1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 12 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 13 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 14 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/GlobalISel/Utils.h" 19 #include "llvm/CodeGen/LowLevelType.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/RegisterBankInfo.h" 26 #include "llvm/CodeGen/TargetInstrInfo.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/DivisionByConstantInfo.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <tuple> 35 36 #define DEBUG_TYPE "gi-combiner" 37 38 using namespace llvm; 39 using namespace MIPatternMatch; 40 41 // Option to allow testing of the combiner while no targets know about indexed 42 // addressing. 43 static cl::opt<bool> 44 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 45 cl::desc("Force all indexed operations to be " 46 "legal for the GlobalISel combiner")); 47 48 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 49 MachineIRBuilder &B, GISelKnownBits *KB, 50 MachineDominatorTree *MDT, 51 const LegalizerInfo *LI) 52 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 53 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 54 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 55 (void)this->KB; 56 } 57 58 const TargetLowering &CombinerHelper::getTargetLowering() const { 59 return *Builder.getMF().getSubtarget().getTargetLowering(); 60 } 61 62 /// \returns The little endian in-memory byte position of byte \p I in a 63 /// \p ByteWidth bytes wide type. 64 /// 65 /// E.g. Given a 4-byte type x, x[0] -> byte 0 66 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 67 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 68 return I; 69 } 70 71 /// Determines the LogBase2 value for a non-null input value using the 72 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 73 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 74 auto &MRI = *MIB.getMRI(); 75 LLT Ty = MRI.getType(V); 76 auto Ctlz = MIB.buildCTLZ(Ty, V); 77 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 78 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 79 } 80 81 /// \returns The big endian in-memory byte position of byte \p I in a 82 /// \p ByteWidth bytes wide type. 83 /// 84 /// E.g. Given a 4-byte type x, x[0] -> byte 3 85 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 86 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 87 return ByteWidth - I - 1; 88 } 89 90 /// Given a map from byte offsets in memory to indices in a load/store, 91 /// determine if that map corresponds to a little or big endian byte pattern. 92 /// 93 /// \param MemOffset2Idx maps memory offsets to address offsets. 94 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 95 /// 96 /// \returns true if the map corresponds to a big endian byte pattern, false 97 /// if it corresponds to a little endian byte pattern, and None otherwise. 98 /// 99 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 100 /// are as follows: 101 /// 102 /// AddrOffset Little endian Big endian 103 /// 0 0 3 104 /// 1 1 2 105 /// 2 2 1 106 /// 3 3 0 107 static Optional<bool> 108 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 109 int64_t LowestIdx) { 110 // Need at least two byte positions to decide on endianness. 111 unsigned Width = MemOffset2Idx.size(); 112 if (Width < 2) 113 return None; 114 bool BigEndian = true, LittleEndian = true; 115 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 116 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 117 if (MemOffsetAndIdx == MemOffset2Idx.end()) 118 return None; 119 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 120 assert(Idx >= 0 && "Expected non-negative byte offset?"); 121 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 122 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 123 if (!BigEndian && !LittleEndian) 124 return None; 125 } 126 127 assert((BigEndian != LittleEndian) && 128 "Pattern cannot be both big and little endian!"); 129 return BigEndian; 130 } 131 132 bool CombinerHelper::isPreLegalize() const { return !LI; } 133 134 bool CombinerHelper::isLegal(const LegalityQuery &Query) const { 135 assert(LI && "Must have LegalizerInfo to query isLegal!"); 136 return LI->getAction(Query).Action == LegalizeActions::Legal; 137 } 138 139 bool CombinerHelper::isLegalOrBeforeLegalizer( 140 const LegalityQuery &Query) const { 141 return isPreLegalize() || isLegal(Query); 142 } 143 144 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { 145 if (!Ty.isVector()) 146 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); 147 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. 148 if (isPreLegalize()) 149 return true; 150 LLT EltTy = Ty.getElementType(); 151 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && 152 isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); 153 } 154 155 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 156 Register ToReg) const { 157 Observer.changingAllUsesOfReg(MRI, FromReg); 158 159 if (MRI.constrainRegAttrs(ToReg, FromReg)) 160 MRI.replaceRegWith(FromReg, ToReg); 161 else 162 Builder.buildCopy(ToReg, FromReg); 163 164 Observer.finishedChangingAllUsesOfReg(); 165 } 166 167 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 168 MachineOperand &FromRegOp, 169 Register ToReg) const { 170 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 171 Observer.changingInstr(*FromRegOp.getParent()); 172 173 FromRegOp.setReg(ToReg); 174 175 Observer.changedInstr(*FromRegOp.getParent()); 176 } 177 178 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 179 unsigned ToOpcode) const { 180 Observer.changingInstr(FromMI); 181 182 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 183 184 Observer.changedInstr(FromMI); 185 } 186 187 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 188 return RBI->getRegBank(Reg, MRI, *TRI); 189 } 190 191 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 192 if (RegBank) 193 MRI.setRegBank(Reg, *RegBank); 194 } 195 196 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 197 if (matchCombineCopy(MI)) { 198 applyCombineCopy(MI); 199 return true; 200 } 201 return false; 202 } 203 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 204 if (MI.getOpcode() != TargetOpcode::COPY) 205 return false; 206 Register DstReg = MI.getOperand(0).getReg(); 207 Register SrcReg = MI.getOperand(1).getReg(); 208 return canReplaceReg(DstReg, SrcReg, MRI); 209 } 210 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 211 Register DstReg = MI.getOperand(0).getReg(); 212 Register SrcReg = MI.getOperand(1).getReg(); 213 MI.eraseFromParent(); 214 replaceRegWith(MRI, DstReg, SrcReg); 215 } 216 217 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 218 bool IsUndef = false; 219 SmallVector<Register, 4> Ops; 220 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 221 applyCombineConcatVectors(MI, IsUndef, Ops); 222 return true; 223 } 224 return false; 225 } 226 227 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 228 SmallVectorImpl<Register> &Ops) { 229 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 230 "Invalid instruction"); 231 IsUndef = true; 232 MachineInstr *Undef = nullptr; 233 234 // Walk over all the operands of concat vectors and check if they are 235 // build_vector themselves or undef. 236 // Then collect their operands in Ops. 237 for (const MachineOperand &MO : MI.uses()) { 238 Register Reg = MO.getReg(); 239 MachineInstr *Def = MRI.getVRegDef(Reg); 240 assert(Def && "Operand not defined"); 241 switch (Def->getOpcode()) { 242 case TargetOpcode::G_BUILD_VECTOR: 243 IsUndef = false; 244 // Remember the operands of the build_vector to fold 245 // them into the yet-to-build flattened concat vectors. 246 for (const MachineOperand &BuildVecMO : Def->uses()) 247 Ops.push_back(BuildVecMO.getReg()); 248 break; 249 case TargetOpcode::G_IMPLICIT_DEF: { 250 LLT OpType = MRI.getType(Reg); 251 // Keep one undef value for all the undef operands. 252 if (!Undef) { 253 Builder.setInsertPt(*MI.getParent(), MI); 254 Undef = Builder.buildUndef(OpType.getScalarType()); 255 } 256 assert(MRI.getType(Undef->getOperand(0).getReg()) == 257 OpType.getScalarType() && 258 "All undefs should have the same type"); 259 // Break the undef vector in as many scalar elements as needed 260 // for the flattening. 261 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 262 EltIdx != EltEnd; ++EltIdx) 263 Ops.push_back(Undef->getOperand(0).getReg()); 264 break; 265 } 266 default: 267 return false; 268 } 269 } 270 return true; 271 } 272 void CombinerHelper::applyCombineConcatVectors( 273 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 274 // We determined that the concat_vectors can be flatten. 275 // Generate the flattened build_vector. 276 Register DstReg = MI.getOperand(0).getReg(); 277 Builder.setInsertPt(*MI.getParent(), MI); 278 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 279 280 // Note: IsUndef is sort of redundant. We could have determine it by 281 // checking that at all Ops are undef. Alternatively, we could have 282 // generate a build_vector of undefs and rely on another combine to 283 // clean that up. For now, given we already gather this information 284 // in tryCombineConcatVectors, just save compile time and issue the 285 // right thing. 286 if (IsUndef) 287 Builder.buildUndef(NewDstReg); 288 else 289 Builder.buildBuildVector(NewDstReg, Ops); 290 MI.eraseFromParent(); 291 replaceRegWith(MRI, DstReg, NewDstReg); 292 } 293 294 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 295 SmallVector<Register, 4> Ops; 296 if (matchCombineShuffleVector(MI, Ops)) { 297 applyCombineShuffleVector(MI, Ops); 298 return true; 299 } 300 return false; 301 } 302 303 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 304 SmallVectorImpl<Register> &Ops) { 305 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 306 "Invalid instruction kind"); 307 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 308 Register Src1 = MI.getOperand(1).getReg(); 309 LLT SrcType = MRI.getType(Src1); 310 // As bizarre as it may look, shuffle vector can actually produce 311 // scalar! This is because at the IR level a <1 x ty> shuffle 312 // vector is perfectly valid. 313 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 314 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 315 316 // If the resulting vector is smaller than the size of the source 317 // vectors being concatenated, we won't be able to replace the 318 // shuffle vector into a concat_vectors. 319 // 320 // Note: We may still be able to produce a concat_vectors fed by 321 // extract_vector_elt and so on. It is less clear that would 322 // be better though, so don't bother for now. 323 // 324 // If the destination is a scalar, the size of the sources doesn't 325 // matter. we will lower the shuffle to a plain copy. This will 326 // work only if the source and destination have the same size. But 327 // that's covered by the next condition. 328 // 329 // TODO: If the size between the source and destination don't match 330 // we could still emit an extract vector element in that case. 331 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 332 return false; 333 334 // Check that the shuffle mask can be broken evenly between the 335 // different sources. 336 if (DstNumElts % SrcNumElts != 0) 337 return false; 338 339 // Mask length is a multiple of the source vector length. 340 // Check if the shuffle is some kind of concatenation of the input 341 // vectors. 342 unsigned NumConcat = DstNumElts / SrcNumElts; 343 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 344 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 345 for (unsigned i = 0; i != DstNumElts; ++i) { 346 int Idx = Mask[i]; 347 // Undef value. 348 if (Idx < 0) 349 continue; 350 // Ensure the indices in each SrcType sized piece are sequential and that 351 // the same source is used for the whole piece. 352 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 353 (ConcatSrcs[i / SrcNumElts] >= 0 && 354 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 355 return false; 356 // Remember which source this index came from. 357 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 358 } 359 360 // The shuffle is concatenating multiple vectors together. 361 // Collect the different operands for that. 362 Register UndefReg; 363 Register Src2 = MI.getOperand(2).getReg(); 364 for (auto Src : ConcatSrcs) { 365 if (Src < 0) { 366 if (!UndefReg) { 367 Builder.setInsertPt(*MI.getParent(), MI); 368 UndefReg = Builder.buildUndef(SrcType).getReg(0); 369 } 370 Ops.push_back(UndefReg); 371 } else if (Src == 0) 372 Ops.push_back(Src1); 373 else 374 Ops.push_back(Src2); 375 } 376 return true; 377 } 378 379 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 380 const ArrayRef<Register> Ops) { 381 Register DstReg = MI.getOperand(0).getReg(); 382 Builder.setInsertPt(*MI.getParent(), MI); 383 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 384 385 if (Ops.size() == 1) 386 Builder.buildCopy(NewDstReg, Ops[0]); 387 else 388 Builder.buildMerge(NewDstReg, Ops); 389 390 MI.eraseFromParent(); 391 replaceRegWith(MRI, DstReg, NewDstReg); 392 } 393 394 namespace { 395 396 /// Select a preference between two uses. CurrentUse is the current preference 397 /// while *ForCandidate is attributes of the candidate under consideration. 398 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 399 const LLT TyForCandidate, 400 unsigned OpcodeForCandidate, 401 MachineInstr *MIForCandidate) { 402 if (!CurrentUse.Ty.isValid()) { 403 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 404 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 405 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 406 return CurrentUse; 407 } 408 409 // We permit the extend to hoist through basic blocks but this is only 410 // sensible if the target has extending loads. If you end up lowering back 411 // into a load and extend during the legalizer then the end result is 412 // hoisting the extend up to the load. 413 414 // Prefer defined extensions to undefined extensions as these are more 415 // likely to reduce the number of instructions. 416 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 417 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 418 return CurrentUse; 419 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 420 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 421 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 422 423 // Prefer sign extensions to zero extensions as sign-extensions tend to be 424 // more expensive. 425 if (CurrentUse.Ty == TyForCandidate) { 426 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 427 OpcodeForCandidate == TargetOpcode::G_ZEXT) 428 return CurrentUse; 429 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 430 OpcodeForCandidate == TargetOpcode::G_SEXT) 431 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 432 } 433 434 // This is potentially target specific. We've chosen the largest type 435 // because G_TRUNC is usually free. One potential catch with this is that 436 // some targets have a reduced number of larger registers than smaller 437 // registers and this choice potentially increases the live-range for the 438 // larger value. 439 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 440 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 441 } 442 return CurrentUse; 443 } 444 445 /// Find a suitable place to insert some instructions and insert them. This 446 /// function accounts for special cases like inserting before a PHI node. 447 /// The current strategy for inserting before PHI's is to duplicate the 448 /// instructions for each predecessor. However, while that's ok for G_TRUNC 449 /// on most targets since it generally requires no code, other targets/cases may 450 /// want to try harder to find a dominating block. 451 static void InsertInsnsWithoutSideEffectsBeforeUse( 452 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 453 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 454 MachineOperand &UseMO)> 455 Inserter) { 456 MachineInstr &UseMI = *UseMO.getParent(); 457 458 MachineBasicBlock *InsertBB = UseMI.getParent(); 459 460 // If the use is a PHI then we want the predecessor block instead. 461 if (UseMI.isPHI()) { 462 MachineOperand *PredBB = std::next(&UseMO); 463 InsertBB = PredBB->getMBB(); 464 } 465 466 // If the block is the same block as the def then we want to insert just after 467 // the def instead of at the start of the block. 468 if (InsertBB == DefMI.getParent()) { 469 MachineBasicBlock::iterator InsertPt = &DefMI; 470 Inserter(InsertBB, std::next(InsertPt), UseMO); 471 return; 472 } 473 474 // Otherwise we want the start of the BB 475 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 476 } 477 } // end anonymous namespace 478 479 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 480 PreferredTuple Preferred; 481 if (matchCombineExtendingLoads(MI, Preferred)) { 482 applyCombineExtendingLoads(MI, Preferred); 483 return true; 484 } 485 return false; 486 } 487 488 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 489 PreferredTuple &Preferred) { 490 // We match the loads and follow the uses to the extend instead of matching 491 // the extends and following the def to the load. This is because the load 492 // must remain in the same position for correctness (unless we also add code 493 // to find a safe place to sink it) whereas the extend is freely movable. 494 // It also prevents us from duplicating the load for the volatile case or just 495 // for performance. 496 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 497 if (!LoadMI) 498 return false; 499 500 Register LoadReg = LoadMI->getDstReg(); 501 502 LLT LoadValueTy = MRI.getType(LoadReg); 503 if (!LoadValueTy.isScalar()) 504 return false; 505 506 // Most architectures are going to legalize <s8 loads into at least a 1 byte 507 // load, and the MMOs can only describe memory accesses in multiples of bytes. 508 // If we try to perform extload combining on those, we can end up with 509 // %a(s8) = extload %ptr (load 1 byte from %ptr) 510 // ... which is an illegal extload instruction. 511 if (LoadValueTy.getSizeInBits() < 8) 512 return false; 513 514 // For non power-of-2 types, they will very likely be legalized into multiple 515 // loads. Don't bother trying to match them into extending loads. 516 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 517 return false; 518 519 // Find the preferred type aside from the any-extends (unless it's the only 520 // one) and non-extending ops. We'll emit an extending load to that type and 521 // and emit a variant of (extend (trunc X)) for the others according to the 522 // relative type sizes. At the same time, pick an extend to use based on the 523 // extend involved in the chosen type. 524 unsigned PreferredOpcode = 525 isa<GLoad>(&MI) 526 ? TargetOpcode::G_ANYEXT 527 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 528 Preferred = {LLT(), PreferredOpcode, nullptr}; 529 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 530 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 531 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 532 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 533 const auto &MMO = LoadMI->getMMO(); 534 // For atomics, only form anyextending loads. 535 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 536 continue; 537 // Check for legality. 538 if (LI) { 539 LegalityQuery::MemDesc MMDesc(MMO); 540 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 541 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 542 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 543 .Action != LegalizeActions::Legal) 544 continue; 545 } 546 Preferred = ChoosePreferredUse(Preferred, 547 MRI.getType(UseMI.getOperand(0).getReg()), 548 UseMI.getOpcode(), &UseMI); 549 } 550 } 551 552 // There were no extends 553 if (!Preferred.MI) 554 return false; 555 // It should be impossible to chose an extend without selecting a different 556 // type since by definition the result of an extend is larger. 557 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 558 559 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 560 return true; 561 } 562 563 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 564 PreferredTuple &Preferred) { 565 // Rewrite the load to the chosen extending load. 566 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 567 568 // Inserter to insert a truncate back to the original type at a given point 569 // with some basic CSE to limit truncate duplication to one per BB. 570 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 571 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 572 MachineBasicBlock::iterator InsertBefore, 573 MachineOperand &UseMO) { 574 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 575 if (PreviouslyEmitted) { 576 Observer.changingInstr(*UseMO.getParent()); 577 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 578 Observer.changedInstr(*UseMO.getParent()); 579 return; 580 } 581 582 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 583 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 584 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 585 EmittedInsns[InsertIntoBB] = NewMI; 586 replaceRegOpWith(MRI, UseMO, NewDstReg); 587 }; 588 589 Observer.changingInstr(MI); 590 MI.setDesc( 591 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 592 ? TargetOpcode::G_SEXTLOAD 593 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 594 ? TargetOpcode::G_ZEXTLOAD 595 : TargetOpcode::G_LOAD)); 596 597 // Rewrite all the uses to fix up the types. 598 auto &LoadValue = MI.getOperand(0); 599 SmallVector<MachineOperand *, 4> Uses; 600 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 601 Uses.push_back(&UseMO); 602 603 for (auto *UseMO : Uses) { 604 MachineInstr *UseMI = UseMO->getParent(); 605 606 // If the extend is compatible with the preferred extend then we should fix 607 // up the type and extend so that it uses the preferred use. 608 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 609 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 610 Register UseDstReg = UseMI->getOperand(0).getReg(); 611 MachineOperand &UseSrcMO = UseMI->getOperand(1); 612 const LLT UseDstTy = MRI.getType(UseDstReg); 613 if (UseDstReg != ChosenDstReg) { 614 if (Preferred.Ty == UseDstTy) { 615 // If the use has the same type as the preferred use, then merge 616 // the vregs and erase the extend. For example: 617 // %1:_(s8) = G_LOAD ... 618 // %2:_(s32) = G_SEXT %1(s8) 619 // %3:_(s32) = G_ANYEXT %1(s8) 620 // ... = ... %3(s32) 621 // rewrites to: 622 // %2:_(s32) = G_SEXTLOAD ... 623 // ... = ... %2(s32) 624 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 625 Observer.erasingInstr(*UseMO->getParent()); 626 UseMO->getParent()->eraseFromParent(); 627 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 628 // If the preferred size is smaller, then keep the extend but extend 629 // from the result of the extending load. For example: 630 // %1:_(s8) = G_LOAD ... 631 // %2:_(s32) = G_SEXT %1(s8) 632 // %3:_(s64) = G_ANYEXT %1(s8) 633 // ... = ... %3(s64) 634 /// rewrites to: 635 // %2:_(s32) = G_SEXTLOAD ... 636 // %3:_(s64) = G_ANYEXT %2:_(s32) 637 // ... = ... %3(s64) 638 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 639 } else { 640 // If the preferred size is large, then insert a truncate. For 641 // example: 642 // %1:_(s8) = G_LOAD ... 643 // %2:_(s64) = G_SEXT %1(s8) 644 // %3:_(s32) = G_ZEXT %1(s8) 645 // ... = ... %3(s32) 646 /// rewrites to: 647 // %2:_(s64) = G_SEXTLOAD ... 648 // %4:_(s8) = G_TRUNC %2:_(s32) 649 // %3:_(s64) = G_ZEXT %2:_(s8) 650 // ... = ... %3(s64) 651 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 652 InsertTruncAt); 653 } 654 continue; 655 } 656 // The use is (one of) the uses of the preferred use we chose earlier. 657 // We're going to update the load to def this value later so just erase 658 // the old extend. 659 Observer.erasingInstr(*UseMO->getParent()); 660 UseMO->getParent()->eraseFromParent(); 661 continue; 662 } 663 664 // The use isn't an extend. Truncate back to the type we originally loaded. 665 // This is free on many targets. 