1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/CodeGen/GlobalISel/Combiner.h" 10 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 11 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 12 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 13 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 14 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 15 #include "llvm/CodeGen/GlobalISel/Utils.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineMemOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "gi-combiner" 27 28 using namespace llvm; 29 using namespace MIPatternMatch; 30 31 // Option to allow testing of the combiner while no targets know about indexed 32 // addressing. 33 static cl::opt<bool> 34 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 35 cl::desc("Force all indexed operations to be " 36 "legal for the GlobalISel combiner")); 37 38 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 39 MachineIRBuilder &B, GISelKnownBits *KB, 40 MachineDominatorTree *MDT, 41 const LegalizerInfo *LI) 42 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), 43 KB(KB), MDT(MDT), LI(LI) { 44 (void)this->KB; 45 } 46 47 const TargetLowering &CombinerHelper::getTargetLowering() const { 48 return *Builder.getMF().getSubtarget().getTargetLowering(); 49 } 50 51 /// \returns The little endian in-memory byte position of byte \p I in a 52 /// \p ByteWidth bytes wide type. 53 /// 54 /// E.g. Given a 4-byte type x, x[0] -> byte 0 55 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 56 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 57 return I; 58 } 59 60 /// \returns The big endian in-memory byte position of byte \p I in a 61 /// \p ByteWidth bytes wide type. 62 /// 63 /// E.g. Given a 4-byte type x, x[0] -> byte 3 64 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 65 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 66 return ByteWidth - I - 1; 67 } 68 69 /// Given a map from byte offsets in memory to indices in a load/store, 70 /// determine if that map corresponds to a little or big endian byte pattern. 71 /// 72 /// \param MemOffset2Idx maps memory offsets to address offsets. 73 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 74 /// 75 /// \returns true if the map corresponds to a big endian byte pattern, false 76 /// if it corresponds to a little endian byte pattern, and None otherwise. 77 /// 78 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 79 /// are as follows: 80 /// 81 /// AddrOffset Little endian Big endian 82 /// 0 0 3 83 /// 1 1 2 84 /// 2 2 1 85 /// 3 3 0 86 static Optional<bool> 87 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 88 int64_t LowestIdx) { 89 // Need at least two byte positions to decide on endianness. 90 unsigned Width = MemOffset2Idx.size(); 91 if (Width < 2) 92 return None; 93 bool BigEndian = true, LittleEndian = true; 94 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 95 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 96 if (MemOffsetAndIdx == MemOffset2Idx.end()) 97 return None; 98 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 99 assert(Idx >= 0 && "Expected non-negative byte offset?"); 100 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 101 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 102 if (!BigEndian && !LittleEndian) 103 return None; 104 } 105 106 assert((BigEndian != LittleEndian) && 107 "Pattern cannot be both big and little endian!"); 108 return BigEndian; 109 } 110 111 bool CombinerHelper::isLegalOrBeforeLegalizer( 112 const LegalityQuery &Query) const { 113 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 114 } 115 116 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 117 Register ToReg) const { 118 Observer.changingAllUsesOfReg(MRI, FromReg); 119 120 if (MRI.constrainRegAttrs(ToReg, FromReg)) 121 MRI.replaceRegWith(FromReg, ToReg); 122 else 123 Builder.buildCopy(ToReg, FromReg); 124 125 Observer.finishedChangingAllUsesOfReg(); 126 } 127 128 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 129 MachineOperand &FromRegOp, 130 Register ToReg) const { 131 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 132 Observer.changingInstr(*FromRegOp.getParent()); 133 134 FromRegOp.setReg(ToReg); 135 136 Observer.changedInstr(*FromRegOp.getParent()); 137 } 138 139 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 140 if (matchCombineCopy(MI)) { 141 applyCombineCopy(MI); 142 return true; 143 } 144 return false; 145 } 146 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 147 if (MI.getOpcode() != TargetOpcode::COPY) 148 return false; 149 Register DstReg = MI.getOperand(0).getReg(); 150 Register SrcReg = MI.getOperand(1).getReg(); 151 return canReplaceReg(DstReg, SrcReg, MRI); 152 } 153 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 154 Register DstReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 MI.eraseFromParent(); 157 replaceRegWith(MRI, DstReg, SrcReg); 158 } 159 160 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 161 bool IsUndef = false; 162 SmallVector<Register, 4> Ops; 163 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 164 applyCombineConcatVectors(MI, IsUndef, Ops); 165 return true; 166 } 167 return false; 168 } 169 170 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 171 SmallVectorImpl<Register> &Ops) { 172 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 173 "Invalid instruction"); 174 IsUndef = true; 175 MachineInstr *Undef = nullptr; 176 177 // Walk over all the operands of concat vectors and check if they are 178 // build_vector themselves or undef. 179 // Then collect their operands in Ops. 180 for (const MachineOperand &MO : MI.uses()) { 181 Register Reg = MO.getReg(); 182 MachineInstr *Def = MRI.getVRegDef(Reg); 183 assert(Def && "Operand not defined"); 184 switch (Def->getOpcode()) { 185 case TargetOpcode::G_BUILD_VECTOR: 186 IsUndef = false; 187 // Remember the operands of the build_vector to fold 188 // them into the yet-to-build flattened concat vectors. 189 for (const MachineOperand &BuildVecMO : Def->uses()) 190 Ops.push_back(BuildVecMO.getReg()); 191 break; 192 case TargetOpcode::G_IMPLICIT_DEF: { 193 LLT OpType = MRI.getType(Reg); 194 // Keep one undef value for all the undef operands. 195 if (!Undef) { 196 Builder.setInsertPt(*MI.getParent(), MI); 197 Undef = Builder.buildUndef(OpType.getScalarType()); 198 } 199 assert(MRI.getType(Undef->getOperand(0).getReg()) == 200 OpType.getScalarType() && 201 "All undefs should have the same type"); 202 // Break the undef vector in as many scalar elements as needed 203 // for the flattening. 204 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 205 EltIdx != EltEnd; ++EltIdx) 206 Ops.push_back(Undef->getOperand(0).getReg()); 207 break; 208 } 209 default: 210 return false; 211 } 212 } 213 return true; 214 } 215 void CombinerHelper::applyCombineConcatVectors( 216 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 217 // We determined that the concat_vectors can be flatten. 218 // Generate the flattened build_vector. 219 Register DstReg = MI.getOperand(0).getReg(); 220 Builder.setInsertPt(*MI.getParent(), MI); 221 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 222 223 // Note: IsUndef is sort of redundant. We could have determine it by 224 // checking that at all Ops are undef. Alternatively, we could have 225 // generate a build_vector of undefs and rely on another combine to 226 // clean that up. For now, given we already gather this information 227 // in tryCombineConcatVectors, just save compile time and issue the 228 // right thing. 229 if (IsUndef) 230 Builder.buildUndef(NewDstReg); 231 else 232 Builder.buildBuildVector(NewDstReg, Ops); 233 MI.eraseFromParent(); 234 replaceRegWith(MRI, DstReg, NewDstReg); 235 } 236 237 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 238 SmallVector<Register, 4> Ops; 239 if (matchCombineShuffleVector(MI, Ops)) { 240 applyCombineShuffleVector(MI, Ops); 241 return true; 242 } 243 return false; 244 } 245 246 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 247 SmallVectorImpl<Register> &Ops) { 248 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 249 "Invalid instruction kind"); 250 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 251 Register Src1 = MI.getOperand(1).getReg(); 252 LLT SrcType = MRI.getType(Src1); 253 // As bizarre as it may look, shuffle vector can actually produce 254 // scalar! This is because at the IR level a <1 x ty> shuffle 255 // vector is perfectly valid. 256 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 257 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 258 259 // If the resulting vector is smaller than the size of the source 260 // vectors being concatenated, we won't be able to replace the 261 // shuffle vector into a concat_vectors. 262 // 263 // Note: We may still be able to produce a concat_vectors fed by 264 // extract_vector_elt and so on. It is less clear that would 265 // be better though, so don't bother for now. 266 // 267 // If the destination is a scalar, the size of the sources doesn't 268 // matter. we will lower the shuffle to a plain copy. This will 269 // work only if the source and destination have the same size. But 270 // that's covered by the next condition. 271 // 272 // TODO: If the size between the source and destination don't match 273 // we could still emit an extract vector element in that case. 274 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 275 return false; 276 277 // Check that the shuffle mask can be broken evenly between the 278 // different sources. 279 if (DstNumElts % SrcNumElts != 0) 280 return false; 281 282 // Mask length is a multiple of the source vector length. 283 // Check if the shuffle is some kind of concatenation of the input 284 // vectors. 285 unsigned NumConcat = DstNumElts / SrcNumElts; 286 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 287 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 288 for (unsigned i = 0; i != DstNumElts; ++i) { 289 int Idx = Mask[i]; 290 // Undef value. 291 if (Idx < 0) 292 continue; 293 // Ensure the indices in each SrcType sized piece are sequential and that 294 // the same source is used for the whole piece. 295 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 296 (ConcatSrcs[i / SrcNumElts] >= 0 && 297 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 298 return false; 299 // Remember which source this index came from. 300 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 301 } 302 303 // The shuffle is concatenating multiple vectors together. 304 // Collect the different operands for that. 305 Register UndefReg; 306 Register Src2 = MI.getOperand(2).getReg(); 307 for (auto Src : ConcatSrcs) { 308 if (Src < 0) { 309 if (!UndefReg) { 310 Builder.setInsertPt(*MI.getParent(), MI); 311 UndefReg = Builder.buildUndef(SrcType).getReg(0); 312 } 313 Ops.push_back(UndefReg); 314 } else if (Src == 0) 315 Ops.push_back(Src1); 316 else 317 Ops.push_back(Src2); 318 } 319 return true; 320 } 321 322 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 323 const ArrayRef<Register> Ops) { 324 Register DstReg = MI.getOperand(0).getReg(); 325 Builder.setInsertPt(*MI.getParent(), MI); 326 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 327 328 if (Ops.size() == 1) 329 Builder.buildCopy(NewDstReg, Ops[0]); 330 else 331 Builder.buildMerge(NewDstReg, Ops); 332 333 MI.eraseFromParent(); 334 replaceRegWith(MRI, DstReg, NewDstReg); 335 } 336 337 namespace { 338 339 /// Select a preference between two uses. CurrentUse is the current preference 340 /// while *ForCandidate is attributes of the candidate under consideration. 341 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 342 const LLT TyForCandidate, 343 unsigned OpcodeForCandidate, 344 MachineInstr *MIForCandidate) { 345 if (!CurrentUse.Ty.isValid()) { 346 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 347 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 348 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 349 return CurrentUse; 350 } 351 352 // We permit the extend to hoist through basic blocks but this is only 353 // sensible if the target has extending loads. If you end up lowering back 354 // into a load and extend during the legalizer then the end result is 355 // hoisting the extend up to the load. 356 357 // Prefer defined extensions to undefined extensions as these are more 358 // likely to reduce the number of instructions. 359 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 360 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 361 return CurrentUse; 362 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 363 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 364 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 365 366 // Prefer sign extensions to zero extensions as sign-extensions tend to be 367 // more expensive. 368 if (CurrentUse.Ty == TyForCandidate) { 369 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 370 OpcodeForCandidate == TargetOpcode::G_ZEXT) 371 return CurrentUse; 372 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 373 OpcodeForCandidate == TargetOpcode::G_SEXT) 374 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 375 } 376 377 // This is potentially target specific. We've chosen the largest type 378 // because G_TRUNC is usually free. One potential catch with this is that 379 // some targets have a reduced number of larger registers than smaller 380 // registers and this choice potentially increases the live-range for the 381 // larger value. 382 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 383 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 384 } 385 return CurrentUse; 386 } 387 388 /// Find a suitable place to insert some instructions and insert them. This 389 /// function accounts for special cases like inserting before a PHI node. 390 /// The current strategy for inserting before PHI's is to duplicate the 391 /// instructions for each predecessor. However, while that's ok for G_TRUNC 392 /// on most targets since it generally requires no code, other targets/cases may 393 /// want to try harder to find a dominating block. 394 static void InsertInsnsWithoutSideEffectsBeforeUse( 395 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 396 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 397 MachineOperand &UseMO)> 398 Inserter) { 399 MachineInstr &UseMI = *UseMO.getParent(); 400 401 MachineBasicBlock *InsertBB = UseMI.getParent(); 402 403 // If the use is a PHI then we want the predecessor block instead. 404 if (UseMI.isPHI()) { 405 MachineOperand *PredBB = std::next(&UseMO); 406 InsertBB = PredBB->getMBB(); 407 } 408 409 // If the block is the same block as the def then we want to insert just after 410 // the def instead of at the start of the block. 411 if (InsertBB == DefMI.getParent()) { 412 MachineBasicBlock::iterator InsertPt = &DefMI; 413 Inserter(InsertBB, std::next(InsertPt), UseMO); 414 return; 415 } 416 417 // Otherwise we want the start of the BB 418 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 419 } 420 } // end anonymous namespace 421 422 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 423 PreferredTuple Preferred; 424 if (matchCombineExtendingLoads(MI, Preferred)) { 425 applyCombineExtendingLoads(MI, Preferred); 426 return true; 427 } 428 return false; 429 } 430 431 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 432 PreferredTuple &Preferred) { 433 // We match the loads and follow the uses to the extend instead of matching 434 // the extends and following the def to the load. This is because the load 435 // must remain in the same position for correctness (unless we also add code 436 // to find a safe place to sink it) whereas the extend is freely movable. 437 // It also prevents us from duplicating the load for the volatile case or just 438 // for performance. 