1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 9 #include "llvm/ADT/SetVector.h" 10 #include "llvm/ADT/SmallBitVector.h" 11 #include "llvm/CodeGen/GlobalISel/Combiner.h" 12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 17 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 20 #include "llvm/CodeGen/GlobalISel/Utils.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetInstrInfo.h" 29 #include "llvm/CodeGen/TargetLowering.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/CodeGen/TargetOpcodes.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/DivisionByConstantInfo.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <tuple> 37 38 #define DEBUG_TYPE "gi-combiner" 39 40 using namespace llvm; 41 using namespace MIPatternMatch; 42 43 // Option to allow testing of the combiner while no targets know about indexed 44 // addressing. 45 static cl::opt<bool> 46 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), 47 cl::desc("Force all indexed operations to be " 48 "legal for the GlobalISel combiner")); 49 50 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, 51 MachineIRBuilder &B, GISelKnownBits *KB, 52 MachineDominatorTree *MDT, 53 const LegalizerInfo *LI) 54 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), 55 MDT(MDT), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), 56 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { 57 (void)this->KB; 58 } 59 60 const TargetLowering &CombinerHelper::getTargetLowering() const { 61 return *Builder.getMF().getSubtarget().getTargetLowering(); 62 } 63 64 /// \returns The little endian in-memory byte position of byte \p I in a 65 /// \p ByteWidth bytes wide type. 66 /// 67 /// E.g. Given a 4-byte type x, x[0] -> byte 0 68 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { 69 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 70 return I; 71 } 72 73 /// Determines the LogBase2 value for a non-null input value using the 74 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). 75 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { 76 auto &MRI = *MIB.getMRI(); 77 LLT Ty = MRI.getType(V); 78 auto Ctlz = MIB.buildCTLZ(Ty, V); 79 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); 80 return MIB.buildSub(Ty, Base, Ctlz).getReg(0); 81 } 82 83 /// \returns The big endian in-memory byte position of byte \p I in a 84 /// \p ByteWidth bytes wide type. 85 /// 86 /// E.g. Given a 4-byte type x, x[0] -> byte 3 87 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { 88 assert(I < ByteWidth && "I must be in [0, ByteWidth)"); 89 return ByteWidth - I - 1; 90 } 91 92 /// Given a map from byte offsets in memory to indices in a load/store, 93 /// determine if that map corresponds to a little or big endian byte pattern. 94 /// 95 /// \param MemOffset2Idx maps memory offsets to address offsets. 96 /// \param LowestIdx is the lowest index in \p MemOffset2Idx. 97 /// 98 /// \returns true if the map corresponds to a big endian byte pattern, false 99 /// if it corresponds to a little endian byte pattern, and None otherwise. 100 /// 101 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns 102 /// are as follows: 103 /// 104 /// AddrOffset Little endian Big endian 105 /// 0 0 3 106 /// 1 1 2 107 /// 2 2 1 108 /// 3 3 0 109 static Optional<bool> 110 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 111 int64_t LowestIdx) { 112 // Need at least two byte positions to decide on endianness. 113 unsigned Width = MemOffset2Idx.size(); 114 if (Width < 2) 115 return None; 116 bool BigEndian = true, LittleEndian = true; 117 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { 118 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); 119 if (MemOffsetAndIdx == MemOffset2Idx.end()) 120 return None; 121 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; 122 assert(Idx >= 0 && "Expected non-negative byte offset?"); 123 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); 124 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); 125 if (!BigEndian && !LittleEndian) 126 return None; 127 } 128 129 assert((BigEndian != LittleEndian) && 130 "Pattern cannot be both big and little endian!"); 131 return BigEndian; 132 } 133 134 bool CombinerHelper::isLegalOrBeforeLegalizer( 135 const LegalityQuery &Query) const { 136 return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; 137 } 138 139 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, 140 Register ToReg) const { 141 Observer.changingAllUsesOfReg(MRI, FromReg); 142 143 if (MRI.constrainRegAttrs(ToReg, FromReg)) 144 MRI.replaceRegWith(FromReg, ToReg); 145 else 146 Builder.buildCopy(ToReg, FromReg); 147 148 Observer.finishedChangingAllUsesOfReg(); 149 } 150 151 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, 152 MachineOperand &FromRegOp, 153 Register ToReg) const { 154 assert(FromRegOp.getParent() && "Expected an operand in an MI"); 155 Observer.changingInstr(*FromRegOp.getParent()); 156 157 FromRegOp.setReg(ToReg); 158 159 Observer.changedInstr(*FromRegOp.getParent()); 160 } 161 162 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, 163 unsigned ToOpcode) const { 164 Observer.changingInstr(FromMI); 165 166 FromMI.setDesc(Builder.getTII().get(ToOpcode)); 167 168 Observer.changedInstr(FromMI); 169 } 170 171 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { 172 return RBI->getRegBank(Reg, MRI, *TRI); 173 } 174 175 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { 176 if (RegBank) 177 MRI.setRegBank(Reg, *RegBank); 178 } 179 180 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { 181 if (matchCombineCopy(MI)) { 182 applyCombineCopy(MI); 183 return true; 184 } 185 return false; 186 } 187 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { 188 if (MI.getOpcode() != TargetOpcode::COPY) 189 return false; 190 Register DstReg = MI.getOperand(0).getReg(); 191 Register SrcReg = MI.getOperand(1).getReg(); 192 return canReplaceReg(DstReg, SrcReg, MRI); 193 } 194 void CombinerHelper::applyCombineCopy(MachineInstr &MI) { 195 Register DstReg = MI.getOperand(0).getReg(); 196 Register SrcReg = MI.getOperand(1).getReg(); 197 MI.eraseFromParent(); 198 replaceRegWith(MRI, DstReg, SrcReg); 199 } 200 201 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { 202 bool IsUndef = false; 203 SmallVector<Register, 4> Ops; 204 if (matchCombineConcatVectors(MI, IsUndef, Ops)) { 205 applyCombineConcatVectors(MI, IsUndef, Ops); 206 return true; 207 } 208 return false; 209 } 210 211 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, 212 SmallVectorImpl<Register> &Ops) { 213 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && 214 "Invalid instruction"); 215 IsUndef = true; 216 MachineInstr *Undef = nullptr; 217 218 // Walk over all the operands of concat vectors and check if they are 219 // build_vector themselves or undef. 220 // Then collect their operands in Ops. 221 for (const MachineOperand &MO : MI.uses()) { 222 Register Reg = MO.getReg(); 223 MachineInstr *Def = MRI.getVRegDef(Reg); 224 assert(Def && "Operand not defined"); 225 switch (Def->getOpcode()) { 226 case TargetOpcode::G_BUILD_VECTOR: 227 IsUndef = false; 228 // Remember the operands of the build_vector to fold 229 // them into the yet-to-build flattened concat vectors. 230 for (const MachineOperand &BuildVecMO : Def->uses()) 231 Ops.push_back(BuildVecMO.getReg()); 232 break; 233 case TargetOpcode::G_IMPLICIT_DEF: { 234 LLT OpType = MRI.getType(Reg); 235 // Keep one undef value for all the undef operands. 236 if (!Undef) { 237 Builder.setInsertPt(*MI.getParent(), MI); 238 Undef = Builder.buildUndef(OpType.getScalarType()); 239 } 240 assert(MRI.getType(Undef->getOperand(0).getReg()) == 241 OpType.getScalarType() && 242 "All undefs should have the same type"); 243 // Break the undef vector in as many scalar elements as needed 244 // for the flattening. 245 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); 246 EltIdx != EltEnd; ++EltIdx) 247 Ops.push_back(Undef->getOperand(0).getReg()); 248 break; 249 } 250 default: 251 return false; 252 } 253 } 254 return true; 255 } 256 void CombinerHelper::applyCombineConcatVectors( 257 MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) { 258 // We determined that the concat_vectors can be flatten. 259 // Generate the flattened build_vector. 260 Register DstReg = MI.getOperand(0).getReg(); 261 Builder.setInsertPt(*MI.getParent(), MI); 262 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 263 264 // Note: IsUndef is sort of redundant. We could have determine it by 265 // checking that at all Ops are undef. Alternatively, we could have 266 // generate a build_vector of undefs and rely on another combine to 267 // clean that up. For now, given we already gather this information 268 // in tryCombineConcatVectors, just save compile time and issue the 269 // right thing. 270 if (IsUndef) 271 Builder.buildUndef(NewDstReg); 272 else 273 Builder.buildBuildVector(NewDstReg, Ops); 274 MI.eraseFromParent(); 275 replaceRegWith(MRI, DstReg, NewDstReg); 276 } 277 278 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { 279 SmallVector<Register, 4> Ops; 280 if (matchCombineShuffleVector(MI, Ops)) { 281 applyCombineShuffleVector(MI, Ops); 282 return true; 283 } 284 return false; 285 } 286 287 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, 288 SmallVectorImpl<Register> &Ops) { 289 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && 290 "Invalid instruction kind"); 291 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 292 Register Src1 = MI.getOperand(1).getReg(); 293 LLT SrcType = MRI.getType(Src1); 294 // As bizarre as it may look, shuffle vector can actually produce 295 // scalar! This is because at the IR level a <1 x ty> shuffle 296 // vector is perfectly valid. 297 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; 298 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; 299 300 // If the resulting vector is smaller than the size of the source 301 // vectors being concatenated, we won't be able to replace the 302 // shuffle vector into a concat_vectors. 303 // 304 // Note: We may still be able to produce a concat_vectors fed by 305 // extract_vector_elt and so on. It is less clear that would 306 // be better though, so don't bother for now. 307 // 308 // If the destination is a scalar, the size of the sources doesn't 309 // matter. we will lower the shuffle to a plain copy. This will 310 // work only if the source and destination have the same size. But 311 // that's covered by the next condition. 312 // 313 // TODO: If the size between the source and destination don't match 314 // we could still emit an extract vector element in that case. 315 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) 316 return false; 317 318 // Check that the shuffle mask can be broken evenly between the 319 // different sources. 320 if (DstNumElts % SrcNumElts != 0) 321 return false; 322 323 // Mask length is a multiple of the source vector length. 324 // Check if the shuffle is some kind of concatenation of the input 325 // vectors. 326 unsigned NumConcat = DstNumElts / SrcNumElts; 327 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 328 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 329 for (unsigned i = 0; i != DstNumElts; ++i) { 330 int Idx = Mask[i]; 331 // Undef value. 332 if (Idx < 0) 333 continue; 334 // Ensure the indices in each SrcType sized piece are sequential and that 335 // the same source is used for the whole piece. 336 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 337 (ConcatSrcs[i / SrcNumElts] >= 0 && 338 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) 339 return false; 340 // Remember which source this index came from. 341 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 342 } 343 344 // The shuffle is concatenating multiple vectors together. 345 // Collect the different operands for that. 346 Register UndefReg; 347 Register Src2 = MI.getOperand(2).getReg(); 348 for (auto Src : ConcatSrcs) { 349 if (Src < 0) { 350 if (!UndefReg) { 351 Builder.setInsertPt(*MI.getParent(), MI); 352 UndefReg = Builder.buildUndef(SrcType).getReg(0); 353 } 354 Ops.push_back(UndefReg); 355 } else if (Src == 0) 356 Ops.push_back(Src1); 357 else 358 Ops.push_back(Src2); 359 } 360 return true; 361 } 362 363 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, 364 const ArrayRef<Register> Ops) { 365 Register DstReg = MI.getOperand(0).getReg(); 366 Builder.setInsertPt(*MI.getParent(), MI); 367 Register NewDstReg = MRI.cloneVirtualRegister(DstReg); 368 369 if (Ops.size() == 1) 370 Builder.buildCopy(NewDstReg, Ops[0]); 371 else 372 Builder.buildMerge(NewDstReg, Ops); 373 374 MI.eraseFromParent(); 375 replaceRegWith(MRI, DstReg, NewDstReg); 376 } 377 378 namespace { 379 380 /// Select a preference between two uses. CurrentUse is the current preference 381 /// while *ForCandidate is attributes of the candidate under consideration. 382 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, 383 const LLT TyForCandidate, 384 unsigned OpcodeForCandidate, 385 MachineInstr *MIForCandidate) { 386 if (!CurrentUse.Ty.isValid()) { 387 if (CurrentUse.ExtendOpcode == OpcodeForCandidate || 388 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) 389 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 390 return CurrentUse; 391 } 392 393 // We permit the extend to hoist through basic blocks but this is only 394 // sensible if the target has extending loads. If you end up lowering back 395 // into a load and extend during the legalizer then the end result is 396 // hoisting the extend up to the load. 397 398 // Prefer defined extensions to undefined extensions as these are more 399 // likely to reduce the number of instructions. 400 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && 401 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) 402 return CurrentUse; 403 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && 404 OpcodeForCandidate != TargetOpcode::G_ANYEXT) 405 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 406 407 // Prefer sign extensions to zero extensions as sign-extensions tend to be 408 // more expensive. 409 if (CurrentUse.Ty == TyForCandidate) { 410 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && 411 OpcodeForCandidate == TargetOpcode::G_ZEXT) 412 return CurrentUse; 413 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && 414 OpcodeForCandidate == TargetOpcode::G_SEXT) 415 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 416 } 417 418 // This is potentially target specific. We've chosen the largest type 419 // because G_TRUNC is usually free. One potential catch with this is that 420 // some targets have a reduced number of larger registers than smaller 421 // registers and this choice potentially increases the live-range for the 422 // larger value. 423 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { 424 return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; 425 } 426 return CurrentUse; 427 } 428 429 /// Find a suitable place to insert some instructions and insert them. This 430 /// function accounts for special cases like inserting before a PHI node. 431 /// The current strategy for inserting before PHI's is to duplicate the 432 /// instructions for each predecessor. However, while that's ok for G_TRUNC 433 /// on most targets since it generally requires no code, other targets/cases may 434 /// want to try harder to find a dominating block. 435 static void InsertInsnsWithoutSideEffectsBeforeUse( 436 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, 437 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator, 438 MachineOperand &UseMO)> 439 Inserter) { 440 MachineInstr &UseMI = *UseMO.getParent(); 441 442 MachineBasicBlock *InsertBB = UseMI.getParent(); 443 444 // If the use is a PHI then we want the predecessor block instead. 445 if (UseMI.isPHI()) { 446 MachineOperand *PredBB = std::next(&UseMO); 447 InsertBB = PredBB->getMBB(); 448 } 449 450 // If the block is the same block as the def then we want to insert just after 451 // the def instead of at the start of the block. 452 if (InsertBB == DefMI.getParent()) { 453 MachineBasicBlock::iterator InsertPt = &DefMI; 454 Inserter(InsertBB, std::next(InsertPt), UseMO); 455 return; 456 } 457 458 // Otherwise we want the start of the BB 459 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); 460 } 461 } // end anonymous namespace 462 463 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { 464 PreferredTuple Preferred; 465 if (matchCombineExtendingLoads(MI, Preferred)) { 466 applyCombineExtendingLoads(MI, Preferred); 467 return true; 468 } 469 return false; 470 } 471 472 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, 473 PreferredTuple &Preferred) { 474 // We match the loads and follow the uses to the extend instead of matching 475 // the extends and following the def to the load. This is because the load 476 // must remain in the same position for correctness (unless we also add code 477 // to find a safe place to sink it) whereas the extend is freely movable. 478 // It also prevents us from duplicating the load for the volatile case or just 479 // for performance. 480 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI); 481 if (!LoadMI) 482 return false; 483 484 Register LoadReg = LoadMI->getDstReg(); 485 486 LLT LoadValueTy = MRI.getType(LoadReg); 487 if (!LoadValueTy.isScalar()) 488 return false; 489 490 // Most architectures are going to legalize <s8 loads into at least a 1 byte 491 // load, and the MMOs can only describe memory accesses in multiples of bytes. 492 // If we try to perform extload combining on those, we can end up with 493 // %a(s8) = extload %ptr (load 1 byte from %ptr) 494 // ... which is an illegal extload instruction. 495 if (LoadValueTy.getSizeInBits() < 8) 496 return false; 497 498 // For non power-of-2 types, they will very likely be legalized into multiple 499 // loads. Don't bother trying to match them into extending loads. 500 if (!isPowerOf2_32(LoadValueTy.getSizeInBits())) 501 return false; 502 503 // Find the preferred type aside from the any-extends (unless it's the only 504 // one) and non-extending ops. We'll emit an extending load to that type and 505 // and emit a variant of (extend (trunc X)) for the others according to the 506 // relative type sizes. At the same time, pick an extend to use based on the 507 // extend involved in the chosen type. 508 unsigned PreferredOpcode = 509 isa<GLoad>(&MI) 510 ? TargetOpcode::G_ANYEXT 511 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 512 Preferred = {LLT(), PreferredOpcode, nullptr}; 513 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { 514 if (UseMI.getOpcode() == TargetOpcode::G_SEXT || 515 UseMI.getOpcode() == TargetOpcode::G_ZEXT || 516 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { 517 const auto &MMO = LoadMI->getMMO(); 518 // For atomics, only form anyextending loads. 519 if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) 520 continue; 521 // Check for legality. 522 if (LI) { 523 LegalityQuery::MemDesc MMDesc(MMO); 524 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); 525 LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); 526 if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}}) 527 .Action != LegalizeActions::Legal) 528 continue; 529 } 530 Preferred = ChoosePreferredUse(Preferred, 531 MRI.getType(UseMI.getOperand(0).getReg()), 532 UseMI.getOpcode(), &UseMI); 533 } 534 } 535 536 // There were no extends 537 if (!Preferred.MI) 538 return false; 539 // It should be impossible to chose an extend without selecting a different 540 // type since by definition the result of an extend is larger. 541 assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); 542 543 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); 544 return true; 545 } 546 547 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, 548 PreferredTuple &Preferred) { 549 // Rewrite the load to the chosen extending load. 550 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); 551 552 // Inserter to insert a truncate back to the original type at a given point 553 // with some basic CSE to limit truncate duplication to one per BB. 554 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns; 555 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, 556 MachineBasicBlock::iterator InsertBefore, 557 MachineOperand &UseMO) { 558 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); 559 if (PreviouslyEmitted) { 560 Observer.changingInstr(*UseMO.getParent()); 561 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); 562 Observer.changedInstr(*UseMO.getParent()); 563 return; 564 } 565 566 Builder.setInsertPt(*InsertIntoBB, InsertBefore); 567 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); 568 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); 569 EmittedInsns[InsertIntoBB] = NewMI; 570 replaceRegOpWith(MRI, UseMO, NewDstReg); 571 }; 572 573 Observer.changingInstr(MI); 574 MI.setDesc( 575 Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT 576 ? TargetOpcode::G_SEXTLOAD 577 : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT 578 ? TargetOpcode::G_ZEXTLOAD 579 : TargetOpcode::G_LOAD)); 580 581 // Rewrite all the uses to fix up the types. 582 auto &LoadValue = MI.getOperand(0); 583 SmallVector<MachineOperand *, 4> Uses; 584 for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) 585 Uses.push_back(&UseMO); 586 587 for (auto *UseMO : Uses) { 588 MachineInstr *UseMI = UseMO->getParent(); 589 590 // If the extend is compatible with the preferred extend then we should fix 591 // up the type and extend so that it uses the preferred use. 592 if (UseMI->getOpcode() == Preferred.ExtendOpcode || 593 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { 594 Register UseDstReg = UseMI->getOperand(0).getReg(); 595 MachineOperand &UseSrcMO = UseMI->getOperand(1); 596 const LLT UseDstTy = MRI.getType(UseDstReg); 597 if (UseDstReg != ChosenDstReg) { 598 if (Preferred.Ty == UseDstTy) { 599 // If the use has the same type as the preferred use, then merge 600 // the vregs and erase the extend. For example: 601 // %1:_(s8) = G_LOAD ... 602 // %2:_(s32) = G_SEXT %1(s8) 603 // %3:_(s32) = G_ANYEXT %1(s8) 604 // ... = ... %3(s32) 605 // rewrites to: 606 // %2:_(s32) = G_SEXTLOAD ... 607 // ... = ... %2(s32) 608 replaceRegWith(MRI, UseDstReg, ChosenDstReg); 609 Observer.erasingInstr(*UseMO->getParent()); 610 UseMO->getParent()->eraseFromParent(); 611 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { 612 // If the preferred size is smaller, then keep the extend but extend 613 // from the result of the extending load. For example: 614 // %1:_(s8) = G_LOAD ... 615 // %2:_(s32) = G_SEXT %1(s8) 616 // %3:_(s64) = G_ANYEXT %1(s8) 617 // ... = ... %3(s64) 618 /// rewrites to: 619 // %2:_(s32) = G_SEXTLOAD ... 620 // %3:_(s64) = G_ANYEXT %2:_(s32) 621 // ... = ... %3(s64) 622 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); 623 } else { 624 // If the preferred size is large, then insert a truncate. For 625 // example: 626 // %1:_(s8) = G_LOAD ... 627 // %2:_(s64) = G_SEXT %1(s8) 628 // %3:_(s32) = G_ZEXT %1(s8) 629 // ... = ... %3(s32) 630 /// rewrites to: 631 // %2:_(s64) = G_SEXTLOAD ... 632 // %4:_(s8) = G_TRUNC %2:_(s32) 633 // %3:_(s64) = G_ZEXT %2:_(s8) 634 // ... = ... %3(s64) 635 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, 636 InsertTruncAt); 637 } 638 continue; 639 } 640 // The use is (one of) the uses of the preferred use we chose earlier. 641 // We're going to update the load to def this value later so just erase 642 // the old extend. 643 Observer.erasingInstr(*UseMO->getParent()); 644 UseMO->getParent()->eraseFromParent(); 645 continue; 646 } 647 648 // The use isn't an extend. Truncate back to the type we originally loaded. 649 // This is free on many targets. 