666 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 667 } 668 669 MI.getOperand(0).setReg(ChosenDstReg); 670 Observer.changedInstr(MI); 671 } 672 673 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 674 BuildFnTy &MatchInfo) { 675 assert(MI.getOpcode() == TargetOpcode::G_AND); 676 677 // If we have the following code: 678 // %mask = G_CONSTANT 255 679 // %ld = G_LOAD %ptr, (load s16) 680 // %and = G_AND %ld, %mask 681 // 682 // Try to fold it into 683 // %ld = G_ZEXTLOAD %ptr, (load s8) 684 685 Register Dst = MI.getOperand(0).getReg(); 686 if (MRI.getType(Dst).isVector()) 687 return false; 688 689 auto MaybeMask = 690 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 691 if (!MaybeMask) 692 return false; 693 694 APInt MaskVal = MaybeMask->Value; 695 696 if (!MaskVal.isMask()) 697 return false; 698 699 Register SrcReg = MI.getOperand(1).getReg(); 700 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 701 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 702 !LoadMI->isSimple()) 703 return false; 704 705 Register LoadReg = LoadMI->getDstReg(); 706 LLT LoadTy = MRI.getType(LoadReg); 707 Register PtrReg = LoadMI->getPointerReg(); 708 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 709 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 710 711 // The mask may not be larger than the in-memory type, as it might cover sign 712 // extended bits 713 if (MaskSizeBits > LoadSizeBits) 714 return false; 715 716 // If the mask covers the whole destination register, there's nothing to 717 // extend 718 if (MaskSizeBits >= LoadTy.getSizeInBits()) 719 return false; 720 721 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 722 // at least byte loads. Avoid creating such loads here 723 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 724 return false; 725 726 const MachineMemOperand &MMO = LoadMI->getMMO(); 727 LegalityQuery::MemDesc MemDesc(MMO); 728 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 729 if (!isLegalOrBeforeLegalizer( 730 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 731 return false; 732 733 MatchInfo = [=](MachineIRBuilder &B) { 734 B.setInstrAndDebugLoc(*LoadMI); 735 auto &MF = B.getMF(); 736 auto PtrInfo = MMO.getPointerInfo(); 737 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 738 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 739 }; 740 return true; 741 } 742 743 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 744 const MachineInstr &UseMI) { 745 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 746 "shouldn't consider debug uses"); 747 assert(DefMI.getParent() == UseMI.getParent()); 748 if (&DefMI == &UseMI) 749 return true; 750 const MachineBasicBlock &MBB = *DefMI.getParent(); 751 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 752 return &MI == &DefMI || &MI == &UseMI; 753 }); 754 if (DefOrUse == MBB.end()) 755 llvm_unreachable("Block must contain both DefMI and UseMI!"); 756 return &*DefOrUse == &DefMI; 757 } 758 759 bool CombinerHelper::dominates(const MachineInstr &DefMI, 760 const MachineInstr &UseMI) { 761 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 762 "shouldn't consider debug uses"); 763 if (MDT) 764 return MDT->dominates(&DefMI, &UseMI); 765 else if (DefMI.getParent() != UseMI.getParent()) 766 return false; 767 768 return isPredecessor(DefMI, UseMI); 769 } 770 771 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 772 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 773 Register SrcReg = MI.getOperand(1).getReg(); 774 Register LoadUser = SrcReg; 775 776 if (MRI.getType(SrcReg).isVector()) 777 return false; 778 779 Register TruncSrc; 780 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 781 LoadUser = TruncSrc; 782 783 uint64_t SizeInBits = MI.getOperand(2).getImm(); 784 // If the source is a G_SEXTLOAD from the same bit width, then we don't 785 // need any extend at all, just a truncate. 786 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 787 // If truncating more than the original extended value, abort. 788 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 789 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 790 return false; 791 if (LoadSizeBits == SizeInBits) 792 return true; 793 } 794 return false; 795 } 796 797 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 798 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 799 Builder.setInstrAndDebugLoc(MI); 800 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 801 MI.eraseFromParent(); 802 } 803 804 bool CombinerHelper::matchSextInRegOfLoad( 805 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 806 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 807 808 // Only supports scalars for now. 809 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 810 return false; 811 812 Register SrcReg = MI.getOperand(1).getReg(); 813 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 814 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 815 !LoadDef->isSimple()) 816 return false; 817 818 // If the sign extend extends from a narrower width than the load's width, 819 // then we can narrow the load width when we combine to a G_SEXTLOAD. 820 // Avoid widening the load at all. 821 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 822 LoadDef->getMemSizeInBits()); 823 824 // Don't generate G_SEXTLOADs with a < 1 byte width. 825 if (NewSizeBits < 8) 826 return false; 827 // Don't bother creating a non-power-2 sextload, it will likely be broken up 828 // anyway for most targets. 829 if (!isPowerOf2_32(NewSizeBits)) 830 return false; 831 832 const MachineMemOperand &MMO = LoadDef->getMMO(); 833 LegalityQuery::MemDesc MMDesc(MMO); 834 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 835 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 836 {MRI.getType(LoadDef->getDstReg()), 837 MRI.getType(LoadDef->getPointerReg())}, 838 {MMDesc}})) 839 return false; 840 841 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 842 return true; 843 } 844 845 void CombinerHelper::applySextInRegOfLoad( 846 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 847 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 848 Register LoadReg; 849 unsigned ScalarSizeBits; 850 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 851 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 852 853 // If we have the following: 854 // %ld = G_LOAD %ptr, (load 2) 855 // %ext = G_SEXT_INREG %ld, 8 856 // ==> 857 // %ld = G_SEXTLOAD %ptr (load 1) 858 859 auto &MMO = LoadDef->getMMO(); 860 Builder.setInstrAndDebugLoc(*LoadDef); 861 auto &MF = Builder.getMF(); 862 auto PtrInfo = MMO.getPointerInfo(); 863 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 864 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 865 LoadDef->getPointerReg(), *NewMMO); 866 MI.eraseFromParent(); 867 } 868 869 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 870 Register &Base, Register &Offset) { 871 auto &MF = *MI.getParent()->getParent(); 872 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 873 874 #ifndef NDEBUG 875 unsigned Opcode = MI.getOpcode(); 876 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 877 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 878 #endif 879 880 Base = MI.getOperand(1).getReg(); 881 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 882 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 883 return false; 884 885 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 886 // FIXME: The following use traversal needs a bail out for patholigical cases. 887 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 888 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 889 continue; 890 891 Offset = Use.getOperand(2).getReg(); 892 if (!ForceLegalIndexing && 893 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 894 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 895 << Use); 896 continue; 897 } 898 899 // Make sure the offset calculation is before the potentially indexed op. 900 // FIXME: we really care about dependency here. The offset calculation might 901 // be movable. 902 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 903 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 904 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 905 << Use); 906 continue; 907 } 908 909 // FIXME: check whether all uses of Base are load/store with foldable 910 // addressing modes. If so, using the normal addr-modes is better than 911 // forming an indexed one. 912 913 bool MemOpDominatesAddrUses = true; 914 for (auto &PtrAddUse : 915 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 916 if (!dominates(MI, PtrAddUse)) { 917 MemOpDominatesAddrUses = false; 918 break; 919 } 920 } 921 922 if (!MemOpDominatesAddrUses) { 923 LLVM_DEBUG( 924 dbgs() << " Ignoring candidate as memop does not dominate uses: " 925 << Use); 926 continue; 927 } 928 929 LLVM_DEBUG(dbgs() << " Found match: " << Use); 930 Addr = Use.getOperand(0).getReg(); 931 return true; 932 } 933 934 return false; 935 } 936 937 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 938 Register &Base, Register &Offset) { 939 auto &MF = *MI.getParent()->getParent(); 940 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 941 942 #ifndef NDEBUG 943 unsigned Opcode = MI.getOpcode(); 944 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 945 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 946 #endif 947 948 Addr = MI.getOperand(1).getReg(); 949 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 950 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 951 return false; 952 953 Base = AddrDef->getOperand(1).getReg(); 954 Offset = AddrDef->getOperand(2).getReg(); 955 956 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 957 958 if (!ForceLegalIndexing && 959 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 960 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 961 return false; 962 } 963 964 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 965 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 966 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 967 return false; 968 } 969 970 if (MI.getOpcode() == TargetOpcode::G_STORE) { 971 // Would require a copy. 972 if (Base == MI.getOperand(0).getReg()) { 973 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 974 return false; 975 } 976 977 // We're expecting one use of Addr in MI, but it could also be the 978 // value stored, which isn't actually dominated by the instruction. 979 if (MI.getOperand(0).getReg() == Addr) { 980 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 981 return false; 982 } 983 } 984 985 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 986 // That might allow us to end base's liveness here by adjusting the constant. 987 988 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 989 if (!dominates(MI, UseMI)) { 990 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 991 return false; 992 } 993 } 994 995 return true; 996 } 997 998 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 999 IndexedLoadStoreMatchInfo MatchInfo; 1000 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 1001 applyCombineIndexedLoadStore(MI, MatchInfo); 1002 return true; 1003 } 1004 return false; 1005 } 1006 1007 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1008 unsigned Opcode = MI.getOpcode(); 1009 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 1010 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 1011 return false; 1012 1013 // For now, no targets actually support these opcodes so don't waste time 1014 // running these unless we're forced to for testing. 1015 if (!ForceLegalIndexing) 1016 return false; 1017 1018 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1019 MatchInfo.Offset); 1020 if (!MatchInfo.IsPre && 1021 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1022 MatchInfo.Offset)) 1023 return false; 1024 1025 return true; 1026 } 1027 1028 void CombinerHelper::applyCombineIndexedLoadStore( 1029 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1030 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1031 MachineIRBuilder MIRBuilder(MI); 1032 unsigned Opcode = MI.getOpcode(); 1033 bool IsStore = Opcode == TargetOpcode::G_STORE; 1034 unsigned NewOpcode; 1035 switch (Opcode) { 1036 case TargetOpcode::G_LOAD: 1037 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1038 break; 1039 case TargetOpcode::G_SEXTLOAD: 1040 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1041 break; 1042 case TargetOpcode::G_ZEXTLOAD: 1043 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1044 break; 1045 case TargetOpcode::G_STORE: 1046 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1047 break; 1048 default: 1049 llvm_unreachable("Unknown load/store opcode"); 1050 } 1051 1052 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1053 if (IsStore) { 1054 MIB.addDef(MatchInfo.Addr); 1055 MIB.addUse(MI.getOperand(0).getReg()); 1056 } else { 1057 MIB.addDef(MI.getOperand(0).getReg()); 1058 MIB.addDef(MatchInfo.Addr); 1059 } 1060 1061 MIB.addUse(MatchInfo.Base); 1062 MIB.addUse(MatchInfo.Offset); 1063 MIB.addImm(MatchInfo.IsPre); 1064 MI.eraseFromParent(); 1065 AddrDef.eraseFromParent(); 1066 1067 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1068 } 1069 1070 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1071 MachineInstr *&OtherMI) { 1072 unsigned Opcode = MI.getOpcode(); 1073 bool IsDiv, IsSigned; 1074 1075 switch (Opcode) { 1076 default: 1077 llvm_unreachable("Unexpected opcode!"); 1078 case TargetOpcode::G_SDIV: 1079 case TargetOpcode::G_UDIV: { 1080 IsDiv = true; 1081 IsSigned = Opcode == TargetOpcode::G_SDIV; 1082 break; 1083 } 1084 case TargetOpcode::G_SREM: 1085 case TargetOpcode::G_UREM: { 1086 IsDiv = false; 1087 IsSigned = Opcode == TargetOpcode::G_SREM; 1088 break; 1089 } 1090 } 1091 1092 Register Src1 = MI.getOperand(1).getReg(); 1093 unsigned DivOpcode, RemOpcode, DivremOpcode; 1094 if (IsSigned) { 1095 DivOpcode = TargetOpcode::G_SDIV; 1096 RemOpcode = TargetOpcode::G_SREM; 1097 DivremOpcode = TargetOpcode::G_SDIVREM; 1098 } else { 1099 DivOpcode = TargetOpcode::G_UDIV; 1100 RemOpcode = TargetOpcode::G_UREM; 1101 DivremOpcode = TargetOpcode::G_UDIVREM; 1102 } 1103 1104 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1105 return false; 1106 1107 // Combine: 1108 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1109 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1110 // into: 1111 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1112 1113 // Combine: 1114 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1115 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1116 // into: 1117 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1118 1119 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1120 if (MI.getParent() == UseMI.getParent() && 1121 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1122 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1123 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1124 OtherMI = &UseMI; 1125 return true; 1126 } 1127 } 1128 1129 return false; 1130 } 1131 1132 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1133 MachineInstr *&OtherMI) { 1134 unsigned Opcode = MI.getOpcode(); 1135 assert(OtherMI && "OtherMI shouldn't be empty."); 1136 1137 Register DestDivReg, DestRemReg; 1138 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1139 DestDivReg = MI.getOperand(0).getReg(); 1140 DestRemReg = OtherMI->getOperand(0).getReg(); 1141 } else { 1142 DestDivReg = OtherMI->getOperand(0).getReg(); 1143 DestRemReg = MI.getOperand(0).getReg(); 1144 } 1145 1146 bool IsSigned = 1147 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1148 1149 // Check which instruction is first in the block so we don't break def-use 1150 // deps by "moving" the instruction incorrectly. 1151 if (dominates(MI, *OtherMI)) 1152 Builder.setInstrAndDebugLoc(MI); 1153 else 1154 Builder.setInstrAndDebugLoc(*OtherMI); 1155 1156 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1157 : TargetOpcode::G_UDIVREM, 1158 {DestDivReg, DestRemReg}, 1159 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1160 MI.eraseFromParent(); 1161 OtherMI->eraseFromParent(); 1162 } 1163 1164 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1165 MachineInstr *&BrCond) { 1166 assert(MI.getOpcode() == TargetOpcode::G_BR); 1167 1168 // Try to match the following: 1169 // bb1: 1170 // G_BRCOND %c1, %bb2 1171 // G_BR %bb3 1172 // bb2: 1173 // ... 1174 // bb3: 1175 1176 // The above pattern does not have a fall through to the successor bb2, always 1177 // resulting in a branch no matter which path is taken. Here we try to find 1178 // and replace that pattern with conditional branch to bb3 and otherwise 1179 // fallthrough to bb2. This is generally better for branch predictors. 1180 1181 MachineBasicBlock *MBB = MI.getParent(); 1182 MachineBasicBlock::iterator BrIt(MI); 1183 if (BrIt == MBB->begin()) 1184 return false; 1185 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1186 1187 BrCond = &*std::prev(BrIt); 1188 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1189 return false; 1190 1191 // Check that the next block is the conditional branch target. Also make sure 1192 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1193 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1194 return BrCondTarget != MI.getOperand(0).getMBB() && 1195 MBB->isLayoutSuccessor(BrCondTarget); 1196 } 1197 1198 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1199 MachineInstr *&BrCond) { 1200 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1201 Builder.setInstrAndDebugLoc(*BrCond); 1202 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1203 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1204 // this to i1 only since we might not know for sure what kind of 1205 // compare generated the condition value. 1206 auto True = Builder.buildConstant( 1207 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1208 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1209 1210 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1211 Observer.changingInstr(MI); 1212 MI.getOperand(0).setMBB(FallthroughBB); 1213 Observer.changedInstr(MI); 1214 1215 // Change the conditional branch to use the inverted condition and 1216 // new target block. 1217 Observer.changingInstr(*BrCond); 1218 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1219 BrCond->getOperand(1).setMBB(BrTarget); 1220 Observer.changedInstr(*BrCond); 1221 } 1222 1223 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1224 if (Ty.isVector()) 1225 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1226 Ty.getNumElements()); 1227 return IntegerType::get(C, Ty.getSizeInBits()); 1228 } 1229 1230 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1231 MachineIRBuilder HelperBuilder(MI); 1232 GISelObserverWrapper DummyObserver; 1233 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1234 return Helper.lowerMemcpyInline(MI) == 1235 LegalizerHelper::LegalizeResult::Legalized; 1236 } 1237 1238 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1239 MachineIRBuilder HelperBuilder(MI); 1240 GISelObserverWrapper DummyObserver; 1241 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1242 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1243 LegalizerHelper::LegalizeResult::Legalized; 1244 } 1245 1246 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1247 const Register Op, 1248 const MachineRegisterInfo &MRI) { 1249 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1250 if (!MaybeCst) 1251 return None; 1252 1253 APFloat V = MaybeCst->getValueAPF(); 1254 switch (Opcode) { 1255 default: 1256 llvm_unreachable("Unexpected opcode!"); 1257 case TargetOpcode::G_FNEG: { 1258 V.changeSign(); 1259 return V; 1260 } 1261 case TargetOpcode::G_FABS: { 1262 V.clearSign(); 1263 return V; 1264 } 1265 case TargetOpcode::G_FPTRUNC: 1266 break; 1267 case TargetOpcode::G_FSQRT: { 1268 bool Unused; 1269 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1270 V = APFloat(sqrt(V.convertToDouble())); 1271 break; 1272 } 1273 case TargetOpcode::G_FLOG2: { 1274 bool Unused; 1275 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1276 V = APFloat(log2(V.convertToDouble())); 1277 break; 1278 } 1279 } 1280 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1281 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1282 // and `G_FLOG2` reach here. 1283 bool Unused; 1284 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1285 return V; 1286 } 1287 1288 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1289 Optional<APFloat> &Cst) { 1290 Register DstReg = MI.getOperand(0).getReg(); 1291 Register SrcReg = MI.getOperand(1).getReg(); 1292 LLT DstTy = MRI.getType(DstReg); 1293 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1294 return Cst.has_value(); 1295 } 1296 1297 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1298 Optional<APFloat> &Cst) { 1299 assert(Cst && "Optional is unexpectedly empty!"); 1300 Builder.setInstrAndDebugLoc(MI); 1301 MachineFunction &MF = Builder.getMF(); 1302 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1303 Register DstReg = MI.getOperand(0).getReg(); 1304 Builder.buildFConstant(DstReg, *FPVal); 1305 MI.eraseFromParent(); 1306 } 1307 1308 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1309 PtrAddChain &MatchInfo) { 1310 // We're trying to match the following pattern: 1311 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1312 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1313 // --> 1314 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1315 1316 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1317 return false; 1318 1319 Register Add2 = MI.getOperand(1).getReg(); 1320 Register Imm1 = MI.getOperand(2).getReg(); 1321 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1322 if (!MaybeImmVal) 1323 return false; 1324 1325 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1326 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1327 return false; 1328 1329 Register Base = Add2Def->getOperand(1).getReg(); 1330 Register Imm2 = Add2Def->getOperand(2).getReg(); 1331 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1332 if (!MaybeImm2Val) 1333 return false; 1334 1335 // Check if the new combined immediate forms an illegal addressing mode. 1336 // Do not combine if it was legal before but would get illegal. 1337 // To do so, we need to find a load/store user of the pointer to get 1338 // the access type. 1339 Type *AccessTy = nullptr; 1340 auto &MF = *MI.getMF(); 1341 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1342 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1343 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1344 MF.getFunction().getContext()); 1345 break; 1346 } 1347 } 1348 TargetLoweringBase::AddrMode AMNew; 1349 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1350 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1351 if (AccessTy) { 1352 AMNew.HasBaseReg = true; 1353 TargetLoweringBase::AddrMode AMOld; 1354 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1355 AMOld.HasBaseReg = true; 1356 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1357 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1358 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1359 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1360 return false; 1361 } 1362 1363 // Pass the combined immediate to the apply function. 1364 MatchInfo.Imm = AMNew.BaseOffs; 1365 MatchInfo.Base = Base; 1366 MatchInfo.Bank = getRegBank(Imm2); 1367 return true; 1368 } 1369 1370 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1371 PtrAddChain &MatchInfo) { 1372 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1373 MachineIRBuilder MIB(MI); 1374 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1375 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1376 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1377 Observer.changingInstr(MI); 1378 MI.getOperand(1).setReg(MatchInfo.Base); 1379 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1380 Observer.changedInstr(MI); 1381 } 1382 1383 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1384 RegisterImmPair &MatchInfo) { 1385 // We're trying to match the following pattern with any of 1386 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1387 // %t1 = SHIFT %base, G_CONSTANT imm1 1388 // %root = SHIFT %t1, G_CONSTANT imm2 1389 // --> 1390 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1391 1392 unsigned Opcode = MI.getOpcode(); 1393 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1394 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1395 Opcode == TargetOpcode::G_USHLSAT) && 1396 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1397 1398 Register Shl2 = MI.getOperand(1).getReg(); 1399 Register Imm1 = MI.getOperand(2).getReg(); 1400 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1401 if (!MaybeImmVal) 1402 return false; 1403 1404 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1405 if (Shl2Def->getOpcode() != Opcode) 1406 return false; 1407 1408 Register Base = Shl2Def->getOperand(1).getReg(); 1409 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1410 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1411 if (!MaybeImm2Val) 1412 return false; 1413 1414 // Pass the combined immediate to the apply function. 