xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric ///
90b57cec5SDimitry Andric /// \file
100b57cec5SDimitry Andric /// This file implements some simple delegations needed for call lowering.
110b57cec5SDimitry Andric ///
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric 
1481ad6265SDimitry Andric #include "llvm/CodeGen/GlobalISel/CallLowering.h"
150b57cec5SDimitry Andric #include "llvm/CodeGen/Analysis.h"
16349cc55cSDimitry Andric #include "llvm/CodeGen/CallingConvLower.h"
170b57cec5SDimitry Andric #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
1881ad6265SDimitry Andric #include "llvm/CodeGen/GlobalISel/Utils.h"
1981ad6265SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
200b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
210b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
220b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
230b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
24*0fca6ea1SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
258bcb0991SDimitry Andric #include "llvm/IR/LLVMContext.h"
260b57cec5SDimitry Andric #include "llvm/IR/Module.h"
275ffd83dbSDimitry Andric #include "llvm/Target/TargetMachine.h"
280b57cec5SDimitry Andric 
290b57cec5SDimitry Andric #define DEBUG_TYPE "call-lowering"
300b57cec5SDimitry Andric 
310b57cec5SDimitry Andric using namespace llvm;
320b57cec5SDimitry Andric 
330b57cec5SDimitry Andric void CallLowering::anchor() {}
340b57cec5SDimitry Andric 
35e8d8bef9SDimitry Andric /// Helper function which updates \p Flags when \p AttrFn returns true.
36e8d8bef9SDimitry Andric static void
37e8d8bef9SDimitry Andric addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
38e8d8bef9SDimitry Andric                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
39*0fca6ea1SDimitry Andric   // TODO: There are missing flags. Add them here.
40e8d8bef9SDimitry Andric   if (AttrFn(Attribute::SExt))
41e8d8bef9SDimitry Andric     Flags.setSExt();
42e8d8bef9SDimitry Andric   if (AttrFn(Attribute::ZExt))
43e8d8bef9SDimitry Andric     Flags.setZExt();
44e8d8bef9SDimitry Andric   if (AttrFn(Attribute::InReg))
45e8d8bef9SDimitry Andric     Flags.setInReg();
46e8d8bef9SDimitry Andric   if (AttrFn(Attribute::StructRet))
47e8d8bef9SDimitry Andric     Flags.setSRet();
48e8d8bef9SDimitry Andric   if (AttrFn(Attribute::Nest))
49e8d8bef9SDimitry Andric     Flags.setNest();
50e8d8bef9SDimitry Andric   if (AttrFn(Attribute::ByVal))
51e8d8bef9SDimitry Andric     Flags.setByVal();
52*0fca6ea1SDimitry Andric   if (AttrFn(Attribute::ByRef))
53*0fca6ea1SDimitry Andric     Flags.setByRef();
54e8d8bef9SDimitry Andric   if (AttrFn(Attribute::Preallocated))
55e8d8bef9SDimitry Andric     Flags.setPreallocated();
56e8d8bef9SDimitry Andric   if (AttrFn(Attribute::InAlloca))
57e8d8bef9SDimitry Andric     Flags.setInAlloca();
58e8d8bef9SDimitry Andric   if (AttrFn(Attribute::Returned))
59e8d8bef9SDimitry Andric     Flags.setReturned();
60e8d8bef9SDimitry Andric   if (AttrFn(Attribute::SwiftSelf))
61e8d8bef9SDimitry Andric     Flags.setSwiftSelf();
62fe6060f1SDimitry Andric   if (AttrFn(Attribute::SwiftAsync))
63fe6060f1SDimitry Andric     Flags.setSwiftAsync();
64e8d8bef9SDimitry Andric   if (AttrFn(Attribute::SwiftError))
65e8d8bef9SDimitry Andric     Flags.setSwiftError();
66e8d8bef9SDimitry Andric }
67e8d8bef9SDimitry Andric 
68e8d8bef9SDimitry Andric ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
69e8d8bef9SDimitry Andric                                                      unsigned ArgIdx) const {
70e8d8bef9SDimitry Andric   ISD::ArgFlagsTy Flags;
71e8d8bef9SDimitry Andric   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
72e8d8bef9SDimitry Andric     return Call.paramHasAttr(ArgIdx, Attr);
73e8d8bef9SDimitry Andric   });
74e8d8bef9SDimitry Andric   return Flags;
75e8d8bef9SDimitry Andric }
76e8d8bef9SDimitry Andric 
77bdd1243dSDimitry Andric ISD::ArgFlagsTy
78bdd1243dSDimitry Andric CallLowering::getAttributesForReturn(const CallBase &Call) const {
79bdd1243dSDimitry Andric   ISD::ArgFlagsTy Flags;
80bdd1243dSDimitry Andric   addFlagsUsingAttrFn(Flags, [&Call](Attribute::AttrKind Attr) {
81bdd1243dSDimitry Andric     return Call.hasRetAttr(Attr);
82bdd1243dSDimitry Andric   });
83bdd1243dSDimitry Andric   return Flags;
84bdd1243dSDimitry Andric }
85bdd1243dSDimitry Andric 
86e8d8bef9SDimitry Andric void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
87e8d8bef9SDimitry Andric                                              const AttributeList &Attrs,
88e8d8bef9SDimitry Andric                                              unsigned OpIdx) const {
89e8d8bef9SDimitry Andric   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
90349cc55cSDimitry Andric     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
91e8d8bef9SDimitry Andric   });
92e8d8bef9SDimitry Andric }
93e8d8bef9SDimitry Andric 
945ffd83dbSDimitry Andric bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
950b57cec5SDimitry Andric                              ArrayRef<Register> ResRegs,
960b57cec5SDimitry Andric                              ArrayRef<ArrayRef<Register>> ArgRegs,
970b57cec5SDimitry Andric                              Register SwiftErrorVReg,
98*0fca6ea1SDimitry Andric                              std::optional<PtrAuthInfo> PAI,
99*0fca6ea1SDimitry Andric                              Register ConvergenceCtrlToken,
1000b57cec5SDimitry Andric                              std::function<unsigned()> GetCalleeReg) const {
1018bcb0991SDimitry Andric   CallLoweringInfo Info;
1025ffd83dbSDimitry Andric   const DataLayout &DL = MIRBuilder.getDataLayout();
103e8d8bef9SDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
10404eeddc0SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
105e8d8bef9SDimitry Andric   bool CanBeTailCalled = CB.isTailCall() &&
106e8d8bef9SDimitry Andric                          isInTailCallPosition(CB, MF.getTarget()) &&
107e8d8bef9SDimitry Andric                          (MF.getFunction()
108e8d8bef9SDimitry Andric                               .getFnAttribute("disable-tail-calls")
109e8d8bef9SDimitry Andric                               .getValueAsString() != "true");
110e8d8bef9SDimitry Andric 
111e8d8bef9SDimitry Andric   CallingConv::ID CallConv = CB.getCallingConv();
112e8d8bef9SDimitry Andric   Type *RetTy = CB.getType();
113e8d8bef9SDimitry Andric   bool IsVarArg = CB.getFunctionType()->isVarArg();
114e8d8bef9SDimitry Andric 
115e8d8bef9SDimitry Andric   SmallVector<BaseArgInfo, 4> SplitArgs;
116e8d8bef9SDimitry Andric   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
117e8d8bef9SDimitry Andric   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
118e8d8bef9SDimitry Andric 
1195f757f3fSDimitry Andric   Info.IsConvergent = CB.isConvergent();
1205f757f3fSDimitry Andric 
121e8d8bef9SDimitry Andric   if (!Info.CanLowerReturn) {
122e8d8bef9SDimitry Andric     // Callee requires sret demotion.
123e8d8bef9SDimitry Andric     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
124e8d8bef9SDimitry Andric 
125e8d8bef9SDimitry Andric     // The sret demotion isn't compatible with tail-calls, since the sret
126e8d8bef9SDimitry Andric     // argument points into the caller's stack frame.
127e8d8bef9SDimitry Andric     CanBeTailCalled = false;
128e8d8bef9SDimitry Andric   }
1290b57cec5SDimitry Andric 
1300b57cec5SDimitry Andric   // First step is to marshall all the function's parameters into the correct
1310b57cec5SDimitry Andric   // physregs and memory locations. Gather the sequence of argument types that
1320b57cec5SDimitry Andric   // we'll pass to the assigner function.
1330b57cec5SDimitry Andric   unsigned i = 0;
1345ffd83dbSDimitry Andric   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
135fcaf7f86SDimitry Andric   for (const auto &Arg : CB.args()) {
136fe6060f1SDimitry Andric     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
1370b57cec5SDimitry Andric                     i < NumFixedArgs};
1385ffd83dbSDimitry Andric     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
139e8d8bef9SDimitry Andric 
140e8d8bef9SDimitry Andric     // If we have an explicit sret argument that is an Instruction, (i.e., it
141e8d8bef9SDimitry Andric     // might point to function-local memory), we can't meaningfully tail-call.
142e8d8bef9SDimitry Andric     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
143e8d8bef9SDimitry Andric       CanBeTailCalled = false;
144e8d8bef9SDimitry Andric 
1458bcb0991SDimitry Andric     Info.OrigArgs.push_back(OrigArg);
1460b57cec5SDimitry Andric     ++i;
1470b57cec5SDimitry Andric   }
1480b57cec5SDimitry Andric 
1495ffd83dbSDimitry Andric   // Try looking through a bitcast from one function type to another.
1505ffd83dbSDimitry Andric   // Commonly happens with calls to objc_msgSend().
1515ffd83dbSDimitry Andric   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
152*0fca6ea1SDimitry Andric 
153*0fca6ea1SDimitry Andric   // If IRTranslator chose to drop the ptrauth info, we can turn this into
154*0fca6ea1SDimitry Andric   // a direct call.
155*0fca6ea1SDimitry Andric   if (!PAI && CB.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
156*0fca6ea1SDimitry Andric     CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer();
157*0fca6ea1SDimitry Andric     assert(isa<Function>(CalleeV));
158*0fca6ea1SDimitry Andric   }
159*0fca6ea1SDimitry Andric 
160*0fca6ea1SDimitry Andric   if (const Function *F = dyn_cast<Function>(CalleeV)) {
161*0fca6ea1SDimitry Andric     if (F->hasFnAttribute(Attribute::NonLazyBind)) {
162*0fca6ea1SDimitry Andric       LLT Ty = getLLTForType(*F->getType(), DL);
163*0fca6ea1SDimitry Andric       Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
164*0fca6ea1SDimitry Andric       Info.Callee = MachineOperand::CreateReg(Reg, false);
165*0fca6ea1SDimitry Andric     } else {
1668bcb0991SDimitry Andric       Info.Callee = MachineOperand::CreateGA(F, 0);
167*0fca6ea1SDimitry Andric     }
168*0fca6ea1SDimitry Andric   } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
1695f757f3fSDimitry Andric     // IR IFuncs and Aliases can't be forward declared (only defined), so the
1705f757f3fSDimitry Andric     // callee must be in the same TU and therefore we can direct-call it without
1715f757f3fSDimitry Andric     // worrying about it being out of range.
