1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfo.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/ProfDataUtils.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <optional> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> 144 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden, 145 cl::init(false), 146 cl::desc("Disable select to branch conversion.")); 147 148 static cl::opt<bool> 149 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true), 150 cl::desc("Address sinking in CGP using GEPs.")); 151 152 static cl::opt<bool> 153 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true), 154 cl::desc("Enable sinkinig and/cmp into branches.")); 155 156 static cl::opt<bool> DisableStoreExtract( 157 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> StressStoreExtract( 161 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 162 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 163 164 static cl::opt<bool> DisableExtLdPromotion( 165 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 166 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 167 "CodeGenPrepare")); 168 169 static cl::opt<bool> StressExtLdPromotion( 170 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 171 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 172 "optimization in CodeGenPrepare")); 173 174 static cl::opt<bool> DisablePreheaderProtect( 175 "disable-preheader-prot", cl::Hidden, cl::init(false), 176 cl::desc("Disable protection against removing loop preheaders")); 177 178 static cl::opt<bool> ProfileGuidedSectionPrefix( 179 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 180 cl::desc("Use profile info to add section prefix for hot/cold functions")); 181 182 static cl::opt<bool> ProfileUnknownInSpecialSection( 183 "profile-unknown-in-special-section", cl::Hidden, 184 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 185 "profile, we cannot tell the function is cold for sure because " 186 "it may be a function newly added without ever being sampled. " 187 "With the flag enabled, compiler can put such profile unknown " 188 "functions into a special section, so runtime system can choose " 189 "to handle it in a different way than .text section, to save " 190 "RAM for example. ")); 191 192 static cl::opt<bool> BBSectionsGuidedSectionPrefix( 193 "bbsections-guided-section-prefix", cl::Hidden, cl::init(true), 194 cl::desc("Use the basic-block-sections profile to determine the text " 195 "section prefix for hot functions. Functions with " 196 "basic-block-sections profile will be placed in `.text.hot` " 197 "regardless of their FDO profile info. Other functions won't be " 198 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO " 199 "profiles.")); 200 201 static cl::opt<uint64_t> FreqRatioToSkipMerge( 202 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 203 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 204 "(frequency of destination block) is greater than this ratio")); 205 206 static cl::opt<bool> ForceSplitStore( 207 "force-split-store", cl::Hidden, cl::init(false), 208 cl::desc("Force store splitting no matter what the target query says.")); 209 210 static cl::opt<bool> EnableTypePromotionMerge( 211 "cgp-type-promotion-merge", cl::Hidden, 212 cl::desc("Enable merging of redundant sexts when one is dominating" 213 " the other."), 214 cl::init(true)); 215 216 static cl::opt<bool> DisableComplexAddrModes( 217 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 218 cl::desc("Disables combining addressing modes with different parts " 219 "in optimizeMemoryInst.")); 220 221 static cl::opt<bool> 222 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 223 cl::desc("Allow creation of Phis in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkNewSelects( 226 "addr-sink-new-select", cl::Hidden, cl::init(true), 227 cl::desc("Allow creation of selects in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineBaseReg( 230 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of BaseReg field in Address sinking.")); 232 233 static cl::opt<bool> AddrSinkCombineBaseGV( 234 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 235 cl::desc("Allow combining of BaseGV field in Address sinking.")); 236 237 static cl::opt<bool> AddrSinkCombineBaseOffs( 238 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 239 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 240 241 static cl::opt<bool> AddrSinkCombineScaledReg( 242 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 243 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 244 245 static cl::opt<bool> 246 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 247 cl::init(true), 248 cl::desc("Enable splitting large offset of GEP.")); 249 250 static cl::opt<bool> EnableICMP_EQToICMP_ST( 251 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 252 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 253 254 static cl::opt<bool> 255 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 256 cl::desc("Enable BFI update verification for " 257 "CodeGenPrepare.")); 258 259 static cl::opt<bool> 260 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true), 261 cl::desc("Enable converting phi types in CodeGenPrepare")); 262 263 static cl::opt<unsigned> 264 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden, 265 cl::desc("Least BB number of huge function.")); 266 267 static cl::opt<unsigned> 268 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100), 269 cl::Hidden, 270 cl::desc("Max number of address users to look at")); 271 272 static cl::opt<bool> 273 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false), 274 cl::desc("Disable elimination of dead PHI nodes.")); 275 276 namespace { 277 278 enum ExtType { 279 ZeroExtension, // Zero extension has been seen. 280 SignExtension, // Sign extension has been seen. 281 BothExtension // This extension type is used if we saw sext after 282 // ZeroExtension had been set, or if we saw zext after 283 // SignExtension had been set. It makes the type 284 // information of a promoted instruction invalid. 285 }; 286 287 enum ModifyDT { 288 NotModifyDT, // Not Modify any DT. 289 ModifyBBDT, // Modify the Basic Block Dominator Tree. 290 ModifyInstDT // Modify the Instruction Dominator in a Basic Block, 291 // This usually means we move/delete/insert instruction 292 // in a Basic Block. So we should re-iterate instructions 293 // in such Basic Block. 294 }; 295 296 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 297 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 298 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 299 using SExts = SmallVector<Instruction *, 16>; 300 using ValueToSExts = MapVector<Value *, SExts>; 301 302 class TypePromotionTransaction; 303 304 class CodeGenPrepare : public FunctionPass { 305 const TargetMachine *TM = nullptr; 306 const TargetSubtargetInfo *SubtargetInfo = nullptr; 307 const TargetLowering *TLI = nullptr; 308 const TargetRegisterInfo *TRI = nullptr; 309 const TargetTransformInfo *TTI = nullptr; 310 const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr; 311 const TargetLibraryInfo *TLInfo = nullptr; 312 LoopInfo *LI = nullptr; 313 std::unique_ptr<BlockFrequencyInfo> BFI; 314 std::unique_ptr<BranchProbabilityInfo> BPI; 315 ProfileSummaryInfo *PSI = nullptr; 316 317 /// As we scan instructions optimizing them, this is the next instruction 318 /// to optimize. Transforms that can invalidate this should update it. 319 BasicBlock::iterator CurInstIterator; 320 321 /// Keeps track of non-local addresses that have been sunk into a block. 322 /// This allows us to avoid inserting duplicate code for blocks with 323 /// multiple load/stores of the same address. The usage of WeakTrackingVH 324 /// enables SunkAddrs to be treated as a cache whose entries can be 325 /// invalidated if a sunken address computation has been erased. 326 ValueMap<Value *, WeakTrackingVH> SunkAddrs; 327 328 /// Keeps track of all instructions inserted for the current function. 329 SetOfInstrs InsertedInsts; 330 331 /// Keeps track of the type of the related instruction before their 332 /// promotion for the current function. 333 InstrToOrigTy PromotedInsts; 334 335 /// Keep track of instructions removed during promotion. 336 SetOfInstrs RemovedInsts; 337 338 /// Keep track of sext chains based on their initial value. 339 DenseMap<Value *, Instruction *> SeenChainsForSExt; 340 341 /// Keep track of GEPs accessing the same data structures such as structs or 342 /// arrays that are candidates to be split later because of their large 343 /// size. 344 MapVector<AssertingVH<Value>, 345 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 346 LargeOffsetGEPMap; 347 348 /// Keep track of new GEP base after splitting the GEPs having large offset. 349 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 350 351 /// Map serial numbers to Large offset GEPs. 352 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 353 354 /// Keep track of SExt promoted. 355 ValueToSExts ValToSExtendedUses; 356 357 /// True if the function has the OptSize attribute. 358 bool OptSize; 359 360 /// DataLayout for the Function being processed. 361 const DataLayout *DL = nullptr; 362 363 /// Building the dominator tree can be expensive, so we only build it 364 /// lazily and update it when required. 365 std::unique_ptr<DominatorTree> DT; 366 367 public: 368 /// If encounter huge function, we need to limit the build time. 369 bool IsHugeFunc = false; 370 371 /// FreshBBs is like worklist, it collected the updated BBs which need 372 /// to be optimized again. 373 /// Note: Consider building time in this pass, when a BB updated, we need 374 /// to insert such BB into FreshBBs for huge function. 375 SmallSet<BasicBlock *, 32> FreshBBs; 376 377 static char ID; // Pass identification, replacement for typeid 378 379 CodeGenPrepare() : FunctionPass(ID) { 380 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 381 } 382 383 bool runOnFunction(Function &F) override; 384 385 void releaseMemory() override { 386 // Clear per function information. 387 InsertedInsts.clear(); 388 PromotedInsts.clear(); 389 FreshBBs.clear(); 390 BPI.reset(); 391 BFI.reset(); 392 } 393 394 StringRef getPassName() const override { return "CodeGen Prepare"; } 395 396 void getAnalysisUsage(AnalysisUsage &AU) const override { 397 // FIXME: When we can selectively preserve passes, preserve the domtree. 398 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 399 AU.addRequired<TargetLibraryInfoWrapperPass>(); 400 AU.addRequired<TargetPassConfig>(); 401 AU.addRequired<TargetTransformInfoWrapperPass>(); 402 AU.addRequired<LoopInfoWrapperPass>(); 403 AU.addUsedIfAvailable<BasicBlockSectionsProfileReader>(); 404 } 405 406 private: 407 template <typename F> 408 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 409 // Substituting can cause recursive simplifications, which can invalidate 410 // our iterator. Use a WeakTrackingVH to hold onto it in case this 411 // happens. 412 Value *CurValue = &*CurInstIterator; 413 WeakTrackingVH IterHandle(CurValue); 414 415 f(); 416 417 // If the iterator instruction was recursively deleted, start over at the 418 // start of the block. 419 if (IterHandle != CurValue) { 420 CurInstIterator = BB->begin(); 421 SunkAddrs.clear(); 422 } 423 } 424 425 // Get the DominatorTree, building if necessary. 426 DominatorTree &getDT(Function &F) { 427 if (!DT) 428 DT = std::make_unique<DominatorTree>(F); 429 return *DT; 430 } 431 432 void removeAllAssertingVHReferences(Value *V); 433 bool eliminateAssumptions(Function &F); 434 bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr); 435 bool eliminateMostlyEmptyBlocks(Function &F); 436 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 437 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 438 void eliminateMostlyEmptyBlock(BasicBlock *BB); 439 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 440 bool isPreheader); 441 bool makeBitReverse(Instruction &I); 442 bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT); 443 bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT); 444 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, 445 unsigned AddrSpace); 446 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 447 bool optimizeInlineAsmInst(CallInst *CS); 448 bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT); 449 bool optimizeExt(Instruction *&I); 450 bool optimizeExtUses(Instruction *I); 451 bool optimizeLoadExt(LoadInst *Load); 452 bool optimizeShiftInst(BinaryOperator *BO); 453 bool optimizeFunnelShift(IntrinsicInst *Fsh); 454 bool optimizeSelectInst(SelectInst *SI); 455 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 456 bool optimizeSwitchType(SwitchInst *SI); 457 bool optimizeSwitchPhiConstants(SwitchInst *SI); 458 bool optimizeSwitchInst(SwitchInst *SI); 459 bool optimizeExtractElementInst(Instruction *Inst); 460 bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT); 461 bool fixupDbgValue(Instruction *I); 462 bool fixupDPValue(DPValue &I); 463 bool fixupDPValuesOnInst(Instruction &I); 464 bool placeDbgValues(Function &F); 465 bool placePseudoProbes(Function &F); 466 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 467 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 468 bool tryToPromoteExts(TypePromotionTransaction &TPT, 469 const SmallVectorImpl<Instruction *> &Exts, 470 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 471 unsigned CreatedInstsCost = 0); 472 bool mergeSExts(Function &F); 473 bool splitLargeGEPOffsets(); 474 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 475 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 476 bool optimizePhiTypes(Function &F); 477 bool performAddressTypePromotion( 478 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 479 bool HasPromoted, TypePromotionTransaction &TPT, 480 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 481 bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT); 482 bool simplifyOffsetableRelocate(GCStatepointInst &I); 483 484 bool tryToSinkFreeOperands(Instruction *I); 485 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1, 486 CmpInst *Cmp, Intrinsic::ID IID); 487 bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT); 488 bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 489 bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT); 490 void verifyBFIUpdates(Function &F); 491 }; 492 493 } // end anonymous namespace 494 495 char CodeGenPrepare::ID = 0; 496 497 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 498 "Optimize for code generation", false, false) 499 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReader) 500 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 501 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 502 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 503 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 504 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 505 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation", 506 false, false) 507 508 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 509 510 bool CodeGenPrepare::runOnFunction(Function &F) { 511 if (skipFunction(F)) 512 return false; 513 514 DL = &F.getParent()->getDataLayout(); 515 516 bool EverMadeChange = false; 517 518 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 519 SubtargetInfo = TM->getSubtargetImpl(F); 520 TLI = SubtargetInfo->getTargetLowering(); 521 TRI = SubtargetInfo->getRegisterInfo(); 522 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 523 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 524 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 525 BPI.reset(new BranchProbabilityInfo(F, *LI)); 526 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 527 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 528 BBSectionsProfileReader = 529 getAnalysisIfAvailable<BasicBlockSectionsProfileReader>(); 530 OptSize = F.hasOptSize(); 531 // Use the basic-block-sections profile to promote hot functions to .text.hot 532 // if requested. 533 if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader && 534 BBSectionsProfileReader->isFunctionHot(F.getName())) { 535 F.setSectionPrefix("hot"); 536 } else if (ProfileGuidedSectionPrefix) { 537 // The hot attribute overwrites profile count based hotness while profile 538 // counts based hotness overwrite the cold attribute. 539 // This is a conservative behabvior. 540 if (F.hasFnAttribute(Attribute::Hot) || 541 PSI->isFunctionHotInCallGraph(&F, *BFI)) 542 F.setSectionPrefix("hot"); 543 // If PSI shows this function is not hot, we will placed the function 544 // into unlikely section if (1) PSI shows this is a cold function, or 545 // (2) the function has a attribute of cold. 546 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 547 F.hasFnAttribute(Attribute::Cold)) 548 F.setSectionPrefix("unlikely"); 549 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 550 PSI->isFunctionHotnessUnknown(F)) 551 F.setSectionPrefix("unknown"); 552 } 553 554 /// This optimization identifies DIV instructions that can be 555 /// profitably bypassed and carried out with a shorter, faster divide. 556 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 557 const DenseMap<unsigned int, unsigned int> &BypassWidths = 558 TLI->getBypassSlowDivWidths(); 559 BasicBlock *BB = &*F.begin(); 560 while (BB != nullptr) { 561 // bypassSlowDivision may create new BBs, but we don't want to reapply the 562 // optimization to those blocks. 563 BasicBlock *Next = BB->getNextNode(); 564 // F.hasOptSize is already checked in the outer if statement. 565 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 566 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 567 BB = Next; 568 } 569 } 570 571 // Get rid of @llvm.assume builtins before attempting to eliminate empty 572 // blocks, since there might be blocks that only contain @llvm.assume calls 573 // (plus arguments that we can get rid of). 574 EverMadeChange |= eliminateAssumptions(F); 575 576 // Eliminate blocks that contain only PHI nodes and an 577 // unconditional branch. 578 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 579 580 ModifyDT ModifiedDT = ModifyDT::NotModifyDT; 581 if (!DisableBranchOpts) 582 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 583 584 // Split some critical edges where one of the sources is an indirect branch, 585 // to help generate sane code for PHIs involving such edges. 586 EverMadeChange |= 587 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true); 588 589 // If we are optimzing huge function, we need to consider the build time. 590 // Because the basic algorithm's complex is near O(N!). 591 IsHugeFunc = F.size() > HugeFuncThresholdInCGPP; 592 593 // Transformations above may invalidate dominator tree and/or loop info. 594 DT.reset(); 595 LI->releaseMemory(); 596 LI->analyze(getDT(F)); 597 598 bool MadeChange = true; 599 bool FuncIterated = false; 600 while (MadeChange) { 601 MadeChange = false; 602 603 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 604 if (FuncIterated && !FreshBBs.contains(&BB)) 605 continue; 606 607 ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT; 608 bool Changed = optimizeBlock(BB, ModifiedDTOnIteration); 609 610 if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT) 611 DT.reset(); 612 613 MadeChange |= Changed; 614 if (IsHugeFunc) { 615 // If the BB is updated, it may still has chance to be optimized. 616 // This usually happen at sink optimization. 617 // For example: 618 // 619 // bb0: 620 // %and = and i32 %a, 4 621 // %cmp = icmp eq i32 %and, 0 622 // 623 // If the %cmp sink to other BB, the %and will has chance to sink. 624 if (Changed) 625 FreshBBs.insert(&BB); 626 else if (FuncIterated) 627 FreshBBs.erase(&BB); 628 } else { 629 // For small/normal functions, we restart BB iteration if the dominator 630 // tree of the Function was changed. 631 if (ModifiedDTOnIteration != ModifyDT::NotModifyDT) 632 break; 633 } 634 } 635 // We have iterated all the BB in the (only work for huge) function. 636 FuncIterated = IsHugeFunc; 637 638 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 639 MadeChange |= mergeSExts(F); 640 if (!LargeOffsetGEPMap.empty()) 641 MadeChange |= splitLargeGEPOffsets(); 642 MadeChange |= optimizePhiTypes(F); 643 644 if (MadeChange) 645 eliminateFallThrough(F, DT.get()); 646 647 #ifndef NDEBUG 648 if (MadeChange && VerifyLoopInfo) 649 LI->verify(getDT(F)); 650 #endif 651 652 // Really free removed instructions during promotion. 653 for (Instruction *I : RemovedInsts) 654 I->deleteValue(); 655 656 EverMadeChange |= MadeChange; 657 SeenChainsForSExt.clear(); 658 ValToSExtendedUses.clear(); 659 RemovedInsts.clear(); 660 LargeOffsetGEPMap.clear(); 661 LargeOffsetGEPID.clear(); 662 } 663 664 NewGEPBases.clear(); 665 SunkAddrs.clear(); 666 667 if (!DisableBranchOpts) { 668 MadeChange = false; 669 // Use a set vector to get deterministic iteration order. The order the 670 // blocks are removed may affect whether or not PHI nodes in successors 671 // are removed. 672 SmallSetVector<BasicBlock *, 8> WorkList; 673 for (BasicBlock &BB : F) { 674 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 675 MadeChange |= ConstantFoldTerminator(&BB, true); 676 if (!MadeChange) 677 continue; 678 679 for (BasicBlock *Succ : Successors) 680 if (pred_empty(Succ)) 681 WorkList.insert(Succ); 682 } 683 684 // Delete the dead blocks and any of their dead successors. 685 MadeChange |= !WorkList.empty(); 686 while (!WorkList.empty()) { 687 BasicBlock *BB = WorkList.pop_back_val(); 688 SmallVector<BasicBlock *, 2> Successors(successors(BB)); 689 690 DeleteDeadBlock(BB); 691 692 for (BasicBlock *Succ : Successors) 693 if (pred_empty(Succ)) 694 WorkList.insert(Succ); 695 } 696 697 // Merge pairs of basic blocks with unconditional branches, connected by 698 // a single edge. 699 if (EverMadeChange || MadeChange) 700 MadeChange |= eliminateFallThrough(F); 701 702 EverMadeChange |= MadeChange; 703 } 704 705 if (!DisableGCOpts) { 706 SmallVector<GCStatepointInst *, 2> Statepoints; 707 for (BasicBlock &BB : F) 708 for (Instruction &I : BB) 709 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 710 Statepoints.push_back(SP); 711 for (auto &I : Statepoints) 712 EverMadeChange |= simplifyOffsetableRelocate(*I); 713 } 714 715 // Do this last to clean up use-before-def scenarios introduced by other 716 // preparatory transforms. 717 EverMadeChange |= placeDbgValues(F); 718 EverMadeChange |= placePseudoProbes(F); 719 720 #ifndef NDEBUG 721 if (VerifyBFIUpdates) 722 verifyBFIUpdates(F); 723 #endif 724 725 return EverMadeChange; 726 } 727 728 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 729 bool MadeChange = false; 730 for (BasicBlock &BB : F) { 731 CurInstIterator = BB.begin(); 732 while (CurInstIterator != BB.end()) { 733 Instruction *I = &*(CurInstIterator++); 734 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 735 MadeChange = true; 736 Value *Operand = Assume->getOperand(0); 737 Assume->eraseFromParent(); 738 739 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 740 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 741 }); 742 } 743 } 744 } 745 return MadeChange; 746 } 747 748 /// An instruction is about to be deleted, so remove all references to it in our 749 /// GEP-tracking data strcutures. 750 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 751 LargeOffsetGEPMap.erase(V); 752 NewGEPBases.erase(V); 753 754 auto GEP = dyn_cast<GetElementPtrInst>(V); 755 if (!GEP) 756 return; 757 758 LargeOffsetGEPID.erase(GEP); 759 760 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 761 if (VecI == LargeOffsetGEPMap.end()) 762 return; 763 764 auto &GEPVector = VecI->second; 765 llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 766 767 if (GEPVector.empty()) 768 LargeOffsetGEPMap.erase(VecI); 769 } 770 771 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 772 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 773 DominatorTree NewDT(F); 774 LoopInfo NewLI(NewDT); 775 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 776 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 777 NewBFI.verifyMatch(*BFI); 778 } 779 780 /// Merge basic blocks which are connected by a single edge, where one of the 781 /// basic blocks has a single successor pointing to the other basic block, 782 /// which has a single predecessor. 783 bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) { 784 bool Changed = false; 785 // Scan all of the blocks in the function, except for the entry block. 786 // Use a temporary array to avoid iterator being invalidated when 787 // deleting blocks. 788 SmallVector<WeakTrackingVH, 16> Blocks; 789 for (auto &Block : llvm::drop_begin(F)) 790 Blocks.push_back(&Block); 791 792 SmallSet<WeakTrackingVH, 16> Preds; 793 for (auto &Block : Blocks) { 794 auto *BB = cast_or_null<BasicBlock>(Block); 795 if (!BB) 796 continue; 797 // If the destination block has a single pred, then this is a trivial 798 // edge, just collapse it. 799 BasicBlock *SinglePred = BB->getSinglePredecessor(); 800 801 // Don't merge if BB's address is taken. 802 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) 803 continue; 804 805 // Make an effort to skip unreachable blocks. 806 if (DT && !DT->isReachableFromEntry(BB)) 807 continue; 808 809 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 810 if (Term && !Term->isConditional()) { 811 Changed = true; 812 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 813 814 // Merge BB into SinglePred and delete it. 815 MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr, 816 /* MemDep */ nullptr, 817 /* PredecessorWithTwoSuccessors */ false, DT); 818 Preds.insert(SinglePred); 819 820 if (IsHugeFunc) { 821 // Update FreshBBs to optimize the merged BB. 822 FreshBBs.insert(SinglePred); 823 FreshBBs.erase(BB); 824 } 825 } 826 } 827 828 // (Repeatedly) merging blocks into their predecessors can create redundant 829 // debug intrinsics. 830 for (const auto &Pred : Preds) 831 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 832 RemoveRedundantDbgInstrs(BB); 833 834 return Changed; 835 } 836 837 /// Find a destination block from BB if BB is mergeable empty block. 838 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 839 // If this block doesn't end with an uncond branch, ignore it. 840 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 841 if (!BI || !BI->isUnconditional()) 842 return nullptr; 843 844 // If the instruction before the branch (skipping debug info) isn't a phi 845 // node, then other stuff is happening here. 846 BasicBlock::iterator BBI = BI->getIterator(); 847 if (BBI != BB->begin()) { 848 --BBI; 849 while (isa<DbgInfoIntrinsic>(BBI)) { 850 if (BBI == BB->begin()) 851 break; 852 --BBI; 853 } 854 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 855 return nullptr; 856 } 857 858 // Do not break infinite loops. 859 BasicBlock *DestBB = BI->getSuccessor(0); 860 if (DestBB == BB) 861 return nullptr; 862 863 if (!canMergeBlocks(BB, DestBB)) 864 DestBB = nullptr; 865 866 return DestBB; 867 } 868 869 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 870 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 871 /// edges in ways that are non-optimal for isel. Start by eliminating these 872 /// blocks so we can split them the way we want them. 873 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 874 SmallPtrSet<BasicBlock *, 16> Preheaders; 875 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 876 while (!LoopList.empty()) { 877 Loop *L = LoopList.pop_back_val(); 878 llvm::append_range(LoopList, *L); 879 if (BasicBlock *Preheader = L->getLoopPreheader()) 880 Preheaders.insert(Preheader); 881 } 882 883 bool MadeChange = false; 884 // Copy blocks into a temporary array to avoid iterator invalidation issues 885 // as we remove them. 886 // Note that this intentionally skips the entry block. 887 SmallVector<WeakTrackingVH, 16> Blocks; 888 for (auto &Block : llvm::drop_begin(F)) { 889 // Delete phi nodes that could block deleting other empty blocks. 890 if (!DisableDeletePHIs) 891 MadeChange |= DeleteDeadPHIs(&Block, TLInfo); 892 Blocks.push_back(&Block); 893 } 894 895 for (auto &Block : Blocks) { 896 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 897 if (!BB) 898 continue; 899 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 900 if (!DestBB || 901 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 902 continue; 903 904 eliminateMostlyEmptyBlock(BB); 905 MadeChange = true; 906 } 907 return MadeChange; 908 } 909 910 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 911 BasicBlock *DestBB, 912 bool isPreheader) { 913 // Do not delete loop preheaders if doing so would create a critical edge. 914 // Loop preheaders can be good locations to spill registers. If the 915 // preheader is deleted and we create a critical edge, registers may be 916 // spilled in the loop body instead. 917 if (!DisablePreheaderProtect && isPreheader && 918 !(BB->getSinglePredecessor() && 919 BB->getSinglePredecessor()->getSingleSuccessor())) 920 return false; 921 922 // Skip merging if the block's successor is also a successor to any callbr 923 // that leads to this block. 924 // FIXME: Is this really needed? Is this a correctness issue? 925 for (BasicBlock *Pred : predecessors(BB)) { 926 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 927 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 928 if (DestBB == CBI->getSuccessor(i)) 929 return false; 930 } 931 932 // Try to skip merging if the unique predecessor of BB is terminated by a 933 // switch or indirect branch instruction, and BB is used as an incoming block 934 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 935 // add COPY instructions in the predecessor of BB instead of BB (if it is not 936 // merged). Note that the critical edge created by merging such blocks wont be 937 // split in MachineSink because the jump table is not analyzable. By keeping 938 // such empty block (BB), ISel will place COPY instructions in BB, not in the 939 // predecessor of BB. 940 BasicBlock *Pred = BB->getUniquePredecessor(); 941 if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || 942 isa<IndirectBrInst>(Pred->getTerminator()))) 943 return true; 944 945 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 946 return true; 947 948 // We use a simple cost heuristic which determine skipping merging is 949 // profitable if the cost of skipping merging is less than the cost of 950 // merging : Cost(skipping merging) < Cost(merging BB), where the 951 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 952 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 953 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 954 // Freq(Pred) / Freq(BB) > 2. 955 // Note that if there are multiple empty blocks sharing the same incoming 956 // value for the PHIs in the DestBB, we consider them together. In such 957 // case, Cost(merging BB) will be the sum of their frequencies. 958 959 if (!isa<PHINode>(DestBB->begin())) 960 return true; 961 962 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 963 964 // Find all other incoming blocks from which incoming values of all PHIs in 965 // DestBB are the same as the ones from BB. 966 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 967 if (DestBBPred == BB) 968 continue; 969 970 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 971 return DestPN.getIncomingValueForBlock(BB) == 972 DestPN.getIncomingValueForBlock(DestBBPred); 973 })) 974 SameIncomingValueBBs.insert(DestBBPred); 975 } 976 977 // See if all BB's incoming values are same as the value from Pred. In this 978 // case, no reason to skip merging because COPYs are expected to be place in 979 // Pred already. 980 if (SameIncomingValueBBs.count(Pred)) 981 return true; 982 983 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 984 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 985 986 for (auto *SameValueBB : SameIncomingValueBBs) 987 if (SameValueBB->getUniquePredecessor() == Pred && 988 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 989 BBFreq += BFI->getBlockFreq(SameValueBB); 990 991 std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge); 992 return !Limit || PredFreq <= *Limit; 993 } 994 995 /// Return true if we can merge BB into DestBB if there is a single 996 /// unconditional branch between them, and BB contains no other non-phi 997 /// instructions. 998 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 999 const BasicBlock *DestBB) const { 1000 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 1001 // the successor. If there are more complex condition (e.g. preheaders), 1002 // don't mess around with them. 1003 for (const PHINode &PN : BB->phis()) { 1004 for (const User *U : PN.users()) { 1005 const Instruction *UI = cast<Instruction>(U); 1006 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 1007 return false; 1008 // If User is inside DestBB block and it is a PHINode then check 1009 // incoming value. If incoming value is not from BB then this is 1010 // a complex condition (e.g. preheaders) we want to avoid here. 1011 if (UI->getParent() == DestBB) { 1012 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 1013 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 1014 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 1015 if (Insn && Insn->getParent() == BB && 1016 Insn->getParent() != UPN->getIncomingBlock(I)) 1017 return false; 1018 } 1019 } 1020 } 1021 } 1022 1023 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 1024 // and DestBB may have conflicting incoming values for the block. If so, we 1025 // can't merge the block. 1026 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 1027 if (!DestBBPN) 1028 return true; // no conflict. 1029 1030 // Collect the preds of BB. 1031 SmallPtrSet<const BasicBlock *, 16> BBPreds; 1032 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1033 // It is faster to get preds from a PHI than with pred_iterator. 1034 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1035 BBPreds.insert(BBPN->getIncomingBlock(i)); 1036 } else { 1037 BBPreds.insert(pred_begin(BB), pred_end(BB)); 1038 } 1039 1040 // Walk the preds of DestBB. 1041 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 1042 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 1043 if (BBPreds.count(Pred)) { // Common predecessor? 1044 for (const PHINode &PN : DestBB->phis()) { 1045 const Value *V1 = PN.getIncomingValueForBlock(Pred); 1046 const Value *V2 = PN.getIncomingValueForBlock(BB); 1047 1048 // If V2 is a phi node in BB, look up what the mapped value will be. 1049 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 1050 if (V2PN->getParent() == BB) 1051 V2 = V2PN->getIncomingValueForBlock(Pred); 1052 1053 // If there is a conflict, bail out. 1054 if (V1 != V2) 1055 return false; 1056 } 1057 } 1058 } 1059 1060 return true; 1061 } 1062 1063 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs. 1064 static void replaceAllUsesWith(Value *Old, Value *New, 1065 SmallSet<BasicBlock *, 32> &FreshBBs, 1066 bool IsHuge) { 1067 auto *OldI = dyn_cast<Instruction>(Old); 1068 if (OldI) { 1069 for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end(); 1070 UI != E; ++UI) { 1071 Instruction *User = cast<Instruction>(*UI); 1072 if (IsHuge) 1073 FreshBBs.insert(User->getParent()); 1074 } 1075 } 1076 Old->replaceAllUsesWith(New); 1077 } 1078 1079 /// Eliminate a basic block that has only phi's and an unconditional branch in 1080 /// it. 1081 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 1082 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1083 BasicBlock *DestBB = BI->getSuccessor(0); 1084 1085 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 1086 << *BB << *DestBB); 1087 1088 // If the destination block has a single pred, then this is a trivial edge, 1089 // just collapse it. 1090 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 1091 if (SinglePred != DestBB) { 1092 assert(SinglePred == BB && 1093 "Single predecessor not the same as predecessor"); 1094 // Merge DestBB into SinglePred/BB and delete it. 1095 MergeBlockIntoPredecessor(DestBB); 1096 // Note: BB(=SinglePred) will not be deleted on this path. 1097 // DestBB(=its single successor) is the one that was deleted. 1098 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 1099 1100 if (IsHugeFunc) { 1101 // Update FreshBBs to optimize the merged BB. 1102 FreshBBs.insert(SinglePred); 1103 FreshBBs.erase(DestBB); 1104 } 1105 return; 1106 } 1107 } 1108 1109 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 1110 // to handle the new incoming edges it is about to have. 1111 for (PHINode &PN : DestBB->phis()) { 1112 // Remove the incoming value for BB, and remember it. 1113 Value *InVal = PN.removeIncomingValue(BB, false); 1114 1115 // Two options: either the InVal is a phi node defined in BB or it is some 1116 // value that dominates BB. 1117 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 1118 if (InValPhi && InValPhi->getParent() == BB) { 1119 // Add all of the input values of the input PHI as inputs of this phi. 1120 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 1121 PN.addIncoming(InValPhi->getIncomingValue(i), 1122 InValPhi->getIncomingBlock(i)); 1123 } else { 1124 // Otherwise, add one instance of the dominating value for each edge that 1125 // we will be adding. 1126 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 1127 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 1128 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 1129 } else { 1130 for (BasicBlock *Pred : predecessors(BB)) 1131 PN.addIncoming(InVal, Pred); 1132 } 1133 } 1134 } 1135 1136 // The PHIs are now updated, change everything that refers to BB to use 1137 // DestBB and remove BB. 1138 BB->replaceAllUsesWith(DestBB); 1139 BB->eraseFromParent(); 1140 ++NumBlocksElim; 1141 1142 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1143 } 1144 1145 // Computes a map of base pointer relocation instructions to corresponding 1146 // derived pointer relocation instructions given a vector of all relocate calls 1147 static void computeBaseDerivedRelocateMap( 1148 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1149 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1150 &RelocateInstMap) { 1151 // Collect information in two maps: one primarily for locating the base object 1152 // while filling the second map; the second map is the final structure holding 1153 // a mapping between Base and corresponding Derived relocate calls 1154 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1155 for (auto *ThisRelocate : AllRelocateCalls) { 1156 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1157 ThisRelocate->getDerivedPtrIndex()); 1158 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1159 } 1160 for (auto &Item : RelocateIdxMap) { 1161 std::pair<unsigned, unsigned> Key = Item.first; 1162 if (Key.first == Key.second) 1163 // Base relocation: nothing to insert 1164 continue; 1165 1166 GCRelocateInst *I = Item.second; 1167 auto BaseKey = std::make_pair(Key.first, Key.first); 1168 1169 // We're iterating over RelocateIdxMap so we cannot modify it. 1170 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1171 if (MaybeBase == RelocateIdxMap.end()) 1172 // TODO: We might want to insert a new base object relocate and gep off 1173 // that, if there are enough derived object relocates. 