); 141 case FewerElements: 142 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 143 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 144 case MoreElements: 145 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 146 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 147 case Custom: 148 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 149 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 150 default: 151 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 152 return UnableToLegalize; 153 } 154 } 155 156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 157 SmallVectorImpl<Register> &VRegs) { 158 for (int i = 0; i < NumParts; ++i) 159 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 160 MIRBuilder.buildUnmerge(VRegs, Reg); 161 } 162 163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 164 LLT MainTy, LLT &LeftoverTy, 165 SmallVectorImpl<Register> &VRegs, 166 SmallVectorImpl<Register> &LeftoverRegs) { 167 assert(!LeftoverTy.isValid() && "this is an out argument"); 168 169 unsigned RegSize = RegTy.getSizeInBits(); 170 unsigned MainSize = MainTy.getSizeInBits(); 171 unsigned NumParts = RegSize / MainSize; 172 unsigned LeftoverSize = RegSize - NumParts * MainSize; 173 174 // Use an unmerge when possible. 175 if (LeftoverSize == 0) { 176 for (unsigned I = 0; I < NumParts; ++I) 177 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 178 MIRBuilder.buildUnmerge(VRegs, Reg); 179 return true; 180 } 181 182 // Perform irregular split. Leftover is last element of RegPieces. 183 if (MainTy.isVector()) { 184 SmallVector<Register, 8> RegPieces; 185 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); 186 for (unsigned i = 0; i < RegPieces.size() - 1; ++i) 187 VRegs.push_back(RegPieces[i]); 188 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); 189 LeftoverTy = MRI.getType(LeftoverRegs[0]); 190 return true; 191 } 192 193 LeftoverTy = LLT::scalar(LeftoverSize); 194 // For irregular sizes, extract the individual parts. 195 for (unsigned I = 0; I != NumParts; ++I) { 196 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 197 VRegs.push_back(NewReg); 198 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 199 } 200 201 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 202 Offset += LeftoverSize) { 203 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 204 LeftoverRegs.push_back(NewReg); 205 MIRBuilder.buildExtract(NewReg, Reg, Offset); 206 } 207 208 return true; 209 } 210 211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, 212 SmallVectorImpl<Register> &VRegs) { 213 LLT RegTy = MRI.getType(Reg); 214 assert(RegTy.isVector() && "Expected a vector type"); 215 216 LLT EltTy = RegTy.getElementType(); 217 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 218 unsigned RegNumElts = RegTy.getNumElements(); 219 unsigned LeftoverNumElts = RegNumElts % NumElts; 220 unsigned NumNarrowTyPieces = RegNumElts / NumElts; 221 222 // Perfect split without leftover 223 if (LeftoverNumElts == 0) 224 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); 225 226 // Irregular split. Provide direct access to all elements for artifact 227 // combiner using unmerge to elements. Then build vectors with NumElts 228 // elements. Remaining element(s) will be (used to build vector) Leftover. 229 SmallVector<Register, 8> Elts; 230 extractParts(Reg, EltTy, RegNumElts, Elts); 231 232 unsigned Offset = 0; 233 // Requested sub-vectors of NarrowTy. 234 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { 235 ArrayRef<Register> Pieces(&Elts[Offset], NumElts); 236 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 237 } 238 239 // Leftover element(s). 240 if (LeftoverNumElts == 1) { 241 VRegs.push_back(Elts[Offset]); 242 } else { 243 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); 244 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); 245 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0)); 246 } 247 } 248 249 void LegalizerHelper::insertParts(Register DstReg, 250 LLT ResultTy, LLT PartTy, 251 ArrayRef<Register> PartRegs, 252 LLT LeftoverTy, 253 ArrayRef<Register> LeftoverRegs) { 254 if (!LeftoverTy.isValid()) { 255 assert(LeftoverRegs.empty()); 256 257 if (!ResultTy.isVector()) { 258 MIRBuilder.buildMerge(DstReg, PartRegs); 259 return; 260 } 261 262 if (PartTy.isVector()) 263 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 264 else 265 MIRBuilder.buildBuildVector(DstReg, PartRegs); 266 return; 267 } 268 269 // Merge sub-vectors with different number of elements and insert into DstReg. 270 if (ResultTy.isVector()) { 271 assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); 272 SmallVector<Register, 8> AllRegs; 273 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) 274 AllRegs.push_back(Reg); 275 return mergeMixedSubvectors(DstReg, AllRegs); 276 } 277 278 SmallVector<Register> GCDRegs; 279 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); 280 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) 281 extractGCDType(GCDRegs, GCDTy, PartReg); 282 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); 283 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); 284 } 285 286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, 287 Register Reg) { 288 LLT Ty = MRI.getType(Reg); 289 SmallVector<Register, 8> RegElts; 290 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); 291 Elts.append(RegElts); 292 } 293 294 /// Merge \p PartRegs with different types into \p DstReg. 295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg, 296 ArrayRef<Register> PartRegs) { 297 SmallVector<Register, 8> AllElts; 298 for (unsigned i = 0; i < PartRegs.size() - 1; ++i) 299 appendVectorElts(AllElts, PartRegs[i]); 300 301 Register Leftover = PartRegs[PartRegs.size() - 1]; 302 if (MRI.getType(Leftover).isScalar()) 303 AllElts.push_back(Leftover); 304 else 305 appendVectorElts(AllElts, Leftover); 306 307 MIRBuilder.buildMerge(DstReg, AllElts); 308 } 309 310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 312 const MachineInstr &MI) { 313 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 314 315 const int StartIdx = Regs.size(); 316 const int NumResults = MI.getNumOperands() - 1; 317 Regs.resize(Regs.size() + NumResults); 318 for (int I = 0; I != NumResults; ++I) 319 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 320 } 321 322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 323 LLT GCDTy, Register SrcReg) { 324 LLT SrcTy = MRI.getType(SrcReg); 325 if (SrcTy == GCDTy) { 326 // If the source already evenly divides the result type, we don't need to do 327 // anything. 328 Parts.push_back(SrcReg); 329 } else { 330 // Need to split into common type sized pieces. 331 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 332 getUnmergeResults(Parts, *Unmerge); 333 } 334 } 335 336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 337 LLT NarrowTy, Register SrcReg) { 338 LLT SrcTy = MRI.getType(SrcReg); 339 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 340 extractGCDType(Parts, GCDTy, SrcReg); 341 return GCDTy; 342 } 343 344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 345 SmallVectorImpl<Register> &VRegs, 346 unsigned PadStrategy) { 347 LLT LCMTy = getLCMType(DstTy, NarrowTy); 348 349 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 350 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 351 int NumOrigSrc = VRegs.size(); 352 353 Register PadReg; 354 355 // Get a value we can use to pad the source value if the sources won't evenly 356 // cover the result type. 357 if (NumOrigSrc < NumParts * NumSubParts) { 358 if (PadStrategy == TargetOpcode::G_ZEXT) 359 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 360 else if (PadStrategy == TargetOpcode::G_ANYEXT) 361 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 362 else { 363 assert(PadStrategy == TargetOpcode::G_SEXT); 364 365 // Shift the sign bit of the low register through the high register. 366 auto ShiftAmt = 367 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 368 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 369 } 370 } 371 372 // Registers for the final merge to be produced. 373 SmallVector<Register, 4> Remerge(NumParts); 374 375 // Registers needed for intermediate merges, which will be merged into a 376 // source for Remerge. 377 SmallVector<Register, 4> SubMerge(NumSubParts); 378 379 // Once we've fully read off the end of the original source bits, we can reuse 380 // the same high bits for remaining padding elements. 381 Register AllPadReg; 382 383 // Build merges to the LCM type to cover the original result type. 384 for (int I = 0; I != NumParts; ++I) { 385 bool AllMergePartsArePadding = true; 386 387 // Build the requested merges to the requested type. 388 for (int J = 0; J != NumSubParts; ++J) { 389 int Idx = I * NumSubParts + J; 390 if (Idx >= NumOrigSrc) { 391 SubMerge[J] = PadReg; 392 continue; 393 } 394 395 SubMerge[J] = VRegs[Idx]; 396 397 // There are meaningful bits here we can't reuse later. 398 AllMergePartsArePadding = false; 399 } 400 401 // If we've filled up a complete piece with padding bits, we can directly 402 // emit the natural sized constant if applicable, rather than a merge of 403 // smaller constants. 404 if (AllMergePartsArePadding && !AllPadReg) { 405 if (PadStrategy == TargetOpcode::G_ANYEXT) 406 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 407 else if (PadStrategy == TargetOpcode::G_ZEXT) 408 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 409 410 // If this is a sign extension, we can't materialize a trivial constant 411 // with the right type and have to produce a merge. 412 } 413 414 if (AllPadReg) { 415 // Avoid creating additional instructions if we're just adding additional 416 // copies of padding bits. 417 Remerge[I] = AllPadReg; 418 continue; 419 } 420 421 if (NumSubParts == 1) 422 Remerge[I] = SubMerge[0]; 423 else 424 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 425 426 // In the sign extend padding case, re-use the first all-signbit merge. 427 if (AllMergePartsArePadding && !AllPadReg) 428 AllPadReg = Remerge[I]; 429 } 430 431 VRegs = std::move(Remerge); 432 return LCMTy; 433 } 434 435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 436 ArrayRef<Register> RemergeRegs) { 437 LLT DstTy = MRI.getType(DstReg); 438 439 // Create the merge to the widened source, and extract the relevant bits into 440 // the result. 441 442 if (DstTy == LCMTy) { 443 MIRBuilder.buildMerge(DstReg, RemergeRegs); 444 return; 445 } 446 447 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 448 if (DstTy.isScalar() && LCMTy.isScalar()) { 449 MIRBuilder.buildTrunc(DstReg, Remerge); 450 return; 451 } 452 453 if (LCMTy.isVector()) { 454 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 455 SmallVector<Register, 8> UnmergeDefs(NumDefs); 456 UnmergeDefs[0] = DstReg; 457 for (unsigned I = 1; I != NumDefs; ++I) 458 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 459 460 MIRBuilder.buildUnmerge(UnmergeDefs, 461 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 462 return; 463 } 464 465 llvm_unreachable("unhandled case"); 466 } 467 468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 469 #define RTLIBCASE_INT(LibcallPrefix) \ 470 do { \ 471 switch (Size) { \ 472 case 32: \ 473 return RTLIB::LibcallPrefix##32; \ 474 case 64: \ 475 return RTLIB::LibcallPrefix##64; \ 476 case 128: \ 477 return RTLIB::LibcallPrefix##128; \ 478 default: \ 479 llvm_unreachable("unexpected size"); \ 480 } \ 481 } while (0) 482 483 #define RTLIBCASE(LibcallPrefix) \ 484 do { \ 485 switch (Size) { \ 486 case 32: \ 487 return RTLIB::LibcallPrefix##32; \ 488 case 64: \ 489 return RTLIB::LibcallPrefix##64; \ 490 case 80: \ 491 return RTLIB::LibcallPrefix##80; \ 492 case 128: \ 493 return RTLIB::LibcallPrefix##128; \ 494 default: \ 495 llvm_unreachable("unexpected size"); \ 496 } \ 497 } while (0) 498 499 switch (Opcode) { 500 case TargetOpcode::G_SDIV: 501 RTLIBCASE_INT(SDIV_I); 502 case TargetOpcode::G_UDIV: 503 RTLIBCASE_INT(UDIV_I); 504 case TargetOpcode::G_SREM: 505 RTLIBCASE_INT(SREM_I); 506 case TargetOpcode::G_UREM: 507 RTLIBCASE_INT(UREM_I); 508 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 509 RTLIBCASE_INT(CTLZ_I); 510 case TargetOpcode::G_FADD: 511 RTLIBCASE(ADD_F); 512 case TargetOpcode::G_FSUB: 513 RTLIBCASE(SUB_F); 514 case TargetOpcode::G_FMUL: 515 RTLIBCASE(MUL_F); 516 case TargetOpcode::G_FDIV: 517 RTLIBCASE(DIV_F); 518 case TargetOpcode::G_FEXP: 519 RTLIBCASE(EXP_F); 520 case TargetOpcode::G_FEXP2: 521 RTLIBCASE(EXP2_F); 522 case TargetOpcode::G_FREM: 523 RTLIBCASE(REM_F); 524 case TargetOpcode::G_FPOW: 525 RTLIBCASE(POW_F); 526 case TargetOpcode::G_FMA: 527 RTLIBCASE(FMA_F); 528 case TargetOpcode::G_FSIN: 529 RTLIBCASE(SIN_F); 530 case TargetOpcode::G_FCOS: 531 RTLIBCASE(COS_F); 532 case TargetOpcode::G_FLOG10: 533 RTLIBCASE(LOG10_F); 534 case TargetOpcode::G_FLOG: 535 RTLIBCASE(LOG_F); 536 case TargetOpcode::G_FLOG2: 537 RTLIBCASE(LOG2_F); 538 case TargetOpcode::G_FCEIL: 539 RTLIBCASE(CEIL_F); 540 case TargetOpcode::G_FFLOOR: 541 RTLIBCASE(FLOOR_F); 542 case TargetOpcode::G_FMINNUM: 543 RTLIBCASE(FMIN_F); 544 case TargetOpcode::G_FMAXNUM: 545 RTLIBCASE(FMAX_F); 546 case TargetOpcode::G_FSQRT: 547 RTLIBCASE(SQRT_F); 548 case TargetOpcode::G_FRINT: 549 RTLIBCASE(RINT_F); 550 case TargetOpcode::G_FNEARBYINT: 551 RTLIBCASE(NEARBYINT_F); 552 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 553 RTLIBCASE(ROUNDEVEN_F); 554 } 555 llvm_unreachable("Unknown libcall function"); 556 } 557 558 /// True if an instruction is in tail position in its caller. Intended for 559 /// legalizing libcalls as tail calls when possible. 560 static bool isLibCallInTailPosition(MachineInstr &MI, 561 const TargetInstrInfo &TII, 562 MachineRegisterInfo &MRI) { 563 MachineBasicBlock &MBB = *MI.getParent(); 564 const Function &F = MBB.getParent()->getFunction(); 565 566 // Conservatively require the attributes of the call to match those of 567 // the return. Ignore NoAlias and NonNull because they don't affect the 568 // call sequence. 569 AttributeList CallerAttrs = F.getAttributes(); 570 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) 571 .removeAttribute(Attribute::NoAlias) 572 .removeAttribute(Attribute::NonNull) 573 .hasAttributes()) 574 return false; 575 576 // It's not safe to eliminate the sign / zero extension of the return value. 577 if (CallerAttrs.hasRetAttr(Attribute::ZExt) || 578 CallerAttrs.hasRetAttr(Attribute::SExt)) 579 return false; 580 581 // Only tail call if the following instruction is a standard return or if we 582 // have a `thisreturn` callee, and a sequence like: 583 // 584 // G_MEMCPY %0, %1, %2 585 // $x0 = COPY %0 586 // RET_ReallyLR implicit $x0 587 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 588 if (Next != MBB.instr_end() && Next->isCopy()) { 589 switch (MI.getOpcode()) { 590 default: 591 llvm_unreachable("unsupported opcode"); 592 case TargetOpcode::G_BZERO: 593 return false; 594 case TargetOpcode::G_MEMCPY: 595 case TargetOpcode::G_MEMMOVE: 596 case TargetOpcode::G_MEMSET: 597 break; 598 } 599 600 Register VReg = MI.getOperand(0).getReg(); 601 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) 602 return false; 603 604 Register PReg = Next->getOperand(0).getReg(); 605 if (!PReg.isPhysical()) 606 return false; 607 608 auto Ret = next_nodbg(Next, MBB.instr_end()); 609 if (Ret == MBB.instr_end() || !Ret->isReturn()) 610 return false; 611 612 if (Ret->getNumImplicitOperands() != 1) 613 return false; 614 615 if (PReg != Ret->getOperand(0).getReg()) 616 return false; 617 618 // Skip over the COPY that we just validated. 619 Next = Ret; 620 } 621 622 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 623 return false; 624 625 return true; 626 } 627 628 LegalizerHelper::LegalizeResult 629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 630 const CallLowering::ArgInfo &Result, 631 ArrayRef<CallLowering::ArgInfo> Args, 632 const CallingConv::ID CC) { 633 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 634 635 CallLowering::CallLoweringInfo Info; 636 Info.CallConv = CC; 637 Info.Callee = MachineOperand::CreateES(Name); 638 Info.OrigRet = Result; 639 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 640 if (!CLI.lowerCall(MIRBuilder, Info)) 641 return LegalizerHelper::UnableToLegalize; 642 643 return LegalizerHelper::Legalized; 644 } 645 646 LegalizerHelper::LegalizeResult 647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 648 const CallLowering::ArgInfo &Result, 649 ArrayRef<CallLowering::ArgInfo> Args) { 650 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 651 const char *Name = TLI.getLibcallName(Libcall); 652 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 653 return createLibcall(MIRBuilder, Name, Result, Args, CC); 654 } 655 656 // Useful for libcalls where all operands have the same type. 657 static LegalizerHelper::LegalizeResult 658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 659 Type *OpType) { 660 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 661 662 // FIXME: What does the original arg index mean here? 663 SmallVector<CallLowering::ArgInfo, 3> Args; 664 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 665 Args.push_back({MO.getReg(), OpType, 0}); 666 return createLibcall(MIRBuilder, Libcall, 667 {MI.getOperand(0).getReg(), OpType, 0}, Args); 668 } 669 670 LegalizerHelper::LegalizeResult 671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 672 MachineInstr &MI, LostDebugLocObserver &LocObserver) { 673 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 674 675 SmallVector<CallLowering::ArgInfo, 3> Args; 676 // Add all the args, except for the last which is an imm denoting 'tail'. 677 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 678 Register Reg = MI.getOperand(i).getReg(); 679 680 // Need derive an IR type for call lowering. 681 LLT OpLLT = MRI.getType(Reg); 682 Type *OpTy = nullptr; 683 if (OpLLT.isPointer()) 684 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 685 else 686 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 687 Args.push_back({Reg, OpTy, 0}); 688 } 689 690 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 691 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 692 RTLIB::Libcall RTLibcall; 693 unsigned Opc = MI.getOpcode(); 694 switch (Opc) { 695 case TargetOpcode::G_BZERO: 696 RTLibcall = RTLIB::BZERO; 697 break; 698 case TargetOpcode::G_MEMCPY: 699 RTLibcall = RTLIB::MEMCPY; 700 Args[0].Flags[0].setReturned(); 701 break; 702 case TargetOpcode::G_MEMMOVE: 703 RTLibcall = RTLIB::MEMMOVE; 704 Args[0].Flags[0].setReturned(); 705 break; 706 case TargetOpcode::G_MEMSET: 707 RTLibcall = RTLIB::MEMSET; 708 Args[0].Flags[0].setReturned(); 709 break; 710 default: 711 llvm_unreachable("unsupported opcode"); 712 } 713 const char *Name = TLI.getLibcallName(RTLibcall); 714 715 // Unsupported libcall on the target. 716 if (!Name) { 717 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " 718 << MIRBuilder.getTII().getName(Opc) << "\n"); 719 return LegalizerHelper::UnableToLegalize; 720 } 721 722 CallLowering::CallLoweringInfo Info; 723 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 724 Info.Callee = MachineOperand::CreateES(Name); 725 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); 726 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 727 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); 728 729 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 730 if (!CLI.lowerCall(MIRBuilder, Info)) 731 return LegalizerHelper::UnableToLegalize; 732 733 if (Info.LoweredTailCall) { 734 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 735 736 // Check debug locations before removing the return. 737 LocObserver.checkpoint(true); 738 739 // We must have a return following the call (or debug insts) to get past 740 // isLibCallInTailPosition. 741 do { 742 MachineInstr *Next = MI.getNextNode(); 743 assert(Next && 744 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && 745 "Expected instr following MI to be return or debug inst?"); 746 // We lowered a tail call, so the call is now the return from the block. 747 // Delete the old return. 748 Next->eraseFromParent(); 749 } while (MI.getNextNode()); 750 751 // We expect to lose the debug location from the return. 752 LocObserver.checkpoint(false); 753 } 754 755 return LegalizerHelper::Legalized; 756 } 757 758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 759 Type *FromType) { 760 auto ToMVT = MVT::getVT(ToType); 761 auto FromMVT = MVT::getVT(FromType); 762 763 switch (Opcode) { 764 case TargetOpcode::G_FPEXT: 765 return RTLIB::getFPEXT(FromMVT, ToMVT); 766 case TargetOpcode::G_FPTRUNC: 767 return RTLIB::getFPROUND(FromMVT, ToMVT); 768 case TargetOpcode::G_FPTOSI: 769 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 770 case TargetOpcode::G_FPTOUI: 771 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 772 case TargetOpcode::G_SITOFP: 773 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 774 case TargetOpcode::G_UITOFP: 775 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 776 } 777 llvm_unreachable("Unsupported libcall function"); 778 } 779 780 static LegalizerHelper::LegalizeResult 781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 782 Type *FromType) { 783 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 784 return createLibcall(MIRBuilder, Libcall, 785 {MI.getOperand(0).getReg(), ToType, 0}, 786 {{MI.getOperand(1).getReg(), FromType, 0}}); 787 } 788 789 LegalizerHelper::LegalizeResult 790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { 791 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 792 unsigned Size = LLTy.getSizeInBits(); 793 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 794 795 switch (MI.getOpcode()) { 796 default: 797 return UnableToLegalize; 798 case TargetOpcode::G_SDIV: 799 case TargetOpcode::G_UDIV: 800 case TargetOpcode::G_SREM: 801 case TargetOpcode::G_UREM: 802 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 803 Type *HLTy = IntegerType::get(Ctx, Size); 804 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 805 if (Status != Legalized) 806 return Status; 807 break; 808 } 809 case TargetOpcode::G_FADD: 810 case TargetOpcode::G_FSUB: 811 case TargetOpcode::G_FMUL: 812 case TargetOpcode::G_FDIV: 813 case TargetOpcode::G_FMA: 814 case TargetOpcode::G_FPOW: 815 case TargetOpcode::G_FREM: 816 case TargetOpcode::G_FCOS: 817 case TargetOpcode::G_FSIN: 818 case TargetOpcode::G_FLOG10: 819 case TargetOpcode::G_FLOG: 820 case TargetOpcode::G_FLOG2: 821 case TargetOpcode::G_FEXP: 822 case TargetOpcode::G_FEXP2: 823 case TargetOpcode::G_FCEIL: 824 case TargetOpcode::G_FFLOOR: 825 case TargetOpcode::G_FMINNUM: 826 case TargetOpcode::G_FMAXNUM: 827 case TargetOpcode::G_FSQRT: 828 case TargetOpcode::G_FRINT: 829 case TargetOpcode::G_FNEARBYINT: 830 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 831 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 832 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 833 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 834 return UnableToLegalize; 835 } 836 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 837 if (Status != Legalized) 838 return Status; 839 break; 840 } 841 case TargetOpcode::G_FPEXT: 842 case TargetOpcode::G_FPTRUNC: { 843 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 844 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 845 if (!FromTy || !ToTy) 846 return UnableToLegalize; 847 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 848 if (Status != Legalized) 849 return Status; 850 break; 851 } 852 case TargetOpcode::G_FPTOSI: 853 case TargetOpcode::G_FPTOUI: { 854 // FIXME: Support other types 855 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 856 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 857 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 858 return UnableToLegalize; 859 LegalizeResult Status = conversionLibcall( 860 MI, MIRBuilder, 861 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 862 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 863 if (Status != Legalized) 864 return Status; 865 break; 866 } 867 case TargetOpcode::G_SITOFP: 868 case TargetOpcode::G_UITOFP: { 869 // FIXME: Support other types 870 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 871 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 872 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 873 return UnableToLegalize; 874 LegalizeResult Status = conversionLibcall( 875 MI, MIRBuilder, 876 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 877 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 878 if (Status != Legalized) 879 return Status; 880 break; 881 } 882 case TargetOpcode::G_BZERO: 883 case TargetOpcode::G_MEMCPY: 884 case TargetOpcode::G_MEMMOVE: 885 case TargetOpcode::G_MEMSET: { 886 LegalizeResult Result = 887 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); 888 if (Result != Legalized) 889 return Result; 890 MI.eraseFromParent(); 891 return Result; 892 } 893 } 894 895 MI.eraseFromParent(); 896 return Legalized; 897 } 898 899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 900 unsigned TypeIdx, 901 LLT NarrowTy) { 902 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 903 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 904 905 switch (MI.getOpcode()) { 906 default: 907 return UnableToLegalize; 908 case TargetOpcode::G_IMPLICIT_DEF: { 909 Register DstReg = MI.getOperand(0).getReg(); 910 LLT DstTy = MRI.getType(DstReg); 911 912 // If SizeOp0 is not an exact multiple of NarrowSize, emit 913 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 914 // FIXME: Although this would also be legal for the general case, it causes 915 // a lot of regressions in the emitted code (superfluous COPYs, artifact 916 // combines not being hit). This seems to be a problem related to the 917 // artifact combiner. 918 if (SizeOp0 % NarrowSize != 0) { 919 LLT ImplicitTy = NarrowTy; 920 if (DstTy.isVector()) 921 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); 922 923 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 924 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 925 926 MI.eraseFromParent(); 927 return Legalized; 928 } 929 930 int NumParts = SizeOp0 / NarrowSize; 931 932 SmallVector<Register, 2> DstRegs; 933 for (int i = 0; i < NumParts; ++i) 934 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 935 936 if (DstTy.isVector()) 937 MIRBuilder.buildBuildVector(DstReg, DstRegs); 938 else 939 MIRBuilder.buildMerge(DstReg, DstRegs); 940 MI.eraseFromParent(); 941 return Legalized; 942 } 943 case TargetOpcode::G_CONSTANT: { 944 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 945 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 946 unsigned TotalSize = Ty.getSizeInBits(); 947 unsigned NarrowSize = NarrowTy.getSizeInBits(); 948 int NumParts = TotalSize / NarrowSize; 949 950 SmallVector<Register, 4> PartRegs; 951 for (int I = 0; I != NumParts; ++I) { 952 unsigned Offset = I * NarrowSize; 953 auto K = MIRBuilder.buildConstant(NarrowTy, 954 Val.lshr(Offset).trunc(NarrowSize)); 955 PartRegs.push_back(K.getReg(0)); 956 } 957 958 LLT LeftoverTy; 959 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 960 SmallVector<Register, 1> LeftoverRegs; 961 if (LeftoverBits != 0) { 962 LeftoverTy = LLT::scalar(LeftoverBits); 963 auto K = MIRBuilder.buildConstant( 964 LeftoverTy, 965 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 966 LeftoverRegs.push_back(K.getReg(0)); 967 } 968 969 insertParts(MI.getOperand(0).getReg(), 970 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 971 972 MI.eraseFromParent(); 973 return Legalized; 974 } 975 case TargetOpcode::G_SEXT: 976 case TargetOpcode::G_ZEXT: 977 case TargetOpcode::G_ANYEXT: 978 return narrowScalarExt(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_TRUNC: { 980 if (TypeIdx != 1) 981 return UnableToLegalize; 982 983 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 984 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 985 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 986 return UnableToLegalize; 987 } 988 989 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 990 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 case TargetOpcode::G_FREEZE: { 996 if (TypeIdx != 0) 997 return UnableToLegalize; 998 999 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1000 // Should widen scalar first 1001 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) 1002 return UnableToLegalize; 1003 1004 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 1005 SmallVector<Register, 8> Parts; 1006 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { 1007 Parts.push_back( 1008 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); 1009 } 1010 1011 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts); 1012 MI.eraseFromParent(); 1013 return Legalized; 1014 } 1015 case TargetOpcode::G_ADD: 1016 case TargetOpcode::G_SUB: 1017 case TargetOpcode::G_SADDO: 1018 case TargetOpcode::G_SSUBO: 1019 case TargetOpcode::G_SADDE: 1020 case TargetOpcode::G_SSUBE: 1021 case TargetOpcode::G_UADDO: 1022 case TargetOpcode::G_USUBO: 1023 case TargetOpcode::G_UADDE: 1024 case TargetOpcode::G_USUBE: 1025 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_MUL: 1027 case TargetOpcode::G_UMULH: 1028 return narrowScalarMul(MI, NarrowTy); 1029 case TargetOpcode::G_EXTRACT: 1030 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 1031 case TargetOpcode::G_INSERT: 1032 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 1033 case TargetOpcode::G_LOAD: { 1034 auto &LoadMI = cast<GLoad>(MI); 1035 Register DstReg = LoadMI.getDstReg(); 1036 LLT DstTy = MRI.getType(DstReg); 1037 if (DstTy.isVector()) 1038 return UnableToLegalize; 1039 1040 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { 1041 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1042 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); 1043 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1044 LoadMI.eraseFromParent(); 1045 return Legalized; 1046 } 1047 1048 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); 1049 } 1050 case TargetOpcode::G_ZEXTLOAD: 1051 case TargetOpcode::G_SEXTLOAD: { 1052 auto &LoadMI = cast<GExtLoad>(MI); 1053 Register DstReg = LoadMI.getDstReg(); 1054 Register PtrReg = LoadMI.getPointerReg(); 1055 1056 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1057 auto &MMO = LoadMI.getMMO(); 1058 unsigned MemSize = MMO.getSizeInBits(); 1059 1060 if (MemSize == NarrowSize) { 1061 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1062 } else if (MemSize < NarrowSize) { 1063 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); 1064 } else if (MemSize > NarrowSize) { 1065 // FIXME: Need to split the load. 1066 return UnableToLegalize; 1067 } 1068 1069 if (isa<GZExtLoad>(LoadMI)) 1070 MIRBuilder.buildZExt(DstReg, TmpReg); 1071 else 1072 MIRBuilder.buildSExt(DstReg, TmpReg); 1073 1074 LoadMI.eraseFromParent(); 1075 return Legalized; 1076 } 1077 case TargetOpcode::G_STORE: { 1078 auto &StoreMI = cast<GStore>(MI); 1079 1080 Register SrcReg = StoreMI.getValueReg(); 1081 LLT SrcTy = MRI.getType(SrcReg); 1082 if (SrcTy.isVector()) 1083 return UnableToLegalize; 1084 1085 int NumParts = SizeOp0 / NarrowSize; 1086 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 1087 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 1088 if (SrcTy.isVector() && LeftoverBits != 0) 1089 return UnableToLegalize; 1090 1091 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { 1092 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1093 MIRBuilder.buildTrunc(TmpReg, SrcReg); 1094 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); 1095 StoreMI.eraseFromParent(); 1096 return Legalized; 1097 } 1098 1099 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); 1100 } 1101 case TargetOpcode::G_SELECT: 1102 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1103 case TargetOpcode::G_AND: 1104 case TargetOpcode::G_OR: 1105 case TargetOpcode::G_XOR: { 1106 // Legalize bitwise operation: 1107 // A = BinOp<Ty> B, C 1108 // into: 1109 // B1, ..., BN = G_UNMERGE_VALUES B 1110 // C1, ..., CN = G_UNMERGE_VALUES C 1111 // A1 = BinOp<Ty/N> B1, C2 1112 // ... 1113 // AN = BinOp<Ty/N> BN, CN 1114 // A = G_MERGE_VALUES A1, ..., AN 1115 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1116 } 1117 case TargetOpcode::G_SHL: 1118 case TargetOpcode::G_LSHR: 1119 case TargetOpcode::G_ASHR: 1120 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1121 case TargetOpcode::G_CTLZ: 1122 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1123 case TargetOpcode::G_CTTZ: 1124 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1125 case TargetOpcode::G_CTPOP: 1126 if (TypeIdx == 1) 1127 switch (MI.getOpcode()) { 1128 case TargetOpcode::G_CTLZ: 1129 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1130 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1131 case TargetOpcode::G_CTTZ: 1132 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1133 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1134 case TargetOpcode::G_CTPOP: 1135 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1136 default: 1137 return UnableToLegalize; 1138 } 1139 1140 Observer.changingInstr(MI); 1141 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1142 Observer.changedInstr(MI); 1143 return Legalized; 1144 case TargetOpcode::G_INTTOPTR: 1145 if (TypeIdx != 1) 1146 return UnableToLegalize; 1147 1148 Observer.changingInstr(MI); 1149 narrowScalarSrc(MI, NarrowTy, 1); 1150 Observer.changedInstr(MI); 1151 return Legalized; 1152 case TargetOpcode::G_PTRTOINT: 1153 if (TypeIdx != 0) 1154 return UnableToLegalize; 1155 1156 Observer.changingInstr(MI); 1157 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1158 Observer.changedInstr(MI); 1159 return Legalized; 1160 case TargetOpcode::G_PHI: { 1161 // FIXME: add support for when SizeOp0 isn't an exact multiple of 1162 // NarrowSize. 