1415 MatchInfo.Imm = 1416 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1417 MatchInfo.Reg = Base; 1418 1419 // There is no simple replacement for a saturating unsigned left shift that 1420 // exceeds the scalar size. 1421 if (Opcode == TargetOpcode::G_USHLSAT && 1422 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1423 return false; 1424 1425 return true; 1426 } 1427 1428 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1429 RegisterImmPair &MatchInfo) { 1430 unsigned Opcode = MI.getOpcode(); 1431 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1432 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1433 Opcode == TargetOpcode::G_USHLSAT) && 1434 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1435 1436 Builder.setInstrAndDebugLoc(MI); 1437 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1438 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1439 auto Imm = MatchInfo.Imm; 1440 1441 if (Imm >= ScalarSizeInBits) { 1442 // Any logical shift that exceeds scalar size will produce zero. 1443 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1444 Builder.buildConstant(MI.getOperand(0), 0); 1445 MI.eraseFromParent(); 1446 return; 1447 } 1448 // Arithmetic shift and saturating signed left shift have no effect beyond 1449 // scalar size. 1450 Imm = ScalarSizeInBits - 1; 1451 } 1452 1453 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1454 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1455 Observer.changingInstr(MI); 1456 MI.getOperand(1).setReg(MatchInfo.Reg); 1457 MI.getOperand(2).setReg(NewImm); 1458 Observer.changedInstr(MI); 1459 } 1460 1461 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1462 ShiftOfShiftedLogic &MatchInfo) { 1463 // We're trying to match the following pattern with any of 1464 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1465 // with any of G_AND/G_OR/G_XOR logic instructions. 1466 // %t1 = SHIFT %X, G_CONSTANT C0 1467 // %t2 = LOGIC %t1, %Y 1468 // %root = SHIFT %t2, G_CONSTANT C1 1469 // --> 1470 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1471 // %t4 = SHIFT %Y, G_CONSTANT C1 1472 // %root = LOGIC %t3, %t4 1473 unsigned ShiftOpcode = MI.getOpcode(); 1474 assert((ShiftOpcode == TargetOpcode::G_SHL || 1475 ShiftOpcode == TargetOpcode::G_ASHR || 1476 ShiftOpcode == TargetOpcode::G_LSHR || 1477 ShiftOpcode == TargetOpcode::G_USHLSAT || 1478 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1479 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1480 1481 // Match a one-use bitwise logic op. 1482 Register LogicDest = MI.getOperand(1).getReg(); 1483 if (!MRI.hasOneNonDBGUse(LogicDest)) 1484 return false; 1485 1486 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1487 unsigned LogicOpcode = LogicMI->getOpcode(); 1488 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1489 LogicOpcode != TargetOpcode::G_XOR) 1490 return false; 1491 1492 // Find a matching one-use shift by constant. 1493 const Register C1 = MI.getOperand(2).getReg(); 1494 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1495 if (!MaybeImmVal) 1496 return false; 1497 1498 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1499 1500 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1501 // Shift should match previous one and should be a one-use. 1502 if (MI->getOpcode() != ShiftOpcode || 1503 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1504 return false; 1505 1506 // Must be a constant. 1507 auto MaybeImmVal = 1508 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1509 if (!MaybeImmVal) 1510 return false; 1511 1512 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1513 return true; 1514 }; 1515 1516 // Logic ops are commutative, so check each operand for a match. 1517 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1518 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1519 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1520 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1521 uint64_t C0Val; 1522 1523 if (matchFirstShift(LogicMIOp1, C0Val)) { 1524 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1525 MatchInfo.Shift2 = LogicMIOp1; 1526 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1527 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1528 MatchInfo.Shift2 = LogicMIOp2; 1529 } else 1530 return false; 1531 1532 MatchInfo.ValSum = C0Val + C1Val; 1533 1534 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1535 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1536 return false; 1537 1538 MatchInfo.Logic = LogicMI; 1539 return true; 1540 } 1541 1542 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1543 ShiftOfShiftedLogic &MatchInfo) { 1544 unsigned Opcode = MI.getOpcode(); 1545 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1546 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1547 Opcode == TargetOpcode::G_SSHLSAT) && 1548 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1549 1550 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1551 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1552 Builder.setInstrAndDebugLoc(MI); 1553 1554 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1555 1556 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1557 Register Shift1 = 1558 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1559 1560 Register Shift2Const = MI.getOperand(2).getReg(); 1561 Register Shift2 = Builder 1562 .buildInstr(Opcode, {DestType}, 1563 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1564 .getReg(0); 1565 1566 Register Dest = MI.getOperand(0).getReg(); 1567 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1568 1569 // These were one use so it's safe to remove them. 1570 MatchInfo.Shift2->eraseFromParent(); 1571 MatchInfo.Logic->eraseFromParent(); 1572 1573 MI.eraseFromParent(); 1574 } 1575 1576 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1577 unsigned &ShiftVal) { 1578 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1579 auto MaybeImmVal = 1580 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1581 if (!MaybeImmVal) 1582 return false; 1583 1584 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1585 return (static_cast<int32_t>(ShiftVal) != -1); 1586 } 1587 1588 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1589 unsigned &ShiftVal) { 1590 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1591 MachineIRBuilder MIB(MI); 1592 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1593 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1594 Observer.changingInstr(MI); 1595 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1596 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1597 Observer.changedInstr(MI); 1598 } 1599 1600 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1601 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1602 RegisterImmPair &MatchData) { 1603 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1604 1605 Register LHS = MI.getOperand(1).getReg(); 1606 1607 Register ExtSrc; 1608 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1609 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1610 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1611 return false; 1612 1613 // TODO: Should handle vector splat. 1614 Register RHS = MI.getOperand(2).getReg(); 1615 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1616 if (!MaybeShiftAmtVal) 1617 return false; 1618 1619 if (LI) { 1620 LLT SrcTy = MRI.getType(ExtSrc); 1621 1622 // We only really care about the legality with the shifted value. We can 1623 // pick any type the constant shift amount, so ask the target what to 1624 // use. Otherwise we would have to guess and hope it is reported as legal. 1625 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1626 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1627 return false; 1628 } 1629 1630 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1631 MatchData.Reg = ExtSrc; 1632 MatchData.Imm = ShiftAmt; 1633 1634 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1635 return MinLeadingZeros >= ShiftAmt; 1636 } 1637 1638 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1639 const RegisterImmPair &MatchData) { 1640 Register ExtSrcReg = MatchData.Reg; 1641 int64_t ShiftAmtVal = MatchData.Imm; 1642 1643 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1644 Builder.setInstrAndDebugLoc(MI); 1645 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1646 auto NarrowShift = 1647 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1648 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1649 MI.eraseFromParent(); 1650 } 1651 1652 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1653 Register &MatchInfo) { 1654 GMerge &Merge = cast<GMerge>(MI); 1655 SmallVector<Register, 16> MergedValues; 1656 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1657 MergedValues.emplace_back(Merge.getSourceReg(I)); 1658 1659 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1660 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1661 return false; 1662 1663 for (unsigned I = 0; I < MergedValues.size(); ++I) 1664 if (MergedValues[I] != Unmerge->getReg(I)) 1665 return false; 1666 1667 MatchInfo = Unmerge->getSourceReg(); 1668 return true; 1669 } 1670 1671 static Register peekThroughBitcast(Register Reg, 1672 const MachineRegisterInfo &MRI) { 1673 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1674 ; 1675 1676 return Reg; 1677 } 1678 1679 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1680 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1681 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1682 "Expected an unmerge"); 1683 auto &Unmerge = cast<GUnmerge>(MI); 1684 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1685 1686 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1687 if (!SrcInstr) 1688 return false; 1689 1690 // Check the source type of the merge. 1691 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1692 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1693 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1694 if (SrcMergeTy != Dst0Ty && !SameSize) 1695 return false; 1696 // They are the same now (modulo a bitcast). 1697 // We can collect all the src registers. 1698 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1699 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1700 return true; 1701 } 1702 1703 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1704 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1705 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1706 "Expected an unmerge"); 1707 assert((MI.getNumOperands() - 1 == Operands.size()) && 1708 "Not enough operands to replace all defs"); 1709 unsigned NumElems = MI.getNumOperands() - 1; 1710 1711 LLT SrcTy = MRI.getType(Operands[0]); 1712 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1713 bool CanReuseInputDirectly = DstTy == SrcTy; 1714 Builder.setInstrAndDebugLoc(MI); 1715 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1716 Register DstReg = MI.getOperand(Idx).getReg(); 1717 Register SrcReg = Operands[Idx]; 1718 if (CanReuseInputDirectly) 1719 replaceRegWith(MRI, DstReg, SrcReg); 1720 else 1721 Builder.buildCast(DstReg, SrcReg); 1722 } 1723 MI.eraseFromParent(); 1724 } 1725 1726 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1727 SmallVectorImpl<APInt> &Csts) { 1728 unsigned SrcIdx = MI.getNumOperands() - 1; 1729 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1730 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1731 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1732 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1733 return false; 1734 // Break down the big constant in smaller ones. 1735 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1736 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1737 ? CstVal.getCImm()->getValue() 1738 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1739 1740 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1741 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1742 // Unmerge a constant. 1743 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1744 Csts.emplace_back(Val.trunc(ShiftAmt)); 1745 Val = Val.lshr(ShiftAmt); 1746 } 1747 1748 return true; 1749 } 1750 1751 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1752 SmallVectorImpl<APInt> &Csts) { 1753 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1754 "Expected an unmerge"); 1755 assert((MI.getNumOperands() - 1 == Csts.size()) && 1756 "Not enough operands to replace all defs"); 1757 unsigned NumElems = MI.getNumOperands() - 1; 1758 Builder.setInstrAndDebugLoc(MI); 1759 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1760 Register DstReg = MI.getOperand(Idx).getReg(); 1761 Builder.buildConstant(DstReg, Csts[Idx]); 1762 } 1763 1764 MI.eraseFromParent(); 1765 } 1766 1767 bool CombinerHelper::matchCombineUnmergeUndef( 1768 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 1769 unsigned SrcIdx = MI.getNumOperands() - 1; 1770 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1771 MatchInfo = [&MI](MachineIRBuilder &B) { 1772 unsigned NumElems = MI.getNumOperands() - 1; 1773 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1774 Register DstReg = MI.getOperand(Idx).getReg(); 1775 B.buildUndef(DstReg); 1776 } 1777 }; 1778 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg)); 1779 } 1780 1781 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1782 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1783 "Expected an unmerge"); 1784 // Check that all the lanes are dead except the first one. 1785 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1786 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1787 return false; 1788 } 1789 return true; 1790 } 1791 1792 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1793 Builder.setInstrAndDebugLoc(MI); 1794 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1795 // Truncating a vector is going to truncate every single lane, 1796 // whereas we want the full lowbits. 1797 // Do the operation on a scalar instead. 1798 LLT SrcTy = MRI.getType(SrcReg); 1799 if (SrcTy.isVector()) 1800 SrcReg = 1801 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1802 1803 Register Dst0Reg = MI.getOperand(0).getReg(); 1804 LLT Dst0Ty = MRI.getType(Dst0Reg); 1805 if (Dst0Ty.isVector()) { 1806 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1807 Builder.buildCast(Dst0Reg, MIB); 1808 } else 1809 Builder.buildTrunc(Dst0Reg, SrcReg); 1810 MI.eraseFromParent(); 1811 } 1812 1813 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1814 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1815 "Expected an unmerge"); 1816 Register Dst0Reg = MI.getOperand(0).getReg(); 1817 LLT Dst0Ty = MRI.getType(Dst0Reg); 1818 // G_ZEXT on vector applies to each lane, so it will 1819 // affect all destinations. Therefore we won't be able 1820 // to simplify the unmerge to just the first definition. 1821 if (Dst0Ty.isVector()) 1822 return false; 1823 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1824 LLT SrcTy = MRI.getType(SrcReg); 1825 if (SrcTy.isVector()) 1826 return false; 1827 1828 Register ZExtSrcReg; 1829 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1830 return false; 1831 1832 // Finally we can replace the first definition with 1833 // a zext of the source if the definition is big enough to hold 1834 // all of ZExtSrc bits. 1835 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1836 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1837 } 1838 1839 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1840 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1841 "Expected an unmerge"); 1842 1843 Register Dst0Reg = MI.getOperand(0).getReg(); 1844 1845 MachineInstr *ZExtInstr = 1846 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1847 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1848 "Expecting a G_ZEXT"); 1849 1850 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1851 LLT Dst0Ty = MRI.getType(Dst0Reg); 1852 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1853 1854 Builder.setInstrAndDebugLoc(MI); 1855 1856 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1857 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1858 } else { 1859 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1860 "ZExt src doesn't fit in destination"); 1861 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1862 } 1863 1864 Register ZeroReg; 1865 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1866 if (!ZeroReg) 1867 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1868 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1869 } 1870 MI.eraseFromParent(); 1871 } 1872 1873 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1874 unsigned TargetShiftSize, 1875 unsigned &ShiftVal) { 1876 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1877 MI.getOpcode() == TargetOpcode::G_LSHR || 1878 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1879 1880 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1881 if (Ty.isVector()) // TODO: 1882 return false; 1883 1884 // Don't narrow further than the requested size. 1885 unsigned Size = Ty.getSizeInBits(); 1886 if (Size <= TargetShiftSize) 1887 return false; 1888 1889 auto MaybeImmVal = 1890 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1891 if (!MaybeImmVal) 1892 return false; 1893 1894 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1895 return ShiftVal >= Size / 2 && ShiftVal < Size; 1896 } 1897 1898 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1899 const unsigned &ShiftVal) { 1900 Register DstReg = MI.getOperand(0).getReg(); 1901 Register SrcReg = MI.getOperand(1).getReg(); 1902 LLT Ty = MRI.getType(SrcReg); 1903 unsigned Size = Ty.getSizeInBits(); 1904 unsigned HalfSize = Size / 2; 1905 assert(ShiftVal >= HalfSize); 1906 1907 LLT HalfTy = LLT::scalar(HalfSize); 1908 1909 Builder.setInstr(MI); 1910 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1911 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1912 1913 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1914 Register Narrowed = Unmerge.getReg(1); 1915 1916 // dst = G_LSHR s64:x, C for C >= 32 1917 // => 1918 // lo, hi = G_UNMERGE_VALUES x 1919 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1920 1921 if (NarrowShiftAmt != 0) { 1922 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1923 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1924 } 1925 1926 auto Zero = Builder.buildConstant(HalfTy, 0); 1927 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1928 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1929 Register Narrowed = Unmerge.getReg(0); 1930 // dst = G_SHL s64:x, C for C >= 32 1931 // => 1932 // lo, hi = G_UNMERGE_VALUES x 1933 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1934 if (NarrowShiftAmt != 0) { 1935 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1936 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1937 } 1938 1939 auto Zero = Builder.buildConstant(HalfTy, 0); 1940 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1941 } else { 1942 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1943 auto Hi = Builder.buildAShr( 1944 HalfTy, Unmerge.getReg(1), 1945 Builder.buildConstant(HalfTy, HalfSize - 1)); 1946 1947 if (ShiftVal == HalfSize) { 1948 // (G_ASHR i64:x, 32) -> 1949 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1950 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1951 } else if (ShiftVal == Size - 1) { 1952 // Don't need a second shift. 1953 // (G_ASHR i64:x, 63) -> 1954 // %narrowed = (G_ASHR hi_32(x), 31) 1955 // G_MERGE_VALUES %narrowed, %narrowed 1956 Builder.buildMerge(DstReg, { Hi, Hi }); 1957 } else { 1958 auto Lo = Builder.buildAShr( 1959 HalfTy, Unmerge.getReg(1), 1960 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1961 1962 // (G_ASHR i64:x, C) ->, for C >= 32 1963 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1964 Builder.buildMerge(DstReg, { Lo, Hi }); 1965 } 1966 } 1967 1968 MI.eraseFromParent(); 1969 } 1970 1971 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1972 unsigned TargetShiftAmount) { 1973 unsigned ShiftAmt; 1974 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1975 applyCombineShiftToUnmerge(MI, ShiftAmt); 1976 return true; 1977 } 1978 1979 return false; 1980 } 1981 1982 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1983 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1984 Register DstReg = MI.getOperand(0).getReg(); 1985 LLT DstTy = MRI.getType(DstReg); 1986 Register SrcReg = MI.getOperand(1).getReg(); 1987 return mi_match(SrcReg, MRI, 1988 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1989 } 1990 1991 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1992 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1993 Register DstReg = MI.getOperand(0).getReg(); 1994 Builder.setInstr(MI); 1995 Builder.buildCopy(DstReg, Reg); 1996 MI.eraseFromParent(); 1997 } 1998 1999 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2000 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2001 Register SrcReg = MI.getOperand(1).getReg(); 2002 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 2003 } 2004 2005 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 2006 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 2007 Register DstReg = MI.getOperand(0).getReg(); 2008 Builder.setInstr(MI); 2009 Builder.buildZExtOrTrunc(DstReg, Reg); 2010 MI.eraseFromParent(); 2011 } 2012 2013 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 2014 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2015 assert(MI.getOpcode() == TargetOpcode::G_ADD); 2016 Register LHS = MI.getOperand(1).getReg(); 2017 Register RHS = MI.getOperand(2).getReg(); 2018 LLT IntTy = MRI.getType(LHS); 2019 2020 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 2021 // instruction. 2022 PtrReg.second = false; 2023 for (Register SrcReg : {LHS, RHS}) { 2024 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 2025 // Don't handle cases where the integer is implicitly converted to the 2026 // pointer width. 2027 LLT PtrTy = MRI.getType(PtrReg.first); 2028 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 2029 return true; 2030 } 2031 2032 PtrReg.second = true; 2033 } 2034 2035 return false; 2036 } 2037 2038 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2039 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2040 Register Dst = MI.getOperand(0).getReg(); 2041 Register LHS = MI.getOperand(1).getReg(); 2042 Register RHS = MI.getOperand(2).getReg(); 2043 2044 const bool DoCommute = PtrReg.second; 2045 if (DoCommute) 2046 std::swap(LHS, RHS); 2047 LHS = PtrReg.first; 2048 2049 LLT PtrTy = MRI.getType(LHS); 2050 2051 Builder.setInstrAndDebugLoc(MI); 2052 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2053 Builder.buildPtrToInt(Dst, PtrAdd); 2054 MI.eraseFromParent(); 2055 } 2056 2057 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2058 APInt &NewCst) { 2059 auto &PtrAdd = cast<GPtrAdd>(MI); 2060 Register LHS = PtrAdd.getBaseReg(); 2061 Register RHS = PtrAdd.getOffsetReg(); 2062 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2063 2064 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { 2065 APInt Cst; 2066 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2067 auto DstTy = MRI.getType(PtrAdd.getReg(0)); 2068 // G_INTTOPTR uses zero-extension 2069 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); 2070 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); 2071 return true; 2072 } 2073 } 2074 2075 return false; 2076 } 2077 2078 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2079 APInt &NewCst) { 2080 auto &PtrAdd = cast<GPtrAdd>(MI); 2081 Register Dst = PtrAdd.getReg(0); 2082 2083 Builder.setInstrAndDebugLoc(MI); 2084 Builder.buildConstant(Dst, NewCst); 2085 PtrAdd.eraseFromParent(); 2086 } 2087 2088 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2089 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2090 Register DstReg = MI.getOperand(0).getReg(); 2091 Register SrcReg = MI.getOperand(1).getReg(); 2092 LLT DstTy = MRI.getType(DstReg); 2093 return mi_match(SrcReg, MRI, 2094 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2095 } 2096 2097 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2098 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2099 Register DstReg = MI.getOperand(0).getReg(); 2100 Register SrcReg = MI.getOperand(1).getReg(); 2101 LLT DstTy = MRI.getType(DstReg); 2102 if (mi_match(SrcReg, MRI, 2103 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2104 unsigned DstSize = DstTy.getScalarSizeInBits(); 2105 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2106 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2107 } 2108 return false; 2109 } 2110 2111 bool CombinerHelper::matchCombineExtOfExt( 2112 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2113 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2114 MI.getOpcode() == TargetOpcode::G_SEXT || 2115 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2116 "Expected a G_[ASZ]EXT"); 2117 Register SrcReg = MI.getOperand(1).getReg(); 2118 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2119 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2120 unsigned Opc = MI.getOpcode(); 2121 unsigned SrcOpc = SrcMI->getOpcode(); 2122 if (Opc == SrcOpc || 2123 (Opc == TargetOpcode::G_ANYEXT && 2124 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2125 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2126 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2127 return true; 2128 } 2129 return false; 2130 } 2131 2132 void CombinerHelper::applyCombineExtOfExt( 2133 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2134 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2135 MI.getOpcode() == TargetOpcode::G_SEXT || 2136 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2137 "Expected a G_[ASZ]EXT"); 2138 2139 Register Reg = std::get<0>(MatchInfo); 2140 unsigned SrcExtOp = std::get<1>(MatchInfo); 2141 2142 // Combine exts with the same opcode. 