1174 continue; 1175 1176 RelocateInstMap[MaybeBase->second].push_back(I); 1177 } 1178 } 1179 1180 // Accepts a GEP and extracts the operands into a vector provided they're all 1181 // small integer constants 1182 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1183 SmallVectorImpl<Value *> &OffsetV) { 1184 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1185 // Only accept small constant integer operands 1186 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1187 if (!Op || Op->getZExtValue() > 20) 1188 return false; 1189 } 1190 1191 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1192 OffsetV.push_back(GEP->getOperand(i)); 1193 return true; 1194 } 1195 1196 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1197 // replace, computes a replacement, and affects it. 1198 static bool 1199 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1200 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1201 bool MadeChange = false; 1202 // We must ensure the relocation of derived pointer is defined after 1203 // relocation of base pointer. If we find a relocation corresponding to base 1204 // defined earlier than relocation of base then we move relocation of base 1205 // right before found relocation. We consider only relocation in the same 1206 // basic block as relocation of base. Relocations from other basic block will 1207 // be skipped by optimization and we do not care about them. 1208 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1209 &*R != RelocatedBase; ++R) 1210 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1211 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1212 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1213 RelocatedBase->moveBefore(RI); 1214 MadeChange = true; 1215 break; 1216 } 1217 1218 for (GCRelocateInst *ToReplace : Targets) { 1219 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1220 "Not relocating a derived object of the original base object"); 1221 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1222 // A duplicate relocate call. TODO: coalesce duplicates. 1223 continue; 1224 } 1225 1226 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1227 // Base and derived relocates are in different basic blocks. 1228 // In this case transform is only valid when base dominates derived 1229 // relocate. However it would be too expensive to check dominance 1230 // for each such relocate, so we skip the whole transformation. 1231 continue; 1232 } 1233 1234 Value *Base = ToReplace->getBasePtr(); 1235 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1236 if (!Derived || Derived->getPointerOperand() != Base) 1237 continue; 1238 1239 SmallVector<Value *, 2> OffsetV; 1240 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1241 continue; 1242 1243 // Create a Builder and replace the target callsite with a gep 1244 assert(RelocatedBase->getNextNode() && 1245 "Should always have one since it's not a terminator"); 1246 1247 // Insert after RelocatedBase 1248 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1249 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1250 1251 // If gc_relocate does not match the actual type, cast it to the right type. 1252 // In theory, there must be a bitcast after gc_relocate if the type does not 1253 // match, and we should reuse it to get the derived pointer. But it could be 1254 // cases like this: 1255 // bb1: 1256 // ... 1257 // %g1 = call coldcc i8 addrspace(1)* 1258 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1259 // 1260 // bb2: 1261 // ... 1262 // %g2 = call coldcc i8 addrspace(1)* 1263 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge 1264 // 1265 // merge: 1266 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1267 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1268 // 1269 // In this case, we can not find the bitcast any more. So we insert a new 1270 // bitcast no matter there is already one or not. In this way, we can handle 1271 // all cases, and the extra bitcast should be optimized away in later 1272 // passes. 1273 Value *ActualRelocatedBase = RelocatedBase; 1274 if (RelocatedBase->getType() != Base->getType()) { 1275 ActualRelocatedBase = 1276 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1277 } 1278 Value *Replacement = 1279 Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase, 1280 ArrayRef(OffsetV)); 1281 Replacement->takeName(ToReplace); 1282 // If the newly generated derived pointer's type does not match the original 1283 // derived pointer's type, cast the new derived pointer to match it. Same 1284 // reasoning as above. 1285 Value *ActualReplacement = Replacement; 1286 if (Replacement->getType() != ToReplace->getType()) { 1287 ActualReplacement = 1288 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1289 } 1290 ToReplace->replaceAllUsesWith(ActualReplacement); 1291 ToReplace->eraseFromParent(); 1292 1293 MadeChange = true; 1294 } 1295 return MadeChange; 1296 } 1297 1298 // Turns this: 1299 // 1300 // %base = ... 1301 // %ptr = gep %base + 15 1302 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1303 // %base' = relocate(%tok, i32 4, i32 4) 1304 // %ptr' = relocate(%tok, i32 4, i32 5) 1305 // %val = load %ptr' 1306 // 1307 // into this: 1308 // 1309 // %base = ... 1310 // %ptr = gep %base + 15 1311 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1312 // %base' = gc.relocate(%tok, i32 4, i32 4) 1313 // %ptr' = gep %base' + 15 1314 // %val = load %ptr' 1315 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1316 bool MadeChange = false; 1317 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1318 for (auto *U : I.users()) 1319 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1320 // Collect all the relocate calls associated with a statepoint 1321 AllRelocateCalls.push_back(Relocate); 1322 1323 // We need at least one base pointer relocation + one derived pointer 1324 // relocation to mangle 1325 if (AllRelocateCalls.size() < 2) 1326 return false; 1327 1328 // RelocateInstMap is a mapping from the base relocate instruction to the 1329 // corresponding derived relocate instructions 1330 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1331 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1332 if (RelocateInstMap.empty()) 1333 return false; 1334 1335 for (auto &Item : RelocateInstMap) 1336 // Item.first is the RelocatedBase to offset against 1337 // Item.second is the vector of Targets to replace 1338 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1339 return MadeChange; 1340 } 1341 1342 /// Sink the specified cast instruction into its user blocks. 1343 static bool SinkCast(CastInst *CI) { 1344 BasicBlock *DefBB = CI->getParent(); 1345 1346 /// InsertedCasts - Only insert a cast in each block once. 1347 DenseMap<BasicBlock *, CastInst *> InsertedCasts; 1348 1349 bool MadeChange = false; 1350 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1351 UI != E;) { 1352 Use &TheUse = UI.getUse(); 1353 Instruction *User = cast<Instruction>(*UI); 1354 1355 // Figure out which BB this cast is used in. For PHI's this is the 1356 // appropriate predecessor block. 1357 BasicBlock *UserBB = User->getParent(); 1358 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1359 UserBB = PN->getIncomingBlock(TheUse); 1360 } 1361 1362 // Preincrement use iterator so we don't invalidate it. 1363 ++UI; 1364 1365 // The first insertion point of a block containing an EH pad is after the 1366 // pad. If the pad is the user, we cannot sink the cast past the pad. 1367 if (User->isEHPad()) 1368 continue; 1369 1370 // If the block selected to receive the cast is an EH pad that does not 1371 // allow non-PHI instructions before the terminator, we can't sink the 1372 // cast. 1373 if (UserBB->getTerminator()->isEHPad()) 1374 continue; 1375 1376 // If this user is in the same block as the cast, don't change the cast. 1377 if (UserBB == DefBB) 1378 continue; 1379 1380 // If we have already inserted a cast into this block, use it. 1381 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1382 1383 if (!InsertedCast) { 1384 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1385 assert(InsertPt != UserBB->end()); 1386 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1387 CI->getType(), ""); 1388 InsertedCast->insertBefore(*UserBB, InsertPt); 1389 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1390 } 1391 1392 // Replace a use of the cast with a use of the new cast. 1393 TheUse = InsertedCast; 1394 MadeChange = true; 1395 ++NumCastUses; 1396 } 1397 1398 // If we removed all uses, nuke the cast. 1399 if (CI->use_empty()) { 1400 salvageDebugInfo(*CI); 1401 CI->eraseFromParent(); 1402 MadeChange = true; 1403 } 1404 1405 return MadeChange; 1406 } 1407 1408 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1409 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1410 /// reduce the number of virtual registers that must be created and coalesced. 1411 /// 1412 /// Return true if any changes are made. 1413 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1414 const DataLayout &DL) { 1415 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1416 // than sinking only nop casts, but is helpful on some platforms. 1417 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1418 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1419 ASC->getDestAddressSpace())) 1420 return false; 1421 } 1422 1423 // If this is a noop copy, 1424 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1425 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1426 1427 // This is an fp<->int conversion? 1428 if (SrcVT.isInteger() != DstVT.isInteger()) 1429 return false; 1430 1431 // If this is an extension, it will be a zero or sign extension, which 1432 // isn't a noop. 1433 if (SrcVT.bitsLT(DstVT)) 1434 return false; 1435 1436 // If these values will be promoted, find out what they will be promoted 1437 // to. This helps us consider truncates on PPC as noop copies when they 1438 // are. 1439 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1440 TargetLowering::TypePromoteInteger) 1441 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1442 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1443 TargetLowering::TypePromoteInteger) 1444 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1445 1446 // If, after promotion, these are the same types, this is a noop copy. 1447 if (SrcVT != DstVT) 1448 return false; 1449 1450 return SinkCast(CI); 1451 } 1452 1453 // Match a simple increment by constant operation. Note that if a sub is 1454 // matched, the step is negated (as if the step had been canonicalized to 1455 // an add, even though we leave the instruction alone.) 1456 bool matchIncrement(const Instruction *IVInc, Instruction *&LHS, 1457 Constant *&Step) { 1458 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1459 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1460 m_Instruction(LHS), m_Constant(Step))))) 1461 return true; 1462 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1463 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1464 m_Instruction(LHS), m_Constant(Step))))) { 1465 Step = ConstantExpr::getNeg(Step); 1466 return true; 1467 } 1468 return false; 1469 } 1470 1471 /// If given \p PN is an inductive variable with value IVInc coming from the 1472 /// backedge, and on each iteration it gets increased by Step, return pair 1473 /// <IVInc, Step>. Otherwise, return std::nullopt. 1474 static std::optional<std::pair<Instruction *, Constant *>> 1475 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1476 const Loop *L = LI->getLoopFor(PN->getParent()); 1477 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1478 return std::nullopt; 1479 auto *IVInc = 1480 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1481 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1482 return std::nullopt; 1483 Instruction *LHS = nullptr; 1484 Constant *Step = nullptr; 1485 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1486 return std::make_pair(IVInc, Step); 1487 return std::nullopt; 1488 } 1489 1490 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1491 auto *I = dyn_cast<Instruction>(V); 1492 if (!I) 1493 return false; 1494 Instruction *LHS = nullptr; 1495 Constant *Step = nullptr; 1496 if (!matchIncrement(I, LHS, Step)) 1497 return false; 1498 if (auto *PN = dyn_cast<PHINode>(LHS)) 1499 if (auto IVInc = getIVIncrement(PN, LI)) 1500 return IVInc->first == I; 1501 return false; 1502 } 1503 1504 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1505 Value *Arg0, Value *Arg1, 1506 CmpInst *Cmp, 1507 Intrinsic::ID IID) { 1508 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1509 if (!isIVIncrement(BO, LI)) 1510 return false; 1511 const Loop *L = LI->getLoopFor(BO->getParent()); 1512 assert(L && "L should not be null after isIVIncrement()"); 1513 // Do not risk on moving increment into a child loop. 1514 if (LI->getLoopFor(Cmp->getParent()) != L) 1515 return false; 1516 1517 // Finally, we need to ensure that the insert point will dominate all 1518 // existing uses of the increment. 1519 1520 auto &DT = getDT(*BO->getParent()->getParent()); 1521 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1522 // If we're moving up the dom tree, all uses are trivially dominated. 1523 // (This is the common case for code produced by LSR.) 1524 return true; 1525 1526 // Otherwise, special case the single use in the phi recurrence. 1527 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1528 }; 1529 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1530 // We used to use a dominator tree here to allow multi-block optimization. 1531 // But that was problematic because: 1532 // 1. It could cause a perf regression by hoisting the math op into the 1533 // critical path. 1534 // 2. It could cause a perf regression by creating a value that was live 1535 // across multiple blocks and increasing register pressure. 1536 // 3. Use of a dominator tree could cause large compile-time regression. 1537 // This is because we recompute the DT on every change in the main CGP 1538 // run-loop. The recomputing is probably unnecessary in many cases, so if 1539 // that was fixed, using a DT here would be ok. 1540 // 1541 // There is one important particular case we still want to handle: if BO is 1542 // the IV increment. Important properties that make it profitable: 1543 // - We can speculate IV increment anywhere in the loop (as long as the 1544 // indvar Phi is its only user); 1545 // - Upon computing Cmp, we effectively compute something equivalent to the 1546 // IV increment (despite it loops differently in the IR). So moving it up 1547 // to the cmp point does not really increase register pressure. 1548 return false; 1549 } 1550 1551 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1552 if (BO->getOpcode() == Instruction::Add && 1553 IID == Intrinsic::usub_with_overflow) { 1554 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1555 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1556 } 1557 1558 // Insert at the first instruction of the pair. 1559 Instruction *InsertPt = nullptr; 1560 for (Instruction &Iter : *Cmp->getParent()) { 1561 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1562 // the overflow intrinsic are defined. 1563 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1564 InsertPt = &Iter; 1565 break; 1566 } 1567 } 1568 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1569 1570 IRBuilder<> Builder(InsertPt); 1571 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1572 if (BO->getOpcode() != Instruction::Xor) { 1573 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1574 replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc); 1575 } else 1576 assert(BO->hasOneUse() && 1577 "Patterns with XOr should use the BO only in the compare"); 1578 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1579 replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc); 1580 Cmp->eraseFromParent(); 1581 BO->eraseFromParent(); 1582 return true; 1583 } 1584 1585 /// Match special-case patterns that check for unsigned add overflow. 1586 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1587 BinaryOperator *&Add) { 1588 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1589 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1590 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1591 1592 // We are not expecting non-canonical/degenerate code. Just bail out. 1593 if (isa<Constant>(A)) 1594 return false; 1595 1596 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1597 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1598 B = ConstantInt::get(B->getType(), 1); 1599 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1600 B = ConstantInt::get(B->getType(), -1); 1601 else 1602 return false; 1603 1604 // Check the users of the variable operand of the compare looking for an add 1605 // with the adjusted constant. 1606 for (User *U : A->users()) { 1607 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1608 Add = cast<BinaryOperator>(U); 1609 return true; 1610 } 1611 } 1612 return false; 1613 } 1614 1615 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1616 /// intrinsic. Return true if any changes were made. 1617 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1618 ModifyDT &ModifiedDT) { 1619 bool EdgeCase = false; 1620 Value *A, *B; 1621 BinaryOperator *Add; 1622 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1623 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1624 return false; 1625 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1626 A = Add->getOperand(0); 1627 B = Add->getOperand(1); 1628 EdgeCase = true; 1629 } 1630 1631 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1632 TLI->getValueType(*DL, Add->getType()), 1633 Add->hasNUsesOrMore(EdgeCase ? 1 : 2))) 1634 return false; 1635 1636 // We don't want to move around uses of condition values this late, so we 1637 // check if it is legal to create the call to the intrinsic in the basic 1638 // block containing the icmp. 1639 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1640 return false; 1641 1642 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1643 Intrinsic::uadd_with_overflow)) 1644 return false; 1645 1646 // Reset callers - do not crash by iterating over a dead instruction. 1647 ModifiedDT = ModifyDT::ModifyInstDT; 1648 return true; 1649 } 1650 1651 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1652 ModifyDT &ModifiedDT) { 1653 // We are not expecting non-canonical/degenerate code. Just bail out. 1654 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1655 if (isa<Constant>(A) && isa<Constant>(B)) 1656 return false; 1657 1658 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1659 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1660 if (Pred == ICmpInst::ICMP_UGT) { 1661 std::swap(A, B); 1662 Pred = ICmpInst::ICMP_ULT; 1663 } 1664 // Convert special-case: (A == 0) is the same as (A u< 1). 1665 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1666 B = ConstantInt::get(B->getType(), 1); 1667 Pred = ICmpInst::ICMP_ULT; 1668 } 1669 // Convert special-case: (A != 0) is the same as (0 u< A). 1670 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1671 std::swap(A, B); 1672 Pred = ICmpInst::ICMP_ULT; 1673 } 1674 if (Pred != ICmpInst::ICMP_ULT) 1675 return false; 1676 1677 // Walk the users of a variable operand of a compare looking for a subtract or 1678 // add with that same operand. Also match the 2nd operand of the compare to 1679 // the add/sub, but that may be a negated constant operand of an add. 1680 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1681 BinaryOperator *Sub = nullptr; 1682 for (User *U : CmpVariableOperand->users()) { 1683 // A - B, A u< B --> usubo(A, B) 1684 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1685 Sub = cast<BinaryOperator>(U); 1686 break; 1687 } 1688 1689 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1690 const APInt *CmpC, *AddC; 1691 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1692 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1693 Sub = cast<BinaryOperator>(U); 1694 break; 1695 } 1696 } 1697 if (!Sub) 1698 return false; 1699 1700 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1701 TLI->getValueType(*DL, Sub->getType()), 1702 Sub->hasNUsesOrMore(1))) 1703 return false; 1704 1705 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1706 Cmp, Intrinsic::usub_with_overflow)) 1707 return false; 1708 1709 // Reset callers - do not crash by iterating over a dead instruction. 1710 ModifiedDT = ModifyDT::ModifyInstDT; 1711 return true; 1712 } 1713 1714 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1715 /// registers that must be created and coalesced. This is a clear win except on 1716 /// targets with multiple condition code registers (PowerPC), where it might 1717 /// lose; some adjustment may be wanted there. 1718 /// 1719 /// Return true if any changes are made. 1720 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1721 if (TLI.hasMultipleConditionRegisters()) 1722 return false; 1723 1724 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1725 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1726 return false; 1727 1728 // Only insert a cmp in each block once. 1729 DenseMap<BasicBlock *, CmpInst *> InsertedCmps; 1730 1731 bool MadeChange = false; 1732 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1733 UI != E;) { 1734 Use &TheUse = UI.getUse(); 1735 Instruction *User = cast<Instruction>(*UI); 1736 1737 // Preincrement use iterator so we don't invalidate it. 1738 ++UI; 1739 1740 // Don't bother for PHI nodes. 1741 if (isa<PHINode>(User)) 1742 continue; 1743 1744 // Figure out which BB this cmp is used in. 1745 BasicBlock *UserBB = User->getParent(); 1746 BasicBlock *DefBB = Cmp->getParent(); 1747 1748 // If this user is in the same block as the cmp, don't change the cmp. 1749 if (UserBB == DefBB) 1750 continue; 1751 1752 // If we have already inserted a cmp into this block, use it. 1753 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1754 1755 if (!InsertedCmp) { 1756 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1757 assert(InsertPt != UserBB->end()); 1758 InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1759 Cmp->getOperand(0), Cmp->getOperand(1), ""); 1760 InsertedCmp->insertBefore(*UserBB, InsertPt); 1761 // Propagate the debug info. 1762 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1763 } 1764 1765 // Replace a use of the cmp with a use of the new cmp. 1766 TheUse = InsertedCmp; 1767 MadeChange = true; 1768 ++NumCmpUses; 1769 } 1770 1771 // If we removed all uses, nuke the cmp. 1772 if (Cmp->use_empty()) { 1773 Cmp->eraseFromParent(); 1774 MadeChange = true; 1775 } 1776 1777 return MadeChange; 1778 } 1779 1780 /// For pattern like: 1781 /// 1782 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1783 /// ... 1784 /// DomBB: 1785 /// ... 1786 /// br DomCond, TrueBB, CmpBB 1787 /// CmpBB: (with DomBB being the single predecessor) 1788 /// ... 1789 /// Cmp = icmp eq CmpOp0, CmpOp1 1790 /// ... 1791 /// 1792 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1793 /// different from lowering of icmp eq (PowerPC). This function try to convert 1794 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1795 /// After that, DomCond and Cmp can use the same comparison so reduce one 1796 /// comparison. 1797 /// 1798 /// Return true if any changes are made. 1799 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1800 const TargetLowering &TLI) { 1801 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1802 return false; 1803 1804 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1805 if (Pred != ICmpInst::ICMP_EQ) 1806 return false; 1807 1808 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1809 // icmp slt/sgt would introduce more redundant LLVM IR. 1810 for (User *U : Cmp->users()) { 1811 if (isa<BranchInst>(U)) 1812 continue; 1813 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1814 continue; 1815 return false; 1816 } 1817 1818 // This is a cheap/incomplete check for dominance - just match a single 1819 // predecessor with a conditional branch. 1820 BasicBlock *CmpBB = Cmp->getParent(); 1821 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1822 if (!DomBB) 1823 return false; 1824 1825 // We want to ensure that the only way control gets to the comparison of 1826 // interest is that a less/greater than comparison on the same operands is 1827 // false. 1828 Value *DomCond; 1829 BasicBlock *TrueBB, *FalseBB; 1830 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1831 return false; 1832 if (CmpBB != FalseBB) 1833 return false; 1834 1835 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1836 ICmpInst::Predicate DomPred; 1837 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1838 return false; 1839 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1840 return false; 1841 1842 // Convert the equality comparison to the opposite of the dominating 1843 // comparison and swap the direction for all branch/select users. 1844 // We have conceptually converted: 1845 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1846 // to 1847 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1848 // And similarly for branches. 1849 for (User *U : Cmp->users()) { 1850 if (auto *BI = dyn_cast<BranchInst>(U)) { 1851 assert(BI->isConditional() && "Must be conditional"); 1852 BI->swapSuccessors(); 1853 continue; 1854 } 1855 if (auto *SI = dyn_cast<SelectInst>(U)) { 1856 // Swap operands 1857 SI->swapValues(); 1858 SI->swapProfMetadata(); 1859 continue; 1860 } 1861 llvm_unreachable("Must be a branch or a select"); 1862 } 1863 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1864 return true; 1865 } 1866 1867 /// Many architectures use the same instruction for both subtract and cmp. Try 1868 /// to swap cmp operands to match subtract operations to allow for CSE. 1869 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) { 1870 Value *Op0 = Cmp->getOperand(0); 1871 Value *Op1 = Cmp->getOperand(1); 1872 if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) || 1873 isa<Constant>(Op1) || Op0 == Op1) 1874 return false; 1875 1876 // If a subtract already has the same operands as a compare, swapping would be 1877 // bad. If a subtract has the same operands as a compare but in reverse order, 1878 // then swapping is good. 1879 int GoodToSwap = 0; 1880 unsigned NumInspected = 0; 1881 for (const User *U : Op0->users()) { 1882 // Avoid walking many users. 1883 if (++NumInspected > 128) 1884 return false; 1885 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) 1886 GoodToSwap++; 1887 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) 1888 GoodToSwap--; 1889 } 1890 1891 if (GoodToSwap > 0) { 1892 Cmp->swapOperands(); 1893 return true; 1894 } 1895 return false; 1896 } 1897 1898 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) { 1899 if (sinkCmpExpression(Cmp, *TLI)) 1900 return true; 1901 1902 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1903 return true; 1904 1905 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1906 return true; 1907 1908 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1909 return true; 1910 1911 if (swapICmpOperandsToExposeCSEOpportunities(Cmp)) 1912 return true; 1913 1914 return false; 1915 } 1916 1917 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1918 /// used in a compare to allow isel to generate better code for targets where 1919 /// this operation can be combined. 1920 /// 1921 /// Return true if any changes are made. 1922 static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, 1923 SetOfInstrs &InsertedInsts) { 1924 // Double-check that we're not trying to optimize an instruction that was 1925 // already optimized by some other part of this pass. 1926 assert(!InsertedInsts.count(AndI) && 1927 "Attempting to optimize already optimized and instruction"); 1928 (void)InsertedInsts; 1929 1930 // Nothing to do for single use in same basic block. 1931 if (AndI->hasOneUse() && 1932 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1933 return false; 1934 1935 // Try to avoid cases where sinking/duplicating is likely to increase register 1936 // pressure. 1937 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1938 !isa<ConstantInt>(AndI->getOperand(1)) && 1939 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1940 return false; 1941 1942 for (auto *U : AndI->users()) { 1943 Instruction *User = cast<Instruction>(U); 1944 1945 // Only sink 'and' feeding icmp with 0. 1946 if (!isa<ICmpInst>(User)) 1947 return false; 1948 1949 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1950 if (!CmpC || !CmpC->isZero()) 1951 return false; 1952 } 1953 1954 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1955 return false; 1956 1957 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1958 LLVM_DEBUG(AndI->getParent()->dump()); 1959 1960 // Push the 'and' into the same block as the icmp 0. There should only be 1961 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1962 // others, so we don't need to keep track of which BBs we insert into. 1963 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1964 UI != E;) { 1965 Use &TheUse = UI.getUse(); 1966 Instruction *User = cast<Instruction>(*UI); 1967 1968 // Preincrement use iterator so we don't invalidate it. 1969 ++UI; 1970 1971 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1972 1973 // Keep the 'and' in the same place if the use is already in the same block. 1974 Instruction *InsertPt = 1975 User->getParent() == AndI->getParent() ? AndI : User; 1976 Instruction *InsertedAnd = 1977 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1978 AndI->getOperand(1), "", InsertPt); 1979 // Propagate the debug info. 1980 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1981 1982 // Replace a use of the 'and' with a use of the new 'and'. 1983 TheUse = InsertedAnd; 1984 ++NumAndUses; 1985 LLVM_DEBUG(User->getParent()->dump()); 1986 } 1987 1988 // We removed all uses, nuke the and. 1989 AndI->eraseFromParent(); 1990 return true; 1991 } 1992 1993 /// Check if the candidates could be combined with a shift instruction, which 1994 /// includes: 1995 /// 1. Truncate instruction 1996 /// 2. And instruction and the imm is a mask of the low bits: 1997 /// imm & (imm+1) == 0 1998 static bool isExtractBitsCandidateUse(Instruction *User) { 1999 if (!isa<TruncInst>(User)) { 2000 if (User->getOpcode() != Instruction::And || 2001 !isa<ConstantInt>(User->getOperand(1))) 2002 return false; 2003 2004 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 2005 2006 if ((Cimm & (Cimm + 1)).getBoolValue()) 2007 return false; 2008 } 2009 return true; 2010 } 2011 2012 /// Sink both shift and truncate instruction to the use of truncate's BB. 2013 static bool 2014 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 2015 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 2016 const TargetLowering &TLI, const DataLayout &DL) { 2017 BasicBlock *UserBB = User->getParent(); 2018 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 2019 auto *TruncI = cast<TruncInst>(User); 2020 bool MadeChange = false; 2021 2022 for (Value::user_iterator TruncUI = TruncI->user_begin(), 2023 TruncE = TruncI->user_end(); 2024 TruncUI != TruncE;) { 2025 2026 Use &TruncTheUse = TruncUI.getUse(); 2027 Instruction *TruncUser = cast<Instruction>(*TruncUI); 2028 // Preincrement use iterator so we don't invalidate it. 2029 2030 ++TruncUI; 2031 2032 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 2033 if (!ISDOpcode) 2034 continue; 2035 2036 // If the use is actually a legal node, there will not be an 2037 // implicit truncate. 2038 // FIXME: always querying the result type is just an 2039 // approximation; some nodes' legality is determined by the 2040 // operand or other means. There's no good way to find out though. 2041 if (TLI.isOperationLegalOrCustom( 2042 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 2043 continue; 2044 2045 // Don't bother for PHI nodes. 2046 if (isa<PHINode>(TruncUser)) 2047 continue; 2048 2049 BasicBlock *TruncUserBB = TruncUser->getParent(); 2050 2051 if (UserBB == TruncUserBB) 2052 continue; 2053 2054 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 2055 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 2056 2057 if (!InsertedShift && !InsertedTrunc) { 2058 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 2059 assert(InsertPt != TruncUserBB->end()); 2060 // Sink the shift 2061 if (ShiftI->getOpcode() == Instruction::AShr) 2062 InsertedShift = 2063 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2064 else 2065 InsertedShift = 2066 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2067 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2068 InsertedShift->insertBefore(*TruncUserBB, InsertPt); 2069 2070 // Sink the trunc 2071 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 2072 TruncInsertPt++; 2073 // It will go ahead of any debug-info. 2074 TruncInsertPt.setHeadBit(true); 2075 assert(TruncInsertPt != TruncUserBB->end()); 2076 2077 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 2078 TruncI->getType(), ""); 2079 InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt); 2080 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 2081 2082 MadeChange = true; 2083 2084 TruncTheUse = InsertedTrunc; 2085 } 2086 } 2087 return MadeChange; 2088 } 2089 2090 /// Sink the shift *right* instruction into user blocks if the uses could 2091 /// potentially be combined with this shift instruction and generate BitExtract 2092 /// instruction. It will only be applied if the architecture supports BitExtract 2093 /// instruction. Here is an example: 2094 /// BB1: 2095 /// %x.extract.shift = lshr i64 %arg1, 32 2096 /// BB2: 2097 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 2098 /// ==> 2099 /// 2100 /// BB2: 2101 /// %x.extract.shift.1 = lshr i64 %arg1, 32 2102 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 2103 /// 2104 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 2105 /// instruction. 2106 /// Return true if any changes are made. 2107 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 2108 const TargetLowering &TLI, 2109 const DataLayout &DL) { 2110 BasicBlock *DefBB = ShiftI->getParent(); 2111 2112 /// Only insert instructions in each block once. 2113 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 2114 2115 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 2116 2117 bool MadeChange = false; 2118 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 2119 UI != E;) { 2120 Use &TheUse = UI.getUse(); 2121 Instruction *User = cast<Instruction>(*UI); 2122 // Preincrement use iterator so we don't invalidate it. 2123 ++UI; 2124 2125 // Don't bother for PHI nodes. 2126 if (isa<PHINode>(User)) 2127 continue; 2128 2129 if (!isExtractBitsCandidateUse(User)) 2130 continue; 2131 2132 BasicBlock *UserBB = User->getParent(); 2133 2134 if (UserBB == DefBB) { 2135 // If the shift and truncate instruction are in the same BB. The use of 2136 // the truncate(TruncUse) may still introduce another truncate if not 2137 // legal. In this case, we would like to sink both shift and truncate 2138 // instruction to the BB of TruncUse. 2139 // for example: 2140 // BB1: 2141 // i64 shift.result = lshr i64 opnd, imm 2142 // trunc.result = trunc shift.result to i16 2143 // 2144 // BB2: 2145 // ----> We will have an implicit truncate here if the architecture does 2146 // not have i16 compare. 2147 // cmp i16 trunc.result, opnd2 2148 // 2149 if (isa<TruncInst>(User) && 2150 shiftIsLegal 2151 // If the type of the truncate is legal, no truncate will be 2152 // introduced in other basic blocks. 2153 && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 2154 MadeChange = 2155 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 2156 2157 continue; 2158 } 2159 // If we have already inserted a shift into this block, use it. 2160 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 2161 2162 if (!InsertedShift) { 2163 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2164 assert(InsertPt != UserBB->end()); 2165 2166 if (ShiftI->getOpcode() == Instruction::AShr) 2167 InsertedShift = 2168 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, ""); 2169 else 2170 InsertedShift = 2171 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, ""); 2172 InsertedShift->insertBefore(*UserBB, InsertPt); 2173 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 2174 2175 MadeChange = true; 2176 } 2177 2178 // Replace a use of the shift with a use of the new shift. 2179 TheUse = InsertedShift; 2180 } 2181 2182 // If we removed all uses, or there are none, nuke the shift. 2183 if (ShiftI->use_empty()) { 2184 salvageDebugInfo(*ShiftI); 2185 ShiftI->eraseFromParent(); 2186 MadeChange = true; 2187 } 2188 2189 return MadeChange; 2190 } 2191 2192 /// If counting leading or trailing zeros is an expensive operation and a zero 2193 /// input is defined, add a check for zero to avoid calling the intrinsic. 2194 /// 2195 /// We want to transform: 2196 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2197 /// 2198 /// into: 2199 /// entry: 2200 /// %cmpz = icmp eq i64 %A, 0 2201 /// br i1 %cmpz, label %cond.end, label %cond.false 2202 /// cond.false: 2203 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2204 /// br label %cond.end 2205 /// cond.end: 2206 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2207 /// 2208 /// If the transform is performed, return true and set ModifiedDT to true. 2209 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2210 LoopInfo &LI, 2211 const TargetLowering *TLI, 2212 const DataLayout *DL, ModifyDT &ModifiedDT, 2213 SmallSet<BasicBlock *, 32> &FreshBBs, 2214 bool IsHugeFunc) { 2215 // If a zero input is undefined, it doesn't make sense to despeculate that. 2216 if (match(CountZeros->getOperand(1), m_One())) 2217 return false; 2218 2219 // If it's cheap to speculate, there's nothing to do. 2220 Type *Ty = CountZeros->getType(); 2221 auto IntrinsicID = CountZeros->getIntrinsicID(); 2222 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) || 2223 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty))) 2224 return false; 2225 2226 // Only handle legal scalar cases. Anything else requires too much work. 2227 unsigned SizeInBits = Ty->getScalarSizeInBits(); 2228 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2229 return false; 2230 2231 // Bail if the value is never zero. 2232 Use &Op = CountZeros->getOperandUse(0); 2233 if (isKnownNonZero(Op, *DL)) 2234 return false; 2235 2236 // The intrinsic will be sunk behind a compare against zero and branch. 2237 BasicBlock *StartBlock = CountZeros->getParent(); 2238 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2239 if (IsHugeFunc) 2240 FreshBBs.insert(CallBlock); 2241 2242 // Create another block after the count zero intrinsic. A PHI will be added 2243 // in this block to select the result of the intrinsic or the bit-width 2244 // constant if the input to the intrinsic is zero. 2245 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros)); 2246 // Any debug-info after CountZeros should not be included. 2247 SplitPt.setHeadBit(true); 2248 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2249 if (IsHugeFunc) 2250 FreshBBs.insert(EndBlock); 2251 2252 // Update the LoopInfo. The new blocks are in the same loop as the start 2253 // block. 2254 if (Loop *L = LI.getLoopFor(StartBlock)) { 2255 L->addBasicBlockToLoop(CallBlock, LI); 2256 L->addBasicBlockToLoop(EndBlock, LI); 2257 } 2258 2259 // Set up a builder to create a compare, conditional branch, and PHI. 2260 IRBuilder<> Builder(CountZeros->getContext()); 2261 Builder.SetInsertPoint(StartBlock->getTerminator()); 2262 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2263 2264 // Replace the unconditional branch that was created by the first split with 2265 // a compare against zero and a conditional branch. 2266 Value *Zero = Constant::getNullValue(Ty); 2267 // Avoid introducing branch on poison. This also replaces the ctz operand. 2268 if (!isGuaranteedNotToBeUndefOrPoison(Op)) 2269 Op = Builder.CreateFreeze(Op, Op->getName() + ".fr"); 2270 Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz"); 2271 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2272 StartBlock->getTerminator()->eraseFromParent(); 2273 2274 // Create a PHI in the end block to select either the output of the intrinsic 2275 // or the bit width of the operand. 