xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 ISD::ArgFlagsTy
74 CallLowering::getAttributesForReturn(const CallBase &Call) const {
75   ISD::ArgFlagsTy Flags;
76   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
77     return Call.hasRetAttr(Attr);
78   });
79   return Flags;
80 }
81 
82 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
83                                              const AttributeList &Attrs,
84                                              unsigned OpIdx) const {
85   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
86     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
87   });
88 }
89 
90 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
91                              ArrayRef<Register> ResRegs,
92                              ArrayRef<ArrayRef<Register>> ArgRegs,
93                              Register SwiftErrorVReg,
94                              std::function<unsigned()> GetCalleeReg) const {
95   CallLoweringInfo Info;
96   const DataLayout &DL = MIRBuilder.getDataLayout();
97   MachineFunction &MF = MIRBuilder.getMF();
98   MachineRegisterInfo &MRI = MF.getRegInfo();
99   bool CanBeTailCalled = CB.isTailCall() &&
100                          isInTailCallPosition(CB, MF.getTarget()) &&
101                          (MF.getFunction()
102                               .getFnAttribute("disable-tail-calls")
103                               .getValueAsString() != "true");
104 
105   CallingConv::ID CallConv = CB.getCallingConv();
106   Type *RetTy = CB.getType();
107   bool IsVarArg = CB.getFunctionType()->isVarArg();
108 
109   SmallVector<BaseArgInfo, 4> SplitArgs;
110   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
111   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
112 
113   Info.IsConvergent = CB.isConvergent();
114 
115   if (!Info.CanLowerReturn) {
116     // Callee requires sret demotion.
117     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
118 
119     // The sret demotion isn't compatible with tail-calls, since the sret
120     // argument points into the caller's stack frame.
121     CanBeTailCalled = false;
122   }
123 
124 
125   // First step is to marshall all the function's parameters into the correct
126   // physregs and memory locations. Gather the sequence of argument types that
127   // we'll pass to the assigner function.
128   unsigned i = 0;
129   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
130   for (const auto &Arg : CB.args()) {
131     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
132                     i < NumFixedArgs};
133     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
134 
135     // If we have an explicit sret argument that is an Instruction, (i.e., it
136     // might point to function-local memory), we can't meaningfully tail-call.
137     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
138       CanBeTailCalled = false;
139 
140     Info.OrigArgs.push_back(OrigArg);
141     ++i;
142   }
143 
144   // Try looking through a bitcast from one function type to another.
145   // Commonly happens with calls to objc_msgSend().
146   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
147   if (const Function *F = dyn_cast<Function>(CalleeV))
148     Info.Callee = MachineOperand::CreateGA(F, 0);
149   else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
150     // IR IFuncs and Aliases can't be forward declared (only defined), so the
151     // callee must be in the same TU and therefore we can direct-call it without
152     // worrying about it being out of range.
153     Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
154   } else
155     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
156 
157   Register ReturnHintAlignReg;
158   Align ReturnHintAlign;
159 
160   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
161 
162   if (!Info.OrigRet.Ty->isVoidTy()) {
163     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
164 
165     if (MaybeAlign Alignment = CB.getRetAlign()) {
166       if (*Alignment > Align(1)) {
167         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
168         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
169         ReturnHintAlign = *Alignment;
170       }
171     }
172   }
173 
174   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
175   if (Bundle && CB.isIndirectCall()) {
176     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
177     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
178   }
179 
180   Info.CB = &CB;
181   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
182   Info.CallConv = CallConv;
183   Info.SwiftErrorVReg = SwiftErrorVReg;
184   Info.IsMustTailCall = CB.isMustTailCall();
185   Info.IsTailCall = CanBeTailCalled;
186   Info.IsVarArg = IsVarArg;
187   if (!lowerCall(MIRBuilder, Info))
188     return false;
189 
190   if (ReturnHintAlignReg && !Info.IsTailCall) {
191     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
192                                 ReturnHintAlign);
193   }
194 
195   return true;
196 }
197 
198 template <typename FuncInfoTy>
199 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
200                                const DataLayout &DL,
201                                const FuncInfoTy &FuncInfo) const {
202   auto &Flags = Arg.Flags[0];
203   const AttributeList &Attrs = FuncInfo.getAttributes();
204   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
205 
206   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
207   if (PtrTy) {
208     Flags.setPointer();
209     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
210   }
211 
212   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
213   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
214     assert(OpIdx >= AttributeList::FirstArgIndex);
215     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
216 
217     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
218     if (!ElementTy)
219       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
220     if (!ElementTy)
221       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
222     assert(ElementTy && "Must have byval, inalloca or preallocated type");
223     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
224 
225     // For ByVal, alignment should be passed from FE.  BE will guess if
226     // this info is not there but there are cases it cannot get right.