2143 if (MI.getOpcode() == SrcExtOp) { 2144 Observer.changingInstr(MI); 2145 MI.getOperand(1).setReg(Reg); 2146 Observer.changedInstr(MI); 2147 return; 2148 } 2149 2150 // Combine: 2151 // - anyext([sz]ext x) to [sz]ext x 2152 // - sext(zext x) to zext x 2153 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2154 (MI.getOpcode() == TargetOpcode::G_SEXT && 2155 SrcExtOp == TargetOpcode::G_ZEXT)) { 2156 Register DstReg = MI.getOperand(0).getReg(); 2157 Builder.setInstrAndDebugLoc(MI); 2158 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2159 MI.eraseFromParent(); 2160 } 2161 } 2162 2163 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2164 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2165 Register DstReg = MI.getOperand(0).getReg(); 2166 Register SrcReg = MI.getOperand(1).getReg(); 2167 LLT DstTy = MRI.getType(DstReg); 2168 2169 Builder.setInstrAndDebugLoc(MI); 2170 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2171 MI.getFlags()); 2172 MI.eraseFromParent(); 2173 } 2174 2175 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2176 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2177 Register SrcReg = MI.getOperand(1).getReg(); 2178 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2179 } 2180 2181 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2182 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2183 Src = MI.getOperand(1).getReg(); 2184 Register AbsSrc; 2185 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2186 } 2187 2188 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2189 BuildFnTy &MatchInfo) { 2190 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2191 Register Src = MI.getOperand(1).getReg(); 2192 Register NegSrc; 2193 2194 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2195 return false; 2196 2197 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2198 Observer.changingInstr(MI); 2199 MI.getOperand(1).setReg(NegSrc); 2200 Observer.changedInstr(MI); 2201 }; 2202 return true; 2203 } 2204 2205 bool CombinerHelper::matchCombineTruncOfExt( 2206 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2207 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2208 Register SrcReg = MI.getOperand(1).getReg(); 2209 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2210 unsigned SrcOpc = SrcMI->getOpcode(); 2211 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2212 SrcOpc == TargetOpcode::G_ZEXT) { 2213 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2214 return true; 2215 } 2216 return false; 2217 } 2218 2219 void CombinerHelper::applyCombineTruncOfExt( 2220 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2221 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2222 Register SrcReg = MatchInfo.first; 2223 unsigned SrcExtOp = MatchInfo.second; 2224 Register DstReg = MI.getOperand(0).getReg(); 2225 LLT SrcTy = MRI.getType(SrcReg); 2226 LLT DstTy = MRI.getType(DstReg); 2227 if (SrcTy == DstTy) { 2228 MI.eraseFromParent(); 2229 replaceRegWith(MRI, DstReg, SrcReg); 2230 return; 2231 } 2232 Builder.setInstrAndDebugLoc(MI); 2233 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2234 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2235 else 2236 Builder.buildTrunc(DstReg, SrcReg); 2237 MI.eraseFromParent(); 2238 } 2239 2240 bool CombinerHelper::matchCombineTruncOfShl( 2241 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2242 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2243 Register DstReg = MI.getOperand(0).getReg(); 2244 Register SrcReg = MI.getOperand(1).getReg(); 2245 LLT DstTy = MRI.getType(DstReg); 2246 Register ShiftSrc; 2247 Register ShiftAmt; 2248 2249 if (MRI.hasOneNonDBGUse(SrcReg) && 2250 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2251 isLegalOrBeforeLegalizer( 2252 {TargetOpcode::G_SHL, 2253 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2254 KnownBits Known = KB->getKnownBits(ShiftAmt); 2255 unsigned Size = DstTy.getSizeInBits(); 2256 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2257 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2258 return true; 2259 } 2260 } 2261 return false; 2262 } 2263 2264 void CombinerHelper::applyCombineTruncOfShl( 2265 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2266 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2267 Register DstReg = MI.getOperand(0).getReg(); 2268 Register SrcReg = MI.getOperand(1).getReg(); 2269 LLT DstTy = MRI.getType(DstReg); 2270 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2271 2272 Register ShiftSrc = MatchInfo.first; 2273 Register ShiftAmt = MatchInfo.second; 2274 Builder.setInstrAndDebugLoc(MI); 2275 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2276 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2277 MI.eraseFromParent(); 2278 } 2279 2280 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2281 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2282 return MO.isReg() && 2283 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2284 }); 2285 } 2286 2287 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2288 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2289 return !MO.isReg() || 2290 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2291 }); 2292 } 2293 2294 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2295 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2296 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2297 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2298 } 2299 2300 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2301 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2302 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2303 MRI); 2304 } 2305 2306 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2307 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2308 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2309 MRI); 2310 } 2311 2312 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2313 GSelect &SelMI = cast<GSelect>(MI); 2314 auto Cst = 2315 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2316 if (!Cst) 2317 return false; 2318 OpIdx = Cst->isZero() ? 3 : 2; 2319 return true; 2320 } 2321 2322 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2323 MI.eraseFromParent(); 2324 return true; 2325 } 2326 2327 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2328 const MachineOperand &MOP2) { 2329 if (!MOP1.isReg() || !MOP2.isReg()) 2330 return false; 2331 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2332 if (!InstAndDef1) 2333 return false; 2334 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2335 if (!InstAndDef2) 2336 return false; 2337 MachineInstr *I1 = InstAndDef1->MI; 2338 MachineInstr *I2 = InstAndDef2->MI; 2339 2340 // Handle a case like this: 2341 // 2342 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2343 // 2344 // Even though %0 and %1 are produced by the same instruction they are not 2345 // the same values. 2346 if (I1 == I2) 2347 return MOP1.getReg() == MOP2.getReg(); 2348 2349 // If we have an instruction which loads or stores, we can't guarantee that 2350 // it is identical. 2351 // 2352 // For example, we may have 2353 // 2354 // %x1 = G_LOAD %addr (load N from @somewhere) 2355 // ... 2356 // call @foo 2357 // ... 2358 // %x2 = G_LOAD %addr (load N from @somewhere) 2359 // ... 2360 // %or = G_OR %x1, %x2 2361 // 2362 // It's possible that @foo will modify whatever lives at the address we're 2363 // loading from. To be safe, let's just assume that all loads and stores 2364 // are different (unless we have something which is guaranteed to not 2365 // change.) 2366 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2367 return false; 2368 2369 // If both instructions are loads or stores, they are equal only if both 2370 // are dereferenceable invariant loads with the same number of bits. 2371 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { 2372 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1); 2373 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2); 2374 if (!LS1 || !LS2) 2375 return false; 2376 2377 if (!I2->isDereferenceableInvariantLoad(nullptr) || 2378 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) 2379 return false; 2380 } 2381 2382 // Check for physical registers on the instructions first to avoid cases 2383 // like this: 2384 // 2385 // %a = COPY $physreg 2386 // ... 2387 // SOMETHING implicit-def $physreg 2388 // ... 2389 // %b = COPY $physreg 2390 // 2391 // These copies are not equivalent. 2392 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2393 return MO.isReg() && MO.getReg().isPhysical(); 2394 })) { 2395 // Check if we have a case like this: 2396 // 2397 // %a = COPY $physreg 2398 // %b = COPY %a 2399 // 2400 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2401 // From that, we know that they must have the same value, since they must 2402 // have come from the same COPY. 2403 return I1->isIdenticalTo(*I2); 2404 } 2405 2406 // We don't have any physical registers, so we don't necessarily need the 2407 // same vreg defs. 2408 // 2409 // On the off-chance that there's some target instruction feeding into the 2410 // instruction, let's use produceSameValue instead of isIdenticalTo. 2411 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2412 // Handle instructions with multiple defs that produce same values. Values 2413 // are same for operands with same index. 2414 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2415 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2416 // I1 and I2 are different instructions but produce same values, 2417 // %1 and %6 are same, %1 and %7 are not the same value. 2418 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2419 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2420 } 2421 return false; 2422 } 2423 2424 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2425 if (!MOP.isReg()) 2426 return false; 2427 auto *MI = MRI.getVRegDef(MOP.getReg()); 2428 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2429 return MaybeCst && MaybeCst->getBitWidth() <= 64 && 2430 MaybeCst->getSExtValue() == C; 2431 } 2432 2433 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2434 unsigned OpIdx) { 2435 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2436 Register OldReg = MI.getOperand(0).getReg(); 2437 Register Replacement = MI.getOperand(OpIdx).getReg(); 2438 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2439 MI.eraseFromParent(); 2440 replaceRegWith(MRI, OldReg, Replacement); 2441 return true; 2442 } 2443 2444 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2445 Register Replacement) { 2446 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2447 Register OldReg = MI.getOperand(0).getReg(); 2448 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2449 MI.eraseFromParent(); 2450 replaceRegWith(MRI, OldReg, Replacement); 2451 return true; 2452 } 2453 2454 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2455 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2456 // Match (cond ? x : x) 2457 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2458 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2459 MRI); 2460 } 2461 2462 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2463 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2464 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2465 MRI); 2466 } 2467 2468 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2469 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2470 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2471 MRI); 2472 } 2473 2474 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2475 MachineOperand &MO = MI.getOperand(OpIdx); 2476 return MO.isReg() && 2477 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2478 } 2479 2480 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2481 unsigned OpIdx) { 2482 MachineOperand &MO = MI.getOperand(OpIdx); 2483 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2484 } 2485 2486 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2487 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2488 Builder.setInstr(MI); 2489 Builder.buildFConstant(MI.getOperand(0), C); 2490 MI.eraseFromParent(); 2491 return true; 2492 } 2493 2494 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2495 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2496 Builder.setInstr(MI); 2497 Builder.buildConstant(MI.getOperand(0), C); 2498 MI.eraseFromParent(); 2499 return true; 2500 } 2501 2502 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2503 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2504 Builder.setInstr(MI); 2505 Builder.buildConstant(MI.getOperand(0), C); 2506 MI.eraseFromParent(); 2507 return true; 2508 } 2509 2510 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2511 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2512 Builder.setInstr(MI); 2513 Builder.buildUndef(MI.getOperand(0)); 2514 MI.eraseFromParent(); 2515 return true; 2516 } 2517 2518 bool CombinerHelper::matchSimplifyAddToSub( 2519 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2520 Register LHS = MI.getOperand(1).getReg(); 2521 Register RHS = MI.getOperand(2).getReg(); 2522 Register &NewLHS = std::get<0>(MatchInfo); 2523 Register &NewRHS = std::get<1>(MatchInfo); 2524 2525 // Helper lambda to check for opportunities for 2526 // ((0-A) + B) -> B - A 2527 // (A + (0-B)) -> A - B 2528 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2529 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2530 return false; 2531 NewLHS = MaybeNewLHS; 2532 return true; 2533 }; 2534 2535 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2536 } 2537 2538 bool CombinerHelper::matchCombineInsertVecElts( 2539 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2540 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2541 "Invalid opcode"); 2542 Register DstReg = MI.getOperand(0).getReg(); 2543 LLT DstTy = MRI.getType(DstReg); 2544 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2545 unsigned NumElts = DstTy.getNumElements(); 2546 // If this MI is part of a sequence of insert_vec_elts, then 2547 // don't do the combine in the middle of the sequence. 2548 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2549 TargetOpcode::G_INSERT_VECTOR_ELT) 2550 return false; 2551 MachineInstr *CurrInst = &MI; 2552 MachineInstr *TmpInst; 2553 int64_t IntImm; 2554 Register TmpReg; 2555 MatchInfo.resize(NumElts); 2556 while (mi_match( 2557 CurrInst->getOperand(0).getReg(), MRI, 2558 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2559 if (IntImm >= NumElts) 2560 return false; 2561 if (!MatchInfo[IntImm]) 2562 MatchInfo[IntImm] = TmpReg; 2563 CurrInst = TmpInst; 2564 } 2565 // Variable index. 2566 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2567 return false; 2568 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2569 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2570 if (!MatchInfo[I - 1].isValid()) 2571 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2572 } 2573 return true; 2574 } 2575 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2576 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2577 } 2578 2579 void CombinerHelper::applyCombineInsertVecElts( 2580 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2581 Builder.setInstr(MI); 2582 Register UndefReg; 2583 auto GetUndef = [&]() { 2584 if (UndefReg) 2585 return UndefReg; 2586 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2587 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2588 return UndefReg; 2589 }; 2590 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2591 if (!MatchInfo[I]) 2592 MatchInfo[I] = GetUndef(); 2593 } 2594 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2595 MI.eraseFromParent(); 2596 } 2597 2598 void CombinerHelper::applySimplifyAddToSub( 2599 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2600 Builder.setInstr(MI); 2601 Register SubLHS, SubRHS; 2602 std::tie(SubLHS, SubRHS) = MatchInfo; 2603 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2604 MI.eraseFromParent(); 2605 } 2606 2607 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2608 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2609 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2610 // 2611 // Creates the new hand + logic instruction (but does not insert them.) 2612 // 2613 // On success, MatchInfo is populated with the new instructions. These are 2614 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2615 unsigned LogicOpcode = MI.getOpcode(); 2616 assert(LogicOpcode == TargetOpcode::G_AND || 2617 LogicOpcode == TargetOpcode::G_OR || 2618 LogicOpcode == TargetOpcode::G_XOR); 2619 MachineIRBuilder MIB(MI); 2620 Register Dst = MI.getOperand(0).getReg(); 2621 Register LHSReg = MI.getOperand(1).getReg(); 2622 Register RHSReg = MI.getOperand(2).getReg(); 2623 2624 // Don't recompute anything. 2625 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2626 return false; 2627 2628 // Make sure we have (hand x, ...), (hand y, ...) 2629 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2630 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2631 if (!LeftHandInst || !RightHandInst) 2632 return false; 2633 unsigned HandOpcode = LeftHandInst->getOpcode(); 2634 if (HandOpcode != RightHandInst->getOpcode()) 2635 return false; 2636 if (!LeftHandInst->getOperand(1).isReg() || 2637 !RightHandInst->getOperand(1).isReg()) 2638 return false; 2639 2640 // Make sure the types match up, and if we're doing this post-legalization, 2641 // we end up with legal types. 2642 Register X = LeftHandInst->getOperand(1).getReg(); 2643 Register Y = RightHandInst->getOperand(1).getReg(); 2644 LLT XTy = MRI.getType(X); 2645 LLT YTy = MRI.getType(Y); 2646 if (XTy != YTy) 2647 return false; 2648 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2649 return false; 2650 2651 // Optional extra source register. 2652 Register ExtraHandOpSrcReg; 2653 switch (HandOpcode) { 2654 default: 2655 return false; 2656 case TargetOpcode::G_ANYEXT: 2657 case TargetOpcode::G_SEXT: 2658 case TargetOpcode::G_ZEXT: { 2659 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2660 break; 2661 } 2662 case TargetOpcode::G_AND: 2663 case TargetOpcode::G_ASHR: 2664 case TargetOpcode::G_LSHR: 2665 case TargetOpcode::G_SHL: { 2666 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2667 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2668 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2669 return false; 2670 ExtraHandOpSrcReg = ZOp.getReg(); 2671 break; 2672 } 2673 } 2674 2675 // Record the steps to build the new instructions. 2676 // 2677 // Steps to build (logic x, y) 2678 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2679 OperandBuildSteps LogicBuildSteps = { 2680 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2681 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2682 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2683 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2684 2685 // Steps to build hand (logic x, y), ...z 2686 OperandBuildSteps HandBuildSteps = { 2687 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2688 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2689 if (ExtraHandOpSrcReg.isValid()) 2690 HandBuildSteps.push_back( 2691 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2692 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2693 2694 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2695 return true; 2696 } 2697 2698 void CombinerHelper::applyBuildInstructionSteps( 2699 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2700 assert(MatchInfo.InstrsToBuild.size() && 2701 "Expected at least one instr to build?"); 2702 Builder.setInstr(MI); 2703 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2704 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2705 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2706 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2707 for (auto &OperandFn : InstrToBuild.OperandFns) 2708 OperandFn(Instr); 2709 } 2710 MI.eraseFromParent(); 2711 } 2712 2713 bool CombinerHelper::matchAshrShlToSextInreg( 2714 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2715 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2716 int64_t ShlCst, AshrCst; 2717 Register Src; 2718 // FIXME: detect splat constant vectors. 2719 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2720 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2721 return false; 2722 if (ShlCst != AshrCst) 2723 return false; 2724 if (!isLegalOrBeforeLegalizer( 2725 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2726 return false; 2727 MatchInfo = std::make_tuple(Src, ShlCst); 2728 return true; 2729 } 2730 2731 void CombinerHelper::applyAshShlToSextInreg( 2732 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2733 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2734 Register Src; 2735 int64_t ShiftAmt; 2736 std::tie(Src, ShiftAmt) = MatchInfo; 2737 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2738 Builder.setInstrAndDebugLoc(MI); 2739 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2740 MI.eraseFromParent(); 2741 } 2742 2743 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2744 bool CombinerHelper::matchOverlappingAnd( 2745 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2746 assert(MI.getOpcode() == TargetOpcode::G_AND); 2747 2748 Register Dst = MI.getOperand(0).getReg(); 2749 LLT Ty = MRI.getType(Dst); 2750 2751 Register R; 2752 int64_t C1; 2753 int64_t C2; 2754 if (!mi_match( 2755 Dst, MRI, 2756 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2757 return false; 2758 2759 MatchInfo = [=](MachineIRBuilder &B) { 2760 if (C1 & C2) { 2761 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2762 return; 2763 } 2764 auto Zero = B.buildConstant(Ty, 0); 2765 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2766 }; 2767 return true; 2768 } 2769 2770 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2771 Register &Replacement) { 2772 // Given 2773 // 2774 // %y:_(sN) = G_SOMETHING 2775 // %x:_(sN) = G_SOMETHING 2776 // %res:_(sN) = G_AND %x, %y 2777 // 2778 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2779 // 2780 // Patterns like this can appear as a result of legalization. E.g. 2781 // 2782 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2783 // %one:_(s32) = G_CONSTANT i32 1 2784 // %and:_(s32) = G_AND %cmp, %one 2785 // 2786 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2787 assert(MI.getOpcode() == TargetOpcode::G_AND); 2788 if (!KB) 2789 return false; 2790 2791 Register AndDst = MI.getOperand(0).getReg(); 2792 LLT DstTy = MRI.getType(AndDst); 2793 2794 // FIXME: This should be removed once GISelKnownBits supports vectors. 2795 if (DstTy.isVector()) 2796 return false; 2797 2798 Register LHS = MI.getOperand(1).getReg(); 2799 Register RHS = MI.getOperand(2).getReg(); 2800 KnownBits LHSBits = KB->getKnownBits(LHS); 2801 KnownBits RHSBits = KB->getKnownBits(RHS); 2802 2803 // Check that x & Mask == x. 2804 // x & 1 == x, always 2805 // x & 0 == x, only if x is also 0 2806 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2807 // 2808 // Check if we can replace AndDst with the LHS of the G_AND 2809 if (canReplaceReg(AndDst, LHS, MRI) && 2810 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2811 Replacement = LHS; 2812 return true; 2813 } 2814 2815 // Check if we can replace AndDst with the RHS of the G_AND 2816 if (canReplaceReg(AndDst, RHS, MRI) && 2817 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2818 Replacement = RHS; 2819 return true; 2820 } 2821 2822 return false; 2823 } 2824 2825 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2826 // Given 2827 // 2828 // %y:_(sN) = G_SOMETHING 2829 // %x:_(sN) = G_SOMETHING 2830 // %res:_(sN) = G_OR %x, %y 2831 // 2832 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2833 assert(MI.getOpcode() == TargetOpcode::G_OR); 2834 if (!KB) 2835 return false; 2836 2837 Register OrDst = MI.getOperand(0).getReg(); 2838 LLT DstTy = MRI.getType(OrDst); 2839 2840 // FIXME: This should be removed once GISelKnownBits supports vectors. 2841 if (DstTy.isVector()) 2842 return false; 2843 2844 Register LHS = MI.getOperand(1).getReg(); 2845 Register RHS = MI.getOperand(2).getReg(); 2846 KnownBits LHSBits = KB->getKnownBits(LHS); 2847 KnownBits RHSBits = KB->getKnownBits(RHS); 2848 2849 // Check that x | Mask == x. 2850 // x | 0 == x, always 2851 // x | 1 == x, only if x is also 1 2852 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2853 // 2854 // Check if we can replace OrDst with the LHS of the G_OR 2855 if (canReplaceReg(OrDst, LHS, MRI) && 2856 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2857 Replacement = LHS; 2858 return true; 2859 } 2860 2861 // Check if we can replace OrDst with the RHS of the G_OR 2862 if (canReplaceReg(OrDst, RHS, MRI) && 2863 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2864 Replacement = RHS; 2865 return true; 2866 } 2867 2868 return false; 2869 } 2870 2871 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2872 // If the input is already sign extended, just drop the extension. 