xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp (revision 81ad626541db97eb356e2c1d4a20eb2a26a766ab)
1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
23 #include "llvm/CodeGen/GlobalISel/Utils.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetOpcodes.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 
37 #define DEBUG_TYPE "legalizer"
38 
39 using namespace llvm;
40 using namespace LegalizeActions;
41 using namespace MIPatternMatch;
42 
43 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
44 ///
45 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
46 /// with any leftover piece as type \p LeftoverTy
47 ///
48 /// Returns -1 in the first element of the pair if the breakdown is not
49 /// satisfiable.
50 static std::pair<int, int>
51 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
52   assert(!LeftoverTy.isValid() && "this is an out argument");
53 
54   unsigned Size = OrigTy.getSizeInBits();
55   unsigned NarrowSize = NarrowTy.getSizeInBits();
56   unsigned NumParts = Size / NarrowSize;
57   unsigned LeftoverSize = Size - NumParts * NarrowSize;
58   assert(Size > NarrowSize);
59 
60   if (LeftoverSize == 0)
61     return {NumParts, 0};
62 
63   if (NarrowTy.isVector()) {
64     unsigned EltSize = OrigTy.getScalarSizeInBits();
65     if (LeftoverSize % EltSize != 0)
66       return {-1, -1};
67     LeftoverTy = LLT::scalarOrVector(
68         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
69   } else {
70     LeftoverTy = LLT::scalar(LeftoverSize);
71   }
72 
73   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
74   return std::make_pair(NumParts, NumLeftover);
75 }
76 
77 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
78 
79   if (!Ty.isScalar())
80     return nullptr;
81 
82   switch (Ty.getSizeInBits()) {
83   case 16:
84     return Type::getHalfTy(Ctx);
85   case 32:
86     return Type::getFloatTy(Ctx);
87   case 64:
88     return Type::getDoubleTy(Ctx);
89   case 80:
90     return Type::getX86_FP80Ty(Ctx);
91   case 128:
92     return Type::getFP128Ty(Ctx);
93   default:
94     return nullptr;
95   }
96 }
97 
98 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &Builder)
101     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
102       LI(*MF.getSubtarget().getLegalizerInfo()),
103       TLI(*MF.getSubtarget().getTargetLowering()) { }
104 
105 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
106                                  GISelChangeObserver &Observer,
107                                  MachineIRBuilder &B)
108   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
109     TLI(*MF.getSubtarget().getTargetLowering()) { }
110 
111 LegalizerHelper::LegalizeResult
112 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
113                                    LostDebugLocObserver &LocObserver) {
114   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
115 
116   MIRBuilder.setInstrAndDebugLoc(MI);
117 
118   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
119       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
120     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
121   auto Step = LI.getAction(MI, MRI);
122   switch (Step.Action) {
123   case Legal:
124     LLVM_DEBUG(dbgs() << ".. Already legal\n");
125     return AlreadyLegal;
126   case Libcall:
127     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
128     return libcall(MI, LocObserver);
129   case NarrowScalar:
130     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
131     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
132   case WidenScalar:
133     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
134     return widenScalar(MI, Step.TypeIdx, Step.NewType);
135   case Bitcast:
136     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
137     return bitcast(MI, Step.TypeIdx, Step.NewType);
138   case Lower:
139     LLVM_DEBUG(dbgs() << ".. Lower\n");
140     return lower(MI, Step.TypeIdx, Step.NewType);
141   case FewerElements:
142     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
143     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
144   case MoreElements:
145     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
146     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
147   case Custom:
148     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
149     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
150   default:
151     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
152     return UnableToLegalize;
153   }
154 }
155 
156 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
157                                    SmallVectorImpl<Register> &VRegs) {
158   for (int i = 0; i < NumParts; ++i)
159     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
160   MIRBuilder.buildUnmerge(VRegs, Reg);
161 }
162 
163 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
164                                    LLT MainTy, LLT &LeftoverTy,
165                                    SmallVectorImpl<Register> &VRegs,
166                                    SmallVectorImpl<Register> &LeftoverRegs) {
167   assert(!LeftoverTy.isValid() && "this is an out argument");
168 
169   unsigned RegSize = RegTy.getSizeInBits();
170   unsigned MainSize = MainTy.getSizeInBits();
171   unsigned NumParts = RegSize / MainSize;
172   unsigned LeftoverSize = RegSize - NumParts * MainSize;
173 
174   // Use an unmerge when possible.
175   if (LeftoverSize == 0) {
176     for (unsigned I = 0; I < NumParts; ++I)
177       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
178     MIRBuilder.buildUnmerge(VRegs, Reg);
179     return true;
180   }
181 
182   // Perform irregular split. Leftover is last element of RegPieces.
183   if (MainTy.isVector()) {
184     SmallVector<Register, 8> RegPieces;
185     extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
186     for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
187       VRegs.push_back(RegPieces[i]);
188     LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
189     LeftoverTy = MRI.getType(LeftoverRegs[0]);
190     return true;
191   }
192 
193   LeftoverTy = LLT::scalar(LeftoverSize);
194   // For irregular sizes, extract the individual parts.
195   for (unsigned I = 0; I != NumParts; ++I) {
196     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
197     VRegs.push_back(NewReg);
198     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
199   }
200 
201   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
202        Offset += LeftoverSize) {
203     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
204     LeftoverRegs.push_back(NewReg);
205     MIRBuilder.buildExtract(NewReg, Reg, Offset);
206   }
207 
208   return true;
209 }
210 
211 void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
212                                          SmallVectorImpl<Register> &VRegs) {
213   LLT RegTy = MRI.getType(Reg);
214   assert(RegTy.isVector() && "Expected a vector type");
215 
216   LLT EltTy = RegTy.getElementType();
217   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
218   unsigned RegNumElts = RegTy.getNumElements();
219   unsigned LeftoverNumElts = RegNumElts % NumElts;
220   unsigned NumNarrowTyPieces = RegNumElts / NumElts;
221 
222   // Perfect split without leftover
223   if (LeftoverNumElts == 0)
224     return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
225 
226   // Irregular split. Provide direct access to all elements for artifact
227   // combiner using unmerge to elements. Then build vectors with NumElts
228   // elements. Remaining element(s) will be (used to build vector) Leftover.
229   SmallVector<Register, 8> Elts;
230   extractParts(Reg, EltTy, RegNumElts, Elts);
231 
232   unsigned Offset = 0;
233   // Requested sub-vectors of NarrowTy.
234   for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
235     ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
236     VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
237   }
238 
239   // Leftover element(s).
240   if (LeftoverNumElts == 1) {
241     VRegs.push_back(Elts[Offset]);
242   } else {
243     LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
244     ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
245     VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0));
246   }
247 }
248 
249 void LegalizerHelper::insertParts(Register DstReg,
250                                   LLT ResultTy, LLT PartTy,
251                                   ArrayRef<Register> PartRegs,
252                                   LLT LeftoverTy,
253                                   ArrayRef<Register> LeftoverRegs) {
254   if (!LeftoverTy.isValid()) {
255     assert(LeftoverRegs.empty());
256 
257     if (!ResultTy.isVector()) {
258       MIRBuilder.buildMerge(DstReg, PartRegs);
259       return;
260     }
261 
262     if (PartTy.isVector())
263       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
264     else
265       MIRBuilder.buildBuildVector(DstReg, PartRegs);
266     return;
267   }
268 
269   // Merge sub-vectors with different number of elements and insert into DstReg.
270   if (ResultTy.isVector()) {
271     assert(LeftoverRegs.size() == 1 && "Expected one leftover register");
272     SmallVector<Register, 8> AllRegs;
273     for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
274       AllRegs.push_back(Reg);
275     return mergeMixedSubvectors(DstReg, AllRegs);
276   }
277 
278   SmallVector<Register> GCDRegs;
279   LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
280   for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
281     extractGCDType(GCDRegs, GCDTy, PartReg);
282   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
283   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
284 }
285 
286 void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
287                                        Register Reg) {
288   LLT Ty = MRI.getType(Reg);
289   SmallVector<Register, 8> RegElts;
290   extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
291   Elts.append(RegElts);
292 }
293 
294 /// Merge \p PartRegs with different types into \p DstReg.
295 void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
296                                            ArrayRef<Register> PartRegs) {
297   SmallVector<Register, 8> AllElts;
298   for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
299     appendVectorElts(AllElts, PartRegs[i]);
300 
301   Register Leftover = PartRegs[PartRegs.size() - 1];
302   if (MRI.getType(Leftover).isScalar())
303     AllElts.push_back(Leftover);
304   else
305     appendVectorElts(AllElts, Leftover);
306 
307   MIRBuilder.buildMerge(DstReg, AllElts);
308 }
309 
310 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
311 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
312                               const MachineInstr &MI) {
313   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
314 
315   const int StartIdx = Regs.size();
316   const int NumResults = MI.getNumOperands() - 1;
317   Regs.resize(Regs.size() + NumResults);
318   for (int I = 0; I != NumResults; ++I)
319     Regs[StartIdx + I] = MI.getOperand(I).getReg();
320 }
321 
322 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
323                                      LLT GCDTy, Register SrcReg) {
324   LLT SrcTy = MRI.getType(SrcReg);
325   if (SrcTy == GCDTy) {
326     // If the source already evenly divides the result type, we don't need to do
327     // anything.
328     Parts.push_back(SrcReg);
329   } else {
330     // Need to split into common type sized pieces.
331     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
332     getUnmergeResults(Parts, *Unmerge);
333   }
334 }
335 
336 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
337                                     LLT NarrowTy, Register SrcReg) {
338   LLT SrcTy = MRI.getType(SrcReg);
339   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
340   extractGCDType(Parts, GCDTy, SrcReg);
341   return GCDTy;
342 }
343 
344 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
345                                          SmallVectorImpl<Register> &VRegs,
346                                          unsigned PadStrategy) {
347   LLT LCMTy = getLCMType(DstTy, NarrowTy);
348 
349   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
350   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
351   int NumOrigSrc = VRegs.size();
352 
353   Register PadReg;
354 
355   // Get a value we can use to pad the source value if the sources won't evenly
356   // cover the result type.
357   if (NumOrigSrc < NumParts * NumSubParts) {
358     if (PadStrategy == TargetOpcode::G_ZEXT)
359       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
360     else if (PadStrategy == TargetOpcode::G_ANYEXT)
361       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
362     else {
363       assert(PadStrategy == TargetOpcode::G_SEXT);
364 
365       // Shift the sign bit of the low register through the high register.
366       auto ShiftAmt =
367         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
368       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
369     }
370   }
371 
372   // Registers for the final merge to be produced.
373   SmallVector<Register, 4> Remerge(NumParts);
374 
375   // Registers needed for intermediate merges, which will be merged into a
376   // source for Remerge.
377   SmallVector<Register, 4> SubMerge(NumSubParts);
378 
379   // Once we've fully read off the end of the original source bits, we can reuse
380   // the same high bits for remaining padding elements.
381   Register AllPadReg;
382 
383   // Build merges to the LCM type to cover the original result type.
384   for (int I = 0; I != NumParts; ++I) {
385     bool AllMergePartsArePadding = true;
386 
387     // Build the requested merges to the requested type.
388     for (int J = 0; J != NumSubParts; ++J) {
389       int Idx = I * NumSubParts + J;
390       if (Idx >= NumOrigSrc) {
391         SubMerge[J] = PadReg;
392         continue;
393       }
394 
395       SubMerge[J] = VRegs[Idx];
396 
397       // There are meaningful bits here we can't reuse later.
398       AllMergePartsArePadding = false;
399     }
400 
401     // If we've filled up a complete piece with padding bits, we can directly
402     // emit the natural sized constant if applicable, rather than a merge of
403     // smaller constants.
404     if (AllMergePartsArePadding && !AllPadReg) {
405       if (PadStrategy == TargetOpcode::G_ANYEXT)
406         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
407       else if (PadStrategy == TargetOpcode::G_ZEXT)
408         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
409 
410       // If this is a sign extension, we can't materialize a trivial constant
411       // with the right type and have to produce a merge.
412     }
413 
414     if (AllPadReg) {
415       // Avoid creating additional instructions if we're just adding additional
416       // copies of padding bits.
417       Remerge[I] = AllPadReg;
418       continue;
419     }
420 
421     if (NumSubParts == 1)
422       Remerge[I] = SubMerge[0];
423     else
424       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
425 
426     // In the sign extend padding case, re-use the first all-signbit merge.
427     if (AllMergePartsArePadding && !AllPadReg)
428       AllPadReg = Remerge[I];
429   }
430 
431   VRegs = std::move(Remerge);
432   return LCMTy;
433 }
434 
435 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
436                                                ArrayRef<Register> RemergeRegs) {
437   LLT DstTy = MRI.getType(DstReg);
438 
439   // Create the merge to the widened source, and extract the relevant bits into
440   // the result.
441 
442   if (DstTy == LCMTy) {
443     MIRBuilder.buildMerge(DstReg, RemergeRegs);
444     return;
445   }
446 
447   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
448   if (DstTy.isScalar() && LCMTy.isScalar()) {
449     MIRBuilder.buildTrunc(DstReg, Remerge);
450     return;
451   }
452 
453   if (LCMTy.isVector()) {
454     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
455     SmallVector<Register, 8> UnmergeDefs(NumDefs);
456     UnmergeDefs[0] = DstReg;
457     for (unsigned I = 1; I != NumDefs; ++I)
458       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
459 
460     MIRBuilder.buildUnmerge(UnmergeDefs,
461                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
462     return;
463   }
464 
465   llvm_unreachable("unhandled case");
466 }
467 
468 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
469 #define RTLIBCASE_INT(LibcallPrefix)                                           \
470   do {                                                                         \
471     switch (Size) {                                                            \
472     case 32:                                                                   \
473       return RTLIB::LibcallPrefix##32;                                         \
474     case 64:                                                                   \
475       return RTLIB::LibcallPrefix##64;                                         \
476     case 128:                                                                  \
477       return RTLIB::LibcallPrefix##128;                                        \
478     default:                                                                   \
479       llvm_unreachable("unexpected size");                                     \
480     }                                                                          \
481   } while (0)
482 
483 #define RTLIBCASE(LibcallPrefix)                                               \
484   do {                                                                         \
485     switch (Size) {                                                            \
486     case 32:                                                                   \
487       return RTLIB::LibcallPrefix##32;                                         \
488     case 64:                                                                   \
489       return RTLIB::LibcallPrefix##64;                                         \
490     case 80:                                                                   \
491       return RTLIB::LibcallPrefix##80;                                         \
492     case 128:                                                                  \
493       return RTLIB::LibcallPrefix##128;                                        \
494     default:                                                                   \
495       llvm_unreachable("unexpected size");                                     \
496     }                                                                          \
497   } while (0)
498 
499   switch (Opcode) {
500   case TargetOpcode::G_SDIV:
501     RTLIBCASE_INT(SDIV_I);
502   case TargetOpcode::G_UDIV:
503     RTLIBCASE_INT(UDIV_I);
504   case TargetOpcode::G_SREM:
505     RTLIBCASE_INT(SREM_I);
506   case TargetOpcode::G_UREM:
507     RTLIBCASE_INT(UREM_I);
508   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
509     RTLIBCASE_INT(CTLZ_I);
510   case TargetOpcode::G_FADD:
511     RTLIBCASE(ADD_F);
512   case TargetOpcode::G_FSUB:
513     RTLIBCASE(SUB_F);
514   case TargetOpcode::G_FMUL:
515     RTLIBCASE(MUL_F);
516   case TargetOpcode::G_FDIV:
517     RTLIBCASE(DIV_F);
518   case TargetOpcode::G_FEXP:
519     RTLIBCASE(EXP_F);
520   case TargetOpcode::G_FEXP2:
521     RTLIBCASE(EXP2_F);
522   case TargetOpcode::G_FREM:
523     RTLIBCASE(REM_F);
524   case TargetOpcode::G_FPOW:
525     RTLIBCASE(POW_F);
526   case TargetOpcode::G_FMA:
527     RTLIBCASE(FMA_F);
528   case TargetOpcode::G_FSIN:
529     RTLIBCASE(SIN_F);
530   case TargetOpcode::G_FCOS:
531     RTLIBCASE(COS_F);
532   case TargetOpcode::G_FLOG10:
533     RTLIBCASE(LOG10_F);
534   case TargetOpcode::G_FLOG:
535     RTLIBCASE(LOG_F);
536   case TargetOpcode::G_FLOG2:
537     RTLIBCASE(LOG2_F);
538   case TargetOpcode::G_FCEIL:
539     RTLIBCASE(CEIL_F);
540   case TargetOpcode::G_FFLOOR:
541     RTLIBCASE(FLOOR_F);
542   case TargetOpcode::G_FMINNUM:
543     RTLIBCASE(FMIN_F);
544   case TargetOpcode::G_FMAXNUM:
545     RTLIBCASE(FMAX_F);
546   case TargetOpcode::G_FSQRT:
547     RTLIBCASE(SQRT_F);
548   case TargetOpcode::G_FRINT:
549     RTLIBCASE(RINT_F);
550   case TargetOpcode::G_FNEARBYINT:
551     RTLIBCASE(NEARBYINT_F);
552   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
553     RTLIBCASE(ROUNDEVEN_F);
554   }
555   llvm_unreachable("Unknown libcall function");
556 }
557 
558 /// True if an instruction is in tail position in its caller. Intended for
559 /// legalizing libcalls as tail calls when possible.
560 static bool isLibCallInTailPosition(MachineInstr &MI,
561                                     const TargetInstrInfo &TII,
562                                     MachineRegisterInfo &MRI) {
563   MachineBasicBlock &MBB = *MI.getParent();
564   const Function &F = MBB.getParent()->getFunction();
565 
566   // Conservatively require the attributes of the call to match those of
567   // the return. Ignore NoAlias and NonNull because they don't affect the
568   // call sequence.
569   AttributeList CallerAttrs = F.getAttributes();
570   if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
571           .removeAttribute(Attribute::NoAlias)
572           .removeAttribute(Attribute::NonNull)
573           .hasAttributes())
574     return false;
575 
576   // It's not safe to eliminate the sign / zero extension of the return value.
577   if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
578       CallerAttrs.hasRetAttr(Attribute::SExt))
579     return false;
580 
581   // Only tail call if the following instruction is a standard return or if we
582   // have a `thisreturn` callee, and a sequence like:
583   //
584   //   G_MEMCPY %0, %1, %2
585   //   $x0 = COPY %0
586   //   RET_ReallyLR implicit $x0
587   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
588   if (Next != MBB.instr_end() && Next->isCopy()) {
589     switch (MI.getOpcode()) {
590     default:
591       llvm_unreachable("unsupported opcode");
592     case TargetOpcode::G_BZERO:
593       return false;
594     case TargetOpcode::G_MEMCPY:
595     case TargetOpcode::G_MEMMOVE:
596     case TargetOpcode::G_MEMSET:
597       break;
598     }
599 
600     Register VReg = MI.getOperand(0).getReg();
601     if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
602       return false;
603 
604     Register PReg = Next->getOperand(0).getReg();
605     if (!PReg.isPhysical())
606       return false;
607 
608     auto Ret = next_nodbg(Next, MBB.instr_end());
609     if (Ret == MBB.instr_end() || !Ret->isReturn())
610       return false;
611 
612     if (Ret->getNumImplicitOperands() != 1)
613       return false;
614 
615     if (PReg != Ret->getOperand(0).getReg())
616       return false;
617 
618     // Skip over the COPY that we just validated.
619     Next = Ret;
620   }
621 
622   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
623     return false;
624 
625   return true;
626 }
627 
628 LegalizerHelper::LegalizeResult
629 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
630                     const CallLowering::ArgInfo &Result,
631                     ArrayRef<CallLowering::ArgInfo> Args,
632                     const CallingConv::ID CC) {
633   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
634 
635   CallLowering::CallLoweringInfo Info;
636   Info.CallConv = CC;
637   Info.Callee = MachineOperand::CreateES(Name);
638   Info.OrigRet = Result;
639   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
640   if (!CLI.lowerCall(MIRBuilder, Info))
641     return LegalizerHelper::UnableToLegalize;
642 
643   return LegalizerHelper::Legalized;
644 }
645 
646 LegalizerHelper::LegalizeResult
647 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
648                     const CallLowering::ArgInfo &Result,
649                     ArrayRef<CallLowering::ArgInfo> Args) {
650   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
651   const char *Name = TLI.getLibcallName(Libcall);
652   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
653   return createLibcall(MIRBuilder, Name, Result, Args, CC);
654 }
655 
656 // Useful for libcalls where all operands have the same type.
657 static LegalizerHelper::LegalizeResult
658 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
659               Type *OpType) {
660   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
661 
662   // FIXME: What does the original arg index mean here?
663   SmallVector<CallLowering::ArgInfo, 3> Args;
664   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
665     Args.push_back({MO.getReg(), OpType, 0});
666   return createLibcall(MIRBuilder, Libcall,
667                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
668 }
669 
670 LegalizerHelper::LegalizeResult
671 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
672                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
673   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
674 
675   SmallVector<CallLowering::ArgInfo, 3> Args;
676   // Add all the args, except for the last which is an imm denoting 'tail'.
677   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
678     Register Reg = MI.getOperand(i).getReg();
679 
680     // Need derive an IR type for call lowering.
681     LLT OpLLT = MRI.getType(Reg);
682     Type *OpTy = nullptr;
683     if (OpLLT.isPointer())
684       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
685     else
686       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
687     Args.push_back({Reg, OpTy, 0});
688   }
689 
690   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
691   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
692   RTLIB::Libcall RTLibcall;
693   unsigned Opc = MI.getOpcode();
694   switch (Opc) {
695   case TargetOpcode::G_BZERO:
696     RTLibcall = RTLIB::BZERO;
697     break;
698   case TargetOpcode::G_MEMCPY:
699     RTLibcall = RTLIB::MEMCPY;
700     Args[0].Flags[0].setReturned();
701     break;
702   case TargetOpcode::G_MEMMOVE:
703     RTLibcall = RTLIB::MEMMOVE;
704     Args[0].Flags[0].setReturned();
705     break;
706   case TargetOpcode::G_MEMSET:
707     RTLibcall = RTLIB::MEMSET;
708     Args[0].Flags[0].setReturned();
709     break;
710   default:
711     llvm_unreachable("unsupported opcode");
712   }
713   const char *Name = TLI.getLibcallName(RTLibcall);
714 
715   // Unsupported libcall on the target.
716   if (!Name) {
717     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
718                       << MIRBuilder.getTII().getName(Opc) << "\n");
719     return LegalizerHelper::UnableToLegalize;
720   }
721 
722   CallLowering::CallLoweringInfo Info;
723   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
724   Info.Callee = MachineOperand::CreateES(Name);
725   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
726   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
727                     isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
728 
729   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
730   if (!CLI.lowerCall(MIRBuilder, Info))
731     return LegalizerHelper::UnableToLegalize;
732 
733   if (Info.LoweredTailCall) {
734     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
735 
736     // Check debug locations before removing the return.
737     LocObserver.checkpoint(true);
738 
739     // We must have a return following the call (or debug insts) to get past
740     // isLibCallInTailPosition.
741     do {
742       MachineInstr *Next = MI.getNextNode();
743       assert(Next &&
744              (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&
745              "Expected instr following MI to be return or debug inst?");
746       // We lowered a tail call, so the call is now the return from the block.
747       // Delete the old return.
748       Next->eraseFromParent();
749     } while (MI.getNextNode());
750 
751     // We expect to lose the debug location from the return.
752     LocObserver.checkpoint(false);
753   }
754 
755   return LegalizerHelper::Legalized;
756 }
757 
758 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
759                                        Type *FromType) {
760   auto ToMVT = MVT::getVT(ToType);
761   auto FromMVT = MVT::getVT(FromType);
762 
763   switch (Opcode) {
764   case TargetOpcode::G_FPEXT:
765     return RTLIB::getFPEXT(FromMVT, ToMVT);
766   case TargetOpcode::G_FPTRUNC:
767     return RTLIB::getFPROUND(FromMVT, ToMVT);
768   case TargetOpcode::G_FPTOSI:
769     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
770   case TargetOpcode::G_FPTOUI:
771     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
772   case TargetOpcode::G_SITOFP:
773     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
774   case TargetOpcode::G_UITOFP:
775     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
776   }
777   llvm_unreachable("Unsupported libcall function");
778 }
779 
780 static LegalizerHelper::LegalizeResult
781 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
782                   Type *FromType) {
783   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
784   return createLibcall(MIRBuilder, Libcall,
785                        {MI.getOperand(0).getReg(), ToType, 0},
786                        {{MI.getOperand(1).getReg(), FromType, 0}});
787 }
788 
789 LegalizerHelper::LegalizeResult
790 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
791   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
792   unsigned Size = LLTy.getSizeInBits();
793   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
794 
795   switch (MI.getOpcode()) {
796   default:
797     return UnableToLegalize;
798   case TargetOpcode::G_SDIV:
799   case TargetOpcode::G_UDIV:
800   case TargetOpcode::G_SREM:
801   case TargetOpcode::G_UREM:
802   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
803     Type *HLTy = IntegerType::get(Ctx, Size);
804     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
805     if (Status != Legalized)
806       return Status;
807     break;
808   }
809   case TargetOpcode::G_FADD:
810   case TargetOpcode::G_FSUB:
811   case TargetOpcode::G_FMUL:
812   case TargetOpcode::G_FDIV:
813   case TargetOpcode::G_FMA:
814   case TargetOpcode::G_FPOW:
815   case TargetOpcode::G_FREM:
816   case TargetOpcode::G_FCOS:
817   case TargetOpcode::G_FSIN:
818   case TargetOpcode::G_FLOG10:
819   case TargetOpcode::G_FLOG:
820   case TargetOpcode::G_FLOG2:
821   case TargetOpcode::G_FEXP:
822   case TargetOpcode::G_FEXP2:
823   case TargetOpcode::G_FCEIL:
824   case TargetOpcode::G_FFLOOR:
825   case TargetOpcode::G_FMINNUM:
826   case TargetOpcode::G_FMAXNUM:
827   case TargetOpcode::G_FSQRT:
828   case TargetOpcode::G_FRINT:
829   case TargetOpcode::G_FNEARBYINT:
830   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
831     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
832     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
833       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
834       return UnableToLegalize;
835     }
836     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
837     if (Status != Legalized)
838       return Status;
839     break;
840   }
841   case TargetOpcode::G_FPEXT:
842   case TargetOpcode::G_FPTRUNC: {
843     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
844     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
845     if (!FromTy || !ToTy)
846       return UnableToLegalize;
847     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
848     if (Status != Legalized)
849       return Status;
850     break;
851   }
852   case TargetOpcode::G_FPTOSI:
853   case TargetOpcode::G_FPTOUI: {
854     // FIXME: Support other types
855     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
856     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
857     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
858       return UnableToLegalize;
859     LegalizeResult Status = conversionLibcall(
860         MI, MIRBuilder,
861         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
862         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
863     if (Status != Legalized)
864       return Status;
865     break;
866   }
867   case TargetOpcode::G_SITOFP:
868   case TargetOpcode::G_UITOFP: {
869     // FIXME: Support other types
870     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
871     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
872     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
873       return UnableToLegalize;
874     LegalizeResult Status = conversionLibcall(
875         MI, MIRBuilder,
876         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
877         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
878     if (Status != Legalized)
879       return Status;
880     break;
881   }
882   case TargetOpcode::G_BZERO:
883   case TargetOpcode::G_MEMCPY:
884   case TargetOpcode::G_MEMMOVE:
885   case TargetOpcode::G_MEMSET: {
886     LegalizeResult Result =
887         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
888     if (Result != Legalized)
889       return Result;
890     MI.eraseFromParent();
891     return Result;
892   }
893   }
894 
895   MI.eraseFromParent();
896   return Legalized;
897 }
898 
899 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
900                                                               unsigned TypeIdx,
901                                                               LLT NarrowTy) {
902   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
903   uint64_t NarrowSize = NarrowTy.getSizeInBits();
904 
905   switch (MI.getOpcode()) {
906   default:
907     return UnableToLegalize;
908   case TargetOpcode::G_IMPLICIT_DEF: {
909     Register DstReg = MI.getOperand(0).getReg();
910     LLT DstTy = MRI.getType(DstReg);
911 
912     // If SizeOp0 is not an exact multiple of NarrowSize, emit
913     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
914     // FIXME: Although this would also be legal for the general case, it causes
915     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
916     //  combines not being hit). This seems to be a problem related to the
917     //  artifact combiner.