439 440 if (MI.getOpcode() != TargetOpcode::G_LOAD && 441 MI.getOpcode() != TargetOpcode::G_SEXTLOAD && 442 MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) 443 return false; 444 445 auto &LoadValue = MI.getOperand(0); 446 assert(LoadValue.isReg() && "Result wasn't a register?"); 447 448 LLT LoadValueTy = MRI.getType(LoadValue.getReg()); 449 if (!LoadValueTy.isScalar()) 450 return false; 451 452 // Most architectures are going to legalize <s8 loads into at least a 1 byte 453 // load, and the MMOs can only describe memory accesses in multiples of bytes. 454 // If we try to perform extload combining on those, we can end up with 455 // %a(s8) = extload %ptr (load 1 byte from %ptr) 456 // ... which is an illegal extload instruction. 457 if (LoadValueTy.getSizeInBits() < 8) 458 return false; 459 460 // For non power-of-2 types, they will very likely be legalized into multiple 461 // loads. Don't bother trying to match them into extending loads. 462 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 463 return false; 464 465 // Find the preferred type aside from the any-extends (unless it's the only 466 // one) and non-extending ops. We'll emit an extending load to that type and 467 // and emit a variant of (extend (trunc X)) for the others according to the 468 // relative type sizes. At the same time, pick an extend to use based on the 469 // extend involved in the chosen type. 470 unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD 471 ? TargetOpcode::G_ANYEXT 472 : MI.getOpcode() == TargetOpcode::G_SEXTLOAD 473 ? TargetOpcode::G_SEXT 474 : TargetOpcode::G_ZEXT; 475 Preferred = {LLT(), PreferredOpcode, nullptr}; 476 for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) { 477 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 478 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 479 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 480 // Check for legality. 481 if (LI) { 482 LegalityQuery::MemDesc MMDesc; 483 const auto &MMO = **MI.memoperands_begin(); 484 MMDesc.SizeInBits = MMO.getSizeInBits(); 485 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 486 MMDesc.Ordering = MMO.getOrdering(); 487 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 488 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 489 if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action != 490 LegalizeActions::Legal) 491 continue; 492 } 493 Preferred = ChoosePreferredUse(Preferred, 494 MRI.getType(UseMI.getOperand(0).getReg()), 495 UseMI.getOpcode(), &UseMI); 496 } 497 } 498 499 // There were no extends 500 if (!Preferred.MI) 501 return false; 502 // It should be impossible to chose an extend without selecting a different 503 // type since by definition the result of an extend is larger. 504 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 505 506 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 507 return true; 508 } 509 510 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 511 PreferredTuple &Preferred) { 512 // Rewrite the load to the chosen extending load. 513 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 514 515 // Inserter to insert a truncate back to the original type at a given point 516 // with some basic CSE to limit truncate duplication to one per BB. 517 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 518 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 519 MachineBasicBlock::iterator InsertBefore, 520 MachineOperand &UseMO) { 521 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 522 if (PreviouslyEmitted) { 523 Observer.changingInstr(*UseMO.getParent()); 524 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 525 Observer.changedInstr(*UseMO.getParent()); 526 return; 527 } 528 529 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 530 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 531 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 532 EmittedInsns[InsertIntoBB] = NewMI; 533 replaceRegOpWith(MRI, UseMO, NewDstReg); 534 }; 535 536 Observer.changingInstr(MI); 537 MI.setDesc( 538 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 539 ? TargetOpcode::G_SEXTLOAD 540 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 541 ? TargetOpcode::G_ZEXTLOAD 542 : TargetOpcode::G_LOAD)); 543 544 // Rewrite all the uses to fix up the types. 545 auto &LoadValue = MI.getOperand(0); 546 SmallVector<MachineOperand *, 4> Uses; 547 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 548 Uses.push_back(&UseMO); 549 550 for (auto *UseMO : Uses) { 551 MachineInstr *UseMI = UseMO->getParent(); 552 553 // If the extend is compatible with the preferred extend then we should fix 554 // up the type and extend so that it uses the preferred use. 555 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 556 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 557 Register UseDstReg = UseMI->getOperand(0).getReg(); 558 MachineOperand &UseSrcMO = UseMI->getOperand(1); 559 const LLT UseDstTy = MRI.getType(UseDstReg); 560 if (UseDstReg != ChosenDstReg) { 561 if (Preferred.Ty == UseDstTy) { 562 // If the use has the same type as the preferred use, then merge 563 // the vregs and erase the extend. For example: 564 // %1:_(s8) = G_LOAD ... 565 // %2:_(s32) = G_SEXT %1(s8) 566 // %3:_(s32) = G_ANYEXT %1(s8) 567 // ... = ... %3(s32) 568 // rewrites to: 569 // %2:_(s32) = G_SEXTLOAD ... 570 // ... = ... %2(s32) 571 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 572 Observer.erasingInstr(*UseMO->getParent()); 573 UseMO->getParent()->eraseFromParent(); 574 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 575 // If the preferred size is smaller, then keep the extend but extend 576 // from the result of the extending load. For example: 577 // %1:_(s8) = G_LOAD ... 578 // %2:_(s32) = G_SEXT %1(s8) 579 // %3:_(s64) = G_ANYEXT %1(s8) 580 // ... = ... %3(s64) 581 /// rewrites to: 582 // %2:_(s32) = G_SEXTLOAD ... 583 // %3:_(s64) = G_ANYEXT %2:_(s32) 584 // ... = ... %3(s64) 585 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 586 } else { 587 // If the preferred size is large, then insert a truncate. For 588 // example: 589 // %1:_(s8) = G_LOAD ... 590 // %2:_(s64) = G_SEXT %1(s8) 591 // %3:_(s32) = G_ZEXT %1(s8) 592 // ... = ... %3(s32) 593 /// rewrites to: 594 // %2:_(s64) = G_SEXTLOAD ... 595 // %4:_(s8) = G_TRUNC %2:_(s32) 596 // %3:_(s64) = G_ZEXT %2:_(s8) 597 // ... = ... %3(s64) 598 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 599 InsertTruncAt); 600 } 601 continue; 602 } 603 // The use is (one of) the uses of the preferred use we chose earlier. 604 // We're going to update the load to def this value later so just erase 605 // the old extend. 606 Observer.erasingInstr(*UseMO->getParent()); 607 UseMO->getParent()->eraseFromParent(); 608 continue; 609 } 610 611 // The use isn't an extend. Truncate back to the type we originally loaded. 612 // This is free on many targets. 613 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 614 } 615 616 MI.getOperand(0).setReg(ChosenDstReg); 617 Observer.changedInstr(MI); 618 } 619 620 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 621 const MachineInstr &UseMI) { 622 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 623 "shouldn't consider debug uses"); 624 assert(DefMI.getParent() == UseMI.getParent()); 625 if (&DefMI == &UseMI) 626 return false; 627 const MachineBasicBlock &MBB = *DefMI.getParent(); 628 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 629 return &MI == &DefMI || &MI == &UseMI; 630 }); 631 if (DefOrUse == MBB.end()) 632 llvm_unreachable("Block must contain both DefMI and UseMI!"); 633 return &*DefOrUse == &DefMI; 634 } 635 636 bool CombinerHelper::dominates(const MachineInstr &DefMI, 637 const MachineInstr &UseMI) { 638 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 639 "shouldn't consider debug uses"); 640 if (MDT) 641 return MDT->dominates(&DefMI, &UseMI); 642 else if (DefMI.getParent() != UseMI.getParent()) 643 return false; 644 645 return isPredecessor(DefMI, UseMI); 646 } 647 648 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 649 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 650 Register SrcReg = MI.getOperand(1).getReg(); 651 Register LoadUser = SrcReg; 652 653 if (MRI.getType(SrcReg).isVector()) 654 return false; 655 656 Register TruncSrc; 657 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 658 LoadUser = TruncSrc; 659 660 uint64_t SizeInBits = MI.getOperand(2).getImm(); 661 // If the source is a G_SEXTLOAD from the same bit width, then we don't 662 // need any extend at all, just a truncate. 663 if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { 664 const auto &MMO = **LoadMI->memoperands_begin(); 665 // If truncating more than the original extended value, abort. 666 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) 667 return false; 668 if (MMO.getSizeInBits() == SizeInBits) 669 return true; 670 } 671 return false; 672 } 673 674 bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 675 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 676 Builder.setInstrAndDebugLoc(MI); 677 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 678 MI.eraseFromParent(); 679 return true; 680 } 681 682 bool CombinerHelper::matchSextInRegOfLoad( 683 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 684 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 685 686 // Only supports scalars for now. 687 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 688 return false; 689 690 Register SrcReg = MI.getOperand(1).getReg(); 691 MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); 692 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) 693 return false; 694 695 // If the sign extend extends from a narrower width than the load's width, 696 // then we can narrow the load width when we combine to a G_SEXTLOAD. 697 auto &MMO = **LoadDef->memoperands_begin(); 698 // Don't do this for non-simple loads. 699 if (MMO.isAtomic() || MMO.isVolatile()) 700 return false; 701 702 // Avoid widening the load at all. 703 unsigned NewSizeBits = 704 std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); 705 706 // Don't generate G_SEXTLOADs with a < 1 byte width. 707 if (NewSizeBits < 8) 708 return false; 709 // Don't bother creating a non-power-2 sextload, it will likely be broken up 710 // anyway for most targets. 711 if (!isPowerOf2_32(NewSizeBits)) 712 return false; 713 MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); 714 return true; 715 } 716 717 bool CombinerHelper::applySextInRegOfLoad( 718 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 719 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 720 Register LoadReg; 721 unsigned ScalarSizeBits; 722 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 723 auto *LoadDef = MRI.getVRegDef(LoadReg); 724 assert(LoadDef && "Expected a load reg"); 725 726 // If we have the following: 727 // %ld = G_LOAD %ptr, (load 2) 728 // %ext = G_SEXT_INREG %ld, 8 729 // ==> 730 // %ld = G_SEXTLOAD %ptr (load 1) 731 732 auto &MMO = **LoadDef->memoperands_begin(); 733 Builder.setInstrAndDebugLoc(MI); 734 auto &MF = Builder.getMF(); 735 auto PtrInfo = MMO.getPointerInfo(); 736 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 737 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 738 LoadDef->getOperand(1).getReg(), *NewMMO); 739 MI.eraseFromParent(); 740 return true; 741 } 742 743 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 744 Register &Base, Register &Offset) { 745 auto &MF = *MI.getParent()->getParent(); 746 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 747 748 #ifndef NDEBUG 749 unsigned Opcode = MI.getOpcode(); 750 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 751 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 752 #endif 753 754 Base = MI.getOperand(1).getReg(); 755 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 756 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 757 return false; 758 759 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 760 // FIXME: The following use traversal needs a bail out for patholigical cases. 761 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 762 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 763 continue; 764 765 Offset = Use.getOperand(2).getReg(); 766 if (!ForceLegalIndexing && 767 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 768 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 769 << Use); 770 continue; 771 } 772 773 // Make sure the offset calculation is before the potentially indexed op. 774 // FIXME: we really care about dependency here. The offset calculation might 775 // be movable. 776 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 777 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 778 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 779 << Use); 780 continue; 781 } 782 783 // FIXME: check whether all uses of Base are load/store with foldable 784 // addressing modes. If so, using the normal addr-modes is better than 785 // forming an indexed one. 786 787 bool MemOpDominatesAddrUses = true; 788 for (auto &PtrAddUse : 789 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 790 if (!dominates(MI, PtrAddUse)) { 791 MemOpDominatesAddrUses = false; 792 break; 793 } 794 } 795 796 if (!MemOpDominatesAddrUses) { 797 LLVM_DEBUG( 798 dbgs() << " Ignoring candidate as memop does not dominate uses: " 799 << Use); 800 continue; 801 } 802 803 LLVM_DEBUG(dbgs() << " Found match: " << Use); 804 Addr = Use.getOperand(0).getReg(); 805 return true; 806 } 807 808 return false; 809 } 810 811 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 812 Register &Base, Register &Offset) { 813 auto &MF = *MI.getParent()->getParent(); 814 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 815 816 #ifndef NDEBUG 817 unsigned Opcode = MI.getOpcode(); 818 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 819 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 820 #endif 821 822 Addr = MI.getOperand(1).getReg(); 823 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 824 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 825 return false; 826 827 Base = AddrDef->getOperand(1).getReg(); 828 Offset = AddrDef->getOperand(2).getReg(); 829 830 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 831 832 if (!ForceLegalIndexing && 833 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 834 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 835 return false; 836 } 837 838 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 839 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 840 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 841 return false; 842 } 843 844 if (MI.getOpcode() == TargetOpcode::G_STORE) { 845 // Would require a copy. 846 if (Base == MI.getOperand(0).getReg()) { 847 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 848 return false; 849 } 850 851 // We're expecting one use of Addr in MI, but it could also be the 852 // value stored, which isn't actually dominated by the instruction. 853 if (MI.getOperand(0).getReg() == Addr) { 854 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 855 return false; 856 } 857 } 858 859 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 860 // That might allow us to end base's liveness here by adjusting the constant. 861 862 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 863 if (!dominates(MI, UseMI)) { 864 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 865 return false; 866 } 867 } 868 869 return true; 870 } 871 872 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 873 IndexedLoadStoreMatchInfo MatchInfo; 874 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 875 applyCombineIndexedLoadStore(MI, MatchInfo); 876 return true; 877 } 878 return false; 879 } 880 881 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 882 unsigned Opcode = MI.getOpcode(); 883 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 884 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 885 return false; 886 887 // For now, no targets actually support these opcodes so don't waste time 888 // running these unless we're forced to for testing. 