2873 Register Src = MI.getOperand(1).getReg(); 2874 unsigned ExtBits = MI.getOperand(2).getImm(); 2875 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2876 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2877 } 2878 2879 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2880 int64_t Cst, bool IsVector, bool IsFP) { 2881 // For i1, Cst will always be -1 regardless of boolean contents. 2882 return (ScalarSizeBits == 1 && Cst == -1) || 2883 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2884 } 2885 2886 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2887 SmallVectorImpl<Register> &RegsToNegate) { 2888 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2889 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2890 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2891 Register XorSrc; 2892 Register CstReg; 2893 // We match xor(src, true) here. 2894 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2895 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2896 return false; 2897 2898 if (!MRI.hasOneNonDBGUse(XorSrc)) 2899 return false; 2900 2901 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2902 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2903 // list of tree nodes to visit. 2904 RegsToNegate.push_back(XorSrc); 2905 // Remember whether the comparisons are all integer or all floating point. 2906 bool IsInt = false; 2907 bool IsFP = false; 2908 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2909 Register Reg = RegsToNegate[I]; 2910 if (!MRI.hasOneNonDBGUse(Reg)) 2911 return false; 2912 MachineInstr *Def = MRI.getVRegDef(Reg); 2913 switch (Def->getOpcode()) { 2914 default: 2915 // Don't match if the tree contains anything other than ANDs, ORs and 2916 // comparisons. 2917 return false; 2918 case TargetOpcode::G_ICMP: 2919 if (IsFP) 2920 return false; 2921 IsInt = true; 2922 // When we apply the combine we will invert the predicate. 2923 break; 2924 case TargetOpcode::G_FCMP: 2925 if (IsInt) 2926 return false; 2927 IsFP = true; 2928 // When we apply the combine we will invert the predicate. 2929 break; 2930 case TargetOpcode::G_AND: 2931 case TargetOpcode::G_OR: 2932 // Implement De Morgan's laws: 2933 // ~(x & y) -> ~x | ~y 2934 // ~(x | y) -> ~x & ~y 2935 // When we apply the combine we will change the opcode and recursively 2936 // negate the operands. 2937 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2938 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2939 break; 2940 } 2941 } 2942 2943 // Now we know whether the comparisons are integer or floating point, check 2944 // the constant in the xor. 2945 int64_t Cst; 2946 if (Ty.isVector()) { 2947 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2948 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); 2949 if (!MaybeCst) 2950 return false; 2951 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2952 return false; 2953 } else { 2954 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2955 return false; 2956 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2957 return false; 2958 } 2959 2960 return true; 2961 } 2962 2963 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2964 SmallVectorImpl<Register> &RegsToNegate) { 2965 for (Register Reg : RegsToNegate) { 2966 MachineInstr *Def = MRI.getVRegDef(Reg); 2967 Observer.changingInstr(*Def); 2968 // For each comparison, invert the opcode. For each AND and OR, change the 2969 // opcode. 2970 switch (Def->getOpcode()) { 2971 default: 2972 llvm_unreachable("Unexpected opcode"); 2973 case TargetOpcode::G_ICMP: 2974 case TargetOpcode::G_FCMP: { 2975 MachineOperand &PredOp = Def->getOperand(1); 2976 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2977 (CmpInst::Predicate)PredOp.getPredicate()); 2978 PredOp.setPredicate(NewP); 2979 break; 2980 } 2981 case TargetOpcode::G_AND: 2982 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2983 break; 2984 case TargetOpcode::G_OR: 2985 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2986 break; 2987 } 2988 Observer.changedInstr(*Def); 2989 } 2990 2991 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2992 MI.eraseFromParent(); 2993 } 2994 2995 bool CombinerHelper::matchXorOfAndWithSameReg( 2996 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2997 // Match (xor (and x, y), y) (or any of its commuted cases) 2998 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2999 Register &X = MatchInfo.first; 3000 Register &Y = MatchInfo.second; 3001 Register AndReg = MI.getOperand(1).getReg(); 3002 Register SharedReg = MI.getOperand(2).getReg(); 3003 3004 // Find a G_AND on either side of the G_XOR. 3005 // Look for one of 3006 // 3007 // (xor (and x, y), SharedReg) 3008 // (xor SharedReg, (and x, y)) 3009 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 3010 std::swap(AndReg, SharedReg); 3011 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 3012 return false; 3013 } 3014 3015 // Only do this if we'll eliminate the G_AND. 3016 if (!MRI.hasOneNonDBGUse(AndReg)) 3017 return false; 3018 3019 // We can combine if SharedReg is the same as either the LHS or RHS of the 3020 // G_AND. 3021 if (Y != SharedReg) 3022 std::swap(X, Y); 3023 return Y == SharedReg; 3024 } 3025 3026 void CombinerHelper::applyXorOfAndWithSameReg( 3027 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 3028 // Fold (xor (and x, y), y) -> (and (not x), y) 3029 Builder.setInstrAndDebugLoc(MI); 3030 Register X, Y; 3031 std::tie(X, Y) = MatchInfo; 3032 auto Not = Builder.buildNot(MRI.getType(X), X); 3033 Observer.changingInstr(MI); 3034 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 3035 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 3036 MI.getOperand(2).setReg(Y); 3037 Observer.changedInstr(MI); 3038 } 3039 3040 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 3041 auto &PtrAdd = cast<GPtrAdd>(MI); 3042 Register DstReg = PtrAdd.getReg(0); 3043 LLT Ty = MRI.getType(DstReg); 3044 const DataLayout &DL = Builder.getMF().getDataLayout(); 3045 3046 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3047 return false; 3048 3049 if (Ty.isPointer()) { 3050 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3051 return ConstVal && *ConstVal == 0; 3052 } 3053 3054 assert(Ty.isVector() && "Expecting a vector type"); 3055 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3056 return isBuildVectorAllZeros(*VecMI, MRI); 3057 } 3058 3059 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3060 auto &PtrAdd = cast<GPtrAdd>(MI); 3061 Builder.setInstrAndDebugLoc(PtrAdd); 3062 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3063 PtrAdd.eraseFromParent(); 3064 } 3065 3066 /// The second source operand is known to be a power of 2. 3067 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3068 Register DstReg = MI.getOperand(0).getReg(); 3069 Register Src0 = MI.getOperand(1).getReg(); 3070 Register Pow2Src1 = MI.getOperand(2).getReg(); 3071 LLT Ty = MRI.getType(DstReg); 3072 Builder.setInstrAndDebugLoc(MI); 3073 3074 // Fold (urem x, pow2) -> (and x, pow2-1) 3075 auto NegOne = Builder.buildConstant(Ty, -1); 3076 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3077 Builder.buildAnd(DstReg, Src0, Add); 3078 MI.eraseFromParent(); 3079 } 3080 3081 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, 3082 unsigned &SelectOpNo) { 3083 Register LHS = MI.getOperand(1).getReg(); 3084 Register RHS = MI.getOperand(2).getReg(); 3085 3086 Register OtherOperandReg = RHS; 3087 SelectOpNo = 1; 3088 MachineInstr *Select = MRI.getVRegDef(LHS); 3089 3090 // Don't do this unless the old select is going away. We want to eliminate the 3091 // binary operator, not replace a binop with a select. 3092 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3093 !MRI.hasOneNonDBGUse(LHS)) { 3094 OtherOperandReg = LHS; 3095 SelectOpNo = 2; 3096 Select = MRI.getVRegDef(RHS); 3097 if (Select->getOpcode() != TargetOpcode::G_SELECT || 3098 !MRI.hasOneNonDBGUse(RHS)) 3099 return false; 3100 } 3101 3102 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); 3103 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); 3104 3105 if (!isConstantOrConstantVector(*SelectLHS, MRI, 3106 /*AllowFP*/ true, 3107 /*AllowOpaqueConstants*/ false)) 3108 return false; 3109 if (!isConstantOrConstantVector(*SelectRHS, MRI, 3110 /*AllowFP*/ true, 3111 /*AllowOpaqueConstants*/ false)) 3112 return false; 3113 3114 unsigned BinOpcode = MI.getOpcode(); 3115 3116 // We know know one of the operands is a select of constants. Now verify that 3117 // the other binary operator operand is either a constant, or we can handle a 3118 // variable. 3119 bool CanFoldNonConst = 3120 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && 3121 (isNullOrNullSplat(*SelectLHS, MRI) || 3122 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && 3123 (isNullOrNullSplat(*SelectRHS, MRI) || 3124 isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); 3125 if (CanFoldNonConst) 3126 return true; 3127 3128 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, 3129 /*AllowFP*/ true, 3130 /*AllowOpaqueConstants*/ false); 3131 } 3132 3133 /// \p SelectOperand is the operand in binary operator \p MI that is the select 3134 /// to fold. 3135 bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, 3136 const unsigned &SelectOperand) { 3137 Builder.setInstrAndDebugLoc(MI); 3138 3139 Register Dst = MI.getOperand(0).getReg(); 3140 Register LHS = MI.getOperand(1).getReg(); 3141 Register RHS = MI.getOperand(2).getReg(); 3142 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); 3143 3144 Register SelectCond = Select->getOperand(1).getReg(); 3145 Register SelectTrue = Select->getOperand(2).getReg(); 3146 Register SelectFalse = Select->getOperand(3).getReg(); 3147 3148 LLT Ty = MRI.getType(Dst); 3149 unsigned BinOpcode = MI.getOpcode(); 3150 3151 Register FoldTrue, FoldFalse; 3152 3153 // We have a select-of-constants followed by a binary operator with a 3154 // constant. Eliminate the binop by pulling the constant math into the select. 3155 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO 3156 if (SelectOperand == 1) { 3157 // TODO: SelectionDAG verifies this actually constant folds before 3158 // committing to the combine. 3159 3160 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); 3161 FoldFalse = 3162 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); 3163 } else { 3164 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); 3165 FoldFalse = 3166 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); 3167 } 3168 3169 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); 3170 Observer.erasingInstr(*Select); 3171 Select->eraseFromParent(); 3172 MI.eraseFromParent(); 3173 3174 return true; 3175 } 3176 3177 Optional<SmallVector<Register, 8>> 3178 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3179 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3180 // We want to detect if Root is part of a tree which represents a bunch 3181 // of loads being merged into a larger load. We'll try to recognize patterns 3182 // like, for example: 3183 // 3184 // Reg Reg 3185 // \ / 3186 // OR_1 Reg 3187 // \ / 3188 // OR_2 3189 // \ Reg 3190 // .. / 3191 // Root 3192 // 3193 // Reg Reg Reg Reg 3194 // \ / \ / 3195 // OR_1 OR_2 3196 // \ / 3197 // \ / 3198 // ... 3199 // Root 3200 // 3201 // Each "Reg" may have been produced by a load + some arithmetic. This 3202 // function will save each of them. 3203 SmallVector<Register, 8> RegsToVisit; 3204 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3205 3206 // In the "worst" case, we're dealing with a load for each byte. So, there 3207 // are at most #bytes - 1 ORs. 3208 const unsigned MaxIter = 3209 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3210 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3211 if (Ors.empty()) 3212 break; 3213 const MachineInstr *Curr = Ors.pop_back_val(); 3214 Register OrLHS = Curr->getOperand(1).getReg(); 3215 Register OrRHS = Curr->getOperand(2).getReg(); 3216 3217 // In the combine, we want to elimate the entire tree. 3218 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3219 return None; 3220 3221 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3222 // something that may be a load + arithmetic. 3223 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3224 Ors.push_back(Or); 3225 else 3226 RegsToVisit.push_back(OrLHS); 3227 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3228 Ors.push_back(Or); 3229 else 3230 RegsToVisit.push_back(OrRHS); 3231 } 3232 3233 // We're going to try and merge each register into a wider power-of-2 type, 3234 // so we ought to have an even number of registers. 3235 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3236 return None; 3237 return RegsToVisit; 3238 } 3239 3240 /// Helper function for findLoadOffsetsForLoadOrCombine. 3241 /// 3242 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3243 /// and then moving that value into a specific byte offset. 3244 /// 3245 /// e.g. x[i] << 24 3246 /// 3247 /// \returns The load instruction and the byte offset it is moved into. 3248 static Optional<std::pair<GZExtLoad *, int64_t>> 3249 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3250 const MachineRegisterInfo &MRI) { 3251 assert(MRI.hasOneNonDBGUse(Reg) && 3252 "Expected Reg to only have one non-debug use?"); 3253 Register MaybeLoad; 3254 int64_t Shift; 3255 if (!mi_match(Reg, MRI, 3256 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3257 Shift = 0; 3258 MaybeLoad = Reg; 3259 } 3260 3261 if (Shift % MemSizeInBits != 0) 3262 return None; 3263 3264 // TODO: Handle other types of loads. 3265 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3266 if (!Load) 3267 return None; 3268 3269 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3270 return None; 3271 3272 return std::make_pair(Load, Shift / MemSizeInBits); 3273 } 3274 3275 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3276 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3277 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3278 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3279 3280 // Each load found for the pattern. There should be one for each RegsToVisit. 3281 SmallSetVector<const MachineInstr *, 8> Loads; 3282 3283 // The lowest index used in any load. (The lowest "i" for each x[i].) 3284 int64_t LowestIdx = INT64_MAX; 3285 3286 // The load which uses the lowest index. 3287 GZExtLoad *LowestIdxLoad = nullptr; 3288 3289 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3290 SmallSet<int64_t, 8> SeenIdx; 3291 3292 // Ensure each load is in the same MBB. 3293 // TODO: Support multiple MachineBasicBlocks. 3294 MachineBasicBlock *MBB = nullptr; 3295 const MachineMemOperand *MMO = nullptr; 3296 3297 // Earliest instruction-order load in the pattern. 3298 GZExtLoad *EarliestLoad = nullptr; 3299 3300 // Latest instruction-order load in the pattern. 3301 GZExtLoad *LatestLoad = nullptr; 3302 3303 // Base pointer which every load should share. 3304 Register BasePtr; 3305 3306 // We want to find a load for each register. Each load should have some 3307 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3308 // track of the load which uses the lowest index. Later, we will check if we 3309 // can use its pointer in the final, combined load. 3310 for (auto Reg : RegsToVisit) { 3311 // Find the load, and find the position that it will end up in (e.g. a 3312 // shifted) value. 3313 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3314 if (!LoadAndPos) 3315 return None; 3316 GZExtLoad *Load; 3317 int64_t DstPos; 3318 std::tie(Load, DstPos) = *LoadAndPos; 3319 3320 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3321 // it is difficult to check for stores/calls/etc between loads. 3322 MachineBasicBlock *LoadMBB = Load->getParent(); 3323 if (!MBB) 3324 MBB = LoadMBB; 3325 if (LoadMBB != MBB) 3326 return None; 3327 3328 // Make sure that the MachineMemOperands of every seen load are compatible. 3329 auto &LoadMMO = Load->getMMO(); 3330 if (!MMO) 3331 MMO = &LoadMMO; 3332 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3333 return None; 3334 3335 // Find out what the base pointer and index for the load is. 3336 Register LoadPtr; 3337 int64_t Idx; 3338 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3339 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3340 LoadPtr = Load->getOperand(1).getReg(); 3341 Idx = 0; 3342 } 3343 3344 // Don't combine things like a[i], a[i] -> a bigger load. 3345 if (!SeenIdx.insert(Idx).second) 3346 return None; 3347 3348 // Every load must share the same base pointer; don't combine things like: 3349 // 3350 // a[i], b[i + 1] -> a bigger load. 3351 if (!BasePtr.isValid()) 3352 BasePtr = LoadPtr; 3353 if (BasePtr != LoadPtr) 3354 return None; 3355 3356 if (Idx < LowestIdx) { 3357 LowestIdx = Idx; 3358 LowestIdxLoad = Load; 3359 } 3360 3361 // Keep track of the byte offset that this load ends up at. If we have seen 3362 // the byte offset, then stop here. We do not want to combine: 3363 // 3364 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3365 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3366 return None; 3367 Loads.insert(Load); 3368 3369 // Keep track of the position of the earliest/latest loads in the pattern. 3370 // We will check that there are no load fold barriers between them later 3371 // on. 3372 // 3373 // FIXME: Is there a better way to check for load fold barriers? 3374 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3375 EarliestLoad = Load; 3376 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3377 LatestLoad = Load; 3378 } 3379 3380 // We found a load for each register. Let's check if each load satisfies the 3381 // pattern. 3382 assert(Loads.size() == RegsToVisit.size() && 3383 "Expected to find a load for each register?"); 3384 assert(EarliestLoad != LatestLoad && EarliestLoad && 3385 LatestLoad && "Expected at least two loads?"); 3386 3387 // Check if there are any stores, calls, etc. between any of the loads. If 3388 // there are, then we can't safely perform the combine. 3389 // 3390 // MaxIter is chosen based off the (worst case) number of iterations it 3391 // typically takes to succeed in the LLVM test suite plus some padding. 3392 // 3393 // FIXME: Is there a better way to check for load fold barriers? 3394 const unsigned MaxIter = 20; 3395 unsigned Iter = 0; 3396 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3397 LatestLoad->getIterator())) { 3398 if (Loads.count(&MI)) 3399 continue; 3400 if (MI.isLoadFoldBarrier()) 3401 return None; 3402 if (Iter++ == MaxIter) 3403 return None; 3404 } 3405 3406 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3407 } 3408 3409 bool CombinerHelper::matchLoadOrCombine( 3410 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3411 assert(MI.getOpcode() == TargetOpcode::G_OR); 3412 MachineFunction &MF = *MI.getMF(); 3413 // Assuming a little-endian target, transform: 3414 // s8 *a = ... 3415 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3416 // => 3417 // s32 val = *((i32)a) 3418 // 3419 // s8 *a = ... 3420 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3421 // => 3422 // s32 val = BSWAP(*((s32)a)) 3423 Register Dst = MI.getOperand(0).getReg(); 3424 LLT Ty = MRI.getType(Dst); 3425 if (Ty.isVector()) 3426 return false; 3427 3428 // We need to combine at least two loads into this type. Since the smallest 3429 // possible load is into a byte, we need at least a 16-bit wide type. 3430 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3431 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3432 return false; 3433 3434 // Match a collection of non-OR instructions in the pattern. 3435 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3436 if (!RegsToVisit) 3437 return false; 3438 3439 // We have a collection of non-OR instructions. Figure out how wide each of 3440 // the small loads should be based off of the number of potential loads we 3441 // found. 3442 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3443 if (NarrowMemSizeInBits % 8 != 0) 3444 return false; 3445 3446 // Check if each register feeding into each OR is a load from the same 3447 // base pointer + some arithmetic. 3448 // 3449 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3450 // 3451 // Also verify that each of these ends up putting a[i] into the same memory 3452 // offset as a load into a wide type would. 3453 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3454 GZExtLoad *LowestIdxLoad, *LatestLoad; 3455 int64_t LowestIdx; 3456 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3457 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3458 if (!MaybeLoadInfo) 3459 return false; 3460 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3461 3462 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3463 // we found before, check if this corresponds to a big or little endian byte 3464 // pattern. If it does, then we can represent it using a load + possibly a 3465 // BSWAP. 3466 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3467 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3468 if (!IsBigEndian) 3469 return false; 3470 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3471 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3472 return false; 3473 3474 // Make sure that the load from the lowest index produces offset 0 in the 3475 // final value. 3476 // 3477 // This ensures that we won't combine something like this: 3478 // 3479 // load x[i] -> byte 2 3480 // load x[i+1] -> byte 0 ---> wide_load x[i] 3481 // load x[i+2] -> byte 1 3482 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3483 const unsigned ZeroByteOffset = 3484 *IsBigEndian 3485 ? bigEndianByteAt(NumLoadsInTy, 0) 3486 : littleEndianByteAt(NumLoadsInTy, 0); 3487 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3488 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3489 ZeroOffsetIdx->second != LowestIdx) 3490 return false; 3491 3492 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3493 // may not use index 0. 3494 Register Ptr = LowestIdxLoad->getPointerReg(); 3495 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3496 LegalityQuery::MemDesc MMDesc(MMO); 3497 MMDesc.MemoryTy = Ty; 3498 if (!isLegalOrBeforeLegalizer( 3499 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3500 return false; 3501 auto PtrInfo = MMO.getPointerInfo(); 3502 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3503 3504 // Load must be allowed and fast on the target. 3505 LLVMContext &C = MF.getFunction().getContext(); 3506 auto &DL = MF.getDataLayout(); 3507 bool Fast = false; 3508 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3509 !Fast) 3510 return false; 3511 3512 MatchInfo = [=](MachineIRBuilder &MIB) { 3513 MIB.setInstrAndDebugLoc(*LatestLoad); 3514 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3515 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3516 if (NeedsBSwap) 3517 MIB.buildBSwap(Dst, LoadDst); 3518 }; 3519 return true; 3520 } 3521 3522 /// Check if the store \p Store is a truncstore that can be merged. That is, 3523 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3524 /// Register then it does not need to match and SrcVal is set to the source 3525 /// value found. 3526 /// On match, returns the start byte offset of the \p SrcVal that is being 3527 /// stored. 3528 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3529 MachineRegisterInfo &MRI) { 3530 Register TruncVal; 3531 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3532 return None; 3533 3534 // The shift amount must be a constant multiple of the narrow type. 3535 // It is translated to the offset address in the wide source value "y". 3536 // 3537 // x = G_LSHR y, ShiftAmtC 3538 // s8 z = G_TRUNC x 3539 // store z, ... 3540 Register FoundSrcVal; 3541 int64_t ShiftAmt; 3542 if (!mi_match(TruncVal, MRI, 3543 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3544 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3545 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3546 if (!SrcVal.isValid()) 3547 SrcVal = TruncVal; 3548 return 0; // If it's the lowest index store. 3549 } 3550 return None; 3551 } 3552 3553 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3554 if (ShiftAmt % NarrowBits!= 0) 3555 return None; 3556 const unsigned Offset = ShiftAmt / NarrowBits; 3557 3558 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3559 return None; 3560 3561 if (!SrcVal.isValid()) 3562 SrcVal = FoundSrcVal; 3563 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3564 return None; 3565 return Offset; 3566 } 3567 3568 /// Match a pattern where a wide type scalar value is stored by several narrow 3569 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3570 /// supports it. 3571 /// 3572 /// Assuming little endian target: 3573 /// i8 *p = ... 3574 /// i32 val = ... 3575 /// p[0] = (val >> 0) & 0xFF; 3576 /// p[1] = (val >> 8) & 0xFF; 3577 /// p[2] = (val >> 16) & 0xFF; 3578 /// p[3] = (val >> 24) & 0xFF; 3579 /// => 3580 /// *((i32)p) = val; 3581 /// 3582 /// i8 *p = ... 3583 /// i32 val = ... 3584 /// p[0] = (val >> 24) & 0xFF; 3585 /// p[1] = (val >> 16) & 0xFF; 3586 /// p[2] = (val >> 8) & 0xFF; 3587 /// p[3] = (val >> 0) & 0xFF; 3588 /// => 3589 /// *((i32)p) = BSWAP(val); 3590 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3591 MergeTruncStoresInfo &MatchInfo) { 3592 auto &StoreMI = cast<GStore>(MI); 3593 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3594 3595 // We only handle merging simple stores of 1-4 bytes. 