10b57cec5SDimitry Andric //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass tries to expand memcmp() calls into optimally-sized loads and 100b57cec5SDimitry Andric // compares for the target. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 145f757f3fSDimitry Andric #include "llvm/CodeGen/ExpandMemCmp.h" 150b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 160b57cec5SDimitry Andric #include "llvm/Analysis/ConstantFolding.h" 17fe6060f1SDimitry Andric #include "llvm/Analysis/DomTreeUpdater.h" 18480093f4SDimitry Andric #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 19480093f4SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h" 200b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 210b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 220b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 230b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 240b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h" 25fe6060f1SDimitry Andric #include "llvm/IR/Dominators.h" 260b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 275f757f3fSDimitry Andric #include "llvm/IR/PatternMatch.h" 28480093f4SDimitry Andric #include "llvm/InitializePasses.h" 29fe6060f1SDimitry Andric #include "llvm/Target/TargetMachine.h" 30fe6060f1SDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h" 315ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/Local.h" 32480093f4SDimitry Andric #include "llvm/Transforms/Utils/SizeOpts.h" 33bdd1243dSDimitry Andric #include <optional> 340b57cec5SDimitry Andric 350b57cec5SDimitry Andric using namespace llvm; 365f757f3fSDimitry Andric using namespace llvm::PatternMatch; 370b57cec5SDimitry Andric 3881ad6265SDimitry Andric namespace llvm { 3981ad6265SDimitry Andric class TargetLowering; 4081ad6265SDimitry Andric } 4181ad6265SDimitry Andric 425f757f3fSDimitry Andric #define DEBUG_TYPE "expand-memcmp" 430b57cec5SDimitry Andric 440b57cec5SDimitry Andric STATISTIC(NumMemCmpCalls, "Number of memcmp calls"); 450b57cec5SDimitry Andric STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size"); 460b57cec5SDimitry Andric STATISTIC(NumMemCmpGreaterThanMax, 470b57cec5SDimitry Andric "Number of memcmp calls with size greater than max size"); 480b57cec5SDimitry Andric STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls"); 490b57cec5SDimitry Andric 500b57cec5SDimitry Andric static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock( 510b57cec5SDimitry Andric "memcmp-num-loads-per-block", cl::Hidden, cl::init(1), 520b57cec5SDimitry Andric cl::desc("The number of loads per basic block for inline expansion of " 530b57cec5SDimitry Andric "memcmp that is only being compared against zero.")); 540b57cec5SDimitry Andric 550b57cec5SDimitry Andric static cl::opt<unsigned> MaxLoadsPerMemcmp( 560b57cec5SDimitry Andric "max-loads-per-memcmp", cl::Hidden, 570b57cec5SDimitry Andric cl::desc("Set maximum number of loads used in expanded memcmp")); 580b57cec5SDimitry Andric 590b57cec5SDimitry Andric static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize( 600b57cec5SDimitry Andric "max-loads-per-memcmp-opt-size", cl::Hidden, 610b57cec5SDimitry Andric cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz")); 620b57cec5SDimitry Andric 630b57cec5SDimitry Andric namespace { 640b57cec5SDimitry Andric 650b57cec5SDimitry Andric 660b57cec5SDimitry Andric // This class provides helper functions to expand a memcmp library call into an 670b57cec5SDimitry Andric // inline expansion. 680b57cec5SDimitry Andric class MemCmpExpansion { 690b57cec5SDimitry Andric struct ResultBlock { 700b57cec5SDimitry Andric BasicBlock *BB = nullptr; 710b57cec5SDimitry Andric PHINode *PhiSrc1 = nullptr; 720b57cec5SDimitry Andric PHINode *PhiSrc2 = nullptr; 730b57cec5SDimitry Andric 740b57cec5SDimitry Andric ResultBlock() = default; 750b57cec5SDimitry Andric }; 760b57cec5SDimitry Andric 7706c3fb27SDimitry Andric CallInst *const CI = nullptr; 780b57cec5SDimitry Andric ResultBlock ResBlock; 790b57cec5SDimitry Andric const uint64_t Size; 801fd87a68SDimitry Andric unsigned MaxLoadSize = 0; 811fd87a68SDimitry Andric uint64_t NumLoadsNonOneByte = 0; 820b57cec5SDimitry Andric const uint64_t NumLoadsPerBlockForZeroCmp; 830b57cec5SDimitry Andric std::vector<BasicBlock *> LoadCmpBlocks; 8406c3fb27SDimitry Andric BasicBlock *EndBlock = nullptr; 8506c3fb27SDimitry Andric PHINode *PhiRes = nullptr; 860b57cec5SDimitry Andric const bool IsUsedForZeroCmp; 870b57cec5SDimitry Andric const DataLayout &DL; 8806c3fb27SDimitry Andric DomTreeUpdater *DTU = nullptr; 890b57cec5SDimitry Andric IRBuilder<> Builder; 900b57cec5SDimitry Andric // Represents the decomposition in blocks of the expansion. For example, 910b57cec5SDimitry Andric // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and 925ffd83dbSDimitry Andric // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}. 930b57cec5SDimitry Andric struct LoadEntry { 940b57cec5SDimitry Andric LoadEntry(unsigned LoadSize, uint64_t Offset) 950b57cec5SDimitry Andric : LoadSize(LoadSize), Offset(Offset) { 960b57cec5SDimitry Andric } 970b57cec5SDimitry Andric 980b57cec5SDimitry Andric // The size of the load for this block, in bytes. 990b57cec5SDimitry Andric unsigned LoadSize; 1000b57cec5SDimitry Andric // The offset of this load from the base pointer, in bytes. 1010b57cec5SDimitry Andric uint64_t Offset; 1020b57cec5SDimitry Andric }; 1030b57cec5SDimitry Andric using LoadEntryVector = SmallVector<LoadEntry, 8>; 1040b57cec5SDimitry Andric LoadEntryVector LoadSequence; 1050b57cec5SDimitry Andric 1060b57cec5SDimitry Andric void createLoadCmpBlocks(); 1070b57cec5SDimitry Andric void createResultBlock(); 1080b57cec5SDimitry Andric void setupResultBlockPHINodes(); 1090b57cec5SDimitry Andric void setupEndBlockPHINodes(); 1100b57cec5SDimitry Andric Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex); 1110b57cec5SDimitry Andric void emitLoadCompareBlock(unsigned BlockIndex); 1120b57cec5SDimitry Andric void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 1130b57cec5SDimitry Andric unsigned &LoadIndex); 1140b57cec5SDimitry Andric void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes); 1150b57cec5SDimitry Andric void emitMemCmpResultBlock(); 1160b57cec5SDimitry Andric Value *getMemCmpExpansionZeroCase(); 1170b57cec5SDimitry Andric Value *getMemCmpEqZeroOneBlock(); 1180b57cec5SDimitry Andric Value *getMemCmpOneBlock(); 1195ffd83dbSDimitry Andric struct LoadPair { 1205ffd83dbSDimitry Andric Value *Lhs = nullptr; 1215ffd83dbSDimitry Andric Value *Rhs = nullptr; 1225ffd83dbSDimitry Andric }; 1235f757f3fSDimitry Andric LoadPair getLoadPair(Type *LoadSizeType, Type *BSwapSizeType, 1245f757f3fSDimitry Andric Type *CmpSizeType, unsigned OffsetBytes); 1250b57cec5SDimitry Andric 1260b57cec5SDimitry Andric static LoadEntryVector 1270b57cec5SDimitry Andric computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 1280b57cec5SDimitry Andric unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte); 1290b57cec5SDimitry Andric static LoadEntryVector 1300b57cec5SDimitry Andric computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize, 1310b57cec5SDimitry Andric unsigned MaxNumLoads, 1320b57cec5SDimitry Andric unsigned &NumLoadsNonOneByte); 1330b57cec5SDimitry Andric 1345f757f3fSDimitry Andric static void optimiseLoadSequence( 1355f757f3fSDimitry Andric LoadEntryVector &LoadSequence, 1365f757f3fSDimitry Andric const TargetTransformInfo::MemCmpExpansionOptions &Options, 1375f757f3fSDimitry Andric bool IsUsedForZeroCmp); 1385f757f3fSDimitry Andric 1390b57cec5SDimitry Andric public: 1400b57cec5SDimitry Andric MemCmpExpansion(CallInst *CI, uint64_t Size, 1410b57cec5SDimitry Andric const TargetTransformInfo::MemCmpExpansionOptions &Options, 142fe6060f1SDimitry Andric const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, 