889 if (!ForceLegalIndexing) 890 return false; 891 892 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 893 MatchInfo.Offset); 894 if (!MatchInfo.IsPre && 895 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 896 MatchInfo.Offset)) 897 return false; 898 899 return true; 900 } 901 902 void CombinerHelper::applyCombineIndexedLoadStore( 903 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 904 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 905 MachineIRBuilder MIRBuilder(MI); 906 unsigned Opcode = MI.getOpcode(); 907 bool IsStore = Opcode == TargetOpcode::G_STORE; 908 unsigned NewOpcode; 909 switch (Opcode) { 910 case TargetOpcode::G_LOAD: 911 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 912 break; 913 case TargetOpcode::G_SEXTLOAD: 914 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 915 break; 916 case TargetOpcode::G_ZEXTLOAD: 917 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 918 break; 919 case TargetOpcode::G_STORE: 920 NewOpcode = TargetOpcode::G_INDEXED_STORE; 921 break; 922 default: 923 llvm_unreachable("Unknown load/store opcode"); 924 } 925 926 auto MIB = MIRBuilder.buildInstr(NewOpcode); 927 if (IsStore) { 928 MIB.addDef(MatchInfo.Addr); 929 MIB.addUse(MI.getOperand(0).getReg()); 930 } else { 931 MIB.addDef(MI.getOperand(0).getReg()); 932 MIB.addDef(MatchInfo.Addr); 933 } 934 935 MIB.addUse(MatchInfo.Base); 936 MIB.addUse(MatchInfo.Offset); 937 MIB.addImm(MatchInfo.IsPre); 938 MI.eraseFromParent(); 939 AddrDef.eraseFromParent(); 940 941 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 942 } 943 944 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { 945 if (MI.getOpcode() != TargetOpcode::G_BR) 946 return false; 947 948 // Try to match the following: 949 // bb1: 950 // G_BRCOND %c1, %bb2 951 // G_BR %bb3 952 // bb2: 953 // ... 954 // bb3: 955 956 // The above pattern does not have a fall through to the successor bb2, always 957 // resulting in a branch no matter which path is taken. Here we try to find 958 // and replace that pattern with conditional branch to bb3 and otherwise 959 // fallthrough to bb2. This is generally better for branch predictors. 960 961 MachineBasicBlock *MBB = MI.getParent(); 962 MachineBasicBlock::iterator BrIt(MI); 963 if (BrIt == MBB->begin()) 964 return false; 965 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 966 967 MachineInstr *BrCond = &*std::prev(BrIt); 968 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 969 return false; 970 971 // Check that the next block is the conditional branch target. 972 if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) 973 return false; 974 return true; 975 } 976 977 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { 978 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 979 MachineBasicBlock::iterator BrIt(MI); 980 MachineInstr *BrCond = &*std::prev(BrIt); 981 982 Builder.setInstrAndDebugLoc(*BrCond); 983 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 984 // FIXME: Does int/fp matter for this? If so, we might need to restrict 985 // this to i1 only since we might not know for sure what kind of 986 // compare generated the condition value. 987 auto True = Builder.buildConstant( 988 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 989 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 990 991 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 992 Observer.changingInstr(MI); 993 MI.getOperand(0).setMBB(FallthroughBB); 994 Observer.changedInstr(MI); 995 996 // Change the conditional branch to use the inverted condition and 997 // new target block. 998 Observer.changingInstr(*BrCond); 999 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1000 BrCond->getOperand(1).setMBB(BrTarget); 1001 Observer.changedInstr(*BrCond); 1002 } 1003 1004 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 1005 // On Darwin, -Os means optimize for size without hurting performance, so 1006 // only really optimize for size when -Oz (MinSize) is used. 1007 if (MF.getTarget().getTargetTriple().isOSDarwin()) 1008 return MF.getFunction().hasMinSize(); 1009 return MF.getFunction().hasOptSize(); 1010 } 1011 1012 // Returns a list of types to use for memory op lowering in MemOps. A partial 1013 // port of findOptimalMemOpLowering in TargetLowering. 1014 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, 1015 unsigned Limit, const MemOp &Op, 1016 unsigned DstAS, unsigned SrcAS, 1017 const AttributeList &FuncAttributes, 1018 const TargetLowering &TLI) { 1019 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 1020 return false; 1021 1022 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); 1023 1024 if (Ty == LLT()) { 1025 // Use the largest scalar type whose alignment constraints are satisfied. 1026 // We only need to check DstAlign here as SrcAlign is always greater or 1027 // equal to DstAlign (or zero). 1028 Ty = LLT::scalar(64); 1029 if (Op.isFixedDstAlign()) 1030 while (Op.getDstAlign() < Ty.getSizeInBytes() && 1031 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) 1032 Ty = LLT::scalar(Ty.getSizeInBytes()); 1033 assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); 1034 // FIXME: check for the largest legal type we can load/store to. 1035 } 1036 1037 unsigned NumMemOps = 0; 1038 uint64_t Size = Op.size(); 1039 while (Size) { 1040 unsigned TySize = Ty.getSizeInBytes(); 1041 while (TySize > Size) { 1042 // For now, only use non-vector load / store's for the left-over pieces. 1043 LLT NewTy = Ty; 1044 // FIXME: check for mem op safety and legality of the types. Not all of 1045 // SDAGisms map cleanly to GISel concepts. 1046 if (NewTy.isVector()) 1047 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); 1048 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); 1049 unsigned NewTySize = NewTy.getSizeInBytes(); 1050 assert(NewTySize > 0 && "Could not find appropriate type"); 1051 1052 // If the new LLT cannot cover all of the remaining bits, then consider 1053 // issuing a (or a pair of) unaligned and overlapping load / store. 1054 bool Fast; 1055 // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). 1056 MVT VT = getMVTForLLT(Ty); 1057 if (NumMemOps && Op.allowOverlap() && NewTySize < Size && 1058 TLI.allowsMisalignedMemoryAccesses( 1059 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0, 1060 MachineMemOperand::MONone, &Fast) && 1061 Fast) 1062 TySize = Size; 1063 else { 1064 Ty = NewTy; 1065 TySize = NewTySize; 1066 } 1067 } 1068 1069 if (++NumMemOps > Limit) 1070 return false; 1071 1072 MemOps.push_back(Ty); 1073 Size -= TySize; 1074 } 1075 1076 return true; 1077 } 1078 1079 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1080 if (Ty.isVector()) 1081 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1082 Ty.getNumElements()); 1083 return IntegerType::get(C, Ty.getSizeInBits()); 1084 } 1085 1086 // Get a vectorized representation of the memset value operand, GISel edition. 1087 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { 1088 MachineRegisterInfo &MRI = *MIB.getMRI(); 1089 unsigned NumBits = Ty.getScalarSizeInBits(); 1090 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1091 if (!Ty.isVector() && ValVRegAndVal) { 1092 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); 1093 APInt SplatVal = APInt::getSplat(NumBits, Scalar); 1094 return MIB.buildConstant(Ty, SplatVal).getReg(0); 1095 } 1096 1097 // Extend the byte value to the larger type, and then multiply by a magic 1098 // value 0x010101... in order to replicate it across every byte. 1099 // Unless it's zero, in which case just emit a larger G_CONSTANT 0. 1100 if (ValVRegAndVal && ValVRegAndVal->Value == 0) { 1101 return MIB.buildConstant(Ty, 0).getReg(0); 1102 } 1103 1104 LLT ExtType = Ty.getScalarType(); 1105 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); 1106 if (NumBits > 8) { 1107 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 1108 auto MagicMI = MIB.buildConstant(ExtType, Magic); 1109 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); 1110 } 1111 1112 // For vector types create a G_BUILD_VECTOR. 1113 if (Ty.isVector()) 1114 Val = MIB.buildSplatVector(Ty, Val).getReg(0); 1115 1116 return Val; 1117 } 1118 1119 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, 1120 Register Val, unsigned KnownLen, 1121 Align Alignment, bool IsVolatile) { 1122 auto &MF = *MI.getParent()->getParent(); 1123 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1124 auto &DL = MF.getDataLayout(); 1125 LLVMContext &C = MF.getFunction().getContext(); 1126 1127 assert(KnownLen != 0 && "Have a zero length memset length!"); 1128 1129 bool DstAlignCanChange = false; 1130 MachineFrameInfo &MFI = MF.getFrameInfo(); 1131 bool OptSize = shouldLowerMemFuncForSize(MF); 1132 1133 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1134 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1135 DstAlignCanChange = true; 1136 1137 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); 1138 std::vector<LLT> MemOps; 1139 1140 const auto &DstMMO = **MI.memoperands_begin(); 1141 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1142 1143 auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); 1144 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; 1145 1146 if (!findGISelOptimalMemOpLowering(MemOps, Limit, 1147 MemOp::Set(KnownLen, DstAlignCanChange, 1148 Alignment, 1149 /*IsZeroMemset=*/IsZeroVal, 1150 /*IsVolatile=*/IsVolatile), 1151 DstPtrInfo.getAddrSpace(), ~0u, 1152 MF.getFunction().getAttributes(), TLI)) 1153 return false; 1154 1155 if (DstAlignCanChange) { 1156 // Get an estimate of the type from the LLT. 1157 Type *IRTy = getTypeForLLT(MemOps[0], C); 1158 Align NewAlign = DL.getABITypeAlign(IRTy); 1159 if (NewAlign > Alignment) { 1160 Alignment = NewAlign; 1161 unsigned FI = FIDef->getOperand(1).getIndex(); 1162 // Give the stack frame object a larger alignment if needed. 1163 if (MFI.getObjectAlign(FI) < Alignment) 1164 MFI.setObjectAlignment(FI, Alignment); 1165 } 1166 } 1167 1168 MachineIRBuilder MIB(MI); 1169 // Find the largest store and generate the bit pattern for it. 1170 LLT LargestTy = MemOps[0]; 1171 for (unsigned i = 1; i < MemOps.size(); i++) 1172 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) 1173 LargestTy = MemOps[i]; 1174 1175 // The memset stored value is always defined as an s8, so in order to make it 1176 // work with larger store types we need to repeat the bit pattern across the 1177 // wider type. 1178 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); 1179 1180 if (!MemSetValue) 1181 return false; 1182 1183 // Generate the stores. For each store type in the list, we generate the 1184 // matching store of that type to the destination address. 1185 LLT PtrTy = MRI.getType(Dst); 1186 unsigned DstOff = 0; 1187 unsigned Size = KnownLen; 1188 for (unsigned I = 0; I < MemOps.size(); I++) { 1189 LLT Ty = MemOps[I]; 1190 unsigned TySize = Ty.getSizeInBytes(); 1191 if (TySize > Size) { 1192 // Issuing an unaligned load / store pair that overlaps with the previous 1193 // pair. Adjust the offset accordingly. 1194 assert(I == MemOps.size() - 1 && I != 0); 1195 DstOff -= TySize - Size; 1196 } 1197 1198 // If this store is smaller than the largest store see whether we can get 1199 // the smaller value for free with a truncate. 1200 Register Value = MemSetValue; 1201 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { 1202 MVT VT = getMVTForLLT(Ty); 1203 MVT LargestVT = getMVTForLLT(LargestTy); 1204 if (!LargestTy.isVector() && !Ty.isVector() && 1205 TLI.isTruncateFree(LargestVT, VT)) 1206 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); 1207 else 1208 Value = getMemsetValue(Val, Ty, MIB); 1209 if (!Value) 1210 return false; 1211 } 1212 1213 auto *StoreMMO = 1214 MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); 1215 1216 Register Ptr = Dst; 1217 if (DstOff != 0) { 1218 auto Offset = 1219 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); 1220 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1221 } 1222 1223 MIB.buildStore(Value, Ptr, *StoreMMO); 1224 DstOff += Ty.getSizeInBytes(); 1225 Size -= TySize; 1226 } 1227 1228 MI.eraseFromParent(); 1229 return true; 1230 } 1231 1232 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, 1233 Register Src, unsigned KnownLen, 1234 Align DstAlign, Align SrcAlign, 1235 bool IsVolatile) { 1236 auto &MF = *MI.getParent()->getParent(); 1237 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1238 auto &DL = MF.getDataLayout(); 1239 LLVMContext &C = MF.getFunction().getContext(); 1240 1241 assert(KnownLen != 0 && "Have a zero length memcpy length!"); 1242 1243 bool DstAlignCanChange = false; 1244 MachineFrameInfo &MFI = MF.getFrameInfo(); 1245 bool OptSize = shouldLowerMemFuncForSize(MF); 1246 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1247 1248 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1249 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1250 DstAlignCanChange = true; 1251 1252 // FIXME: infer better src pointer alignment like SelectionDAG does here. 1253 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining 1254 // if the memcpy is in a tail call position. 1255 1256 unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); 1257 std::vector<LLT> MemOps; 1258 1259 const auto &DstMMO = **MI.memoperands_begin(); 1260 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1261 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1262 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1263 1264 if (!findGISelOptimalMemOpLowering( 1265 MemOps, Limit, 1266 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1267 IsVolatile), 1268 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1269 MF.getFunction().getAttributes(), TLI)) 1270 return false; 1271 1272 if (DstAlignCanChange) { 1273 // Get an estimate of the type from the LLT. 1274 Type *IRTy = getTypeForLLT(MemOps[0], C); 1275 Align NewAlign = DL.getABITypeAlign(IRTy); 1276 1277 // Don't promote to an alignment that would require dynamic stack 1278 // realignment. 1279 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1280 if (!TRI->needsStackRealignment(MF)) 1281 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1282 NewAlign = NewAlign / 2; 1283 1284 if (NewAlign > Alignment) { 1285 Alignment = NewAlign; 1286 unsigned FI = FIDef->getOperand(1).getIndex(); 1287 // Give the stack frame object a larger alignment if needed. 1288 if (MFI.getObjectAlign(FI) < Alignment) 1289 MFI.setObjectAlignment(FI, Alignment); 1290 } 1291 } 1292 1293 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); 1294 1295 MachineIRBuilder MIB(MI); 1296 // Now we need to emit a pair of load and stores for each of the types we've 1297 // collected. I.e. for each type, generate a load from the source pointer of 1298 // that type width, and then generate a corresponding store to the dest buffer 1299 // of that value loaded. This can result in a sequence of loads and stores 1300 // mixed types, depending on what the target specifies as good types to use. 1301 unsigned CurrOffset = 0; 1302 LLT PtrTy = MRI.getType(Src); 1303 unsigned Size = KnownLen; 1304 for (auto CopyTy : MemOps) { 1305 // Issuing an unaligned load / store pair that overlaps with the previous 1306 // pair. Adjust the offset accordingly. 1307 if (CopyTy.getSizeInBytes() > Size) 1308 CurrOffset -= CopyTy.getSizeInBytes() - Size; 1309 1310 // Construct MMOs for the accesses. 