3596 if (!MemTy.isScalar()) 3597 return false; 3598 switch (MemTy.getSizeInBits()) { 3599 case 8: 3600 case 16: 3601 case 32: 3602 break; 3603 default: 3604 return false; 3605 } 3606 if (!StoreMI.isSimple()) 3607 return false; 3608 3609 // We do a simple search for mergeable stores prior to this one. 3610 // Any potential alias hazard along the way terminates the search. 3611 SmallVector<GStore *> FoundStores; 3612 3613 // We're looking for: 3614 // 1) a (store(trunc(...))) 3615 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3616 // the partial value stored. 3617 // 3) where the offsets form either a little or big-endian sequence. 3618 3619 auto &LastStore = StoreMI; 3620 3621 // The single base pointer that all stores must use. 3622 Register BaseReg; 3623 int64_t LastOffset; 3624 if (!mi_match(LastStore.getPointerReg(), MRI, 3625 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3626 BaseReg = LastStore.getPointerReg(); 3627 LastOffset = 0; 3628 } 3629 3630 GStore *LowestIdxStore = &LastStore; 3631 int64_t LowestIdxOffset = LastOffset; 3632 3633 Register WideSrcVal; 3634 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3635 if (!LowestShiftAmt) 3636 return false; // Didn't match a trunc. 3637 assert(WideSrcVal.isValid()); 3638 3639 LLT WideStoreTy = MRI.getType(WideSrcVal); 3640 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3641 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3642 return false; 3643 const unsigned NumStoresRequired = 3644 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3645 3646 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3647 OffsetMap[*LowestShiftAmt] = LastOffset; 3648 FoundStores.emplace_back(&LastStore); 3649 3650 // Search the block up for more stores. 3651 // We use a search threshold of 10 instructions here because the combiner 3652 // works top-down within a block, and we don't want to search an unbounded 3653 // number of predecessor instructions trying to find matching stores. 3654 // If we moved this optimization into a separate pass then we could probably 3655 // use a more efficient search without having a hard-coded threshold. 3656 const int MaxInstsToCheck = 10; 3657 int NumInstsChecked = 0; 3658 for (auto II = ++LastStore.getReverseIterator(); 3659 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3660 ++II) { 3661 NumInstsChecked++; 3662 GStore *NewStore; 3663 if ((NewStore = dyn_cast<GStore>(&*II))) { 3664 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3665 break; 3666 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3667 break; 3668 } else { 3669 continue; // This is a safe instruction we can look past. 3670 } 3671 3672 Register NewBaseReg; 3673 int64_t MemOffset; 3674 // Check we're storing to the same base + some offset. 3675 if (!mi_match(NewStore->getPointerReg(), MRI, 3676 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3677 NewBaseReg = NewStore->getPointerReg(); 3678 MemOffset = 0; 3679 } 3680 if (BaseReg != NewBaseReg) 3681 break; 3682 3683 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3684 if (!ShiftByteOffset) 3685 break; 3686 if (MemOffset < LowestIdxOffset) { 3687 LowestIdxOffset = MemOffset; 3688 LowestIdxStore = NewStore; 3689 } 3690 3691 // Map the offset in the store and the offset in the combined value, and 3692 // early return if it has been set before. 3693 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3694 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3695 break; 3696 OffsetMap[*ShiftByteOffset] = MemOffset; 3697 3698 FoundStores.emplace_back(NewStore); 3699 // Reset counter since we've found a matching inst. 3700 NumInstsChecked = 0; 3701 if (FoundStores.size() == NumStoresRequired) 3702 break; 3703 } 3704 3705 if (FoundStores.size() != NumStoresRequired) { 3706 return false; 3707 } 3708 3709 const auto &DL = LastStore.getMF()->getDataLayout(); 3710 auto &C = LastStore.getMF()->getFunction().getContext(); 3711 // Check that a store of the wide type is both allowed and fast on the target 3712 bool Fast = false; 3713 bool Allowed = getTargetLowering().allowsMemoryAccess( 3714 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3715 if (!Allowed || !Fast) 3716 return false; 3717 3718 // Check if the pieces of the value are going to the expected places in memory 3719 // to merge the stores. 3720 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3721 auto checkOffsets = [&](bool MatchLittleEndian) { 3722 if (MatchLittleEndian) { 3723 for (unsigned i = 0; i != NumStoresRequired; ++i) 3724 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3725 return false; 3726 } else { // MatchBigEndian by reversing loop counter. 3727 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3728 ++i, --j) 3729 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3730 return false; 3731 } 3732 return true; 3733 }; 3734 3735 // Check if the offsets line up for the native data layout of this target. 3736 bool NeedBswap = false; 3737 bool NeedRotate = false; 3738 if (!checkOffsets(DL.isLittleEndian())) { 3739 // Special-case: check if byte offsets line up for the opposite endian. 3740 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3741 NeedBswap = true; 3742 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3743 NeedRotate = true; 3744 else 3745 return false; 3746 } 3747 3748 if (NeedBswap && 3749 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3750 return false; 3751 if (NeedRotate && 3752 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3753 return false; 3754 3755 MatchInfo.NeedBSwap = NeedBswap; 3756 MatchInfo.NeedRotate = NeedRotate; 3757 MatchInfo.LowestIdxStore = LowestIdxStore; 3758 MatchInfo.WideSrcVal = WideSrcVal; 3759 MatchInfo.FoundStores = std::move(FoundStores); 3760 return true; 3761 } 3762 3763 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3764 MergeTruncStoresInfo &MatchInfo) { 3765 3766 Builder.setInstrAndDebugLoc(MI); 3767 Register WideSrcVal = MatchInfo.WideSrcVal; 3768 LLT WideStoreTy = MRI.getType(WideSrcVal); 3769 3770 if (MatchInfo.NeedBSwap) { 3771 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3772 } else if (MatchInfo.NeedRotate) { 3773 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3774 "Unexpected type for rotate"); 3775 auto RotAmt = 3776 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3777 WideSrcVal = 3778 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3779 } 3780 3781 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3782 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3783 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3784 3785 // Erase the old stores. 3786 for (auto *ST : MatchInfo.FoundStores) 3787 ST->eraseFromParent(); 3788 } 3789 3790 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3791 MachineInstr *&ExtMI) { 3792 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3793 3794 Register DstReg = MI.getOperand(0).getReg(); 3795 3796 // TODO: Extending a vector may be expensive, don't do this until heuristics 3797 // are better. 3798 if (MRI.getType(DstReg).isVector()) 3799 return false; 3800 3801 // Try to match a phi, whose only use is an extend. 3802 if (!MRI.hasOneNonDBGUse(DstReg)) 3803 return false; 3804 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3805 switch (ExtMI->getOpcode()) { 3806 case TargetOpcode::G_ANYEXT: 3807 return true; // G_ANYEXT is usually free. 3808 case TargetOpcode::G_ZEXT: 3809 case TargetOpcode::G_SEXT: 3810 break; 3811 default: 3812 return false; 3813 } 3814 3815 // If the target is likely to fold this extend away, don't propagate. 3816 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3817 return false; 3818 3819 // We don't want to propagate the extends unless there's a good chance that 3820 // they'll be optimized in some way. 3821 // Collect the unique incoming values. 3822 SmallPtrSet<MachineInstr *, 4> InSrcs; 3823 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3824 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3825 switch (DefMI->getOpcode()) { 3826 case TargetOpcode::G_LOAD: 3827 case TargetOpcode::G_TRUNC: 3828 case TargetOpcode::G_SEXT: 3829 case TargetOpcode::G_ZEXT: 3830 case TargetOpcode::G_ANYEXT: 3831 case TargetOpcode::G_CONSTANT: 3832 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3833 // Don't try to propagate if there are too many places to create new 3834 // extends, chances are it'll increase code size. 3835 if (InSrcs.size() > 2) 3836 return false; 3837 break; 3838 default: 3839 return false; 3840 } 3841 } 3842 return true; 3843 } 3844 3845 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3846 MachineInstr *&ExtMI) { 3847 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3848 Register DstReg = ExtMI->getOperand(0).getReg(); 3849 LLT ExtTy = MRI.getType(DstReg); 3850 3851 // Propagate the extension into the block of each incoming reg's block. 3852 // Use a SetVector here because PHIs can have duplicate edges, and we want 3853 // deterministic iteration order. 3854 SmallSetVector<MachineInstr *, 8> SrcMIs; 3855 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3856 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3857 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3858 if (!SrcMIs.insert(SrcMI)) 3859 continue; 3860 3861 // Build an extend after each src inst. 3862 auto *MBB = SrcMI->getParent(); 3863 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3864 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3865 InsertPt = MBB->getFirstNonPHI(); 3866 3867 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3868 Builder.setDebugLoc(MI.getDebugLoc()); 3869 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3870 SrcMI->getOperand(0).getReg()); 3871 OldToNewSrcMap[SrcMI] = NewExt; 3872 } 3873 3874 // Create a new phi with the extended inputs. 3875 Builder.setInstrAndDebugLoc(MI); 3876 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3877 NewPhi.addDef(DstReg); 3878 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3879 if (!MO.isReg()) { 3880 NewPhi.addMBB(MO.getMBB()); 3881 continue; 3882 } 3883 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3884 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3885 } 3886 Builder.insertInstr(NewPhi); 3887 ExtMI->eraseFromParent(); 3888 } 3889 3890 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3891 Register &Reg) { 3892 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3893 // If we have a constant index, look for a G_BUILD_VECTOR source 3894 // and find the source register that the index maps to. 3895 Register SrcVec = MI.getOperand(1).getReg(); 3896 LLT SrcTy = MRI.getType(SrcVec); 3897 if (!isLegalOrBeforeLegalizer( 3898 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3899 return false; 3900 3901 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3902 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3903 return false; 3904 3905 unsigned VecIdx = Cst->Value.getZExtValue(); 3906 MachineInstr *BuildVecMI = 3907 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3908 if (!BuildVecMI) { 3909 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3910 if (!BuildVecMI) 3911 return false; 3912 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3913 if (!isLegalOrBeforeLegalizer( 3914 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3915 return false; 3916 } 3917 3918 EVT Ty(getMVTForLLT(SrcTy)); 3919 if (!MRI.hasOneNonDBGUse(SrcVec) && 3920 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3921 return false; 3922 3923 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3924 return true; 3925 } 3926 3927 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3928 Register &Reg) { 3929 // Check the type of the register, since it may have come from a 3930 // G_BUILD_VECTOR_TRUNC. 3931 LLT ScalarTy = MRI.getType(Reg); 3932 Register DstReg = MI.getOperand(0).getReg(); 3933 LLT DstTy = MRI.getType(DstReg); 3934 3935 Builder.setInstrAndDebugLoc(MI); 3936 if (ScalarTy != DstTy) { 3937 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3938 Builder.buildTrunc(DstReg, Reg); 3939 MI.eraseFromParent(); 3940 return; 3941 } 3942 replaceSingleDefInstWithReg(MI, Reg); 3943 } 3944 3945 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3946 MachineInstr &MI, 3947 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3948 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3949 // This combine tries to find build_vector's which have every source element 3950 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3951 // the masked load scalarization is run late in the pipeline. There's already 3952 // a combine for a similar pattern starting from the extract, but that 3953 // doesn't attempt to do it if there are multiple uses of the build_vector, 3954 // which in this case is true. Starting the combine from the build_vector 3955 // feels more natural than trying to find sibling nodes of extracts. 3956 // E.g. 3957 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3958 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3959 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3960 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3961 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3962 // ==> 3963 // replace ext{1,2,3,4} with %s{1,2,3,4} 3964 3965 Register DstReg = MI.getOperand(0).getReg(); 3966 LLT DstTy = MRI.getType(DstReg); 3967 unsigned NumElts = DstTy.getNumElements(); 3968 3969 SmallBitVector ExtractedElts(NumElts); 3970 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3971 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3972 return false; 3973 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3974 if (!Cst) 3975 return false; 3976 unsigned Idx = Cst->getZExtValue(); 3977 if (Idx >= NumElts) 3978 return false; // Out of range. 3979 ExtractedElts.set(Idx); 3980 SrcDstPairs.emplace_back( 3981 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3982 } 3983 // Match if every element was extracted. 3984 return ExtractedElts.all(); 3985 } 3986 3987 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3988 MachineInstr &MI, 3989 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3990 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3991 for (auto &Pair : SrcDstPairs) { 3992 auto *ExtMI = Pair.second; 3993 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3994 ExtMI->eraseFromParent(); 3995 } 3996 MI.eraseFromParent(); 3997 } 3998 3999 void CombinerHelper::applyBuildFn( 4000 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4001 Builder.setInstrAndDebugLoc(MI); 4002 MatchInfo(Builder); 4003 MI.eraseFromParent(); 4004 } 4005 4006 void CombinerHelper::applyBuildFnNoErase( 4007 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4008 Builder.setInstrAndDebugLoc(MI); 4009 MatchInfo(Builder); 4010 } 4011 4012 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 4013 BuildFnTy &MatchInfo) { 4014 assert(MI.getOpcode() == TargetOpcode::G_OR); 4015 4016 Register Dst = MI.getOperand(0).getReg(); 4017 LLT Ty = MRI.getType(Dst); 4018 unsigned BitWidth = Ty.getScalarSizeInBits(); 4019 4020 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; 4021 unsigned FshOpc = 0; 4022 4023 // Match (or (shl ...), (lshr ...)). 4024 if (!mi_match(Dst, MRI, 4025 // m_GOr() handles the commuted version as well. 4026 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 4027 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) 4028 return false; 4029 4030 // Given constants C0 and C1 such that C0 + C1 is bit-width: 4031 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) 4032 int64_t CstShlAmt, CstLShrAmt; 4033 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && 4034 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && 4035 CstShlAmt + CstLShrAmt == BitWidth) { 4036 FshOpc = TargetOpcode::G_FSHR; 4037 Amt = LShrAmt; 4038 4039 } else if (mi_match(LShrAmt, MRI, 4040 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4041 ShlAmt == Amt) { 4042 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) 4043 FshOpc = TargetOpcode::G_FSHL; 4044 4045 } else if (mi_match(ShlAmt, MRI, 4046 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && 4047 LShrAmt == Amt) { 4048 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) 4049 FshOpc = TargetOpcode::G_FSHR; 4050 4051 } else { 4052 return false; 4053 } 4054 4055 LLT AmtTy = MRI.getType(Amt); 4056 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 4057 return false; 4058 4059 MatchInfo = [=](MachineIRBuilder &B) { 4060 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); 4061 }; 4062 return true; 4063 } 4064 4065 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 4066 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 4067 unsigned Opc = MI.getOpcode(); 4068 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4069 Register X = MI.getOperand(1).getReg(); 4070 Register Y = MI.getOperand(2).getReg(); 4071 if (X != Y) 4072 return false; 4073 unsigned RotateOpc = 4074 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 4075 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 4076 } 4077 4078 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 4079 unsigned Opc = MI.getOpcode(); 4080 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 4081 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 4082 Observer.changingInstr(MI); 4083 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 4084 : TargetOpcode::G_ROTR)); 4085 MI.removeOperand(2); 4086 Observer.changedInstr(MI); 4087 } 4088 4089 // Fold (rot x, c) -> (rot x, c % BitSize) 4090 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 4091 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4092 MI.getOpcode() == TargetOpcode::G_ROTR); 4093 unsigned Bitsize = 4094 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4095 Register AmtReg = MI.getOperand(2).getReg(); 4096 bool OutOfRange = false; 4097 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 4098 if (auto *CI = dyn_cast<ConstantInt>(C)) 4099 OutOfRange |= CI->getValue().uge(Bitsize); 4100 return true; 4101 }; 4102 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 4103 } 4104 4105 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 4106 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 4107 MI.getOpcode() == TargetOpcode::G_ROTR); 4108 unsigned Bitsize = 4109 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 4110 Builder.setInstrAndDebugLoc(MI); 4111 Register Amt = MI.getOperand(2).getReg(); 4112 LLT AmtTy = MRI.getType(Amt); 4113 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 4114 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 4115 Observer.changingInstr(MI); 4116 MI.getOperand(2).setReg(Amt); 4117 Observer.changedInstr(MI); 4118 } 4119 4120 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 4121 int64_t &MatchInfo) { 4122 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4123 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4124 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 4125 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 4126 Optional<bool> KnownVal; 4127 switch (Pred) { 4128 default: 4129 llvm_unreachable("Unexpected G_ICMP predicate?"); 4130 case CmpInst::ICMP_EQ: 4131 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 4132 break; 4133 case CmpInst::ICMP_NE: 4134 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 4135 break; 4136 case CmpInst::ICMP_SGE: 4137 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 4138 break; 4139 case CmpInst::ICMP_SGT: 4140 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 4141 break; 4142 case CmpInst::ICMP_SLE: 4143 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 4144 break; 4145 case CmpInst::ICMP_SLT: 4146 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 4147 break; 4148 case CmpInst::ICMP_UGE: 4149 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4150 break; 4151 case CmpInst::ICMP_UGT: 4152 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4153 break; 4154 case CmpInst::ICMP_ULE: 4155 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4156 break; 4157 case CmpInst::ICMP_ULT: 4158 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4159 break; 4160 } 4161 if (!KnownVal) 4162 return false; 4163 MatchInfo = 4164 *KnownVal 4165 ? getICmpTrueVal(getTargetLowering(), 4166 /*IsVector = */ 4167 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4168 /* IsFP = */ false) 4169 : 0; 4170 return true; 4171 } 4172 4173 bool CombinerHelper::matchICmpToLHSKnownBits( 4174 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4175 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4176 // Given: 4177 // 4178 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4179 // %cmp = G_ICMP ne %x, 0 4180 // 4181 // Or: 4182 // 4183 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4184 // %cmp = G_ICMP eq %x, 1 4185 // 4186 // We can replace %cmp with %x assuming true is 1 on the target. 4187 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4188 if (!CmpInst::isEquality(Pred)) 4189 return false; 4190 Register Dst = MI.getOperand(0).getReg(); 4191 LLT DstTy = MRI.getType(Dst); 4192 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4193 /* IsFP = */ false) != 1) 4194 return false; 4195 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4196 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4197 return false; 4198 Register LHS = MI.getOperand(2).getReg(); 4199 auto KnownLHS = KB->getKnownBits(LHS); 4200 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4201 return false; 4202 // Make sure replacing Dst with the LHS is a legal operation. 4203 LLT LHSTy = MRI.getType(LHS); 4204 unsigned LHSSize = LHSTy.getSizeInBits(); 4205 unsigned DstSize = DstTy.getSizeInBits(); 4206 unsigned Op = TargetOpcode::COPY; 4207 if (DstSize != LHSSize) 4208 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4209 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4210 return false; 4211 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4212 return true; 4213 } 4214 4215 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4216 bool CombinerHelper::matchAndOrDisjointMask( 4217 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4218 assert(MI.getOpcode() == TargetOpcode::G_AND); 4219 4220 // Ignore vector types to simplify matching the two constants. 4221 // TODO: do this for vectors and scalars via a demanded bits analysis. 4222 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4223 if (Ty.isVector()) 4224 return false; 4225 4226 Register Src; 4227 Register AndMaskReg; 4228 int64_t AndMaskBits; 4229 int64_t OrMaskBits; 4230 if (!mi_match(MI, MRI, 4231 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), 4232 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) 4233 return false; 4234 4235 // Check if OrMask could turn on any bits in Src. 4236 if (AndMaskBits & OrMaskBits) 4237 return false; 4238 4239 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4240 Observer.changingInstr(MI); 4241 // Canonicalize the result to have the constant on the RHS. 4242 if (MI.getOperand(1).getReg() == AndMaskReg) 4243 MI.getOperand(2).setReg(AndMaskReg); 4244 MI.getOperand(1).setReg(Src); 4245 Observer.changedInstr(MI); 4246 }; 4247 return true; 4248 } 4249 4250 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4251 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4252 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4253 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4254 Register Dst = MI.getOperand(0).getReg(); 4255 Register Src = MI.getOperand(1).getReg(); 4256 LLT Ty = MRI.getType(Src); 4257 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4258 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4259 return false; 4260 int64_t Width = MI.getOperand(2).getImm(); 4261 Register ShiftSrc; 4262 int64_t ShiftImm; 4263 if (!mi_match( 4264 Src, MRI, 4265 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4266 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4267 return false; 4268 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4269 return false; 4270 4271 MatchInfo = [=](MachineIRBuilder &B) { 4272 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4273 auto Cst2 = B.buildConstant(ExtractTy, Width); 4274 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4275 }; 4276 return true; 4277 } 4278 4279 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4280 bool CombinerHelper::matchBitfieldExtractFromAnd( 4281 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4282 assert(MI.getOpcode() == TargetOpcode::G_AND); 4283 Register Dst = MI.getOperand(0).getReg(); 4284 LLT Ty = MRI.getType(Dst); 4285 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4286 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4287 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4288 return false; 4289 4290 int64_t AndImm, LSBImm; 4291 Register ShiftSrc; 4292 const unsigned Size = Ty.getScalarSizeInBits(); 4293 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4294 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4295 m_ICst(AndImm)))) 4296 return false; 4297 4298 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4299 auto MaybeMask = static_cast<uint64_t>(AndImm); 4300 if (MaybeMask & (MaybeMask + 1)) 4301 return false; 4302 4303 // LSB must fit within the register. 