xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/InlineAsmLowering.cpp (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
15ffd83dbSDimitry Andric //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
25ffd83dbSDimitry Andric //
35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
65ffd83dbSDimitry Andric //
75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
85ffd83dbSDimitry Andric ///
95ffd83dbSDimitry Andric /// \file
105ffd83dbSDimitry Andric /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
115ffd83dbSDimitry Andric ///
125ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
135ffd83dbSDimitry Andric 
145ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
155ffd83dbSDimitry Andric #include "llvm/CodeGen/Analysis.h"
165ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
175ffd83dbSDimitry Andric #include "llvm/CodeGen/GlobalISel/Utils.h"
185ffd83dbSDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
195ffd83dbSDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
205ffd83dbSDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
215ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h"
225ffd83dbSDimitry Andric #include "llvm/IR/Instructions.h"
235ffd83dbSDimitry Andric #include "llvm/IR/LLVMContext.h"
245ffd83dbSDimitry Andric #include "llvm/IR/Module.h"
255ffd83dbSDimitry Andric 
265ffd83dbSDimitry Andric #define DEBUG_TYPE "inline-asm-lowering"
275ffd83dbSDimitry Andric 
285ffd83dbSDimitry Andric using namespace llvm;
295ffd83dbSDimitry Andric 
305ffd83dbSDimitry Andric void InlineAsmLowering::anchor() {}
315ffd83dbSDimitry Andric 
325ffd83dbSDimitry Andric namespace {
335ffd83dbSDimitry Andric 
345ffd83dbSDimitry Andric /// GISelAsmOperandInfo - This contains information for each constraint that we
355ffd83dbSDimitry Andric /// are lowering.
365ffd83dbSDimitry Andric class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
375ffd83dbSDimitry Andric public:
385ffd83dbSDimitry Andric   /// Regs - If this is a register or register class operand, this
395ffd83dbSDimitry Andric   /// contains the set of assigned registers corresponding to the operand.
405ffd83dbSDimitry Andric   SmallVector<Register, 1> Regs;
415ffd83dbSDimitry Andric 
425ffd83dbSDimitry Andric   explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
435ffd83dbSDimitry Andric       : TargetLowering::AsmOperandInfo(Info) {}
445ffd83dbSDimitry Andric };
455ffd83dbSDimitry Andric 
465ffd83dbSDimitry Andric using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
475ffd83dbSDimitry Andric 
485ffd83dbSDimitry Andric class ExtraFlags {
495ffd83dbSDimitry Andric   unsigned Flags = 0;
505ffd83dbSDimitry Andric 
515ffd83dbSDimitry Andric public:
525ffd83dbSDimitry Andric   explicit ExtraFlags(const CallBase &CB) {
535ffd83dbSDimitry Andric     const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
545ffd83dbSDimitry Andric     if (IA->hasSideEffects())
555ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_HasSideEffects;
565ffd83dbSDimitry Andric     if (IA->isAlignStack())
575ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_IsAlignStack;
585ffd83dbSDimitry Andric     if (CB.isConvergent())
595ffd83dbSDimitry Andric       Flags |= InlineAsm::Extra_IsConvergent;
605ffd83dbSDimitry Andric     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
615ffd83dbSDimitry Andric   }
625ffd83dbSDimitry Andric 
635ffd83dbSDimitry Andric   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
645ffd83dbSDimitry Andric     // Ideally, we would only check against memory constraints.  However, the
655ffd83dbSDimitry Andric     // meaning of an Other constraint can be target-specific and we can't easily
665ffd83dbSDimitry Andric     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
675ffd83dbSDimitry Andric     // for Other constraints as well.
685ffd83dbSDimitry Andric     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
695ffd83dbSDimitry Andric         OpInfo.ConstraintType == TargetLowering::C_Other) {
705ffd83dbSDimitry Andric       if (OpInfo.Type == InlineAsm::isInput)
715ffd83dbSDimitry Andric         Flags |= InlineAsm::Extra_MayLoad;
725ffd83dbSDimitry Andric       else if (OpInfo.Type == InlineAsm::isOutput)
735ffd83dbSDimitry Andric         Flags |= InlineAsm::Extra_MayStore;
745ffd83dbSDimitry Andric       else if (OpInfo.Type == InlineAsm::isClobber)
755ffd83dbSDimitry Andric         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
765ffd83dbSDimitry Andric     }
775ffd83dbSDimitry Andric   }
785ffd83dbSDimitry Andric 
795ffd83dbSDimitry Andric   unsigned get() const { return Flags; }
805ffd83dbSDimitry Andric };
815ffd83dbSDimitry Andric 
825ffd83dbSDimitry Andric } // namespace
835ffd83dbSDimitry Andric 
845ffd83dbSDimitry Andric /// Assign virtual/physical registers for the specified register operand.
855ffd83dbSDimitry Andric static void getRegistersForValue(MachineFunction &MF,
865ffd83dbSDimitry Andric                                  MachineIRBuilder &MIRBuilder,
875ffd83dbSDimitry Andric                                  GISelAsmOperandInfo &OpInfo,
885ffd83dbSDimitry Andric                                  GISelAsmOperandInfo &RefOpInfo) {
895ffd83dbSDimitry Andric 
905ffd83dbSDimitry Andric   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
915ffd83dbSDimitry Andric   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
925ffd83dbSDimitry Andric 
935ffd83dbSDimitry Andric   // No work to do for memory operations.