650 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); 651 } 652 653 MI.getOperand(0).setReg(ChosenDstReg); 654 Observer.changedInstr(MI); 655 } 656 657 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, 658 BuildFnTy &MatchInfo) { 659 assert(MI.getOpcode() == TargetOpcode::G_AND); 660 661 // If we have the following code: 662 // %mask = G_CONSTANT 255 663 // %ld = G_LOAD %ptr, (load s16) 664 // %and = G_AND %ld, %mask 665 // 666 // Try to fold it into 667 // %ld = G_ZEXTLOAD %ptr, (load s8) 668 669 Register Dst = MI.getOperand(0).getReg(); 670 if (MRI.getType(Dst).isVector()) 671 return false; 672 673 auto MaybeMask = 674 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 675 if (!MaybeMask) 676 return false; 677 678 APInt MaskVal = MaybeMask->Value; 679 680 if (!MaskVal.isMask()) 681 return false; 682 683 Register SrcReg = MI.getOperand(1).getReg(); 684 GAnyLoad *LoadMI = getOpcodeDef<GAnyLoad>(SrcReg, MRI); 685 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()) || 686 !LoadMI->isSimple()) 687 return false; 688 689 Register LoadReg = LoadMI->getDstReg(); 690 LLT LoadTy = MRI.getType(LoadReg); 691 Register PtrReg = LoadMI->getPointerReg(); 692 uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); 693 unsigned MaskSizeBits = MaskVal.countTrailingOnes(); 694 695 // The mask may not be larger than the in-memory type, as it might cover sign 696 // extended bits 697 if (MaskSizeBits > LoadSizeBits) 698 return false; 699 700 // If the mask covers the whole destination register, there's nothing to 701 // extend 702 if (MaskSizeBits >= LoadTy.getSizeInBits()) 703 return false; 704 705 // Most targets cannot deal with loads of size < 8 and need to re-legalize to 706 // at least byte loads. Avoid creating such loads here 707 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) 708 return false; 709 710 const MachineMemOperand &MMO = LoadMI->getMMO(); 711 LegalityQuery::MemDesc MemDesc(MMO); 712 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); 713 if (!isLegalOrBeforeLegalizer( 714 {TargetOpcode::G_ZEXTLOAD, {LoadTy, MRI.getType(PtrReg)}, {MemDesc}})) 715 return false; 716 717 MatchInfo = [=](MachineIRBuilder &B) { 718 B.setInstrAndDebugLoc(*LoadMI); 719 auto &MF = B.getMF(); 720 auto PtrInfo = MMO.getPointerInfo(); 721 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MaskSizeBits / 8); 722 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); 723 }; 724 return true; 725 } 726 727 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, 728 const MachineInstr &UseMI) { 729 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 730 "shouldn't consider debug uses"); 731 assert(DefMI.getParent() == UseMI.getParent()); 732 if (&DefMI == &UseMI) 733 return true; 734 const MachineBasicBlock &MBB = *DefMI.getParent(); 735 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { 736 return &MI == &DefMI || &MI == &UseMI; 737 }); 738 if (DefOrUse == MBB.end()) 739 llvm_unreachable("Block must contain both DefMI and UseMI!"); 740 return &*DefOrUse == &DefMI; 741 } 742 743 bool CombinerHelper::dominates(const MachineInstr &DefMI, 744 const MachineInstr &UseMI) { 745 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && 746 "shouldn't consider debug uses"); 747 if (MDT) 748 return MDT->dominates(&DefMI, &UseMI); 749 else if (DefMI.getParent() != UseMI.getParent()) 750 return false; 751 752 return isPredecessor(DefMI, UseMI); 753 } 754 755 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { 756 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 757 Register SrcReg = MI.getOperand(1).getReg(); 758 Register LoadUser = SrcReg; 759 760 if (MRI.getType(SrcReg).isVector()) 761 return false; 762 763 Register TruncSrc; 764 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) 765 LoadUser = TruncSrc; 766 767 uint64_t SizeInBits = MI.getOperand(2).getImm(); 768 // If the source is a G_SEXTLOAD from the same bit width, then we don't 769 // need any extend at all, just a truncate. 770 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) { 771 // If truncating more than the original extended value, abort. 772 auto LoadSizeBits = LoadMI->getMemSizeInBits(); 773 if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) 774 return false; 775 if (LoadSizeBits == SizeInBits) 776 return true; 777 } 778 return false; 779 } 780 781 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { 782 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 783 Builder.setInstrAndDebugLoc(MI); 784 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 785 MI.eraseFromParent(); 786 } 787 788 bool CombinerHelper::matchSextInRegOfLoad( 789 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 790 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 791 792 // Only supports scalars for now. 793 if (MRI.getType(MI.getOperand(0).getReg()).isVector()) 794 return false; 795 796 Register SrcReg = MI.getOperand(1).getReg(); 797 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI); 798 if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) || 799 !LoadDef->isSimple()) 800 return false; 801 802 // If the sign extend extends from a narrower width than the load's width, 803 // then we can narrow the load width when we combine to a G_SEXTLOAD. 804 // Avoid widening the load at all. 805 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), 806 LoadDef->getMemSizeInBits()); 807 808 // Don't generate G_SEXTLOADs with a < 1 byte width. 809 if (NewSizeBits < 8) 810 return false; 811 // Don't bother creating a non-power-2 sextload, it will likely be broken up 812 // anyway for most targets. 813 if (!isPowerOf2_32(NewSizeBits)) 814 return false; 815 816 const MachineMemOperand &MMO = LoadDef->getMMO(); 817 LegalityQuery::MemDesc MMDesc(MMO); 818 MMDesc.MemoryTy = LLT::scalar(NewSizeBits); 819 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, 820 {MRI.getType(LoadDef->getDstReg()), 821 MRI.getType(LoadDef->getPointerReg())}, 822 {MMDesc}})) 823 return false; 824 825 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); 826 return true; 827 } 828 829 void CombinerHelper::applySextInRegOfLoad( 830 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 831 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 832 Register LoadReg; 833 unsigned ScalarSizeBits; 834 std::tie(LoadReg, ScalarSizeBits) = MatchInfo; 835 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg)); 836 837 // If we have the following: 838 // %ld = G_LOAD %ptr, (load 2) 839 // %ext = G_SEXT_INREG %ld, 8 840 // ==> 841 // %ld = G_SEXTLOAD %ptr (load 1) 842 843 auto &MMO = LoadDef->getMMO(); 844 Builder.setInstrAndDebugLoc(*LoadDef); 845 auto &MF = Builder.getMF(); 846 auto PtrInfo = MMO.getPointerInfo(); 847 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); 848 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), 849 LoadDef->getPointerReg(), *NewMMO); 850 MI.eraseFromParent(); 851 } 852 853 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, 854 Register &Base, Register &Offset) { 855 auto &MF = *MI.getParent()->getParent(); 856 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 857 858 #ifndef NDEBUG 859 unsigned Opcode = MI.getOpcode(); 860 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 861 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 862 #endif 863 864 Base = MI.getOperand(1).getReg(); 865 MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); 866 if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) 867 return false; 868 869 LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); 870 // FIXME: The following use traversal needs a bail out for patholigical cases. 871 for (auto &Use : MRI.use_nodbg_instructions(Base)) { 872 if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) 873 continue; 874 875 Offset = Use.getOperand(2).getReg(); 876 if (!ForceLegalIndexing && 877 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { 878 LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " 879 << Use); 880 continue; 881 } 882 883 // Make sure the offset calculation is before the potentially indexed op. 884 // FIXME: we really care about dependency here. The offset calculation might 885 // be movable. 886 MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); 887 if (!OffsetDef || !dominates(*OffsetDef, MI)) { 888 LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " 889 << Use); 890 continue; 891 } 892 893 // FIXME: check whether all uses of Base are load/store with foldable 894 // addressing modes. If so, using the normal addr-modes is better than 895 // forming an indexed one. 896 897 bool MemOpDominatesAddrUses = true; 898 for (auto &PtrAddUse : 899 MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { 900 if (!dominates(MI, PtrAddUse)) { 901 MemOpDominatesAddrUses = false; 902 break; 903 } 904 } 905 906 if (!MemOpDominatesAddrUses) { 907 LLVM_DEBUG( 908 dbgs() << " Ignoring candidate as memop does not dominate uses: " 909 << Use); 910 continue; 911 } 912 913 LLVM_DEBUG(dbgs() << " Found match: " << Use); 914 Addr = Use.getOperand(0).getReg(); 915 return true; 916 } 917 918 return false; 919 } 920 921 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, 922 Register &Base, Register &Offset) { 923 auto &MF = *MI.getParent()->getParent(); 924 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 925 926 #ifndef NDEBUG 927 unsigned Opcode = MI.getOpcode(); 928 assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || 929 Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); 930 #endif 931 932 Addr = MI.getOperand(1).getReg(); 933 MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); 934 if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) 935 return false; 936 937 Base = AddrDef->getOperand(1).getReg(); 938 Offset = AddrDef->getOperand(2).getReg(); 939 940 LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); 941 942 if (!ForceLegalIndexing && 943 !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { 944 LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); 945 return false; 946 } 947 948 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); 949 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 950 LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); 951 return false; 952 } 953 954 if (MI.getOpcode() == TargetOpcode::G_STORE) { 955 // Would require a copy. 956 if (Base == MI.getOperand(0).getReg()) { 957 LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); 958 return false; 959 } 960 961 // We're expecting one use of Addr in MI, but it could also be the 962 // value stored, which isn't actually dominated by the instruction. 963 if (MI.getOperand(0).getReg() == Addr) { 964 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); 965 return false; 966 } 967 } 968 969 // FIXME: check whether all uses of the base pointer are constant PtrAdds. 970 // That might allow us to end base's liveness here by adjusting the constant. 971 972 for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { 973 if (!dominates(MI, UseMI)) { 974 LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); 975 return false; 976 } 977 } 978 979 return true; 980 } 981 982 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { 983 IndexedLoadStoreMatchInfo MatchInfo; 984 if (matchCombineIndexedLoadStore(MI, MatchInfo)) { 985 applyCombineIndexedLoadStore(MI, MatchInfo); 986 return true; 987 } 988 return false; 989 } 990 991 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 992 unsigned Opcode = MI.getOpcode(); 993 if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && 994 Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) 995 return false; 996 997 // For now, no targets actually support these opcodes so don't waste time 998 // running these unless we're forced to for testing. 999 if (!ForceLegalIndexing) 1000 return false; 1001 1002 MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1003 MatchInfo.Offset); 1004 if (!MatchInfo.IsPre && 1005 !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, 1006 MatchInfo.Offset)) 1007 return false; 1008 1009 return true; 1010 } 1011 1012 void CombinerHelper::applyCombineIndexedLoadStore( 1013 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { 1014 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); 1015 MachineIRBuilder MIRBuilder(MI); 1016 unsigned Opcode = MI.getOpcode(); 1017 bool IsStore = Opcode == TargetOpcode::G_STORE; 1018 unsigned NewOpcode; 1019 switch (Opcode) { 1020 case TargetOpcode::G_LOAD: 1021 NewOpcode = TargetOpcode::G_INDEXED_LOAD; 1022 break; 1023 case TargetOpcode::G_SEXTLOAD: 1024 NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; 1025 break; 1026 case TargetOpcode::G_ZEXTLOAD: 1027 NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; 1028 break; 1029 case TargetOpcode::G_STORE: 1030 NewOpcode = TargetOpcode::G_INDEXED_STORE; 1031 break; 1032 default: 1033 llvm_unreachable("Unknown load/store opcode"); 1034 } 1035 1036 auto MIB = MIRBuilder.buildInstr(NewOpcode); 1037 if (IsStore) { 1038 MIB.addDef(MatchInfo.Addr); 1039 MIB.addUse(MI.getOperand(0).getReg()); 1040 } else { 1041 MIB.addDef(MI.getOperand(0).getReg()); 1042 MIB.addDef(MatchInfo.Addr); 1043 } 1044 1045 MIB.addUse(MatchInfo.Base); 1046 MIB.addUse(MatchInfo.Offset); 1047 MIB.addImm(MatchInfo.IsPre); 1048 MI.eraseFromParent(); 1049 AddrDef.eraseFromParent(); 1050 1051 LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); 1052 } 1053 1054 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, 1055 MachineInstr *&OtherMI) { 1056 unsigned Opcode = MI.getOpcode(); 1057 bool IsDiv, IsSigned; 1058 1059 switch (Opcode) { 1060 default: 1061 llvm_unreachable("Unexpected opcode!"); 1062 case TargetOpcode::G_SDIV: 1063 case TargetOpcode::G_UDIV: { 1064 IsDiv = true; 1065 IsSigned = Opcode == TargetOpcode::G_SDIV; 1066 break; 1067 } 1068 case TargetOpcode::G_SREM: 1069 case TargetOpcode::G_UREM: { 1070 IsDiv = false; 1071 IsSigned = Opcode == TargetOpcode::G_SREM; 1072 break; 1073 } 1074 } 1075 1076 Register Src1 = MI.getOperand(1).getReg(); 1077 unsigned DivOpcode, RemOpcode, DivremOpcode; 1078 if (IsSigned) { 1079 DivOpcode = TargetOpcode::G_SDIV; 1080 RemOpcode = TargetOpcode::G_SREM; 1081 DivremOpcode = TargetOpcode::G_SDIVREM; 1082 } else { 1083 DivOpcode = TargetOpcode::G_UDIV; 1084 RemOpcode = TargetOpcode::G_UREM; 1085 DivremOpcode = TargetOpcode::G_UDIVREM; 1086 } 1087 1088 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) 1089 return false; 1090 1091 // Combine: 1092 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1093 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1094 // into: 1095 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1096 1097 // Combine: 1098 // %rem:_ = G_[SU]REM %src1:_, %src2:_ 1099 // %div:_ = G_[SU]DIV %src1:_, %src2:_ 1100 // into: 1101 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ 1102 1103 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { 1104 if (MI.getParent() == UseMI.getParent() && 1105 ((IsDiv && UseMI.getOpcode() == RemOpcode) || 1106 (!IsDiv && UseMI.getOpcode() == DivOpcode)) && 1107 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) { 1108 OtherMI = &UseMI; 1109 return true; 1110 } 1111 } 1112 1113 return false; 1114 } 1115 1116 void CombinerHelper::applyCombineDivRem(MachineInstr &MI, 1117 MachineInstr *&OtherMI) { 1118 unsigned Opcode = MI.getOpcode(); 1119 assert(OtherMI && "OtherMI shouldn't be empty."); 1120 1121 Register DestDivReg, DestRemReg; 1122 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { 1123 DestDivReg = MI.getOperand(0).getReg(); 1124 DestRemReg = OtherMI->getOperand(0).getReg(); 1125 } else { 1126 DestDivReg = OtherMI->getOperand(0).getReg(); 1127 DestRemReg = MI.getOperand(0).getReg(); 1128 } 1129 1130 bool IsSigned = 1131 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; 1132 1133 // Check which instruction is first in the block so we don't break def-use 1134 // deps by "moving" the instruction incorrectly. 1135 if (dominates(MI, *OtherMI)) 1136 Builder.setInstrAndDebugLoc(MI); 1137 else 1138 Builder.setInstrAndDebugLoc(*OtherMI); 1139 1140 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM 1141 : TargetOpcode::G_UDIVREM, 1142 {DestDivReg, DestRemReg}, 1143 {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); 1144 MI.eraseFromParent(); 1145 OtherMI->eraseFromParent(); 1146 } 1147 1148 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, 1149 MachineInstr *&BrCond) { 1150 assert(MI.getOpcode() == TargetOpcode::G_BR); 1151 1152 // Try to match the following: 1153 // bb1: 1154 // G_BRCOND %c1, %bb2 1155 // G_BR %bb3 1156 // bb2: 1157 // ... 1158 // bb3: 1159 1160 // The above pattern does not have a fall through to the successor bb2, always 1161 // resulting in a branch no matter which path is taken. Here we try to find 1162 // and replace that pattern with conditional branch to bb3 and otherwise 1163 // fallthrough to bb2. This is generally better for branch predictors. 1164 1165 MachineBasicBlock *MBB = MI.getParent(); 1166 MachineBasicBlock::iterator BrIt(MI); 1167 if (BrIt == MBB->begin()) 1168 return false; 1169 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); 1170 1171 BrCond = &*std::prev(BrIt); 1172 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) 1173 return false; 1174 1175 // Check that the next block is the conditional branch target. Also make sure 1176 // that it isn't the same as the G_BR's target (otherwise, this will loop.) 1177 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); 1178 return BrCondTarget != MI.getOperand(0).getMBB() && 1179 MBB->isLayoutSuccessor(BrCondTarget); 1180 } 1181 1182 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, 1183 MachineInstr *&BrCond) { 1184 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); 1185 Builder.setInstrAndDebugLoc(*BrCond); 1186 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); 1187 // FIXME: Does int/fp matter for this? If so, we might need to restrict 1188 // this to i1 only since we might not know for sure what kind of 1189 // compare generated the condition value. 1190 auto True = Builder.buildConstant( 1191 Ty, getICmpTrueVal(getTargetLowering(), false, false)); 1192 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); 1193 1194 auto *FallthroughBB = BrCond->getOperand(1).getMBB(); 1195 Observer.changingInstr(MI); 1196 MI.getOperand(0).setMBB(FallthroughBB); 1197 Observer.changedInstr(MI); 1198 1199 // Change the conditional branch to use the inverted condition and 1200 // new target block. 1201 Observer.changingInstr(*BrCond); 1202 BrCond->getOperand(0).setReg(Xor.getReg(0)); 1203 BrCond->getOperand(1).setMBB(BrTarget); 1204 Observer.changedInstr(*BrCond); 1205 } 1206 1207 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { 1208 if (Ty.isVector()) 1209 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), 1210 Ty.getNumElements()); 1211 return IntegerType::get(C, Ty.getSizeInBits()); 1212 } 1213 1214 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { 1215 MachineIRBuilder HelperBuilder(MI); 1216 GISelObserverWrapper DummyObserver; 1217 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1218 return Helper.lowerMemcpyInline(MI) == 1219 LegalizerHelper::LegalizeResult::Legalized; 1220 } 1221 1222 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { 1223 MachineIRBuilder HelperBuilder(MI); 1224 GISelObserverWrapper DummyObserver; 1225 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); 1226 return Helper.lowerMemCpyFamily(MI, MaxLen) == 1227 LegalizerHelper::LegalizeResult::Legalized; 1228 } 1229 1230 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, 1231 const Register Op, 1232 const MachineRegisterInfo &MRI) { 1233 const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); 1234 if (!MaybeCst) 1235 return None; 1236 1237 APFloat V = MaybeCst->getValueAPF(); 1238 switch (Opcode) { 1239 default: 1240 llvm_unreachable("Unexpected opcode!"); 1241 case TargetOpcode::G_FNEG: { 1242 V.changeSign(); 1243 return V; 1244 } 1245 case TargetOpcode::G_FABS: { 1246 V.clearSign(); 1247 return V; 1248 } 1249 case TargetOpcode::G_FPTRUNC: 1250 break; 1251 case TargetOpcode::G_FSQRT: { 1252 bool Unused; 1253 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1254 V = APFloat(sqrt(V.convertToDouble())); 1255 break; 1256 } 1257 case TargetOpcode::G_FLOG2: { 1258 bool Unused; 1259 V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); 1260 V = APFloat(log2(V.convertToDouble())); 1261 break; 1262 } 1263 } 1264 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, 1265 // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, 1266 // and `G_FLOG2` reach here. 1267 bool Unused; 1268 V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); 1269 return V; 1270 } 1271 1272 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, 1273 Optional<APFloat> &Cst) { 1274 Register DstReg = MI.getOperand(0).getReg(); 1275 Register SrcReg = MI.getOperand(1).getReg(); 1276 LLT DstTy = MRI.getType(DstReg); 1277 Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); 1278 return Cst.hasValue(); 1279 } 1280 1281 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, 1282 Optional<APFloat> &Cst) { 1283 assert(Cst.hasValue() && "Optional is unexpectedly empty!"); 1284 Builder.setInstrAndDebugLoc(MI); 1285 MachineFunction &MF = Builder.getMF(); 1286 auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); 1287 Register DstReg = MI.getOperand(0).getReg(); 1288 Builder.buildFConstant(DstReg, *FPVal); 1289 MI.eraseFromParent(); 1290 } 1291 1292 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, 1293 PtrAddChain &MatchInfo) { 1294 // We're trying to match the following pattern: 1295 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 1296 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 1297 // --> 1298 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) 1299 1300 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) 1301 return false; 1302 1303 Register Add2 = MI.getOperand(1).getReg(); 1304 Register Imm1 = MI.getOperand(2).getReg(); 1305 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1306 if (!MaybeImmVal) 1307 return false; 1308 1309 MachineInstr *Add2Def = MRI.getVRegDef(Add2); 1310 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) 1311 return false; 1312 1313 Register Base = Add2Def->getOperand(1).getReg(); 1314 Register Imm2 = Add2Def->getOperand(2).getReg(); 1315 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1316 if (!MaybeImm2Val) 1317 return false; 1318 1319 // Check if the new combined immediate forms an illegal addressing mode. 1320 // Do not combine if it was legal before but would get illegal. 1321 // To do so, we need to find a load/store user of the pointer to get 1322 // the access type. 1323 Type *AccessTy = nullptr; 1324 auto &MF = *MI.getMF(); 1325 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { 1326 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) { 1327 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), 1328 MF.getFunction().getContext()); 1329 break; 1330 } 1331 } 1332 TargetLoweringBase::AddrMode AMNew; 1333 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; 1334 AMNew.BaseOffs = CombinedImm.getSExtValue(); 1335 if (AccessTy) { 1336 AMNew.HasBaseReg = true; 1337 TargetLoweringBase::AddrMode AMOld; 1338 AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); 1339 AMOld.HasBaseReg = true; 1340 unsigned AS = MRI.getType(Add2).getAddressSpace(); 1341 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 1342 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && 1343 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) 1344 return false; 1345 } 1346 1347 // Pass the combined immediate to the apply function. 