1725f757f3fSDimitry Andric     Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
1735f757f3fSDimitry Andric   } else
1748bcb0991SDimitry Andric     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
1750b57cec5SDimitry Andric 
17604eeddc0SDimitry Andric   Register ReturnHintAlignReg;
17704eeddc0SDimitry Andric   Align ReturnHintAlign;
17804eeddc0SDimitry Andric 
179bdd1243dSDimitry Andric   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
18004eeddc0SDimitry Andric 
18104eeddc0SDimitry Andric   if (!Info.OrigRet.Ty->isVoidTy()) {
1825ffd83dbSDimitry Andric     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
1830b57cec5SDimitry Andric 
18404eeddc0SDimitry Andric     if (MaybeAlign Alignment = CB.getRetAlign()) {
18504eeddc0SDimitry Andric       if (*Alignment > Align(1)) {
18604eeddc0SDimitry Andric         ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
18704eeddc0SDimitry Andric         Info.OrigRet.Regs[0] = ReturnHintAlignReg;
18804eeddc0SDimitry Andric         ReturnHintAlign = *Alignment;
18904eeddc0SDimitry Andric       }
19004eeddc0SDimitry Andric     }
19104eeddc0SDimitry Andric   }
19204eeddc0SDimitry Andric 
193bdd1243dSDimitry Andric   auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
194bdd1243dSDimitry Andric   if (Bundle && CB.isIndirectCall()) {
195bdd1243dSDimitry Andric     Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
196bdd1243dSDimitry Andric     assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
197bdd1243dSDimitry Andric   }
198bdd1243dSDimitry Andric 
199349cc55cSDimitry Andric   Info.CB = &CB;
2005ffd83dbSDimitry Andric   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
201e8d8bef9SDimitry Andric   Info.CallConv = CallConv;
2028bcb0991SDimitry Andric   Info.SwiftErrorVReg = SwiftErrorVReg;
203*0fca6ea1SDimitry Andric   Info.PAI = PAI;
204*0fca6ea1SDimitry Andric   Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
2055ffd83dbSDimitry Andric   Info.IsMustTailCall = CB.isMustTailCall();
206e8d8bef9SDimitry Andric   Info.IsTailCall = CanBeTailCalled;
207e8d8bef9SDimitry Andric   Info.IsVarArg = IsVarArg;
20804eeddc0SDimitry Andric   if (!lowerCall(MIRBuilder, Info))
20904eeddc0SDimitry Andric     return false;
21004eeddc0SDimitry Andric 
211*0fca6ea1SDimitry Andric   if (ReturnHintAlignReg && !Info.LoweredTailCall) {
21204eeddc0SDimitry Andric     MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
21304eeddc0SDimitry Andric                                 ReturnHintAlign);
21404eeddc0SDimitry Andric   }
21504eeddc0SDimitry Andric 
21604eeddc0SDimitry Andric   return true;
2170b57cec5SDimitry Andric }
2180b57cec5SDimitry Andric 
2190b57cec5SDimitry Andric template <typename FuncInfoTy>
2200b57cec5SDimitry Andric void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
2210b57cec5SDimitry Andric                                const DataLayout &DL,
2220b57cec5SDimitry Andric                                const FuncInfoTy &FuncInfo) const {
2238bcb0991SDimitry Andric   auto &Flags = Arg.Flags[0];
2240b57cec5SDimitry Andric   const AttributeList &Attrs = FuncInfo.getAttributes();
225e8d8bef9SDimitry Andric   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
2260b57cec5SDimitry Andric 
227fe6060f1SDimitry Andric   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
228fe6060f1SDimitry Andric   if (PtrTy) {
229fe6060f1SDimitry Andric     Flags.setPointer();
230fe6060f1SDimitry Andric     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
231fe6060f1SDimitry Andric   }
232fe6060f1SDimitry Andric 
233fe6060f1SDimitry Andric   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
234*0fca6ea1SDimitry Andric   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
235*0fca6ea1SDimitry Andric       Flags.isByRef()) {
236fe6060f1SDimitry Andric     assert(OpIdx >= AttributeList::FirstArgIndex);
237349cc55cSDimitry Andric     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
2380b57cec5SDimitry Andric 
239349cc55cSDimitry Andric     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
240349cc55cSDimitry Andric     if (!ElementTy)
241*0fca6ea1SDimitry Andric       ElementTy = FuncInfo.getParamByRefType(ParamIdx);
242*0fca6ea1SDimitry Andric     if (!ElementTy)
243349cc55cSDimitry Andric       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
244349cc55cSDimitry Andric     if (!ElementTy)
245349cc55cSDimitry Andric       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
246*0fca6ea1SDimitry Andric 
247349cc55cSDimitry Andric     assert(ElementTy && "Must have byval, inalloca or preallocated type");
248*0fca6ea1SDimitry Andric 
249*0fca6ea1SDimitry Andric     uint64_t MemSize = DL.getTypeAllocSize(ElementTy);
250*0fca6ea1SDimitry Andric     if (Flags.isByRef())
251*0fca6ea1SDimitry Andric       Flags.setByRefSize(MemSize);
252*0fca6ea1SDimitry Andric     else
253*0fca6ea1SDimitry Andric       Flags.setByValSize(MemSize);
2540b57cec5SDimitry Andric 
2550b57cec5SDimitry Andric     // For ByVal, alignment should be passed from FE.  BE will guess if
2560b57cec5SDimitry Andric     // this info is not there but there are cases it cannot get right.
257349cc55cSDimitry Andric     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
258fe6060f1SDimitry Andric       MemAlign = *ParamAlign;
259349cc55cSDimitry Andric     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
260fe6060f1SDimitry Andric       MemAlign = *ParamAlign;
2610b57cec5SDimitry Andric     else
262fe6060f1SDimitry Andric       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
263fe6060f1SDimitry Andric   } else if (OpIdx >= AttributeList::FirstArgIndex) {
264fe6060f1SDimitry Andric     if (auto ParamAlign =
265fe6060f1SDimitry Andric             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
266fe6060f1SDimitry Andric       MemAlign = *ParamAlign;
2670b57cec5SDimitry Andric   }
268fe6060f1SDimitry Andric   Flags.setMemAlign(MemAlign);
2695ffd83dbSDimitry Andric   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
270fe6060f1SDimitry Andric 
271fe6060f1SDimitry Andric   // Don't try to use the returned attribute if the argument is marked as
272fe6060f1SDimitry Andric   // swiftself, since it won't be passed in x0.
273fe6060f1SDimitry Andric   if (Flags.isSwiftSelf())
274fe6060f1SDimitry Andric     Flags.setReturned(false);
2750b57cec5SDimitry Andric }
2760b57cec5SDimitry Andric 
2770b57cec5SDimitry Andric template void
2780b57cec5SDimitry Andric CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
2790b57cec5SDimitry Andric                                     const DataLayout &DL,
2800b57cec5SDimitry Andric                                     const Function &FuncInfo) const;
2810b57cec5SDimitry Andric 
2820b57cec5SDimitry Andric template void
2835ffd83dbSDimitry Andric CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
2840b57cec5SDimitry Andric                                     const DataLayout &DL,
2855ffd83dbSDimitry Andric                                     const CallBase &FuncInfo) const;
2860b57cec5SDimitry Andric 
287fe6060f1SDimitry Andric void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
288fe6060f1SDimitry Andric                                      SmallVectorImpl<ArgInfo> &SplitArgs,
289fe6060f1SDimitry Andric                                      const DataLayout &DL,
290fe6060f1SDimitry Andric                                      CallingConv::ID CallConv,
291fe6060f1SDimitry Andric                                      SmallVectorImpl<uint64_t> *Offsets) const {
292fe6060f1SDimitry Andric   LLVMContext &Ctx = OrigArg.Ty->getContext();
2930b57cec5SDimitry Andric 
294fe6060f1SDimitry Andric   SmallVector<EVT, 4> SplitVTs;
295fe6060f1SDimitry Andric   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
2960b57cec5SDimitry Andric 
297fe6060f1SDimitry Andric   if (SplitVTs.size() == 0)
298fe6060f1SDimitry Andric     return;
2990b57cec5SDimitry Andric 
300fe6060f1SDimitry Andric   if (SplitVTs.size() == 1) {
301fe6060f1SDimitry Andric     // No splitting to do, but we want to replace the original type (e.g. [1 x
302fe6060f1SDimitry Andric     // double] -> double).
303fe6060f1SDimitry Andric     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
304fe6060f1SDimitry Andric                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
305fe6060f1SDimitry Andric                            OrigArg.IsFixed, OrigArg.OrigValue);
306fe6060f1SDimitry Andric     return;
3070b57cec5SDimitry Andric   }
3080b57cec5SDimitry Andric 
309fe6060f1SDimitry Andric   // Create one ArgInfo for each virtual register in the original ArgInfo.
310fe6060f1SDimitry Andric   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
311fe6060f1SDimitry Andric 
312fe6060f1SDimitry Andric   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
313fe6060f1SDimitry Andric       OrigArg.Ty, CallConv, false, DL);
314fe6060f1SDimitry Andric   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
315fe6060f1SDimitry Andric     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
316fe6060f1SDimitry Andric     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
317fe6060f1SDimitry Andric                            OrigArg.Flags[0], OrigArg.IsFixed);
318fe6060f1SDimitry Andric     if (NeedsRegBlock)
319fe6060f1SDimitry Andric       SplitArgs.back().Flags[0].setInConsecutiveRegs();
3200b57cec5SDimitry Andric   }
3210b57cec5SDimitry Andric 
322fe6060f1SDimitry Andric   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
3230b57cec5SDimitry Andric }
3240b57cec5SDimitry Andric 
325fe6060f1SDimitry Andric /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
326fe6060f1SDimitry Andric static MachineInstrBuilder
327fe6060f1SDimitry Andric mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
328fe6060f1SDimitry Andric                             ArrayRef<Register> SrcRegs) {
329fe6060f1SDimitry Andric   MachineRegisterInfo &MRI = *B.getMRI();
330fe6060f1SDimitry Andric   LLT LLTy = MRI.getType(DstRegs[0]);
331fe6060f1SDimitry Andric   LLT PartLLT = MRI.getType(SrcRegs[0]);
332fe6060f1SDimitry Andric 
333fe6060f1SDimitry Andric   // Deal with v3s16 split into v2s16
3340eae32dcSDimitry Andric   LLT LCMTy = getCoverTy(LLTy, PartLLT);
335fe6060f1SDimitry Andric   if (LCMTy == LLTy) {
336fe6060f1SDimitry Andric     // Common case where no padding is needed.
337fe6060f1SDimitry Andric     assert(DstRegs.size() == 1);
338fe6060f1SDimitry Andric     return B.buildConcatVectors(DstRegs[0], SrcRegs);
339fe6060f1SDimitry Andric   }
340fe6060f1SDimitry Andric 
341fe6060f1SDimitry Andric   // We need to create an unmerge to the result registers, which may require
342fe6060f1SDimitry Andric   // widening the original value.
343fe6060f1SDimitry Andric   Register UnmergeSrcReg;
344fe6060f1SDimitry Andric   if (LCMTy != PartLLT) {
3450eae32dcSDimitry Andric     assert(DstRegs.size() == 1);
346bdd1243dSDimitry Andric     return B.buildDeleteTrailingVectorElements(
347bdd1243dSDimitry Andric         DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
348fe6060f1SDimitry Andric   } else {
349fe6060f1SDimitry Andric     // We don't need to widen anything if we're extracting a scalar which was
350fe6060f1SDimitry Andric     // promoted to a vector e.g. s8 -> v4s8 -> s8
351fe6060f1SDimitry Andric     assert(SrcRegs.size() == 1);
352fe6060f1SDimitry Andric     UnmergeSrcReg = SrcRegs[0];
353fe6060f1SDimitry Andric   }
354fe6060f1SDimitry Andric 
355fe6060f1SDimitry Andric   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
356fe6060f1SDimitry Andric 
357fe6060f1SDimitry Andric   SmallVector<Register, 8> PadDstRegs(NumDst);
358fe6060f1SDimitry Andric   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
359fe6060f1SDimitry Andric 
360fe6060f1SDimitry Andric   // Create the excess dead defs for the unmerge.