945ffd83dbSDimitry Andric   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
955ffd83dbSDimitry Andric     return;
965ffd83dbSDimitry Andric 
975ffd83dbSDimitry Andric   // If this is a constraint for a single physreg, or a constraint for a
985ffd83dbSDimitry Andric   // register class, find it.
995ffd83dbSDimitry Andric   Register AssignedReg;
1005ffd83dbSDimitry Andric   const TargetRegisterClass *RC;
1015ffd83dbSDimitry Andric   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
1025ffd83dbSDimitry Andric       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
1035ffd83dbSDimitry Andric   // RC is unset only on failure. Return immediately.
1045ffd83dbSDimitry Andric   if (!RC)
1055ffd83dbSDimitry Andric     return;
1065ffd83dbSDimitry Andric 
1075ffd83dbSDimitry Andric   // No need to allocate a matching input constraint since the constraint it's
1085ffd83dbSDimitry Andric   // matching to has already been allocated.
1095ffd83dbSDimitry Andric   if (OpInfo.isMatchingInputConstraint())
1105ffd83dbSDimitry Andric     return;
1115ffd83dbSDimitry Andric 
1125ffd83dbSDimitry Andric   // Initialize NumRegs.
1135ffd83dbSDimitry Andric   unsigned NumRegs = 1;
1145ffd83dbSDimitry Andric   if (OpInfo.ConstraintVT != MVT::Other)
1155ffd83dbSDimitry Andric     NumRegs =
1165ffd83dbSDimitry Andric         TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
1175ffd83dbSDimitry Andric 
1185ffd83dbSDimitry Andric   // If this is a constraint for a specific physical register, but the type of
1195ffd83dbSDimitry Andric   // the operand requires more than one register to be passed, we allocate the
1205ffd83dbSDimitry Andric   // required amount of physical registers, starting from the selected physical
1215ffd83dbSDimitry Andric   // register.
1225ffd83dbSDimitry Andric   // For this, first retrieve a register iterator for the given register class
1235ffd83dbSDimitry Andric   TargetRegisterClass::iterator I = RC->begin();
1245ffd83dbSDimitry Andric   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1255ffd83dbSDimitry Andric 
1265ffd83dbSDimitry Andric   // Advance the iterator to the assigned register (if set)
1275ffd83dbSDimitry Andric   if (AssignedReg) {
1285ffd83dbSDimitry Andric     for (; *I != AssignedReg; ++I)
1295ffd83dbSDimitry Andric       assert(I != RC->end() && "AssignedReg should be a member of provided RC");
1305ffd83dbSDimitry Andric   }
1315ffd83dbSDimitry Andric 
1325ffd83dbSDimitry Andric   // Finally, assign the registers. If the AssignedReg isn't set, create virtual
1335ffd83dbSDimitry Andric   // registers with the provided register class
1345ffd83dbSDimitry Andric   for (; NumRegs; --NumRegs, ++I) {
1355ffd83dbSDimitry Andric     assert(I != RC->end() && "Ran out of registers to allocate!");
1365ffd83dbSDimitry Andric     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
1375ffd83dbSDimitry Andric     OpInfo.Regs.push_back(R);
1385ffd83dbSDimitry Andric   }
1395ffd83dbSDimitry Andric }
1405ffd83dbSDimitry Andric 
1415ffd83dbSDimitry Andric /// Return an integer indicating how general CT is.
1425ffd83dbSDimitry Andric static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1435ffd83dbSDimitry Andric   switch (CT) {
1445ffd83dbSDimitry Andric   case TargetLowering::C_Immediate:
1455ffd83dbSDimitry Andric   case TargetLowering::C_Other:
1465ffd83dbSDimitry Andric   case TargetLowering::C_Unknown:
1475ffd83dbSDimitry Andric     return 0;
1485ffd83dbSDimitry Andric   case TargetLowering::C_Register:
1495ffd83dbSDimitry Andric     return 1;
1505ffd83dbSDimitry Andric   case TargetLowering::C_RegisterClass:
1515ffd83dbSDimitry Andric     return 2;
1525ffd83dbSDimitry Andric   case TargetLowering::C_Memory:
1535ffd83dbSDimitry Andric     return 3;
1545ffd83dbSDimitry Andric   }
1555ffd83dbSDimitry Andric   llvm_unreachable("Invalid constraint type");
1565ffd83dbSDimitry Andric }
1575ffd83dbSDimitry Andric 
1585ffd83dbSDimitry Andric static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1595ffd83dbSDimitry Andric                              const TargetLowering *TLI) {
1605ffd83dbSDimitry Andric   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1615ffd83dbSDimitry Andric   unsigned BestIdx = 0;
1625ffd83dbSDimitry Andric   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1635ffd83dbSDimitry Andric   int BestGenerality = -1;
1645ffd83dbSDimitry Andric 
1655ffd83dbSDimitry Andric   // Loop over the options, keeping track of the most general one.
1665ffd83dbSDimitry Andric   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1675ffd83dbSDimitry Andric     TargetLowering::ConstraintType CType =
1685ffd83dbSDimitry Andric         TLI->getConstraintType(OpInfo.Codes[i]);
1695ffd83dbSDimitry Andric 
1705ffd83dbSDimitry Andric     // Indirect 'other' or 'immediate' constraints are not allowed.