2276 Builder.SetInsertPoint(EndBlock, EndBlock->begin()); 2277 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2278 replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc); 2279 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2280 PN->addIncoming(BitWidth, StartBlock); 2281 PN->addIncoming(CountZeros, CallBlock); 2282 2283 // We are explicitly handling the zero case, so we can set the intrinsic's 2284 // undefined zero argument to 'true'. This will also prevent reprocessing the 2285 // intrinsic; we only despeculate when a zero input is defined. 2286 CountZeros->setArgOperand(1, Builder.getTrue()); 2287 ModifiedDT = ModifyDT::ModifyBBDT; 2288 return true; 2289 } 2290 2291 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) { 2292 BasicBlock *BB = CI->getParent(); 2293 2294 // Lower inline assembly if we can. 2295 // If we found an inline asm expession, and if the target knows how to 2296 // lower it to normal LLVM code, do so now. 2297 if (CI->isInlineAsm()) { 2298 if (TLI->ExpandInlineAsm(CI)) { 2299 // Avoid invalidating the iterator. 2300 CurInstIterator = BB->begin(); 2301 // Avoid processing instructions out of order, which could cause 2302 // reuse before a value is defined. 2303 SunkAddrs.clear(); 2304 return true; 2305 } 2306 // Sink address computing for memory operands into the block. 2307 if (optimizeInlineAsmInst(CI)) 2308 return true; 2309 } 2310 2311 // Align the pointer arguments to this call if the target thinks it's a good 2312 // idea 2313 unsigned MinSize; 2314 Align PrefAlign; 2315 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2316 for (auto &Arg : CI->args()) { 2317 // We want to align both objects whose address is used directly and 2318 // objects whose address is used in casts and GEPs, though it only makes 2319 // sense for GEPs if the offset is a multiple of the desired alignment and 2320 // if size - offset meets the size threshold. 2321 if (!Arg->getType()->isPointerTy()) 2322 continue; 2323 APInt Offset(DL->getIndexSizeInBits( 2324 cast<PointerType>(Arg->getType())->getAddressSpace()), 2325 0); 2326 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2327 uint64_t Offset2 = Offset.getLimitedValue(); 2328 if (!isAligned(PrefAlign, Offset2)) 2329 continue; 2330 AllocaInst *AI; 2331 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign && 2332 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2333 AI->setAlignment(PrefAlign); 2334 // Global variables can only be aligned if they are defined in this 2335 // object (i.e. they are uniquely initialized in this object), and 2336 // over-aligning global variables that have an explicit section is 2337 // forbidden. 2338 GlobalVariable *GV; 2339 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2340 GV->getPointerAlignment(*DL) < PrefAlign && 2341 DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) 2342 GV->setAlignment(PrefAlign); 2343 } 2344 } 2345 // If this is a memcpy (or similar) then we may be able to improve the 2346 // alignment. 2347 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2348 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2349 MaybeAlign MIDestAlign = MI->getDestAlign(); 2350 if (!MIDestAlign || DestAlign > *MIDestAlign) 2351 MI->setDestAlignment(DestAlign); 2352 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2353 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2354 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2355 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2356 MTI->setSourceAlignment(SrcAlign); 2357 } 2358 } 2359 2360 // If we have a cold call site, try to sink addressing computation into the 2361 // cold block. This interacts with our handling for loads and stores to 2362 // ensure that we can fold all uses of a potential addressing computation 2363 // into their uses. TODO: generalize this to work over profiling data 2364 if (CI->hasFnAttr(Attribute::Cold) && !OptSize && 2365 !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2366 for (auto &Arg : CI->args()) { 2367 if (!Arg->getType()->isPointerTy()) 2368 continue; 2369 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2370 if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS)) 2371 return true; 2372 } 2373 2374 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2375 if (II) { 2376 switch (II->getIntrinsicID()) { 2377 default: 2378 break; 2379 case Intrinsic::assume: 2380 llvm_unreachable("llvm.assume should have been removed already"); 2381 case Intrinsic::experimental_widenable_condition: { 2382 // Give up on future widening oppurtunties so that we can fold away dead 2383 // paths and merge blocks before going into block-local instruction 2384 // selection. 2385 if (II->use_empty()) { 2386 II->eraseFromParent(); 2387 return true; 2388 } 2389 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2390 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2391 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2392 }); 2393 return true; 2394 } 2395 case Intrinsic::objectsize: 2396 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2397 case Intrinsic::is_constant: 2398 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2399 case Intrinsic::aarch64_stlxr: 2400 case Intrinsic::aarch64_stxr: { 2401 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2402 if (!ExtVal || !ExtVal->hasOneUse() || 2403 ExtVal->getParent() == CI->getParent()) 2404 return false; 2405 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2406 ExtVal->moveBefore(CI); 2407 // Mark this instruction as "inserted by CGP", so that other 2408 // optimizations don't touch it. 2409 InsertedInsts.insert(ExtVal); 2410 return true; 2411 } 2412 2413 case Intrinsic::launder_invariant_group: 2414 case Intrinsic::strip_invariant_group: { 2415 Value *ArgVal = II->getArgOperand(0); 2416 auto it = LargeOffsetGEPMap.find(II); 2417 if (it != LargeOffsetGEPMap.end()) { 2418 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2419 // Make sure not to have to deal with iterator invalidation 2420 // after possibly adding ArgVal to LargeOffsetGEPMap. 2421 auto GEPs = std::move(it->second); 2422 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2423 LargeOffsetGEPMap.erase(II); 2424 } 2425 2426 replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc); 2427 II->eraseFromParent(); 2428 return true; 2429 } 2430 case Intrinsic::cttz: 2431 case Intrinsic::ctlz: 2432 // If counting zeros is expensive, try to avoid it. 2433 return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs, 2434 IsHugeFunc); 2435 case Intrinsic::fshl: 2436 case Intrinsic::fshr: 2437 return optimizeFunnelShift(II); 2438 case Intrinsic::dbg_assign: 2439 case Intrinsic::dbg_value: 2440 return fixupDbgValue(II); 2441 case Intrinsic::masked_gather: 2442 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2443 case Intrinsic::masked_scatter: 2444 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2445 } 2446 2447 SmallVector<Value *, 2> PtrOps; 2448 Type *AccessTy; 2449 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2450 while (!PtrOps.empty()) { 2451 Value *PtrVal = PtrOps.pop_back_val(); 2452 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2453 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2454 return true; 2455 } 2456 } 2457 2458 // From here on out we're working with named functions. 2459 if (!CI->getCalledFunction()) 2460 return false; 2461 2462 // Lower all default uses of _chk calls. This is very similar 2463 // to what InstCombineCalls does, but here we are only lowering calls 2464 // to fortified library functions (e.g. __memcpy_chk) that have the default 2465 // "don't know" as the objectsize. Anything else should be left alone. 2466 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2467 IRBuilder<> Builder(CI); 2468 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2469 replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc); 2470 CI->eraseFromParent(); 2471 return true; 2472 } 2473 2474 return false; 2475 } 2476 2477 /// Look for opportunities to duplicate return instructions to the predecessor 2478 /// to enable tail call optimizations. The case it is currently looking for is: 2479 /// @code 2480 /// bb0: 2481 /// %tmp0 = tail call i32 @f0() 2482 /// br label %return 2483 /// bb1: 2484 /// %tmp1 = tail call i32 @f1() 2485 /// br label %return 2486 /// bb2: 2487 /// %tmp2 = tail call i32 @f2() 2488 /// br label %return 2489 /// return: 2490 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2491 /// ret i32 %retval 2492 /// @endcode 2493 /// 2494 /// => 2495 /// 2496 /// @code 2497 /// bb0: 2498 /// %tmp0 = tail call i32 @f0() 2499 /// ret i32 %tmp0 2500 /// bb1: 2501 /// %tmp1 = tail call i32 @f1() 2502 /// ret i32 %tmp1 2503 /// bb2: 2504 /// %tmp2 = tail call i32 @f2() 2505 /// ret i32 %tmp2 2506 /// @endcode 2507 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, 2508 ModifyDT &ModifiedDT) { 2509 if (!BB->getTerminator()) 2510 return false; 2511 2512 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2513 if (!RetI) 2514 return false; 2515 2516 assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop"); 2517 2518 PHINode *PN = nullptr; 2519 ExtractValueInst *EVI = nullptr; 2520 BitCastInst *BCI = nullptr; 2521 Value *V = RetI->getReturnValue(); 2522 if (V) { 2523 BCI = dyn_cast<BitCastInst>(V); 2524 if (BCI) 2525 V = BCI->getOperand(0); 2526 2527 EVI = dyn_cast<ExtractValueInst>(V); 2528 if (EVI) { 2529 V = EVI->getOperand(0); 2530 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2531 return false; 2532 } 2533 2534 PN = dyn_cast<PHINode>(V); 2535 if (!PN) 2536 return false; 2537 } 2538 2539 if (PN && PN->getParent() != BB) 2540 return false; 2541 2542 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2543 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2544 if (BC && BC->hasOneUse()) 2545 Inst = BC->user_back(); 2546 2547 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2548 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2549 return false; 2550 }; 2551 2552 // Make sure there are no instructions between the first instruction 2553 // and return. 2554 const Instruction *BI = BB->getFirstNonPHI(); 2555 // Skip over debug and the bitcast. 2556 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2557 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2558 BI = BI->getNextNode(); 2559 if (BI != RetI) 2560 return false; 2561 2562 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2563 /// call. 2564 const Function *F = BB->getParent(); 2565 SmallVector<BasicBlock *, 4> TailCallBBs; 2566 if (PN) { 2567 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2568 // Look through bitcasts. 2569 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2570 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2571 BasicBlock *PredBB = PN->getIncomingBlock(I); 2572 // Make sure the phi value is indeed produced by the tail call. 2573 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2574 TLI->mayBeEmittedAsTailCall(CI) && 2575 attributesPermitTailCall(F, CI, RetI, *TLI)) 2576 TailCallBBs.push_back(PredBB); 2577 } 2578 } else { 2579 SmallPtrSet<BasicBlock *, 4> VisitedBBs; 2580 for (BasicBlock *Pred : predecessors(BB)) { 2581 if (!VisitedBBs.insert(Pred).second) 2582 continue; 2583 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2584 CallInst *CI = dyn_cast<CallInst>(I); 2585 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2586 attributesPermitTailCall(F, CI, RetI, *TLI)) 2587 TailCallBBs.push_back(Pred); 2588 } 2589 } 2590 } 2591 2592 bool Changed = false; 2593 for (auto const &TailCallBB : TailCallBBs) { 2594 // Make sure the call instruction is followed by an unconditional branch to 2595 // the return block. 2596 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2597 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2598 continue; 2599 2600 // Duplicate the return into TailCallBB. 2601 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2602 assert(!VerifyBFIUpdates || 2603 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2604 BFI->setBlockFreq(BB, 2605 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB))); 2606 ModifiedDT = ModifyDT::ModifyBBDT; 2607 Changed = true; 2608 ++NumRetsDup; 2609 } 2610 2611 // If we eliminated all predecessors of the block, delete the block now. 2612 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2613 BB->eraseFromParent(); 2614 2615 return Changed; 2616 } 2617 2618 //===----------------------------------------------------------------------===// 2619 // Memory Optimization 2620 //===----------------------------------------------------------------------===// 2621 2622 namespace { 2623 2624 /// This is an extended version of TargetLowering::AddrMode 2625 /// which holds actual Value*'s for register values. 2626 struct ExtAddrMode : public TargetLowering::AddrMode { 2627 Value *BaseReg = nullptr; 2628 Value *ScaledReg = nullptr; 2629 Value *OriginalValue = nullptr; 2630 bool InBounds = true; 2631 2632 enum FieldName { 2633 NoField = 0x00, 2634 BaseRegField = 0x01, 2635 BaseGVField = 0x02, 2636 BaseOffsField = 0x04, 2637 ScaledRegField = 0x08, 2638 ScaleField = 0x10, 2639 MultipleFields = 0xff 2640 }; 2641 2642 ExtAddrMode() = default; 2643 2644 void print(raw_ostream &OS) const; 2645 void dump() const; 2646 2647 FieldName compare(const ExtAddrMode &other) { 2648 // First check that the types are the same on each field, as differing types 2649 // is something we can't cope with later on. 2650 if (BaseReg && other.BaseReg && 2651 BaseReg->getType() != other.BaseReg->getType()) 2652 return MultipleFields; 2653 if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) 2654 return MultipleFields; 2655 if (ScaledReg && other.ScaledReg && 2656 ScaledReg->getType() != other.ScaledReg->getType()) 2657 return MultipleFields; 2658 2659 // Conservatively reject 'inbounds' mismatches. 2660 if (InBounds != other.InBounds) 2661 return MultipleFields; 2662 2663 // Check each field to see if it differs. 2664 unsigned Result = NoField; 2665 if (BaseReg != other.BaseReg) 2666 Result |= BaseRegField; 2667 if (BaseGV != other.BaseGV) 2668 Result |= BaseGVField; 2669 if (BaseOffs != other.BaseOffs) 2670 Result |= BaseOffsField; 2671 if (ScaledReg != other.ScaledReg) 2672 Result |= ScaledRegField; 2673 // Don't count 0 as being a different scale, because that actually means 2674 // unscaled (which will already be counted by having no ScaledReg). 2675 if (Scale && other.Scale && Scale != other.Scale) 2676 Result |= ScaleField; 2677 2678 if (llvm::popcount(Result) > 1) 2679 return MultipleFields; 2680 else 2681 return static_cast<FieldName>(Result); 2682 } 2683 2684 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2685 // with no offset. 2686 bool isTrivial() { 2687 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2688 // trivial if at most one of these terms is nonzero, except that BaseGV and 2689 // BaseReg both being zero actually means a null pointer value, which we 2690 // consider to be 'non-zero' here. 2691 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2692 } 2693 2694 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2695 switch (Field) { 2696 default: 2697 return nullptr; 2698 case BaseRegField: 2699 return BaseReg; 2700 case BaseGVField: 2701 return BaseGV; 2702 case ScaledRegField: 2703 return ScaledReg; 2704 case BaseOffsField: 2705 return ConstantInt::get(IntPtrTy, BaseOffs); 2706 } 2707 } 2708 2709 void SetCombinedField(FieldName Field, Value *V, 2710 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2711 switch (Field) { 2712 default: 2713 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2714 break; 2715 case ExtAddrMode::BaseRegField: 2716 BaseReg = V; 2717 break; 2718 case ExtAddrMode::BaseGVField: 2719 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2720 // in the BaseReg field. 2721 assert(BaseReg == nullptr); 2722 BaseReg = V; 2723 BaseGV = nullptr; 2724 break; 2725 case ExtAddrMode::ScaledRegField: 2726 ScaledReg = V; 2727 // If we have a mix of scaled and unscaled addrmodes then we want scale 2728 // to be the scale and not zero. 2729 if (!Scale) 2730 for (const ExtAddrMode &AM : AddrModes) 2731 if (AM.Scale) { 2732 Scale = AM.Scale; 2733 break; 2734 } 2735 break; 2736 case ExtAddrMode::BaseOffsField: 2737 // The offset is no longer a constant, so it goes in ScaledReg with a 2738 // scale of 1. 2739 assert(ScaledReg == nullptr); 2740 ScaledReg = V; 2741 Scale = 1; 2742 BaseOffs = 0; 2743 break; 2744 } 2745 } 2746 }; 2747 2748 #ifndef NDEBUG 2749 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2750 AM.print(OS); 2751 return OS; 2752 } 2753 #endif 2754 2755 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2756 void ExtAddrMode::print(raw_ostream &OS) const { 2757 bool NeedPlus = false; 2758 OS << "["; 2759 if (InBounds) 2760 OS << "inbounds "; 2761 if (BaseGV) { 2762 OS << "GV:"; 2763 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2764 NeedPlus = true; 2765 } 2766 2767 if (BaseOffs) { 2768 OS << (NeedPlus ? " + " : "") << BaseOffs; 2769 NeedPlus = true; 2770 } 2771 2772 if (BaseReg) { 2773 OS << (NeedPlus ? " + " : "") << "Base:"; 2774 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2775 NeedPlus = true; 2776 } 2777 if (Scale) { 2778 OS << (NeedPlus ? " + " : "") << Scale << "*"; 2779 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2780 } 2781 2782 OS << ']'; 2783 } 2784 2785 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2786 print(dbgs()); 2787 dbgs() << '\n'; 2788 } 2789 #endif 2790 2791 } // end anonymous namespace 2792 2793 namespace { 2794 2795 /// This class provides transaction based operation on the IR. 2796 /// Every change made through this class is recorded in the internal state and 2797 /// can be undone (rollback) until commit is called. 2798 /// CGP does not check if instructions could be speculatively executed when 2799 /// moved. Preserving the original location would pessimize the debugging 2800 /// experience, as well as negatively impact the quality of sample PGO. 2801 class TypePromotionTransaction { 2802 /// This represents the common interface of the individual transaction. 2803 /// Each class implements the logic for doing one specific modification on 2804 /// the IR via the TypePromotionTransaction. 2805 class TypePromotionAction { 2806 protected: 2807 /// The Instruction modified. 2808 Instruction *Inst; 2809 2810 public: 2811 /// Constructor of the action. 2812 /// The constructor performs the related action on the IR. 2813 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2814 2815 virtual ~TypePromotionAction() = default; 2816 2817 /// Undo the modification done by this action. 2818 /// When this method is called, the IR must be in the same state as it was 2819 /// before this action was applied. 2820 /// \pre Undoing the action works if and only if the IR is in the exact same 2821 /// state as it was directly after this action was applied. 2822 virtual void undo() = 0; 2823 2824 /// Advocate every change made by this action. 2825 /// When the results on the IR of the action are to be kept, it is important 2826 /// to call this function, otherwise hidden information may be kept forever. 2827 virtual void commit() { 2828 // Nothing to be done, this action is not doing anything. 2829 } 2830 }; 2831 2832 /// Utility to remember the position of an instruction. 2833 class InsertionHandler { 2834 /// Position of an instruction. 2835 /// Either an instruction: 2836 /// - Is the first in a basic block: BB is used. 2837 /// - Has a previous instruction: PrevInst is used. 2838 union { 2839 Instruction *PrevInst; 2840 BasicBlock *BB; 2841 } Point; 2842 std::optional<DPValue::self_iterator> BeforeDPValue = std::nullopt; 2843 2844 /// Remember whether or not the instruction had a previous instruction. 2845 bool HasPrevInstruction; 2846 2847 public: 2848 /// Record the position of \p Inst. 2849 InsertionHandler(Instruction *Inst) { 2850 HasPrevInstruction = (Inst != &*(Inst->getParent()->begin())); 2851 BasicBlock *BB = Inst->getParent(); 2852 2853 // Record where we would have to re-insert the instruction in the sequence 2854 // of DPValues, if we ended up reinserting. 2855 if (BB->IsNewDbgInfoFormat) 2856 BeforeDPValue = Inst->getDbgReinsertionPosition(); 2857 2858 if (HasPrevInstruction) { 2859 Point.PrevInst = &*std::prev(Inst->getIterator()); 2860 } else { 2861 Point.BB = BB; 2862 } 2863 } 2864 2865 /// Insert \p Inst at the recorded position. 2866 void insert(Instruction *Inst) { 2867 if (HasPrevInstruction) { 2868 if (Inst->getParent()) 2869 Inst->removeFromParent(); 2870 Inst->insertAfter(&*Point.PrevInst); 2871 } else { 2872 BasicBlock::iterator Position = Point.BB->getFirstInsertionPt(); 2873 if (Inst->getParent()) 2874 Inst->moveBefore(*Point.BB, Position); 2875 else 2876 Inst->insertBefore(*Point.BB, Position); 2877 } 2878 2879 Inst->getParent()->reinsertInstInDPValues(Inst, BeforeDPValue); 2880 } 2881 }; 2882 2883 /// Move an instruction before another. 2884 class InstructionMoveBefore : public TypePromotionAction { 2885 /// Original position of the instruction. 2886 InsertionHandler Position; 2887 2888 public: 2889 /// Move \p Inst before \p Before. 2890 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2891 : TypePromotionAction(Inst), Position(Inst) { 2892 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2893 << "\n"); 2894 Inst->moveBefore(Before); 2895 } 2896 2897 /// Move the instruction back to its original position. 2898 void undo() override { 2899 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2900 Position.insert(Inst); 2901 } 2902 }; 2903 2904 /// Set the operand of an instruction with a new value. 2905 class OperandSetter : public TypePromotionAction { 2906 /// Original operand of the instruction. 2907 Value *Origin; 2908 2909 /// Index of the modified instruction. 2910 unsigned Idx; 2911 2912 public: 2913 /// Set \p Idx operand of \p Inst with \p NewVal. 2914 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2915 : TypePromotionAction(Inst), Idx(Idx) { 2916 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2917 << "for:" << *Inst << "\n" 2918 << "with:" << *NewVal << "\n"); 2919 Origin = Inst->getOperand(Idx); 2920 Inst->setOperand(Idx, NewVal); 2921 } 2922 2923 /// Restore the original value of the instruction. 2924 void undo() override { 2925 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2926 << "for: " << *Inst << "\n" 2927 << "with: " << *Origin << "\n"); 2928 Inst->setOperand(Idx, Origin); 2929 } 2930 }; 2931 2932 /// Hide the operands of an instruction. 2933 /// Do as if this instruction was not using any of its operands. 2934 class OperandsHider : public TypePromotionAction { 2935 /// The list of original operands. 2936 SmallVector<Value *, 4> OriginalValues; 2937 2938 public: 2939 /// Remove \p Inst from the uses of the operands of \p Inst. 2940 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2941 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2942 unsigned NumOpnds = Inst->getNumOperands(); 2943 OriginalValues.reserve(NumOpnds); 2944 for (unsigned It = 0; It < NumOpnds; ++It) { 2945 // Save the current operand. 2946 Value *Val = Inst->getOperand(It); 2947 OriginalValues.push_back(Val); 2948 // Set a dummy one. 2949 // We could use OperandSetter here, but that would imply an overhead 2950 // that we are not willing to pay. 2951 Inst->setOperand(It, UndefValue::get(Val->getType())); 2952 } 2953 } 2954 2955 /// Restore the original list of uses. 2956 void undo() override { 2957 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2958 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2959 Inst->setOperand(It, OriginalValues[It]); 2960 } 2961 }; 2962 2963 /// Build a truncate instruction. 2964 class TruncBuilder : public TypePromotionAction { 2965 Value *Val; 2966 2967 public: 2968 /// Build a truncate instruction of \p Opnd producing a \p Ty 2969 /// result. 2970 /// trunc Opnd to Ty. 2971 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2972 IRBuilder<> Builder(Opnd); 2973 Builder.SetCurrentDebugLocation(DebugLoc()); 2974 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2975 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2976 } 2977 2978 /// Get the built value. 2979 Value *getBuiltValue() { return Val; } 2980 2981 /// Remove the built instruction. 2982 void undo() override { 2983 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2984 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2985 IVal->eraseFromParent(); 2986 } 2987 }; 2988 2989 /// Build a sign extension instruction. 2990 class SExtBuilder : public TypePromotionAction { 2991 Value *Val; 2992 2993 public: 2994 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2995 /// result. 2996 /// sext Opnd to Ty. 2997 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2998 : TypePromotionAction(InsertPt) { 2999 IRBuilder<> Builder(InsertPt); 3000 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 3001 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 3002 } 3003 3004 /// Get the built value. 3005 Value *getBuiltValue() { return Val; } 3006 3007 /// Remove the built instruction. 3008 void undo() override { 3009 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 3010 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3011 IVal->eraseFromParent(); 3012 } 3013 }; 3014 3015 /// Build a zero extension instruction. 3016 class ZExtBuilder : public TypePromotionAction { 3017 Value *Val; 3018 3019 public: 3020 /// Build a zero extension instruction of \p Opnd producing a \p Ty 3021 /// result. 3022 /// zext Opnd to Ty. 3023 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 3024 : TypePromotionAction(InsertPt) { 3025 IRBuilder<> Builder(InsertPt); 3026 Builder.SetCurrentDebugLocation(DebugLoc()); 3027 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 3028 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 3029 } 3030 3031 /// Get the built value. 3032 Value *getBuiltValue() { return Val; } 3033 3034 /// Remove the built instruction. 3035 void undo() override { 3036 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 3037 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 3038 IVal->eraseFromParent(); 3039 } 3040 }; 3041 3042 /// Mutate an instruction to another type. 3043 class TypeMutator : public TypePromotionAction { 3044 /// Record the original type. 3045 Type *OrigTy; 3046 3047 public: 3048 /// Mutate the type of \p Inst into \p NewTy. 3049 TypeMutator(Instruction *Inst, Type *NewTy) 3050 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 3051 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 3052 << "\n"); 3053 Inst->mutateType(NewTy); 3054 } 3055 3056 /// Mutate the instruction back to its original type. 3057 void undo() override { 3058 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 3059 << "\n"); 3060 Inst->mutateType(OrigTy); 3061 } 3062 }; 3063 3064 /// Replace the uses of an instruction by another instruction. 3065 class UsesReplacer : public TypePromotionAction { 3066 /// Helper structure to keep track of the replaced uses. 3067 struct InstructionAndIdx { 3068 /// The instruction using the instruction. 3069 Instruction *Inst; 3070 3071 /// The index where this instruction is used for Inst. 3072 unsigned Idx; 3073 3074 InstructionAndIdx(Instruction *Inst, unsigned Idx) 3075 : Inst(Inst), Idx(Idx) {} 3076 }; 3077 3078 /// Keep track of the original uses (pair Instruction, Index). 3079 SmallVector<InstructionAndIdx, 4> OriginalUses; 3080 /// Keep track of the debug users. 3081 SmallVector<DbgValueInst *, 1> DbgValues; 3082 /// And non-instruction debug-users too. 3083 SmallVector<DPValue *, 1> DPValues; 3084 3085 /// Keep track of the new value so that we can undo it by replacing 3086 /// instances of the new value with the original value. 3087 Value *New; 3088 3089 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 3090 3091 public: 3092 /// Replace all the use of \p Inst by \p New. 3093 UsesReplacer(Instruction *Inst, Value *New) 3094 : TypePromotionAction(Inst), New(New) { 3095 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 3096 << "\n"); 3097 // Record the original uses. 3098 for (Use &U : Inst->uses()) { 3099 Instruction *UserI = cast<Instruction>(U.getUser()); 3100 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 3101 } 3102 // Record the debug uses separately. They are not in the instruction's 3103 // use list, but they are replaced by RAUW. 3104 findDbgValues(DbgValues, Inst, &DPValues); 3105 3106 // Now, we can replace the uses. 3107 Inst->replaceAllUsesWith(New); 3108 } 3109 3110 /// Reassign the original uses of Inst to Inst. 3111 void undo() override { 3112 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 3113 for (InstructionAndIdx &Use : OriginalUses) 3114 Use.Inst->setOperand(Use.Idx, Inst); 3115 // RAUW has replaced all original uses with references to the new value, 3116 // including the debug uses. Since we are undoing the replacements, 3117 // the original debug uses must also be reinstated to maintain the 3118 // correctness and utility of debug value instructions. 3119 for (auto *DVI : DbgValues) 3120 DVI->replaceVariableLocationOp(New, Inst); 3121 // Similar story with DPValues, the non-instruction representation of 3122 // dbg.values. 3123 for (DPValue *DPV : DPValues) // tested by transaction-test I'm adding 3124 DPV->replaceVariableLocationOp(New, Inst); 3125 } 3126 }; 3127 3128 /// Remove an instruction from the IR. 3129 class InstructionRemover : public TypePromotionAction { 3130 /// Original position of the instruction. 3131 InsertionHandler Inserter; 3132 3133 /// Helper structure to hide all the link to the instruction. In other 3134 /// words, this helps to do as if the instruction was removed. 3135 OperandsHider Hider; 3136 3137 /// Keep track of the uses replaced, if any. 3138 UsesReplacer *Replacer = nullptr; 3139 3140 /// Keep track of instructions removed. 3141 SetOfInstrs &RemovedInsts; 3142 3143 public: 3144 /// Remove all reference of \p Inst and optionally replace all its 3145 /// uses with New. 3146 /// \p RemovedInsts Keep track of the instructions removed by this Action. 3147 /// \pre If !Inst->use_empty(), then New != nullptr 3148 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 3149 Value *New = nullptr) 3150 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 3151 RemovedInsts(RemovedInsts) { 3152 if (New) 3153 Replacer = new UsesReplacer(Inst, New); 3154 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 3155 RemovedInsts.insert(Inst); 3156 /// The instructions removed here will be freed after completing 3157 /// optimizeBlock() for all blocks as we need to keep track of the 3158 /// removed instructions during promotion. 3159 Inst->removeFromParent(); 3160 } 3161 3162 ~InstructionRemover() override { delete Replacer; } 3163 3164 InstructionRemover &operator=(const InstructionRemover &other) = delete; 3165 InstructionRemover(const InstructionRemover &other) = delete; 3166 3167 /// Resurrect the instruction and reassign it to the proper uses if 3168 /// new value was provided when build this action. 3169 void undo() override { 3170 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 3171 Inserter.insert(Inst); 3172 if (Replacer) 3173 Replacer->undo(); 3174 Hider.undo(); 3175 RemovedInsts.erase(Inst); 3176 } 3177 }; 3178 3179 public: 3180 /// Restoration point. 3181 /// The restoration point is a pointer to an action instead of an iterator 3182 /// because the iterator may be invalidated but not the pointer. 3183 using ConstRestorationPt = const TypePromotionAction *; 3184 3185 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 3186 : RemovedInsts(RemovedInsts) {} 3187 3188 /// Advocate every changes made in that transaction. Return true if any change 3189 /// happen. 3190 bool commit(); 3191 3192 /// Undo all the changes made after the given point. 3193 void rollback(ConstRestorationPt Point); 3194 3195 /// Get the current restoration point. 3196 ConstRestorationPt getRestorationPoint() const; 3197 3198 /// \name API for IR modification with state keeping to support rollback. 3199 /// @{ 3200 /// Same as Instruction::setOperand. 3201 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 3202 3203 /// Same as Instruction::eraseFromParent. 3204 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 3205 3206 /// Same as Value::replaceAllUsesWith. 3207 void replaceAllUsesWith(Instruction *Inst, Value *New); 3208 3209 /// Same as Value::mutateType. 3210 void mutateType(Instruction *Inst, Type *NewTy); 3211 3212 /// Same as IRBuilder::createTrunc. 3213 Value *createTrunc(Instruction *Opnd, Type *Ty); 3214 3215 /// Same as IRBuilder::createSExt. 3216 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3217 3218 /// Same as IRBuilder::createZExt. 3219 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3220 3221 private: 3222 /// The ordered list of actions made so far. 3223 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3224 3225 using CommitPt = 3226 SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3227 3228 SetOfInstrs &RemovedInsts; 3229 }; 3230 3231 } // end anonymous namespace 3232 3233 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3234 Value *NewVal) { 3235 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3236 Inst, Idx, NewVal)); 3237 } 3238 3239 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3240 Value *NewVal) { 3241 Actions.push_back( 3242 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3243 Inst, RemovedInsts, NewVal)); 3244 } 3245 3246 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3247 Value *New) { 3248 Actions.push_back( 3249 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3250 } 3251 3252 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3253 Actions.push_back( 3254 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3255 } 3256 3257 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { 3258 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3259 Value *Val = Ptr->getBuiltValue(); 3260 Actions.push_back(std::move(Ptr)); 3261 return Val; 3262 } 3263 3264 Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, 3265 Type *Ty) { 3266 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3267 Value *Val = Ptr->getBuiltValue(); 3268 Actions.push_back(std::move(Ptr)); 3269 return Val; 3270 } 3271 3272 Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, 3273 Type *Ty) { 3274 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3275 Value *Val = Ptr->getBuiltValue(); 3276 Actions.push_back(std::move(Ptr)); 3277 return Val; 3278 } 3279 3280 TypePromotionTransaction::ConstRestorationPt 3281 TypePromotionTransaction::getRestorationPoint() const { 3282 return !Actions.empty() ? Actions.back().get() : nullptr; 3283 } 3284 3285 bool TypePromotionTransaction::commit() { 3286 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3287 Action->commit(); 3288 bool Modified = !Actions.empty(); 3289 Actions.clear(); 3290 return Modified; 3291 } 3292 3293 void TypePromotionTransaction::rollback( 3294 TypePromotionTransaction::ConstRestorationPt Point) { 3295 while (!Actions.empty() && Point != Actions.back().get()) { 3296 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3297 Curr->undo(); 3298 } 3299 } 3300 3301 namespace { 3302 3303 /// A helper class for matching addressing modes. 3304 /// 3305 /// This encapsulates the logic for matching the target-legal addressing modes. 3306 class AddressingModeMatcher { 3307 SmallVectorImpl<Instruction *> &AddrModeInsts; 3308 const TargetLowering &TLI; 3309 const TargetRegisterInfo &TRI; 3310 const DataLayout &DL; 3311 const LoopInfo &LI; 3312 const std::function<const DominatorTree &()> getDTFn; 3313 3314 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3315 /// the memory instruction that we're computing this address for. 3316 Type *AccessTy; 3317 unsigned AddrSpace; 3318 Instruction *MemoryInst; 3319 3320 /// This is the addressing mode that we're building up. This is 3321 /// part of the return value of this addressing mode matching stuff. 3322 ExtAddrMode &AddrMode; 3323 3324 /// The instructions inserted by other CodeGenPrepare optimizations. 3325 const SetOfInstrs &InsertedInsts; 3326 3327 /// A map from the instructions to their type before promotion. 3328 InstrToOrigTy &PromotedInsts; 3329 3330 /// The ongoing transaction where every action should be registered. 3331 TypePromotionTransaction &TPT; 3332 3333 // A GEP which has too large offset to be folded into the addressing mode. 3334 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3335 3336 /// This is set to true when we should not do profitability checks. 3337 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3338 bool IgnoreProfitability; 3339 3340 /// True if we are optimizing for size. 3341 bool OptSize = false; 3342 3343 ProfileSummaryInfo *PSI; 3344 BlockFrequencyInfo *BFI; 3345 3346 AddressingModeMatcher( 3347 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3348 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3349 const std::function<const DominatorTree &()> getDTFn, Type *AT, 3350 unsigned AS, Instruction *MI, ExtAddrMode &AM, 3351 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3352 TypePromotionTransaction &TPT, 3353 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3354 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3355 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3356 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3357 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3358 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3359 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3360 IgnoreProfitability = false; 3361 } 3362 3363 public: 3364 /// Find the maximal addressing mode that a load/store of V can fold, 3365 /// give an access type of AccessTy. This returns a list of involved 3366 /// instructions in AddrModeInsts. 3367 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3368 /// optimizations. 3369 /// \p PromotedInsts maps the instructions to their type before promotion. 3370 /// \p The ongoing transaction where every action should be registered. 3371 static ExtAddrMode 3372 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3373 SmallVectorImpl<Instruction *> &AddrModeInsts, 3374 const TargetLowering &TLI, const LoopInfo &LI, 3375 const std::function<const DominatorTree &()> getDTFn, 3376 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3377 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3378 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3379 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3380 ExtAddrMode Result; 3381 3382 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn, 3383 AccessTy, AS, MemoryInst, Result, 3384 InsertedInsts, PromotedInsts, TPT, 3385 LargeOffsetGEP, OptSize, PSI, BFI) 3386 .matchAddr(V, 0); 3387 (void)Success; 3388 assert(Success && "Couldn't select *anything*?"); 3389 return Result; 3390 } 3391 3392 private: 3393 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3394 bool matchAddr(Value *Addr, unsigned Depth); 3395 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3396 bool *MovedAway = nullptr); 3397 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3398 ExtAddrMode &AMBefore, 3399 ExtAddrMode &AMAfter); 3400 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3401 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3402 Value *PromotedOperand) const; 3403 }; 3404 3405 class PhiNodeSet; 3406 3407 /// An iterator for PhiNodeSet. 3408 class PhiNodeSetIterator { 3409 PhiNodeSet *const Set; 3410 size_t CurrentIndex = 0; 3411 3412 public: 3413 /// The constructor. Start should point to either a valid element, or be equal 3414 /// to the size of the underlying SmallVector of the PhiNodeSet. 3415 PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start); 3416 PHINode *operator*() const; 3417 PhiNodeSetIterator &operator++(); 3418 bool operator==(const PhiNodeSetIterator &RHS) const; 3419 bool operator!