361fe6060f1SDimitry Andric   for (int I = DstRegs.size(); I != NumDst; ++I)
362fe6060f1SDimitry Andric     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
363fe6060f1SDimitry Andric 
3640eae32dcSDimitry Andric   if (PadDstRegs.size() == 1)
3650eae32dcSDimitry Andric     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
366fe6060f1SDimitry Andric   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
367fe6060f1SDimitry Andric }
368fe6060f1SDimitry Andric 
369fe6060f1SDimitry Andric /// Create a sequence of instructions to combine pieces split into register
370fe6060f1SDimitry Andric /// typed values to the original IR value. \p OrigRegs contains the destination
371fe6060f1SDimitry Andric /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
372fe6060f1SDimitry Andric /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
373fe6060f1SDimitry Andric static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
374fe6060f1SDimitry Andric                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
375fe6060f1SDimitry Andric                               const ISD::ArgFlagsTy Flags) {
376fe6060f1SDimitry Andric   MachineRegisterInfo &MRI = *B.getMRI();
377fe6060f1SDimitry Andric 
378fe6060f1SDimitry Andric   if (PartLLT == LLTy) {
379fe6060f1SDimitry Andric     // We should have avoided introducing a new virtual register, and just
380fe6060f1SDimitry Andric     // directly assigned here.
381fe6060f1SDimitry Andric     assert(OrigRegs[0] == Regs[0]);
382fe6060f1SDimitry Andric     return;
383fe6060f1SDimitry Andric   }
384fe6060f1SDimitry Andric 
385fe6060f1SDimitry Andric   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
386fe6060f1SDimitry Andric       Regs.size() == 1) {
387fe6060f1SDimitry Andric     B.buildBitcast(OrigRegs[0], Regs[0]);
388fe6060f1SDimitry Andric     return;
389fe6060f1SDimitry Andric   }
390fe6060f1SDimitry Andric 
391fe6060f1SDimitry Andric   // A vector PartLLT needs extending to LLTy's element size.
392fe6060f1SDimitry Andric   // E.g. <2 x s64> = G_SEXT <2 x s32>.
393fe6060f1SDimitry Andric   if (PartLLT.isVector() == LLTy.isVector() &&
394fe6060f1SDimitry Andric       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
395fe6060f1SDimitry Andric       (!PartLLT.isVector() ||
3965f757f3fSDimitry Andric        PartLLT.getElementCount() == LLTy.getElementCount()) &&
397fe6060f1SDimitry Andric       OrigRegs.size() == 1 && Regs.size() == 1) {
398fe6060f1SDimitry Andric     Register SrcReg = Regs[0];
399fe6060f1SDimitry Andric 
400fe6060f1SDimitry Andric     LLT LocTy = MRI.getType(SrcReg);
401fe6060f1SDimitry Andric 
402fe6060f1SDimitry Andric     if (Flags.isSExt()) {
403fe6060f1SDimitry Andric       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
404fe6060f1SDimitry Andric                    .getReg(0);
405fe6060f1SDimitry Andric     } else if (Flags.isZExt()) {
406fe6060f1SDimitry Andric       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
407fe6060f1SDimitry Andric                    .getReg(0);
408fe6060f1SDimitry Andric     }
409fe6060f1SDimitry Andric 
410fe6060f1SDimitry Andric     // Sometimes pointers are passed zero extended.
411fe6060f1SDimitry Andric     LLT OrigTy = MRI.getType(OrigRegs[0]);
412fe6060f1SDimitry Andric     if (OrigTy.isPointer()) {
413fe6060f1SDimitry Andric       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
414fe6060f1SDimitry Andric       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
415fe6060f1SDimitry Andric       return;
416fe6060f1SDimitry Andric     }
417fe6060f1SDimitry Andric 
418fe6060f1SDimitry Andric     B.buildTrunc(OrigRegs[0], SrcReg);
419fe6060f1SDimitry Andric     return;
420fe6060f1SDimitry Andric   }
421fe6060f1SDimitry Andric 
422fe6060f1SDimitry Andric   if (!LLTy.isVector() && !PartLLT.isVector()) {
423fe6060f1SDimitry Andric     assert(OrigRegs.size() == 1);
424fe6060f1SDimitry Andric     LLT OrigTy = MRI.getType(OrigRegs[0]);
425fe6060f1SDimitry Andric 
426bdd1243dSDimitry Andric     unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
427fe6060f1SDimitry Andric     if (SrcSize == OrigTy.getSizeInBits())
428bdd1243dSDimitry Andric       B.buildMergeValues(OrigRegs[0], Regs);
429fe6060f1SDimitry Andric     else {
430bdd1243dSDimitry Andric       auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
431fe6060f1SDimitry Andric       B.buildTrunc(OrigRegs[0], Widened);
432fe6060f1SDimitry Andric     }
433fe6060f1SDimitry Andric 
434fe6060f1SDimitry Andric     return;
435fe6060f1SDimitry Andric   }
436fe6060f1SDimitry Andric 
437fe6060f1SDimitry Andric   if (PartLLT.isVector()) {
438fe6060f1SDimitry Andric     assert(OrigRegs.size() == 1);
439fe6060f1SDimitry Andric     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
440fe6060f1SDimitry Andric 
441fe6060f1SDimitry Andric     // If PartLLT is a mismatched vector in both number of elements and element
442fe6060f1SDimitry Andric     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
443fe6060f1SDimitry Andric     // have the same elt type, i.e. v4s32.
4445f757f3fSDimitry Andric     // TODO: Extend this coersion to element multiples other than just 2.
445*0fca6ea1SDimitry Andric     if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
446fe6060f1SDimitry Andric         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
447fe6060f1SDimitry Andric         Regs.size() == 1) {
448fe6060f1SDimitry Andric       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
449fe6060f1SDimitry Andric                       .changeElementCount(PartLLT.getElementCount() * 2);
450fe6060f1SDimitry Andric       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
451fe6060f1SDimitry Andric       PartLLT = NewTy;
452fe6060f1SDimitry Andric     }
453fe6060f1SDimitry Andric 
454fe6060f1SDimitry Andric     if (LLTy.getScalarType() == PartLLT.getElementType()) {
455fe6060f1SDimitry Andric       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
456fe6060f1SDimitry Andric     } else {
457fe6060f1SDimitry Andric       unsigned I = 0;
458fe6060f1SDimitry Andric       LLT GCDTy = getGCDType(LLTy, PartLLT);
459fe6060f1SDimitry Andric 
460fe6060f1SDimitry Andric       // We are both splitting a vector, and bitcasting its element types. Cast
461fe6060f1SDimitry Andric       // the source pieces into the appropriate number of pieces with the result
462fe6060f1SDimitry Andric       // element type.
463fe6060f1SDimitry Andric       for (Register SrcReg : CastRegs)
464fe6060f1SDimitry Andric         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
465fe6060f1SDimitry Andric       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
466fe6060f1SDimitry Andric     }
467fe6060f1SDimitry Andric 
468fe6060f1SDimitry Andric     return;
469fe6060f1SDimitry Andric   }
470fe6060f1SDimitry Andric 
471fe6060f1SDimitry Andric   assert(LLTy.isVector() && !PartLLT.isVector());
472fe6060f1SDimitry Andric 
473fe6060f1SDimitry Andric   LLT DstEltTy = LLTy.getElementType();
474fe6060f1SDimitry Andric 
475fe6060f1SDimitry Andric   // Pointer information was discarded. We'll need to coerce some register types
476fe6060f1SDimitry Andric   // to avoid violating type constraints.
477fe6060f1SDimitry Andric   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
478fe6060f1SDimitry Andric 
479fe6060f1SDimitry Andric   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
480fe6060f1SDimitry Andric 
481fe6060f1SDimitry Andric   if (DstEltTy == PartLLT) {
482fe6060f1SDimitry Andric     // Vector was trivially scalarized.
483fe6060f1SDimitry Andric 
484fe6060f1SDimitry Andric     if (RealDstEltTy.isPointer()) {
485fe6060f1SDimitry Andric       for (Register Reg : Regs)
486fe6060f1SDimitry Andric         MRI.setType(Reg, RealDstEltTy);
487fe6060f1SDimitry Andric     }
488fe6060f1SDimitry Andric 
489fe6060f1SDimitry Andric     B.buildBuildVector(OrigRegs[0], Regs);
490fe6060f1SDimitry Andric   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
491fe6060f1SDimitry Andric     // Deal with vector with 64-bit elements decomposed to 32-bit
492fe6060f1SDimitry Andric     // registers. Need to create intermediate 64-bit elements.
493fe6060f1SDimitry Andric     SmallVector<Register, 8> EltMerges;
494*0fca6ea1SDimitry Andric     int PartsPerElt =
495*0fca6ea1SDimitry Andric         divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits());
496*0fca6ea1SDimitry Andric     LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt);
497fe6060f1SDimitry Andric 
498fe6060f1SDimitry Andric     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
499bdd1243dSDimitry Andric       auto Merge =
500*0fca6ea1SDimitry Andric           B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt));
501*0fca6ea1SDimitry Andric       if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits())
502*0fca6ea1SDimitry Andric         Merge = B.buildTrunc(RealDstEltTy, Merge);
503fe6060f1SDimitry Andric       // Fix the type in case this is really a vector of pointers.
504fe6060f1SDimitry Andric       MRI.setType(Merge.getReg(0), RealDstEltTy);
505fe6060f1SDimitry Andric       EltMerges.push_back(Merge.getReg(0));
506fe6060f1SDimitry Andric       Regs = Regs.drop_front(PartsPerElt);
507fe6060f1SDimitry Andric     }
508fe6060f1SDimitry Andric 
509fe6060f1SDimitry Andric     B.buildBuildVector(OrigRegs[0], EltMerges);
510fe6060f1SDimitry Andric   } else {
511fe6060f1SDimitry Andric     // Vector was split, and elements promoted to a wider type.
512fe6060f1SDimitry Andric     // FIXME: Should handle floating point promotions.
5137a6dacacSDimitry Andric     unsigned NumElts = LLTy.getNumElements();
5147a6dacacSDimitry Andric     LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
5157a6dacacSDimitry Andric 
5167a6dacacSDimitry Andric     Register BuildVec;
5177a6dacacSDimitry Andric     if (NumElts == Regs.size())
5187a6dacacSDimitry Andric       BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
5197a6dacacSDimitry Andric     else {
5207a6dacacSDimitry Andric       // Vector elements are packed in the inputs.
5217a6dacacSDimitry Andric       // e.g. we have a <4 x s16> but 2 x s32 in regs.
5227a6dacacSDimitry Andric       assert(NumElts > Regs.size());
5237a6dacacSDimitry Andric       LLT SrcEltTy = MRI.getType(Regs[0]);
5247a6dacacSDimitry Andric 
5257a6dacacSDimitry Andric       LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
5267a6dacacSDimitry Andric 
5277a6dacacSDimitry Andric       // Input registers contain packed elements.
5287a6dacacSDimitry Andric       // Determine how many elements per reg.
5297a6dacacSDimitry Andric       assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
5307a6dacacSDimitry Andric       unsigned EltPerReg =
5317a6dacacSDimitry Andric           (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
5327a6dacacSDimitry Andric 
5337a6dacacSDimitry Andric       SmallVector<Register, 0> BVRegs;
5347a6dacacSDimitry Andric       BVRegs.reserve(Regs.size() * EltPerReg);
5357a6dacacSDimitry Andric       for (Register R : Regs) {
5367a6dacacSDimitry Andric         auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
5377a6dacacSDimitry Andric         for (unsigned K = 0; K < EltPerReg; ++K)
5387a6dacacSDimitry Andric           BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
5397a6dacacSDimitry Andric       }
5407a6dacacSDimitry Andric 
5417a6dacacSDimitry Andric       // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
5427a6dacacSDimitry Andric       // for a <3 x s16> vector. We should have less than EltPerReg extra items.