1163 if (SizeOp0 % NarrowSize != 0) 1164 return UnableToLegalize; 1165 1166 unsigned NumParts = SizeOp0 / NarrowSize; 1167 SmallVector<Register, 2> DstRegs(NumParts); 1168 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1169 Observer.changingInstr(MI); 1170 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1171 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1172 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1173 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1174 SrcRegs[i / 2]); 1175 } 1176 MachineBasicBlock &MBB = *MI.getParent(); 1177 MIRBuilder.setInsertPt(MBB, MI); 1178 for (unsigned i = 0; i < NumParts; ++i) { 1179 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1180 MachineInstrBuilder MIB = 1181 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1182 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1183 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1184 } 1185 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1186 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1187 Observer.changedInstr(MI); 1188 MI.eraseFromParent(); 1189 return Legalized; 1190 } 1191 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1192 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1193 if (TypeIdx != 2) 1194 return UnableToLegalize; 1195 1196 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1197 Observer.changingInstr(MI); 1198 narrowScalarSrc(MI, NarrowTy, OpIdx); 1199 Observer.changedInstr(MI); 1200 return Legalized; 1201 } 1202 case TargetOpcode::G_ICMP: { 1203 Register LHS = MI.getOperand(2).getReg(); 1204 LLT SrcTy = MRI.getType(LHS); 1205 uint64_t SrcSize = SrcTy.getSizeInBits(); 1206 CmpInst::Predicate Pred = 1207 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1208 1209 // TODO: Handle the non-equality case for weird sizes. 1210 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) 1211 return UnableToLegalize; 1212 1213 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) 1214 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; 1215 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, 1216 LHSLeftoverRegs)) 1217 return UnableToLegalize; 1218 1219 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. 1220 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; 1221 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, 1222 RHSPartRegs, RHSLeftoverRegs)) 1223 return UnableToLegalize; 1224 1225 // We now have the LHS and RHS of the compare split into narrow-type 1226 // registers, plus potentially some leftover type. 1227 Register Dst = MI.getOperand(0).getReg(); 1228 LLT ResTy = MRI.getType(Dst); 1229 if (ICmpInst::isEquality(Pred)) { 1230 // For each part on the LHS and RHS, keep track of the result of XOR-ing 1231 // them together. For each equal part, the result should be all 0s. For 1232 // each non-equal part, we'll get at least one 1. 1233 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1234 SmallVector<Register, 4> Xors; 1235 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { 1236 auto LHS = std::get<0>(LHSAndRHS); 1237 auto RHS = std::get<1>(LHSAndRHS); 1238 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); 1239 Xors.push_back(Xor); 1240 } 1241 1242 // Build a G_XOR for each leftover register. Each G_XOR must be widened 1243 // to the desired narrow type so that we can OR them together later. 1244 SmallVector<Register, 4> WidenedXors; 1245 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { 1246 auto LHS = std::get<0>(LHSAndRHS); 1247 auto RHS = std::get<1>(LHSAndRHS); 1248 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); 1249 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); 1250 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, 1251 /* PadStrategy = */ TargetOpcode::G_ZEXT); 1252 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); 1253 } 1254 1255 // Now, for each part we broke up, we know if they are equal/not equal 1256 // based off the G_XOR. We can OR these all together and compare against 1257 // 0 to get the result. 1258 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); 1259 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); 1260 for (unsigned I = 2, E = Xors.size(); I < E; ++I) 1261 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); 1262 MIRBuilder.buildICmp(Pred, Dst, Or, Zero); 1263 } else { 1264 // TODO: Handle non-power-of-two types. 1265 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); 1266 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); 1267 Register LHSL = LHSPartRegs[0]; 1268 Register LHSH = LHSPartRegs[1]; 1269 Register RHSL = RHSPartRegs[0]; 1270 Register RHSH = RHSPartRegs[1]; 1271 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1272 MachineInstrBuilder CmpHEQ = 1273 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1274 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1275 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1276 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); 1277 } 1278 MI.eraseFromParent(); 1279 return Legalized; 1280 } 1281 case TargetOpcode::G_SEXT_INREG: { 1282 if (TypeIdx != 0) 1283 return UnableToLegalize; 1284 1285 int64_t SizeInBits = MI.getOperand(2).getImm(); 1286 1287 // So long as the new type has more bits than the bits we're extending we 1288 // don't need to break it apart. 1289 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1290 Observer.changingInstr(MI); 1291 // We don't lose any non-extension bits by truncating the src and 1292 // sign-extending the dst. 1293 MachineOperand &MO1 = MI.getOperand(1); 1294 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1295 MO1.setReg(TruncMIB.getReg(0)); 1296 1297 MachineOperand &MO2 = MI.getOperand(0); 1298 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1299 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1300 MIRBuilder.buildSExt(MO2, DstExt); 1301 MO2.setReg(DstExt); 1302 Observer.changedInstr(MI); 1303 return Legalized; 1304 } 1305 1306 // Break it apart. Components below the extension point are unmodified. The 1307 // component containing the extension point becomes a narrower SEXT_INREG. 1308 // Components above it are ashr'd from the component containing the 1309 // extension point. 1310 if (SizeOp0 % NarrowSize != 0) 1311 return UnableToLegalize; 1312 int NumParts = SizeOp0 / NarrowSize; 1313 1314 // List the registers where the destination will be scattered. 1315 SmallVector<Register, 2> DstRegs; 1316 // List the registers where the source will be split. 1317 SmallVector<Register, 2> SrcRegs; 1318 1319 // Create all the temporary registers. 1320 for (int i = 0; i < NumParts; ++i) { 1321 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1322 1323 SrcRegs.push_back(SrcReg); 1324 } 1325 1326 // Explode the big arguments into smaller chunks. 1327 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1328 1329 Register AshrCstReg = 1330 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1331 .getReg(0); 1332 Register FullExtensionReg = 0; 1333 Register PartialExtensionReg = 0; 1334 1335 // Do the operation on each small part. 1336 for (int i = 0; i < NumParts; ++i) { 1337 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1338 DstRegs.push_back(SrcRegs[i]); 1339 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1340 assert(PartialExtensionReg && 1341 "Expected to visit partial extension before full"); 1342 if (FullExtensionReg) { 1343 DstRegs.push_back(FullExtensionReg); 1344 continue; 1345 } 1346 DstRegs.push_back( 1347 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1348 .getReg(0)); 1349 FullExtensionReg = DstRegs.back(); 1350 } else { 1351 DstRegs.push_back( 1352 MIRBuilder 1353 .buildInstr( 1354 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1355 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1356 .getReg(0)); 1357 PartialExtensionReg = DstRegs.back(); 1358 } 1359 } 1360 1361 // Gather the destination registers into the final destination. 1362 Register DstReg = MI.getOperand(0).getReg(); 1363 MIRBuilder.buildMerge(DstReg, DstRegs); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 case TargetOpcode::G_BSWAP: 1368 case TargetOpcode::G_BITREVERSE: { 1369 if (SizeOp0 % NarrowSize != 0) 1370 return UnableToLegalize; 1371 1372 Observer.changingInstr(MI); 1373 SmallVector<Register, 2> SrcRegs, DstRegs; 1374 unsigned NumParts = SizeOp0 / NarrowSize; 1375 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1376 1377 for (unsigned i = 0; i < NumParts; ++i) { 1378 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1379 {SrcRegs[NumParts - 1 - i]}); 1380 DstRegs.push_back(DstPart.getReg(0)); 1381 } 1382 1383 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1384 1385 Observer.changedInstr(MI); 1386 MI.eraseFromParent(); 1387 return Legalized; 1388 } 1389 case TargetOpcode::G_PTR_ADD: 1390 case TargetOpcode::G_PTRMASK: { 1391 if (TypeIdx != 1) 1392 return UnableToLegalize; 1393 Observer.changingInstr(MI); 1394 narrowScalarSrc(MI, NarrowTy, 2); 1395 Observer.changedInstr(MI); 1396 return Legalized; 1397 } 1398 case TargetOpcode::G_FPTOUI: 1399 case TargetOpcode::G_FPTOSI: 1400 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); 1401 case TargetOpcode::G_FPEXT: 1402 if (TypeIdx != 0) 1403 return UnableToLegalize; 1404 Observer.changingInstr(MI); 1405 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1406 Observer.changedInstr(MI); 1407 return Legalized; 1408 } 1409 } 1410 1411 Register LegalizerHelper::coerceToScalar(Register Val) { 1412 LLT Ty = MRI.getType(Val); 1413 if (Ty.isScalar()) 1414 return Val; 1415 1416 const DataLayout &DL = MIRBuilder.getDataLayout(); 1417 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1418 if (Ty.isPointer()) { 1419 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1420 return Register(); 1421 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1422 } 1423 1424 Register NewVal = Val; 1425 1426 assert(Ty.isVector()); 1427 LLT EltTy = Ty.getElementType(); 1428 if (EltTy.isPointer()) 1429 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1430 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1431 } 1432 1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1434 unsigned OpIdx, unsigned ExtOpcode) { 1435 MachineOperand &MO = MI.getOperand(OpIdx); 1436 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1437 MO.setReg(ExtB.getReg(0)); 1438 } 1439 1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1441 unsigned OpIdx) { 1442 MachineOperand &MO = MI.getOperand(OpIdx); 1443 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1444 MO.setReg(ExtB.getReg(0)); 1445 } 1446 1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1448 unsigned OpIdx, unsigned TruncOpcode) { 1449 MachineOperand &MO = MI.getOperand(OpIdx); 1450 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1451 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1452 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1453 MO.setReg(DstExt); 1454 } 1455 1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1457 unsigned OpIdx, unsigned ExtOpcode) { 1458 MachineOperand &MO = MI.getOperand(OpIdx); 1459 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1460 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1461 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1462 MO.setReg(DstTrunc); 1463 } 1464 1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1466 unsigned OpIdx) { 1467 MachineOperand &MO = MI.getOperand(OpIdx); 1468 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1469 Register Dst = MO.getReg(); 1470 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1471 MO.setReg(DstExt); 1472 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); 1473 } 1474 1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1476 unsigned OpIdx) { 1477 MachineOperand &MO = MI.getOperand(OpIdx); 1478 SmallVector<Register, 8> Regs; 1479 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); 1480 } 1481 1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1483 MachineOperand &Op = MI.getOperand(OpIdx); 1484 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1485 } 1486 1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1488 MachineOperand &MO = MI.getOperand(OpIdx); 1489 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1490 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1491 MIRBuilder.buildBitcast(MO, CastDst); 1492 MO.setReg(CastDst); 1493 } 1494 1495 LegalizerHelper::LegalizeResult 1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1497 LLT WideTy) { 1498 if (TypeIdx != 1) 1499 return UnableToLegalize; 1500 1501 Register DstReg = MI.getOperand(0).getReg(); 1502 LLT DstTy = MRI.getType(DstReg); 1503 if (DstTy.isVector()) 1504 return UnableToLegalize; 1505 1506 Register Src1 = MI.getOperand(1).getReg(); 1507 LLT SrcTy = MRI.getType(Src1); 1508 const int DstSize = DstTy.getSizeInBits(); 1509 const int SrcSize = SrcTy.getSizeInBits(); 1510 const int WideSize = WideTy.getSizeInBits(); 1511 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1512 1513 unsigned NumOps = MI.getNumOperands(); 1514 unsigned NumSrc = MI.getNumOperands() - 1; 1515 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1516 1517 if (WideSize >= DstSize) { 1518 // Directly pack the bits in the target type. 1519 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1520 1521 for (unsigned I = 2; I != NumOps; ++I) { 1522 const unsigned Offset = (I - 1) * PartSize; 1523 1524 Register SrcReg = MI.getOperand(I).getReg(); 1525 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1526 1527 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1528 1529 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1530 MRI.createGenericVirtualRegister(WideTy); 1531 1532 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1533 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1534 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1535 ResultReg = NextResult; 1536 } 1537 1538 if (WideSize > DstSize) 1539 MIRBuilder.buildTrunc(DstReg, ResultReg); 1540 else if (DstTy.isPointer()) 1541 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1542 1543 MI.eraseFromParent(); 1544 return Legalized; 1545 } 1546 1547 // Unmerge the original values to the GCD type, and recombine to the next 1548 // multiple greater than the original type. 1549 // 1550 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1551 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1552 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1553 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1554 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1555 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1556 // %12:_(s12) = G_MERGE_VALUES %10, %11 1557 // 1558 // Padding with undef if necessary: 1559 // 1560 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1561 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1562 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1563 // %7:_(s2) = G_IMPLICIT_DEF 1564 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1565 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1566 // %10:_(s12) = G_MERGE_VALUES %8, %9 1567 1568 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1569 LLT GCDTy = LLT::scalar(GCD); 1570 1571 SmallVector<Register, 8> Parts; 1572 SmallVector<Register, 8> NewMergeRegs; 1573 SmallVector<Register, 8> Unmerges; 1574 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1575 1576 // Decompose the original operands if they don't evenly divide. 1577 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 1578 Register SrcReg = MO.getReg(); 1579 if (GCD == SrcSize) { 1580 Unmerges.push_back(SrcReg); 1581 } else { 1582 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1583 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1584 Unmerges.push_back(Unmerge.getReg(J)); 1585 } 1586 } 1587 1588 // Pad with undef to the next size that is a multiple of the requested size. 1589 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1590 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1591 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1592 Unmerges.push_back(UndefReg); 1593 } 1594 1595 const int PartsPerGCD = WideSize / GCD; 1596 1597 // Build merges of each piece. 1598 ArrayRef<Register> Slicer(Unmerges); 1599 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1600 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1601 NewMergeRegs.push_back(Merge.getReg(0)); 1602 } 1603 1604 // A truncate may be necessary if the requested type doesn't evenly divide the 1605 // original result type. 1606 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1607 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1608 } else { 1609 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1610 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1611 } 1612 1613 MI.eraseFromParent(); 1614 return Legalized; 1615 } 1616 1617 LegalizerHelper::LegalizeResult 1618 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1619 LLT WideTy) { 1620 if (TypeIdx != 0) 1621 return UnableToLegalize; 1622 1623 int NumDst = MI.getNumOperands() - 1; 1624 Register SrcReg = MI.getOperand(NumDst).getReg(); 1625 LLT SrcTy = MRI.getType(SrcReg); 1626 if (SrcTy.isVector()) 1627 return UnableToLegalize; 1628 1629 Register Dst0Reg = MI.getOperand(0).getReg(); 1630 LLT DstTy = MRI.getType(Dst0Reg); 1631 if (!DstTy.isScalar()) 1632 return UnableToLegalize; 1633 1634 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1635 if (SrcTy.isPointer()) { 1636 const DataLayout &DL = MIRBuilder.getDataLayout(); 1637 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1638 LLVM_DEBUG( 1639 dbgs() << "Not casting non-integral address space integer\n"); 1640 return UnableToLegalize; 1641 } 1642 1643 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1644 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1645 } 1646 1647 // Widen SrcTy to WideTy. This does not affect the result, but since the 1648 // user requested this size, it is probably better handled than SrcTy and 1649 // should reduce the total number of legalization artifacts. 1650 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1651 SrcTy = WideTy; 1652 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1653 } 1654 1655 // Theres no unmerge type to target. Directly extract the bits from the 1656 // source type 1657 unsigned DstSize = DstTy.getSizeInBits(); 1658 1659 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1660 for (int I = 1; I != NumDst; ++I) { 1661 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1662 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1663 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1664 } 1665 1666 MI.eraseFromParent(); 1667 return Legalized; 1668 } 1669 1670 // Extend the source to a wider type. 1671 LLT LCMTy = getLCMType(SrcTy, WideTy); 1672 1673 Register WideSrc = SrcReg; 1674 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1675 // TODO: If this is an integral address space, cast to integer and anyext. 1676 if (SrcTy.isPointer()) { 1677 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1678 return UnableToLegalize; 1679 } 1680 1681 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1682 } 1683 1684 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1685 1686 // Create a sequence of unmerges and merges to the original results. Since we 1687 // may have widened the source, we will need to pad the results with dead defs 1688 // to cover the source register. 1689 // e.g. widen s48 to s64: 1690 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1691 // 1692 // => 1693 // %4:_(s192) = G_ANYEXT %0:_(s96) 1694 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1695 // ; unpack to GCD type, with extra dead defs 1696 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1697 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1698 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1699 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1700 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1701 const LLT GCDTy = getGCDType(WideTy, DstTy); 1702 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1703 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1704 1705 // Directly unmerge to the destination without going through a GCD type 1706 // if possible 1707 if (PartsPerRemerge == 1) { 1708 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1709 1710 for (int I = 0; I != NumUnmerge; ++I) { 1711 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1712 1713 for (int J = 0; J != PartsPerUnmerge; ++J) { 1714 int Idx = I * PartsPerUnmerge + J; 1715 if (Idx < NumDst) 1716 MIB.addDef(MI.getOperand(Idx).getReg()); 1717 else { 1718 // Create dead def for excess components. 1719 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1720 } 1721 } 1722 1723 MIB.addUse(Unmerge.getReg(I)); 1724 } 1725 } else { 1726 SmallVector<Register, 16> Parts; 1727 for (int J = 0; J != NumUnmerge; ++J) 1728 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1729 1730 SmallVector<Register, 8> RemergeParts; 1731 for (int I = 0; I != NumDst; ++I) { 1732 for (int J = 0; J < PartsPerRemerge; ++J) { 1733 const int Idx = I * PartsPerRemerge + J; 1734 RemergeParts.emplace_back(Parts[Idx]); 1735 } 1736 1737 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1738 RemergeParts.clear(); 1739 } 1740 } 1741 1742 MI.eraseFromParent(); 1743 return Legalized; 1744 } 1745 1746 LegalizerHelper::LegalizeResult 1747 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1748 LLT WideTy) { 1749 Register DstReg = MI.getOperand(0).getReg(); 1750 Register SrcReg = MI.getOperand(1).getReg(); 1751 LLT SrcTy = MRI.getType(SrcReg); 1752 1753 LLT DstTy = MRI.getType(DstReg); 1754 unsigned Offset = MI.getOperand(2).getImm(); 1755 1756 if (TypeIdx == 0) { 1757 if (SrcTy.isVector() || DstTy.isVector()) 1758 return UnableToLegalize; 1759 1760 SrcOp Src(SrcReg); 1761 if (SrcTy.isPointer()) { 1762 // Extracts from pointers can be handled only if they are really just 1763 // simple integers. 1764 const DataLayout &DL = MIRBuilder.getDataLayout(); 1765 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1766 return UnableToLegalize; 1767 1768 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1769 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1770 SrcTy = SrcAsIntTy; 1771 } 1772 1773 if (DstTy.isPointer()) 1774 return UnableToLegalize; 1775 1776 if (Offset == 0) { 1777 // Avoid a shift in the degenerate case. 1778 MIRBuilder.buildTrunc(DstReg, 1779 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1780 MI.eraseFromParent(); 1781 return Legalized; 1782 } 1783 1784 // Do a shift in the source type. 1785 LLT ShiftTy = SrcTy; 1786 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1787 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1788 ShiftTy = WideTy; 1789 } 1790 1791 auto LShr = MIRBuilder.buildLShr( 1792 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1793 MIRBuilder.buildTrunc(DstReg, LShr); 1794 MI.eraseFromParent(); 1795 return Legalized; 1796 } 1797 1798 if (SrcTy.isScalar()) { 1799 Observer.changingInstr(MI); 1800 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1801 Observer.changedInstr(MI); 1802 return Legalized; 1803 } 1804 1805 if (!SrcTy.isVector()) 1806 return UnableToLegalize; 1807 1808 if (DstTy != SrcTy.getElementType()) 1809 return UnableToLegalize; 1810 1811 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1812 return UnableToLegalize; 1813 1814 Observer.changingInstr(MI); 1815 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1816 1817 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1818 Offset); 1819 widenScalarDst(MI, WideTy.getScalarType(), 0); 1820 Observer.changedInstr(MI); 1821 return Legalized; 1822 } 1823 1824 LegalizerHelper::LegalizeResult 1825 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1826 LLT WideTy) { 1827 if (TypeIdx != 0 || WideTy.isVector()) 1828 return UnableToLegalize; 1829 Observer.changingInstr(MI); 1830 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1831 widenScalarDst(MI, WideTy); 1832 Observer.changedInstr(MI); 1833 return Legalized; 1834 } 1835 1836 LegalizerHelper::LegalizeResult 1837 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1838 LLT WideTy) { 1839 unsigned Opcode; 1840 unsigned ExtOpcode; 1841 Optional<Register> CarryIn = None; 1842 switch (MI.getOpcode()) { 1843 default: 1844 llvm_unreachable("Unexpected opcode!"); 1845 case TargetOpcode::G_SADDO: 1846 Opcode = TargetOpcode::G_ADD; 1847 ExtOpcode = TargetOpcode::G_SEXT; 1848 break; 1849 case TargetOpcode::G_SSUBO: 1850 Opcode = TargetOpcode::G_SUB; 1851 ExtOpcode = TargetOpcode::G_SEXT; 1852 break; 1853 case TargetOpcode::G_UADDO: 1854 Opcode = TargetOpcode::G_ADD; 1855 ExtOpcode = TargetOpcode::G_ZEXT; 1856 break; 1857 case TargetOpcode::G_USUBO: 1858 Opcode = TargetOpcode::G_SUB; 1859 ExtOpcode = TargetOpcode::G_ZEXT; 1860 break; 1861 case TargetOpcode::G_SADDE: 1862 Opcode = TargetOpcode::G_UADDE; 1863 ExtOpcode = TargetOpcode::G_SEXT; 1864 CarryIn = MI.getOperand(4).getReg(); 1865 break; 1866 case TargetOpcode::G_SSUBE: 1867 Opcode = TargetOpcode::G_USUBE; 1868 ExtOpcode = TargetOpcode::G_SEXT; 1869 CarryIn = MI.getOperand(4).getReg(); 1870 break; 1871 case TargetOpcode::G_UADDE: 1872 Opcode = TargetOpcode::G_UADDE; 1873 ExtOpcode = TargetOpcode::G_ZEXT; 1874 CarryIn = MI.getOperand(4).getReg(); 1875 break; 1876 case TargetOpcode::G_USUBE: 1877 Opcode = TargetOpcode::G_USUBE; 1878 ExtOpcode = TargetOpcode::G_ZEXT; 1879 CarryIn = MI.getOperand(4).getReg(); 1880 break; 1881 } 1882 1883 if (TypeIdx == 1) { 1884 unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); 1885 1886 Observer.changingInstr(MI); 1887 widenScalarDst(MI, WideTy, 1); 1888 if (CarryIn) 1889 widenScalarSrc(MI, WideTy, 4, BoolExtOp); 1890 1891 Observer.changedInstr(MI); 1892 return Legalized; 1893 } 1894 1895 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1896 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1897 // Do the arithmetic in the larger type. 1898 Register NewOp; 1899 if (CarryIn) { 1900 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1901 NewOp = MIRBuilder 1902 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1903 {LHSExt, RHSExt, *CarryIn}) 1904 .getReg(0); 1905 } else { 1906 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1907 } 1908 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1909 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1910 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1911 // There is no overflow if the ExtOp is the same as NewOp. 1912 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1913 // Now trunc the NewOp to the original result. 1914 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1915 MI.eraseFromParent(); 1916 return Legalized; 1917 } 1918 1919 LegalizerHelper::LegalizeResult 1920 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1921 LLT WideTy) { 1922 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1923 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1924 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1925 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1926 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1927 // We can convert this to: 1928 // 1. Any extend iN to iM 1929 // 2. SHL by M-N 1930 // 3. [US][ADD|SUB|SHL]SAT 1931 // 4. L/ASHR by M-N 1932 // 1933 // It may be more efficient to lower this to a min and a max operation in 1934 // the higher precision arithmetic if the promoted operation isn't legal, 1935 // but this decision is up to the target's lowering request. 1936 Register DstReg = MI.getOperand(0).getReg(); 1937 1938 unsigned NewBits = WideTy.getScalarSizeInBits(); 1939 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1940 1941 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1942 // must not left shift the RHS to preserve the shift amount. 1943 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1944 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1945 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1946 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1947 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1948 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1949 1950 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1951 {ShiftL, ShiftR}, MI.getFlags()); 1952 1953 // Use a shift that will preserve the number of sign bits when the trunc is 1954 // folded away. 1955 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1956 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1957 1958 MIRBuilder.buildTrunc(DstReg, Result); 1959 MI.eraseFromParent(); 1960 return Legalized; 1961 } 1962 1963 LegalizerHelper::LegalizeResult 1964 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, 1965 LLT WideTy) { 1966 if (TypeIdx == 1) { 1967 Observer.changingInstr(MI); 1968 widenScalarDst(MI, WideTy, 1); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 } 1972 1973 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; 1974 Register Result = MI.getOperand(0).getReg(); 1975 Register OriginalOverflow = MI.getOperand(1).getReg(); 1976 Register LHS = MI.getOperand(2).getReg(); 1977 Register RHS = MI.getOperand(3).getReg(); 1978 LLT SrcTy = MRI.getType(LHS); 1979 LLT OverflowTy = MRI.getType(OriginalOverflow); 1980 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); 1981 1982 // To determine if the result overflowed in the larger type, we extend the 1983 // input to the larger type, do the multiply (checking if it overflows), 1984 // then also check the high bits of the result to see if overflow happened 1985 // there. 1986 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1987 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); 1988 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); 1989 1990 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, 1991 {LeftOperand, RightOperand}); 1992 auto Mul = Mulo->getOperand(0); 1993 MIRBuilder.buildTrunc(Result, Mul); 1994 1995 MachineInstrBuilder ExtResult; 1996 // Overflow occurred if it occurred in the larger type, or if the high part 1997 // of the result does not zero/sign-extend the low part. Check this second 1998 // possibility first. 1999 if (IsSigned) { 2000 // For signed, overflow occurred when the high part does not sign-extend 2001 // the low part. 2002 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); 2003 } else { 2004 // Unsigned overflow occurred when the high part does not zero-extend the 2005 // low part. 2006 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); 2007 } 2008 2009 // Multiplication cannot overflow if the WideTy is >= 2 * original width, 2010 // so we don't need to check the overflow result of larger type Mulo. 2011 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { 2012 auto Overflow = 2013 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); 2014 // Finally check if the multiplication in the larger type itself overflowed. 2015 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); 2016 } else { 2017 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); 2018 } 2019 MI.eraseFromParent(); 2020 return Legalized; 2021 } 2022 2023 LegalizerHelper::LegalizeResult 2024 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 2025 switch (MI.getOpcode()) { 2026 default: 2027 return UnableToLegalize; 2028 case TargetOpcode::G_ATOMICRMW_XCHG: 2029 case TargetOpcode::G_ATOMICRMW_ADD: 2030 case TargetOpcode::G_ATOMICRMW_SUB: 2031 case TargetOpcode::G_ATOMICRMW_AND: 2032 case TargetOpcode::G_ATOMICRMW_OR: 2033 case TargetOpcode::G_ATOMICRMW_XOR: 2034 case TargetOpcode::G_ATOMICRMW_MIN: 2035 case TargetOpcode::G_ATOMICRMW_MAX: 2036 case TargetOpcode::G_ATOMICRMW_UMIN: 2037 case TargetOpcode::G_ATOMICRMW_UMAX: 2038 assert(TypeIdx == 0 && "atomicrmw with second scalar type"); 2039 Observer.changingInstr(MI); 2040 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2041 widenScalarDst(MI, WideTy, 0); 2042 Observer.changedInstr(MI); 2043 return Legalized; 2044 case TargetOpcode::G_ATOMIC_CMPXCHG: 2045 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); 2046 Observer.changingInstr(MI); 2047 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2048 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2049 widenScalarDst(MI, WideTy, 0); 2050 Observer.changedInstr(MI); 2051 return Legalized; 2052 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: 2053 if (TypeIdx == 0) { 2054 Observer.changingInstr(MI); 2055 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2056 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); 2057 widenScalarDst(MI, WideTy, 0); 2058 Observer.changedInstr(MI); 2059 return Legalized; 2060 } 2061 assert(TypeIdx == 1 && 2062 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); 2063 Observer.changingInstr(MI); 2064 widenScalarDst(MI, WideTy, 1); 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 case TargetOpcode::G_EXTRACT: 2068 return widenScalarExtract(MI, TypeIdx, WideTy); 2069 case TargetOpcode::G_INSERT: 2070 return widenScalarInsert(MI, TypeIdx, WideTy); 2071 case TargetOpcode::G_MERGE_VALUES: 2072 return widenScalarMergeValues(MI, TypeIdx, WideTy); 2073 case TargetOpcode::G_UNMERGE_VALUES: 2074 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 2075 case TargetOpcode::G_SADDO: 2076 case TargetOpcode::G_SSUBO: 2077 case TargetOpcode::G_UADDO: 2078 case TargetOpcode::G_USUBO: 2079 case TargetOpcode::G_SADDE: 2080 case TargetOpcode::G_SSUBE: 2081 case TargetOpcode::G_UADDE: 2082 case TargetOpcode::G_USUBE: 2083 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 2084 case TargetOpcode::G_UMULO: 2085 case TargetOpcode::G_SMULO: 2086 return widenScalarMulo(MI, TypeIdx, WideTy); 2087 case TargetOpcode::G_SADDSAT: 2088 case TargetOpcode::G_SSUBSAT: 2089 case TargetOpcode::G_SSHLSAT: 2090 case TargetOpcode::G_UADDSAT: 2091 case TargetOpcode::G_USUBSAT: 2092 case TargetOpcode::G_USHLSAT: 2093 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 2094 case TargetOpcode::G_CTTZ: 2095 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2096 case TargetOpcode::G_CTLZ: 2097 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2098 case TargetOpcode::G_CTPOP: { 2099 if (TypeIdx == 0) { 2100 Observer.changingInstr(MI); 2101 widenScalarDst(MI, WideTy, 0); 2102 Observer.changedInstr(MI); 2103 return Legalized; 2104 } 2105 2106 Register SrcReg = MI.getOperand(1).getReg(); 2107 2108 // First extend the input. 2109 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || 2110 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF 2111 ? TargetOpcode::G_ANYEXT 2112 : TargetOpcode::G_ZEXT; 2113 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); 2114 LLT CurTy = MRI.getType(SrcReg); 2115 unsigned NewOpc = MI.getOpcode(); 2116 if (NewOpc == TargetOpcode::G_CTTZ) { 2117 // The count is the same in the larger type except if the original 2118 // value was zero. This can be handled by setting the bit just off 2119 // the top of the original type. 2120 auto TopBit = 2121 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 2122 MIBSrc = MIRBuilder.buildOr( 2123 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 2124 // Now we know the operand is non-zero, use the more relaxed opcode. 