1 //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 15 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 16 #include "llvm/CodeGen/MachineOperand.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 #include "llvm/CodeGen/TargetLowering.h" 19 #include "llvm/IR/Module.h" 20 21 #define DEBUG_TYPE "inline-asm-lowering" 22 23 using namespace llvm; 24 25 void InlineAsmLowering::anchor() {} 26 27 namespace { 28 29 /// GISelAsmOperandInfo - This contains information for each constraint that we 30 /// are lowering. 31 class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 32 public: 33 /// Regs - If this is a register or register class operand, this 34 /// contains the set of assigned registers corresponding to the operand. 35 SmallVector<Register, 1> Regs; 36 37 explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info) 38 : TargetLowering::AsmOperandInfo(Info) {} 39 }; 40 41 using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>; 42 43 class ExtraFlags { 44 unsigned Flags = 0; 45 46 public: 47 explicit ExtraFlags(const CallBase &CB) { 48 const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand()); 49 if (IA->hasSideEffects()) 50 Flags |= InlineAsm::Extra_HasSideEffects; 51 if (IA->isAlignStack()) 52 Flags |= InlineAsm::Extra_IsAlignStack; 53 if (CB.isConvergent()) 54 Flags |= InlineAsm::Extra_IsConvergent; 55 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 56 } 57 58 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 59 // Ideally, we would only check against memory constraints. However, the 60 // meaning of an Other constraint can be target-specific and we can't easily 61 // reason about it. Therefore, be conservative and set MayLoad/MayStore 62 // for Other constraints as well. 63 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 64 OpInfo.ConstraintType == TargetLowering::C_Other) { 65 if (OpInfo.Type == InlineAsm::isInput) 66 Flags |= InlineAsm::Extra_MayLoad; 67 else if (OpInfo.Type == InlineAsm::isOutput) 68 Flags |= InlineAsm::Extra_MayStore; 69 else if (OpInfo.Type == InlineAsm::isClobber) 70 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 71 } 72 } 73 74 unsigned get() const { return Flags; } 75 }; 76 77 } // namespace 78 79 /// Assign virtual/physical registers for the specified register operand. 80 static void getRegistersForValue(MachineFunction &MF, 81 MachineIRBuilder &MIRBuilder, 82 GISelAsmOperandInfo &OpInfo, 83 GISelAsmOperandInfo &RefOpInfo) { 84 85 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 86 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 87 88 // No work to do for memory operations. 89 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 90 return; 91 92 // If this is a constraint for a single physreg, or a constraint for a 93 // register class, find it. 94 Register AssignedReg; 95 const TargetRegisterClass *RC; 96 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 97 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 98 // RC is unset only on failure. Return immediately. 99 if (!RC) 100 return; 101 102 // No need to allocate a matching input constraint since the constraint it's 103 // matching to has already been allocated. 104 if (OpInfo.isMatchingInputConstraint()) 105 return; 106 107 // Initialize NumRegs. 108 unsigned NumRegs = 1; 109 if (OpInfo.ConstraintVT != MVT::Other) 110 NumRegs = 111 TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT); 112 113 // If this is a constraint for a specific physical register, but the type of 114 // the operand requires more than one register to be passed, we allocate the 115 // required amount of physical registers, starting from the selected physical 116 // register. 117 // For this, first retrieve a register iterator for the given register class 118 TargetRegisterClass::iterator I = RC->begin(); 119 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 120 121 // Advance the iterator to the assigned register (if set) 122 if (AssignedReg) { 123 for (; *I != AssignedReg; ++I) 124 assert(I != RC->end() && "AssignedReg should be a member of provided RC"); 125 } 126 127 // Finally, assign the registers. If the AssignedReg isn't set, create virtual 128 // registers with the provided register class 129 for (; NumRegs; --NumRegs, ++I) { 130 assert(I != RC->end() && "Ran out of registers to allocate!"); 131 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 132 OpInfo.Regs.push_back(R); 133 } 134 } 135 136 /// Return an integer indicating how general CT is. 137 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 138 switch (CT) { 139 case TargetLowering::C_Immediate: 140 case TargetLowering::C_Other: 141 case TargetLowering::C_Unknown: 142 return 0; 143 case