1311 auto *LoadMMO = 1312 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1313 auto *StoreMMO = 1314 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1315 1316 // Create the load. 1317 Register LoadPtr = Src; 1318 Register Offset; 1319 if (CurrOffset != 0) { 1320 Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) 1321 .getReg(0); 1322 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1323 } 1324 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); 1325 1326 // Create the store. 1327 Register StorePtr = 1328 CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1329 MIB.buildStore(LdVal, StorePtr, *StoreMMO); 1330 CurrOffset += CopyTy.getSizeInBytes(); 1331 Size -= CopyTy.getSizeInBytes(); 1332 } 1333 1334 MI.eraseFromParent(); 1335 return true; 1336 } 1337 1338 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, 1339 Register Src, unsigned KnownLen, 1340 Align DstAlign, Align SrcAlign, 1341 bool IsVolatile) { 1342 auto &MF = *MI.getParent()->getParent(); 1343 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1344 auto &DL = MF.getDataLayout(); 1345 LLVMContext &C = MF.getFunction().getContext(); 1346 1347 assert(KnownLen != 0 && "Have a zero length memmove length!"); 1348 1349 bool DstAlignCanChange = false; 1350 MachineFrameInfo &MFI = MF.getFrameInfo(); 1351 bool OptSize = shouldLowerMemFuncForSize(MF); 1352 Align Alignment = commonAlignment(DstAlign, SrcAlign); 1353 1354 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); 1355 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) 1356 DstAlignCanChange = true; 1357 1358 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); 1359 std::vector<LLT> MemOps; 1360 1361 const auto &DstMMO = **MI.memoperands_begin(); 1362 const auto &SrcMMO = **std::next(MI.memoperands_begin()); 1363 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); 1364 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); 1365 1366 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due 1367 // to a bug in it's findOptimalMemOpLowering implementation. For now do the 1368 // same thing here. 1369 if (!findGISelOptimalMemOpLowering( 1370 MemOps, Limit, 1371 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, 1372 /*IsVolatile*/ true), 1373 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 1374 MF.getFunction().getAttributes(), TLI)) 1375 return false; 1376 1377 if (DstAlignCanChange) { 1378 // Get an estimate of the type from the LLT. 1379 Type *IRTy = getTypeForLLT(MemOps[0], C); 1380 Align NewAlign = DL.getABITypeAlign(IRTy); 1381 1382 // Don't promote to an alignment that would require dynamic stack 1383 // realignment. 1384 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1385 if (!TRI->needsStackRealignment(MF)) 1386 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 1387 NewAlign = NewAlign / 2; 1388 1389 if (NewAlign > Alignment) { 1390 Alignment = NewAlign; 1391 unsigned FI = FIDef->getOperand(1).getIndex(); 1392 // Give the stack frame object a larger alignment if needed. 1393 if (MFI.getObjectAlign(FI) < Alignment) 1394 MFI.setObjectAlignment(FI, Alignment); 1395 } 1396 } 1397 1398 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); 1399 1400 MachineIRBuilder MIB(MI); 1401 // Memmove requires that we perform the loads first before issuing the stores. 1402 // Apart from that, this loop is pretty much doing the same thing as the 1403 // memcpy codegen function. 1404 unsigned CurrOffset = 0; 1405 LLT PtrTy = MRI.getType(Src); 1406 SmallVector<Register, 16> LoadVals; 1407 for (auto CopyTy : MemOps) { 1408 // Construct MMO for the load. 1409 auto *LoadMMO = 1410 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); 1411 1412 // Create the load. 1413 Register LoadPtr = Src; 1414 if (CurrOffset != 0) { 1415 auto Offset = 1416 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1417 LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); 1418 } 1419 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); 1420 CurrOffset += CopyTy.getSizeInBytes(); 1421 } 1422 1423 CurrOffset = 0; 1424 for (unsigned I = 0; I < MemOps.size(); ++I) { 1425 LLT CopyTy = MemOps[I]; 1426 // Now store the values loaded. 1427 auto *StoreMMO = 1428 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); 1429 1430 Register StorePtr = Dst; 1431 if (CurrOffset != 0) { 1432 auto Offset = 1433 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); 1434 StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); 1435 } 1436 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); 1437 CurrOffset += CopyTy.getSizeInBytes(); 1438 } 1439 MI.eraseFromParent(); 1440 return true; 1441 } 1442 1443 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1444 const unsigned Opc = MI.getOpcode(); 1445 // This combine is fairly complex so it's not written with a separate 1446 // matcher function. 1447 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || 1448 Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); 1449 1450 auto MMOIt = MI.memoperands_begin(); 1451 const MachineMemOperand *MemOp = *MMOIt; 1452 bool IsVolatile = MemOp->isVolatile(); 1453 // Don't try to optimize volatile. 1454 if (IsVolatile) 1455 return false; 1456 1457 Align DstAlign = MemOp->getBaseAlign(); 1458 Align SrcAlign; 1459 Register Dst = MI.getOperand(0).getReg(); 1460 Register Src = MI.getOperand(1).getReg(); 1461 Register Len = MI.getOperand(2).getReg(); 1462 1463 if (Opc != TargetOpcode::G_MEMSET) { 1464 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); 1465 MemOp = *(++MMOIt); 1466 SrcAlign = MemOp->getBaseAlign(); 1467 } 1468 1469 // See if this is a constant length copy 1470 auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); 1471 if (!LenVRegAndVal) 1472 return false; // Leave it to the legalizer to lower it to a libcall. 1473 unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); 1474 1475 if (KnownLen == 0) { 1476 MI.eraseFromParent(); 1477 return true; 1478 } 1479 1480 if (MaxLen && KnownLen > MaxLen) 1481 return false; 1482 1483 if (Opc == TargetOpcode::G_MEMCPY) 1484 return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1485 if (Opc == TargetOpcode::G_MEMMOVE) 1486 return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); 1487 if (Opc == TargetOpcode::G_MEMSET) 1488 return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); 1489 return false; 1490 } 1491 1492 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1493 const Register Op, 1494 const MachineRegisterInfo &MRI) { 1495 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1496 if (!MaybeCst) 1497 return None; 1498 1499 APFloat V = MaybeCst->getValueAPF(); 1500 switch (Opcode) { 1501 default: 1502 llvm_unreachable("Unexpected opcode!"); 1503 case TargetOpcode::G_FNEG: { 1504 V.changeSign(); 1505 return V; 1506 } 1507 case TargetOpcode::G_FABS: { 1508 V.clearSign(); 1509 return V; 1510 } 1511 case TargetOpcode::G_FPTRUNC: 1512 break; 1513 case TargetOpcode::G_FSQRT: { 1514 bool Unused; 1515 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1516 V = APFloat(sqrt(V.convertToDouble())); 1517 break; 1518 } 1519 case TargetOpcode::G_FLOG2: { 1520 bool Unused; 1521 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1522 V = APFloat(log2(V.convertToDouble())); 1523 break; 1524 } 1525 } 1526 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1527 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1528 // and `G_FLOG2` reach here. 1529 bool Unused; 1530 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1531 return V; 1532 } 1533 1534 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1535 Optional<APFloat> &Cst) { 1536 Register DstReg = MI.getOperand(0).getReg(); 1537 Register SrcReg = MI.getOperand(1).getReg(); 1538 LLT DstTy = MRI.getType(DstReg); 1539 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1540 return Cst.hasValue(); 1541 } 1542 1543 bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1544 Optional<APFloat> &Cst) { 1545 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1546 Builder.setInstrAndDebugLoc(MI); 1547 MachineFunction &MF = Builder.getMF(); 1548 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1549 Register DstReg = MI.getOperand(0).getReg(); 1550 Builder.buildFConstant(DstReg, *FPVal); 1551 MI.eraseFromParent(); 1552 return true; 1553 } 1554 1555 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1556 PtrAddChain &MatchInfo) { 1557 // We're trying to match the following pattern: 1558 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1559 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1560 // --> 1561 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1562 1563 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1564 return false; 1565 1566 Register Add2 = MI.getOperand(1).getReg(); 1567 Register Imm1 = MI.getOperand(2).getReg(); 1568 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1569 if (!MaybeImmVal) 1570 return false; 1571 1572 MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); 1573 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1574 return false; 1575 1576 Register Base = Add2Def->getOperand(1).getReg(); 1577 Register Imm2 = Add2Def->getOperand(2).getReg(); 1578 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1579 if (!MaybeImm2Val) 1580 return false; 1581 1582 // Pass the combined immediate to the apply function. 1583 MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); 1584 MatchInfo.Base = Base; 1585 return true; 1586 } 1587 1588 bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1589 PtrAddChain &MatchInfo) { 1590 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1591 MachineIRBuilder MIB(MI); 1592 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1593 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1594 Observer.changingInstr(MI); 1595 MI.getOperand(1).setReg(MatchInfo.Base); 1596 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1597 Observer.changedInstr(MI); 1598 return true; 1599 } 1600 1601 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1602 RegisterImmPair &MatchInfo) { 1603 // We're trying to match the following pattern with any of 1604 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1605 // %t1 = SHIFT %base, G_CONSTANT imm1 1606 // %root = SHIFT %t1, G_CONSTANT imm2 1607 // --> 1608 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1609 1610 unsigned Opcode = MI.getOpcode(); 1611 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1612 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1613 Opcode == TargetOpcode::G_USHLSAT) && 1614 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1615 1616 Register Shl2 = MI.getOperand(1).getReg(); 1617 Register Imm1 = MI.getOperand(2).getReg(); 1618 auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); 1619 if (!MaybeImmVal) 1620 return false; 1621 1622 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1623 if (Shl2Def->getOpcode() != Opcode) 1624 return false; 1625 1626 Register Base = Shl2Def->getOperand(1).getReg(); 1627 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1628 auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); 1629 if (!MaybeImm2Val) 1630 return false; 1631 1632 // Pass the combined immediate to the apply function. 1633 MatchInfo.Imm = 1634 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1635 MatchInfo.Reg = Base; 1636 1637 // There is no simple replacement for a saturating unsigned left shift that 1638 // exceeds the scalar size. 1639 if (Opcode == TargetOpcode::G_USHLSAT && 1640 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1641 return false; 1642 1643 return true; 1644 } 1645 1646 bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1647 RegisterImmPair &MatchInfo) { 1648 unsigned Opcode = MI.getOpcode(); 1649 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1650 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1651 Opcode == TargetOpcode::G_USHLSAT) && 1652 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1653 1654 Builder.setInstrAndDebugLoc(MI); 1655 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1656 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1657 auto Imm = MatchInfo.Imm; 1658 1659 if (Imm >= ScalarSizeInBits) { 1660 // Any logical shift that exceeds scalar size will produce zero. 1661 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1662 Builder.buildConstant(MI.getOperand(0), 0); 1663 MI.eraseFromParent(); 1664 return true; 1665 } 1666 // Arithmetic shift and saturating signed left shift have no effect beyond 1667 // scalar size. 1668 Imm = ScalarSizeInBits - 1; 1669 } 1670 1671 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1672 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1673 Observer.changingInstr(MI); 1674 MI.getOperand(1).setReg(MatchInfo.Reg); 1675 MI.getOperand(2).setReg(NewImm); 1676 Observer.changedInstr(MI); 1677 return true; 1678 } 1679 1680 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1681 ShiftOfShiftedLogic &MatchInfo) { 1682 // We're trying to match the following pattern with any of 1683 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1684 // with any of G_AND/G_OR/G_XOR logic instructions. 1685 // %t1 = SHIFT %X, G_CONSTANT C0 1686 // %t2 = LOGIC %t1, %Y 1687 // %root = SHIFT %t2, G_CONSTANT C1 1688 // --> 1689 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1690 // %t4 = SHIFT %Y, G_CONSTANT C1 1691 // %root = LOGIC %t3, %t4 1692 unsigned ShiftOpcode = MI.getOpcode(); 1693 assert((ShiftOpcode == TargetOpcode::G_SHL || 1694 ShiftOpcode == TargetOpcode::G_ASHR || 1695 ShiftOpcode == TargetOpcode::G_LSHR || 1696 ShiftOpcode == TargetOpcode::G_USHLSAT || 1697 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1698 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1699 1700 // Match a one-use bitwise logic op. 1701 Register LogicDest = MI.getOperand(1).getReg(); 1702 if (!MRI.hasOneNonDBGUse(LogicDest)) 1703 return false; 1704 1705 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1706 unsigned LogicOpcode = LogicMI->getOpcode(); 1707 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1708 LogicOpcode != TargetOpcode::G_XOR) 1709 return false; 1710 1711 // Find a matching one-use shift by constant. 1712 const Register C1 = MI.getOperand(2).getReg(); 1713 auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); 1714 if (!MaybeImmVal) 1715 return false; 1716 1717 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1718 1719 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1720 // Shift should match previous one and should be a one-use. 1721 if (MI->getOpcode() != ShiftOpcode || 1722 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1723 return false; 1724 1725 // Must be a constant. 1726 auto MaybeImmVal = 1727 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1728 if (!MaybeImmVal) 1729 return false; 1730 1731 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1732 return true; 1733 }; 1734 1735 // Logic ops are commutative, so check each operand for a match. 