1715ffd83dbSDimitry Andric     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
1725ffd83dbSDimitry Andric                                CType == TargetLowering::C_Register ||
1735ffd83dbSDimitry Andric                                CType == TargetLowering::C_RegisterClass))
1745ffd83dbSDimitry Andric       continue;
1755ffd83dbSDimitry Andric 
1765ffd83dbSDimitry Andric     // If this is an 'other' or 'immediate' constraint, see if the operand is
1775ffd83dbSDimitry Andric     // valid for it. For example, on X86 we might have an 'rI' constraint. If
1785ffd83dbSDimitry Andric     // the operand is an integer in the range [0..31] we want to use I (saving a
1795ffd83dbSDimitry Andric     // load of a register), otherwise we must use 'r'.
1805ffd83dbSDimitry Andric     if (CType == TargetLowering::C_Other ||
1815ffd83dbSDimitry Andric         CType == TargetLowering::C_Immediate) {
1825ffd83dbSDimitry Andric       assert(OpInfo.Codes[i].size() == 1 &&
1835ffd83dbSDimitry Andric              "Unhandled multi-letter 'other' constraint");
1845ffd83dbSDimitry Andric       // FIXME: prefer immediate constraints if the target allows it
1855ffd83dbSDimitry Andric     }
1865ffd83dbSDimitry Andric 
1875ffd83dbSDimitry Andric     // Things with matching constraints can only be registers, per gcc
1885ffd83dbSDimitry Andric     // documentation.  This mainly affects "g" constraints.
1895ffd83dbSDimitry Andric     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
1905ffd83dbSDimitry Andric       continue;
1915ffd83dbSDimitry Andric 
1925ffd83dbSDimitry Andric     // This constraint letter is more general than the previous one, use it.
1935ffd83dbSDimitry Andric     int Generality = getConstraintGenerality(CType);
1945ffd83dbSDimitry Andric     if (Generality > BestGenerality) {
1955ffd83dbSDimitry Andric       BestType = CType;
1965ffd83dbSDimitry Andric       BestIdx = i;
1975ffd83dbSDimitry Andric       BestGenerality = Generality;
1985ffd83dbSDimitry Andric     }
1995ffd83dbSDimitry Andric   }
2005ffd83dbSDimitry Andric 
2015ffd83dbSDimitry Andric   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2025ffd83dbSDimitry Andric   OpInfo.ConstraintType = BestType;
2035ffd83dbSDimitry Andric }
2045ffd83dbSDimitry Andric 
2055ffd83dbSDimitry Andric static void computeConstraintToUse(const TargetLowering *TLI,
2065ffd83dbSDimitry Andric                                    TargetLowering::AsmOperandInfo &OpInfo) {
2075ffd83dbSDimitry Andric   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2085ffd83dbSDimitry Andric 
2095ffd83dbSDimitry Andric   // Single-letter constraints ('r') are very common.
2105ffd83dbSDimitry Andric   if (OpInfo.Codes.size() == 1) {
2115ffd83dbSDimitry Andric     OpInfo.ConstraintCode = OpInfo.Codes[0];
2125ffd83dbSDimitry Andric     OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
2135ffd83dbSDimitry Andric   } else {
2145ffd83dbSDimitry Andric     chooseConstraint(OpInfo, TLI);
2155ffd83dbSDimitry Andric   }
2165ffd83dbSDimitry Andric 
2175ffd83dbSDimitry Andric   // 'X' matches anything.
2185ffd83dbSDimitry Andric   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2195ffd83dbSDimitry Andric     // Labels and constants are handled elsewhere ('X' is the only thing
2205ffd83dbSDimitry Andric     // that matches labels).  For Functions, the type here is the type of
2215ffd83dbSDimitry Andric     // the result, which is not what we want to look at; leave them alone.
2225ffd83dbSDimitry Andric     Value *Val = OpInfo.CallOperandVal;
2235ffd83dbSDimitry Andric     if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
2245ffd83dbSDimitry Andric       return;
2255ffd83dbSDimitry Andric 
2265ffd83dbSDimitry Andric     // Otherwise, try to resolve it to something we know about by looking at
2275ffd83dbSDimitry Andric     // the actual operand type.
2285ffd83dbSDimitry Andric     if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
2295ffd83dbSDimitry Andric       OpInfo.ConstraintCode = Repl;
2305ffd83dbSDimitry Andric       OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
2315ffd83dbSDimitry Andric     }
2325ffd83dbSDimitry Andric   }
2335ffd83dbSDimitry Andric }
2345ffd83dbSDimitry Andric 
2355ffd83dbSDimitry Andric static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
2365ffd83dbSDimitry Andric   unsigned Flag = I.getOperand(OpIdx).getImm();
2375ffd83dbSDimitry Andric   return InlineAsm::getNumOperandRegisters(Flag);
2385ffd83dbSDimitry Andric }
2395ffd83dbSDimitry Andric 
2405ffd83dbSDimitry Andric static bool buildAnyextOrCopy(Register Dst, Register Src,
2415ffd83dbSDimitry Andric                               MachineIRBuilder &MIRBuilder) {
2425ffd83dbSDimitry Andric   const TargetRegisterInfo *TRI =
2435ffd83dbSDimitry Andric       MIRBuilder.getMF().getSubtarget().getRegisterInfo();
2445ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2455ffd83dbSDimitry Andric 
2465ffd83dbSDimitry Andric   auto SrcTy = MRI->getType(Src);
2475ffd83dbSDimitry Andric   if (!SrcTy.isValid()) {
2485ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
2495ffd83dbSDimitry Andric     return false;
2505ffd83dbSDimitry Andric   }
2515ffd83dbSDimitry Andric   unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
2525ffd83dbSDimitry Andric   unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
2535ffd83dbSDimitry Andric 
2545ffd83dbSDimitry Andric   if (DstSize < SrcSize) {
2555ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
2565ffd83dbSDimitry Andric     return false;
2575ffd83dbSDimitry Andric   }
2585ffd83dbSDimitry Andric 
2595ffd83dbSDimitry Andric   // Attempt to anyext small scalar sources.