143fe6060f1SDimitry Andric DomTreeUpdater *DTU); 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric unsigned getNumBlocks(); 1460b57cec5SDimitry Andric uint64_t getNumLoads() const { return LoadSequence.size(); } 1470b57cec5SDimitry Andric 1480b57cec5SDimitry Andric Value *getMemCmpExpansion(); 1490b57cec5SDimitry Andric }; 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence( 1520b57cec5SDimitry Andric uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes, 1530b57cec5SDimitry Andric const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) { 1540b57cec5SDimitry Andric NumLoadsNonOneByte = 0; 1550b57cec5SDimitry Andric LoadEntryVector LoadSequence; 1560b57cec5SDimitry Andric uint64_t Offset = 0; 1570b57cec5SDimitry Andric while (Size && !LoadSizes.empty()) { 1580b57cec5SDimitry Andric const unsigned LoadSize = LoadSizes.front(); 1590b57cec5SDimitry Andric const uint64_t NumLoadsForThisSize = Size / LoadSize; 1600b57cec5SDimitry Andric if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) { 1610b57cec5SDimitry Andric // Do not expand if the total number of loads is larger than what the 1620b57cec5SDimitry Andric // target allows. Note that it's important that we exit before completing 1630b57cec5SDimitry Andric // the expansion to avoid using a ton of memory to store the expansion for 1640b57cec5SDimitry Andric // large sizes. 1650b57cec5SDimitry Andric return {}; 1660b57cec5SDimitry Andric } 1670b57cec5SDimitry Andric if (NumLoadsForThisSize > 0) { 1680b57cec5SDimitry Andric for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) { 1690b57cec5SDimitry Andric LoadSequence.push_back({LoadSize, Offset}); 1700b57cec5SDimitry Andric Offset += LoadSize; 1710b57cec5SDimitry Andric } 1720b57cec5SDimitry Andric if (LoadSize > 1) 1730b57cec5SDimitry Andric ++NumLoadsNonOneByte; 1740b57cec5SDimitry Andric Size = Size % LoadSize; 1750b57cec5SDimitry Andric } 1760b57cec5SDimitry Andric LoadSizes = LoadSizes.drop_front(); 1770b57cec5SDimitry Andric } 1780b57cec5SDimitry Andric return LoadSequence; 1790b57cec5SDimitry Andric } 1800b57cec5SDimitry Andric 1810b57cec5SDimitry Andric MemCmpExpansion::LoadEntryVector 1820b57cec5SDimitry Andric MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size, 1830b57cec5SDimitry Andric const unsigned MaxLoadSize, 1840b57cec5SDimitry Andric const unsigned MaxNumLoads, 1850b57cec5SDimitry Andric unsigned &NumLoadsNonOneByte) { 1860b57cec5SDimitry Andric // These are already handled by the greedy approach. 1870b57cec5SDimitry Andric if (Size < 2 || MaxLoadSize < 2) 1880b57cec5SDimitry Andric return {}; 1890b57cec5SDimitry Andric 1900b57cec5SDimitry Andric // We try to do as many non-overlapping loads as possible starting from the 1910b57cec5SDimitry Andric // beginning. 1920b57cec5SDimitry Andric const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize; 1930b57cec5SDimitry Andric assert(NumNonOverlappingLoads && "there must be at least one load"); 1940b57cec5SDimitry Andric // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with 1950b57cec5SDimitry Andric // an overlapping load. 1960b57cec5SDimitry Andric Size = Size - NumNonOverlappingLoads * MaxLoadSize; 1970b57cec5SDimitry Andric // Bail if we do not need an overloapping store, this is already handled by 1980b57cec5SDimitry Andric // the greedy approach. 1990b57cec5SDimitry Andric if (Size == 0) 2000b57cec5SDimitry Andric return {}; 2010b57cec5SDimitry Andric // Bail if the number of loads (non-overlapping + potential overlapping one) 2020b57cec5SDimitry Andric // is larger than the max allowed. 2030b57cec5SDimitry Andric if ((NumNonOverlappingLoads + 1) > MaxNumLoads) 2040b57cec5SDimitry Andric return {}; 2050b57cec5SDimitry Andric 2060b57cec5SDimitry Andric // Add non-overlapping loads. 2070b57cec5SDimitry Andric LoadEntryVector LoadSequence; 2080b57cec5SDimitry Andric uint64_t Offset = 0; 2090b57cec5SDimitry Andric for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) { 2100b57cec5SDimitry Andric LoadSequence.push_back({MaxLoadSize, Offset}); 2110b57cec5SDimitry Andric Offset += MaxLoadSize; 2120b57cec5SDimitry Andric } 2130b57cec5SDimitry Andric 2140b57cec5SDimitry Andric // Add the last overlapping load. 2150b57cec5SDimitry Andric assert(Size > 0 && Size < MaxLoadSize && "broken invariant"); 2160b57cec5SDimitry Andric LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)}); 2170b57cec5SDimitry Andric NumLoadsNonOneByte = 1; 2180b57cec5SDimitry Andric return LoadSequence; 2190b57cec5SDimitry Andric } 2200b57cec5SDimitry Andric 2215f757f3fSDimitry Andric void MemCmpExpansion::optimiseLoadSequence( 2225f757f3fSDimitry Andric LoadEntryVector &LoadSequence, 2235f757f3fSDimitry Andric const TargetTransformInfo::MemCmpExpansionOptions &Options, 2245f757f3fSDimitry Andric bool IsUsedForZeroCmp) { 2255f757f3fSDimitry Andric // This part of code attempts to optimize the LoadSequence by merging allowed 2265f757f3fSDimitry Andric // subsequences into single loads of allowed sizes from 2275f757f3fSDimitry Andric // `MemCmpExpansionOptions::AllowedTailExpansions`. If it is for zero 2285f757f3fSDimitry Andric // comparison or if no allowed tail expansions are specified, we exit early. 2295f757f3fSDimitry Andric if (IsUsedForZeroCmp || Options.AllowedTailExpansions.empty()) 2305f757f3fSDimitry Andric return; 2315f757f3fSDimitry Andric 2325f757f3fSDimitry Andric while (LoadSequence.size() >= 2) { 2335f757f3fSDimitry Andric auto Last = LoadSequence[LoadSequence.size() - 1]; 2345f757f3fSDimitry Andric auto PreLast = LoadSequence[LoadSequence.size() - 2]; 2355f757f3fSDimitry Andric 2365f757f3fSDimitry Andric // Exit the loop if the two sequences are not contiguous 2375f757f3fSDimitry Andric if (PreLast.Offset + PreLast.LoadSize != Last.Offset) 2385f757f3fSDimitry Andric break; 2395f757f3fSDimitry Andric 2405f757f3fSDimitry Andric auto LoadSize = Last.LoadSize + PreLast.LoadSize; 2415f757f3fSDimitry Andric if (find(Options.AllowedTailExpansions, LoadSize) == 2425f757f3fSDimitry Andric Options.AllowedTailExpansions.end()) 2435f757f3fSDimitry Andric break; 2445f757f3fSDimitry Andric 2455f757f3fSDimitry Andric // Remove the last two sequences and replace with the combined sequence 2465f757f3fSDimitry Andric LoadSequence.pop_back(); 2475f757f3fSDimitry Andric LoadSequence.pop_back(); 2485f757f3fSDimitry Andric LoadSequence.emplace_back(PreLast.Offset, LoadSize); 2495f757f3fSDimitry Andric } 2505f757f3fSDimitry Andric } 2515f757f3fSDimitry Andric 2520b57cec5SDimitry Andric // Initialize the basic block structure required for expansion of memcmp call 2530b57cec5SDimitry Andric // with given maximum load size and memcmp size parameter. 2540b57cec5SDimitry Andric // This structure includes: 2550b57cec5SDimitry Andric // 1. A list of load compare blocks - LoadCmpBlocks. 2560b57cec5SDimitry Andric // 2. An EndBlock, split from original instruction point, which is the block to 2570b57cec5SDimitry Andric // return from. 2580b57cec5SDimitry Andric // 3. ResultBlock, block to branch to for early exit when a 2590b57cec5SDimitry Andric // LoadCmpBlock finds a difference. 2600b57cec5SDimitry Andric MemCmpExpansion::MemCmpExpansion( 2610b57cec5SDimitry Andric CallInst *const CI, uint64_t Size, 2620b57cec5SDimitry Andric const TargetTransformInfo::MemCmpExpansionOptions &Options, 263fe6060f1SDimitry Andric const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout, 264fe6060f1SDimitry Andric DomTreeUpdater *DTU) 2651fd87a68SDimitry Andric : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock), 266fe6060f1SDimitry Andric IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU), 267fe6060f1SDimitry Andric Builder(CI) { 2680b57cec5SDimitry Andric assert(Size > 0 && "zero blocks"); 2690b57cec5SDimitry Andric // Scale the max size down if the target can load more bytes than we need. 2700b57cec5SDimitry Andric llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes); 2710b57cec5SDimitry Andric while (!LoadSizes.empty() && LoadSizes.front() > Size) { 2720b57cec5SDimitry Andric LoadSizes = LoadSizes.drop_front(); 2730b57cec5SDimitry Andric } 2740b57cec5SDimitry Andric assert(!LoadSizes.empty() && "cannot load Size bytes"); 2750b57cec5SDimitry Andric MaxLoadSize = LoadSizes.front(); 2760b57cec5SDimitry Andric // Compute the decomposition. 