227     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
228       MemAlign = *ParamAlign;
229     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
230       MemAlign = *ParamAlign;
231     else
232       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
233   } else if (OpIdx >= AttributeList::FirstArgIndex) {
234     if (auto ParamAlign =
235             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
236       MemAlign = *ParamAlign;
237   }
238   Flags.setMemAlign(MemAlign);
239   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
240 
241   // Don't try to use the returned attribute if the argument is marked as
242   // swiftself, since it won't be passed in x0.
243   if (Flags.isSwiftSelf())
244     Flags.setReturned(false);
245 }
246 
247 template void
248 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
249                                     const DataLayout &DL,
250                                     const Function &FuncInfo) const;
251 
252 template void
253 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
254                                     const DataLayout &DL,
255                                     const CallBase &FuncInfo) const;
256 
257 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
258                                      SmallVectorImpl<ArgInfo> &SplitArgs,
259                                      const DataLayout &DL,
260                                      CallingConv::ID CallConv,
261                                      SmallVectorImpl<uint64_t> *Offsets) const {
262   LLVMContext &Ctx = OrigArg.Ty->getContext();
263 
264   SmallVector<EVT, 4> SplitVTs;
265   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
266 
267   if (SplitVTs.size() == 0)
268     return;
269 
270   if (SplitVTs.size() == 1) {
271     // No splitting to do, but we want to replace the original type (e.g. [1 x
272     // double] -> double).
273     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
274                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
275                            OrigArg.IsFixed, OrigArg.OrigValue);
276     return;
277   }
278 
279   // Create one ArgInfo for each virtual register in the original ArgInfo.
280   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
281 
282   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
283       OrigArg.Ty, CallConv, false, DL);
284   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
285     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
286     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
287                            OrigArg.Flags[0], OrigArg.IsFixed);
288     if (NeedsRegBlock)
289       SplitArgs.back().Flags[0].setInConsecutiveRegs();
290   }
291 
292   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
293 }
294 
295 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
296 static MachineInstrBuilder
297 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
298                             ArrayRef<Register> SrcRegs) {
299   MachineRegisterInfo &MRI = *B.getMRI();
300   LLT LLTy = MRI.getType(DstRegs[0]);
301   LLT PartLLT = MRI.getType(SrcRegs[0]);
302 
303   // Deal with v3s16 split into v2s16
304   LLT LCMTy = getCoverTy(LLTy, PartLLT);
305   if (LCMTy == LLTy) {
306     // Common case where no padding is needed.
307     assert(DstRegs.size() == 1);
308     return B.buildConcatVectors(DstRegs[0], SrcRegs);
309   }
310 
311   // We need to create an unmerge to the result registers, which may require
312   // widening the original value.
313   Register UnmergeSrcReg;
314   if (LCMTy != PartLLT) {
315     assert(DstRegs.size() == 1);
316     return B.buildDeleteTrailingVectorElements(
317         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
318   } else {
319     // We don't need to widen anything if we're extracting a scalar which was
320     // promoted to a vector e.g. s8 -> v4s8 -> s8
321     assert(SrcRegs.size() == 1);
322     UnmergeSrcReg = SrcRegs[0];
323   }
324 
325   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
326 
327   SmallVector<Register, 8> PadDstRegs(NumDst);
328   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
329 
330   // Create the excess dead defs for the unmerge.
331   for (int I = DstRegs.size(); I != NumDst; ++I)
332     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
333 
334   if (PadDstRegs.size() == 1)
335     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
336   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
337 }
338 
339 /// Create a sequence of instructions to combine pieces split into register
340 /// typed values to the original IR value. \p OrigRegs contains the destination
341 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
342 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
343 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
344                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
345                               const ISD::ArgFlagsTy Flags) {
346   MachineRegisterInfo &MRI = *B.getMRI();
347 
348   if (PartLLT == LLTy) {
349     // We should have avoided introducing a new virtual register, and just
350     // directly assigned here.
351     assert(OrigRegs[0] == Regs[0]);
352     return;
353   }
354 
355   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
356       Regs.size() == 1) {
357     B.buildBitcast(OrigRegs[0], Regs[0]);
358     return;
359   }
360 
361   // A vector PartLLT needs extending to LLTy's element size.
362   // E.g. <2 x s64> = G_SEXT <2 x s32>.