2605ffd83dbSDimitry Andric   if (DstSize > SrcSize) {
2615ffd83dbSDimitry Andric     if (!SrcTy.isScalar()) {
2625ffd83dbSDimitry Andric       LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
2635ffd83dbSDimitry Andric                            "destination register class\n");
2645ffd83dbSDimitry Andric       return false;
2655ffd83dbSDimitry Andric     }
2665ffd83dbSDimitry Andric     Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
2675ffd83dbSDimitry Andric   }
2685ffd83dbSDimitry Andric 
2695ffd83dbSDimitry Andric   MIRBuilder.buildCopy(Dst, Src);
2705ffd83dbSDimitry Andric   return true;
2715ffd83dbSDimitry Andric }
2725ffd83dbSDimitry Andric 
2735ffd83dbSDimitry Andric bool InlineAsmLowering::lowerInlineAsm(
2745ffd83dbSDimitry Andric     MachineIRBuilder &MIRBuilder, const CallBase &Call,
2755ffd83dbSDimitry Andric     std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
2765ffd83dbSDimitry Andric     const {
2775ffd83dbSDimitry Andric   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2785ffd83dbSDimitry Andric 
2795ffd83dbSDimitry Andric   /// ConstraintOperands - Information about all of the constraints.
2805ffd83dbSDimitry Andric   GISelAsmOperandInfoVector ConstraintOperands;
2815ffd83dbSDimitry Andric 
2825ffd83dbSDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
2835ffd83dbSDimitry Andric   const Function &F = MF.getFunction();
2845ffd83dbSDimitry Andric   const DataLayout &DL = F.getParent()->getDataLayout();
2855ffd83dbSDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2865ffd83dbSDimitry Andric 
2875ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2885ffd83dbSDimitry Andric 
2895ffd83dbSDimitry Andric   TargetLowering::AsmOperandInfoVector TargetConstraints =
2905ffd83dbSDimitry Andric       TLI->ParseConstraints(DL, TRI, Call);
2915ffd83dbSDimitry Andric 
2925ffd83dbSDimitry Andric   ExtraFlags ExtraInfo(Call);
2935ffd83dbSDimitry Andric   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2945ffd83dbSDimitry Andric   unsigned ResNo = 0; // ResNo - The result number of the next output.
2955ffd83dbSDimitry Andric   for (auto &T : TargetConstraints) {
2965ffd83dbSDimitry Andric     ConstraintOperands.push_back(GISelAsmOperandInfo(T));
2975ffd83dbSDimitry Andric     GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
2985ffd83dbSDimitry Andric 
2995ffd83dbSDimitry Andric     // Compute the value type for each operand.
3005ffd83dbSDimitry Andric     if (OpInfo.Type == InlineAsm::isInput ||
3015ffd83dbSDimitry Andric         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
3025ffd83dbSDimitry Andric 
3035ffd83dbSDimitry Andric       OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));
3045ffd83dbSDimitry Andric 
3055ffd83dbSDimitry Andric       if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
3065ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
3075ffd83dbSDimitry Andric         return false;
3085ffd83dbSDimitry Andric       }
3095ffd83dbSDimitry Andric 
3105ffd83dbSDimitry Andric       Type *OpTy = OpInfo.CallOperandVal->getType();
3115ffd83dbSDimitry Andric 
3125ffd83dbSDimitry Andric       // If this is an indirect operand, the operand is a pointer to the
3135ffd83dbSDimitry Andric       // accessed type.
3145ffd83dbSDimitry Andric       if (OpInfo.isIndirect) {
3155ffd83dbSDimitry Andric         PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3165ffd83dbSDimitry Andric         if (!PtrTy)
3175ffd83dbSDimitry Andric           report_fatal_error("Indirect operand for inline asm not a pointer!");
3185ffd83dbSDimitry Andric         OpTy = PtrTy->getElementType();
3195ffd83dbSDimitry Andric       }
3205ffd83dbSDimitry Andric 
3215ffd83dbSDimitry Andric       // FIXME: Support aggregate input operands
3225ffd83dbSDimitry Andric       if (!OpTy->isSingleValueType()) {
3235ffd83dbSDimitry Andric         LLVM_DEBUG(
3245ffd83dbSDimitry Andric             dbgs() << "Aggregate input operands are not supported yet\n");
3255ffd83dbSDimitry Andric         return false;
3265ffd83dbSDimitry Andric       }
3275ffd83dbSDimitry Andric 
3285ffd83dbSDimitry Andric       OpInfo.ConstraintVT = TLI->getValueType(DL, OpTy, true).getSimpleVT();
3295ffd83dbSDimitry Andric 
3305ffd83dbSDimitry Andric     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
3315ffd83dbSDimitry Andric       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
3325ffd83dbSDimitry Andric       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
3335ffd83dbSDimitry Andric         OpInfo.ConstraintVT =
3345ffd83dbSDimitry Andric             TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
3355ffd83dbSDimitry Andric       } else {
3365ffd83dbSDimitry Andric         assert(ResNo == 0 && "Asm only has one result!");
3375ffd83dbSDimitry Andric         OpInfo.ConstraintVT = TLI->getSimpleValueType(DL, Call.getType());
3385ffd83dbSDimitry Andric       }
3395ffd83dbSDimitry Andric       ++ResNo;
3405ffd83dbSDimitry Andric     } else {
3415ffd83dbSDimitry Andric       OpInfo.ConstraintVT = MVT::Other;
3425ffd83dbSDimitry Andric     }
3435ffd83dbSDimitry Andric 
3445ffd83dbSDimitry Andric     // Compute the constraint code and ConstraintType to use.