2125 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; 2126 } 2127 2128 // Perform the operation at the larger size. 2129 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); 2130 // This is already the correct result for CTPOP and CTTZs 2131 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 2132 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 2133 // The correct result is NewOp - (Difference in widety and current ty). 2134 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 2135 MIBNewOp = MIRBuilder.buildSub( 2136 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 2137 } 2138 2139 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 2140 MI.eraseFromParent(); 2141 return Legalized; 2142 } 2143 case TargetOpcode::G_BSWAP: { 2144 Observer.changingInstr(MI); 2145 Register DstReg = MI.getOperand(0).getReg(); 2146 2147 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 2148 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2149 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 2150 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2151 2152 MI.getOperand(0).setReg(DstExt); 2153 2154 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2155 2156 LLT Ty = MRI.getType(DstReg); 2157 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2158 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 2159 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 2160 2161 MIRBuilder.buildTrunc(DstReg, ShrReg); 2162 Observer.changedInstr(MI); 2163 return Legalized; 2164 } 2165 case TargetOpcode::G_BITREVERSE: { 2166 Observer.changingInstr(MI); 2167 2168 Register DstReg = MI.getOperand(0).getReg(); 2169 LLT Ty = MRI.getType(DstReg); 2170 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 2171 2172 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 2173 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2174 MI.getOperand(0).setReg(DstExt); 2175 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2176 2177 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 2178 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 2179 MIRBuilder.buildTrunc(DstReg, Shift); 2180 Observer.changedInstr(MI); 2181 return Legalized; 2182 } 2183 case TargetOpcode::G_FREEZE: 2184 Observer.changingInstr(MI); 2185 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2186 widenScalarDst(MI, WideTy); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 2190 case TargetOpcode::G_ABS: 2191 Observer.changingInstr(MI); 2192 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2193 widenScalarDst(MI, WideTy); 2194 Observer.changedInstr(MI); 2195 return Legalized; 2196 2197 case TargetOpcode::G_ADD: 2198 case TargetOpcode::G_AND: 2199 case TargetOpcode::G_MUL: 2200 case TargetOpcode::G_OR: 2201 case TargetOpcode::G_XOR: 2202 case TargetOpcode::G_SUB: 2203 // Perform operation at larger width (any extension is fines here, high bits 2204 // don't affect the result) and then truncate the result back to the 2205 // original type. 2206 Observer.changingInstr(MI); 2207 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2208 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2209 widenScalarDst(MI, WideTy); 2210 Observer.changedInstr(MI); 2211 return Legalized; 2212 2213 case TargetOpcode::G_SBFX: 2214 case TargetOpcode::G_UBFX: 2215 Observer.changingInstr(MI); 2216 2217 if (TypeIdx == 0) { 2218 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2219 widenScalarDst(MI, WideTy); 2220 } else { 2221 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2222 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2223 } 2224 2225 Observer.changedInstr(MI); 2226 return Legalized; 2227 2228 case TargetOpcode::G_SHL: 2229 Observer.changingInstr(MI); 2230 2231 if (TypeIdx == 0) { 2232 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2233 widenScalarDst(MI, WideTy); 2234 } else { 2235 assert(TypeIdx == 1); 2236 // The "number of bits to shift" operand must preserve its value as an 2237 // unsigned integer: 2238 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2239 } 2240 2241 Observer.changedInstr(MI); 2242 return Legalized; 2243 2244 case TargetOpcode::G_SDIV: 2245 case TargetOpcode::G_SREM: 2246 case TargetOpcode::G_SMIN: 2247 case TargetOpcode::G_SMAX: 2248 Observer.changingInstr(MI); 2249 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2250 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2251 widenScalarDst(MI, WideTy); 2252 Observer.changedInstr(MI); 2253 return Legalized; 2254 2255 case TargetOpcode::G_SDIVREM: 2256 Observer.changingInstr(MI); 2257 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2258 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2259 widenScalarDst(MI, WideTy); 2260 widenScalarDst(MI, WideTy, 1); 2261 Observer.changedInstr(MI); 2262 return Legalized; 2263 2264 case TargetOpcode::G_ASHR: 2265 case TargetOpcode::G_LSHR: 2266 Observer.changingInstr(MI); 2267 2268 if (TypeIdx == 0) { 2269 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 2270 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 2271 2272 widenScalarSrc(MI, WideTy, 1, CvtOp); 2273 widenScalarDst(MI, WideTy); 2274 } else { 2275 assert(TypeIdx == 1); 2276 // The "number of bits to shift" operand must preserve its value as an 2277 // unsigned integer: 2278 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2279 } 2280 2281 Observer.changedInstr(MI); 2282 return Legalized; 2283 case TargetOpcode::G_UDIV: 2284 case TargetOpcode::G_UREM: 2285 case TargetOpcode::G_UMIN: 2286 case TargetOpcode::G_UMAX: 2287 Observer.changingInstr(MI); 2288 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2289 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2290 widenScalarDst(MI, WideTy); 2291 Observer.changedInstr(MI); 2292 return Legalized; 2293 2294 case TargetOpcode::G_UDIVREM: 2295 Observer.changingInstr(MI); 2296 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2297 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); 2298 widenScalarDst(MI, WideTy); 2299 widenScalarDst(MI, WideTy, 1); 2300 Observer.changedInstr(MI); 2301 return Legalized; 2302 2303 case TargetOpcode::G_SELECT: 2304 Observer.changingInstr(MI); 2305 if (TypeIdx == 0) { 2306 // Perform operation at larger width (any extension is fine here, high 2307 // bits don't affect the result) and then truncate the result back to the 2308 // original type. 2309 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2310 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2311 widenScalarDst(MI, WideTy); 2312 } else { 2313 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2314 // Explicit extension is required here since high bits affect the result. 2315 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2316 } 2317 Observer.changedInstr(MI); 2318 return Legalized; 2319 2320 case TargetOpcode::G_FPTOSI: 2321 case TargetOpcode::G_FPTOUI: 2322 Observer.changingInstr(MI); 2323 2324 if (TypeIdx == 0) 2325 widenScalarDst(MI, WideTy); 2326 else 2327 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2328 2329 Observer.changedInstr(MI); 2330 return Legalized; 2331 case TargetOpcode::G_SITOFP: 2332 Observer.changingInstr(MI); 2333 2334 if (TypeIdx == 0) 2335 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2336 else 2337 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2338 2339 Observer.changedInstr(MI); 2340 return Legalized; 2341 case TargetOpcode::G_UITOFP: 2342 Observer.changingInstr(MI); 2343 2344 if (TypeIdx == 0) 2345 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2346 else 2347 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2348 2349 Observer.changedInstr(MI); 2350 return Legalized; 2351 case TargetOpcode::G_LOAD: 2352 case TargetOpcode::G_SEXTLOAD: 2353 case TargetOpcode::G_ZEXTLOAD: 2354 Observer.changingInstr(MI); 2355 widenScalarDst(MI, WideTy); 2356 Observer.changedInstr(MI); 2357 return Legalized; 2358 2359 case TargetOpcode::G_STORE: { 2360 if (TypeIdx != 0) 2361 return UnableToLegalize; 2362 2363 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2364 if (!Ty.isScalar()) 2365 return UnableToLegalize; 2366 2367 Observer.changingInstr(MI); 2368 2369 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2370 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2371 widenScalarSrc(MI, WideTy, 0, ExtType); 2372 2373 Observer.changedInstr(MI); 2374 return Legalized; 2375 } 2376 case TargetOpcode::G_CONSTANT: { 2377 MachineOperand &SrcMO = MI.getOperand(1); 2378 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2379 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2380 MRI.getType(MI.getOperand(0).getReg())); 2381 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2382 ExtOpc == TargetOpcode::G_ANYEXT) && 2383 "Illegal Extend"); 2384 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2385 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2386 ? SrcVal.sext(WideTy.getSizeInBits()) 2387 : SrcVal.zext(WideTy.getSizeInBits()); 2388 Observer.changingInstr(MI); 2389 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2390 2391 widenScalarDst(MI, WideTy); 2392 Observer.changedInstr(MI); 2393 return Legalized; 2394 } 2395 case TargetOpcode::G_FCONSTANT: { 2396 MachineOperand &SrcMO = MI.getOperand(1); 2397 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2398 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2399 bool LosesInfo; 2400 switch (WideTy.getSizeInBits()) { 2401 case 32: 2402 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2403 &LosesInfo); 2404 break; 2405 case 64: 2406 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2407 &LosesInfo); 2408 break; 2409 default: 2410 return UnableToLegalize; 2411 } 2412 2413 assert(!LosesInfo && "extend should always be lossless"); 2414 2415 Observer.changingInstr(MI); 2416 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2417 2418 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2419 Observer.changedInstr(MI); 2420 return Legalized; 2421 } 2422 case TargetOpcode::G_IMPLICIT_DEF: { 2423 Observer.changingInstr(MI); 2424 widenScalarDst(MI, WideTy); 2425 Observer.changedInstr(MI); 2426 return Legalized; 2427 } 2428 case TargetOpcode::G_BRCOND: 2429 Observer.changingInstr(MI); 2430 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2431 Observer.changedInstr(MI); 2432 return Legalized; 2433 2434 case TargetOpcode::G_FCMP: 2435 Observer.changingInstr(MI); 2436 if (TypeIdx == 0) 2437 widenScalarDst(MI, WideTy); 2438 else { 2439 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2440 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2441 } 2442 Observer.changedInstr(MI); 2443 return Legalized; 2444 2445 case TargetOpcode::G_ICMP: 2446 Observer.changingInstr(MI); 2447 if (TypeIdx == 0) 2448 widenScalarDst(MI, WideTy); 2449 else { 2450 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2451 MI.getOperand(1).getPredicate())) 2452 ? TargetOpcode::G_SEXT 2453 : TargetOpcode::G_ZEXT; 2454 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2455 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2456 } 2457 Observer.changedInstr(MI); 2458 return Legalized; 2459 2460 case TargetOpcode::G_PTR_ADD: 2461 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2462 Observer.changingInstr(MI); 2463 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2464 Observer.changedInstr(MI); 2465 return Legalized; 2466 2467 case TargetOpcode::G_PHI: { 2468 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2469 2470 Observer.changingInstr(MI); 2471 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2472 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2473 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2474 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2475 } 2476 2477 MachineBasicBlock &MBB = *MI.getParent(); 2478 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2479 widenScalarDst(MI, WideTy); 2480 Observer.changedInstr(MI); 2481 return Legalized; 2482 } 2483 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2484 if (TypeIdx == 0) { 2485 Register VecReg = MI.getOperand(1).getReg(); 2486 LLT VecTy = MRI.getType(VecReg); 2487 Observer.changingInstr(MI); 2488 2489 widenScalarSrc( 2490 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, 2491 TargetOpcode::G_ANYEXT); 2492 2493 widenScalarDst(MI, WideTy, 0); 2494 Observer.changedInstr(MI); 2495 return Legalized; 2496 } 2497 2498 if (TypeIdx != 2) 2499 return UnableToLegalize; 2500 Observer.changingInstr(MI); 2501 // TODO: Probably should be zext 2502 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2503 Observer.changedInstr(MI); 2504 return Legalized; 2505 } 2506 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2507 if (TypeIdx == 1) { 2508 Observer.changingInstr(MI); 2509 2510 Register VecReg = MI.getOperand(1).getReg(); 2511 LLT VecTy = MRI.getType(VecReg); 2512 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); 2513 2514 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2515 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2516 widenScalarDst(MI, WideVecTy, 0); 2517 Observer.changedInstr(MI); 2518 return Legalized; 2519 } 2520 2521 if (TypeIdx == 2) { 2522 Observer.changingInstr(MI); 2523 // TODO: Probably should be zext 2524 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2525 Observer.changedInstr(MI); 2526 return Legalized; 2527 } 2528 2529 return UnableToLegalize; 2530 } 2531 case TargetOpcode::G_FADD: 2532 case TargetOpcode::G_FMUL: 2533 case TargetOpcode::G_FSUB: 2534 case TargetOpcode::G_FMA: 2535 case TargetOpcode::G_FMAD: 2536 case TargetOpcode::G_FNEG: 2537 case TargetOpcode::G_FABS: 2538 case TargetOpcode::G_FCANONICALIZE: 2539 case TargetOpcode::G_FMINNUM: 2540 case TargetOpcode::G_FMAXNUM: 2541 case TargetOpcode::G_FMINNUM_IEEE: 2542 case TargetOpcode::G_FMAXNUM_IEEE: 2543 case TargetOpcode::G_FMINIMUM: 2544 case TargetOpcode::G_FMAXIMUM: 2545 case TargetOpcode::G_FDIV: 2546 case TargetOpcode::G_FREM: 2547 case TargetOpcode::G_FCEIL: 2548 case TargetOpcode::G_FFLOOR: 2549 case TargetOpcode::G_FCOS: 2550 case TargetOpcode::G_FSIN: 2551 case TargetOpcode::G_FLOG10: 2552 case TargetOpcode::G_FLOG: 2553 case TargetOpcode::G_FLOG2: 2554 case TargetOpcode::G_FRINT: 2555 case TargetOpcode::G_FNEARBYINT: 2556 case TargetOpcode::G_FSQRT: 2557 case TargetOpcode::G_FEXP: 2558 case TargetOpcode::G_FEXP2: 2559 case TargetOpcode::G_FPOW: 2560 case TargetOpcode::G_INTRINSIC_TRUNC: 2561 case TargetOpcode::G_INTRINSIC_ROUND: 2562 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2563 assert(TypeIdx == 0); 2564 Observer.changingInstr(MI); 2565 2566 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2567 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2568 2569 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2570 Observer.changedInstr(MI); 2571 return Legalized; 2572 case TargetOpcode::G_FPOWI: { 2573 if (TypeIdx != 0) 2574 return UnableToLegalize; 2575 Observer.changingInstr(MI); 2576 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2577 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2578 Observer.changedInstr(MI); 2579 return Legalized; 2580 } 2581 case TargetOpcode::G_INTTOPTR: 2582 if (TypeIdx != 1) 2583 return UnableToLegalize; 2584 2585 Observer.changingInstr(MI); 2586 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2587 Observer.changedInstr(MI); 2588 return Legalized; 2589 case TargetOpcode::G_PTRTOINT: 2590 if (TypeIdx != 0) 2591 return UnableToLegalize; 2592 2593 Observer.changingInstr(MI); 2594 widenScalarDst(MI, WideTy, 0); 2595 Observer.changedInstr(MI); 2596 return Legalized; 2597 case TargetOpcode::G_BUILD_VECTOR: { 2598 Observer.changingInstr(MI); 2599 2600 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2601 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2602 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2603 2604 // Avoid changing the result vector type if the source element type was 2605 // requested. 2606 if (TypeIdx == 1) { 2607 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2608 } else { 2609 widenScalarDst(MI, WideTy, 0); 2610 } 2611 2612 Observer.changedInstr(MI); 2613 return Legalized; 2614 } 2615 case TargetOpcode::G_SEXT_INREG: 2616 if (TypeIdx != 0) 2617 return UnableToLegalize; 2618 2619 Observer.changingInstr(MI); 2620 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2621 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2622 Observer.changedInstr(MI); 2623 return Legalized; 2624 case TargetOpcode::G_PTRMASK: { 2625 if (TypeIdx != 1) 2626 return UnableToLegalize; 2627 Observer.changingInstr(MI); 2628 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2629 Observer.changedInstr(MI); 2630 return Legalized; 2631 } 2632 } 2633 } 2634 2635 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2636 MachineIRBuilder &B, Register Src, LLT Ty) { 2637 auto Unmerge = B.buildUnmerge(Ty, Src); 2638 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2639 Pieces.push_back(Unmerge.getReg(I)); 2640 } 2641 2642 LegalizerHelper::LegalizeResult 2643 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2644 Register Dst = MI.getOperand(0).getReg(); 2645 Register Src = MI.getOperand(1).getReg(); 2646 LLT DstTy = MRI.getType(Dst); 2647 LLT SrcTy = MRI.getType(Src); 2648 2649 if (SrcTy.isVector()) { 2650 LLT SrcEltTy = SrcTy.getElementType(); 2651 SmallVector<Register, 8> SrcRegs; 2652 2653 if (DstTy.isVector()) { 2654 int NumDstElt = DstTy.getNumElements(); 2655 int NumSrcElt = SrcTy.getNumElements(); 2656 2657 LLT DstEltTy = DstTy.getElementType(); 2658 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2659 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2660 2661 // If there's an element size mismatch, insert intermediate casts to match 2662 // the result element type. 2663 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2664 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2665 // 2666 // => 2667 // 2668 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2669 // %3:_(<2 x s8>) = G_BITCAST %2 2670 // %4:_(<2 x s8>) = G_BITCAST %3 2671 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2672 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); 2673 SrcPartTy = SrcEltTy; 2674 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2675 // 2676 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2677 // 2678 // => 2679 // 2680 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2681 // %3:_(s16) = G_BITCAST %2 2682 // %4:_(s16) = G_BITCAST %3 2683 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2684 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); 2685 DstCastTy = DstEltTy; 2686 } 2687 2688 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2689 for (Register &SrcReg : SrcRegs) 2690 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2691 } else 2692 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2693 2694 MIRBuilder.buildMerge(Dst, SrcRegs); 2695 MI.eraseFromParent(); 2696 return Legalized; 2697 } 2698 2699 if (DstTy.isVector()) { 2700 SmallVector<Register, 8> SrcRegs; 2701 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2702 MIRBuilder.buildMerge(Dst, SrcRegs); 2703 MI.eraseFromParent(); 2704 return Legalized; 2705 } 2706 2707 return UnableToLegalize; 2708 } 2709 2710 /// Figure out the bit offset into a register when coercing a vector index for 2711 /// the wide element type. This is only for the case when promoting vector to 2712 /// one with larger elements. 2713 // 2714 /// 2715 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2716 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2717 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2718 Register Idx, 2719 unsigned NewEltSize, 2720 unsigned OldEltSize) { 2721 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2722 LLT IdxTy = B.getMRI()->getType(Idx); 2723 2724 // Now figure out the amount we need to shift to get the target bits. 2725 auto OffsetMask = B.buildConstant( 2726 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); 2727 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2728 return B.buildShl(IdxTy, OffsetIdx, 2729 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2730 } 2731 2732 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2733 /// is casting to a vector with a smaller element size, perform multiple element 2734 /// extracts and merge the results. If this is coercing to a vector with larger 2735 /// elements, index the bitcasted vector and extract the target element with bit 2736 /// operations. This is intended to force the indexing in the native register 2737 /// size for architectures that can dynamically index the register file. 2738 LegalizerHelper::LegalizeResult 2739 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2740 LLT CastTy) { 2741 if (TypeIdx != 1) 2742 return UnableToLegalize; 2743 2744 Register Dst = MI.getOperand(0).getReg(); 2745 Register SrcVec = MI.getOperand(1).getReg(); 2746 Register Idx = MI.getOperand(2).getReg(); 2747 LLT SrcVecTy = MRI.getType(SrcVec); 2748 LLT IdxTy = MRI.getType(Idx); 2749 2750 LLT SrcEltTy = SrcVecTy.getElementType(); 2751 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2752 unsigned OldNumElts = SrcVecTy.getNumElements(); 2753 2754 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2755 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2756 2757 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2758 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2759 if (NewNumElts > OldNumElts) { 2760 // Decreasing the vector element size 2761 // 2762 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2763 // => 2764 // v4i32:castx = bitcast x:v2i64 2765 // 2766 // i64 = bitcast 2767 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2768 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2769 // 2770 if (NewNumElts % OldNumElts != 0) 2771 return UnableToLegalize; 2772 2773 // Type of the intermediate result vector. 2774 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2775 LLT MidTy = 2776 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); 2777 2778 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2779 2780 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2781 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2782 2783 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2784 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2785 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2786 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2787 NewOps[I] = Elt.getReg(0); 2788 } 2789 2790 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2791 MIRBuilder.buildBitcast(Dst, NewVec); 2792 MI.eraseFromParent(); 2793 return Legalized; 2794 } 2795 2796 if (NewNumElts < OldNumElts) { 2797 if (NewEltSize % OldEltSize != 0) 2798 return UnableToLegalize; 2799 2800 // This only depends on powers of 2 because we use bit tricks to figure out 2801 // the bit offset we need to shift to get the target element. A general 2802 // expansion could emit division/multiply. 2803 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2804 return UnableToLegalize; 2805 2806 // Increasing the vector element size. 2807 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2808 // 2809 // => 2810 // 2811 // %cast = G_BITCAST %vec 2812 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2813 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2814 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2815 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2816 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2817 // %elt = G_TRUNC %elt_bits 2818 2819 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2820 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2821 2822 // Divide to get the index in the wider element type. 2823 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2824 2825 Register WideElt = CastVec; 2826 if (CastTy.isVector()) { 2827 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2828 ScaledIdx).getReg(0); 2829 } 2830 2831 // Compute the bit offset into the register of the target element. 2832 Register OffsetBits = getBitcastWiderVectorElementOffset( 2833 MIRBuilder, Idx, NewEltSize, OldEltSize); 2834 2835 // Shift the wide element to get the target element. 2836 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2837 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2838 MI.eraseFromParent(); 2839 return Legalized; 2840 } 2841 2842 return UnableToLegalize; 2843 } 2844 2845 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2846 /// TargetReg, while preserving other bits in \p TargetReg. 2847 /// 2848 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2849 static Register buildBitFieldInsert(MachineIRBuilder &B, 2850 Register TargetReg, Register InsertReg, 2851 Register OffsetBits) { 2852 LLT TargetTy = B.getMRI()->getType(TargetReg); 2853 LLT InsertTy = B.getMRI()->getType(InsertReg); 2854 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2855 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2856 2857 // Produce a bitmask of the value to insert 2858 auto EltMask = B.buildConstant( 2859 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2860 InsertTy.getSizeInBits())); 2861 // Shift it into position 2862 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2863 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2864 2865 // Clear out the bits in the wide element 2866 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2867 2868 // The value to insert has all zeros already, so stick it into the masked 2869 // wide element. 2870 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2871 } 2872 2873 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2874 /// is increasing the element size, perform the indexing in the target element 2875 /// type, and use bit operations to insert at the element position. This is 2876 /// intended for architectures that can dynamically index the register file and 2877 /// want to force indexing in the native register size. 2878 LegalizerHelper::LegalizeResult 2879 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2880 LLT CastTy) { 2881 if (TypeIdx != 0) 2882 return UnableToLegalize; 2883 2884 Register Dst = MI.getOperand(0).getReg(); 2885 Register SrcVec = MI.getOperand(1).getReg(); 2886 Register Val = MI.getOperand(2).getReg(); 2887 Register Idx = MI.getOperand(3).getReg(); 2888 2889 LLT VecTy = MRI.getType(Dst); 2890 LLT IdxTy = MRI.getType(Idx); 2891 2892 LLT VecEltTy = VecTy.getElementType(); 2893 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2894 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2895 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2896 2897 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2898 unsigned OldNumElts = VecTy.getNumElements(); 2899 2900 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2901 if (NewNumElts < OldNumElts) { 2902 if (NewEltSize % OldEltSize != 0) 2903 return UnableToLegalize; 2904 2905 // This only depends on powers of 2 because we use bit tricks to figure out 2906 // the bit offset we need to shift to get the target element. A general 2907 // expansion could emit division/multiply. 2908 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2909 return UnableToLegalize; 2910 2911 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2912 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2913 2914 // Divide to get the index in the wider element type. 2915 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2916 2917 Register ExtractedElt = CastVec; 2918 if (CastTy.isVector()) { 2919 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2920 ScaledIdx).getReg(0); 2921 } 2922 2923 // Compute the bit offset into the register of the target element. 2924 Register OffsetBits = getBitcastWiderVectorElementOffset( 2925 MIRBuilder, Idx, NewEltSize, OldEltSize); 2926 2927 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2928 Val, OffsetBits); 2929 if (CastTy.isVector()) { 2930 InsertedElt = MIRBuilder.buildInsertVectorElement( 2931 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2932 } 2933 2934 MIRBuilder.buildBitcast(Dst, InsertedElt); 2935 MI.eraseFromParent(); 2936 return Legalized; 2937 } 2938 2939 return UnableToLegalize; 2940 } 2941 2942 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { 2943 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2944 Register DstReg = LoadMI.getDstReg(); 2945 Register PtrReg = LoadMI.getPointerReg(); 2946 LLT DstTy = MRI.getType(DstReg); 2947 MachineMemOperand &MMO = LoadMI.getMMO(); 2948 LLT MemTy = MMO.getMemoryType(); 2949 MachineFunction &MF = MIRBuilder.getMF(); 2950 2951 unsigned MemSizeInBits = MemTy.getSizeInBits(); 2952 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); 2953 2954 if (MemSizeInBits != MemStoreSizeInBits) { 2955 if (MemTy.isVector()) 2956 return UnableToLegalize; 2957 2958 // Promote to a byte-sized load if not loading an integral number of 2959 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 2960 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); 2961 MachineMemOperand *NewMMO = 2962 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); 2963 2964 Register LoadReg = DstReg; 2965 LLT LoadTy = DstTy; 2966 2967 // If this wasn't already an extending load, we need to widen the result 2968 // register to avoid creating a load with a narrower result than the source. 2969 if (MemStoreSizeInBits > DstTy.getSizeInBits()) { 2970 LoadTy = WideMemTy; 2971 LoadReg = MRI.createGenericVirtualRegister(WideMemTy); 2972 } 2973 2974 if (isa<GSExtLoad>(LoadMI)) { 2975 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2976 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); 2977 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { 2978 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); 2979 // The extra bits are guaranteed to be zero, since we stored them that 2980 // way. A zext load from Wide thus automatically gives zext from MemVT. 2981 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); 2982 } else { 2983 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); 2984 } 2985 2986 if (DstTy != LoadTy) 2987 MIRBuilder.buildTrunc(DstReg, LoadReg); 2988 2989 LoadMI.eraseFromParent(); 2990 return Legalized; 2991 } 2992 2993 // Big endian lowering not implemented. 2994 if (MIRBuilder.getDataLayout().isBigEndian()) 2995 return UnableToLegalize; 2996 2997 // This load needs splitting into power of 2 sized loads. 2998 // 2999 // Our strategy here is to generate anyextending loads for the smaller 3000 // types up to next power-2 result type, and then combine the two larger 3001 // result values together, before truncating back down to the non-pow-2 3002 // type. 3003 // E.g. v1 = i24 load => 3004 // v2 = i32 zextload (2 byte) 3005 // v3 = i32 load (1 byte) 3006 // v4 = i32 shl v3, 16 3007 // v5 = i32 or v4, v2 3008 // v1 = i24 trunc v5 3009 // By doing this we generate the correct truncate which should get 3010 // combined away as an artifact with a matching extend. 3011 3012 uint64_t LargeSplitSize, SmallSplitSize; 3013 3014 if (!isPowerOf2_32(MemSizeInBits)) { 3015 // This load needs splitting into power of 2 sized loads. 3016 LargeSplitSize = PowerOf2Floor(MemSizeInBits); 3017 SmallSplitSize = MemSizeInBits - LargeSplitSize; 3018 } else { 3019 // This is already a power of 2, but we still need to split this in half. 3020 // 3021 // Assume we're being asked to decompose an unaligned load. 3022 // TODO: If this requires multiple splits, handle them all at once. 3023 auto &Ctx = MF.getFunction().getContext(); 3024 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3025 return UnableToLegalize; 3026 3027 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3028 } 3029 3030 if (MemTy.isVector()) { 3031 // TODO: Handle vector extloads 3032 if (MemTy != DstTy) 3033 return UnableToLegalize; 3034 3035 // TODO: We can do better than scalarizing the vector and at least split it 3036 // in half. 3037 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); 3038 } 3039 3040 MachineMemOperand *LargeMMO = 3041 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3042 MachineMemOperand *SmallMMO = 3043 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3044 3045 LLT PtrTy = MRI.getType(PtrReg); 3046 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); 3047 LLT AnyExtTy = LLT::scalar(AnyExtSize); 3048 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, 3049 PtrReg, *LargeMMO); 3050 3051 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), 3052 LargeSplitSize / 8); 3053 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 3054 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); 3055 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, 3056 SmallPtr, *SmallMMO); 3057 3058 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 3059 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 3060 3061 if (AnyExtTy == DstTy) 3062 MIRBuilder.buildOr(DstReg, Shift, LargeLoad); 3063 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { 3064 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3065 MIRBuilder.buildTrunc(DstReg, {Or}); 3066 } else { 3067 assert(DstTy.isPointer() && "expected pointer"); 3068 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 3069 3070 // FIXME: We currently consider this to be illegal for non-integral address 3071 // spaces, but we need still need a way to reinterpret the bits. 3072 MIRBuilder.buildIntToPtr(DstReg, Or); 3073 } 3074 3075 LoadMI.eraseFromParent(); 3076 return Legalized; 3077 } 3078 3079 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { 3080 // Lower a non-power of 2 store into multiple pow-2 stores. 3081 // E.g. split an i24 store into an i16 store + i8 store. 3082 // We do this by first extending the stored value to the next largest power 3083 // of 2 type, and then using truncating stores to store the components. 3084 // By doing this, likewise with G_LOAD, generate an extend that can be 3085 // artifact-combined away instead of leaving behind extracts. 