363   if (PartLLT.isVector() == LLTy.isVector() &&
364       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
365       (!PartLLT.isVector() ||
366        PartLLT.getElementCount() == LLTy.getElementCount()) &&
367       OrigRegs.size() == 1 && Regs.size() == 1) {
368     Register SrcReg = Regs[0];
369 
370     LLT LocTy = MRI.getType(SrcReg);
371 
372     if (Flags.isSExt()) {
373       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
374                    .getReg(0);
375     } else if (Flags.isZExt()) {
376       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
377                    .getReg(0);
378     }
379 
380     // Sometimes pointers are passed zero extended.
381     LLT OrigTy = MRI.getType(OrigRegs[0]);
382     if (OrigTy.isPointer()) {
383       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
384       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
385       return;
386     }
387 
388     B.buildTrunc(OrigRegs[0], SrcReg);
389     return;
390   }
391 
392   if (!LLTy.isVector() && !PartLLT.isVector()) {
393     assert(OrigRegs.size() == 1);
394     LLT OrigTy = MRI.getType(OrigRegs[0]);
395 
396     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
397     if (SrcSize == OrigTy.getSizeInBits())
398       B.buildMergeValues(OrigRegs[0], Regs);
399     else {
400       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
401       B.buildTrunc(OrigRegs[0], Widened);
402     }
403 
404     return;
405   }
406 
407   if (PartLLT.isVector()) {
408     assert(OrigRegs.size() == 1);
409     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
410 
411     // If PartLLT is a mismatched vector in both number of elements and element
412     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
413     // have the same elt type, i.e. v4s32.
414     // TODO: Extend this coersion to element multiples other than just 2.
415     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
416         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
417         Regs.size() == 1) {
418       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
419                       .changeElementCount(PartLLT.getElementCount() * 2);
420       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
421       PartLLT = NewTy;
422     }
423 
424     if (LLTy.getScalarType() == PartLLT.getElementType()) {
425       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
426     } else {
427       unsigned I = 0;
428       LLT GCDTy = getGCDType(LLTy, PartLLT);
429 
430       // We are both splitting a vector, and bitcasting its element types. Cast
431       // the source pieces into the appropriate number of pieces with the result
432       // element type.
433       for (Register SrcReg : CastRegs)
434         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
435       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
436     }
437 
438     return;
439   }
440 
441   assert(LLTy.isVector() && !PartLLT.isVector());
442 
443   LLT DstEltTy = LLTy.getElementType();
444 
445   // Pointer information was discarded. We'll need to coerce some register types
446   // to avoid violating type constraints.
447   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
448 
449   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
450 
451   if (DstEltTy == PartLLT) {
452     // Vector was trivially scalarized.
453 
454     if (RealDstEltTy.isPointer()) {
455       for (Register Reg : Regs)
456         MRI.setType(Reg, RealDstEltTy);
457     }
458 
459     B.buildBuildVector(OrigRegs[0], Regs);
460   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
461     // Deal with vector with 64-bit elements decomposed to 32-bit
462     // registers. Need to create intermediate 64-bit elements.
463     SmallVector<Register, 8> EltMerges;
464     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
465 
466     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
467 
468     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
469       auto Merge =
470           B.buildMergeLikeInstr(RealDstEltTy, Regs.take_front(PartsPerElt));
471       // Fix the type in case this is really a vector of pointers.
472       MRI.setType(Merge.getReg(0), RealDstEltTy);
473       EltMerges.push_back(Merge.getReg(0));
474       Regs = Regs.drop_front(PartsPerElt);
475     }
476 
477     B.buildBuildVector(OrigRegs[0], EltMerges);
478   } else {
479     // Vector was split, and elements promoted to a wider type.
480     // FIXME: Should handle floating point promotions.
481     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
482     auto BV = B.buildBuildVector(BVType, Regs);
483     B.buildTrunc(OrigRegs[0], BV);
484   }
485 }
486 
487 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
488 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
489 /// contain the type of scalar value extension if necessary.
490 ///
491 /// This is used for outgoing values (vregs to physregs)
492 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
493                             Register SrcReg, LLT SrcTy, LLT PartTy,
494                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
495   // We could just insert a regular copy, but this is unreachable at the moment.
496   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
497 
498   const unsigned PartSize = PartTy.getSizeInBits();
499 
500   if (PartTy.isVector() == SrcTy.isVector() &&
501       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
502     assert(DstRegs.size() == 1);
503     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
504     return;
505   }
506 
507   if (SrcTy.isVector() && !PartTy.isVector() &&
508       PartSize > SrcTy.getElementType().getSizeInBits()) {
509     // Vector was scalarized, and the elements extended.
510     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
511     for (int i = 0, e = DstRegs.size(); i != e; ++i)
512       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
513     return;
514   }
515 
516   if (SrcTy.isVector() && PartTy.isVector() &&
517       PartTy.getScalarSizeInBits() == SrcTy.getScalarSizeInBits() &&
518       SrcTy.getNumElements() < PartTy.getNumElements()) {
519     // A coercion like: v2f32 -> v4f32.