918     if (SizeOp0 % NarrowSize != 0) {
919       LLT ImplicitTy = NarrowTy;
920       if (DstTy.isVector())
921         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
922 
923       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
924       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
925 
926       MI.eraseFromParent();
927       return Legalized;
928     }
929 
930     int NumParts = SizeOp0 / NarrowSize;
931 
932     SmallVector<Register, 2> DstRegs;
933     for (int i = 0; i < NumParts; ++i)
934       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
935 
936     if (DstTy.isVector())
937       MIRBuilder.buildBuildVector(DstReg, DstRegs);
938     else
939       MIRBuilder.buildMerge(DstReg, DstRegs);
940     MI.eraseFromParent();
941     return Legalized;
942   }
943   case TargetOpcode::G_CONSTANT: {
944     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
945     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
946     unsigned TotalSize = Ty.getSizeInBits();
947     unsigned NarrowSize = NarrowTy.getSizeInBits();
948     int NumParts = TotalSize / NarrowSize;
949 
950     SmallVector<Register, 4> PartRegs;
951     for (int I = 0; I != NumParts; ++I) {
952       unsigned Offset = I * NarrowSize;
953       auto K = MIRBuilder.buildConstant(NarrowTy,
954                                         Val.lshr(Offset).trunc(NarrowSize));
955       PartRegs.push_back(K.getReg(0));
956     }
957 
958     LLT LeftoverTy;
959     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
960     SmallVector<Register, 1> LeftoverRegs;
961     if (LeftoverBits != 0) {
962       LeftoverTy = LLT::scalar(LeftoverBits);
963       auto K = MIRBuilder.buildConstant(
964         LeftoverTy,
965         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
966       LeftoverRegs.push_back(K.getReg(0));
967     }
968 
969     insertParts(MI.getOperand(0).getReg(),
970                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
971 
972     MI.eraseFromParent();
973     return Legalized;
974   }
975   case TargetOpcode::G_SEXT:
976   case TargetOpcode::G_ZEXT:
977   case TargetOpcode::G_ANYEXT:
978     return narrowScalarExt(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_TRUNC: {
980     if (TypeIdx != 1)
981       return UnableToLegalize;
982 
983     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
984     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
985       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
986       return UnableToLegalize;
987     }
988 
989     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
990     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
991     MI.eraseFromParent();
992     return Legalized;
993   }
994 
995   case TargetOpcode::G_FREEZE: {
996     if (TypeIdx != 0)
997       return UnableToLegalize;
998 
999     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1000     // Should widen scalar first
1001     if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
1002       return UnableToLegalize;
1003 
1004     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1005     SmallVector<Register, 8> Parts;
1006     for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1007       Parts.push_back(
1008           MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1009     }
1010 
1011     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts);
1012     MI.eraseFromParent();
1013     return Legalized;
1014   }
1015   case TargetOpcode::G_ADD:
1016   case TargetOpcode::G_SUB:
1017   case TargetOpcode::G_SADDO:
1018   case TargetOpcode::G_SSUBO:
1019   case TargetOpcode::G_SADDE:
1020   case TargetOpcode::G_SSUBE:
1021   case TargetOpcode::G_UADDO:
1022   case TargetOpcode::G_USUBO:
1023   case TargetOpcode::G_UADDE:
1024   case TargetOpcode::G_USUBE:
1025     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_MUL:
1027   case TargetOpcode::G_UMULH:
1028     return narrowScalarMul(MI, NarrowTy);
1029   case TargetOpcode::G_EXTRACT:
1030     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1031   case TargetOpcode::G_INSERT:
1032     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1033   case TargetOpcode::G_LOAD: {
1034     auto &LoadMI = cast<GLoad>(MI);
1035     Register DstReg = LoadMI.getDstReg();
1036     LLT DstTy = MRI.getType(DstReg);
1037     if (DstTy.isVector())
1038       return UnableToLegalize;
1039 
1040     if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1041       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1042       MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1043       MIRBuilder.buildAnyExt(DstReg, TmpReg);
1044       LoadMI.eraseFromParent();
1045       return Legalized;
1046     }
1047 
1048     return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1049   }
1050   case TargetOpcode::G_ZEXTLOAD:
1051   case TargetOpcode::G_SEXTLOAD: {
1052     auto &LoadMI = cast<GExtLoad>(MI);
1053     Register DstReg = LoadMI.getDstReg();
1054     Register PtrReg = LoadMI.getPointerReg();
1055 
1056     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1057     auto &MMO = LoadMI.getMMO();
1058     unsigned MemSize = MMO.getSizeInBits();
1059 
1060     if (MemSize == NarrowSize) {
1061       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1062     } else if (MemSize < NarrowSize) {
1063       MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1064     } else if (MemSize > NarrowSize) {
1065       // FIXME: Need to split the load.
1066       return UnableToLegalize;
1067     }
1068 
1069     if (isa<GZExtLoad>(LoadMI))
1070       MIRBuilder.buildZExt(DstReg, TmpReg);
1071     else
1072       MIRBuilder.buildSExt(DstReg, TmpReg);
1073 
1074     LoadMI.eraseFromParent();
1075     return Legalized;
1076   }
1077   case TargetOpcode::G_STORE: {
1078     auto &StoreMI = cast<GStore>(MI);
1079 
1080     Register SrcReg = StoreMI.getValueReg();
1081     LLT SrcTy = MRI.getType(SrcReg);
1082     if (SrcTy.isVector())
1083       return UnableToLegalize;
1084 
1085     int NumParts = SizeOp0 / NarrowSize;
1086     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1087     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1088     if (SrcTy.isVector() && LeftoverBits != 0)
1089       return UnableToLegalize;
1090 
1091     if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1092       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1093       MIRBuilder.buildTrunc(TmpReg, SrcReg);
1094       MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1095       StoreMI.eraseFromParent();
1096       return Legalized;
1097     }
1098 
1099     return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1100   }
1101   case TargetOpcode::G_SELECT:
1102     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1103   case TargetOpcode::G_AND:
1104   case TargetOpcode::G_OR:
1105   case TargetOpcode::G_XOR: {
1106     // Legalize bitwise operation:
1107     // A = BinOp<Ty> B, C
1108     // into:
1109     // B1, ..., BN = G_UNMERGE_VALUES B
1110     // C1, ..., CN = G_UNMERGE_VALUES C
1111     // A1 = BinOp<Ty/N> B1, C2
1112     // ...
1113     // AN = BinOp<Ty/N> BN, CN
1114     // A = G_MERGE_VALUES A1, ..., AN
1115     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1116   }
1117   case TargetOpcode::G_SHL:
1118   case TargetOpcode::G_LSHR:
1119   case TargetOpcode::G_ASHR:
1120     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1121   case TargetOpcode::G_CTLZ:
1122   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1123   case TargetOpcode::G_CTTZ:
1124   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1125   case TargetOpcode::G_CTPOP:
1126     if (TypeIdx == 1)
1127       switch (MI.getOpcode()) {
1128       case TargetOpcode::G_CTLZ:
1129       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1130         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1131       case TargetOpcode::G_CTTZ:
1132       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1133         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1134       case TargetOpcode::G_CTPOP:
1135         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1136       default:
1137         return UnableToLegalize;
1138       }
1139 
1140     Observer.changingInstr(MI);
1141     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1142     Observer.changedInstr(MI);
1143     return Legalized;
1144   case TargetOpcode::G_INTTOPTR:
1145     if (TypeIdx != 1)
1146       return UnableToLegalize;
1147 
1148     Observer.changingInstr(MI);
1149     narrowScalarSrc(MI, NarrowTy, 1);
1150     Observer.changedInstr(MI);
1151     return Legalized;
1152   case TargetOpcode::G_PTRTOINT:
1153     if (TypeIdx != 0)
1154       return UnableToLegalize;
1155 
1156     Observer.changingInstr(MI);
1157     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1158     Observer.changedInstr(MI);
1159     return Legalized;
1160   case TargetOpcode::G_PHI: {
1161     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1162     // NarrowSize.
1163     if (SizeOp0 % NarrowSize != 0)
1164       return UnableToLegalize;
1165 
1166     unsigned NumParts = SizeOp0 / NarrowSize;
1167     SmallVector<Register, 2> DstRegs(NumParts);
1168     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1169     Observer.changingInstr(MI);
1170     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1171       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1172       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1173       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1174                    SrcRegs[i / 2]);
1175     }
1176     MachineBasicBlock &MBB = *MI.getParent();
1177     MIRBuilder.setInsertPt(MBB, MI);
1178     for (unsigned i = 0; i < NumParts; ++i) {
1179       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1180       MachineInstrBuilder MIB =
1181           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1182       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1183         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1184     }
1185     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1186     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1187     Observer.changedInstr(MI);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1192   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1193     if (TypeIdx != 2)
1194       return UnableToLegalize;
1195 
1196     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1197     Observer.changingInstr(MI);
1198     narrowScalarSrc(MI, NarrowTy, OpIdx);
1199     Observer.changedInstr(MI);
1200     return Legalized;
1201   }
1202   case TargetOpcode::G_ICMP: {
1203     Register LHS = MI.getOperand(2).getReg();
1204     LLT SrcTy = MRI.getType(LHS);
1205     uint64_t SrcSize = SrcTy.getSizeInBits();
1206     CmpInst::Predicate Pred =
1207         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1208 
1209     // TODO: Handle the non-equality case for weird sizes.
1210     if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1211       return UnableToLegalize;
1212 
1213     LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1214     SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1215     if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1216                       LHSLeftoverRegs))
1217       return UnableToLegalize;
1218 
1219     LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1220     SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1221     if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1222                       RHSPartRegs, RHSLeftoverRegs))
1223       return UnableToLegalize;
1224 
1225     // We now have the LHS and RHS of the compare split into narrow-type
1226     // registers, plus potentially some leftover type.
1227     Register Dst = MI.getOperand(0).getReg();
1228     LLT ResTy = MRI.getType(Dst);
1229     if (ICmpInst::isEquality(Pred)) {
1230       // For each part on the LHS and RHS, keep track of the result of XOR-ing
1231       // them together. For each equal part, the result should be all 0s. For
1232       // each non-equal part, we'll get at least one 1.
1233       auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1234       SmallVector<Register, 4> Xors;
1235       for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1236         auto LHS = std::get<0>(LHSAndRHS);
1237         auto RHS = std::get<1>(LHSAndRHS);
1238         auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1239         Xors.push_back(Xor);
1240       }
1241 
1242       // Build a G_XOR for each leftover register. Each G_XOR must be widened
1243       // to the desired narrow type so that we can OR them together later.
1244       SmallVector<Register, 4> WidenedXors;
1245       for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1246         auto LHS = std::get<0>(LHSAndRHS);
1247         auto RHS = std::get<1>(LHSAndRHS);
1248         auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1249         LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1250         buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1251                             /* PadStrategy = */ TargetOpcode::G_ZEXT);
1252         Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1253       }
1254 
1255       // Now, for each part we broke up, we know if they are equal/not equal
1256       // based off the G_XOR. We can OR these all together and compare against
1257       // 0 to get the result.
1258       assert(Xors.size() >= 2 && "Should have gotten at least two Xors?");
1259       auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1260       for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1261         Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1262       MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1263     } else {
1264       // TODO: Handle non-power-of-two types.
1265       assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?");
1266       assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?");
1267       Register LHSL = LHSPartRegs[0];
1268       Register LHSH = LHSPartRegs[1];
1269       Register RHSL = RHSPartRegs[0];
1270       Register RHSH = RHSPartRegs[1];
1271       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1272       MachineInstrBuilder CmpHEQ =
1273           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1274       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1275           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1276       MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1277     }
1278     MI.eraseFromParent();
1279     return Legalized;
1280   }
1281   case TargetOpcode::G_SEXT_INREG: {
1282     if (TypeIdx != 0)
1283       return UnableToLegalize;
1284 
1285     int64_t SizeInBits = MI.getOperand(2).getImm();
1286 
1287     // So long as the new type has more bits than the bits we're extending we
1288     // don't need to break it apart.
1289     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1290       Observer.changingInstr(MI);
1291       // We don't lose any non-extension bits by truncating the src and
1292       // sign-extending the dst.
1293       MachineOperand &MO1 = MI.getOperand(1);
1294       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1295       MO1.setReg(TruncMIB.getReg(0));
1296 
1297       MachineOperand &MO2 = MI.getOperand(0);
1298       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1299       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1300       MIRBuilder.buildSExt(MO2, DstExt);
1301       MO2.setReg(DstExt);
1302       Observer.changedInstr(MI);
1303       return Legalized;
1304     }
1305 
1306     // Break it apart. Components below the extension point are unmodified. The
1307     // component containing the extension point becomes a narrower SEXT_INREG.
1308     // Components above it are ashr'd from the component containing the
1309     // extension point.
1310     if (SizeOp0 % NarrowSize != 0)
1311       return UnableToLegalize;
1312     int NumParts = SizeOp0 / NarrowSize;
1313 
1314     // List the registers where the destination will be scattered.
1315     SmallVector<Register, 2> DstRegs;
1316     // List the registers where the source will be split.
1317     SmallVector<Register, 2> SrcRegs;
1318 
1319     // Create all the temporary registers.
1320     for (int i = 0; i < NumParts; ++i) {
1321       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1322 
1323       SrcRegs.push_back(SrcReg);
1324     }
1325 
1326     // Explode the big arguments into smaller chunks.
1327     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1328 
1329     Register AshrCstReg =
1330         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1331             .getReg(0);
1332     Register FullExtensionReg = 0;
1333     Register PartialExtensionReg = 0;
1334 
1335     // Do the operation on each small part.
1336     for (int i = 0; i < NumParts; ++i) {
1337       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1338         DstRegs.push_back(SrcRegs[i]);
1339       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1340         assert(PartialExtensionReg &&
1341                "Expected to visit partial extension before full");
1342         if (FullExtensionReg) {
1343           DstRegs.push_back(FullExtensionReg);
1344           continue;
1345         }
1346         DstRegs.push_back(
1347             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1348                 .getReg(0));
1349         FullExtensionReg = DstRegs.back();
1350       } else {
1351         DstRegs.push_back(
1352             MIRBuilder
1353                 .buildInstr(
1354                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1355                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1356                 .getReg(0));
1357         PartialExtensionReg = DstRegs.back();
1358       }
1359     }
1360 
1361     // Gather the destination registers into the final destination.
1362     Register DstReg = MI.getOperand(0).getReg();
1363     MIRBuilder.buildMerge(DstReg, DstRegs);
1364     MI.eraseFromParent();
1365     return Legalized;
1366   }
1367   case TargetOpcode::G_BSWAP:
1368   case TargetOpcode::G_BITREVERSE: {
1369     if (SizeOp0 % NarrowSize != 0)
1370       return UnableToLegalize;
1371 
1372     Observer.changingInstr(MI);
1373     SmallVector<Register, 2> SrcRegs, DstRegs;
1374     unsigned NumParts = SizeOp0 / NarrowSize;
1375     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1376 
1377     for (unsigned i = 0; i < NumParts; ++i) {
1378       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1379                                            {SrcRegs[NumParts - 1 - i]});
1380       DstRegs.push_back(DstPart.getReg(0));
1381     }
1382 
1383     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1384 
1385     Observer.changedInstr(MI);
1386     MI.eraseFromParent();
1387     return Legalized;
1388   }
1389   case TargetOpcode::G_PTR_ADD:
1390   case TargetOpcode::G_PTRMASK: {
1391     if (TypeIdx != 1)
1392       return UnableToLegalize;
1393     Observer.changingInstr(MI);
1394     narrowScalarSrc(MI, NarrowTy, 2);
1395     Observer.changedInstr(MI);
1396     return Legalized;
1397   }
1398   case TargetOpcode::G_FPTOUI:
1399   case TargetOpcode::G_FPTOSI:
1400     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1401   case TargetOpcode::G_FPEXT:
1402     if (TypeIdx != 0)
1403       return UnableToLegalize;
1404     Observer.changingInstr(MI);
1405     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1406     Observer.changedInstr(MI);
1407     return Legalized;
1408   }
1409 }
1410 
1411 Register LegalizerHelper::coerceToScalar(Register Val) {
1412   LLT Ty = MRI.getType(Val);
1413   if (Ty.isScalar())
1414     return Val;
1415 
1416   const DataLayout &DL = MIRBuilder.getDataLayout();
1417   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1418   if (Ty.isPointer()) {
1419     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1420       return Register();
1421     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1422   }
1423 
1424   Register NewVal = Val;
1425 
1426   assert(Ty.isVector());
1427   LLT EltTy = Ty.getElementType();
1428   if (EltTy.isPointer())
1429     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1430   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1431 }
1432 
1433 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1434                                      unsigned OpIdx, unsigned ExtOpcode) {
1435   MachineOperand &MO = MI.getOperand(OpIdx);
1436   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1437   MO.setReg(ExtB.getReg(0));
1438 }
1439 
1440 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1441                                       unsigned OpIdx) {
1442   MachineOperand &MO = MI.getOperand(OpIdx);
1443   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1444   MO.setReg(ExtB.getReg(0));
1445 }
1446 
1447 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1448                                      unsigned OpIdx, unsigned TruncOpcode) {
1449   MachineOperand &MO = MI.getOperand(OpIdx);
1450   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1451   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1452   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1453   MO.setReg(DstExt);
1454 }
1455 
1456 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1457                                       unsigned OpIdx, unsigned ExtOpcode) {
1458   MachineOperand &MO = MI.getOperand(OpIdx);
1459   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1460   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1461   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1462   MO.setReg(DstTrunc);
1463 }
1464 
1465 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1466                                             unsigned OpIdx) {
1467   MachineOperand &MO = MI.getOperand(OpIdx);
1468   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1469   Register Dst = MO.getReg();
1470   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1471   MO.setReg(DstExt);
1472   MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1473 }
1474 
1475 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1476                                             unsigned OpIdx) {
1477   MachineOperand &MO = MI.getOperand(OpIdx);
1478   SmallVector<Register, 8> Regs;
1479   MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1480 }
1481 
1482 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1483   MachineOperand &Op = MI.getOperand(OpIdx);
1484   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1485 }
1486 
1487 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1488   MachineOperand &MO = MI.getOperand(OpIdx);
1489   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1490   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1491   MIRBuilder.buildBitcast(MO, CastDst);
1492   MO.setReg(CastDst);
1493 }
1494 
1495 LegalizerHelper::LegalizeResult
1496 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1497                                         LLT WideTy) {
1498   if (TypeIdx != 1)
1499     return UnableToLegalize;
1500 
1501   Register DstReg = MI.getOperand(0).getReg();
1502   LLT DstTy = MRI.getType(DstReg);
1503   if (DstTy.isVector())
1504     return UnableToLegalize;
1505 
1506   Register Src1 = MI.getOperand(1).getReg();
1507   LLT SrcTy = MRI.getType(Src1);
1508   const int DstSize = DstTy.getSizeInBits();
1509   const int SrcSize = SrcTy.getSizeInBits();
1510   const int WideSize = WideTy.getSizeInBits();
1511   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1512 
1513   unsigned NumOps = MI.getNumOperands();
1514   unsigned NumSrc = MI.getNumOperands() - 1;
1515   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1516 
1517   if (WideSize >= DstSize) {
1518     // Directly pack the bits in the target type.
1519     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1520 
1521     for (unsigned I = 2; I != NumOps; ++I) {
1522       const unsigned Offset = (I - 1) * PartSize;
1523 
1524       Register SrcReg = MI.getOperand(I).getReg();
1525       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1526 
1527       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1528 
1529       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1530         MRI.createGenericVirtualRegister(WideTy);
1531 
1532       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1533       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1534       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1535       ResultReg = NextResult;
1536     }
1537 
1538     if (WideSize > DstSize)
1539       MIRBuilder.buildTrunc(DstReg, ResultReg);
1540     else if (DstTy.isPointer())
1541       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1542 
1543     MI.eraseFromParent();
1544     return Legalized;
1545   }
1546 
1547   // Unmerge the original values to the GCD type, and recombine to the next
1548   // multiple greater than the original type.
1549   //
1550   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1551   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1552   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1553   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1554   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1555   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1556   // %12:_(s12) = G_MERGE_VALUES %10, %11
1557   //
1558   // Padding with undef if necessary:
1559   //
1560   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1561   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1562   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1563   // %7:_(s2) = G_IMPLICIT_DEF
1564   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1565   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1566   // %10:_(s12) = G_MERGE_VALUES %8, %9
1567 
1568   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1569   LLT GCDTy = LLT::scalar(GCD);
1570 
1571   SmallVector<Register, 8> Parts;
1572   SmallVector<Register, 8> NewMergeRegs;
1573   SmallVector<Register, 8> Unmerges;
1574   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1575 
1576   // Decompose the original operands if they don't evenly divide.
1577   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1578     Register SrcReg = MO.getReg();
1579     if (GCD == SrcSize) {
1580       Unmerges.push_back(SrcReg);
1581     } else {
1582       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1583       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1584         Unmerges.push_back(Unmerge.getReg(J));
1585     }
1586   }
1587 
1588   // Pad with undef to the next size that is a multiple of the requested size.
1589   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1590     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1591     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1592       Unmerges.push_back(UndefReg);
1593   }
1594 
1595   const int PartsPerGCD = WideSize / GCD;
1596 
1597   // Build merges of each piece.
1598   ArrayRef<Register> Slicer(Unmerges);
1599   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1600     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1601     NewMergeRegs.push_back(Merge.getReg(0));
1602   }
1603 
1604   // A truncate may be necessary if the requested type doesn't evenly divide the
1605   // original result type.
1606   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1607     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1608   } else {
1609     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1610     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1611   }
1612 
1613   MI.eraseFromParent();
1614   return Legalized;
1615 }
1616 
1617 LegalizerHelper::LegalizeResult
1618 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1619                                           LLT WideTy) {
1620   if (TypeIdx != 0)
1621     return UnableToLegalize;
1622 
1623   int NumDst = MI.getNumOperands() - 1;
1624   Register SrcReg = MI.getOperand(NumDst).getReg();
1625   LLT SrcTy = MRI.getType(SrcReg);
1626   if (SrcTy.isVector())
1627     return UnableToLegalize;
1628 
1629   Register Dst0Reg = MI.getOperand(0).getReg();
1630   LLT DstTy = MRI.getType(Dst0Reg);
1631   if (!DstTy.isScalar())
1632     return UnableToLegalize;
1633 
1634   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1635     if (SrcTy.isPointer()) {
1636       const DataLayout &DL = MIRBuilder.getDataLayout();
1637       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1638         LLVM_DEBUG(
1639             dbgs() << "Not casting non-integral address space integer\n");
1640         return UnableToLegalize;
1641       }
1642 
1643       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1644       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1645     }
1646 
1647     // Widen SrcTy to WideTy. This does not affect the result, but since the
1648     // user requested this size, it is probably better handled than SrcTy and
1649     // should reduce the total number of legalization artifacts.
1650     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1651       SrcTy = WideTy;
1652       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1653     }
1654 
1655     // Theres no unmerge type to target. Directly extract the bits from the
1656     // source type
1657     unsigned DstSize = DstTy.getSizeInBits();
1658 
1659     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1660     for (int I = 1; I != NumDst; ++I) {
1661       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1662       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1663       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1664     }
1665 
1666     MI.eraseFromParent();
1667     return Legalized;
1668   }
1669 
1670   // Extend the source to a wider type.
1671   LLT LCMTy = getLCMType(SrcTy, WideTy);
1672 
1673   Register WideSrc = SrcReg;
1674   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1675     // TODO: If this is an integral address space, cast to integer and anyext.
1676     if (SrcTy.isPointer()) {
1677       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1678       return UnableToLegalize;
1679     }
1680 
1681     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1682   }
1683 
1684   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1685 
1686   // Create a sequence of unmerges and merges to the original results. Since we
1687   // may have widened the source, we will need to pad the results with dead defs
1688   // to cover the source register.
1689   // e.g. widen s48 to s64:
1690   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1691   //
1692   // =>
1693   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1694   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1695   //  ; unpack to GCD type, with extra dead defs
1696   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1697   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1698   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1699   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1700   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1701   const LLT GCDTy = getGCDType(WideTy, DstTy);
1702   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1703   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1704 
1705   // Directly unmerge to the destination without going through a GCD type
1706   // if possible
1707   if (PartsPerRemerge == 1) {
1708     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1709 
1710     for (int I = 0; I != NumUnmerge; ++I) {
1711       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1712 
1713       for (int J = 0; J != PartsPerUnmerge; ++J) {
1714         int Idx = I * PartsPerUnmerge + J;
1715         if (Idx < NumDst)
1716           MIB.addDef(MI.getOperand(Idx).getReg());
1717         else {
1718           // Create dead def for excess components.
1719           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1720         }
1721       }
1722 
1723       MIB.addUse(Unmerge.getReg(I));
1724     }
1725   } else {
1726     SmallVector<Register, 16> Parts;
1727     for (int J = 0; J != NumUnmerge; ++J)
1728       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1729 
1730     SmallVector<Register, 8> RemergeParts;
1731     for (int I = 0; I != NumDst; ++I) {
1732       for (int J = 0; J < PartsPerRemerge; ++J) {
1733         const int Idx = I * PartsPerRemerge + J;
1734         RemergeParts.emplace_back(Parts[Idx]);
1735       }
1736 
1737       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1738       RemergeParts.clear();
1739     }
1740   }
1741 
1742   MI.eraseFromParent();
1743   return Legalized;
1744 }
1745 
1746 LegalizerHelper::LegalizeResult
1747 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1748                                     LLT WideTy) {
1749   Register DstReg = MI.getOperand(0).getReg();
1750   Register SrcReg = MI.getOperand(1).getReg();
1751   LLT SrcTy = MRI.getType(SrcReg);
1752 
1753   LLT DstTy = MRI.getType(DstReg);
1754   unsigned Offset = MI.getOperand(2).getImm();
1755 
1756   if (TypeIdx == 0) {
1757     if (SrcTy.isVector() || DstTy.isVector())
1758       return UnableToLegalize;
1759 
1760     SrcOp Src(SrcReg);
1761     if (SrcTy.isPointer()) {
1762       // Extracts from pointers can be handled only if they are really just
1763       // simple integers.
1764       const DataLayout &DL = MIRBuilder.getDataLayout();
1765       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1766         return UnableToLegalize;
1767 
1768       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1769       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1770       SrcTy = SrcAsIntTy;
1771     }
1772 
1773     if (DstTy.isPointer())
1774       return UnableToLegalize;
1775 
1776     if (Offset == 0) {
1777       // Avoid a shift in the degenerate case.
1778       MIRBuilder.buildTrunc(DstReg,
1779                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1780       MI.eraseFromParent();
1781       return Legalized;
1782     }
1783 
1784     // Do a shift in the source type.
1785     LLT ShiftTy = SrcTy;
1786     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1787       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1788       ShiftTy = WideTy;
1789     }
1790 
1791     auto LShr = MIRBuilder.buildLShr(
1792       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1793     MIRBuilder.buildTrunc(DstReg, LShr);
1794     MI.eraseFromParent();
1795     return Legalized;
1796   }
1797 
1798   if (SrcTy.isScalar()) {
1799     Observer.changingInstr(MI);
1800     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1801     Observer.changedInstr(MI);
1802     return Legalized;
1803   }
1804 
1805   if (!SrcTy.isVector())
1806     return UnableToLegalize;
1807 
1808   if (DstTy != SrcTy.getElementType())
1809     return UnableToLegalize;
1810 
1811   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1812     return UnableToLegalize;
1813 
1814   Observer.changingInstr(MI);
1815   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1816 
1817   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1818                           Offset);
1819   widenScalarDst(MI, WideTy.getScalarType(), 0);
1820   Observer.changedInstr(MI);
1821   return Legalized;
1822 }
1823 
1824 LegalizerHelper::LegalizeResult
1825 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1826                                    LLT WideTy) {
1827   if (TypeIdx != 0 || WideTy.isVector())
1828     return UnableToLegalize;
1829   Observer.changingInstr(MI);
1830   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1831   widenScalarDst(MI, WideTy);
1832   Observer.changedInstr(MI);
1833   return Legalized;
1834 }
1835 
1836 LegalizerHelper::LegalizeResult
1837 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1838                                            LLT WideTy) {
1839   unsigned Opcode;
1840   unsigned ExtOpcode;
1841   Optional<Register> CarryIn = None;
1842   switch (MI.getOpcode()) {
1843   default:
1844     llvm_unreachable("Unexpected opcode!");
1845   case TargetOpcode::G_SADDO:
1846     Opcode = TargetOpcode::G_ADD;
1847     ExtOpcode = TargetOpcode::G_SEXT;
1848     break;
1849   case TargetOpcode::G_SSUBO:
1850     Opcode = TargetOpcode::G_SUB;
1851     ExtOpcode = TargetOpcode::G_SEXT;
1852     break;
1853   case TargetOpcode::G_UADDO:
1854     Opcode = TargetOpcode::G_ADD;
1855     ExtOpcode = TargetOpcode::G_ZEXT;
1856     break;
1857   case TargetOpcode::G_USUBO:
1858     Opcode = TargetOpcode::G_SUB;
1859     ExtOpcode = TargetOpcode::G_ZEXT;
1860     break;
1861   case TargetOpcode::G_SADDE:
1862     Opcode = TargetOpcode::G_UADDE;
1863     ExtOpcode = TargetOpcode::G_SEXT;
1864     CarryIn = MI.getOperand(4).getReg();
1865     break;
1866   case TargetOpcode::G_SSUBE:
1867     Opcode = TargetOpcode::G_USUBE;
1868     ExtOpcode = TargetOpcode::G_SEXT;
1869     CarryIn = MI.getOperand(4).getReg();
1870     break;
1871   case TargetOpcode::G_UADDE:
1872     Opcode = TargetOpcode::G_UADDE;
1873     ExtOpcode = TargetOpcode::G_ZEXT;
1874     CarryIn = MI.getOperand(4).getReg();
1875     break;
1876   case TargetOpcode::G_USUBE:
1877     Opcode = TargetOpcode::G_USUBE;
1878     ExtOpcode = TargetOpcode::G_ZEXT;
1879     CarryIn = MI.getOperand(4).getReg();
1880     break;
1881   }
1882 
1883   if (TypeIdx == 1) {
1884     unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false);
1885 
1886     Observer.changingInstr(MI);
1887     widenScalarDst(MI, WideTy, 1);
1888     if (CarryIn)
1889       widenScalarSrc(MI, WideTy, 4, BoolExtOp);
1890 
1891     Observer.changedInstr(MI);
1892     return Legalized;
1893   }
1894 
1895   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1896   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1897   // Do the arithmetic in the larger type.
1898   Register NewOp;
1899   if (CarryIn) {
1900     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1901     NewOp = MIRBuilder
1902                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1903                             {LHSExt, RHSExt, *CarryIn})
1904                 .getReg(0);
1905   } else {
1906     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1907   }
1908   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1909   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1910   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1911   // There is no overflow if the ExtOp is the same as NewOp.
1912   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1913   // Now trunc the NewOp to the original result.
1914   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1915   MI.eraseFromParent();
1916   return Legalized;
1917 }
1918 
1919 LegalizerHelper::LegalizeResult
1920 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1921                                          LLT WideTy) {
1922   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1923                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1924                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1925   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1926                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1927   // We can convert this to:
1928   //   1. Any extend iN to iM
1929   //   2. SHL by M-N
1930   //   3. [US][ADD|SUB|SHL]SAT
1931   //   4. L/ASHR by M-N
1932   //
1933   // It may be more efficient to lower this to a min and a max operation in
1934   // the higher precision arithmetic if the promoted operation isn't legal,
1935   // but this decision is up to the target's lowering request.
1936   Register DstReg = MI.getOperand(0).getReg();
1937 
1938   unsigned NewBits = WideTy.getScalarSizeInBits();
1939   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1940 
1941   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1942   // must not left shift the RHS to preserve the shift amount.
1943   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1944   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1945                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1946   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1947   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1948   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1949 
1950   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1951                                         {ShiftL, ShiftR}, MI.getFlags());
1952 
1953   // Use a shift that will preserve the number of sign bits when the trunc is
1954   // folded away.
1955   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1956                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1957 
1958   MIRBuilder.buildTrunc(DstReg, Result);
1959   MI.eraseFromParent();
1960   return Legalized;
1961 }
1962 
1963 LegalizerHelper::LegalizeResult
1964 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1965                                  LLT WideTy) {
1966   if (TypeIdx == 1) {
1967     Observer.changingInstr(MI);
1968     widenScalarDst(MI, WideTy, 1);
1969     Observer.changedInstr(MI);
1970     return Legalized;
1971   }
1972 
1973   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1974   Register Result = MI.getOperand(0).getReg();
1975   Register OriginalOverflow = MI.getOperand(1).getReg();
1976   Register LHS = MI.getOperand(2).getReg();
1977   Register RHS = MI.getOperand(3).getReg();
1978   LLT SrcTy = MRI.getType(LHS);
1979   LLT OverflowTy = MRI.getType(OriginalOverflow);
1980   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1981 
1982   // To determine if the result overflowed in the larger type, we extend the
1983   // input to the larger type, do the multiply (checking if it overflows),
1984   // then also check the high bits of the result to see if overflow happened
1985   // there.