TargetLowering::C_Register: 144 return 1; 145 case TargetLowering::C_RegisterClass: 146 return 2; 147 case TargetLowering::C_Memory: 148 case TargetLowering::C_Address: 149 return 3; 150 } 151 llvm_unreachable("Invalid constraint type"); 152 } 153 154 static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 155 const TargetLowering *TLI) { 156 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 157 unsigned BestIdx = 0; 158 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 159 int BestGenerality = -1; 160 161 // Loop over the options, keeping track of the most general one. 162 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 163 TargetLowering::ConstraintType CType = 164 TLI->getConstraintType(OpInfo.Codes[i]); 165 166 // Indirect 'other' or 'immediate' constraints are not allowed. 167 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 168 CType == TargetLowering::C_Register || 169 CType == TargetLowering::C_RegisterClass)) 170 continue; 171 172 // If this is an 'other' or 'immediate' constraint, see if the operand is 173 // valid for it. For example, on X86 we might have an 'rI' constraint. If 174 // the operand is an integer in the range [0..31] we want to use I (saving a 175 // load of a register), otherwise we must use 'r'. 176 if (CType == TargetLowering::C_Other || 177 CType == TargetLowering::C_Immediate) { 178 assert(OpInfo.Codes[i].size() == 1 && 179 "Unhandled multi-letter 'other' constraint"); 180 // FIXME: prefer immediate constraints if the target allows it 181 } 182 183 // Things with matching constraints can only be registers, per gcc 184 // documentation. This mainly affects "g" constraints. 185 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 186 continue; 187 188 // This constraint letter is more general than the previous one, use it. 189 int Generality = getConstraintGenerality(CType); 190 if (Generality > BestGenerality) { 191 BestType = CType; 192 BestIdx = i; 193 BestGenerality = Generality; 194 } 195 } 196 197 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 198 OpInfo.ConstraintType = BestType; 199 } 200 201 static void computeConstraintToUse(const TargetLowering *TLI, 202 TargetLowering::AsmOperandInfo &OpInfo) { 203 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 204 205 // Single-letter constraints ('r') are very common. 206 if (OpInfo.Codes.size() == 1) { 207 OpInfo.ConstraintCode = OpInfo.Codes[0]; 208 OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode); 209 } else { 210 chooseConstraint(OpInfo, TLI); 211 } 212 213 // 'X' matches anything. 214 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 215 // Labels and constants are handled elsewhere ('X' is the only thing 216 // that matches labels). For Functions, the type here is the type of 217 // the result, which is not what we want to look at; leave them alone. 218 Value *Val = OpInfo.CallOperandVal; 219 if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val)) 220 return; 221 222 // Otherwise, try to resolve it to something we know about by looking at 223 // the actual operand type. 224 if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) { 225 OpInfo.ConstraintCode = Repl; 226 OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode); 227 } 228 } 229 } 230 231 static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) { 232 unsigned Flag = I.getOperand(OpIdx).getImm(); 233 return InlineAsm::getNumOperandRegisters(Flag); 234 } 235 236 static bool buildAnyextOrCopy(Register Dst, Register Src, 237 MachineIRBuilder &MIRBuilder) { 238 const TargetRegisterInfo *TRI = 239 MIRBuilder.getMF().getSubtarget().getRegisterInfo(); 240 MachineRegisterInfo *MRI = MIRBuilder.getMRI(); 241 242 auto SrcTy = MRI->getType(Src); 243 if (!SrcTy.isValid()) { 244 LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n"); 245 return false; 246 } 247 unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI); 248 unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI); 249 250 if (DstSize < SrcSize) { 251 LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n"); 252 return false; 253 } 254 255 // Attempt to anyext small scalar sources. 256 if (DstSize > SrcSize) { 257 if (!SrcTy.isScalar()) { 258 LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of" 259 "destination register class\n"); 260 return false; 261 } 262 Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0); 263 } 264 265 MIRBuilder.buildCopy(Dst, Src); 266 return true; 267 } 268 269 bool InlineAsmLowering::lowerInlineAsm( 270 MachineIRBuilder &MIRBuilder, const CallBase &Call, 271 std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs) 272 const { 273 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 274 275 /// ConstraintOperands - Information about all of the constraints. 