5437a6dacacSDimitry Andric       if (BVRegs.size() > NumElts) {
5447a6dacacSDimitry Andric         assert((BVRegs.size() - NumElts) < EltPerReg);
5457a6dacacSDimitry Andric         BVRegs.truncate(NumElts);
5467a6dacacSDimitry Andric       }
5477a6dacacSDimitry Andric       BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
5487a6dacacSDimitry Andric     }
5497a6dacacSDimitry Andric     B.buildTrunc(OrigRegs[0], BuildVec);
550fe6060f1SDimitry Andric   }
551fe6060f1SDimitry Andric }
552fe6060f1SDimitry Andric 
553fe6060f1SDimitry Andric /// Create a sequence of instructions to expand the value in \p SrcReg (of type
554fe6060f1SDimitry Andric /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
555fe6060f1SDimitry Andric /// contain the type of scalar value extension if necessary.
556fe6060f1SDimitry Andric ///
557fe6060f1SDimitry Andric /// This is used for outgoing values (vregs to physregs)
558fe6060f1SDimitry Andric static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
559fe6060f1SDimitry Andric                             Register SrcReg, LLT SrcTy, LLT PartTy,
560fe6060f1SDimitry Andric                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
561fe6060f1SDimitry Andric   // We could just insert a regular copy, but this is unreachable at the moment.
562fe6060f1SDimitry Andric   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
563fe6060f1SDimitry Andric 
564*0fca6ea1SDimitry Andric   const TypeSize PartSize = PartTy.getSizeInBits();
565fe6060f1SDimitry Andric 
566fe6060f1SDimitry Andric   if (PartTy.isVector() == SrcTy.isVector() &&
567fe6060f1SDimitry Andric       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
568fe6060f1SDimitry Andric     assert(DstRegs.size() == 1);
569fe6060f1SDimitry Andric     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
570fe6060f1SDimitry Andric     return;
571fe6060f1SDimitry Andric   }
572fe6060f1SDimitry Andric 
573fe6060f1SDimitry Andric   if (SrcTy.isVector() && !PartTy.isVector() &&
574*0fca6ea1SDimitry Andric       TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
575fe6060f1SDimitry Andric     // Vector was scalarized, and the elements extended.
576fe6060f1SDimitry Andric     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
577fe6060f1SDimitry Andric     for (int i = 0, e = DstRegs.size(); i != e; ++i)
578fe6060f1SDimitry Andric       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
579fe6060f1SDimitry Andric     return;
580fe6060f1SDimitry Andric   }
581fe6060f1SDimitry Andric 
582bdd1243dSDimitry Andric   if (SrcTy.isVector() && PartTy.isVector() &&
583*0fca6ea1SDimitry Andric       PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
584*0fca6ea1SDimitry Andric       ElementCount::isKnownLT(SrcTy.getElementCount(),
585*0fca6ea1SDimitry Andric                               PartTy.getElementCount())) {
586*0fca6ea1SDimitry Andric     // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
587bdd1243dSDimitry Andric     Register DstReg = DstRegs.front();
588bdd1243dSDimitry Andric     B.buildPadVectorWithUndefElements(DstReg, SrcReg);
589bdd1243dSDimitry Andric     return;
590bdd1243dSDimitry Andric   }
591bdd1243dSDimitry Andric 
592fe6060f1SDimitry Andric   LLT GCDTy = getGCDType(SrcTy, PartTy);
593fe6060f1SDimitry Andric   if (GCDTy == PartTy) {
594fe6060f1SDimitry Andric     // If this already evenly divisible, we can create a simple unmerge.
595fe6060f1SDimitry Andric     B.buildUnmerge(DstRegs, SrcReg);
596fe6060f1SDimitry Andric     return;
597fe6060f1SDimitry Andric   }
598fe6060f1SDimitry Andric 
599*0fca6ea1SDimitry Andric   if (SrcTy.isVector() && !PartTy.isVector() &&
600*0fca6ea1SDimitry Andric       SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) {
601*0fca6ea1SDimitry Andric     LLT ExtTy =
602*0fca6ea1SDimitry Andric         LLT::vector(SrcTy.getElementCount(),
603*0fca6ea1SDimitry Andric                     LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() /
604*0fca6ea1SDimitry Andric                                 SrcTy.getNumElements()));
605*0fca6ea1SDimitry Andric     auto Ext = B.buildAnyExt(ExtTy, SrcReg);
606*0fca6ea1SDimitry Andric     B.buildUnmerge(DstRegs, Ext);
607*0fca6ea1SDimitry Andric     return;
608*0fca6ea1SDimitry Andric   }
609*0fca6ea1SDimitry Andric 
610fe6060f1SDimitry Andric   MachineRegisterInfo &MRI = *B.getMRI();
611fe6060f1SDimitry Andric   LLT DstTy = MRI.getType(DstRegs[0]);
6120eae32dcSDimitry Andric   LLT LCMTy = getCoverTy(SrcTy, PartTy);
613fe6060f1SDimitry Andric 
614753f127fSDimitry Andric   if (PartTy.isVector() && LCMTy == PartTy) {
615753f127fSDimitry Andric     assert(DstRegs.size() == 1);
616753f127fSDimitry Andric     B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
617753f127fSDimitry Andric     return;
618753f127fSDimitry Andric   }
619753f127fSDimitry Andric 
620fe6060f1SDimitry Andric   const unsigned DstSize = DstTy.getSizeInBits();
621fe6060f1SDimitry Andric   const unsigned SrcSize = SrcTy.getSizeInBits();
622fe6060f1SDimitry Andric   unsigned CoveringSize = LCMTy.getSizeInBits();
623fe6060f1SDimitry Andric 
624fe6060f1SDimitry Andric   Register UnmergeSrc = SrcReg;
625fe6060f1SDimitry Andric 
6260eae32dcSDimitry Andric   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
627fe6060f1SDimitry Andric     // For scalars, it's common to be able to use a simple extension.
628fe6060f1SDimitry Andric     if (SrcTy.isScalar() && DstTy.isScalar()) {
629fe6060f1SDimitry Andric       CoveringSize = alignTo(SrcSize, DstSize);
630fe6060f1SDimitry Andric       LLT CoverTy = LLT::scalar(CoveringSize);
631fe6060f1SDimitry Andric       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
632fe6060f1SDimitry Andric     } else {
633fe6060f1SDimitry Andric       // Widen to the common type.
634fe6060f1SDimitry Andric       // FIXME: This should respect the extend type
635fe6060f1SDimitry Andric       Register Undef = B.buildUndef(SrcTy).getReg(0);
636fe6060f1SDimitry Andric       SmallVector<Register, 8> MergeParts(1, SrcReg);
637fe6060f1SDimitry Andric       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
638fe6060f1SDimitry Andric         MergeParts.push_back(Undef);
639bdd1243dSDimitry Andric       UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
640fe6060f1SDimitry Andric     }
641fe6060f1SDimitry Andric   }
642fe6060f1SDimitry Andric 
6430eae32dcSDimitry Andric   if (LCMTy.isVector() && CoveringSize != SrcSize)
6440eae32dcSDimitry Andric     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
645fe6060f1SDimitry Andric 
6460eae32dcSDimitry Andric   B.buildUnmerge(DstRegs, UnmergeSrc);
647fe6060f1SDimitry Andric }
648fe6060f1SDimitry Andric 
649fe6060f1SDimitry Andric bool CallLowering::determineAndHandleAssignments(
650fe6060f1SDimitry Andric     ValueHandler &Handler, ValueAssigner &Assigner,
651fe6060f1SDimitry Andric     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
65204eeddc0SDimitry Andric     CallingConv::ID CallConv, bool IsVarArg,
65304eeddc0SDimitry Andric     ArrayRef<Register> ThisReturnRegs) const {
6540b57cec5SDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
6550b57cec5SDimitry Andric   const Function &F = MF.getFunction();
6560b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs;
657fe6060f1SDimitry Andric 
658fe6060f1SDimitry Andric   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
659fe6060f1SDimitry Andric   if (!determineAssignments(Assigner, Args, CCInfo))
660fe6060f1SDimitry Andric     return false;
661fe6060f1SDimitry Andric 
662fe6060f1SDimitry Andric   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
66304eeddc0SDimitry Andric                            ThisReturnRegs);
6640b57cec5SDimitry Andric }
6650b57cec5SDimitry Andric 
666fe6060f1SDimitry Andric static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
667fe6060f1SDimitry Andric   if (Flags.isSExt())
668fe6060f1SDimitry Andric     return TargetOpcode::G_SEXT;
669fe6060f1SDimitry Andric   if (Flags.isZExt())
670fe6060f1SDimitry Andric     return TargetOpcode::G_ZEXT;
671fe6060f1SDimitry Andric   return TargetOpcode::G_ANYEXT;
672fe6060f1SDimitry Andric }
673fe6060f1SDimitry Andric 
674fe6060f1SDimitry Andric bool CallLowering::determineAssignments(ValueAssigner &Assigner,
6758bcb0991SDimitry Andric                                         SmallVectorImpl<ArgInfo> &Args,
676fe6060f1SDimitry Andric                                         CCState &CCInfo) const {
677fe6060f1SDimitry Andric   LLVMContext &Ctx = CCInfo.getContext();
678fe6060f1SDimitry Andric   const CallingConv::ID CallConv = CCInfo.getCallingConv();
6790b57cec5SDimitry Andric 
6800b57cec5SDimitry Andric   unsigned NumArgs = Args.size();
6810b57cec5SDimitry Andric   for (unsigned i = 0; i != NumArgs; ++i) {
6825ffd83dbSDimitry Andric     EVT CurVT = EVT::getEVT(Args[i].Ty);
683e8d8bef9SDimitry Andric 
684fe6060f1SDimitry Andric     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
6858bcb0991SDimitry Andric 
6868bcb0991SDimitry Andric     // If we need to split the type over multiple regs, check it's a scenario
6878bcb0991SDimitry Andric     // we currently support.
688fe6060f1SDimitry Andric     unsigned NumParts =
689fe6060f1SDimitry Andric         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
690e8d8bef9SDimitry Andric 
691e8d8bef9SDimitry Andric     if (NumParts == 1) {
692e8d8bef9SDimitry Andric       // Try to use the register type if we couldn't assign the VT.
693fe6060f1SDimitry Andric       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
694e8d8bef9SDimitry Andric                              Args[i].Flags[0], CCInfo))
695e8d8bef9SDimitry Andric         return false;
696e8d8bef9SDimitry Andric       continue;
697e8d8bef9SDimitry Andric     }
698e8d8bef9SDimitry Andric 
6998bcb0991SDimitry Andric     // For incoming arguments (physregs to vregs), we could have values in
7008bcb0991SDimitry Andric     // physregs (or memlocs) which we want to extract and copy to vregs.
7018bcb0991SDimitry Andric     // During this, we might have to deal with the LLT being split across
7028bcb0991SDimitry Andric     // multiple regs, so we have to record this information for later.
7038bcb0991SDimitry Andric     //
7048bcb0991SDimitry Andric     // If we have outgoing args, then we have the opposite case. We have a
7058bcb0991SDimitry Andric     // vreg with an LLT which we want to assign to a physical location, and
7068bcb0991SDimitry Andric     // we might have to record that the value has to be split later.