3086 Register SrcReg = StoreMI.getValueReg(); 3087 Register PtrReg = StoreMI.getPointerReg(); 3088 LLT SrcTy = MRI.getType(SrcReg); 3089 MachineFunction &MF = MIRBuilder.getMF(); 3090 MachineMemOperand &MMO = **StoreMI.memoperands_begin(); 3091 LLT MemTy = MMO.getMemoryType(); 3092 3093 unsigned StoreWidth = MemTy.getSizeInBits(); 3094 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); 3095 3096 if (StoreWidth != StoreSizeInBits) { 3097 if (SrcTy.isVector()) 3098 return UnableToLegalize; 3099 3100 // Promote to a byte-sized store with upper bits zero if not 3101 // storing an integral number of bytes. For example, promote 3102 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 3103 LLT WideTy = LLT::scalar(StoreSizeInBits); 3104 3105 if (StoreSizeInBits > SrcTy.getSizeInBits()) { 3106 // Avoid creating a store with a narrower source than result. 3107 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 3108 SrcTy = WideTy; 3109 } 3110 3111 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); 3112 3113 MachineMemOperand *NewMMO = 3114 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); 3115 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); 3116 StoreMI.eraseFromParent(); 3117 return Legalized; 3118 } 3119 3120 if (MemTy.isVector()) { 3121 // TODO: Handle vector trunc stores 3122 if (MemTy != SrcTy) 3123 return UnableToLegalize; 3124 3125 // TODO: We can do better than scalarizing the vector and at least split it 3126 // in half. 3127 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); 3128 } 3129 3130 unsigned MemSizeInBits = MemTy.getSizeInBits(); 3131 uint64_t LargeSplitSize, SmallSplitSize; 3132 3133 if (!isPowerOf2_32(MemSizeInBits)) { 3134 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits()); 3135 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; 3136 } else { 3137 auto &Ctx = MF.getFunction().getContext(); 3138 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) 3139 return UnableToLegalize; // Don't know what we're being asked to do. 3140 3141 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; 3142 } 3143 3144 // Extend to the next pow-2. If this store was itself the result of lowering, 3145 // e.g. an s56 store being broken into s32 + s24, we might have a stored type 3146 // that's wider than the stored size. 3147 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); 3148 const LLT NewSrcTy = LLT::scalar(AnyExtSize); 3149 3150 if (SrcTy.isPointer()) { 3151 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); 3152 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); 3153 } 3154 3155 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); 3156 3157 // Obtain the smaller value by shifting away the larger value. 3158 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); 3159 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); 3160 3161 // Generate the PtrAdd and truncating stores. 3162 LLT PtrTy = MRI.getType(PtrReg); 3163 auto OffsetCst = MIRBuilder.buildConstant( 3164 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 3165 auto SmallPtr = 3166 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); 3167 3168 MachineMemOperand *LargeMMO = 3169 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 3170 MachineMemOperand *SmallMMO = 3171 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 3172 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); 3173 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); 3174 StoreMI.eraseFromParent(); 3175 return Legalized; 3176 } 3177 3178 LegalizerHelper::LegalizeResult 3179 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 3180 switch (MI.getOpcode()) { 3181 case TargetOpcode::G_LOAD: { 3182 if (TypeIdx != 0) 3183 return UnableToLegalize; 3184 MachineMemOperand &MMO = **MI.memoperands_begin(); 3185 3186 // Not sure how to interpret a bitcast of an extending load. 3187 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3188 return UnableToLegalize; 3189 3190 Observer.changingInstr(MI); 3191 bitcastDst(MI, CastTy, 0); 3192 MMO.setType(CastTy); 3193 Observer.changedInstr(MI); 3194 return Legalized; 3195 } 3196 case TargetOpcode::G_STORE: { 3197 if (TypeIdx != 0) 3198 return UnableToLegalize; 3199 3200 MachineMemOperand &MMO = **MI.memoperands_begin(); 3201 3202 // Not sure how to interpret a bitcast of a truncating store. 3203 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) 3204 return UnableToLegalize; 3205 3206 Observer.changingInstr(MI); 3207 bitcastSrc(MI, CastTy, 0); 3208 MMO.setType(CastTy); 3209 Observer.changedInstr(MI); 3210 return Legalized; 3211 } 3212 case TargetOpcode::G_SELECT: { 3213 if (TypeIdx != 0) 3214 return UnableToLegalize; 3215 3216 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 3217 LLVM_DEBUG( 3218 dbgs() << "bitcast action not implemented for vector select\n"); 3219 return UnableToLegalize; 3220 } 3221 3222 Observer.changingInstr(MI); 3223 bitcastSrc(MI, CastTy, 2); 3224 bitcastSrc(MI, CastTy, 3); 3225 bitcastDst(MI, CastTy, 0); 3226 Observer.changedInstr(MI); 3227 return Legalized; 3228 } 3229 case TargetOpcode::G_AND: 3230 case TargetOpcode::G_OR: 3231 case TargetOpcode::G_XOR: { 3232 Observer.changingInstr(MI); 3233 bitcastSrc(MI, CastTy, 1); 3234 bitcastSrc(MI, CastTy, 2); 3235 bitcastDst(MI, CastTy, 0); 3236 Observer.changedInstr(MI); 3237 return Legalized; 3238 } 3239 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 3240 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 3241 case TargetOpcode::G_INSERT_VECTOR_ELT: 3242 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 3243 default: 3244 return UnableToLegalize; 3245 } 3246 } 3247 3248 // Legalize an instruction by changing the opcode in place. 3249 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 3250 Observer.changingInstr(MI); 3251 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 3252 Observer.changedInstr(MI); 3253 } 3254 3255 LegalizerHelper::LegalizeResult 3256 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 3257 using namespace TargetOpcode; 3258 3259 switch(MI.getOpcode()) { 3260 default: 3261 return UnableToLegalize; 3262 case TargetOpcode::G_BITCAST: 3263 return lowerBitcast(MI); 3264 case TargetOpcode::G_SREM: 3265 case TargetOpcode::G_UREM: { 3266 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3267 auto Quot = 3268 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 3269 {MI.getOperand(1), MI.getOperand(2)}); 3270 3271 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 3272 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 3273 MI.eraseFromParent(); 3274 return Legalized; 3275 } 3276 case TargetOpcode::G_SADDO: 3277 case TargetOpcode::G_SSUBO: 3278 return lowerSADDO_SSUBO(MI); 3279 case TargetOpcode::G_UMULH: 3280 case TargetOpcode::G_SMULH: 3281 return lowerSMULH_UMULH(MI); 3282 case TargetOpcode::G_SMULO: 3283 case TargetOpcode::G_UMULO: { 3284 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 3285 // result. 3286 Register Res = MI.getOperand(0).getReg(); 3287 Register Overflow = MI.getOperand(1).getReg(); 3288 Register LHS = MI.getOperand(2).getReg(); 3289 Register RHS = MI.getOperand(3).getReg(); 3290 LLT Ty = MRI.getType(Res); 3291 3292 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 3293 ? TargetOpcode::G_SMULH 3294 : TargetOpcode::G_UMULH; 3295 3296 Observer.changingInstr(MI); 3297 const auto &TII = MIRBuilder.getTII(); 3298 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 3299 MI.removeOperand(1); 3300 Observer.changedInstr(MI); 3301 3302 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 3303 auto Zero = MIRBuilder.buildConstant(Ty, 0); 3304 3305 // Move insert point forward so we can use the Res register if needed. 3306 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 3307 3308 // For *signed* multiply, overflow is detected by checking: 3309 // (hi != (lo >> bitwidth-1)) 3310 if (Opcode == TargetOpcode::G_SMULH) { 3311 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 3312 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 3313 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 3314 } else { 3315 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 3316 } 3317 return Legalized; 3318 } 3319 case TargetOpcode::G_FNEG: { 3320 Register Res = MI.getOperand(0).getReg(); 3321 LLT Ty = MRI.getType(Res); 3322 3323 // TODO: Handle vector types once we are able to 3324 // represent them. 3325 if (Ty.isVector()) 3326 return UnableToLegalize; 3327 auto SignMask = 3328 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 3329 Register SubByReg = MI.getOperand(1).getReg(); 3330 MIRBuilder.buildXor(Res, SubByReg, SignMask); 3331 MI.eraseFromParent(); 3332 return Legalized; 3333 } 3334 case TargetOpcode::G_FSUB: { 3335 Register Res = MI.getOperand(0).getReg(); 3336 LLT Ty = MRI.getType(Res); 3337 3338 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 3339 // First, check if G_FNEG is marked as Lower. If so, we may 3340 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 3341 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 3342 return UnableToLegalize; 3343 Register LHS = MI.getOperand(1).getReg(); 3344 Register RHS = MI.getOperand(2).getReg(); 3345 Register Neg = MRI.createGenericVirtualRegister(Ty); 3346 MIRBuilder.buildFNeg(Neg, RHS); 3347 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 3348 MI.eraseFromParent(); 3349 return Legalized; 3350 } 3351 case TargetOpcode::G_FMAD: 3352 return lowerFMad(MI); 3353 case TargetOpcode::G_FFLOOR: 3354 return lowerFFloor(MI); 3355 case TargetOpcode::G_INTRINSIC_ROUND: 3356 return lowerIntrinsicRound(MI); 3357 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 3358 // Since round even is the assumed rounding mode for unconstrained FP 3359 // operations, rint and roundeven are the same operation. 3360 changeOpcode(MI, TargetOpcode::G_FRINT); 3361 return Legalized; 3362 } 3363 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 3364 Register OldValRes = MI.getOperand(0).getReg(); 3365 Register SuccessRes = MI.getOperand(1).getReg(); 3366 Register Addr = MI.getOperand(2).getReg(); 3367 Register CmpVal = MI.getOperand(3).getReg(); 3368 Register NewVal = MI.getOperand(4).getReg(); 3369 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 3370 **MI.memoperands_begin()); 3371 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 3372 MI.eraseFromParent(); 3373 return Legalized; 3374 } 3375 case TargetOpcode::G_LOAD: 3376 case TargetOpcode::G_SEXTLOAD: 3377 case TargetOpcode::G_ZEXTLOAD: 3378 return lowerLoad(cast<GAnyLoad>(MI)); 3379 case TargetOpcode::G_STORE: 3380 return lowerStore(cast<GStore>(MI)); 3381 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 3382 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 3383 case TargetOpcode::G_CTLZ: 3384 case TargetOpcode::G_CTTZ: 3385 case TargetOpcode::G_CTPOP: 3386 return lowerBitCount(MI); 3387 case G_UADDO: { 3388 Register Res = MI.getOperand(0).getReg(); 3389 Register CarryOut = MI.getOperand(1).getReg(); 3390 Register LHS = MI.getOperand(2).getReg(); 3391 Register RHS = MI.getOperand(3).getReg(); 3392 3393 MIRBuilder.buildAdd(Res, LHS, RHS); 3394 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 3395 3396 MI.eraseFromParent(); 3397 return Legalized; 3398 } 3399 case G_UADDE: { 3400 Register Res = MI.getOperand(0).getReg(); 3401 Register CarryOut = MI.getOperand(1).getReg(); 3402 Register LHS = MI.getOperand(2).getReg(); 3403 Register RHS = MI.getOperand(3).getReg(); 3404 Register CarryIn = MI.getOperand(4).getReg(); 3405 LLT Ty = MRI.getType(Res); 3406 3407 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3408 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3409 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3410 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3411 3412 MI.eraseFromParent(); 3413 return Legalized; 3414 } 3415 case G_USUBO: { 3416 Register Res = MI.getOperand(0).getReg(); 3417 Register BorrowOut = MI.getOperand(1).getReg(); 3418 Register LHS = MI.getOperand(2).getReg(); 3419 Register RHS = MI.getOperand(3).getReg(); 3420 3421 MIRBuilder.buildSub(Res, LHS, RHS); 3422 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3423 3424 MI.eraseFromParent(); 3425 return Legalized; 3426 } 3427 case G_USUBE: { 3428 Register Res = MI.getOperand(0).getReg(); 3429 Register BorrowOut = MI.getOperand(1).getReg(); 3430 Register LHS = MI.getOperand(2).getReg(); 3431 Register RHS = MI.getOperand(3).getReg(); 3432 Register BorrowIn = MI.getOperand(4).getReg(); 3433 const LLT CondTy = MRI.getType(BorrowOut); 3434 const LLT Ty = MRI.getType(Res); 3435 3436 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3437 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3438 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3439 3440 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3441 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3442 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3443 3444 MI.eraseFromParent(); 3445 return Legalized; 3446 } 3447 case G_UITOFP: 3448 return lowerUITOFP(MI); 3449 case G_SITOFP: 3450 return lowerSITOFP(MI); 3451 case G_FPTOUI: 3452 return lowerFPTOUI(MI); 3453 case G_FPTOSI: 3454 return lowerFPTOSI(MI); 3455 case G_FPTRUNC: 3456 return lowerFPTRUNC(MI); 3457 case G_FPOWI: 3458 return lowerFPOWI(MI); 3459 case G_SMIN: 3460 case G_SMAX: 3461 case G_UMIN: 3462 case G_UMAX: 3463 return lowerMinMax(MI); 3464 case G_FCOPYSIGN: 3465 return lowerFCopySign(MI); 3466 case G_FMINNUM: 3467 case G_FMAXNUM: 3468 return lowerFMinNumMaxNum(MI); 3469 case G_MERGE_VALUES: 3470 return lowerMergeValues(MI); 3471 case G_UNMERGE_VALUES: 3472 return lowerUnmergeValues(MI); 3473 case TargetOpcode::G_SEXT_INREG: { 3474 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3475 int64_t SizeInBits = MI.getOperand(2).getImm(); 3476 3477 Register DstReg = MI.getOperand(0).getReg(); 3478 Register SrcReg = MI.getOperand(1).getReg(); 3479 LLT DstTy = MRI.getType(DstReg); 3480 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3481 3482 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3483 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3484 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3485 MI.eraseFromParent(); 3486 return Legalized; 3487 } 3488 case G_EXTRACT_VECTOR_ELT: 3489 case G_INSERT_VECTOR_ELT: 3490 return lowerExtractInsertVectorElt(MI); 3491 case G_SHUFFLE_VECTOR: 3492 return lowerShuffleVector(MI); 3493 case G_DYN_STACKALLOC: 3494 return lowerDynStackAlloc(MI); 3495 case G_EXTRACT: 3496 return lowerExtract(MI); 3497 case G_INSERT: 3498 return lowerInsert(MI); 3499 case G_BSWAP: 3500 return lowerBswap(MI); 3501 case G_BITREVERSE: 3502 return lowerBitreverse(MI); 3503 case G_READ_REGISTER: 3504 case G_WRITE_REGISTER: 3505 return lowerReadWriteRegister(MI); 3506 case G_UADDSAT: 3507 case G_USUBSAT: { 3508 // Try to make a reasonable guess about which lowering strategy to use. The 3509 // target can override this with custom lowering and calling the 3510 // implementation functions. 3511 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3512 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3513 return lowerAddSubSatToMinMax(MI); 3514 return lowerAddSubSatToAddoSubo(MI); 3515 } 3516 case G_SADDSAT: 3517 case G_SSUBSAT: { 3518 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3519 3520 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3521 // since it's a shorter expansion. However, we would need to figure out the 3522 // preferred boolean type for the carry out for the query. 3523 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3524 return lowerAddSubSatToMinMax(MI); 3525 return lowerAddSubSatToAddoSubo(MI); 3526 } 3527 case G_SSHLSAT: 3528 case G_USHLSAT: 3529 return lowerShlSat(MI); 3530 case G_ABS: 3531 return lowerAbsToAddXor(MI); 3532 case G_SELECT: 3533 return lowerSelect(MI); 3534 case G_SDIVREM: 3535 case G_UDIVREM: 3536 return lowerDIVREM(MI); 3537 case G_FSHL: 3538 case G_FSHR: 3539 return lowerFunnelShift(MI); 3540 case G_ROTL: 3541 case G_ROTR: 3542 return lowerRotate(MI); 3543 case G_MEMSET: 3544 case G_MEMCPY: 3545 case G_MEMMOVE: 3546 return lowerMemCpyFamily(MI); 3547 case G_MEMCPY_INLINE: 3548 return lowerMemcpyInline(MI); 3549 GISEL_VECREDUCE_CASES_NONSEQ 3550 return lowerVectorReduction(MI); 3551 } 3552 } 3553 3554 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3555 Align MinAlign) const { 3556 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3557 // datalayout for the preferred alignment. Also there should be a target hook 3558 // for this to allow targets to reduce the alignment and ignore the 3559 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3560 // the type. 3561 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3562 } 3563 3564 MachineInstrBuilder 3565 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3566 MachinePointerInfo &PtrInfo) { 3567 MachineFunction &MF = MIRBuilder.getMF(); 3568 const DataLayout &DL = MIRBuilder.getDataLayout(); 3569 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3570 3571 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3572 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3573 3574 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3575 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3576 } 3577 3578 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3579 LLT VecTy) { 3580 int64_t IdxVal; 3581 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3582 return IdxReg; 3583 3584 LLT IdxTy = B.getMRI()->getType(IdxReg); 3585 unsigned NElts = VecTy.getNumElements(); 3586 if (isPowerOf2_32(NElts)) { 3587 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3588 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3589 } 3590 3591 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3592 .getReg(0); 3593 } 3594 3595 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3596 Register Index) { 3597 LLT EltTy = VecTy.getElementType(); 3598 3599 // Calculate the element offset and add it to the pointer. 3600 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3601 assert(EltSize * 8 == EltTy.getSizeInBits() && 3602 "Converting bits to bytes lost precision"); 3603 3604 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3605 3606 LLT IdxTy = MRI.getType(Index); 3607 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3608 MIRBuilder.buildConstant(IdxTy, EltSize)); 3609 3610 LLT PtrTy = MRI.getType(VecPtr); 3611 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3612 } 3613 3614 #ifndef NDEBUG 3615 /// Check that all vector operands have same number of elements. Other operands 3616 /// should be listed in NonVecOp. 3617 static bool hasSameNumEltsOnAllVectorOperands( 3618 GenericMachineInstr &MI, MachineRegisterInfo &MRI, 3619 std::initializer_list<unsigned> NonVecOpIndices) { 3620 if (MI.getNumMemOperands() != 0) 3621 return false; 3622 3623 LLT VecTy = MRI.getType(MI.getReg(0)); 3624 if (!VecTy.isVector()) 3625 return false; 3626 unsigned NumElts = VecTy.getNumElements(); 3627 3628 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { 3629 MachineOperand &Op = MI.getOperand(OpIdx); 3630 if (!Op.isReg()) { 3631 if (!is_contained(NonVecOpIndices, OpIdx)) 3632 return false; 3633 continue; 3634 } 3635 3636 LLT Ty = MRI.getType(Op.getReg()); 3637 if (!Ty.isVector()) { 3638 if (!is_contained(NonVecOpIndices, OpIdx)) 3639 return false; 3640 continue; 3641 } 3642 3643 if (Ty.getNumElements() != NumElts) 3644 return false; 3645 } 3646 3647 return true; 3648 } 3649 #endif 3650 3651 /// Fill \p DstOps with DstOps that have same number of elements combined as 3652 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are 3653 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple 3654 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. 3655 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, 3656 unsigned NumElts) { 3657 LLT LeftoverTy; 3658 assert(Ty.isVector() && "Expected vector type"); 3659 LLT EltTy = Ty.getElementType(); 3660 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); 3661 int NumParts, NumLeftover; 3662 std::tie(NumParts, NumLeftover) = 3663 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); 3664 3665 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); 3666 for (int i = 0; i < NumParts; ++i) { 3667 DstOps.push_back(NarrowTy); 3668 } 3669 3670 if (LeftoverTy.isValid()) { 3671 assert(NumLeftover == 1 && "expected exactly one leftover"); 3672 DstOps.push_back(LeftoverTy); 3673 } 3674 } 3675 3676 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps 3677 /// made from \p Op depending on operand type. 3678 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, 3679 MachineOperand &Op) { 3680 for (unsigned i = 0; i < N; ++i) { 3681 if (Op.isReg()) 3682 Ops.push_back(Op.getReg()); 3683 else if (Op.isImm()) 3684 Ops.push_back(Op.getImm()); 3685 else if (Op.isPredicate()) 3686 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); 3687 else 3688 llvm_unreachable("Unsupported type"); 3689 } 3690 } 3691 3692 // Handle splitting vector operations which need to have the same number of 3693 // elements in each type index, but each type index may have a different element 3694 // type. 3695 // 3696 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3697 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3698 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3699 // 3700 // Also handles some irregular breakdown cases, e.g. 3701 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3702 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3703 // s64 = G_SHL s64, s32 3704 LegalizerHelper::LegalizeResult 3705 LegalizerHelper::fewerElementsVectorMultiEltType( 3706 GenericMachineInstr &MI, unsigned NumElts, 3707 std::initializer_list<unsigned> NonVecOpIndices) { 3708 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && 3709 "Non-compatible opcode or not specified non-vector operands"); 3710 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3711 3712 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3713 unsigned NumDefs = MI.getNumDefs(); 3714 3715 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. 3716 // Build instructions with DstOps to use instruction found by CSE directly. 3717 // CSE copies found instruction into given vreg when building with vreg dest. 3718 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); 3719 // Output registers will be taken from created instructions. 3720 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); 3721 for (unsigned i = 0; i < NumDefs; ++i) { 3722 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); 3723 } 3724 3725 // Split vector input operands into sub-vectors with NumElts elts + Leftover. 3726 // Operands listed in NonVecOpIndices will be used as is without splitting; 3727 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 3728 // scalar condition (op 1), immediate in sext_inreg (op 2). 3729 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); 3730 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3731 ++UseIdx, ++UseNo) { 3732 if (is_contained(NonVecOpIndices, UseIdx)) { 3733 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), 3734 MI.getOperand(UseIdx)); 3735 } else { 3736 SmallVector<Register, 8> SplitPieces; 3737 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); 3738 for (auto Reg : SplitPieces) 3739 InputOpsPieces[UseNo].push_back(Reg); 3740 } 3741 } 3742 3743 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3744 3745 // Take i-th piece of each input operand split and build sub-vector/scalar 3746 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). 3747 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3748 SmallVector<DstOp, 2> Defs; 3749 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3750 Defs.push_back(OutputOpsPieces[DstNo][i]); 3751 3752 SmallVector<SrcOp, 3> Uses; 3753 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) 3754 Uses.push_back(InputOpsPieces[InputNo][i]); 3755 3756 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); 3757 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) 3758 OutputRegs[DstNo].push_back(I.getReg(DstNo)); 3759 } 3760 3761 // Merge small outputs into MI's output for each def operand. 3762 if (NumLeftovers) { 3763 for (unsigned i = 0; i < NumDefs; ++i) 3764 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); 3765 } else { 3766 for (unsigned i = 0; i < NumDefs; ++i) 3767 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]); 3768 } 3769 3770 MI.eraseFromParent(); 3771 return Legalized; 3772 } 3773 3774 LegalizerHelper::LegalizeResult 3775 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, 3776 unsigned NumElts) { 3777 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); 3778 3779 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); 3780 unsigned NumDefs = MI.getNumDefs(); 3781 3782 SmallVector<DstOp, 8> OutputOpsPieces; 3783 SmallVector<Register, 8> OutputRegs; 3784 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); 3785 3786 // Instructions that perform register split will be inserted in basic block 3787 // where register is defined (basic block is in the next operand). 3788 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); 3789 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); 3790 UseIdx += 2, ++UseNo) { 3791 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); 3792 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3793 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); 3794 } 3795 3796 // Build PHIs with fewer elements. 3797 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; 3798 MIRBuilder.setInsertPt(*MI.getParent(), MI); 3799 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { 3800 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 3801 Phi.addDef( 3802 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); 3803 OutputRegs.push_back(Phi.getReg(0)); 3804 3805 for (unsigned j = 0; j < NumInputs / 2; ++j) { 3806 Phi.addUse(InputOpsPieces[j][i]); 3807 Phi.add(MI.getOperand(1 + j * 2 + 1)); 3808 } 3809 } 3810 3811 // Merge small outputs into MI's def. 3812 if (NumLeftovers) { 3813 mergeMixedSubvectors(MI.getReg(0), OutputRegs); 3814 } else { 3815 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs); 3816 } 3817 3818 MI.eraseFromParent(); 3819 return Legalized; 3820 } 3821 3822 LegalizerHelper::LegalizeResult 3823 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3824 unsigned TypeIdx, 3825 LLT NarrowTy) { 3826 const int NumDst = MI.getNumOperands() - 1; 3827 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3828 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3829 LLT SrcTy = MRI.getType(SrcReg); 3830 3831 if (TypeIdx != 1 || NarrowTy == DstTy) 3832 return UnableToLegalize; 3833 3834 // Requires compatible types. Otherwise SrcReg should have been defined by 3835 // merge-like instruction that would get artifact combined. Most likely 3836 // instruction that defines SrcReg has to perform more/fewer elements 3837 // legalization compatible with NarrowTy. 3838 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3839 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3840 3841 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3842 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) 3843 return UnableToLegalize; 3844 3845 // This is most likely DstTy (smaller then register size) packed in SrcTy 3846 // (larger then register size) and since unmerge was not combined it will be 3847 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy 3848 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. 3849 3850 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) 3851 // 3852 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence 3853 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg 3854 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) 3855 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); 3856 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3857 const int PartsPerUnmerge = NumDst / NumUnmerge; 3858 3859 for (int I = 0; I != NumUnmerge; ++I) { 3860 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3861 3862 for (int J = 0; J != PartsPerUnmerge; ++J) 3863 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3864 MIB.addUse(Unmerge.getReg(I)); 3865 } 3866 3867 MI.eraseFromParent(); 3868 return Legalized; 3869 } 3870 3871 LegalizerHelper::LegalizeResult 3872 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3873 LLT NarrowTy) { 3874 Register DstReg = MI.getOperand(0).getReg(); 3875 LLT DstTy = MRI.getType(DstReg); 3876 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3877 // Requires compatible types. Otherwise user of DstReg did not perform unmerge 3878 // that should have been artifact combined. Most likely instruction that uses 3879 // DstReg has to do more/fewer elements legalization compatible with NarrowTy. 3880 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); 3881 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3882 if (NarrowTy == SrcTy) 3883 return UnableToLegalize; 3884 3885 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use 3886 // is for old mir tests. Since the changes to more/fewer elements it should no 3887 // longer be possible to generate MIR like this when starting from llvm-ir 3888 // because LCMTy approach was replaced with merge/unmerge to vector elements. 3889 if (TypeIdx == 1) { 3890 assert(SrcTy.isVector() && "Expected vector types"); 3891 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); 3892 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || 3893 (NarrowTy.getNumElements() >= SrcTy.getNumElements())) 3894 return UnableToLegalize; 3895 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) 3896 // 3897 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) 3898 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) 3899 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 3900 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 3901 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 3902 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 3903 3904 SmallVector<Register, 8> Elts; 3905 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); 3906 for (unsigned i = 1; i < MI.getNumOperands(); ++i) { 3907 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); 3908 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) 3909 Elts.push_back(Unmerge.getReg(j)); 3910 } 3911 3912 SmallVector<Register, 8> NarrowTyElts; 3913 unsigned NumNarrowTyElts = NarrowTy.getNumElements(); 3914 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; 3915 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; 3916 ++i, Offset += NumNarrowTyElts) { 3917 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); 3918 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0)); 3919 } 3920 3921 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3922 MI.eraseFromParent(); 3923 return Legalized; 3924 } 3925 3926 assert(TypeIdx == 0 && "Bad type index"); 3927 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || 3928 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) 3929 return UnableToLegalize; 3930 3931 // This is most likely SrcTy (smaller then register size) packed in DstTy 3932 // (larger then register size) and since merge was not combined it will be 3933 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy 3934 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. 3935 3936 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 3937 // 3938 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg 3939 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 3940 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence 3941 SmallVector<Register, 8> NarrowTyElts; 3942 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3943 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; 3944 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; 3945 for (unsigned i = 0; i < NumParts; ++i) { 3946 SmallVector<Register, 8> Sources; 3947 for (unsigned j = 0; j < NumElts; ++j) 3948 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); 3949 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0)); 3950 } 3951 3952 MIRBuilder.buildMerge(DstReg, NarrowTyElts); 3953 MI.eraseFromParent(); 3954 return Legalized; 3955 } 3956 3957 LegalizerHelper::LegalizeResult 3958 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3959 unsigned TypeIdx, 3960 LLT NarrowVecTy) { 3961 Register DstReg = MI.getOperand(0).getReg(); 3962 Register SrcVec = MI.getOperand(1).getReg(); 3963 Register InsertVal; 3964 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3965 3966 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3967 if (IsInsert) 3968 InsertVal = MI.getOperand(2).getReg(); 3969 3970 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3971 3972 // TODO: Handle total scalarization case. 3973 if (!NarrowVecTy.isVector()) 3974 return UnableToLegalize; 3975 3976 LLT VecTy = MRI.getType(SrcVec); 3977 3978 // If the index is a constant, we can really break this down as you would 3979 // expect, and index into the target size pieces. 3980 int64_t IdxVal; 3981 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); 3982 if (MaybeCst) { 3983 IdxVal = MaybeCst->Value.getSExtValue(); 3984 // Avoid out of bounds indexing the pieces. 3985 if (IdxVal >= VecTy.getNumElements()) { 3986 MIRBuilder.buildUndef(DstReg); 3987 MI.eraseFromParent(); 3988 return Legalized; 3989 } 3990 3991 SmallVector<Register, 8> VecParts; 3992 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3993 3994 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3995 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3996 TargetOpcode::G_ANYEXT); 3997 3998 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3999 4000 LLT IdxTy = MRI.getType(Idx); 4001 int64_t PartIdx = IdxVal / NewNumElts; 4002 auto NewIdx = 4003 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 4004 4005 if (IsInsert) { 4006 LLT PartTy = MRI.getType(VecParts[PartIdx]); 4007 4008 // Use the adjusted index to insert into one of the subvectors. 4009 auto InsertPart = MIRBuilder.buildInsertVectorElement( 4010 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 4011 VecParts[PartIdx] = InsertPart.getReg(0); 4012 4013 // Recombine the inserted subvector with the others to reform the result 4014 // vector. 4015 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 4016 } else { 4017 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 4018 } 4019 4020 MI.eraseFromParent(); 4021 return Legalized; 4022 } 4023 4024 // With a variable index, we can't perform the operation in a smaller type, so 4025 // we're forced to expand this. 4026 // 4027 // TODO: We could emit a chain of compare/select to figure out which piece to 4028 // index. 