276 GISelAsmOperandInfoVector ConstraintOperands; 277 278 MachineFunction &MF = MIRBuilder.getMF(); 279 const Function &F = MF.getFunction(); 280 const DataLayout &DL = F.getParent()->getDataLayout(); 281 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 282 283 MachineRegisterInfo *MRI = MIRBuilder.getMRI(); 284 285 TargetLowering::AsmOperandInfoVector TargetConstraints = 286 TLI->ParseConstraints(DL, TRI, Call); 287 288 ExtraFlags ExtraInfo(Call); 289 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 290 unsigned ResNo = 0; // ResNo - The result number of the next output. 291 for (auto &T : TargetConstraints) { 292 ConstraintOperands.push_back(GISelAsmOperandInfo(T)); 293 GISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 294 295 // Compute the value type for each operand. 296 if (OpInfo.hasArg()) { 297 OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo)); 298 299 if (isa<BasicBlock>(OpInfo.CallOperandVal)) { 300 LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n"); 301 return false; 302 } 303 304 Type *OpTy = OpInfo.CallOperandVal->getType(); 305 306 // If this is an indirect operand, the operand is a pointer to the 307 // accessed type. 308 if (OpInfo.isIndirect) { 309 OpTy = Call.getParamElementType(ArgNo); 310 assert(OpTy && "Indirect operand must have elementtype attribute"); 311 } 312 313 // FIXME: Support aggregate input operands 314 if (!OpTy->isSingleValueType()) { 315 LLVM_DEBUG( 316 dbgs() << "Aggregate input operands are not supported yet\n"); 317 return false; 318 } 319 320 OpInfo.ConstraintVT = 321 TLI->getAsmOperandValueType(DL, OpTy, true).getSimpleVT(); 322 ++ArgNo; 323 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 324 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 325 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 326 OpInfo.ConstraintVT = 327 TLI->getSimpleValueType(DL, STy->getElementType(ResNo)); 328 } else { 329 assert(ResNo == 0 && "Asm only has one result!"); 330 OpInfo.ConstraintVT = 331 TLI->getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 332 } 333 ++ResNo; 334 } else { 335 OpInfo.ConstraintVT = MVT::Other; 336 } 337 338 if (OpInfo.ConstraintVT == MVT::i64x8) 339 return false; 340 341 // Compute the constraint code and ConstraintType to use. 342 computeConstraintToUse(TLI, OpInfo); 343 344 // The selected constraint type might expose new sideeffects 345 ExtraInfo.update(OpInfo); 346 } 347 348 // At this point, all operand types are decided. 349 // Create the MachineInstr, but don't insert it yet since input 350 // operands still need to insert instructions before this one 351 auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM) 352 .addExternalSymbol(IA->getAsmString().c_str()) 353 .addImm(ExtraInfo.get()); 354 355 // Starting from this operand: flag followed by register(s) will be added as 356 // operands to Inst for each constraint. Used for matching input constraints. 357 unsigned StartIdx = Inst->getNumOperands(); 358 359 // Collects the output operands for later processing 360 GISelAsmOperandInfoVector OutputOperands; 361 362 for (auto &OpInfo : ConstraintOperands) { 363 GISelAsmOperandInfo &RefOpInfo = 364 OpInfo.isMatchingInputConstraint() 365 ? ConstraintOperands[OpInfo.getMatchedOperand()] 366 : OpInfo; 367 368 // Assign registers for register operands 369 getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo); 370 371 switch (OpInfo.Type) { 372 case InlineAsm::isOutput: 373 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 374 unsigned ConstraintID = 375 TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode); 376 assert(ConstraintID != InlineAsm::Constraint_Unknown && 377 "Failed to convert memory constraint code to constraint id."); 378 379 // Add information to the INLINEASM instruction to know about this 380 // output. 381 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 382 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 383 Inst.addImm(OpFlags); 384 ArrayRef<Register> SourceRegs = 385 GetOrCreateVRegs(*OpInfo.CallOperandVal); 386 assert( 387 SourceRegs.size() == 1 && 388 "Expected the memory output to fit into a single virtual register"); 389 Inst.addReg(SourceRegs[0]); 390 } else { 391 // Otherwise, this outputs to a register (directly for C_Register / 392 // C_RegisterClass. Find a register that we can use. 393 assert(OpInfo.ConstraintType == TargetLowering::C_Register || 394 OpInfo.ConstraintType == TargetLowering::C_RegisterClass); 395 396 if (OpInfo.Regs.empty()) { 397 LLVM_DEBUG(dbgs() 398 << "Couldn't allocate output register for constraint\n"); 399 return false; 400 } 401 402 // Add information to the INLINEASM instruction to