1986   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1987   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1988   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1989 
1990   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1991                                     {LeftOperand, RightOperand});
1992   auto Mul = Mulo->getOperand(0);
1993   MIRBuilder.buildTrunc(Result, Mul);
1994 
1995   MachineInstrBuilder ExtResult;
1996   // Overflow occurred if it occurred in the larger type, or if the high part
1997   // of the result does not zero/sign-extend the low part.  Check this second
1998   // possibility first.
1999   if (IsSigned) {
2000     // For signed, overflow occurred when the high part does not sign-extend
2001     // the low part.
2002     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2003   } else {
2004     // Unsigned overflow occurred when the high part does not zero-extend the
2005     // low part.
2006     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2007   }
2008 
2009   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2010   // so we don't need to check the overflow result of larger type Mulo.
2011   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
2012     auto Overflow =
2013         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2014     // Finally check if the multiplication in the larger type itself overflowed.
2015     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2016   } else {
2017     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2018   }
2019   MI.eraseFromParent();
2020   return Legalized;
2021 }
2022 
2023 LegalizerHelper::LegalizeResult
2024 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2025   switch (MI.getOpcode()) {
2026   default:
2027     return UnableToLegalize;
2028   case TargetOpcode::G_ATOMICRMW_XCHG:
2029   case TargetOpcode::G_ATOMICRMW_ADD:
2030   case TargetOpcode::G_ATOMICRMW_SUB:
2031   case TargetOpcode::G_ATOMICRMW_AND:
2032   case TargetOpcode::G_ATOMICRMW_OR:
2033   case TargetOpcode::G_ATOMICRMW_XOR:
2034   case TargetOpcode::G_ATOMICRMW_MIN:
2035   case TargetOpcode::G_ATOMICRMW_MAX:
2036   case TargetOpcode::G_ATOMICRMW_UMIN:
2037   case TargetOpcode::G_ATOMICRMW_UMAX:
2038     assert(TypeIdx == 0 && "atomicrmw with second scalar type");
2039     Observer.changingInstr(MI);
2040     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2041     widenScalarDst(MI, WideTy, 0);
2042     Observer.changedInstr(MI);
2043     return Legalized;
2044   case TargetOpcode::G_ATOMIC_CMPXCHG:
2045     assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type");
2046     Observer.changingInstr(MI);
2047     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2048     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2049     widenScalarDst(MI, WideTy, 0);
2050     Observer.changedInstr(MI);
2051     return Legalized;
2052   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2053     if (TypeIdx == 0) {
2054       Observer.changingInstr(MI);
2055       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2056       widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2057       widenScalarDst(MI, WideTy, 0);
2058       Observer.changedInstr(MI);
2059       return Legalized;
2060     }
2061     assert(TypeIdx == 1 &&
2062            "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type");
2063     Observer.changingInstr(MI);
2064     widenScalarDst(MI, WideTy, 1);
2065     Observer.changedInstr(MI);
2066     return Legalized;
2067   case TargetOpcode::G_EXTRACT:
2068     return widenScalarExtract(MI, TypeIdx, WideTy);
2069   case TargetOpcode::G_INSERT:
2070     return widenScalarInsert(MI, TypeIdx, WideTy);
2071   case TargetOpcode::G_MERGE_VALUES:
2072     return widenScalarMergeValues(MI, TypeIdx, WideTy);
2073   case TargetOpcode::G_UNMERGE_VALUES:
2074     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2075   case TargetOpcode::G_SADDO:
2076   case TargetOpcode::G_SSUBO:
2077   case TargetOpcode::G_UADDO:
2078   case TargetOpcode::G_USUBO:
2079   case TargetOpcode::G_SADDE:
2080   case TargetOpcode::G_SSUBE:
2081   case TargetOpcode::G_UADDE:
2082   case TargetOpcode::G_USUBE:
2083     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2084   case TargetOpcode::G_UMULO:
2085   case TargetOpcode::G_SMULO:
2086     return widenScalarMulo(MI, TypeIdx, WideTy);
2087   case TargetOpcode::G_SADDSAT:
2088   case TargetOpcode::G_SSUBSAT:
2089   case TargetOpcode::G_SSHLSAT:
2090   case TargetOpcode::G_UADDSAT:
2091   case TargetOpcode::G_USUBSAT:
2092   case TargetOpcode::G_USHLSAT:
2093     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2094   case TargetOpcode::G_CTTZ:
2095   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2096   case TargetOpcode::G_CTLZ:
2097   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2098   case TargetOpcode::G_CTPOP: {
2099     if (TypeIdx == 0) {
2100       Observer.changingInstr(MI);
2101       widenScalarDst(MI, WideTy, 0);
2102       Observer.changedInstr(MI);
2103       return Legalized;
2104     }
2105 
2106     Register SrcReg = MI.getOperand(1).getReg();
2107 
2108     // First extend the input.
2109     unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2110                               MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2111                           ? TargetOpcode::G_ANYEXT
2112                           : TargetOpcode::G_ZEXT;
2113     auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2114     LLT CurTy = MRI.getType(SrcReg);
2115     unsigned NewOpc = MI.getOpcode();
2116     if (NewOpc == TargetOpcode::G_CTTZ) {
2117       // The count is the same in the larger type except if the original
2118       // value was zero.  This can be handled by setting the bit just off
2119       // the top of the original type.
2120       auto TopBit =
2121           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2122       MIBSrc = MIRBuilder.buildOr(
2123         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2124       // Now we know the operand is non-zero, use the more relaxed opcode.
2125       NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2126     }
2127 
2128     // Perform the operation at the larger size.
2129     auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2130     // This is already the correct result for CTPOP and CTTZs
2131     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2132         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2133       // The correct result is NewOp - (Difference in widety and current ty).
2134       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2135       MIBNewOp = MIRBuilder.buildSub(
2136           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2137     }
2138 
2139     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2140     MI.eraseFromParent();
2141     return Legalized;
2142   }
2143   case TargetOpcode::G_BSWAP: {
2144     Observer.changingInstr(MI);
2145     Register DstReg = MI.getOperand(0).getReg();
2146 
2147     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2148     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2149     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2150     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2151 
2152     MI.getOperand(0).setReg(DstExt);
2153 
2154     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2155 
2156     LLT Ty = MRI.getType(DstReg);
2157     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2158     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2159     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2160 
2161     MIRBuilder.buildTrunc(DstReg, ShrReg);
2162     Observer.changedInstr(MI);
2163     return Legalized;
2164   }
2165   case TargetOpcode::G_BITREVERSE: {
2166     Observer.changingInstr(MI);
2167 
2168     Register DstReg = MI.getOperand(0).getReg();
2169     LLT Ty = MRI.getType(DstReg);
2170     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2171 
2172     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2173     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2174     MI.getOperand(0).setReg(DstExt);
2175     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2176 
2177     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2178     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2179     MIRBuilder.buildTrunc(DstReg, Shift);
2180     Observer.changedInstr(MI);
2181     return Legalized;
2182   }
2183   case TargetOpcode::G_FREEZE:
2184     Observer.changingInstr(MI);
2185     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2186     widenScalarDst(MI, WideTy);
2187     Observer.changedInstr(MI);
2188     return Legalized;
2189 
2190   case TargetOpcode::G_ABS:
2191     Observer.changingInstr(MI);
2192     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2193     widenScalarDst(MI, WideTy);
2194     Observer.changedInstr(MI);
2195     return Legalized;
2196 
2197   case TargetOpcode::G_ADD:
2198   case TargetOpcode::G_AND:
2199   case TargetOpcode::G_MUL:
2200   case TargetOpcode::G_OR:
2201   case TargetOpcode::G_XOR:
2202   case TargetOpcode::G_SUB:
2203     // Perform operation at larger width (any extension is fines here, high bits
2204     // don't affect the result) and then truncate the result back to the
2205     // original type.
2206     Observer.changingInstr(MI);
2207     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2208     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2209     widenScalarDst(MI, WideTy);
2210     Observer.changedInstr(MI);
2211     return Legalized;
2212 
2213   case TargetOpcode::G_SBFX:
2214   case TargetOpcode::G_UBFX:
2215     Observer.changingInstr(MI);
2216 
2217     if (TypeIdx == 0) {
2218       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2219       widenScalarDst(MI, WideTy);
2220     } else {
2221       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2222       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2223     }
2224 
2225     Observer.changedInstr(MI);
2226     return Legalized;
2227 
2228   case TargetOpcode::G_SHL:
2229     Observer.changingInstr(MI);
2230 
2231     if (TypeIdx == 0) {
2232       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2233       widenScalarDst(MI, WideTy);
2234     } else {
2235       assert(TypeIdx == 1);
2236       // The "number of bits to shift" operand must preserve its value as an
2237       // unsigned integer:
2238       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2239     }
2240 
2241     Observer.changedInstr(MI);
2242     return Legalized;
2243 
2244   case TargetOpcode::G_SDIV:
2245   case TargetOpcode::G_SREM:
2246   case TargetOpcode::G_SMIN:
2247   case TargetOpcode::G_SMAX:
2248     Observer.changingInstr(MI);
2249     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2250     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2251     widenScalarDst(MI, WideTy);
2252     Observer.changedInstr(MI);
2253     return Legalized;
2254 
2255   case TargetOpcode::G_SDIVREM:
2256     Observer.changingInstr(MI);
2257     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2258     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2259     widenScalarDst(MI, WideTy);
2260     widenScalarDst(MI, WideTy, 1);
2261     Observer.changedInstr(MI);
2262     return Legalized;
2263 
2264   case TargetOpcode::G_ASHR:
2265   case TargetOpcode::G_LSHR:
2266     Observer.changingInstr(MI);
2267 
2268     if (TypeIdx == 0) {
2269       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2270         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2271 
2272       widenScalarSrc(MI, WideTy, 1, CvtOp);
2273       widenScalarDst(MI, WideTy);
2274     } else {
2275       assert(TypeIdx == 1);
2276       // The "number of bits to shift" operand must preserve its value as an
2277       // unsigned integer:
2278       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2279     }
2280 
2281     Observer.changedInstr(MI);
2282     return Legalized;
2283   case TargetOpcode::G_UDIV:
2284   case TargetOpcode::G_UREM:
2285   case TargetOpcode::G_UMIN:
2286   case TargetOpcode::G_UMAX:
2287     Observer.changingInstr(MI);
2288     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2289     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2290     widenScalarDst(MI, WideTy);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293 
2294   case TargetOpcode::G_UDIVREM:
2295     Observer.changingInstr(MI);
2296     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2297     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2298     widenScalarDst(MI, WideTy);
2299     widenScalarDst(MI, WideTy, 1);
2300     Observer.changedInstr(MI);
2301     return Legalized;
2302 
2303   case TargetOpcode::G_SELECT:
2304     Observer.changingInstr(MI);
2305     if (TypeIdx == 0) {
2306       // Perform operation at larger width (any extension is fine here, high
2307       // bits don't affect the result) and then truncate the result back to the
2308       // original type.
2309       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2310       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2311       widenScalarDst(MI, WideTy);
2312     } else {
2313       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2314       // Explicit extension is required here since high bits affect the result.
2315       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2316     }
2317     Observer.changedInstr(MI);
2318     return Legalized;
2319 
2320   case TargetOpcode::G_FPTOSI:
2321   case TargetOpcode::G_FPTOUI:
2322     Observer.changingInstr(MI);
2323 
2324     if (TypeIdx == 0)
2325       widenScalarDst(MI, WideTy);
2326     else
2327       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2328 
2329     Observer.changedInstr(MI);
2330     return Legalized;
2331   case TargetOpcode::G_SITOFP:
2332     Observer.changingInstr(MI);
2333 
2334     if (TypeIdx == 0)
2335       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2336     else
2337       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2338 
2339     Observer.changedInstr(MI);
2340     return Legalized;
2341   case TargetOpcode::G_UITOFP:
2342     Observer.changingInstr(MI);
2343 
2344     if (TypeIdx == 0)
2345       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2346     else
2347       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2348 
2349     Observer.changedInstr(MI);
2350     return Legalized;
2351   case TargetOpcode::G_LOAD:
2352   case TargetOpcode::G_SEXTLOAD:
2353   case TargetOpcode::G_ZEXTLOAD:
2354     Observer.changingInstr(MI);
2355     widenScalarDst(MI, WideTy);
2356     Observer.changedInstr(MI);
2357     return Legalized;
2358 
2359   case TargetOpcode::G_STORE: {
2360     if (TypeIdx != 0)
2361       return UnableToLegalize;
2362 
2363     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2364     if (!Ty.isScalar())
2365       return UnableToLegalize;
2366 
2367     Observer.changingInstr(MI);
2368 
2369     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2370       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2371     widenScalarSrc(MI, WideTy, 0, ExtType);
2372 
2373     Observer.changedInstr(MI);
2374     return Legalized;
2375   }
2376   case TargetOpcode::G_CONSTANT: {
2377     MachineOperand &SrcMO = MI.getOperand(1);
2378     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2379     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2380         MRI.getType(MI.getOperand(0).getReg()));
2381     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2382             ExtOpc == TargetOpcode::G_ANYEXT) &&
2383            "Illegal Extend");
2384     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2385     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2386                            ? SrcVal.sext(WideTy.getSizeInBits())
2387                            : SrcVal.zext(WideTy.getSizeInBits());
2388     Observer.changingInstr(MI);
2389     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2390 
2391     widenScalarDst(MI, WideTy);
2392     Observer.changedInstr(MI);
2393     return Legalized;
2394   }
2395   case TargetOpcode::G_FCONSTANT: {
2396     MachineOperand &SrcMO = MI.getOperand(1);
2397     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2398     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2399     bool LosesInfo;
2400     switch (WideTy.getSizeInBits()) {
2401     case 32:
2402       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2403                   &LosesInfo);
2404       break;
2405     case 64:
2406       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2407                   &LosesInfo);
2408       break;
2409     default:
2410       return UnableToLegalize;
2411     }
2412 
2413     assert(!LosesInfo && "extend should always be lossless");
2414 
2415     Observer.changingInstr(MI);
2416     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2417 
2418     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2419     Observer.changedInstr(MI);
2420     return Legalized;
2421   }
2422   case TargetOpcode::G_IMPLICIT_DEF: {
2423     Observer.changingInstr(MI);
2424     widenScalarDst(MI, WideTy);
2425     Observer.changedInstr(MI);
2426     return Legalized;
2427   }
2428   case TargetOpcode::G_BRCOND:
2429     Observer.changingInstr(MI);
2430     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2431     Observer.changedInstr(MI);
2432     return Legalized;
2433 
2434   case TargetOpcode::G_FCMP:
2435     Observer.changingInstr(MI);
2436     if (TypeIdx == 0)
2437       widenScalarDst(MI, WideTy);
2438     else {
2439       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2440       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2441     }
2442     Observer.changedInstr(MI);
2443     return Legalized;
2444 
2445   case TargetOpcode::G_ICMP:
2446     Observer.changingInstr(MI);
2447     if (TypeIdx == 0)
2448       widenScalarDst(MI, WideTy);
2449     else {
2450       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2451                                MI.getOperand(1).getPredicate()))
2452                                ? TargetOpcode::G_SEXT
2453                                : TargetOpcode::G_ZEXT;
2454       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2455       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2456     }
2457     Observer.changedInstr(MI);
2458     return Legalized;
2459 
2460   case TargetOpcode::G_PTR_ADD:
2461     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2462     Observer.changingInstr(MI);
2463     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2464     Observer.changedInstr(MI);
2465     return Legalized;
2466 
2467   case TargetOpcode::G_PHI: {
2468     assert(TypeIdx == 0 && "Expecting only Idx 0");
2469 
2470     Observer.changingInstr(MI);
2471     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2472       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2473       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2474       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2475     }
2476 
2477     MachineBasicBlock &MBB = *MI.getParent();
2478     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2479     widenScalarDst(MI, WideTy);
2480     Observer.changedInstr(MI);
2481     return Legalized;
2482   }
2483   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2484     if (TypeIdx == 0) {
2485       Register VecReg = MI.getOperand(1).getReg();
2486       LLT VecTy = MRI.getType(VecReg);
2487       Observer.changingInstr(MI);
2488 
2489       widenScalarSrc(
2490           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2491           TargetOpcode::G_ANYEXT);
2492 
2493       widenScalarDst(MI, WideTy, 0);
2494       Observer.changedInstr(MI);
2495       return Legalized;
2496     }
2497 
2498     if (TypeIdx != 2)
2499       return UnableToLegalize;
2500     Observer.changingInstr(MI);
2501     // TODO: Probably should be zext
2502     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2503     Observer.changedInstr(MI);
2504     return Legalized;
2505   }
2506   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2507     if (TypeIdx == 1) {
2508       Observer.changingInstr(MI);
2509 
2510       Register VecReg = MI.getOperand(1).getReg();
2511       LLT VecTy = MRI.getType(VecReg);
2512       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2513 
2514       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2515       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2516       widenScalarDst(MI, WideVecTy, 0);
2517       Observer.changedInstr(MI);
2518       return Legalized;
2519     }
2520 
2521     if (TypeIdx == 2) {
2522       Observer.changingInstr(MI);
2523       // TODO: Probably should be zext
2524       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2525       Observer.changedInstr(MI);
2526       return Legalized;
2527     }
2528 
2529     return UnableToLegalize;
2530   }
2531   case TargetOpcode::G_FADD:
2532   case TargetOpcode::G_FMUL:
2533   case TargetOpcode::G_FSUB:
2534   case TargetOpcode::G_FMA:
2535   case TargetOpcode::G_FMAD:
2536   case TargetOpcode::G_FNEG:
2537   case TargetOpcode::G_FABS:
2538   case TargetOpcode::G_FCANONICALIZE:
2539   case TargetOpcode::G_FMINNUM:
2540   case TargetOpcode::G_FMAXNUM:
2541   case TargetOpcode::G_FMINNUM_IEEE:
2542   case TargetOpcode::G_FMAXNUM_IEEE:
2543   case TargetOpcode::G_FMINIMUM:
2544   case TargetOpcode::G_FMAXIMUM:
2545   case TargetOpcode::G_FDIV:
2546   case TargetOpcode::G_FREM:
2547   case TargetOpcode::G_FCEIL:
2548   case TargetOpcode::G_FFLOOR:
2549   case TargetOpcode::G_FCOS:
2550   case TargetOpcode::G_FSIN:
2551   case TargetOpcode::G_FLOG10:
2552   case TargetOpcode::G_FLOG:
2553   case TargetOpcode::G_FLOG2:
2554   case TargetOpcode::G_FRINT:
2555   case TargetOpcode::G_FNEARBYINT:
2556   case TargetOpcode::G_FSQRT:
2557   case TargetOpcode::G_FEXP:
2558   case TargetOpcode::G_FEXP2:
2559   case TargetOpcode::G_FPOW:
2560   case TargetOpcode::G_INTRINSIC_TRUNC:
2561   case TargetOpcode::G_INTRINSIC_ROUND:
2562   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2563     assert(TypeIdx == 0);
2564     Observer.changingInstr(MI);
2565 
2566     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2567       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2568 
2569     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2570     Observer.changedInstr(MI);
2571     return Legalized;
2572   case TargetOpcode::G_FPOWI: {
2573     if (TypeIdx != 0)
2574       return UnableToLegalize;
2575     Observer.changingInstr(MI);
2576     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2577     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2578     Observer.changedInstr(MI);
2579     return Legalized;
2580   }
2581   case TargetOpcode::G_INTTOPTR:
2582     if (TypeIdx != 1)
2583       return UnableToLegalize;
2584 
2585     Observer.changingInstr(MI);
2586     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2587     Observer.changedInstr(MI);
2588     return Legalized;
2589   case TargetOpcode::G_PTRTOINT:
2590     if (TypeIdx != 0)
2591       return UnableToLegalize;
2592 
2593     Observer.changingInstr(MI);
2594     widenScalarDst(MI, WideTy, 0);
2595     Observer.changedInstr(MI);
2596     return Legalized;
2597   case TargetOpcode::G_BUILD_VECTOR: {
2598     Observer.changingInstr(MI);
2599 
2600     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2601     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2602       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2603 
2604     // Avoid changing the result vector type if the source element type was
2605     // requested.
2606     if (TypeIdx == 1) {
2607       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2608     } else {
2609       widenScalarDst(MI, WideTy, 0);
2610     }
2611 
2612     Observer.changedInstr(MI);
2613     return Legalized;
2614   }
2615   case TargetOpcode::G_SEXT_INREG:
2616     if (TypeIdx != 0)
2617       return UnableToLegalize;
2618 
2619     Observer.changingInstr(MI);
2620     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2621     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2622     Observer.changedInstr(MI);
2623     return Legalized;
2624   case TargetOpcode::G_PTRMASK: {
2625     if (TypeIdx != 1)
2626       return UnableToLegalize;
2627     Observer.changingInstr(MI);
2628     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2629     Observer.changedInstr(MI);
2630     return Legalized;
2631   }
2632   }
2633 }
2634 
2635 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2636                              MachineIRBuilder &B, Register Src, LLT Ty) {
2637   auto Unmerge = B.buildUnmerge(Ty, Src);
2638   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2639     Pieces.push_back(Unmerge.getReg(I));
2640 }
2641 
2642 LegalizerHelper::LegalizeResult
2643 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2644   Register Dst = MI.getOperand(0).getReg();
2645   Register Src = MI.getOperand(1).getReg();
2646   LLT DstTy = MRI.getType(Dst);
2647   LLT SrcTy = MRI.getType(Src);
2648 
2649   if (SrcTy.isVector()) {
2650     LLT SrcEltTy = SrcTy.getElementType();
2651     SmallVector<Register, 8> SrcRegs;
2652 
2653     if (DstTy.isVector()) {
2654       int NumDstElt = DstTy.getNumElements();
2655       int NumSrcElt = SrcTy.getNumElements();
2656 
2657       LLT DstEltTy = DstTy.getElementType();
2658       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2659       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2660 
2661       // If there's an element size mismatch, insert intermediate casts to match
2662       // the result element type.
2663       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2664         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2665         //
2666         // =>
2667         //
2668         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2669         // %3:_(<2 x s8>) = G_BITCAST %2
2670         // %4:_(<2 x s8>) = G_BITCAST %3
2671         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2672         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2673         SrcPartTy = SrcEltTy;
2674       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2675         //
2676         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2677         //
2678         // =>
2679         //
2680         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2681         // %3:_(s16) = G_BITCAST %2
2682         // %4:_(s16) = G_BITCAST %3
2683         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2684         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2685         DstCastTy = DstEltTy;
2686       }
2687 
2688       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2689       for (Register &SrcReg : SrcRegs)
2690         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2691     } else
2692       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2693 
2694     MIRBuilder.buildMerge(Dst, SrcRegs);
2695     MI.eraseFromParent();
2696     return Legalized;
2697   }
2698 
2699   if (DstTy.isVector()) {
2700     SmallVector<Register, 8> SrcRegs;
2701     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2702     MIRBuilder.buildMerge(Dst, SrcRegs);
2703     MI.eraseFromParent();
2704     return Legalized;
2705   }
2706 
2707   return UnableToLegalize;
2708 }
2709 
2710 /// Figure out the bit offset into a register when coercing a vector index for
2711 /// the wide element type. This is only for the case when promoting vector to
2712 /// one with larger elements.
2713 //
2714 ///
2715 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2716 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2717 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2718                                                    Register Idx,
2719                                                    unsigned NewEltSize,
2720                                                    unsigned OldEltSize) {
2721   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2722   LLT IdxTy = B.getMRI()->getType(Idx);
2723 
2724   // Now figure out the amount we need to shift to get the target bits.
2725   auto OffsetMask = B.buildConstant(
2726       IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
2727   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2728   return B.buildShl(IdxTy, OffsetIdx,
2729                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2730 }
2731 
2732 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2733 /// is casting to a vector with a smaller element size, perform multiple element
2734 /// extracts and merge the results. If this is coercing to a vector with larger
2735 /// elements, index the bitcasted vector and extract the target element with bit
2736 /// operations. This is intended to force the indexing in the native register
2737 /// size for architectures that can dynamically index the register file.
2738 LegalizerHelper::LegalizeResult
2739 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2740                                          LLT CastTy) {
2741   if (TypeIdx != 1)
2742     return UnableToLegalize;
2743 
2744   Register Dst = MI.getOperand(0).getReg();
2745   Register SrcVec = MI.getOperand(1).getReg();
2746   Register Idx = MI.getOperand(2).getReg();
2747   LLT SrcVecTy = MRI.getType(SrcVec);
2748   LLT IdxTy = MRI.getType(Idx);
2749 
2750   LLT SrcEltTy = SrcVecTy.getElementType();
2751   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2752   unsigned OldNumElts = SrcVecTy.getNumElements();
2753 
2754   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2755   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2756 
2757   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2758   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2759   if (NewNumElts > OldNumElts) {
2760     // Decreasing the vector element size
2761     //
2762     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2763     //  =>
2764     //  v4i32:castx = bitcast x:v2i64
2765     //
2766     // i64 = bitcast
2767     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2768     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2769     //
2770     if (NewNumElts % OldNumElts != 0)
2771       return UnableToLegalize;
2772 
2773     // Type of the intermediate result vector.
2774     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2775     LLT MidTy =
2776         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2777 
2778     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2779 
2780     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2781     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2782 
2783     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2784       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2785       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2786       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2787       NewOps[I] = Elt.getReg(0);
2788     }
2789 
2790     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2791     MIRBuilder.buildBitcast(Dst, NewVec);
2792     MI.eraseFromParent();
2793     return Legalized;
2794   }
2795 
2796   if (NewNumElts < OldNumElts) {
2797     if (NewEltSize % OldEltSize != 0)
2798       return UnableToLegalize;
2799 
2800     // This only depends on powers of 2 because we use bit tricks to figure out
2801     // the bit offset we need to shift to get the target element. A general
2802     // expansion could emit division/multiply.
2803     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2804       return UnableToLegalize;
2805 
2806     // Increasing the vector element size.
2807     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2808     //
2809     //   =>
2810     //
2811     // %cast = G_BITCAST %vec
2812     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2813     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2814     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2815     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2816     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2817     // %elt = G_TRUNC %elt_bits
2818 
2819     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2820     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2821 
2822     // Divide to get the index in the wider element type.
2823     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2824 
2825     Register WideElt = CastVec;
2826     if (CastTy.isVector()) {
2827       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2828                                                      ScaledIdx).getReg(0);
2829     }
2830 
2831     // Compute the bit offset into the register of the target element.
2832     Register OffsetBits = getBitcastWiderVectorElementOffset(
2833       MIRBuilder, Idx, NewEltSize, OldEltSize);
2834 
2835     // Shift the wide element to get the target element.
2836     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2837     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2838     MI.eraseFromParent();
2839     return Legalized;
2840   }
2841 
2842   return UnableToLegalize;
2843 }
2844 
2845 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2846 /// TargetReg, while preserving other bits in \p TargetReg.
2847 ///
2848 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2849 static Register buildBitFieldInsert(MachineIRBuilder &B,
2850                                     Register TargetReg, Register InsertReg,
2851                                     Register OffsetBits) {
2852   LLT TargetTy = B.getMRI()->getType(TargetReg);
2853   LLT InsertTy = B.getMRI()->getType(InsertReg);
2854   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2855   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2856 
2857   // Produce a bitmask of the value to insert
2858   auto EltMask = B.buildConstant(
2859     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2860                                    InsertTy.getSizeInBits()));
2861   // Shift it into position
2862   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2863   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2864 
2865   // Clear out the bits in the wide element
2866   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2867 
2868   // The value to insert has all zeros already, so stick it into the masked
2869   // wide element.
2870   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2871 }
2872 
2873 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2874 /// is increasing the element size, perform the indexing in the target element
2875 /// type, and use bit operations to insert at the element position. This is
2876 /// intended for architectures that can dynamically index the register file and
2877 /// want to force indexing in the native register size.
2878 LegalizerHelper::LegalizeResult
2879 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2880                                         LLT CastTy) {
2881   if (TypeIdx != 0)
2882     return UnableToLegalize;
2883 
2884   Register Dst = MI.getOperand(0).getReg();
2885   Register SrcVec = MI.getOperand(1).getReg();
2886   Register Val = MI.getOperand(2).getReg();
2887   Register Idx = MI.getOperand(3).getReg();
2888 
2889   LLT VecTy = MRI.getType(Dst);
2890   LLT IdxTy = MRI.getType(Idx);
2891 
2892   LLT VecEltTy = VecTy.getElementType();
2893   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2894   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2895   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2896 
2897   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2898   unsigned OldNumElts = VecTy.getNumElements();
2899 
2900   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2901   if (NewNumElts < OldNumElts) {
2902     if (NewEltSize % OldEltSize != 0)
2903       return UnableToLegalize;
2904 
2905     // This only depends on powers of 2 because we use bit tricks to figure out
2906     // the bit offset we need to shift to get the target element. A general
2907     // expansion could emit division/multiply.
2908     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2909       return UnableToLegalize;
2910 
2911     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2912     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2913 
2914     // Divide to get the index in the wider element type.
2915     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2916 
2917     Register ExtractedElt = CastVec;
2918     if (CastTy.isVector()) {
2919       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2920                                                           ScaledIdx).getReg(0);
2921     }
2922 
2923     // Compute the bit offset into the register of the target element.
2924     Register OffsetBits = getBitcastWiderVectorElementOffset(
2925       MIRBuilder, Idx, NewEltSize, OldEltSize);
2926 
2927     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2928                                                Val, OffsetBits);
2929     if (CastTy.isVector()) {
2930       InsertedElt = MIRBuilder.buildInsertVectorElement(
2931         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2932     }
2933 
2934     MIRBuilder.buildBitcast(Dst, InsertedElt);
2935     MI.eraseFromParent();
2936     return Legalized;
2937   }
2938 
2939   return UnableToLegalize;
2940 }
2941 
2942 LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2943   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2944   Register DstReg = LoadMI.getDstReg();
2945   Register PtrReg = LoadMI.getPointerReg();
2946   LLT DstTy = MRI.getType(DstReg);
2947   MachineMemOperand &MMO = LoadMI.getMMO();
2948   LLT MemTy = MMO.getMemoryType();
2949   MachineFunction &MF = MIRBuilder.getMF();
2950 
2951   unsigned MemSizeInBits = MemTy.getSizeInBits();
2952   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2953 
2954   if (MemSizeInBits != MemStoreSizeInBits) {
2955     if (MemTy.isVector())
2956       return UnableToLegalize;
2957 
2958     // Promote to a byte-sized load if not loading an integral number of
2959     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2960     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2961     MachineMemOperand *NewMMO =
2962         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2963 
2964     Register LoadReg = DstReg;
2965     LLT LoadTy = DstTy;
2966 
2967     // If this wasn't already an extending load, we need to widen the result
2968     // register to avoid creating a load with a narrower result than the source.