520     Register DstReg = DstRegs.front();
521     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
522     return;
523   }
524 
525   LLT GCDTy = getGCDType(SrcTy, PartTy);
526   if (GCDTy == PartTy) {
527     // If this already evenly divisible, we can create a simple unmerge.
528     B.buildUnmerge(DstRegs, SrcReg);
529     return;
530   }
531 
532   MachineRegisterInfo &MRI = *B.getMRI();
533   LLT DstTy = MRI.getType(DstRegs[0]);
534   LLT LCMTy = getCoverTy(SrcTy, PartTy);
535 
536   if (PartTy.isVector() && LCMTy == PartTy) {
537     assert(DstRegs.size() == 1);
538     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
539     return;
540   }
541 
542   const unsigned DstSize = DstTy.getSizeInBits();
543   const unsigned SrcSize = SrcTy.getSizeInBits();
544   unsigned CoveringSize = LCMTy.getSizeInBits();
545 
546   Register UnmergeSrc = SrcReg;
547 
548   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
549     // For scalars, it's common to be able to use a simple extension.
550     if (SrcTy.isScalar() && DstTy.isScalar()) {
551       CoveringSize = alignTo(SrcSize, DstSize);
552       LLT CoverTy = LLT::scalar(CoveringSize);
553       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
554     } else {
555       // Widen to the common type.
556       // FIXME: This should respect the extend type
557       Register Undef = B.buildUndef(SrcTy).getReg(0);
558       SmallVector<Register, 8> MergeParts(1, SrcReg);
559       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
560         MergeParts.push_back(Undef);
561       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
562     }
563   }
564 
565   if (LCMTy.isVector() && CoveringSize != SrcSize)
566     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
567 
568   B.buildUnmerge(DstRegs, UnmergeSrc);
569 }
570 
571 bool CallLowering::determineAndHandleAssignments(
572     ValueHandler &Handler, ValueAssigner &Assigner,
573     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
574     CallingConv::ID CallConv, bool IsVarArg,
575     ArrayRef<Register> ThisReturnRegs) const {
576   MachineFunction &MF = MIRBuilder.getMF();
577   const Function &F = MF.getFunction();
578   SmallVector<CCValAssign, 16> ArgLocs;
579 
580   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
581   if (!determineAssignments(Assigner, Args, CCInfo))
582     return false;
583 
584   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
585                            ThisReturnRegs);
586 }
587 
588 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
589   if (Flags.isSExt())
590     return TargetOpcode::G_SEXT;
591   if (Flags.isZExt())
592     return TargetOpcode::G_ZEXT;
593   return TargetOpcode::G_ANYEXT;
594 }
595 
596 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
597                                         SmallVectorImpl<ArgInfo> &Args,
598                                         CCState &CCInfo) const {
599   LLVMContext &Ctx = CCInfo.getContext();
600   const CallingConv::ID CallConv = CCInfo.getCallingConv();
601 
602   unsigned NumArgs = Args.size();
603   for (unsigned i = 0; i != NumArgs; ++i) {
604     EVT CurVT = EVT::getEVT(Args[i].Ty);
605 
606     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
607 
608     // If we need to split the type over multiple regs, check it's a scenario
609     // we currently support.
610     unsigned NumParts =
611         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
612 
613     if (NumParts == 1) {
614       // Try to use the register type if we couldn't assign the VT.
615       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
616                              Args[i].Flags[0], CCInfo))
617         return false;
618       continue;
619     }
620 
621     // For incoming arguments (physregs to vregs), we could have values in
622     // physregs (or memlocs) which we want to extract and copy to vregs.
623     // During this, we might have to deal with the LLT being split across
624     // multiple regs, so we have to record this information for later.
625     //
626     // If we have outgoing args, then we have the opposite case. We have a
627     // vreg with an LLT which we want to assign to a physical location, and
628     // we might have to record that the value has to be split later.
629 
630     // We're handling an incoming arg which is split over multiple regs.
631     // E.g. passing an s128 on AArch64.
632     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
633     Args[i].Flags.clear();
634 
635     for (unsigned Part = 0; Part < NumParts; ++Part) {
636       ISD::ArgFlagsTy Flags = OrigFlags;
637       if (Part == 0) {
638         Flags.setSplit();
639       } else {
640         Flags.setOrigAlign(Align(1));
641         if (Part == NumParts - 1)
642           Flags.setSplitEnd();
643       }
644 
645       Args[i].Flags.push_back(Flags);
646       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
647                              Args[i].Flags[Part], CCInfo)) {
648         // Still couldn't assign this smaller part type for some reason.