707fe6060f1SDimitry Andric 
7088bcb0991SDimitry Andric     // We're handling an incoming arg which is split over multiple regs.
7098bcb0991SDimitry Andric     // E.g. passing an s128 on AArch64.
7108bcb0991SDimitry Andric     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
7118bcb0991SDimitry Andric     Args[i].Flags.clear();
712fe6060f1SDimitry Andric 
7138bcb0991SDimitry Andric     for (unsigned Part = 0; Part < NumParts; ++Part) {
7148bcb0991SDimitry Andric       ISD::ArgFlagsTy Flags = OrigFlags;
7158bcb0991SDimitry Andric       if (Part == 0) {
7168bcb0991SDimitry Andric         Flags.setSplit();
7178bcb0991SDimitry Andric       } else {
7185ffd83dbSDimitry Andric         Flags.setOrigAlign(Align(1));
7198bcb0991SDimitry Andric         if (Part == NumParts - 1)
7208bcb0991SDimitry Andric           Flags.setSplitEnd();
7218bcb0991SDimitry Andric       }
722fe6060f1SDimitry Andric 
7238bcb0991SDimitry Andric       Args[i].Flags.push_back(Flags);
724fe6060f1SDimitry Andric       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
725e8d8bef9SDimitry Andric                              Args[i].Flags[Part], CCInfo)) {
7268bcb0991SDimitry Andric         // Still couldn't assign this smaller part type for some reason.
7278bcb0991SDimitry Andric         return false;
7288bcb0991SDimitry Andric       }
7298bcb0991SDimitry Andric     }
7308bcb0991SDimitry Andric   }
7310b57cec5SDimitry Andric 
732fe6060f1SDimitry Andric   return true;
733fe6060f1SDimitry Andric }
734fe6060f1SDimitry Andric 
735fe6060f1SDimitry Andric bool CallLowering::handleAssignments(ValueHandler &Handler,
736fe6060f1SDimitry Andric                                      SmallVectorImpl<ArgInfo> &Args,
737fe6060f1SDimitry Andric                                      CCState &CCInfo,
738fe6060f1SDimitry Andric                                      SmallVectorImpl<CCValAssign> &ArgLocs,
739fe6060f1SDimitry Andric                                      MachineIRBuilder &MIRBuilder,
74004eeddc0SDimitry Andric                                      ArrayRef<Register> ThisReturnRegs) const {
741fe6060f1SDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
742fe6060f1SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
743fe6060f1SDimitry Andric   const Function &F = MF.getFunction();
744*0fca6ea1SDimitry Andric   const DataLayout &DL = F.getDataLayout();
745fe6060f1SDimitry Andric 
746fe6060f1SDimitry Andric   const unsigned NumArgs = Args.size();
747fe6060f1SDimitry Andric 
748349cc55cSDimitry Andric   // Stores thunks for outgoing register assignments. This is used so we delay
749349cc55cSDimitry Andric   // generating register copies until mem loc assignments are done. We do this
750349cc55cSDimitry Andric   // so that if the target is using the delayed stack protector feature, we can
751349cc55cSDimitry Andric   // find the split point of the block accurately. E.g. if we have:
752349cc55cSDimitry Andric   // G_STORE %val, %memloc
753349cc55cSDimitry Andric   // $x0 = COPY %foo
754349cc55cSDimitry Andric   // $x1 = COPY %bar
755349cc55cSDimitry Andric   // CALL func
756349cc55cSDimitry Andric   // ... then the split point for the block will correctly be at, and including,
757349cc55cSDimitry Andric   // the copy to $x0. If instead the G_STORE instruction immediately precedes
758349cc55cSDimitry Andric   // the CALL, then we'd prematurely choose the CALL as the split point, thus
759349cc55cSDimitry Andric   // generating a split block with a CALL that uses undefined physregs.
760349cc55cSDimitry Andric   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
761349cc55cSDimitry Andric 
762fe6060f1SDimitry Andric   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
7630b57cec5SDimitry Andric     assert(j < ArgLocs.size() && "Skipped too many arg locs");
7640b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[j];
7650b57cec5SDimitry Andric     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
7660b57cec5SDimitry Andric 
7670b57cec5SDimitry Andric     if (VA.needsCustom()) {
768349cc55cSDimitry Andric       std::function<void()> Thunk;
769349cc55cSDimitry Andric       unsigned NumArgRegs = Handler.assignCustomValue(
770bdd1243dSDimitry Andric           Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
771349cc55cSDimitry Andric       if (Thunk)
772349cc55cSDimitry Andric         DelayedOutgoingRegAssignments.emplace_back(Thunk);
7735ffd83dbSDimitry Andric       if (!NumArgRegs)
7745ffd83dbSDimitry Andric         return false;
7757a6dacacSDimitry Andric       j += (NumArgRegs - 1);
7760b57cec5SDimitry Andric       continue;
7770b57cec5SDimitry Andric     }
7780b57cec5SDimitry Andric 
779*0fca6ea1SDimitry Andric     auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace();
780*0fca6ea1SDimitry Andric 
781fe6060f1SDimitry Andric     const MVT ValVT = VA.getValVT();
782fe6060f1SDimitry Andric     const MVT LocVT = VA.getLocVT();
7830b57cec5SDimitry Andric 
784fe6060f1SDimitry Andric     const LLT LocTy(LocVT);
785fe6060f1SDimitry Andric     const LLT ValTy(ValVT);
786fe6060f1SDimitry Andric     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
787fe6060f1SDimitry Andric     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
7885ffd83dbSDimitry Andric     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
789*0fca6ea1SDimitry Andric     const LLT PointerTy = LLT::pointer(
790*0fca6ea1SDimitry Andric         AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace));
7915ffd83dbSDimitry Andric 
7928bcb0991SDimitry Andric     // Expected to be multiple regs for a single incoming arg.
793e8d8bef9SDimitry Andric     // There should be Regs.size() ArgLocs per argument.
794fe6060f1SDimitry Andric     // This should be the same as getNumRegistersForCallingConv
795fe6060f1SDimitry Andric     const unsigned NumParts = Args[i].Flags.size();
7968bcb0991SDimitry Andric 
797fe6060f1SDimitry Andric     // Now split the registers into the assigned types.
798fe6060f1SDimitry Andric     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
799fe6060f1SDimitry Andric 
800fe6060f1SDimitry Andric     if (NumParts != 1 || NewLLT != OrigTy) {
801fe6060f1SDimitry Andric       // If we can't directly assign the register, we need one or more
802fe6060f1SDimitry Andric       // intermediate values.
803fe6060f1SDimitry Andric       Args[i].Regs.resize(NumParts);
804fe6060f1SDimitry Andric 
805*0fca6ea1SDimitry Andric       // When we have indirect parameter passing we are receiving a pointer,
806*0fca6ea1SDimitry Andric       // that points to the actual value, so we need one "temporary" pointer.
807*0fca6ea1SDimitry Andric       if (VA.getLocInfo() == CCValAssign::Indirect) {
808*0fca6ea1SDimitry Andric         if (Handler.isIncomingArgumentHandler())
809*0fca6ea1SDimitry Andric           Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy);
810*0fca6ea1SDimitry Andric       } else {
811fe6060f1SDimitry Andric         // For each split register, create and assign a vreg that will store
812fe6060f1SDimitry Andric         // the incoming component of the larger value. These will later be
813fe6060f1SDimitry Andric         // merged to form the final vreg.
814fe6060f1SDimitry Andric         for (unsigned Part = 0; Part < NumParts; ++Part)
815fe6060f1SDimitry Andric           Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
816fe6060f1SDimitry Andric       }
817*0fca6ea1SDimitry Andric     }
818fe6060f1SDimitry Andric 
819fe6060f1SDimitry Andric     assert((j + (NumParts - 1)) < ArgLocs.size() &&
8208bcb0991SDimitry Andric            "Too many regs for number of args");
821fe6060f1SDimitry Andric 
822fe6060f1SDimitry Andric     // Coerce into outgoing value types before register assignment.
823*0fca6ea1SDimitry Andric     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy &&
824*0fca6ea1SDimitry Andric         VA.getLocInfo() != CCValAssign::Indirect) {
825fe6060f1SDimitry Andric       assert(Args[i].OrigRegs.size() == 1);
826fe6060f1SDimitry Andric       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
827fe6060f1SDimitry Andric                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
828fe6060f1SDimitry Andric     }
829fe6060f1SDimitry Andric 
830*0fca6ea1SDimitry Andric     bool IndirectParameterPassingHandled = false;
83181ad6265SDimitry Andric     bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
832fe6060f1SDimitry Andric     for (unsigned Part = 0; Part < NumParts; ++Part) {
833*0fca6ea1SDimitry Andric       assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) &&
834*0fca6ea1SDimitry Andric              "Only the first parameter should be processed when "
835*0fca6ea1SDimitry Andric              "handling indirect passing!");
836fe6060f1SDimitry Andric       Register ArgReg = Args[i].Regs[Part];
8378bcb0991SDimitry Andric       // There should be Regs.size() ArgLocs per argument.
83881ad6265SDimitry Andric       unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
83981ad6265SDimitry Andric       CCValAssign &VA = ArgLocs[j + Idx];
840fe6060f1SDimitry Andric       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
841e8d8bef9SDimitry Andric 
842*0fca6ea1SDimitry Andric       // We found an indirect parameter passing, and we have an
843*0fca6ea1SDimitry Andric       // OutgoingValueHandler as our handler (so we are at the call site or the
844*0fca6ea1SDimitry Andric       // return value). In this case, start the construction of the following
845*0fca6ea1SDimitry Andric       // GMIR, that is responsible for the preparation of indirect parameter
846*0fca6ea1SDimitry Andric       // passing:
847*0fca6ea1SDimitry Andric       //
848*0fca6ea1SDimitry Andric       // %1(indirectly passed type) = The value to pass
849*0fca6ea1SDimitry Andric       // %3(pointer) = G_FRAME_INDEX %stack.0
850*0fca6ea1SDimitry Andric       // G_STORE %1, %3 :: (store (s128), align 8)
851*0fca6ea1SDimitry Andric       //
852*0fca6ea1SDimitry Andric       // After this GMIR, the remaining part of the loop body will decide how
853*0fca6ea1SDimitry Andric       // to get the value to the caller and we break out of the loop.
854*0fca6ea1SDimitry Andric       if (VA.getLocInfo() == CCValAssign::Indirect &&
855*0fca6ea1SDimitry Andric           !Handler.isIncomingArgumentHandler()) {
856*0fca6ea1SDimitry Andric         Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty);
857*0fca6ea1SDimitry Andric         MachineFrameInfo &MFI = MF.getFrameInfo();
858*0fca6ea1SDimitry Andric         // Get some space on the stack for the value, so later we can pass it
859*0fca6ea1SDimitry Andric         // as a reference.
860*0fca6ea1SDimitry Andric         int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(),
861*0fca6ea1SDimitry Andric                                              AlignmentForStored, false);
862*0fca6ea1SDimitry Andric         Register PointerToStackReg =
863*0fca6ea1SDimitry Andric             MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0);
864*0fca6ea1SDimitry Andric         MachinePointerInfo StackPointerMPO =
865*0fca6ea1SDimitry Andric             MachinePointerInfo::getFixedStack(MF, FrameIdx);
866*0fca6ea1SDimitry Andric         // Store the value in the previously created stack space.