1348 MatchInfo.Imm = AMNew.BaseOffs; 1349 MatchInfo.Base = Base; 1350 MatchInfo.Bank = getRegBank(Imm2); 1351 return true; 1352 } 1353 1354 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, 1355 PtrAddChain &MatchInfo) { 1356 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); 1357 MachineIRBuilder MIB(MI); 1358 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); 1359 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); 1360 setRegBank(NewOffset.getReg(0), MatchInfo.Bank); 1361 Observer.changingInstr(MI); 1362 MI.getOperand(1).setReg(MatchInfo.Base); 1363 MI.getOperand(2).setReg(NewOffset.getReg(0)); 1364 Observer.changedInstr(MI); 1365 } 1366 1367 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, 1368 RegisterImmPair &MatchInfo) { 1369 // We're trying to match the following pattern with any of 1370 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: 1371 // %t1 = SHIFT %base, G_CONSTANT imm1 1372 // %root = SHIFT %t1, G_CONSTANT imm2 1373 // --> 1374 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) 1375 1376 unsigned Opcode = MI.getOpcode(); 1377 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1378 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1379 Opcode == TargetOpcode::G_USHLSAT) && 1380 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1381 1382 Register Shl2 = MI.getOperand(1).getReg(); 1383 Register Imm1 = MI.getOperand(2).getReg(); 1384 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); 1385 if (!MaybeImmVal) 1386 return false; 1387 1388 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); 1389 if (Shl2Def->getOpcode() != Opcode) 1390 return false; 1391 1392 Register Base = Shl2Def->getOperand(1).getReg(); 1393 Register Imm2 = Shl2Def->getOperand(2).getReg(); 1394 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); 1395 if (!MaybeImm2Val) 1396 return false; 1397 1398 // Pass the combined immediate to the apply function. 1399 MatchInfo.Imm = 1400 (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); 1401 MatchInfo.Reg = Base; 1402 1403 // There is no simple replacement for a saturating unsigned left shift that 1404 // exceeds the scalar size. 1405 if (Opcode == TargetOpcode::G_USHLSAT && 1406 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) 1407 return false; 1408 1409 return true; 1410 } 1411 1412 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, 1413 RegisterImmPair &MatchInfo) { 1414 unsigned Opcode = MI.getOpcode(); 1415 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1416 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || 1417 Opcode == TargetOpcode::G_USHLSAT) && 1418 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); 1419 1420 Builder.setInstrAndDebugLoc(MI); 1421 LLT Ty = MRI.getType(MI.getOperand(1).getReg()); 1422 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); 1423 auto Imm = MatchInfo.Imm; 1424 1425 if (Imm >= ScalarSizeInBits) { 1426 // Any logical shift that exceeds scalar size will produce zero. 1427 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { 1428 Builder.buildConstant(MI.getOperand(0), 0); 1429 MI.eraseFromParent(); 1430 return; 1431 } 1432 // Arithmetic shift and saturating signed left shift have no effect beyond 1433 // scalar size. 1434 Imm = ScalarSizeInBits - 1; 1435 } 1436 1437 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); 1438 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); 1439 Observer.changingInstr(MI); 1440 MI.getOperand(1).setReg(MatchInfo.Reg); 1441 MI.getOperand(2).setReg(NewImm); 1442 Observer.changedInstr(MI); 1443 } 1444 1445 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, 1446 ShiftOfShiftedLogic &MatchInfo) { 1447 // We're trying to match the following pattern with any of 1448 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination 1449 // with any of G_AND/G_OR/G_XOR logic instructions. 1450 // %t1 = SHIFT %X, G_CONSTANT C0 1451 // %t2 = LOGIC %t1, %Y 1452 // %root = SHIFT %t2, G_CONSTANT C1 1453 // --> 1454 // %t3 = SHIFT %X, G_CONSTANT (C0+C1) 1455 // %t4 = SHIFT %Y, G_CONSTANT C1 1456 // %root = LOGIC %t3, %t4 1457 unsigned ShiftOpcode = MI.getOpcode(); 1458 assert((ShiftOpcode == TargetOpcode::G_SHL || 1459 ShiftOpcode == TargetOpcode::G_ASHR || 1460 ShiftOpcode == TargetOpcode::G_LSHR || 1461 ShiftOpcode == TargetOpcode::G_USHLSAT || 1462 ShiftOpcode == TargetOpcode::G_SSHLSAT) && 1463 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1464 1465 // Match a one-use bitwise logic op. 1466 Register LogicDest = MI.getOperand(1).getReg(); 1467 if (!MRI.hasOneNonDBGUse(LogicDest)) 1468 return false; 1469 1470 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); 1471 unsigned LogicOpcode = LogicMI->getOpcode(); 1472 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && 1473 LogicOpcode != TargetOpcode::G_XOR) 1474 return false; 1475 1476 // Find a matching one-use shift by constant. 1477 const Register C1 = MI.getOperand(2).getReg(); 1478 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); 1479 if (!MaybeImmVal) 1480 return false; 1481 1482 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); 1483 1484 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { 1485 // Shift should match previous one and should be a one-use. 1486 if (MI->getOpcode() != ShiftOpcode || 1487 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) 1488 return false; 1489 1490 // Must be a constant. 1491 auto MaybeImmVal = 1492 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); 1493 if (!MaybeImmVal) 1494 return false; 1495 1496 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1497 return true; 1498 }; 1499 1500 // Logic ops are commutative, so check each operand for a match. 1501 Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); 1502 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); 1503 Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); 1504 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); 1505 uint64_t C0Val; 1506 1507 if (matchFirstShift(LogicMIOp1, C0Val)) { 1508 MatchInfo.LogicNonShiftReg = LogicMIReg2; 1509 MatchInfo.Shift2 = LogicMIOp1; 1510 } else if (matchFirstShift(LogicMIOp2, C0Val)) { 1511 MatchInfo.LogicNonShiftReg = LogicMIReg1; 1512 MatchInfo.Shift2 = LogicMIOp2; 1513 } else 1514 return false; 1515 1516 MatchInfo.ValSum = C0Val + C1Val; 1517 1518 // The fold is not valid if the sum of the shift values exceeds bitwidth. 1519 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) 1520 return false; 1521 1522 MatchInfo.Logic = LogicMI; 1523 return true; 1524 } 1525 1526 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, 1527 ShiftOfShiftedLogic &MatchInfo) { 1528 unsigned Opcode = MI.getOpcode(); 1529 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || 1530 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || 1531 Opcode == TargetOpcode::G_SSHLSAT) && 1532 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); 1533 1534 LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); 1535 LLT DestType = MRI.getType(MI.getOperand(0).getReg()); 1536 Builder.setInstrAndDebugLoc(MI); 1537 1538 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); 1539 1540 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); 1541 Register Shift1 = 1542 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); 1543 1544 Register Shift2Const = MI.getOperand(2).getReg(); 1545 Register Shift2 = Builder 1546 .buildInstr(Opcode, {DestType}, 1547 {MatchInfo.LogicNonShiftReg, Shift2Const}) 1548 .getReg(0); 1549 1550 Register Dest = MI.getOperand(0).getReg(); 1551 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); 1552 1553 // These were one use so it's safe to remove them. 1554 MatchInfo.Shift2->eraseFromParent(); 1555 MatchInfo.Logic->eraseFromParent(); 1556 1557 MI.eraseFromParent(); 1558 } 1559 1560 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, 1561 unsigned &ShiftVal) { 1562 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1563 auto MaybeImmVal = 1564 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1565 if (!MaybeImmVal) 1566 return false; 1567 1568 ShiftVal = MaybeImmVal->Value.exactLogBase2(); 1569 return (static_cast<int32_t>(ShiftVal) != -1); 1570 } 1571 1572 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, 1573 unsigned &ShiftVal) { 1574 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 1575 MachineIRBuilder MIB(MI); 1576 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); 1577 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); 1578 Observer.changingInstr(MI); 1579 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); 1580 MI.getOperand(2).setReg(ShiftCst.getReg(0)); 1581 Observer.changedInstr(MI); 1582 } 1583 1584 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source 1585 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, 1586 RegisterImmPair &MatchData) { 1587 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); 1588 1589 Register LHS = MI.getOperand(1).getReg(); 1590 1591 Register ExtSrc; 1592 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && 1593 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && 1594 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) 1595 return false; 1596 1597 // TODO: Should handle vector splat. 1598 Register RHS = MI.getOperand(2).getReg(); 1599 auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); 1600 if (!MaybeShiftAmtVal) 1601 return false; 1602 1603 if (LI) { 1604 LLT SrcTy = MRI.getType(ExtSrc); 1605 1606 // We only really care about the legality with the shifted value. We can 1607 // pick any type the constant shift amount, so ask the target what to 1608 // use. Otherwise we would have to guess and hope it is reported as legal. 1609 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); 1610 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) 1611 return false; 1612 } 1613 1614 int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); 1615 MatchData.Reg = ExtSrc; 1616 MatchData.Imm = ShiftAmt; 1617 1618 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); 1619 return MinLeadingZeros >= ShiftAmt; 1620 } 1621 1622 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, 1623 const RegisterImmPair &MatchData) { 1624 Register ExtSrcReg = MatchData.Reg; 1625 int64_t ShiftAmtVal = MatchData.Imm; 1626 1627 LLT ExtSrcTy = MRI.getType(ExtSrcReg); 1628 Builder.setInstrAndDebugLoc(MI); 1629 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); 1630 auto NarrowShift = 1631 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); 1632 Builder.buildZExt(MI.getOperand(0), NarrowShift); 1633 MI.eraseFromParent(); 1634 } 1635 1636 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, 1637 Register &MatchInfo) { 1638 GMerge &Merge = cast<GMerge>(MI); 1639 SmallVector<Register, 16> MergedValues; 1640 for (unsigned I = 0; I < Merge.getNumSources(); ++I) 1641 MergedValues.emplace_back(Merge.getSourceReg(I)); 1642 1643 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI); 1644 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) 1645 return false; 1646 1647 for (unsigned I = 0; I < MergedValues.size(); ++I) 1648 if (MergedValues[I] != Unmerge->getReg(I)) 1649 return false; 1650 1651 MatchInfo = Unmerge->getSourceReg(); 1652 return true; 1653 } 1654 1655 static Register peekThroughBitcast(Register Reg, 1656 const MachineRegisterInfo &MRI) { 1657 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) 1658 ; 1659 1660 return Reg; 1661 } 1662 1663 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( 1664 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1665 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1666 "Expected an unmerge"); 1667 auto &Unmerge = cast<GUnmerge>(MI); 1668 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); 1669 1670 auto *SrcInstr = getOpcodeDef<GMergeLikeOp>(SrcReg, MRI); 1671 if (!SrcInstr) 1672 return false; 1673 1674 // Check the source type of the merge. 1675 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); 1676 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); 1677 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); 1678 if (SrcMergeTy != Dst0Ty && !SameSize) 1679 return false; 1680 // They are the same now (modulo a bitcast). 1681 // We can collect all the src registers. 1682 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) 1683 Operands.push_back(SrcInstr->getSourceReg(Idx)); 1684 return true; 1685 } 1686 1687 void CombinerHelper::applyCombineUnmergeMergeToPlainValues( 1688 MachineInstr &MI, SmallVectorImpl<Register> &Operands) { 1689 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1690 "Expected an unmerge"); 1691 assert((MI.getNumOperands() - 1 == Operands.size()) && 1692 "Not enough operands to replace all defs"); 1693 unsigned NumElems = MI.getNumOperands() - 1; 1694 1695 LLT SrcTy = MRI.getType(Operands[0]); 1696 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 1697 bool CanReuseInputDirectly = DstTy == SrcTy; 1698 Builder.setInstrAndDebugLoc(MI); 1699 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1700 Register DstReg = MI.getOperand(Idx).getReg(); 1701 Register SrcReg = Operands[Idx]; 1702 if (CanReuseInputDirectly) 1703 replaceRegWith(MRI, DstReg, SrcReg); 1704 else 1705 Builder.buildCast(DstReg, SrcReg); 1706 } 1707 MI.eraseFromParent(); 1708 } 1709 1710 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, 1711 SmallVectorImpl<APInt> &Csts) { 1712 unsigned SrcIdx = MI.getNumOperands() - 1; 1713 Register SrcReg = MI.getOperand(SrcIdx).getReg(); 1714 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); 1715 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && 1716 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) 1717 return false; 1718 // Break down the big constant in smaller ones. 1719 const MachineOperand &CstVal = SrcInstr->getOperand(1); 1720 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT 1721 ? CstVal.getCImm()->getValue() 1722 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); 1723 1724 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); 1725 unsigned ShiftAmt = Dst0Ty.getSizeInBits(); 1726 // Unmerge a constant. 1727 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { 1728 Csts.emplace_back(Val.trunc(ShiftAmt)); 1729 Val = Val.lshr(ShiftAmt); 1730 } 1731 1732 return true; 1733 } 1734 1735 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, 1736 SmallVectorImpl<APInt> &Csts) { 1737 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1738 "Expected an unmerge"); 1739 assert((MI.getNumOperands() - 1 == Csts.size()) && 1740 "Not enough operands to replace all defs"); 1741 unsigned NumElems = MI.getNumOperands() - 1; 1742 Builder.setInstrAndDebugLoc(MI); 1743 for (unsigned Idx = 0; Idx < NumElems; ++Idx) { 1744 Register DstReg = MI.getOperand(Idx).getReg(); 1745 Builder.buildConstant(DstReg, Csts[Idx]); 1746 } 1747 1748 MI.eraseFromParent(); 1749 } 1750 1751 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1752 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1753 "Expected an unmerge"); 1754 // Check that all the lanes are dead except the first one. 1755 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1756 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) 1757 return false; 1758 } 1759 return true; 1760 } 1761 1762 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { 1763 Builder.setInstrAndDebugLoc(MI); 1764 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1765 // Truncating a vector is going to truncate every single lane, 1766 // whereas we want the full lowbits. 1767 // Do the operation on a scalar instead. 1768 LLT SrcTy = MRI.getType(SrcReg); 1769 if (SrcTy.isVector()) 1770 SrcReg = 1771 Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); 1772 1773 Register Dst0Reg = MI.getOperand(0).getReg(); 1774 LLT Dst0Ty = MRI.getType(Dst0Reg); 1775 if (Dst0Ty.isVector()) { 1776 auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); 1777 Builder.buildCast(Dst0Reg, MIB); 1778 } else 1779 Builder.buildTrunc(Dst0Reg, SrcReg); 1780 MI.eraseFromParent(); 1781 } 1782 1783 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { 1784 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1785 "Expected an unmerge"); 1786 Register Dst0Reg = MI.getOperand(0).getReg(); 1787 LLT Dst0Ty = MRI.getType(Dst0Reg); 1788 // G_ZEXT on vector applies to each lane, so it will 1789 // affect all destinations. Therefore we won't be able 1790 // to simplify the unmerge to just the first definition. 1791 if (Dst0Ty.isVector()) 1792 return false; 1793 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); 1794 LLT SrcTy = MRI.getType(SrcReg); 1795 if (SrcTy.isVector()) 1796 return false; 1797 1798 Register ZExtSrcReg; 1799 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) 1800 return false; 1801 1802 // Finally we can replace the first definition with 1803 // a zext of the source if the definition is big enough to hold 1804 // all of ZExtSrc bits. 1805 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1806 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); 1807 } 1808 1809 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { 1810 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && 1811 "Expected an unmerge"); 1812 1813 Register Dst0Reg = MI.getOperand(0).getReg(); 1814 1815 MachineInstr *ZExtInstr = 1816 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); 1817 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && 1818 "Expecting a G_ZEXT"); 1819 1820 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); 1821 LLT Dst0Ty = MRI.getType(Dst0Reg); 1822 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); 1823 1824 Builder.setInstrAndDebugLoc(MI); 1825 1826 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { 1827 Builder.buildZExt(Dst0Reg, ZExtSrcReg); 1828 } else { 1829 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && 1830 "ZExt src doesn't fit in destination"); 1831 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); 1832 } 1833 1834 Register ZeroReg; 1835 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { 1836 if (!ZeroReg) 1837 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); 1838 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); 1839 } 1840 MI.eraseFromParent(); 1841 } 1842 1843 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, 1844 unsigned TargetShiftSize, 1845 unsigned &ShiftVal) { 1846 assert((MI.getOpcode() == TargetOpcode::G_SHL || 1847 MI.getOpcode() == TargetOpcode::G_LSHR || 1848 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); 1849 1850 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1851 if (Ty.isVector()) // TODO: 1852 return false; 1853 1854 // Don't narrow further than the requested size. 1855 unsigned Size = Ty.getSizeInBits(); 1856 if (Size <= TargetShiftSize) 1857 return false; 1858 1859 auto MaybeImmVal = 1860 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 1861 if (!MaybeImmVal) 1862 return false; 1863 1864 ShiftVal = MaybeImmVal->Value.getSExtValue(); 1865 return ShiftVal >= Size / 2 && ShiftVal < Size; 1866 } 1867 1868 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, 1869 const unsigned &ShiftVal) { 1870 Register DstReg = MI.getOperand(0).getReg(); 1871 Register SrcReg = MI.getOperand(1).getReg(); 1872 LLT Ty = MRI.getType(SrcReg); 1873 unsigned Size = Ty.getSizeInBits(); 1874 unsigned HalfSize = Size / 2; 1875 assert(ShiftVal >= HalfSize); 1876 1877 LLT HalfTy = LLT::scalar(HalfSize); 1878 1879 Builder.setInstr(MI); 1880 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); 1881 unsigned NarrowShiftAmt = ShiftVal - HalfSize; 1882 1883 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 1884 Register Narrowed = Unmerge.getReg(1); 1885 1886 // dst = G_LSHR s64:x, C for C >= 32 1887 // => 1888 // lo, hi = G_UNMERGE_VALUES x 1889 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 1890 1891 if (NarrowShiftAmt != 0) { 1892 Narrowed = Builder.buildLShr(HalfTy, Narrowed, 1893 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1894 } 1895 1896 auto Zero = Builder.buildConstant(HalfTy, 0); 1897 Builder.buildMerge(DstReg, { Narrowed, Zero }); 1898 } else if (MI.getOpcode() == TargetOpcode::G_SHL) { 1899 Register Narrowed = Unmerge.getReg(0); 1900 // dst = G_SHL s64:x, C for C >= 32 1901 // => 1902 // lo, hi = G_UNMERGE_VALUES x 1903 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) 1904 if (NarrowShiftAmt != 0) { 1905 Narrowed = Builder.buildShl(HalfTy, Narrowed, 1906 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); 1907 } 1908 1909 auto Zero = Builder.buildConstant(HalfTy, 0); 1910 Builder.buildMerge(DstReg, { Zero, Narrowed }); 1911 } else { 1912 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 1913 auto Hi = Builder.buildAShr( 1914 HalfTy, Unmerge.getReg(1), 1915 Builder.buildConstant(HalfTy, HalfSize - 1)); 1916 1917 if (ShiftVal == HalfSize) { 1918 // (G_ASHR i64:x, 32) -> 1919 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) 1920 Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi }); 1921 } else if (ShiftVal == Size - 1) { 1922 // Don't need a second shift. 1923 // (G_ASHR i64:x, 63) -> 1924 // %narrowed = (G_ASHR hi_32(x), 31) 1925 // G_MERGE_VALUES %narrowed, %narrowed 1926 Builder.buildMerge(DstReg, { Hi, Hi }); 1927 } else { 1928 auto Lo = Builder.buildAShr( 1929 HalfTy, Unmerge.getReg(1), 1930 Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); 1931 1932 // (G_ASHR i64:x, C) ->, for C >= 32 1933 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) 1934 Builder.buildMerge(DstReg, { Lo, Hi }); 1935 } 1936 } 1937 1938 MI.eraseFromParent(); 1939 } 1940 1941 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, 1942 unsigned TargetShiftAmount) { 1943 unsigned ShiftAmt; 1944 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { 1945 applyCombineShiftToUnmerge(MI, ShiftAmt); 1946 return true; 1947 } 1948 1949 return false; 1950 } 1951 1952 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1953 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1954 Register DstReg = MI.getOperand(0).getReg(); 1955 LLT DstTy = MRI.getType(DstReg); 1956 Register SrcReg = MI.getOperand(1).getReg(); 1957 return mi_match(SrcReg, MRI, 1958 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); 1959 } 1960 1961 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { 1962 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); 1963 Register DstReg = MI.getOperand(0).getReg(); 1964 Builder.setInstr(MI); 1965 Builder.buildCopy(DstReg, Reg); 1966 MI.eraseFromParent(); 1967 } 1968 1969 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1970 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1971 Register SrcReg = MI.getOperand(1).getReg(); 1972 return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); 1973 } 1974 1975 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { 1976 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); 1977 Register DstReg = MI.getOperand(0).getReg(); 1978 Builder.setInstr(MI); 1979 Builder.buildZExtOrTrunc(DstReg, Reg); 1980 MI.eraseFromParent(); 1981 } 1982 1983 bool CombinerHelper::matchCombineAddP2IToPtrAdd( 1984 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 1985 assert(MI.getOpcode() == TargetOpcode::G_ADD); 1986 Register LHS = MI.getOperand(1).getReg(); 1987 Register RHS = MI.getOperand(2).getReg(); 1988 LLT IntTy = MRI.getType(LHS); 1989 1990 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the 1991 // instruction. 1992 PtrReg.second = false; 1993 for (Register SrcReg : {LHS, RHS}) { 1994 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { 1995 // Don't handle cases where the integer is implicitly converted to the 1996 // pointer width. 