2770b57cec5SDimitry Andric unsigned GreedyNumLoadsNonOneByte = 0; 2780b57cec5SDimitry Andric LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads, 2790b57cec5SDimitry Andric GreedyNumLoadsNonOneByte); 2800b57cec5SDimitry Andric NumLoadsNonOneByte = GreedyNumLoadsNonOneByte; 2810b57cec5SDimitry Andric assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant"); 2820b57cec5SDimitry Andric // If we allow overlapping loads and the load sequence is not already optimal, 2830b57cec5SDimitry Andric // use overlapping loads. 2840b57cec5SDimitry Andric if (Options.AllowOverlappingLoads && 2850b57cec5SDimitry Andric (LoadSequence.empty() || LoadSequence.size() > 2)) { 2860b57cec5SDimitry Andric unsigned OverlappingNumLoadsNonOneByte = 0; 2870b57cec5SDimitry Andric auto OverlappingLoads = computeOverlappingLoadSequence( 2880b57cec5SDimitry Andric Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte); 2890b57cec5SDimitry Andric if (!OverlappingLoads.empty() && 2900b57cec5SDimitry Andric (LoadSequence.empty() || 2910b57cec5SDimitry Andric OverlappingLoads.size() < LoadSequence.size())) { 2920b57cec5SDimitry Andric LoadSequence = OverlappingLoads; 2930b57cec5SDimitry Andric NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte; 2940b57cec5SDimitry Andric } 2950b57cec5SDimitry Andric } 2960b57cec5SDimitry Andric assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant"); 2975f757f3fSDimitry Andric optimiseLoadSequence(LoadSequence, Options, IsUsedForZeroCmp); 2980b57cec5SDimitry Andric } 2990b57cec5SDimitry Andric 3000b57cec5SDimitry Andric unsigned MemCmpExpansion::getNumBlocks() { 3010b57cec5SDimitry Andric if (IsUsedForZeroCmp) 3020b57cec5SDimitry Andric return getNumLoads() / NumLoadsPerBlockForZeroCmp + 3030b57cec5SDimitry Andric (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0); 3040b57cec5SDimitry Andric return getNumLoads(); 3050b57cec5SDimitry Andric } 3060b57cec5SDimitry Andric 3070b57cec5SDimitry Andric void MemCmpExpansion::createLoadCmpBlocks() { 3080b57cec5SDimitry Andric for (unsigned i = 0; i < getNumBlocks(); i++) { 3090b57cec5SDimitry Andric BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb", 3100b57cec5SDimitry Andric EndBlock->getParent(), EndBlock); 3110b57cec5SDimitry Andric LoadCmpBlocks.push_back(BB); 3120b57cec5SDimitry Andric } 3130b57cec5SDimitry Andric } 3140b57cec5SDimitry Andric 3150b57cec5SDimitry Andric void MemCmpExpansion::createResultBlock() { 3160b57cec5SDimitry Andric ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block", 3170b57cec5SDimitry Andric EndBlock->getParent(), EndBlock); 3180b57cec5SDimitry Andric } 3190b57cec5SDimitry Andric 3205ffd83dbSDimitry Andric MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType, 3215f757f3fSDimitry Andric Type *BSwapSizeType, 3225ffd83dbSDimitry Andric Type *CmpSizeType, 3235ffd83dbSDimitry Andric unsigned OffsetBytes) { 3245ffd83dbSDimitry Andric // Get the memory source at offset `OffsetBytes`. 3255ffd83dbSDimitry Andric Value *LhsSource = CI->getArgOperand(0); 3265ffd83dbSDimitry Andric Value *RhsSource = CI->getArgOperand(1); 3275ffd83dbSDimitry Andric Align LhsAlign = LhsSource->getPointerAlignment(DL); 3285ffd83dbSDimitry Andric Align RhsAlign = RhsSource->getPointerAlignment(DL); 3290b57cec5SDimitry Andric if (OffsetBytes > 0) { 3300b57cec5SDimitry Andric auto *ByteType = Type::getInt8Ty(CI->getContext()); 33106c3fb27SDimitry Andric LhsSource = Builder.CreateConstGEP1_64(ByteType, LhsSource, OffsetBytes); 33206c3fb27SDimitry Andric RhsSource = Builder.CreateConstGEP1_64(ByteType, RhsSource, OffsetBytes); 3335ffd83dbSDimitry Andric LhsAlign = commonAlignment(LhsAlign, OffsetBytes); 3345ffd83dbSDimitry Andric RhsAlign = commonAlignment(RhsAlign, OffsetBytes); 3350b57cec5SDimitry Andric } 3365ffd83dbSDimitry Andric 3375ffd83dbSDimitry Andric // Create a constant or a load from the source. 3385ffd83dbSDimitry Andric Value *Lhs = nullptr; 3395ffd83dbSDimitry Andric if (auto *C = dyn_cast<Constant>(LhsSource)) 3405ffd83dbSDimitry Andric Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL); 3415ffd83dbSDimitry Andric if (!Lhs) 3425ffd83dbSDimitry Andric Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign); 3435ffd83dbSDimitry Andric 3445ffd83dbSDimitry Andric Value *Rhs = nullptr; 3455ffd83dbSDimitry Andric if (auto *C = dyn_cast<Constant>(RhsSource)) 3465ffd83dbSDimitry Andric Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL); 3475ffd83dbSDimitry Andric if (!Rhs) 3485ffd83dbSDimitry Andric Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign); 3495ffd83dbSDimitry Andric 3505f757f3fSDimitry Andric // Zero extend if Byte Swap intrinsic has different type 3515f757f3fSDimitry Andric if (BSwapSizeType && LoadSizeType != BSwapSizeType) { 3525f757f3fSDimitry Andric Lhs = Builder.CreateZExt(Lhs, BSwapSizeType); 3535f757f3fSDimitry Andric Rhs = Builder.CreateZExt(Rhs, BSwapSizeType); 3545f757f3fSDimitry Andric } 3555f757f3fSDimitry Andric 3565ffd83dbSDimitry Andric // Swap bytes if required. 3575f757f3fSDimitry Andric if (BSwapSizeType) { 3585f757f3fSDimitry Andric Function *Bswap = Intrinsic::getDeclaration( 3595f757f3fSDimitry Andric CI->getModule(), Intrinsic::bswap, BSwapSizeType); 3605ffd83dbSDimitry Andric Lhs = Builder.CreateCall(Bswap, Lhs); 3615ffd83dbSDimitry Andric Rhs = Builder.CreateCall(Bswap, Rhs); 3625ffd83dbSDimitry Andric } 3635ffd83dbSDimitry Andric 3645ffd83dbSDimitry Andric // Zero extend if required. 3655f757f3fSDimitry Andric if (CmpSizeType != nullptr && CmpSizeType != Lhs->getType()) { 3665ffd83dbSDimitry Andric Lhs = Builder.CreateZExt(Lhs, CmpSizeType); 3675ffd83dbSDimitry Andric Rhs = Builder.CreateZExt(Rhs, CmpSizeType); 3685ffd83dbSDimitry Andric } 3695ffd83dbSDimitry Andric return {Lhs, Rhs}; 3700b57cec5SDimitry Andric } 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric // This function creates the IR instructions for loading and comparing 1 byte. 3730b57cec5SDimitry Andric // It loads 1 byte from each source of the memcmp parameters with the given 3740b57cec5SDimitry Andric // GEPIndex. It then subtracts the two loaded values and adds this result to the 3750b57cec5SDimitry Andric // final phi node for selecting the memcmp result. 3760b57cec5SDimitry Andric void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex, 3770b57cec5SDimitry Andric unsigned OffsetBytes) { 378fe6060f1SDimitry Andric BasicBlock *BB = LoadCmpBlocks[BlockIndex]; 379fe6060f1SDimitry Andric Builder.SetInsertPoint(BB); 3805ffd83dbSDimitry Andric const LoadPair Loads = 3815f757f3fSDimitry Andric getLoadPair(Type::getInt8Ty(CI->getContext()), nullptr, 3825ffd83dbSDimitry Andric Type::getInt32Ty(CI->getContext()), OffsetBytes); 3835ffd83dbSDimitry Andric Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs); 3840b57cec5SDimitry Andric 385fe6060f1SDimitry Andric PhiRes->addIncoming(Diff, BB); 3860b57cec5SDimitry Andric 3870b57cec5SDimitry Andric if (BlockIndex < (LoadCmpBlocks.size() - 1)) { 3880b57cec5SDimitry Andric // Early exit branch if difference found to EndBlock. Otherwise, continue to 3890b57cec5SDimitry Andric // next LoadCmpBlock, 3900b57cec5SDimitry Andric Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff, 3910b57cec5SDimitry Andric ConstantInt::get(Diff->getType(), 0)); 3920b57cec5SDimitry Andric BranchInst *CmpBr = 3930b57cec5SDimitry Andric BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp); 394349cc55cSDimitry Andric Builder.Insert(CmpBr); 395fe6060f1SDimitry Andric if (DTU) 396fe6060f1SDimitry Andric DTU->applyUpdates( 397fe6060f1SDimitry Andric {{DominatorTree::Insert, BB, EndBlock}, 398fe6060f1SDimitry Andric {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}}); 3990b57cec5SDimitry Andric } else { 4000b57cec5SDimitry Andric // The last block has an unconditional branch to EndBlock. 