=(const PhiNodeSetIterator &RHS) const; 3420 }; 3421 3422 /// Keeps a set of PHINodes. 3423 /// 3424 /// This is a minimal set implementation for a specific use case: 3425 /// It is very fast when there are very few elements, but also provides good 3426 /// performance when there are many. It is similar to SmallPtrSet, but also 3427 /// provides iteration by insertion order, which is deterministic and stable 3428 /// across runs. It is also similar to SmallSetVector, but provides removing 3429 /// elements in O(1) time. This is achieved by not actually removing the element 3430 /// from the underlying vector, so comes at the cost of using more memory, but 3431 /// that is fine, since PhiNodeSets are used as short lived objects. 3432 class PhiNodeSet { 3433 friend class PhiNodeSetIterator; 3434 3435 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3436 using iterator = PhiNodeSetIterator; 3437 3438 /// Keeps the elements in the order of their insertion in the underlying 3439 /// vector. To achieve constant time removal, it never deletes any element. 3440 SmallVector<PHINode *, 32> NodeList; 3441 3442 /// Keeps the elements in the underlying set implementation. This (and not the 3443 /// NodeList defined above) is the source of truth on whether an element 3444 /// is actually in the collection. 3445 MapType NodeMap; 3446 3447 /// Points to the first valid (not deleted) element when the set is not empty 3448 /// and the value is not zero. Equals to the size of the underlying vector 3449 /// when the set is empty. When the value is 0, as in the beginning, the 3450 /// first element may or may not be valid. 3451 size_t FirstValidElement = 0; 3452 3453 public: 3454 /// Inserts a new element to the collection. 3455 /// \returns true if the element is actually added, i.e. was not in the 3456 /// collection before the operation. 3457 bool insert(PHINode *Ptr) { 3458 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3459 NodeList.push_back(Ptr); 3460 return true; 3461 } 3462 return false; 3463 } 3464 3465 /// Removes the element from the collection. 3466 /// \returns whether the element is actually removed, i.e. was in the 3467 /// collection before the operation. 3468 bool erase(PHINode *Ptr) { 3469 if (NodeMap.erase(Ptr)) { 3470 SkipRemovedElements(FirstValidElement); 3471 return true; 3472 } 3473 return false; 3474 } 3475 3476 /// Removes all elements and clears the collection. 3477 void clear() { 3478 NodeMap.clear(); 3479 NodeList.clear(); 3480 FirstValidElement = 0; 3481 } 3482 3483 /// \returns an iterator that will iterate the elements in the order of 3484 /// insertion. 3485 iterator begin() { 3486 if (FirstValidElement == 0) 3487 SkipRemovedElements(FirstValidElement); 3488 return PhiNodeSetIterator(this, FirstValidElement); 3489 } 3490 3491 /// \returns an iterator that points to the end of the collection. 3492 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3493 3494 /// Returns the number of elements in the collection. 3495 size_t size() const { return NodeMap.size(); } 3496 3497 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3498 size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); } 3499 3500 private: 3501 /// Updates the CurrentIndex so that it will point to a valid element. 3502 /// 3503 /// If the element of NodeList at CurrentIndex is valid, it does not 3504 /// change it. If there are no more valid elements, it updates CurrentIndex 3505 /// to point to the end of the NodeList. 3506 void SkipRemovedElements(size_t &CurrentIndex) { 3507 while (CurrentIndex < NodeList.size()) { 3508 auto it = NodeMap.find(NodeList[CurrentIndex]); 3509 // If the element has been deleted and added again later, NodeMap will 3510 // point to a different index, so CurrentIndex will still be invalid. 3511 if (it != NodeMap.end() && it->second == CurrentIndex) 3512 break; 3513 ++CurrentIndex; 3514 } 3515 } 3516 }; 3517 3518 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3519 : Set(Set), CurrentIndex(Start) {} 3520 3521 PHINode *PhiNodeSetIterator::operator*() const { 3522 assert(CurrentIndex < Set->NodeList.size() && 3523 "PhiNodeSet access out of range"); 3524 return Set->NodeList[CurrentIndex]; 3525 } 3526 3527 PhiNodeSetIterator &PhiNodeSetIterator::operator++() { 3528 assert(CurrentIndex < Set->NodeList.size() && 3529 "PhiNodeSet access out of range"); 3530 ++CurrentIndex; 3531 Set->SkipRemovedElements(CurrentIndex); 3532 return *this; 3533 } 3534 3535 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3536 return CurrentIndex == RHS.CurrentIndex; 3537 } 3538 3539 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3540 return !((*this) == RHS); 3541 } 3542 3543 /// Keep track of simplification of Phi nodes. 3544 /// Accept the set of all phi nodes and erase phi node from this set 3545 /// if it is simplified. 3546 class SimplificationTracker { 3547 DenseMap<Value *, Value *> Storage; 3548 const SimplifyQuery &SQ; 3549 // Tracks newly created Phi nodes. The elements are iterated by insertion 3550 // order. 3551 PhiNodeSet AllPhiNodes; 3552 // Tracks newly created Select nodes. 3553 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3554 3555 public: 3556 SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} 3557 3558 Value *Get(Value *V) { 3559 do { 3560 auto SV = Storage.find(V); 3561 if (SV == Storage.end()) 3562 return V; 3563 V = SV->second; 3564 } while (true); 3565 } 3566 3567 Value *Simplify(Value *Val) { 3568 SmallVector<Value *, 32> WorkList; 3569 SmallPtrSet<Value *, 32> Visited; 3570 WorkList.push_back(Val); 3571 while (!WorkList.empty()) { 3572 auto *P = WorkList.pop_back_val(); 3573 if (!Visited.insert(P).second) 3574 continue; 3575 if (auto *PI = dyn_cast<Instruction>(P)) 3576 if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) { 3577 for (auto *U : PI->users()) 3578 WorkList.push_back(cast<Value>(U)); 3579 Put(PI, V); 3580 PI->replaceAllUsesWith(V); 3581 if (auto *PHI = dyn_cast<PHINode>(PI)) 3582 AllPhiNodes.erase(PHI); 3583 if (auto *Select = dyn_cast<SelectInst>(PI)) 3584 AllSelectNodes.erase(Select); 3585 PI->eraseFromParent(); 3586 } 3587 } 3588 return Get(Val); 3589 } 3590 3591 void Put(Value *From, Value *To) { Storage.insert({From, To}); } 3592 3593 void ReplacePhi(PHINode *From, PHINode *To) { 3594 Value *OldReplacement = Get(From); 3595 while (OldReplacement != From) { 3596 From = To; 3597 To = dyn_cast<PHINode>(OldReplacement); 3598 OldReplacement = Get(From); 3599 } 3600 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3601 Put(From, To); 3602 From->replaceAllUsesWith(To); 3603 AllPhiNodes.erase(From); 3604 From->eraseFromParent(); 3605 } 3606 3607 PhiNodeSet &newPhiNodes() { return AllPhiNodes; } 3608 3609 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3610 3611 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3612 3613 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3614 3615 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3616 3617 void destroyNewNodes(Type *CommonType) { 3618 // For safe erasing, replace the uses with dummy value first. 3619 auto *Dummy = PoisonValue::get(CommonType); 3620 for (auto *I : AllPhiNodes) { 3621 I->replaceAllUsesWith(Dummy); 3622 I->eraseFromParent(); 3623 } 3624 AllPhiNodes.clear(); 3625 for (auto *I : AllSelectNodes) { 3626 I->replaceAllUsesWith(Dummy); 3627 I->eraseFromParent(); 3628 } 3629 AllSelectNodes.clear(); 3630 } 3631 }; 3632 3633 /// A helper class for combining addressing modes. 3634 class AddressingModeCombiner { 3635 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3636 typedef std::pair<PHINode *, PHINode *> PHIPair; 3637 3638 private: 3639 /// The addressing modes we've collected. 3640 SmallVector<ExtAddrMode, 16> AddrModes; 3641 3642 /// The field in which the AddrModes differ, when we have more than one. 3643 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3644 3645 /// Are the AddrModes that we have all just equal to their original values? 3646 bool AllAddrModesTrivial = true; 3647 3648 /// Common Type for all different fields in addressing modes. 3649 Type *CommonType = nullptr; 3650 3651 /// SimplifyQuery for simplifyInstruction utility. 3652 const SimplifyQuery &SQ; 3653 3654 /// Original Address. 3655 Value *Original; 3656 3657 /// Common value among addresses 3658 Value *CommonValue = nullptr; 3659 3660 public: 3661 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3662 : SQ(_SQ), Original(OriginalValue) {} 3663 3664 ~AddressingModeCombiner() { eraseCommonValueIfDead(); } 3665 3666 /// Get the combined AddrMode 3667 const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } 3668 3669 /// Add a new AddrMode if it's compatible with the AddrModes we already 3670 /// have. 3671 /// \return True iff we succeeded in doing so. 3672 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3673 // Take note of if we have any non-trivial AddrModes, as we need to detect 3674 // when all AddrModes are trivial as then we would introduce a phi or select 3675 // which just duplicates what's already there. 3676 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3677 3678 // If this is the first addrmode then everything is fine. 3679 if (AddrModes.empty()) { 3680 AddrModes.emplace_back(NewAddrMode); 3681 return true; 3682 } 3683 3684 // Figure out how different this is from the other address modes, which we 3685 // can do just by comparing against the first one given that we only care 3686 // about the cumulative difference. 3687 ExtAddrMode::FieldName ThisDifferentField = 3688 AddrModes[0].compare(NewAddrMode); 3689 if (DifferentField == ExtAddrMode::NoField) 3690 DifferentField = ThisDifferentField; 3691 else if (DifferentField != ThisDifferentField) 3692 DifferentField = ExtAddrMode::MultipleFields; 3693 3694 // If NewAddrMode differs in more than one dimension we cannot handle it. 3695 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3696 3697 // If Scale Field is different then we reject. 3698 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3699 3700 // We also must reject the case when base offset is different and 3701 // scale reg is not null, we cannot handle this case due to merge of 3702 // different offsets will be used as ScaleReg. 3703 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3704 !NewAddrMode.ScaledReg); 3705 3706 // We also must reject the case when GV is different and BaseReg installed 3707 // due to we want to use base reg as a merge of GV values. 3708 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3709 !NewAddrMode.HasBaseReg); 3710 3711 // Even if NewAddMode is the same we still need to collect it due to 3712 // original value is different. And later we will need all original values 3713 // as anchors during finding the common Phi node. 3714 if (CanHandle) 3715 AddrModes.emplace_back(NewAddrMode); 3716 else 3717 AddrModes.clear(); 3718 3719 return CanHandle; 3720 } 3721 3722 /// Combine the addressing modes we've collected into a single 3723 /// addressing mode. 3724 /// \return True iff we successfully combined them or we only had one so 3725 /// didn't need to combine them anyway. 3726 bool combineAddrModes() { 3727 // If we have no AddrModes then they can't be combined. 3728 if (AddrModes.size() == 0) 3729 return false; 3730 3731 // A single AddrMode can trivially be combined. 3732 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3733 return true; 3734 3735 // If the AddrModes we collected are all just equal to the value they are 3736 // derived from then combining them wouldn't do anything useful. 3737 if (AllAddrModesTrivial) 3738 return false; 3739 3740 if (!addrModeCombiningAllowed()) 3741 return false; 3742 3743 // Build a map between <original value, basic block where we saw it> to 3744 // value of base register. 3745 // Bail out if there is no common type. 3746 FoldAddrToValueMapping Map; 3747 if (!initializeMap(Map)) 3748 return false; 3749 3750 CommonValue = findCommon(Map); 3751 if (CommonValue) 3752 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3753 return CommonValue != nullptr; 3754 } 3755 3756 private: 3757 /// `CommonValue` may be a placeholder inserted by us. 3758 /// If the placeholder is not used, we should remove this dead instruction. 3759 void eraseCommonValueIfDead() { 3760 if (CommonValue && CommonValue->getNumUses() == 0) 3761 if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue)) 3762 CommonInst->eraseFromParent(); 3763 } 3764 3765 /// Initialize Map with anchor values. For address seen 3766 /// we set the value of different field saw in this address. 3767 /// At the same time we find a common type for different field we will 3768 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3769 /// Return false if there is no common type found. 3770 bool initializeMap(FoldAddrToValueMapping &Map) { 3771 // Keep track of keys where the value is null. We will need to replace it 3772 // with constant null when we know the common type. 3773 SmallVector<Value *, 2> NullValue; 3774 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3775 for (auto &AM : AddrModes) { 3776 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3777 if (DV) { 3778 auto *Type = DV->getType(); 3779 if (CommonType && CommonType != Type) 3780 return false; 3781 CommonType = Type; 3782 Map[AM.OriginalValue] = DV; 3783 } else { 3784 NullValue.push_back(AM.OriginalValue); 3785 } 3786 } 3787 assert(CommonType && "At least one non-null value must be!"); 3788 for (auto *V : NullValue) 3789 Map[V] = Constant::getNullValue(CommonType); 3790 return true; 3791 } 3792 3793 /// We have mapping between value A and other value B where B was a field in 3794 /// addressing mode represented by A. Also we have an original value C 3795 /// representing an address we start with. Traversing from C through phi and 3796 /// selects we ended up with A's in a map. This utility function tries to find 3797 /// a value V which is a field in addressing mode C and traversing through phi 3798 /// nodes and selects we will end up in corresponded values B in a map. 3799 /// The utility will create a new Phi/Selects if needed. 3800 // The simple example looks as follows: 3801 // BB1: 3802 // p1 = b1 + 40 3803 // br cond BB2, BB3 3804 // BB2: 3805 // p2 = b2 + 40 3806 // br BB3 3807 // BB3: 3808 // p = phi [p1, BB1], [p2, BB2] 3809 // v = load p 3810 // Map is 3811 // p1 -> b1 3812 // p2 -> b2 3813 // Request is 3814 // p -> ? 3815 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3816 Value *findCommon(FoldAddrToValueMapping &Map) { 3817 // Tracks the simplification of newly created phi nodes. The reason we use 3818 // this mapping is because we will add new created Phi nodes in AddrToBase. 3819 // Simplification of Phi nodes is recursive, so some Phi node may 3820 // be simplified after we added it to AddrToBase. In reality this 3821 // simplification is possible only if original phi/selects were not 3822 // simplified yet. 3823 // Using this mapping we can find the current value in AddrToBase. 3824 SimplificationTracker ST(SQ); 3825 3826 // First step, DFS to create PHI nodes for all intermediate blocks. 3827 // Also fill traverse order for the second step. 3828 SmallVector<Value *, 32> TraverseOrder; 3829 InsertPlaceholders(Map, TraverseOrder, ST); 3830 3831 // Second Step, fill new nodes by merged values and simplify if possible. 3832 FillPlaceholders(Map, TraverseOrder, ST); 3833 3834 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3835 ST.destroyNewNodes(CommonType); 3836 return nullptr; 3837 } 3838 3839 // Now we'd like to match New Phi nodes to existed ones. 3840 unsigned PhiNotMatchedCount = 0; 3841 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3842 ST.destroyNewNodes(CommonType); 3843 return nullptr; 3844 } 3845 3846 auto *Result = ST.Get(Map.find(Original)->second); 3847 if (Result) { 3848 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3849 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3850 } 3851 return Result; 3852 } 3853 3854 /// Try to match PHI node to Candidate. 3855 /// Matcher tracks the matched Phi nodes. 3856 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3857 SmallSetVector<PHIPair, 8> &Matcher, 3858 PhiNodeSet &PhiNodesToMatch) { 3859 SmallVector<PHIPair, 8> WorkList; 3860 Matcher.insert({PHI, Candidate}); 3861 SmallSet<PHINode *, 8> MatchedPHIs; 3862 MatchedPHIs.insert(PHI); 3863 WorkList.push_back({PHI, Candidate}); 3864 SmallSet<PHIPair, 8> Visited; 3865 while (!WorkList.empty()) { 3866 auto Item = WorkList.pop_back_val(); 3867 if (!Visited.insert(Item).second) 3868 continue; 3869 // We iterate over all incoming values to Phi to compare them. 3870 // If values are different and both of them Phi and the first one is a 3871 // Phi we added (subject to match) and both of them is in the same basic 3872 // block then we can match our pair if values match. So we state that 3873 // these values match and add it to work list to verify that. 3874 for (auto *B : Item.first->blocks()) { 3875 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3876 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3877 if (FirstValue == SecondValue) 3878 continue; 3879 3880 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3881 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3882 3883 // One of them is not Phi or 3884 // The first one is not Phi node from the set we'd like to match or 3885 // Phi nodes from different basic blocks then 3886 // we will not be able to match. 3887 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3888 FirstPhi->getParent() != SecondPhi->getParent()) 3889 return false; 3890 3891 // If we already matched them then continue. 3892 if (Matcher.count({FirstPhi, SecondPhi})) 3893 continue; 3894 // So the values are different and does not match. So we need them to 3895 // match. (But we register no more than one match per PHI node, so that 3896 // we won't later try to replace them twice.) 3897 if (MatchedPHIs.insert(FirstPhi).second) 3898 Matcher.insert({FirstPhi, SecondPhi}); 3899 // But me must check it. 3900 WorkList.push_back({FirstPhi, SecondPhi}); 3901 } 3902 } 3903 return true; 3904 } 3905 3906 /// For the given set of PHI nodes (in the SimplificationTracker) try 3907 /// to find their equivalents. 3908 /// Returns false if this matching fails and creation of new Phi is disabled. 3909 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3910 unsigned &PhiNotMatchedCount) { 3911 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3912 // order, so the replacements (ReplacePhi) are also done in a deterministic 3913 // order. 3914 SmallSetVector<PHIPair, 8> Matched; 3915 SmallPtrSet<PHINode *, 8> WillNotMatch; 3916 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3917 while (PhiNodesToMatch.size()) { 3918 PHINode *PHI = *PhiNodesToMatch.begin(); 3919 3920 // Add us, if no Phi nodes in the basic block we do not match. 3921 WillNotMatch.clear(); 3922 WillNotMatch.insert(PHI); 3923 3924 // Traverse all Phis until we found equivalent or fail to do that. 3925 bool IsMatched = false; 3926 for (auto &P : PHI->getParent()->phis()) { 3927 // Skip new Phi nodes. 3928 if (PhiNodesToMatch.count(&P)) 3929 continue; 3930 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3931 break; 3932 // If it does not match, collect all Phi nodes from matcher. 3933 // if we end up with no match, them all these Phi nodes will not match 3934 // later. 3935 for (auto M : Matched) 3936 WillNotMatch.insert(M.first); 3937 Matched.clear(); 3938 } 3939 if (IsMatched) { 3940 // Replace all matched values and erase them. 3941 for (auto MV : Matched) 3942 ST.ReplacePhi(MV.first, MV.second); 3943 Matched.clear(); 3944 continue; 3945 } 3946 // If we are not allowed to create new nodes then bail out. 3947 if (!AllowNewPhiNodes) 3948 return false; 3949 // Just remove all seen values in matcher. They will not match anything. 3950 PhiNotMatchedCount += WillNotMatch.size(); 3951 for (auto *P : WillNotMatch) 3952 PhiNodesToMatch.erase(P); 3953 } 3954 return true; 3955 } 3956 /// Fill the placeholders with values from predecessors and simplify them. 3957 void FillPlaceholders(FoldAddrToValueMapping &Map, 3958 SmallVectorImpl<Value *> &TraverseOrder, 3959 SimplificationTracker &ST) { 3960 while (!TraverseOrder.empty()) { 3961 Value *Current = TraverseOrder.pop_back_val(); 3962 assert(Map.contains(Current) && "No node to fill!!!"); 3963 Value *V = Map[Current]; 3964 3965 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3966 // CurrentValue also must be Select. 3967 auto *CurrentSelect = cast<SelectInst>(Current); 3968 auto *TrueValue = CurrentSelect->getTrueValue(); 3969 assert(Map.contains(TrueValue) && "No True Value!"); 3970 Select->setTrueValue(ST.Get(Map[TrueValue])); 3971 auto *FalseValue = CurrentSelect->getFalseValue(); 3972 assert(Map.contains(FalseValue) && "No False Value!"); 3973 Select->setFalseValue(ST.Get(Map[FalseValue])); 3974 } else { 3975 // Must be a Phi node then. 3976 auto *PHI = cast<PHINode>(V); 3977 // Fill the Phi node with values from predecessors. 3978 for (auto *B : predecessors(PHI->getParent())) { 3979 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3980 assert(Map.contains(PV) && "No predecessor Value!"); 3981 PHI->addIncoming(ST.Get(Map[PV]), B); 3982 } 3983 } 3984 Map[Current] = ST.Simplify(V); 3985 } 3986 } 3987 3988 /// Starting from original value recursively iterates over def-use chain up to 3989 /// known ending values represented in a map. For each traversed phi/select 3990 /// inserts a placeholder Phi or Select. 3991 /// Reports all new created Phi/Select nodes by adding them to set. 3992 /// Also reports and order in what values have been traversed. 3993 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3994 SmallVectorImpl<Value *> &TraverseOrder, 3995 SimplificationTracker &ST) { 3996 SmallVector<Value *, 32> Worklist; 3997 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3998 "Address must be a Phi or Select node"); 3999 auto *Dummy = PoisonValue::get(CommonType); 4000 Worklist.push_back(Original); 4001 while (!Worklist.empty()) { 4002 Value *Current = Worklist.pop_back_val(); 4003 // if it is already visited or it is an ending value then skip it. 4004 if (Map.contains(Current)) 4005 continue; 4006 TraverseOrder.push_back(Current); 4007 4008 // CurrentValue must be a Phi node or select. All others must be covered 4009 // by anchors. 4010 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 4011 // Is it OK to get metadata from OrigSelect?! 4012 // Create a Select placeholder with dummy value. 4013 SelectInst *Select = SelectInst::Create( 4014 CurrentSelect->getCondition(), Dummy, Dummy, 4015 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 4016 Map[Current] = Select; 4017 ST.insertNewSelect(Select); 4018 // We are interested in True and False values. 4019 Worklist.push_back(CurrentSelect->getTrueValue()); 4020 Worklist.push_back(CurrentSelect->getFalseValue()); 4021 } else { 4022 // It must be a Phi node then. 4023 PHINode *CurrentPhi = cast<PHINode>(Current); 4024 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 4025 PHINode *PHI = 4026 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 4027 Map[Current] = PHI; 4028 ST.insertNewPhi(PHI); 4029 append_range(Worklist, CurrentPhi->incoming_values()); 4030 } 4031 } 4032 } 4033 4034 bool addrModeCombiningAllowed() { 4035 if (DisableComplexAddrModes) 4036 return false; 4037 switch (DifferentField) { 4038 default: 4039 return false; 4040 case ExtAddrMode::BaseRegField: 4041 return AddrSinkCombineBaseReg; 4042 case ExtAddrMode::BaseGVField: 4043 return AddrSinkCombineBaseGV; 4044 case ExtAddrMode::BaseOffsField: 4045 return AddrSinkCombineBaseOffs; 4046 case ExtAddrMode::ScaledRegField: 4047 return AddrSinkCombineScaledReg; 4048 } 4049 } 4050 }; 4051 } // end anonymous namespace 4052 4053 /// Try adding ScaleReg*Scale to the current addressing mode. 4054 /// Return true and update AddrMode if this addr mode is legal for the target, 4055 /// false if not. 4056 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 4057 unsigned Depth) { 4058 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 4059 // mode. Just process that directly. 4060 if (Scale == 1) 4061 return matchAddr(ScaleReg, Depth); 4062 4063 // If the scale is 0, it takes nothing to add this. 4064 if (Scale == 0) 4065 return true; 4066 4067 // If we already have a scale of this value, we can add to it, otherwise, we 4068 // need an available scale field. 4069 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 4070 return false; 4071 4072 ExtAddrMode TestAddrMode = AddrMode; 4073 4074 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 4075 // [A+B + A*7] -> [B+A*8]. 4076 TestAddrMode.Scale += Scale; 4077 TestAddrMode.ScaledReg = ScaleReg; 4078 4079 // If the new address isn't legal, bail out. 4080 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 4081 return false; 4082 4083 // It was legal, so commit it. 4084 AddrMode = TestAddrMode; 4085 4086 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 4087 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 4088 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 4089 // go any further: we can reuse it and cannot eliminate it. 4090 ConstantInt *CI = nullptr; 4091 Value *AddLHS = nullptr; 4092 if (isa<Instruction>(ScaleReg) && // not a constant expr. 4093 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 4094 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 4095 TestAddrMode.InBounds = false; 4096 TestAddrMode.ScaledReg = AddLHS; 4097 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 4098 4099 // If this addressing mode is legal, commit it and remember that we folded 4100 // this instruction. 4101 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 4102 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 4103 AddrMode = TestAddrMode; 4104 return true; 4105 } 4106 // Restore status quo. 4107 TestAddrMode = AddrMode; 4108 } 4109 4110 // If this is an add recurrence with a constant step, return the increment 4111 // instruction and the canonicalized step. 4112 auto GetConstantStep = 4113 [this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> { 4114 auto *PN = dyn_cast<PHINode>(V); 4115 if (!PN) 4116 return std::nullopt; 4117 auto IVInc = getIVIncrement(PN, &LI); 4118 if (!IVInc) 4119 return std::nullopt; 4120 // TODO: The result of the intrinsics above is two-complement. However when 4121 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 4122 // If it has nuw or nsw flags, we need to make sure that these flags are 4123 // inferrable at the point of memory instruction. Otherwise we are replacing 4124 // well-defined two-complement computation with poison. Currently, to avoid 4125 // potentially complex analysis needed to prove this, we reject such cases. 4126 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 4127 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 4128 return std::nullopt; 4129 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 4130 return std::make_pair(IVInc->first, ConstantStep->getValue()); 4131 return std::nullopt; 4132 }; 4133 4134 // Try to account for the following special case: 4135 // 1. ScaleReg is an inductive variable; 4136 // 2. We use it with non-zero offset; 4137 // 3. IV's increment is available at the point of memory instruction. 4138 // 4139 // In this case, we may reuse the IV increment instead of the IV Phi to 4140 // achieve the following advantages: 4141 // 1. If IV step matches the offset, we will have no need in the offset; 4142 // 2. Even if they don't match, we will reduce the overlap of living IV 4143 // and IV increment, that will potentially lead to better register 4144 // assignment. 4145 if (AddrMode.BaseOffs) { 4146 if (auto IVStep = GetConstantStep(ScaleReg)) { 4147 Instruction *IVInc = IVStep->first; 4148 // The following assert is important to ensure a lack of infinite loops. 4149 // This transforms is (intentionally) the inverse of the one just above. 4150 // If they don't agree on the definition of an increment, we'd alternate 4151 // back and forth indefinitely. 4152 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 4153 APInt Step = IVStep->second; 4154 APInt Offset = Step * AddrMode.Scale; 4155 if (Offset.isSignedIntN(64)) { 4156 TestAddrMode.InBounds = false; 4157 TestAddrMode.ScaledReg = IVInc; 4158 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 4159 // If this addressing mode is legal, commit it.. 4160 // (Note that we defer the (expensive) domtree base legality check 4161 // to the very last possible point.) 4162 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 4163 getDTFn().dominates(IVInc, MemoryInst)) { 4164 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 4165 AddrMode = TestAddrMode; 4166 return true; 4167 } 4168 // Restore status quo. 4169 TestAddrMode = AddrMode; 4170 } 4171 } 4172 } 4173 4174 // Otherwise, just return what we have. 4175 return true; 4176 } 4177 4178 /// This is a little filter, which returns true if an addressing computation 4179 /// involving I might be folded into a load/store accessing it. 4180 /// This doesn't need to be perfect, but needs to accept at least 4181 /// the set of instructions that MatchOperationAddr can. 4182 static bool MightBeFoldableInst(Instruction *I) { 4183 switch (I->getOpcode()) { 4184 case Instruction::BitCast: 4185 case Instruction::AddrSpaceCast: 4186 // Don't touch identity bitcasts. 4187 if (I->getType() == I->getOperand(0)->getType()) 4188 return false; 4189 return I->getType()->isIntOrPtrTy(); 4190 case Instruction::PtrToInt: 4191 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4192 return true; 4193 case Instruction::IntToPtr: 4194 // We know the input is intptr_t, so this is foldable. 4195 return true; 4196 case Instruction::Add: 4197 return true; 4198 case Instruction::Mul: 4199 case Instruction::Shl: 4200 // Can only handle X*C and X << C. 4201 return isa<ConstantInt>(I->getOperand(1)); 4202 case Instruction::GetElementPtr: 4203 return true; 4204 default: 4205 return false; 4206 } 4207 } 4208 4209 /// Check whether or not \p Val is a legal instruction for \p TLI. 4210 /// \note \p Val is assumed to be the product of some type promotion. 4211 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4212 /// to be legal, as the non-promoted value would have had the same state. 4213 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4214 const DataLayout &DL, Value *Val) { 4215 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4216 if (!PromotedInst) 4217 return false; 4218 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4219 // If the ISDOpcode is undefined, it was undefined before the promotion. 4220 if (!ISDOpcode) 4221 return true; 4222 // Otherwise, check if the promoted instruction is legal or not. 4223 return TLI.isOperationLegalOrCustom( 4224 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4225 } 4226 4227 namespace { 4228 4229 /// Hepler class to perform type promotion. 4230 class TypePromotionHelper { 4231 /// Utility function to add a promoted instruction \p ExtOpnd to 4232 /// \p PromotedInsts and record the type of extension we have seen. 4233 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4234 Instruction *ExtOpnd, bool IsSExt) { 4235 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4236 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4237 if (It != PromotedInsts.end()) { 4238 // If the new extension is same as original, the information in 4239 // PromotedInsts[ExtOpnd] is still correct. 4240 if (It->second.getInt() == ExtTy) 4241 return; 4242 4243 // Now the new extension is different from old extension, we make 4244 // the type information invalid by setting extension type to 4245 // BothExtension. 4246 ExtTy = BothExtension; 4247 } 4248 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4249 } 4250 4251 /// Utility function to query the original type of instruction \p Opnd 4252 /// with a matched extension type. If the extension doesn't match, we 4253 /// cannot use the information we had on the original type. 4254 /// BothExtension doesn't match any extension type. 4255 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4256 Instruction *Opnd, bool IsSExt) { 4257 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4258 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4259 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4260 return It->second.getPointer(); 4261 return nullptr; 4262 } 4263 4264 /// Utility function to check whether or not a sign or zero extension 4265 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4266 /// either using the operands of \p Inst or promoting \p Inst. 4267 /// The type of the extension is defined by \p IsSExt. 4268 /// In other words, check if: 4269 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4270 /// #1 Promotion applies: 4271 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4272 /// #2 Operand reuses: 4273 /// ext opnd1 to ConsideredExtType. 4274 /// \p PromotedInsts maps the instructions to their type before promotion. 4275 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4276 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4277 4278 /// Utility function to determine if \p OpIdx should be promoted when 4279 /// promoting \p Inst. 4280 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4281 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4282 } 4283 4284 /// Utility function to promote the operand of \p Ext when this 4285 /// operand is a promotable trunc or sext or zext. 4286 /// \p PromotedInsts maps the instructions to their type before promotion. 4287 /// \p CreatedInstsCost[out] contains the cost of all instructions 4288 /// created to promote the operand of Ext. 4289 /// Newly added extensions are inserted in \p Exts. 4290 /// Newly added truncates are inserted in \p Truncs. 4291 /// Should never be called directly. 4292 /// \return The promoted value which is used instead of Ext. 4293 static Value *promoteOperandForTruncAndAnyExt( 4294 Instruction *Ext, TypePromotionTransaction &TPT, 4295 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4296 SmallVectorImpl<Instruction *> *Exts, 4297 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4298 4299 /// Utility function to promote the operand of \p Ext when this 4300 /// operand is promotable and is not a supported trunc or sext. 4301 /// \p PromotedInsts maps the instructions to their type before promotion. 4302 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4303 /// created to promote the operand of Ext. 4304 /// Newly added extensions are inserted in \p Exts. 4305 /// Newly added truncates are inserted in \p Truncs. 4306 /// Should never be called directly. 4307 /// \return The promoted value which is used instead of Ext. 4308 static Value *promoteOperandForOther(Instruction *Ext, 4309 TypePromotionTransaction &TPT, 4310 InstrToOrigTy &PromotedInsts, 4311 unsigned &CreatedInstsCost, 4312 SmallVectorImpl<Instruction *> *Exts, 4313 SmallVectorImpl<Instruction *> *Truncs, 4314 const TargetLowering &TLI, bool IsSExt); 4315 4316 /// \see promoteOperandForOther. 4317 static Value *signExtendOperandForOther( 4318 Instruction *Ext, TypePromotionTransaction &TPT, 4319 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4320 SmallVectorImpl<Instruction *> *Exts, 4321 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4322 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4323 Exts, Truncs, TLI, true); 4324 } 4325 4326 /// \see promoteOperandForOther. 4327 static Value *zeroExtendOperandForOther( 4328 Instruction *Ext, TypePromotionTransaction &TPT, 4329 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4330 SmallVectorImpl<Instruction *> *Exts, 4331 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4332 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4333 Exts, Truncs, TLI, false); 4334 } 4335 4336 public: 4337 /// Type for the utility function that promotes the operand of Ext. 4338 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4339 InstrToOrigTy &PromotedInsts, 4340 unsigned &CreatedInstsCost, 4341 SmallVectorImpl<Instruction *> *Exts, 4342 SmallVectorImpl<Instruction *> *Truncs, 4343 const TargetLowering &TLI); 4344 4345 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4346 /// action to promote the operand of \p Ext instead of using Ext. 4347 /// \return NULL if no promotable action is possible with the current 4348 /// sign extension. 4349 /// \p InsertedInsts keeps track of all the instructions inserted by the 4350 /// other CodeGenPrepare optimizations. This information is important 4351 /// because we do not want to promote these instructions as CodeGenPrepare 4352 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4353 /// \p PromotedInsts maps the instructions to their type before promotion. 4354 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4355 const TargetLowering &TLI, 4356 const InstrToOrigTy &PromotedInsts); 4357 }; 4358 4359 } // end anonymous namespace 4360 4361 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4362 Type *ConsideredExtType, 4363 const InstrToOrigTy &PromotedInsts, 4364 bool IsSExt) { 4365 // The promotion helper does not know how to deal with vector types yet. 4366 // To be able to fix that, we would need to fix the places where we 4367 // statically extend, e.g., constants and such. 4368 if (Inst->getType()->isVectorTy()) 4369 return false; 4370 4371 // We can always get through zext. 4372 if (isa<ZExtInst>(Inst)) 4373 return true; 4374 4375 // sext(sext) is ok too. 4376 if (IsSExt && isa<SExtInst>(Inst)) 4377 return true; 4378 4379 // We can get through binary operator, if it is legal. In other words, the 4380 // binary operator must have a nuw or nsw flag. 4381 if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 4382 if (isa<OverflowingBinaryOperator>(BinOp) && 4383 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4384 (IsSExt && BinOp->hasNoSignedWrap()))) 4385 return true; 4386 4387 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4388 if ((Inst->getOpcode() == Instruction::And || 4389 Inst->getOpcode() == Instruction::Or)) 4390 return true; 4391 4392 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4393 if (Inst->getOpcode() == Instruction::Xor) { 4394 // Make sure it is not a NOT. 4395 if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1))) 4396 if (!Cst->getValue().isAllOnes()) 4397 return true; 4398 } 4399 4400 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4401 // It may change a poisoned value into a regular value, like 4402 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4403 // poisoned value regular value 4404 // It should be OK since undef covers valid value. 4405 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4406 return true; 4407 4408 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4409 // It may change a poisoned value into a regular value, like 4410 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4411 // poisoned value regular value 4412 // It should be OK since undef covers valid value. 4413 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4414 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4415 if (ExtInst->hasOneUse()) { 4416 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4417 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4418 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4419 if (Cst && 4420 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4421 return true; 4422 } 4423 } 4424 } 4425 4426 // Check if we can do the following simplification. 4427 // ext(trunc(opnd)) --> ext(opnd) 4428 if (!isa<TruncInst>(Inst)) 4429 return false; 4430 4431 Value *OpndVal = Inst->getOperand(0); 4432 // Check if we can use this operand in the extension. 4433 // If the type is larger than the result type of the extension, we cannot. 