4029 return lowerExtractInsertVectorElt(MI); 4030 } 4031 4032 LegalizerHelper::LegalizeResult 4033 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, 4034 LLT NarrowTy) { 4035 // FIXME: Don't know how to handle secondary types yet. 4036 if (TypeIdx != 0) 4037 return UnableToLegalize; 4038 4039 // This implementation doesn't work for atomics. Give up instead of doing 4040 // something invalid. 4041 if (LdStMI.isAtomic()) 4042 return UnableToLegalize; 4043 4044 bool IsLoad = isa<GLoad>(LdStMI); 4045 Register ValReg = LdStMI.getReg(0); 4046 Register AddrReg = LdStMI.getPointerReg(); 4047 LLT ValTy = MRI.getType(ValReg); 4048 4049 // FIXME: Do we need a distinct NarrowMemory legalize action? 4050 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { 4051 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 4052 return UnableToLegalize; 4053 } 4054 4055 int NumParts = -1; 4056 int NumLeftover = -1; 4057 LLT LeftoverTy; 4058 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 4059 if (IsLoad) { 4060 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 4061 } else { 4062 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 4063 NarrowLeftoverRegs)) { 4064 NumParts = NarrowRegs.size(); 4065 NumLeftover = NarrowLeftoverRegs.size(); 4066 } 4067 } 4068 4069 if (NumParts == -1) 4070 return UnableToLegalize; 4071 4072 LLT PtrTy = MRI.getType(AddrReg); 4073 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 4074 4075 unsigned TotalSize = ValTy.getSizeInBits(); 4076 4077 // Split the load/store into PartTy sized pieces starting at Offset. If this 4078 // is a load, return the new registers in ValRegs. For a store, each elements 4079 // of ValRegs should be PartTy. Returns the next offset that needs to be 4080 // handled. 4081 bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); 4082 auto MMO = LdStMI.getMMO(); 4083 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 4084 unsigned NumParts, unsigned Offset) -> unsigned { 4085 MachineFunction &MF = MIRBuilder.getMF(); 4086 unsigned PartSize = PartTy.getSizeInBits(); 4087 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 4088 ++Idx) { 4089 unsigned ByteOffset = Offset / 8; 4090 Register NewAddrReg; 4091 4092 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 4093 4094 MachineMemOperand *NewMMO = 4095 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); 4096 4097 if (IsLoad) { 4098 Register Dst = MRI.createGenericVirtualRegister(PartTy); 4099 ValRegs.push_back(Dst); 4100 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 4101 } else { 4102 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 4103 } 4104 Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; 4105 } 4106 4107 return Offset; 4108 }; 4109 4110 unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; 4111 unsigned HandledOffset = 4112 splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); 4113 4114 // Handle the rest of the register if this isn't an even type breakdown. 4115 if (LeftoverTy.isValid()) 4116 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); 4117 4118 if (IsLoad) { 4119 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 4120 LeftoverTy, NarrowLeftoverRegs); 4121 } 4122 4123 LdStMI.eraseFromParent(); 4124 return Legalized; 4125 } 4126 4127 LegalizerHelper::LegalizeResult 4128 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 4129 LLT NarrowTy) { 4130 using namespace TargetOpcode; 4131 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); 4132 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 4133 4134 switch (MI.getOpcode()) { 4135 case G_IMPLICIT_DEF: 4136 case G_TRUNC: 4137 case G_AND: 4138 case G_OR: 4139 case G_XOR: 4140 case G_ADD: 4141 case G_SUB: 4142 case G_MUL: 4143 case G_PTR_ADD: 4144 case G_SMULH: 4145 case G_UMULH: 4146 case G_FADD: 4147 case G_FMUL: 4148 case G_FSUB: 4149 case G_FNEG: 4150 case G_FABS: 4151 case G_FCANONICALIZE: 4152 case G_FDIV: 4153 case G_FREM: 4154 case G_FMA: 4155 case G_FMAD: 4156 case G_FPOW: 4157 case G_FEXP: 4158 case G_FEXP2: 4159 case G_FLOG: 4160 case G_FLOG2: 4161 case G_FLOG10: 4162 case G_FNEARBYINT: 4163 case G_FCEIL: 4164 case G_FFLOOR: 4165 case G_FRINT: 4166 case G_INTRINSIC_ROUND: 4167 case G_INTRINSIC_ROUNDEVEN: 4168 case G_INTRINSIC_TRUNC: 4169 case G_FCOS: 4170 case G_FSIN: 4171 case G_FSQRT: 4172 case G_BSWAP: 4173 case G_BITREVERSE: 4174 case G_SDIV: 4175 case G_UDIV: 4176 case G_SREM: 4177 case G_UREM: 4178 case G_SDIVREM: 4179 case G_UDIVREM: 4180 case G_SMIN: 4181 case G_SMAX: 4182 case G_UMIN: 4183 case G_UMAX: 4184 case G_ABS: 4185 case G_FMINNUM: 4186 case G_FMAXNUM: 4187 case G_FMINNUM_IEEE: 4188 case G_FMAXNUM_IEEE: 4189 case G_FMINIMUM: 4190 case G_FMAXIMUM: 4191 case G_FSHL: 4192 case G_FSHR: 4193 case G_ROTL: 4194 case G_ROTR: 4195 case G_FREEZE: 4196 case G_SADDSAT: 4197 case G_SSUBSAT: 4198 case G_UADDSAT: 4199 case G_USUBSAT: 4200 case G_UMULO: 4201 case G_SMULO: 4202 case G_SHL: 4203 case G_LSHR: 4204 case G_ASHR: 4205 case G_SSHLSAT: 4206 case G_USHLSAT: 4207 case G_CTLZ: 4208 case G_CTLZ_ZERO_UNDEF: 4209 case G_CTTZ: 4210 case G_CTTZ_ZERO_UNDEF: 4211 case G_CTPOP: 4212 case G_FCOPYSIGN: 4213 case G_ZEXT: 4214 case G_SEXT: 4215 case G_ANYEXT: 4216 case G_FPEXT: 4217 case G_FPTRUNC: 4218 case G_SITOFP: 4219 case G_UITOFP: 4220 case G_FPTOSI: 4221 case G_FPTOUI: 4222 case G_INTTOPTR: 4223 case G_PTRTOINT: 4224 case G_ADDRSPACE_CAST: 4225 case G_UADDO: 4226 case G_USUBO: 4227 case G_UADDE: 4228 case G_USUBE: 4229 case G_SADDO: 4230 case G_SSUBO: 4231 case G_SADDE: 4232 case G_SSUBE: 4233 return fewerElementsVectorMultiEltType(GMI, NumElts); 4234 case G_ICMP: 4235 case G_FCMP: 4236 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); 4237 case G_SELECT: 4238 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4239 return fewerElementsVectorMultiEltType(GMI, NumElts); 4240 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); 4241 case G_PHI: 4242 return fewerElementsVectorPhi(GMI, NumElts); 4243 case G_UNMERGE_VALUES: 4244 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4245 case G_BUILD_VECTOR: 4246 assert(TypeIdx == 0 && "not a vector type index"); 4247 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4248 case G_CONCAT_VECTORS: 4249 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4250 return UnableToLegalize; 4251 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4252 case G_EXTRACT_VECTOR_ELT: 4253 case G_INSERT_VECTOR_ELT: 4254 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4255 case G_LOAD: 4256 case G_STORE: 4257 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); 4258 case G_SEXT_INREG: 4259 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); 4260 GISEL_VECREDUCE_CASES_NONSEQ 4261 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); 4262 case G_SHUFFLE_VECTOR: 4263 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); 4264 default: 4265 return UnableToLegalize; 4266 } 4267 } 4268 4269 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( 4270 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4271 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 4272 if (TypeIdx != 0) 4273 return UnableToLegalize; 4274 4275 Register DstReg = MI.getOperand(0).getReg(); 4276 Register Src1Reg = MI.getOperand(1).getReg(); 4277 Register Src2Reg = MI.getOperand(2).getReg(); 4278 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4279 LLT DstTy = MRI.getType(DstReg); 4280 LLT Src1Ty = MRI.getType(Src1Reg); 4281 LLT Src2Ty = MRI.getType(Src2Reg); 4282 // The shuffle should be canonicalized by now. 4283 if (DstTy != Src1Ty) 4284 return UnableToLegalize; 4285 if (DstTy != Src2Ty) 4286 return UnableToLegalize; 4287 4288 if (!isPowerOf2_32(DstTy.getNumElements())) 4289 return UnableToLegalize; 4290 4291 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. 4292 // Further legalization attempts will be needed to do split further. 4293 NarrowTy = 4294 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); 4295 unsigned NewElts = NarrowTy.getNumElements(); 4296 4297 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; 4298 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); 4299 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); 4300 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], 4301 SplitSrc2Regs[1]}; 4302 4303 Register Hi, Lo; 4304 4305 // If Lo or Hi uses elements from at most two of the four input vectors, then 4306 // express it as a vector shuffle of those two inputs. Otherwise extract the 4307 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. 4308 SmallVector<int, 16> Ops; 4309 for (unsigned High = 0; High < 2; ++High) { 4310 Register &Output = High ? Hi : Lo; 4311 4312 // Build a shuffle mask for the output, discovering on the fly which 4313 // input vectors to use as shuffle operands (recorded in InputUsed). 4314 // If building a suitable shuffle vector proves too hard, then bail 4315 // out with useBuildVector set. 4316 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. 4317 unsigned FirstMaskIdx = High * NewElts; 4318 bool UseBuildVector = false; 4319 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4320 // The mask element. This indexes into the input. 4321 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4322 4323 // The input vector this mask element indexes into. 4324 unsigned Input = (unsigned)Idx / NewElts; 4325 4326 if (Input >= array_lengthof(Inputs)) { 4327 // The mask element does not index into any input vector. 4328 Ops.push_back(-1); 4329 continue; 4330 } 4331 4332 // Turn the index into an offset from the start of the input vector. 4333 Idx -= Input * NewElts; 4334 4335 // Find or create a shuffle vector operand to hold this input. 4336 unsigned OpNo; 4337 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { 4338 if (InputUsed[OpNo] == Input) { 4339 // This input vector is already an operand. 4340 break; 4341 } else if (InputUsed[OpNo] == -1U) { 4342 // Create a new operand for this input vector. 4343 InputUsed[OpNo] = Input; 4344 break; 4345 } 4346 } 4347 4348 if (OpNo >= array_lengthof(InputUsed)) { 4349 // More than two input vectors used! Give up on trying to create a 4350 // shuffle vector. Insert all elements into a BUILD_VECTOR instead. 4351 UseBuildVector = true; 4352 break; 4353 } 4354 4355 // Add the mask index for the new shuffle vector. 4356 Ops.push_back(Idx + OpNo * NewElts); 4357 } 4358 4359 if (UseBuildVector) { 4360 LLT EltTy = NarrowTy.getElementType(); 4361 SmallVector<Register, 16> SVOps; 4362 4363 // Extract the input elements by hand. 4364 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { 4365 // The mask element. This indexes into the input. 4366 int Idx = Mask[FirstMaskIdx + MaskOffset]; 4367 4368 // The input vector this mask element indexes into. 4369 unsigned Input = (unsigned)Idx / NewElts; 4370 4371 if (Input >= array_lengthof(Inputs)) { 4372 // The mask element is "undef" or indexes off the end of the input. 4373 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); 4374 continue; 4375 } 4376 4377 // Turn the index into an offset from the start of the input vector. 4378 Idx -= Input * NewElts; 4379 4380 // Extract the vector element by hand. 4381 SVOps.push_back(MIRBuilder 4382 .buildExtractVectorElement( 4383 EltTy, Inputs[Input], 4384 MIRBuilder.buildConstant(LLT::scalar(32), Idx)) 4385 .getReg(0)); 4386 } 4387 4388 // Construct the Lo/Hi output using a G_BUILD_VECTOR. 4389 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); 4390 } else if (InputUsed[0] == -1U) { 4391 // No input vectors were used! The result is undefined. 4392 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); 4393 } else { 4394 Register Op0 = Inputs[InputUsed[0]]; 4395 // If only one input was used, use an undefined vector for the other. 4396 Register Op1 = InputUsed[1] == -1U 4397 ? MIRBuilder.buildUndef(NarrowTy).getReg(0) 4398 : Inputs[InputUsed[1]]; 4399 // At least one input vector was used. Create a new shuffle vector. 4400 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); 4401 } 4402 4403 Ops.clear(); 4404 } 4405 4406 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); 4407 MI.eraseFromParent(); 4408 return Legalized; 4409 } 4410 4411 static unsigned getScalarOpcForReduction(unsigned Opc) { 4412 unsigned ScalarOpc; 4413 switch (Opc) { 4414 case TargetOpcode::G_VECREDUCE_FADD: 4415 ScalarOpc = TargetOpcode::G_FADD; 4416 break; 4417 case TargetOpcode::G_VECREDUCE_FMUL: 4418 ScalarOpc = TargetOpcode::G_FMUL; 4419 break; 4420 case TargetOpcode::G_VECREDUCE_FMAX: 4421 ScalarOpc = TargetOpcode::G_FMAXNUM; 4422 break; 4423 case TargetOpcode::G_VECREDUCE_FMIN: 4424 ScalarOpc = TargetOpcode::G_FMINNUM; 4425 break; 4426 case TargetOpcode::G_VECREDUCE_ADD: 4427 ScalarOpc = TargetOpcode::G_ADD; 4428 break; 4429 case TargetOpcode::G_VECREDUCE_MUL: 4430 ScalarOpc = TargetOpcode::G_MUL; 4431 break; 4432 case TargetOpcode::G_VECREDUCE_AND: 4433 ScalarOpc = TargetOpcode::G_AND; 4434 break; 4435 case TargetOpcode::G_VECREDUCE_OR: 4436 ScalarOpc = TargetOpcode::G_OR; 4437 break; 4438 case TargetOpcode::G_VECREDUCE_XOR: 4439 ScalarOpc = TargetOpcode::G_XOR; 4440 break; 4441 case TargetOpcode::G_VECREDUCE_SMAX: 4442 ScalarOpc = TargetOpcode::G_SMAX; 4443 break; 4444 case TargetOpcode::G_VECREDUCE_SMIN: 4445 ScalarOpc = TargetOpcode::G_SMIN; 4446 break; 4447 case TargetOpcode::G_VECREDUCE_UMAX: 4448 ScalarOpc = TargetOpcode::G_UMAX; 4449 break; 4450 case TargetOpcode::G_VECREDUCE_UMIN: 4451 ScalarOpc = TargetOpcode::G_UMIN; 4452 break; 4453 default: 4454 llvm_unreachable("Unhandled reduction"); 4455 } 4456 return ScalarOpc; 4457 } 4458 4459 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( 4460 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { 4461 unsigned Opc = MI.getOpcode(); 4462 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && 4463 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && 4464 "Sequential reductions not expected"); 4465 4466 if (TypeIdx != 1) 4467 return UnableToLegalize; 4468 4469 // The semantics of the normal non-sequential reductions allow us to freely 4470 // re-associate the operation. 4471 Register SrcReg = MI.getOperand(1).getReg(); 4472 LLT SrcTy = MRI.getType(SrcReg); 4473 Register DstReg = MI.getOperand(0).getReg(); 4474 LLT DstTy = MRI.getType(DstReg); 4475 4476 if (NarrowTy.isVector() && 4477 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) 4478 return UnableToLegalize; 4479 4480 unsigned ScalarOpc = getScalarOpcForReduction(Opc); 4481 SmallVector<Register> SplitSrcs; 4482 // If NarrowTy is a scalar then we're being asked to scalarize. 4483 const unsigned NumParts = 4484 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() 4485 : SrcTy.getNumElements(); 4486 4487 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); 4488 if (NarrowTy.isScalar()) { 4489 if (DstTy != NarrowTy) 4490 return UnableToLegalize; // FIXME: handle implicit extensions. 4491 4492 if (isPowerOf2_32(NumParts)) { 4493 // Generate a tree of scalar operations to reduce the critical path. 4494 SmallVector<Register> PartialResults; 4495 unsigned NumPartsLeft = NumParts; 4496 while (NumPartsLeft > 1) { 4497 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { 4498 PartialResults.emplace_back( 4499 MIRBuilder 4500 .buildInstr(ScalarOpc, {NarrowTy}, 4501 {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) 4502 .getReg(0)); 4503 } 4504 SplitSrcs = PartialResults; 4505 PartialResults.clear(); 4506 NumPartsLeft = SplitSrcs.size(); 4507 } 4508 assert(SplitSrcs.size() == 1); 4509 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); 4510 MI.eraseFromParent(); 4511 return Legalized; 4512 } 4513 // If we can't generate a tree, then just do sequential operations. 4514 Register Acc = SplitSrcs[0]; 4515 for (unsigned Idx = 1; Idx < NumParts; ++Idx) 4516 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) 4517 .getReg(0); 4518 MIRBuilder.buildCopy(DstReg, Acc); 4519 MI.eraseFromParent(); 4520 return Legalized; 4521 } 4522 SmallVector<Register> PartialReductions; 4523 for (unsigned Part = 0; Part < NumParts; ++Part) { 4524 PartialReductions.push_back( 4525 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0)); 4526 } 4527 4528 4529 // If the types involved are powers of 2, we can generate intermediate vector 4530 // ops, before generating a final reduction operation. 4531 if (isPowerOf2_32(SrcTy.getNumElements()) && 4532 isPowerOf2_32(NarrowTy.getNumElements())) { 4533 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); 4534 } 4535 4536 Register Acc = PartialReductions[0]; 4537 for (unsigned Part = 1; Part < NumParts; ++Part) { 4538 if (Part == NumParts - 1) { 4539 MIRBuilder.buildInstr(ScalarOpc, {DstReg}, 4540 {Acc, PartialReductions[Part]}); 4541 } else { 4542 Acc = MIRBuilder 4543 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) 4544 .getReg(0); 4545 } 4546 } 4547 MI.eraseFromParent(); 4548 return Legalized; 4549 } 4550 4551 LegalizerHelper::LegalizeResult 4552 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, 4553 LLT SrcTy, LLT NarrowTy, 4554 unsigned ScalarOpc) { 4555 SmallVector<Register> SplitSrcs; 4556 // Split the sources into NarrowTy size pieces. 4557 extractParts(SrcReg, NarrowTy, 4558 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); 4559 // We're going to do a tree reduction using vector operations until we have 4560 // one NarrowTy size value left. 4561 while (SplitSrcs.size() > 1) { 4562 SmallVector<Register> PartialRdxs; 4563 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { 4564 Register LHS = SplitSrcs[Idx]; 4565 Register RHS = SplitSrcs[Idx + 1]; 4566 // Create the intermediate vector op. 4567 Register Res = 4568 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); 4569 PartialRdxs.push_back(Res); 4570 } 4571 SplitSrcs = std::move(PartialRdxs); 4572 } 4573 // Finally generate the requested NarrowTy based reduction. 4574 Observer.changingInstr(MI); 4575 MI.getOperand(1).setReg(SplitSrcs[0]); 4576 Observer.changedInstr(MI); 4577 return Legalized; 4578 } 4579 4580 LegalizerHelper::LegalizeResult 4581 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4582 const LLT HalfTy, const LLT AmtTy) { 4583 4584 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4585 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4586 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4587 4588 if (Amt.isZero()) { 4589 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4590 MI.eraseFromParent(); 4591 return Legalized; 4592 } 4593 4594 LLT NVT = HalfTy; 4595 unsigned NVTBits = HalfTy.getSizeInBits(); 4596 unsigned VTBits = 2 * NVTBits; 4597 4598 SrcOp Lo(Register(0)), Hi(Register(0)); 4599 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4600 if (Amt.ugt(VTBits)) { 4601 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4602 } else if (Amt.ugt(NVTBits)) { 4603 Lo = MIRBuilder.buildConstant(NVT, 0); 4604 Hi = MIRBuilder.buildShl(NVT, InL, 4605 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4606 } else if (Amt == NVTBits) { 4607 Lo = MIRBuilder.buildConstant(NVT, 0); 4608 Hi = InL; 4609 } else { 4610 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4611 auto OrLHS = 4612 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4613 auto OrRHS = MIRBuilder.buildLShr( 4614 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4615 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4616 } 4617 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4618 if (Amt.ugt(VTBits)) { 4619 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4620 } else if (Amt.ugt(NVTBits)) { 4621 Lo = MIRBuilder.buildLShr(NVT, InH, 4622 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4623 Hi = MIRBuilder.buildConstant(NVT, 0); 4624 } else if (Amt == NVTBits) { 4625 Lo = InH; 4626 Hi = MIRBuilder.buildConstant(NVT, 0); 4627 } else { 4628 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4629 4630 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4631 auto OrRHS = MIRBuilder.buildShl( 4632 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4633 4634 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4635 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4636 } 4637 } else { 4638 if (Amt.ugt(VTBits)) { 4639 Hi = Lo = MIRBuilder.buildAShr( 4640 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4641 } else if (Amt.ugt(NVTBits)) { 4642 Lo = MIRBuilder.buildAShr(NVT, InH, 4643 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4644 Hi = MIRBuilder.buildAShr(NVT, InH, 4645 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4646 } else if (Amt == NVTBits) { 4647 Lo = InH; 4648 Hi = MIRBuilder.buildAShr(NVT, InH, 4649 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4650 } else { 4651 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4652 4653 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4654 auto OrRHS = MIRBuilder.buildShl( 4655 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4656 4657 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4658 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4659 } 4660 } 4661 4662 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4663 MI.eraseFromParent(); 4664 4665 return Legalized; 4666 } 4667 4668 // TODO: Optimize if constant shift amount. 4669 LegalizerHelper::LegalizeResult 4670 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4671 LLT RequestedTy) { 4672 if (TypeIdx == 1) { 4673 Observer.changingInstr(MI); 4674 narrowScalarSrc(MI, RequestedTy, 2); 4675 Observer.changedInstr(MI); 4676 return Legalized; 4677 } 4678 4679 Register DstReg = MI.getOperand(0).getReg(); 4680 LLT DstTy = MRI.getType(DstReg); 4681 if (DstTy.isVector()) 4682 return UnableToLegalize; 4683 4684 Register Amt = MI.getOperand(2).getReg(); 4685 LLT ShiftAmtTy = MRI.getType(Amt); 4686 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4687 if (DstEltSize % 2 != 0) 4688 return UnableToLegalize; 4689 4690 // Ignore the input type. We can only go to exactly half the size of the 4691 // input. If that isn't small enough, the resulting pieces will be further 4692 // legalized. 4693 const unsigned NewBitSize = DstEltSize / 2; 4694 const LLT HalfTy = LLT::scalar(NewBitSize); 4695 const LLT CondTy = LLT::scalar(1); 4696 4697 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { 4698 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, 4699 ShiftAmtTy); 4700 } 4701 4702 // TODO: Expand with known bits. 4703 4704 // Handle the fully general expansion by an unknown amount. 4705 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4706 4707 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4708 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4709 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4710 4711 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4712 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4713 4714 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4715 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4716 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4717 4718 Register ResultRegs[2]; 4719 switch (MI.getOpcode()) { 4720 case TargetOpcode::G_SHL: { 4721 // Short: ShAmt < NewBitSize 4722 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4723 4724 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4725 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4726 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4727 4728 // Long: ShAmt >= NewBitSize 4729 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4730 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4731 4732 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4733 auto Hi = MIRBuilder.buildSelect( 4734 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4735 4736 ResultRegs[0] = Lo.getReg(0); 4737 ResultRegs[1] = Hi.getReg(0); 4738 break; 4739 } 4740 case TargetOpcode::G_LSHR: 4741 case TargetOpcode::G_ASHR: { 4742 // Short: ShAmt < NewBitSize 4743 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4744 4745 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4746 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4747 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4748 4749 // Long: ShAmt >= NewBitSize 4750 MachineInstrBuilder HiL; 4751 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4752 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4753 } else { 4754 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4755 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4756 } 4757 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4758 {InH, AmtExcess}); // Lo from Hi part. 4759 4760 auto Lo = MIRBuilder.buildSelect( 4761 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4762 4763 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4764 4765 ResultRegs[0] = Lo.getReg(0); 4766 ResultRegs[1] = Hi.getReg(0); 4767 break; 4768 } 4769 default: 4770 llvm_unreachable("not a shift"); 4771 } 4772 4773 MIRBuilder.buildMerge(DstReg, ResultRegs); 4774 MI.eraseFromParent(); 4775 return Legalized; 4776 } 4777 4778 LegalizerHelper::LegalizeResult 4779 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4780 LLT MoreTy) { 4781 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4782 4783 Observer.changingInstr(MI); 4784 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4785 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4786 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4787 moreElementsVectorSrc(MI, MoreTy, I); 4788 } 4789 4790 MachineBasicBlock &MBB = *MI.getParent(); 4791 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4792 moreElementsVectorDst(MI, MoreTy, 0); 4793 Observer.changedInstr(MI); 4794 return Legalized; 4795 } 4796 4797 LegalizerHelper::LegalizeResult 4798 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4799 LLT MoreTy) { 4800 unsigned Opc = MI.getOpcode(); 4801 switch (Opc) { 4802 case TargetOpcode::G_IMPLICIT_DEF: 4803 case TargetOpcode::G_LOAD: { 4804 if (TypeIdx != 0) 4805 return UnableToLegalize; 4806 Observer.changingInstr(MI); 4807 moreElementsVectorDst(MI, MoreTy, 0); 4808 Observer.changedInstr(MI); 4809 return Legalized; 4810 } 4811 case TargetOpcode::G_STORE: 4812 if (TypeIdx != 0) 4813 return UnableToLegalize; 4814 Observer.changingInstr(MI); 4815 moreElementsVectorSrc(MI, MoreTy, 0); 4816 Observer.changedInstr(MI); 4817 return Legalized; 4818 case TargetOpcode::G_AND: 4819 case TargetOpcode::G_OR: 4820 case TargetOpcode::G_XOR: 4821 case TargetOpcode::G_ADD: 4822 case TargetOpcode::G_SUB: 4823 case TargetOpcode::G_MUL: 4824 case TargetOpcode::G_FADD: 4825 case TargetOpcode::G_FMUL: 4826 case TargetOpcode::G_UADDSAT: 4827 case TargetOpcode::G_USUBSAT: 4828 case TargetOpcode::G_SADDSAT: 4829 case TargetOpcode::G_SSUBSAT: 4830 case TargetOpcode::G_SMIN: 4831 case TargetOpcode::G_SMAX: 4832 case TargetOpcode::G_UMIN: 4833 case TargetOpcode::G_UMAX: 4834 case TargetOpcode::G_FMINNUM: 4835 case TargetOpcode::G_FMAXNUM: 4836 case TargetOpcode::G_FMINNUM_IEEE: 4837 case TargetOpcode::G_FMAXNUM_IEEE: 4838 case TargetOpcode::G_FMINIMUM: 4839 case TargetOpcode::G_FMAXIMUM: { 4840 Observer.changingInstr(MI); 4841 moreElementsVectorSrc(MI, MoreTy, 1); 4842 moreElementsVectorSrc(MI, MoreTy, 2); 4843 moreElementsVectorDst(MI, MoreTy, 0); 4844 Observer.changedInstr(MI); 4845 return Legalized; 4846 } 4847 case TargetOpcode::G_FMA: 4848 case TargetOpcode::G_FSHR: 4849 case TargetOpcode::G_FSHL: { 4850 Observer.changingInstr(MI); 4851 moreElementsVectorSrc(MI, MoreTy, 1); 4852 moreElementsVectorSrc(MI, MoreTy, 2); 4853 moreElementsVectorSrc(MI, MoreTy, 3); 4854 moreElementsVectorDst(MI, MoreTy, 0); 4855 Observer.changedInstr(MI); 4856 return Legalized; 4857 } 4858 case TargetOpcode::G_EXTRACT: 4859 if (TypeIdx != 1) 4860 return UnableToLegalize; 4861 Observer.changingInstr(MI); 4862 moreElementsVectorSrc(MI, MoreTy, 1); 4863 Observer.changedInstr(MI); 4864 return Legalized; 4865 case TargetOpcode::G_INSERT: 4866 case TargetOpcode::G_FREEZE: 4867 case TargetOpcode::G_FNEG: 4868 case TargetOpcode::G_FABS: 4869 case TargetOpcode::G_BSWAP: 4870 case TargetOpcode::G_FCANONICALIZE: 4871 case TargetOpcode::G_SEXT_INREG: 4872 if (TypeIdx != 0) 4873 return UnableToLegalize; 4874 Observer.changingInstr(MI); 4875 moreElementsVectorSrc(MI, MoreTy, 1); 4876 moreElementsVectorDst(MI, MoreTy, 0); 4877 Observer.changedInstr(MI); 4878 return Legalized; 4879 case TargetOpcode::G_SELECT: { 4880 Register DstReg = MI.getOperand(0).getReg(); 4881 Register CondReg = MI.getOperand(1).getReg(); 4882 LLT DstTy = MRI.getType(DstReg); 4883 LLT CondTy = MRI.getType(CondReg); 4884 if (TypeIdx == 1) { 4885 if (!CondTy.isScalar() || 4886 DstTy.getElementCount() != MoreTy.getElementCount()) 4887 return UnableToLegalize; 4888 4889 // This is turning a scalar select of vectors into a vector 4890 // select. Broadcast the select condition. 4891 auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); 4892 Observer.changingInstr(MI); 4893 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 4894 Observer.changedInstr(MI); 4895 return Legalized; 4896 } 4897 4898 if (CondTy.isVector()) 4899 return UnableToLegalize; 4900 4901 Observer.changingInstr(MI); 4902 moreElementsVectorSrc(MI, MoreTy, 2); 4903 moreElementsVectorSrc(MI, MoreTy, 3); 4904 moreElementsVectorDst(MI, MoreTy, 0); 4905 Observer.changedInstr(MI); 4906 return Legalized; 4907 } 4908 case TargetOpcode::G_UNMERGE_VALUES: 4909 return UnableToLegalize; 4910 case TargetOpcode::G_PHI: 4911 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4912 case TargetOpcode::G_SHUFFLE_VECTOR: 4913 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); 4914 case TargetOpcode::G_BUILD_VECTOR: { 4915 SmallVector<SrcOp, 8> Elts; 4916 for (auto Op : MI.uses()) { 4917 Elts.push_back(Op.getReg()); 4918 } 4919 4920 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { 4921 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); 4922 } 4923 4924 MIRBuilder.buildDeleteTrailingVectorElements( 4925 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); 4926 MI.eraseFromParent(); 4927 return Legalized; 4928 } 4929 case TargetOpcode::G_TRUNC: { 4930 Observer.changingInstr(MI); 4931 moreElementsVectorSrc(MI, MoreTy, 1); 4932 moreElementsVectorDst(MI, MoreTy, 0); 4933 Observer.changedInstr(MI); 4934 return Legalized; 4935 } 4936 default: 4937 return UnableToLegalize; 4938 } 4939 } 4940 4941 LegalizerHelper::LegalizeResult 4942 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, 4943 unsigned int TypeIdx, LLT MoreTy) { 4944 if (TypeIdx != 0) 4945 return UnableToLegalize; 4946 4947 Register DstReg = MI.getOperand(0).getReg(); 4948 Register Src1Reg = MI.getOperand(1).getReg(); 4949 Register Src2Reg = MI.getOperand(2).getReg(); 4950 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4951 LLT DstTy = MRI.getType(DstReg); 4952 LLT Src1Ty = MRI.getType(Src1Reg); 4953 LLT Src2Ty = MRI.getType(Src2Reg); 4954 unsigned NumElts = DstTy.getNumElements(); 4955 unsigned WidenNumElts = MoreTy.getNumElements(); 4956 4957 // Expect a canonicalized shuffle. 4958 if (DstTy != Src1Ty || DstTy != Src2Ty) 4959 return UnableToLegalize; 4960 4961 moreElementsVectorSrc(MI, MoreTy, 1); 4962 moreElementsVectorSrc(MI, MoreTy, 2); 4963 4964 // Adjust mask based on new input vector length. 4965 SmallVector<int, 16> NewMask; 4966 for (unsigned I = 0; I != NumElts; ++I) { 4967 int Idx = Mask[I]; 4968 if (Idx < static_cast<int>(NumElts)) 4969 NewMask.push_back(Idx); 4970 else 4971 NewMask.push_back(Idx - NumElts + WidenNumElts); 4972 } 4973 for (unsigned I = NumElts; I != WidenNumElts; ++I) 4974 NewMask.push_back(-1); 4975 moreElementsVectorDst(MI, MoreTy, 0); 4976 MIRBuilder.setInstrAndDebugLoc(MI); 4977 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), 4978 MI.getOperand(1).getReg(), 4979 MI.getOperand(2).getReg(), NewMask); 4980 MI.eraseFromParent(); 4981 return Legalized; 4982 } 4983 4984 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4985 ArrayRef<Register> Src1Regs, 4986 ArrayRef<Register> Src2Regs, 4987 LLT NarrowTy) { 4988 MachineIRBuilder &B = MIRBuilder; 4989 unsigned SrcParts = Src1Regs.size(); 4990 unsigned DstParts = DstRegs.size(); 4991 4992 unsigned DstIdx = 0; // Low bits of the result. 4993 Register FactorSum = 4994 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4995 DstRegs[DstIdx] = FactorSum; 4996 4997 unsigned CarrySumPrevDstIdx; 4998 SmallVector<Register, 4> Factors; 4999 5000 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 5001 // Collect low parts of muls for DstIdx. 5002 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 5003 i <= std::min(DstIdx, SrcParts - 1); ++i) { 5004 MachineInstrBuilder Mul = 5005 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 5006 Factors.push_back(Mul.getReg(0)); 5007 } 5008 // Collect high parts of muls from previous DstIdx. 5009 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 5010 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 5011 MachineInstrBuilder Umulh = 5012 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 5013 Factors.push_back(Umulh.getReg(0)); 5014 } 5015 // Add CarrySum from additions calculated for previous DstIdx. 5016 if (DstIdx != 1) { 5017 Factors.push_back(CarrySumPrevDstIdx); 5018 } 5019 5020 Register CarrySum; 5021 // Add all factors and accumulate all carries into CarrySum. 5022 if (DstIdx != DstParts - 1) { 5023 MachineInstrBuilder Uaddo = 5024 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 5025 FactorSum = Uaddo.getReg(0); 5026 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 5027 for (unsigned i = 2; i < Factors.size(); ++i) { 5028 MachineInstrBuilder Uaddo = 5029 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 5030 FactorSum = Uaddo.getReg(0); 5031 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 5032 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 5033 } 5034 } else { 5035 // Since value for the next index is not calculated, neither is CarrySum. 