649         return false;
650       }
651     }
652   }
653 
654   return true;
655 }
656 
657 bool CallLowering::handleAssignments(ValueHandler &Handler,
658                                      SmallVectorImpl<ArgInfo> &Args,
659                                      CCState &CCInfo,
660                                      SmallVectorImpl<CCValAssign> &ArgLocs,
661                                      MachineIRBuilder &MIRBuilder,
662                                      ArrayRef<Register> ThisReturnRegs) const {
663   MachineFunction &MF = MIRBuilder.getMF();
664   MachineRegisterInfo &MRI = MF.getRegInfo();
665   const Function &F = MF.getFunction();
666   const DataLayout &DL = F.getParent()->getDataLayout();
667 
668   const unsigned NumArgs = Args.size();
669 
670   // Stores thunks for outgoing register assignments. This is used so we delay
671   // generating register copies until mem loc assignments are done. We do this
672   // so that if the target is using the delayed stack protector feature, we can
673   // find the split point of the block accurately. E.g. if we have:
674   // G_STORE %val, %memloc
675   // $x0 = COPY %foo
676   // $x1 = COPY %bar
677   // CALL func
678   // ... then the split point for the block will correctly be at, and including,
679   // the copy to $x0. If instead the G_STORE instruction immediately precedes
680   // the CALL, then we'd prematurely choose the CALL as the split point, thus
681   // generating a split block with a CALL that uses undefined physregs.
682   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
683 
684   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
685     assert(j < ArgLocs.size() && "Skipped too many arg locs");
686     CCValAssign &VA = ArgLocs[j];
687     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
688 
689     if (VA.needsCustom()) {
690       std::function<void()> Thunk;
691       unsigned NumArgRegs = Handler.assignCustomValue(
692           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
693       if (Thunk)
694         DelayedOutgoingRegAssignments.emplace_back(Thunk);
695       if (!NumArgRegs)
696         return false;
697       j += NumArgRegs;
698       continue;
699     }
700 
701     const MVT ValVT = VA.getValVT();
702     const MVT LocVT = VA.getLocVT();
703 
704     const LLT LocTy(LocVT);
705     const LLT ValTy(ValVT);
706     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
707     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
708     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
709 
710     // Expected to be multiple regs for a single incoming arg.
711     // There should be Regs.size() ArgLocs per argument.
712     // This should be the same as getNumRegistersForCallingConv
713     const unsigned NumParts = Args[i].Flags.size();
714 
715     // Now split the registers into the assigned types.
716     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
717 
718     if (NumParts != 1 || NewLLT != OrigTy) {
719       // If we can't directly assign the register, we need one or more
720       // intermediate values.
721       Args[i].Regs.resize(NumParts);
722 
723       // For each split register, create and assign a vreg that will store
724       // the incoming component of the larger value. These will later be
725       // merged to form the final vreg.
726       for (unsigned Part = 0; Part < NumParts; ++Part)
727         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
728     }
729 
730     assert((j + (NumParts - 1)) < ArgLocs.size() &&
731            "Too many regs for number of args");
732 
733     // Coerce into outgoing value types before register assignment.
734     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
735       assert(Args[i].OrigRegs.size() == 1);
736       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
737                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
738     }
739 
740     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
741     for (unsigned Part = 0; Part < NumParts; ++Part) {
742       Register ArgReg = Args[i].Regs[Part];
743       // There should be Regs.size() ArgLocs per argument.
744       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
745       CCValAssign &VA = ArgLocs[j + Idx];
746       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
747 
748       if (VA.isMemLoc() && !Flags.isByVal()) {
749         // Individual pieces may have been spilled to the stack and others
750         // passed in registers.
751 
752         // TODO: The memory size may be larger than the value we need to
753         // store. We may need to adjust the offset for big endian targets.
754         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
755 
756         MachinePointerInfo MPO;
757         Register StackAddr = Handler.getStackAddress(
758             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
759 
760         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
761         continue;
762       }
763 
764       if (VA.isMemLoc() && Flags.isByVal()) {
765         assert(Args[i].Regs.size() == 1 &&
766                "didn't expect split byval pointer");
767 
768         if (Handler.isIncomingArgumentHandler()) {
769           // We just need to copy the frame index value to the pointer.
770           MachinePointerInfo MPO;
771           Register StackAddr = Handler.getStackAddress(
772               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
773           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
774         } else {
775           // For outgoing byval arguments, insert the implicit copy byval
776           // implies, such that writes in the callee do not modify the caller's
777           // value.