2969     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2970       LoadTy = WideMemTy;
2971       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2972     }
2973 
2974     if (isa<GSExtLoad>(LoadMI)) {
2975       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2976       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2977     } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) {
2978       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2979       // The extra bits are guaranteed to be zero, since we stored them that
2980       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2981       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2982     } else {
2983       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2984     }
2985 
2986     if (DstTy != LoadTy)
2987       MIRBuilder.buildTrunc(DstReg, LoadReg);
2988 
2989     LoadMI.eraseFromParent();
2990     return Legalized;
2991   }
2992 
2993   // Big endian lowering not implemented.
2994   if (MIRBuilder.getDataLayout().isBigEndian())
2995     return UnableToLegalize;
2996 
2997   // This load needs splitting into power of 2 sized loads.
2998   //
2999   // Our strategy here is to generate anyextending loads for the smaller
3000   // types up to next power-2 result type, and then combine the two larger
3001   // result values together, before truncating back down to the non-pow-2
3002   // type.
3003   // E.g. v1 = i24 load =>
3004   // v2 = i32 zextload (2 byte)
3005   // v3 = i32 load (1 byte)
3006   // v4 = i32 shl v3, 16
3007   // v5 = i32 or v4, v2
3008   // v1 = i24 trunc v5
3009   // By doing this we generate the correct truncate which should get
3010   // combined away as an artifact with a matching extend.
3011 
3012   uint64_t LargeSplitSize, SmallSplitSize;
3013 
3014   if (!isPowerOf2_32(MemSizeInBits)) {
3015     // This load needs splitting into power of 2 sized loads.
3016     LargeSplitSize = PowerOf2Floor(MemSizeInBits);
3017     SmallSplitSize = MemSizeInBits - LargeSplitSize;
3018   } else {
3019     // This is already a power of 2, but we still need to split this in half.
3020     //
3021     // Assume we're being asked to decompose an unaligned load.
3022     // TODO: If this requires multiple splits, handle them all at once.
3023     auto &Ctx = MF.getFunction().getContext();
3024     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3025       return UnableToLegalize;
3026 
3027     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3028   }
3029 
3030   if (MemTy.isVector()) {
3031     // TODO: Handle vector extloads
3032     if (MemTy != DstTy)
3033       return UnableToLegalize;
3034 
3035     // TODO: We can do better than scalarizing the vector and at least split it
3036     // in half.
3037     return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3038   }
3039 
3040   MachineMemOperand *LargeMMO =
3041       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3042   MachineMemOperand *SmallMMO =
3043       MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3044 
3045   LLT PtrTy = MRI.getType(PtrReg);
3046   unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3047   LLT AnyExtTy = LLT::scalar(AnyExtSize);
3048   auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3049                                              PtrReg, *LargeMMO);
3050 
3051   auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3052                                             LargeSplitSize / 8);
3053   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3054   auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3055   auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3056                                              SmallPtr, *SmallMMO);
3057 
3058   auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3059   auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3060 
3061   if (AnyExtTy == DstTy)
3062     MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3063   else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3064     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3065     MIRBuilder.buildTrunc(DstReg, {Or});
3066   } else {
3067     assert(DstTy.isPointer() && "expected pointer");
3068     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3069 
3070     // FIXME: We currently consider this to be illegal for non-integral address
3071     // spaces, but we need still need a way to reinterpret the bits.
3072     MIRBuilder.buildIntToPtr(DstReg, Or);
3073   }
3074 
3075   LoadMI.eraseFromParent();
3076   return Legalized;
3077 }
3078 
3079 LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3080   // Lower a non-power of 2 store into multiple pow-2 stores.
3081   // E.g. split an i24 store into an i16 store + i8 store.
3082   // We do this by first extending the stored value to the next largest power
3083   // of 2 type, and then using truncating stores to store the components.
3084   // By doing this, likewise with G_LOAD, generate an extend that can be
3085   // artifact-combined away instead of leaving behind extracts.
3086   Register SrcReg = StoreMI.getValueReg();
3087   Register PtrReg = StoreMI.getPointerReg();
3088   LLT SrcTy = MRI.getType(SrcReg);
3089   MachineFunction &MF = MIRBuilder.getMF();
3090   MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3091   LLT MemTy = MMO.getMemoryType();
3092 
3093   unsigned StoreWidth = MemTy.getSizeInBits();
3094   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3095 
3096   if (StoreWidth != StoreSizeInBits) {
3097     if (SrcTy.isVector())
3098       return UnableToLegalize;
3099 
3100     // Promote to a byte-sized store with upper bits zero if not
3101     // storing an integral number of bytes.  For example, promote
3102     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3103     LLT WideTy = LLT::scalar(StoreSizeInBits);
3104 
3105     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3106       // Avoid creating a store with a narrower source than result.
3107       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3108       SrcTy = WideTy;
3109     }
3110 
3111     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3112 
3113     MachineMemOperand *NewMMO =
3114         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3115     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3116     StoreMI.eraseFromParent();
3117     return Legalized;
3118   }
3119 
3120   if (MemTy.isVector()) {
3121     // TODO: Handle vector trunc stores
3122     if (MemTy != SrcTy)
3123       return UnableToLegalize;
3124 
3125     // TODO: We can do better than scalarizing the vector and at least split it
3126     // in half.
3127     return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3128   }
3129 
3130   unsigned MemSizeInBits = MemTy.getSizeInBits();
3131   uint64_t LargeSplitSize, SmallSplitSize;
3132 
3133   if (!isPowerOf2_32(MemSizeInBits)) {
3134     LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3135     SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3136   } else {
3137     auto &Ctx = MF.getFunction().getContext();
3138     if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3139       return UnableToLegalize; // Don't know what we're being asked to do.
3140 
3141     SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3142   }
3143 
3144   // Extend to the next pow-2. If this store was itself the result of lowering,
3145   // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3146   // that's wider than the stored size.
3147   unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3148   const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3149 
3150   if (SrcTy.isPointer()) {
3151     const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3152     SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3153   }
3154 
3155   auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3156 
3157   // Obtain the smaller value by shifting away the larger value.
3158   auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3159   auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3160 
3161   // Generate the PtrAdd and truncating stores.
3162   LLT PtrTy = MRI.getType(PtrReg);
3163   auto OffsetCst = MIRBuilder.buildConstant(
3164     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3165   auto SmallPtr =
3166     MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3167 
3168   MachineMemOperand *LargeMMO =
3169     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3170   MachineMemOperand *SmallMMO =
3171     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3172   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3173   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3174   StoreMI.eraseFromParent();
3175   return Legalized;
3176 }
3177 
3178 LegalizerHelper::LegalizeResult
3179 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3180   switch (MI.getOpcode()) {
3181   case TargetOpcode::G_LOAD: {
3182     if (TypeIdx != 0)
3183       return UnableToLegalize;
3184     MachineMemOperand &MMO = **MI.memoperands_begin();
3185 
3186     // Not sure how to interpret a bitcast of an extending load.
3187     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3188       return UnableToLegalize;
3189 
3190     Observer.changingInstr(MI);
3191     bitcastDst(MI, CastTy, 0);
3192     MMO.setType(CastTy);
3193     Observer.changedInstr(MI);
3194     return Legalized;
3195   }
3196   case TargetOpcode::G_STORE: {
3197     if (TypeIdx != 0)
3198       return UnableToLegalize;
3199 
3200     MachineMemOperand &MMO = **MI.memoperands_begin();
3201 
3202     // Not sure how to interpret a bitcast of a truncating store.
3203     if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3204       return UnableToLegalize;
3205 
3206     Observer.changingInstr(MI);
3207     bitcastSrc(MI, CastTy, 0);
3208     MMO.setType(CastTy);
3209     Observer.changedInstr(MI);
3210     return Legalized;
3211   }
3212   case TargetOpcode::G_SELECT: {
3213     if (TypeIdx != 0)
3214       return UnableToLegalize;
3215 
3216     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3217       LLVM_DEBUG(
3218           dbgs() << "bitcast action not implemented for vector select\n");
3219       return UnableToLegalize;
3220     }
3221 
3222     Observer.changingInstr(MI);
3223     bitcastSrc(MI, CastTy, 2);
3224     bitcastSrc(MI, CastTy, 3);
3225     bitcastDst(MI, CastTy, 0);
3226     Observer.changedInstr(MI);
3227     return Legalized;
3228   }
3229   case TargetOpcode::G_AND:
3230   case TargetOpcode::G_OR:
3231   case TargetOpcode::G_XOR: {
3232     Observer.changingInstr(MI);
3233     bitcastSrc(MI, CastTy, 1);
3234     bitcastSrc(MI, CastTy, 2);
3235     bitcastDst(MI, CastTy, 0);
3236     Observer.changedInstr(MI);
3237     return Legalized;
3238   }
3239   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3240     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3241   case TargetOpcode::G_INSERT_VECTOR_ELT:
3242     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3243   default:
3244     return UnableToLegalize;
3245   }
3246 }
3247 
3248 // Legalize an instruction by changing the opcode in place.
3249 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3250     Observer.changingInstr(MI);
3251     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3252     Observer.changedInstr(MI);
3253 }
3254 
3255 LegalizerHelper::LegalizeResult
3256 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3257   using namespace TargetOpcode;
3258 
3259   switch(MI.getOpcode()) {
3260   default:
3261     return UnableToLegalize;
3262   case TargetOpcode::G_BITCAST:
3263     return lowerBitcast(MI);
3264   case TargetOpcode::G_SREM:
3265   case TargetOpcode::G_UREM: {
3266     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3267     auto Quot =
3268         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3269                               {MI.getOperand(1), MI.getOperand(2)});
3270 
3271     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3272     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3273     MI.eraseFromParent();
3274     return Legalized;
3275   }
3276   case TargetOpcode::G_SADDO:
3277   case TargetOpcode::G_SSUBO:
3278     return lowerSADDO_SSUBO(MI);
3279   case TargetOpcode::G_UMULH:
3280   case TargetOpcode::G_SMULH:
3281     return lowerSMULH_UMULH(MI);
3282   case TargetOpcode::G_SMULO:
3283   case TargetOpcode::G_UMULO: {
3284     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3285     // result.
3286     Register Res = MI.getOperand(0).getReg();
3287     Register Overflow = MI.getOperand(1).getReg();
3288     Register LHS = MI.getOperand(2).getReg();
3289     Register RHS = MI.getOperand(3).getReg();
3290     LLT Ty = MRI.getType(Res);
3291 
3292     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3293                           ? TargetOpcode::G_SMULH
3294                           : TargetOpcode::G_UMULH;
3295 
3296     Observer.changingInstr(MI);
3297     const auto &TII = MIRBuilder.getTII();
3298     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3299     MI.removeOperand(1);
3300     Observer.changedInstr(MI);
3301 
3302     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3303     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3304 
3305     // Move insert point forward so we can use the Res register if needed.
3306     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3307 
3308     // For *signed* multiply, overflow is detected by checking:
3309     // (hi != (lo >> bitwidth-1))
3310     if (Opcode == TargetOpcode::G_SMULH) {
3311       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3312       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3313       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3314     } else {
3315       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3316     }
3317     return Legalized;
3318   }
3319   case TargetOpcode::G_FNEG: {
3320     Register Res = MI.getOperand(0).getReg();
3321     LLT Ty = MRI.getType(Res);
3322 
3323     // TODO: Handle vector types once we are able to
3324     // represent them.
3325     if (Ty.isVector())
3326       return UnableToLegalize;
3327     auto SignMask =
3328         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3329     Register SubByReg = MI.getOperand(1).getReg();
3330     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3331     MI.eraseFromParent();
3332     return Legalized;
3333   }
3334   case TargetOpcode::G_FSUB: {
3335     Register Res = MI.getOperand(0).getReg();
3336     LLT Ty = MRI.getType(Res);
3337 
3338     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3339     // First, check if G_FNEG is marked as Lower. If so, we may
3340     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3341     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3342       return UnableToLegalize;
3343     Register LHS = MI.getOperand(1).getReg();
3344     Register RHS = MI.getOperand(2).getReg();
3345     Register Neg = MRI.createGenericVirtualRegister(Ty);
3346     MIRBuilder.buildFNeg(Neg, RHS);
3347     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3348     MI.eraseFromParent();
3349     return Legalized;
3350   }
3351   case TargetOpcode::G_FMAD:
3352     return lowerFMad(MI);
3353   case TargetOpcode::G_FFLOOR:
3354     return lowerFFloor(MI);
3355   case TargetOpcode::G_INTRINSIC_ROUND:
3356     return lowerIntrinsicRound(MI);
3357   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3358     // Since round even is the assumed rounding mode for unconstrained FP
3359     // operations, rint and roundeven are the same operation.
3360     changeOpcode(MI, TargetOpcode::G_FRINT);
3361     return Legalized;
3362   }
3363   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3364     Register OldValRes = MI.getOperand(0).getReg();
3365     Register SuccessRes = MI.getOperand(1).getReg();
3366     Register Addr = MI.getOperand(2).getReg();
3367     Register CmpVal = MI.getOperand(3).getReg();
3368     Register NewVal = MI.getOperand(4).getReg();
3369     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3370                                   **MI.memoperands_begin());
3371     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3372     MI.eraseFromParent();
3373     return Legalized;
3374   }
3375   case TargetOpcode::G_LOAD:
3376   case TargetOpcode::G_SEXTLOAD:
3377   case TargetOpcode::G_ZEXTLOAD:
3378     return lowerLoad(cast<GAnyLoad>(MI));
3379   case TargetOpcode::G_STORE:
3380     return lowerStore(cast<GStore>(MI));
3381   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3382   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3383   case TargetOpcode::G_CTLZ:
3384   case TargetOpcode::G_CTTZ:
3385   case TargetOpcode::G_CTPOP:
3386     return lowerBitCount(MI);
3387   case G_UADDO: {
3388     Register Res = MI.getOperand(0).getReg();
3389     Register CarryOut = MI.getOperand(1).getReg();
3390     Register LHS = MI.getOperand(2).getReg();
3391     Register RHS = MI.getOperand(3).getReg();
3392 
3393     MIRBuilder.buildAdd(Res, LHS, RHS);
3394     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3395 
3396     MI.eraseFromParent();
3397     return Legalized;
3398   }
3399   case G_UADDE: {
3400     Register Res = MI.getOperand(0).getReg();
3401     Register CarryOut = MI.getOperand(1).getReg();
3402     Register LHS = MI.getOperand(2).getReg();
3403     Register RHS = MI.getOperand(3).getReg();
3404     Register CarryIn = MI.getOperand(4).getReg();
3405     LLT Ty = MRI.getType(Res);
3406 
3407     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3408     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3409     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3410     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3411 
3412     MI.eraseFromParent();
3413     return Legalized;
3414   }
3415   case G_USUBO: {
3416     Register Res = MI.getOperand(0).getReg();
3417     Register BorrowOut = MI.getOperand(1).getReg();
3418     Register LHS = MI.getOperand(2).getReg();
3419     Register RHS = MI.getOperand(3).getReg();
3420 
3421     MIRBuilder.buildSub(Res, LHS, RHS);
3422     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3423 
3424     MI.eraseFromParent();
3425     return Legalized;
3426   }
3427   case G_USUBE: {
3428     Register Res = MI.getOperand(0).getReg();
3429     Register BorrowOut = MI.getOperand(1).getReg();
3430     Register LHS = MI.getOperand(2).getReg();
3431     Register RHS = MI.getOperand(3).getReg();
3432     Register BorrowIn = MI.getOperand(4).getReg();
3433     const LLT CondTy = MRI.getType(BorrowOut);
3434     const LLT Ty = MRI.getType(Res);
3435 
3436     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3437     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3438     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3439 
3440     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3441     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3442     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3443 
3444     MI.eraseFromParent();
3445     return Legalized;
3446   }
3447   case G_UITOFP:
3448     return lowerUITOFP(MI);
3449   case G_SITOFP:
3450     return lowerSITOFP(MI);
3451   case G_FPTOUI:
3452     return lowerFPTOUI(MI);
3453   case G_FPTOSI:
3454     return lowerFPTOSI(MI);
3455   case G_FPTRUNC:
3456     return lowerFPTRUNC(MI);
3457   case G_FPOWI:
3458     return lowerFPOWI(MI);
3459   case G_SMIN:
3460   case G_SMAX:
3461   case G_UMIN:
3462   case G_UMAX:
3463     return lowerMinMax(MI);
3464   case G_FCOPYSIGN:
3465     return lowerFCopySign(MI);
3466   case G_FMINNUM:
3467   case G_FMAXNUM:
3468     return lowerFMinNumMaxNum(MI);
3469   case G_MERGE_VALUES:
3470     return lowerMergeValues(MI);
3471   case G_UNMERGE_VALUES:
3472     return lowerUnmergeValues(MI);
3473   case TargetOpcode::G_SEXT_INREG: {
3474     assert(MI.getOperand(2).isImm() && "Expected immediate");
3475     int64_t SizeInBits = MI.getOperand(2).getImm();
3476 
3477     Register DstReg = MI.getOperand(0).getReg();
3478     Register SrcReg = MI.getOperand(1).getReg();
3479     LLT DstTy = MRI.getType(DstReg);
3480     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3481 
3482     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3483     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3484     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3485     MI.eraseFromParent();
3486     return Legalized;
3487   }
3488   case G_EXTRACT_VECTOR_ELT:
3489   case G_INSERT_VECTOR_ELT:
3490     return lowerExtractInsertVectorElt(MI);
3491   case G_SHUFFLE_VECTOR:
3492     return lowerShuffleVector(MI);
3493   case G_DYN_STACKALLOC:
3494     return lowerDynStackAlloc(MI);
3495   case G_EXTRACT:
3496     return lowerExtract(MI);
3497   case G_INSERT:
3498     return lowerInsert(MI);
3499   case G_BSWAP:
3500     return lowerBswap(MI);
3501   case G_BITREVERSE:
3502     return lowerBitreverse(MI);
3503   case G_READ_REGISTER:
3504   case G_WRITE_REGISTER:
3505     return lowerReadWriteRegister(MI);
3506   case G_UADDSAT:
3507   case G_USUBSAT: {
3508     // Try to make a reasonable guess about which lowering strategy to use. The
3509     // target can override this with custom lowering and calling the
3510     // implementation functions.
3511     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3512     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3513       return lowerAddSubSatToMinMax(MI);
3514     return lowerAddSubSatToAddoSubo(MI);
3515   }
3516   case G_SADDSAT:
3517   case G_SSUBSAT: {
3518     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3519 
3520     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3521     // since it's a shorter expansion. However, we would need to figure out the
3522     // preferred boolean type for the carry out for the query.
3523     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3524       return lowerAddSubSatToMinMax(MI);
3525     return lowerAddSubSatToAddoSubo(MI);
3526   }
3527   case G_SSHLSAT:
3528   case G_USHLSAT:
3529     return lowerShlSat(MI);
3530   case G_ABS:
3531     return lowerAbsToAddXor(MI);
3532   case G_SELECT:
3533     return lowerSelect(MI);
3534   case G_SDIVREM:
3535   case G_UDIVREM:
3536     return lowerDIVREM(MI);
3537   case G_FSHL:
3538   case G_FSHR:
3539     return lowerFunnelShift(MI);
3540   case G_ROTL:
3541   case G_ROTR:
3542     return lowerRotate(MI);
3543   case G_MEMSET:
3544   case G_MEMCPY:
3545   case G_MEMMOVE:
3546     return lowerMemCpyFamily(MI);
3547   case G_MEMCPY_INLINE:
3548     return lowerMemcpyInline(MI);
3549   GISEL_VECREDUCE_CASES_NONSEQ
3550     return lowerVectorReduction(MI);
3551   }
3552 }
3553 
3554 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3555                                                   Align MinAlign) const {
3556   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3557   // datalayout for the preferred alignment. Also there should be a target hook
3558   // for this to allow targets to reduce the alignment and ignore the
3559   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3560   // the type.
3561   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3562 }
3563 
3564 MachineInstrBuilder
3565 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3566                                       MachinePointerInfo &PtrInfo) {
3567   MachineFunction &MF = MIRBuilder.getMF();
3568   const DataLayout &DL = MIRBuilder.getDataLayout();
3569   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3570 
3571   unsigned AddrSpace = DL.getAllocaAddrSpace();
3572   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3573 
3574   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3575   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3576 }
3577 
3578 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3579                                         LLT VecTy) {
3580   int64_t IdxVal;
3581   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3582     return IdxReg;
3583 
3584   LLT IdxTy = B.getMRI()->getType(IdxReg);
3585   unsigned NElts = VecTy.getNumElements();
3586   if (isPowerOf2_32(NElts)) {
3587     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3588     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3589   }
3590 
3591   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3592       .getReg(0);
3593 }
3594 
3595 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3596                                                   Register Index) {
3597   LLT EltTy = VecTy.getElementType();
3598 
3599   // Calculate the element offset and add it to the pointer.
3600   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3601   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3602          "Converting bits to bytes lost precision");
3603 
3604   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3605 
3606   LLT IdxTy = MRI.getType(Index);
3607   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3608                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3609 
3610   LLT PtrTy = MRI.getType(VecPtr);
3611   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3612 }
3613 
3614 #ifndef NDEBUG
3615 /// Check that all vector operands have same number of elements. Other operands
3616 /// should be listed in NonVecOp.
3617 static bool hasSameNumEltsOnAllVectorOperands(
3618     GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3619     std::initializer_list<unsigned> NonVecOpIndices) {
3620   if (MI.getNumMemOperands() != 0)
3621     return false;
3622 
3623   LLT VecTy = MRI.getType(MI.getReg(0));
3624   if (!VecTy.isVector())
3625     return false;
3626   unsigned NumElts = VecTy.getNumElements();
3627 
3628   for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3629     MachineOperand &Op = MI.getOperand(OpIdx);
3630     if (!Op.isReg()) {
3631       if (!is_contained(NonVecOpIndices, OpIdx))
3632         return false;
3633       continue;
3634     }
3635 
3636     LLT Ty = MRI.getType(Op.getReg());
3637     if (!Ty.isVector()) {
3638       if (!is_contained(NonVecOpIndices, OpIdx))
3639         return false;
3640       continue;
3641     }
3642 
3643     if (Ty.getNumElements() != NumElts)
3644       return false;
3645   }
3646 
3647   return true;
3648 }
3649 #endif
3650 
3651 /// Fill \p DstOps with DstOps that have same number of elements combined as
3652 /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
3653 /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
3654 /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
3655 static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
3656                        unsigned NumElts) {
3657   LLT LeftoverTy;
3658   assert(Ty.isVector() && "Expected vector type");
3659   LLT EltTy = Ty.getElementType();
3660   LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
3661   int NumParts, NumLeftover;
3662   std::tie(NumParts, NumLeftover) =
3663       getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
3664 
3665   assert(NumParts > 0 && "Error in getNarrowTypeBreakDown");
3666   for (int i = 0; i < NumParts; ++i) {
3667     DstOps.push_back(NarrowTy);
3668   }
3669 
3670   if (LeftoverTy.isValid()) {
3671     assert(NumLeftover == 1 && "expected exactly one leftover");
3672     DstOps.push_back(LeftoverTy);
3673   }
3674 }
3675 
3676 /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
3677 /// made from \p Op depending on operand type.
3678 static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
3679                            MachineOperand &Op) {
3680   for (unsigned i = 0; i < N; ++i) {
3681     if (Op.isReg())
3682       Ops.push_back(Op.getReg());
3683     else if (Op.isImm())
3684       Ops.push_back(Op.getImm());
3685     else if (Op.isPredicate())
3686       Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
3687     else
3688       llvm_unreachable("Unsupported type");
3689   }
3690 }
3691 
3692 // Handle splitting vector operations which need to have the same number of
3693 // elements in each type index, but each type index may have a different element
3694 // type.
3695 //
3696 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3697 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3698 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3699 //
3700 // Also handles some irregular breakdown cases, e.g.
3701 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3702 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3703 //             s64 = G_SHL s64, s32
3704 LegalizerHelper::LegalizeResult
3705 LegalizerHelper::fewerElementsVectorMultiEltType(
3706     GenericMachineInstr &MI, unsigned NumElts,
3707     std::initializer_list<unsigned> NonVecOpIndices) {
3708   assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&
3709          "Non-compatible opcode or not specified non-vector operands");
3710   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3711 
3712   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3713   unsigned NumDefs = MI.getNumDefs();
3714 
3715   // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
3716   // Build instructions with DstOps to use instruction found by CSE directly.
3717   // CSE copies found instruction into given vreg when building with vreg dest.
3718   SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
3719   // Output registers will be taken from created instructions.
3720   SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
3721   for (unsigned i = 0; i < NumDefs; ++i) {
3722     makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
3723   }
3724 
3725   // Split vector input operands into sub-vectors with NumElts elts + Leftover.
3726   // Operands listed in NonVecOpIndices will be used as is without splitting;
3727   // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
3728   // scalar condition (op 1), immediate in sext_inreg (op 2).
3729   SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
3730   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3731        ++UseIdx, ++UseNo) {
3732     if (is_contained(NonVecOpIndices, UseIdx)) {
3733       broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
3734                      MI.getOperand(UseIdx));
3735     } else {
3736       SmallVector<Register, 8> SplitPieces;
3737       extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
3738       for (auto Reg : SplitPieces)
3739         InputOpsPieces[UseNo].push_back(Reg);
3740     }
3741   }
3742 
3743   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3744 
3745   // Take i-th piece of each input operand split and build sub-vector/scalar
3746   // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
3747   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3748     SmallVector<DstOp, 2> Defs;
3749     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3750       Defs.push_back(OutputOpsPieces[DstNo][i]);
3751 
3752     SmallVector<SrcOp, 3> Uses;
3753     for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
3754       Uses.push_back(InputOpsPieces[InputNo][i]);
3755 
3756     auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
3757     for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3758       OutputRegs[DstNo].push_back(I.getReg(DstNo));
3759   }
3760 
3761   // Merge small outputs into MI's output for each def operand.
3762   if (NumLeftovers) {
3763     for (unsigned i = 0; i < NumDefs; ++i)
3764       mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
3765   } else {
3766     for (unsigned i = 0; i < NumDefs; ++i)
3767       MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]);
3768   }
3769 
3770   MI.eraseFromParent();
3771   return Legalized;
3772 }
3773 
3774 LegalizerHelper::LegalizeResult
3775 LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
3776                                         unsigned NumElts) {
3777   unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3778 
3779   unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3780   unsigned NumDefs = MI.getNumDefs();
3781 
3782   SmallVector<DstOp, 8> OutputOpsPieces;
3783   SmallVector<Register, 8> OutputRegs;
3784   makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
3785 
3786   // Instructions that perform register split will be inserted in basic block
3787   // where register is defined (basic block is in the next operand).
3788   SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
3789   for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3790        UseIdx += 2, ++UseNo) {
3791     MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
3792     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3793     extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
3794   }
3795 
3796   // Build PHIs with fewer elements.
3797   unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3798   MIRBuilder.setInsertPt(*MI.getParent(), MI);
3799   for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3800     auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
3801     Phi.addDef(
3802         MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
3803     OutputRegs.push_back(Phi.getReg(0));
3804 
3805     for (unsigned j = 0; j < NumInputs / 2; ++j) {
3806       Phi.addUse(InputOpsPieces[j][i]);
3807       Phi.add(MI.getOperand(1 + j * 2 + 1));
3808     }
3809   }
3810 
3811   // Merge small outputs into MI's def.
3812   if (NumLeftovers) {
3813     mergeMixedSubvectors(MI.getReg(0), OutputRegs);
3814   } else {
3815     MIRBuilder.buildMerge(MI.getReg(0), OutputRegs);
3816   }
3817 
3818   MI.eraseFromParent();
3819   return Legalized;
3820 }
3821 
3822 LegalizerHelper::LegalizeResult
3823 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3824                                                   unsigned TypeIdx,
3825                                                   LLT NarrowTy) {
3826   const int NumDst = MI.getNumOperands() - 1;
3827   const Register SrcReg = MI.getOperand(NumDst).getReg();
3828   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3829   LLT SrcTy = MRI.getType(SrcReg);
3830 
3831   if (TypeIdx != 1 || NarrowTy == DstTy)
3832     return UnableToLegalize;
3833 
3834   // Requires compatible types. Otherwise SrcReg should have been defined by
3835   // merge-like instruction that would get artifact combined. Most likely
3836   // instruction that defines SrcReg has to perform more/fewer elements
3837   // legalization compatible with NarrowTy.
3838   assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3839   assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3840 
3841   if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3842       (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
3843     return UnableToLegalize;
3844 
3845   // This is most likely DstTy (smaller then register size) packed in SrcTy
3846   // (larger then register size) and since unmerge was not combined it will be
3847   // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
3848   // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
3849 
3850   // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
3851   //
3852   // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
3853   // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
3854   // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
3855   auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
3856   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3857   const int PartsPerUnmerge = NumDst / NumUnmerge;
3858 
3859   for (int I = 0; I != NumUnmerge; ++I) {
3860     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3861 
3862     for (int J = 0; J != PartsPerUnmerge; ++J)
3863       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3864     MIB.addUse(Unmerge.getReg(I));
3865   }
3866 
3867   MI.eraseFromParent();
3868   return Legalized;
3869 }
3870 
3871 LegalizerHelper::LegalizeResult
3872 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3873                                           LLT NarrowTy) {
3874   Register DstReg = MI.getOperand(0).getReg();
3875   LLT DstTy = MRI.getType(DstReg);
3876   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3877   // Requires compatible types. Otherwise user of DstReg did not perform unmerge
3878   // that should have been artifact combined. Most likely instruction that uses
3879   // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
3880   assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types");
3881   assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3882   if (NarrowTy == SrcTy)
3883     return UnableToLegalize;
3884 
3885   // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
3886   // is for old mir tests. Since the changes to more/fewer elements it should no
3887   // longer be possible to generate MIR like this when starting from llvm-ir
3888   // because LCMTy approach was replaced with merge/unmerge to vector elements.