5036 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 5037 for (unsigned i = 2; i < Factors.size(); ++i) 5038 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 5039 } 5040 5041 CarrySumPrevDstIdx = CarrySum; 5042 DstRegs[DstIdx] = FactorSum; 5043 Factors.clear(); 5044 } 5045 } 5046 5047 LegalizerHelper::LegalizeResult 5048 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 5049 LLT NarrowTy) { 5050 if (TypeIdx != 0) 5051 return UnableToLegalize; 5052 5053 Register DstReg = MI.getOperand(0).getReg(); 5054 LLT DstType = MRI.getType(DstReg); 5055 // FIXME: add support for vector types 5056 if (DstType.isVector()) 5057 return UnableToLegalize; 5058 5059 unsigned Opcode = MI.getOpcode(); 5060 unsigned OpO, OpE, OpF; 5061 switch (Opcode) { 5062 case TargetOpcode::G_SADDO: 5063 case TargetOpcode::G_SADDE: 5064 case TargetOpcode::G_UADDO: 5065 case TargetOpcode::G_UADDE: 5066 case TargetOpcode::G_ADD: 5067 OpO = TargetOpcode::G_UADDO; 5068 OpE = TargetOpcode::G_UADDE; 5069 OpF = TargetOpcode::G_UADDE; 5070 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 5071 OpF = TargetOpcode::G_SADDE; 5072 break; 5073 case TargetOpcode::G_SSUBO: 5074 case TargetOpcode::G_SSUBE: 5075 case TargetOpcode::G_USUBO: 5076 case TargetOpcode::G_USUBE: 5077 case TargetOpcode::G_SUB: 5078 OpO = TargetOpcode::G_USUBO; 5079 OpE = TargetOpcode::G_USUBE; 5080 OpF = TargetOpcode::G_USUBE; 5081 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 5082 OpF = TargetOpcode::G_SSUBE; 5083 break; 5084 default: 5085 llvm_unreachable("Unexpected add/sub opcode!"); 5086 } 5087 5088 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 5089 unsigned NumDefs = MI.getNumExplicitDefs(); 5090 Register Src1 = MI.getOperand(NumDefs).getReg(); 5091 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 5092 Register CarryDst, CarryIn; 5093 if (NumDefs == 2) 5094 CarryDst = MI.getOperand(1).getReg(); 5095 if (MI.getNumOperands() == NumDefs + 3) 5096 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 5097 5098 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5099 LLT LeftoverTy, DummyTy; 5100 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; 5101 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); 5102 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); 5103 5104 int NarrowParts = Src1Regs.size(); 5105 for (int I = 0, E = Src1Left.size(); I != E; ++I) { 5106 Src1Regs.push_back(Src1Left[I]); 5107 Src2Regs.push_back(Src2Left[I]); 5108 } 5109 DstRegs.reserve(Src1Regs.size()); 5110 5111 for (int i = 0, e = Src1Regs.size(); i != e; ++i) { 5112 Register DstReg = 5113 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); 5114 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 5115 // Forward the final carry-out to the destination register 5116 if (i == e - 1 && CarryDst) 5117 CarryOut = CarryDst; 5118 5119 if (!CarryIn) { 5120 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 5121 {Src1Regs[i], Src2Regs[i]}); 5122 } else if (i == e - 1) { 5123 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 5124 {Src1Regs[i], Src2Regs[i], CarryIn}); 5125 } else { 5126 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 5127 {Src1Regs[i], Src2Regs[i], CarryIn}); 5128 } 5129 5130 DstRegs.push_back(DstReg); 5131 CarryIn = CarryOut; 5132 } 5133 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, 5134 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, 5135 makeArrayRef(DstRegs).drop_front(NarrowParts)); 5136 5137 MI.eraseFromParent(); 5138 return Legalized; 5139 } 5140 5141 LegalizerHelper::LegalizeResult 5142 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 5143 Register DstReg = MI.getOperand(0).getReg(); 5144 Register Src1 = MI.getOperand(1).getReg(); 5145 Register Src2 = MI.getOperand(2).getReg(); 5146 5147 LLT Ty = MRI.getType(DstReg); 5148 if (Ty.isVector()) 5149 return UnableToLegalize; 5150 5151 unsigned Size = Ty.getSizeInBits(); 5152 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5153 if (Size % NarrowSize != 0) 5154 return UnableToLegalize; 5155 5156 unsigned NumParts = Size / NarrowSize; 5157 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 5158 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); 5159 5160 SmallVector<Register, 2> Src1Parts, Src2Parts; 5161 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 5162 extractParts(Src1, NarrowTy, NumParts, Src1Parts); 5163 extractParts(Src2, NarrowTy, NumParts, Src2Parts); 5164 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 5165 5166 // Take only high half of registers if this is high mul. 5167 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); 5168 MIRBuilder.buildMerge(DstReg, DstRegs); 5169 MI.eraseFromParent(); 5170 return Legalized; 5171 } 5172 5173 LegalizerHelper::LegalizeResult 5174 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, 5175 LLT NarrowTy) { 5176 if (TypeIdx != 0) 5177 return UnableToLegalize; 5178 5179 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; 5180 5181 Register Src = MI.getOperand(1).getReg(); 5182 LLT SrcTy = MRI.getType(Src); 5183 5184 // If all finite floats fit into the narrowed integer type, we can just swap 5185 // out the result type. This is practically only useful for conversions from 5186 // half to at least 16-bits, so just handle the one case. 5187 if (SrcTy.getScalarType() != LLT::scalar(16) || 5188 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) 5189 return UnableToLegalize; 5190 5191 Observer.changingInstr(MI); 5192 narrowScalarDst(MI, NarrowTy, 0, 5193 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); 5194 Observer.changedInstr(MI); 5195 return Legalized; 5196 } 5197 5198 LegalizerHelper::LegalizeResult 5199 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 5200 LLT NarrowTy) { 5201 if (TypeIdx != 1) 5202 return UnableToLegalize; 5203 5204 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5205 5206 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 5207 // FIXME: add support for when SizeOp1 isn't an exact multiple of 5208 // NarrowSize. 5209 if (SizeOp1 % NarrowSize != 0) 5210 return UnableToLegalize; 5211 int NumParts = SizeOp1 / NarrowSize; 5212 5213 SmallVector<Register, 2> SrcRegs, DstRegs; 5214 SmallVector<uint64_t, 2> Indexes; 5215 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 5216 5217 Register OpReg = MI.getOperand(0).getReg(); 5218 uint64_t OpStart = MI.getOperand(2).getImm(); 5219 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5220 for (int i = 0; i < NumParts; ++i) { 5221 unsigned SrcStart = i * NarrowSize; 5222 5223 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 5224 // No part of the extract uses this subregister, ignore it. 5225 continue; 5226 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5227 // The entire subregister is extracted, forward the value. 5228 DstRegs.push_back(SrcRegs[i]); 5229 continue; 5230 } 5231 5232 // OpSegStart is where this destination segment would start in OpReg if it 5233 // extended infinitely in both directions. 5234 int64_t ExtractOffset; 5235 uint64_t SegSize; 5236 if (OpStart < SrcStart) { 5237 ExtractOffset = 0; 5238 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 5239 } else { 5240 ExtractOffset = OpStart - SrcStart; 5241 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 5242 } 5243 5244 Register SegReg = SrcRegs[i]; 5245 if (ExtractOffset != 0 || SegSize != NarrowSize) { 5246 // A genuine extract is needed. 5247 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5248 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 5249 } 5250 5251 DstRegs.push_back(SegReg); 5252 } 5253 5254 Register DstReg = MI.getOperand(0).getReg(); 5255 if (MRI.getType(DstReg).isVector()) 5256 MIRBuilder.buildBuildVector(DstReg, DstRegs); 5257 else if (DstRegs.size() > 1) 5258 MIRBuilder.buildMerge(DstReg, DstRegs); 5259 else 5260 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 5261 MI.eraseFromParent(); 5262 return Legalized; 5263 } 5264 5265 LegalizerHelper::LegalizeResult 5266 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 5267 LLT NarrowTy) { 5268 // FIXME: Don't know how to handle secondary types yet. 5269 if (TypeIdx != 0) 5270 return UnableToLegalize; 5271 5272 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; 5273 SmallVector<uint64_t, 2> Indexes; 5274 LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); 5275 LLT LeftoverTy; 5276 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, 5277 LeftoverRegs); 5278 5279 for (Register Reg : LeftoverRegs) 5280 SrcRegs.push_back(Reg); 5281 5282 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 5283 Register OpReg = MI.getOperand(2).getReg(); 5284 uint64_t OpStart = MI.getOperand(3).getImm(); 5285 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 5286 for (int I = 0, E = SrcRegs.size(); I != E; ++I) { 5287 unsigned DstStart = I * NarrowSize; 5288 5289 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 5290 // The entire subregister is defined by this insert, forward the new 5291 // value. 5292 DstRegs.push_back(OpReg); 5293 continue; 5294 } 5295 5296 Register SrcReg = SrcRegs[I]; 5297 if (MRI.getType(SrcRegs[I]) == LeftoverTy) { 5298 // The leftover reg is smaller than NarrowTy, so we need to extend it. 5299 SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 5300 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); 5301 } 5302 5303 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 5304 // No part of the insert affects this subregister, forward the original. 5305 DstRegs.push_back(SrcReg); 5306 continue; 5307 } 5308 5309 // OpSegStart is where this destination segment would start in OpReg if it 5310 // extended infinitely in both directions. 5311 int64_t ExtractOffset, InsertOffset; 5312 uint64_t SegSize; 5313 if (OpStart < DstStart) { 5314 InsertOffset = 0; 5315 ExtractOffset = DstStart - OpStart; 5316 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 5317 } else { 5318 InsertOffset = OpStart - DstStart; 5319 ExtractOffset = 0; 5320 SegSize = 5321 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 5322 } 5323 5324 Register SegReg = OpReg; 5325 if (ExtractOffset != 0 || SegSize != OpSize) { 5326 // A genuine extract is needed. 5327 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 5328 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 5329 } 5330 5331 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 5332 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); 5333 DstRegs.push_back(DstReg); 5334 } 5335 5336 uint64_t WideSize = DstRegs.size() * NarrowSize; 5337 Register DstReg = MI.getOperand(0).getReg(); 5338 if (WideSize > RegTy.getSizeInBits()) { 5339 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); 5340 MIRBuilder.buildMerge(MergeReg, DstRegs); 5341 MIRBuilder.buildTrunc(DstReg, MergeReg); 5342 } else 5343 MIRBuilder.buildMerge(DstReg, DstRegs); 5344 5345 MI.eraseFromParent(); 5346 return Legalized; 5347 } 5348 5349 LegalizerHelper::LegalizeResult 5350 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 5351 LLT NarrowTy) { 5352 Register DstReg = MI.getOperand(0).getReg(); 5353 LLT DstTy = MRI.getType(DstReg); 5354 5355 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 5356 5357 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5358 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 5359 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5360 LLT LeftoverTy; 5361 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 5362 Src0Regs, Src0LeftoverRegs)) 5363 return UnableToLegalize; 5364 5365 LLT Unused; 5366 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 5367 Src1Regs, Src1LeftoverRegs)) 5368 llvm_unreachable("inconsistent extractParts result"); 5369 5370 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5371 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 5372 {Src0Regs[I], Src1Regs[I]}); 5373 DstRegs.push_back(Inst.getReg(0)); 5374 } 5375 5376 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5377 auto Inst = MIRBuilder.buildInstr( 5378 MI.getOpcode(), 5379 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 5380 DstLeftoverRegs.push_back(Inst.getReg(0)); 5381 } 5382 5383 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5384 LeftoverTy, DstLeftoverRegs); 5385 5386 MI.eraseFromParent(); 5387 return Legalized; 5388 } 5389 5390 LegalizerHelper::LegalizeResult 5391 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 5392 LLT NarrowTy) { 5393 if (TypeIdx != 0) 5394 return UnableToLegalize; 5395 5396 Register DstReg = MI.getOperand(0).getReg(); 5397 Register SrcReg = MI.getOperand(1).getReg(); 5398 5399 LLT DstTy = MRI.getType(DstReg); 5400 if (DstTy.isVector()) 5401 return UnableToLegalize; 5402 5403 SmallVector<Register, 8> Parts; 5404 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 5405 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 5406 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 5407 5408 MI.eraseFromParent(); 5409 return Legalized; 5410 } 5411 5412 LegalizerHelper::LegalizeResult 5413 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 5414 LLT NarrowTy) { 5415 if (TypeIdx != 0) 5416 return UnableToLegalize; 5417 5418 Register CondReg = MI.getOperand(1).getReg(); 5419 LLT CondTy = MRI.getType(CondReg); 5420 if (CondTy.isVector()) // TODO: Handle vselect 5421 return UnableToLegalize; 5422 5423 Register DstReg = MI.getOperand(0).getReg(); 5424 LLT DstTy = MRI.getType(DstReg); 5425 5426 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 5427 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 5428 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 5429 LLT LeftoverTy; 5430 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 5431 Src1Regs, Src1LeftoverRegs)) 5432 return UnableToLegalize; 5433 5434 LLT Unused; 5435 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 5436 Src2Regs, Src2LeftoverRegs)) 5437 llvm_unreachable("inconsistent extractParts result"); 5438 5439 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 5440 auto Select = MIRBuilder.buildSelect(NarrowTy, 5441 CondReg, Src1Regs[I], Src2Regs[I]); 5442 DstRegs.push_back(Select.getReg(0)); 5443 } 5444 5445 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 5446 auto Select = MIRBuilder.buildSelect( 5447 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 5448 DstLeftoverRegs.push_back(Select.getReg(0)); 5449 } 5450 5451 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 5452 LeftoverTy, DstLeftoverRegs); 5453 5454 MI.eraseFromParent(); 5455 return Legalized; 5456 } 5457 5458 LegalizerHelper::LegalizeResult 5459 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 5460 LLT NarrowTy) { 5461 if (TypeIdx != 1) 5462 return UnableToLegalize; 5463 5464 Register DstReg = MI.getOperand(0).getReg(); 5465 Register SrcReg = MI.getOperand(1).getReg(); 5466 LLT DstTy = MRI.getType(DstReg); 5467 LLT SrcTy = MRI.getType(SrcReg); 5468 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5469 5470 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5471 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 5472 5473 MachineIRBuilder &B = MIRBuilder; 5474 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5475 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 5476 auto C_0 = B.buildConstant(NarrowTy, 0); 5477 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5478 UnmergeSrc.getReg(1), C_0); 5479 auto LoCTLZ = IsUndef ? 5480 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 5481 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 5482 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5483 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 5484 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 5485 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 5486 5487 MI.eraseFromParent(); 5488 return Legalized; 5489 } 5490 5491 return UnableToLegalize; 5492 } 5493 5494 LegalizerHelper::LegalizeResult 5495 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 5496 LLT NarrowTy) { 5497 if (TypeIdx != 1) 5498 return UnableToLegalize; 5499 5500 Register DstReg = MI.getOperand(0).getReg(); 5501 Register SrcReg = MI.getOperand(1).getReg(); 5502 LLT DstTy = MRI.getType(DstReg); 5503 LLT SrcTy = MRI.getType(SrcReg); 5504 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5505 5506 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5507 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 5508 5509 MachineIRBuilder &B = MIRBuilder; 5510 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 5511 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 5512 auto C_0 = B.buildConstant(NarrowTy, 0); 5513 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 5514 UnmergeSrc.getReg(0), C_0); 5515 auto HiCTTZ = IsUndef ? 5516 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 5517 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 5518 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 5519 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 5520 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 5521 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 5522 5523 MI.eraseFromParent(); 5524 return Legalized; 5525 } 5526 5527 return UnableToLegalize; 5528 } 5529 5530 LegalizerHelper::LegalizeResult 5531 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 5532 LLT NarrowTy) { 5533 if (TypeIdx != 1) 5534 return UnableToLegalize; 5535 5536 Register DstReg = MI.getOperand(0).getReg(); 5537 LLT DstTy = MRI.getType(DstReg); 5538 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 5539 unsigned NarrowSize = NarrowTy.getSizeInBits(); 5540 5541 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 5542 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 5543 5544 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 5545 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 5546 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 5547 5548 MI.eraseFromParent(); 5549 return Legalized; 5550 } 5551 5552 return UnableToLegalize; 5553 } 5554 5555 LegalizerHelper::LegalizeResult 5556 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 5557 unsigned Opc = MI.getOpcode(); 5558 const auto &TII = MIRBuilder.getTII(); 5559 auto isSupported = [this](const LegalityQuery &Q) { 5560 auto QAction = LI.getAction(Q).Action; 5561 return QAction == Legal || QAction == Libcall || QAction == Custom; 5562 }; 5563 switch (Opc) { 5564 default: 5565 return UnableToLegalize; 5566 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 5567 // This trivially expands to CTLZ. 5568 Observer.changingInstr(MI); 5569 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 5570 Observer.changedInstr(MI); 5571 return Legalized; 5572 } 5573 case TargetOpcode::G_CTLZ: { 5574 Register DstReg = MI.getOperand(0).getReg(); 5575 Register SrcReg = MI.getOperand(1).getReg(); 5576 LLT DstTy = MRI.getType(DstReg); 5577 LLT SrcTy = MRI.getType(SrcReg); 5578 unsigned Len = SrcTy.getSizeInBits(); 5579 5580 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5581 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 5582 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 5583 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 5584 auto ICmp = MIRBuilder.buildICmp( 5585 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 5586 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5587 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 5588 MI.eraseFromParent(); 5589 return Legalized; 5590 } 5591 // for now, we do this: 5592 // NewLen = NextPowerOf2(Len); 5593 // x = x | (x >> 1); 5594 // x = x | (x >> 2); 5595 // ... 5596 // x = x | (x >>16); 5597 // x = x | (x >>32); // for 64-bit input 5598 // Upto NewLen/2 5599 // return Len - popcount(x); 5600 // 5601 // Ref: "Hacker's Delight" by Henry Warren 5602 Register Op = SrcReg; 5603 unsigned NewLen = PowerOf2Ceil(Len); 5604 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 5605 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 5606 auto MIBOp = MIRBuilder.buildOr( 5607 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 5608 Op = MIBOp.getReg(0); 5609 } 5610 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 5611 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 5612 MIBPop); 5613 MI.eraseFromParent(); 5614 return Legalized; 5615 } 5616 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 5617 // This trivially expands to CTTZ. 5618 Observer.changingInstr(MI); 5619 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 5620 Observer.changedInstr(MI); 5621 return Legalized; 5622 } 5623 case TargetOpcode::G_CTTZ: { 5624 Register DstReg = MI.getOperand(0).getReg(); 5625 Register SrcReg = MI.getOperand(1).getReg(); 5626 LLT DstTy = MRI.getType(DstReg); 5627 LLT SrcTy = MRI.getType(SrcReg); 5628 5629 unsigned Len = SrcTy.getSizeInBits(); 5630 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5631 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5632 // zero. 5633 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5634 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5635 auto ICmp = MIRBuilder.buildICmp( 5636 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5637 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5638 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5639 MI.eraseFromParent(); 5640 return Legalized; 5641 } 5642 // for now, we use: { return popcount(~x & (x - 1)); } 5643 // unless the target has ctlz but not ctpop, in which case we use: 5644 // { return 32 - nlz(~x & (x-1)); } 5645 // Ref: "Hacker's Delight" by Henry Warren 5646 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5647 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5648 auto MIBTmp = MIRBuilder.buildAnd( 5649 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5650 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5651 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5652 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5653 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5654 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5655 MI.eraseFromParent(); 5656 return Legalized; 5657 } 5658 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5659 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5660 return Legalized; 5661 } 5662 case TargetOpcode::G_CTPOP: { 5663 Register SrcReg = MI.getOperand(1).getReg(); 5664 LLT Ty = MRI.getType(SrcReg); 5665 unsigned Size = Ty.getSizeInBits(); 5666 MachineIRBuilder &B = MIRBuilder; 5667 5668 // Count set bits in blocks of 2 bits. Default approach would be 5669 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5670 // We use following formula instead: 5671 // B2Count = val - { (val >> 1) & 0x55555555 } 5672 // since it gives same result in blocks of 2 with one instruction less. 5673 auto C_1 = B.buildConstant(Ty, 1); 5674 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5675 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5676 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5677 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5678 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5679 5680 // In order to get count in blocks of 4 add values from adjacent block of 2. 5681 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5682 auto C_2 = B.buildConstant(Ty, 2); 5683 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5684 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5685 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5686 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5687 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5688 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5689 5690 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5691 // addition since count value sits in range {0,...,8} and 4 bits are enough 5692 // to hold such binary values. After addition high 4 bits still hold count 5693 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5694 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5695 auto C_4 = B.buildConstant(Ty, 4); 5696 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5697 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5698 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5699 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5700 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5701 5702 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5703 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5704 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5705 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5706 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5707 5708 // Shift count result from 8 high bits to low bits. 5709 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5710 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5711 5712 MI.eraseFromParent(); 5713 return Legalized; 5714 } 5715 } 5716 } 5717 5718 // Check that (every element of) Reg is undef or not an exact multiple of BW. 5719 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, 5720 Register Reg, unsigned BW) { 5721 return matchUnaryPredicate( 5722 MRI, Reg, 5723 [=](const Constant *C) { 5724 // Null constant here means an undef. 5725 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); 5726 return !CI || CI->getValue().urem(BW) != 0; 5727 }, 5728 /*AllowUndefs*/ true); 5729 } 5730 5731 LegalizerHelper::LegalizeResult 5732 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { 5733 Register Dst = MI.getOperand(0).getReg(); 5734 Register X = MI.getOperand(1).getReg(); 5735 Register Y = MI.getOperand(2).getReg(); 5736 Register Z = MI.getOperand(3).getReg(); 5737 LLT Ty = MRI.getType(Dst); 5738 LLT ShTy = MRI.getType(Z); 5739 5740 unsigned BW = Ty.getScalarSizeInBits(); 5741 5742 if (!isPowerOf2_32(BW)) 5743 return UnableToLegalize; 5744 5745 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5746 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5747 5748 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5749 // fshl X, Y, Z -> fshr X, Y, -Z 5750 // fshr X, Y, Z -> fshl X, Y, -Z 5751 auto Zero = MIRBuilder.buildConstant(ShTy, 0); 5752 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); 5753 } else { 5754 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 5755 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 5756 auto One = MIRBuilder.buildConstant(ShTy, 1); 5757 if (IsFSHL) { 5758 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5759 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); 5760 } else { 5761 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); 5762 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); 5763 } 5764 5765 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); 5766 } 5767 5768 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); 5769 MI.eraseFromParent(); 5770 return Legalized; 5771 } 5772 5773 LegalizerHelper::LegalizeResult 5774 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { 5775 Register Dst = MI.getOperand(0).getReg(); 5776 Register X = MI.getOperand(1).getReg(); 5777 Register Y = MI.getOperand(2).getReg(); 5778 Register Z = MI.getOperand(3).getReg(); 5779 LLT Ty = MRI.getType(Dst); 5780 LLT ShTy = MRI.getType(Z); 5781 5782 const unsigned BW = Ty.getScalarSizeInBits(); 5783 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5784 5785 Register ShX, ShY; 5786 Register ShAmt, InvShAmt; 5787 5788 // FIXME: Emit optimized urem by constant instead of letting it expand later. 5789 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { 5790 // fshl: X << C | Y >> (BW - C) 5791 // fshr: X << (BW - C) | Y >> C 5792 // where C = Z % BW is not zero 5793 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5794 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5795 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); 5796 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); 5797 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); 5798 } else { 5799 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 5800 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 5801 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); 5802 if (isPowerOf2_32(BW)) { 5803 // Z % BW -> Z & (BW - 1) 5804 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); 5805 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 5806 auto NotZ = MIRBuilder.buildNot(ShTy, Z); 5807 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); 5808 } else { 5809 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); 5810 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); 5811 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); 5812 } 5813 5814 auto One = MIRBuilder.buildConstant(ShTy, 1); 5815 if (IsFSHL) { 5816 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); 5817 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); 5818 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); 5819 } else { 5820 auto ShX1 = MIRBuilder.buildShl(Ty, X, One); 5821 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); 5822 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); 5823 } 5824 } 5825 5826 MIRBuilder.buildOr(Dst, ShX, ShY); 5827 MI.eraseFromParent(); 5828 return Legalized; 5829 } 5830 5831 LegalizerHelper::LegalizeResult 5832 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { 5833 // These operations approximately do the following (while avoiding undefined 5834 // shifts by BW): 5835 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5836 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5837 Register Dst = MI.getOperand(0).getReg(); 5838 LLT Ty = MRI.getType(Dst); 5839 LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); 5840 5841 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; 5842 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; 5843 5844 // TODO: Use smarter heuristic that accounts for vector legalization. 5845 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) 5846 return lowerFunnelShiftAsShifts(MI); 5847 5848 // This only works for powers of 2, fallback to shifts if it fails. 5849 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); 5850 if (Result == UnableToLegalize) 5851 return lowerFunnelShiftAsShifts(MI); 5852 return Result; 5853 } 5854 5855 LegalizerHelper::LegalizeResult 5856 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { 5857 Register Dst = MI.getOperand(0).getReg(); 5858 Register Src = MI.getOperand(1).getReg(); 5859 Register Amt = MI.getOperand(2).getReg(); 5860 LLT AmtTy = MRI.getType(Amt); 5861 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5862 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5863 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5864 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5865 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); 5866 MI.eraseFromParent(); 5867 return Legalized; 5868 } 5869 5870 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { 5871 Register Dst = MI.getOperand(0).getReg(); 5872 Register Src = MI.getOperand(1).getReg(); 5873 Register Amt = MI.getOperand(2).getReg(); 5874 LLT DstTy = MRI.getType(Dst); 5875 LLT SrcTy = MRI.getType(Src); 5876 LLT AmtTy = MRI.getType(Amt); 5877 5878 unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); 5879 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; 5880 5881 MIRBuilder.setInstrAndDebugLoc(MI); 5882 5883 // If a rotate in the other direction is supported, use it. 5884 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; 5885 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && 5886 isPowerOf2_32(EltSizeInBits)) 5887 return lowerRotateWithReverseRotate(MI); 5888 5889 // If a funnel shift is supported, use it. 5890 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5891 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; 5892 bool IsFShLegal = false; 5893 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || 5894 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { 5895 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, 5896 Register R3) { 5897 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); 5898 MI.eraseFromParent(); 5899 return Legalized; 5900 }; 5901 // If a funnel shift in the other direction is supported, use it. 5902 if (IsFShLegal) { 5903 return buildFunnelShift(FShOpc, Dst, Src, Amt); 5904 } else if (isPowerOf2_32(EltSizeInBits)) { 5905 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); 5906 return buildFunnelShift(RevFsh, Dst, Src, Amt); 5907 } 5908 } 5909 5910 auto Zero = MIRBuilder.buildConstant(AmtTy, 0); 5911 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; 5912 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; 5913 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); 5914 Register ShVal; 5915 Register RevShiftVal; 5916 if (isPowerOf2_32(EltSizeInBits)) { 5917 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 5918 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 5919 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); 5920 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); 5921 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5922 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); 5923 RevShiftVal = 5924 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); 5925 } else { 5926 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 5927 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 5928 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); 5929 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); 5930 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); 5931 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); 5932 auto One = MIRBuilder.buildConstant(AmtTy, 1); 5933 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); 5934 RevShiftVal = 5935 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); 5936 } 5937 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); 5938 MI.eraseFromParent(); 5939 return Legalized; 5940 } 5941 5942 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5943 // representation. 