3455ffd83dbSDimitry Andric     computeConstraintToUse(TLI, OpInfo);
3465ffd83dbSDimitry Andric 
3475ffd83dbSDimitry Andric     // The selected constraint type might expose new sideeffects
3485ffd83dbSDimitry Andric     ExtraInfo.update(OpInfo);
3495ffd83dbSDimitry Andric   }
3505ffd83dbSDimitry Andric 
3515ffd83dbSDimitry Andric   // At this point, all operand types are decided.
3525ffd83dbSDimitry Andric   // Create the MachineInstr, but don't insert it yet since input
3535ffd83dbSDimitry Andric   // operands still need to insert instructions before this one
3545ffd83dbSDimitry Andric   auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
3555ffd83dbSDimitry Andric                   .addExternalSymbol(IA->getAsmString().c_str())
3565ffd83dbSDimitry Andric                   .addImm(ExtraInfo.get());
3575ffd83dbSDimitry Andric 
3585ffd83dbSDimitry Andric   // Starting from this operand: flag followed by register(s) will be added as
3595ffd83dbSDimitry Andric   // operands to Inst for each constraint. Used for matching input constraints.
3605ffd83dbSDimitry Andric   unsigned StartIdx = Inst->getNumOperands();
3615ffd83dbSDimitry Andric 
3625ffd83dbSDimitry Andric   // Collects the output operands for later processing
3635ffd83dbSDimitry Andric   GISelAsmOperandInfoVector OutputOperands;
3645ffd83dbSDimitry Andric 
3655ffd83dbSDimitry Andric   for (auto &OpInfo : ConstraintOperands) {
3665ffd83dbSDimitry Andric     GISelAsmOperandInfo &RefOpInfo =
3675ffd83dbSDimitry Andric         OpInfo.isMatchingInputConstraint()
3685ffd83dbSDimitry Andric             ? ConstraintOperands[OpInfo.getMatchedOperand()]
3695ffd83dbSDimitry Andric             : OpInfo;
3705ffd83dbSDimitry Andric 
3715ffd83dbSDimitry Andric     // Assign registers for register operands
3725ffd83dbSDimitry Andric     getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
3735ffd83dbSDimitry Andric 
3745ffd83dbSDimitry Andric     switch (OpInfo.Type) {
3755ffd83dbSDimitry Andric     case InlineAsm::isOutput:
3765ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3775ffd83dbSDimitry Andric         unsigned ConstraintID =
3785ffd83dbSDimitry Andric             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
3795ffd83dbSDimitry Andric         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
3805ffd83dbSDimitry Andric                "Failed to convert memory constraint code to constraint id.");
3815ffd83dbSDimitry Andric 
3825ffd83dbSDimitry Andric         // Add information to the INLINEASM instruction to know about this
3835ffd83dbSDimitry Andric         // output.
3845ffd83dbSDimitry Andric         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
3855ffd83dbSDimitry Andric         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
3865ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
3875ffd83dbSDimitry Andric         ArrayRef<Register> SourceRegs =
3885ffd83dbSDimitry Andric             GetOrCreateVRegs(*OpInfo.CallOperandVal);
3895ffd83dbSDimitry Andric         assert(
3905ffd83dbSDimitry Andric             SourceRegs.size() == 1 &&
3915ffd83dbSDimitry Andric             "Expected the memory output to fit into a single virtual register");
3925ffd83dbSDimitry Andric         Inst.addReg(SourceRegs[0]);
3935ffd83dbSDimitry Andric       } else {
3945ffd83dbSDimitry Andric         // Otherwise, this outputs to a register (directly for C_Register /
3955ffd83dbSDimitry Andric         // C_RegisterClass. Find a register that we can use.
3965ffd83dbSDimitry Andric         assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
3975ffd83dbSDimitry Andric                OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
3985ffd83dbSDimitry Andric 
3995ffd83dbSDimitry Andric         if (OpInfo.Regs.empty()) {
4005ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs()
4015ffd83dbSDimitry Andric                      << "Couldn't allocate output register for constraint\n");
4025ffd83dbSDimitry Andric           return false;
4035ffd83dbSDimitry Andric         }
4045ffd83dbSDimitry Andric 
4055ffd83dbSDimitry Andric         // Add information to the INLINEASM instruction to know that this
4065ffd83dbSDimitry Andric         // register is set.
4075ffd83dbSDimitry Andric         unsigned Flag = InlineAsm::getFlagWord(
4085ffd83dbSDimitry Andric             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
4095ffd83dbSDimitry Andric                                   : InlineAsm::Kind_RegDef,
4105ffd83dbSDimitry Andric             OpInfo.Regs.size());
4115ffd83dbSDimitry Andric         if (OpInfo.Regs.front().isVirtual()) {
4125ffd83dbSDimitry Andric           // Put the register class of the virtual registers in the flag word.
4135ffd83dbSDimitry Andric           // That way, later passes can recompute register class constraints for
4145ffd83dbSDimitry Andric           // inline assembly as well as normal instructions. Don't do this for
4155ffd83dbSDimitry Andric           // tied operands that can use the regclass information from the def.