4010b57cec5SDimitry Andric BranchInst *CmpBr = BranchInst::Create(EndBlock); 402349cc55cSDimitry Andric Builder.Insert(CmpBr); 403fe6060f1SDimitry Andric if (DTU) 404fe6060f1SDimitry Andric DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}}); 4050b57cec5SDimitry Andric } 4060b57cec5SDimitry Andric } 4070b57cec5SDimitry Andric 4080b57cec5SDimitry Andric /// Generate an equality comparison for one or more pairs of loaded values. 4090b57cec5SDimitry Andric /// This is used in the case where the memcmp() call is compared equal or not 4100b57cec5SDimitry Andric /// equal to zero. 4110b57cec5SDimitry Andric Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex, 4120b57cec5SDimitry Andric unsigned &LoadIndex) { 4130b57cec5SDimitry Andric assert(LoadIndex < getNumLoads() && 4140b57cec5SDimitry Andric "getCompareLoadPairs() called with no remaining loads"); 4150b57cec5SDimitry Andric std::vector<Value *> XorList, OrList; 4160b57cec5SDimitry Andric Value *Diff = nullptr; 4170b57cec5SDimitry Andric 4180b57cec5SDimitry Andric const unsigned NumLoads = 4190b57cec5SDimitry Andric std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp); 4200b57cec5SDimitry Andric 4210b57cec5SDimitry Andric // For a single-block expansion, start inserting before the memcmp call. 4220b57cec5SDimitry Andric if (LoadCmpBlocks.empty()) 4230b57cec5SDimitry Andric Builder.SetInsertPoint(CI); 4240b57cec5SDimitry Andric else 4250b57cec5SDimitry Andric Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 4260b57cec5SDimitry Andric 4270b57cec5SDimitry Andric Value *Cmp = nullptr; 4280b57cec5SDimitry Andric // If we have multiple loads per block, we need to generate a composite 4290b57cec5SDimitry Andric // comparison using xor+or. The type for the combinations is the largest load 4300b57cec5SDimitry Andric // type. 4310b57cec5SDimitry Andric IntegerType *const MaxLoadType = 4320b57cec5SDimitry Andric NumLoads == 1 ? nullptr 4330b57cec5SDimitry Andric : IntegerType::get(CI->getContext(), MaxLoadSize * 8); 4345f757f3fSDimitry Andric 4350b57cec5SDimitry Andric for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) { 4360b57cec5SDimitry Andric const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex]; 4375ffd83dbSDimitry Andric const LoadPair Loads = getLoadPair( 4385f757f3fSDimitry Andric IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8), nullptr, 4395f757f3fSDimitry Andric MaxLoadType, CurLoadEntry.Offset); 4400b57cec5SDimitry Andric 4410b57cec5SDimitry Andric if (NumLoads != 1) { 4420b57cec5SDimitry Andric // If we have multiple loads per block, we need to generate a composite 4430b57cec5SDimitry Andric // comparison using xor+or. 4445ffd83dbSDimitry Andric Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs); 4450b57cec5SDimitry Andric Diff = Builder.CreateZExt(Diff, MaxLoadType); 4460b57cec5SDimitry Andric XorList.push_back(Diff); 4470b57cec5SDimitry Andric } else { 4480b57cec5SDimitry Andric // If there's only one load per block, we just compare the loaded values. 4495ffd83dbSDimitry Andric Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs); 4500b57cec5SDimitry Andric } 4510b57cec5SDimitry Andric } 4520b57cec5SDimitry Andric 4530b57cec5SDimitry Andric auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> { 4540b57cec5SDimitry Andric std::vector<Value *> OutList; 4550b57cec5SDimitry Andric for (unsigned i = 0; i < InList.size() - 1; i = i + 2) { 4560b57cec5SDimitry Andric Value *Or = Builder.CreateOr(InList[i], InList[i + 1]); 4570b57cec5SDimitry Andric OutList.push_back(Or); 4580b57cec5SDimitry Andric } 4590b57cec5SDimitry Andric if (InList.size() % 2 != 0) 4600b57cec5SDimitry Andric OutList.push_back(InList.back()); 4610b57cec5SDimitry Andric return OutList; 4620b57cec5SDimitry Andric }; 4630b57cec5SDimitry Andric 4640b57cec5SDimitry Andric if (!Cmp) { 4650b57cec5SDimitry Andric // Pairwise OR the XOR results. 4660b57cec5SDimitry Andric OrList = pairWiseOr(XorList); 4670b57cec5SDimitry Andric 4680b57cec5SDimitry Andric // Pairwise OR the OR results until one result left. 4690b57cec5SDimitry Andric while (OrList.size() != 1) { 4700b57cec5SDimitry Andric OrList = pairWiseOr(OrList); 4710b57cec5SDimitry Andric } 4720b57cec5SDimitry Andric 4730b57cec5SDimitry Andric assert(Diff && "Failed to find comparison diff"); 4740b57cec5SDimitry Andric Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0)); 4750b57cec5SDimitry Andric } 4760b57cec5SDimitry Andric 4770b57cec5SDimitry Andric return Cmp; 4780b57cec5SDimitry Andric } 4790b57cec5SDimitry Andric 4800b57cec5SDimitry Andric void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex, 4810b57cec5SDimitry Andric unsigned &LoadIndex) { 4820b57cec5SDimitry Andric Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex); 4830b57cec5SDimitry Andric 4840b57cec5SDimitry Andric BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 4850b57cec5SDimitry Andric ? EndBlock 4860b57cec5SDimitry Andric : LoadCmpBlocks[BlockIndex + 1]; 4870b57cec5SDimitry Andric // Early exit branch if difference found to ResultBlock. Otherwise, 4880b57cec5SDimitry Andric // continue to next LoadCmpBlock or EndBlock. 489fe6060f1SDimitry Andric BasicBlock *BB = Builder.GetInsertBlock(); 4900b57cec5SDimitry Andric BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp); 4910b57cec5SDimitry Andric Builder.Insert(CmpBr); 492fe6060f1SDimitry Andric if (DTU) 493fe6060f1SDimitry Andric DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB}, 494fe6060f1SDimitry Andric {DominatorTree::Insert, BB, NextBB}}); 4950b57cec5SDimitry Andric 4960b57cec5SDimitry Andric // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 4970b57cec5SDimitry Andric // since early exit to ResultBlock was not taken (no difference was found in 4980b57cec5SDimitry Andric // any of the bytes). 4990b57cec5SDimitry Andric if (BlockIndex == LoadCmpBlocks.size() - 1) { 5000b57cec5SDimitry Andric Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 5010b57cec5SDimitry Andric PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 5020b57cec5SDimitry Andric } 5030b57cec5SDimitry Andric } 5040b57cec5SDimitry Andric 5050b57cec5SDimitry Andric // This function creates the IR intructions for loading and comparing using the 5060b57cec5SDimitry Andric // given LoadSize. It loads the number of bytes specified by LoadSize from each 5070b57cec5SDimitry Andric // source of the memcmp parameters. It then does a subtract to see if there was 5080b57cec5SDimitry Andric // a difference in the loaded values. If a difference is found, it branches 5090b57cec5SDimitry Andric // with an early exit to the ResultBlock for calculating which source was 5100b57cec5SDimitry Andric // larger. Otherwise, it falls through to the either the next LoadCmpBlock or 5110b57cec5SDimitry Andric // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with 5120b57cec5SDimitry Andric // a special case through emitLoadCompareByteBlock. The special handling can 5130b57cec5SDimitry Andric // simply subtract the loaded values and add it to the result phi node. 5140b57cec5SDimitry Andric void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) { 5150b57cec5SDimitry Andric // There is one load per block in this case, BlockIndex == LoadIndex. 