5944 LegalizerHelper::LegalizeResult 5945 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5946 Register Dst = MI.getOperand(0).getReg(); 5947 Register Src = MI.getOperand(1).getReg(); 5948 const LLT S64 = LLT::scalar(64); 5949 const LLT S32 = LLT::scalar(32); 5950 const LLT S1 = LLT::scalar(1); 5951 5952 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5953 5954 // unsigned cul2f(ulong u) { 5955 // uint lz = clz(u); 5956 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5957 // u = (u << lz) & 0x7fffffffffffffffUL; 5958 // ulong t = u & 0xffffffffffUL; 5959 // uint v = (e << 23) | (uint)(u >> 40); 5960 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5961 // return as_float(v + r); 5962 // } 5963 5964 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5965 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5966 5967 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5968 5969 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5970 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5971 5972 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5973 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5974 5975 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5976 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5977 5978 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5979 5980 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5981 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5982 5983 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5984 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5985 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5986 5987 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5988 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5989 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5990 auto One = MIRBuilder.buildConstant(S32, 1); 5991 5992 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5993 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5994 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5995 MIRBuilder.buildAdd(Dst, V, R); 5996 5997 MI.eraseFromParent(); 5998 return Legalized; 5999 } 6000 6001 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 6002 Register Dst = MI.getOperand(0).getReg(); 6003 Register Src = MI.getOperand(1).getReg(); 6004 LLT DstTy = MRI.getType(Dst); 6005 LLT SrcTy = MRI.getType(Src); 6006 6007 if (SrcTy == LLT::scalar(1)) { 6008 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 6009 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6010 MIRBuilder.buildSelect(Dst, Src, True, False); 6011 MI.eraseFromParent(); 6012 return Legalized; 6013 } 6014 6015 if (SrcTy != LLT::scalar(64)) 6016 return UnableToLegalize; 6017 6018 if (DstTy == LLT::scalar(32)) { 6019 // TODO: SelectionDAG has several alternative expansions to port which may 6020 // be more reasonble depending on the available instructions. If a target 6021 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 6022 // intermediate type, this is probably worse. 6023 return lowerU64ToF32BitOps(MI); 6024 } 6025 6026 return UnableToLegalize; 6027 } 6028 6029 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 6030 Register Dst = MI.getOperand(0).getReg(); 6031 Register Src = MI.getOperand(1).getReg(); 6032 LLT DstTy = MRI.getType(Dst); 6033 LLT SrcTy = MRI.getType(Src); 6034 6035 const LLT S64 = LLT::scalar(64); 6036 const LLT S32 = LLT::scalar(32); 6037 const LLT S1 = LLT::scalar(1); 6038 6039 if (SrcTy == S1) { 6040 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 6041 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 6042 MIRBuilder.buildSelect(Dst, Src, True, False); 6043 MI.eraseFromParent(); 6044 return Legalized; 6045 } 6046 6047 if (SrcTy != S64) 6048 return UnableToLegalize; 6049 6050 if (DstTy == S32) { 6051 // signed cl2f(long l) { 6052 // long s = l >> 63; 6053 // float r = cul2f((l + s) ^ s); 6054 // return s ? -r : r; 6055 // } 6056 Register L = Src; 6057 auto SignBit = MIRBuilder.buildConstant(S64, 63); 6058 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 6059 6060 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 6061 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 6062 auto R = MIRBuilder.buildUITOFP(S32, Xor); 6063 6064 auto RNeg = MIRBuilder.buildFNeg(S32, R); 6065 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 6066 MIRBuilder.buildConstant(S64, 0)); 6067 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 6068 MI.eraseFromParent(); 6069 return Legalized; 6070 } 6071 6072 return UnableToLegalize; 6073 } 6074 6075 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 6076 Register Dst = MI.getOperand(0).getReg(); 6077 Register Src = MI.getOperand(1).getReg(); 6078 LLT DstTy = MRI.getType(Dst); 6079 LLT SrcTy = MRI.getType(Src); 6080 const LLT S64 = LLT::scalar(64); 6081 const LLT S32 = LLT::scalar(32); 6082 6083 if (SrcTy != S64 && SrcTy != S32) 6084 return UnableToLegalize; 6085 if (DstTy != S32 && DstTy != S64) 6086 return UnableToLegalize; 6087 6088 // FPTOSI gives same result as FPTOUI for positive signed integers. 6089 // FPTOUI needs to deal with fp values that convert to unsigned integers 6090 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 6091 6092 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 6093 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 6094 : APFloat::IEEEdouble(), 6095 APInt::getZero(SrcTy.getSizeInBits())); 6096 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 6097 6098 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 6099 6100 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 6101 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 6102 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 6103 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 6104 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 6105 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 6106 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 6107 6108 const LLT S1 = LLT::scalar(1); 6109 6110 MachineInstrBuilder FCMP = 6111 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 6112 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 6113 6114 MI.eraseFromParent(); 6115 return Legalized; 6116 } 6117 6118 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 6119 Register Dst = MI.getOperand(0).getReg(); 6120 Register Src = MI.getOperand(1).getReg(); 6121 LLT DstTy = MRI.getType(Dst); 6122 LLT SrcTy = MRI.getType(Src); 6123 const LLT S64 = LLT::scalar(64); 6124 const LLT S32 = LLT::scalar(32); 6125 6126 // FIXME: Only f32 to i64 conversions are supported. 6127 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 6128 return UnableToLegalize; 6129 6130 // Expand f32 -> i64 conversion 6131 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6132 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6133 6134 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 6135 6136 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 6137 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 6138 6139 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 6140 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 6141 6142 auto SignMask = MIRBuilder.buildConstant(SrcTy, 6143 APInt::getSignMask(SrcEltBits)); 6144 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 6145 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 6146 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 6147 Sign = MIRBuilder.buildSExt(DstTy, Sign); 6148 6149 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 6150 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 6151 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 6152 6153 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 6154 R = MIRBuilder.buildZExt(DstTy, R); 6155 6156 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 6157 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 6158 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 6159 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 6160 6161 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 6162 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 6163 6164 const LLT S1 = LLT::scalar(1); 6165 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 6166 S1, Exponent, ExponentLoBit); 6167 6168 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 6169 6170 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 6171 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 6172 6173 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 6174 6175 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 6176 S1, Exponent, ZeroSrcTy); 6177 6178 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 6179 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 6180 6181 MI.eraseFromParent(); 6182 return Legalized; 6183 } 6184 6185 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 6186 LegalizerHelper::LegalizeResult 6187 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 6188 Register Dst = MI.getOperand(0).getReg(); 6189 Register Src = MI.getOperand(1).getReg(); 6190 6191 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 6192 return UnableToLegalize; 6193 6194 const unsigned ExpMask = 0x7ff; 6195 const unsigned ExpBiasf64 = 1023; 6196 const unsigned ExpBiasf16 = 15; 6197 const LLT S32 = LLT::scalar(32); 6198 const LLT S1 = LLT::scalar(1); 6199 6200 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 6201 Register U = Unmerge.getReg(0); 6202 Register UH = Unmerge.getReg(1); 6203 6204 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 6205 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 6206 6207 // Subtract the fp64 exponent bias (1023) to get the real exponent and 6208 // add the f16 bias (15) to get the biased exponent for the f16 format. 6209 E = MIRBuilder.buildAdd( 6210 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 6211 6212 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 6213 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 6214 6215 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 6216 MIRBuilder.buildConstant(S32, 0x1ff)); 6217 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 6218 6219 auto Zero = MIRBuilder.buildConstant(S32, 0); 6220 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 6221 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 6222 M = MIRBuilder.buildOr(S32, M, Lo40Set); 6223 6224 // (M != 0 ? 0x0200 : 0) | 0x7c00; 6225 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 6226 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 6227 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 6228 6229 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 6230 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 6231 6232 // N = M | (E << 12); 6233 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 6234 auto N = MIRBuilder.buildOr(S32, M, EShl12); 6235 6236 // B = clamp(1-E, 0, 13); 6237 auto One = MIRBuilder.buildConstant(S32, 1); 6238 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 6239 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 6240 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 6241 6242 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 6243 MIRBuilder.buildConstant(S32, 0x1000)); 6244 6245 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 6246 auto D0 = MIRBuilder.buildShl(S32, D, B); 6247 6248 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 6249 D0, SigSetHigh); 6250 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 6251 D = MIRBuilder.buildOr(S32, D, D1); 6252 6253 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 6254 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 6255 6256 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 6257 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 6258 6259 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 6260 MIRBuilder.buildConstant(S32, 3)); 6261 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 6262 6263 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 6264 MIRBuilder.buildConstant(S32, 5)); 6265 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 6266 6267 V1 = MIRBuilder.buildOr(S32, V0, V1); 6268 V = MIRBuilder.buildAdd(S32, V, V1); 6269 6270 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 6271 E, MIRBuilder.buildConstant(S32, 30)); 6272 V = MIRBuilder.buildSelect(S32, CmpEGt30, 6273 MIRBuilder.buildConstant(S32, 0x7c00), V); 6274 6275 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 6276 E, MIRBuilder.buildConstant(S32, 1039)); 6277 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 6278 6279 // Extract the sign bit. 6280 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 6281 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 6282 6283 // Insert the sign bit 6284 V = MIRBuilder.buildOr(S32, Sign, V); 6285 6286 MIRBuilder.buildTrunc(Dst, V); 6287 MI.eraseFromParent(); 6288 return Legalized; 6289 } 6290 6291 LegalizerHelper::LegalizeResult 6292 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 6293 Register Dst = MI.getOperand(0).getReg(); 6294 Register Src = MI.getOperand(1).getReg(); 6295 6296 LLT DstTy = MRI.getType(Dst); 6297 LLT SrcTy = MRI.getType(Src); 6298 const LLT S64 = LLT::scalar(64); 6299 const LLT S16 = LLT::scalar(16); 6300 6301 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 6302 return lowerFPTRUNC_F64_TO_F16(MI); 6303 6304 return UnableToLegalize; 6305 } 6306 6307 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 6308 // multiplication tree. 6309 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 6310 Register Dst = MI.getOperand(0).getReg(); 6311 Register Src0 = MI.getOperand(1).getReg(); 6312 Register Src1 = MI.getOperand(2).getReg(); 6313 LLT Ty = MRI.getType(Dst); 6314 6315 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 6316 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 6317 MI.eraseFromParent(); 6318 return Legalized; 6319 } 6320 6321 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 6322 switch (Opc) { 6323 case TargetOpcode::G_SMIN: 6324 return CmpInst::ICMP_SLT; 6325 case TargetOpcode::G_SMAX: 6326 return CmpInst::ICMP_SGT; 6327 case TargetOpcode::G_UMIN: 6328 return CmpInst::ICMP_ULT; 6329 case TargetOpcode::G_UMAX: 6330 return CmpInst::ICMP_UGT; 6331 default: 6332 llvm_unreachable("not in integer min/max"); 6333 } 6334 } 6335 6336 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 6337 Register Dst = MI.getOperand(0).getReg(); 6338 Register Src0 = MI.getOperand(1).getReg(); 6339 Register Src1 = MI.getOperand(2).getReg(); 6340 6341 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 6342 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 6343 6344 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 6345 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 6346 6347 MI.eraseFromParent(); 6348 return Legalized; 6349 } 6350 6351 LegalizerHelper::LegalizeResult 6352 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 6353 Register Dst = MI.getOperand(0).getReg(); 6354 Register Src0 = MI.getOperand(1).getReg(); 6355 Register Src1 = MI.getOperand(2).getReg(); 6356 6357 const LLT Src0Ty = MRI.getType(Src0); 6358 const LLT Src1Ty = MRI.getType(Src1); 6359 6360 const int Src0Size = Src0Ty.getScalarSizeInBits(); 6361 const int Src1Size = Src1Ty.getScalarSizeInBits(); 6362 6363 auto SignBitMask = MIRBuilder.buildConstant( 6364 Src0Ty, APInt::getSignMask(Src0Size)); 6365 6366 auto NotSignBitMask = MIRBuilder.buildConstant( 6367 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 6368 6369 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 6370 Register And1; 6371 if (Src0Ty == Src1Ty) { 6372 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 6373 } else if (Src0Size > Src1Size) { 6374 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 6375 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 6376 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 6377 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 6378 } else { 6379 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 6380 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 6381 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 6382 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 6383 } 6384 6385 // Be careful about setting nsz/nnan/ninf on every instruction, since the 6386 // constants are a nan and -0.0, but the final result should preserve 6387 // everything. 6388 unsigned Flags = MI.getFlags(); 6389 MIRBuilder.buildOr(Dst, And0, And1, Flags); 6390 6391 MI.eraseFromParent(); 6392 return Legalized; 6393 } 6394 6395 LegalizerHelper::LegalizeResult 6396 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 6397 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 6398 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 6399 6400 Register Dst = MI.getOperand(0).getReg(); 6401 Register Src0 = MI.getOperand(1).getReg(); 6402 Register Src1 = MI.getOperand(2).getReg(); 6403 LLT Ty = MRI.getType(Dst); 6404 6405 if (!MI.getFlag(MachineInstr::FmNoNans)) { 6406 // Insert canonicalizes if it's possible we need to quiet to get correct 6407 // sNaN behavior. 6408 6409 // Note this must be done here, and not as an optimization combine in the 6410 // absence of a dedicate quiet-snan instruction as we're using an 6411 // omni-purpose G_FCANONICALIZE. 6412 if (!isKnownNeverSNaN(Src0, MRI)) 6413 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 6414 6415 if (!isKnownNeverSNaN(Src1, MRI)) 6416 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 6417 } 6418 6419 // If there are no nans, it's safe to simply replace this with the non-IEEE 6420 // version. 6421 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 6422 MI.eraseFromParent(); 6423 return Legalized; 6424 } 6425 6426 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 6427 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 6428 Register DstReg = MI.getOperand(0).getReg(); 6429 LLT Ty = MRI.getType(DstReg); 6430 unsigned Flags = MI.getFlags(); 6431 6432 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 6433 Flags); 6434 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 6435 MI.eraseFromParent(); 6436 return Legalized; 6437 } 6438 6439 LegalizerHelper::LegalizeResult 6440 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 6441 Register DstReg = MI.getOperand(0).getReg(); 6442 Register X = MI.getOperand(1).getReg(); 6443 const unsigned Flags = MI.getFlags(); 6444 const LLT Ty = MRI.getType(DstReg); 6445 const LLT CondTy = Ty.changeElementSize(1); 6446 6447 // round(x) => 6448 // t = trunc(x); 6449 // d = fabs(x - t); 6450 // o = copysign(1.0f, x); 6451 // return t + (d >= 0.5 ? o : 0.0); 6452 6453 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 6454 6455 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 6456 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 6457 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6458 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 6459 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 6460 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 6461 6462 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 6463 Flags); 6464 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 6465 6466 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 6467 6468 MI.eraseFromParent(); 6469 return Legalized; 6470 } 6471 6472 LegalizerHelper::LegalizeResult 6473 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 6474 Register DstReg = MI.getOperand(0).getReg(); 6475 Register SrcReg = MI.getOperand(1).getReg(); 6476 unsigned Flags = MI.getFlags(); 6477 LLT Ty = MRI.getType(DstReg); 6478 const LLT CondTy = Ty.changeElementSize(1); 6479 6480 // result = trunc(src); 6481 // if (src < 0.0 && src != result) 6482 // result += -1.0. 6483 6484 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 6485 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 6486 6487 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 6488 SrcReg, Zero, Flags); 6489 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 6490 SrcReg, Trunc, Flags); 6491 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 6492 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 6493 6494 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 6495 MI.eraseFromParent(); 6496 return Legalized; 6497 } 6498 6499 LegalizerHelper::LegalizeResult 6500 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 6501 const unsigned NumOps = MI.getNumOperands(); 6502 Register DstReg = MI.getOperand(0).getReg(); 6503 Register Src0Reg = MI.getOperand(1).getReg(); 6504 LLT DstTy = MRI.getType(DstReg); 6505 LLT SrcTy = MRI.getType(Src0Reg); 6506 unsigned PartSize = SrcTy.getSizeInBits(); 6507 6508 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 6509 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 6510 6511 for (unsigned I = 2; I != NumOps; ++I) { 6512 const unsigned Offset = (I - 1) * PartSize; 6513 6514 Register SrcReg = MI.getOperand(I).getReg(); 6515 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 6516 6517 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 6518 MRI.createGenericVirtualRegister(WideTy); 6519 6520 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 6521 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 6522 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 6523 ResultReg = NextResult; 6524 } 6525 6526 if (DstTy.isPointer()) { 6527 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 6528 DstTy.getAddressSpace())) { 6529 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 6530 return UnableToLegalize; 6531 } 6532 6533 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 6534 } 6535 6536 MI.eraseFromParent(); 6537 return Legalized; 6538 } 6539 6540 LegalizerHelper::LegalizeResult 6541 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 6542 const unsigned NumDst = MI.getNumOperands() - 1; 6543 Register SrcReg = MI.getOperand(NumDst).getReg(); 6544 Register Dst0Reg = MI.getOperand(0).getReg(); 6545 LLT DstTy = MRI.getType(Dst0Reg); 6546 if (DstTy.isPointer()) 6547 return UnableToLegalize; // TODO 6548 6549 SrcReg = coerceToScalar(SrcReg); 6550 if (!SrcReg) 6551 return UnableToLegalize; 6552 6553 // Expand scalarizing unmerge as bitcast to integer and shift. 6554 LLT IntTy = MRI.getType(SrcReg); 6555 6556 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 6557 6558 const unsigned DstSize = DstTy.getSizeInBits(); 6559 unsigned Offset = DstSize; 6560 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 6561 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 6562 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 6563 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 6564 } 6565 6566 MI.eraseFromParent(); 6567 return Legalized; 6568 } 6569 6570 /// Lower a vector extract or insert by writing the vector to a stack temporary 6571 /// and reloading the element or vector. 6572 /// 6573 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 6574 /// => 6575 /// %stack_temp = G_FRAME_INDEX 6576 /// G_STORE %vec, %stack_temp 6577 /// %idx = clamp(%idx, %vec.getNumElements()) 6578 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 6579 /// %dst = G_LOAD %element_ptr 6580 LegalizerHelper::LegalizeResult 6581 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 6582 Register DstReg = MI.getOperand(0).getReg(); 6583 Register SrcVec = MI.getOperand(1).getReg(); 6584 Register InsertVal; 6585 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 6586 InsertVal = MI.getOperand(2).getReg(); 6587 6588 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 6589 6590 LLT VecTy = MRI.getType(SrcVec); 6591 LLT EltTy = VecTy.getElementType(); 6592 unsigned NumElts = VecTy.getNumElements(); 6593 6594 int64_t IdxVal; 6595 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { 6596 SmallVector<Register, 8> SrcRegs; 6597 extractParts(SrcVec, EltTy, NumElts, SrcRegs); 6598 6599 if (InsertVal) { 6600 SrcRegs[IdxVal] = MI.getOperand(2).getReg(); 6601 MIRBuilder.buildMerge(DstReg, SrcRegs); 6602 } else { 6603 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); 6604 } 6605 6606 MI.eraseFromParent(); 6607 return Legalized; 6608 } 6609 6610 if (!EltTy.isByteSized()) { // Not implemented. 6611 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 6612 return UnableToLegalize; 6613 } 6614 6615 unsigned EltBytes = EltTy.getSizeInBytes(); 6616 Align VecAlign = getStackTemporaryAlignment(VecTy); 6617 Align EltAlign; 6618 6619 MachinePointerInfo PtrInfo; 6620 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 6621 VecAlign, PtrInfo); 6622 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 6623 6624 // Get the pointer to the element, and be sure not to hit undefined behavior 6625 // if the index is out of bounds. 6626 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 6627 6628 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 6629 int64_t Offset = IdxVal * EltBytes; 6630 PtrInfo = PtrInfo.getWithOffset(Offset); 6631 EltAlign = commonAlignment(VecAlign, Offset); 6632 } else { 6633 // We lose information with a variable offset. 6634 EltAlign = getStackTemporaryAlignment(EltTy); 6635 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 6636 } 6637 6638 if (InsertVal) { 6639 // Write the inserted element 6640 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 6641 6642 // Reload the whole vector. 6643 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 6644 } else { 6645 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 6646 } 6647 6648 MI.eraseFromParent(); 6649 return Legalized; 6650 } 6651 6652 LegalizerHelper::LegalizeResult 6653 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 6654 Register DstReg = MI.getOperand(0).getReg(); 6655 Register Src0Reg = MI.getOperand(1).getReg(); 6656 Register Src1Reg = MI.getOperand(2).getReg(); 6657 LLT Src0Ty = MRI.getType(Src0Reg); 6658 LLT DstTy = MRI.getType(DstReg); 6659 LLT IdxTy = LLT::scalar(32); 6660 6661 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 6662 6663 if (DstTy.isScalar()) { 6664 if (Src0Ty.isVector()) 6665 return UnableToLegalize; 6666 6667 // This is just a SELECT. 6668 assert(Mask.size() == 1 && "Expected a single mask element"); 6669 Register Val; 6670 if (Mask[0] < 0 || Mask[0] > 1) 6671 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 6672 else 6673 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 6674 MIRBuilder.buildCopy(DstReg, Val); 6675 MI.eraseFromParent(); 6676 return Legalized; 6677 } 6678 6679 Register Undef; 6680 SmallVector<Register, 32> BuildVec; 6681 LLT EltTy = DstTy.getElementType(); 6682 6683 for (int Idx : Mask) { 6684 if (Idx < 0) { 6685 if (!Undef.isValid()) 6686 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 6687 BuildVec.push_back(Undef); 6688 continue; 6689 } 6690 6691 if (Src0Ty.isScalar()) { 6692 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 6693 } else { 6694 int NumElts = Src0Ty.getNumElements(); 6695 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 6696 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 6697 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 6698 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 6699 BuildVec.push_back(Extract.getReg(0)); 6700 } 6701 } 6702 6703 MIRBuilder.buildBuildVector(DstReg, BuildVec); 6704 MI.eraseFromParent(); 6705 return Legalized; 6706 } 6707 6708 LegalizerHelper::LegalizeResult 6709 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 6710 const auto &MF = *MI.getMF(); 6711 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 6712 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 6713 return UnableToLegalize; 6714 6715 Register Dst = MI.getOperand(0).getReg(); 6716 Register AllocSize = MI.getOperand(1).getReg(); 6717 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 6718 6719 LLT PtrTy = MRI.getType(Dst); 6720 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 6721 6722 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 6723 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 6724 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 6725 6726 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 6727 // have to generate an extra instruction to negate the alloc and then use 6728 // G_PTR_ADD to add the negative offset. 6729 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 6730 if (Alignment > Align(1)) { 6731 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 6732 AlignMask.negate(); 6733 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 6734 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 6735 } 6736 6737 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 6738 MIRBuilder.buildCopy(SPReg, SPTmp); 6739 MIRBuilder.buildCopy(Dst, SPTmp); 6740 6741 MI.eraseFromParent(); 6742 return Legalized; 6743 } 6744 6745 LegalizerHelper::LegalizeResult 6746 LegalizerHelper::lowerExtract(MachineInstr &MI) { 6747 Register Dst = MI.getOperand(0).getReg(); 6748 Register Src = MI.getOperand(1).getReg(); 6749 unsigned Offset = MI.getOperand(2).getImm(); 6750 6751 LLT DstTy = MRI.getType(Dst); 6752 LLT SrcTy = MRI.getType(Src); 6753 6754 // Extract sub-vector or one element 6755 if (SrcTy.isVector()) { 6756 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); 6757 unsigned DstSize = DstTy.getSizeInBits(); 6758 6759 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && 6760 (Offset + DstSize <= SrcTy.getSizeInBits())) { 6761 // Unmerge and allow access to each Src element for the artifact combiner. 6762 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src); 6763 6764 // Take element(s) we need to extract and copy it (merge them). 6765 SmallVector<Register, 8> SubVectorElts; 6766 for (unsigned Idx = Offset / SrcEltSize; 6767 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { 6768 SubVectorElts.push_back(Unmerge.getReg(Idx)); 6769 } 6770 if (SubVectorElts.size() == 1) 6771 MIRBuilder.buildCopy(Dst, SubVectorElts[0]); 6772 else 6773 MIRBuilder.buildMerge(Dst, SubVectorElts); 6774 6775 MI.eraseFromParent(); 6776 return Legalized; 6777 } 6778 } 6779 6780 if (DstTy.isScalar() && 6781 (SrcTy.isScalar() || 6782 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 6783 LLT SrcIntTy = SrcTy; 6784 if (!SrcTy.isScalar()) { 6785 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 6786 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 6787 } 6788 6789 if (Offset == 0) 6790 MIRBuilder.buildTrunc(Dst, Src); 6791 else { 6792 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 6793 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 6794 MIRBuilder.buildTrunc(Dst, Shr); 6795 } 6796 6797 MI.eraseFromParent(); 6798 return Legalized; 6799 } 6800 6801 return UnableToLegalize; 6802 } 6803 6804 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 6805 Register Dst = MI.getOperand(0).getReg(); 6806 Register Src = MI.getOperand(1).getReg(); 6807 Register InsertSrc = MI.getOperand(2).getReg(); 6808 uint64_t Offset = MI.getOperand(3).getImm(); 6809 6810 LLT DstTy = MRI.getType(Src); 6811 LLT InsertTy = MRI.getType(InsertSrc); 6812 6813 // Insert sub-vector or one element 6814 if (DstTy.isVector() && !InsertTy.isPointer()) { 6815 LLT EltTy = DstTy.getElementType(); 6816 unsigned EltSize = EltTy.getSizeInBits(); 6817 unsigned InsertSize = InsertTy.getSizeInBits(); 6818 6819 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && 6820 (Offset + InsertSize <= DstTy.getSizeInBits())) { 6821 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); 6822 SmallVector<Register, 8> DstElts; 6823 unsigned Idx = 0; 6824 // Elements from Src before insert start Offset 6825 for (; Idx < Offset / EltSize; ++Idx) { 6826 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6827 } 6828 6829 // Replace elements in Src with elements from InsertSrc 6830 if (InsertTy.getSizeInBits() > EltSize) { 6831 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); 6832 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; 6833 ++Idx, ++i) { 6834 DstElts.push_back(UnmergeInsertSrc.getReg(i)); 6835 } 6836 } else { 6837 DstElts.push_back(InsertSrc); 6838 ++Idx; 6839 } 6840 6841 // Remaining elements from Src after insert 6842 for (; Idx < DstTy.getNumElements(); ++Idx) { 6843 DstElts.push_back(UnmergeSrc.getReg(Idx)); 6844 } 6845 6846 MIRBuilder.buildMerge(Dst, DstElts); 6847 MI.eraseFromParent(); 6848 return Legalized; 6849 } 6850 } 6851 6852 if (InsertTy.isVector() || 6853 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 6854 return UnableToLegalize; 6855 6856 const DataLayout &DL = MIRBuilder.getDataLayout(); 6857 if ((DstTy.isPointer() && 6858 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 6859 (InsertTy.isPointer() && 6860 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 6861 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 6862 return UnableToLegalize; 6863 } 6864 6865 LLT IntDstTy = DstTy; 6866 6867 if (!DstTy.isScalar()) { 6868 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 6869 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 6870 } 6871 6872 if (!InsertTy.isScalar()) { 6873 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 6874 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 6875 } 6876 6877 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 6878 if (Offset != 0) { 6879 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 6880 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 6881 } 6882 6883 APInt MaskVal = APInt::getBitsSetWithWrap( 6884 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 6885 6886 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 6887 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 6888 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 6889 6890 MIRBuilder.buildCast(Dst, Or); 6891 MI.eraseFromParent(); 6892 return Legalized; 6893 } 6894 6895 LegalizerHelper::LegalizeResult 6896 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 6897 Register Dst0 = MI.getOperand(0).getReg(); 6898 Register Dst1 = MI.getOperand(1).getReg(); 6899 Register LHS = MI.getOperand(2).getReg(); 6900 Register RHS = MI.getOperand(3).getReg(); 6901 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 6902 6903 LLT Ty = MRI.getType(Dst0); 6904 LLT BoolTy = MRI.getType(Dst1); 6905 6906 if (IsAdd) 6907 MIRBuilder.buildAdd(Dst0, LHS, RHS); 6908 else 6909 MIRBuilder.buildSub(Dst0, LHS, RHS); 6910 6911 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6912 6913 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6914 6915 // For an addition, the result should be less than one of the operands (LHS) 6916 // if and only if the other operand (RHS) is negative, otherwise there will 6917 // be overflow. 6918 // For a subtraction, the result should be less than one of the operands 6919 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 6920 // otherwise there will be overflow. 