3889   if (TypeIdx == 1) {
3890     assert(SrcTy.isVector() && "Expected vector types");
3891     assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type");
3892     if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3893         (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
3894       return UnableToLegalize;
3895     // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
3896     //
3897     // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
3898     // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
3899     // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
3900     // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
3901     // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
3902     // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
3903 
3904     SmallVector<Register, 8> Elts;
3905     LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
3906     for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
3907       auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
3908       for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
3909         Elts.push_back(Unmerge.getReg(j));
3910     }
3911 
3912     SmallVector<Register, 8> NarrowTyElts;
3913     unsigned NumNarrowTyElts = NarrowTy.getNumElements();
3914     unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
3915     for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
3916          ++i, Offset += NumNarrowTyElts) {
3917       ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
3918       NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
3919     }
3920 
3921     MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3922     MI.eraseFromParent();
3923     return Legalized;
3924   }
3925 
3926   assert(TypeIdx == 0 && "Bad type index");
3927   if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
3928       (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
3929     return UnableToLegalize;
3930 
3931   // This is most likely SrcTy (smaller then register size) packed in DstTy
3932   // (larger then register size) and since merge was not combined it will be
3933   // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
3934   // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
3935 
3936   // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
3937   //
3938   // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
3939   // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
3940   // %0:_(DstTy)  = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
3941   SmallVector<Register, 8> NarrowTyElts;
3942   unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3943   unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
3944   unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
3945   for (unsigned i = 0; i < NumParts; ++i) {
3946     SmallVector<Register, 8> Sources;
3947     for (unsigned j = 0; j < NumElts; ++j)
3948       Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
3949     NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0));
3950   }
3951 
3952   MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3953   MI.eraseFromParent();
3954   return Legalized;
3955 }
3956 
3957 LegalizerHelper::LegalizeResult
3958 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3959                                                            unsigned TypeIdx,
3960                                                            LLT NarrowVecTy) {
3961   Register DstReg = MI.getOperand(0).getReg();
3962   Register SrcVec = MI.getOperand(1).getReg();
3963   Register InsertVal;
3964   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3965 
3966   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3967   if (IsInsert)
3968     InsertVal = MI.getOperand(2).getReg();
3969 
3970   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3971 
3972   // TODO: Handle total scalarization case.
3973   if (!NarrowVecTy.isVector())
3974     return UnableToLegalize;
3975 
3976   LLT VecTy = MRI.getType(SrcVec);
3977 
3978   // If the index is a constant, we can really break this down as you would
3979   // expect, and index into the target size pieces.
3980   int64_t IdxVal;
3981   auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
3982   if (MaybeCst) {
3983     IdxVal = MaybeCst->Value.getSExtValue();
3984     // Avoid out of bounds indexing the pieces.
3985     if (IdxVal >= VecTy.getNumElements()) {
3986       MIRBuilder.buildUndef(DstReg);
3987       MI.eraseFromParent();
3988       return Legalized;
3989     }
3990 
3991     SmallVector<Register, 8> VecParts;
3992     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3993 
3994     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3995     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3996                                     TargetOpcode::G_ANYEXT);
3997 
3998     unsigned NewNumElts = NarrowVecTy.getNumElements();
3999 
4000     LLT IdxTy = MRI.getType(Idx);
4001     int64_t PartIdx = IdxVal / NewNumElts;
4002     auto NewIdx =
4003         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4004 
4005     if (IsInsert) {
4006       LLT PartTy = MRI.getType(VecParts[PartIdx]);
4007 
4008       // Use the adjusted index to insert into one of the subvectors.
4009       auto InsertPart = MIRBuilder.buildInsertVectorElement(
4010           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4011       VecParts[PartIdx] = InsertPart.getReg(0);
4012 
4013       // Recombine the inserted subvector with the others to reform the result
4014       // vector.
4015       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4016     } else {
4017       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4018     }
4019 
4020     MI.eraseFromParent();
4021     return Legalized;
4022   }
4023 
4024   // With a variable index, we can't perform the operation in a smaller type, so
4025   // we're forced to expand this.
4026   //
4027   // TODO: We could emit a chain of compare/select to figure out which piece to
4028   // index.
4029   return lowerExtractInsertVectorElt(MI);
4030 }
4031 
4032 LegalizerHelper::LegalizeResult
4033 LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4034                                       LLT NarrowTy) {
4035   // FIXME: Don't know how to handle secondary types yet.
4036   if (TypeIdx != 0)
4037     return UnableToLegalize;
4038 
4039   // This implementation doesn't work for atomics. Give up instead of doing
4040   // something invalid.
4041   if (LdStMI.isAtomic())
4042     return UnableToLegalize;
4043 
4044   bool IsLoad = isa<GLoad>(LdStMI);
4045   Register ValReg = LdStMI.getReg(0);
4046   Register AddrReg = LdStMI.getPointerReg();
4047   LLT ValTy = MRI.getType(ValReg);
4048 
4049   // FIXME: Do we need a distinct NarrowMemory legalize action?
4050   if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4051     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
4052     return UnableToLegalize;
4053   }
4054 
4055   int NumParts = -1;
4056   int NumLeftover = -1;
4057   LLT LeftoverTy;
4058   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4059   if (IsLoad) {
4060     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4061   } else {
4062     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4063                      NarrowLeftoverRegs)) {
4064       NumParts = NarrowRegs.size();
4065       NumLeftover = NarrowLeftoverRegs.size();
4066     }
4067   }
4068 
4069   if (NumParts == -1)
4070     return UnableToLegalize;
4071 
4072   LLT PtrTy = MRI.getType(AddrReg);
4073   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4074 
4075   unsigned TotalSize = ValTy.getSizeInBits();
4076 
4077   // Split the load/store into PartTy sized pieces starting at Offset. If this
4078   // is a load, return the new registers in ValRegs. For a store, each elements
4079   // of ValRegs should be PartTy. Returns the next offset that needs to be
4080   // handled.
4081   bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian();
4082   auto MMO = LdStMI.getMMO();
4083   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4084                              unsigned NumParts, unsigned Offset) -> unsigned {
4085     MachineFunction &MF = MIRBuilder.getMF();
4086     unsigned PartSize = PartTy.getSizeInBits();
4087     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4088          ++Idx) {
4089       unsigned ByteOffset = Offset / 8;
4090       Register NewAddrReg;
4091 
4092       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4093 
4094       MachineMemOperand *NewMMO =
4095           MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4096 
4097       if (IsLoad) {
4098         Register Dst = MRI.createGenericVirtualRegister(PartTy);
4099         ValRegs.push_back(Dst);
4100         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4101       } else {
4102         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4103       }
4104       Offset = isBigEndian ? Offset - PartSize : Offset + PartSize;
4105     }
4106 
4107     return Offset;
4108   };
4109 
4110   unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0;
4111   unsigned HandledOffset =
4112       splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset);
4113 
4114   // Handle the rest of the register if this isn't an even type breakdown.
4115   if (LeftoverTy.isValid())
4116     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset);
4117 
4118   if (IsLoad) {
4119     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4120                 LeftoverTy, NarrowLeftoverRegs);
4121   }
4122 
4123   LdStMI.eraseFromParent();
4124   return Legalized;
4125 }
4126 
4127 LegalizerHelper::LegalizeResult
4128 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4129                                      LLT NarrowTy) {
4130   using namespace TargetOpcode;
4131   GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4132   unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4133 
4134   switch (MI.getOpcode()) {
4135   case G_IMPLICIT_DEF:
4136   case G_TRUNC:
4137   case G_AND:
4138   case G_OR:
4139   case G_XOR:
4140   case G_ADD:
4141   case G_SUB:
4142   case G_MUL:
4143   case G_PTR_ADD:
4144   case G_SMULH:
4145   case G_UMULH:
4146   case G_FADD:
4147   case G_FMUL:
4148   case G_FSUB:
4149   case G_FNEG:
4150   case G_FABS:
4151   case G_FCANONICALIZE:
4152   case G_FDIV:
4153   case G_FREM:
4154   case G_FMA:
4155   case G_FMAD:
4156   case G_FPOW:
4157   case G_FEXP:
4158   case G_FEXP2:
4159   case G_FLOG:
4160   case G_FLOG2:
4161   case G_FLOG10:
4162   case G_FNEARBYINT:
4163   case G_FCEIL:
4164   case G_FFLOOR:
4165   case G_FRINT:
4166   case G_INTRINSIC_ROUND:
4167   case G_INTRINSIC_ROUNDEVEN:
4168   case G_INTRINSIC_TRUNC:
4169   case G_FCOS:
4170   case G_FSIN:
4171   case G_FSQRT:
4172   case G_BSWAP:
4173   case G_BITREVERSE:
4174   case G_SDIV:
4175   case G_UDIV:
4176   case G_SREM:
4177   case G_UREM:
4178   case G_SDIVREM:
4179   case G_UDIVREM:
4180   case G_SMIN:
4181   case G_SMAX:
4182   case G_UMIN:
4183   case G_UMAX:
4184   case G_ABS:
4185   case G_FMINNUM:
4186   case G_FMAXNUM:
4187   case G_FMINNUM_IEEE:
4188   case G_FMAXNUM_IEEE:
4189   case G_FMINIMUM:
4190   case G_FMAXIMUM:
4191   case G_FSHL:
4192   case G_FSHR:
4193   case G_ROTL:
4194   case G_ROTR:
4195   case G_FREEZE:
4196   case G_SADDSAT:
4197   case G_SSUBSAT:
4198   case G_UADDSAT:
4199   case G_USUBSAT:
4200   case G_UMULO:
4201   case G_SMULO:
4202   case G_SHL:
4203   case G_LSHR:
4204   case G_ASHR:
4205   case G_SSHLSAT:
4206   case G_USHLSAT:
4207   case G_CTLZ:
4208   case G_CTLZ_ZERO_UNDEF:
4209   case G_CTTZ:
4210   case G_CTTZ_ZERO_UNDEF:
4211   case G_CTPOP:
4212   case G_FCOPYSIGN:
4213   case G_ZEXT:
4214   case G_SEXT:
4215   case G_ANYEXT:
4216   case G_FPEXT:
4217   case G_FPTRUNC:
4218   case G_SITOFP:
4219   case G_UITOFP:
4220   case G_FPTOSI:
4221   case G_FPTOUI:
4222   case G_INTTOPTR:
4223   case G_PTRTOINT:
4224   case G_ADDRSPACE_CAST:
4225   case G_UADDO:
4226   case G_USUBO:
4227   case G_UADDE:
4228   case G_USUBE:
4229   case G_SADDO:
4230   case G_SSUBO:
4231   case G_SADDE:
4232   case G_SSUBE:
4233     return fewerElementsVectorMultiEltType(GMI, NumElts);
4234   case G_ICMP:
4235   case G_FCMP:
4236     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4237   case G_SELECT:
4238     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4239       return fewerElementsVectorMultiEltType(GMI, NumElts);
4240     return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4241   case G_PHI:
4242     return fewerElementsVectorPhi(GMI, NumElts);
4243   case G_UNMERGE_VALUES:
4244     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4245   case G_BUILD_VECTOR:
4246     assert(TypeIdx == 0 && "not a vector type index");
4247     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4248   case G_CONCAT_VECTORS:
4249     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4250       return UnableToLegalize;
4251     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4252   case G_EXTRACT_VECTOR_ELT:
4253   case G_INSERT_VECTOR_ELT:
4254     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4255   case G_LOAD:
4256   case G_STORE:
4257     return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4258   case G_SEXT_INREG:
4259     return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4260   GISEL_VECREDUCE_CASES_NONSEQ
4261     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4262   case G_SHUFFLE_VECTOR:
4263     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4264   default:
4265     return UnableToLegalize;
4266   }
4267 }
4268 
4269 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4270     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4271   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4272   if (TypeIdx != 0)
4273     return UnableToLegalize;
4274 
4275   Register DstReg = MI.getOperand(0).getReg();
4276   Register Src1Reg = MI.getOperand(1).getReg();
4277   Register Src2Reg = MI.getOperand(2).getReg();
4278   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4279   LLT DstTy = MRI.getType(DstReg);
4280   LLT Src1Ty = MRI.getType(Src1Reg);
4281   LLT Src2Ty = MRI.getType(Src2Reg);
4282   // The shuffle should be canonicalized by now.
4283   if (DstTy != Src1Ty)
4284     return UnableToLegalize;
4285   if (DstTy != Src2Ty)
4286     return UnableToLegalize;
4287 
4288   if (!isPowerOf2_32(DstTy.getNumElements()))
4289     return UnableToLegalize;
4290 
4291   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4292   // Further legalization attempts will be needed to do split further.
4293   NarrowTy =
4294       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4295   unsigned NewElts = NarrowTy.getNumElements();
4296 
4297   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4298   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4299   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4300   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4301                         SplitSrc2Regs[1]};
4302 
4303   Register Hi, Lo;
4304 
4305   // If Lo or Hi uses elements from at most two of the four input vectors, then
4306   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4307   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4308   SmallVector<int, 16> Ops;
4309   for (unsigned High = 0; High < 2; ++High) {
4310     Register &Output = High ? Hi : Lo;
4311 
4312     // Build a shuffle mask for the output, discovering on the fly which
4313     // input vectors to use as shuffle operands (recorded in InputUsed).
4314     // If building a suitable shuffle vector proves too hard, then bail
4315     // out with useBuildVector set.
4316     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4317     unsigned FirstMaskIdx = High * NewElts;
4318     bool UseBuildVector = false;
4319     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4320       // The mask element.  This indexes into the input.
4321       int Idx = Mask[FirstMaskIdx + MaskOffset];
4322 
4323       // The input vector this mask element indexes into.
4324       unsigned Input = (unsigned)Idx / NewElts;
4325 
4326       if (Input >= array_lengthof(Inputs)) {
4327         // The mask element does not index into any input vector.
4328         Ops.push_back(-1);
4329         continue;
4330       }
4331 
4332       // Turn the index into an offset from the start of the input vector.
4333       Idx -= Input * NewElts;
4334 
4335       // Find or create a shuffle vector operand to hold this input.
4336       unsigned OpNo;
4337       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4338         if (InputUsed[OpNo] == Input) {
4339           // This input vector is already an operand.
4340           break;
4341         } else if (InputUsed[OpNo] == -1U) {
4342           // Create a new operand for this input vector.
4343           InputUsed[OpNo] = Input;
4344           break;
4345         }
4346       }
4347 
4348       if (OpNo >= array_lengthof(InputUsed)) {
4349         // More than two input vectors used!  Give up on trying to create a
4350         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4351         UseBuildVector = true;
4352         break;
4353       }
4354 
4355       // Add the mask index for the new shuffle vector.
4356       Ops.push_back(Idx + OpNo * NewElts);
4357     }
4358 
4359     if (UseBuildVector) {
4360       LLT EltTy = NarrowTy.getElementType();
4361       SmallVector<Register, 16> SVOps;
4362 
4363       // Extract the input elements by hand.
4364       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4365         // The mask element.  This indexes into the input.
4366         int Idx = Mask[FirstMaskIdx + MaskOffset];
4367 
4368         // The input vector this mask element indexes into.
4369         unsigned Input = (unsigned)Idx / NewElts;
4370 
4371         if (Input >= array_lengthof(Inputs)) {
4372           // The mask element is "undef" or indexes off the end of the input.
4373           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4374           continue;
4375         }
4376 
4377         // Turn the index into an offset from the start of the input vector.
4378         Idx -= Input * NewElts;
4379 
4380         // Extract the vector element by hand.
4381         SVOps.push_back(MIRBuilder
4382                             .buildExtractVectorElement(
4383                                 EltTy, Inputs[Input],
4384                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4385                             .getReg(0));
4386       }
4387 
4388       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4389       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4390     } else if (InputUsed[0] == -1U) {
4391       // No input vectors were used! The result is undefined.
4392       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4393     } else {
4394       Register Op0 = Inputs[InputUsed[0]];
4395       // If only one input was used, use an undefined vector for the other.
4396       Register Op1 = InputUsed[1] == -1U
4397                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4398                          : Inputs[InputUsed[1]];
4399       // At least one input vector was used. Create a new shuffle vector.
4400       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4401     }
4402 
4403     Ops.clear();
4404   }
4405 
4406   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4407   MI.eraseFromParent();
4408   return Legalized;
4409 }
4410 
4411 static unsigned getScalarOpcForReduction(unsigned Opc) {
4412   unsigned ScalarOpc;
4413   switch (Opc) {
4414   case TargetOpcode::G_VECREDUCE_FADD:
4415     ScalarOpc = TargetOpcode::G_FADD;
4416     break;
4417   case TargetOpcode::G_VECREDUCE_FMUL:
4418     ScalarOpc = TargetOpcode::G_FMUL;
4419     break;
4420   case TargetOpcode::G_VECREDUCE_FMAX:
4421     ScalarOpc = TargetOpcode::G_FMAXNUM;
4422     break;
4423   case TargetOpcode::G_VECREDUCE_FMIN:
4424     ScalarOpc = TargetOpcode::G_FMINNUM;
4425     break;
4426   case TargetOpcode::G_VECREDUCE_ADD:
4427     ScalarOpc = TargetOpcode::G_ADD;
4428     break;
4429   case TargetOpcode::G_VECREDUCE_MUL:
4430     ScalarOpc = TargetOpcode::G_MUL;
4431     break;
4432   case TargetOpcode::G_VECREDUCE_AND:
4433     ScalarOpc = TargetOpcode::G_AND;
4434     break;
4435   case TargetOpcode::G_VECREDUCE_OR:
4436     ScalarOpc = TargetOpcode::G_OR;
4437     break;
4438   case TargetOpcode::G_VECREDUCE_XOR:
4439     ScalarOpc = TargetOpcode::G_XOR;
4440     break;
4441   case TargetOpcode::G_VECREDUCE_SMAX:
4442     ScalarOpc = TargetOpcode::G_SMAX;
4443     break;
4444   case TargetOpcode::G_VECREDUCE_SMIN:
4445     ScalarOpc = TargetOpcode::G_SMIN;
4446     break;
4447   case TargetOpcode::G_VECREDUCE_UMAX:
4448     ScalarOpc = TargetOpcode::G_UMAX;
4449     break;
4450   case TargetOpcode::G_VECREDUCE_UMIN:
4451     ScalarOpc = TargetOpcode::G_UMIN;
4452     break;
4453   default:
4454     llvm_unreachable("Unhandled reduction");
4455   }
4456   return ScalarOpc;
4457 }
4458 
4459 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4460     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4461   unsigned Opc = MI.getOpcode();
4462   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4463          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4464          "Sequential reductions not expected");
4465 
4466   if (TypeIdx != 1)
4467     return UnableToLegalize;
4468 
4469   // The semantics of the normal non-sequential reductions allow us to freely
4470   // re-associate the operation.
4471   Register SrcReg = MI.getOperand(1).getReg();
4472   LLT SrcTy = MRI.getType(SrcReg);
4473   Register DstReg = MI.getOperand(0).getReg();
4474   LLT DstTy = MRI.getType(DstReg);
4475 
4476   if (NarrowTy.isVector() &&
4477       (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4478     return UnableToLegalize;
4479 
4480   unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4481   SmallVector<Register> SplitSrcs;
4482   // If NarrowTy is a scalar then we're being asked to scalarize.
4483   const unsigned NumParts =
4484       NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4485                           : SrcTy.getNumElements();
4486 
4487   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4488   if (NarrowTy.isScalar()) {
4489     if (DstTy != NarrowTy)
4490       return UnableToLegalize; // FIXME: handle implicit extensions.
4491 
4492     if (isPowerOf2_32(NumParts)) {
4493       // Generate a tree of scalar operations to reduce the critical path.
4494       SmallVector<Register> PartialResults;
4495       unsigned NumPartsLeft = NumParts;
4496       while (NumPartsLeft > 1) {
4497         for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4498           PartialResults.emplace_back(
4499               MIRBuilder
4500                   .buildInstr(ScalarOpc, {NarrowTy},
4501                               {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4502                   .getReg(0));
4503         }
4504         SplitSrcs = PartialResults;
4505         PartialResults.clear();
4506         NumPartsLeft = SplitSrcs.size();
4507       }
4508       assert(SplitSrcs.size() == 1);
4509       MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4510       MI.eraseFromParent();
4511       return Legalized;
4512     }
4513     // If we can't generate a tree, then just do sequential operations.
4514     Register Acc = SplitSrcs[0];
4515     for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4516       Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4517                 .getReg(0);
4518     MIRBuilder.buildCopy(DstReg, Acc);
4519     MI.eraseFromParent();
4520     return Legalized;
4521   }
4522   SmallVector<Register> PartialReductions;
4523   for (unsigned Part = 0; Part < NumParts; ++Part) {
4524     PartialReductions.push_back(
4525         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4526   }
4527 
4528 
4529   // If the types involved are powers of 2, we can generate intermediate vector
4530   // ops, before generating a final reduction operation.
4531   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4532       isPowerOf2_32(NarrowTy.getNumElements())) {
4533     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4534   }
4535 
4536   Register Acc = PartialReductions[0];
4537   for (unsigned Part = 1; Part < NumParts; ++Part) {
4538     if (Part == NumParts - 1) {
4539       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4540                             {Acc, PartialReductions[Part]});
4541     } else {
4542       Acc = MIRBuilder
4543                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4544                 .getReg(0);
4545     }
4546   }
4547   MI.eraseFromParent();
4548   return Legalized;
4549 }
4550 
4551 LegalizerHelper::LegalizeResult
4552 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4553                                         LLT SrcTy, LLT NarrowTy,
4554                                         unsigned ScalarOpc) {
4555   SmallVector<Register> SplitSrcs;
4556   // Split the sources into NarrowTy size pieces.
4557   extractParts(SrcReg, NarrowTy,
4558                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4559   // We're going to do a tree reduction using vector operations until we have
4560   // one NarrowTy size value left.
4561   while (SplitSrcs.size() > 1) {
4562     SmallVector<Register> PartialRdxs;
4563     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4564       Register LHS = SplitSrcs[Idx];
4565       Register RHS = SplitSrcs[Idx + 1];
4566       // Create the intermediate vector op.
4567       Register Res =
4568           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4569       PartialRdxs.push_back(Res);
4570     }
4571     SplitSrcs = std::move(PartialRdxs);
4572   }
4573   // Finally generate the requested NarrowTy based reduction.
4574   Observer.changingInstr(MI);
4575   MI.getOperand(1).setReg(SplitSrcs[0]);
4576   Observer.changedInstr(MI);
4577   return Legalized;
4578 }
4579 
4580 LegalizerHelper::LegalizeResult
4581 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4582                                              const LLT HalfTy, const LLT AmtTy) {
4583 
4584   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4585   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4586   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4587 
4588   if (Amt.isZero()) {
4589     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4590     MI.eraseFromParent();
4591     return Legalized;
4592   }
4593 
4594   LLT NVT = HalfTy;
4595   unsigned NVTBits = HalfTy.getSizeInBits();
4596   unsigned VTBits = 2 * NVTBits;
4597 
4598   SrcOp Lo(Register(0)), Hi(Register(0));
4599   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4600     if (Amt.ugt(VTBits)) {
4601       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4602     } else if (Amt.ugt(NVTBits)) {
4603       Lo = MIRBuilder.buildConstant(NVT, 0);
4604       Hi = MIRBuilder.buildShl(NVT, InL,
4605                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4606     } else if (Amt == NVTBits) {
4607       Lo = MIRBuilder.buildConstant(NVT, 0);
4608       Hi = InL;
4609     } else {
4610       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4611       auto OrLHS =
4612           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4613       auto OrRHS = MIRBuilder.buildLShr(
4614           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4615       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4616     }
4617   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4618     if (Amt.ugt(VTBits)) {
4619       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4620     } else if (Amt.ugt(NVTBits)) {
4621       Lo = MIRBuilder.buildLShr(NVT, InH,
4622                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4623       Hi = MIRBuilder.buildConstant(NVT, 0);
4624     } else if (Amt == NVTBits) {
4625       Lo = InH;
4626       Hi = MIRBuilder.buildConstant(NVT, 0);
4627     } else {
4628       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4629 
4630       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4631       auto OrRHS = MIRBuilder.buildShl(
4632           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4633 
4634       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4635       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4636     }
4637   } else {
4638     if (Amt.ugt(VTBits)) {
4639       Hi = Lo = MIRBuilder.buildAShr(
4640           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4641     } else if (Amt.ugt(NVTBits)) {
4642       Lo = MIRBuilder.buildAShr(NVT, InH,
4643                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4644       Hi = MIRBuilder.buildAShr(NVT, InH,
4645                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4646     } else if (Amt == NVTBits) {
4647       Lo = InH;
4648       Hi = MIRBuilder.buildAShr(NVT, InH,
4649                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4650     } else {
4651       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4652 
4653       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4654       auto OrRHS = MIRBuilder.buildShl(
4655           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4656 
4657       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4658       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4659     }
4660   }
4661 
4662   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4663   MI.eraseFromParent();
4664 
4665   return Legalized;
4666 }
4667 
4668 // TODO: Optimize if constant shift amount.
4669 LegalizerHelper::LegalizeResult
4670 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4671                                    LLT RequestedTy) {
4672   if (TypeIdx == 1) {
4673     Observer.changingInstr(MI);
4674     narrowScalarSrc(MI, RequestedTy, 2);
4675     Observer.changedInstr(MI);
4676     return Legalized;
4677   }
4678 
4679   Register DstReg = MI.getOperand(0).getReg();
4680   LLT DstTy = MRI.getType(DstReg);
4681   if (DstTy.isVector())
4682     return UnableToLegalize;
4683 
4684   Register Amt = MI.getOperand(2).getReg();
4685   LLT ShiftAmtTy = MRI.getType(Amt);
4686   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4687   if (DstEltSize % 2 != 0)
4688     return UnableToLegalize;
4689 
4690   // Ignore the input type. We can only go to exactly half the size of the
4691   // input. If that isn't small enough, the resulting pieces will be further
4692   // legalized.
4693   const unsigned NewBitSize = DstEltSize / 2;
4694   const LLT HalfTy = LLT::scalar(NewBitSize);
4695   const LLT CondTy = LLT::scalar(1);
4696 
4697   if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
4698     return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4699                                        ShiftAmtTy);
4700   }
4701 
4702   // TODO: Expand with known bits.
4703 
4704   // Handle the fully general expansion by an unknown amount.
4705   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4706 
4707   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4708   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4709   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4710 
4711   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4712   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4713 
4714   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4715   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4716   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4717 
4718   Register ResultRegs[2];
4719   switch (MI.getOpcode()) {
4720   case TargetOpcode::G_SHL: {
4721     // Short: ShAmt < NewBitSize
4722     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4723 
4724     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4725     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4726     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4727 
4728     // Long: ShAmt >= NewBitSize
4729     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4730     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4731 
4732     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4733     auto Hi = MIRBuilder.buildSelect(
4734         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4735 
4736     ResultRegs[0] = Lo.getReg(0);
4737     ResultRegs[1] = Hi.getReg(0);
4738     break;
4739   }
4740   case TargetOpcode::G_LSHR:
4741   case TargetOpcode::G_ASHR: {
4742     // Short: ShAmt < NewBitSize
4743     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4744 
4745     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4746     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4747     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4748 
4749     // Long: ShAmt >= NewBitSize
4750     MachineInstrBuilder HiL;
4751     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4752       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4753     } else {
4754       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4755       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4756     }
4757     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4758                                      {InH, AmtExcess});     // Lo from Hi part.
4759 
4760     auto Lo = MIRBuilder.buildSelect(
4761         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4762 
4763     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4764 
4765     ResultRegs[0] = Lo.getReg(0);
4766     ResultRegs[1] = Hi.getReg(0);
4767     break;
4768   }
4769   default:
4770     llvm_unreachable("not a shift");
4771   }
4772 
4773   MIRBuilder.buildMerge(DstReg, ResultRegs);
4774   MI.eraseFromParent();
4775   return Legalized;
4776 }
4777 
4778 LegalizerHelper::LegalizeResult
4779 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4780                                        LLT MoreTy) {
4781   assert(TypeIdx == 0 && "Expecting only Idx 0");
4782 
4783   Observer.changingInstr(MI);
4784   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4785     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4786     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4787     moreElementsVectorSrc(MI, MoreTy, I);
4788   }
4789 
4790   MachineBasicBlock &MBB = *MI.getParent();
4791   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4792   moreElementsVectorDst(MI, MoreTy, 0);
4793   Observer.changedInstr(MI);
4794   return Legalized;
4795 }
4796 
4797 LegalizerHelper::LegalizeResult
4798 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4799                                     LLT MoreTy) {
4800   unsigned Opc = MI.getOpcode();
4801   switch (Opc) {
4802   case TargetOpcode::G_IMPLICIT_DEF:
4803   case TargetOpcode::G_LOAD: {
4804     if (TypeIdx != 0)
4805       return UnableToLegalize;
4806     Observer.changingInstr(MI);
4807     moreElementsVectorDst(MI, MoreTy, 0);
4808     Observer.changedInstr(MI);
4809     return Legalized;
4810   }
4811   case TargetOpcode::G_STORE:
4812     if (TypeIdx != 0)
4813       return UnableToLegalize;
4814     Observer.changingInstr(MI);
4815     moreElementsVectorSrc(MI, MoreTy, 0);
4816     Observer.changedInstr(MI);
4817     return Legalized;
4818   case TargetOpcode::G_AND:
4819   case TargetOpcode::G_OR:
4820   case TargetOpcode::G_XOR:
4821   case TargetOpcode::G_ADD:
4822   case TargetOpcode::G_SUB:
4823   case TargetOpcode::G_MUL:
4824   case TargetOpcode::G_FADD:
4825   case TargetOpcode::G_FMUL:
4826   case TargetOpcode::G_UADDSAT:
4827   case TargetOpcode::G_USUBSAT:
4828   case TargetOpcode::G_SADDSAT:
4829   case TargetOpcode::G_SSUBSAT:
4830   case TargetOpcode::G_SMIN:
4831   case TargetOpcode::G_SMAX:
4832   case TargetOpcode::G_UMIN:
4833   case TargetOpcode::G_UMAX:
4834   case TargetOpcode::G_FMINNUM:
4835   case TargetOpcode::G_FMAXNUM:
4836   case TargetOpcode::G_FMINNUM_IEEE:
4837   case TargetOpcode::G_FMAXNUM_IEEE:
4838   case TargetOpcode::G_FMINIMUM:
4839   case TargetOpcode::G_FMAXIMUM: {
4840     Observer.changingInstr(MI);
4841     moreElementsVectorSrc(MI, MoreTy, 1);
4842     moreElementsVectorSrc(MI, MoreTy, 2);
4843     moreElementsVectorDst(MI, MoreTy, 0);
4844     Observer.changedInstr(MI);
4845     return Legalized;
4846   }
4847   case TargetOpcode::G_FMA:
4848   case TargetOpcode::G_FSHR:
4849   case TargetOpcode::G_FSHL: {
4850     Observer.changingInstr(MI);
4851     moreElementsVectorSrc(MI, MoreTy, 1);
4852     moreElementsVectorSrc(MI, MoreTy, 2);
4853     moreElementsVectorSrc(MI, MoreTy, 3);
4854     moreElementsVectorDst(MI, MoreTy, 0);
4855     Observer.changedInstr(MI);
4856     return Legalized;
4857   }
4858   case TargetOpcode::G_EXTRACT:
4859     if (TypeIdx != 1)
4860       return UnableToLegalize;
4861     Observer.changingInstr(MI);
4862     moreElementsVectorSrc(MI, MoreTy, 1);
4863     Observer.changedInstr(MI);
4864     return Legalized;
4865   case TargetOpcode::G_INSERT:
4866   case TargetOpcode::G_FREEZE:
4867   case TargetOpcode::G_FNEG:
4868   case TargetOpcode::G_FABS:
4869   case TargetOpcode::G_BSWAP:
4870   case TargetOpcode::G_FCANONICALIZE:
4871   case TargetOpcode::G_SEXT_INREG:
4872     if (TypeIdx != 0)
4873       return UnableToLegalize;
4874     Observer.changingInstr(MI);
4875     moreElementsVectorSrc(MI, MoreTy, 1);
4876     moreElementsVectorDst(MI, MoreTy, 0);
4877     Observer.changedInstr(MI);
4878     return Legalized;
4879   case TargetOpcode::G_SELECT: {
4880     Register DstReg = MI.getOperand(0).getReg();
4881     Register CondReg = MI.getOperand(1).getReg();
4882     LLT DstTy = MRI.getType(DstReg);
4883     LLT CondTy = MRI.getType(CondReg);
4884     if (TypeIdx == 1) {
4885       if (!CondTy.isScalar() ||
4886           DstTy.getElementCount() != MoreTy.getElementCount())
4887         return UnableToLegalize;
4888 
4889       // This is turning a scalar select of vectors into a vector
4890       // select. Broadcast the select condition.