867*0fca6ea1SDimitry Andric         MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
868*0fca6ea1SDimitry Andric                               StackPointerMPO,
869*0fca6ea1SDimitry Andric                               inferAlignFromPtrInfo(MF, StackPointerMPO));
870*0fca6ea1SDimitry Andric 
871*0fca6ea1SDimitry Andric         ArgReg = PointerToStackReg;
872*0fca6ea1SDimitry Andric         IndirectParameterPassingHandled = true;
873*0fca6ea1SDimitry Andric       }
874*0fca6ea1SDimitry Andric 
875fe6060f1SDimitry Andric       if (VA.isMemLoc() && !Flags.isByVal()) {
876fe6060f1SDimitry Andric         // Individual pieces may have been spilled to the stack and others
877fe6060f1SDimitry Andric         // passed in registers.
878fe6060f1SDimitry Andric 
879fe6060f1SDimitry Andric         // TODO: The memory size may be larger than the value we need to
880fe6060f1SDimitry Andric         // store. We may need to adjust the offset for big endian targets.
881fe6060f1SDimitry Andric         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
882fe6060f1SDimitry Andric 
883e8d8bef9SDimitry Andric         MachinePointerInfo MPO;
884*0fca6ea1SDimitry Andric         Register StackAddr =
885*0fca6ea1SDimitry Andric             Handler.getStackAddress(VA.getLocInfo() == CCValAssign::Indirect
886*0fca6ea1SDimitry Andric                                         ? PointerTy.getSizeInBytes()
887*0fca6ea1SDimitry Andric                                         : MemTy.getSizeInBytes(),
888*0fca6ea1SDimitry Andric                                     VA.getLocMemOffset(), MPO, Flags);
889fe6060f1SDimitry Andric 
890*0fca6ea1SDimitry Andric         // Finish the handling of indirect passing from the passers
891*0fca6ea1SDimitry Andric         // (OutgoingParameterHandler) side.
892*0fca6ea1SDimitry Andric         // This branch is needed, so the pointer to the value is loaded onto the
893*0fca6ea1SDimitry Andric         // stack.
894*0fca6ea1SDimitry Andric         if (VA.getLocInfo() == CCValAssign::Indirect)
895*0fca6ea1SDimitry Andric           Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA);
896*0fca6ea1SDimitry Andric         else
897*0fca6ea1SDimitry Andric           Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO,
898*0fca6ea1SDimitry Andric                                        VA);
899*0fca6ea1SDimitry Andric       } else if (VA.isMemLoc() && Flags.isByVal()) {
900*0fca6ea1SDimitry Andric         assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer");
901e8d8bef9SDimitry Andric 
902e8d8bef9SDimitry Andric         if (Handler.isIncomingArgumentHandler()) {
903fe6060f1SDimitry Andric           // We just need to copy the frame index value to the pointer.
904fe6060f1SDimitry Andric           MachinePointerInfo MPO;
905fe6060f1SDimitry Andric           Register StackAddr = Handler.getStackAddress(
906fe6060f1SDimitry Andric               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
907fe6060f1SDimitry Andric           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
908fe6060f1SDimitry Andric         } else {
909fe6060f1SDimitry Andric           // For outgoing byval arguments, insert the implicit copy byval
910fe6060f1SDimitry Andric           // implies, such that writes in the callee do not modify the caller's
911fe6060f1SDimitry Andric           // value.
912fe6060f1SDimitry Andric           uint64_t MemSize = Flags.getByValSize();
913fe6060f1SDimitry Andric           int64_t Offset = VA.getLocMemOffset();
9148833aad7SDimitry Andric 
915fe6060f1SDimitry Andric           MachinePointerInfo DstMPO;
916fe6060f1SDimitry Andric           Register StackAddr =
917fe6060f1SDimitry Andric               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
918fe6060f1SDimitry Andric 
919fe6060f1SDimitry Andric           MachinePointerInfo SrcMPO(Args[i].OrigValue);
920fe6060f1SDimitry Andric           if (!Args[i].OrigValue) {
921fe6060f1SDimitry Andric             // We still need to accurately track the stack address space if we
922fe6060f1SDimitry Andric             // don't know the underlying value.
923fe6060f1SDimitry Andric             const LLT PtrTy = MRI.getType(StackAddr);
924fe6060f1SDimitry Andric             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
9250b57cec5SDimitry Andric           }
926e8d8bef9SDimitry Andric 
927fe6060f1SDimitry Andric           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
928fe6060f1SDimitry Andric                                     inferAlignFromPtrInfo(MF, DstMPO));
929fe6060f1SDimitry Andric 
930fe6060f1SDimitry Andric           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
931fe6060f1SDimitry Andric                                     inferAlignFromPtrInfo(MF, SrcMPO));
932fe6060f1SDimitry Andric 
933fe6060f1SDimitry Andric           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
934fe6060f1SDimitry Andric                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
935fe6060f1SDimitry Andric                                      MemSize, VA);
936fe6060f1SDimitry Andric         }
937*0fca6ea1SDimitry Andric       } else if (i == 0 && !ThisReturnRegs.empty() &&
938fe6060f1SDimitry Andric                  Handler.isIncomingArgumentHandler() &&
939fe6060f1SDimitry Andric                  isTypeIsValidForThisReturn(ValVT)) {
94004eeddc0SDimitry Andric         Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
941*0fca6ea1SDimitry Andric       } else if (Handler.isIncomingArgumentHandler()) {
942fe6060f1SDimitry Andric         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
943*0fca6ea1SDimitry Andric       } else {
944349cc55cSDimitry Andric         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
945349cc55cSDimitry Andric           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
946349cc55cSDimitry Andric         });
947349cc55cSDimitry Andric       }
948*0fca6ea1SDimitry Andric 
949*0fca6ea1SDimitry Andric       // Finish the handling of indirect parameter passing when receiving
950*0fca6ea1SDimitry Andric       // the value (we are in the called function or the caller when receiving
951*0fca6ea1SDimitry Andric       // the return value).
952*0fca6ea1SDimitry Andric       if (VA.getLocInfo() == CCValAssign::Indirect &&
953*0fca6ea1SDimitry Andric           Handler.isIncomingArgumentHandler()) {
954*0fca6ea1SDimitry Andric         Align Alignment = DL.getABITypeAlign(Args[i].Ty);
955*0fca6ea1SDimitry Andric         MachinePointerInfo MPO = MachinePointerInfo::getUnknownStack(MF);
956*0fca6ea1SDimitry Andric 
957*0fca6ea1SDimitry Andric         // Since we are doing indirect parameter passing, we know that the value
958*0fca6ea1SDimitry Andric         // in the temporary register is not the value passed to the function,
959*0fca6ea1SDimitry Andric         // but rather a pointer to that value. Let's load that value into the
960*0fca6ea1SDimitry Andric         // virtual register where the parameter should go.
961*0fca6ea1SDimitry Andric         MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
962*0fca6ea1SDimitry Andric                              Alignment);
963*0fca6ea1SDimitry Andric 
964*0fca6ea1SDimitry Andric         IndirectParameterPassingHandled = true;
965*0fca6ea1SDimitry Andric       }
966*0fca6ea1SDimitry Andric 
967*0fca6ea1SDimitry Andric       if (IndirectParameterPassingHandled)
968*0fca6ea1SDimitry Andric         break;
969fe6060f1SDimitry Andric     }
970fe6060f1SDimitry Andric 
971fe6060f1SDimitry Andric     // Now that all pieces have been assigned, re-pack the register typed values
972*0fca6ea1SDimitry Andric     // into the original value typed registers. This is only necessary, when
973*0fca6ea1SDimitry Andric     // the value was passed in multiple registers, not indirectly.
974*0fca6ea1SDimitry Andric     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT &&
975*0fca6ea1SDimitry Andric         !IndirectParameterPassingHandled) {
976fe6060f1SDimitry Andric       // Merge the split registers into the expected larger result vregs of
977fe6060f1SDimitry Andric       // the original call.
978fe6060f1SDimitry Andric       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
979fe6060f1SDimitry Andric                         LocTy, Args[i].Flags[0]);
980fe6060f1SDimitry Andric     }
981fe6060f1SDimitry Andric 
982fe6060f1SDimitry Andric     j += NumParts - 1;
983e8d8bef9SDimitry Andric   }
984349cc55cSDimitry Andric   for (auto &Fn : DelayedOutgoingRegAssignments)
985349cc55cSDimitry Andric     Fn();
986e8d8bef9SDimitry Andric 
987e8d8bef9SDimitry Andric   return true;
988e8d8bef9SDimitry Andric }
989e8d8bef9SDimitry Andric 
990e8d8bef9SDimitry Andric void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
991e8d8bef9SDimitry Andric                                    ArrayRef<Register> VRegs, Register DemoteReg,
992e8d8bef9SDimitry Andric                                    int FI) const {
993e8d8bef9SDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
994e8d8bef9SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
995e8d8bef9SDimitry Andric   const DataLayout &DL = MF.getDataLayout();
996e8d8bef9SDimitry Andric 
997e8d8bef9SDimitry Andric   SmallVector<EVT, 4> SplitVTs;
998e8d8bef9SDimitry Andric   SmallVector<uint64_t, 4> Offsets;
999e8d8bef9SDimitry Andric   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1000e8d8bef9SDimitry Andric 
1001e8d8bef9SDimitry Andric   assert(VRegs.size() == SplitVTs.size());
1002e8d8bef9SDimitry Andric 
1003e8d8bef9SDimitry Andric   unsigned NumValues = SplitVTs.size();
1004e8d8bef9SDimitry Andric   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
10055f757f3fSDimitry Andric   Type *RetPtrTy =
10065f757f3fSDimitry Andric       PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
100706c3fb27SDimitry Andric   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
1008e8d8bef9SDimitry Andric 
1009e8d8bef9SDimitry Andric   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
1010e8d8bef9SDimitry Andric 
1011e8d8bef9SDimitry Andric   for (unsigned I = 0; I < NumValues; ++I) {
1012e8d8bef9SDimitry Andric     Register Addr;
1013e8d8bef9SDimitry Andric     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1014e8d8bef9SDimitry Andric     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1015fe6060f1SDimitry Andric                                         MRI.getType(VRegs[I]),
1016e8d8bef9SDimitry Andric                                         commonAlignment(BaseAlign, Offsets[I]));
1017e8d8bef9SDimitry Andric     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
1018e8d8bef9SDimitry Andric   }
1019e8d8bef9SDimitry Andric }
1020e8d8bef9SDimitry Andric 
1021e8d8bef9SDimitry Andric void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
1022e8d8bef9SDimitry Andric                                     ArrayRef<Register> VRegs,
1023e8d8bef9SDimitry Andric                                     Register DemoteReg) const {
1024e8d8bef9SDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
1025e8d8bef9SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
1026e8d8bef9SDimitry Andric   const DataLayout &DL = MF.getDataLayout();
1027e8d8bef9SDimitry Andric 
1028e8d8bef9SDimitry Andric   SmallVector<EVT, 4> SplitVTs;
1029e8d8bef9SDimitry Andric   SmallVector<uint64_t, 4> Offsets;
1030e8d8bef9SDimitry Andric   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1031e8d8bef9SDimitry Andric 
1032e8d8bef9SDimitry Andric   assert(VRegs.size() == SplitVTs.size());
1033e8d8bef9SDimitry Andric 
1034e8d8bef9SDimitry Andric   unsigned NumValues = SplitVTs.size();
1035e8d8bef9SDimitry Andric   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1036e8d8bef9SDimitry Andric   unsigned AS = DL.getAllocaAddrSpace();
103706c3fb27SDimitry Andric   LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getPointerTo(AS)), DL);
1038e8d8bef9SDimitry Andric 
1039e8d8bef9SDimitry Andric   MachinePointerInfo PtrInfo(AS);
1040e8d8bef9SDimitry Andric 
1041e8d8bef9SDimitry Andric   for (unsigned I = 0; I < NumValues; ++I) {
1042e8d8bef9SDimitry Andric     Register Addr;
1043e8d8bef9SDimitry Andric     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
1044e8d8bef9SDimitry Andric     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
1045fe6060f1SDimitry Andric                                         MRI.getType(VRegs[I]),
1046e8d8bef9SDimitry Andric                                         commonAlignment(BaseAlign, Offsets[I]));
1047e8d8bef9SDimitry Andric     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
1048e8d8bef9SDimitry Andric   }
1049e8d8bef9SDimitry Andric }
1050e8d8bef9SDimitry Andric 
1051e8d8bef9SDimitry Andric void CallLowering::insertSRetIncomingArgument(
1052e8d8bef9SDimitry Andric     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
1053e8d8bef9SDimitry Andric     MachineRegisterInfo &MRI, const DataLayout &DL) const {
1054e8d8bef9SDimitry Andric   unsigned AS = DL.getAllocaAddrSpace();
1055e8d8bef9SDimitry Andric   DemoteReg = MRI.createGenericVirtualRegister(
1056e8d8bef9SDimitry Andric       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
1057e8d8bef9SDimitry Andric 
1058e8d8bef9SDimitry Andric   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
1059e8d8bef9SDimitry Andric 
1060e8d8bef9SDimitry Andric   SmallVector<EVT, 1> ValueVTs;
1061e8d8bef9SDimitry Andric   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
1062e8d8bef9SDimitry Andric 
1063e8d8bef9SDimitry Andric   // NOTE: Assume that a pointer won't get split into more than one VT.