6921 auto ResultLowerThanLHS = 6922 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 6923 auto ConditionRHS = MIRBuilder.buildICmp( 6924 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 6925 6926 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 6927 MI.eraseFromParent(); 6928 return Legalized; 6929 } 6930 6931 LegalizerHelper::LegalizeResult 6932 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6933 Register Res = MI.getOperand(0).getReg(); 6934 Register LHS = MI.getOperand(1).getReg(); 6935 Register RHS = MI.getOperand(2).getReg(); 6936 LLT Ty = MRI.getType(Res); 6937 bool IsSigned; 6938 bool IsAdd; 6939 unsigned BaseOp; 6940 switch (MI.getOpcode()) { 6941 default: 6942 llvm_unreachable("unexpected addsat/subsat opcode"); 6943 case TargetOpcode::G_UADDSAT: 6944 IsSigned = false; 6945 IsAdd = true; 6946 BaseOp = TargetOpcode::G_ADD; 6947 break; 6948 case TargetOpcode::G_SADDSAT: 6949 IsSigned = true; 6950 IsAdd = true; 6951 BaseOp = TargetOpcode::G_ADD; 6952 break; 6953 case TargetOpcode::G_USUBSAT: 6954 IsSigned = false; 6955 IsAdd = false; 6956 BaseOp = TargetOpcode::G_SUB; 6957 break; 6958 case TargetOpcode::G_SSUBSAT: 6959 IsSigned = true; 6960 IsAdd = false; 6961 BaseOp = TargetOpcode::G_SUB; 6962 break; 6963 } 6964 6965 if (IsSigned) { 6966 // sadd.sat(a, b) -> 6967 // hi = 0x7fffffff - smax(a, 0) 6968 // lo = 0x80000000 - smin(a, 0) 6969 // a + smin(smax(lo, b), hi) 6970 // ssub.sat(a, b) -> 6971 // lo = smax(a, -1) - 0x7fffffff 6972 // hi = smin(a, -1) - 0x80000000 6973 // a - smin(smax(lo, b), hi) 6974 // TODO: AMDGPU can use a "median of 3" instruction here: 6975 // a +/- med3(lo, b, hi) 6976 uint64_t NumBits = Ty.getScalarSizeInBits(); 6977 auto MaxVal = 6978 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6979 auto MinVal = 6980 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6981 MachineInstrBuilder Hi, Lo; 6982 if (IsAdd) { 6983 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6984 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6985 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6986 } else { 6987 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6988 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6989 MaxVal); 6990 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6991 MinVal); 6992 } 6993 auto RHSClamped = 6994 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6995 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6996 } else { 6997 // uadd.sat(a, b) -> a + umin(~a, b) 6998 // usub.sat(a, b) -> a - umin(a, b) 6999 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 7000 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 7001 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 7002 } 7003 7004 MI.eraseFromParent(); 7005 return Legalized; 7006 } 7007 7008 LegalizerHelper::LegalizeResult 7009 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 7010 Register Res = MI.getOperand(0).getReg(); 7011 Register LHS = MI.getOperand(1).getReg(); 7012 Register RHS = MI.getOperand(2).getReg(); 7013 LLT Ty = MRI.getType(Res); 7014 LLT BoolTy = Ty.changeElementSize(1); 7015 bool IsSigned; 7016 bool IsAdd; 7017 unsigned OverflowOp; 7018 switch (MI.getOpcode()) { 7019 default: 7020 llvm_unreachable("unexpected addsat/subsat opcode"); 7021 case TargetOpcode::G_UADDSAT: 7022 IsSigned = false; 7023 IsAdd = true; 7024 OverflowOp = TargetOpcode::G_UADDO; 7025 break; 7026 case TargetOpcode::G_SADDSAT: 7027 IsSigned = true; 7028 IsAdd = true; 7029 OverflowOp = TargetOpcode::G_SADDO; 7030 break; 7031 case TargetOpcode::G_USUBSAT: 7032 IsSigned = false; 7033 IsAdd = false; 7034 OverflowOp = TargetOpcode::G_USUBO; 7035 break; 7036 case TargetOpcode::G_SSUBSAT: 7037 IsSigned = true; 7038 IsAdd = false; 7039 OverflowOp = TargetOpcode::G_SSUBO; 7040 break; 7041 } 7042 7043 auto OverflowRes = 7044 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 7045 Register Tmp = OverflowRes.getReg(0); 7046 Register Ov = OverflowRes.getReg(1); 7047 MachineInstrBuilder Clamp; 7048 if (IsSigned) { 7049 // sadd.sat(a, b) -> 7050 // {tmp, ov} = saddo(a, b) 7051 // ov ? (tmp >>s 31) + 0x80000000 : r 7052 // ssub.sat(a, b) -> 7053 // {tmp, ov} = ssubo(a, b) 7054 // ov ? (tmp >>s 31) + 0x80000000 : r 7055 uint64_t NumBits = Ty.getScalarSizeInBits(); 7056 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 7057 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 7058 auto MinVal = 7059 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 7060 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 7061 } else { 7062 // uadd.sat(a, b) -> 7063 // {tmp, ov} = uaddo(a, b) 7064 // ov ? 0xffffffff : tmp 7065 // usub.sat(a, b) -> 7066 // {tmp, ov} = usubo(a, b) 7067 // ov ? 0 : tmp 7068 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 7069 } 7070 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 7071 7072 MI.eraseFromParent(); 7073 return Legalized; 7074 } 7075 7076 LegalizerHelper::LegalizeResult 7077 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 7078 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 7079 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 7080 "Expected shlsat opcode!"); 7081 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 7082 Register Res = MI.getOperand(0).getReg(); 7083 Register LHS = MI.getOperand(1).getReg(); 7084 Register RHS = MI.getOperand(2).getReg(); 7085 LLT Ty = MRI.getType(Res); 7086 LLT BoolTy = Ty.changeElementSize(1); 7087 7088 unsigned BW = Ty.getScalarSizeInBits(); 7089 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 7090 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 7091 : MIRBuilder.buildLShr(Ty, Result, RHS); 7092 7093 MachineInstrBuilder SatVal; 7094 if (IsSigned) { 7095 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 7096 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 7097 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 7098 MIRBuilder.buildConstant(Ty, 0)); 7099 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 7100 } else { 7101 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 7102 } 7103 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 7104 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 7105 7106 MI.eraseFromParent(); 7107 return Legalized; 7108 } 7109 7110 LegalizerHelper::LegalizeResult 7111 LegalizerHelper::lowerBswap(MachineInstr &MI) { 7112 Register Dst = MI.getOperand(0).getReg(); 7113 Register Src = MI.getOperand(1).getReg(); 7114 const LLT Ty = MRI.getType(Src); 7115 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 7116 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 7117 7118 // Swap most and least significant byte, set remaining bytes in Res to zero. 7119 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 7120 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 7121 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7122 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 7123 7124 // Set i-th high/low byte in Res to i-th low/high byte from Src. 7125 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 7126 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 7127 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 7128 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 7129 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 7130 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 7131 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 7132 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 7133 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 7134 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 7135 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 7136 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 7137 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 7138 } 7139 Res.getInstr()->getOperand(0).setReg(Dst); 7140 7141 MI.eraseFromParent(); 7142 return Legalized; 7143 } 7144 7145 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 7146 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 7147 MachineInstrBuilder Src, APInt Mask) { 7148 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 7149 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 7150 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 7151 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 7152 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 7153 return B.buildOr(Dst, LHS, RHS); 7154 } 7155 7156 LegalizerHelper::LegalizeResult 7157 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 7158 Register Dst = MI.getOperand(0).getReg(); 7159 Register Src = MI.getOperand(1).getReg(); 7160 const LLT Ty = MRI.getType(Src); 7161 unsigned Size = Ty.getSizeInBits(); 7162 7163 MachineInstrBuilder BSWAP = 7164 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 7165 7166 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 7167 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 7168 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 7169 MachineInstrBuilder Swap4 = 7170 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 7171 7172 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 7173 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 7174 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 7175 MachineInstrBuilder Swap2 = 7176 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 7177 7178 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 7179 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 7180 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 7181 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 7182 7183 MI.eraseFromParent(); 7184 return Legalized; 7185 } 7186 7187 LegalizerHelper::LegalizeResult 7188 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 7189 MachineFunction &MF = MIRBuilder.getMF(); 7190 7191 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 7192 int NameOpIdx = IsRead ? 1 : 0; 7193 int ValRegIndex = IsRead ? 0 : 1; 7194 7195 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 7196 const LLT Ty = MRI.getType(ValReg); 7197 const MDString *RegStr = cast<MDString>( 7198 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 7199 7200 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 7201 if (!PhysReg.isValid()) 7202 return UnableToLegalize; 7203 7204 if (IsRead) 7205 MIRBuilder.buildCopy(ValReg, PhysReg); 7206 else 7207 MIRBuilder.buildCopy(PhysReg, ValReg); 7208 7209 MI.eraseFromParent(); 7210 return Legalized; 7211 } 7212 7213 LegalizerHelper::LegalizeResult 7214 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 7215 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 7216 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 7217 Register Result = MI.getOperand(0).getReg(); 7218 LLT OrigTy = MRI.getType(Result); 7219 auto SizeInBits = OrigTy.getScalarSizeInBits(); 7220 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 7221 7222 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 7223 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 7224 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 7225 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 7226 7227 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 7228 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 7229 MIRBuilder.buildTrunc(Result, Shifted); 7230 7231 MI.eraseFromParent(); 7232 return Legalized; 7233 } 7234 7235 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 7236 // Implement vector G_SELECT in terms of XOR, AND, OR. 7237 Register DstReg = MI.getOperand(0).getReg(); 7238 Register MaskReg = MI.getOperand(1).getReg(); 7239 Register Op1Reg = MI.getOperand(2).getReg(); 7240 Register Op2Reg = MI.getOperand(3).getReg(); 7241 LLT DstTy = MRI.getType(DstReg); 7242 LLT MaskTy = MRI.getType(MaskReg); 7243 if (!DstTy.isVector()) 7244 return UnableToLegalize; 7245 7246 if (MaskTy.isScalar()) { 7247 // Turn the scalar condition into a vector condition mask. 7248 7249 Register MaskElt = MaskReg; 7250 7251 // The condition was potentially zero extended before, but we want a sign 7252 // extended boolean. 7253 if (MaskTy.getSizeInBits() <= DstTy.getScalarSizeInBits() && 7254 MaskTy != LLT::scalar(1)) { 7255 MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); 7256 } 7257 7258 // Continue the sign extension (or truncate) to match the data type. 7259 MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(), 7260 MaskElt).getReg(0); 7261 7262 // Generate a vector splat idiom. 7263 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 7264 MaskReg = ShufSplat.getReg(0); 7265 MaskTy = DstTy; 7266 } 7267 7268 if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { 7269 return UnableToLegalize; 7270 } 7271 7272 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 7273 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 7274 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 7275 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 7276 MI.eraseFromParent(); 7277 return Legalized; 7278 } 7279 7280 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { 7281 // Split DIVREM into individual instructions. 7282 unsigned Opcode = MI.getOpcode(); 7283 7284 MIRBuilder.buildInstr( 7285 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV 7286 : TargetOpcode::G_UDIV, 7287 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7288 MIRBuilder.buildInstr( 7289 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM 7290 : TargetOpcode::G_UREM, 7291 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); 7292 MI.eraseFromParent(); 7293 return Legalized; 7294 } 7295 7296 LegalizerHelper::LegalizeResult 7297 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { 7298 // Expand %res = G_ABS %a into: 7299 // %v1 = G_ASHR %a, scalar_size-1 7300 // %v2 = G_ADD %a, %v1 7301 // %res = G_XOR %v2, %v1 7302 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 7303 Register OpReg = MI.getOperand(1).getReg(); 7304 auto ShiftAmt = 7305 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 7306 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 7307 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 7308 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 7309 MI.eraseFromParent(); 7310 return Legalized; 7311 } 7312 7313 LegalizerHelper::LegalizeResult 7314 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { 7315 // Expand %res = G_ABS %a into: 7316 // %v1 = G_CONSTANT 0 7317 // %v2 = G_SUB %v1, %a 7318 // %res = G_SMAX %a, %v2 7319 Register SrcReg = MI.getOperand(1).getReg(); 7320 LLT Ty = MRI.getType(SrcReg); 7321 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); 7322 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); 7323 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); 7324 MI.eraseFromParent(); 7325 return Legalized; 7326 } 7327 7328 LegalizerHelper::LegalizeResult 7329 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { 7330 Register SrcReg = MI.getOperand(1).getReg(); 7331 LLT SrcTy = MRI.getType(SrcReg); 7332 LLT DstTy = MRI.getType(SrcReg); 7333 7334 // The source could be a scalar if the IR type was <1 x sN>. 7335 if (SrcTy.isScalar()) { 7336 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) 7337 return UnableToLegalize; // FIXME: handle extension. 7338 // This can be just a plain copy. 7339 Observer.changingInstr(MI); 7340 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); 7341 Observer.changedInstr(MI); 7342 return Legalized; 7343 } 7344 return UnableToLegalize;; 7345 } 7346 7347 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 7348 // On Darwin, -Os means optimize for size without hurting performance, so 7349 // only really optimize for size when -Oz (MinSize) is used. 7350 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7351 return MF.getFunction().hasMinSize(); 7352 return MF.getFunction().hasOptSize(); 7353 } 7354 7355 // Returns a list of types to use for memory op lowering in MemOps. A partial 7356 // port of findOptimalMemOpLowering in TargetLowering. 7357 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 7358 unsigned Limit, const MemOp &Op, 7359 unsigned DstAS, unsigned SrcAS, 7360 const AttributeList &FuncAttributes, 7361 const TargetLowering &TLI) { 7362 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 7363 return false; 7364 7365 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 7366 7367 if (Ty == LLT()) { 7368 // Use the largest scalar type whose alignment constraints are satisfied. 7369 // We only need to check DstAlign here as SrcAlign is always greater or 7370 // equal to DstAlign (or zero). 7371 Ty = LLT::scalar(64); 7372 if (Op.isFixedDstAlign()) 7373 while (Op.getDstAlign() < Ty.getSizeInBytes() && 7374 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 7375 Ty = LLT::scalar(Ty.getSizeInBytes()); 7376 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 7377 // FIXME: check for the largest legal type we can load/store to. 7378 } 7379 7380 unsigned NumMemOps = 0; 7381 uint64_t Size = Op.size(); 7382 while (Size) { 7383 unsigned TySize = Ty.getSizeInBytes(); 7384 while (TySize > Size) { 7385 // For now, only use non-vector load / store's for the left-over pieces. 7386 LLT NewTy = Ty; 7387 // FIXME: check for mem op safety and legality of the types. Not all of 7388 // SDAGisms map cleanly to GISel concepts. 7389 if (NewTy.isVector()) 7390 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 7391 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 7392 unsigned NewTySize = NewTy.getSizeInBytes(); 7393 assert(NewTySize > 0 && "Could not find appropriate type"); 7394 7395 // If the new LLT cannot cover all of the remaining bits, then consider 7396 // issuing a (or a pair of) unaligned and overlapping load / store. 7397 bool Fast; 7398 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 7399 MVT VT = getMVTForLLT(Ty); 7400 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 7401 TLI.allowsMisalignedMemoryAccesses( 7402 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 7403 MachineMemOperand::MONone, &Fast) && 7404 Fast) 7405 TySize = Size; 7406 else { 7407 Ty = NewTy; 7408 TySize = NewTySize; 7409 } 7410 } 7411 7412 if (++NumMemOps > Limit) 7413 return false; 7414 7415 MemOps.push_back(Ty); 7416 Size -= TySize; 7417 } 7418 7419 return true; 7420 } 7421 7422 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 7423 if (Ty.isVector()) 7424 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 7425 Ty.getNumElements()); 7426 return IntegerType::get(C, Ty.getSizeInBits()); 7427 } 7428 7429 // Get a vectorized representation of the memset value operand, GISel edition. 7430 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 7431 MachineRegisterInfo &MRI = *MIB.getMRI(); 7432 unsigned NumBits = Ty.getScalarSizeInBits(); 7433 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7434 if (!Ty.isVector() && ValVRegAndVal) { 7435 APInt Scalar = ValVRegAndVal->Value.trunc(8); 7436 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 7437 return MIB.buildConstant(Ty, SplatVal).getReg(0); 7438 } 7439 7440 // Extend the byte value to the larger type, and then multiply by a magic 7441 // value 0x010101... in order to replicate it across every byte. 7442 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 7443 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 7444 return MIB.buildConstant(Ty, 0).getReg(0); 7445 } 7446 7447 LLT ExtType = Ty.getScalarType(); 7448 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 7449 if (NumBits > 8) { 7450 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7451 auto MagicMI = MIB.buildConstant(ExtType, Magic); 7452 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 7453 } 7454 7455 // For vector types create a G_BUILD_VECTOR. 7456 if (Ty.isVector()) 7457 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 7458 7459 return Val; 7460 } 7461 7462 LegalizerHelper::LegalizeResult 7463 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, 7464 uint64_t KnownLen, Align Alignment, 7465 bool IsVolatile) { 7466 auto &MF = *MI.getParent()->getParent(); 7467 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7468 auto &DL = MF.getDataLayout(); 7469 LLVMContext &C = MF.getFunction().getContext(); 7470 7471 assert(KnownLen != 0 && "Have a zero length memset length!"); 7472 7473 bool DstAlignCanChange = false; 7474 MachineFrameInfo &MFI = MF.getFrameInfo(); 7475 bool OptSize = shouldLowerMemFuncForSize(MF); 7476 7477 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7478 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7479 DstAlignCanChange = true; 7480 7481 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 7482 std::vector<LLT> MemOps; 7483 7484 const auto &DstMMO = **MI.memoperands_begin(); 7485 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7486 7487 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); 7488 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 7489 7490 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 7491 MemOp::Set(KnownLen, DstAlignCanChange, 7492 Alignment, 7493 /*IsZeroMemset=*/IsZeroVal, 7494 /*IsVolatile=*/IsVolatile), 7495 DstPtrInfo.getAddrSpace(), ~0u, 7496 MF.getFunction().getAttributes(), TLI)) 7497 return UnableToLegalize; 7498 7499 if (DstAlignCanChange) { 7500 // Get an estimate of the type from the LLT. 7501 Type *IRTy = getTypeForLLT(MemOps[0], C); 7502 Align NewAlign = DL.getABITypeAlign(IRTy); 7503 if (NewAlign > Alignment) { 7504 Alignment = NewAlign; 7505 unsigned FI = FIDef->getOperand(1).getIndex(); 7506 // Give the stack frame object a larger alignment if needed. 7507 if (MFI.getObjectAlign(FI) < Alignment) 7508 MFI.setObjectAlignment(FI, Alignment); 7509 } 7510 } 7511 7512 MachineIRBuilder MIB(MI); 7513 // Find the largest store and generate the bit pattern for it. 7514 LLT LargestTy = MemOps[0]; 7515 for (unsigned i = 1; i < MemOps.size(); i++) 7516 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 7517 LargestTy = MemOps[i]; 7518 7519 // The memset stored value is always defined as an s8, so in order to make it 7520 // work with larger store types we need to repeat the bit pattern across the 7521 // wider type. 7522 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 7523 7524 if (!MemSetValue) 7525 return UnableToLegalize; 7526 7527 // Generate the stores. For each store type in the list, we generate the 7528 // matching store of that type to the destination address. 7529 LLT PtrTy = MRI.getType(Dst); 7530 unsigned DstOff = 0; 7531 unsigned Size = KnownLen; 7532 for (unsigned I = 0; I < MemOps.size(); I++) { 7533 LLT Ty = MemOps[I]; 7534 unsigned TySize = Ty.getSizeInBytes(); 7535 if (TySize > Size) { 7536 // Issuing an unaligned load / store pair that overlaps with the previous 7537 // pair. Adjust the offset accordingly. 7538 assert(I == MemOps.size() - 1 && I != 0); 7539 DstOff -= TySize - Size; 7540 } 7541 7542 // If this store is smaller than the largest store see whether we can get 7543 // the smaller value for free with a truncate. 7544 Register Value = MemSetValue; 7545 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 7546 MVT VT = getMVTForLLT(Ty); 7547 MVT LargestVT = getMVTForLLT(LargestTy); 7548 if (!LargestTy.isVector() && !Ty.isVector() && 7549 TLI.isTruncateFree(LargestVT, VT)) 7550 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 7551 else 7552 Value = getMemsetValue(Val, Ty, MIB); 7553 if (!Value) 7554 return UnableToLegalize; 7555 } 7556 7557 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); 7558 7559 Register Ptr = Dst; 7560 if (DstOff != 0) { 7561 auto Offset = 7562 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 7563 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 7564 } 7565 7566 MIB.buildStore(Value, Ptr, *StoreMMO); 7567 DstOff += Ty.getSizeInBytes(); 7568 Size -= TySize; 7569 } 7570 7571 MI.eraseFromParent(); 7572 return Legalized; 7573 } 7574 7575 LegalizerHelper::LegalizeResult 7576 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { 7577 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7578 7579 Register Dst = MI.getOperand(0).getReg(); 7580 Register Src = MI.getOperand(1).getReg(); 7581 Register Len = MI.getOperand(2).getReg(); 7582 7583 const auto *MMOIt = MI.memoperands_begin(); 7584 const MachineMemOperand *MemOp = *MMOIt; 7585 bool IsVolatile = MemOp->isVolatile(); 7586 7587 // See if this is a constant length copy 7588 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7589 // FIXME: support dynamically sized G_MEMCPY_INLINE 7590 assert(LenVRegAndVal && 7591 "inline memcpy with dynamic size is not yet supported"); 7592 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7593 if (KnownLen == 0) { 7594 MI.eraseFromParent(); 7595 return Legalized; 7596 } 7597 7598 const auto &DstMMO = **MI.memoperands_begin(); 7599 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7600 Align DstAlign = DstMMO.getBaseAlign(); 7601 Align SrcAlign = SrcMMO.getBaseAlign(); 7602 7603 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7604 IsVolatile); 7605 } 7606 7607 LegalizerHelper::LegalizeResult 7608 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, 7609 uint64_t KnownLen, Align DstAlign, 7610 Align SrcAlign, bool IsVolatile) { 7611 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); 7612 return lowerMemcpy(MI, Dst, Src, KnownLen, 7613 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, 7614 IsVolatile); 7615 } 7616 7617 LegalizerHelper::LegalizeResult 7618 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, 7619 uint64_t KnownLen, uint64_t Limit, Align DstAlign, 7620 Align SrcAlign, bool IsVolatile) { 7621 auto &MF = *MI.getParent()->getParent(); 7622 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7623 auto &DL = MF.getDataLayout(); 7624 LLVMContext &C = MF.getFunction().getContext(); 7625 7626 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 7627 7628 bool DstAlignCanChange = false; 7629 MachineFrameInfo &MFI = MF.getFrameInfo(); 7630 Align Alignment = std::min(DstAlign, SrcAlign); 7631 7632 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7633 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7634 DstAlignCanChange = true; 7635 7636 // FIXME: infer better src pointer alignment like SelectionDAG does here. 7637 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 7638 // if the memcpy is in a tail call position. 7639 7640 std::vector<LLT> MemOps; 7641 7642 const auto &DstMMO = **MI.memoperands_begin(); 7643 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7644 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7645 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7646 7647 if (!findGISelOptimalMemOpLowering( 7648 MemOps, Limit, 7649 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7650 IsVolatile), 7651 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7652 MF.getFunction().getAttributes(), TLI)) 7653 return UnableToLegalize; 7654 7655 if (DstAlignCanChange) { 7656 // Get an estimate of the type from the LLT. 7657 Type *IRTy = getTypeForLLT(MemOps[0], C); 7658 Align NewAlign = DL.getABITypeAlign(IRTy); 7659 7660 // Don't promote to an alignment that would require dynamic stack 7661 // realignment. 7662 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7663 if (!TRI->hasStackRealignment(MF)) 7664 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7665 NewAlign = NewAlign.previous(); 7666 7667 if (NewAlign > Alignment) { 7668 Alignment = NewAlign; 7669 unsigned FI = FIDef->getOperand(1).getIndex(); 7670 // Give the stack frame object a larger alignment if needed. 7671 if (MFI.getObjectAlign(FI) < Alignment) 7672 MFI.setObjectAlignment(FI, Alignment); 7673 } 7674 } 7675 7676 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 7677 7678 MachineIRBuilder MIB(MI); 7679 // Now we need to emit a pair of load and stores for each of the types we've 7680 // collected. I.e. for each type, generate a load from the source pointer of 7681 // that type width, and then generate a corresponding store to the dest buffer 7682 // of that value loaded. This can result in a sequence of loads and stores 7683 // mixed types, depending on what the target specifies as good types to use. 7684 unsigned CurrOffset = 0; 7685 unsigned Size = KnownLen; 7686 for (auto CopyTy : MemOps) { 7687 // Issuing an unaligned load / store pair that overlaps with the previous 7688 // pair. Adjust the offset accordingly. 7689 if (CopyTy.getSizeInBytes() > Size) 7690 CurrOffset -= CopyTy.getSizeInBytes() - Size; 7691 7692 // Construct MMOs for the accesses. 7693 auto *LoadMMO = 7694 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7695 auto *StoreMMO = 7696 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7697 7698 // Create the load. 7699 Register LoadPtr = Src; 7700 Register Offset; 7701 if (CurrOffset != 0) { 7702 LLT SrcTy = MRI.getType(Src); 7703 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) 7704 .getReg(0); 7705 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7706 } 7707 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 7708 7709 // Create the store. 7710 Register StorePtr = Dst; 7711 if (CurrOffset != 0) { 7712 LLT DstTy = MRI.getType(Dst); 7713 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7714 } 7715 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 7716 CurrOffset += CopyTy.getSizeInBytes(); 7717 Size -= CopyTy.getSizeInBytes(); 7718 } 7719 7720 MI.eraseFromParent(); 7721 return Legalized; 7722 } 7723 7724 LegalizerHelper::LegalizeResult 7725 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, 7726 uint64_t KnownLen, Align DstAlign, Align SrcAlign, 7727 bool IsVolatile) { 7728 auto &MF = *MI.getParent()->getParent(); 7729 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7730 auto &DL = MF.getDataLayout(); 7731 LLVMContext &C = MF.getFunction().getContext(); 7732 7733 assert(KnownLen != 0 && "Have a zero length memmove length!"); 7734 7735 bool DstAlignCanChange = false; 7736 MachineFrameInfo &MFI = MF.getFrameInfo(); 7737 bool OptSize = shouldLowerMemFuncForSize(MF); 7738 Align Alignment = std::min(DstAlign, SrcAlign); 7739 7740 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 7741 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 7742 DstAlignCanChange = true; 7743 7744 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 7745 std::vector<LLT> MemOps; 7746 7747 const auto &DstMMO = **MI.memoperands_begin(); 7748 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 7749 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 7750 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 7751 7752 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 7753 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 7754 // same thing here. 7755 if (!findGISelOptimalMemOpLowering( 7756 MemOps, Limit, 7757 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 7758 /*IsVolatile*/ true), 7759 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7760 MF.getFunction().getAttributes(), TLI)) 7761 return UnableToLegalize; 7762 7763 if (DstAlignCanChange) { 7764 // Get an estimate of the type from the LLT. 7765 Type *IRTy = getTypeForLLT(MemOps[0], C); 7766 Align NewAlign = DL.getABITypeAlign(IRTy); 7767 7768 // Don't promote to an alignment that would require dynamic stack 7769 // realignment. 7770 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7771 if (!TRI->hasStackRealignment(MF)) 7772 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7773 NewAlign = NewAlign.previous(); 7774 7775 if (NewAlign > Alignment) { 7776 Alignment = NewAlign; 7777 unsigned FI = FIDef->getOperand(1).getIndex(); 7778 // Give the stack frame object a larger alignment if needed. 7779 if (MFI.getObjectAlign(FI) < Alignment) 7780 MFI.setObjectAlignment(FI, Alignment); 7781 } 7782 } 7783 7784 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 7785 7786 MachineIRBuilder MIB(MI); 7787 // Memmove requires that we perform the loads first before issuing the stores. 7788 // Apart from that, this loop is pretty much doing the same thing as the 7789 // memcpy codegen function. 7790 unsigned CurrOffset = 0; 7791 SmallVector<Register, 16> LoadVals; 7792 for (auto CopyTy : MemOps) { 7793 // Construct MMO for the load. 7794 auto *LoadMMO = 7795 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 7796 7797 // Create the load. 7798 Register LoadPtr = Src; 7799 if (CurrOffset != 0) { 7800 LLT SrcTy = MRI.getType(Src); 7801 auto Offset = 7802 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); 7803 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); 7804 } 7805 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 7806 CurrOffset += CopyTy.getSizeInBytes(); 7807 } 7808 7809 CurrOffset = 0; 7810 for (unsigned I = 0; I < MemOps.size(); ++I) { 7811 LLT CopyTy = MemOps[I]; 7812 // Now store the values loaded. 7813 auto *StoreMMO = 7814 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 7815 7816 Register StorePtr = Dst; 7817 if (CurrOffset != 0) { 7818 LLT DstTy = MRI.getType(Dst); 7819 auto Offset = 7820 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); 7821 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); 7822 } 7823 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 7824 CurrOffset += CopyTy.getSizeInBytes(); 7825 } 7826 MI.eraseFromParent(); 7827 return Legalized; 7828 } 7829 7830 LegalizerHelper::LegalizeResult 7831 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 7832 const unsigned Opc = MI.getOpcode(); 7833 // This combine is fairly complex so it's not written with a separate 7834 // matcher function. 7835 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 7836 Opc == TargetOpcode::G_MEMSET) && 7837 "Expected memcpy like instruction"); 7838 7839 auto MMOIt = MI.memoperands_begin(); 7840 const MachineMemOperand *MemOp = *MMOIt; 7841 7842 Align DstAlign = MemOp->getBaseAlign(); 7843 Align SrcAlign; 7844 Register Dst = MI.getOperand(0).getReg(); 7845 Register Src = MI.getOperand(1).getReg(); 7846 Register Len = MI.getOperand(2).getReg(); 7847 7848 if (Opc != TargetOpcode::G_MEMSET) { 7849 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 7850 MemOp = *(++MMOIt); 7851 SrcAlign = MemOp->getBaseAlign(); 7852 } 7853 7854 // See if this is a constant length copy 7855 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); 7856 if (!LenVRegAndVal) 7857 return UnableToLegalize; 7858 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); 7859 7860 if (KnownLen == 0) { 7861 MI.eraseFromParent(); 7862 return Legalized; 7863 } 7864 7865 bool IsVolatile = MemOp->isVolatile(); 7866 if (Opc == TargetOpcode::G_MEMCPY_INLINE) 7867 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, 7868 IsVolatile); 7869 7870 // Don't try to optimize volatile. 7871 if (IsVolatile) 7872 return UnableToLegalize; 7873 7874 if (MaxLen && KnownLen > MaxLen) 7875 return UnableToLegalize; 7876 7877 if (Opc == TargetOpcode::G_MEMCPY) { 7878 auto &MF = *MI.getParent()->getParent(); 7879 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 7880 bool OptSize = shouldLowerMemFuncForSize(MF); 7881 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); 7882 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, 7883 IsVolatile); 7884 } 7885 if (Opc == TargetOpcode::G_MEMMOVE) 7886 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 7887 if (Opc == TargetOpcode::G_MEMSET) 7888 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 7889 return UnableToLegalize; 7890 } 7891