4891       auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg);
4892       Observer.changingInstr(MI);
4893       MI.getOperand(1).setReg(ShufSplat.getReg(0));
4894       Observer.changedInstr(MI);
4895       return Legalized;
4896     }
4897 
4898     if (CondTy.isVector())
4899       return UnableToLegalize;
4900 
4901     Observer.changingInstr(MI);
4902     moreElementsVectorSrc(MI, MoreTy, 2);
4903     moreElementsVectorSrc(MI, MoreTy, 3);
4904     moreElementsVectorDst(MI, MoreTy, 0);
4905     Observer.changedInstr(MI);
4906     return Legalized;
4907   }
4908   case TargetOpcode::G_UNMERGE_VALUES:
4909     return UnableToLegalize;
4910   case TargetOpcode::G_PHI:
4911     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4912   case TargetOpcode::G_SHUFFLE_VECTOR:
4913     return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4914   case TargetOpcode::G_BUILD_VECTOR: {
4915     SmallVector<SrcOp, 8> Elts;
4916     for (auto Op : MI.uses()) {
4917       Elts.push_back(Op.getReg());
4918     }
4919 
4920     for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
4921       Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
4922     }
4923 
4924     MIRBuilder.buildDeleteTrailingVectorElements(
4925         MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
4926     MI.eraseFromParent();
4927     return Legalized;
4928   }
4929   case TargetOpcode::G_TRUNC: {
4930     Observer.changingInstr(MI);
4931     moreElementsVectorSrc(MI, MoreTy, 1);
4932     moreElementsVectorDst(MI, MoreTy, 0);
4933     Observer.changedInstr(MI);
4934     return Legalized;
4935   }
4936   default:
4937     return UnableToLegalize;
4938   }
4939 }
4940 
4941 LegalizerHelper::LegalizeResult
4942 LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4943                                            unsigned int TypeIdx, LLT MoreTy) {
4944   if (TypeIdx != 0)
4945     return UnableToLegalize;
4946 
4947   Register DstReg = MI.getOperand(0).getReg();
4948   Register Src1Reg = MI.getOperand(1).getReg();
4949   Register Src2Reg = MI.getOperand(2).getReg();
4950   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4951   LLT DstTy = MRI.getType(DstReg);
4952   LLT Src1Ty = MRI.getType(Src1Reg);
4953   LLT Src2Ty = MRI.getType(Src2Reg);
4954   unsigned NumElts = DstTy.getNumElements();
4955   unsigned WidenNumElts = MoreTy.getNumElements();
4956 
4957   // Expect a canonicalized shuffle.
4958   if (DstTy != Src1Ty || DstTy != Src2Ty)
4959     return UnableToLegalize;
4960 
4961   moreElementsVectorSrc(MI, MoreTy, 1);
4962   moreElementsVectorSrc(MI, MoreTy, 2);
4963 
4964   // Adjust mask based on new input vector length.
4965   SmallVector<int, 16> NewMask;
4966   for (unsigned I = 0; I != NumElts; ++I) {
4967     int Idx = Mask[I];
4968     if (Idx < static_cast<int>(NumElts))
4969       NewMask.push_back(Idx);
4970     else
4971       NewMask.push_back(Idx - NumElts + WidenNumElts);
4972   }
4973   for (unsigned I = NumElts; I != WidenNumElts; ++I)
4974     NewMask.push_back(-1);
4975   moreElementsVectorDst(MI, MoreTy, 0);
4976   MIRBuilder.setInstrAndDebugLoc(MI);
4977   MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
4978                                 MI.getOperand(1).getReg(),
4979                                 MI.getOperand(2).getReg(), NewMask);
4980   MI.eraseFromParent();
4981   return Legalized;
4982 }
4983 
4984 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4985                                         ArrayRef<Register> Src1Regs,
4986                                         ArrayRef<Register> Src2Regs,
4987                                         LLT NarrowTy) {
4988   MachineIRBuilder &B = MIRBuilder;
4989   unsigned SrcParts = Src1Regs.size();
4990   unsigned DstParts = DstRegs.size();
4991 
4992   unsigned DstIdx = 0; // Low bits of the result.
4993   Register FactorSum =
4994       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4995   DstRegs[DstIdx] = FactorSum;
4996 
4997   unsigned CarrySumPrevDstIdx;
4998   SmallVector<Register, 4> Factors;
4999 
5000   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
5001     // Collect low parts of muls for DstIdx.
5002     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
5003          i <= std::min(DstIdx, SrcParts - 1); ++i) {
5004       MachineInstrBuilder Mul =
5005           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
5006       Factors.push_back(Mul.getReg(0));
5007     }
5008     // Collect high parts of muls from previous DstIdx.
5009     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
5010          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5011       MachineInstrBuilder Umulh =
5012           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5013       Factors.push_back(Umulh.getReg(0));
5014     }
5015     // Add CarrySum from additions calculated for previous DstIdx.
5016     if (DstIdx != 1) {
5017       Factors.push_back(CarrySumPrevDstIdx);
5018     }
5019 
5020     Register CarrySum;
5021     // Add all factors and accumulate all carries into CarrySum.
5022     if (DstIdx != DstParts - 1) {
5023       MachineInstrBuilder Uaddo =
5024           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5025       FactorSum = Uaddo.getReg(0);
5026       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5027       for (unsigned i = 2; i < Factors.size(); ++i) {
5028         MachineInstrBuilder Uaddo =
5029             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5030         FactorSum = Uaddo.getReg(0);
5031         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5032         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5033       }
5034     } else {
5035       // Since value for the next index is not calculated, neither is CarrySum.
5036       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5037       for (unsigned i = 2; i < Factors.size(); ++i)
5038         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5039     }
5040 
5041     CarrySumPrevDstIdx = CarrySum;
5042     DstRegs[DstIdx] = FactorSum;
5043     Factors.clear();
5044   }
5045 }
5046 
5047 LegalizerHelper::LegalizeResult
5048 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5049                                     LLT NarrowTy) {
5050   if (TypeIdx != 0)
5051     return UnableToLegalize;
5052 
5053   Register DstReg = MI.getOperand(0).getReg();
5054   LLT DstType = MRI.getType(DstReg);
5055   // FIXME: add support for vector types
5056   if (DstType.isVector())
5057     return UnableToLegalize;
5058 
5059   unsigned Opcode = MI.getOpcode();
5060   unsigned OpO, OpE, OpF;
5061   switch (Opcode) {
5062   case TargetOpcode::G_SADDO:
5063   case TargetOpcode::G_SADDE:
5064   case TargetOpcode::G_UADDO:
5065   case TargetOpcode::G_UADDE:
5066   case TargetOpcode::G_ADD:
5067     OpO = TargetOpcode::G_UADDO;
5068     OpE = TargetOpcode::G_UADDE;
5069     OpF = TargetOpcode::G_UADDE;
5070     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5071       OpF = TargetOpcode::G_SADDE;
5072     break;
5073   case TargetOpcode::G_SSUBO:
5074   case TargetOpcode::G_SSUBE:
5075   case TargetOpcode::G_USUBO:
5076   case TargetOpcode::G_USUBE:
5077   case TargetOpcode::G_SUB:
5078     OpO = TargetOpcode::G_USUBO;
5079     OpE = TargetOpcode::G_USUBE;
5080     OpF = TargetOpcode::G_USUBE;
5081     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5082       OpF = TargetOpcode::G_SSUBE;
5083     break;
5084   default:
5085     llvm_unreachable("Unexpected add/sub opcode!");
5086   }
5087 
5088   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5089   unsigned NumDefs = MI.getNumExplicitDefs();
5090   Register Src1 = MI.getOperand(NumDefs).getReg();
5091   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5092   Register CarryDst, CarryIn;
5093   if (NumDefs == 2)
5094     CarryDst = MI.getOperand(1).getReg();
5095   if (MI.getNumOperands() == NumDefs + 3)
5096     CarryIn = MI.getOperand(NumDefs + 2).getReg();
5097 
5098   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5099   LLT LeftoverTy, DummyTy;
5100   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5101   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5102   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5103 
5104   int NarrowParts = Src1Regs.size();
5105   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5106     Src1Regs.push_back(Src1Left[I]);
5107     Src2Regs.push_back(Src2Left[I]);
5108   }
5109   DstRegs.reserve(Src1Regs.size());
5110 
5111   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5112     Register DstReg =
5113         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5114     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5115     // Forward the final carry-out to the destination register
5116     if (i == e - 1 && CarryDst)
5117       CarryOut = CarryDst;
5118 
5119     if (!CarryIn) {
5120       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5121                             {Src1Regs[i], Src2Regs[i]});
5122     } else if (i == e - 1) {
5123       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5124                             {Src1Regs[i], Src2Regs[i], CarryIn});
5125     } else {
5126       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5127                             {Src1Regs[i], Src2Regs[i], CarryIn});
5128     }
5129 
5130     DstRegs.push_back(DstReg);
5131     CarryIn = CarryOut;
5132   }
5133   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5134               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5135               makeArrayRef(DstRegs).drop_front(NarrowParts));
5136 
5137   MI.eraseFromParent();
5138   return Legalized;
5139 }
5140 
5141 LegalizerHelper::LegalizeResult
5142 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5143   Register DstReg = MI.getOperand(0).getReg();
5144   Register Src1 = MI.getOperand(1).getReg();
5145   Register Src2 = MI.getOperand(2).getReg();
5146 
5147   LLT Ty = MRI.getType(DstReg);
5148   if (Ty.isVector())
5149     return UnableToLegalize;
5150 
5151   unsigned Size = Ty.getSizeInBits();
5152   unsigned NarrowSize = NarrowTy.getSizeInBits();
5153   if (Size % NarrowSize != 0)
5154     return UnableToLegalize;
5155 
5156   unsigned NumParts = Size / NarrowSize;
5157   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5158   unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5159 
5160   SmallVector<Register, 2> Src1Parts, Src2Parts;
5161   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5162   extractParts(Src1, NarrowTy, NumParts, Src1Parts);
5163   extractParts(Src2, NarrowTy, NumParts, Src2Parts);
5164   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5165 
5166   // Take only high half of registers if this is high mul.
5167   ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5168   MIRBuilder.buildMerge(DstReg, DstRegs);
5169   MI.eraseFromParent();
5170   return Legalized;
5171 }
5172 
5173 LegalizerHelper::LegalizeResult
5174 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5175                                    LLT NarrowTy) {
5176   if (TypeIdx != 0)
5177     return UnableToLegalize;
5178 
5179   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5180 
5181   Register Src = MI.getOperand(1).getReg();
5182   LLT SrcTy = MRI.getType(Src);
5183 
5184   // If all finite floats fit into the narrowed integer type, we can just swap
5185   // out the result type. This is practically only useful for conversions from
5186   // half to at least 16-bits, so just handle the one case.
5187   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5188       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5189     return UnableToLegalize;
5190 
5191   Observer.changingInstr(MI);
5192   narrowScalarDst(MI, NarrowTy, 0,
5193                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5194   Observer.changedInstr(MI);
5195   return Legalized;
5196 }
5197 
5198 LegalizerHelper::LegalizeResult
5199 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5200                                      LLT NarrowTy) {
5201   if (TypeIdx != 1)
5202     return UnableToLegalize;
5203 
5204   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5205 
5206   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5207   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5208   // NarrowSize.
5209   if (SizeOp1 % NarrowSize != 0)
5210     return UnableToLegalize;
5211   int NumParts = SizeOp1 / NarrowSize;
5212 
5213   SmallVector<Register, 2> SrcRegs, DstRegs;
5214   SmallVector<uint64_t, 2> Indexes;
5215   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5216 
5217   Register OpReg = MI.getOperand(0).getReg();
5218   uint64_t OpStart = MI.getOperand(2).getImm();
5219   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5220   for (int i = 0; i < NumParts; ++i) {
5221     unsigned SrcStart = i * NarrowSize;
5222 
5223     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5224       // No part of the extract uses this subregister, ignore it.
5225       continue;
5226     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5227       // The entire subregister is extracted, forward the value.
5228       DstRegs.push_back(SrcRegs[i]);
5229       continue;
5230     }
5231 
5232     // OpSegStart is where this destination segment would start in OpReg if it
5233     // extended infinitely in both directions.
5234     int64_t ExtractOffset;
5235     uint64_t SegSize;
5236     if (OpStart < SrcStart) {
5237       ExtractOffset = 0;
5238       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5239     } else {
5240       ExtractOffset = OpStart - SrcStart;
5241       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5242     }
5243 
5244     Register SegReg = SrcRegs[i];
5245     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5246       // A genuine extract is needed.
5247       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5248       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5249     }
5250 
5251     DstRegs.push_back(SegReg);
5252   }
5253 
5254   Register DstReg = MI.getOperand(0).getReg();
5255   if (MRI.getType(DstReg).isVector())
5256     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5257   else if (DstRegs.size() > 1)
5258     MIRBuilder.buildMerge(DstReg, DstRegs);
5259   else
5260     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5261   MI.eraseFromParent();
5262   return Legalized;
5263 }
5264 
5265 LegalizerHelper::LegalizeResult
5266 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5267                                     LLT NarrowTy) {
5268   // FIXME: Don't know how to handle secondary types yet.
5269   if (TypeIdx != 0)
5270     return UnableToLegalize;
5271 
5272   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5273   SmallVector<uint64_t, 2> Indexes;
5274   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5275   LLT LeftoverTy;
5276   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5277                LeftoverRegs);
5278 
5279   for (Register Reg : LeftoverRegs)
5280     SrcRegs.push_back(Reg);
5281 
5282   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5283   Register OpReg = MI.getOperand(2).getReg();
5284   uint64_t OpStart = MI.getOperand(3).getImm();
5285   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5286   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5287     unsigned DstStart = I * NarrowSize;
5288 
5289     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5290       // The entire subregister is defined by this insert, forward the new
5291       // value.
5292       DstRegs.push_back(OpReg);
5293       continue;
5294     }
5295 
5296     Register SrcReg = SrcRegs[I];
5297     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5298       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5299       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5300       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5301     }
5302 
5303     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5304       // No part of the insert affects this subregister, forward the original.
5305       DstRegs.push_back(SrcReg);
5306       continue;
5307     }
5308 
5309     // OpSegStart is where this destination segment would start in OpReg if it
5310     // extended infinitely in both directions.
5311     int64_t ExtractOffset, InsertOffset;
5312     uint64_t SegSize;
5313     if (OpStart < DstStart) {
5314       InsertOffset = 0;
5315       ExtractOffset = DstStart - OpStart;
5316       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5317     } else {
5318       InsertOffset = OpStart - DstStart;
5319       ExtractOffset = 0;
5320       SegSize =
5321         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5322     }
5323 
5324     Register SegReg = OpReg;
5325     if (ExtractOffset != 0 || SegSize != OpSize) {
5326       // A genuine extract is needed.
5327       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5328       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5329     }
5330 
5331     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5332     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5333     DstRegs.push_back(DstReg);
5334   }
5335 
5336   uint64_t WideSize = DstRegs.size() * NarrowSize;
5337   Register DstReg = MI.getOperand(0).getReg();
5338   if (WideSize > RegTy.getSizeInBits()) {
5339     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5340     MIRBuilder.buildMerge(MergeReg, DstRegs);
5341     MIRBuilder.buildTrunc(DstReg, MergeReg);
5342   } else
5343     MIRBuilder.buildMerge(DstReg, DstRegs);
5344 
5345   MI.eraseFromParent();
5346   return Legalized;
5347 }
5348 
5349 LegalizerHelper::LegalizeResult
5350 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5351                                    LLT NarrowTy) {
5352   Register DstReg = MI.getOperand(0).getReg();
5353   LLT DstTy = MRI.getType(DstReg);
5354 
5355   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5356 
5357   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5358   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5359   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5360   LLT LeftoverTy;
5361   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5362                     Src0Regs, Src0LeftoverRegs))
5363     return UnableToLegalize;
5364 
5365   LLT Unused;
5366   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5367                     Src1Regs, Src1LeftoverRegs))
5368     llvm_unreachable("inconsistent extractParts result");
5369 
5370   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5371     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5372                                         {Src0Regs[I], Src1Regs[I]});
5373     DstRegs.push_back(Inst.getReg(0));
5374   }
5375 
5376   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5377     auto Inst = MIRBuilder.buildInstr(
5378       MI.getOpcode(),
5379       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5380     DstLeftoverRegs.push_back(Inst.getReg(0));
5381   }
5382 
5383   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5384               LeftoverTy, DstLeftoverRegs);
5385 
5386   MI.eraseFromParent();
5387   return Legalized;
5388 }
5389 
5390 LegalizerHelper::LegalizeResult
5391 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5392                                  LLT NarrowTy) {
5393   if (TypeIdx != 0)
5394     return UnableToLegalize;
5395 
5396   Register DstReg = MI.getOperand(0).getReg();
5397   Register SrcReg = MI.getOperand(1).getReg();
5398 
5399   LLT DstTy = MRI.getType(DstReg);
5400   if (DstTy.isVector())
5401     return UnableToLegalize;
5402 
5403   SmallVector<Register, 8> Parts;
5404   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5405   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5406   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5407 
5408   MI.eraseFromParent();
5409   return Legalized;
5410 }
5411 
5412 LegalizerHelper::LegalizeResult
5413 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5414                                     LLT NarrowTy) {
5415   if (TypeIdx != 0)
5416     return UnableToLegalize;
5417 
5418   Register CondReg = MI.getOperand(1).getReg();
5419   LLT CondTy = MRI.getType(CondReg);
5420   if (CondTy.isVector()) // TODO: Handle vselect
5421     return UnableToLegalize;
5422 
5423   Register DstReg = MI.getOperand(0).getReg();
5424   LLT DstTy = MRI.getType(DstReg);
5425 
5426   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5427   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5428   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5429   LLT LeftoverTy;
5430   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5431                     Src1Regs, Src1LeftoverRegs))
5432     return UnableToLegalize;
5433 
5434   LLT Unused;
5435   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5436                     Src2Regs, Src2LeftoverRegs))
5437     llvm_unreachable("inconsistent extractParts result");
5438 
5439   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5440     auto Select = MIRBuilder.buildSelect(NarrowTy,
5441                                          CondReg, Src1Regs[I], Src2Regs[I]);
5442     DstRegs.push_back(Select.getReg(0));
5443   }
5444 
5445   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5446     auto Select = MIRBuilder.buildSelect(
5447       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5448     DstLeftoverRegs.push_back(Select.getReg(0));
5449   }
5450 
5451   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5452               LeftoverTy, DstLeftoverRegs);
5453 
5454   MI.eraseFromParent();
5455   return Legalized;
5456 }
5457 
5458 LegalizerHelper::LegalizeResult
5459 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5460                                   LLT NarrowTy) {
5461   if (TypeIdx != 1)
5462     return UnableToLegalize;
5463 
5464   Register DstReg = MI.getOperand(0).getReg();
5465   Register SrcReg = MI.getOperand(1).getReg();
5466   LLT DstTy = MRI.getType(DstReg);
5467   LLT SrcTy = MRI.getType(SrcReg);
5468   unsigned NarrowSize = NarrowTy.getSizeInBits();
5469 
5470   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5471     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5472 
5473     MachineIRBuilder &B = MIRBuilder;
5474     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5475     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5476     auto C_0 = B.buildConstant(NarrowTy, 0);
5477     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5478                                 UnmergeSrc.getReg(1), C_0);
5479     auto LoCTLZ = IsUndef ?
5480       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5481       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5482     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5483     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5484     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5485     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5486 
5487     MI.eraseFromParent();
5488     return Legalized;
5489   }
5490 
5491   return UnableToLegalize;
5492 }
5493 
5494 LegalizerHelper::LegalizeResult
5495 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5496                                   LLT NarrowTy) {
5497   if (TypeIdx != 1)
5498     return UnableToLegalize;
5499 
5500   Register DstReg = MI.getOperand(0).getReg();
5501   Register SrcReg = MI.getOperand(1).getReg();
5502   LLT DstTy = MRI.getType(DstReg);
5503   LLT SrcTy = MRI.getType(SrcReg);
5504   unsigned NarrowSize = NarrowTy.getSizeInBits();
5505 
5506   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5507     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5508 
5509     MachineIRBuilder &B = MIRBuilder;
5510     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5511     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5512     auto C_0 = B.buildConstant(NarrowTy, 0);
5513     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5514                                 UnmergeSrc.getReg(0), C_0);
5515     auto HiCTTZ = IsUndef ?
5516       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5517       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5518     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5519     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5520     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5521     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5522 
5523     MI.eraseFromParent();
5524     return Legalized;
5525   }
5526 
5527   return UnableToLegalize;
5528 }
5529 
5530 LegalizerHelper::LegalizeResult
5531 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5532                                    LLT NarrowTy) {
5533   if (TypeIdx != 1)
5534     return UnableToLegalize;
5535 
5536   Register DstReg = MI.getOperand(0).getReg();
5537   LLT DstTy = MRI.getType(DstReg);
5538   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5539   unsigned NarrowSize = NarrowTy.getSizeInBits();
5540 
5541   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5542     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5543 
5544     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5545     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5546     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5547 
5548     MI.eraseFromParent();
5549     return Legalized;
5550   }
5551 
5552   return UnableToLegalize;
5553 }
5554 
5555 LegalizerHelper::LegalizeResult
5556 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5557   unsigned Opc = MI.getOpcode();
5558   const auto &TII = MIRBuilder.getTII();
5559   auto isSupported = [this](const LegalityQuery &Q) {
5560     auto QAction = LI.getAction(Q).Action;
5561     return QAction == Legal || QAction == Libcall || QAction == Custom;
5562   };
5563   switch (Opc) {
5564   default:
5565     return UnableToLegalize;
5566   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5567     // This trivially expands to CTLZ.
5568     Observer.changingInstr(MI);
5569     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5570     Observer.changedInstr(MI);
5571     return Legalized;
5572   }
5573   case TargetOpcode::G_CTLZ: {
5574     Register DstReg = MI.getOperand(0).getReg();
5575     Register SrcReg = MI.getOperand(1).getReg();
5576     LLT DstTy = MRI.getType(DstReg);
5577     LLT SrcTy = MRI.getType(SrcReg);
5578     unsigned Len = SrcTy.getSizeInBits();
5579 
5580     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5581       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5582       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5583       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5584       auto ICmp = MIRBuilder.buildICmp(
5585           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5586       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5587       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5588       MI.eraseFromParent();
5589       return Legalized;
5590     }
5591     // for now, we do this:
5592     // NewLen = NextPowerOf2(Len);
5593     // x = x | (x >> 1);
5594     // x = x | (x >> 2);
5595     // ...
5596     // x = x | (x >>16);
5597     // x = x | (x >>32); // for 64-bit input
5598     // Upto NewLen/2
5599     // return Len - popcount(x);
5600     //
5601     // Ref: "Hacker's Delight" by Henry Warren
5602     Register Op = SrcReg;
5603     unsigned NewLen = PowerOf2Ceil(Len);
5604     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5605       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5606       auto MIBOp = MIRBuilder.buildOr(
5607           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5608       Op = MIBOp.getReg(0);
5609     }
5610     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5611     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5612                         MIBPop);
5613     MI.eraseFromParent();
5614     return Legalized;
5615   }
5616   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5617     // This trivially expands to CTTZ.
5618     Observer.changingInstr(MI);
5619     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5620     Observer.changedInstr(MI);
5621     return Legalized;
5622   }
5623   case TargetOpcode::G_CTTZ: {
5624     Register DstReg = MI.getOperand(0).getReg();
5625     Register SrcReg = MI.getOperand(1).getReg();
5626     LLT DstTy = MRI.getType(DstReg);
5627     LLT SrcTy = MRI.getType(SrcReg);
5628 
5629     unsigned Len = SrcTy.getSizeInBits();
5630     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5631       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5632       // zero.
5633       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5634       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5635       auto ICmp = MIRBuilder.buildICmp(
5636           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5637       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5638       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5639       MI.eraseFromParent();
5640       return Legalized;
5641     }
5642     // for now, we use: { return popcount(~x & (x - 1)); }
5643     // unless the target has ctlz but not ctpop, in which case we use:
5644     // { return 32 - nlz(~x & (x-1)); }
5645     // Ref: "Hacker's Delight" by Henry Warren
5646     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5647     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5648     auto MIBTmp = MIRBuilder.buildAnd(
5649         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5650     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5651         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5652       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5653       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5654                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5655       MI.eraseFromParent();
5656       return Legalized;
5657     }
5658     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5659     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5660     return Legalized;
5661   }
5662   case TargetOpcode::G_CTPOP: {
5663     Register SrcReg = MI.getOperand(1).getReg();
5664     LLT Ty = MRI.getType(SrcReg);
5665     unsigned Size = Ty.getSizeInBits();
5666     MachineIRBuilder &B = MIRBuilder;
5667 
5668     // Count set bits in blocks of 2 bits. Default approach would be
5669     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5670     // We use following formula instead:
5671     // B2Count = val - { (val >> 1) & 0x55555555 }
5672     // since it gives same result in blocks of 2 with one instruction less.
5673     auto C_1 = B.buildConstant(Ty, 1);
5674     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5675     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5676     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5677     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5678     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5679 
5680     // In order to get count in blocks of 4 add values from adjacent block of 2.
5681     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5682     auto C_2 = B.buildConstant(Ty, 2);
5683     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5684     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5685     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5686     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5687     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5688     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5689 
5690     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5691     // addition since count value sits in range {0,...,8} and 4 bits are enough
5692     // to hold such binary values. After addition high 4 bits still hold count
5693     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5694     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5695     auto C_4 = B.buildConstant(Ty, 4);
5696     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5697     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5698     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5699     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5700     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5701 
5702     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5703     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5704     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5705     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5706     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5707 
5708     // Shift count result from 8 high bits to low bits.
5709     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5710     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5711 
5712     MI.eraseFromParent();
5713     return Legalized;
5714   }
5715   }
5716 }
5717 
5718 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5719 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5720                                         Register Reg, unsigned BW) {
5721   return matchUnaryPredicate(
5722       MRI, Reg,
5723       [=](const Constant *C) {
5724         // Null constant here means an undef.
5725         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5726         return !CI || CI->getValue().urem(BW) != 0;
5727       },
5728       /*AllowUndefs*/ true);
5729 }
5730 
5731 LegalizerHelper::LegalizeResult
5732 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5733   Register Dst = MI.getOperand(0).getReg();
5734   Register X = MI.getOperand(1).getReg();
5735   Register Y = MI.getOperand(2).getReg();
5736   Register Z = MI.getOperand(3).getReg();
5737   LLT Ty = MRI.getType(Dst);
5738   LLT ShTy = MRI.getType(Z);
5739 
5740   unsigned BW = Ty.getScalarSizeInBits();
5741 
5742   if (!isPowerOf2_32(BW))
5743     return UnableToLegalize;
5744 
5745   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5746   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5747 
5748   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5749     // fshl X, Y, Z -> fshr X, Y, -Z
5750     // fshr X, Y, Z -> fshl X, Y, -Z
5751     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5752     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5753   } else {
5754     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5755     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5756     auto One = MIRBuilder.buildConstant(ShTy, 1);
5757     if (IsFSHL) {
5758       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5759       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5760     } else {
5761       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5762       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5763     }
5764 
5765     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5766   }
5767 
5768   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5769   MI.eraseFromParent();
5770   return Legalized;
5771 }
5772 
5773 LegalizerHelper::LegalizeResult
5774 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5775   Register Dst = MI.getOperand(0).getReg();
5776   Register X = MI.getOperand(1).getReg();
5777   Register Y = MI.getOperand(2).getReg();
5778   Register Z = MI.getOperand(3).getReg();
5779   LLT Ty = MRI.getType(Dst);
5780   LLT ShTy = MRI.getType(Z);
5781 
5782   const unsigned BW = Ty.getScalarSizeInBits();
5783   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5784 
5785   Register ShX, ShY;
5786   Register ShAmt, InvShAmt;
5787 
5788   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5789   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5790     // fshl: X << C | Y >> (BW - C)
5791     // fshr: X << (BW - C) | Y >> C
5792     // where C = Z % BW is not zero
5793     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5794     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5795     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5796     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5797     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5798   } else {
5799     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5800     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5801     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5802     if (isPowerOf2_32(BW)) {
5803       // Z % BW -> Z & (BW - 1)
5804       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5805       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5806       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5807       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5808     } else {
5809       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5810       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5811       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5812     }
5813 
5814     auto One = MIRBuilder.buildConstant(ShTy, 1);
5815     if (IsFSHL) {
5816       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5817       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5818       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5819     } else {
5820       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5821       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5822       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5823     }
5824   }
5825 
5826   MIRBuilder.buildOr(Dst, ShX, ShY);
5827   MI.eraseFromParent();
5828   return Legalized;
5829 }
5830 
5831 LegalizerHelper::LegalizeResult
5832 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5833   // These operations approximately do the following (while avoiding undefined
5834   // shifts by BW):
5835   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5836   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5837   Register Dst = MI.getOperand(0).getReg();
5838   LLT Ty = MRI.getType(Dst);
5839   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5840 
5841   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5842   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5843 
5844   // TODO: Use smarter heuristic that accounts for vector legalization.
5845   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5846     return lowerFunnelShiftAsShifts(MI);
5847 
5848   // This only works for powers of 2, fallback to shifts if it fails.