1997 LLT PtrTy = MRI.getType(PtrReg.first); 1998 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) 1999 return true; 2000 } 2001 2002 PtrReg.second = true; 2003 } 2004 2005 return false; 2006 } 2007 2008 void CombinerHelper::applyCombineAddP2IToPtrAdd( 2009 MachineInstr &MI, std::pair<Register, bool> &PtrReg) { 2010 Register Dst = MI.getOperand(0).getReg(); 2011 Register LHS = MI.getOperand(1).getReg(); 2012 Register RHS = MI.getOperand(2).getReg(); 2013 2014 const bool DoCommute = PtrReg.second; 2015 if (DoCommute) 2016 std::swap(LHS, RHS); 2017 LHS = PtrReg.first; 2018 2019 LLT PtrTy = MRI.getType(LHS); 2020 2021 Builder.setInstrAndDebugLoc(MI); 2022 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); 2023 Builder.buildPtrToInt(Dst, PtrAdd); 2024 MI.eraseFromParent(); 2025 } 2026 2027 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, 2028 int64_t &NewCst) { 2029 auto &PtrAdd = cast<GPtrAdd>(MI); 2030 Register LHS = PtrAdd.getBaseReg(); 2031 Register RHS = PtrAdd.getOffsetReg(); 2032 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); 2033 2034 if (auto RHSCst = getIConstantVRegSExtVal(RHS, MRI)) { 2035 int64_t Cst; 2036 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { 2037 NewCst = Cst + *RHSCst; 2038 return true; 2039 } 2040 } 2041 2042 return false; 2043 } 2044 2045 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, 2046 int64_t &NewCst) { 2047 auto &PtrAdd = cast<GPtrAdd>(MI); 2048 Register Dst = PtrAdd.getReg(0); 2049 2050 Builder.setInstrAndDebugLoc(MI); 2051 Builder.buildConstant(Dst, NewCst); 2052 PtrAdd.eraseFromParent(); 2053 } 2054 2055 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { 2056 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); 2057 Register DstReg = MI.getOperand(0).getReg(); 2058 Register SrcReg = MI.getOperand(1).getReg(); 2059 LLT DstTy = MRI.getType(DstReg); 2060 return mi_match(SrcReg, MRI, 2061 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); 2062 } 2063 2064 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { 2065 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); 2066 Register DstReg = MI.getOperand(0).getReg(); 2067 Register SrcReg = MI.getOperand(1).getReg(); 2068 LLT DstTy = MRI.getType(DstReg); 2069 if (mi_match(SrcReg, MRI, 2070 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { 2071 unsigned DstSize = DstTy.getScalarSizeInBits(); 2072 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); 2073 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; 2074 } 2075 return false; 2076 } 2077 2078 bool CombinerHelper::matchCombineExtOfExt( 2079 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2080 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2081 MI.getOpcode() == TargetOpcode::G_SEXT || 2082 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2083 "Expected a G_[ASZ]EXT"); 2084 Register SrcReg = MI.getOperand(1).getReg(); 2085 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2086 // Match exts with the same opcode, anyext([sz]ext) and sext(zext). 2087 unsigned Opc = MI.getOpcode(); 2088 unsigned SrcOpc = SrcMI->getOpcode(); 2089 if (Opc == SrcOpc || 2090 (Opc == TargetOpcode::G_ANYEXT && 2091 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || 2092 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { 2093 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); 2094 return true; 2095 } 2096 return false; 2097 } 2098 2099 void CombinerHelper::applyCombineExtOfExt( 2100 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { 2101 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || 2102 MI.getOpcode() == TargetOpcode::G_SEXT || 2103 MI.getOpcode() == TargetOpcode::G_ZEXT) && 2104 "Expected a G_[ASZ]EXT"); 2105 2106 Register Reg = std::get<0>(MatchInfo); 2107 unsigned SrcExtOp = std::get<1>(MatchInfo); 2108 2109 // Combine exts with the same opcode. 2110 if (MI.getOpcode() == SrcExtOp) { 2111 Observer.changingInstr(MI); 2112 MI.getOperand(1).setReg(Reg); 2113 Observer.changedInstr(MI); 2114 return; 2115 } 2116 2117 // Combine: 2118 // - anyext([sz]ext x) to [sz]ext x 2119 // - sext(zext x) to zext x 2120 if (MI.getOpcode() == TargetOpcode::G_ANYEXT || 2121 (MI.getOpcode() == TargetOpcode::G_SEXT && 2122 SrcExtOp == TargetOpcode::G_ZEXT)) { 2123 Register DstReg = MI.getOperand(0).getReg(); 2124 Builder.setInstrAndDebugLoc(MI); 2125 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); 2126 MI.eraseFromParent(); 2127 } 2128 } 2129 2130 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { 2131 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); 2132 Register DstReg = MI.getOperand(0).getReg(); 2133 Register SrcReg = MI.getOperand(1).getReg(); 2134 LLT DstTy = MRI.getType(DstReg); 2135 2136 Builder.setInstrAndDebugLoc(MI); 2137 Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, 2138 MI.getFlags()); 2139 MI.eraseFromParent(); 2140 } 2141 2142 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { 2143 assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); 2144 Register SrcReg = MI.getOperand(1).getReg(); 2145 return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); 2146 } 2147 2148 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { 2149 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2150 Src = MI.getOperand(1).getReg(); 2151 Register AbsSrc; 2152 return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); 2153 } 2154 2155 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, 2156 BuildFnTy &MatchInfo) { 2157 assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); 2158 Register Src = MI.getOperand(1).getReg(); 2159 Register NegSrc; 2160 2161 if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) 2162 return false; 2163 2164 MatchInfo = [=, &MI](MachineIRBuilder &B) { 2165 Observer.changingInstr(MI); 2166 MI.getOperand(1).setReg(NegSrc); 2167 Observer.changedInstr(MI); 2168 }; 2169 return true; 2170 } 2171 2172 bool CombinerHelper::matchCombineTruncOfExt( 2173 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2174 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2175 Register SrcReg = MI.getOperand(1).getReg(); 2176 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2177 unsigned SrcOpc = SrcMI->getOpcode(); 2178 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || 2179 SrcOpc == TargetOpcode::G_ZEXT) { 2180 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); 2181 return true; 2182 } 2183 return false; 2184 } 2185 2186 void CombinerHelper::applyCombineTruncOfExt( 2187 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { 2188 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2189 Register SrcReg = MatchInfo.first; 2190 unsigned SrcExtOp = MatchInfo.second; 2191 Register DstReg = MI.getOperand(0).getReg(); 2192 LLT SrcTy = MRI.getType(SrcReg); 2193 LLT DstTy = MRI.getType(DstReg); 2194 if (SrcTy == DstTy) { 2195 MI.eraseFromParent(); 2196 replaceRegWith(MRI, DstReg, SrcReg); 2197 return; 2198 } 2199 Builder.setInstrAndDebugLoc(MI); 2200 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) 2201 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); 2202 else 2203 Builder.buildTrunc(DstReg, SrcReg); 2204 MI.eraseFromParent(); 2205 } 2206 2207 bool CombinerHelper::matchCombineTruncOfShl( 2208 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2209 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2210 Register DstReg = MI.getOperand(0).getReg(); 2211 Register SrcReg = MI.getOperand(1).getReg(); 2212 LLT DstTy = MRI.getType(DstReg); 2213 Register ShiftSrc; 2214 Register ShiftAmt; 2215 2216 if (MRI.hasOneNonDBGUse(SrcReg) && 2217 mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && 2218 isLegalOrBeforeLegalizer( 2219 {TargetOpcode::G_SHL, 2220 {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { 2221 KnownBits Known = KB->getKnownBits(ShiftAmt); 2222 unsigned Size = DstTy.getSizeInBits(); 2223 if (Known.countMaxActiveBits() <= Log2_32(Size)) { 2224 MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); 2225 return true; 2226 } 2227 } 2228 return false; 2229 } 2230 2231 void CombinerHelper::applyCombineTruncOfShl( 2232 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2233 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); 2234 Register DstReg = MI.getOperand(0).getReg(); 2235 Register SrcReg = MI.getOperand(1).getReg(); 2236 LLT DstTy = MRI.getType(DstReg); 2237 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); 2238 2239 Register ShiftSrc = MatchInfo.first; 2240 Register ShiftAmt = MatchInfo.second; 2241 Builder.setInstrAndDebugLoc(MI); 2242 auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); 2243 Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); 2244 MI.eraseFromParent(); 2245 } 2246 2247 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { 2248 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2249 return MO.isReg() && 2250 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2251 }); 2252 } 2253 2254 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { 2255 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { 2256 return !MO.isReg() || 2257 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2258 }); 2259 } 2260 2261 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { 2262 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); 2263 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 2264 return all_of(Mask, [](int Elt) { return Elt < 0; }); 2265 } 2266 2267 bool CombinerHelper::matchUndefStore(MachineInstr &MI) { 2268 assert(MI.getOpcode() == TargetOpcode::G_STORE); 2269 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), 2270 MRI); 2271 } 2272 2273 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { 2274 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2275 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), 2276 MRI); 2277 } 2278 2279 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { 2280 GSelect &SelMI = cast<GSelect>(MI); 2281 auto Cst = 2282 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); 2283 if (!Cst) 2284 return false; 2285 OpIdx = Cst->isZero() ? 3 : 2; 2286 return true; 2287 } 2288 2289 bool CombinerHelper::eraseInst(MachineInstr &MI) { 2290 MI.eraseFromParent(); 2291 return true; 2292 } 2293 2294 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, 2295 const MachineOperand &MOP2) { 2296 if (!MOP1.isReg() || !MOP2.isReg()) 2297 return false; 2298 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); 2299 if (!InstAndDef1) 2300 return false; 2301 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); 2302 if (!InstAndDef2) 2303 return false; 2304 MachineInstr *I1 = InstAndDef1->MI; 2305 MachineInstr *I2 = InstAndDef2->MI; 2306 2307 // Handle a case like this: 2308 // 2309 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) 2310 // 2311 // Even though %0 and %1 are produced by the same instruction they are not 2312 // the same values. 2313 if (I1 == I2) 2314 return MOP1.getReg() == MOP2.getReg(); 2315 2316 // If we have an instruction which loads or stores, we can't guarantee that 2317 // it is identical. 2318 // 2319 // For example, we may have 2320 // 2321 // %x1 = G_LOAD %addr (load N from @somewhere) 2322 // ... 2323 // call @foo 2324 // ... 2325 // %x2 = G_LOAD %addr (load N from @somewhere) 2326 // ... 2327 // %or = G_OR %x1, %x2 2328 // 2329 // It's possible that @foo will modify whatever lives at the address we're 2330 // loading from. To be safe, let's just assume that all loads and stores 2331 // are different (unless we have something which is guaranteed to not 2332 // change.) 2333 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr)) 2334 return false; 2335 2336 // Check for physical registers on the instructions first to avoid cases 2337 // like this: 2338 // 2339 // %a = COPY $physreg 2340 // ... 2341 // SOMETHING implicit-def $physreg 2342 // ... 2343 // %b = COPY $physreg 2344 // 2345 // These copies are not equivalent. 2346 if (any_of(I1->uses(), [](const MachineOperand &MO) { 2347 return MO.isReg() && MO.getReg().isPhysical(); 2348 })) { 2349 // Check if we have a case like this: 2350 // 2351 // %a = COPY $physreg 2352 // %b = COPY %a 2353 // 2354 // In this case, I1 and I2 will both be equal to %a = COPY $physreg. 2355 // From that, we know that they must have the same value, since they must 2356 // have come from the same COPY. 2357 return I1->isIdenticalTo(*I2); 2358 } 2359 2360 // We don't have any physical registers, so we don't necessarily need the 2361 // same vreg defs. 2362 // 2363 // On the off-chance that there's some target instruction feeding into the 2364 // instruction, let's use produceSameValue instead of isIdenticalTo. 2365 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { 2366 // Handle instructions with multiple defs that produce same values. Values 2367 // are same for operands with same index. 2368 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2369 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) 2370 // I1 and I2 are different instructions but produce same values, 2371 // %1 and %6 are same, %1 and %7 are not the same value. 2372 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == 2373 I2->findRegisterDefOperandIdx(InstAndDef2->Reg); 2374 } 2375 return false; 2376 } 2377 2378 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { 2379 if (!MOP.isReg()) 2380 return false; 2381 auto *MI = MRI.getVRegDef(MOP.getReg()); 2382 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); 2383 return MaybeCst.hasValue() && MaybeCst->getBitWidth() <= 64 && 2384 MaybeCst->getSExtValue() == C; 2385 } 2386 2387 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, 2388 unsigned OpIdx) { 2389 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2390 Register OldReg = MI.getOperand(0).getReg(); 2391 Register Replacement = MI.getOperand(OpIdx).getReg(); 2392 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2393 MI.eraseFromParent(); 2394 replaceRegWith(MRI, OldReg, Replacement); 2395 return true; 2396 } 2397 2398 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, 2399 Register Replacement) { 2400 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); 2401 Register OldReg = MI.getOperand(0).getReg(); 2402 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); 2403 MI.eraseFromParent(); 2404 replaceRegWith(MRI, OldReg, Replacement); 2405 return true; 2406 } 2407 2408 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { 2409 assert(MI.getOpcode() == TargetOpcode::G_SELECT); 2410 // Match (cond ? x : x) 2411 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && 2412 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), 2413 MRI); 2414 } 2415 2416 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { 2417 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && 2418 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 2419 MRI); 2420 } 2421 2422 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { 2423 return matchConstantOp(MI.getOperand(OpIdx), 0) && 2424 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), 2425 MRI); 2426 } 2427 2428 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { 2429 MachineOperand &MO = MI.getOperand(OpIdx); 2430 return MO.isReg() && 2431 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); 2432 } 2433 2434 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, 2435 unsigned OpIdx) { 2436 MachineOperand &MO = MI.getOperand(OpIdx); 2437 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); 2438 } 2439 2440 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { 2441 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2442 Builder.setInstr(MI); 2443 Builder.buildFConstant(MI.getOperand(0), C); 2444 MI.eraseFromParent(); 2445 return true; 2446 } 2447 2448 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { 2449 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2450 Builder.setInstr(MI); 2451 Builder.buildConstant(MI.getOperand(0), C); 2452 MI.eraseFromParent(); 2453 return true; 2454 } 2455 2456 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { 2457 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2458 Builder.setInstr(MI); 2459 Builder.buildConstant(MI.getOperand(0), C); 2460 MI.eraseFromParent(); 2461 return true; 2462 } 2463 2464 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { 2465 assert(MI.getNumDefs() == 1 && "Expected only one def?"); 2466 Builder.setInstr(MI); 2467 Builder.buildUndef(MI.getOperand(0)); 2468 MI.eraseFromParent(); 2469 return true; 2470 } 2471 2472 bool CombinerHelper::matchSimplifyAddToSub( 2473 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2474 Register LHS = MI.getOperand(1).getReg(); 2475 Register RHS = MI.getOperand(2).getReg(); 2476 Register &NewLHS = std::get<0>(MatchInfo); 2477 Register &NewRHS = std::get<1>(MatchInfo); 2478 2479 // Helper lambda to check for opportunities for 2480 // ((0-A) + B) -> B - A 2481 // (A + (0-B)) -> A - B 2482 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { 2483 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) 2484 return false; 2485 NewLHS = MaybeNewLHS; 2486 return true; 2487 }; 2488 2489 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); 2490 } 2491 2492 bool CombinerHelper::matchCombineInsertVecElts( 2493 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2494 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && 2495 "Invalid opcode"); 2496 Register DstReg = MI.getOperand(0).getReg(); 2497 LLT DstTy = MRI.getType(DstReg); 2498 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); 2499 unsigned NumElts = DstTy.getNumElements(); 2500 // If this MI is part of a sequence of insert_vec_elts, then 2501 // don't do the combine in the middle of the sequence. 2502 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == 2503 TargetOpcode::G_INSERT_VECTOR_ELT) 2504 return false; 2505 MachineInstr *CurrInst = &MI; 2506 MachineInstr *TmpInst; 2507 int64_t IntImm; 2508 Register TmpReg; 2509 MatchInfo.resize(NumElts); 2510 while (mi_match( 2511 CurrInst->getOperand(0).getReg(), MRI, 2512 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { 2513 if (IntImm >= NumElts) 2514 return false; 2515 if (!MatchInfo[IntImm]) 2516 MatchInfo[IntImm] = TmpReg; 2517 CurrInst = TmpInst; 2518 } 2519 // Variable index. 2520 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 2521 return false; 2522 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { 2523 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { 2524 if (!MatchInfo[I - 1].isValid()) 2525 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); 2526 } 2527 return true; 2528 } 2529 // If we didn't end in a G_IMPLICIT_DEF, bail out. 2530 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; 2531 } 2532 2533 void CombinerHelper::applyCombineInsertVecElts( 2534 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { 2535 Builder.setInstr(MI); 2536 Register UndefReg; 2537 auto GetUndef = [&]() { 2538 if (UndefReg) 2539 return UndefReg; 2540 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2541 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); 2542 return UndefReg; 2543 }; 2544 for (unsigned I = 0; I < MatchInfo.size(); ++I) { 2545 if (!MatchInfo[I]) 2546 MatchInfo[I] = GetUndef(); 2547 } 2548 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); 2549 MI.eraseFromParent(); 2550 } 2551 2552 void CombinerHelper::applySimplifyAddToSub( 2553 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { 2554 Builder.setInstr(MI); 2555 Register SubLHS, SubRHS; 2556 std::tie(SubLHS, SubRHS) = MatchInfo; 2557 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); 2558 MI.eraseFromParent(); 2559 } 2560 2561 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( 2562 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2563 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... 2564 // 2565 // Creates the new hand + logic instruction (but does not insert them.) 2566 // 2567 // On success, MatchInfo is populated with the new instructions. These are 2568 // inserted in applyHoistLogicOpWithSameOpcodeHands. 2569 unsigned LogicOpcode = MI.getOpcode(); 2570 assert(LogicOpcode == TargetOpcode::G_AND || 2571 LogicOpcode == TargetOpcode::G_OR || 2572 LogicOpcode == TargetOpcode::G_XOR); 2573 MachineIRBuilder MIB(MI); 2574 Register Dst = MI.getOperand(0).getReg(); 2575 Register LHSReg = MI.getOperand(1).getReg(); 2576 Register RHSReg = MI.getOperand(2).getReg(); 2577 2578 // Don't recompute anything. 2579 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) 2580 return false; 2581 2582 // Make sure we have (hand x, ...), (hand y, ...) 2583 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); 2584 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); 2585 if (!LeftHandInst || !RightHandInst) 2586 return false; 2587 unsigned HandOpcode = LeftHandInst->getOpcode(); 2588 if (HandOpcode != RightHandInst->getOpcode()) 2589 return false; 2590 if (!LeftHandInst->getOperand(1).isReg() || 2591 !RightHandInst->getOperand(1).isReg()) 2592 return false; 2593 2594 // Make sure the types match up, and if we're doing this post-legalization, 2595 // we end up with legal types. 2596 Register X = LeftHandInst->getOperand(1).getReg(); 2597 Register Y = RightHandInst->getOperand(1).getReg(); 2598 LLT XTy = MRI.getType(X); 2599 LLT YTy = MRI.getType(Y); 2600 if (XTy != YTy) 2601 return false; 2602 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) 2603 return false; 2604 2605 // Optional extra source register. 2606 Register ExtraHandOpSrcReg; 2607 switch (HandOpcode) { 2608 default: 2609 return false; 2610 case TargetOpcode::G_ANYEXT: 2611 case TargetOpcode::G_SEXT: 2612 case TargetOpcode::G_ZEXT: { 2613 // Match: logic (ext X), (ext Y) --> ext (logic X, Y) 2614 break; 2615 } 2616 case TargetOpcode::G_AND: 2617 case TargetOpcode::G_ASHR: 2618 case TargetOpcode::G_LSHR: 2619 case TargetOpcode::G_SHL: { 2620 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z 2621 MachineOperand &ZOp = LeftHandInst->getOperand(2); 2622 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) 2623 return false; 2624 ExtraHandOpSrcReg = ZOp.getReg(); 2625 break; 2626 } 2627 } 2628 2629 // Record the steps to build the new instructions. 2630 // 2631 // Steps to build (logic x, y) 2632 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); 2633 OperandBuildSteps LogicBuildSteps = { 2634 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, 2635 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, 2636 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; 2637 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); 2638 2639 // Steps to build hand (logic x, y), ...z 2640 OperandBuildSteps HandBuildSteps = { 2641 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, 2642 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; 2643 if (ExtraHandOpSrcReg.isValid()) 2644 HandBuildSteps.push_back( 2645 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); 2646 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); 2647 2648 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); 2649 return true; 2650 } 2651 2652 void CombinerHelper::applyBuildInstructionSteps( 2653 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { 2654 assert(MatchInfo.InstrsToBuild.size() && 2655 "Expected at least one instr to build?"); 2656 Builder.setInstr(MI); 2657 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { 2658 assert(InstrToBuild.Opcode && "Expected a valid opcode?"); 2659 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); 2660 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); 2661 for (auto &OperandFn : InstrToBuild.OperandFns) 2662 OperandFn(Instr); 2663 } 2664 MI.eraseFromParent(); 2665 } 2666 2667 bool CombinerHelper::matchAshrShlToSextInreg( 2668 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2669 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2670 int64_t ShlCst, AshrCst; 2671 Register Src; 2672 // FIXME: detect splat constant vectors. 2673 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2674 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) 2675 return false; 2676 if (ShlCst != AshrCst) 2677 return false; 2678 if (!isLegalOrBeforeLegalizer( 2679 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) 2680 return false; 2681 MatchInfo = std::make_tuple(Src, ShlCst); 2682 return true; 2683 } 2684 2685 void CombinerHelper::applyAshShlToSextInreg( 2686 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { 2687 assert(MI.getOpcode() == TargetOpcode::G_ASHR); 2688 Register Src; 2689 int64_t ShiftAmt; 2690 std::tie(Src, ShiftAmt) = MatchInfo; 2691 unsigned Size = MRI.getType(Src).getScalarSizeInBits(); 2692 Builder.setInstrAndDebugLoc(MI); 2693 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); 2694 MI.eraseFromParent(); 2695 } 2696 2697 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 2698 bool CombinerHelper::matchOverlappingAnd( 2699 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 2700 assert(MI.getOpcode() == TargetOpcode::G_AND); 2701 2702 Register Dst = MI.getOperand(0).getReg(); 2703 LLT Ty = MRI.getType(Dst); 2704 2705 Register R; 2706 int64_t C1; 2707 int64_t C2; 2708 if (!mi_match( 2709 Dst, MRI, 2710 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) 2711 return false; 2712 2713 MatchInfo = [=](MachineIRBuilder &B) { 2714 if (C1 & C2) { 2715 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); 2716 return; 2717 } 2718 auto Zero = B.buildConstant(Ty, 0); 2719 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); 2720 }; 2721 return true; 2722 } 2723 2724 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, 2725 Register &Replacement) { 2726 // Given 2727 // 2728 // %y:_(sN) = G_SOMETHING 2729 // %x:_(sN) = G_SOMETHING 2730 // %res:_(sN) = G_AND %x, %y 2731 // 2732 // Eliminate the G_AND when it is known that x & y == x or x & y == y. 2733 // 2734 // Patterns like this can appear as a result of legalization. E.g. 2735 // 2736 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y 2737 // %one:_(s32) = G_CONSTANT i32 1 2738 // %and:_(s32) = G_AND %cmp, %one 2739 // 2740 // In this case, G_ICMP only produces a single bit, so x & 1 == x. 2741 assert(MI.getOpcode() == TargetOpcode::G_AND); 2742 if (!KB) 2743 return false; 2744 2745 Register AndDst = MI.getOperand(0).getReg(); 2746 LLT DstTy = MRI.getType(AndDst); 2747 2748 // FIXME: This should be removed once GISelKnownBits supports vectors. 