1064e8d8bef9SDimitry Andric   assert(ValueVTs.size() == 1);
1065e8d8bef9SDimitry Andric 
1066fe6060f1SDimitry Andric   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
1067fe6060f1SDimitry Andric                     ArgInfo::NoArgIndex);
1068e8d8bef9SDimitry Andric   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
1069e8d8bef9SDimitry Andric   DemoteArg.Flags[0].setSRet();
1070e8d8bef9SDimitry Andric   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
1071e8d8bef9SDimitry Andric }
1072e8d8bef9SDimitry Andric 
1073e8d8bef9SDimitry Andric void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
1074e8d8bef9SDimitry Andric                                               const CallBase &CB,
1075e8d8bef9SDimitry Andric                                               CallLoweringInfo &Info) const {
1076e8d8bef9SDimitry Andric   const DataLayout &DL = MIRBuilder.getDataLayout();
1077e8d8bef9SDimitry Andric   Type *RetTy = CB.getType();
1078e8d8bef9SDimitry Andric   unsigned AS = DL.getAllocaAddrSpace();
1079e8d8bef9SDimitry Andric   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1080e8d8bef9SDimitry Andric 
1081e8d8bef9SDimitry Andric   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
1082e8d8bef9SDimitry Andric       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
1083e8d8bef9SDimitry Andric 
1084e8d8bef9SDimitry Andric   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
1085fe6060f1SDimitry Andric   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
1086fe6060f1SDimitry Andric                     ArgInfo::NoArgIndex);
1087e8d8bef9SDimitry Andric   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
1088e8d8bef9SDimitry Andric   DemoteArg.Flags[0].setSRet();
1089e8d8bef9SDimitry Andric 
1090e8d8bef9SDimitry Andric   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1091e8d8bef9SDimitry Andric   Info.DemoteStackIndex = FI;
1092e8d8bef9SDimitry Andric   Info.DemoteRegister = DemoteReg;
1093e8d8bef9SDimitry Andric }
1094e8d8bef9SDimitry Andric 
1095e8d8bef9SDimitry Andric bool CallLowering::checkReturn(CCState &CCInfo,
1096e8d8bef9SDimitry Andric                                SmallVectorImpl<BaseArgInfo> &Outs,
1097e8d8bef9SDimitry Andric                                CCAssignFn *Fn) const {
1098e8d8bef9SDimitry Andric   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
1099e8d8bef9SDimitry Andric     MVT VT = MVT::getVT(Outs[I].Ty);
1100e8d8bef9SDimitry Andric     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
1101e8d8bef9SDimitry Andric       return false;
1102e8d8bef9SDimitry Andric   }
11030b57cec5SDimitry Andric   return true;
11040b57cec5SDimitry Andric }
11050b57cec5SDimitry Andric 
1106e8d8bef9SDimitry Andric void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
1107e8d8bef9SDimitry Andric                                  AttributeList Attrs,
1108e8d8bef9SDimitry Andric                                  SmallVectorImpl<BaseArgInfo> &Outs,
1109e8d8bef9SDimitry Andric                                  const DataLayout &DL) const {
1110e8d8bef9SDimitry Andric   LLVMContext &Context = RetTy->getContext();
1111e8d8bef9SDimitry Andric   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1112e8d8bef9SDimitry Andric 
1113e8d8bef9SDimitry Andric   SmallVector<EVT, 4> SplitVTs;
1114e8d8bef9SDimitry Andric   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1115e8d8bef9SDimitry Andric   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1116e8d8bef9SDimitry Andric 
1117e8d8bef9SDimitry Andric   for (EVT VT : SplitVTs) {
1118e8d8bef9SDimitry Andric     unsigned NumParts =
1119e8d8bef9SDimitry Andric         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1120e8d8bef9SDimitry Andric     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1121e8d8bef9SDimitry Andric     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1122e8d8bef9SDimitry Andric 
1123e8d8bef9SDimitry Andric     for (unsigned I = 0; I < NumParts; ++I) {
1124e8d8bef9SDimitry Andric       Outs.emplace_back(PartTy, Flags);
1125e8d8bef9SDimitry Andric     }
1126e8d8bef9SDimitry Andric   }
1127e8d8bef9SDimitry Andric }
1128e8d8bef9SDimitry Andric 
1129e8d8bef9SDimitry Andric bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
1130e8d8bef9SDimitry Andric   const auto &F = MF.getFunction();
1131e8d8bef9SDimitry Andric   Type *ReturnType = F.getReturnType();
1132e8d8bef9SDimitry Andric   CallingConv::ID CallConv = F.getCallingConv();
1133e8d8bef9SDimitry Andric 
1134e8d8bef9SDimitry Andric   SmallVector<BaseArgInfo, 4> SplitArgs;
1135e8d8bef9SDimitry Andric   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1136e8d8bef9SDimitry Andric                 MF.getDataLayout());
1137e8d8bef9SDimitry Andric   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1138e8d8bef9SDimitry Andric }
1139e8d8bef9SDimitry Andric 
1140e8d8bef9SDimitry Andric bool CallLowering::parametersInCSRMatch(
1141e8d8bef9SDimitry Andric     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1142e8d8bef9SDimitry Andric     const SmallVectorImpl<CCValAssign> &OutLocs,
1143e8d8bef9SDimitry Andric     const SmallVectorImpl<ArgInfo> &OutArgs) const {
1144e8d8bef9SDimitry Andric   for (unsigned i = 0; i < OutLocs.size(); ++i) {
1145fcaf7f86SDimitry Andric     const auto &ArgLoc = OutLocs[i];
1146e8d8bef9SDimitry Andric     // If it's not a register, it's fine.
1147e8d8bef9SDimitry Andric     if (!ArgLoc.isRegLoc())
1148e8d8bef9SDimitry Andric       continue;
1149e8d8bef9SDimitry Andric 
1150e8d8bef9SDimitry Andric     MCRegister PhysReg = ArgLoc.getLocReg();
1151e8d8bef9SDimitry Andric 
1152e8d8bef9SDimitry Andric     // Only look at callee-saved registers.
1153e8d8bef9SDimitry Andric     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1154e8d8bef9SDimitry Andric       continue;
1155e8d8bef9SDimitry Andric 
1156e8d8bef9SDimitry Andric     LLVM_DEBUG(
1157e8d8bef9SDimitry Andric         dbgs()
1158e8d8bef9SDimitry Andric         << "... Call has an argument passed in a callee-saved register.\n");
1159e8d8bef9SDimitry Andric 
1160e8d8bef9SDimitry Andric     // Check if it was copied from.
1161e8d8bef9SDimitry Andric     const ArgInfo &OutInfo = OutArgs[i];
1162e8d8bef9SDimitry Andric 
1163e8d8bef9SDimitry Andric     if (OutInfo.Regs.size() > 1) {
1164e8d8bef9SDimitry Andric       LLVM_DEBUG(
1165e8d8bef9SDimitry Andric           dbgs() << "... Cannot handle arguments in multiple registers.\n");
1166e8d8bef9SDimitry Andric       return false;
1167e8d8bef9SDimitry Andric     }
1168e8d8bef9SDimitry Andric 
1169e8d8bef9SDimitry Andric     // Check if we copy the register, walking through copies from virtual
1170e8d8bef9SDimitry Andric     // registers. Note that getDefIgnoringCopies does not ignore copies from
1171e8d8bef9SDimitry Andric     // physical registers.
1172e8d8bef9SDimitry Andric     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1173e8d8bef9SDimitry Andric     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1174e8d8bef9SDimitry Andric       LLVM_DEBUG(
1175e8d8bef9SDimitry Andric           dbgs()
1176e8d8bef9SDimitry Andric           << "... Parameter was not copied into a VReg, cannot tail call.\n");
1177e8d8bef9SDimitry Andric       return false;
1178e8d8bef9SDimitry Andric     }
1179e8d8bef9SDimitry Andric 
1180e8d8bef9SDimitry Andric     // Got a copy. Verify that it's the same as the register we want.
1181e8d8bef9SDimitry Andric     Register CopyRHS = RegDef->getOperand(1).getReg();
1182e8d8bef9SDimitry Andric     if (CopyRHS != PhysReg) {
1183e8d8bef9SDimitry Andric       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1184e8d8bef9SDimitry Andric                            "VReg, cannot tail call.\n");
1185e8d8bef9SDimitry Andric       return false;
1186e8d8bef9SDimitry Andric     }
1187e8d8bef9SDimitry Andric   }
1188e8d8bef9SDimitry Andric 
1189e8d8bef9SDimitry Andric   return true;
1190e8d8bef9SDimitry Andric }
1191e8d8bef9SDimitry Andric 
11928bcb0991SDimitry Andric bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
11938bcb0991SDimitry Andric                                      MachineFunction &MF,
11948bcb0991SDimitry Andric                                      SmallVectorImpl<ArgInfo> &InArgs,
1195fe6060f1SDimitry Andric                                      ValueAssigner &CalleeAssigner,
1196fe6060f1SDimitry Andric                                      ValueAssigner &CallerAssigner) const {
11978bcb0991SDimitry Andric   const Function &F = MF.getFunction();
11988bcb0991SDimitry Andric   CallingConv::ID CalleeCC = Info.CallConv;
11998bcb0991SDimitry Andric   CallingConv::ID CallerCC = F.getCallingConv();
12008bcb0991SDimitry Andric 
12018bcb0991SDimitry Andric   if (CallerCC == CalleeCC)
12028bcb0991SDimitry Andric     return true;
12038bcb0991SDimitry Andric 
12048bcb0991SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs1;
1205fe6060f1SDimitry Andric   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1206fe6060f1SDimitry Andric   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
12078bcb0991SDimitry Andric     return false;
12088bcb0991SDimitry Andric 
12098bcb0991SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs2;
1210fe6060f1SDimitry Andric   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1211fe6060f1SDimitry Andric   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
12128bcb0991SDimitry Andric     return false;
12138bcb0991SDimitry Andric 
12148bcb0991SDimitry Andric   // We need the argument locations to match up exactly. If there's more in
12158bcb0991SDimitry Andric   // one than the other, then we are done.