4165ffd83dbSDimitry Andric           const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
4175ffd83dbSDimitry Andric           Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
4185ffd83dbSDimitry Andric         }
4195ffd83dbSDimitry Andric 
4205ffd83dbSDimitry Andric         Inst.addImm(Flag);
4215ffd83dbSDimitry Andric 
4225ffd83dbSDimitry Andric         for (Register Reg : OpInfo.Regs) {
4235ffd83dbSDimitry Andric           Inst.addReg(Reg,
4245ffd83dbSDimitry Andric                       RegState::Define | getImplRegState(Reg.isPhysical()) |
4255ffd83dbSDimitry Andric                           (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
4265ffd83dbSDimitry Andric         }
4275ffd83dbSDimitry Andric 
4285ffd83dbSDimitry Andric         // Remember this output operand for later processing
4295ffd83dbSDimitry Andric         OutputOperands.push_back(OpInfo);
4305ffd83dbSDimitry Andric       }
4315ffd83dbSDimitry Andric 
4325ffd83dbSDimitry Andric       break;
4335ffd83dbSDimitry Andric     case InlineAsm::isInput: {
4345ffd83dbSDimitry Andric       if (OpInfo.isMatchingInputConstraint()) {
4355ffd83dbSDimitry Andric         unsigned DefIdx = OpInfo.getMatchedOperand();
4365ffd83dbSDimitry Andric         // Find operand with register def that corresponds to DefIdx.
4375ffd83dbSDimitry Andric         unsigned InstFlagIdx = StartIdx;
4385ffd83dbSDimitry Andric         for (unsigned i = 0; i < DefIdx; ++i)
4395ffd83dbSDimitry Andric           InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
4405ffd83dbSDimitry Andric         assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
4415ffd83dbSDimitry Andric 
4425ffd83dbSDimitry Andric         unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
4435ffd83dbSDimitry Andric         if (InlineAsm::isMemKind(MatchedOperandFlag)) {
4445ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
4455ffd83dbSDimitry Andric                                "supported. This should be target specific.\n");
4465ffd83dbSDimitry Andric           return false;
4475ffd83dbSDimitry Andric         }
4485ffd83dbSDimitry Andric         if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
4495ffd83dbSDimitry Andric             !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
4505ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
4515ffd83dbSDimitry Andric           return false;
4525ffd83dbSDimitry Andric         }
4535ffd83dbSDimitry Andric 
4545ffd83dbSDimitry Andric         // We want to tie input to register in next operand.
4555ffd83dbSDimitry Andric         unsigned DefRegIdx = InstFlagIdx + 1;
4565ffd83dbSDimitry Andric         Register Def = Inst->getOperand(DefRegIdx).getReg();
4575ffd83dbSDimitry Andric 
4585ffd83dbSDimitry Andric         ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
4595ffd83dbSDimitry Andric         assert(SrcRegs.size() == 1 && "Single register is expected here");
4605ffd83dbSDimitry Andric 
4611106035dSDimitry Andric         // When Def is physreg: use given input.
4621106035dSDimitry Andric         Register In = SrcRegs[0];
4631106035dSDimitry Andric         // When Def is vreg: copy input to new vreg with same reg class as Def.
4641106035dSDimitry Andric         if (Def.isVirtual()) {
4651106035dSDimitry Andric           In = MRI->createVirtualRegister(MRI->getRegClass(Def));
4661106035dSDimitry Andric           if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder))
4671106035dSDimitry Andric             return false;
4681106035dSDimitry Andric         }
4691106035dSDimitry Andric 
4701106035dSDimitry Andric         // Add Flag and input register operand (In) to Inst. Tie In to Def.
4715ffd83dbSDimitry Andric         unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
4725ffd83dbSDimitry Andric         unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
4735ffd83dbSDimitry Andric         Inst.addImm(Flag);
4741106035dSDimitry Andric         Inst.addReg(In);
4755ffd83dbSDimitry Andric         Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
4765ffd83dbSDimitry Andric         break;
4775ffd83dbSDimitry Andric       }
4785ffd83dbSDimitry Andric 
4795ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
4805ffd83dbSDimitry Andric           OpInfo.isIndirect) {
4815ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
4825ffd83dbSDimitry Andric                              "not supported yet\n");
4835ffd83dbSDimitry Andric         return false;
4845ffd83dbSDimitry Andric       }
4855ffd83dbSDimitry Andric 
4865ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
4875ffd83dbSDimitry Andric           OpInfo.ConstraintType == TargetLowering::C_Other) {
4885ffd83dbSDimitry Andric 
4895ffd83dbSDimitry Andric         std::vector<MachineOperand> Ops;
4905ffd83dbSDimitry Andric         if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
4915ffd83dbSDimitry Andric                                           OpInfo.ConstraintCode, Ops,
4925ffd83dbSDimitry Andric                                           MIRBuilder)) {
4935ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs() << "Don't support constraint: "
4945ffd83dbSDimitry Andric                             << OpInfo.ConstraintCode << " yet\n");
4955ffd83dbSDimitry Andric           return false;
4965ffd83dbSDimitry Andric         }
4975ffd83dbSDimitry Andric 
4985ffd83dbSDimitry Andric         assert(Ops.size() > 0 &&
4995ffd83dbSDimitry Andric                "Expected constraint to be lowered to at least one operand");
5005ffd83dbSDimitry Andric 
5015ffd83dbSDimitry Andric         // Add information to the INLINEASM node to know about this input.