2749 if (DstTy.isVector()) 2750 return false; 2751 2752 Register LHS = MI.getOperand(1).getReg(); 2753 Register RHS = MI.getOperand(2).getReg(); 2754 KnownBits LHSBits = KB->getKnownBits(LHS); 2755 KnownBits RHSBits = KB->getKnownBits(RHS); 2756 2757 // Check that x & Mask == x. 2758 // x & 1 == x, always 2759 // x & 0 == x, only if x is also 0 2760 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. 2761 // 2762 // Check if we can replace AndDst with the LHS of the G_AND 2763 if (canReplaceReg(AndDst, LHS, MRI) && 2764 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2765 Replacement = LHS; 2766 return true; 2767 } 2768 2769 // Check if we can replace AndDst with the RHS of the G_AND 2770 if (canReplaceReg(AndDst, RHS, MRI) && 2771 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2772 Replacement = RHS; 2773 return true; 2774 } 2775 2776 return false; 2777 } 2778 2779 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { 2780 // Given 2781 // 2782 // %y:_(sN) = G_SOMETHING 2783 // %x:_(sN) = G_SOMETHING 2784 // %res:_(sN) = G_OR %x, %y 2785 // 2786 // Eliminate the G_OR when it is known that x | y == x or x | y == y. 2787 assert(MI.getOpcode() == TargetOpcode::G_OR); 2788 if (!KB) 2789 return false; 2790 2791 Register OrDst = MI.getOperand(0).getReg(); 2792 LLT DstTy = MRI.getType(OrDst); 2793 2794 // FIXME: This should be removed once GISelKnownBits supports vectors. 2795 if (DstTy.isVector()) 2796 return false; 2797 2798 Register LHS = MI.getOperand(1).getReg(); 2799 Register RHS = MI.getOperand(2).getReg(); 2800 KnownBits LHSBits = KB->getKnownBits(LHS); 2801 KnownBits RHSBits = KB->getKnownBits(RHS); 2802 2803 // Check that x | Mask == x. 2804 // x | 0 == x, always 2805 // x | 1 == x, only if x is also 1 2806 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. 2807 // 2808 // Check if we can replace OrDst with the LHS of the G_OR 2809 if (canReplaceReg(OrDst, LHS, MRI) && 2810 (LHSBits.One | RHSBits.Zero).isAllOnes()) { 2811 Replacement = LHS; 2812 return true; 2813 } 2814 2815 // Check if we can replace OrDst with the RHS of the G_OR 2816 if (canReplaceReg(OrDst, RHS, MRI) && 2817 (LHSBits.Zero | RHSBits.One).isAllOnes()) { 2818 Replacement = RHS; 2819 return true; 2820 } 2821 2822 return false; 2823 } 2824 2825 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { 2826 // If the input is already sign extended, just drop the extension. 2827 Register Src = MI.getOperand(1).getReg(); 2828 unsigned ExtBits = MI.getOperand(2).getImm(); 2829 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); 2830 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); 2831 } 2832 2833 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, 2834 int64_t Cst, bool IsVector, bool IsFP) { 2835 // For i1, Cst will always be -1 regardless of boolean contents. 2836 return (ScalarSizeBits == 1 && Cst == -1) || 2837 isConstTrueVal(TLI, Cst, IsVector, IsFP); 2838 } 2839 2840 bool CombinerHelper::matchNotCmp(MachineInstr &MI, 2841 SmallVectorImpl<Register> &RegsToNegate) { 2842 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2843 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2844 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); 2845 Register XorSrc; 2846 Register CstReg; 2847 // We match xor(src, true) here. 2848 if (!mi_match(MI.getOperand(0).getReg(), MRI, 2849 m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) 2850 return false; 2851 2852 if (!MRI.hasOneNonDBGUse(XorSrc)) 2853 return false; 2854 2855 // Check that XorSrc is the root of a tree of comparisons combined with ANDs 2856 // and ORs. The suffix of RegsToNegate starting from index I is used a work 2857 // list of tree nodes to visit. 2858 RegsToNegate.push_back(XorSrc); 2859 // Remember whether the comparisons are all integer or all floating point. 2860 bool IsInt = false; 2861 bool IsFP = false; 2862 for (unsigned I = 0; I < RegsToNegate.size(); ++I) { 2863 Register Reg = RegsToNegate[I]; 2864 if (!MRI.hasOneNonDBGUse(Reg)) 2865 return false; 2866 MachineInstr *Def = MRI.getVRegDef(Reg); 2867 switch (Def->getOpcode()) { 2868 default: 2869 // Don't match if the tree contains anything other than ANDs, ORs and 2870 // comparisons. 2871 return false; 2872 case TargetOpcode::G_ICMP: 2873 if (IsFP) 2874 return false; 2875 IsInt = true; 2876 // When we apply the combine we will invert the predicate. 2877 break; 2878 case TargetOpcode::G_FCMP: 2879 if (IsInt) 2880 return false; 2881 IsFP = true; 2882 // When we apply the combine we will invert the predicate. 2883 break; 2884 case TargetOpcode::G_AND: 2885 case TargetOpcode::G_OR: 2886 // Implement De Morgan's laws: 2887 // ~(x & y) -> ~x | ~y 2888 // ~(x | y) -> ~x & ~y 2889 // When we apply the combine we will change the opcode and recursively 2890 // negate the operands. 2891 RegsToNegate.push_back(Def->getOperand(1).getReg()); 2892 RegsToNegate.push_back(Def->getOperand(2).getReg()); 2893 break; 2894 } 2895 } 2896 2897 // Now we know whether the comparisons are integer or floating point, check 2898 // the constant in the xor. 2899 int64_t Cst; 2900 if (Ty.isVector()) { 2901 MachineInstr *CstDef = MRI.getVRegDef(CstReg); 2902 auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); 2903 if (!MaybeCst) 2904 return false; 2905 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) 2906 return false; 2907 } else { 2908 if (!mi_match(CstReg, MRI, m_ICst(Cst))) 2909 return false; 2910 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) 2911 return false; 2912 } 2913 2914 return true; 2915 } 2916 2917 void CombinerHelper::applyNotCmp(MachineInstr &MI, 2918 SmallVectorImpl<Register> &RegsToNegate) { 2919 for (Register Reg : RegsToNegate) { 2920 MachineInstr *Def = MRI.getVRegDef(Reg); 2921 Observer.changingInstr(*Def); 2922 // For each comparison, invert the opcode. For each AND and OR, change the 2923 // opcode. 2924 switch (Def->getOpcode()) { 2925 default: 2926 llvm_unreachable("Unexpected opcode"); 2927 case TargetOpcode::G_ICMP: 2928 case TargetOpcode::G_FCMP: { 2929 MachineOperand &PredOp = Def->getOperand(1); 2930 CmpInst::Predicate NewP = CmpInst::getInversePredicate( 2931 (CmpInst::Predicate)PredOp.getPredicate()); 2932 PredOp.setPredicate(NewP); 2933 break; 2934 } 2935 case TargetOpcode::G_AND: 2936 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); 2937 break; 2938 case TargetOpcode::G_OR: 2939 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2940 break; 2941 } 2942 Observer.changedInstr(*Def); 2943 } 2944 2945 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 2946 MI.eraseFromParent(); 2947 } 2948 2949 bool CombinerHelper::matchXorOfAndWithSameReg( 2950 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2951 // Match (xor (and x, y), y) (or any of its commuted cases) 2952 assert(MI.getOpcode() == TargetOpcode::G_XOR); 2953 Register &X = MatchInfo.first; 2954 Register &Y = MatchInfo.second; 2955 Register AndReg = MI.getOperand(1).getReg(); 2956 Register SharedReg = MI.getOperand(2).getReg(); 2957 2958 // Find a G_AND on either side of the G_XOR. 2959 // Look for one of 2960 // 2961 // (xor (and x, y), SharedReg) 2962 // (xor SharedReg, (and x, y)) 2963 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { 2964 std::swap(AndReg, SharedReg); 2965 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) 2966 return false; 2967 } 2968 2969 // Only do this if we'll eliminate the G_AND. 2970 if (!MRI.hasOneNonDBGUse(AndReg)) 2971 return false; 2972 2973 // We can combine if SharedReg is the same as either the LHS or RHS of the 2974 // G_AND. 2975 if (Y != SharedReg) 2976 std::swap(X, Y); 2977 return Y == SharedReg; 2978 } 2979 2980 void CombinerHelper::applyXorOfAndWithSameReg( 2981 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { 2982 // Fold (xor (and x, y), y) -> (and (not x), y) 2983 Builder.setInstrAndDebugLoc(MI); 2984 Register X, Y; 2985 std::tie(X, Y) = MatchInfo; 2986 auto Not = Builder.buildNot(MRI.getType(X), X); 2987 Observer.changingInstr(MI); 2988 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); 2989 MI.getOperand(1).setReg(Not->getOperand(0).getReg()); 2990 MI.getOperand(2).setReg(Y); 2991 Observer.changedInstr(MI); 2992 } 2993 2994 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { 2995 auto &PtrAdd = cast<GPtrAdd>(MI); 2996 Register DstReg = PtrAdd.getReg(0); 2997 LLT Ty = MRI.getType(DstReg); 2998 const DataLayout &DL = Builder.getMF().getDataLayout(); 2999 3000 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) 3001 return false; 3002 3003 if (Ty.isPointer()) { 3004 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); 3005 return ConstVal && *ConstVal == 0; 3006 } 3007 3008 assert(Ty.isVector() && "Expecting a vector type"); 3009 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); 3010 return isBuildVectorAllZeros(*VecMI, MRI); 3011 } 3012 3013 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { 3014 auto &PtrAdd = cast<GPtrAdd>(MI); 3015 Builder.setInstrAndDebugLoc(PtrAdd); 3016 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); 3017 PtrAdd.eraseFromParent(); 3018 } 3019 3020 /// The second source operand is known to be a power of 2. 3021 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { 3022 Register DstReg = MI.getOperand(0).getReg(); 3023 Register Src0 = MI.getOperand(1).getReg(); 3024 Register Pow2Src1 = MI.getOperand(2).getReg(); 3025 LLT Ty = MRI.getType(DstReg); 3026 Builder.setInstrAndDebugLoc(MI); 3027 3028 // Fold (urem x, pow2) -> (and x, pow2-1) 3029 auto NegOne = Builder.buildConstant(Ty, -1); 3030 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); 3031 Builder.buildAnd(DstReg, Src0, Add); 3032 MI.eraseFromParent(); 3033 } 3034 3035 Optional<SmallVector<Register, 8>> 3036 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { 3037 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); 3038 // We want to detect if Root is part of a tree which represents a bunch 3039 // of loads being merged into a larger load. We'll try to recognize patterns 3040 // like, for example: 3041 // 3042 // Reg Reg 3043 // \ / 3044 // OR_1 Reg 3045 // \ / 3046 // OR_2 3047 // \ Reg 3048 // .. / 3049 // Root 3050 // 3051 // Reg Reg Reg Reg 3052 // \ / \ / 3053 // OR_1 OR_2 3054 // \ / 3055 // \ / 3056 // ... 3057 // Root 3058 // 3059 // Each "Reg" may have been produced by a load + some arithmetic. This 3060 // function will save each of them. 3061 SmallVector<Register, 8> RegsToVisit; 3062 SmallVector<const MachineInstr *, 7> Ors = {Root}; 3063 3064 // In the "worst" case, we're dealing with a load for each byte. So, there 3065 // are at most #bytes - 1 ORs. 3066 const unsigned MaxIter = 3067 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; 3068 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { 3069 if (Ors.empty()) 3070 break; 3071 const MachineInstr *Curr = Ors.pop_back_val(); 3072 Register OrLHS = Curr->getOperand(1).getReg(); 3073 Register OrRHS = Curr->getOperand(2).getReg(); 3074 3075 // In the combine, we want to elimate the entire tree. 3076 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) 3077 return None; 3078 3079 // If it's a G_OR, save it and continue to walk. If it's not, then it's 3080 // something that may be a load + arithmetic. 3081 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) 3082 Ors.push_back(Or); 3083 else 3084 RegsToVisit.push_back(OrLHS); 3085 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) 3086 Ors.push_back(Or); 3087 else 3088 RegsToVisit.push_back(OrRHS); 3089 } 3090 3091 // We're going to try and merge each register into a wider power-of-2 type, 3092 // so we ought to have an even number of registers. 3093 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) 3094 return None; 3095 return RegsToVisit; 3096 } 3097 3098 /// Helper function for findLoadOffsetsForLoadOrCombine. 3099 /// 3100 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, 3101 /// and then moving that value into a specific byte offset. 3102 /// 3103 /// e.g. x[i] << 24 3104 /// 3105 /// \returns The load instruction and the byte offset it is moved into. 3106 static Optional<std::pair<GZExtLoad *, int64_t>> 3107 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, 3108 const MachineRegisterInfo &MRI) { 3109 assert(MRI.hasOneNonDBGUse(Reg) && 3110 "Expected Reg to only have one non-debug use?"); 3111 Register MaybeLoad; 3112 int64_t Shift; 3113 if (!mi_match(Reg, MRI, 3114 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { 3115 Shift = 0; 3116 MaybeLoad = Reg; 3117 } 3118 3119 if (Shift % MemSizeInBits != 0) 3120 return None; 3121 3122 // TODO: Handle other types of loads. 3123 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI); 3124 if (!Load) 3125 return None; 3126 3127 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) 3128 return None; 3129 3130 return std::make_pair(Load, Shift / MemSizeInBits); 3131 } 3132 3133 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>> 3134 CombinerHelper::findLoadOffsetsForLoadOrCombine( 3135 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, 3136 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { 3137 3138 // Each load found for the pattern. There should be one for each RegsToVisit. 3139 SmallSetVector<const MachineInstr *, 8> Loads; 3140 3141 // The lowest index used in any load. (The lowest "i" for each x[i].) 3142 int64_t LowestIdx = INT64_MAX; 3143 3144 // The load which uses the lowest index. 3145 GZExtLoad *LowestIdxLoad = nullptr; 3146 3147 // Keeps track of the load indices we see. We shouldn't see any indices twice. 3148 SmallSet<int64_t, 8> SeenIdx; 3149 3150 // Ensure each load is in the same MBB. 3151 // TODO: Support multiple MachineBasicBlocks. 3152 MachineBasicBlock *MBB = nullptr; 3153 const MachineMemOperand *MMO = nullptr; 3154 3155 // Earliest instruction-order load in the pattern. 3156 GZExtLoad *EarliestLoad = nullptr; 3157 3158 // Latest instruction-order load in the pattern. 3159 GZExtLoad *LatestLoad = nullptr; 3160 3161 // Base pointer which every load should share. 3162 Register BasePtr; 3163 3164 // We want to find a load for each register. Each load should have some 3165 // appropriate bit twiddling arithmetic. During this loop, we will also keep 3166 // track of the load which uses the lowest index. Later, we will check if we 3167 // can use its pointer in the final, combined load. 3168 for (auto Reg : RegsToVisit) { 3169 // Find the load, and find the position that it will end up in (e.g. a 3170 // shifted) value. 3171 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); 3172 if (!LoadAndPos) 3173 return None; 3174 GZExtLoad *Load; 3175 int64_t DstPos; 3176 std::tie(Load, DstPos) = *LoadAndPos; 3177 3178 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because 3179 // it is difficult to check for stores/calls/etc between loads. 3180 MachineBasicBlock *LoadMBB = Load->getParent(); 3181 if (!MBB) 3182 MBB = LoadMBB; 3183 if (LoadMBB != MBB) 3184 return None; 3185 3186 // Make sure that the MachineMemOperands of every seen load are compatible. 3187 auto &LoadMMO = Load->getMMO(); 3188 if (!MMO) 3189 MMO = &LoadMMO; 3190 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) 3191 return None; 3192 3193 // Find out what the base pointer and index for the load is. 3194 Register LoadPtr; 3195 int64_t Idx; 3196 if (!mi_match(Load->getOperand(1).getReg(), MRI, 3197 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { 3198 LoadPtr = Load->getOperand(1).getReg(); 3199 Idx = 0; 3200 } 3201 3202 // Don't combine things like a[i], a[i] -> a bigger load. 3203 if (!SeenIdx.insert(Idx).second) 3204 return None; 3205 3206 // Every load must share the same base pointer; don't combine things like: 3207 // 3208 // a[i], b[i + 1] -> a bigger load. 3209 if (!BasePtr.isValid()) 3210 BasePtr = LoadPtr; 3211 if (BasePtr != LoadPtr) 3212 return None; 3213 3214 if (Idx < LowestIdx) { 3215 LowestIdx = Idx; 3216 LowestIdxLoad = Load; 3217 } 3218 3219 // Keep track of the byte offset that this load ends up at. If we have seen 3220 // the byte offset, then stop here. We do not want to combine: 3221 // 3222 // a[i] << 16, a[i + k] << 16 -> a bigger load. 3223 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) 3224 return None; 3225 Loads.insert(Load); 3226 3227 // Keep track of the position of the earliest/latest loads in the pattern. 3228 // We will check that there are no load fold barriers between them later 3229 // on. 3230 // 3231 // FIXME: Is there a better way to check for load fold barriers? 3232 if (!EarliestLoad || dominates(*Load, *EarliestLoad)) 3233 EarliestLoad = Load; 3234 if (!LatestLoad || dominates(*LatestLoad, *Load)) 3235 LatestLoad = Load; 3236 } 3237 3238 // We found a load for each register. Let's check if each load satisfies the 3239 // pattern. 3240 assert(Loads.size() == RegsToVisit.size() && 3241 "Expected to find a load for each register?"); 3242 assert(EarliestLoad != LatestLoad && EarliestLoad && 3243 LatestLoad && "Expected at least two loads?"); 3244 3245 // Check if there are any stores, calls, etc. between any of the loads. If 3246 // there are, then we can't safely perform the combine. 3247 // 3248 // MaxIter is chosen based off the (worst case) number of iterations it 3249 // typically takes to succeed in the LLVM test suite plus some padding. 3250 // 3251 // FIXME: Is there a better way to check for load fold barriers? 3252 const unsigned MaxIter = 20; 3253 unsigned Iter = 0; 3254 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), 3255 LatestLoad->getIterator())) { 3256 if (Loads.count(&MI)) 3257 continue; 3258 if (MI.isLoadFoldBarrier()) 3259 return None; 3260 if (Iter++ == MaxIter) 3261 return None; 3262 } 3263 3264 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); 3265 } 3266 3267 bool CombinerHelper::matchLoadOrCombine( 3268 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3269 assert(MI.getOpcode() == TargetOpcode::G_OR); 3270 MachineFunction &MF = *MI.getMF(); 3271 // Assuming a little-endian target, transform: 3272 // s8 *a = ... 3273 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) 3274 // => 3275 // s32 val = *((i32)a) 3276 // 3277 // s8 *a = ... 3278 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] 3279 // => 3280 // s32 val = BSWAP(*((s32)a)) 3281 Register Dst = MI.getOperand(0).getReg(); 3282 LLT Ty = MRI.getType(Dst); 3283 if (Ty.isVector()) 3284 return false; 3285 3286 // We need to combine at least two loads into this type. Since the smallest 3287 // possible load is into a byte, we need at least a 16-bit wide type. 3288 const unsigned WideMemSizeInBits = Ty.getSizeInBits(); 3289 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) 3290 return false; 3291 3292 // Match a collection of non-OR instructions in the pattern. 3293 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); 3294 if (!RegsToVisit) 3295 return false; 3296 3297 // We have a collection of non-OR instructions. Figure out how wide each of 3298 // the small loads should be based off of the number of potential loads we 3299 // found. 3300 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); 3301 if (NarrowMemSizeInBits % 8 != 0) 3302 return false; 3303 3304 // Check if each register feeding into each OR is a load from the same 3305 // base pointer + some arithmetic. 3306 // 3307 // e.g. a[0], a[1] << 8, a[2] << 16, etc. 3308 // 3309 // Also verify that each of these ends up putting a[i] into the same memory 3310 // offset as a load into a wide type would. 3311 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; 3312 GZExtLoad *LowestIdxLoad, *LatestLoad; 3313 int64_t LowestIdx; 3314 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( 3315 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); 3316 if (!MaybeLoadInfo) 3317 return false; 3318 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; 3319 3320 // We have a bunch of loads being OR'd together. Using the addresses + offsets 3321 // we found before, check if this corresponds to a big or little endian byte 3322 // pattern. If it does, then we can represent it using a load + possibly a 3323 // BSWAP. 3324 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); 3325 Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); 3326 if (!IsBigEndian.hasValue()) 3327 return false; 3328 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; 3329 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) 3330 return false; 3331 3332 // Make sure that the load from the lowest index produces offset 0 in the 3333 // final value. 3334 // 3335 // This ensures that we won't combine something like this: 3336 // 3337 // load x[i] -> byte 2 3338 // load x[i+1] -> byte 0 ---> wide_load x[i] 3339 // load x[i+2] -> byte 1 3340 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; 3341 const unsigned ZeroByteOffset = 3342 *IsBigEndian 3343 ? bigEndianByteAt(NumLoadsInTy, 0) 3344 : littleEndianByteAt(NumLoadsInTy, 0); 3345 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); 3346 if (ZeroOffsetIdx == MemOffset2Idx.end() || 3347 ZeroOffsetIdx->second != LowestIdx) 3348 return false; 3349 3350 // We wil reuse the pointer from the load which ends up at byte offset 0. It 3351 // may not use index 0. 3352 Register Ptr = LowestIdxLoad->getPointerReg(); 3353 const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); 3354 LegalityQuery::MemDesc MMDesc(MMO); 3355 MMDesc.MemoryTy = Ty; 3356 if (!isLegalOrBeforeLegalizer( 3357 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) 3358 return false; 3359 auto PtrInfo = MMO.getPointerInfo(); 3360 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); 3361 3362 // Load must be allowed and fast on the target. 3363 LLVMContext &C = MF.getFunction().getContext(); 3364 auto &DL = MF.getDataLayout(); 3365 bool Fast = false; 3366 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || 3367 !Fast) 3368 return false; 3369 3370 MatchInfo = [=](MachineIRBuilder &MIB) { 3371 MIB.setInstrAndDebugLoc(*LatestLoad); 3372 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; 3373 MIB.buildLoad(LoadDst, Ptr, *NewMMO); 3374 if (NeedsBSwap) 3375 MIB.buildBSwap(Dst, LoadDst); 3376 }; 3377 return true; 3378 } 3379 3380 /// Check if the store \p Store is a truncstore that can be merged. That is, 3381 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty 3382 /// Register then it does not need to match and SrcVal is set to the source 3383 /// value found. 3384 /// On match, returns the start byte offset of the \p SrcVal that is being 3385 /// stored. 3386 static Optional<int64_t> getTruncStoreByteOffset(GStore &Store, Register &SrcVal, 3387 MachineRegisterInfo &MRI) { 3388 Register TruncVal; 3389 if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) 3390 return None; 3391 3392 // The shift amount must be a constant multiple of the narrow type. 3393 // It is translated to the offset address in the wide source value "y". 3394 // 3395 // x = G_LSHR y, ShiftAmtC 3396 // s8 z = G_TRUNC x 3397 // store z, ... 