1736 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1737 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1738 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1739 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1740 uint64_t C0Val; 1741 1742 if (matchFirstShift(LogicMIOp1, C0Val)) { 1743 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1744 MatchInfo.Shift2 = LogicMIOp1; 1745 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1746 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1747 MatchInfo.Shift2 = LogicMIOp2; 1748 } else 1749 return false; 1750 1751 MatchInfo.ValSum = C0Val + C1Val; 1752 1753 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1754 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1755 return false; 1756 1757 MatchInfo.Logic = LogicMI; 1758 return true; 1759 } 1760 1761 bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1762 ShiftOfShiftedLogic &MatchInfo) { 1763 unsigned Opcode = MI.getOpcode(); 1764 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1765 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1766 Opcode == TargetOpcode::G_SSHLSAT) && 1767 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1768 1769 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1770 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1771 Builder.setInstrAndDebugLoc(MI); 1772 1773 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1774 1775 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1776 Register Shift1 = 1777 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1778 1779 Register Shift2Const = MI.getOperand(2).getReg(); 1780 Register Shift2 = Builder 1781 .buildInstr(Opcode, {DestType}, 1782 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1783 .getReg(0); 1784 1785 Register Dest = MI.getOperand(0).getReg(); 1786 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1787 1788 // These were one use so it's safe to remove them. 1789 MatchInfo.Shift2->eraseFromParent(); 1790 MatchInfo.Logic->eraseFromParent(); 1791 1792 MI.eraseFromParent(); 1793 return true; 1794 } 1795 1796 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1797 unsigned &ShiftVal) { 1798 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1799 auto MaybeImmVal = 1800 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1801 if (!MaybeImmVal) 1802 return false; 1803 1804 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1805 return (static_cast<int32_t>(ShiftVal) != -1); 1806 } 1807 1808 bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1809 unsigned &ShiftVal) { 1810 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1811 MachineIRBuilder MIB(MI); 1812 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1813 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1814 Observer.changingInstr(MI); 1815 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1816 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1817 Observer.changedInstr(MI); 1818 return true; 1819 } 1820 1821 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1822 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1823 RegisterImmPair &MatchData) { 1824 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1825 1826 Register LHS = MI.getOperand(1).getReg(); 1827 1828 Register ExtSrc; 1829 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1830 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1831 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1832 return false; 1833 1834 // TODO: Should handle vector splat. 1835 Register RHS = MI.getOperand(2).getReg(); 1836 auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); 1837 if (!MaybeShiftAmtVal) 1838 return false; 1839 1840 if (LI) { 1841 LLT SrcTy = MRI.getType(ExtSrc); 1842 1843 // We only really care about the legality with the shifted value. We can 1844 // pick any type the constant shift amount, so ask the target what to 1845 // use. Otherwise we would have to guess and hope it is reported as legal. 1846 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1847 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1848 return false; 1849 } 1850 1851 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1852 MatchData.Reg = ExtSrc; 1853 MatchData.Imm = ShiftAmt; 1854 1855 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1856 return MinLeadingZeros >= ShiftAmt; 1857 } 1858 1859 bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1860 const RegisterImmPair &MatchData) { 1861 Register ExtSrcReg = MatchData.Reg; 1862 int64_t ShiftAmtVal = MatchData.Imm; 1863 1864 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1865 Builder.setInstrAndDebugLoc(MI); 1866 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1867 auto NarrowShift = 1868 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1869 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1870 MI.eraseFromParent(); 1871 return true; 1872 } 1873 1874 static Register peekThroughBitcast(Register Reg, 1875 const MachineRegisterInfo &MRI) { 1876 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1877 ; 1878 1879 return Reg; 1880 } 1881 1882 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1883 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1884 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1885 "Expected an unmerge"); 1886 Register SrcReg = 1887 peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); 1888 1889 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1890 if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && 1891 SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && 1892 SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) 1893 return false; 1894 1895 // Check the source type of the merge. 1896 LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); 1897 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1898 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1899 if (SrcMergeTy != Dst0Ty && !SameSize) 1900 return false; 1901 // They are the same now (modulo a bitcast). 1902 // We can collect all the src registers. 1903 for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; 1904 ++Idx) 1905 Operands.push_back(SrcInstr->getOperand(Idx).getReg()); 1906 return true; 1907 } 1908 1909 bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1910 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1911 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1912 "Expected an unmerge"); 1913 assert((MI.getNumOperands() - 1 == Operands.size()) && 1914 "Not enough operands to replace all defs"); 1915 unsigned NumElems = MI.getNumOperands() - 1; 1916 1917 LLT SrcTy = MRI.getType(Operands[0]); 1918 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1919 bool CanReuseInputDirectly = DstTy == SrcTy; 1920 Builder.setInstrAndDebugLoc(MI); 1921 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1922 Register DstReg = MI.getOperand(Idx).getReg(); 1923 Register SrcReg = Operands[Idx]; 1924 if (CanReuseInputDirectly) 1925 replaceRegWith(MRI, DstReg, SrcReg); 1926 else 1927 Builder.buildCast(DstReg, SrcReg); 1928 } 1929 MI.eraseFromParent(); 1930 return true; 1931 } 1932 1933 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1934 SmallVectorImpl<APInt> &Csts) { 1935 unsigned SrcIdx = MI.getNumOperands() - 1; 1936 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1937 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1938 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1939 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1940 return false; 1941 // Break down the big constant in smaller ones. 1942 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1943 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1944 ? CstVal.getCImm()->getValue() 1945 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1946 1947 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1948 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1949 // Unmerge a constant. 1950 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1951 Csts.emplace_back(Val.trunc(ShiftAmt)); 1952 Val = Val.lshr(ShiftAmt); 1953 } 1954 1955 return true; 1956 } 1957 1958 bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1959 SmallVectorImpl<APInt> &Csts) { 1960 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1961 "Expected an unmerge"); 1962 assert((MI.getNumOperands() - 1 == Csts.size()) && 1963 "Not enough operands to replace all defs"); 1964 unsigned NumElems = MI.getNumOperands() - 1; 1965 Builder.setInstrAndDebugLoc(MI); 1966 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1967 Register DstReg = MI.getOperand(Idx).getReg(); 1968 Builder.buildConstant(DstReg, Csts[Idx]); 1969 } 1970 1971 MI.eraseFromParent(); 1972 return true; 1973 } 1974 1975 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1976 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1977 "Expected an unmerge"); 1978 // Check that all the lanes are dead except the first one. 1979 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1980 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1981 return false; 1982 } 1983 return true; 1984 } 1985 1986 bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1987 Builder.setInstrAndDebugLoc(MI); 1988 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1989 // Truncating a vector is going to truncate every single lane, 1990 // whereas we want the full lowbits. 1991 // Do the operation on a scalar instead. 1992 LLT SrcTy = MRI.getType(SrcReg); 1993 if (SrcTy.isVector()) 1994 SrcReg = 1995 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1996 1997 Register Dst0Reg = MI.getOperand(0).getReg(); 1998 LLT Dst0Ty = MRI.getType(Dst0Reg); 1999 if (Dst0Ty.isVector()) { 2000 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 2001 Builder.buildCast(Dst0Reg, MIB); 2002 } else 2003 Builder.buildTrunc(Dst0Reg, SrcReg); 2004 MI.eraseFromParent(); 2005 return true; 2006 } 2007 2008 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 2009 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2010 "Expected an unmerge"); 2011 Register Dst0Reg = MI.getOperand(0).getReg(); 2012 LLT Dst0Ty = MRI.getType(Dst0Reg); 2013 // G_ZEXT on vector applies to each lane, so it will 2014 // affect all destinations. Therefore we won't be able 2015 // to simplify the unmerge to just the first definition. 2016 if (Dst0Ty.isVector()) 2017 return false; 2018 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 2019 LLT SrcTy = MRI.getType(SrcReg); 2020 if (SrcTy.isVector()) 2021 return false; 2022 2023 Register ZExtSrcReg; 2024 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 2025 return false; 2026 2027 // Finally we can replace the first definition with 2028 // a zext of the source if the definition is big enough to hold 2029 // all of ZExtSrc bits. 2030 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2031 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 2032 } 2033 2034 bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 2035 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 2036 "Expected an unmerge"); 2037 2038 Register Dst0Reg = MI.getOperand(0).getReg(); 2039 2040 MachineInstr *ZExtInstr = 2041 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 2042 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 2043 "Expecting a G_ZEXT"); 2044 2045 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 2046 LLT Dst0Ty = MRI.getType(Dst0Reg); 2047 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 2048 2049 Builder.setInstrAndDebugLoc(MI); 2050 2051 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 2052 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 2053 } else { 2054 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 2055 "ZExt src doesn't fit in destination"); 2056 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 2057 } 2058 2059 Register ZeroReg; 2060 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 2061 if (!ZeroReg) 2062 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 2063 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 2064 } 2065 MI.eraseFromParent(); 2066 return true; 2067 } 2068 2069 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 2070 unsigned TargetShiftSize, 2071 unsigned &ShiftVal) { 2072 assert((MI.getOpcode() == TargetOpcode::G_SHL || 2073 MI.getOpcode() == TargetOpcode::G_LSHR || 2074 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 2075 2076 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2077 if (Ty.isVector()) // TODO: 2078 return false; 2079 2080 // Don't narrow further than the requested size. 2081 unsigned Size = Ty.getSizeInBits(); 2082 if (Size <= TargetShiftSize) 2083 return false; 2084 2085 auto MaybeImmVal = 2086 getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 2087 if (!MaybeImmVal) 2088 return false; 2089 2090 ShiftVal = MaybeImmVal->Value.getSExtValue(); 2091 return ShiftVal >= Size / 2 && ShiftVal < Size; 2092 } 2093 2094 bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 2095 const unsigned &ShiftVal) { 2096 Register DstReg = MI.getOperand(0).getReg(); 2097 Register SrcReg = MI.getOperand(1).getReg(); 2098 LLT Ty = MRI.getType(SrcReg); 2099 unsigned Size = Ty.getSizeInBits(); 2100 unsigned HalfSize = Size / 2; 2101 assert(ShiftVal >= HalfSize); 2102 2103 LLT HalfTy = LLT::scalar(HalfSize); 2104 2105 Builder.setInstr(MI); 2106 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 2107 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 2108 2109 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2110 Register Narrowed = Unmerge.getReg(1); 2111 2112 // dst = G_LSHR s64:x, C for C >= 32 2113 // => 2114 // lo, hi = G_UNMERGE_VALUES x 2115 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 2116 2117 if (NarrowShiftAmt != 0) { 2118 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 2119 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2120 } 2121 2122 auto Zero = Builder.buildConstant(HalfTy, 0); 2123 Builder.buildMerge(DstReg, { Narrowed, Zero }); 2124 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 2125 Register Narrowed = Unmerge.getReg(0); 2126 // dst = G_SHL s64:x, C for C >= 32 2127 // => 2128 // lo, hi = G_UNMERGE_VALUES x 2129 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 2130 if (NarrowShiftAmt != 0) { 2131 Narrowed = Builder.buildShl(HalfTy, Narrowed, 2132 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 2133 } 2134 2135 auto Zero = Builder.buildConstant(HalfTy, 0); 2136 Builder.buildMerge(DstReg, { Zero, Narrowed }); 2137 } else { 2138 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2139 auto Hi = Builder.buildAShr( 2140 HalfTy, Unmerge.getReg(1), 2141 Builder.buildConstant(HalfTy, HalfSize - 1)); 2142 2143 if (ShiftVal == HalfSize) { 2144 // (G_ASHR i64:x, 32) -> 2145 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 2146 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 2147 } else if (ShiftVal == Size - 1) { 2148 // Don't need a second shift. 2149 // (G_ASHR i64:x, 63) -> 2150 // %narrowed = (G_ASHR hi_32(x), 31) 2151 // G_MERGE_VALUES %narrowed, %narrowed 2152 Builder.buildMerge(DstReg, { Hi, Hi }); 2153 } else { 2154 auto Lo = Builder.buildAShr( 2155 HalfTy, Unmerge.getReg(1), 2156 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 2157 2158 // (G_ASHR i64:x, C) ->, for C >= 32 2159 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 2160 Builder.buildMerge(DstReg, { Lo, Hi }); 2161 } 2162 } 2163 2164 MI.eraseFromParent(); 2165 return true; 2166 } 2167 2168 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 2169 unsigned TargetShiftAmount) { 2170 unsigned ShiftAmt; 2171 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 2172 applyCombineShiftToUnmerge(MI, ShiftAmt); 2173 return true; 2174 } 2175 2176 return false; 2177 } 2178 2179 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2180 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2181 Register DstReg = MI.getOperand(0).getReg(); 2182 LLT DstTy = MRI.getType(DstReg); 2183 Register SrcReg = MI.getOperand(1).getReg(); 2184 return mi_match(SrcReg, MRI, 2185 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 2186 } 2187 2188 bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 2189 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 2190 Register DstReg = MI.getOperand(0).getReg(); 2191 Builder.setInstr(MI); 2192 Builder.buildCopy(DstReg, Reg); 2193 MI.eraseFromParent(); 2194 return true; 2195 } 2196 2197 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2198 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2199 Register SrcReg = MI.getOperand(1).getReg(); 2200 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2201 } 2202 2203 bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2204 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2205 Register DstReg = MI.getOperand(0).getReg(); 2206 Builder.setInstr(MI); 2207 Builder.buildZExtOrTrunc(DstReg, Reg); 2208 MI.eraseFromParent(); 2209 return true; 2210 } 2211 2212 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2213 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2214 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2215 Register LHS = MI.getOperand(1).getReg(); 2216 Register RHS = MI.getOperand(2).getReg(); 2217 LLT IntTy = MRI.getType(LHS); 2218 2219 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2220 // instruction. 