5160b57cec5SDimitry Andric const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex]; 5170b57cec5SDimitry Andric 5180b57cec5SDimitry Andric if (CurLoadEntry.LoadSize == 1) { 5190b57cec5SDimitry Andric MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset); 5200b57cec5SDimitry Andric return; 5210b57cec5SDimitry Andric } 5220b57cec5SDimitry Andric 5230b57cec5SDimitry Andric Type *LoadSizeType = 5240b57cec5SDimitry Andric IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8); 5255f757f3fSDimitry Andric Type *BSwapSizeType = 5265f757f3fSDimitry Andric DL.isLittleEndian() 5275f757f3fSDimitry Andric ? IntegerType::get(CI->getContext(), 5285f757f3fSDimitry Andric PowerOf2Ceil(CurLoadEntry.LoadSize * 8)) 5295f757f3fSDimitry Andric : nullptr; 5305f757f3fSDimitry Andric Type *MaxLoadType = IntegerType::get( 5315f757f3fSDimitry Andric CI->getContext(), 5325f757f3fSDimitry Andric std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(CurLoadEntry.LoadSize)) * 8); 5330b57cec5SDimitry Andric assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type"); 5340b57cec5SDimitry Andric 5350b57cec5SDimitry Andric Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]); 5360b57cec5SDimitry Andric 5375f757f3fSDimitry Andric const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType, 5380b57cec5SDimitry Andric CurLoadEntry.Offset); 5390b57cec5SDimitry Andric 5400b57cec5SDimitry Andric // Add the loaded values to the phi nodes for calculating memcmp result only 5410b57cec5SDimitry Andric // if result is not used in a zero equality. 5420b57cec5SDimitry Andric if (!IsUsedForZeroCmp) { 5435ffd83dbSDimitry Andric ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]); 5445ffd83dbSDimitry Andric ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]); 5450b57cec5SDimitry Andric } 5460b57cec5SDimitry Andric 5475ffd83dbSDimitry Andric Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs); 5480b57cec5SDimitry Andric BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1)) 5490b57cec5SDimitry Andric ? EndBlock 5500b57cec5SDimitry Andric : LoadCmpBlocks[BlockIndex + 1]; 5510b57cec5SDimitry Andric // Early exit branch if difference found to ResultBlock. Otherwise, continue 5520b57cec5SDimitry Andric // to next LoadCmpBlock or EndBlock. 553fe6060f1SDimitry Andric BasicBlock *BB = Builder.GetInsertBlock(); 5540b57cec5SDimitry Andric BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp); 5550b57cec5SDimitry Andric Builder.Insert(CmpBr); 556fe6060f1SDimitry Andric if (DTU) 557fe6060f1SDimitry Andric DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB}, 558fe6060f1SDimitry Andric {DominatorTree::Insert, BB, ResBlock.BB}}); 5590b57cec5SDimitry Andric 5600b57cec5SDimitry Andric // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0 5610b57cec5SDimitry Andric // since early exit to ResultBlock was not taken (no difference was found in 5620b57cec5SDimitry Andric // any of the bytes). 5630b57cec5SDimitry Andric if (BlockIndex == LoadCmpBlocks.size() - 1) { 5640b57cec5SDimitry Andric Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0); 5650b57cec5SDimitry Andric PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]); 5660b57cec5SDimitry Andric } 5670b57cec5SDimitry Andric } 5680b57cec5SDimitry Andric 5690b57cec5SDimitry Andric // This function populates the ResultBlock with a sequence to calculate the 5700b57cec5SDimitry Andric // memcmp result. It compares the two loaded source values and returns -1 if 5710b57cec5SDimitry Andric // src1 < src2 and 1 if src1 > src2. 5720b57cec5SDimitry Andric void MemCmpExpansion::emitMemCmpResultBlock() { 5730b57cec5SDimitry Andric // Special case: if memcmp result is used in a zero equality, result does not 5740b57cec5SDimitry Andric // need to be calculated and can simply return 1. 5750b57cec5SDimitry Andric if (IsUsedForZeroCmp) { 5760b57cec5SDimitry Andric BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 5770b57cec5SDimitry Andric Builder.SetInsertPoint(ResBlock.BB, InsertPt); 5780b57cec5SDimitry Andric Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1); 5790b57cec5SDimitry Andric PhiRes->addIncoming(Res, ResBlock.BB); 5800b57cec5SDimitry Andric BranchInst *NewBr = BranchInst::Create(EndBlock); 5810b57cec5SDimitry Andric Builder.Insert(NewBr); 582fe6060f1SDimitry Andric if (DTU) 583fe6060f1SDimitry Andric DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}}); 5840b57cec5SDimitry Andric return; 5850b57cec5SDimitry Andric } 5860b57cec5SDimitry Andric BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt(); 5870b57cec5SDimitry Andric Builder.SetInsertPoint(ResBlock.BB, InsertPt); 5880b57cec5SDimitry Andric 5890b57cec5SDimitry Andric Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1, 5900b57cec5SDimitry Andric ResBlock.PhiSrc2); 5910b57cec5SDimitry Andric 5920b57cec5SDimitry Andric Value *Res = 5930b57cec5SDimitry Andric Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1), 5940b57cec5SDimitry Andric ConstantInt::get(Builder.getInt32Ty(), 1)); 5950b57cec5SDimitry Andric 596fe6060f1SDimitry Andric PhiRes->addIncoming(Res, ResBlock.BB); 5970b57cec5SDimitry Andric BranchInst *NewBr = BranchInst::Create(EndBlock); 5980b57cec5SDimitry Andric Builder.Insert(NewBr); 599fe6060f1SDimitry Andric if (DTU) 600fe6060f1SDimitry Andric DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}}); 6010b57cec5SDimitry Andric } 6020b57cec5SDimitry Andric 6030b57cec5SDimitry Andric void MemCmpExpansion::setupResultBlockPHINodes() { 6040b57cec5SDimitry Andric Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8); 6050b57cec5SDimitry Andric Builder.SetInsertPoint(ResBlock.BB); 6060b57cec5SDimitry Andric // Note: this assumes one load per block. 6070b57cec5SDimitry Andric ResBlock.PhiSrc1 = 6080b57cec5SDimitry Andric Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1"); 6090b57cec5SDimitry Andric ResBlock.PhiSrc2 = 6100b57cec5SDimitry Andric Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2"); 6110b57cec5SDimitry Andric } 6120b57cec5SDimitry Andric 6130b57cec5SDimitry Andric void MemCmpExpansion::setupEndBlockPHINodes() { 6145f757f3fSDimitry Andric Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 6150b57cec5SDimitry Andric PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res"); 6160b57cec5SDimitry Andric } 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric Value *MemCmpExpansion::getMemCmpExpansionZeroCase() { 6190b57cec5SDimitry Andric unsigned LoadIndex = 0; 6200b57cec5SDimitry Andric // This loop populates each of the LoadCmpBlocks with the IR sequence to 6210b57cec5SDimitry Andric // handle multiple loads per block. 6220b57cec5SDimitry Andric for (unsigned I = 0; I < getNumBlocks(); ++I) { 6230b57cec5SDimitry Andric emitLoadCompareBlockMultipleLoads(I, LoadIndex); 6240b57cec5SDimitry Andric } 6250b57cec5SDimitry Andric 6260b57cec5SDimitry Andric emitMemCmpResultBlock(); 6270b57cec5SDimitry Andric return PhiRes; 6280b57cec5SDimitry Andric } 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric /// A memcmp expansion that compares equality with 0 and only has one block of 6310b57cec5SDimitry Andric /// load and compare can bypass the compare, branch, and phi IR that is required 6320b57cec5SDimitry Andric /// in the general case. 6330b57cec5SDimitry Andric Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() { 6340b57cec5SDimitry Andric unsigned LoadIndex = 0; 6350b57cec5SDimitry Andric Value *Cmp = getCompareLoadPairs(0, LoadIndex); 6360b57cec5SDimitry Andric assert(LoadIndex == getNumLoads() && "some entries were not consumed"); 6370b57cec5SDimitry Andric return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext())); 6380b57cec5SDimitry Andric } 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric /// A memcmp expansion that only has one block of load and compare can bypass 6410b57cec5SDimitry Andric /// the compare, branch, and phi IR that is required in the general case. 6425f757f3fSDimitry Andric /// This function also analyses users of memcmp, and if there is only one user 6435f757f3fSDimitry Andric /// from which we can conclude that only 2 out of 3 memcmp outcomes really 6445f757f3fSDimitry Andric /// matter, then it generates more efficient code with only one comparison. 