4304 if (static_cast<uint64_t>(LSBImm) >= Size) 4305 return false; 4306 4307 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4308 MatchInfo = [=](MachineIRBuilder &B) { 4309 auto WidthCst = B.buildConstant(ExtractTy, Width); 4310 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4311 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4312 }; 4313 return true; 4314 } 4315 4316 bool CombinerHelper::matchBitfieldExtractFromShr( 4317 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4318 const unsigned Opcode = MI.getOpcode(); 4319 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4320 4321 const Register Dst = MI.getOperand(0).getReg(); 4322 4323 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4324 ? TargetOpcode::G_SBFX 4325 : TargetOpcode::G_UBFX; 4326 4327 // Check if the type we would use for the extract is legal 4328 LLT Ty = MRI.getType(Dst); 4329 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4330 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4331 return false; 4332 4333 Register ShlSrc; 4334 int64_t ShrAmt; 4335 int64_t ShlAmt; 4336 const unsigned Size = Ty.getScalarSizeInBits(); 4337 4338 // Try to match shr (shl x, c1), c2 4339 if (!mi_match(Dst, MRI, 4340 m_BinOp(Opcode, 4341 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4342 m_ICst(ShrAmt)))) 4343 return false; 4344 4345 // Make sure that the shift sizes can fit a bitfield extract 4346 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4347 return false; 4348 4349 // Skip this combine if the G_SEXT_INREG combine could handle it 4350 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4351 return false; 4352 4353 // Calculate start position and width of the extract 4354 const int64_t Pos = ShrAmt - ShlAmt; 4355 const int64_t Width = Size - ShrAmt; 4356 4357 MatchInfo = [=](MachineIRBuilder &B) { 4358 auto WidthCst = B.buildConstant(ExtractTy, Width); 4359 auto PosCst = B.buildConstant(ExtractTy, Pos); 4360 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4361 }; 4362 return true; 4363 } 4364 4365 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4366 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4367 const unsigned Opcode = MI.getOpcode(); 4368 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4369 4370 const Register Dst = MI.getOperand(0).getReg(); 4371 LLT Ty = MRI.getType(Dst); 4372 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4373 if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( 4374 TargetOpcode::G_UBFX, Ty, ExtractTy)) 4375 return false; 4376 4377 // Try to match shr (and x, c1), c2 4378 Register AndSrc; 4379 int64_t ShrAmt; 4380 int64_t SMask; 4381 if (!mi_match(Dst, MRI, 4382 m_BinOp(Opcode, 4383 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4384 m_ICst(ShrAmt)))) 4385 return false; 4386 4387 const unsigned Size = Ty.getScalarSizeInBits(); 4388 if (ShrAmt < 0 || ShrAmt >= Size) 4389 return false; 4390 4391 // If the shift subsumes the mask, emit the 0 directly. 4392 if (0 == (SMask >> ShrAmt)) { 4393 MatchInfo = [=](MachineIRBuilder &B) { 4394 B.buildConstant(Dst, 0); 4395 }; 4396 return true; 4397 } 4398 4399 // Check that ubfx can do the extraction, with no holes in the mask. 4400 uint64_t UMask = SMask; 4401 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4402 UMask &= maskTrailingOnes<uint64_t>(Size); 4403 if (!isMask_64(UMask)) 4404 return false; 4405 4406 // Calculate start position and width of the extract. 4407 const int64_t Pos = ShrAmt; 4408 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4409 4410 // It's preferable to keep the shift, rather than form G_SBFX. 4411 // TODO: remove the G_AND via demanded bits analysis. 4412 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4413 return false; 4414 4415 MatchInfo = [=](MachineIRBuilder &B) { 4416 auto WidthCst = B.buildConstant(ExtractTy, Width); 4417 auto PosCst = B.buildConstant(ExtractTy, Pos); 4418 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4419 }; 4420 return true; 4421 } 4422 4423 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4424 MachineInstr &PtrAdd) { 4425 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4426 4427 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4428 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4429 if (!Src1Def) 4430 return false; 4431 4432 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4433 4434 if (MRI.hasOneNonDBGUse(Src1Reg)) 4435 return false; 4436 4437 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4438 if (!C1) 4439 return false; 4440 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4441 if (!C2) 4442 return false; 4443 4444 const APInt &C1APIntVal = *C1; 4445 const APInt &C2APIntVal = *C2; 4446 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4447 4448 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4449 // This combine may end up running before ptrtoint/inttoptr combines 4450 // manage to eliminate redundant conversions, so try to look through them. 4451 MachineInstr *ConvUseMI = &UseMI; 4452 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4453 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4454 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4455 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4456 if (!MRI.hasOneNonDBGUse(DefReg)) 4457 break; 4458 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4459 ConvUseOpc = ConvUseMI->getOpcode(); 4460 } 4461 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4462 ConvUseOpc == TargetOpcode::G_STORE; 4463 if (!LoadStore) 4464 continue; 4465 // Is x[offset2] already not a legal addressing mode? If so then 4466 // reassociating the constants breaks nothing (we test offset2 because 4467 // that's the one we hope to fold into the load or store). 4468 TargetLoweringBase::AddrMode AM; 4469 AM.HasBaseReg = true; 4470 AM.BaseOffs = C2APIntVal.getSExtValue(); 4471 unsigned AS = 4472 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4473 Type *AccessTy = 4474 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4475 PtrAdd.getMF()->getFunction().getContext()); 4476 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4477 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4478 AccessTy, AS)) 4479 continue; 4480 4481 // Would x[offset1+offset2] still be a legal addressing mode? 4482 AM.BaseOffs = CombinedValue; 4483 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4484 AccessTy, AS)) 4485 return true; 4486 } 4487 4488 return false; 4489 } 4490 4491 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4492 MachineInstr *RHS, 4493 BuildFnTy &MatchInfo) { 4494 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4495 Register Src1Reg = MI.getOperand(1).getReg(); 4496 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4497 return false; 4498 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4499 if (!C2) 4500 return false; 4501 4502 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4503 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4504 4505 auto NewBase = 4506 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4507 Observer.changingInstr(MI); 4508 MI.getOperand(1).setReg(NewBase.getReg(0)); 4509 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4510 Observer.changedInstr(MI); 4511 }; 4512 return !reassociationCanBreakAddressingModePattern(MI); 4513 } 4514 4515 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4516 MachineInstr *LHS, 4517 MachineInstr *RHS, 4518 BuildFnTy &MatchInfo) { 4519 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4520 // if and only if (G_PTR_ADD X, C) has one use. 4521 Register LHSBase; 4522 Optional<ValueAndVReg> LHSCstOff; 4523 if (!mi_match(MI.getBaseReg(), MRI, 4524 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4525 return false; 4526 4527 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4528 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4529 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4530 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4531 // doesn't happen. 4532 LHSPtrAdd->moveBefore(&MI); 4533 Register RHSReg = MI.getOffsetReg(); 4534 Observer.changingInstr(MI); 4535 MI.getOperand(2).setReg(LHSCstOff->VReg); 4536 Observer.changedInstr(MI); 4537 Observer.changingInstr(*LHSPtrAdd); 4538 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4539 Observer.changedInstr(*LHSPtrAdd); 4540 }; 4541 return !reassociationCanBreakAddressingModePattern(MI); 4542 } 4543 4544 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4545 MachineInstr *LHS, 4546 MachineInstr *RHS, 4547 BuildFnTy &MatchInfo) { 4548 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4549 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4550 if (!LHSPtrAdd) 4551 return false; 4552 4553 Register Src2Reg = MI.getOperand(2).getReg(); 4554 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4555 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4556 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4557 if (!C1) 4558 return false; 4559 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4560 if (!C2) 4561 return false; 4562 4563 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4564 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4565 Observer.changingInstr(MI); 4566 MI.getOperand(1).setReg(LHSSrc1); 4567 MI.getOperand(2).setReg(NewCst.getReg(0)); 4568 Observer.changedInstr(MI); 4569 }; 4570 return !reassociationCanBreakAddressingModePattern(MI); 4571 } 4572 4573 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4574 BuildFnTy &MatchInfo) { 4575 auto &PtrAdd = cast<GPtrAdd>(MI); 4576 // We're trying to match a few pointer computation patterns here for 4577 // re-association opportunities. 4578 // 1) Isolating a constant operand to be on the RHS, e.g.: 4579 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4580 // 4581 // 2) Folding two constants in each sub-tree as long as such folding 4582 // doesn't break a legal addressing mode. 4583 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4584 // 4585 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4586 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4587 // iif (G_PTR_ADD X, C) has one use. 4588 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4589 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4590 4591 // Try to match example 2. 4592 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4593 return true; 4594 4595 // Try to match example 3. 4596 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4597 return true; 4598 4599 // Try to match example 1. 4600 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4601 return true; 4602 4603 return false; 4604 } 4605 4606 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4607 Register Op1 = MI.getOperand(1).getReg(); 4608 Register Op2 = MI.getOperand(2).getReg(); 4609 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4610 if (!MaybeCst) 4611 return false; 4612 MatchInfo = *MaybeCst; 4613 return true; 4614 } 4615 4616 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4617 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4618 // Look for a binop feeding into an AND with a mask: 4619 // 4620 // %add = G_ADD %lhs, %rhs 4621 // %and = G_AND %add, 000...11111111 4622 // 4623 // Check if it's possible to perform the binop at a narrower width and zext 4624 // back to the original width like so: 4625 // 4626 // %narrow_lhs = G_TRUNC %lhs 4627 // %narrow_rhs = G_TRUNC %rhs 4628 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4629 // %new_add = G_ZEXT %narrow_add 4630 // %and = G_AND %new_add, 000...11111111 4631 // 4632 // This can allow later combines to eliminate the G_AND if it turns out 4633 // that the mask is irrelevant. 4634 assert(MI.getOpcode() == TargetOpcode::G_AND); 4635 Register Dst = MI.getOperand(0).getReg(); 4636 Register AndLHS = MI.getOperand(1).getReg(); 4637 Register AndRHS = MI.getOperand(2).getReg(); 4638 LLT WideTy = MRI.getType(Dst); 4639 4640 // If the potential binop has more than one use, then it's possible that one 4641 // of those uses will need its full width. 4642 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4643 return false; 4644 4645 // Check if the LHS feeding the AND is impacted by the high bits that we're 4646 // masking out. 4647 // 4648 // e.g. for 64-bit x, y: 4649 // 4650 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4651 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4652 if (!LHSInst) 4653 return false; 4654 unsigned LHSOpc = LHSInst->getOpcode(); 4655 switch (LHSOpc) { 4656 default: 4657 return false; 4658 case TargetOpcode::G_ADD: 4659 case TargetOpcode::G_SUB: 4660 case TargetOpcode::G_MUL: 4661 case TargetOpcode::G_AND: 4662 case TargetOpcode::G_OR: 4663 case TargetOpcode::G_XOR: 4664 break; 4665 } 4666 4667 // Find the mask on the RHS. 4668 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4669 if (!Cst) 4670 return false; 4671 auto Mask = Cst->Value; 4672 if (!Mask.isMask()) 4673 return false; 4674 4675 // No point in combining if there's nothing to truncate. 4676 unsigned NarrowWidth = Mask.countTrailingOnes(); 4677 if (NarrowWidth == WideTy.getSizeInBits()) 4678 return false; 4679 LLT NarrowTy = LLT::scalar(NarrowWidth); 4680 4681 // Check if adding the zext + truncates could be harmful. 4682 auto &MF = *MI.getMF(); 4683 const auto &TLI = getTargetLowering(); 4684 LLVMContext &Ctx = MF.getFunction().getContext(); 4685 auto &DL = MF.getDataLayout(); 4686 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4687 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4688 return false; 4689 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4690 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4691 return false; 4692 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4693 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4694 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4695 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4696 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4697 auto NarrowBinOp = 4698 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4699 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4700 Observer.changingInstr(MI); 4701 MI.getOperand(1).setReg(Ext.getReg(0)); 4702 Observer.changedInstr(MI); 4703 }; 4704 return true; 4705 } 4706 4707 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4708 unsigned Opc = MI.getOpcode(); 4709 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4710 4711 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4712 return false; 4713 4714 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4715 Observer.changingInstr(MI); 4716 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4717 : TargetOpcode::G_SADDO; 4718 MI.setDesc(Builder.getTII().get(NewOpc)); 4719 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4720 Observer.changedInstr(MI); 4721 }; 4722 return true; 4723 } 4724 4725 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4726 // (G_*MULO x, 0) -> 0 + no carry out 4727 assert(MI.getOpcode() == TargetOpcode::G_UMULO || 4728 MI.getOpcode() == TargetOpcode::G_SMULO); 4729 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4730 return false; 4731 Register Dst = MI.getOperand(0).getReg(); 4732 Register Carry = MI.getOperand(1).getReg(); 4733 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || 4734 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4735 return false; 4736 MatchInfo = [=](MachineIRBuilder &B) { 4737 B.buildConstant(Dst, 0); 4738 B.buildConstant(Carry, 0); 4739 }; 4740 return true; 4741 } 4742 4743 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { 4744 // (G_*ADDO x, 0) -> x + no carry out 4745 assert(MI.getOpcode() == TargetOpcode::G_UADDO || 4746 MI.getOpcode() == TargetOpcode::G_SADDO); 4747 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) 4748 return false; 4749 Register Carry = MI.getOperand(1).getReg(); 4750 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) 4751 return false; 4752 Register Dst = MI.getOperand(0).getReg(); 4753 Register LHS = MI.getOperand(2).getReg(); 4754 MatchInfo = [=](MachineIRBuilder &B) { 4755 B.buildCopy(Dst, LHS); 4756 B.buildConstant(Carry, 0); 4757 }; 4758 return true; 4759 } 4760 4761 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4762 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4763 auto &UDiv = cast<GenericMachineInstr>(MI); 4764 Register Dst = UDiv.getReg(0); 4765 Register LHS = UDiv.getReg(1); 4766 Register RHS = UDiv.getReg(2); 4767 LLT Ty = MRI.getType(Dst); 4768 LLT ScalarTy = Ty.getScalarType(); 4769 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4770 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4771 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4772 auto &MIB = Builder; 4773 MIB.setInstrAndDebugLoc(MI); 4774 4775 bool UseNPQ = false; 4776 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4777 4778 auto BuildUDIVPattern = [&](const Constant *C) { 4779 auto *CI = cast<ConstantInt>(C); 4780 const APInt &Divisor = CI->getValue(); 4781 UnsignedDivisonByConstantInfo magics = 4782 UnsignedDivisonByConstantInfo::get(Divisor); 4783 unsigned PreShift = 0, PostShift = 0; 4784 4785 // If the divisor is even, we can avoid using the expensive fixup by 4786 // shifting the divided value upfront. 4787 if (magics.IsAdd != 0 && !Divisor[0]) { 4788 PreShift = Divisor.countTrailingZeros(); 4789 // Get magic number for the shifted divisor. 4790 magics = 4791 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4792 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4793 } 4794 4795 APInt Magic = magics.Magic; 4796 4797 unsigned SelNPQ; 4798 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4799 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4800 "We shouldn't generate an undefined shift!"); 4801 PostShift = magics.ShiftAmount; 4802 SelNPQ = false; 4803 } else { 4804 PostShift = magics.ShiftAmount - 1; 4805 SelNPQ = true; 4806 } 4807 4808 PreShifts.push_back( 4809 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4810 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4811 NPQFactors.push_back( 4812 MIB.buildConstant(ScalarTy, 4813 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4814 : APInt::getZero(EltBits)) 4815 .getReg(0)); 4816 PostShifts.push_back( 4817 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4818 UseNPQ |= SelNPQ; 4819 return true; 4820 }; 4821 4822 // Collect the shifts/magic values from each element. 4823 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4824 (void)Matched; 4825 assert(Matched && "Expected unary predicate match to succeed"); 4826 4827 Register PreShift, PostShift, MagicFactor, NPQFactor; 4828 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4829 if (RHSDef) { 4830 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4831 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4832 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4833 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4834 } else { 4835 assert(MRI.getType(RHS).isScalar() && 4836 "Non-build_vector operation should have been a scalar"); 4837 PreShift = PreShifts[0]; 4838 MagicFactor = MagicFactors[0]; 4839 PostShift = PostShifts[0]; 4840 } 4841 4842 Register Q = LHS; 4843 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4844 4845 // Multiply the numerator (operand 0) by the magic value. 4846 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4847 4848 if (UseNPQ) { 4849 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4850 4851 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4852 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4853 if (Ty.isVector()) 4854 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4855 else 4856 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4857 4858 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4859 } 4860 4861 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4862 auto One = MIB.buildConstant(Ty, 1); 4863 auto IsOne = MIB.buildICmp( 4864 CmpInst::Predicate::ICMP_EQ, 4865 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4866 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4867 } 4868 4869 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4870 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4871 Register Dst = MI.getOperand(0).getReg(); 4872 Register RHS = MI.getOperand(2).getReg(); 4873 LLT DstTy = MRI.getType(Dst); 4874 auto *RHSDef = MRI.getVRegDef(RHS); 4875 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4876 return false; 4877 4878 auto &MF = *MI.getMF(); 4879 AttributeList Attr = MF.getFunction().getAttributes(); 4880 const auto &TLI = getTargetLowering(); 4881 LLVMContext &Ctx = MF.getFunction().getContext(); 4882 auto &DL = MF.getDataLayout(); 4883 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4884 return false; 4885 4886 // Don't do this for minsize because the instruction sequence is usually 4887 // larger. 4888 if (MF.getFunction().hasMinSize()) 4889 return false; 4890 4891 // Don't do this if the types are not going to be legal. 4892 if (LI) { 4893 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4894 return false; 4895 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4896 return false; 4897 if (!isLegalOrBeforeLegalizer( 4898 {TargetOpcode::G_ICMP, 4899 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4900 DstTy}})) 4901 return false; 4902 } 4903 4904 auto CheckEltValue = [&](const Constant *C) { 4905 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4906 return !CI->isZero(); 4907 return false; 4908 }; 4909 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4910 } 4911 4912 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4913 auto *NewMI = buildUDivUsingMul(MI); 4914 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4915 } 4916 4917 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4918 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4919 Register RHS = MI.getOperand(2).getReg(); 4920 Register Dst = MI.getOperand(0).getReg(); 4921 LLT Ty = MRI.getType(Dst); 4922 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4923 auto MatchPow2ExceptOne = [&](const Constant *C) { 4924 if (auto *CI = dyn_cast<ConstantInt>(C)) 4925 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4926 return false; 4927 }; 4928 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4929 return false; 4930 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4931 } 4932 4933 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4934 Register LHS = MI.getOperand(1).getReg(); 4935 Register RHS = MI.getOperand(2).getReg(); 4936 Register Dst = MI.getOperand(0).getReg(); 4937 LLT Ty = MRI.getType(Dst); 4938 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4939 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4940 4941 Builder.setInstrAndDebugLoc(MI); 4942 auto LogBase2 = buildLogBase2(RHS, Builder); 4943 auto ShiftAmt = 4944 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4945 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4946 Builder.buildLShr(Dst, LHS, Trunc); 4947 MI.eraseFromParent(); 4948 } 4949 4950 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4951 BuildFnTy &MatchInfo) { 4952 unsigned Opc = MI.getOpcode(); 4953 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4954 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4955 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4956 4957 Register Dst = MI.getOperand(0).getReg(); 4958 Register X = MI.getOperand(1).getReg(); 4959 Register Y = MI.getOperand(2).getReg(); 4960 LLT Type = MRI.getType(Dst); 4961 4962 // fold (fadd x, fneg(y)) -> (fsub x, y) 4963 // fold (fadd fneg(y), x) -> (fsub x, y) 4964 // G_ADD is commutative so both cases are checked by m_GFAdd 4965 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4966 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4967 Opc = TargetOpcode::G_FSUB; 4968 } 4969 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4970 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4971 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4972 Opc = TargetOpcode::G_FADD; 4973 } 4974 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4975 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4976 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4977 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4978 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4979 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 4980 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 4981 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 4982 // no opcode change 4983 } else 4984 return false; 4985 4986 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4987 Observer.changingInstr(MI); 4988 MI.setDesc(B.getTII().get(Opc)); 4989 MI.getOperand(1).setReg(X); 4990 MI.getOperand(2).setReg(Y); 4991 Observer.changedInstr(MI); 4992 }; 4993 return true; 4994 } 4995 4996 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 4997 /// due to global flags or MachineInstr flags. 