know that this 403 // register is set. 404 unsigned Flag = InlineAsm::getFlagWord( 405 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 406 : InlineAsm::Kind_RegDef, 407 OpInfo.Regs.size()); 408 if (OpInfo.Regs.front().isVirtual()) { 409 // Put the register class of the virtual registers in the flag word. 410 // That way, later passes can recompute register class constraints for 411 // inline assembly as well as normal instructions. Don't do this for 412 // tied operands that can use the regclass information from the def. 413 const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front()); 414 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 415 } 416 417 Inst.addImm(Flag); 418 419 for (Register Reg : OpInfo.Regs) { 420 Inst.addReg(Reg, 421 RegState::Define | getImplRegState(Reg.isPhysical()) | 422 (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0)); 423 } 424 425 // Remember this output operand for later processing 426 OutputOperands.push_back(OpInfo); 427 } 428 429 break; 430 case InlineAsm::isInput: { 431 if (OpInfo.isMatchingInputConstraint()) { 432 unsigned DefIdx = OpInfo.getMatchedOperand(); 433 // Find operand with register def that corresponds to DefIdx. 434 unsigned InstFlagIdx = StartIdx; 435 for (unsigned i = 0; i < DefIdx; ++i) 436 InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1; 437 assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag"); 438 439 unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm(); 440 if (InlineAsm::isMemKind(MatchedOperandFlag)) { 441 LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not " 442 "supported. This should be target specific.\n"); 443 return false; 444 } 445 if (!InlineAsm::isRegDefKind(MatchedOperandFlag) && 446 !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) { 447 LLVM_DEBUG(dbgs() << "Unknown matching constraint\n"); 448 return false; 449 } 450 451 // We want to tie input to register in next operand. 452 unsigned DefRegIdx = InstFlagIdx + 1; 453 Register Def = Inst->getOperand(DefRegIdx).getReg(); 454 455 ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal); 456 assert(SrcRegs.size() == 1 && "Single register is expected here"); 457 458 // When Def is physreg: use given input. 459 Register In = SrcRegs[0]; 460 // When Def is vreg: copy input to new vreg with same reg class as Def. 461 if (Def.isVirtual()) { 462 In = MRI->createVirtualRegister(MRI->getRegClass(Def)); 463 if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder)) 464 return false; 465 } 466 467 // Add Flag and input register operand (In) to Inst. Tie In to Def. 468 unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1); 469 unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx); 470 Inst.addImm(Flag); 471 Inst.addReg(In); 472 Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1); 473 break; 474 } 475 476 if (OpInfo.ConstraintType == TargetLowering::C_Other && 477 OpInfo.isIndirect) { 478 LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint " 479 "not supported yet\n"); 480 return false; 481 } 482 483 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 484 OpInfo.ConstraintType == TargetLowering::C_Other) { 485 486 std::vector<MachineOperand> Ops; 487 if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal, 488 OpInfo.ConstraintCode, Ops, 489 MIRBuilder)) { 490 LLVM_DEBUG(dbgs() << "Don't support constraint: " 491 << OpInfo.ConstraintCode << " yet\n"); 492 return false; 493 } 494 495 assert(Ops.size() > 0 && 496 "Expected constraint to be lowered to at least one operand"); 497 498 // Add information to the INLINEASM node to know about this input. 499 unsigned OpFlags = 500 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 501 Inst.addImm(OpFlags); 502 Inst.add(Ops); 503 break; 504 } 505 506 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 507 508 if (!OpInfo.isIndirect) { 509 LLVM_DEBUG(dbgs() 510 << "Cannot indirectify memory input operands yet\n"); 511 return false; 512 } 513 514 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 515 516 unsigned ConstraintID = 517 TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode); 518 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 519 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 520 Inst.addImm(OpFlags); 521 ArrayRef<Register> SourceRegs = 522 GetOrCreateVRegs(*OpInfo.CallOperandVal); 523 assert( 524 SourceRegs.size() == 1 && 525 "Expected the memory input to fit into a single virtual register"); 526 Inst.addReg(SourceRegs[0]); 527 break; 528 } 529 530 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 531 OpInfo.ConstraintType == TargetLowering::C_Register) && 532 "Unknown constraint type!"); 533 534 if (OpInfo.isIndirect) { 535 LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet " 536 "for constraint '" 537 << OpInfo.ConstraintCode << "'\n"); 538 return false; 539 } 540 541 // Copy the input into the appropriate registers. 