778           uint64_t MemSize = Flags.getByValSize();
779           int64_t Offset = VA.getLocMemOffset();
780 
781           MachinePointerInfo DstMPO;
782           Register StackAddr =
783               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
784 
785           MachinePointerInfo SrcMPO(Args[i].OrigValue);
786           if (!Args[i].OrigValue) {
787             // We still need to accurately track the stack address space if we
788             // don't know the underlying value.
789             const LLT PtrTy = MRI.getType(StackAddr);
790             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
791           }
792 
793           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
794                                     inferAlignFromPtrInfo(MF, DstMPO));
795 
796           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
797                                     inferAlignFromPtrInfo(MF, SrcMPO));
798 
799           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
800                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
801                                      MemSize, VA);
802         }
803         continue;
804       }
805 
806       assert(!VA.needsCustom() && "custom loc should have been handled already");
807 
808       if (i == 0 && !ThisReturnRegs.empty() &&
809           Handler.isIncomingArgumentHandler() &&
810           isTypeIsValidForThisReturn(ValVT)) {
811         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
812         continue;
813       }
814 
815       if (Handler.isIncomingArgumentHandler())
816         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
817       else {
818         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
819           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
820         });
821       }
822     }
823 
824     // Now that all pieces have been assigned, re-pack the register typed values
825     // into the original value typed registers.
826     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
827       // Merge the split registers into the expected larger result vregs of
828       // the original call.
829       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
830                         LocTy, Args[i].Flags[0]);
831     }
832 
833     j += NumParts - 1;
834   }
835   for (auto &Fn : DelayedOutgoingRegAssignments)
836     Fn();
837 
838   return true;
839 }
840 
841 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
842                                    ArrayRef<Register> VRegs, Register DemoteReg,
843                                    int FI) const {
844   MachineFunction &MF = MIRBuilder.getMF();
845   MachineRegisterInfo &MRI = MF.getRegInfo();
846   const DataLayout &DL = MF.getDataLayout();
847 
848   SmallVector<EVT, 4> SplitVTs;
849   SmallVector<uint64_t, 4> Offsets;
850   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
851 
852   assert(VRegs.size() == SplitVTs.size());
853 
854   unsigned NumValues = SplitVTs.size();
855   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
856   Type *RetPtrTy =
857       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
858   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
859 
860   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
861 
862   for (unsigned I = 0; I < NumValues; ++I) {
863     Register Addr;
864     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
865     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
866                                         MRI.getType(VRegs[I]),
867                                         commonAlignment(BaseAlign, Offsets[I]));
868     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
869   }
870 }
871 
872 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
873                                     ArrayRef<Register> VRegs,
874                                     Register DemoteReg) const {
875   MachineFunction &MF = MIRBuilder.getMF();
876   MachineRegisterInfo &MRI = MF.getRegInfo();
877   const DataLayout &DL = MF.getDataLayout();
878 
879   SmallVector<EVT, 4> SplitVTs;
880   SmallVector<uint64_t, 4> Offsets;
881   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
882 
883   assert(VRegs.size() == SplitVTs.size());
884 
885   unsigned NumValues = SplitVTs.size();
886   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
887   unsigned AS = DL.getAllocaAddrSpace();
888   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
889 
890   MachinePointerInfo PtrInfo(AS);
891 
892   for (unsigned I = 0; I < NumValues; ++I) {
893     Register Addr;
894     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
895     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
896                                         MRI.getType(VRegs[I]),
897                                         commonAlignment(BaseAlign, Offsets[I]));
898     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
899   }
900 }
901 
902 void CallLowering::insertSRetIncomingArgument(
903     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
904     MachineRegisterInfo &MRI, const DataLayout &DL) const {
905   unsigned AS = DL.getAllocaAddrSpace();
906   DemoteReg = MRI.createGenericVirtualRegister(
907       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
908 
909   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
910 
911   SmallVector<EVT, 1> ValueVTs;
912   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
913 
914   // NOTE: Assume that a pointer won't get split into more than one VT.