5849   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5850   if (Result == UnableToLegalize)
5851     return lowerFunnelShiftAsShifts(MI);
5852   return Result;
5853 }
5854 
5855 LegalizerHelper::LegalizeResult
5856 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5857   Register Dst = MI.getOperand(0).getReg();
5858   Register Src = MI.getOperand(1).getReg();
5859   Register Amt = MI.getOperand(2).getReg();
5860   LLT AmtTy = MRI.getType(Amt);
5861   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5862   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5863   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5864   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5865   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5866   MI.eraseFromParent();
5867   return Legalized;
5868 }
5869 
5870 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5871   Register Dst = MI.getOperand(0).getReg();
5872   Register Src = MI.getOperand(1).getReg();
5873   Register Amt = MI.getOperand(2).getReg();
5874   LLT DstTy = MRI.getType(Dst);
5875   LLT SrcTy = MRI.getType(Src);
5876   LLT AmtTy = MRI.getType(Amt);
5877 
5878   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5879   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5880 
5881   MIRBuilder.setInstrAndDebugLoc(MI);
5882 
5883   // If a rotate in the other direction is supported, use it.
5884   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5885   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5886       isPowerOf2_32(EltSizeInBits))
5887     return lowerRotateWithReverseRotate(MI);
5888 
5889   // If a funnel shift is supported, use it.
5890   unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5891   unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5892   bool IsFShLegal = false;
5893   if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
5894       LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
5895     auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
5896                                 Register R3) {
5897       MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
5898       MI.eraseFromParent();
5899       return Legalized;
5900     };
5901     // If a funnel shift in the other direction is supported, use it.
5902     if (IsFShLegal) {
5903       return buildFunnelShift(FShOpc, Dst, Src, Amt);
5904     } else if (isPowerOf2_32(EltSizeInBits)) {
5905       Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
5906       return buildFunnelShift(RevFsh, Dst, Src, Amt);
5907     }
5908   }
5909 
5910   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5911   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5912   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5913   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5914   Register ShVal;
5915   Register RevShiftVal;
5916   if (isPowerOf2_32(EltSizeInBits)) {
5917     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5918     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5919     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5920     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5921     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5922     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5923     RevShiftVal =
5924         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5925   } else {
5926     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5927     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5928     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5929     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5930     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5931     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5932     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5933     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5934     RevShiftVal =
5935         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5936   }
5937   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5938   MI.eraseFromParent();
5939   return Legalized;
5940 }
5941 
5942 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5943 // representation.
5944 LegalizerHelper::LegalizeResult
5945 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5946   Register Dst = MI.getOperand(0).getReg();
5947   Register Src = MI.getOperand(1).getReg();
5948   const LLT S64 = LLT::scalar(64);
5949   const LLT S32 = LLT::scalar(32);
5950   const LLT S1 = LLT::scalar(1);
5951 
5952   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5953 
5954   // unsigned cul2f(ulong u) {
5955   //   uint lz = clz(u);
5956   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5957   //   u = (u << lz) & 0x7fffffffffffffffUL;
5958   //   ulong t = u & 0xffffffffffUL;
5959   //   uint v = (e << 23) | (uint)(u >> 40);
5960   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5961   //   return as_float(v + r);
5962   // }
5963 
5964   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5965   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5966 
5967   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5968 
5969   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5970   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5971 
5972   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5973   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5974 
5975   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5976   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5977 
5978   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5979 
5980   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5981   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5982 
5983   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5984   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5985   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5986 
5987   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5988   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5989   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5990   auto One = MIRBuilder.buildConstant(S32, 1);
5991 
5992   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5993   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5994   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5995   MIRBuilder.buildAdd(Dst, V, R);
5996 
5997   MI.eraseFromParent();
5998   return Legalized;
5999 }
6000 
6001 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
6002   Register Dst = MI.getOperand(0).getReg();
6003   Register Src = MI.getOperand(1).getReg();
6004   LLT DstTy = MRI.getType(Dst);
6005   LLT SrcTy = MRI.getType(Src);
6006 
6007   if (SrcTy == LLT::scalar(1)) {
6008     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
6009     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6010     MIRBuilder.buildSelect(Dst, Src, True, False);
6011     MI.eraseFromParent();
6012     return Legalized;
6013   }
6014 
6015   if (SrcTy != LLT::scalar(64))
6016     return UnableToLegalize;
6017 
6018   if (DstTy == LLT::scalar(32)) {
6019     // TODO: SelectionDAG has several alternative expansions to port which may
6020     // be more reasonble depending on the available instructions. If a target
6021     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6022     // intermediate type, this is probably worse.
6023     return lowerU64ToF32BitOps(MI);
6024   }
6025 
6026   return UnableToLegalize;
6027 }
6028 
6029 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6030   Register Dst = MI.getOperand(0).getReg();
6031   Register Src = MI.getOperand(1).getReg();
6032   LLT DstTy = MRI.getType(Dst);
6033   LLT SrcTy = MRI.getType(Src);
6034 
6035   const LLT S64 = LLT::scalar(64);
6036   const LLT S32 = LLT::scalar(32);
6037   const LLT S1 = LLT::scalar(1);
6038 
6039   if (SrcTy == S1) {
6040     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6041     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6042     MIRBuilder.buildSelect(Dst, Src, True, False);
6043     MI.eraseFromParent();
6044     return Legalized;
6045   }
6046 
6047   if (SrcTy != S64)
6048     return UnableToLegalize;
6049 
6050   if (DstTy == S32) {
6051     // signed cl2f(long l) {
6052     //   long s = l >> 63;
6053     //   float r = cul2f((l + s) ^ s);
6054     //   return s ? -r : r;
6055     // }
6056     Register L = Src;
6057     auto SignBit = MIRBuilder.buildConstant(S64, 63);
6058     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6059 
6060     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6061     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6062     auto R = MIRBuilder.buildUITOFP(S32, Xor);
6063 
6064     auto RNeg = MIRBuilder.buildFNeg(S32, R);
6065     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6066                                             MIRBuilder.buildConstant(S64, 0));
6067     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6068     MI.eraseFromParent();
6069     return Legalized;
6070   }
6071 
6072   return UnableToLegalize;
6073 }
6074 
6075 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6076   Register Dst = MI.getOperand(0).getReg();
6077   Register Src = MI.getOperand(1).getReg();
6078   LLT DstTy = MRI.getType(Dst);
6079   LLT SrcTy = MRI.getType(Src);
6080   const LLT S64 = LLT::scalar(64);
6081   const LLT S32 = LLT::scalar(32);
6082 
6083   if (SrcTy != S64 && SrcTy != S32)
6084     return UnableToLegalize;
6085   if (DstTy != S32 && DstTy != S64)
6086     return UnableToLegalize;
6087 
6088   // FPTOSI gives same result as FPTOUI for positive signed integers.
6089   // FPTOUI needs to deal with fp values that convert to unsigned integers
6090   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6091 
6092   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6093   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6094                                                 : APFloat::IEEEdouble(),
6095                     APInt::getZero(SrcTy.getSizeInBits()));
6096   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6097 
6098   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6099 
6100   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6101   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6102   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6103   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6104   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6105   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6106   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6107 
6108   const LLT S1 = LLT::scalar(1);
6109 
6110   MachineInstrBuilder FCMP =
6111       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6112   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6113 
6114   MI.eraseFromParent();
6115   return Legalized;
6116 }
6117 
6118 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6119   Register Dst = MI.getOperand(0).getReg();
6120   Register Src = MI.getOperand(1).getReg();
6121   LLT DstTy = MRI.getType(Dst);
6122   LLT SrcTy = MRI.getType(Src);
6123   const LLT S64 = LLT::scalar(64);
6124   const LLT S32 = LLT::scalar(32);
6125 
6126   // FIXME: Only f32 to i64 conversions are supported.
6127   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6128     return UnableToLegalize;
6129 
6130   // Expand f32 -> i64 conversion
6131   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6132   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6133 
6134   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6135 
6136   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6137   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6138 
6139   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6140   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6141 
6142   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6143                                            APInt::getSignMask(SrcEltBits));
6144   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6145   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6146   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6147   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6148 
6149   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6150   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6151   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6152 
6153   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6154   R = MIRBuilder.buildZExt(DstTy, R);
6155 
6156   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6157   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6158   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6159   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6160 
6161   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6162   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6163 
6164   const LLT S1 = LLT::scalar(1);
6165   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6166                                     S1, Exponent, ExponentLoBit);
6167 
6168   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6169 
6170   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6171   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6172 
6173   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6174 
6175   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6176                                           S1, Exponent, ZeroSrcTy);
6177 
6178   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6179   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6180 
6181   MI.eraseFromParent();
6182   return Legalized;
6183 }
6184 
6185 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6186 LegalizerHelper::LegalizeResult
6187 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6188   Register Dst = MI.getOperand(0).getReg();
6189   Register Src = MI.getOperand(1).getReg();
6190 
6191   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6192     return UnableToLegalize;
6193 
6194   const unsigned ExpMask = 0x7ff;
6195   const unsigned ExpBiasf64 = 1023;
6196   const unsigned ExpBiasf16 = 15;
6197   const LLT S32 = LLT::scalar(32);
6198   const LLT S1 = LLT::scalar(1);
6199 
6200   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6201   Register U = Unmerge.getReg(0);
6202   Register UH = Unmerge.getReg(1);
6203 
6204   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6205   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6206 
6207   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6208   // add the f16 bias (15) to get the biased exponent for the f16 format.
6209   E = MIRBuilder.buildAdd(
6210     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6211 
6212   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6213   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6214 
6215   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6216                                        MIRBuilder.buildConstant(S32, 0x1ff));
6217   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6218 
6219   auto Zero = MIRBuilder.buildConstant(S32, 0);
6220   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6221   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6222   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6223 
6224   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6225   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6226   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6227   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6228 
6229   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6230   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6231 
6232   // N = M | (E << 12);
6233   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6234   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6235 
6236   // B = clamp(1-E, 0, 13);
6237   auto One = MIRBuilder.buildConstant(S32, 1);
6238   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6239   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6240   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6241 
6242   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6243                                        MIRBuilder.buildConstant(S32, 0x1000));
6244 
6245   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6246   auto D0 = MIRBuilder.buildShl(S32, D, B);
6247 
6248   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6249                                              D0, SigSetHigh);
6250   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6251   D = MIRBuilder.buildOr(S32, D, D1);
6252 
6253   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6254   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6255 
6256   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6257   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6258 
6259   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6260                                        MIRBuilder.buildConstant(S32, 3));
6261   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6262 
6263   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6264                                        MIRBuilder.buildConstant(S32, 5));
6265   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6266 
6267   V1 = MIRBuilder.buildOr(S32, V0, V1);
6268   V = MIRBuilder.buildAdd(S32, V, V1);
6269 
6270   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6271                                        E, MIRBuilder.buildConstant(S32, 30));
6272   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6273                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6274 
6275   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6276                                          E, MIRBuilder.buildConstant(S32, 1039));
6277   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6278 
6279   // Extract the sign bit.
6280   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6281   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6282 
6283   // Insert the sign bit
6284   V = MIRBuilder.buildOr(S32, Sign, V);
6285 
6286   MIRBuilder.buildTrunc(Dst, V);
6287   MI.eraseFromParent();
6288   return Legalized;
6289 }
6290 
6291 LegalizerHelper::LegalizeResult
6292 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6293   Register Dst = MI.getOperand(0).getReg();
6294   Register Src = MI.getOperand(1).getReg();
6295 
6296   LLT DstTy = MRI.getType(Dst);
6297   LLT SrcTy = MRI.getType(Src);
6298   const LLT S64 = LLT::scalar(64);
6299   const LLT S16 = LLT::scalar(16);
6300 
6301   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6302     return lowerFPTRUNC_F64_TO_F16(MI);
6303 
6304   return UnableToLegalize;
6305 }
6306 
6307 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6308 // multiplication tree.
6309 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6310   Register Dst = MI.getOperand(0).getReg();
6311   Register Src0 = MI.getOperand(1).getReg();
6312   Register Src1 = MI.getOperand(2).getReg();
6313   LLT Ty = MRI.getType(Dst);
6314 
6315   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6316   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6317   MI.eraseFromParent();
6318   return Legalized;
6319 }
6320 
6321 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6322   switch (Opc) {
6323   case TargetOpcode::G_SMIN:
6324     return CmpInst::ICMP_SLT;
6325   case TargetOpcode::G_SMAX:
6326     return CmpInst::ICMP_SGT;
6327   case TargetOpcode::G_UMIN:
6328     return CmpInst::ICMP_ULT;
6329   case TargetOpcode::G_UMAX:
6330     return CmpInst::ICMP_UGT;
6331   default:
6332     llvm_unreachable("not in integer min/max");
6333   }
6334 }
6335 
6336 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6337   Register Dst = MI.getOperand(0).getReg();
6338   Register Src0 = MI.getOperand(1).getReg();
6339   Register Src1 = MI.getOperand(2).getReg();
6340 
6341   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6342   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6343 
6344   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6345   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6346 
6347   MI.eraseFromParent();
6348   return Legalized;
6349 }
6350 
6351 LegalizerHelper::LegalizeResult
6352 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6353   Register Dst = MI.getOperand(0).getReg();
6354   Register Src0 = MI.getOperand(1).getReg();
6355   Register Src1 = MI.getOperand(2).getReg();
6356 
6357   const LLT Src0Ty = MRI.getType(Src0);
6358   const LLT Src1Ty = MRI.getType(Src1);
6359 
6360   const int Src0Size = Src0Ty.getScalarSizeInBits();
6361   const int Src1Size = Src1Ty.getScalarSizeInBits();
6362 
6363   auto SignBitMask = MIRBuilder.buildConstant(
6364     Src0Ty, APInt::getSignMask(Src0Size));
6365 
6366   auto NotSignBitMask = MIRBuilder.buildConstant(
6367     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6368 
6369   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6370   Register And1;
6371   if (Src0Ty == Src1Ty) {
6372     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6373   } else if (Src0Size > Src1Size) {
6374     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6375     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6376     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6377     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6378   } else {
6379     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6380     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6381     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6382     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6383   }
6384 
6385   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6386   // constants are a nan and -0.0, but the final result should preserve
6387   // everything.
6388   unsigned Flags = MI.getFlags();
6389   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6390 
6391   MI.eraseFromParent();
6392   return Legalized;
6393 }
6394 
6395 LegalizerHelper::LegalizeResult
6396 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6397   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6398     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6399 
6400   Register Dst = MI.getOperand(0).getReg();
6401   Register Src0 = MI.getOperand(1).getReg();
6402   Register Src1 = MI.getOperand(2).getReg();
6403   LLT Ty = MRI.getType(Dst);
6404 
6405   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6406     // Insert canonicalizes if it's possible we need to quiet to get correct
6407     // sNaN behavior.
6408 
6409     // Note this must be done here, and not as an optimization combine in the
6410     // absence of a dedicate quiet-snan instruction as we're using an
6411     // omni-purpose G_FCANONICALIZE.
6412     if (!isKnownNeverSNaN(Src0, MRI))
6413       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6414 
6415     if (!isKnownNeverSNaN(Src1, MRI))
6416       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6417   }
6418 
6419   // If there are no nans, it's safe to simply replace this with the non-IEEE
6420   // version.
6421   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6422   MI.eraseFromParent();
6423   return Legalized;
6424 }
6425 
6426 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6427   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6428   Register DstReg = MI.getOperand(0).getReg();
6429   LLT Ty = MRI.getType(DstReg);
6430   unsigned Flags = MI.getFlags();
6431 
6432   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6433                                   Flags);
6434   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6435   MI.eraseFromParent();
6436   return Legalized;
6437 }
6438 
6439 LegalizerHelper::LegalizeResult
6440 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6441   Register DstReg = MI.getOperand(0).getReg();
6442   Register X = MI.getOperand(1).getReg();
6443   const unsigned Flags = MI.getFlags();
6444   const LLT Ty = MRI.getType(DstReg);
6445   const LLT CondTy = Ty.changeElementSize(1);
6446 
6447   // round(x) =>
6448   //  t = trunc(x);
6449   //  d = fabs(x - t);
6450   //  o = copysign(1.0f, x);
6451   //  return t + (d >= 0.5 ? o : 0.0);
6452 
6453   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6454 
6455   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6456   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6457   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6458   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6459   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6460   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6461 
6462   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6463                                   Flags);
6464   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6465 
6466   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6467 
6468   MI.eraseFromParent();
6469   return Legalized;
6470 }
6471 
6472 LegalizerHelper::LegalizeResult
6473 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6474   Register DstReg = MI.getOperand(0).getReg();
6475   Register SrcReg = MI.getOperand(1).getReg();
6476   unsigned Flags = MI.getFlags();
6477   LLT Ty = MRI.getType(DstReg);
6478   const LLT CondTy = Ty.changeElementSize(1);
6479 
6480   // result = trunc(src);
6481   // if (src < 0.0 && src != result)
6482   //   result += -1.0.
6483 
6484   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6485   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6486 
6487   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6488                                   SrcReg, Zero, Flags);
6489   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6490                                       SrcReg, Trunc, Flags);
6491   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6492   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6493 
6494   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6495   MI.eraseFromParent();
6496   return Legalized;
6497 }
6498 
6499 LegalizerHelper::LegalizeResult
6500 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6501   const unsigned NumOps = MI.getNumOperands();
6502   Register DstReg = MI.getOperand(0).getReg();
6503   Register Src0Reg = MI.getOperand(1).getReg();
6504   LLT DstTy = MRI.getType(DstReg);
6505   LLT SrcTy = MRI.getType(Src0Reg);
6506   unsigned PartSize = SrcTy.getSizeInBits();
6507 
6508   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6509   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6510 
6511   for (unsigned I = 2; I != NumOps; ++I) {
6512     const unsigned Offset = (I - 1) * PartSize;
6513 
6514     Register SrcReg = MI.getOperand(I).getReg();
6515     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6516 
6517     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6518       MRI.createGenericVirtualRegister(WideTy);
6519 
6520     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6521     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6522     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6523     ResultReg = NextResult;
6524   }
6525 
6526   if (DstTy.isPointer()) {
6527     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6528           DstTy.getAddressSpace())) {
6529       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6530       return UnableToLegalize;
6531     }
6532 
6533     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6534   }
6535 
6536   MI.eraseFromParent();
6537   return Legalized;
6538 }
6539 
6540 LegalizerHelper::LegalizeResult
6541 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6542   const unsigned NumDst = MI.getNumOperands() - 1;
6543   Register SrcReg = MI.getOperand(NumDst).getReg();
6544   Register Dst0Reg = MI.getOperand(0).getReg();
6545   LLT DstTy = MRI.getType(Dst0Reg);
6546   if (DstTy.isPointer())
6547     return UnableToLegalize; // TODO
6548 
6549   SrcReg = coerceToScalar(SrcReg);
6550   if (!SrcReg)
6551     return UnableToLegalize;
6552 
6553   // Expand scalarizing unmerge as bitcast to integer and shift.
6554   LLT IntTy = MRI.getType(SrcReg);
6555 
6556   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6557 
6558   const unsigned DstSize = DstTy.getSizeInBits();
6559   unsigned Offset = DstSize;
6560   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6561     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6562     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6563     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6564   }
6565 
6566   MI.eraseFromParent();
6567   return Legalized;
6568 }
6569 
6570 /// Lower a vector extract or insert by writing the vector to a stack temporary
6571 /// and reloading the element or vector.
6572 ///
6573 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6574 ///  =>
6575 ///  %stack_temp = G_FRAME_INDEX
6576 ///  G_STORE %vec, %stack_temp
6577 ///  %idx = clamp(%idx, %vec.getNumElements())
6578 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6579 ///  %dst = G_LOAD %element_ptr
6580 LegalizerHelper::LegalizeResult
6581 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6582   Register DstReg = MI.getOperand(0).getReg();
6583   Register SrcVec = MI.getOperand(1).getReg();
6584   Register InsertVal;
6585   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6586     InsertVal = MI.getOperand(2).getReg();
6587 
6588   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6589 
6590   LLT VecTy = MRI.getType(SrcVec);
6591   LLT EltTy = VecTy.getElementType();
6592   unsigned NumElts = VecTy.getNumElements();
6593 
6594   int64_t IdxVal;
6595   if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
6596     SmallVector<Register, 8> SrcRegs;
6597     extractParts(SrcVec, EltTy, NumElts, SrcRegs);
6598 
6599     if (InsertVal) {
6600       SrcRegs[IdxVal] = MI.getOperand(2).getReg();
6601       MIRBuilder.buildMerge(DstReg, SrcRegs);
6602     } else {
6603       MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
6604     }
6605 
6606     MI.eraseFromParent();
6607     return Legalized;
6608   }
6609 
6610   if (!EltTy.isByteSized()) { // Not implemented.
6611     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6612     return UnableToLegalize;
6613   }
6614 
6615   unsigned EltBytes = EltTy.getSizeInBytes();
6616   Align VecAlign = getStackTemporaryAlignment(VecTy);
6617   Align EltAlign;
6618 
6619   MachinePointerInfo PtrInfo;
6620   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6621                                         VecAlign, PtrInfo);
6622   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6623 
6624   // Get the pointer to the element, and be sure not to hit undefined behavior
6625   // if the index is out of bounds.
6626   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6627 
6628   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6629     int64_t Offset = IdxVal * EltBytes;
6630     PtrInfo = PtrInfo.getWithOffset(Offset);
6631     EltAlign = commonAlignment(VecAlign, Offset);
6632   } else {
6633     // We lose information with a variable offset.
6634     EltAlign = getStackTemporaryAlignment(EltTy);
6635     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6636   }
6637 
6638   if (InsertVal) {
6639     // Write the inserted element
6640     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6641 
6642     // Reload the whole vector.
6643     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6644   } else {
6645     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6646   }
6647 
6648   MI.eraseFromParent();
6649   return Legalized;
6650 }
6651 
6652 LegalizerHelper::LegalizeResult
6653 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6654   Register DstReg = MI.getOperand(0).getReg();
6655   Register Src0Reg = MI.getOperand(1).getReg();
6656   Register Src1Reg = MI.getOperand(2).getReg();
6657   LLT Src0Ty = MRI.getType(Src0Reg);
6658   LLT DstTy = MRI.getType(DstReg);
6659   LLT IdxTy = LLT::scalar(32);
6660 
6661   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6662 
6663   if (DstTy.isScalar()) {
6664     if (Src0Ty.isVector())
6665       return UnableToLegalize;
6666 
6667     // This is just a SELECT.
6668     assert(Mask.size() == 1 && "Expected a single mask element");
6669     Register Val;
6670     if (Mask[0] < 0 || Mask[0] > 1)
6671       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6672     else
6673       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6674     MIRBuilder.buildCopy(DstReg, Val);
6675     MI.eraseFromParent();
6676     return Legalized;
6677   }
6678 
6679   Register Undef;
6680   SmallVector<Register, 32> BuildVec;
6681   LLT EltTy = DstTy.getElementType();
6682 
6683   for (int Idx : Mask) {
6684     if (Idx < 0) {
6685       if (!Undef.isValid())
6686         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6687       BuildVec.push_back(Undef);
6688       continue;
6689     }
6690 
6691     if (Src0Ty.isScalar()) {
6692       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6693     } else {
6694       int NumElts = Src0Ty.getNumElements();
6695       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6696       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6697       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6698       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6699       BuildVec.push_back(Extract.getReg(0));
6700     }
6701   }
6702 
6703   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6704   MI.eraseFromParent();
6705   return Legalized;
6706 }
6707 
6708 LegalizerHelper::LegalizeResult
6709 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6710   const auto &MF = *MI.getMF();
6711   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6712   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6713     return UnableToLegalize;
6714 
6715   Register Dst = MI.getOperand(0).getReg();
6716   Register AllocSize = MI.getOperand(1).getReg();
6717   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6718 
6719   LLT PtrTy = MRI.getType(Dst);
6720   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6721 
6722   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6723   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6724   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6725 
6726   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6727   // have to generate an extra instruction to negate the alloc and then use
6728   // G_PTR_ADD to add the negative offset.
6729   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6730   if (Alignment > Align(1)) {
6731     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6732     AlignMask.negate();
6733     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6734     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6735   }
6736 
6737   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6738   MIRBuilder.buildCopy(SPReg, SPTmp);
6739   MIRBuilder.buildCopy(Dst, SPTmp);
6740 
6741   MI.eraseFromParent();
6742   return Legalized;
6743 }
6744 
6745 LegalizerHelper::LegalizeResult
6746 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6747   Register Dst = MI.getOperand(0).getReg();
6748   Register Src = MI.getOperand(1).getReg();
6749   unsigned Offset = MI.getOperand(2).getImm();
6750 
6751   LLT DstTy = MRI.getType(Dst);
6752   LLT SrcTy = MRI.getType(Src);
6753 
6754   // Extract sub-vector or one element
6755   if (SrcTy.isVector()) {
6756     unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
6757     unsigned DstSize = DstTy.getSizeInBits();
6758 
6759     if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
6760         (Offset + DstSize <= SrcTy.getSizeInBits())) {
6761       // Unmerge and allow access to each Src element for the artifact combiner.
6762       auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
6763 
6764       // Take element(s) we need to extract and copy it (merge them).
6765       SmallVector<Register, 8> SubVectorElts;
6766       for (unsigned Idx = Offset / SrcEltSize;
6767            Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
6768         SubVectorElts.push_back(Unmerge.getReg(Idx));
6769       }
6770       if (SubVectorElts.size() == 1)
6771         MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
6772       else
6773         MIRBuilder.buildMerge(Dst, SubVectorElts);
6774 
6775       MI.eraseFromParent();
6776       return Legalized;
6777     }
6778   }
6779 
6780   if (DstTy.isScalar() &&
6781       (SrcTy.isScalar() ||
6782        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6783     LLT SrcIntTy = SrcTy;
6784     if (!SrcTy.isScalar()) {
6785       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6786       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6787     }
6788 
6789     if (Offset == 0)
6790       MIRBuilder.buildTrunc(Dst, Src);
6791     else {
6792       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6793       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6794       MIRBuilder.buildTrunc(Dst, Shr);
6795     }
6796 
6797     MI.eraseFromParent();
6798     return Legalized;
6799   }
6800 
6801   return UnableToLegalize;
6802 }
6803 
6804 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6805   Register Dst = MI.getOperand(0).getReg();
6806   Register Src = MI.getOperand(1).getReg();
6807   Register InsertSrc = MI.getOperand(2).getReg();
6808   uint64_t Offset = MI.getOperand(3).getImm();
6809 
6810   LLT DstTy = MRI.getType(Src);
6811   LLT InsertTy = MRI.getType(InsertSrc);
6812 
6813   // Insert sub-vector or one element
6814   if (DstTy.isVector() && !InsertTy.isPointer()) {
6815     LLT EltTy = DstTy.getElementType();
6816     unsigned EltSize = EltTy.getSizeInBits();
6817     unsigned InsertSize = InsertTy.getSizeInBits();
6818 
6819     if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
6820         (Offset + InsertSize <= DstTy.getSizeInBits())) {
6821       auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
6822       SmallVector<Register, 8> DstElts;
6823       unsigned Idx = 0;
6824       // Elements from Src before insert start Offset
6825       for (; Idx < Offset / EltSize; ++Idx) {
6826         DstElts.push_back(UnmergeSrc.getReg(Idx));
6827       }
6828 
6829       // Replace elements in Src with elements from InsertSrc
6830       if (InsertTy.getSizeInBits() > EltSize) {
6831         auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
6832         for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
6833              ++Idx, ++i) {
6834           DstElts.push_back(UnmergeInsertSrc.getReg(i));
6835         }
6836       } else {
6837         DstElts.push_back(InsertSrc);
6838         ++Idx;
6839       }
6840 
6841       // Remaining elements from Src after insert
6842       for (; Idx < DstTy.getNumElements(); ++Idx) {
6843         DstElts.push_back(UnmergeSrc.getReg(Idx));
6844       }
6845 
6846       MIRBuilder.buildMerge(Dst, DstElts);
6847       MI.eraseFromParent();
6848       return Legalized;
6849     }
6850   }
6851 
6852   if (InsertTy.isVector() ||
6853       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6854     return UnableToLegalize;
6855 
6856   const DataLayout &DL = MIRBuilder.getDataLayout();
6857   if ((DstTy.isPointer() &&
6858        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6859       (InsertTy.isPointer() &&
6860        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6861     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6862     return UnableToLegalize;
6863   }
6864 
6865   LLT IntDstTy = DstTy;
6866 
6867   if (!DstTy.isScalar()) {
6868     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6869     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6870   }
6871 
6872   if (!InsertTy.isScalar()) {
6873     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6874     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6875   }
6876 
6877   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6878   if (Offset != 0) {
6879     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6880     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6881   }
6882 
6883   APInt MaskVal = APInt::getBitsSetWithWrap(
6884       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6885 
6886   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6887   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6888   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6889 
6890   MIRBuilder.buildCast(Dst, Or);
6891   MI.eraseFromParent();
6892   return Legalized;
6893 }
6894 
6895 LegalizerHelper::LegalizeResult
6896 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6897   Register Dst0 = MI.getOperand(0).getReg();
6898   Register Dst1 = MI.getOperand(1).getReg();
6899   Register LHS = MI.getOperand(2).getReg();
6900   Register RHS = MI.getOperand(3).getReg();
6901   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6902 
6903   LLT Ty = MRI.getType(Dst0);
6904   LLT BoolTy = MRI.getType(Dst1);
6905 
6906   if (IsAdd)
6907     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6908   else
6909     MIRBuilder.buildSub(Dst0, LHS, RHS);
6910 
6911   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6912 
6913   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6914 
6915   // For an addition, the result should be less than one of the operands (LHS)
6916   // if and only if the other operand (RHS) is negative, otherwise there will
6917   // be overflow.
6918   // For a subtraction, the result should be less than one of the operands
6919   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6920   // otherwise there will be overflow.