6450b57cec5SDimitry Andric Value *MemCmpExpansion::getMemCmpOneBlock() { 6465ffd83dbSDimitry Andric bool NeedsBSwap = DL.isLittleEndian() && Size != 1; 6475f757f3fSDimitry Andric Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8); 6485f757f3fSDimitry Andric Type *BSwapSizeType = 6495f757f3fSDimitry Andric NeedsBSwap ? IntegerType::get(CI->getContext(), PowerOf2Ceil(Size * 8)) 6505f757f3fSDimitry Andric : nullptr; 6515f757f3fSDimitry Andric Type *MaxLoadType = 6525f757f3fSDimitry Andric IntegerType::get(CI->getContext(), 6535f757f3fSDimitry Andric std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(Size)) * 8); 6540b57cec5SDimitry Andric 6550b57cec5SDimitry Andric // The i8 and i16 cases don't need compares. We zext the loaded values and 6560b57cec5SDimitry Andric // subtract them to get the suitable negative, zero, or positive i32 result. 6575f757f3fSDimitry Andric if (Size == 1 || Size == 2) { 6585f757f3fSDimitry Andric const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, 6595f757f3fSDimitry Andric Builder.getInt32Ty(), /*Offset*/ 0); 6605ffd83dbSDimitry Andric return Builder.CreateSub(Loads.Lhs, Loads.Rhs); 6610b57cec5SDimitry Andric } 6620b57cec5SDimitry Andric 6635f757f3fSDimitry Andric const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType, 6645ffd83dbSDimitry Andric /*Offset*/ 0); 6655f757f3fSDimitry Andric 6665f757f3fSDimitry Andric // If a user of memcmp cares only about two outcomes, for example: 6675f757f3fSDimitry Andric // bool result = memcmp(a, b, NBYTES) > 0; 6685f757f3fSDimitry Andric // We can generate more optimal code with a smaller number of operations 6695f757f3fSDimitry Andric if (CI->hasOneUser()) { 6705f757f3fSDimitry Andric auto *UI = cast<Instruction>(*CI->user_begin()); 6715f757f3fSDimitry Andric ICmpInst::Predicate Pred = ICmpInst::Predicate::BAD_ICMP_PREDICATE; 6725f757f3fSDimitry Andric uint64_t Shift; 6735f757f3fSDimitry Andric bool NeedsZExt = false; 6745f757f3fSDimitry Andric // This is a special case because instead of checking if the result is less 6755f757f3fSDimitry Andric // than zero: 6765f757f3fSDimitry Andric // bool result = memcmp(a, b, NBYTES) < 0; 6775f757f3fSDimitry Andric // Compiler is clever enough to generate the following code: 6785f757f3fSDimitry Andric // bool result = memcmp(a, b, NBYTES) >> 31; 6795f757f3fSDimitry Andric if (match(UI, m_LShr(m_Value(), m_ConstantInt(Shift))) && 6805f757f3fSDimitry Andric Shift == (CI->getType()->getIntegerBitWidth() - 1)) { 6815f757f3fSDimitry Andric Pred = ICmpInst::ICMP_SLT; 6825f757f3fSDimitry Andric NeedsZExt = true; 6835f757f3fSDimitry Andric } else { 6845f757f3fSDimitry Andric // In case of a successful match this call will set `Pred` variable 6855f757f3fSDimitry Andric match(UI, m_ICmp(Pred, m_Specific(CI), m_Zero())); 6865f757f3fSDimitry Andric } 6875f757f3fSDimitry Andric // Generate new code and remove the original memcmp call and the user 6885f757f3fSDimitry Andric if (ICmpInst::isSigned(Pred)) { 6895f757f3fSDimitry Andric Value *Cmp = Builder.CreateICmp(CmpInst::getUnsignedPredicate(Pred), 6905f757f3fSDimitry Andric Loads.Lhs, Loads.Rhs); 6915f757f3fSDimitry Andric auto *Result = NeedsZExt ? Builder.CreateZExt(Cmp, UI->getType()) : Cmp; 6925f757f3fSDimitry Andric UI->replaceAllUsesWith(Result); 6935f757f3fSDimitry Andric UI->eraseFromParent(); 6945f757f3fSDimitry Andric CI->eraseFromParent(); 6955f757f3fSDimitry Andric return nullptr; 6965f757f3fSDimitry Andric } 6975f757f3fSDimitry Andric } 6985f757f3fSDimitry Andric 6990b57cec5SDimitry Andric // The result of memcmp is negative, zero, or positive, so produce that by 7000b57cec5SDimitry Andric // subtracting 2 extended compare bits: sub (ugt, ult). 7010b57cec5SDimitry Andric // If a target prefers to use selects to get -1/0/1, they should be able 7020b57cec5SDimitry Andric // to transform this later. The inverse transform (going from selects to math) 7030b57cec5SDimitry Andric // may not be possible in the DAG because the selects got converted into 7040b57cec5SDimitry Andric // branches before we got there. 7055ffd83dbSDimitry Andric Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs); 7065ffd83dbSDimitry Andric Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs); 7070b57cec5SDimitry Andric Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty()); 7080b57cec5SDimitry Andric Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty()); 7090b57cec5SDimitry Andric return Builder.CreateSub(ZextUGT, ZextULT); 7100b57cec5SDimitry Andric } 7110b57cec5SDimitry Andric 7120b57cec5SDimitry Andric // This function expands the memcmp call into an inline expansion and returns 7135f757f3fSDimitry Andric // the memcmp result. Returns nullptr if the memcmp is already replaced. 7140b57cec5SDimitry Andric Value *MemCmpExpansion::getMemCmpExpansion() { 7150b57cec5SDimitry Andric // Create the basic block framework for a multi-block expansion. 7160b57cec5SDimitry Andric if (getNumBlocks() != 1) { 7170b57cec5SDimitry Andric BasicBlock *StartBlock = CI->getParent(); 718fe6060f1SDimitry Andric EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr, 719fe6060f1SDimitry Andric /*MSSAU=*/nullptr, "endblock"); 7200b57cec5SDimitry Andric setupEndBlockPHINodes(); 7210b57cec5SDimitry Andric createResultBlock(); 7220b57cec5SDimitry Andric 7230b57cec5SDimitry Andric // If return value of memcmp is not used in a zero equality, we need to 7240b57cec5SDimitry Andric // calculate which source was larger. The calculation requires the 7250b57cec5SDimitry Andric // two loaded source values of each load compare block. 7260b57cec5SDimitry Andric // These will be saved in the phi nodes created by setupResultBlockPHINodes. 7270b57cec5SDimitry Andric if (!IsUsedForZeroCmp) setupResultBlockPHINodes(); 7280b57cec5SDimitry Andric 7290b57cec5SDimitry Andric // Create the number of required load compare basic blocks. 7300b57cec5SDimitry Andric createLoadCmpBlocks(); 7310b57cec5SDimitry Andric 732fe6060f1SDimitry Andric // Update the terminator added by SplitBlock to branch to the first 7330b57cec5SDimitry Andric // LoadCmpBlock. 7340b57cec5SDimitry Andric StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]); 735fe6060f1SDimitry Andric if (DTU) 736fe6060f1SDimitry Andric DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]}, 737fe6060f1SDimitry Andric {DominatorTree::Delete, StartBlock, EndBlock}}); 7380b57cec5SDimitry Andric } 7390b57cec5SDimitry Andric 7400b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 7410b57cec5SDimitry Andric 7420b57cec5SDimitry Andric if (IsUsedForZeroCmp) 7430b57cec5SDimitry Andric return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock() 7440b57cec5SDimitry Andric : getMemCmpExpansionZeroCase(); 7450b57cec5SDimitry Andric 7460b57cec5SDimitry Andric if (getNumBlocks() == 1) 7470b57cec5SDimitry Andric return getMemCmpOneBlock(); 7480b57cec5SDimitry Andric 7490b57cec5SDimitry Andric for (unsigned I = 0; I < getNumBlocks(); ++I) { 7500b57cec5SDimitry Andric emitLoadCompareBlock(I); 7510b57cec5SDimitry Andric } 7520b57cec5SDimitry Andric 7530b57cec5SDimitry Andric emitMemCmpResultBlock(); 7540b57cec5SDimitry Andric return PhiRes; 7550b57cec5SDimitry Andric } 7560b57cec5SDimitry Andric 7570b57cec5SDimitry Andric // This function checks to see if an expansion of memcmp can be generated. 7580b57cec5SDimitry Andric // It checks for constant compare size that is less than the max inline size. 7590b57cec5SDimitry Andric // If an expansion cannot occur, returns false to leave as a library call. 7600b57cec5SDimitry Andric // Otherwise, the library call is replaced with a new IR instruction sequence. 