915   assert(ValueVTs.size() == 1);
916 
917   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
918                     ArgInfo::NoArgIndex);
919   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
920   DemoteArg.Flags[0].setSRet();
921   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
922 }
923 
924 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
925                                               const CallBase &CB,
926                                               CallLoweringInfo &Info) const {
927   const DataLayout &DL = MIRBuilder.getDataLayout();
928   Type *RetTy = CB.getType();
929   unsigned AS = DL.getAllocaAddrSpace();
930   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
931 
932   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
933       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
934 
935   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
936   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
937                     ArgInfo::NoArgIndex);
938   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
939   DemoteArg.Flags[0].setSRet();
940 
941   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
942   Info.DemoteStackIndex = FI;
943   Info.DemoteRegister = DemoteReg;
944 }
945 
946 bool CallLowering::checkReturn(CCState &CCInfo,
947                                SmallVectorImpl<BaseArgInfo> &Outs,
948                                CCAssignFn *Fn) const {
949   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
950     MVT VT = MVT::getVT(Outs[I].Ty);
951     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
952       return false;
953   }
954   return true;
955 }
956 
957 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
958                                  AttributeList Attrs,
959                                  SmallVectorImpl<BaseArgInfo> &Outs,
960                                  const DataLayout &DL) const {
961   LLVMContext &Context = RetTy->getContext();
962   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
963 
964   SmallVector<EVT, 4> SplitVTs;
965   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
966   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
967 
968   for (EVT VT : SplitVTs) {
969     unsigned NumParts =
970         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
971     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
972     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
973 
974     for (unsigned I = 0; I < NumParts; ++I) {
975       Outs.emplace_back(PartTy, Flags);
976     }
977   }
978 }
979 
980 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
981   const auto &F = MF.getFunction();
982   Type *ReturnType = F.getReturnType();
983   CallingConv::ID CallConv = F.getCallingConv();
984 
985   SmallVector<BaseArgInfo, 4> SplitArgs;
986   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
987                 MF.getDataLayout());
988   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
989 }
990 
991 bool CallLowering::parametersInCSRMatch(
992     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
993     const SmallVectorImpl<CCValAssign> &OutLocs,
994     const SmallVectorImpl<ArgInfo> &OutArgs) const {
995   for (unsigned i = 0; i < OutLocs.size(); ++i) {
996     const auto &ArgLoc = OutLocs[i];
997     // If it's not a register, it's fine.
998     if (!ArgLoc.isRegLoc())
999       continue;
1000 
1001     MCRegister PhysReg = ArgLoc.getLocReg();
1002 
1003     // Only look at callee-saved registers.
1004     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1005       continue;
1006 
1007     LLVM_DEBUG(
1008         dbgs()
1009         << "... Call has an argument passed in a callee-saved register.\n");
1010 
1011     // Check if it was copied from.
1012     const ArgInfo &OutInfo = OutArgs[i];
1013 
1014     if (OutInfo.Regs.size() > 1) {
1015       LLVM_DEBUG(
1016           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1017       return false;
1018     }
1019 
1020     // Check if we copy the register, walking through copies from virtual
1021     // registers. Note that getDefIgnoringCopies does not ignore copies from
1022     // physical registers.
1023     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1024     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1025       LLVM_DEBUG(
1026           dbgs()
1027           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1028       return false;
1029     }
1030 
1031     // Got a copy. Verify that it's the same as the register we want.
1032     Register CopyRHS = RegDef->getOperand(1).getReg();
1033     if (CopyRHS != PhysReg) {
1034       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1035                            "VReg, cannot tail call.\n");
1036       return false;
1037     }
1038   }
1039 
1040   return true;
1041 }
1042 
1043 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1044                                      MachineFunction &MF,
1045                                      SmallVectorImpl<ArgInfo> &InArgs,
1046                                      ValueAssigner &CalleeAssigner,
1047                                      ValueAssigner &CallerAssigner) const {
1048   const Function &F = MF.getFunction();
1049   CallingConv::ID CalleeCC = Info.CallConv;
1050   CallingConv::ID CallerCC = F.getCallingConv();
1051 
1052   if (CallerCC == CalleeCC)
1053     return true;
1054 
1055   SmallVector<CCValAssign, 16> ArgLocs1;
1056   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1057   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1058     return false;
1059 
1060   SmallVector<CCValAssign, 16> ArgLocs2;
1061   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1062   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1063     return false;
1064 
1065   // We need the argument locations to match up exactly. If there's more in
1066   // one than the other, then we are done.
1067   if (ArgLocs1.size() != ArgLocs2.size())
1068     return false;
1069 
1070   // Make sure that each location is passed in exactly the same way.
1071   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1072     const CCValAssign &Loc1 = ArgLocs1[i];
1073     const CCValAssign &Loc2 = ArgLocs2[i];
1074 
1075     // We need both of them to be the same. So if one is a register and one
1076     // isn't, we're done.
1077     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1078       return false;
1079 
1080     if (Loc1.isRegLoc()) {
1081       // If they don't have the same register location, we're done.
1082       if (Loc1.getLocReg() != Loc2.getLocReg())
1083         return false;
1084 
1085       // They matched, so we can move to the next ArgLoc.