5025ffd83dbSDimitry Andric         unsigned OpFlags =
5035ffd83dbSDimitry Andric             InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5045ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
5055ffd83dbSDimitry Andric         Inst.add(Ops);
5065ffd83dbSDimitry Andric         break;
5075ffd83dbSDimitry Andric       }
5085ffd83dbSDimitry Andric 
5095ffd83dbSDimitry Andric       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5105ffd83dbSDimitry Andric 
5115ffd83dbSDimitry Andric         if (!OpInfo.isIndirect) {
5125ffd83dbSDimitry Andric           LLVM_DEBUG(dbgs()
5135ffd83dbSDimitry Andric                      << "Cannot indirectify memory input operands yet\n");
5145ffd83dbSDimitry Andric           return false;
5155ffd83dbSDimitry Andric         }
5165ffd83dbSDimitry Andric 
5175ffd83dbSDimitry Andric         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5185ffd83dbSDimitry Andric 
5195ffd83dbSDimitry Andric         unsigned ConstraintID =
5205ffd83dbSDimitry Andric             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
5215ffd83dbSDimitry Andric         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5225ffd83dbSDimitry Andric         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
5235ffd83dbSDimitry Andric         Inst.addImm(OpFlags);
5245ffd83dbSDimitry Andric         ArrayRef<Register> SourceRegs =
5255ffd83dbSDimitry Andric             GetOrCreateVRegs(*OpInfo.CallOperandVal);
5265ffd83dbSDimitry Andric         assert(
5275ffd83dbSDimitry Andric             SourceRegs.size() == 1 &&
5285ffd83dbSDimitry Andric             "Expected the memory input to fit into a single virtual register");
5295ffd83dbSDimitry Andric         Inst.addReg(SourceRegs[0]);
5305ffd83dbSDimitry Andric         break;
5315ffd83dbSDimitry Andric       }
5325ffd83dbSDimitry Andric 
5335ffd83dbSDimitry Andric       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5345ffd83dbSDimitry Andric               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5355ffd83dbSDimitry Andric              "Unknown constraint type!");
5365ffd83dbSDimitry Andric 
5375ffd83dbSDimitry Andric       if (OpInfo.isIndirect) {
5385ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
5395ffd83dbSDimitry Andric                              "for constraint '"
5405ffd83dbSDimitry Andric                           << OpInfo.ConstraintCode << "'\n");
5415ffd83dbSDimitry Andric         return false;
5425ffd83dbSDimitry Andric       }
5435ffd83dbSDimitry Andric 
5445ffd83dbSDimitry Andric       // Copy the input into the appropriate registers.
5455ffd83dbSDimitry Andric       if (OpInfo.Regs.empty()) {
5465ffd83dbSDimitry Andric         LLVM_DEBUG(
5475ffd83dbSDimitry Andric             dbgs()
5485ffd83dbSDimitry Andric             << "Couldn't allocate input register for register constraint\n");
5495ffd83dbSDimitry Andric         return false;
5505ffd83dbSDimitry Andric       }
5515ffd83dbSDimitry Andric 
5525ffd83dbSDimitry Andric       unsigned NumRegs = OpInfo.Regs.size();
5535ffd83dbSDimitry Andric       ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
5545ffd83dbSDimitry Andric       assert(NumRegs == SourceRegs.size() &&
5555ffd83dbSDimitry Andric              "Expected the number of input registers to match the number of "
5565ffd83dbSDimitry Andric              "source registers");
5575ffd83dbSDimitry Andric 
5585ffd83dbSDimitry Andric       if (NumRegs > 1) {
5595ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
5605ffd83dbSDimitry Andric                              "not supported yet\n");
5615ffd83dbSDimitry Andric         return false;
5625ffd83dbSDimitry Andric       }
5635ffd83dbSDimitry Andric 
5645ffd83dbSDimitry Andric       unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
565*e8d8bef9SDimitry Andric       if (OpInfo.Regs.front().isVirtual()) {
566*e8d8bef9SDimitry Andric         // Put the register class of the virtual registers in the flag word.
567*e8d8bef9SDimitry Andric         const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
568*e8d8bef9SDimitry Andric         Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
569*e8d8bef9SDimitry Andric       }
5705ffd83dbSDimitry Andric       Inst.addImm(Flag);
5715ffd83dbSDimitry Andric       if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
5725ffd83dbSDimitry Andric         return false;
5735ffd83dbSDimitry Andric       Inst.addReg(OpInfo.Regs[0]);
5745ffd83dbSDimitry Andric       break;
5755ffd83dbSDimitry Andric     }
5765ffd83dbSDimitry Andric 
5775ffd83dbSDimitry Andric     case InlineAsm::isClobber: {
5785ffd83dbSDimitry Andric 
5795ffd83dbSDimitry Andric       unsigned NumRegs = OpInfo.Regs.size();
5805ffd83dbSDimitry Andric       if (NumRegs > 0) {
5815ffd83dbSDimitry Andric         unsigned Flag =
5825ffd83dbSDimitry Andric             InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
5835ffd83dbSDimitry Andric         Inst.addImm(Flag);
5845ffd83dbSDimitry Andric 
5855ffd83dbSDimitry Andric         for (Register Reg : OpInfo.Regs) {
5865ffd83dbSDimitry Andric           Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
5875ffd83dbSDimitry Andric                                getImplRegState(Reg.isPhysical()));
5885ffd83dbSDimitry Andric         }