3398 Register FoundSrcVal; 3399 int64_t ShiftAmt; 3400 if (!mi_match(TruncVal, MRI, 3401 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), 3402 m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { 3403 if (!SrcVal.isValid() || TruncVal == SrcVal) { 3404 if (!SrcVal.isValid()) 3405 SrcVal = TruncVal; 3406 return 0; // If it's the lowest index store. 3407 } 3408 return None; 3409 } 3410 3411 unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); 3412 if (ShiftAmt % NarrowBits!= 0) 3413 return None; 3414 const unsigned Offset = ShiftAmt / NarrowBits; 3415 3416 if (SrcVal.isValid() && FoundSrcVal != SrcVal) 3417 return None; 3418 3419 if (!SrcVal.isValid()) 3420 SrcVal = FoundSrcVal; 3421 else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) 3422 return None; 3423 return Offset; 3424 } 3425 3426 /// Match a pattern where a wide type scalar value is stored by several narrow 3427 /// stores. Fold it into a single store or a BSWAP and a store if the targets 3428 /// supports it. 3429 /// 3430 /// Assuming little endian target: 3431 /// i8 *p = ... 3432 /// i32 val = ... 3433 /// p[0] = (val >> 0) & 0xFF; 3434 /// p[1] = (val >> 8) & 0xFF; 3435 /// p[2] = (val >> 16) & 0xFF; 3436 /// p[3] = (val >> 24) & 0xFF; 3437 /// => 3438 /// *((i32)p) = val; 3439 /// 3440 /// i8 *p = ... 3441 /// i32 val = ... 3442 /// p[0] = (val >> 24) & 0xFF; 3443 /// p[1] = (val >> 16) & 0xFF; 3444 /// p[2] = (val >> 8) & 0xFF; 3445 /// p[3] = (val >> 0) & 0xFF; 3446 /// => 3447 /// *((i32)p) = BSWAP(val); 3448 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, 3449 MergeTruncStoresInfo &MatchInfo) { 3450 auto &StoreMI = cast<GStore>(MI); 3451 LLT MemTy = StoreMI.getMMO().getMemoryType(); 3452 3453 // We only handle merging simple stores of 1-4 bytes. 3454 if (!MemTy.isScalar()) 3455 return false; 3456 switch (MemTy.getSizeInBits()) { 3457 case 8: 3458 case 16: 3459 case 32: 3460 break; 3461 default: 3462 return false; 3463 } 3464 if (!StoreMI.isSimple()) 3465 return false; 3466 3467 // We do a simple search for mergeable stores prior to this one. 3468 // Any potential alias hazard along the way terminates the search. 3469 SmallVector<GStore *> FoundStores; 3470 3471 // We're looking for: 3472 // 1) a (store(trunc(...))) 3473 // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get 3474 // the partial value stored. 3475 // 3) where the offsets form either a little or big-endian sequence. 3476 3477 auto &LastStore = StoreMI; 3478 3479 // The single base pointer that all stores must use. 3480 Register BaseReg; 3481 int64_t LastOffset; 3482 if (!mi_match(LastStore.getPointerReg(), MRI, 3483 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { 3484 BaseReg = LastStore.getPointerReg(); 3485 LastOffset = 0; 3486 } 3487 3488 GStore *LowestIdxStore = &LastStore; 3489 int64_t LowestIdxOffset = LastOffset; 3490 3491 Register WideSrcVal; 3492 auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); 3493 if (!LowestShiftAmt) 3494 return false; // Didn't match a trunc. 3495 assert(WideSrcVal.isValid()); 3496 3497 LLT WideStoreTy = MRI.getType(WideSrcVal); 3498 // The wide type might not be a multiple of the memory type, e.g. s48 and s32. 3499 if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) 3500 return false; 3501 const unsigned NumStoresRequired = 3502 WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); 3503 3504 SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); 3505 OffsetMap[*LowestShiftAmt] = LastOffset; 3506 FoundStores.emplace_back(&LastStore); 3507 3508 // Search the block up for more stores. 3509 // We use a search threshold of 10 instructions here because the combiner 3510 // works top-down within a block, and we don't want to search an unbounded 3511 // number of predecessor instructions trying to find matching stores. 3512 // If we moved this optimization into a separate pass then we could probably 3513 // use a more efficient search without having a hard-coded threshold. 3514 const int MaxInstsToCheck = 10; 3515 int NumInstsChecked = 0; 3516 for (auto II = ++LastStore.getReverseIterator(); 3517 II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; 3518 ++II) { 3519 NumInstsChecked++; 3520 GStore *NewStore; 3521 if ((NewStore = dyn_cast<GStore>(&*II))) { 3522 if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) 3523 break; 3524 } else if (II->isLoadFoldBarrier() || II->mayLoad()) { 3525 break; 3526 } else { 3527 continue; // This is a safe instruction we can look past. 3528 } 3529 3530 Register NewBaseReg; 3531 int64_t MemOffset; 3532 // Check we're storing to the same base + some offset. 3533 if (!mi_match(NewStore->getPointerReg(), MRI, 3534 m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { 3535 NewBaseReg = NewStore->getPointerReg(); 3536 MemOffset = 0; 3537 } 3538 if (BaseReg != NewBaseReg) 3539 break; 3540 3541 auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); 3542 if (!ShiftByteOffset) 3543 break; 3544 if (MemOffset < LowestIdxOffset) { 3545 LowestIdxOffset = MemOffset; 3546 LowestIdxStore = NewStore; 3547 } 3548 3549 // Map the offset in the store and the offset in the combined value, and 3550 // early return if it has been set before. 3551 if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || 3552 OffsetMap[*ShiftByteOffset] != INT64_MAX) 3553 break; 3554 OffsetMap[*ShiftByteOffset] = MemOffset; 3555 3556 FoundStores.emplace_back(NewStore); 3557 // Reset counter since we've found a matching inst. 3558 NumInstsChecked = 0; 3559 if (FoundStores.size() == NumStoresRequired) 3560 break; 3561 } 3562 3563 if (FoundStores.size() != NumStoresRequired) { 3564 return false; 3565 } 3566 3567 const auto &DL = LastStore.getMF()->getDataLayout(); 3568 auto &C = LastStore.getMF()->getFunction().getContext(); 3569 // Check that a store of the wide type is both allowed and fast on the target 3570 bool Fast = false; 3571 bool Allowed = getTargetLowering().allowsMemoryAccess( 3572 C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); 3573 if (!Allowed || !Fast) 3574 return false; 3575 3576 // Check if the pieces of the value are going to the expected places in memory 3577 // to merge the stores. 3578 unsigned NarrowBits = MemTy.getScalarSizeInBits(); 3579 auto checkOffsets = [&](bool MatchLittleEndian) { 3580 if (MatchLittleEndian) { 3581 for (unsigned i = 0; i != NumStoresRequired; ++i) 3582 if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) 3583 return false; 3584 } else { // MatchBigEndian by reversing loop counter. 3585 for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; 3586 ++i, --j) 3587 if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) 3588 return false; 3589 } 3590 return true; 3591 }; 3592 3593 // Check if the offsets line up for the native data layout of this target. 3594 bool NeedBswap = false; 3595 bool NeedRotate = false; 3596 if (!checkOffsets(DL.isLittleEndian())) { 3597 // Special-case: check if byte offsets line up for the opposite endian. 3598 if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) 3599 NeedBswap = true; 3600 else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) 3601 NeedRotate = true; 3602 else 3603 return false; 3604 } 3605 3606 if (NeedBswap && 3607 !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) 3608 return false; 3609 if (NeedRotate && 3610 !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) 3611 return false; 3612 3613 MatchInfo.NeedBSwap = NeedBswap; 3614 MatchInfo.NeedRotate = NeedRotate; 3615 MatchInfo.LowestIdxStore = LowestIdxStore; 3616 MatchInfo.WideSrcVal = WideSrcVal; 3617 MatchInfo.FoundStores = std::move(FoundStores); 3618 return true; 3619 } 3620 3621 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, 3622 MergeTruncStoresInfo &MatchInfo) { 3623 3624 Builder.setInstrAndDebugLoc(MI); 3625 Register WideSrcVal = MatchInfo.WideSrcVal; 3626 LLT WideStoreTy = MRI.getType(WideSrcVal); 3627 3628 if (MatchInfo.NeedBSwap) { 3629 WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); 3630 } else if (MatchInfo.NeedRotate) { 3631 assert(WideStoreTy.getSizeInBits() % 2 == 0 && 3632 "Unexpected type for rotate"); 3633 auto RotAmt = 3634 Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); 3635 WideSrcVal = 3636 Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); 3637 } 3638 3639 Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), 3640 MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), 3641 MatchInfo.LowestIdxStore->getMMO().getAlign()); 3642 3643 // Erase the old stores. 3644 for (auto *ST : MatchInfo.FoundStores) 3645 ST->eraseFromParent(); 3646 } 3647 3648 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, 3649 MachineInstr *&ExtMI) { 3650 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3651 3652 Register DstReg = MI.getOperand(0).getReg(); 3653 3654 // TODO: Extending a vector may be expensive, don't do this until heuristics 3655 // are better. 3656 if (MRI.getType(DstReg).isVector()) 3657 return false; 3658 3659 // Try to match a phi, whose only use is an extend. 3660 if (!MRI.hasOneNonDBGUse(DstReg)) 3661 return false; 3662 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); 3663 switch (ExtMI->getOpcode()) { 3664 case TargetOpcode::G_ANYEXT: 3665 return true; // G_ANYEXT is usually free. 3666 case TargetOpcode::G_ZEXT: 3667 case TargetOpcode::G_SEXT: 3668 break; 3669 default: 3670 return false; 3671 } 3672 3673 // If the target is likely to fold this extend away, don't propagate. 3674 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) 3675 return false; 3676 3677 // We don't want to propagate the extends unless there's a good chance that 3678 // they'll be optimized in some way. 3679 // Collect the unique incoming values. 3680 SmallPtrSet<MachineInstr *, 4> InSrcs; 3681 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { 3682 auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); 3683 switch (DefMI->getOpcode()) { 3684 case TargetOpcode::G_LOAD: 3685 case TargetOpcode::G_TRUNC: 3686 case TargetOpcode::G_SEXT: 3687 case TargetOpcode::G_ZEXT: 3688 case TargetOpcode::G_ANYEXT: 3689 case TargetOpcode::G_CONSTANT: 3690 InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); 3691 // Don't try to propagate if there are too many places to create new 3692 // extends, chances are it'll increase code size. 3693 if (InSrcs.size() > 2) 3694 return false; 3695 break; 3696 default: 3697 return false; 3698 } 3699 } 3700 return true; 3701 } 3702 3703 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, 3704 MachineInstr *&ExtMI) { 3705 assert(MI.getOpcode() == TargetOpcode::G_PHI); 3706 Register DstReg = ExtMI->getOperand(0).getReg(); 3707 LLT ExtTy = MRI.getType(DstReg); 3708 3709 // Propagate the extension into the block of each incoming reg's block. 3710 // Use a SetVector here because PHIs can have duplicate edges, and we want 3711 // deterministic iteration order. 3712 SmallSetVector<MachineInstr *, 8> SrcMIs; 3713 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap; 3714 for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { 3715 auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); 3716 if (!SrcMIs.insert(SrcMI)) 3717 continue; 3718 3719 // Build an extend after each src inst. 3720 auto *MBB = SrcMI->getParent(); 3721 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); 3722 if (InsertPt != MBB->end() && InsertPt->isPHI()) 3723 InsertPt = MBB->getFirstNonPHI(); 3724 3725 Builder.setInsertPt(*SrcMI->getParent(), InsertPt); 3726 Builder.setDebugLoc(MI.getDebugLoc()); 3727 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, 3728 SrcMI->getOperand(0).getReg()); 3729 OldToNewSrcMap[SrcMI] = NewExt; 3730 } 3731 3732 // Create a new phi with the extended inputs. 3733 Builder.setInstrAndDebugLoc(MI); 3734 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); 3735 NewPhi.addDef(DstReg); 3736 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { 3737 if (!MO.isReg()) { 3738 NewPhi.addMBB(MO.getMBB()); 3739 continue; 3740 } 3741 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; 3742 NewPhi.addUse(NewSrc->getOperand(0).getReg()); 3743 } 3744 Builder.insertInstr(NewPhi); 3745 ExtMI->eraseFromParent(); 3746 } 3747 3748 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, 3749 Register &Reg) { 3750 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); 3751 // If we have a constant index, look for a G_BUILD_VECTOR source 3752 // and find the source register that the index maps to. 3753 Register SrcVec = MI.getOperand(1).getReg(); 3754 LLT SrcTy = MRI.getType(SrcVec); 3755 if (!isLegalOrBeforeLegalizer( 3756 {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}})) 3757 return false; 3758 3759 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); 3760 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) 3761 return false; 3762 3763 unsigned VecIdx = Cst->Value.getZExtValue(); 3764 MachineInstr *BuildVecMI = 3765 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI); 3766 if (!BuildVecMI) { 3767 BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI); 3768 if (!BuildVecMI) 3769 return false; 3770 LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg()); 3771 if (!isLegalOrBeforeLegalizer( 3772 {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}})) 3773 return false; 3774 } 3775 3776 EVT Ty(getMVTForLLT(SrcTy)); 3777 if (!MRI.hasOneNonDBGUse(SrcVec) && 3778 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) 3779 return false; 3780 3781 Reg = BuildVecMI->getOperand(VecIdx + 1).getReg(); 3782 return true; 3783 } 3784 3785 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, 3786 Register &Reg) { 3787 // Check the type of the register, since it may have come from a 3788 // G_BUILD_VECTOR_TRUNC. 3789 LLT ScalarTy = MRI.getType(Reg); 3790 Register DstReg = MI.getOperand(0).getReg(); 3791 LLT DstTy = MRI.getType(DstReg); 3792 3793 Builder.setInstrAndDebugLoc(MI); 3794 if (ScalarTy != DstTy) { 3795 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); 3796 Builder.buildTrunc(DstReg, Reg); 3797 MI.eraseFromParent(); 3798 return; 3799 } 3800 replaceSingleDefInstWithReg(MI, Reg); 3801 } 3802 3803 bool CombinerHelper::matchExtractAllEltsFromBuildVector( 3804 MachineInstr &MI, 3805 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3806 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3807 // This combine tries to find build_vector's which have every source element 3808 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like 3809 // the masked load scalarization is run late in the pipeline. There's already 3810 // a combine for a similar pattern starting from the extract, but that 3811 // doesn't attempt to do it if there are multiple uses of the build_vector, 3812 // which in this case is true. Starting the combine from the build_vector 3813 // feels more natural than trying to find sibling nodes of extracts. 3814 // E.g. 3815 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 3816 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 3817 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 3818 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 3819 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 3820 // ==> 3821 // replace ext{1,2,3,4} with %s{1,2,3,4} 3822 3823 Register DstReg = MI.getOperand(0).getReg(); 3824 LLT DstTy = MRI.getType(DstReg); 3825 unsigned NumElts = DstTy.getNumElements(); 3826 3827 SmallBitVector ExtractedElts(NumElts); 3828 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { 3829 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) 3830 return false; 3831 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); 3832 if (!Cst) 3833 return false; 3834 unsigned Idx = Cst.getValue().getZExtValue(); 3835 if (Idx >= NumElts) 3836 return false; // Out of range. 3837 ExtractedElts.set(Idx); 3838 SrcDstPairs.emplace_back( 3839 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); 3840 } 3841 // Match if every element was extracted. 3842 return ExtractedElts.all(); 3843 } 3844 3845 void CombinerHelper::applyExtractAllEltsFromBuildVector( 3846 MachineInstr &MI, 3847 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) { 3848 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); 3849 for (auto &Pair : SrcDstPairs) { 3850 auto *ExtMI = Pair.second; 3851 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); 3852 ExtMI->eraseFromParent(); 3853 } 3854 MI.eraseFromParent(); 3855 } 3856 3857 void CombinerHelper::applyBuildFn( 3858 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3859 Builder.setInstrAndDebugLoc(MI); 3860 MatchInfo(Builder); 3861 MI.eraseFromParent(); 3862 } 3863 3864 void CombinerHelper::applyBuildFnNoErase( 3865 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 3866 Builder.setInstrAndDebugLoc(MI); 3867 MatchInfo(Builder); 3868 } 3869 3870 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, 3871 BuildFnTy &MatchInfo) { 3872 assert(MI.getOpcode() == TargetOpcode::G_OR); 3873 3874 Register Dst = MI.getOperand(0).getReg(); 3875 LLT Ty = MRI.getType(Dst); 3876 unsigned BitWidth = Ty.getScalarSizeInBits(); 3877 3878 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt; 3879 unsigned FshOpc = 0; 3880 3881 // Match (or (shl x, amt), (lshr y, sub(bw, amt))). 3882 if (mi_match( 3883 Dst, MRI, 3884 // m_GOr() handles the commuted version as well. 3885 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), 3886 m_GLShr(m_Reg(LShrSrc), m_GSub(m_SpecificICstOrSplat(BitWidth), 3887 m_Reg(LShrAmt)))))) { 3888 FshOpc = TargetOpcode::G_FSHL; 3889 3890 // Match (or (shl x, sub(bw, amt)), (lshr y, amt)). 3891 } else if (mi_match(Dst, MRI, 3892 m_GOr(m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)), 3893 m_GShl(m_Reg(ShlSrc), 3894 m_GSub(m_SpecificICstOrSplat(BitWidth), 3895 m_Reg(ShlAmt)))))) { 3896 FshOpc = TargetOpcode::G_FSHR; 3897 3898 } else { 3899 return false; 3900 } 3901 3902 if (ShlAmt != LShrAmt) 3903 return false; 3904 3905 LLT AmtTy = MRI.getType(ShlAmt); 3906 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) 3907 return false; 3908 3909 MatchInfo = [=](MachineIRBuilder &B) { 3910 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, ShlAmt}); 3911 }; 3912 return true; 3913 } 3914 3915 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. 3916 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { 3917 unsigned Opc = MI.getOpcode(); 3918 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3919 Register X = MI.getOperand(1).getReg(); 3920 Register Y = MI.getOperand(2).getReg(); 3921 if (X != Y) 3922 return false; 3923 unsigned RotateOpc = 3924 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; 3925 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); 3926 } 3927 3928 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { 3929 unsigned Opc = MI.getOpcode(); 3930 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); 3931 bool IsFSHL = Opc == TargetOpcode::G_FSHL; 3932 Observer.changingInstr(MI); 3933 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL 3934 : TargetOpcode::G_ROTR)); 3935 MI.RemoveOperand(2); 3936 Observer.changedInstr(MI); 3937 } 3938 3939 // Fold (rot x, c) -> (rot x, c % BitSize) 3940 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { 3941 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3942 MI.getOpcode() == TargetOpcode::G_ROTR); 3943 unsigned Bitsize = 3944 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3945 Register AmtReg = MI.getOperand(2).getReg(); 3946 bool OutOfRange = false; 3947 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { 3948 if (auto *CI = dyn_cast<ConstantInt>(C)) 3949 OutOfRange |= CI->getValue().uge(Bitsize); 3950 return true; 3951 }; 3952 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; 3953 } 3954 3955 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { 3956 assert(MI.getOpcode() == TargetOpcode::G_ROTL || 3957 MI.getOpcode() == TargetOpcode::G_ROTR); 3958 unsigned Bitsize = 3959 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); 3960 Builder.setInstrAndDebugLoc(MI); 3961 Register Amt = MI.getOperand(2).getReg(); 3962 LLT AmtTy = MRI.getType(Amt); 3963 auto Bits = Builder.buildConstant(AmtTy, Bitsize); 3964 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); 3965 Observer.changingInstr(MI); 3966 MI.getOperand(2).setReg(Amt); 3967 Observer.changedInstr(MI); 3968 } 3969 3970 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, 3971 int64_t &MatchInfo) { 3972 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 3973 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3974 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); 3975 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); 3976 Optional<bool> KnownVal; 3977 switch (Pred) { 3978 default: 3979 llvm_unreachable("Unexpected G_ICMP predicate?"); 3980 case CmpInst::ICMP_EQ: 3981 KnownVal = KnownBits::eq(KnownLHS, KnownRHS); 3982 break; 3983 case CmpInst::ICMP_NE: 3984 KnownVal = KnownBits::ne(KnownLHS, KnownRHS); 3985 break; 3986 case CmpInst::ICMP_SGE: 3987 KnownVal = KnownBits::sge(KnownLHS, KnownRHS); 3988 break; 3989 case CmpInst::ICMP_SGT: 3990 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); 3991 break; 3992 case CmpInst::ICMP_SLE: 3993 KnownVal = KnownBits::sle(KnownLHS, KnownRHS); 3994 break; 3995 case CmpInst::ICMP_SLT: 3996 KnownVal = KnownBits::slt(KnownLHS, KnownRHS); 3997 break; 3998 case CmpInst::ICMP_UGE: 3999 KnownVal = KnownBits::uge(KnownLHS, KnownRHS); 4000 break; 4001 case CmpInst::ICMP_UGT: 4002 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); 4003 break; 4004 case CmpInst::ICMP_ULE: 4005 KnownVal = KnownBits::ule(KnownLHS, KnownRHS); 4006 break; 4007 case CmpInst::ICMP_ULT: 4008 KnownVal = KnownBits::ult(KnownLHS, KnownRHS); 4009 break; 4010 } 4011 if (!KnownVal) 4012 return false; 4013 MatchInfo = 4014 *KnownVal 4015 ? getICmpTrueVal(getTargetLowering(), 4016 /*IsVector = */ 4017 MRI.getType(MI.getOperand(0).getReg()).isVector(), 4018 /* IsFP = */ false) 4019 : 0; 4020 return true; 4021 } 4022 4023 bool CombinerHelper::matchICmpToLHSKnownBits( 4024 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4025 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 4026 // Given: 4027 // 4028 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4029 // %cmp = G_ICMP ne %x, 0 4030 // 4031 // Or: 4032 // 4033 // %x = G_WHATEVER (... x is known to be 0 or 1 ...) 4034 // %cmp = G_ICMP eq %x, 1 4035 // 4036 // We can replace %cmp with %x assuming true is 1 on the target. 4037 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 4038 if (!CmpInst::isEquality(Pred)) 4039 return false; 4040 Register Dst = MI.getOperand(0).getReg(); 4041 LLT DstTy = MRI.getType(Dst); 4042 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), 4043 /* IsFP = */ false) != 1) 4044 return false; 4045 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; 4046 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) 4047 return false; 4048 Register LHS = MI.getOperand(2).getReg(); 4049 auto KnownLHS = KB->getKnownBits(LHS); 4050 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) 4051 return false; 4052 // Make sure replacing Dst with the LHS is a legal operation. 4053 LLT LHSTy = MRI.getType(LHS); 4054 unsigned LHSSize = LHSTy.getSizeInBits(); 4055 unsigned DstSize = DstTy.getSizeInBits(); 4056 unsigned Op = TargetOpcode::COPY; 4057 if (DstSize != LHSSize) 4058 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; 4059 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) 4060 return false; 4061 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; 4062 return true; 4063 } 4064 4065 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 4066 bool CombinerHelper::matchAndOrDisjointMask( 4067 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4068 assert(MI.getOpcode() == TargetOpcode::G_AND); 4069 4070 // Ignore vector types to simplify matching the two constants. 4071 // TODO: do this for vectors and scalars via a demanded bits analysis. 