4434 if (!OpndVal->getType()->isIntegerTy() || 4435 OpndVal->getType()->getIntegerBitWidth() > 4436 ConsideredExtType->getIntegerBitWidth()) 4437 return false; 4438 4439 // If the operand of the truncate is not an instruction, we will not have 4440 // any information on the dropped bits. 4441 // (Actually we could for constant but it is not worth the extra logic). 4442 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4443 if (!Opnd) 4444 return false; 4445 4446 // Check if the source of the type is narrow enough. 4447 // I.e., check that trunc just drops extended bits of the same kind of 4448 // the extension. 4449 // #1 get the type of the operand and check the kind of the extended bits. 4450 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4451 if (OpndType) 4452 ; 4453 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4454 OpndType = Opnd->getOperand(0)->getType(); 4455 else 4456 return false; 4457 4458 // #2 check that the truncate just drops extended bits. 4459 return Inst->getType()->getIntegerBitWidth() >= 4460 OpndType->getIntegerBitWidth(); 4461 } 4462 4463 TypePromotionHelper::Action TypePromotionHelper::getAction( 4464 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4465 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4466 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4467 "Unexpected instruction type"); 4468 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4469 Type *ExtTy = Ext->getType(); 4470 bool IsSExt = isa<SExtInst>(Ext); 4471 // If the operand of the extension is not an instruction, we cannot 4472 // get through. 4473 // If it, check we can get through. 4474 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4475 return nullptr; 4476 4477 // Do not promote if the operand has been added by codegenprepare. 4478 // Otherwise, it means we are undoing an optimization that is likely to be 4479 // redone, thus causing potential infinite loop. 4480 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4481 return nullptr; 4482 4483 // SExt or Trunc instructions. 4484 // Return the related handler. 4485 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4486 isa<ZExtInst>(ExtOpnd)) 4487 return promoteOperandForTruncAndAnyExt; 4488 4489 // Regular instruction. 4490 // Abort early if we will have to insert non-free instructions. 4491 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4492 return nullptr; 4493 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4494 } 4495 4496 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4497 Instruction *SExt, TypePromotionTransaction &TPT, 4498 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4499 SmallVectorImpl<Instruction *> *Exts, 4500 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4501 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4502 // get through it and this method should not be called. 4503 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4504 Value *ExtVal = SExt; 4505 bool HasMergedNonFreeExt = false; 4506 if (isa<ZExtInst>(SExtOpnd)) { 4507 // Replace s|zext(zext(opnd)) 4508 // => zext(opnd). 4509 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4510 Value *ZExt = 4511 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4512 TPT.replaceAllUsesWith(SExt, ZExt); 4513 TPT.eraseInstruction(SExt); 4514 ExtVal = ZExt; 4515 } else { 4516 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4517 // => z|sext(opnd). 4518 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4519 } 4520 CreatedInstsCost = 0; 4521 4522 // Remove dead code. 4523 if (SExtOpnd->use_empty()) 4524 TPT.eraseInstruction(SExtOpnd); 4525 4526 // Check if the extension is still needed. 4527 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4528 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4529 if (ExtInst) { 4530 if (Exts) 4531 Exts->push_back(ExtInst); 4532 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4533 } 4534 return ExtVal; 4535 } 4536 4537 // At this point we have: ext ty opnd to ty. 4538 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4539 Value *NextVal = ExtInst->getOperand(0); 4540 TPT.eraseInstruction(ExtInst, NextVal); 4541 return NextVal; 4542 } 4543 4544 Value *TypePromotionHelper::promoteOperandForOther( 4545 Instruction *Ext, TypePromotionTransaction &TPT, 4546 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4547 SmallVectorImpl<Instruction *> *Exts, 4548 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4549 bool IsSExt) { 4550 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4551 // get through it and this method should not be called. 4552 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4553 CreatedInstsCost = 0; 4554 if (!ExtOpnd->hasOneUse()) { 4555 // ExtOpnd will be promoted. 4556 // All its uses, but Ext, will need to use a truncated value of the 4557 // promoted version. 4558 // Create the truncate now. 4559 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4560 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4561 // Insert it just after the definition. 4562 ITrunc->moveAfter(ExtOpnd); 4563 if (Truncs) 4564 Truncs->push_back(ITrunc); 4565 } 4566 4567 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4568 // Restore the operand of Ext (which has been replaced by the previous call 4569 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4570 TPT.setOperand(Ext, 0, ExtOpnd); 4571 } 4572 4573 // Get through the Instruction: 4574 // 1. Update its type. 4575 // 2. Replace the uses of Ext by Inst. 4576 // 3. Extend each operand that needs to be extended. 4577 4578 // Remember the original type of the instruction before promotion. 4579 // This is useful to know that the high bits are sign extended bits. 4580 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4581 // Step #1. 4582 TPT.mutateType(ExtOpnd, Ext->getType()); 4583 // Step #2. 4584 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4585 // Step #3. 4586 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4587 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4588 ++OpIdx) { 4589 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4590 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4591 !shouldExtOperand(ExtOpnd, OpIdx)) { 4592 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4593 continue; 4594 } 4595 // Check if we can statically extend the operand. 4596 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4597 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4598 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4599 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4600 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4601 : Cst->getValue().zext(BitWidth); 4602 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4603 continue; 4604 } 4605 // UndefValue are typed, so we have to statically sign extend them. 4606 if (isa<UndefValue>(Opnd)) { 4607 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4608 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4609 continue; 4610 } 4611 4612 // Otherwise we have to explicitly sign extend the operand. 4613 Value *ValForExtOpnd = IsSExt 4614 ? TPT.createSExt(ExtOpnd, Opnd, Ext->getType()) 4615 : TPT.createZExt(ExtOpnd, Opnd, Ext->getType()); 4616 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4617 Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd); 4618 if (!InstForExtOpnd) 4619 continue; 4620 4621 if (Exts) 4622 Exts->push_back(InstForExtOpnd); 4623 4624 CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd); 4625 } 4626 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4627 TPT.eraseInstruction(Ext); 4628 return ExtOpnd; 4629 } 4630 4631 /// Check whether or not promoting an instruction to a wider type is profitable. 4632 /// \p NewCost gives the cost of extension instructions created by the 4633 /// promotion. 4634 /// \p OldCost gives the cost of extension instructions before the promotion 4635 /// plus the number of instructions that have been 4636 /// matched in the addressing mode the promotion. 4637 /// \p PromotedOperand is the value that has been promoted. 4638 /// \return True if the promotion is profitable, false otherwise. 4639 bool AddressingModeMatcher::isPromotionProfitable( 4640 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4641 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4642 << '\n'); 4643 // The cost of the new extensions is greater than the cost of the 4644 // old extension plus what we folded. 4645 // This is not profitable. 4646 if (NewCost > OldCost) 4647 return false; 4648 if (NewCost < OldCost) 4649 return true; 4650 // The promotion is neutral but it may help folding the sign extension in 4651 // loads for instance. 4652 // Check that we did not create an illegal instruction. 4653 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4654 } 4655 4656 /// Given an instruction or constant expr, see if we can fold the operation 4657 /// into the addressing mode. If so, update the addressing mode and return 4658 /// true, otherwise return false without modifying AddrMode. 4659 /// If \p MovedAway is not NULL, it contains the information of whether or 4660 /// not AddrInst has to be folded into the addressing mode on success. 4661 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4662 /// because it has been moved away. 4663 /// Thus AddrInst must not be added in the matched instructions. 4664 /// This state can happen when AddrInst is a sext, since it may be moved away. 4665 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4666 /// not be referenced anymore. 4667 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4668 unsigned Depth, 4669 bool *MovedAway) { 4670 // Avoid exponential behavior on extremely deep expression trees. 4671 if (Depth >= 5) 4672 return false; 4673 4674 // By default, all matched instructions stay in place. 4675 if (MovedAway) 4676 *MovedAway = false; 4677 4678 switch (Opcode) { 4679 case Instruction::PtrToInt: 4680 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4681 return matchAddr(AddrInst->getOperand(0), Depth); 4682 case Instruction::IntToPtr: { 4683 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4684 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4685 // This inttoptr is a no-op if the integer type is pointer sized. 4686 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4687 return matchAddr(AddrInst->getOperand(0), Depth); 4688 return false; 4689 } 4690 case Instruction::BitCast: 4691 // BitCast is always a noop, and we can handle it as long as it is 4692 // int->int or pointer->pointer (we don't want int<->fp or something). 4693 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4694 // Don't touch identity bitcasts. These were probably put here by LSR, 4695 // and we don't want to mess around with them. Assume it knows what it 4696 // is doing. 4697 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4698 return matchAddr(AddrInst->getOperand(0), Depth); 4699 return false; 4700 case Instruction::AddrSpaceCast: { 4701 unsigned SrcAS = 4702 AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4703 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4704 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4705 return matchAddr(AddrInst->getOperand(0), Depth); 4706 return false; 4707 } 4708 case Instruction::Add: { 4709 // Check to see if we can merge in one operand, then the other. If so, we 4710 // win. 4711 ExtAddrMode BackupAddrMode = AddrMode; 4712 unsigned OldSize = AddrModeInsts.size(); 4713 // Start a transaction at this point. 4714 // The LHS may match but not the RHS. 4715 // Therefore, we need a higher level restoration point to undo partially 4716 // matched operation. 4717 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4718 TPT.getRestorationPoint(); 4719 4720 // Try to match an integer constant second to increase its chance of ending 4721 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`. 4722 int First = 0, Second = 1; 4723 if (isa<ConstantInt>(AddrInst->getOperand(First)) 4724 && !isa<ConstantInt>(AddrInst->getOperand(Second))) 4725 std::swap(First, Second); 4726 AddrMode.InBounds = false; 4727 if (matchAddr(AddrInst->getOperand(First), Depth + 1) && 4728 matchAddr(AddrInst->getOperand(Second), Depth + 1)) 4729 return true; 4730 4731 // Restore the old addr mode info. 4732 AddrMode = BackupAddrMode; 4733 AddrModeInsts.resize(OldSize); 4734 TPT.rollback(LastKnownGood); 4735 4736 // Otherwise this was over-aggressive. Try merging operands in the opposite 4737 // order. 4738 if (matchAddr(AddrInst->getOperand(Second), Depth + 1) && 4739 matchAddr(AddrInst->getOperand(First), Depth + 1)) 4740 return true; 4741 4742 // Otherwise we definitely can't merge the ADD in. 4743 AddrMode = BackupAddrMode; 4744 AddrModeInsts.resize(OldSize); 4745 TPT.rollback(LastKnownGood); 4746 break; 4747 } 4748 // case Instruction::Or: 4749 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4750 // break; 4751 case Instruction::Mul: 4752 case Instruction::Shl: { 4753 // Can only handle X*C and X << C. 4754 AddrMode.InBounds = false; 4755 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4756 if (!RHS || RHS->getBitWidth() > 64) 4757 return false; 4758 int64_t Scale = Opcode == Instruction::Shl 4759 ? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1) 4760 : RHS->getSExtValue(); 4761 4762 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4763 } 4764 case Instruction::GetElementPtr: { 4765 // Scan the GEP. We check it if it contains constant offsets and at most 4766 // one variable offset. 4767 int VariableOperand = -1; 4768 unsigned VariableScale = 0; 4769 4770 int64_t ConstantOffset = 0; 4771 gep_type_iterator GTI = gep_type_begin(AddrInst); 4772 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4773 if (StructType *STy = GTI.getStructTypeOrNull()) { 4774 const StructLayout *SL = DL.getStructLayout(STy); 4775 unsigned Idx = 4776 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4777 ConstantOffset += SL->getElementOffset(Idx); 4778 } else { 4779 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4780 if (TS.isNonZero()) { 4781 // The optimisations below currently only work for fixed offsets. 4782 if (TS.isScalable()) 4783 return false; 4784 int64_t TypeSize = TS.getFixedValue(); 4785 if (ConstantInt *CI = 4786 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4787 const APInt &CVal = CI->getValue(); 4788 if (CVal.getSignificantBits() <= 64) { 4789 ConstantOffset += CVal.getSExtValue() * TypeSize; 4790 continue; 4791 } 4792 } 4793 // We only allow one variable index at the moment. 4794 if (VariableOperand != -1) 4795 return false; 4796 4797 // Remember the variable index. 4798 VariableOperand = i; 4799 VariableScale = TypeSize; 4800 } 4801 } 4802 } 4803 4804 // A common case is for the GEP to only do a constant offset. In this case, 4805 // just add it to the disp field and check validity. 4806 if (VariableOperand == -1) { 4807 AddrMode.BaseOffs += ConstantOffset; 4808 if (matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4809 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4810 AddrMode.InBounds = false; 4811 return true; 4812 } 4813 AddrMode.BaseOffs -= ConstantOffset; 4814 4815 if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4816 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4817 ConstantOffset > 0) { 4818 // Record GEPs with non-zero offsets as candidates for splitting in 4819 // the event that the offset cannot fit into the r+i addressing mode. 4820 // Simple and common case that only one GEP is used in calculating the 4821 // address for the memory access. 4822 Value *Base = AddrInst->getOperand(0); 4823 auto *BaseI = dyn_cast<Instruction>(Base); 4824 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4825 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4826 (BaseI && !isa<CastInst>(BaseI) && 4827 !isa<GetElementPtrInst>(BaseI))) { 4828 // Make sure the parent block allows inserting non-PHI instructions 4829 // before the terminator. 4830 BasicBlock *Parent = BaseI ? BaseI->getParent() 4831 : &GEP->getFunction()->getEntryBlock(); 4832 if (!Parent->getTerminator()->isEHPad()) 4833 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4834 } 4835 } 4836 4837 return false; 4838 } 4839 4840 // Save the valid addressing mode in case we can't match. 4841 ExtAddrMode BackupAddrMode = AddrMode; 4842 unsigned OldSize = AddrModeInsts.size(); 4843 4844 // See if the scale and offset amount is valid for this target. 4845 AddrMode.BaseOffs += ConstantOffset; 4846 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4847 AddrMode.InBounds = false; 4848 4849 // Match the base operand of the GEP. 4850 if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) { 4851 // If it couldn't be matched, just stuff the value in a register. 4852 if (AddrMode.HasBaseReg) { 4853 AddrMode = BackupAddrMode; 4854 AddrModeInsts.resize(OldSize); 4855 return false; 4856 } 4857 AddrMode.HasBaseReg = true; 4858 AddrMode.BaseReg = AddrInst->getOperand(0); 4859 } 4860 4861 // Match the remaining variable portion of the GEP. 4862 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4863 Depth)) { 4864 // If it couldn't be matched, try stuffing the base into a register 4865 // instead of matching it, and retrying the match of the scale. 4866 AddrMode = BackupAddrMode; 4867 AddrModeInsts.resize(OldSize); 4868 if (AddrMode.HasBaseReg) 4869 return false; 4870 AddrMode.HasBaseReg = true; 4871 AddrMode.BaseReg = AddrInst->getOperand(0); 4872 AddrMode.BaseOffs += ConstantOffset; 4873 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4874 VariableScale, Depth)) { 4875 // If even that didn't work, bail. 4876 AddrMode = BackupAddrMode; 4877 AddrModeInsts.resize(OldSize); 4878 return false; 4879 } 4880 } 4881 4882 return true; 4883 } 4884 case Instruction::SExt: 4885 case Instruction::ZExt: { 4886 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4887 if (!Ext) 4888 return false; 4889 4890 // Try to move this ext out of the way of the addressing mode. 4891 // Ask for a method for doing so. 4892 TypePromotionHelper::Action TPH = 4893 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4894 if (!TPH) 4895 return false; 4896 4897 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4898 TPT.getRestorationPoint(); 4899 unsigned CreatedInstsCost = 0; 4900 unsigned ExtCost = !TLI.isExtFree(Ext); 4901 Value *PromotedOperand = 4902 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4903 // SExt has been moved away. 4904 // Thus either it will be rematched later in the recursive calls or it is 4905 // gone. Anyway, we must not fold it into the addressing mode at this point. 4906 // E.g., 4907 // op = add opnd, 1 4908 // idx = ext op 4909 // addr = gep base, idx 4910 // is now: 4911 // promotedOpnd = ext opnd <- no match here 4912 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4913 // addr = gep base, op <- match 4914 if (MovedAway) 4915 *MovedAway = true; 4916 4917 assert(PromotedOperand && 4918 "TypePromotionHelper should have filtered out those cases"); 4919 4920 ExtAddrMode BackupAddrMode = AddrMode; 4921 unsigned OldSize = AddrModeInsts.size(); 4922 4923 if (!matchAddr(PromotedOperand, Depth) || 4924 // The total of the new cost is equal to the cost of the created 4925 // instructions. 4926 // The total of the old cost is equal to the cost of the extension plus 4927 // what we have saved in the addressing mode. 4928 !isPromotionProfitable(CreatedInstsCost, 4929 ExtCost + (AddrModeInsts.size() - OldSize), 4930 PromotedOperand)) { 4931 AddrMode = BackupAddrMode; 4932 AddrModeInsts.resize(OldSize); 4933 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4934 TPT.rollback(LastKnownGood); 4935 return false; 4936 } 4937 return true; 4938 } 4939 } 4940 return false; 4941 } 4942 4943 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4944 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4945 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4946 /// for the target. 4947 /// 4948 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4949 // Start a transaction at this point that we will rollback if the matching 4950 // fails. 4951 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4952 TPT.getRestorationPoint(); 4953 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4954 if (CI->getValue().isSignedIntN(64)) { 4955 // Fold in immediates if legal for the target. 4956 AddrMode.BaseOffs += CI->getSExtValue(); 4957 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4958 return true; 4959 AddrMode.BaseOffs -= CI->getSExtValue(); 4960 } 4961 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4962 // If this is a global variable, try to fold it into the addressing mode. 4963 if (!AddrMode.BaseGV) { 4964 AddrMode.BaseGV = GV; 4965 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4966 return true; 4967 AddrMode.BaseGV = nullptr; 4968 } 4969 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4970 ExtAddrMode BackupAddrMode = AddrMode; 4971 unsigned OldSize = AddrModeInsts.size(); 4972 4973 // Check to see if it is possible to fold this operation. 4974 bool MovedAway = false; 4975 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4976 // This instruction may have been moved away. If so, there is nothing 4977 // to check here. 4978 if (MovedAway) 4979 return true; 4980 // Okay, it's possible to fold this. Check to see if it is actually 4981 // *profitable* to do so. We use a simple cost model to avoid increasing 4982 // register pressure too much. 4983 if (I->hasOneUse() || 4984 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4985 AddrModeInsts.push_back(I); 4986 return true; 4987 } 4988 4989 // It isn't profitable to do this, roll back. 4990 AddrMode = BackupAddrMode; 4991 AddrModeInsts.resize(OldSize); 4992 TPT.rollback(LastKnownGood); 4993 } 4994 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4995 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4996 return true; 4997 TPT.rollback(LastKnownGood); 4998 } else if (isa<ConstantPointerNull>(Addr)) { 4999 // Null pointer gets folded without affecting the addressing mode. 5000 return true; 5001 } 5002 5003 // Worse case, the target should support [reg] addressing modes. :) 5004 if (!AddrMode.HasBaseReg) { 5005 AddrMode.HasBaseReg = true; 5006 AddrMode.BaseReg = Addr; 5007 // Still check for legality in case the target supports [imm] but not [i+r]. 5008 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5009 return true; 5010 AddrMode.HasBaseReg = false; 5011 AddrMode.BaseReg = nullptr; 5012 } 5013 5014 // If the base register is already taken, see if we can do [r+r]. 5015 if (AddrMode.Scale == 0) { 5016 AddrMode.Scale = 1; 5017 AddrMode.ScaledReg = Addr; 5018 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 5019 return true; 5020 AddrMode.Scale = 0; 5021 AddrMode.ScaledReg = nullptr; 5022 } 5023 // Couldn't match. 5024 TPT.rollback(LastKnownGood); 5025 return false; 5026 } 5027 5028 /// Check to see if all uses of OpVal by the specified inline asm call are due 5029 /// to memory operands. If so, return true, otherwise return false. 5030 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 5031 const TargetLowering &TLI, 5032 const TargetRegisterInfo &TRI) { 5033 const Function *F = CI->getFunction(); 5034 TargetLowering::AsmOperandInfoVector TargetConstraints = 5035 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 5036 5037 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5038 // Compute the constraint code and ConstraintType to use. 5039 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 5040 5041 // If this asm operand is our Value*, and if it isn't an indirect memory 5042 // operand, we can't fold it! TODO: Also handle C_Address? 5043 if (OpInfo.CallOperandVal == OpVal && 5044 (OpInfo.ConstraintType != TargetLowering::C_Memory || 5045 !OpInfo.isIndirect)) 5046 return false; 5047 } 5048 5049 return true; 5050 } 5051 5052 /// Recursively walk all the uses of I until we find a memory use. 5053 /// If we find an obviously non-foldable instruction, return true. 5054 /// Add accessed addresses and types to MemoryUses. 5055 static bool FindAllMemoryUses( 5056 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5057 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 5058 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 5059 BlockFrequencyInfo *BFI, unsigned &SeenInsts) { 5060 // If we already considered this instruction, we're done. 5061 if (!ConsideredInsts.insert(I).second) 5062 return false; 5063 5064 // If this is an obviously unfoldable instruction, bail out. 5065 if (!MightBeFoldableInst(I)) 5066 return true; 5067 5068 // Loop over all the uses, recursively processing them. 5069 for (Use &U : I->uses()) { 5070 // Conservatively return true if we're seeing a large number or a deep chain 5071 // of users. This avoids excessive compilation times in pathological cases. 5072 if (SeenInsts++ >= MaxAddressUsersToScan) 5073 return true; 5074 5075 Instruction *UserI = cast<Instruction>(U.getUser()); 5076 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 5077 MemoryUses.push_back({&U, LI->getType()}); 5078 continue; 5079 } 5080 5081 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 5082 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 5083 return true; // Storing addr, not into addr. 5084 MemoryUses.push_back({&U, SI->getValueOperand()->getType()}); 5085 continue; 5086 } 5087 5088 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 5089 if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex()) 5090 return true; // Storing addr, not into addr. 5091 MemoryUses.push_back({&U, RMW->getValOperand()->getType()}); 5092 continue; 5093 } 5094 5095 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 5096 if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex()) 5097 return true; // Storing addr, not into addr. 5098 MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()}); 5099 continue; 5100 } 5101 5102 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 5103 if (CI->hasFnAttr(Attribute::Cold)) { 5104 // If this is a cold call, we can sink the addressing calculation into 5105 // the cold path. See optimizeCallInst 5106 bool OptForSize = 5107 OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 5108 if (!OptForSize) 5109 continue; 5110 } 5111 5112 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 5113 if (!IA) 5114 return true; 5115 5116 // If this is a memory operand, we're cool, otherwise bail out. 5117 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 5118 return true; 5119 continue; 5120 } 5121 5122 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5123 PSI, BFI, SeenInsts)) 5124 return true; 5125 } 5126 5127 return false; 5128 } 5129 5130 static bool FindAllMemoryUses( 5131 Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses, 5132 const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize, 5133 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 5134 unsigned SeenInsts = 0; 5135 SmallPtrSet<Instruction *, 16> ConsideredInsts; 5136 return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5137 PSI, BFI, SeenInsts); 5138 } 5139 5140 5141 /// Return true if Val is already known to be live at the use site that we're 5142 /// folding it into. If so, there is no cost to include it in the addressing 5143 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 5144 /// instruction already. 5145 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val, 5146 Value *KnownLive1, 5147 Value *KnownLive2) { 5148 // If Val is either of the known-live values, we know it is live! 5149 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 5150 return true; 5151 5152 // All values other than instructions and arguments (e.g. constants) are live. 5153 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) 5154 return true; 5155 5156 // If Val is a constant sized alloca in the entry block, it is live, this is 5157 // true because it is just a reference to the stack/frame pointer, which is 5158 // live for the whole function. 5159 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 5160 if (AI->isStaticAlloca()) 5161 return true; 5162 5163 // Check to see if this value is already used in the memory instruction's 5164 // block. If so, it's already live into the block at the very least, so we 5165 // can reasonably fold it. 5166 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 5167 } 5168 5169 /// It is possible for the addressing mode of the machine to fold the specified 5170 /// instruction into a load or store that ultimately uses it. 5171 /// However, the specified instruction has multiple uses. 5172 /// Given this, it may actually increase register pressure to fold it 5173 /// into the load. For example, consider this code: 5174 /// 5175 /// X = ... 5176 /// Y = X+1 5177 /// use(Y) -> nonload/store 5178 /// Z = Y+1 5179 /// load Z 5180 /// 5181 /// In this case, Y has multiple uses, and can be folded into the load of Z 5182 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 5183 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 5184 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 5185 /// number of computations either. 5186 /// 5187 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 5188 /// X was live across 'load Z' for other reasons, we actually *would* want to 5189 /// fold the addressing mode in the Z case. This would make Y die earlier. 5190 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode( 5191 Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { 5192 if (IgnoreProfitability) 5193 return true; 5194 5195 // AMBefore is the addressing mode before this instruction was folded into it, 5196 // and AMAfter is the addressing mode after the instruction was folded. Get 5197 // the set of registers referenced by AMAfter and subtract out those 5198 // referenced by AMBefore: this is the set of values which folding in this 5199 // address extends the lifetime of. 5200 // 5201 // Note that there are only two potential values being referenced here, 5202 // BaseReg and ScaleReg (global addresses are always available, as are any 5203 // folded immediates). 5204 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 5205 5206 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5207 // lifetime wasn't extended by adding this instruction. 5208 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5209 BaseReg = nullptr; 5210 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5211 ScaledReg = nullptr; 5212 5213 // If folding this instruction (and it's subexprs) didn't extend any live 5214 // ranges, we're ok with it. 5215 if (!BaseReg && !ScaledReg) 5216 return true; 5217 5218 // If all uses of this instruction can have the address mode sunk into them, 5219 // we can remove the addressing mode and effectively trade one live register 5220 // for another (at worst.) In this context, folding an addressing mode into 5221 // the use is just a particularly nice way of sinking it. 5222 SmallVector<std::pair<Use *, Type *>, 16> MemoryUses; 5223 if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI)) 5224 return false; // Has a non-memory, non-foldable use! 5225 5226 // Now that we know that all uses of this instruction are part of a chain of 5227 // computation involving only operations that could theoretically be folded 5228 // into a memory use, loop over each of these memory operation uses and see 5229 // if they could *actually* fold the instruction. The assumption is that 5230 // addressing modes are cheap and that duplicating the computation involved 5231 // many times is worthwhile, even on a fastpath. For sinking candidates 5232 // (i.e. cold call sites), this serves as a way to prevent excessive code 5233 // growth since most architectures have some reasonable small and fast way to 5234 // compute an effective address. (i.e LEA on x86) 5235 SmallVector<Instruction *, 32> MatchedAddrModeInsts; 5236 for (const std::pair<Use *, Type *> &Pair : MemoryUses) { 5237 Value *Address = Pair.first->get(); 5238 Instruction *UserI = cast<Instruction>(Pair.first->getUser()); 5239 Type *AddressAccessTy = Pair.second; 5240 unsigned AS = Address->getType()->getPointerAddressSpace(); 5241 5242 // Do a match against the root of this address, ignoring profitability. This 5243 // will tell us if the addressing mode for the memory operation will 5244 // *actually* cover the shared instruction. 5245 ExtAddrMode Result; 5246 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5247 0); 5248 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5249 TPT.getRestorationPoint(); 5250 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5251 AddressAccessTy, AS, UserI, Result, 5252 InsertedInsts, PromotedInsts, TPT, 5253 LargeOffsetGEP, OptSize, PSI, BFI); 5254 Matcher.IgnoreProfitability = true; 5255 bool Success = Matcher.matchAddr(Address, 0); 5256 (void)Success; 5257 assert(Success && "Couldn't select *anything*?"); 5258 5259 // The match was to check the profitability, the changes made are not 5260 // part of the original matcher. Therefore, they should be dropped 5261 // otherwise the original matcher will not present the right state. 5262 TPT.rollback(LastKnownGood); 5263 5264 // If the match didn't cover I, then it won't be shared by it. 5265 if (!is_contained(MatchedAddrModeInsts, I)) 5266 return false; 5267 5268 MatchedAddrModeInsts.clear(); 5269 } 5270 5271 return true; 5272 } 5273 5274 /// Return true if the specified values are defined in a 5275 /// different basic block than BB. 5276 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5277 if (Instruction *I = dyn_cast<Instruction>(V)) 5278 return I->getParent() != BB; 5279 return false; 5280 } 5281 5282 /// Sink addressing mode computation immediate before MemoryInst if doing so 5283 /// can be done without increasing register pressure. The need for the 5284 /// register pressure constraint means this can end up being an all or nothing 5285 /// decision for all uses of the same addressing computation. 5286 /// 5287 /// Load and Store Instructions often have addressing modes that can do 5288 /// significant amounts of computation. As such, instruction selection will try 5289 /// to get the load or store to do as much computation as possible for the 5290 /// program. The problem is that isel can only see within a single block. As 5291 /// such, we sink as much legal addressing mode work into the block as possible. 5292 /// 5293 /// This method is used to optimize both load/store and inline asms with memory 5294 /// operands. It's also used to sink addressing computations feeding into cold 5295 /// call sites into their (cold) basic block. 5296 /// 5297 /// The motivation for handling sinking into cold blocks is that doing so can 5298 /// both enable other address mode sinking (by satisfying the register pressure 5299 /// constraint above), and reduce register pressure globally (by removing the 5300 /// addressing mode computation from the fast path entirely.). 5301 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5302 Type *AccessTy, unsigned AddrSpace) { 5303 Value *Repl = Addr; 5304 5305 // Try to collapse single-value PHI nodes. This is necessary to undo 5306 // unprofitable PRE transformations. 5307 SmallVector<Value *, 8> worklist; 5308 SmallPtrSet<Value *, 16> Visited; 5309 worklist.push_back(Addr); 5310 5311 // Use a worklist to iteratively look through PHI and select nodes, and 5312 // ensure that the addressing mode obtained from the non-PHI/select roots of 5313 // the graph are compatible. 5314 bool PhiOrSelectSeen = false; 5315 SmallVector<Instruction *, 16> AddrModeInsts; 5316 const SimplifyQuery SQ(*DL, TLInfo); 5317 AddressingModeCombiner AddrModes(SQ, Addr); 5318 TypePromotionTransaction TPT(RemovedInsts); 5319 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5320 TPT.getRestorationPoint(); 5321 while (!worklist.empty()) { 5322 Value *V = worklist.pop_back_val(); 5323 5324 // We allow traversing cyclic Phi nodes. 5325 // In case of success after this loop we ensure that traversing through 5326 // Phi nodes ends up with all cases to compute address of the form 5327 // BaseGV + Base + Scale * Index + Offset 5328 // where Scale and Offset are constans and BaseGV, Base and Index 5329 // are exactly the same Values in all cases. 5330 // It means that BaseGV, Scale and Offset dominate our memory instruction 5331 // and have the same value as they had in address computation represented 5332 // as Phi. So we can safely sink address computation to memory instruction. 5333 if (!Visited.insert(V).second) 5334 continue; 5335 5336 // For a PHI node, push all of its incoming values. 5337 if (PHINode *P = dyn_cast<PHINode>(V)) { 5338 append_range(worklist, P->incoming_values()); 5339 PhiOrSelectSeen = true; 5340 continue; 5341 } 5342 // Similar for select. 5343 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5344 worklist.push_back(SI->getFalseValue()); 5345 worklist.push_back(SI->getTrueValue()); 5346 PhiOrSelectSeen = true; 5347 continue; 5348 } 5349 5350 // For non-PHIs, determine the addressing mode being computed. Note that 5351 // the result may differ depending on what other uses our candidate 5352 // addressing instructions might have. 5353 AddrModeInsts.clear(); 5354 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5355 0); 5356 // Defer the query (and possible computation of) the dom tree to point of 5357 // actual use. It's expected that most address matches don't actually need 5358 // the domtree. 5359 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5360 Function *F = MemoryInst->getParent()->getParent(); 5361 return this->getDT(*F); 5362 }; 5363 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5364 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5365 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5366 BFI.get()); 5367 5368 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5369 if (GEP && !NewGEPBases.count(GEP)) { 5370 // If splitting the underlying data structure can reduce the offset of a 5371 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5372 // previously split data structures. 5373 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5374 LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size())); 5375 } 5376 5377 NewAddrMode.OriginalValue = V; 5378 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5379 break; 5380 } 5381 5382 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5383 // or we have multiple but either couldn't combine them or combining them 5384 // wouldn't do anything useful, bail out now. 5385 if (!AddrModes.combineAddrModes()) { 5386 TPT.rollback(LastKnownGood); 5387 return false; 5388 } 5389 bool Modified = TPT.commit(); 5390 5391 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5392 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5393 5394 // If all the instructions matched are already in this BB, don't do anything. 5395 // If we saw a Phi node then it is not local definitely, and if we saw a 5396 // select then we want to push the address calculation past it even if it's 5397 // already in this BB. 5398 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5399 return IsNonLocalValue(V, MemoryInst->getParent()); 5400 })) { 5401 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5402 << "\n"); 5403 return Modified; 5404 } 5405 5406 // Insert this computation right after this user. Since our caller is 5407 // scanning from the top of the BB to the bottom, reuse of the expr are 5408 // guaranteed to happen later. 5409 IRBuilder<> Builder(MemoryInst); 5410 5411 // Now that we determined the addressing expression we want to use and know 5412 // that we have to sink it into this block. Check to see if we have already 5413 // done this for some other load/store instr in this block. If so, reuse 5414 // the computation. Before attempting reuse, check if the address is valid 5415 // as it may have been erased. 