6921   auto ResultLowerThanLHS =
6922       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6923   auto ConditionRHS = MIRBuilder.buildICmp(
6924       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6925 
6926   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6927   MI.eraseFromParent();
6928   return Legalized;
6929 }
6930 
6931 LegalizerHelper::LegalizeResult
6932 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6933   Register Res = MI.getOperand(0).getReg();
6934   Register LHS = MI.getOperand(1).getReg();
6935   Register RHS = MI.getOperand(2).getReg();
6936   LLT Ty = MRI.getType(Res);
6937   bool IsSigned;
6938   bool IsAdd;
6939   unsigned BaseOp;
6940   switch (MI.getOpcode()) {
6941   default:
6942     llvm_unreachable("unexpected addsat/subsat opcode");
6943   case TargetOpcode::G_UADDSAT:
6944     IsSigned = false;
6945     IsAdd = true;
6946     BaseOp = TargetOpcode::G_ADD;
6947     break;
6948   case TargetOpcode::G_SADDSAT:
6949     IsSigned = true;
6950     IsAdd = true;
6951     BaseOp = TargetOpcode::G_ADD;
6952     break;
6953   case TargetOpcode::G_USUBSAT:
6954     IsSigned = false;
6955     IsAdd = false;
6956     BaseOp = TargetOpcode::G_SUB;
6957     break;
6958   case TargetOpcode::G_SSUBSAT:
6959     IsSigned = true;
6960     IsAdd = false;
6961     BaseOp = TargetOpcode::G_SUB;
6962     break;
6963   }
6964 
6965   if (IsSigned) {
6966     // sadd.sat(a, b) ->
6967     //   hi = 0x7fffffff - smax(a, 0)
6968     //   lo = 0x80000000 - smin(a, 0)
6969     //   a + smin(smax(lo, b), hi)
6970     // ssub.sat(a, b) ->
6971     //   lo = smax(a, -1) - 0x7fffffff
6972     //   hi = smin(a, -1) - 0x80000000
6973     //   a - smin(smax(lo, b), hi)
6974     // TODO: AMDGPU can use a "median of 3" instruction here:
6975     //   a +/- med3(lo, b, hi)
6976     uint64_t NumBits = Ty.getScalarSizeInBits();
6977     auto MaxVal =
6978         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6979     auto MinVal =
6980         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6981     MachineInstrBuilder Hi, Lo;
6982     if (IsAdd) {
6983       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6984       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6985       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6986     } else {
6987       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6988       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6989                                MaxVal);
6990       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6991                                MinVal);
6992     }
6993     auto RHSClamped =
6994         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6995     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6996   } else {
6997     // uadd.sat(a, b) -> a + umin(~a, b)
6998     // usub.sat(a, b) -> a - umin(a, b)
6999     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
7000     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
7001     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
7002   }
7003 
7004   MI.eraseFromParent();
7005   return Legalized;
7006 }
7007 
7008 LegalizerHelper::LegalizeResult
7009 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
7010   Register Res = MI.getOperand(0).getReg();
7011   Register LHS = MI.getOperand(1).getReg();
7012   Register RHS = MI.getOperand(2).getReg();
7013   LLT Ty = MRI.getType(Res);
7014   LLT BoolTy = Ty.changeElementSize(1);
7015   bool IsSigned;
7016   bool IsAdd;
7017   unsigned OverflowOp;
7018   switch (MI.getOpcode()) {
7019   default:
7020     llvm_unreachable("unexpected addsat/subsat opcode");
7021   case TargetOpcode::G_UADDSAT:
7022     IsSigned = false;
7023     IsAdd = true;
7024     OverflowOp = TargetOpcode::G_UADDO;
7025     break;
7026   case TargetOpcode::G_SADDSAT:
7027     IsSigned = true;
7028     IsAdd = true;
7029     OverflowOp = TargetOpcode::G_SADDO;
7030     break;
7031   case TargetOpcode::G_USUBSAT:
7032     IsSigned = false;
7033     IsAdd = false;
7034     OverflowOp = TargetOpcode::G_USUBO;
7035     break;
7036   case TargetOpcode::G_SSUBSAT:
7037     IsSigned = true;
7038     IsAdd = false;
7039     OverflowOp = TargetOpcode::G_SSUBO;
7040     break;
7041   }
7042 
7043   auto OverflowRes =
7044       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7045   Register Tmp = OverflowRes.getReg(0);
7046   Register Ov = OverflowRes.getReg(1);
7047   MachineInstrBuilder Clamp;
7048   if (IsSigned) {
7049     // sadd.sat(a, b) ->
7050     //   {tmp, ov} = saddo(a, b)
7051     //   ov ? (tmp >>s 31) + 0x80000000 : r
7052     // ssub.sat(a, b) ->
7053     //   {tmp, ov} = ssubo(a, b)
7054     //   ov ? (tmp >>s 31) + 0x80000000 : r
7055     uint64_t NumBits = Ty.getScalarSizeInBits();
7056     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7057     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7058     auto MinVal =
7059         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7060     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7061   } else {
7062     // uadd.sat(a, b) ->
7063     //   {tmp, ov} = uaddo(a, b)
7064     //   ov ? 0xffffffff : tmp
7065     // usub.sat(a, b) ->
7066     //   {tmp, ov} = usubo(a, b)
7067     //   ov ? 0 : tmp
7068     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7069   }
7070   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7071 
7072   MI.eraseFromParent();
7073   return Legalized;
7074 }
7075 
7076 LegalizerHelper::LegalizeResult
7077 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7078   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
7079           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
7080          "Expected shlsat opcode!");
7081   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7082   Register Res = MI.getOperand(0).getReg();
7083   Register LHS = MI.getOperand(1).getReg();
7084   Register RHS = MI.getOperand(2).getReg();
7085   LLT Ty = MRI.getType(Res);
7086   LLT BoolTy = Ty.changeElementSize(1);
7087 
7088   unsigned BW = Ty.getScalarSizeInBits();
7089   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7090   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7091                        : MIRBuilder.buildLShr(Ty, Result, RHS);
7092 
7093   MachineInstrBuilder SatVal;
7094   if (IsSigned) {
7095     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7096     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7097     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7098                                     MIRBuilder.buildConstant(Ty, 0));
7099     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7100   } else {
7101     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7102   }
7103   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7104   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7105 
7106   MI.eraseFromParent();
7107   return Legalized;
7108 }
7109 
7110 LegalizerHelper::LegalizeResult
7111 LegalizerHelper::lowerBswap(MachineInstr &MI) {
7112   Register Dst = MI.getOperand(0).getReg();
7113   Register Src = MI.getOperand(1).getReg();
7114   const LLT Ty = MRI.getType(Src);
7115   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7116   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7117 
7118   // Swap most and least significant byte, set remaining bytes in Res to zero.
7119   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7120   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7121   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7122   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7123 
7124   // Set i-th high/low byte in Res to i-th low/high byte from Src.
7125   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7126     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7127     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7128     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7129     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7130     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7131     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7132     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7133     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7134     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7135     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7136     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7137     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7138   }
7139   Res.getInstr()->getOperand(0).setReg(Dst);
7140 
7141   MI.eraseFromParent();
7142   return Legalized;
7143 }
7144 
7145 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
7146 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7147                                  MachineInstrBuilder Src, APInt Mask) {
7148   const LLT Ty = Dst.getLLTTy(*B.getMRI());
7149   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7150   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7151   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7152   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7153   return B.buildOr(Dst, LHS, RHS);
7154 }
7155 
7156 LegalizerHelper::LegalizeResult
7157 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7158   Register Dst = MI.getOperand(0).getReg();
7159   Register Src = MI.getOperand(1).getReg();
7160   const LLT Ty = MRI.getType(Src);
7161   unsigned Size = Ty.getSizeInBits();
7162 
7163   MachineInstrBuilder BSWAP =
7164       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7165 
7166   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7167   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7168   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7169   MachineInstrBuilder Swap4 =
7170       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7171 
7172   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7173   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7174   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7175   MachineInstrBuilder Swap2 =
7176       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7177 
7178   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7179   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7180   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7181   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7182 
7183   MI.eraseFromParent();
7184   return Legalized;
7185 }
7186 
7187 LegalizerHelper::LegalizeResult
7188 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7189   MachineFunction &MF = MIRBuilder.getMF();
7190 
7191   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7192   int NameOpIdx = IsRead ? 1 : 0;
7193   int ValRegIndex = IsRead ? 0 : 1;
7194 
7195   Register ValReg = MI.getOperand(ValRegIndex).getReg();
7196   const LLT Ty = MRI.getType(ValReg);
7197   const MDString *RegStr = cast<MDString>(
7198     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7199 
7200   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7201   if (!PhysReg.isValid())
7202     return UnableToLegalize;
7203 
7204   if (IsRead)
7205     MIRBuilder.buildCopy(ValReg, PhysReg);
7206   else
7207     MIRBuilder.buildCopy(PhysReg, ValReg);
7208 
7209   MI.eraseFromParent();
7210   return Legalized;
7211 }
7212 
7213 LegalizerHelper::LegalizeResult
7214 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7215   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7216   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7217   Register Result = MI.getOperand(0).getReg();
7218   LLT OrigTy = MRI.getType(Result);
7219   auto SizeInBits = OrigTy.getScalarSizeInBits();
7220   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7221 
7222   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7223   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7224   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7225   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7226 
7227   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7228   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7229   MIRBuilder.buildTrunc(Result, Shifted);
7230 
7231   MI.eraseFromParent();
7232   return Legalized;
7233 }
7234 
7235 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7236   // Implement vector G_SELECT in terms of XOR, AND, OR.
7237   Register DstReg = MI.getOperand(0).getReg();
7238   Register MaskReg = MI.getOperand(1).getReg();
7239   Register Op1Reg = MI.getOperand(2).getReg();
7240   Register Op2Reg = MI.getOperand(3).getReg();
7241   LLT DstTy = MRI.getType(DstReg);
7242   LLT MaskTy = MRI.getType(MaskReg);
7243   if (!DstTy.isVector())
7244     return UnableToLegalize;
7245 
7246   if (MaskTy.isScalar()) {
7247     // Turn the scalar condition into a vector condition mask.
7248 
7249     Register MaskElt = MaskReg;
7250 
7251     // The condition was potentially zero extended before, but we want a sign
7252     // extended boolean.
7253     if (MaskTy.getSizeInBits() <= DstTy.getScalarSizeInBits() &&
7254         MaskTy != LLT::scalar(1)) {
7255       MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0);
7256     }
7257 
7258     // Continue the sign extension (or truncate) to match the data type.
7259     MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(),
7260                                           MaskElt).getReg(0);
7261 
7262     // Generate a vector splat idiom.
7263     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7264     MaskReg = ShufSplat.getReg(0);
7265     MaskTy = DstTy;
7266   }
7267 
7268   if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) {
7269     return UnableToLegalize;
7270   }
7271 
7272   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7273   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7274   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7275   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7276   MI.eraseFromParent();
7277   return Legalized;
7278 }
7279 
7280 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7281   // Split DIVREM into individual instructions.
7282   unsigned Opcode = MI.getOpcode();
7283 
7284   MIRBuilder.buildInstr(
7285       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7286                                         : TargetOpcode::G_UDIV,
7287       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7288   MIRBuilder.buildInstr(
7289       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7290                                         : TargetOpcode::G_UREM,
7291       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7292   MI.eraseFromParent();
7293   return Legalized;
7294 }
7295 
7296 LegalizerHelper::LegalizeResult
7297 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7298   // Expand %res = G_ABS %a into:
7299   // %v1 = G_ASHR %a, scalar_size-1
7300   // %v2 = G_ADD %a, %v1
7301   // %res = G_XOR %v2, %v1
7302   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7303   Register OpReg = MI.getOperand(1).getReg();
7304   auto ShiftAmt =
7305       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7306   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7307   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7308   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7309   MI.eraseFromParent();
7310   return Legalized;
7311 }
7312 
7313 LegalizerHelper::LegalizeResult
7314 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7315   // Expand %res = G_ABS %a into:
7316   // %v1 = G_CONSTANT 0
7317   // %v2 = G_SUB %v1, %a
7318   // %res = G_SMAX %a, %v2
7319   Register SrcReg = MI.getOperand(1).getReg();
7320   LLT Ty = MRI.getType(SrcReg);
7321   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7322   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7323   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7324   MI.eraseFromParent();
7325   return Legalized;
7326 }
7327 
7328 LegalizerHelper::LegalizeResult
7329 LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7330   Register SrcReg = MI.getOperand(1).getReg();
7331   LLT SrcTy = MRI.getType(SrcReg);
7332   LLT DstTy = MRI.getType(SrcReg);
7333 
7334   // The source could be a scalar if the IR type was <1 x sN>.
7335   if (SrcTy.isScalar()) {
7336     if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7337       return UnableToLegalize; // FIXME: handle extension.
7338     // This can be just a plain copy.
7339     Observer.changingInstr(MI);
7340     MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7341     Observer.changedInstr(MI);
7342     return Legalized;
7343   }
7344   return UnableToLegalize;;
7345 }
7346 
7347 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
7348   // On Darwin, -Os means optimize for size without hurting performance, so
7349   // only really optimize for size when -Oz (MinSize) is used.
7350   if (MF.getTarget().getTargetTriple().isOSDarwin())
7351     return MF.getFunction().hasMinSize();
7352   return MF.getFunction().hasOptSize();
7353 }
7354 
7355 // Returns a list of types to use for memory op lowering in MemOps. A partial
7356 // port of findOptimalMemOpLowering in TargetLowering.
7357 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
7358                                           unsigned Limit, const MemOp &Op,
7359                                           unsigned DstAS, unsigned SrcAS,
7360                                           const AttributeList &FuncAttributes,
7361                                           const TargetLowering &TLI) {
7362   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
7363     return false;
7364 
7365   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
7366 
7367   if (Ty == LLT()) {
7368     // Use the largest scalar type whose alignment constraints are satisfied.
7369     // We only need to check DstAlign here as SrcAlign is always greater or
7370     // equal to DstAlign (or zero).
7371     Ty = LLT::scalar(64);
7372     if (Op.isFixedDstAlign())
7373       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
7374              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
7375         Ty = LLT::scalar(Ty.getSizeInBytes());
7376     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
7377     // FIXME: check for the largest legal type we can load/store to.
7378   }
7379 
7380   unsigned NumMemOps = 0;
7381   uint64_t Size = Op.size();
7382   while (Size) {
7383     unsigned TySize = Ty.getSizeInBytes();
7384     while (TySize > Size) {
7385       // For now, only use non-vector load / store's for the left-over pieces.
7386       LLT NewTy = Ty;
7387       // FIXME: check for mem op safety and legality of the types. Not all of
7388       // SDAGisms map cleanly to GISel concepts.
7389       if (NewTy.isVector())
7390         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
7391       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
7392       unsigned NewTySize = NewTy.getSizeInBytes();
7393       assert(NewTySize > 0 && "Could not find appropriate type");
7394 
7395       // If the new LLT cannot cover all of the remaining bits, then consider
7396       // issuing a (or a pair of) unaligned and overlapping load / store.
7397       bool Fast;
7398       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
7399       MVT VT = getMVTForLLT(Ty);
7400       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
7401           TLI.allowsMisalignedMemoryAccesses(
7402               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
7403               MachineMemOperand::MONone, &Fast) &&
7404           Fast)
7405         TySize = Size;
7406       else {
7407         Ty = NewTy;
7408         TySize = NewTySize;
7409       }
7410     }
7411 
7412     if (++NumMemOps > Limit)
7413       return false;
7414 
7415     MemOps.push_back(Ty);
7416     Size -= TySize;
7417   }
7418 
7419   return true;
7420 }
7421 
7422 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
7423   if (Ty.isVector())
7424     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
7425                                 Ty.getNumElements());
7426   return IntegerType::get(C, Ty.getSizeInBits());
7427 }
7428 
7429 // Get a vectorized representation of the memset value operand, GISel edition.
7430 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
7431   MachineRegisterInfo &MRI = *MIB.getMRI();
7432   unsigned NumBits = Ty.getScalarSizeInBits();
7433   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7434   if (!Ty.isVector() && ValVRegAndVal) {
7435     APInt Scalar = ValVRegAndVal->Value.trunc(8);
7436     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
7437     return MIB.buildConstant(Ty, SplatVal).getReg(0);
7438   }
7439 
7440   // Extend the byte value to the larger type, and then multiply by a magic
7441   // value 0x010101... in order to replicate it across every byte.
7442   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
7443   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
7444     return MIB.buildConstant(Ty, 0).getReg(0);
7445   }
7446 
7447   LLT ExtType = Ty.getScalarType();
7448   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
7449   if (NumBits > 8) {
7450     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7451     auto MagicMI = MIB.buildConstant(ExtType, Magic);
7452     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
7453   }
7454 
7455   // For vector types create a G_BUILD_VECTOR.
7456   if (Ty.isVector())
7457     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
7458 
7459   return Val;
7460 }
7461 
7462 LegalizerHelper::LegalizeResult
7463 LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
7464                              uint64_t KnownLen, Align Alignment,
7465                              bool IsVolatile) {
7466   auto &MF = *MI.getParent()->getParent();
7467   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7468   auto &DL = MF.getDataLayout();
7469   LLVMContext &C = MF.getFunction().getContext();
7470 
7471   assert(KnownLen != 0 && "Have a zero length memset length!");
7472 
7473   bool DstAlignCanChange = false;
7474   MachineFrameInfo &MFI = MF.getFrameInfo();
7475   bool OptSize = shouldLowerMemFuncForSize(MF);
7476 
7477   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7478   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7479     DstAlignCanChange = true;
7480 
7481   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
7482   std::vector<LLT> MemOps;
7483 
7484   const auto &DstMMO = **MI.memoperands_begin();
7485   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7486 
7487   auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7488   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
7489 
7490   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
7491                                      MemOp::Set(KnownLen, DstAlignCanChange,
7492                                                 Alignment,
7493                                                 /*IsZeroMemset=*/IsZeroVal,
7494                                                 /*IsVolatile=*/IsVolatile),
7495                                      DstPtrInfo.getAddrSpace(), ~0u,
7496                                      MF.getFunction().getAttributes(), TLI))
7497     return UnableToLegalize;
7498 
7499   if (DstAlignCanChange) {
7500     // Get an estimate of the type from the LLT.
7501     Type *IRTy = getTypeForLLT(MemOps[0], C);
7502     Align NewAlign = DL.getABITypeAlign(IRTy);
7503     if (NewAlign > Alignment) {
7504       Alignment = NewAlign;
7505       unsigned FI = FIDef->getOperand(1).getIndex();
7506       // Give the stack frame object a larger alignment if needed.
7507       if (MFI.getObjectAlign(FI) < Alignment)
7508         MFI.setObjectAlignment(FI, Alignment);
7509     }
7510   }
7511 
7512   MachineIRBuilder MIB(MI);
7513   // Find the largest store and generate the bit pattern for it.
7514   LLT LargestTy = MemOps[0];
7515   for (unsigned i = 1; i < MemOps.size(); i++)
7516     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
7517       LargestTy = MemOps[i];
7518 
7519   // The memset stored value is always defined as an s8, so in order to make it
7520   // work with larger store types we need to repeat the bit pattern across the
7521   // wider type.
7522   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
7523 
7524   if (!MemSetValue)
7525     return UnableToLegalize;
7526 
7527   // Generate the stores. For each store type in the list, we generate the
7528   // matching store of that type to the destination address.
7529   LLT PtrTy = MRI.getType(Dst);
7530   unsigned DstOff = 0;
7531   unsigned Size = KnownLen;
7532   for (unsigned I = 0; I < MemOps.size(); I++) {
7533     LLT Ty = MemOps[I];
7534     unsigned TySize = Ty.getSizeInBytes();
7535     if (TySize > Size) {
7536       // Issuing an unaligned load / store pair that overlaps with the previous
7537       // pair. Adjust the offset accordingly.
7538       assert(I == MemOps.size() - 1 && I != 0);
7539       DstOff -= TySize - Size;
7540     }
7541 
7542     // If this store is smaller than the largest store see whether we can get
7543     // the smaller value for free with a truncate.
7544     Register Value = MemSetValue;
7545     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
7546       MVT VT = getMVTForLLT(Ty);
7547       MVT LargestVT = getMVTForLLT(LargestTy);
7548       if (!LargestTy.isVector() && !Ty.isVector() &&
7549           TLI.isTruncateFree(LargestVT, VT))
7550         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
7551       else
7552         Value = getMemsetValue(Val, Ty, MIB);
7553       if (!Value)
7554         return UnableToLegalize;
7555     }
7556 
7557     auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
7558 
7559     Register Ptr = Dst;
7560     if (DstOff != 0) {
7561       auto Offset =
7562           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
7563       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
7564     }
7565 
7566     MIB.buildStore(Value, Ptr, *StoreMMO);
7567     DstOff += Ty.getSizeInBytes();
7568     Size -= TySize;
7569   }
7570 
7571   MI.eraseFromParent();
7572   return Legalized;
7573 }
7574 
7575 LegalizerHelper::LegalizeResult
7576 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
7577   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7578 
7579   Register Dst = MI.getOperand(0).getReg();
7580   Register Src = MI.getOperand(1).getReg();
7581   Register Len = MI.getOperand(2).getReg();
7582 
7583   const auto *MMOIt = MI.memoperands_begin();
7584   const MachineMemOperand *MemOp = *MMOIt;
7585   bool IsVolatile = MemOp->isVolatile();
7586 
7587   // See if this is a constant length copy
7588   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7589   // FIXME: support dynamically sized G_MEMCPY_INLINE
7590   assert(LenVRegAndVal &&
7591          "inline memcpy with dynamic size is not yet supported");
7592   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7593   if (KnownLen == 0) {
7594     MI.eraseFromParent();
7595     return Legalized;
7596   }
7597 
7598   const auto &DstMMO = **MI.memoperands_begin();
7599   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7600   Align DstAlign = DstMMO.getBaseAlign();
7601   Align SrcAlign = SrcMMO.getBaseAlign();
7602 
7603   return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7604                            IsVolatile);
7605 }
7606 
7607 LegalizerHelper::LegalizeResult
7608 LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
7609                                    uint64_t KnownLen, Align DstAlign,
7610                                    Align SrcAlign, bool IsVolatile) {
7611   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
7612   return lowerMemcpy(MI, Dst, Src, KnownLen,
7613                      std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
7614                      IsVolatile);
7615 }
7616 
7617 LegalizerHelper::LegalizeResult
7618 LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
7619                              uint64_t KnownLen, uint64_t Limit, Align DstAlign,
7620                              Align SrcAlign, bool IsVolatile) {
7621   auto &MF = *MI.getParent()->getParent();
7622   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7623   auto &DL = MF.getDataLayout();
7624   LLVMContext &C = MF.getFunction().getContext();
7625 
7626   assert(KnownLen != 0 && "Have a zero length memcpy length!");
7627 
7628   bool DstAlignCanChange = false;
7629   MachineFrameInfo &MFI = MF.getFrameInfo();
7630   Align Alignment = std::min(DstAlign, SrcAlign);
7631 
7632   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7633   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7634     DstAlignCanChange = true;
7635 
7636   // FIXME: infer better src pointer alignment like SelectionDAG does here.
7637   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
7638   // if the memcpy is in a tail call position.
7639 
7640   std::vector<LLT> MemOps;
7641 
7642   const auto &DstMMO = **MI.memoperands_begin();
7643   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7644   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7645   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7646 
7647   if (!findGISelOptimalMemOpLowering(
7648           MemOps, Limit,
7649           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7650                       IsVolatile),
7651           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7652           MF.getFunction().getAttributes(), TLI))
7653     return UnableToLegalize;
7654 
7655   if (DstAlignCanChange) {
7656     // Get an estimate of the type from the LLT.
7657     Type *IRTy = getTypeForLLT(MemOps[0], C);
7658     Align NewAlign = DL.getABITypeAlign(IRTy);
7659 
7660     // Don't promote to an alignment that would require dynamic stack
7661     // realignment.
7662     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7663     if (!TRI->hasStackRealignment(MF))
7664       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7665         NewAlign = NewAlign.previous();
7666 
7667     if (NewAlign > Alignment) {
7668       Alignment = NewAlign;
7669       unsigned FI = FIDef->getOperand(1).getIndex();
7670       // Give the stack frame object a larger alignment if needed.
7671       if (MFI.getObjectAlign(FI) < Alignment)
7672         MFI.setObjectAlignment(FI, Alignment);
7673     }
7674   }
7675 
7676   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
7677 
7678   MachineIRBuilder MIB(MI);
7679   // Now we need to emit a pair of load and stores for each of the types we've
7680   // collected. I.e. for each type, generate a load from the source pointer of
7681   // that type width, and then generate a corresponding store to the dest buffer
7682   // of that value loaded. This can result in a sequence of loads and stores
7683   // mixed types, depending on what the target specifies as good types to use.
7684   unsigned CurrOffset = 0;
7685   unsigned Size = KnownLen;
7686   for (auto CopyTy : MemOps) {
7687     // Issuing an unaligned load / store pair  that overlaps with the previous
7688     // pair. Adjust the offset accordingly.
7689     if (CopyTy.getSizeInBytes() > Size)
7690       CurrOffset -= CopyTy.getSizeInBytes() - Size;
7691 
7692     // Construct MMOs for the accesses.
7693     auto *LoadMMO =
7694         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7695     auto *StoreMMO =
7696         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7697 
7698     // Create the load.
7699     Register LoadPtr = Src;
7700     Register Offset;
7701     if (CurrOffset != 0) {
7702       LLT SrcTy = MRI.getType(Src);
7703       Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
7704                    .getReg(0);
7705       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7706     }
7707     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
7708 
7709     // Create the store.
7710     Register StorePtr = Dst;
7711     if (CurrOffset != 0) {
7712       LLT DstTy = MRI.getType(Dst);
7713       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7714     }
7715     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
7716     CurrOffset += CopyTy.getSizeInBytes();
7717     Size -= CopyTy.getSizeInBytes();
7718   }
7719 
7720   MI.eraseFromParent();
7721   return Legalized;
7722 }
7723 
7724 LegalizerHelper::LegalizeResult
7725 LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
7726                               uint64_t KnownLen, Align DstAlign, Align SrcAlign,
7727                               bool IsVolatile) {
7728   auto &MF = *MI.getParent()->getParent();
7729   const auto &TLI = *MF.getSubtarget().getTargetLowering();
7730   auto &DL = MF.getDataLayout();
7731   LLVMContext &C = MF.getFunction().getContext();
7732 
7733   assert(KnownLen != 0 && "Have a zero length memmove length!");
7734 
7735   bool DstAlignCanChange = false;
7736   MachineFrameInfo &MFI = MF.getFrameInfo();
7737   bool OptSize = shouldLowerMemFuncForSize(MF);
7738   Align Alignment = std::min(DstAlign, SrcAlign);
7739 
7740   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7741   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7742     DstAlignCanChange = true;
7743 
7744   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
7745   std::vector<LLT> MemOps;
7746 
7747   const auto &DstMMO = **MI.memoperands_begin();
7748   const auto &SrcMMO = **std::next(MI.memoperands_begin());
7749   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7750   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7751 
7752   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
7753   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
7754   // same thing here.
7755   if (!findGISelOptimalMemOpLowering(
7756           MemOps, Limit,
7757           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7758                       /*IsVolatile*/ true),
7759           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7760           MF.getFunction().getAttributes(), TLI))
7761     return UnableToLegalize;
7762 
7763   if (DstAlignCanChange) {
7764     // Get an estimate of the type from the LLT.
7765     Type *IRTy = getTypeForLLT(MemOps[0], C);
7766     Align NewAlign = DL.getABITypeAlign(IRTy);
7767 
7768     // Don't promote to an alignment that would require dynamic stack
7769     // realignment.
7770     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7771     if (!TRI->hasStackRealignment(MF))
7772       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7773         NewAlign = NewAlign.previous();
7774 
7775     if (NewAlign > Alignment) {
7776       Alignment = NewAlign;
7777       unsigned FI = FIDef->getOperand(1).getIndex();
7778       // Give the stack frame object a larger alignment if needed.
7779       if (MFI.getObjectAlign(FI) < Alignment)
7780         MFI.setObjectAlignment(FI, Alignment);
7781     }
7782   }
7783 
7784   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
7785 
7786   MachineIRBuilder MIB(MI);
7787   // Memmove requires that we perform the loads first before issuing the stores.
7788   // Apart from that, this loop is pretty much doing the same thing as the
7789   // memcpy codegen function.
7790   unsigned CurrOffset = 0;
7791   SmallVector<Register, 16> LoadVals;
7792   for (auto CopyTy : MemOps) {
7793     // Construct MMO for the load.
7794     auto *LoadMMO =
7795         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7796 
7797     // Create the load.
7798     Register LoadPtr = Src;
7799     if (CurrOffset != 0) {
7800       LLT SrcTy = MRI.getType(Src);
7801       auto Offset =
7802           MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
7803       LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7804     }
7805     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
7806     CurrOffset += CopyTy.getSizeInBytes();
7807   }
7808 
7809   CurrOffset = 0;
7810   for (unsigned I = 0; I < MemOps.size(); ++I) {
7811     LLT CopyTy = MemOps[I];
7812     // Now store the values loaded.
7813     auto *StoreMMO =
7814         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7815 
7816     Register StorePtr = Dst;
7817     if (CurrOffset != 0) {
7818       LLT DstTy = MRI.getType(Dst);
7819       auto Offset =
7820           MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
7821       StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7822     }
7823     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
7824     CurrOffset += CopyTy.getSizeInBytes();
7825   }
7826   MI.eraseFromParent();
7827   return Legalized;
7828 }
7829 
7830 LegalizerHelper::LegalizeResult
7831 LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
7832   const unsigned Opc = MI.getOpcode();
7833   // This combine is fairly complex so it's not written with a separate
7834   // matcher function.
7835   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
7836           Opc == TargetOpcode::G_MEMSET) &&
7837          "Expected memcpy like instruction");
7838 
7839   auto MMOIt = MI.memoperands_begin();
7840   const MachineMemOperand *MemOp = *MMOIt;
7841 
7842   Align DstAlign = MemOp->getBaseAlign();
7843   Align SrcAlign;
7844   Register Dst = MI.getOperand(0).getReg();
7845   Register Src = MI.getOperand(1).getReg();
7846   Register Len = MI.getOperand(2).getReg();
7847 
7848   if (Opc != TargetOpcode::G_MEMSET) {
7849     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
7850     MemOp = *(++MMOIt);
7851     SrcAlign = MemOp->getBaseAlign();
7852   }
7853 
7854   // See if this is a constant length copy
7855   auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7856   if (!LenVRegAndVal)
7857     return UnableToLegalize;
7858   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7859 
7860   if (KnownLen == 0) {
7861     MI.eraseFromParent();
7862     return Legalized;
7863   }
7864 
7865   bool IsVolatile = MemOp->isVolatile();
7866   if (Opc == TargetOpcode::G_MEMCPY_INLINE)
7867     return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7868                              IsVolatile);
7869 
7870   // Don't try to optimize volatile.
7871   if (IsVolatile)
7872     return UnableToLegalize;
7873 
7874   if (MaxLen && KnownLen > MaxLen)
7875     return UnableToLegalize;
7876 
7877   if (Opc == TargetOpcode::G_MEMCPY) {
7878     auto &MF = *MI.getParent()->getParent();
7879     const auto &TLI = *MF.getSubtarget().getTargetLowering();
7880     bool OptSize = shouldLowerMemFuncForSize(MF);
7881     uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
7882     return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
7883                        IsVolatile);
7884   }
7885   if (Opc == TargetOpcode::G_MEMMOVE)
7886     return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
7887   if (Opc == TargetOpcode::G_MEMSET)
7888     return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
7889   return UnableToLegalize;
7890 }
7891