4072 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 4073 if (Ty.isVector()) 4074 return false; 4075 4076 Register Src; 4077 int64_t MaskAnd; 4078 int64_t MaskOr; 4079 if (!mi_match(MI, MRI, 4080 m_GAnd(m_GOr(m_Reg(Src), m_ICst(MaskOr)), m_ICst(MaskAnd)))) 4081 return false; 4082 4083 // Check if MaskOr could turn on any bits in Src. 4084 if (MaskAnd & MaskOr) 4085 return false; 4086 4087 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4088 Observer.changingInstr(MI); 4089 MI.getOperand(1).setReg(Src); 4090 Observer.changedInstr(MI); 4091 }; 4092 return true; 4093 } 4094 4095 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. 4096 bool CombinerHelper::matchBitfieldExtractFromSExtInReg( 4097 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4098 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); 4099 Register Dst = MI.getOperand(0).getReg(); 4100 Register Src = MI.getOperand(1).getReg(); 4101 LLT Ty = MRI.getType(Src); 4102 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4103 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) 4104 return false; 4105 int64_t Width = MI.getOperand(2).getImm(); 4106 Register ShiftSrc; 4107 int64_t ShiftImm; 4108 if (!mi_match( 4109 Src, MRI, 4110 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), 4111 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) 4112 return false; 4113 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) 4114 return false; 4115 4116 MatchInfo = [=](MachineIRBuilder &B) { 4117 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); 4118 auto Cst2 = B.buildConstant(ExtractTy, Width); 4119 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); 4120 }; 4121 return true; 4122 } 4123 4124 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. 4125 bool CombinerHelper::matchBitfieldExtractFromAnd( 4126 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4127 assert(MI.getOpcode() == TargetOpcode::G_AND); 4128 Register Dst = MI.getOperand(0).getReg(); 4129 LLT Ty = MRI.getType(Dst); 4130 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4131 TargetOpcode::G_UBFX, Ty, Ty)) 4132 return false; 4133 4134 int64_t AndImm, LSBImm; 4135 Register ShiftSrc; 4136 const unsigned Size = Ty.getScalarSizeInBits(); 4137 if (!mi_match(MI.getOperand(0).getReg(), MRI, 4138 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), 4139 m_ICst(AndImm)))) 4140 return false; 4141 4142 // The mask is a mask of the low bits iff imm & (imm+1) == 0. 4143 auto MaybeMask = static_cast<uint64_t>(AndImm); 4144 if (MaybeMask & (MaybeMask + 1)) 4145 return false; 4146 4147 // LSB must fit within the register. 4148 if (static_cast<uint64_t>(LSBImm) >= Size) 4149 return false; 4150 4151 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4152 uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); 4153 MatchInfo = [=](MachineIRBuilder &B) { 4154 auto WidthCst = B.buildConstant(ExtractTy, Width); 4155 auto LSBCst = B.buildConstant(ExtractTy, LSBImm); 4156 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); 4157 }; 4158 return true; 4159 } 4160 4161 bool CombinerHelper::matchBitfieldExtractFromShr( 4162 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4163 const unsigned Opcode = MI.getOpcode(); 4164 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); 4165 4166 const Register Dst = MI.getOperand(0).getReg(); 4167 4168 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR 4169 ? TargetOpcode::G_SBFX 4170 : TargetOpcode::G_UBFX; 4171 4172 // Check if the type we would use for the extract is legal 4173 LLT Ty = MRI.getType(Dst); 4174 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4175 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) 4176 return false; 4177 4178 Register ShlSrc; 4179 int64_t ShrAmt; 4180 int64_t ShlAmt; 4181 const unsigned Size = Ty.getScalarSizeInBits(); 4182 4183 // Try to match shr (shl x, c1), c2 4184 if (!mi_match(Dst, MRI, 4185 m_BinOp(Opcode, 4186 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), 4187 m_ICst(ShrAmt)))) 4188 return false; 4189 4190 // Make sure that the shift sizes can fit a bitfield extract 4191 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) 4192 return false; 4193 4194 // Skip this combine if the G_SEXT_INREG combine could handle it 4195 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) 4196 return false; 4197 4198 // Calculate start position and width of the extract 4199 const int64_t Pos = ShrAmt - ShlAmt; 4200 const int64_t Width = Size - ShrAmt; 4201 4202 MatchInfo = [=](MachineIRBuilder &B) { 4203 auto WidthCst = B.buildConstant(ExtractTy, Width); 4204 auto PosCst = B.buildConstant(ExtractTy, Pos); 4205 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); 4206 }; 4207 return true; 4208 } 4209 4210 bool CombinerHelper::matchBitfieldExtractFromShrAnd( 4211 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4212 const unsigned Opcode = MI.getOpcode(); 4213 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); 4214 4215 const Register Dst = MI.getOperand(0).getReg(); 4216 LLT Ty = MRI.getType(Dst); 4217 if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal( 4218 TargetOpcode::G_UBFX, Ty, Ty)) 4219 return false; 4220 4221 // Try to match shr (and x, c1), c2 4222 Register AndSrc; 4223 int64_t ShrAmt; 4224 int64_t SMask; 4225 if (!mi_match(Dst, MRI, 4226 m_BinOp(Opcode, 4227 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), 4228 m_ICst(ShrAmt)))) 4229 return false; 4230 4231 const unsigned Size = Ty.getScalarSizeInBits(); 4232 if (ShrAmt < 0 || ShrAmt >= Size) 4233 return false; 4234 4235 // Check that ubfx can do the extraction, with no holes in the mask. 4236 uint64_t UMask = SMask; 4237 UMask |= maskTrailingOnes<uint64_t>(ShrAmt); 4238 UMask &= maskTrailingOnes<uint64_t>(Size); 4239 if (!isMask_64(UMask)) 4240 return false; 4241 4242 // Calculate start position and width of the extract. 4243 const int64_t Pos = ShrAmt; 4244 const int64_t Width = countTrailingOnes(UMask) - ShrAmt; 4245 4246 // It's preferable to keep the shift, rather than form G_SBFX. 4247 // TODO: remove the G_AND via demanded bits analysis. 4248 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) 4249 return false; 4250 4251 MatchInfo = [=](MachineIRBuilder &B) { 4252 auto WidthCst = B.buildConstant(Ty, Width); 4253 auto PosCst = B.buildConstant(Ty, Pos); 4254 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); 4255 }; 4256 return true; 4257 } 4258 4259 bool CombinerHelper::reassociationCanBreakAddressingModePattern( 4260 MachineInstr &PtrAdd) { 4261 assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); 4262 4263 Register Src1Reg = PtrAdd.getOperand(1).getReg(); 4264 MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); 4265 if (!Src1Def) 4266 return false; 4267 4268 Register Src2Reg = PtrAdd.getOperand(2).getReg(); 4269 4270 if (MRI.hasOneNonDBGUse(Src1Reg)) 4271 return false; 4272 4273 auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); 4274 if (!C1) 4275 return false; 4276 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4277 if (!C2) 4278 return false; 4279 4280 const APInt &C1APIntVal = *C1; 4281 const APInt &C2APIntVal = *C2; 4282 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); 4283 4284 for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { 4285 // This combine may end up running before ptrtoint/inttoptr combines 4286 // manage to eliminate redundant conversions, so try to look through them. 4287 MachineInstr *ConvUseMI = &UseMI; 4288 unsigned ConvUseOpc = ConvUseMI->getOpcode(); 4289 while (ConvUseOpc == TargetOpcode::G_INTTOPTR || 4290 ConvUseOpc == TargetOpcode::G_PTRTOINT) { 4291 Register DefReg = ConvUseMI->getOperand(0).getReg(); 4292 if (!MRI.hasOneNonDBGUse(DefReg)) 4293 break; 4294 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); 4295 ConvUseOpc = ConvUseMI->getOpcode(); 4296 } 4297 auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || 4298 ConvUseOpc == TargetOpcode::G_STORE; 4299 if (!LoadStore) 4300 continue; 4301 // Is x[offset2] already not a legal addressing mode? If so then 4302 // reassociating the constants breaks nothing (we test offset2 because 4303 // that's the one we hope to fold into the load or store). 4304 TargetLoweringBase::AddrMode AM; 4305 AM.HasBaseReg = true; 4306 AM.BaseOffs = C2APIntVal.getSExtValue(); 4307 unsigned AS = 4308 MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); 4309 Type *AccessTy = 4310 getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), 4311 PtrAdd.getMF()->getFunction().getContext()); 4312 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); 4313 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4314 AccessTy, AS)) 4315 continue; 4316 4317 // Would x[offset1+offset2] still be a legal addressing mode? 4318 AM.BaseOffs = CombinedValue; 4319 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, 4320 AccessTy, AS)) 4321 return true; 4322 } 4323 4324 return false; 4325 } 4326 4327 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, 4328 MachineInstr *RHS, 4329 BuildFnTy &MatchInfo) { 4330 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4331 Register Src1Reg = MI.getOperand(1).getReg(); 4332 if (RHS->getOpcode() != TargetOpcode::G_ADD) 4333 return false; 4334 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); 4335 if (!C2) 4336 return false; 4337 4338 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4339 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); 4340 4341 auto NewBase = 4342 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); 4343 Observer.changingInstr(MI); 4344 MI.getOperand(1).setReg(NewBase.getReg(0)); 4345 MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); 4346 Observer.changedInstr(MI); 4347 }; 4348 return !reassociationCanBreakAddressingModePattern(MI); 4349 } 4350 4351 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, 4352 MachineInstr *LHS, 4353 MachineInstr *RHS, 4354 BuildFnTy &MatchInfo) { 4355 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) 4356 // if and only if (G_PTR_ADD X, C) has one use. 4357 Register LHSBase; 4358 Optional<ValueAndVReg> LHSCstOff; 4359 if (!mi_match(MI.getBaseReg(), MRI, 4360 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) 4361 return false; 4362 4363 auto *LHSPtrAdd = cast<GPtrAdd>(LHS); 4364 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4365 // When we change LHSPtrAdd's offset register we might cause it to use a reg 4366 // before its def. Sink the instruction so the outer PTR_ADD to ensure this 4367 // doesn't happen. 4368 LHSPtrAdd->moveBefore(&MI); 4369 Register RHSReg = MI.getOffsetReg(); 4370 Observer.changingInstr(MI); 4371 MI.getOperand(2).setReg(LHSCstOff->VReg); 4372 Observer.changedInstr(MI); 4373 Observer.changingInstr(*LHSPtrAdd); 4374 LHSPtrAdd->getOperand(2).setReg(RHSReg); 4375 Observer.changedInstr(*LHSPtrAdd); 4376 }; 4377 return !reassociationCanBreakAddressingModePattern(MI); 4378 } 4379 4380 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, 4381 MachineInstr *LHS, 4382 MachineInstr *RHS, 4383 BuildFnTy &MatchInfo) { 4384 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4385 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS); 4386 if (!LHSPtrAdd) 4387 return false; 4388 4389 Register Src2Reg = MI.getOperand(2).getReg(); 4390 Register LHSSrc1 = LHSPtrAdd->getBaseReg(); 4391 Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); 4392 auto C1 = getIConstantVRegVal(LHSSrc2, MRI); 4393 if (!C1) 4394 return false; 4395 auto C2 = getIConstantVRegVal(Src2Reg, MRI); 4396 if (!C2) 4397 return false; 4398 4399 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4400 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); 4401 Observer.changingInstr(MI); 4402 MI.getOperand(1).setReg(LHSSrc1); 4403 MI.getOperand(2).setReg(NewCst.getReg(0)); 4404 Observer.changedInstr(MI); 4405 }; 4406 return !reassociationCanBreakAddressingModePattern(MI); 4407 } 4408 4409 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, 4410 BuildFnTy &MatchInfo) { 4411 auto &PtrAdd = cast<GPtrAdd>(MI); 4412 // We're trying to match a few pointer computation patterns here for 4413 // re-association opportunities. 4414 // 1) Isolating a constant operand to be on the RHS, e.g.: 4415 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) 4416 // 4417 // 2) Folding two constants in each sub-tree as long as such folding 4418 // doesn't break a legal addressing mode. 4419 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) 4420 // 4421 // 3) Move a constant from the LHS of an inner op to the RHS of the outer. 4422 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) 4423 // iif (G_PTR_ADD X, C) has one use. 4424 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); 4425 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); 4426 4427 // Try to match example 2. 4428 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) 4429 return true; 4430 4431 // Try to match example 3. 4432 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) 4433 return true; 4434 4435 // Try to match example 1. 4436 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) 4437 return true; 4438 4439 return false; 4440 } 4441 4442 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { 4443 Register Op1 = MI.getOperand(1).getReg(); 4444 Register Op2 = MI.getOperand(2).getReg(); 4445 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); 4446 if (!MaybeCst) 4447 return false; 4448 MatchInfo = *MaybeCst; 4449 return true; 4450 } 4451 4452 bool CombinerHelper::matchNarrowBinopFeedingAnd( 4453 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4454 // Look for a binop feeding into an AND with a mask: 4455 // 4456 // %add = G_ADD %lhs, %rhs 4457 // %and = G_AND %add, 000...11111111 4458 // 4459 // Check if it's possible to perform the binop at a narrower width and zext 4460 // back to the original width like so: 4461 // 4462 // %narrow_lhs = G_TRUNC %lhs 4463 // %narrow_rhs = G_TRUNC %rhs 4464 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs 4465 // %new_add = G_ZEXT %narrow_add 4466 // %and = G_AND %new_add, 000...11111111 4467 // 4468 // This can allow later combines to eliminate the G_AND if it turns out 4469 // that the mask is irrelevant. 4470 assert(MI.getOpcode() == TargetOpcode::G_AND); 4471 Register Dst = MI.getOperand(0).getReg(); 4472 Register AndLHS = MI.getOperand(1).getReg(); 4473 Register AndRHS = MI.getOperand(2).getReg(); 4474 LLT WideTy = MRI.getType(Dst); 4475 4476 // If the potential binop has more than one use, then it's possible that one 4477 // of those uses will need its full width. 4478 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) 4479 return false; 4480 4481 // Check if the LHS feeding the AND is impacted by the high bits that we're 4482 // masking out. 4483 // 4484 // e.g. for 64-bit x, y: 4485 // 4486 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 4487 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); 4488 if (!LHSInst) 4489 return false; 4490 unsigned LHSOpc = LHSInst->getOpcode(); 4491 switch (LHSOpc) { 4492 default: 4493 return false; 4494 case TargetOpcode::G_ADD: 4495 case TargetOpcode::G_SUB: 4496 case TargetOpcode::G_MUL: 4497 case TargetOpcode::G_AND: 4498 case TargetOpcode::G_OR: 4499 case TargetOpcode::G_XOR: 4500 break; 4501 } 4502 4503 // Find the mask on the RHS. 4504 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); 4505 if (!Cst) 4506 return false; 4507 auto Mask = Cst->Value; 4508 if (!Mask.isMask()) 4509 return false; 4510 4511 // No point in combining if there's nothing to truncate. 4512 unsigned NarrowWidth = Mask.countTrailingOnes(); 4513 if (NarrowWidth == WideTy.getSizeInBits()) 4514 return false; 4515 LLT NarrowTy = LLT::scalar(NarrowWidth); 4516 4517 // Check if adding the zext + truncates could be harmful. 4518 auto &MF = *MI.getMF(); 4519 const auto &TLI = getTargetLowering(); 4520 LLVMContext &Ctx = MF.getFunction().getContext(); 4521 auto &DL = MF.getDataLayout(); 4522 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || 4523 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) 4524 return false; 4525 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || 4526 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) 4527 return false; 4528 Register BinOpLHS = LHSInst->getOperand(1).getReg(); 4529 Register BinOpRHS = LHSInst->getOperand(2).getReg(); 4530 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4531 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); 4532 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); 4533 auto NarrowBinOp = 4534 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); 4535 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); 4536 Observer.changingInstr(MI); 4537 MI.getOperand(1).setReg(Ext.getReg(0)); 4538 Observer.changedInstr(MI); 4539 }; 4540 return true; 4541 } 4542 4543 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { 4544 unsigned Opc = MI.getOpcode(); 4545 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); 4546 4547 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) 4548 return false; 4549 4550 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4551 Observer.changingInstr(MI); 4552 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO 4553 : TargetOpcode::G_SADDO; 4554 MI.setDesc(Builder.getTII().get(NewOpc)); 4555 MI.getOperand(3).setReg(MI.getOperand(2).getReg()); 4556 Observer.changedInstr(MI); 4557 }; 4558 return true; 4559 } 4560 4561 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { 4562 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4563 auto &UDiv = cast<GenericMachineInstr>(MI); 4564 Register Dst = UDiv.getReg(0); 4565 Register LHS = UDiv.getReg(1); 4566 Register RHS = UDiv.getReg(2); 4567 LLT Ty = MRI.getType(Dst); 4568 LLT ScalarTy = Ty.getScalarType(); 4569 const unsigned EltBits = ScalarTy.getScalarSizeInBits(); 4570 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4571 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); 4572 auto &MIB = Builder; 4573 MIB.setInstrAndDebugLoc(MI); 4574 4575 bool UseNPQ = false; 4576 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4577 4578 auto BuildUDIVPattern = [&](const Constant *C) { 4579 auto *CI = cast<ConstantInt>(C); 4580 const APInt &Divisor = CI->getValue(); 4581 UnsignedDivisonByConstantInfo magics = 4582 UnsignedDivisonByConstantInfo::get(Divisor); 4583 unsigned PreShift = 0, PostShift = 0; 4584 4585 // If the divisor is even, we can avoid using the expensive fixup by 4586 // shifting the divided value upfront. 4587 if (magics.IsAdd != 0 && !Divisor[0]) { 4588 PreShift = Divisor.countTrailingZeros(); 4589 // Get magic number for the shifted divisor. 4590 magics = 4591 UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 4592 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 4593 } 4594 4595 APInt Magic = magics.Magic; 4596 4597 unsigned SelNPQ; 4598 if (magics.IsAdd == 0 || Divisor.isOneValue()) { 4599 assert(magics.ShiftAmount < Divisor.getBitWidth() && 4600 "We shouldn't generate an undefined shift!"); 4601 PostShift = magics.ShiftAmount; 4602 SelNPQ = false; 4603 } else { 4604 PostShift = magics.ShiftAmount - 1; 4605 SelNPQ = true; 4606 } 4607 4608 PreShifts.push_back( 4609 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); 4610 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); 4611 NPQFactors.push_back( 4612 MIB.buildConstant(ScalarTy, 4613 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4614 : APInt::getZero(EltBits)) 4615 .getReg(0)); 4616 PostShifts.push_back( 4617 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); 4618 UseNPQ |= SelNPQ; 4619 return true; 4620 }; 4621 4622 // Collect the shifts/magic values from each element. 4623 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); 4624 (void)Matched; 4625 assert(Matched && "Expected unary predicate match to succeed"); 4626 4627 Register PreShift, PostShift, MagicFactor, NPQFactor; 4628 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI); 4629 if (RHSDef) { 4630 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); 4631 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); 4632 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); 4633 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); 4634 } else { 4635 assert(MRI.getType(RHS).isScalar() && 4636 "Non-build_vector operation should have been a scalar"); 4637 PreShift = PreShifts[0]; 4638 MagicFactor = MagicFactors[0]; 4639 PostShift = PostShifts[0]; 4640 } 4641 4642 Register Q = LHS; 4643 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); 4644 4645 // Multiply the numerator (operand 0) by the magic value. 4646 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); 4647 4648 if (UseNPQ) { 4649 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); 4650 4651 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4652 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. 4653 if (Ty.isVector()) 4654 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); 4655 else 4656 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); 4657 4658 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); 4659 } 4660 4661 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); 4662 auto One = MIB.buildConstant(Ty, 1); 4663 auto IsOne = MIB.buildICmp( 4664 CmpInst::Predicate::ICMP_EQ, 4665 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); 4666 return MIB.buildSelect(Ty, IsOne, LHS, Q); 4667 } 4668 4669 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { 4670 assert(MI.getOpcode() == TargetOpcode::G_UDIV); 4671 Register Dst = MI.getOperand(0).getReg(); 4672 Register RHS = MI.getOperand(2).getReg(); 4673 LLT DstTy = MRI.getType(Dst); 4674 auto *RHSDef = MRI.getVRegDef(RHS); 4675 if (!isConstantOrConstantVector(*RHSDef, MRI)) 4676 return false; 4677 4678 auto &MF = *MI.getMF(); 4679 AttributeList Attr = MF.getFunction().getAttributes(); 4680 const auto &TLI = getTargetLowering(); 4681 LLVMContext &Ctx = MF.getFunction().getContext(); 4682 auto &DL = MF.getDataLayout(); 4683 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) 4684 return false; 4685 4686 // Don't do this for minsize because the instruction sequence is usually 4687 // larger. 4688 if (MF.getFunction().hasMinSize()) 4689 return false; 4690 4691 // Don't do this if the types are not going to be legal. 