5895ffd83dbSDimitry Andric       }
5905ffd83dbSDimitry Andric       break;
5915ffd83dbSDimitry Andric     }
5925ffd83dbSDimitry Andric     }
5935ffd83dbSDimitry Andric   }
5945ffd83dbSDimitry Andric 
5955ffd83dbSDimitry Andric   if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
5965ffd83dbSDimitry Andric     Inst.addMetadata(SrcLoc);
5975ffd83dbSDimitry Andric 
5985ffd83dbSDimitry Andric   // All inputs are handled, insert the instruction now
5995ffd83dbSDimitry Andric   MIRBuilder.insertInstr(Inst);
6005ffd83dbSDimitry Andric 
6015ffd83dbSDimitry Andric   // Finally, copy the output operands into the output registers
6025ffd83dbSDimitry Andric   ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
6035ffd83dbSDimitry Andric   if (ResRegs.size() != OutputOperands.size()) {
6045ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
6055ffd83dbSDimitry Andric                          "number of destination registers\n");
6065ffd83dbSDimitry Andric     return false;
6075ffd83dbSDimitry Andric   }
6085ffd83dbSDimitry Andric   for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
6095ffd83dbSDimitry Andric     GISelAsmOperandInfo &OpInfo = OutputOperands[i];
6105ffd83dbSDimitry Andric 
6115ffd83dbSDimitry Andric     if (OpInfo.Regs.empty())
6125ffd83dbSDimitry Andric       continue;
6135ffd83dbSDimitry Andric 
6145ffd83dbSDimitry Andric     switch (OpInfo.ConstraintType) {
6155ffd83dbSDimitry Andric     case TargetLowering::C_Register:
6165ffd83dbSDimitry Andric     case TargetLowering::C_RegisterClass: {
6175ffd83dbSDimitry Andric       if (OpInfo.Regs.size() > 1) {
6185ffd83dbSDimitry Andric         LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
6195ffd83dbSDimitry Andric                              "registers are not supported yet\n");
6205ffd83dbSDimitry Andric         return false;
6215ffd83dbSDimitry Andric       }
6225ffd83dbSDimitry Andric 
6235ffd83dbSDimitry Andric       Register SrcReg = OpInfo.Regs[0];
6245ffd83dbSDimitry Andric       unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
6255ffd83dbSDimitry Andric       if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
6265ffd83dbSDimitry Andric         // First copy the non-typed virtual register into a generic virtual
6275ffd83dbSDimitry Andric         // register
6285ffd83dbSDimitry Andric         Register Tmp1Reg =
6295ffd83dbSDimitry Andric             MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
6305ffd83dbSDimitry Andric         MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
6315ffd83dbSDimitry Andric         // Need to truncate the result of the register
6325ffd83dbSDimitry Andric         MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
6335ffd83dbSDimitry Andric       } else {
6345ffd83dbSDimitry Andric         MIRBuilder.buildCopy(ResRegs[i], SrcReg);
6355ffd83dbSDimitry Andric       }
6365ffd83dbSDimitry Andric       break;
6375ffd83dbSDimitry Andric     }
6385ffd83dbSDimitry Andric     case TargetLowering::C_Immediate:
6395ffd83dbSDimitry Andric     case TargetLowering::C_Other:
6405ffd83dbSDimitry Andric       LLVM_DEBUG(
6415ffd83dbSDimitry Andric           dbgs() << "Cannot lower target specific output constraints yet\n");
6425ffd83dbSDimitry Andric       return false;
6435ffd83dbSDimitry Andric     case TargetLowering::C_Memory:
6445ffd83dbSDimitry Andric       break; // Already handled.
6455ffd83dbSDimitry Andric     case TargetLowering::C_Unknown:
6465ffd83dbSDimitry Andric       LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
6475ffd83dbSDimitry Andric       return false;
6485ffd83dbSDimitry Andric     }
6495ffd83dbSDimitry Andric   }
6505ffd83dbSDimitry Andric 
6515ffd83dbSDimitry Andric   return true;
6525ffd83dbSDimitry Andric }
6535ffd83dbSDimitry Andric 
6545ffd83dbSDimitry Andric bool InlineAsmLowering::lowerAsmOperandForConstraint(
6555ffd83dbSDimitry Andric     Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
6565ffd83dbSDimitry Andric     MachineIRBuilder &MIRBuilder) const {
6575ffd83dbSDimitry Andric   if (Constraint.size() > 1)
6585ffd83dbSDimitry Andric     return false;
6595ffd83dbSDimitry Andric 
6605ffd83dbSDimitry Andric   char ConstraintLetter = Constraint[0];
6615ffd83dbSDimitry Andric   switch (ConstraintLetter) {
6625ffd83dbSDimitry Andric   default:
6635ffd83dbSDimitry Andric     return false;
6645ffd83dbSDimitry Andric   case 'i': // Simple Integer or Relocatable Constant
665*e8d8bef9SDimitry Andric   case 'n': // immediate integer with a known value.
6665ffd83dbSDimitry Andric     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6675ffd83dbSDimitry Andric       assert(CI->getBitWidth() <= 64 &&
6685ffd83dbSDimitry Andric              "expected immediate to fit into 64-bits");
6695ffd83dbSDimitry Andric       // Boolean constants should be zero-extended, others are sign-extended
6705ffd83dbSDimitry Andric       bool IsBool = CI->getBitWidth() == 1;
6715ffd83dbSDimitry Andric       int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
6725ffd83dbSDimitry Andric       Ops.push_back(MachineOperand::CreateImm(ExtVal));
6735ffd83dbSDimitry Andric       return true;
6745ffd83dbSDimitry Andric     }
6755ffd83dbSDimitry Andric     return false;
6765ffd83dbSDimitry Andric   }
6775ffd83dbSDimitry Andric }
678