4998 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 4999 if (MI.getOpcode() != TargetOpcode::G_FMUL) 5000 return false; 5001 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 5002 } 5003 5004 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 5005 const MachineRegisterInfo &MRI) { 5006 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 5007 MRI.use_instr_nodbg_end()) > 5008 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 5009 MRI.use_instr_nodbg_end()); 5010 } 5011 5012 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 5013 bool &AllowFusionGlobally, 5014 bool &HasFMAD, bool &Aggressive, 5015 bool CanReassociate) { 5016 5017 auto *MF = MI.getMF(); 5018 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 5019 const TargetOptions &Options = MF->getTarget().Options; 5020 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5021 5022 if (CanReassociate && 5023 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 5024 return false; 5025 5026 // Floating-point multiply-add with intermediate rounding. 5027 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType)); 5028 // Floating-point multiply-add without intermediate rounding. 5029 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 5030 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 5031 // No valid opcode, do not combine. 5032 if (!HasFMAD && !HasFMA) 5033 return false; 5034 5035 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 5036 Options.UnsafeFPMath || HasFMAD; 5037 // If the addition is not contractable, do not combine. 5038 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 5039 return false; 5040 5041 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 5042 return true; 5043 } 5044 5045 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 5046 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5047 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5048 5049 bool AllowFusionGlobally, HasFMAD, Aggressive; 5050 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5051 return false; 5052 5053 Register Op1 = MI.getOperand(1).getReg(); 5054 Register Op2 = MI.getOperand(2).getReg(); 5055 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5056 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5057 unsigned PreferredFusedOpcode = 5058 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5059 5060 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5061 // prefer to fold the multiply with fewer uses. 5062 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5063 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5064 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5065 std::swap(LHS, RHS); 5066 } 5067 5068 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 5069 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5070 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { 5071 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5072 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5073 {LHS.MI->getOperand(1).getReg(), 5074 LHS.MI->getOperand(2).getReg(), RHS.Reg}); 5075 }; 5076 return true; 5077 } 5078 5079 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 5080 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5081 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { 5082 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5083 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5084 {RHS.MI->getOperand(1).getReg(), 5085 RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5086 }; 5087 return true; 5088 } 5089 5090 return false; 5091 } 5092 5093 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 5094 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5095 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5096 5097 bool AllowFusionGlobally, HasFMAD, Aggressive; 5098 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5099 return false; 5100 5101 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5102 Register Op1 = MI.getOperand(1).getReg(); 5103 Register Op2 = MI.getOperand(2).getReg(); 5104 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5105 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5106 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5107 5108 unsigned PreferredFusedOpcode = 5109 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5110 5111 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5112 // prefer to fold the multiply with fewer uses. 5113 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5114 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5115 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5116 std::swap(LHS, RHS); 5117 } 5118 5119 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 5120 MachineInstr *FpExtSrc; 5121 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5122 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5123 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5124 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5125 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5126 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5127 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5128 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5129 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); 5130 }; 5131 return true; 5132 } 5133 5134 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 5135 // Note: Commutes FADD operands. 5136 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && 5137 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 5138 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5139 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 5140 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5141 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 5142 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 5143 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5144 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); 5145 }; 5146 return true; 5147 } 5148 5149 return false; 5150 } 5151 5152 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 5153 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5154 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5155 5156 bool AllowFusionGlobally, HasFMAD, Aggressive; 5157 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 5158 return false; 5159 5160 Register Op1 = MI.getOperand(1).getReg(); 5161 Register Op2 = MI.getOperand(2).getReg(); 5162 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5163 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5164 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5165 5166 unsigned PreferredFusedOpcode = 5167 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5168 5169 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5170 // prefer to fold the multiply with fewer uses. 5171 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5172 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5173 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5174 std::swap(LHS, RHS); 5175 } 5176 5177 MachineInstr *FMA = nullptr; 5178 Register Z; 5179 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 5180 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5181 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == 5182 TargetOpcode::G_FMUL) && 5183 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && 5184 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { 5185 FMA = LHS.MI; 5186 Z = RHS.Reg; 5187 } 5188 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 5189 else if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5190 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == 5191 TargetOpcode::G_FMUL) && 5192 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && 5193 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { 5194 Z = LHS.Reg; 5195 FMA = RHS.MI; 5196 } 5197 5198 if (FMA) { 5199 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 5200 Register X = FMA->getOperand(1).getReg(); 5201 Register Y = FMA->getOperand(2).getReg(); 5202 Register U = FMulMI->getOperand(1).getReg(); 5203 Register V = FMulMI->getOperand(2).getReg(); 5204 5205 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5206 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5207 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5208 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5209 {X, Y, InnerFMA}); 5210 }; 5211 return true; 5212 } 5213 5214 return false; 5215 } 5216 5217 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5218 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5219 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5220 5221 bool AllowFusionGlobally, HasFMAD, Aggressive; 5222 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5223 return false; 5224 5225 if (!Aggressive) 5226 return false; 5227 5228 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5229 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5230 Register Op1 = MI.getOperand(1).getReg(); 5231 Register Op2 = MI.getOperand(2).getReg(); 5232 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5233 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5234 5235 unsigned PreferredFusedOpcode = 5236 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5237 5238 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5239 // prefer to fold the multiply with fewer uses. 5240 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5241 isContractableFMul(*RHS.MI, AllowFusionGlobally)) { 5242 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5243 std::swap(LHS, RHS); 5244 } 5245 5246 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5247 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5248 Register Y, MachineIRBuilder &B) { 5249 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5250 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5251 Register InnerFMA = 5252 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5253 .getReg(0); 5254 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5255 {X, Y, InnerFMA}); 5256 }; 5257 5258 MachineInstr *FMulMI, *FMAMI; 5259 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5260 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5261 if (LHS.MI->getOpcode() == PreferredFusedOpcode && 5262 mi_match(LHS.MI->getOperand(3).getReg(), MRI, 5263 m_GFPExt(m_MInstr(FMulMI))) && 5264 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5265 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5266 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5267 MatchInfo = [=](MachineIRBuilder &B) { 5268 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5269 FMulMI->getOperand(2).getReg(), RHS.Reg, 5270 LHS.MI->getOperand(1).getReg(), 5271 LHS.MI->getOperand(2).getReg(), B); 5272 }; 5273 return true; 5274 } 5275 5276 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5277 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5278 // FIXME: This turns two single-precision and one double-precision 5279 // operation into two double-precision operations, which might not be 5280 // interesting for all targets, especially GPUs. 5281 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5282 FMAMI->getOpcode() == PreferredFusedOpcode) { 5283 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5284 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5285 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5286 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5287 MatchInfo = [=](MachineIRBuilder &B) { 5288 Register X = FMAMI->getOperand(1).getReg(); 5289 Register Y = FMAMI->getOperand(2).getReg(); 5290 X = B.buildFPExt(DstType, X).getReg(0); 5291 Y = B.buildFPExt(DstType, Y).getReg(0); 5292 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5293 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); 5294 }; 5295 5296 return true; 5297 } 5298 } 5299 5300 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5301 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5302 if (RHS.MI->getOpcode() == PreferredFusedOpcode && 5303 mi_match(RHS.MI->getOperand(3).getReg(), MRI, 5304 m_GFPExt(m_MInstr(FMulMI))) && 5305 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5306 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5307 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5308 MatchInfo = [=](MachineIRBuilder &B) { 5309 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5310 FMulMI->getOperand(2).getReg(), LHS.Reg, 5311 RHS.MI->getOperand(1).getReg(), 5312 RHS.MI->getOperand(2).getReg(), B); 5313 }; 5314 return true; 5315 } 5316 5317 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5318 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5319 // FIXME: This turns two single-precision and one double-precision 5320 // operation into two double-precision operations, which might not be 5321 // interesting for all targets, especially GPUs. 5322 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && 5323 FMAMI->getOpcode() == PreferredFusedOpcode) { 5324 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5325 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5326 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5327 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5328 MatchInfo = [=](MachineIRBuilder &B) { 5329 Register X = FMAMI->getOperand(1).getReg(); 5330 Register Y = FMAMI->getOperand(2).getReg(); 5331 X = B.buildFPExt(DstType, X).getReg(0); 5332 Y = B.buildFPExt(DstType, Y).getReg(0); 5333 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5334 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); 5335 }; 5336 return true; 5337 } 5338 } 5339 5340 return false; 5341 } 5342 5343 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5344 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5345 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5346 5347 bool AllowFusionGlobally, HasFMAD, Aggressive; 5348 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5349 return false; 5350 5351 Register Op1 = MI.getOperand(1).getReg(); 5352 Register Op2 = MI.getOperand(2).getReg(); 5353 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; 5354 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; 5355 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5356 5357 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5358 // prefer to fold the multiply with fewer uses. 5359 int FirstMulHasFewerUses = true; 5360 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5361 isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5362 hasMoreUses(*LHS.MI, *RHS.MI, MRI)) 5363 FirstMulHasFewerUses = false; 5364 5365 unsigned PreferredFusedOpcode = 5366 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5367 5368 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5369 if (FirstMulHasFewerUses && 5370 (isContractableFMul(*LHS.MI, AllowFusionGlobally) && 5371 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { 5372 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5373 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); 5374 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5375 {LHS.MI->getOperand(1).getReg(), 5376 LHS.MI->getOperand(2).getReg(), NegZ}); 5377 }; 5378 return true; 5379 } 5380 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5381 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && 5382 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { 5383 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5384 Register NegY = 5385 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); 5386 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5387 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); 5388 }; 5389 return true; 5390 } 5391 5392 return false; 5393 } 5394 5395 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5396 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5397 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5398 5399 bool AllowFusionGlobally, HasFMAD, Aggressive; 5400 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5401 return false; 5402 5403 Register LHSReg = MI.getOperand(1).getReg(); 5404 Register RHSReg = MI.getOperand(2).getReg(); 5405 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5406 5407 unsigned PreferredFusedOpcode = 5408 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5409 5410 MachineInstr *FMulMI; 5411 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5412 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5413 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5414 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5415 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5416 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5417 Register NegX = 5418 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5419 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5420 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5421 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5422 }; 5423 return true; 5424 } 5425 5426 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5427 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5428 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5429 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5430 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5431 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5432 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5433 {FMulMI->getOperand(1).getReg(), 5434 FMulMI->getOperand(2).getReg(), LHSReg}); 5435 }; 5436 return true; 5437 } 5438 5439 return false; 5440 } 5441 5442 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5443 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5444 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5445 5446 bool AllowFusionGlobally, HasFMAD, Aggressive; 5447 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5448 return false; 5449 5450 Register LHSReg = MI.getOperand(1).getReg(); 5451 Register RHSReg = MI.getOperand(2).getReg(); 5452 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5453 5454 unsigned PreferredFusedOpcode = 5455 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5456 5457 MachineInstr *FMulMI; 5458 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5459 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5460 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5461 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5462 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5463 Register FpExtX = 5464 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5465 Register FpExtY = 5466 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5467 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5468 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5469 {FpExtX, FpExtY, NegZ}); 5470 }; 5471 return true; 5472 } 5473 5474 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5475 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5476 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5477 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5478 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5479 Register FpExtY = 5480 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5481 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5482 Register FpExtZ = 5483 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5484 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5485 {NegY, FpExtZ, LHSReg}); 5486 }; 5487 return true; 5488 } 5489 5490 return false; 5491 } 5492 5493 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5494 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5495 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5496 5497 bool AllowFusionGlobally, HasFMAD, Aggressive; 5498 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5499 return false; 5500 5501 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5502 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5503 Register LHSReg = MI.getOperand(1).getReg(); 5504 Register RHSReg = MI.getOperand(2).getReg(); 5505 5506 unsigned PreferredFusedOpcode = 5507 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5508 5509 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5510 MachineIRBuilder &B) { 5511 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5512 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5513 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5514 }; 5515 5516 MachineInstr *FMulMI; 5517 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5518 // (fneg (fma (fpext x), (fpext y), z)) 5519 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5520 // (fneg (fma (fpext x), (fpext y), z)) 5521 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5522 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5523 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5524 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5525 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5526 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5527 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5528 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5529 FMulMI->getOperand(2).getReg(), RHSReg, B); 5530 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5531 }; 5532 return true; 5533 } 5534 5535 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5536 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5537 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5538 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5539 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5540 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5541 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5542 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5543 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5544 FMulMI->getOperand(2).getReg(), LHSReg, B); 5545 }; 5546 return true; 5547 } 5548 5549 return false; 5550 } 5551 5552 bool CombinerHelper::matchSelectToLogical(MachineInstr &MI, 5553 BuildFnTy &MatchInfo) { 5554 GSelect &Sel = cast<GSelect>(MI); 5555 Register DstReg = Sel.getReg(0); 5556 Register Cond = Sel.getCondReg(); 5557 Register TrueReg = Sel.getTrueReg(); 5558 Register FalseReg = Sel.getFalseReg(); 5559 5560 auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI); 5561 auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI); 5562 5563 const LLT CondTy = MRI.getType(Cond); 5564 const LLT OpTy = MRI.getType(TrueReg); 5565 if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1) 5566 return false; 5567 5568 // We have a boolean select. 5569 5570 // select Cond, Cond, F --> or Cond, F 5571 // select Cond, 1, F --> or Cond, F 5572 auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI); 5573 if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) { 5574 MatchInfo = [=](MachineIRBuilder &MIB) { 5575 MIB.buildOr(DstReg, Cond, FalseReg); 5576 }; 5577 return true; 5578 } 5579 5580 // select Cond, T, Cond --> and Cond, T 5581 // select Cond, T, 0 --> and Cond, T 5582 auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI); 5583 if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) { 5584 MatchInfo = [=](MachineIRBuilder &MIB) { 5585 MIB.buildAnd(DstReg, Cond, TrueReg); 5586 }; 5587 return true; 5588 } 5589 5590 // select Cond, T, 1 --> or (not Cond), T 5591 if (MaybeCstFalse && MaybeCstFalse->isOne()) { 5592 MatchInfo = [=](MachineIRBuilder &MIB) { 5593 MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg); 5594 }; 5595 return true; 5596 } 5597 5598 // select Cond, 0, F --> and (not Cond), F 5599 if (MaybeCstTrue && MaybeCstTrue->isZero()) { 5600 MatchInfo = [=](MachineIRBuilder &MIB) { 5601 MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg); 5602 }; 5603 return true; 5604 } 5605 return false; 5606 } 5607 5608 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, 5609 unsigned &IdxToPropagate) { 5610 bool PropagateNaN; 5611 switch (MI.getOpcode()) { 5612 default: 5613 return false; 5614 case TargetOpcode::G_FMINNUM: 5615 case TargetOpcode::G_FMAXNUM: 5616 PropagateNaN = false; 5617 break; 5618 case TargetOpcode::G_FMINIMUM: 5619 case TargetOpcode::G_FMAXIMUM: 5620 PropagateNaN = true; 5621 break; 5622 } 5623 5624 auto MatchNaN = [&](unsigned Idx) { 5625 Register MaybeNaNReg = MI.getOperand(Idx).getReg(); 5626 const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); 5627 if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) 5628 return false; 5629 IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); 5630 return true; 5631 }; 5632 5633 return MatchNaN(1) || MatchNaN(2); 5634 } 5635 5636 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { 5637 assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); 5638 Register LHS = MI.getOperand(1).getReg(); 5639 Register RHS = MI.getOperand(2).getReg(); 5640 5641 // Helper lambda to check for opportunities for 5642 // A + (B - A) -> B 5643 // (B - A) + A -> B 5644 auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { 5645 Register Reg; 5646 return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && 5647 Reg == MaybeSameReg; 5648 }; 5649 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 5650 } 5651 5652 bool CombinerHelper::tryCombine(MachineInstr &MI) { 5653 if (tryCombineCopy(MI)) 5654 return true; 5655 if (tryCombineExtendingLoads(MI)) 5656 return true; 5657 if (tryCombineIndexedLoadStore(MI)) 5658 return true; 5659 return false; 5660 } 5661