542 if (OpInfo.Regs.empty()) { 543 LLVM_DEBUG( 544 dbgs() 545 << "Couldn't allocate input register for register constraint\n"); 546 return false; 547 } 548 549 unsigned NumRegs = OpInfo.Regs.size(); 550 ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal); 551 assert(NumRegs == SourceRegs.size() && 552 "Expected the number of input registers to match the number of " 553 "source registers"); 554 555 if (NumRegs > 1) { 556 LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are " 557 "not supported yet\n"); 558 return false; 559 } 560 561 unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs); 562 if (OpInfo.Regs.front().isVirtual()) { 563 // Put the register class of the virtual registers in the flag word. 564 const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front()); 565 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 566 } 567 Inst.addImm(Flag); 568 if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder)) 569 return false; 570 Inst.addReg(OpInfo.Regs[0]); 571 break; 572 } 573 574 case InlineAsm::isClobber: { 575 576 unsigned NumRegs = OpInfo.Regs.size(); 577 if (NumRegs > 0) { 578 unsigned Flag = 579 InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs); 580 Inst.addImm(Flag); 581 582 for (Register Reg : OpInfo.Regs) { 583 Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber | 584 getImplRegState(Reg.isPhysical())); 585 } 586 } 587 break; 588 } 589 } 590 } 591 592 if (const MDNode *SrcLoc = Call.getMetadata("srcloc")) 593 Inst.addMetadata(SrcLoc); 594 595 // All inputs are handled, insert the instruction now 596 MIRBuilder.insertInstr(Inst); 597 598 // Finally, copy the output operands into the output registers 599 ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call); 600 if (ResRegs.size() != OutputOperands.size()) { 601 LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the " 602 "number of destination registers\n"); 603 return false; 604 } 605 for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) { 606 GISelAsmOperandInfo &OpInfo = OutputOperands[i]; 607 608 if (OpInfo.Regs.empty()) 609 continue; 610 611 switch (OpInfo.ConstraintType) { 612 case TargetLowering::C_Register: 613 case TargetLowering::C_RegisterClass: { 614 if (OpInfo.Regs.size() > 1) { 615 LLVM_DEBUG(dbgs() << "Output operands with multiple defining " 616 "registers are not supported yet\n"); 617 return false; 618 } 619 620 Register SrcReg = OpInfo.Regs[0]; 621 unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 622 LLT ResTy = MRI->getType(ResRegs[i]); 623 if (ResTy.isScalar() && ResTy.getSizeInBits() < SrcSize) { 624 // First copy the non-typed virtual register into a generic virtual 625 // register 626 Register Tmp1Reg = 627 MRI->createGenericVirtualRegister(LLT::scalar(SrcSize)); 628 MIRBuilder.buildCopy(Tmp1Reg, SrcReg); 629 // Need to truncate the result of the register 630 MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg); 631 } else if (ResTy.getSizeInBits() == SrcSize) { 632 MIRBuilder.buildCopy(ResRegs[i], SrcReg); 633 } else { 634 LLVM_DEBUG(dbgs() << "Unhandled output operand with " 635 "mismatched register size\n"); 636 return false; 637 } 638 639 break; 640 } 641 case TargetLowering::C_Immediate: 642 case TargetLowering::C_Other: 643 LLVM_DEBUG( 644 dbgs() << "Cannot lower target specific output constraints yet\n"); 645 return false; 646 case TargetLowering::C_Memory: 647 break; // Already handled. 648 case TargetLowering::C_Address: 649 break; // Silence warning. 650 case TargetLowering::C_Unknown: 651 LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n"); 652 return false; 653 } 654 } 655 656 return true; 657 } 658 659 bool InlineAsmLowering::lowerAsmOperandForConstraint( 660 Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops, 661 MachineIRBuilder &MIRBuilder) const { 662 if (Constraint.size() > 1) 663 return false; 664 665 char ConstraintLetter = Constraint[0]; 666 switch (ConstraintLetter) { 667 default: 668 return false; 669 case 'i': // Simple Integer or Relocatable Constant 670 case 'n': // immediate integer with a known value. 671 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 672 assert(CI->getBitWidth() <= 64 && 673 "expected immediate to fit into 64-bits"); 674 // Boolean constants should be zero-extended, others are sign-extended 675 bool IsBool = CI->getBitWidth() == 1; 676 int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue(); 677 Ops.push_back(MachineOperand::CreateImm(ExtVal)); 678 return true; 679 } 680 return false; 681 } 682 } 683