12168bcb0991SDimitry Andric   if (ArgLocs1.size() != ArgLocs2.size())
12178bcb0991SDimitry Andric     return false;
12188bcb0991SDimitry Andric 
12198bcb0991SDimitry Andric   // Make sure that each location is passed in exactly the same way.
12208bcb0991SDimitry Andric   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
12218bcb0991SDimitry Andric     const CCValAssign &Loc1 = ArgLocs1[i];
12228bcb0991SDimitry Andric     const CCValAssign &Loc2 = ArgLocs2[i];
12238bcb0991SDimitry Andric 
12248bcb0991SDimitry Andric     // We need both of them to be the same. So if one is a register and one
12258bcb0991SDimitry Andric     // isn't, we're done.
12268bcb0991SDimitry Andric     if (Loc1.isRegLoc() != Loc2.isRegLoc())
12278bcb0991SDimitry Andric       return false;
12288bcb0991SDimitry Andric 
12298bcb0991SDimitry Andric     if (Loc1.isRegLoc()) {
12308bcb0991SDimitry Andric       // If they don't have the same register location, we're done.
12318bcb0991SDimitry Andric       if (Loc1.getLocReg() != Loc2.getLocReg())
12328bcb0991SDimitry Andric         return false;
12338bcb0991SDimitry Andric 
12348bcb0991SDimitry Andric       // They matched, so we can move to the next ArgLoc.
12358bcb0991SDimitry Andric       continue;
12368bcb0991SDimitry Andric     }
12378bcb0991SDimitry Andric 
12388bcb0991SDimitry Andric     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
12398bcb0991SDimitry Andric     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
12408bcb0991SDimitry Andric       return false;
12418bcb0991SDimitry Andric   }
12428bcb0991SDimitry Andric 
12438bcb0991SDimitry Andric   return true;
12448bcb0991SDimitry Andric }
12458bcb0991SDimitry Andric 
1246fe6060f1SDimitry Andric LLT CallLowering::ValueHandler::getStackValueStoreType(
1247fe6060f1SDimitry Andric     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1248fe6060f1SDimitry Andric   const MVT ValVT = VA.getValVT();
1249fe6060f1SDimitry Andric   if (ValVT != MVT::iPTR) {
1250fe6060f1SDimitry Andric     LLT ValTy(ValVT);
1251fe6060f1SDimitry Andric 
1252fe6060f1SDimitry Andric     // We lost the pointeriness going through CCValAssign, so try to restore it
1253fe6060f1SDimitry Andric     // based on the flags.
1254fe6060f1SDimitry Andric     if (Flags.isPointer()) {
1255fe6060f1SDimitry Andric       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1256fe6060f1SDimitry Andric                                ValTy.getScalarSizeInBits());
1257fe6060f1SDimitry Andric       if (ValVT.isVector())
1258fe6060f1SDimitry Andric         return LLT::vector(ValTy.getElementCount(), PtrTy);
1259fe6060f1SDimitry Andric       return PtrTy;
1260fe6060f1SDimitry Andric     }
1261fe6060f1SDimitry Andric 
1262fe6060f1SDimitry Andric     return ValTy;
1263fe6060f1SDimitry Andric   }
1264fe6060f1SDimitry Andric 
1265fe6060f1SDimitry Andric   unsigned AddrSpace = Flags.getPointerAddrSpace();
1266fe6060f1SDimitry Andric   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1267fe6060f1SDimitry Andric }
1268fe6060f1SDimitry Andric 
1269fe6060f1SDimitry Andric void CallLowering::ValueHandler::copyArgumentMemory(
1270fe6060f1SDimitry Andric     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1271fe6060f1SDimitry Andric     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1272fe6060f1SDimitry Andric     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1273fe6060f1SDimitry Andric     CCValAssign &VA) const {
1274fe6060f1SDimitry Andric   MachineFunction &MF = MIRBuilder.getMF();
1275fe6060f1SDimitry Andric   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1276fe6060f1SDimitry Andric       SrcPtrInfo,
1277fe6060f1SDimitry Andric       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1278fe6060f1SDimitry Andric       SrcAlign);
1279fe6060f1SDimitry Andric 
1280fe6060f1SDimitry Andric   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1281fe6060f1SDimitry Andric       DstPtrInfo,
1282fe6060f1SDimitry Andric       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1283fe6060f1SDimitry Andric       MemSize, DstAlign);
1284fe6060f1SDimitry Andric 
1285fe6060f1SDimitry Andric   const LLT PtrTy = MRI.getType(DstPtr);
1286fe6060f1SDimitry Andric   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1287fe6060f1SDimitry Andric 
1288fe6060f1SDimitry Andric   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1289fe6060f1SDimitry Andric   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1290fe6060f1SDimitry Andric }
1291fe6060f1SDimitry Andric 
12920b57cec5SDimitry Andric Register CallLowering::ValueHandler::extendRegister(Register ValReg,
12935f757f3fSDimitry Andric                                                     const CCValAssign &VA,
12945ffd83dbSDimitry Andric                                                     unsigned MaxSizeBits) {
12950b57cec5SDimitry Andric   LLT LocTy{VA.getLocVT()};
1296fe6060f1SDimitry Andric   LLT ValTy{VA.getValVT()};
1297fe6060f1SDimitry Andric 
12985ffd83dbSDimitry Andric   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
12990b57cec5SDimitry Andric     return ValReg;
13005ffd83dbSDimitry Andric 
13015ffd83dbSDimitry Andric   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
13025ffd83dbSDimitry Andric     if (MaxSizeBits <= ValTy.getSizeInBits())
13035ffd83dbSDimitry Andric       return ValReg;
13045ffd83dbSDimitry Andric     LocTy = LLT::scalar(MaxSizeBits);
13055ffd83dbSDimitry Andric   }
13065ffd83dbSDimitry Andric 
1307fe6060f1SDimitry Andric   const LLT ValRegTy = MRI.getType(ValReg);
1308fe6060f1SDimitry Andric   if (ValRegTy.isPointer()) {
1309fe6060f1SDimitry Andric     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1310fe6060f1SDimitry Andric     // we have to cast to do the extension.
1311fe6060f1SDimitry Andric     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1312fe6060f1SDimitry Andric     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1313fe6060f1SDimitry Andric   }
1314fe6060f1SDimitry Andric 
13150b57cec5SDimitry Andric   switch (VA.getLocInfo()) {
1316*0fca6ea1SDimitry Andric   default:
1317*0fca6ea1SDimitry Andric     break;
13180b57cec5SDimitry Andric   case CCValAssign::Full:
13190b57cec5SDimitry Andric   case CCValAssign::BCvt:
13200b57cec5SDimitry Andric     // FIXME: bitconverting between vector types may or may not be a
13210b57cec5SDimitry Andric     // nop in big-endian situations.
13220b57cec5SDimitry Andric     return ValReg;
13230b57cec5SDimitry Andric   case CCValAssign::AExt: {
13240b57cec5SDimitry Andric     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
13255ffd83dbSDimitry Andric     return MIB.getReg(0);
13260b57cec5SDimitry Andric   }
13270b57cec5SDimitry Andric   case CCValAssign::SExt: {
13280b57cec5SDimitry Andric     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
13290b57cec5SDimitry Andric     MIRBuilder.buildSExt(NewReg, ValReg);
13300b57cec5SDimitry Andric     return NewReg;
13310b57cec5SDimitry Andric   }
13320b57cec5SDimitry Andric   case CCValAssign::ZExt: {
13330b57cec5SDimitry Andric     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
13340b57cec5SDimitry Andric     MIRBuilder.buildZExt(NewReg, ValReg);
13350b57cec5SDimitry Andric     return NewReg;
13360b57cec5SDimitry Andric   }
13370b57cec5SDimitry Andric   }
13380b57cec5SDimitry Andric   llvm_unreachable("unable to extend register");
13390b57cec5SDimitry Andric }
13400b57cec5SDimitry Andric 
1341fe6060f1SDimitry Andric void CallLowering::ValueAssigner::anchor() {}
1342fe6060f1SDimitry Andric 
13435f757f3fSDimitry Andric Register CallLowering::IncomingValueHandler::buildExtensionHint(
13445f757f3fSDimitry Andric     const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1345fe6060f1SDimitry Andric   switch (VA.getLocInfo()) {
1346fe6060f1SDimitry Andric   case CCValAssign::LocInfo::ZExt: {
1347fe6060f1SDimitry Andric     return MIRBuilder
1348fe6060f1SDimitry Andric         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1349fe6060f1SDimitry Andric                          NarrowTy.getScalarSizeInBits())
1350fe6060f1SDimitry Andric         .getReg(0);
1351fe6060f1SDimitry Andric   }
1352fe6060f1SDimitry Andric   case CCValAssign::LocInfo::SExt: {
1353fe6060f1SDimitry Andric     return MIRBuilder
1354fe6060f1SDimitry Andric         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1355fe6060f1SDimitry Andric                          NarrowTy.getScalarSizeInBits())
1356fe6060f1SDimitry Andric         .getReg(0);
1357fe6060f1SDimitry Andric     break;
1358fe6060f1SDimitry Andric   }
1359fe6060f1SDimitry Andric   default:
1360fe6060f1SDimitry Andric     return SrcReg;
1361fe6060f1SDimitry Andric   }
1362fe6060f1SDimitry Andric }
1363fe6060f1SDimitry Andric 
1364fe6060f1SDimitry Andric /// Check if we can use a basic COPY instruction between the two types.
1365fe6060f1SDimitry Andric ///
1366fe6060f1SDimitry Andric /// We're currently building on top of the infrastructure using MVT, which loses
1367fe6060f1SDimitry Andric /// pointer information in the CCValAssign. We accept copies from physical
1368fe6060f1SDimitry Andric /// registers that have been reported as integers if it's to an equivalent sized
1369fe6060f1SDimitry Andric /// pointer LLT.
1370fe6060f1SDimitry Andric static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1371fe6060f1SDimitry Andric   if (SrcTy == DstTy)
1372fe6060f1SDimitry Andric     return true;
1373fe6060f1SDimitry Andric 
1374fe6060f1SDimitry Andric   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1375fe6060f1SDimitry Andric     return false;
1376fe6060f1SDimitry Andric 
1377fe6060f1SDimitry Andric   SrcTy = SrcTy.getScalarType();
1378fe6060f1SDimitry Andric   DstTy = DstTy.getScalarType();
1379fe6060f1SDimitry Andric 
1380fe6060f1SDimitry Andric   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1381bdd1243dSDimitry Andric          (DstTy.isPointer() && SrcTy.isScalar());
1382fe6060f1SDimitry Andric }
1383fe6060f1SDimitry Andric 
13845f757f3fSDimitry Andric void CallLowering::IncomingValueHandler::assignValueToReg(
13855f757f3fSDimitry Andric     Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1386fe6060f1SDimitry Andric   const MVT LocVT = VA.getLocVT();
1387fe6060f1SDimitry Andric   const LLT LocTy(LocVT);
1388fe6060f1SDimitry Andric   const LLT RegTy = MRI.getType(ValVReg);
1389fe6060f1SDimitry Andric 
1390fe6060f1SDimitry Andric   if (isCopyCompatibleType(RegTy, LocTy)) {
1391fe6060f1SDimitry Andric     MIRBuilder.buildCopy(ValVReg, PhysReg);
1392fe6060f1SDimitry Andric     return;
1393fe6060f1SDimitry Andric   }
1394fe6060f1SDimitry Andric 
1395fe6060f1SDimitry Andric   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1396fe6060f1SDimitry Andric   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1397fe6060f1SDimitry Andric   MIRBuilder.buildTrunc(ValVReg, Hint);
1398fe6060f1SDimitry Andric }
1399