7610b57cec5SDimitry Andric /// We want to transform: 7620b57cec5SDimitry Andric /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15) 7630b57cec5SDimitry Andric /// To: 7640b57cec5SDimitry Andric /// loadbb: 7650b57cec5SDimitry Andric /// %0 = bitcast i32* %buffer2 to i8* 7660b57cec5SDimitry Andric /// %1 = bitcast i32* %buffer1 to i8* 7670b57cec5SDimitry Andric /// %2 = bitcast i8* %1 to i64* 7680b57cec5SDimitry Andric /// %3 = bitcast i8* %0 to i64* 7690b57cec5SDimitry Andric /// %4 = load i64, i64* %2 7700b57cec5SDimitry Andric /// %5 = load i64, i64* %3 7710b57cec5SDimitry Andric /// %6 = call i64 @llvm.bswap.i64(i64 %4) 7720b57cec5SDimitry Andric /// %7 = call i64 @llvm.bswap.i64(i64 %5) 7730b57cec5SDimitry Andric /// %8 = sub i64 %6, %7 7740b57cec5SDimitry Andric /// %9 = icmp ne i64 %8, 0 7750b57cec5SDimitry Andric /// br i1 %9, label %res_block, label %loadbb1 7760b57cec5SDimitry Andric /// res_block: ; preds = %loadbb2, 7770b57cec5SDimitry Andric /// %loadbb1, %loadbb 7780b57cec5SDimitry Andric /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ] 7790b57cec5SDimitry Andric /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ] 7800b57cec5SDimitry Andric /// %10 = icmp ult i64 %phi.src1, %phi.src2 7810b57cec5SDimitry Andric /// %11 = select i1 %10, i32 -1, i32 1 7820b57cec5SDimitry Andric /// br label %endblock 7830b57cec5SDimitry Andric /// loadbb1: ; preds = %loadbb 7840b57cec5SDimitry Andric /// %12 = bitcast i32* %buffer2 to i8* 7850b57cec5SDimitry Andric /// %13 = bitcast i32* %buffer1 to i8* 7860b57cec5SDimitry Andric /// %14 = bitcast i8* %13 to i32* 7870b57cec5SDimitry Andric /// %15 = bitcast i8* %12 to i32* 7880b57cec5SDimitry Andric /// %16 = getelementptr i32, i32* %14, i32 2 7890b57cec5SDimitry Andric /// %17 = getelementptr i32, i32* %15, i32 2 7900b57cec5SDimitry Andric /// %18 = load i32, i32* %16 7910b57cec5SDimitry Andric /// %19 = load i32, i32* %17 7920b57cec5SDimitry Andric /// %20 = call i32 @llvm.bswap.i32(i32 %18) 7930b57cec5SDimitry Andric /// %21 = call i32 @llvm.bswap.i32(i32 %19) 7940b57cec5SDimitry Andric /// %22 = zext i32 %20 to i64 7950b57cec5SDimitry Andric /// %23 = zext i32 %21 to i64 7960b57cec5SDimitry Andric /// %24 = sub i64 %22, %23 7970b57cec5SDimitry Andric /// %25 = icmp ne i64 %24, 0 7980b57cec5SDimitry Andric /// br i1 %25, label %res_block, label %loadbb2 7990b57cec5SDimitry Andric /// loadbb2: ; preds = %loadbb1 8000b57cec5SDimitry Andric /// %26 = bitcast i32* %buffer2 to i8* 8010b57cec5SDimitry Andric /// %27 = bitcast i32* %buffer1 to i8* 8020b57cec5SDimitry Andric /// %28 = bitcast i8* %27 to i16* 8030b57cec5SDimitry Andric /// %29 = bitcast i8* %26 to i16* 8040b57cec5SDimitry Andric /// %30 = getelementptr i16, i16* %28, i16 6 8050b57cec5SDimitry Andric /// %31 = getelementptr i16, i16* %29, i16 6 8060b57cec5SDimitry Andric /// %32 = load i16, i16* %30 8070b57cec5SDimitry Andric /// %33 = load i16, i16* %31 8080b57cec5SDimitry Andric /// %34 = call i16 @llvm.bswap.i16(i16 %32) 8090b57cec5SDimitry Andric /// %35 = call i16 @llvm.bswap.i16(i16 %33) 8100b57cec5SDimitry Andric /// %36 = zext i16 %34 to i64 8110b57cec5SDimitry Andric /// %37 = zext i16 %35 to i64 8120b57cec5SDimitry Andric /// %38 = sub i64 %36, %37 8130b57cec5SDimitry Andric /// %39 = icmp ne i64 %38, 0 8140b57cec5SDimitry Andric /// br i1 %39, label %res_block, label %loadbb3 8150b57cec5SDimitry Andric /// loadbb3: ; preds = %loadbb2 8160b57cec5SDimitry Andric /// %40 = bitcast i32* %buffer2 to i8* 8170b57cec5SDimitry Andric /// %41 = bitcast i32* %buffer1 to i8* 8180b57cec5SDimitry Andric /// %42 = getelementptr i8, i8* %41, i8 14 8190b57cec5SDimitry Andric /// %43 = getelementptr i8, i8* %40, i8 14 8200b57cec5SDimitry Andric /// %44 = load i8, i8* %42 8210b57cec5SDimitry Andric /// %45 = load i8, i8* %43 8220b57cec5SDimitry Andric /// %46 = zext i8 %44 to i32 8230b57cec5SDimitry Andric /// %47 = zext i8 %45 to i32 8240b57cec5SDimitry Andric /// %48 = sub i32 %46, %47 8250b57cec5SDimitry Andric /// br label %endblock 8260b57cec5SDimitry Andric /// endblock: ; preds = %res_block, 8270b57cec5SDimitry Andric /// %loadbb3 8280b57cec5SDimitry Andric /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ] 8290b57cec5SDimitry Andric /// ret i32 %phi.res 8300b57cec5SDimitry Andric static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI, 831480093f4SDimitry Andric const TargetLowering *TLI, const DataLayout *DL, 832fe6060f1SDimitry Andric ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 83381ad6265SDimitry Andric DomTreeUpdater *DTU, const bool IsBCmp) { 8340b57cec5SDimitry Andric NumMemCmpCalls++; 8350b57cec5SDimitry Andric 8360b57cec5SDimitry Andric // Early exit from expansion if -Oz. 8370b57cec5SDimitry Andric if (CI->getFunction()->hasMinSize()) 8380b57cec5SDimitry Andric return false; 8390b57cec5SDimitry Andric 8400b57cec5SDimitry Andric // Early exit from expansion if size is not a constant. 8410b57cec5SDimitry Andric ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 8420b57cec5SDimitry Andric if (!SizeCast) { 8430b57cec5SDimitry Andric NumMemCmpNotConstant++; 8440b57cec5SDimitry Andric return false; 8450b57cec5SDimitry Andric } 8460b57cec5SDimitry Andric const uint64_t SizeVal = SizeCast->getZExtValue(); 8470b57cec5SDimitry Andric 8480b57cec5SDimitry Andric if (SizeVal == 0) { 8490b57cec5SDimitry Andric return false; 8500b57cec5SDimitry Andric } 8510b57cec5SDimitry Andric // TTI call to check if target would like to expand memcmp. Also, get the 8520b57cec5SDimitry Andric // available load sizes. 85381ad6265SDimitry Andric const bool IsUsedForZeroCmp = 85481ad6265SDimitry Andric IsBCmp || isOnlyUsedInZeroEqualityComparison(CI); 855480093f4SDimitry Andric bool OptForSize = CI->getFunction()->hasOptSize() || 856480093f4SDimitry Andric llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 857480093f4SDimitry Andric auto Options = TTI->enableMemCmpExpansion(OptForSize, 8580b57cec5SDimitry Andric IsUsedForZeroCmp); 8590b57cec5SDimitry Andric if (!Options) return false; 8600b57cec5SDimitry Andric 8610b57cec5SDimitry Andric if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()) 8620b57cec5SDimitry Andric Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock; 8630b57cec5SDimitry Andric 864480093f4SDimitry Andric if (OptForSize && 8650b57cec5SDimitry Andric MaxLoadsPerMemcmpOptSize.getNumOccurrences()) 8660b57cec5SDimitry Andric Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize; 8670b57cec5SDimitry Andric 868480093f4SDimitry Andric if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences()) 8690b57cec5SDimitry Andric Options.MaxNumLoads = MaxLoadsPerMemcmp; 8700b57cec5SDimitry Andric 871fe6060f1SDimitry Andric MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU); 8720b57cec5SDimitry Andric 8730b57cec5SDimitry Andric // Don't expand if this will require more loads than desired by the target. 