5416 5417 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5418 5419 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5420 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5421 if (SunkAddr) { 5422 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5423 << " for " << *MemoryInst << "\n"); 5424 if (SunkAddr->getType() != Addr->getType()) { 5425 if (SunkAddr->getType()->getPointerAddressSpace() != 5426 Addr->getType()->getPointerAddressSpace() && 5427 !DL->isNonIntegralPointerType(Addr->getType())) { 5428 // There are two reasons the address spaces might not match: a no-op 5429 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5430 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5431 // TODO: allow bitcast between different address space pointers with the 5432 // same size. 5433 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5434 SunkAddr = 5435 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5436 } else 5437 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5438 } 5439 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5440 SubtargetInfo->addrSinkUsingGEPs())) { 5441 // By default, we use the GEP-based method when AA is used later. This 5442 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5443 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5444 << " for " << *MemoryInst << "\n"); 5445 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5446 5447 // First, find the pointer. 5448 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5449 ResultPtr = AddrMode.BaseReg; 5450 AddrMode.BaseReg = nullptr; 5451 } 5452 5453 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5454 // We can't add more than one pointer together, nor can we scale a 5455 // pointer (both of which seem meaningless). 5456 if (ResultPtr || AddrMode.Scale != 1) 5457 return Modified; 5458 5459 ResultPtr = AddrMode.ScaledReg; 5460 AddrMode.Scale = 0; 5461 } 5462 5463 // It is only safe to sign extend the BaseReg if we know that the math 5464 // required to create it did not overflow before we extend it. Since 5465 // the original IR value was tossed in favor of a constant back when 5466 // the AddrMode was created we need to bail out gracefully if widths 5467 // do not match instead of extending it. 5468 // 5469 // (See below for code to add the scale.) 5470 if (AddrMode.Scale) { 5471 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5472 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5473 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5474 return Modified; 5475 } 5476 5477 if (AddrMode.BaseGV) { 5478 if (ResultPtr) 5479 return Modified; 5480 5481 ResultPtr = AddrMode.BaseGV; 5482 } 5483 5484 // If the real base value actually came from an inttoptr, then the matcher 5485 // will look through it and provide only the integer value. In that case, 5486 // use it here. 5487 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5488 if (!ResultPtr && AddrMode.BaseReg) { 5489 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5490 "sunkaddr"); 5491 AddrMode.BaseReg = nullptr; 5492 } else if (!ResultPtr && AddrMode.Scale == 1) { 5493 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5494 "sunkaddr"); 5495 AddrMode.Scale = 0; 5496 } 5497 } 5498 5499 if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && 5500 !AddrMode.BaseOffs) { 5501 SunkAddr = Constant::getNullValue(Addr->getType()); 5502 } else if (!ResultPtr) { 5503 return Modified; 5504 } else { 5505 Type *I8PtrTy = 5506 Builder.getPtrTy(Addr->getType()->getPointerAddressSpace()); 5507 Type *I8Ty = Builder.getInt8Ty(); 5508 5509 // Start with the base register. Do this first so that subsequent address 5510 // matching finds it last, which will prevent it from trying to match it 5511 // as the scaled value in case it happens to be a mul. That would be 5512 // problematic if we've sunk a different mul for the scale, because then 5513 // we'd end up sinking both muls. 5514 if (AddrMode.BaseReg) { 5515 Value *V = AddrMode.BaseReg; 5516 if (V->getType() != IntPtrTy) 5517 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5518 5519 ResultIndex = V; 5520 } 5521 5522 // Add the scale value. 5523 if (AddrMode.Scale) { 5524 Value *V = AddrMode.ScaledReg; 5525 if (V->getType() == IntPtrTy) { 5526 // done. 5527 } else { 5528 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5529 cast<IntegerType>(V->getType())->getBitWidth() && 5530 "We can't transform if ScaledReg is too narrow"); 5531 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5532 } 5533 5534 if (AddrMode.Scale != 1) 5535 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5536 "sunkaddr"); 5537 if (ResultIndex) 5538 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5539 else 5540 ResultIndex = V; 5541 } 5542 5543 // Add in the Base Offset if present. 5544 if (AddrMode.BaseOffs) { 5545 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5546 if (ResultIndex) { 5547 // We need to add this separately from the scale above to help with 5548 // SDAG consecutive load/store merging. 5549 if (ResultPtr->getType() != I8PtrTy) 5550 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5551 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, 5552 "sunkaddr", AddrMode.InBounds); 5553 } 5554 5555 ResultIndex = V; 5556 } 5557 5558 if (!ResultIndex) { 5559 SunkAddr = ResultPtr; 5560 } else { 5561 if (ResultPtr->getType() != I8PtrTy) 5562 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5563 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr", 5564 AddrMode.InBounds); 5565 } 5566 5567 if (SunkAddr->getType() != Addr->getType()) { 5568 if (SunkAddr->getType()->getPointerAddressSpace() != 5569 Addr->getType()->getPointerAddressSpace() && 5570 !DL->isNonIntegralPointerType(Addr->getType())) { 5571 // There are two reasons the address spaces might not match: a no-op 5572 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a 5573 // ptrtoint/inttoptr pair to ensure we match the original semantics. 5574 // TODO: allow bitcast between different address space pointers with 5575 // the same size. 5576 SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr"); 5577 SunkAddr = 5578 Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr"); 5579 } else 5580 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5581 } 5582 } 5583 } else { 5584 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5585 // non-integral pointers, so in that case bail out now. 5586 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5587 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5588 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5589 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5590 if (DL->isNonIntegralPointerType(Addr->getType()) || 5591 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5592 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5593 (AddrMode.BaseGV && 5594 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5595 return Modified; 5596 5597 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5598 << " for " << *MemoryInst << "\n"); 5599 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5600 Value *Result = nullptr; 5601 5602 // Start with the base register. Do this first so that subsequent address 5603 // matching finds it last, which will prevent it from trying to match it 5604 // as the scaled value in case it happens to be a mul. That would be 5605 // problematic if we've sunk a different mul for the scale, because then 5606 // we'd end up sinking both muls. 5607 if (AddrMode.BaseReg) { 5608 Value *V = AddrMode.BaseReg; 5609 if (V->getType()->isPointerTy()) 5610 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5611 if (V->getType() != IntPtrTy) 5612 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5613 Result = V; 5614 } 5615 5616 // Add the scale value. 5617 if (AddrMode.Scale) { 5618 Value *V = AddrMode.ScaledReg; 5619 if (V->getType() == IntPtrTy) { 5620 // done. 5621 } else if (V->getType()->isPointerTy()) { 5622 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5623 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5624 cast<IntegerType>(V->getType())->getBitWidth()) { 5625 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5626 } else { 5627 // It is only safe to sign extend the BaseReg if we know that the math 5628 // required to create it did not overflow before we extend it. Since 5629 // the original IR value was tossed in favor of a constant back when 5630 // the AddrMode was created we need to bail out gracefully if widths 5631 // do not match instead of extending it. 5632 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5633 if (I && (Result != AddrMode.BaseReg)) 5634 I->eraseFromParent(); 5635 return Modified; 5636 } 5637 if (AddrMode.Scale != 1) 5638 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5639 "sunkaddr"); 5640 if (Result) 5641 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5642 else 5643 Result = V; 5644 } 5645 5646 // Add in the BaseGV if present. 5647 if (AddrMode.BaseGV) { 5648 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5649 if (Result) 5650 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5651 else 5652 Result = V; 5653 } 5654 5655 // Add in the Base Offset if present. 5656 if (AddrMode.BaseOffs) { 5657 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5658 if (Result) 5659 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5660 else 5661 Result = V; 5662 } 5663 5664 if (!Result) 5665 SunkAddr = Constant::getNullValue(Addr->getType()); 5666 else 5667 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5668 } 5669 5670 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5671 // Store the newly computed address into the cache. In the case we reused a 5672 // value, this should be idempotent. 5673 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5674 5675 // If we have no uses, recursively delete the value and all dead instructions 5676 // using it. 5677 if (Repl->use_empty()) { 5678 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5679 RecursivelyDeleteTriviallyDeadInstructions( 5680 Repl, TLInfo, nullptr, 5681 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5682 }); 5683 } 5684 ++NumMemoryInsts; 5685 return true; 5686 } 5687 5688 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5689 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5690 /// only handle a 2 operand GEP in the same basic block or a splat constant 5691 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5692 /// index. 5693 /// 5694 /// If the existing GEP has a vector base pointer that is splat, we can look 5695 /// through the splat to find the scalar pointer. If we can't find a scalar 5696 /// pointer there's nothing we can do. 5697 /// 5698 /// If we have a GEP with more than 2 indices where the middle indices are all 5699 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5700 /// 5701 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5702 /// followed by a GEP with an all zeroes vector index. This will enable 5703 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5704 /// zero index. 5705 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5706 Value *Ptr) { 5707 Value *NewAddr; 5708 5709 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5710 // Don't optimize GEPs that don't have indices. 5711 if (!GEP->hasIndices()) 5712 return false; 5713 5714 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5715 // FIXME: We should support this by sinking the GEP. 5716 if (MemoryInst->getParent() != GEP->getParent()) 5717 return false; 5718 5719 SmallVector<Value *, 2> Ops(GEP->operands()); 5720 5721 bool RewriteGEP = false; 5722 5723 if (Ops[0]->getType()->isVectorTy()) { 5724 Ops[0] = getSplatValue(Ops[0]); 5725 if (!Ops[0]) 5726 return false; 5727 RewriteGEP = true; 5728 } 5729 5730 unsigned FinalIndex = Ops.size() - 1; 5731 5732 // Ensure all but the last index is 0. 5733 // FIXME: This isn't strictly required. All that's required is that they are 5734 // all scalars or splats. 5735 for (unsigned i = 1; i < FinalIndex; ++i) { 5736 auto *C = dyn_cast<Constant>(Ops[i]); 5737 if (!C) 5738 return false; 5739 if (isa<VectorType>(C->getType())) 5740 C = C->getSplatValue(); 5741 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5742 if (!CI || !CI->isZero()) 5743 return false; 5744 // Scalarize the index if needed. 5745 Ops[i] = CI; 5746 } 5747 5748 // Try to scalarize the final index. 5749 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5750 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5751 auto *C = dyn_cast<ConstantInt>(V); 5752 // Don't scalarize all zeros vector. 5753 if (!C || !C->isZero()) { 5754 Ops[FinalIndex] = V; 5755 RewriteGEP = true; 5756 } 5757 } 5758 } 5759 5760 // If we made any changes or the we have extra operands, we need to generate 5761 // new instructions. 5762 if (!RewriteGEP && Ops.size() == 2) 5763 return false; 5764 5765 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5766 5767 IRBuilder<> Builder(MemoryInst); 5768 5769 Type *SourceTy = GEP->getSourceElementType(); 5770 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5771 5772 // If the final index isn't a vector, emit a scalar GEP containing all ops 5773 // and a vector GEP with all zeroes final index. 5774 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5775 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front()); 5776 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5777 auto *SecondTy = GetElementPtrInst::getIndexedType( 5778 SourceTy, ArrayRef(Ops).drop_front()); 5779 NewAddr = 5780 Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy)); 5781 } else { 5782 Value *Base = Ops[0]; 5783 Value *Index = Ops[FinalIndex]; 5784 5785 // Create a scalar GEP if there are more than 2 operands. 5786 if (Ops.size() != 2) { 5787 // Replace the last index with 0. 5788 Ops[FinalIndex] = 5789 Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType()); 5790 Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front()); 5791 SourceTy = GetElementPtrInst::getIndexedType( 5792 SourceTy, ArrayRef(Ops).drop_front()); 5793 } 5794 5795 // Now create the GEP with scalar pointer and vector index. 5796 NewAddr = Builder.CreateGEP(SourceTy, Base, Index); 5797 } 5798 } else if (!isa<Constant>(Ptr)) { 5799 // Not a GEP, maybe its a splat and we can create a GEP to enable 5800 // SelectionDAGBuilder to use it as a uniform base. 5801 Value *V = getSplatValue(Ptr); 5802 if (!V) 5803 return false; 5804 5805 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5806 5807 IRBuilder<> Builder(MemoryInst); 5808 5809 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5810 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5811 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5812 Type *ScalarTy; 5813 if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5814 Intrinsic::masked_gather) { 5815 ScalarTy = MemoryInst->getType()->getScalarType(); 5816 } else { 5817 assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() == 5818 Intrinsic::masked_scatter); 5819 ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType(); 5820 } 5821 NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy)); 5822 } else { 5823 // Constant, SelectionDAGBuilder knows to check if its a splat. 5824 return false; 5825 } 5826 5827 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5828 5829 // If we have no uses, recursively delete the value and all dead instructions 5830 // using it. 5831 if (Ptr->use_empty()) 5832 RecursivelyDeleteTriviallyDeadInstructions( 5833 Ptr, TLInfo, nullptr, 5834 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5835 5836 return true; 5837 } 5838 5839 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5840 /// address computing into the block when possible / profitable. 5841 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5842 bool MadeChange = false; 5843 5844 const TargetRegisterInfo *TRI = 5845 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5846 TargetLowering::AsmOperandInfoVector TargetConstraints = 5847 TLI->ParseConstraints(*DL, TRI, *CS); 5848 unsigned ArgNo = 0; 5849 for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) { 5850 // Compute the constraint code and ConstraintType to use. 5851 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5852 5853 // TODO: Also handle C_Address? 5854 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5855 OpInfo.isIndirect) { 5856 Value *OpVal = CS->getArgOperand(ArgNo++); 5857 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5858 } else if (OpInfo.Type == InlineAsm::isInput) 5859 ArgNo++; 5860 } 5861 5862 return MadeChange; 5863 } 5864 5865 /// Check if all the uses of \p Val are equivalent (or free) zero or 5866 /// sign extensions. 5867 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5868 assert(!Val->use_empty() && "Input must have at least one use"); 5869 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5870 bool IsSExt = isa<SExtInst>(FirstUser); 5871 Type *ExtTy = FirstUser->getType(); 5872 for (const User *U : Val->users()) { 5873 const Instruction *UI = cast<Instruction>(U); 5874 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5875 return false; 5876 Type *CurTy = UI->getType(); 5877 // Same input and output types: Same instruction after CSE. 5878 if (CurTy == ExtTy) 5879 continue; 5880 5881 // If IsSExt is true, we are in this situation: 5882 // a = Val 5883 // b = sext ty1 a to ty2 5884 // c = sext ty1 a to ty3 5885 // Assuming ty2 is shorter than ty3, this could be turned into: 5886 // a = Val 5887 // b = sext ty1 a to ty2 5888 // c = sext ty2 b to ty3 5889 // However, the last sext is not free. 5890 if (IsSExt) 5891 return false; 5892 5893 // This is a ZExt, maybe this is free to extend from one type to another. 5894 // In that case, we would not account for a different use. 5895 Type *NarrowTy; 5896 Type *LargeTy; 5897 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5898 CurTy->getScalarType()->getIntegerBitWidth()) { 5899 NarrowTy = CurTy; 5900 LargeTy = ExtTy; 5901 } else { 5902 NarrowTy = ExtTy; 5903 LargeTy = CurTy; 5904 } 5905 5906 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5907 return false; 5908 } 5909 // All uses are the same or can be derived from one another for free. 5910 return true; 5911 } 5912 5913 /// Try to speculatively promote extensions in \p Exts and continue 5914 /// promoting through newly promoted operands recursively as far as doing so is 5915 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5916 /// When some promotion happened, \p TPT contains the proper state to revert 5917 /// them. 5918 /// 5919 /// \return true if some promotion happened, false otherwise. 5920 bool CodeGenPrepare::tryToPromoteExts( 5921 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5922 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5923 unsigned CreatedInstsCost) { 5924 bool Promoted = false; 5925 5926 // Iterate over all the extensions to try to promote them. 5927 for (auto *I : Exts) { 5928 // Early check if we directly have ext(load). 5929 if (isa<LoadInst>(I->getOperand(0))) { 5930 ProfitablyMovedExts.push_back(I); 5931 continue; 5932 } 5933 5934 // Check whether or not we want to do any promotion. The reason we have 5935 // this check inside the for loop is to catch the case where an extension 5936 // is directly fed by a load because in such case the extension can be moved 5937 // up without any promotion on its operands. 5938 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5939 return false; 5940 5941 // Get the action to perform the promotion. 5942 TypePromotionHelper::Action TPH = 5943 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5944 // Check if we can promote. 5945 if (!TPH) { 5946 // Save the current extension as we cannot move up through its operand. 5947 ProfitablyMovedExts.push_back(I); 5948 continue; 5949 } 5950 5951 // Save the current state. 5952 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5953 TPT.getRestorationPoint(); 5954 SmallVector<Instruction *, 4> NewExts; 5955 unsigned NewCreatedInstsCost = 0; 5956 unsigned ExtCost = !TLI->isExtFree(I); 5957 // Promote. 5958 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5959 &NewExts, nullptr, *TLI); 5960 assert(PromotedVal && 5961 "TypePromotionHelper should have filtered out those cases"); 5962 5963 // We would be able to merge only one extension in a load. 5964 // Therefore, if we have more than 1 new extension we heuristically 5965 // cut this search path, because it means we degrade the code quality. 5966 // With exactly 2, the transformation is neutral, because we will merge 5967 // one extension but leave one. However, we optimistically keep going, 5968 // because the new extension may be removed too. 5969 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5970 // FIXME: It would be possible to propagate a negative value instead of 5971 // conservatively ceiling it to 0. 5972 TotalCreatedInstsCost = 5973 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5974 if (!StressExtLdPromotion && 5975 (TotalCreatedInstsCost > 1 || 5976 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5977 // This promotion is not profitable, rollback to the previous state, and 5978 // save the current extension in ProfitablyMovedExts as the latest 5979 // speculative promotion turned out to be unprofitable. 5980 TPT.rollback(LastKnownGood); 5981 ProfitablyMovedExts.push_back(I); 5982 continue; 5983 } 5984 // Continue promoting NewExts as far as doing so is profitable. 5985 SmallVector<Instruction *, 2> NewlyMovedExts; 5986 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5987 bool NewPromoted = false; 5988 for (auto *ExtInst : NewlyMovedExts) { 5989 Instruction *MovedExt = cast<Instruction>(ExtInst); 5990 Value *ExtOperand = MovedExt->getOperand(0); 5991 // If we have reached to a load, we need this extra profitability check 5992 // as it could potentially be merged into an ext(load). 5993 if (isa<LoadInst>(ExtOperand) && 5994 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5995 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5996 continue; 5997 5998 ProfitablyMovedExts.push_back(MovedExt); 5999 NewPromoted = true; 6000 } 6001 6002 // If none of speculative promotions for NewExts is profitable, rollback 6003 // and save the current extension (I) as the last profitable extension. 6004 if (!NewPromoted) { 6005 TPT.rollback(LastKnownGood); 6006 ProfitablyMovedExts.push_back(I); 6007 continue; 6008 } 6009 // The promotion is profitable. 6010 Promoted = true; 6011 } 6012 return Promoted; 6013 } 6014 6015 /// Merging redundant sexts when one is dominating the other. 6016 bool CodeGenPrepare::mergeSExts(Function &F) { 6017 bool Changed = false; 6018 for (auto &Entry : ValToSExtendedUses) { 6019 SExts &Insts = Entry.second; 6020 SExts CurPts; 6021 for (Instruction *Inst : Insts) { 6022 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 6023 Inst->getOperand(0) != Entry.first) 6024 continue; 6025 bool inserted = false; 6026 for (auto &Pt : CurPts) { 6027 if (getDT(F).dominates(Inst, Pt)) { 6028 replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc); 6029 RemovedInsts.insert(Pt); 6030 Pt->removeFromParent(); 6031 Pt = Inst; 6032 inserted = true; 6033 Changed = true; 6034 break; 6035 } 6036 if (!getDT(F).dominates(Pt, Inst)) 6037 // Give up if we need to merge in a common dominator as the 6038 // experiments show it is not profitable. 6039 continue; 6040 replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc); 6041 RemovedInsts.insert(Inst); 6042 Inst->removeFromParent(); 6043 inserted = true; 6044 Changed = true; 6045 break; 6046 } 6047 if (!inserted) 6048 CurPts.push_back(Inst); 6049 } 6050 } 6051 return Changed; 6052 } 6053 6054 // Splitting large data structures so that the GEPs accessing them can have 6055 // smaller offsets so that they can be sunk to the same blocks as their users. 6056 // For example, a large struct starting from %base is split into two parts 6057 // where the second part starts from %new_base. 6058 // 6059 // Before: 6060 // BB0: 6061 // %base = 6062 // 6063 // BB1: 6064 // %gep0 = gep %base, off0 6065 // %gep1 = gep %base, off1 6066 // %gep2 = gep %base, off2 6067 // 6068 // BB2: 6069 // %load1 = load %gep0 6070 // %load2 = load %gep1 6071 // %load3 = load %gep2 6072 // 6073 // After: 6074 // BB0: 6075 // %base = 6076 // %new_base = gep %base, off0 6077 // 6078 // BB1: 6079 // %new_gep0 = %new_base 6080 // %new_gep1 = gep %new_base, off1 - off0 6081 // %new_gep2 = gep %new_base, off2 - off0 6082 // 6083 // BB2: 6084 // %load1 = load i32, i32* %new_gep0 6085 // %load2 = load i32, i32* %new_gep1 6086 // %load3 = load i32, i32* %new_gep2 6087 // 6088 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 6089 // their offsets are smaller enough to fit into the addressing mode. 6090 bool CodeGenPrepare::splitLargeGEPOffsets() { 6091 bool Changed = false; 6092 for (auto &Entry : LargeOffsetGEPMap) { 6093 Value *OldBase = Entry.first; 6094 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 6095 &LargeOffsetGEPs = Entry.second; 6096 auto compareGEPOffset = 6097 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 6098 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 6099 if (LHS.first == RHS.first) 6100 return false; 6101 if (LHS.second != RHS.second) 6102 return LHS.second < RHS.second; 6103 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 6104 }; 6105 // Sorting all the GEPs of the same data structures based on the offsets. 6106 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 6107 LargeOffsetGEPs.erase( 6108 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 6109 LargeOffsetGEPs.end()); 6110 // Skip if all the GEPs have the same offsets. 6111 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 6112 continue; 6113 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 6114 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 6115 Value *NewBaseGEP = nullptr; 6116 6117 auto createNewBase = [&](int64_t BaseOffset, Value *OldBase, 6118 GetElementPtrInst *GEP) { 6119 LLVMContext &Ctx = GEP->getContext(); 6120 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6121 Type *I8PtrTy = 6122 PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace()); 6123 Type *I8Ty = Type::getInt8Ty(Ctx); 6124 6125 BasicBlock::iterator NewBaseInsertPt; 6126 BasicBlock *NewBaseInsertBB; 6127 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 6128 // If the base of the struct is an instruction, the new base will be 6129 // inserted close to it. 6130 NewBaseInsertBB = BaseI->getParent(); 6131 if (isa<PHINode>(BaseI)) 6132 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6133 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 6134 NewBaseInsertBB = 6135 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI); 6136 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6137 } else 6138 NewBaseInsertPt = std::next(BaseI->getIterator()); 6139 } else { 6140 // If the current base is an argument or global value, the new base 6141 // will be inserted to the entry block. 6142 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 6143 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 6144 } 6145 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 6146 // Create a new base. 6147 Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset); 6148 NewBaseGEP = OldBase; 6149 if (NewBaseGEP->getType() != I8PtrTy) 6150 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 6151 NewBaseGEP = 6152 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 6153 NewGEPBases.insert(NewBaseGEP); 6154 return; 6155 }; 6156 6157 // Check whether all the offsets can be encoded with prefered common base. 6158 if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset( 6159 LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) { 6160 BaseOffset = PreferBase; 6161 // Create a new base if the offset of the BaseGEP can be decoded with one 6162 // instruction. 6163 createNewBase(BaseOffset, OldBase, BaseGEP); 6164 } 6165 6166 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 6167 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 6168 GetElementPtrInst *GEP = LargeOffsetGEP->first; 6169 int64_t Offset = LargeOffsetGEP->second; 6170 if (Offset != BaseOffset) { 6171 TargetLowering::AddrMode AddrMode; 6172 AddrMode.HasBaseReg = true; 6173 AddrMode.BaseOffs = Offset - BaseOffset; 6174 // The result type of the GEP might not be the type of the memory 6175 // access. 6176 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 6177 GEP->getResultElementType(), 6178 GEP->getAddressSpace())) { 6179 // We need to create a new base if the offset to the current base is 6180 // too large to fit into the addressing mode. So, a very large struct 6181 // may be split into several parts. 6182 BaseGEP = GEP; 6183 BaseOffset = Offset; 6184 NewBaseGEP = nullptr; 6185 } 6186 } 6187 6188 // Generate a new GEP to replace the current one. 6189 LLVMContext &Ctx = GEP->getContext(); 6190 Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 6191 Type *I8Ty = Type::getInt8Ty(Ctx); 6192 6193 if (!NewBaseGEP) { 6194 // Create a new base if we don't have one yet. Find the insertion 6195 // pointer for the new base first. 6196 createNewBase(BaseOffset, OldBase, GEP); 6197 } 6198 6199 IRBuilder<> Builder(GEP); 6200 Value *NewGEP = NewBaseGEP; 6201 if (Offset != BaseOffset) { 6202 // Calculate the new offset for the new GEP. 6203 Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset); 6204 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 6205 } 6206 replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc); 6207 LargeOffsetGEPID.erase(GEP); 6208 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 6209 GEP->eraseFromParent(); 6210 Changed = true; 6211 } 6212 } 6213 return Changed; 6214 } 6215 6216 bool CodeGenPrepare::optimizePhiType( 6217 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 6218 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 6219 // We are looking for a collection on interconnected phi nodes that together 6220 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 6221 // are of the same type. Convert the whole set of nodes to the type of the 6222 // bitcast. 6223 Type *PhiTy = I->getType(); 6224 Type *ConvertTy = nullptr; 6225 if (Visited.count(I) || 6226 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 6227 return false; 6228 6229 SmallVector<Instruction *, 4> Worklist; 6230 Worklist.push_back(cast<Instruction>(I)); 6231 SmallPtrSet<PHINode *, 4> PhiNodes; 6232 SmallPtrSet<ConstantData *, 4> Constants; 6233 PhiNodes.insert(I); 6234 Visited.insert(I); 6235 SmallPtrSet<Instruction *, 4> Defs; 6236 SmallPtrSet<Instruction *, 4> Uses; 6237 // This works by adding extra bitcasts between load/stores and removing 6238 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 6239 // we can get in the situation where we remove a bitcast in one iteration 6240 // just to add it again in the next. We need to ensure that at least one 6241 // bitcast we remove are anchored to something that will not change back. 6242 bool AnyAnchored = false; 6243 6244 while (!Worklist.empty()) { 6245 Instruction *II = Worklist.pop_back_val(); 6246 6247 if (auto *Phi = dyn_cast<PHINode>(II)) { 6248 // Handle Defs, which might also be PHI's 6249 for (Value *V : Phi->incoming_values()) { 6250 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6251 if (!PhiNodes.count(OpPhi)) { 6252 if (!Visited.insert(OpPhi).second) 6253 return false; 6254 PhiNodes.insert(OpPhi); 6255 Worklist.push_back(OpPhi); 6256 } 6257 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6258 if (!OpLoad->isSimple()) 6259 return false; 6260 if (Defs.insert(OpLoad).second) 6261 Worklist.push_back(OpLoad); 6262 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6263 if (Defs.insert(OpEx).second) 6264 Worklist.push_back(OpEx); 6265 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6266 if (!ConvertTy) 6267 ConvertTy = OpBC->getOperand(0)->getType(); 6268 if (OpBC->getOperand(0)->getType() != ConvertTy) 6269 return false; 6270 if (Defs.insert(OpBC).second) { 6271 Worklist.push_back(OpBC); 6272 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6273 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6274 } 6275 } else if (auto *OpC = dyn_cast<ConstantData>(V)) 6276 Constants.insert(OpC); 6277 else 6278 return false; 6279 } 6280 } 6281 6282 // Handle uses which might also be phi's 6283 for (User *V : II->users()) { 6284 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6285 if (!PhiNodes.count(OpPhi)) { 6286 if (Visited.count(OpPhi)) 6287 return false; 6288 PhiNodes.insert(OpPhi); 6289 Visited.insert(OpPhi); 6290 Worklist.push_back(OpPhi); 6291 } 6292 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6293 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6294 return false; 6295 Uses.insert(OpStore); 6296 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6297 if (!ConvertTy) 6298 ConvertTy = OpBC->getType(); 6299 if (OpBC->getType() != ConvertTy) 6300 return false; 6301 Uses.insert(OpBC); 6302 AnyAnchored |= 6303 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6304 } else { 6305 return false; 6306 } 6307 } 6308 } 6309 6310 if (!ConvertTy || !AnyAnchored || 6311 !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6312 return false; 6313 6314 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6315 << *ConvertTy << "\n"); 6316 6317 // Create all the new phi nodes of the new type, and bitcast any loads to the 6318 // correct type. 6319 ValueToValueMap ValMap; 6320 for (ConstantData *C : Constants) 6321 ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy); 6322 for (Instruction *D : Defs) { 6323 if (isa<BitCastInst>(D)) { 6324 ValMap[D] = D->getOperand(0); 6325 DeletedInstrs.insert(D); 6326 } else { 6327 ValMap[D] = 6328 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6329 } 6330 } 6331 for (PHINode *Phi : PhiNodes) 6332 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6333 Phi->getName() + ".tc", Phi); 6334 // Pipe together all the PhiNodes. 6335 for (PHINode *Phi : PhiNodes) { 6336 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6337 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6338 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6339 Phi->getIncomingBlock(i)); 6340 Visited.insert(NewPhi); 6341 } 6342 // And finally pipe up the stores and bitcasts 6343 for (Instruction *U : Uses) { 6344 if (isa<BitCastInst>(U)) { 6345 DeletedInstrs.insert(U); 6346 replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc); 6347 } else { 6348 U->setOperand(0, 6349 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6350 } 6351 } 6352 6353 // Save the removed phis to be deleted later. 6354 for (PHINode *Phi : PhiNodes) 6355 DeletedInstrs.insert(Phi); 6356 return true; 6357 } 6358 6359 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6360 if (!OptimizePhiTypes) 6361 return false; 6362 6363 bool Changed = false; 6364 SmallPtrSet<PHINode *, 4> Visited; 6365 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6366 6367 // Attempt to optimize all the phis in the functions to the correct type. 6368 for (auto &BB : F) 6369 for (auto &Phi : BB.phis()) 6370 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6371 6372 // Remove any old phi's that have been converted. 6373 for (auto *I : DeletedInstrs) { 6374 replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc); 6375 I->eraseFromParent(); 6376 } 6377 6378 return Changed; 6379 } 6380 6381 /// Return true, if an ext(load) can be formed from an extension in 6382 /// \p MovedExts. 6383 bool CodeGenPrepare::canFormExtLd( 6384 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6385 Instruction *&Inst, bool HasPromoted) { 6386 for (auto *MovedExtInst : MovedExts) { 6387 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6388 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6389 Inst = MovedExtInst; 6390 break; 6391 } 6392 } 6393 if (!LI) 6394 return false; 6395 6396 // If they're already in the same block, there's nothing to do. 6397 // Make the cheap checks first if we did not promote. 6398 // If we promoted, we need to check if it is indeed profitable. 6399 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6400 return false; 6401 6402 return TLI->isExtLoad(LI, Inst, *DL); 6403 } 6404 6405 /// Move a zext or sext fed by a load into the same basic block as the load, 6406 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6407 /// extend into the load. 6408 /// 6409 /// E.g., 6410 /// \code 6411 /// %ld = load i32* %addr 6412 /// %add = add nuw i32 %ld, 4 6413 /// %zext = zext i32 %add to i64 6414 // \endcode 6415 /// => 6416 /// \code 6417 /// %ld = load i32* %addr 6418 /// %zext = zext i32 %ld to i64 6419 /// %add = add nuw i64 %zext, 4 6420 /// \encode 6421 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6422 /// allow us to match zext(load i32*) to i64. 6423 /// 6424 /// Also, try to promote the computations used to obtain a sign extended 6425 /// value used into memory accesses. 6426 /// E.g., 6427 /// \code 6428 /// a = add nsw i32 b, 3 6429 /// d = sext i32 a to i64 6430 /// e = getelementptr ..., i64 d 6431 /// \endcode 6432 /// => 6433 /// \code 6434 /// f = sext i32 b to i64 6435 /// a = add nsw i64 f, 3 6436 /// e = getelementptr ..., i64 a 6437 /// \endcode 6438 /// 6439 /// \p Inst[in/out] the extension may be modified during the process if some 6440 /// promotions apply. 6441 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6442 bool AllowPromotionWithoutCommonHeader = false; 6443 /// See if it is an interesting sext operations for the address type 6444 /// promotion before trying to promote it, e.g., the ones with the right 6445 /// type and used in memory accesses. 6446 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6447 *Inst, AllowPromotionWithoutCommonHeader); 6448 TypePromotionTransaction TPT(RemovedInsts); 6449 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6450 TPT.getRestorationPoint(); 6451 SmallVector<Instruction *, 1> Exts; 6452 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6453 Exts.push_back(Inst); 6454 6455 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6456 6457 // Look for a load being extended. 6458 LoadInst *LI = nullptr; 6459 Instruction *ExtFedByLoad; 6460 6461 // Try to promote a chain of computation if it allows to form an extended 6462 // load. 6463 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6464 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6465 TPT.commit(); 6466 // Move the extend into the same block as the load. 6467 ExtFedByLoad->moveAfter(LI); 6468 ++NumExtsMoved; 6469 Inst = ExtFedByLoad; 6470 return true; 6471 } 6472 6473 // Continue promoting SExts if known as considerable depending on targets. 6474 if (ATPConsiderable && 6475 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6476 HasPromoted, TPT, SpeculativelyMovedExts)) 6477 return true; 6478 6479 TPT.rollback(LastKnownGood); 6480 return false; 6481 } 6482 6483 // Perform address type promotion if doing so is profitable. 6484 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6485 // instructions that sign extended the same initial value. However, if 6486 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6487 // extension is just profitable. 6488 bool CodeGenPrepare::performAddressTypePromotion( 6489 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6490 bool HasPromoted, TypePromotionTransaction &TPT, 6491 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6492 bool Promoted = false; 6493 SmallPtrSet<Instruction *, 1> UnhandledExts; 6494 bool AllSeenFirst = true; 6495 for (auto *I : SpeculativelyMovedExts) { 6496 Value *HeadOfChain = I->getOperand(0); 6497 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6498 SeenChainsForSExt.find(HeadOfChain); 6499 // If there is an unhandled SExt which has the same header, try to promote 6500 // it as well. 6501 if (AlreadySeen != SeenChainsForSExt.end()) { 6502 if (AlreadySeen->second != nullptr) 6503 UnhandledExts.insert(AlreadySeen->second); 6504 AllSeenFirst = false; 6505 } 6506 } 6507 6508 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6509 SpeculativelyMovedExts.size() == 1)) { 6510 TPT.commit(); 6511 if (HasPromoted) 6512 Promoted = true; 6513 for (auto *I : SpeculativelyMovedExts) { 6514 Value *HeadOfChain = I->getOperand(0); 6515 SeenChainsForSExt[HeadOfChain] = nullptr; 6516 ValToSExtendedUses[HeadOfChain].push_back(I); 6517 } 6518 // Update Inst as promotion happen. 