2221 PtrReg.second = false; 2222 for (Register SrcReg : {LHS, RHS}) { 2223 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2224 // Don't handle cases where the integer is implicitly converted to the 2225 // pointer width. 2226 LLT PtrTy = MRI.getType(PtrReg.first); 2227 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2228 return true; 2229 } 2230 2231 PtrReg.second = true; 2232 } 2233 2234 return false; 2235 } 2236 2237 bool CombinerHelper::applyCombineAddP2IToPtrAdd( 2238 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2239 Register Dst = MI.getOperand(0).getReg(); 2240 Register LHS = MI.getOperand(1).getReg(); 2241 Register RHS = MI.getOperand(2).getReg(); 2242 2243 const bool DoCommute = PtrReg.second; 2244 if (DoCommute) 2245 std::swap(LHS, RHS); 2246 LHS = PtrReg.first; 2247 2248 LLT PtrTy = MRI.getType(LHS); 2249 2250 Builder.setInstrAndDebugLoc(MI); 2251 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2252 Builder.buildPtrToInt(Dst, PtrAdd); 2253 MI.eraseFromParent(); 2254 return true; 2255 } 2256 2257 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2258 int64_t &NewCst) { 2259 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2260 Register LHS = MI.getOperand(1).getReg(); 2261 Register RHS = MI.getOperand(2).getReg(); 2262 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2263 2264 if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { 2265 int64_t Cst; 2266 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2267 NewCst = Cst + *RHSCst; 2268 return true; 2269 } 2270 } 2271 2272 return false; 2273 } 2274 2275 bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2276 int64_t &NewCst) { 2277 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); 2278 Register Dst = MI.getOperand(0).getReg(); 2279 2280 Builder.setInstrAndDebugLoc(MI); 2281 Builder.buildConstant(Dst, NewCst); 2282 MI.eraseFromParent(); 2283 return true; 2284 } 2285 2286 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2287 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2288 Register DstReg = MI.getOperand(0).getReg(); 2289 Register SrcReg = MI.getOperand(1).getReg(); 2290 LLT DstTy = MRI.getType(DstReg); 2291 return mi_match(SrcReg, MRI, 2292 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2293 } 2294 2295 bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2296 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2297 Register DstReg = MI.getOperand(0).getReg(); 2298 MI.eraseFromParent(); 2299 replaceRegWith(MRI, DstReg, Reg); 2300 return true; 2301 } 2302 2303 bool CombinerHelper::matchCombineExtOfExt( 2304 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2305 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2306 MI.getOpcode() == TargetOpcode::G_SEXT || 2307 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2308 "Expected a G_[ASZ]EXT"); 2309 Register SrcReg = MI.getOperand(1).getReg(); 2310 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2311 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2312 unsigned Opc = MI.getOpcode(); 2313 unsigned SrcOpc = SrcMI->getOpcode(); 2314 if (Opc == SrcOpc || 2315 (Opc == TargetOpcode::G_ANYEXT && 2316 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2317 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2318 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2319 return true; 2320 } 2321 return false; 2322 } 2323 2324 bool CombinerHelper::applyCombineExtOfExt( 2325 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2326 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2327 MI.getOpcode() == TargetOpcode::G_SEXT || 2328 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2329 "Expected a G_[ASZ]EXT"); 2330 2331 Register Reg = std::get<0>(MatchInfo); 2332 unsigned SrcExtOp = std::get<1>(MatchInfo); 2333 2334 // Combine exts with the same opcode. 2335 if (MI.getOpcode() == SrcExtOp) { 2336 Observer.changingInstr(MI); 2337 MI.getOperand(1).setReg(Reg); 2338 Observer.changedInstr(MI); 2339 return true; 2340 } 2341 2342 // Combine: 2343 // - anyext([sz]ext x) to [sz]ext x 2344 // - sext(zext x) to zext x 2345 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2346 (MI.getOpcode() == TargetOpcode::G_SEXT && 2347 SrcExtOp == TargetOpcode::G_ZEXT)) { 2348 Register DstReg = MI.getOperand(0).getReg(); 2349 Builder.setInstrAndDebugLoc(MI); 2350 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2351 MI.eraseFromParent(); 2352 return true; 2353 } 2354 2355 return false; 2356 } 2357 2358 bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2359 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2360 Register DstReg = MI.getOperand(0).getReg(); 2361 Register SrcReg = MI.getOperand(1).getReg(); 2362 LLT DstTy = MRI.getType(DstReg); 2363 2364 Builder.setInstrAndDebugLoc(MI); 2365 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2366 MI.getFlags()); 2367 MI.eraseFromParent(); 2368 return true; 2369 } 2370 2371 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2372 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2373 Register SrcReg = MI.getOperand(1).getReg(); 2374 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2375 } 2376 2377 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2378 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2379 Src = MI.getOperand(1).getReg(); 2380 Register AbsSrc; 2381 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2382 } 2383 2384 bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2385 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2386 Register Dst = MI.getOperand(0).getReg(); 2387 MI.eraseFromParent(); 2388 replaceRegWith(MRI, Dst, Src); 2389 return true; 2390 } 2391 2392 bool CombinerHelper::matchCombineTruncOfExt( 2393 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2394 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2395 Register SrcReg = MI.getOperand(1).getReg(); 2396 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2397 unsigned SrcOpc = SrcMI->getOpcode(); 2398 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2399 SrcOpc == TargetOpcode::G_ZEXT) { 2400 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2401 return true; 2402 } 2403 return false; 2404 } 2405 2406 bool CombinerHelper::applyCombineTruncOfExt( 2407 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2408 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2409 Register SrcReg = MatchInfo.first; 2410 unsigned SrcExtOp = MatchInfo.second; 2411 Register DstReg = MI.getOperand(0).getReg(); 2412 LLT SrcTy = MRI.getType(SrcReg); 2413 LLT DstTy = MRI.getType(DstReg); 2414 if (SrcTy == DstTy) { 2415 MI.eraseFromParent(); 2416 replaceRegWith(MRI, DstReg, SrcReg); 2417 return true; 2418 } 2419 Builder.setInstrAndDebugLoc(MI); 2420 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2421 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2422 else 2423 Builder.buildTrunc(DstReg, SrcReg); 2424 MI.eraseFromParent(); 2425 return true; 2426 } 2427 2428 bool CombinerHelper::matchCombineTruncOfShl( 2429 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2430 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2431 Register DstReg = MI.getOperand(0).getReg(); 2432 Register SrcReg = MI.getOperand(1).getReg(); 2433 LLT DstTy = MRI.getType(DstReg); 2434 Register ShiftSrc; 2435 Register ShiftAmt; 2436 2437 if (MRI.hasOneNonDBGUse(SrcReg) && 2438 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2439 isLegalOrBeforeLegalizer( 2440 {TargetOpcode::G_SHL, 2441 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2442 KnownBits Known = KB->getKnownBits(ShiftAmt); 2443 unsigned Size = DstTy.getSizeInBits(); 2444 if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { 2445 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2446 return true; 2447 } 2448 } 2449 return false; 2450 } 2451 2452 bool CombinerHelper::applyCombineTruncOfShl( 2453 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2454 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2455 Register DstReg = MI.getOperand(0).getReg(); 2456 Register SrcReg = MI.getOperand(1).getReg(); 2457 LLT DstTy = MRI.getType(DstReg); 2458 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2459 2460 Register ShiftSrc = MatchInfo.first; 2461 Register ShiftAmt = MatchInfo.second; 2462 Builder.setInstrAndDebugLoc(MI); 2463 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2464 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2465 MI.eraseFromParent(); 2466 return true; 2467 } 2468 2469 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2470 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2471 return MO.isReg() && 2472 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2473 }); 2474 } 2475 2476 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2477 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2478 return !MO.isReg() || 2479 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2480 }); 2481 } 2482 2483 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2484 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2485 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2486 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2487 } 2488 2489 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2490 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2491 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2492 MRI); 2493 } 2494 2495 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2496 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2497 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2498 MRI); 2499 } 2500 2501 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2502 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2503 if (auto MaybeCstCmp = 2504 getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { 2505 OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; 2506 return true; 2507 } 2508 return false; 2509 } 2510 2511 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2512 MI.eraseFromParent(); 2513 return true; 2514 } 2515 2516 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2517 const MachineOperand &MOP2) { 2518 if (!MOP1.isReg() || !MOP2.isReg()) 2519 return false; 2520 MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI); 2521 if (!I1) 2522 return false; 2523 MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI); 2524 if (!I2) 2525 return false; 2526 2527 // Handle a case like this: 2528 // 2529 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2530 // 2531 // Even though %0 and %1 are produced by the same instruction they are not 2532 // the same values. 2533 if (I1 == I2) 2534 return MOP1.getReg() == MOP2.getReg(); 2535 2536 // If we have an instruction which loads or stores, we can't guarantee that 2537 // it is identical. 2538 // 2539 // For example, we may have 2540 // 2541 // %x1 = G_LOAD %addr (load N from @somewhere) 2542 // ... 2543 // call @foo 2544 // ... 2545 // %x2 = G_LOAD %addr (load N from @somewhere) 2546 // ... 2547 // %or = G_OR %x1, %x2 2548 // 2549 // It's possible that @foo will modify whatever lives at the address we're 2550 // loading from. To be safe, let's just assume that all loads and stores 2551 // are different (unless we have something which is guaranteed to not 2552 // change.) 2553 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2554 return false; 2555 2556 // Check for physical registers on the instructions first to avoid cases 2557 // like this: 2558 // 2559 // %a = COPY $physreg 2560 // ... 2561 // SOMETHING implicit-def $physreg 2562 // ... 2563 // %b = COPY $physreg 2564 // 2565 // These copies are not equivalent. 2566 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2567 return MO.isReg() && MO.getReg().isPhysical(); 2568 })) { 2569 // Check if we have a case like this: 2570 // 2571 // %a = COPY $physreg 2572 // %b = COPY %a 2573 // 2574 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2575 // From that, we know that they must have the same value, since they must 2576 // have come from the same COPY. 2577 return I1->isIdenticalTo(*I2); 2578 } 2579 2580 // We don't have any physical registers, so we don't necessarily need the 2581 // same vreg defs. 2582 // 2583 // On the off-chance that there's some target instruction feeding into the 2584 // instruction, let's use produceSameValue instead of isIdenticalTo. 2585 return Builder.getTII().produceSameValue(*I1, *I2, &MRI); 2586 } 2587 2588 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2589 if (!MOP.isReg()) 2590 return false; 2591 // MIPatternMatch doesn't let us look through G_ZEXT etc. 2592 auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI); 2593 return ValAndVReg && ValAndVReg->Value == C; 2594 } 2595 2596 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2597 unsigned OpIdx) { 2598 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2599 Register OldReg = MI.getOperand(0).getReg(); 2600 Register Replacement = MI.getOperand(OpIdx).getReg(); 2601 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2602 MI.eraseFromParent(); 2603 replaceRegWith(MRI, OldReg, Replacement); 2604 return true; 2605 } 2606 2607 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2608 Register Replacement) { 2609 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2610 Register OldReg = MI.getOperand(0).getReg(); 2611 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2612 MI.eraseFromParent(); 2613 replaceRegWith(MRI, OldReg, Replacement); 2614 return true; 2615 } 2616 2617 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2618 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2619 // Match (cond ? x : x) 2620 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2621 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2622 MRI); 2623 } 2624 2625 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2626 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2627 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2628 MRI); 2629 } 2630 2631 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2632 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2633 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2634 MRI); 2635 } 2636 2637 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2638 MachineOperand &MO = MI.getOperand(OpIdx); 2639 return MO.isReg() && 2640 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2641 } 2642 2643 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2644 unsigned OpIdx) { 2645 MachineOperand &MO = MI.getOperand(OpIdx); 2646 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2647 } 2648 2649 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2650 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2651 Builder.setInstr(MI); 2652 Builder.buildFConstant(MI.getOperand(0), C); 2653 MI.eraseFromParent(); 2654 return true; 2655 } 2656 2657 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2658 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2659 Builder.setInstr(MI); 2660 Builder.buildConstant(MI.getOperand(0), C); 2661 MI.eraseFromParent(); 2662 return true; 2663 } 2664 2665 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2666 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2667 Builder.setInstr(MI); 2668 Builder.buildUndef(MI.getOperand(0)); 2669 MI.eraseFromParent(); 2670 return true; 2671 } 2672 2673 bool CombinerHelper::matchSimplifyAddToSub( 2674 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2675 Register LHS = MI.getOperand(1).getReg(); 2676 Register RHS = MI.getOperand(2).getReg(); 2677 Register &NewLHS = std::get<0>(MatchInfo); 2678 Register &NewRHS = std::get<1>(MatchInfo); 2679 2680 // Helper lambda to check for opportunities for 2681 // ((0-A) + B) -> B - A 2682 // (A + (0-B)) -> A - B 2683 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2684 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2685 return false; 2686 NewLHS = MaybeNewLHS; 2687 return true; 2688 }; 2689 2690 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2691 } 2692 2693 bool CombinerHelper::matchCombineInsertVecElts( 2694 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2695 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2696 "Invalid opcode"); 2697 Register DstReg = MI.getOperand(0).getReg(); 2698 LLT DstTy = MRI.getType(DstReg); 2699 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2700 unsigned NumElts = DstTy.getNumElements(); 2701 // If this MI is part of a sequence of insert_vec_elts, then 2702 // don't do the combine in the middle of the sequence. 