8740b57cec5SDimitry Andric if (Expansion.getNumLoads() == 0) { 8750b57cec5SDimitry Andric NumMemCmpGreaterThanMax++; 8760b57cec5SDimitry Andric return false; 8770b57cec5SDimitry Andric } 8780b57cec5SDimitry Andric 8790b57cec5SDimitry Andric NumMemCmpInlined++; 8800b57cec5SDimitry Andric 8815f757f3fSDimitry Andric if (Value *Res = Expansion.getMemCmpExpansion()) { 8820b57cec5SDimitry Andric // Replace call with result of expansion and erase call. 8830b57cec5SDimitry Andric CI->replaceAllUsesWith(Res); 8840b57cec5SDimitry Andric CI->eraseFromParent(); 8855f757f3fSDimitry Andric } 8860b57cec5SDimitry Andric 8870b57cec5SDimitry Andric return true; 8880b57cec5SDimitry Andric } 8890b57cec5SDimitry Andric 8905f757f3fSDimitry Andric // Returns true if a change was made. 8915f757f3fSDimitry Andric static bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 8925f757f3fSDimitry Andric const TargetTransformInfo *TTI, const TargetLowering *TL, 8935f757f3fSDimitry Andric const DataLayout &DL, ProfileSummaryInfo *PSI, 8945f757f3fSDimitry Andric BlockFrequencyInfo *BFI, DomTreeUpdater *DTU); 8955f757f3fSDimitry Andric 8965f757f3fSDimitry Andric static PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 8975f757f3fSDimitry Andric const TargetTransformInfo *TTI, 8985f757f3fSDimitry Andric const TargetLowering *TL, 8995f757f3fSDimitry Andric ProfileSummaryInfo *PSI, 9005f757f3fSDimitry Andric BlockFrequencyInfo *BFI, DominatorTree *DT); 9015f757f3fSDimitry Andric 9025f757f3fSDimitry Andric class ExpandMemCmpLegacyPass : public FunctionPass { 9030b57cec5SDimitry Andric public: 9040b57cec5SDimitry Andric static char ID; 9050b57cec5SDimitry Andric 9065f757f3fSDimitry Andric ExpandMemCmpLegacyPass() : FunctionPass(ID) { 9075f757f3fSDimitry Andric initializeExpandMemCmpLegacyPassPass(*PassRegistry::getPassRegistry()); 9080b57cec5SDimitry Andric } 9090b57cec5SDimitry Andric 9100b57cec5SDimitry Andric bool runOnFunction(Function &F) override { 9110b57cec5SDimitry Andric if (skipFunction(F)) return false; 9120b57cec5SDimitry Andric 9130b57cec5SDimitry Andric auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 9140b57cec5SDimitry Andric if (!TPC) { 9150b57cec5SDimitry Andric return false; 9160b57cec5SDimitry Andric } 9170b57cec5SDimitry Andric const TargetLowering* TL = 9180b57cec5SDimitry Andric TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering(); 9190b57cec5SDimitry Andric 9200b57cec5SDimitry Andric const TargetLibraryInfo *TLI = 9218bcb0991SDimitry Andric &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 9220b57cec5SDimitry Andric const TargetTransformInfo *TTI = 9230b57cec5SDimitry Andric &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 924480093f4SDimitry Andric auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 925480093f4SDimitry Andric auto *BFI = (PSI && PSI->hasProfileSummary()) ? 926480093f4SDimitry Andric &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 927480093f4SDimitry Andric nullptr; 928fe6060f1SDimitry Andric DominatorTree *DT = nullptr; 929fe6060f1SDimitry Andric if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 930fe6060f1SDimitry Andric DT = &DTWP->getDomTree(); 931fe6060f1SDimitry Andric auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT); 9320b57cec5SDimitry Andric return !PA.areAllPreserved(); 9330b57cec5SDimitry Andric } 9340b57cec5SDimitry Andric 9350b57cec5SDimitry Andric private: 9360b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 9370b57cec5SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 9380b57cec5SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 939480093f4SDimitry Andric AU.addRequired<ProfileSummaryInfoWrapperPass>(); 940fe6060f1SDimitry Andric AU.addPreserved<DominatorTreeWrapperPass>(); 941480093f4SDimitry Andric LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 9420b57cec5SDimitry Andric FunctionPass::getAnalysisUsage(AU); 9430b57cec5SDimitry Andric } 9445f757f3fSDimitry Andric }; 9450b57cec5SDimitry Andric 9460b57cec5SDimitry Andric bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI, 9470b57cec5SDimitry Andric const TargetTransformInfo *TTI, const TargetLowering *TL, 948480093f4SDimitry Andric const DataLayout &DL, ProfileSummaryInfo *PSI, 9495f757f3fSDimitry Andric BlockFrequencyInfo *BFI, DomTreeUpdater *DTU) { 9500b57cec5SDimitry Andric for (Instruction &I : BB) { 9510b57cec5SDimitry Andric CallInst *CI = dyn_cast<CallInst>(&I); 9520b57cec5SDimitry Andric if (!CI) { 9530b57cec5SDimitry Andric continue; 9540b57cec5SDimitry Andric } 9550b57cec5SDimitry Andric LibFunc Func; 9565ffd83dbSDimitry Andric if (TLI->getLibFunc(*CI, Func) && 9570b57cec5SDimitry Andric (Func == LibFunc_memcmp || Func == LibFunc_bcmp) && 95881ad6265SDimitry Andric expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) { 9590b57cec5SDimitry Andric return true; 9600b57cec5SDimitry Andric } 9610b57cec5SDimitry Andric } 9620b57cec5SDimitry Andric return false; 9630b57cec5SDimitry Andric } 9640b57cec5SDimitry Andric 9655f757f3fSDimitry Andric PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI, 966fe6060f1SDimitry Andric const TargetTransformInfo *TTI, 967480093f4SDimitry Andric const TargetLowering *TL, ProfileSummaryInfo *PSI, 968fe6060f1SDimitry Andric BlockFrequencyInfo *BFI, DominatorTree *DT) { 969bdd1243dSDimitry Andric std::optional<DomTreeUpdater> DTU; 970fe6060f1SDimitry Andric if (DT) 971fe6060f1SDimitry Andric DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy); 972fe6060f1SDimitry Andric 973*0fca6ea1SDimitry Andric const DataLayout& DL = F.getDataLayout(); 9740b57cec5SDimitry Andric bool MadeChanges = false; 9750b57cec5SDimitry Andric for (auto BBIt = F.begin(); BBIt != F.end();) { 976bdd1243dSDimitry Andric if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) { 9770b57cec5SDimitry Andric MadeChanges = true; 9780b57cec5SDimitry Andric // If changes were made, restart the function from the beginning, since 9790b57cec5SDimitry Andric // the structure of the function was changed. 9800b57cec5SDimitry Andric BBIt = F.begin(); 9810b57cec5SDimitry Andric } else { 9820b57cec5SDimitry Andric ++BBIt; 9830b57cec5SDimitry Andric } 9840b57cec5SDimitry Andric } 9855ffd83dbSDimitry Andric if (MadeChanges) 9865ffd83dbSDimitry Andric for (BasicBlock &BB : F) 9875ffd83dbSDimitry Andric SimplifyInstructionsInBlock(&BB); 988fe6060f1SDimitry Andric if (!MadeChanges) 989fe6060f1SDimitry Andric return PreservedAnalyses::all(); 990fe6060f1SDimitry Andric PreservedAnalyses PA; 991fe6060f1SDimitry Andric PA.preserve<DominatorTreeAnalysis>(); 992fe6060f1SDimitry Andric return PA; 9930b57cec5SDimitry Andric } 9940b57cec5SDimitry Andric 9950b57cec5SDimitry Andric } // namespace 9960b57cec5SDimitry Andric 9975f757f3fSDimitry Andric PreservedAnalyses ExpandMemCmpPass::run(Function &F, 9985f757f3fSDimitry Andric FunctionAnalysisManager &FAM) { 9995f757f3fSDimitry Andric const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering(); 10005f757f3fSDimitry Andric const auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 10015f757f3fSDimitry Andric const auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 10025f757f3fSDimitry Andric auto *PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F) 10035f757f3fSDimitry Andric .getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10045f757f3fSDimitry Andric BlockFrequencyInfo *BFI = (PSI && PSI->hasProfileSummary()) 10055f757f3fSDimitry Andric ? &FAM.getResult<BlockFrequencyAnalysis>(F) 10065f757f3fSDimitry Andric : nullptr; 10075f757f3fSDimitry Andric auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 10085f757f3fSDimitry Andric 10095f757f3fSDimitry Andric return runImpl(F, &TLI, &TTI, TL, PSI, BFI, DT); 10105f757f3fSDimitry Andric } 10115f757f3fSDimitry Andric 10125f757f3fSDimitry Andric char ExpandMemCmpLegacyPass::ID = 0; 10135f757f3fSDimitry Andric INITIALIZE_PASS_BEGIN(ExpandMemCmpLegacyPass, DEBUG_TYPE, 10140b57cec5SDimitry Andric "Expand memcmp() to load/stores", false, false) 10150b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 10160b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1017480093f4SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 1018480093f4SDimitry Andric INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1019fe6060f1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 10205f757f3fSDimitry Andric INITIALIZE_PASS_END(ExpandMemCmpLegacyPass, DEBUG_TYPE, 10210b57cec5SDimitry Andric "Expand memcmp() to load/stores", false, false) 10220b57cec5SDimitry Andric 10235f757f3fSDimitry Andric FunctionPass *llvm::createExpandMemCmpLegacyPass() { 10245f757f3fSDimitry Andric return new ExpandMemCmpLegacyPass(); 10250b57cec5SDimitry Andric } 1026