6519 Inst = SpeculativelyMovedExts.pop_back_val(); 6520 } else { 6521 // This is the first chain visited from the header, keep the current chain 6522 // as unhandled. Defer to promote this until we encounter another SExt 6523 // chain derived from the same header. 6524 for (auto *I : SpeculativelyMovedExts) { 6525 Value *HeadOfChain = I->getOperand(0); 6526 SeenChainsForSExt[HeadOfChain] = Inst; 6527 } 6528 return false; 6529 } 6530 6531 if (!AllSeenFirst && !UnhandledExts.empty()) 6532 for (auto *VisitedSExt : UnhandledExts) { 6533 if (RemovedInsts.count(VisitedSExt)) 6534 continue; 6535 TypePromotionTransaction TPT(RemovedInsts); 6536 SmallVector<Instruction *, 1> Exts; 6537 SmallVector<Instruction *, 2> Chains; 6538 Exts.push_back(VisitedSExt); 6539 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6540 TPT.commit(); 6541 if (HasPromoted) 6542 Promoted = true; 6543 for (auto *I : Chains) { 6544 Value *HeadOfChain = I->getOperand(0); 6545 // Mark this as handled. 6546 SeenChainsForSExt[HeadOfChain] = nullptr; 6547 ValToSExtendedUses[HeadOfChain].push_back(I); 6548 } 6549 } 6550 return Promoted; 6551 } 6552 6553 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6554 BasicBlock *DefBB = I->getParent(); 6555 6556 // If the result of a {s|z}ext and its source are both live out, rewrite all 6557 // other uses of the source with result of extension. 6558 Value *Src = I->getOperand(0); 6559 if (Src->hasOneUse()) 6560 return false; 6561 6562 // Only do this xform if truncating is free. 6563 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6564 return false; 6565 6566 // Only safe to perform the optimization if the source is also defined in 6567 // this block. 6568 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6569 return false; 6570 6571 bool DefIsLiveOut = false; 6572 for (User *U : I->users()) { 6573 Instruction *UI = cast<Instruction>(U); 6574 6575 // Figure out which BB this ext is used in. 6576 BasicBlock *UserBB = UI->getParent(); 6577 if (UserBB == DefBB) 6578 continue; 6579 DefIsLiveOut = true; 6580 break; 6581 } 6582 if (!DefIsLiveOut) 6583 return false; 6584 6585 // Make sure none of the uses are PHI nodes. 6586 for (User *U : Src->users()) { 6587 Instruction *UI = cast<Instruction>(U); 6588 BasicBlock *UserBB = UI->getParent(); 6589 if (UserBB == DefBB) 6590 continue; 6591 // Be conservative. We don't want this xform to end up introducing 6592 // reloads just before load / store instructions. 6593 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6594 return false; 6595 } 6596 6597 // InsertedTruncs - Only insert one trunc in each block once. 6598 DenseMap<BasicBlock *, Instruction *> InsertedTruncs; 6599 6600 bool MadeChange = false; 6601 for (Use &U : Src->uses()) { 6602 Instruction *User = cast<Instruction>(U.getUser()); 6603 6604 // Figure out which BB this ext is used in. 6605 BasicBlock *UserBB = User->getParent(); 6606 if (UserBB == DefBB) 6607 continue; 6608 6609 // Both src and def are live in this block. Rewrite the use. 6610 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6611 6612 if (!InsertedTrunc) { 6613 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6614 assert(InsertPt != UserBB->end()); 6615 InsertedTrunc = new TruncInst(I, Src->getType(), ""); 6616 InsertedTrunc->insertBefore(*UserBB, InsertPt); 6617 InsertedInsts.insert(InsertedTrunc); 6618 } 6619 6620 // Replace a use of the {s|z}ext source with a use of the result. 6621 U = InsertedTrunc; 6622 ++NumExtUses; 6623 MadeChange = true; 6624 } 6625 6626 return MadeChange; 6627 } 6628 6629 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6630 // just after the load if the target can fold this into one extload instruction, 6631 // with the hope of eliminating some of the other later "and" instructions using 6632 // the loaded value. "and"s that are made trivially redundant by the insertion 6633 // of the new "and" are removed by this function, while others (e.g. those whose 6634 // path from the load goes through a phi) are left for isel to potentially 6635 // remove. 6636 // 6637 // For example: 6638 // 6639 // b0: 6640 // x = load i32 6641 // ... 6642 // b1: 6643 // y = and x, 0xff 6644 // z = use y 6645 // 6646 // becomes: 6647 // 6648 // b0: 6649 // x = load i32 6650 // x' = and x, 0xff 6651 // ... 6652 // b1: 6653 // z = use x' 6654 // 6655 // whereas: 6656 // 6657 // b0: 6658 // x1 = load i32 6659 // ... 6660 // b1: 6661 // x2 = load i32 6662 // ... 6663 // b2: 6664 // x = phi x1, x2 6665 // y = and x, 0xff 6666 // 6667 // becomes (after a call to optimizeLoadExt for each load): 6668 // 6669 // b0: 6670 // x1 = load i32 6671 // x1' = and x1, 0xff 6672 // ... 6673 // b1: 6674 // x2 = load i32 6675 // x2' = and x2, 0xff 6676 // ... 6677 // b2: 6678 // x = phi x1', x2' 6679 // y = and x, 0xff 6680 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6681 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6682 return false; 6683 6684 // Skip loads we've already transformed. 6685 if (Load->hasOneUse() && 6686 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6687 return false; 6688 6689 // Look at all uses of Load, looking through phis, to determine how many bits 6690 // of the loaded value are needed. 6691 SmallVector<Instruction *, 8> WorkList; 6692 SmallPtrSet<Instruction *, 16> Visited; 6693 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6694 for (auto *U : Load->users()) 6695 WorkList.push_back(cast<Instruction>(U)); 6696 6697 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6698 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6699 // If the BitWidth is 0, do not try to optimize the type 6700 if (BitWidth == 0) 6701 return false; 6702 6703 APInt DemandBits(BitWidth, 0); 6704 APInt WidestAndBits(BitWidth, 0); 6705 6706 while (!WorkList.empty()) { 6707 Instruction *I = WorkList.pop_back_val(); 6708 6709 // Break use-def graph loops. 6710 if (!Visited.insert(I).second) 6711 continue; 6712 6713 // For a PHI node, push all of its users. 6714 if (auto *Phi = dyn_cast<PHINode>(I)) { 6715 for (auto *U : Phi->users()) 6716 WorkList.push_back(cast<Instruction>(U)); 6717 continue; 6718 } 6719 6720 switch (I->getOpcode()) { 6721 case Instruction::And: { 6722 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6723 if (!AndC) 6724 return false; 6725 APInt AndBits = AndC->getValue(); 6726 DemandBits |= AndBits; 6727 // Keep track of the widest and mask we see. 6728 if (AndBits.ugt(WidestAndBits)) 6729 WidestAndBits = AndBits; 6730 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6731 AndsToMaybeRemove.push_back(I); 6732 break; 6733 } 6734 6735 case Instruction::Shl: { 6736 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6737 if (!ShlC) 6738 return false; 6739 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6740 DemandBits.setLowBits(BitWidth - ShiftAmt); 6741 break; 6742 } 6743 6744 case Instruction::Trunc: { 6745 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6746 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6747 DemandBits.setLowBits(TruncBitWidth); 6748 break; 6749 } 6750 6751 default: 6752 return false; 6753 } 6754 } 6755 6756 uint32_t ActiveBits = DemandBits.getActiveBits(); 6757 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6758 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6759 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6760 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6761 // followed by an AND. 6762 // TODO: Look into removing this restriction by fixing backends to either 6763 // return false for isLoadExtLegal for i1 or have them select this pattern to 6764 // a single instruction. 6765 // 6766 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6767 // mask, since these are the only ands that will be removed by isel. 6768 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6769 WidestAndBits != DemandBits) 6770 return false; 6771 6772 LLVMContext &Ctx = Load->getType()->getContext(); 6773 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6774 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6775 6776 // Reject cases that won't be matched as extloads. 6777 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6778 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6779 return false; 6780 6781 IRBuilder<> Builder(Load->getNextNonDebugInstruction()); 6782 auto *NewAnd = cast<Instruction>( 6783 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6784 // Mark this instruction as "inserted by CGP", so that other 6785 // optimizations don't touch it. 6786 InsertedInsts.insert(NewAnd); 6787 6788 // Replace all uses of load with new and (except for the use of load in the 6789 // new and itself). 6790 replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc); 6791 NewAnd->setOperand(0, Load); 6792 6793 // Remove any and instructions that are now redundant. 6794 for (auto *And : AndsToMaybeRemove) 6795 // Check that the and mask is the same as the one we decided to put on the 6796 // new and. 6797 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6798 replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc); 6799 if (&*CurInstIterator == And) 6800 CurInstIterator = std::next(And->getIterator()); 6801 And->eraseFromParent(); 6802 ++NumAndUses; 6803 } 6804 6805 ++NumAndsAdded; 6806 return true; 6807 } 6808 6809 /// Check if V (an operand of a select instruction) is an expensive instruction 6810 /// that is only used once. 6811 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6812 auto *I = dyn_cast<Instruction>(V); 6813 // If it's safe to speculatively execute, then it should not have side 6814 // effects; therefore, it's safe to sink and possibly *not* execute. 6815 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6816 TTI->isExpensiveToSpeculativelyExecute(I); 6817 } 6818 6819 /// Returns true if a SelectInst should be turned into an explicit branch. 6820 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6821 const TargetLowering *TLI, 6822 SelectInst *SI) { 6823 // If even a predictable select is cheap, then a branch can't be cheaper. 6824 if (!TLI->isPredictableSelectExpensive()) 6825 return false; 6826 6827 // FIXME: This should use the same heuristics as IfConversion to determine 6828 // whether a select is better represented as a branch. 6829 6830 // If metadata tells us that the select condition is obviously predictable, 6831 // then we want to replace the select with a branch. 6832 uint64_t TrueWeight, FalseWeight; 6833 if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { 6834 uint64_t Max = std::max(TrueWeight, FalseWeight); 6835 uint64_t Sum = TrueWeight + FalseWeight; 6836 if (Sum != 0) { 6837 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6838 if (Probability > TTI->getPredictableBranchThreshold()) 6839 return true; 6840 } 6841 } 6842 6843 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6844 6845 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6846 // comparison condition. If the compare has more than one use, there's 6847 // probably another cmov or setcc around, so it's not worth emitting a branch. 6848 if (!Cmp || !Cmp->hasOneUse()) 6849 return false; 6850 6851 // If either operand of the select is expensive and only needed on one side 6852 // of the select, we should form a branch. 6853 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6854 sinkSelectOperand(TTI, SI->getFalseValue())) 6855 return true; 6856 6857 return false; 6858 } 6859 6860 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6861 /// false value of \p SI. If the true/false value of \p SI is defined by any 6862 /// select instructions in \p Selects, look through the defining select 6863 /// instruction until the true/false value is not defined in \p Selects. 6864 static Value * 6865 getTrueOrFalseValue(SelectInst *SI, bool isTrue, 6866 const SmallPtrSet<const Instruction *, 2> &Selects) { 6867 Value *V = nullptr; 6868 6869 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6870 DefSI = dyn_cast<SelectInst>(V)) { 6871 assert(DefSI->getCondition() == SI->getCondition() && 6872 "The condition of DefSI does not match with SI"); 6873 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6874 } 6875 6876 assert(V && "Failed to get select true/false value"); 6877 return V; 6878 } 6879 6880 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6881 assert(Shift->isShift() && "Expected a shift"); 6882 6883 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6884 // general vector shifts, and (3) the shift amount is a select-of-splatted 6885 // values, hoist the shifts before the select: 6886 // shift Op0, (select Cond, TVal, FVal) --> 6887 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6888 // 6889 // This is inverting a generic IR transform when we know that the cost of a 6890 // general vector shift is more than the cost of 2 shift-by-scalars. 6891 // We can't do this effectively in SDAG because we may not be able to 6892 // determine if the select operands are splats from within a basic block. 6893 Type *Ty = Shift->getType(); 6894 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6895 return false; 6896 Value *Cond, *TVal, *FVal; 6897 if (!match(Shift->getOperand(1), 6898 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6899 return false; 6900 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6901 return false; 6902 6903 IRBuilder<> Builder(Shift); 6904 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6905 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6906 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6907 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6908 replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc); 6909 Shift->eraseFromParent(); 6910 return true; 6911 } 6912 6913 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6914 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6915 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6916 "Expected a funnel shift"); 6917 6918 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6919 // than general vector shifts, and (3) the shift amount is select-of-splatted 6920 // values, hoist the funnel shifts before the select: 6921 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6922 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6923 // 6924 // This is inverting a generic IR transform when we know that the cost of a 6925 // general vector shift is more than the cost of 2 shift-by-scalars. 6926 // We can't do this effectively in SDAG because we may not be able to 6927 // determine if the select operands are splats from within a basic block. 6928 Type *Ty = Fsh->getType(); 6929 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6930 return false; 6931 Value *Cond, *TVal, *FVal; 6932 if (!match(Fsh->getOperand(2), 6933 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6934 return false; 6935 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6936 return false; 6937 6938 IRBuilder<> Builder(Fsh); 6939 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6940 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal}); 6941 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal}); 6942 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6943 replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc); 6944 Fsh->eraseFromParent(); 6945 return true; 6946 } 6947 6948 /// If we have a SelectInst that will likely profit from branch prediction, 6949 /// turn it into a branch. 6950 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6951 if (DisableSelectToBranch) 6952 return false; 6953 6954 // If the SelectOptimize pass is enabled, selects have already been optimized. 6955 if (!getCGPassBuilderOption().DisableSelectOptimize) 6956 return false; 6957 6958 // Find all consecutive select instructions that share the same condition. 6959 SmallVector<SelectInst *, 2> ASI; 6960 ASI.push_back(SI); 6961 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6962 It != SI->getParent()->end(); ++It) { 6963 SelectInst *I = dyn_cast<SelectInst>(&*It); 6964 if (I && SI->getCondition() == I->getCondition()) { 6965 ASI.push_back(I); 6966 } else { 6967 break; 6968 } 6969 } 6970 6971 SelectInst *LastSI = ASI.back(); 6972 // Increment the current iterator to skip all the rest of select instructions 6973 // because they will be either "not lowered" or "all lowered" to branch. 6974 CurInstIterator = std::next(LastSI->getIterator()); 6975 // Examine debug-info attached to the consecutive select instructions. They 6976 // won't be individually optimised by optimizeInst, so we need to perform 6977 // DPValue maintenence here instead. 6978 for (SelectInst *SI : ArrayRef(ASI).drop_front()) 6979 fixupDPValuesOnInst(*SI); 6980 6981 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6982 6983 // Can we convert the 'select' to CF ? 6984 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6985 return false; 6986 6987 TargetLowering::SelectSupportKind SelectKind; 6988 if (SI->getType()->isVectorTy()) 6989 SelectKind = TargetLowering::ScalarCondVectorVal; 6990 else 6991 SelectKind = TargetLowering::ScalarValSelect; 6992 6993 if (TLI->isSelectSupported(SelectKind) && 6994 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6995 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6996 return false; 6997 6998 // The DominatorTree needs to be rebuilt by any consumers after this 6999 // transformation. We simply reset here rather than setting the ModifiedDT 7000 // flag to avoid restarting the function walk in runOnFunction for each 7001 // select optimized. 7002 DT.reset(); 7003 7004 // Transform a sequence like this: 7005 // start: 7006 // %cmp = cmp uge i32 %a, %b 7007 // %sel = select i1 %cmp, i32 %c, i32 %d 7008 // 7009 // Into: 7010 // start: 7011 // %cmp = cmp uge i32 %a, %b 7012 // %cmp.frozen = freeze %cmp 7013 // br i1 %cmp.frozen, label %select.true, label %select.false 7014 // select.true: 7015 // br label %select.end 7016 // select.false: 7017 // br label %select.end 7018 // select.end: 7019 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 7020 // 7021 // %cmp should be frozen, otherwise it may introduce undefined behavior. 7022 // In addition, we may sink instructions that produce %c or %d from 7023 // the entry block into the destination(s) of the new branch. 7024 // If the true or false blocks do not contain a sunken instruction, that 7025 // block and its branch may be optimized away. In that case, one side of the 7026 // first branch will point directly to select.end, and the corresponding PHI 7027 // predecessor block will be the start block. 7028 7029 // Collect values that go on the true side and the values that go on the false 7030 // side. 7031 SmallVector<Instruction *> TrueInstrs, FalseInstrs; 7032 for (SelectInst *SI : ASI) { 7033 if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V)) 7034 TrueInstrs.push_back(cast<Instruction>(V)); 7035 if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V)) 7036 FalseInstrs.push_back(cast<Instruction>(V)); 7037 } 7038 7039 // Split the select block, according to how many (if any) values go on each 7040 // side. 7041 BasicBlock *StartBlock = SI->getParent(); 7042 BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI)); 7043 // We should split before any debug-info. 7044 SplitPt.setHeadBit(true); 7045 7046 IRBuilder<> IB(SI); 7047 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 7048 7049 BasicBlock *TrueBlock = nullptr; 7050 BasicBlock *FalseBlock = nullptr; 7051 BasicBlock *EndBlock = nullptr; 7052 BranchInst *TrueBranch = nullptr; 7053 BranchInst *FalseBranch = nullptr; 7054 if (TrueInstrs.size() == 0) { 7055 FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse( 7056 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7057 FalseBlock = FalseBranch->getParent(); 7058 EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0)); 7059 } else if (FalseInstrs.size() == 0) { 7060 TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen( 7061 CondFr, SplitPt, false, nullptr, nullptr, LI)); 7062 TrueBlock = TrueBranch->getParent(); 7063 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7064 } else { 7065 Instruction *ThenTerm = nullptr; 7066 Instruction *ElseTerm = nullptr; 7067 SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm, 7068 nullptr, nullptr, LI); 7069 TrueBranch = cast<BranchInst>(ThenTerm); 7070 FalseBranch = cast<BranchInst>(ElseTerm); 7071 TrueBlock = TrueBranch->getParent(); 7072 FalseBlock = FalseBranch->getParent(); 7073 EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0)); 7074 } 7075 7076 EndBlock->setName("select.end"); 7077 if (TrueBlock) 7078 TrueBlock->setName("select.true.sink"); 7079 if (FalseBlock) 7080 FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false" 7081 : "select.false.sink"); 7082 7083 if (IsHugeFunc) { 7084 if (TrueBlock) 7085 FreshBBs.insert(TrueBlock); 7086 if (FalseBlock) 7087 FreshBBs.insert(FalseBlock); 7088 FreshBBs.insert(EndBlock); 7089 } 7090 7091 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock)); 7092 7093 static const unsigned MD[] = { 7094 LLVMContext::MD_prof, LLVMContext::MD_unpredictable, 7095 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; 7096 StartBlock->getTerminator()->copyMetadata(*SI, MD); 7097 7098 // Sink expensive instructions into the conditional blocks to avoid executing 7099 // them speculatively. 7100 for (Instruction *I : TrueInstrs) 7101 I->moveBefore(TrueBranch); 7102 for (Instruction *I : FalseInstrs) 7103 I->moveBefore(FalseBranch); 7104 7105 // If we did not create a new block for one of the 'true' or 'false' paths 7106 // of the condition, it means that side of the branch goes to the end block 7107 // directly and the path originates from the start block from the point of 7108 // view of the new PHI. 7109 if (TrueBlock == nullptr) 7110 TrueBlock = StartBlock; 7111 else if (FalseBlock == nullptr) 7112 FalseBlock = StartBlock; 7113 7114 SmallPtrSet<const Instruction *, 2> INS; 7115 INS.insert(ASI.begin(), ASI.end()); 7116 // Use reverse iterator because later select may use the value of the 7117 // earlier select, and we need to propagate value through earlier select 7118 // to get the PHI operand. 7119 for (SelectInst *SI : llvm::reverse(ASI)) { 7120 // The select itself is replaced with a PHI Node. 7121 PHINode *PN = PHINode::Create(SI->getType(), 2, ""); 7122 PN->insertBefore(EndBlock->begin()); 7123 PN->takeName(SI); 7124 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 7125 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 7126 PN->setDebugLoc(SI->getDebugLoc()); 7127 7128 replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc); 7129 SI->eraseFromParent(); 7130 INS.erase(SI); 7131 ++NumSelectsExpanded; 7132 } 7133 7134 // Instruct OptimizeBlock to skip to the next block. 7135 CurInstIterator = StartBlock->end(); 7136 return true; 7137 } 7138 7139 /// Some targets only accept certain types for splat inputs. For example a VDUP 7140 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 7141 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 7142 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 7143 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 7144 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 7145 m_Undef(), m_ZeroMask()))) 7146 return false; 7147 Type *NewType = TLI->shouldConvertSplatType(SVI); 7148 if (!NewType) 7149 return false; 7150 7151 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 7152 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 7153 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 7154 "Expected a type of the same size!"); 7155 auto *NewVecType = 7156 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 7157 7158 // Create a bitcast (shuffle (insert (bitcast(..)))) 7159 IRBuilder<> Builder(SVI->getContext()); 7160 Builder.SetInsertPoint(SVI); 7161 Value *BC1 = Builder.CreateBitCast( 7162 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 7163 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 7164 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 7165 7166 replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc); 7167 RecursivelyDeleteTriviallyDeadInstructions( 7168 SVI, TLInfo, nullptr, 7169 [&](Value *V) { removeAllAssertingVHReferences(V); }); 7170 7171 // Also hoist the bitcast up to its operand if it they are not in the same 7172 // block. 7173 if (auto *BCI = dyn_cast<Instruction>(BC1)) 7174 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 7175 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 7176 !Op->isTerminator() && !Op->isEHPad()) 7177 BCI->moveAfter(Op); 7178 7179 return true; 7180 } 7181 7182 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 7183 // If the operands of I can be folded into a target instruction together with 7184 // I, duplicate and sink them. 7185 SmallVector<Use *, 4> OpsToSink; 7186 if (!TLI->shouldSinkOperands(I, OpsToSink)) 7187 return false; 7188 7189 // OpsToSink can contain multiple uses in a use chain (e.g. 7190 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 7191 // uses must come first, so we process the ops in reverse order so as to not 7192 // create invalid IR. 7193 BasicBlock *TargetBB = I->getParent(); 7194 bool Changed = false; 7195 SmallVector<Use *, 4> ToReplace; 7196 Instruction *InsertPoint = I; 7197 DenseMap<const Instruction *, unsigned long> InstOrdering; 7198 unsigned long InstNumber = 0; 7199 for (const auto &I : *TargetBB) 7200 InstOrdering[&I] = InstNumber++; 7201 7202 for (Use *U : reverse(OpsToSink)) { 7203 auto *UI = cast<Instruction>(U->get()); 7204 if (isa<PHINode>(UI)) 7205 continue; 7206 if (UI->getParent() == TargetBB) { 7207 if (InstOrdering[UI] < InstOrdering[InsertPoint]) 7208 InsertPoint = UI; 7209 continue; 7210 } 7211 ToReplace.push_back(U); 7212 } 7213 7214 SetVector<Instruction *> MaybeDead; 7215 DenseMap<Instruction *, Instruction *> NewInstructions; 7216 for (Use *U : ToReplace) { 7217 auto *UI = cast<Instruction>(U->get()); 7218 Instruction *NI = UI->clone(); 7219 7220 if (IsHugeFunc) { 7221 // Now we clone an instruction, its operands' defs may sink to this BB 7222 // now. So we put the operands defs' BBs into FreshBBs to do optimization. 7223 for (unsigned I = 0; I < NI->getNumOperands(); ++I) { 7224 auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I)); 7225 if (!OpDef) 7226 continue; 7227 FreshBBs.insert(OpDef->getParent()); 7228 } 7229 } 7230 7231 NewInstructions[UI] = NI; 7232 MaybeDead.insert(UI); 7233 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 7234 NI->insertBefore(InsertPoint); 7235 InsertPoint = NI; 7236 InsertedInsts.insert(NI); 7237 7238 // Update the use for the new instruction, making sure that we update the 7239 // sunk instruction uses, if it is part of a chain that has already been 7240 // sunk. 7241 Instruction *OldI = cast<Instruction>(U->getUser()); 7242 if (NewInstructions.count(OldI)) 7243 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 7244 else 7245 U->set(NI); 7246 Changed = true; 7247 } 7248 7249 // Remove instructions that are dead after sinking. 7250 for (auto *I : MaybeDead) { 7251 if (!I->hasNUsesOrMore(1)) { 7252 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 7253 I->eraseFromParent(); 7254 } 7255 } 7256 7257 return Changed; 7258 } 7259 7260 bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) { 7261 Value *Cond = SI->getCondition(); 7262 Type *OldType = Cond->getType(); 7263 LLVMContext &Context = Cond->getContext(); 7264 EVT OldVT = TLI->getValueType(*DL, OldType); 7265 MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT); 7266 unsigned RegWidth = RegType.getSizeInBits(); 7267 7268 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 7269 return false; 7270 7271 // If the register width is greater than the type width, expand the condition 7272 // of the switch instruction and each case constant to the width of the 7273 // register. By widening the type of the switch condition, subsequent 7274 // comparisons (for case comparisons) will not need to be extended to the 7275 // preferred register width, so we will potentially eliminate N-1 extends, 7276 // where N is the number of cases in the switch. 7277 auto *NewType = Type::getIntNTy(Context, RegWidth); 7278 7279 // Extend the switch condition and case constants using the target preferred 7280 // extend unless the switch condition is a function argument with an extend 7281 // attribute. In that case, we can avoid an unnecessary mask/extension by 7282 // matching the argument extension instead. 7283 Instruction::CastOps ExtType = Instruction::ZExt; 7284 // Some targets prefer SExt over ZExt. 7285 if (TLI->isSExtCheaperThanZExt(OldVT, RegType)) 7286 ExtType = Instruction::SExt; 7287 7288 if (auto *Arg = dyn_cast<Argument>(Cond)) { 7289 if (Arg->hasSExtAttr()) 7290 ExtType = Instruction::SExt; 7291 if (Arg->hasZExtAttr()) 7292 ExtType = Instruction::ZExt; 7293 } 7294 7295 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7296 ExtInst->insertBefore(SI); 7297 ExtInst->setDebugLoc(SI->getDebugLoc()); 7298 SI->setCondition(ExtInst); 7299 for (auto Case : SI->cases()) { 7300 const APInt &NarrowConst = Case.getCaseValue()->getValue(); 7301 APInt WideConst = (ExtType == Instruction::ZExt) 7302 ? NarrowConst.zext(RegWidth) 7303 : NarrowConst.sext(RegWidth); 7304 Case.setValue(ConstantInt::get(Context, WideConst)); 7305 } 7306 7307 return true; 7308 } 7309 7310 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) { 7311 // The SCCP optimization tends to produce code like this: 7312 // switch(x) { case 42: phi(42, ...) } 7313 // Materializing the constant for the phi-argument needs instructions; So we 7314 // change the code to: 7315 // switch(x) { case 42: phi(x, ...) } 7316 7317 Value *Condition = SI->getCondition(); 7318 // Avoid endless loop in degenerate case. 7319 if (isa<ConstantInt>(*Condition)) 7320 return false; 7321 7322 bool Changed = false; 7323 BasicBlock *SwitchBB = SI->getParent(); 7324 Type *ConditionType = Condition->getType(); 7325 7326 for (const SwitchInst::CaseHandle &Case : SI->cases()) { 7327 ConstantInt *CaseValue = Case.getCaseValue(); 7328 BasicBlock *CaseBB = Case.getCaseSuccessor(); 7329 // Set to true if we previously checked that `CaseBB` is only reached by 7330 // a single case from this switch. 7331 bool CheckedForSinglePred = false; 7332 for (PHINode &PHI : CaseBB->phis()) { 7333 Type *PHIType = PHI.getType(); 7334 // If ZExt is free then we can also catch patterns like this: 7335 // switch((i32)x) { case 42: phi((i64)42, ...); } 7336 // and replace `(i64)42` with `zext i32 %x to i64`. 7337 bool TryZExt = 7338 PHIType->isIntegerTy() && 7339 PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() && 7340 TLI->isZExtFree(ConditionType, PHIType); 7341 if (PHIType == ConditionType || TryZExt) { 7342 // Set to true to skip this case because of multiple preds. 7343 bool SkipCase = false; 7344 Value *Replacement = nullptr; 7345 for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) { 7346 Value *PHIValue = PHI.getIncomingValue(I); 7347 if (PHIValue != CaseValue) { 7348 if (!TryZExt) 7349 continue; 7350 ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue); 7351 if (!PHIValueInt || 7352 PHIValueInt->getValue() != 7353 CaseValue->getValue().zext(PHIType->getIntegerBitWidth())) 7354 continue; 7355 } 7356 if (PHI.getIncomingBlock(I) != SwitchBB) 7357 continue; 7358 // We cannot optimize if there are multiple case labels jumping to 7359 // this block. This check may get expensive when there are many 7360 // case labels so we test for it last. 7361 if (!CheckedForSinglePred) { 7362 CheckedForSinglePred = true; 7363 if (SI->findCaseDest(CaseBB) == nullptr) { 7364 SkipCase = true; 7365 break; 7366 } 7367 } 7368 7369 if (Replacement == nullptr) { 7370 if (PHIValue == CaseValue) { 7371 Replacement = Condition; 7372 } else { 7373 IRBuilder<> Builder(SI); 7374 Replacement = Builder.CreateZExt(Condition, PHIType); 7375 } 7376 } 7377 PHI.setIncomingValue(I, Replacement); 7378 Changed = true; 7379 } 7380 if (SkipCase) 7381 break; 7382 } 7383 } 7384 } 7385 return Changed; 7386 } 7387 7388 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 7389 bool Changed = optimizeSwitchType(SI); 7390 Changed |= optimizeSwitchPhiConstants(SI); 7391 return Changed; 7392 } 7393 7394 namespace { 7395 7396 /// Helper class to promote a scalar operation to a vector one. 7397 /// This class is used to move downward extractelement transition. 7398 /// E.g., 7399 /// a = vector_op <2 x i32> 7400 /// b = extractelement <2 x i32> a, i32 0 7401 /// c = scalar_op b 7402 /// store c 7403 /// 7404 /// => 7405 /// a = vector_op <2 x i32> 7406 /// c = vector_op a (equivalent to scalar_op on the related lane) 7407 /// * d = extractelement <2 x i32> c, i32 0 7408 /// * store d 7409 /// Assuming both extractelement and store can be combine, we get rid of the 7410 /// transition. 7411 class VectorPromoteHelper { 7412 /// DataLayout associated with the current module. 7413 const DataLayout &DL; 7414 7415 /// Used to perform some checks on the legality of vector operations. 7416 const TargetLowering &TLI; 7417 7418 /// Used to estimated the cost of the promoted chain. 7419 const TargetTransformInfo &TTI; 7420 7421 /// The transition being moved downwards. 7422 Instruction *Transition; 7423 7424 /// The sequence of instructions to be promoted. 7425 SmallVector<Instruction *, 4> InstsToBePromoted; 7426 7427 /// Cost of combining a store and an extract. 7428 unsigned StoreExtractCombineCost; 7429 7430 /// Instruction that will be combined with the transition. 7431 Instruction *CombineInst = nullptr; 7432 7433 /// The instruction that represents the current end of the transition. 7434 /// Since we are faking the promotion until we reach the end of the chain 7435 /// of computation, we need a way to get the current end of the transition. 7436 Instruction *getEndOfTransition() const { 7437 if (InstsToBePromoted.empty()) 7438 return Transition; 7439 return InstsToBePromoted.back(); 7440 } 7441 7442 /// Return the index of the original value in the transition. 7443 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7444 /// c, is at index 0. 7445 unsigned getTransitionOriginalValueIdx() const { 7446 assert(isa<ExtractElementInst>(Transition) && 7447 "Other kind of transitions are not supported yet"); 7448 return 0; 7449 } 7450 7451 /// Return the index of the index in the transition. 7452 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7453 /// is at index 1. 7454 unsigned getTransitionIdx() const { 7455 assert(isa<ExtractElementInst>(Transition) && 7456 "Other kind of transitions are not supported yet"); 7457 return 1; 7458 } 7459 7460 /// Get the type of the transition. 7461 /// This is the type of the original value. 7462 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7463 /// transition is <2 x i32>. 7464 Type *getTransitionType() const { 7465 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7466 } 7467 7468 /// Promote \p ToBePromoted by moving \p Def downward through. 7469 /// I.e., we have the following sequence: 7470 /// Def = Transition <ty1> a to <ty2> 7471 /// b = ToBePromoted <ty2> Def, ... 7472 /// => 7473 /// b = ToBePromoted <ty1> a, ... 7474 /// Def = Transition <ty1> ToBePromoted to <ty2> 7475 void promoteImpl(Instruction *ToBePromoted); 7476 7477 /// Check whether or not it is profitable to promote all the 7478 /// instructions enqueued to be promoted. 7479 bool isProfitableToPromote() { 7480 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7481 unsigned Index = isa<ConstantInt>(ValIdx) 7482 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7483 : -1; 7484 Type *PromotedType = getTransitionType(); 7485 7486 StoreInst *ST = cast<StoreInst>(CombineInst); 7487 unsigned AS = ST->getPointerAddressSpace(); 7488 // Check if this store is supported. 7489 if (!TLI.allowsMisalignedMemoryAccesses( 7490 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7491 ST->getAlign())) { 7492 // If this is not supported, there is no way we can combine 7493 // the extract with the store. 7494 return false; 7495 } 7496 7497 // The scalar chain of computation has to pay for the transition 7498 // scalar to vector. 7499 // The vector chain has to account for the combining cost. 7500 enum TargetTransformInfo::TargetCostKind CostKind = 7501 TargetTransformInfo::TCK_RecipThroughput; 7502 InstructionCost ScalarCost = 7503 TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index); 7504 InstructionCost VectorCost = StoreExtractCombineCost; 7505 for (const auto &Inst : InstsToBePromoted) { 7506 // Compute the cost. 7507 // By construction, all instructions being promoted are arithmetic ones. 7508 // Moreover, one argument is a constant that can be viewed as a splat 7509 // constant. 7510 Value *Arg0 = Inst->getOperand(0); 7511 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7512 isa<ConstantFP>(Arg0); 7513 TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info; 7514 if (IsArg0Constant) 7515 Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7516 else 7517 Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue; 7518 7519 ScalarCost += TTI.getArithmeticInstrCost( 7520 Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info); 7521 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7522 CostKind, Arg0Info, Arg1Info); 7523 } 7524 LLVM_DEBUG( 7525 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7526 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7527 return ScalarCost > VectorCost; 7528 } 7529 7530 /// Generate a constant vector with \p Val with the same 7531 /// number of elements as the transition. 7532 /// \p UseSplat defines whether or not \p Val should be replicated 7533 /// across the whole vector. 7534 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7535 /// otherwise we generate a vector with as many undef as possible: 7536 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7537 /// used at the index of the extract. 7538 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7539 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7540 if (!UseSplat) { 7541 // If we cannot determine where the constant must be, we have to 7542 // use a splat constant. 7543 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7544 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7545 ExtractIdx = CstVal->getSExtValue(); 7546 else 7547 UseSplat = true; 7548 } 7549 7550 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7551 if (UseSplat) 7552 return ConstantVector::getSplat(EC, Val); 7553 7554 if (!EC.isScalable()) { 7555 SmallVector<Constant *, 4> ConstVec; 7556 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7557 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7558 if (Idx == ExtractIdx) 7559 ConstVec.push_back(Val); 7560 else 7561 ConstVec.push_back(UndefVal); 7562 } 7563 return ConstantVector::get(ConstVec); 7564 } else 7565 llvm_unreachable( 7566 "Generate scalable vector for non-splat is unimplemented"); 7567 } 7568 7569 /// Check if promoting to a vector type an operand at \p OperandIdx 7570 /// in \p Use can trigger undefined behavior. 7571 static bool canCauseUndefinedBehavior(const Instruction *Use, 7572 unsigned OperandIdx) { 7573 // This is not safe to introduce undef when the operand is on 7574 // the right hand side of a division-like instruction. 