1086       continue;
1087     }
1088 
1089     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1090     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1091       return false;
1092   }
1093 
1094   return true;
1095 }
1096 
1097 LLT CallLowering::ValueHandler::getStackValueStoreType(
1098     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1099   const MVT ValVT = VA.getValVT();
1100   if (ValVT != MVT::iPTR) {
1101     LLT ValTy(ValVT);
1102 
1103     // We lost the pointeriness going through CCValAssign, so try to restore it
1104     // based on the flags.
1105     if (Flags.isPointer()) {
1106       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1107                                ValTy.getScalarSizeInBits());
1108       if (ValVT.isVector())
1109         return LLT::vector(ValTy.getElementCount(), PtrTy);
1110       return PtrTy;
1111     }
1112 
1113     return ValTy;
1114   }
1115 
1116   unsigned AddrSpace = Flags.getPointerAddrSpace();
1117   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1118 }
1119 
1120 void CallLowering::ValueHandler::copyArgumentMemory(
1121     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1122     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1123     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1124     CCValAssign &VA) const {
1125   MachineFunction &MF = MIRBuilder.getMF();
1126   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1127       SrcPtrInfo,
1128       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1129       SrcAlign);
1130 
1131   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1132       DstPtrInfo,
1133       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1134       MemSize, DstAlign);
1135 
1136   const LLT PtrTy = MRI.getType(DstPtr);
1137   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1138 
1139   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1140   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1141 }
1142 
1143 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1144                                                     const CCValAssign &VA,
1145                                                     unsigned MaxSizeBits) {
1146   LLT LocTy{VA.getLocVT()};
1147   LLT ValTy{VA.getValVT()};
1148 
1149   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1150     return ValReg;
1151 
1152   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1153     if (MaxSizeBits <= ValTy.getSizeInBits())
1154       return ValReg;
1155     LocTy = LLT::scalar(MaxSizeBits);
1156   }
1157 
1158   const LLT ValRegTy = MRI.getType(ValReg);
1159   if (ValRegTy.isPointer()) {
1160     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1161     // we have to cast to do the extension.
1162     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1163     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1164   }
1165 
1166   switch (VA.getLocInfo()) {
1167   default: break;
1168   case CCValAssign::Full:
1169   case CCValAssign::BCvt:
1170     // FIXME: bitconverting between vector types may or may not be a
1171     // nop in big-endian situations.
1172     return ValReg;
1173   case CCValAssign::AExt: {
1174     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1175     return MIB.getReg(0);
1176   }
1177   case CCValAssign::SExt: {
1178     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1179     MIRBuilder.buildSExt(NewReg, ValReg);
1180     return NewReg;
1181   }
1182   case CCValAssign::ZExt: {
1183     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1184     MIRBuilder.buildZExt(NewReg, ValReg);
1185     return NewReg;
1186   }
1187   }
1188   llvm_unreachable("unable to extend register");
1189 }
1190 
1191 void CallLowering::ValueAssigner::anchor() {}
1192 
1193 Register CallLowering::IncomingValueHandler::buildExtensionHint(
1194     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1195   switch (VA.getLocInfo()) {
1196   case CCValAssign::LocInfo::ZExt: {
1197     return MIRBuilder
1198         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1199                          NarrowTy.getScalarSizeInBits())
1200         .getReg(0);
1201   }
1202   case CCValAssign::LocInfo::SExt: {
1203     return MIRBuilder
1204         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1205                          NarrowTy.getScalarSizeInBits())
1206         .getReg(0);
1207     break;
1208   }
1209   default:
1210     return SrcReg;
1211   }
1212 }
1213 
1214 /// Check if we can use a basic COPY instruction between the two types.
1215 ///
1216 /// We're currently building on top of the infrastructure using MVT, which loses
1217 /// pointer information in the CCValAssign. We accept copies from physical
1218 /// registers that have been reported as integers if it's to an equivalent sized
1219 /// pointer LLT.
1220 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1221   if (SrcTy == DstTy)
1222     return true;
1223 
1224   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1225     return false;
1226 
1227   SrcTy = SrcTy.getScalarType();
1228   DstTy = DstTy.getScalarType();
1229 
1230   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1231          (DstTy.isPointer() && SrcTy.isScalar());
1232 }
1233 
1234 void CallLowering::IncomingValueHandler::assignValueToReg(
1235     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1236   const MVT LocVT = VA.getLocVT();
1237   const LLT LocTy(LocVT);
1238   const LLT RegTy = MRI.getType(ValVReg);
1239 
1240   if (isCopyCompatibleType(RegTy, LocTy)) {
1241     MIRBuilder.buildCopy(ValVReg, PhysReg);
1242     return;
1243   }
1244 
1245   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1246   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1247   MIRBuilder.buildTrunc(ValVReg, Hint);
1248 }
1249