4692 if (LI) { 4693 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) 4694 return false; 4695 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) 4696 return false; 4697 if (!isLegalOrBeforeLegalizer( 4698 {TargetOpcode::G_ICMP, 4699 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), 4700 DstTy}})) 4701 return false; 4702 } 4703 4704 auto CheckEltValue = [&](const Constant *C) { 4705 if (auto *CI = dyn_cast_or_null<ConstantInt>(C)) 4706 return !CI->isZero(); 4707 return false; 4708 }; 4709 return matchUnaryPredicate(MRI, RHS, CheckEltValue); 4710 } 4711 4712 void CombinerHelper::applyUDivByConst(MachineInstr &MI) { 4713 auto *NewMI = buildUDivUsingMul(MI); 4714 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); 4715 } 4716 4717 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { 4718 assert(MI.getOpcode() == TargetOpcode::G_UMULH); 4719 Register RHS = MI.getOperand(2).getReg(); 4720 Register Dst = MI.getOperand(0).getReg(); 4721 LLT Ty = MRI.getType(Dst); 4722 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4723 auto MatchPow2ExceptOne = [&](const Constant *C) { 4724 if (auto *CI = dyn_cast<ConstantInt>(C)) 4725 return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); 4726 return false; 4727 }; 4728 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) 4729 return false; 4730 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); 4731 } 4732 4733 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { 4734 Register LHS = MI.getOperand(1).getReg(); 4735 Register RHS = MI.getOperand(2).getReg(); 4736 Register Dst = MI.getOperand(0).getReg(); 4737 LLT Ty = MRI.getType(Dst); 4738 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); 4739 unsigned NumEltBits = Ty.getScalarSizeInBits(); 4740 4741 Builder.setInstrAndDebugLoc(MI); 4742 auto LogBase2 = buildLogBase2(RHS, Builder); 4743 auto ShiftAmt = 4744 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); 4745 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); 4746 Builder.buildLShr(Dst, LHS, Trunc); 4747 MI.eraseFromParent(); 4748 } 4749 4750 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, 4751 BuildFnTy &MatchInfo) { 4752 unsigned Opc = MI.getOpcode(); 4753 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || 4754 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4755 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); 4756 4757 Register Dst = MI.getOperand(0).getReg(); 4758 Register X = MI.getOperand(1).getReg(); 4759 Register Y = MI.getOperand(2).getReg(); 4760 LLT Type = MRI.getType(Dst); 4761 4762 // fold (fadd x, fneg(y)) -> (fsub x, y) 4763 // fold (fadd fneg(y), x) -> (fsub x, y) 4764 // G_ADD is commutative so both cases are checked by m_GFAdd 4765 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4766 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { 4767 Opc = TargetOpcode::G_FSUB; 4768 } 4769 /// fold (fsub x, fneg(y)) -> (fadd x, y) 4770 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && 4771 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { 4772 Opc = TargetOpcode::G_FADD; 4773 } 4774 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) 4775 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) 4776 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) 4777 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) 4778 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || 4779 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && 4780 mi_match(X, MRI, m_GFNeg(m_Reg(X))) && 4781 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { 4782 // no opcode change 4783 } else 4784 return false; 4785 4786 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4787 Observer.changingInstr(MI); 4788 MI.setDesc(B.getTII().get(Opc)); 4789 MI.getOperand(1).setReg(X); 4790 MI.getOperand(2).setReg(Y); 4791 Observer.changedInstr(MI); 4792 }; 4793 return true; 4794 } 4795 4796 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either 4797 /// due to global flags or MachineInstr flags. 4798 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { 4799 if (MI.getOpcode() != TargetOpcode::G_FMUL) 4800 return false; 4801 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); 4802 } 4803 4804 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, 4805 const MachineRegisterInfo &MRI) { 4806 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), 4807 MRI.use_instr_nodbg_end()) > 4808 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), 4809 MRI.use_instr_nodbg_end()); 4810 } 4811 4812 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, 4813 bool &AllowFusionGlobally, 4814 bool &HasFMAD, bool &Aggressive, 4815 bool CanReassociate) { 4816 4817 auto *MF = MI.getMF(); 4818 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 4819 const TargetOptions &Options = MF->getTarget().Options; 4820 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 4821 4822 if (CanReassociate && 4823 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) 4824 return false; 4825 4826 // Floating-point multiply-add with intermediate rounding. 4827 HasFMAD = (LI && TLI.isFMADLegal(MI, DstType)); 4828 // Floating-point multiply-add without intermediate rounding. 4829 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && 4830 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); 4831 // No valid opcode, do not combine. 4832 if (!HasFMAD && !HasFMA) 4833 return false; 4834 4835 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || 4836 Options.UnsafeFPMath || HasFMAD; 4837 // If the addition is not contractable, do not combine. 4838 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) 4839 return false; 4840 4841 Aggressive = TLI.enableAggressiveFMAFusion(DstType); 4842 return true; 4843 } 4844 4845 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( 4846 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4847 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4848 4849 bool AllowFusionGlobally, HasFMAD, Aggressive; 4850 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4851 return false; 4852 4853 MachineInstr *LHS = MRI.getVRegDef(MI.getOperand(1).getReg()); 4854 MachineInstr *RHS = MRI.getVRegDef(MI.getOperand(2).getReg()); 4855 unsigned PreferredFusedOpcode = 4856 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4857 4858 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4859 // prefer to fold the multiply with fewer uses. 4860 if (Aggressive && isContractableFMul(*LHS, AllowFusionGlobally) && 4861 isContractableFMul(*RHS, AllowFusionGlobally)) { 4862 if (hasMoreUses(*LHS, *RHS, MRI)) 4863 std::swap(LHS, RHS); 4864 } 4865 4866 // fold (fadd (fmul x, y), z) -> (fma x, y, z) 4867 if (isContractableFMul(*LHS, AllowFusionGlobally) && 4868 (Aggressive || MRI.hasOneNonDBGUse(LHS->getOperand(0).getReg()))) { 4869 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4870 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4871 {LHS->getOperand(1).getReg(), LHS->getOperand(2).getReg(), 4872 RHS->getOperand(0).getReg()}); 4873 }; 4874 return true; 4875 } 4876 4877 // fold (fadd x, (fmul y, z)) -> (fma y, z, x) 4878 if (isContractableFMul(*RHS, AllowFusionGlobally) && 4879 (Aggressive || MRI.hasOneNonDBGUse(RHS->getOperand(0).getReg()))) { 4880 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4881 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4882 {RHS->getOperand(1).getReg(), RHS->getOperand(2).getReg(), 4883 LHS->getOperand(0).getReg()}); 4884 }; 4885 return true; 4886 } 4887 4888 return false; 4889 } 4890 4891 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( 4892 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4893 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4894 4895 bool AllowFusionGlobally, HasFMAD, Aggressive; 4896 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 4897 return false; 4898 4899 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 4900 MachineInstr *LHS = MRI.getVRegDef(MI.getOperand(1).getReg()); 4901 MachineInstr *RHS = MRI.getVRegDef(MI.getOperand(2).getReg()); 4902 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 4903 4904 unsigned PreferredFusedOpcode = 4905 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4906 4907 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4908 // prefer to fold the multiply with fewer uses. 4909 if (Aggressive && isContractableFMul(*LHS, AllowFusionGlobally) && 4910 isContractableFMul(*RHS, AllowFusionGlobally)) { 4911 if (hasMoreUses(*LHS, *RHS, MRI)) 4912 std::swap(LHS, RHS); 4913 } 4914 4915 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) 4916 MachineInstr *FpExtSrc; 4917 if (mi_match(LHS->getOperand(0).getReg(), MRI, 4918 m_GFPExt(m_MInstr(FpExtSrc))) && 4919 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 4920 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 4921 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 4922 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4923 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 4924 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 4925 B.buildInstr( 4926 PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4927 {FpExtX.getReg(0), FpExtY.getReg(0), RHS->getOperand(0).getReg()}); 4928 }; 4929 return true; 4930 } 4931 4932 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) 4933 // Note: Commutes FADD operands. 4934 if (mi_match(RHS->getOperand(0).getReg(), MRI, 4935 m_GFPExt(m_MInstr(FpExtSrc))) && 4936 isContractableFMul(*FpExtSrc, AllowFusionGlobally) && 4937 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 4938 MRI.getType(FpExtSrc->getOperand(1).getReg()))) { 4939 MatchInfo = [=, &MI](MachineIRBuilder &B) { 4940 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); 4941 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); 4942 B.buildInstr( 4943 PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 4944 {FpExtX.getReg(0), FpExtY.getReg(0), LHS->getOperand(0).getReg()}); 4945 }; 4946 return true; 4947 } 4948 4949 return false; 4950 } 4951 4952 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( 4953 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 4954 assert(MI.getOpcode() == TargetOpcode::G_FADD); 4955 4956 bool AllowFusionGlobally, HasFMAD, Aggressive; 4957 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) 4958 return false; 4959 4960 MachineInstr *LHS = MRI.getVRegDef(MI.getOperand(1).getReg()); 4961 MachineInstr *RHS = MRI.getVRegDef(MI.getOperand(2).getReg()); 4962 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4963 4964 unsigned PreferredFusedOpcode = 4965 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 4966 4967 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 4968 // prefer to fold the multiply with fewer uses. 4969 if (Aggressive && isContractableFMul(*LHS, AllowFusionGlobally) && 4970 isContractableFMul(*RHS, AllowFusionGlobally)) { 4971 if (hasMoreUses(*LHS, *RHS, MRI)) 4972 std::swap(LHS, RHS); 4973 } 4974 4975 MachineInstr *FMA = nullptr; 4976 Register Z; 4977 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) 4978 if (LHS->getOpcode() == PreferredFusedOpcode && 4979 (MRI.getVRegDef(LHS->getOperand(3).getReg())->getOpcode() == 4980 TargetOpcode::G_FMUL) && 4981 MRI.hasOneNonDBGUse(LHS->getOperand(0).getReg()) && 4982 MRI.hasOneNonDBGUse(LHS->getOperand(3).getReg())) { 4983 FMA = LHS; 4984 Z = RHS->getOperand(0).getReg(); 4985 } 4986 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) 4987 else if (RHS->getOpcode() == PreferredFusedOpcode && 4988 (MRI.getVRegDef(RHS->getOperand(3).getReg())->getOpcode() == 4989 TargetOpcode::G_FMUL) && 4990 MRI.hasOneNonDBGUse(RHS->getOperand(0).getReg()) && 4991 MRI.hasOneNonDBGUse(RHS->getOperand(3).getReg())) { 4992 Z = LHS->getOperand(0).getReg(); 4993 FMA = RHS; 4994 } 4995 4996 if (FMA) { 4997 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); 4998 Register X = FMA->getOperand(1).getReg(); 4999 Register Y = FMA->getOperand(2).getReg(); 5000 Register U = FMulMI->getOperand(1).getReg(); 5001 Register V = FMulMI->getOperand(2).getReg(); 5002 5003 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5004 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); 5005 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); 5006 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5007 {X, Y, InnerFMA}); 5008 }; 5009 return true; 5010 } 5011 5012 return false; 5013 } 5014 5015 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( 5016 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5017 assert(MI.getOpcode() == TargetOpcode::G_FADD); 5018 5019 bool AllowFusionGlobally, HasFMAD, Aggressive; 5020 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5021 return false; 5022 5023 if (!Aggressive) 5024 return false; 5025 5026 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5027 LLT DstType = MRI.getType(MI.getOperand(0).getReg()); 5028 MachineInstr *LHS = MRI.getVRegDef(MI.getOperand(1).getReg()); 5029 MachineInstr *RHS = MRI.getVRegDef(MI.getOperand(2).getReg()); 5030 5031 unsigned PreferredFusedOpcode = 5032 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5033 5034 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5035 // prefer to fold the multiply with fewer uses. 5036 if (Aggressive && isContractableFMul(*LHS, AllowFusionGlobally) && 5037 isContractableFMul(*RHS, AllowFusionGlobally)) { 5038 if (hasMoreUses(*LHS, *RHS, MRI)) 5039 std::swap(LHS, RHS); 5040 } 5041 5042 // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) 5043 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, 5044 Register Y, MachineIRBuilder &B) { 5045 Register FpExtU = B.buildFPExt(DstType, U).getReg(0); 5046 Register FpExtV = B.buildFPExt(DstType, V).getReg(0); 5047 Register InnerFMA = 5048 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) 5049 .getReg(0); 5050 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5051 {X, Y, InnerFMA}); 5052 }; 5053 5054 MachineInstr *FMulMI, *FMAMI; 5055 // fold (fadd (fma x, y, (fpext (fmul u, v))), z) 5056 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5057 if (LHS->getOpcode() == PreferredFusedOpcode && 5058 mi_match(LHS->getOperand(3).getReg(), MRI, m_GFPExt(m_MInstr(FMulMI))) && 5059 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5060 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5061 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5062 MatchInfo = [=](MachineIRBuilder &B) { 5063 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5064 FMulMI->getOperand(2).getReg(), 5065 RHS->getOperand(0).getReg(), LHS->getOperand(1).getReg(), 5066 LHS->getOperand(2).getReg(), B); 5067 }; 5068 return true; 5069 } 5070 5071 // fold (fadd (fpext (fma x, y, (fmul u, v))), z) 5072 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5073 // FIXME: This turns two single-precision and one double-precision 5074 // operation into two double-precision operations, which might not be 5075 // interesting for all targets, especially GPUs. 5076 if (mi_match(LHS->getOperand(0).getReg(), MRI, m_GFPExt(m_MInstr(FMAMI))) && 5077 FMAMI->getOpcode() == PreferredFusedOpcode) { 5078 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5079 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5080 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5081 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5082 MatchInfo = [=](MachineIRBuilder &B) { 5083 Register X = FMAMI->getOperand(1).getReg(); 5084 Register Y = FMAMI->getOperand(2).getReg(); 5085 X = B.buildFPExt(DstType, X).getReg(0); 5086 Y = B.buildFPExt(DstType, Y).getReg(0); 5087 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5088 FMulMI->getOperand(2).getReg(), 5089 RHS->getOperand(0).getReg(), X, Y, B); 5090 }; 5091 5092 return true; 5093 } 5094 } 5095 5096 // fold (fadd z, (fma x, y, (fpext (fmul u, v))) 5097 // -> (fma x, y, (fma (fpext u), (fpext v), z)) 5098 if (RHS->getOpcode() == PreferredFusedOpcode && 5099 mi_match(RHS->getOperand(3).getReg(), MRI, m_GFPExt(m_MInstr(FMulMI))) && 5100 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5101 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5102 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5103 MatchInfo = [=](MachineIRBuilder &B) { 5104 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5105 FMulMI->getOperand(2).getReg(), 5106 LHS->getOperand(0).getReg(), RHS->getOperand(1).getReg(), 5107 RHS->getOperand(2).getReg(), B); 5108 }; 5109 return true; 5110 } 5111 5112 // fold (fadd z, (fpext (fma x, y, (fmul u, v))) 5113 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) 5114 // FIXME: This turns two single-precision and one double-precision 5115 // operation into two double-precision operations, which might not be 5116 // interesting for all targets, especially GPUs. 5117 if (mi_match(RHS->getOperand(0).getReg(), MRI, m_GFPExt(m_MInstr(FMAMI))) && 5118 FMAMI->getOpcode() == PreferredFusedOpcode) { 5119 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); 5120 if (isContractableFMul(*FMulMI, AllowFusionGlobally) && 5121 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, 5122 MRI.getType(FMAMI->getOperand(0).getReg()))) { 5123 MatchInfo = [=](MachineIRBuilder &B) { 5124 Register X = FMAMI->getOperand(1).getReg(); 5125 Register Y = FMAMI->getOperand(2).getReg(); 5126 X = B.buildFPExt(DstType, X).getReg(0); 5127 Y = B.buildFPExt(DstType, Y).getReg(0); 5128 buildMatchInfo(FMulMI->getOperand(1).getReg(), 5129 FMulMI->getOperand(2).getReg(), 5130 LHS->getOperand(0).getReg(), X, Y, B); 5131 }; 5132 return true; 5133 } 5134 } 5135 5136 return false; 5137 } 5138 5139 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( 5140 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5141 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5142 5143 bool AllowFusionGlobally, HasFMAD, Aggressive; 5144 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5145 return false; 5146 5147 MachineInstr *LHS = MRI.getVRegDef(MI.getOperand(1).getReg()); 5148 MachineInstr *RHS = MRI.getVRegDef(MI.getOperand(2).getReg()); 5149 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5150 5151 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), 5152 // prefer to fold the multiply with fewer uses. 5153 int FirstMulHasFewerUses = true; 5154 if (isContractableFMul(*LHS, AllowFusionGlobally) && 5155 isContractableFMul(*RHS, AllowFusionGlobally) && 5156 hasMoreUses(*LHS, *RHS, MRI)) 5157 FirstMulHasFewerUses = false; 5158 5159 unsigned PreferredFusedOpcode = 5160 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5161 5162 // fold (fsub (fmul x, y), z) -> (fma x, y, -z) 5163 if (FirstMulHasFewerUses && 5164 (isContractableFMul(*LHS, AllowFusionGlobally) && 5165 (Aggressive || MRI.hasOneNonDBGUse(LHS->getOperand(0).getReg())))) { 5166 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5167 Register NegZ = B.buildFNeg(DstTy, RHS->getOperand(0).getReg()).getReg(0); 5168 B.buildInstr( 5169 PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5170 {LHS->getOperand(1).getReg(), LHS->getOperand(2).getReg(), NegZ}); 5171 }; 5172 return true; 5173 } 5174 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) 5175 else if ((isContractableFMul(*RHS, AllowFusionGlobally) && 5176 (Aggressive || MRI.hasOneNonDBGUse(RHS->getOperand(0).getReg())))) { 5177 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5178 Register NegY = B.buildFNeg(DstTy, RHS->getOperand(1).getReg()).getReg(0); 5179 B.buildInstr( 5180 PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5181 {NegY, RHS->getOperand(2).getReg(), LHS->getOperand(0).getReg()}); 5182 }; 5183 return true; 5184 } 5185 5186 return false; 5187 } 5188 5189 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( 5190 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5191 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5192 5193 bool AllowFusionGlobally, HasFMAD, Aggressive; 5194 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5195 return false; 5196 5197 Register LHSReg = MI.getOperand(1).getReg(); 5198 Register RHSReg = MI.getOperand(2).getReg(); 5199 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5200 5201 unsigned PreferredFusedOpcode = 5202 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5203 5204 MachineInstr *FMulMI; 5205 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) 5206 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5207 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && 5208 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5209 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5210 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5211 Register NegX = 5212 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5213 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5214 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5215 {NegX, FMulMI->getOperand(2).getReg(), NegZ}); 5216 }; 5217 return true; 5218 } 5219 5220 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) 5221 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && 5222 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && 5223 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && 5224 isContractableFMul(*FMulMI, AllowFusionGlobally)) { 5225 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5226 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5227 {FMulMI->getOperand(1).getReg(), 5228 FMulMI->getOperand(2).getReg(), LHSReg}); 5229 }; 5230 return true; 5231 } 5232 5233 return false; 5234 } 5235 5236 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( 5237 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5238 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5239 5240 bool AllowFusionGlobally, HasFMAD, Aggressive; 5241 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5242 return false; 5243 5244 Register LHSReg = MI.getOperand(1).getReg(); 5245 Register RHSReg = MI.getOperand(2).getReg(); 5246 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5247 5248 unsigned PreferredFusedOpcode = 5249 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5250 5251 MachineInstr *FMulMI; 5252 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) 5253 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5254 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5255 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { 5256 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5257 Register FpExtX = 5258 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5259 Register FpExtY = 5260 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5261 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); 5262 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5263 {FpExtX, FpExtY, NegZ}); 5264 }; 5265 return true; 5266 } 5267 5268 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) 5269 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && 5270 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5271 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { 5272 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5273 Register FpExtY = 5274 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); 5275 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); 5276 Register FpExtZ = 5277 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); 5278 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, 5279 {NegY, FpExtZ, LHSReg}); 5280 }; 5281 return true; 5282 } 5283 5284 return false; 5285 } 5286 5287 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( 5288 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { 5289 assert(MI.getOpcode() == TargetOpcode::G_FSUB); 5290 5291 bool AllowFusionGlobally, HasFMAD, Aggressive; 5292 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) 5293 return false; 5294 5295 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); 5296 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 5297 Register LHSReg = MI.getOperand(1).getReg(); 5298 Register RHSReg = MI.getOperand(2).getReg(); 5299 5300 unsigned PreferredFusedOpcode = 5301 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; 5302 5303 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, 5304 MachineIRBuilder &B) { 5305 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); 5306 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); 5307 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); 5308 }; 5309 5310 MachineInstr *FMulMI; 5311 // fold (fsub (fpext (fneg (fmul x, y))), z) -> 5312 // (fneg (fma (fpext x), (fpext y), z)) 5313 // fold (fsub (fneg (fpext (fmul x, y))), z) -> 5314 // (fneg (fma (fpext x), (fpext y), z)) 5315 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5316 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5317 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5318 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5319 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5320 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5321 Register FMAReg = MRI.createGenericVirtualRegister(DstTy); 5322 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), 5323 FMulMI->getOperand(2).getReg(), RHSReg, B); 5324 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); 5325 }; 5326 return true; 5327 } 5328 5329 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5330 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) 5331 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || 5332 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && 5333 isContractableFMul(*FMulMI, AllowFusionGlobally) && 5334 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, 5335 MRI.getType(FMulMI->getOperand(0).getReg()))) { 5336 MatchInfo = [=, &MI](MachineIRBuilder &B) { 5337 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), 5338 FMulMI->getOperand(2).getReg(), LHSReg, B); 5339 }; 5340 return true; 5341 } 5342 5343 return false; 5344 } 5345 5346 bool CombinerHelper::tryCombine(MachineInstr &MI) { 5347 if (tryCombineCopy(MI)) 5348 return true; 5349 if (tryCombineExtendingLoads(MI)) 5350 return true; 5351 if (tryCombineIndexedLoadStore(MI)) 5352 return true; 5353 return false; 5354 } 5355