2703 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2704 TargetOpcode::G_INSERT_VECTOR_ELT) 2705 return false; 2706 MachineInstr *CurrInst = &MI; 2707 MachineInstr *TmpInst; 2708 int64_t IntImm; 2709 Register TmpReg; 2710 MatchInfo.resize(NumElts); 2711 while (mi_match( 2712 CurrInst->getOperand(0).getReg(), MRI, 2713 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2714 if (IntImm >= NumElts) 2715 return false; 2716 if (!MatchInfo[IntImm]) 2717 MatchInfo[IntImm] = TmpReg; 2718 CurrInst = TmpInst; 2719 } 2720 // Variable index. 2721 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2722 return false; 2723 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2724 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2725 if (!MatchInfo[I - 1].isValid()) 2726 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2727 } 2728 return true; 2729 } 2730 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2731 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2732 } 2733 2734 bool CombinerHelper::applyCombineInsertVecElts( 2735 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2736 Builder.setInstr(MI); 2737 Register UndefReg; 2738 auto GetUndef = [&]() { 2739 if (UndefReg) 2740 return UndefReg; 2741 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2742 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2743 return UndefReg; 2744 }; 2745 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2746 if (!MatchInfo[I]) 2747 MatchInfo[I] = GetUndef(); 2748 } 2749 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2750 MI.eraseFromParent(); 2751 return true; 2752 } 2753 2754 bool CombinerHelper::applySimplifyAddToSub( 2755 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2756 Builder.setInstr(MI); 2757 Register SubLHS, SubRHS; 2758 std::tie(SubLHS, SubRHS) = MatchInfo; 2759 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2760 MI.eraseFromParent(); 2761 return true; 2762 } 2763 2764 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2765 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2766 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2767 // 2768 // Creates the new hand + logic instruction (but does not insert them.) 2769 // 2770 // On success, MatchInfo is populated with the new instructions. These are 2771 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2772 unsigned LogicOpcode = MI.getOpcode(); 2773 assert(LogicOpcode == TargetOpcode::G_AND || 2774 LogicOpcode == TargetOpcode::G_OR || 2775 LogicOpcode == TargetOpcode::G_XOR); 2776 MachineIRBuilder MIB(MI); 2777 Register Dst = MI.getOperand(0).getReg(); 2778 Register LHSReg = MI.getOperand(1).getReg(); 2779 Register RHSReg = MI.getOperand(2).getReg(); 2780 2781 // Don't recompute anything. 2782 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2783 return false; 2784 2785 // Make sure we have (hand x, ...), (hand y, ...) 2786 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2787 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2788 if (!LeftHandInst || !RightHandInst) 2789 return false; 2790 unsigned HandOpcode = LeftHandInst->getOpcode(); 2791 if (HandOpcode != RightHandInst->getOpcode()) 2792 return false; 2793 if (!LeftHandInst->getOperand(1).isReg() || 2794 !RightHandInst->getOperand(1).isReg()) 2795 return false; 2796 2797 // Make sure the types match up, and if we're doing this post-legalization, 2798 // we end up with legal types. 2799 Register X = LeftHandInst->getOperand(1).getReg(); 2800 Register Y = RightHandInst->getOperand(1).getReg(); 2801 LLT XTy = MRI.getType(X); 2802 LLT YTy = MRI.getType(Y); 2803 if (XTy != YTy) 2804 return false; 2805 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2806 return false; 2807 2808 // Optional extra source register. 2809 Register ExtraHandOpSrcReg; 2810 switch (HandOpcode) { 2811 default: 2812 return false; 2813 case TargetOpcode::G_ANYEXT: 2814 case TargetOpcode::G_SEXT: 2815 case TargetOpcode::G_ZEXT: { 2816 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2817 break; 2818 } 2819 case TargetOpcode::G_AND: 2820 case TargetOpcode::G_ASHR: 2821 case TargetOpcode::G_LSHR: 2822 case TargetOpcode::G_SHL: { 2823 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2824 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2825 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2826 return false; 2827 ExtraHandOpSrcReg = ZOp.getReg(); 2828 break; 2829 } 2830 } 2831 2832 // Record the steps to build the new instructions. 2833 // 2834 // Steps to build (logic x, y) 2835 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2836 OperandBuildSteps LogicBuildSteps = { 2837 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2838 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2839 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2840 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2841 2842 // Steps to build hand (logic x, y), ...z 2843 OperandBuildSteps HandBuildSteps = { 2844 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2845 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2846 if (ExtraHandOpSrcReg.isValid()) 2847 HandBuildSteps.push_back( 2848 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2849 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2850 2851 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2852 return true; 2853 } 2854 2855 bool CombinerHelper::applyBuildInstructionSteps( 2856 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2857 assert(MatchInfo.InstrsToBuild.size() && 2858 "Expected at least one instr to build?"); 2859 Builder.setInstr(MI); 2860 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2861 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2862 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2863 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2864 for (auto &OperandFn : InstrToBuild.OperandFns) 2865 OperandFn(Instr); 2866 } 2867 MI.eraseFromParent(); 2868 return true; 2869 } 2870 2871 bool CombinerHelper::matchAshrShlToSextInreg( 2872 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2873 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2874 int64_t ShlCst, AshrCst; 2875 Register Src; 2876 // FIXME: detect splat constant vectors. 2877 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2878 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2879 return false; 2880 if (ShlCst != AshrCst) 2881 return false; 2882 if (!isLegalOrBeforeLegalizer( 2883 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2884 return false; 2885 MatchInfo = std::make_tuple(Src, ShlCst); 2886 return true; 2887 } 2888 bool CombinerHelper::applyAshShlToSextInreg( 2889 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2890 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2891 Register Src; 2892 int64_t ShiftAmt; 2893 std::tie(Src, ShiftAmt) = MatchInfo; 2894 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2895 Builder.setInstrAndDebugLoc(MI); 2896 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2897 MI.eraseFromParent(); 2898 return true; 2899 } 2900 2901 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2902 Register &Replacement) { 2903 // Given 2904 // 2905 // %y:_(sN) = G_SOMETHING 2906 // %x:_(sN) = G_SOMETHING 2907 // %res:_(sN) = G_AND %x, %y 2908 // 2909 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2910 // 2911 // Patterns like this can appear as a result of legalization. E.g. 2912 // 2913 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2914 // %one:_(s32) = G_CONSTANT i32 1 2915 // %and:_(s32) = G_AND %cmp, %one 2916 // 2917 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2918 assert(MI.getOpcode() == TargetOpcode::G_AND); 2919 if (!KB) 2920 return false; 2921 2922 Register AndDst = MI.getOperand(0).getReg(); 2923 LLT DstTy = MRI.getType(AndDst); 2924 2925 // FIXME: This should be removed once GISelKnownBits supports vectors. 2926 if (DstTy.isVector()) 2927 return false; 2928 2929 Register LHS = MI.getOperand(1).getReg(); 2930 Register RHS = MI.getOperand(2).getReg(); 2931 KnownBits LHSBits = KB->getKnownBits(LHS); 2932 KnownBits RHSBits = KB->getKnownBits(RHS); 2933 2934 // Check that x & Mask == x. 2935 // x & 1 == x, always 2936 // x & 0 == x, only if x is also 0 2937 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2938 // 2939 // Check if we can replace AndDst with the LHS of the G_AND 2940 if (canReplaceReg(AndDst, LHS, MRI) && 2941 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2942 Replacement = LHS; 2943 return true; 2944 } 2945 2946 // Check if we can replace AndDst with the RHS of the G_AND 2947 if (canReplaceReg(AndDst, RHS, MRI) && 2948 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2949 Replacement = RHS; 2950 return true; 2951 } 2952 2953 return false; 2954 } 2955 2956 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2957 // Given 2958 // 2959 // %y:_(sN) = G_SOMETHING 2960 // %x:_(sN) = G_SOMETHING 2961 // %res:_(sN) = G_OR %x, %y 2962 // 2963 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2964 assert(MI.getOpcode() == TargetOpcode::G_OR); 2965 if (!KB) 2966 return false; 2967 2968 Register OrDst = MI.getOperand(0).getReg(); 2969 LLT DstTy = MRI.getType(OrDst); 2970 2971 // FIXME: This should be removed once GISelKnownBits supports vectors. 2972 if (DstTy.isVector()) 2973 return false; 2974 2975 Register LHS = MI.getOperand(1).getReg(); 2976 Register RHS = MI.getOperand(2).getReg(); 2977 KnownBits LHSBits = KB->getKnownBits(LHS); 2978 KnownBits RHSBits = KB->getKnownBits(RHS); 2979 2980 // Check that x | Mask == x. 2981 // x | 0 == x, always 2982 // x | 1 == x, only if x is also 1 2983 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2984 // 2985 // Check if we can replace OrDst with the LHS of the G_OR 2986 if (canReplaceReg(OrDst, LHS, MRI) && 2987 (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { 2988 Replacement = LHS; 2989 return true; 2990 } 2991 2992 // Check if we can replace OrDst with the RHS of the G_OR 2993 if (canReplaceReg(OrDst, RHS, MRI) && 2994 (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { 2995 Replacement = RHS; 2996 return true; 2997 } 2998 2999 return false; 3000 } 3001 3002 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 3003 // If the input is already sign extended, just drop the extension. 3004 Register Src = MI.getOperand(1).getReg(); 3005 unsigned ExtBits = MI.getOperand(2).getImm(); 3006 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 3007 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 3008 } 3009 3010 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 3011 int64_t Cst, bool IsVector, bool IsFP) { 3012 // For i1, Cst will always be -1 regardless of boolean contents. 3013 return (ScalarSizeBits == 1 && Cst == -1) || 3014 isConstTrueVal(TLI, Cst, IsVector, IsFP); 3015 } 3016 3017 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 3018 SmallVectorImpl<Register> &RegsToNegate) { 3019 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3020 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3021 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 3022 Register XorSrc; 3023 Register CstReg; 3024 // We match xor(src, true) here. 3025 if (!mi_match(MI.getOperand(0).getReg(), MRI, 3026 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 3027 return false; 3028 3029 if (!MRI.hasOneNonDBGUse(XorSrc)) 3030 return false; 3031 3032 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 3033 // and ORs. The suffix of RegsToNegate starting from index I is used a work 3034 // list of tree nodes to visit. 3035 RegsToNegate.push_back(XorSrc); 3036 // Remember whether the comparisons are all integer or all floating point. 3037 bool IsInt = false; 3038 bool IsFP = false; 3039 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 3040 Register Reg = RegsToNegate[I]; 3041 if (!MRI.hasOneNonDBGUse(Reg)) 3042 return false; 3043 MachineInstr *Def = MRI.getVRegDef(Reg); 3044 switch (Def->getOpcode()) { 3045 default: 3046 // Don't match if the tree contains anything other than ANDs, ORs and 3047 // comparisons. 3048 return false; 3049 case TargetOpcode::G_ICMP: 3050 if (IsFP) 3051 return false; 3052 IsInt = true; 3053 // When we apply the combine we will invert the predicate. 3054 break; 3055 case TargetOpcode::G_FCMP: 3056 if (IsInt) 3057 return false; 3058 IsFP = true; 3059 // When we apply the combine we will invert the predicate. 3060 break; 3061 case TargetOpcode::G_AND: 3062 case TargetOpcode::G_OR: 3063 // Implement De Morgan's laws: 3064 // ~(x & y) -> ~x | ~y 3065 // ~(x | y) -> ~x & ~y 3066 // When we apply the combine we will change the opcode and recursively 3067 // negate the operands. 3068 RegsToNegate.push_back(Def->getOperand(1).getReg()); 3069 RegsToNegate.push_back(Def->getOperand(2).getReg()); 3070 break; 3071 } 3072 } 3073 3074 // Now we know whether the comparisons are integer or floating point, check 3075 // the constant in the xor. 3076 int64_t Cst; 3077 if (Ty.isVector()) { 3078 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 3079 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 3080 if (!MaybeCst) 3081 return false; 3082 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 3083 return false; 3084 } else { 3085 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 3086 return false; 3087 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 3088 return false; 3089 } 3090 3091 return true; 3092 } 3093 3094 bool CombinerHelper::applyNotCmp(MachineInstr &MI, 3095 SmallVectorImpl<Register> &RegsToNegate) { 3096 for (Register Reg : RegsToNegate) { 3097 MachineInstr *Def = MRI.getVRegDef(Reg); 3098 Observer.changingInstr(*Def); 3099 // For each comparison, invert the opcode. For each AND and OR, change the 3100 // opcode. 3101 switch (Def->getOpcode()) { 3102 default: 3103 llvm_unreachable("Unexpected opcode"); 3104 case TargetOpcode::G_ICMP: 3105 case TargetOpcode::G_FCMP: { 3106 MachineOperand &PredOp = Def->getOperand(1); 3107 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 3108 (CmpInst::Predicate)PredOp.getPredicate()); 3109 PredOp.setPredicate(NewP); 3110 break; 3111 } 3112 case TargetOpcode::G_AND: 3113 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 3114 break; 3115 case TargetOpcode::G_OR: 3116 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3117 break; 3118 } 3119 Observer.changedInstr(*Def); 3120 } 3121 3122 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 3123 MI.eraseFromParent(); 3124 return true; 3125 } 3126 3127 bool CombinerHelper::matchXorOfAndWithSameReg( 3128 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3129 // Match (xor (and x, y), y) (or any of its commuted cases) 3130 assert(MI.getOpcode() == TargetOpcode::G_XOR); 3131 Register &X = MatchInfo.first; 3132 Register &Y = MatchInfo.second; 3133 Register AndReg = MI.getOperand(1).getReg(); 3134 Register SharedReg = MI.getOperand(2).getReg(); 3135 3136 // Find a G_AND on either side of the G_XOR. 3137 // Look for one of 3138 // 3139 // (xor (and x, y), SharedReg) 3140 // (xor SharedReg, (and x, y)) 3141 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3142 std::swap(AndReg, SharedReg); 3143 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3144 return false; 3145 } 3146 3147 // Only do this if we'll eliminate the G_AND. 3148 if (!MRI.hasOneNonDBGUse(AndReg)) 3149 return false; 3150 3151 // We can combine if SharedReg is the same as either the LHS or RHS of the 3152 // G_AND. 3153 if (Y != SharedReg) 3154 std::swap(X, Y); 3155 return Y == SharedReg; 3156 } 3157 3158 bool CombinerHelper::applyXorOfAndWithSameReg( 3159 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3160 // Fold (xor (and x, y), y) -> (and (not x), y) 3161 Builder.setInstrAndDebugLoc(MI); 3162 Register X, Y; 3163 std::tie(X, Y) = MatchInfo; 3164 auto Not = Builder.buildNot(MRI.getType(X), X); 3165 Observer.changingInstr(MI); 3166 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3167 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3168 MI.getOperand(2).setReg(Y); 3169 Observer.changedInstr(MI); 3170 return true; 3171 } 3172 3173 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3174 Register DstReg = MI.getOperand(0).getReg(); 3175 LLT Ty = MRI.getType(DstReg); 3176 const DataLayout &DL = Builder.getMF().getDataLayout(); 3177 3178 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3179 return false; 3180 3181 if (Ty.isPointer()) { 3182 auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); 3183 return ConstVal && *ConstVal == 0; 3184 } 3185 3186 assert(Ty.isVector() && "Expecting a vector type"); 3187 const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); 3188 return isBuildVectorAllZeros(*VecMI, MRI); 3189 } 3190 3191 bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3192 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); 3193 Builder.setInstrAndDebugLoc(MI); 3194 Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); 3195 MI.eraseFromParent(); 3196 return true; 3197 } 3198 3199 /// The second source operand is known to be a power of 2. 3200 bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3201 Register DstReg = MI.getOperand(0).getReg(); 3202 Register Src0 = MI.getOperand(1).getReg(); 3203 Register Pow2Src1 = MI.getOperand(2).getReg(); 3204 LLT Ty = MRI.getType(DstReg); 3205 Builder.setInstrAndDebugLoc(MI); 3206 3207 // Fold (urem x, pow2) -> (and x, pow2-1) 3208 auto NegOne = Builder.buildConstant(Ty, -1); 3209 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3210 Builder.buildAnd(DstReg, Src0, Add); 3211 MI.eraseFromParent(); 3212 return true; 3213 } 3214 3215 Optional<SmallVector<Register, 8>> 3216 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3217 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3218 // We want to detect if Root is part of a tree which represents a bunch 3219 // of loads being merged into a larger load. We'll try to recognize patterns 3220 // like, for example: 3221 // 3222 // Reg Reg 3223 // \ / 3224 // OR_1 Reg 3225 // \ / 3226 // OR_2 3227 // \ Reg 3228 // .. / 3229 // Root 3230 // 3231 // Reg Reg Reg Reg 3232 // \ / \ / 3233 // OR_1 OR_2 3234 // \ / 3235 // \ / 3236 // ... 3237 // Root 3238 // 3239 // Each "Reg" may have been produced by a load + some arithmetic. This 3240 // function will save each of them. 3241 SmallVector<Register, 8> RegsToVisit; 3242 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3243 3244 // In the "worst" case, we're dealing with a load for each byte. So, there 3245 // are at most #bytes - 1 ORs. 3246 const unsigned MaxIter = 3247 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3248 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3249 if (Ors.empty()) 3250 break; 3251 const MachineInstr *Curr = Ors.pop_back_val(); 3252 Register OrLHS = Curr->getOperand(1).getReg(); 3253 Register OrRHS = Curr->getOperand(2).getReg(); 3254 3255 // In the combine, we want to elimate the entire tree. 3256 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3257 return None; 3258 3259 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3260 // something that may be a load + arithmetic. 3261 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3262 Ors.push_back(Or); 3263 else 3264 RegsToVisit.push_back(OrLHS); 3265 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3266 Ors.push_back(Or); 3267 else 3268 RegsToVisit.push_back(OrRHS); 3269 } 3270 3271 // We're going to try and merge each register into a wider power-of-2 type, 3272 // so we ought to have an even number of registers. 3273 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3274 return None; 3275 return RegsToVisit; 3276 } 3277 3278 /// Helper function for findLoadOffsetsForLoadOrCombine. 3279 /// 3280 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3281 /// and then moving that value into a specific byte offset. 3282 /// 3283 /// e.g. x[i] << 24 3284 /// 3285 /// \returns The load instruction and the byte offset it is moved into. 3286 static Optional<std::pair<MachineInstr *, int64_t>> 3287 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3288 const MachineRegisterInfo &MRI) { 3289 assert(MRI.hasOneNonDBGUse(Reg) && 3290 "Expected Reg to only have one non-debug use?"); 3291 Register MaybeLoad; 3292 int64_t Shift; 3293 if (!mi_match(Reg, MRI, 3294 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3295 Shift = 0; 3296 MaybeLoad = Reg; 3297 } 3298 3299 if (Shift % MemSizeInBits != 0) 3300 return None; 3301 3302 // TODO: Handle other types of loads. 3303 auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); 3304 if (!Load) 3305 return None; 3306 3307 const auto &MMO = **Load->memoperands_begin(); 3308 if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) 3309 return None; 3310 3311 return std::make_pair(Load, Shift / MemSizeInBits); 3312 } 3313 3314 Optional<std::pair<MachineInstr *, int64_t>> 3315 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3316 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3317 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3318 3319 // Each load found for the pattern. There should be one for each RegsToVisit. 3320 SmallSetVector<const MachineInstr *, 8> Loads; 3321 3322 // The lowest index used in any load. (The lowest "i" for each x[i].) 3323 int64_t LowestIdx = INT64_MAX; 3324 3325 // The load which uses the lowest index. 3326 MachineInstr *LowestIdxLoad = nullptr; 3327 3328 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3329 SmallSet<int64_t, 8> SeenIdx; 3330 3331 // Ensure each load is in the same MBB. 3332 // TODO: Support multiple MachineBasicBlocks. 3333 MachineBasicBlock *MBB = nullptr; 3334 const MachineMemOperand *MMO = nullptr; 3335 3336 // Earliest instruction-order load in the pattern. 3337 MachineInstr *EarliestLoad = nullptr; 3338 3339 // Latest instruction-order load in the pattern. 3340 MachineInstr *LatestLoad = nullptr; 3341 3342 // Base pointer which every load should share. 3343 Register BasePtr; 3344 3345 // We want to find a load for each register. Each load should have some 3346 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3347 // track of the load which uses the lowest index. Later, we will check if we 3348 // can use its pointer in the final, combined load. 3349 for (auto Reg : RegsToVisit) { 3350 // Find the load, and find the position that it will end up in (e.g. a 3351 // shifted) value. 3352 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3353 if (!LoadAndPos) 3354 return None; 3355 MachineInstr *Load; 3356 int64_t DstPos; 3357 std::tie(Load, DstPos) = *LoadAndPos; 3358 3359 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3360 // it is difficult to check for stores/calls/etc between loads. 3361 MachineBasicBlock *LoadMBB = Load->getParent(); 3362 if (!MBB) 3363 MBB = LoadMBB; 3364 if (LoadMBB != MBB) 3365 return None; 3366 3367 // Make sure that the MachineMemOperands of every seen load are compatible. 3368 const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); 3369 if (!MMO) 3370 MMO = LoadMMO; 3371 if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) 3372 return None; 3373 3374 // Find out what the base pointer and index for the load is. 3375 Register LoadPtr; 3376 int64_t Idx; 3377 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3378 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3379 LoadPtr = Load->getOperand(1).getReg(); 3380 Idx = 0; 3381 } 3382 3383 // Don't combine things like a[i], a[i] -> a bigger load. 3384 if (!SeenIdx.insert(Idx).second) 3385 return None; 3386 3387 // Every load must share the same base pointer; don't combine things like: 3388 // 3389 // a[i], b[i + 1] -> a bigger load. 3390 if (!BasePtr.isValid()) 3391 BasePtr = LoadPtr; 3392 if (BasePtr != LoadPtr) 3393 return None; 3394 3395 if (Idx < LowestIdx) { 3396 LowestIdx = Idx; 3397 LowestIdxLoad = Load; 3398 } 3399 3400 // Keep track of the byte offset that this load ends up at. If we have seen 3401 // the byte offset, then stop here. We do not want to combine: 3402 // 3403 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3404 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3405 return None; 3406 Loads.insert(Load); 3407 3408 // Keep track of the position of the earliest/latest loads in the pattern. 3409 // We will check that there are no load fold barriers between them later 3410 // on. 3411 // 3412 // FIXME: Is there a better way to check for load fold barriers? 3413 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3414 EarliestLoad = Load; 3415 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3416 LatestLoad = Load; 3417 } 3418 3419 // We found a load for each register. Let's check if each load satisfies the 3420 // pattern. 3421 assert(Loads.size() == RegsToVisit.size() && 3422 "Expected to find a load for each register?"); 3423 assert(EarliestLoad != LatestLoad && EarliestLoad && 3424 LatestLoad && "Expected at least two loads?"); 3425 3426 // Check if there are any stores, calls, etc. between any of the loads. If 3427 // there are, then we can't safely perform the combine. 3428 // 3429 // MaxIter is chosen based off the (worst case) number of iterations it 3430 // typically takes to succeed in the LLVM test suite plus some padding. 3431 // 3432 // FIXME: Is there a better way to check for load fold barriers? 3433 const unsigned MaxIter = 20; 3434 unsigned Iter = 0; 3435 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3436 LatestLoad->getIterator())) { 3437 if (Loads.count(&MI)) 3438 continue; 3439 if (MI.isLoadFoldBarrier()) 3440 return None; 3441 if (Iter++ == MaxIter) 3442 return None; 3443 } 3444 3445 return std::make_pair(LowestIdxLoad, LowestIdx); 3446 } 3447 3448 bool CombinerHelper::matchLoadOrCombine( 3449 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3450 assert(MI.getOpcode() == TargetOpcode::G_OR); 3451 MachineFunction &MF = *MI.getMF(); 3452 // Assuming a little-endian target, transform: 3453 // s8 *a = ... 3454 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3455 // => 3456 // s32 val = *((i32)a) 3457 // 3458 // s8 *a = ... 3459 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3460 // => 3461 // s32 val = BSWAP(*((s32)a)) 3462 Register Dst = MI.getOperand(0).getReg(); 3463 LLT Ty = MRI.getType(Dst); 3464 if (Ty.isVector()) 3465 return false; 3466 3467 // We need to combine at least two loads into this type. Since the smallest 3468 // possible load is into a byte, we need at least a 16-bit wide type. 3469 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3470 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3471 return false; 3472 3473 // Match a collection of non-OR instructions in the pattern. 3474 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3475 if (!RegsToVisit) 3476 return false; 3477 3478 // We have a collection of non-OR instructions. Figure out how wide each of 3479 // the small loads should be based off of the number of potential loads we 3480 // found. 3481 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3482 if (NarrowMemSizeInBits % 8 != 0) 3483 return false; 3484 3485 // Check if each register feeding into each OR is a load from the same 3486 // base pointer + some arithmetic. 3487 // 3488 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3489 // 3490 // Also verify that each of these ends up putting a[i] into the same memory 3491 // offset as a load into a wide type would. 3492 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3493 MachineInstr *LowestIdxLoad; 3494 int64_t LowestIdx; 3495 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3496 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3497 if (!MaybeLoadInfo) 3498 return false; 3499 std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; 3500 3501 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3502 // we found before, check if this corresponds to a big or little endian byte 3503 // pattern. If it does, then we can represent it using a load + possibly a 3504 // BSWAP. 3505 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3506 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3507 if (!IsBigEndian.hasValue()) 3508 return false; 3509 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3510 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3511 return false; 3512 3513 // Make sure that the load from the lowest index produces offset 0 in the 3514 // final value. 3515 // 3516 // This ensures that we won't combine something like this: 3517 // 3518 // load x[i] -> byte 2 3519 // load x[i+1] -> byte 0 ---> wide_load x[i] 3520 // load x[i+2] -> byte 1 3521 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3522 const unsigned ZeroByteOffset = 3523 *IsBigEndian 3524 ? bigEndianByteAt(NumLoadsInTy, 0) 3525 : littleEndianByteAt(NumLoadsInTy, 0); 3526 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3527 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3528 ZeroOffsetIdx->second != LowestIdx) 3529 return false; 3530 3531 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3532 // may not use index 0. 3533 Register Ptr = LowestIdxLoad->getOperand(1).getReg(); 3534 const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); 3535 LegalityQuery::MemDesc MMDesc; 3536 MMDesc.SizeInBits = WideMemSizeInBits; 3537 MMDesc.AlignInBits = MMO.getAlign().value() * 8; 3538 MMDesc.Ordering = MMO.getOrdering(); 3539 if (!isLegalOrBeforeLegalizer( 3540 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3541 return false; 3542 auto PtrInfo = MMO.getPointerInfo(); 3543 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3544 3545 // Load must be allowed and fast on the target. 3546 LLVMContext &C = MF.getFunction().getContext(); 3547 auto &DL = MF.getDataLayout(); 3548 bool Fast = false; 3549 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3550 !Fast) 3551 return false; 3552 3553 MatchInfo = [=](MachineIRBuilder &MIB) { 3554 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3555 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3556 if (NeedsBSwap) 3557 MIB.buildBSwap(Dst, LoadDst); 3558 }; 3559 return true; 3560 } 3561 3562 bool CombinerHelper::applyLoadOrCombine( 3563 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3564 Builder.setInstrAndDebugLoc(MI); 3565 MatchInfo(Builder); 3566 MI.eraseFromParent(); 3567 return true; 3568 } 3569 3570 bool CombinerHelper::tryCombine(MachineInstr &MI) { 3571 if (tryCombineCopy(MI)) 3572 return true; 3573 if (tryCombineExtendingLoads(MI)) 3574 return true; 3575 if (tryCombineIndexedLoadStore(MI)) 3576 return true; 3577 return false; 3578 } 3579