7575 if (OperandIdx != 1) 7576 return false; 7577 switch (Use->getOpcode()) { 7578 default: 7579 return false; 7580 case Instruction::SDiv: 7581 case Instruction::UDiv: 7582 case Instruction::SRem: 7583 case Instruction::URem: 7584 return true; 7585 case Instruction::FDiv: 7586 case Instruction::FRem: 7587 return !Use->hasNoNaNs(); 7588 } 7589 llvm_unreachable(nullptr); 7590 } 7591 7592 public: 7593 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7594 const TargetTransformInfo &TTI, Instruction *Transition, 7595 unsigned CombineCost) 7596 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7597 StoreExtractCombineCost(CombineCost) { 7598 assert(Transition && "Do not know how to promote null"); 7599 } 7600 7601 /// Check if we can promote \p ToBePromoted to \p Type. 7602 bool canPromote(const Instruction *ToBePromoted) const { 7603 // We could support CastInst too. 7604 return isa<BinaryOperator>(ToBePromoted); 7605 } 7606 7607 /// Check if it is profitable to promote \p ToBePromoted 7608 /// by moving downward the transition through. 7609 bool shouldPromote(const Instruction *ToBePromoted) const { 7610 // Promote only if all the operands can be statically expanded. 7611 // Indeed, we do not want to introduce any new kind of transitions. 7612 for (const Use &U : ToBePromoted->operands()) { 7613 const Value *Val = U.get(); 7614 if (Val == getEndOfTransition()) { 7615 // If the use is a division and the transition is on the rhs, 7616 // we cannot promote the operation, otherwise we may create a 7617 // division by zero. 7618 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7619 return false; 7620 continue; 7621 } 7622 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7623 !isa<ConstantFP>(Val)) 7624 return false; 7625 } 7626 // Check that the resulting operation is legal. 7627 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7628 if (!ISDOpcode) 7629 return false; 7630 return StressStoreExtract || 7631 TLI.isOperationLegalOrCustom( 7632 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7633 } 7634 7635 /// Check whether or not \p Use can be combined 7636 /// with the transition. 7637 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7638 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7639 7640 /// Record \p ToBePromoted as part of the chain to be promoted. 7641 void enqueueForPromotion(Instruction *ToBePromoted) { 7642 InstsToBePromoted.push_back(ToBePromoted); 7643 } 7644 7645 /// Set the instruction that will be combined with the transition. 7646 void recordCombineInstruction(Instruction *ToBeCombined) { 7647 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7648 CombineInst = ToBeCombined; 7649 } 7650 7651 /// Promote all the instructions enqueued for promotion if it is 7652 /// is profitable. 7653 /// \return True if the promotion happened, false otherwise. 7654 bool promote() { 7655 // Check if there is something to promote. 7656 // Right now, if we do not have anything to combine with, 7657 // we assume the promotion is not profitable. 7658 if (InstsToBePromoted.empty() || !CombineInst) 7659 return false; 7660 7661 // Check cost. 7662 if (!StressStoreExtract && !isProfitableToPromote()) 7663 return false; 7664 7665 // Promote. 7666 for (auto &ToBePromoted : InstsToBePromoted) 7667 promoteImpl(ToBePromoted); 7668 InstsToBePromoted.clear(); 7669 return true; 7670 } 7671 }; 7672 7673 } // end anonymous namespace 7674 7675 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7676 // At this point, we know that all the operands of ToBePromoted but Def 7677 // can be statically promoted. 7678 // For Def, we need to use its parameter in ToBePromoted: 7679 // b = ToBePromoted ty1 a 7680 // Def = Transition ty1 b to ty2 7681 // Move the transition down. 7682 // 1. Replace all uses of the promoted operation by the transition. 7683 // = ... b => = ... Def. 7684 assert(ToBePromoted->getType() == Transition->getType() && 7685 "The type of the result of the transition does not match " 7686 "the final type"); 7687 ToBePromoted->replaceAllUsesWith(Transition); 7688 // 2. Update the type of the uses. 7689 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7690 Type *TransitionTy = getTransitionType(); 7691 ToBePromoted->mutateType(TransitionTy); 7692 // 3. Update all the operands of the promoted operation with promoted 7693 // operands. 7694 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7695 for (Use &U : ToBePromoted->operands()) { 7696 Value *Val = U.get(); 7697 Value *NewVal = nullptr; 7698 if (Val == Transition) 7699 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7700 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7701 isa<ConstantFP>(Val)) { 7702 // Use a splat constant if it is not safe to use undef. 7703 NewVal = getConstantVector( 7704 cast<Constant>(Val), 7705 isa<UndefValue>(Val) || 7706 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7707 } else 7708 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7709 "this?"); 7710 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7711 } 7712 Transition->moveAfter(ToBePromoted); 7713 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7714 } 7715 7716 /// Some targets can do store(extractelement) with one instruction. 7717 /// Try to push the extractelement towards the stores when the target 7718 /// has this feature and this is profitable. 7719 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7720 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7721 if (DisableStoreExtract || 7722 (!StressStoreExtract && 7723 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7724 Inst->getOperand(1), CombineCost))) 7725 return false; 7726 7727 // At this point we know that Inst is a vector to scalar transition. 7728 // Try to move it down the def-use chain, until: 7729 // - We can combine the transition with its single use 7730 // => we got rid of the transition. 7731 // - We escape the current basic block 7732 // => we would need to check that we are moving it at a cheaper place and 7733 // we do not do that for now. 7734 BasicBlock *Parent = Inst->getParent(); 7735 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7736 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7737 // If the transition has more than one use, assume this is not going to be 7738 // beneficial. 7739 while (Inst->hasOneUse()) { 7740 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7741 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7742 7743 if (ToBePromoted->getParent() != Parent) { 7744 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7745 << ToBePromoted->getParent()->getName() 7746 << ") than the transition (" << Parent->getName() 7747 << ").\n"); 7748 return false; 7749 } 7750 7751 if (VPH.canCombine(ToBePromoted)) { 7752 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7753 << "will be combined with: " << *ToBePromoted << '\n'); 7754 VPH.recordCombineInstruction(ToBePromoted); 7755 bool Changed = VPH.promote(); 7756 NumStoreExtractExposed += Changed; 7757 return Changed; 7758 } 7759 7760 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7761 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7762 return false; 7763 7764 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7765 7766 VPH.enqueueForPromotion(ToBePromoted); 7767 Inst = ToBePromoted; 7768 } 7769 return false; 7770 } 7771 7772 /// For the instruction sequence of store below, F and I values 7773 /// are bundled together as an i64 value before being stored into memory. 7774 /// Sometimes it is more efficient to generate separate stores for F and I, 7775 /// which can remove the bitwise instructions or sink them to colder places. 7776 /// 7777 /// (store (or (zext (bitcast F to i32) to i64), 7778 /// (shl (zext I to i64), 32)), addr) --> 7779 /// (store F, addr) and (store I, addr+4) 7780 /// 7781 /// Similarly, splitting for other merged store can also be beneficial, like: 7782 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7783 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7784 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7785 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7786 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7787 /// 7788 /// We allow each target to determine specifically which kind of splitting is 7789 /// supported. 7790 /// 7791 /// The store patterns are commonly seen from the simple code snippet below 7792 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7793 /// void goo(const std::pair<int, float> &); 7794 /// hoo() { 7795 /// ... 7796 /// goo(std::make_pair(tmp, ftmp)); 7797 /// ... 7798 /// } 7799 /// 7800 /// Although we already have similar splitting in DAG Combine, we duplicate 7801 /// it in CodeGenPrepare to catch the case in which pattern is across 7802 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7803 /// during code expansion. 7804 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7805 const TargetLowering &TLI) { 7806 // Handle simple but common cases only. 7807 Type *StoreType = SI.getValueOperand()->getType(); 7808 7809 // The code below assumes shifting a value by <number of bits>, 7810 // whereas scalable vectors would have to be shifted by 7811 // <2log(vscale) + number of bits> in order to store the 7812 // low/high parts. Bailing out for now. 7813 if (StoreType->isScalableTy()) 7814 return false; 7815 7816 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7817 DL.getTypeSizeInBits(StoreType) == 0) 7818 return false; 7819 7820 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7821 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7822 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7823 return false; 7824 7825 // Don't split the store if it is volatile. 7826 if (SI.isVolatile()) 7827 return false; 7828 7829 // Match the following patterns: 7830 // (store (or (zext LValue to i64), 7831 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7832 // or 7833 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7834 // (zext LValue to i64), 7835 // Expect both operands of OR and the first operand of SHL have only 7836 // one use. 7837 Value *LValue, *HValue; 7838 if (!match(SI.getValueOperand(), 7839 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7840 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7841 m_SpecificInt(HalfValBitSize)))))) 7842 return false; 7843 7844 // Check LValue and HValue are int with size less or equal than 32. 7845 if (!LValue->getType()->isIntegerTy() || 7846 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7847 !HValue->getType()->isIntegerTy() || 7848 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7849 return false; 7850 7851 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7852 // as the input of target query. 7853 auto *LBC = dyn_cast<BitCastInst>(LValue); 7854 auto *HBC = dyn_cast<BitCastInst>(HValue); 7855 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7856 : EVT::getEVT(LValue->getType()); 7857 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7858 : EVT::getEVT(HValue->getType()); 7859 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7860 return false; 7861 7862 // Start to split store. 7863 IRBuilder<> Builder(SI.getContext()); 7864 Builder.SetInsertPoint(&SI); 7865 7866 // If LValue/HValue is a bitcast in another BB, create a new one in current 7867 // BB so it may be merged with the splitted stores by dag combiner. 7868 if (LBC && LBC->getParent() != SI.getParent()) 7869 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7870 if (HBC && HBC->getParent() != SI.getParent()) 7871 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7872 7873 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7874 auto CreateSplitStore = [&](Value *V, bool Upper) { 7875 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7876 Value *Addr = SI.getPointerOperand(); 7877 Align Alignment = SI.getAlign(); 7878 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7879 if (IsOffsetStore) { 7880 Addr = Builder.CreateGEP( 7881 SplitStoreType, Addr, 7882 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7883 7884 // When splitting the store in half, naturally one half will retain the 7885 // alignment of the original wider store, regardless of whether it was 7886 // over-aligned or not, while the other will require adjustment. 7887 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7888 } 7889 Builder.CreateAlignedStore(V, Addr, Alignment); 7890 }; 7891 7892 CreateSplitStore(LValue, false); 7893 CreateSplitStore(HValue, true); 7894 7895 // Delete the old store. 7896 SI.eraseFromParent(); 7897 return true; 7898 } 7899 7900 // Return true if the GEP has two operands, the first operand is of a sequential 7901 // type, and the second operand is a constant. 7902 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7903 gep_type_iterator I = gep_type_begin(*GEP); 7904 return GEP->getNumOperands() == 2 && I.isSequential() && 7905 isa<ConstantInt>(GEP->getOperand(1)); 7906 } 7907 7908 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7909 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7910 // reducing liveness interference across those edges benefits global register 7911 // allocation. Currently handles only certain cases. 7912 // 7913 // For example, unmerge %GEPI and %UGEPI as below. 7914 // 7915 // ---------- BEFORE ---------- 7916 // SrcBlock: 7917 // ... 7918 // %GEPIOp = ... 7919 // ... 7920 // %GEPI = gep %GEPIOp, Idx 7921 // ... 7922 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7923 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7924 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7925 // %UGEPI) 7926 // 7927 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7928 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7929 // ... 7930 // 7931 // DstBi: 7932 // ... 7933 // %UGEPI = gep %GEPIOp, UIdx 7934 // ... 7935 // --------------------------- 7936 // 7937 // ---------- AFTER ---------- 7938 // SrcBlock: 7939 // ... (same as above) 7940 // (* %GEPI is still alive on the indirectbr edges) 7941 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7942 // unmerging) 7943 // ... 7944 // 7945 // DstBi: 7946 // ... 7947 // %UGEPI = gep %GEPI, (UIdx-Idx) 7948 // ... 7949 // --------------------------- 7950 // 7951 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7952 // no longer alive on them. 7953 // 7954 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7955 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7956 // not to disable further simplications and optimizations as a result of GEP 7957 // merging. 7958 // 7959 // Note this unmerging may increase the length of the data flow critical path 7960 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7961 // between the register pressure and the length of data-flow critical 7962 // path. Restricting this to the uncommon IndirectBr case would minimize the 7963 // impact of potentially longer critical path, if any, and the impact on compile 7964 // time. 7965 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7966 const TargetTransformInfo *TTI) { 7967 BasicBlock *SrcBlock = GEPI->getParent(); 7968 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7969 // (non-IndirectBr) cases exit early here. 7970 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7971 return false; 7972 // Check that GEPI is a simple gep with a single constant index. 7973 if (!GEPSequentialConstIndexed(GEPI)) 7974 return false; 7975 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7976 // Check that GEPI is a cheap one. 7977 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7978 TargetTransformInfo::TCK_SizeAndLatency) > 7979 TargetTransformInfo::TCC_Basic) 7980 return false; 7981 Value *GEPIOp = GEPI->getOperand(0); 7982 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7983 if (!isa<Instruction>(GEPIOp)) 7984 return false; 7985 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7986 if (GEPIOpI->getParent() != SrcBlock) 7987 return false; 7988 // Check that GEP is used outside the block, meaning it's alive on the 7989 // IndirectBr edge(s). 7990 if (llvm::none_of(GEPI->users(), [&](User *Usr) { 7991 if (auto *I = dyn_cast<Instruction>(Usr)) { 7992 if (I->getParent() != SrcBlock) { 7993 return true; 7994 } 7995 } 7996 return false; 7997 })) 7998 return false; 7999 // The second elements of the GEP chains to be unmerged. 8000 std::vector<GetElementPtrInst *> UGEPIs; 8001 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 8002 // on IndirectBr edges. 8003 for (User *Usr : GEPIOp->users()) { 8004 if (Usr == GEPI) 8005 continue; 8006 // Check if Usr is an Instruction. If not, give up. 8007 if (!isa<Instruction>(Usr)) 8008 return false; 8009 auto *UI = cast<Instruction>(Usr); 8010 // Check if Usr in the same block as GEPIOp, which is fine, skip. 8011 if (UI->getParent() == SrcBlock) 8012 continue; 8013 // Check if Usr is a GEP. If not, give up. 8014 if (!isa<GetElementPtrInst>(Usr)) 8015 return false; 8016 auto *UGEPI = cast<GetElementPtrInst>(Usr); 8017 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 8018 // the pointer operand to it. If so, record it in the vector. If not, give 8019 // up. 8020 if (!GEPSequentialConstIndexed(UGEPI)) 8021 return false; 8022 if (UGEPI->getOperand(0) != GEPIOp) 8023 return false; 8024 if (UGEPI->getSourceElementType() != GEPI->getSourceElementType()) 8025 return false; 8026 if (GEPIIdx->getType() != 8027 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 8028 return false; 8029 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8030 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 8031 TargetTransformInfo::TCK_SizeAndLatency) > 8032 TargetTransformInfo::TCC_Basic) 8033 return false; 8034 UGEPIs.push_back(UGEPI); 8035 } 8036 if (UGEPIs.size() == 0) 8037 return false; 8038 // Check the materializing cost of (Uidx-Idx). 8039 for (GetElementPtrInst *UGEPI : UGEPIs) { 8040 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8041 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 8042 InstructionCost ImmCost = TTI->getIntImmCost( 8043 NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency); 8044 if (ImmCost > TargetTransformInfo::TCC_Basic) 8045 return false; 8046 } 8047 // Now unmerge between GEPI and UGEPIs. 8048 for (GetElementPtrInst *UGEPI : UGEPIs) { 8049 UGEPI->setOperand(0, GEPI); 8050 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 8051 Constant *NewUGEPIIdx = ConstantInt::get( 8052 GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); 8053 UGEPI->setOperand(1, NewUGEPIIdx); 8054 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 8055 // inbounds to avoid UB. 8056 if (!GEPI->isInBounds()) { 8057 UGEPI->setIsInBounds(false); 8058 } 8059 } 8060 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 8061 // alive on IndirectBr edges). 8062 assert(llvm::none_of(GEPIOp->users(), 8063 [&](User *Usr) { 8064 return cast<Instruction>(Usr)->getParent() != SrcBlock; 8065 }) && 8066 "GEPIOp is used outside SrcBlock"); 8067 return true; 8068 } 8069 8070 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI, 8071 SmallSet<BasicBlock *, 32> &FreshBBs, 8072 bool IsHugeFunc) { 8073 // Try and convert 8074 // %c = icmp ult %x, 8 8075 // br %c, bla, blb 8076 // %tc = lshr %x, 3 8077 // to 8078 // %tc = lshr %x, 3 8079 // %c = icmp eq %tc, 0 8080 // br %c, bla, blb 8081 // Creating the cmp to zero can be better for the backend, especially if the 8082 // lshr produces flags that can be used automatically. 8083 if (!TLI.preferZeroCompareBranch() || !Branch->isConditional()) 8084 return false; 8085 8086 ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition()); 8087 if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse()) 8088 return false; 8089 8090 Value *X = Cmp->getOperand(0); 8091 APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue(); 8092 8093 for (auto *U : X->users()) { 8094 Instruction *UI = dyn_cast<Instruction>(U); 8095 // A quick dominance check 8096 if (!UI || 8097 (UI->getParent() != Branch->getParent() && 8098 UI->getParent() != Branch->getSuccessor(0) && 8099 UI->getParent() != Branch->getSuccessor(1)) || 8100 (UI->getParent() != Branch->getParent() && 8101 !UI->getParent()->getSinglePredecessor())) 8102 continue; 8103 8104 if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT && 8105 match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) { 8106 IRBuilder<> Builder(Branch); 8107 if (UI->getParent() != Branch->getParent()) 8108 UI->moveBefore(Branch); 8109 Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI, 8110 ConstantInt::get(UI->getType(), 0)); 8111 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8112 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8113 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8114 return true; 8115 } 8116 if (Cmp->isEquality() && 8117 (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) || 8118 match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) { 8119 IRBuilder<> Builder(Branch); 8120 if (UI->getParent() != Branch->getParent()) 8121 UI->moveBefore(Branch); 8122 Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI, 8123 ConstantInt::get(UI->getType(), 0)); 8124 LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n"); 8125 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n"); 8126 replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc); 8127 return true; 8128 } 8129 } 8130 return false; 8131 } 8132 8133 bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) { 8134 bool AnyChange = false; 8135 AnyChange = fixupDPValuesOnInst(*I); 8136 8137 // Bail out if we inserted the instruction to prevent optimizations from 8138 // stepping on each other's toes. 8139 if (InsertedInsts.count(I)) 8140 return AnyChange; 8141 8142 // TODO: Move into the switch on opcode below here. 8143 if (PHINode *P = dyn_cast<PHINode>(I)) { 8144 // It is possible for very late stage optimizations (such as SimplifyCFG) 8145 // to introduce PHI nodes too late to be cleaned up. If we detect such a 8146 // trivial PHI, go ahead and zap it here. 8147 if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) { 8148 LargeOffsetGEPMap.erase(P); 8149 replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc); 8150 P->eraseFromParent(); 8151 ++NumPHIsElim; 8152 return true; 8153 } 8154 return AnyChange; 8155 } 8156 8157 if (CastInst *CI = dyn_cast<CastInst>(I)) { 8158 // If the source of the cast is a constant, then this should have 8159 // already been constant folded. The only reason NOT to constant fold 8160 // it is if something (e.g. LSR) was careful to place the constant 8161 // evaluation in a block other than then one that uses it (e.g. to hoist 8162 // the address of globals out of a loop). If this is the case, we don't 8163 // want to forward-subst the cast. 8164 if (isa<Constant>(CI->getOperand(0))) 8165 return AnyChange; 8166 8167 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 8168 return true; 8169 8170 if ((isa<UIToFPInst>(I) || isa<FPToUIInst>(I) || isa<TruncInst>(I)) && 8171 TLI->optimizeExtendOrTruncateConversion( 8172 I, LI->getLoopFor(I->getParent()), *TTI)) 8173 return true; 8174 8175 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 8176 /// Sink a zext or sext into its user blocks if the target type doesn't 8177 /// fit in one register 8178 if (TLI->getTypeAction(CI->getContext(), 8179 TLI->getValueType(*DL, CI->getType())) == 8180 TargetLowering::TypeExpandInteger) { 8181 return SinkCast(CI); 8182 } else { 8183 if (TLI->optimizeExtendOrTruncateConversion( 8184 I, LI->getLoopFor(I->getParent()), *TTI)) 8185 return true; 8186 8187 bool MadeChange = optimizeExt(I); 8188 return MadeChange | optimizeExtUses(I); 8189 } 8190 } 8191 return AnyChange; 8192 } 8193 8194 if (auto *Cmp = dyn_cast<CmpInst>(I)) 8195 if (optimizeCmp(Cmp, ModifiedDT)) 8196 return true; 8197 8198 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8199 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8200 bool Modified = optimizeLoadExt(LI); 8201 unsigned AS = LI->getPointerAddressSpace(); 8202 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 8203 return Modified; 8204 } 8205 8206 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 8207 if (splitMergedValStore(*SI, *DL, *TLI)) 8208 return true; 8209 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 8210 unsigned AS = SI->getPointerAddressSpace(); 8211 return optimizeMemoryInst(I, SI->getOperand(1), 8212 SI->getOperand(0)->getType(), AS); 8213 } 8214 8215 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 8216 unsigned AS = RMW->getPointerAddressSpace(); 8217 return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); 8218 } 8219 8220 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 8221 unsigned AS = CmpX->getPointerAddressSpace(); 8222 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 8223 CmpX->getCompareOperand()->getType(), AS); 8224 } 8225 8226 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 8227 8228 if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking && 8229 sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts)) 8230 return true; 8231 8232 // TODO: Move this into the switch on opcode - it handles shifts already. 8233 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 8234 BinOp->getOpcode() == Instruction::LShr)) { 8235 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 8236 if (CI && TLI->hasExtractBitsInsn()) 8237 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 8238 return true; 8239 } 8240 8241 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 8242 if (GEPI->hasAllZeroIndices()) { 8243 /// The GEP operand must be a pointer, so must its result -> BitCast 8244 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 8245 GEPI->getName(), GEPI); 8246 NC->setDebugLoc(GEPI->getDebugLoc()); 8247 replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc); 8248 RecursivelyDeleteTriviallyDeadInstructions( 8249 GEPI, TLInfo, nullptr, 8250 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8251 ++NumGEPsElim; 8252 optimizeInst(NC, ModifiedDT); 8253 return true; 8254 } 8255 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 8256 return true; 8257 } 8258 } 8259 8260 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 8261 // freeze(icmp a, const)) -> icmp (freeze a), const 8262 // This helps generate efficient conditional jumps. 8263 Instruction *CmpI = nullptr; 8264 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 8265 CmpI = II; 8266 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 8267 CmpI = F->getFastMathFlags().none() ? F : nullptr; 8268 8269 if (CmpI && CmpI->hasOneUse()) { 8270 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 8271 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 8272 isa<ConstantPointerNull>(Op0); 8273 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 8274 isa<ConstantPointerNull>(Op1); 8275 if (Const0 || Const1) { 8276 if (!Const0 || !Const1) { 8277 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 8278 F->takeName(FI); 8279 CmpI->setOperand(Const0 ? 1 : 0, F); 8280 } 8281 replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc); 8282 FI->eraseFromParent(); 8283 return true; 8284 } 8285 } 8286 return AnyChange; 8287 } 8288 8289 if (tryToSinkFreeOperands(I)) 8290 return true; 8291 8292 switch (I->getOpcode()) { 8293 case Instruction::Shl: 8294 case Instruction::LShr: 8295 case Instruction::AShr: 8296 return optimizeShiftInst(cast<BinaryOperator>(I)); 8297 case Instruction::Call: 8298 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 8299 case Instruction::Select: 8300 return optimizeSelectInst(cast<SelectInst>(I)); 8301 case Instruction::ShuffleVector: 8302 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 8303 case Instruction::Switch: 8304 return optimizeSwitchInst(cast<SwitchInst>(I)); 8305 case Instruction::ExtractElement: 8306 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 8307 case Instruction::Br: 8308 return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc); 8309 } 8310 8311 return AnyChange; 8312 } 8313 8314 /// Given an OR instruction, check to see if this is a bitreverse 8315 /// idiom. If so, insert the new intrinsic and return true. 8316 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 8317 if (!I.getType()->isIntegerTy() || 8318 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 8319 TLI->getValueType(*DL, I.getType(), true))) 8320 return false; 8321 8322 SmallVector<Instruction *, 4> Insts; 8323 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 8324 return false; 8325 Instruction *LastInst = Insts.back(); 8326 replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc); 8327 RecursivelyDeleteTriviallyDeadInstructions( 8328 &I, TLInfo, nullptr, 8329 [&](Value *V) { removeAllAssertingVHReferences(V); }); 8330 return true; 8331 } 8332 8333 // In this pass we look for GEP and cast instructions that are used 8334 // across basic blocks and rewrite them to improve basic-block-at-a-time 8335 // selection. 8336 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) { 8337 SunkAddrs.clear(); 8338 bool MadeChange = false; 8339 8340 do { 8341 CurInstIterator = BB.begin(); 8342 ModifiedDT = ModifyDT::NotModifyDT; 8343 while (CurInstIterator != BB.end()) { 8344 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 8345 if (ModifiedDT != ModifyDT::NotModifyDT) { 8346 // For huge function we tend to quickly go though the inner optmization 8347 // opportunities in the BB. So we go back to the BB head to re-optimize 8348 // each instruction instead of go back to the function head. 8349 if (IsHugeFunc) { 8350 DT.reset(); 8351 getDT(*BB.getParent()); 8352 break; 8353 } else { 8354 return true; 8355 } 8356 } 8357 } 8358 } while (ModifiedDT == ModifyDT::ModifyInstDT); 8359 8360 bool MadeBitReverse = true; 8361 while (MadeBitReverse) { 8362 MadeBitReverse = false; 8363 for (auto &I : reverse(BB)) { 8364 if (makeBitReverse(I)) { 8365 MadeBitReverse = MadeChange = true; 8366 break; 8367 } 8368 } 8369 } 8370 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 8371 8372 return MadeChange; 8373 } 8374 8375 // Some CGP optimizations may move or alter what's computed in a block. Check 8376 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 8377 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 8378 assert(isa<DbgValueInst>(I)); 8379 DbgValueInst &DVI = *cast<DbgValueInst>(I); 8380 8381 // Does this dbg.value refer to a sunk address calculation? 8382 bool AnyChange = false; 8383 SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(), 8384 DVI.location_ops().end()); 8385 for (Value *Location : LocationOps) { 8386 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8387 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8388 if (SunkAddr) { 8389 // Point dbg.value at locally computed address, which should give the best 8390 // opportunity to be accurately lowered. This update may change the type 8391 // of pointer being referred to; however this makes no difference to 8392 // debugging information, and we can't generate bitcasts that may affect 8393 // codegen. 8394 DVI.replaceVariableLocationOp(Location, SunkAddr); 8395 AnyChange = true; 8396 } 8397 } 8398 return AnyChange; 8399 } 8400 8401 bool CodeGenPrepare::fixupDPValuesOnInst(Instruction &I) { 8402 bool AnyChange = false; 8403 for (DPValue &DPV : I.getDbgValueRange()) 8404 AnyChange |= fixupDPValue(DPV); 8405 return AnyChange; 8406 } 8407 8408 // FIXME: should updating debug-info really cause the "changed" flag to fire, 8409 // which can cause a function to be reprocessed? 8410 bool CodeGenPrepare::fixupDPValue(DPValue &DPV) { 8411 if (DPV.Type != DPValue::LocationType::Value) 8412 return false; 8413 8414 // Does this DPValue refer to a sunk address calculation? 8415 bool AnyChange = false; 8416 SmallDenseSet<Value *> LocationOps(DPV.location_ops().begin(), 8417 DPV.location_ops().end()); 8418 for (Value *Location : LocationOps) { 8419 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 8420 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 8421 if (SunkAddr) { 8422 // Point dbg.value at locally computed address, which should give the best 8423 // opportunity to be accurately lowered. This update may change the type 8424 // of pointer being referred to; however this makes no difference to 8425 // debugging information, and we can't generate bitcasts that may affect 8426 // codegen. 8427 DPV.replaceVariableLocationOp(Location, SunkAddr); 8428 AnyChange = true; 8429 } 8430 } 8431 return AnyChange; 8432 } 8433 8434 static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) { 8435 DVI->removeFromParent(); 8436 if (isa<PHINode>(VI)) 8437 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 8438 else 8439 DVI->insertAfter(VI); 8440 } 8441 8442 static void DbgInserterHelper(DPValue *DPV, Instruction *VI) { 8443 DPV->removeFromParent(); 8444 BasicBlock *VIBB = VI->getParent(); 8445 if (isa<PHINode>(VI)) 8446 VIBB->insertDPValueBefore(DPV, VIBB->getFirstInsertionPt()); 8447 else 8448 VIBB->insertDPValueAfter(DPV, VI); 8449 } 8450 8451 // A llvm.dbg.value may be using a value before its definition, due to 8452 // optimizations in this pass and others. Scan for such dbg.values, and rescue 8453 // them by moving the dbg.value to immediately after the value definition. 8454 // FIXME: Ideally this should never be necessary, and this has the potential 8455 // to re-order dbg.value intrinsics. 8456 bool CodeGenPrepare::placeDbgValues(Function &F) { 8457 bool MadeChange = false; 8458 DominatorTree DT(F); 8459 8460 auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) { 8461 SmallVector<Instruction *, 4> VIs; 8462 for (Value *V : DbgItem->location_ops()) 8463 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 8464 VIs.push_back(VI); 8465 8466 // This item may depend on multiple instructions, complicating any 8467 // potential sink. This block takes the defensive approach, opting to 8468 // "undef" the item if it has more than one instruction and any of them do 8469 // not dominate iem. 8470 for (Instruction *VI : VIs) { 8471 if (VI->isTerminator()) 8472 continue; 8473 8474 // If VI is a phi in a block with an EHPad terminator, we can't insert 8475 // after it. 8476 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 8477 continue; 8478 8479 // If the defining instruction dominates the dbg.value, we do not need 8480 // to move the dbg.value. 8481 if (DT.dominates(VI, Position)) 8482 continue; 8483 8484 // If we depend on multiple instructions and any of them doesn't 8485 // dominate this DVI, we probably can't salvage it: moving it to 8486 // after any of the instructions could cause us to lose the others. 8487 if (VIs.size() > 1) { 8488 LLVM_DEBUG( 8489 dbgs() 8490 << "Unable to find valid location for Debug Value, undefing:\n" 8491 << *DbgItem); 8492 DbgItem->setKillLocation(); 8493 break; 8494 } 8495 8496 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 8497 << *DbgItem << ' ' << *VI); 8498 DbgInserterHelper(DbgItem, VI); 8499 MadeChange = true; 8500 ++NumDbgValueMoved; 8501 } 8502 }; 8503 8504 for (BasicBlock &BB : F) { 8505 for (Instruction &Insn : llvm::make_early_inc_range(BB)) { 8506 // Process dbg.value intrinsics. 8507 DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn); 8508 if (DVI) { 8509 DbgProcessor(DVI, DVI); 8510 continue; 8511 } 8512 8513 // If this isn't a dbg.value, process any attached DPValue records 8514 // attached to this instruction. 8515 for (DPValue &DPV : llvm::make_early_inc_range(Insn.getDbgValueRange())) { 8516 if (DPV.Type != DPValue::LocationType::Value) 8517 continue; 8518 DbgProcessor(&DPV, &Insn); 8519 } 8520 } 8521 } 8522 8523 return MadeChange; 8524 } 8525 8526 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 8527 // probes can be chained dependencies of other regular DAG nodes and block DAG 8528 // combine optimizations. 8529 bool CodeGenPrepare::placePseudoProbes(Function &F) { 8530 bool MadeChange = false; 8531 for (auto &Block : F) { 8532 // Move the rest probes to the beginning of the block. 8533 auto FirstInst = Block.getFirstInsertionPt(); 8534 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8535 ++FirstInst; 8536 BasicBlock::iterator I(FirstInst); 8537 I++; 8538 while (I != Block.end()) { 8539 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8540 II->moveBefore(&*FirstInst); 8541 MadeChange = true; 8542 } 8543 } 8544 } 8545 return MadeChange; 8546 } 8547 8548 /// Scale down both weights to fit into uint32_t. 8549 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8550 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8551 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8552 NewTrue = NewTrue / Scale; 8553 NewFalse = NewFalse / Scale; 8554 } 8555 8556 /// Some targets prefer to split a conditional branch like: 8557 /// \code 8558 /// %0 = icmp ne i32 %a, 0 8559 /// %1 = icmp ne i32 %b, 0 8560 /// %or.cond = or i1 %0, %1 8561 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8562 /// \endcode 8563 /// into multiple branch instructions like: 8564 /// \code 8565 /// bb1: 8566 /// %0 = icmp ne i32 %a, 0 8567 /// br i1 %0, label %TrueBB, label %bb2 8568 /// bb2: 8569 /// %1 = icmp ne i32 %b, 0 8570 /// br i1 %1, label %TrueBB, label %FalseBB 8571 /// \endcode 8572 /// This usually allows instruction selection to do even further optimizations 8573 /// and combine the compare with the branch instruction. Currently this is 8574 /// applied for targets which have "cheap" jump instructions. 8575 /// 8576 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8577 /// 8578 bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) { 8579 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8580 return false; 8581 8582 bool MadeChange = false; 8583 for (auto &BB : F) { 8584 // Does this BB end with the following? 8585 // %cond1 = icmp|fcmp|binary instruction ... 8586 // %cond2 = icmp|fcmp|binary instruction ... 8587 // %cond.or = or|and i1 %cond1, cond2 8588 // br i1 %cond.or label %dest1, label %dest2" 8589 Instruction *LogicOp; 8590 BasicBlock *TBB, *FBB; 8591 if (!match(BB.getTerminator(), 8592 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8593 continue; 8594 8595 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8596 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8597 continue; 8598 8599 // The merging of mostly empty BB can cause a degenerate branch. 8600 if (TBB == FBB) 8601 continue; 8602 8603 unsigned Opc; 8604 Value *Cond1, *Cond2; 8605 if (match(LogicOp, 8606 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8607 Opc = Instruction::And; 8608 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8609 m_OneUse(m_Value(Cond2))))) 8610 Opc = Instruction::Or; 8611 else 8612 continue; 8613 8614 auto IsGoodCond = [](Value *Cond) { 8615 return match( 8616 Cond, 8617 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8618 m_LogicalOr(m_Value(), m_Value())))); 8619 }; 8620 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8621 continue; 8622 8623 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8624 8625 // Create a new BB. 8626 auto *TmpBB = 8627 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8628 BB.getParent(), BB.getNextNode()); 8629 if (IsHugeFunc) 8630 FreshBBs.insert(TmpBB); 8631 8632 // Update original basic block by using the first condition directly by the 8633 // branch instruction and removing the no longer needed and/or instruction. 8634 Br1->setCondition(Cond1); 8635 LogicOp->eraseFromParent(); 8636 8637 // Depending on the condition we have to either replace the true or the 8638 // false successor of the original branch instruction. 8639 if (Opc == Instruction::And) 8640 Br1->setSuccessor(0, TmpBB); 8641 else 8642 Br1->setSuccessor(1, TmpBB); 8643 8644 // Fill in the new basic block. 8645 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8646 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8647 I->removeFromParent(); 8648 I->insertBefore(Br2); 8649 } 8650 8651 // Update PHI nodes in both successors. The original BB needs to be 8652 // replaced in one successor's PHI nodes, because the branch comes now from 8653 // the newly generated BB (NewBB). In the other successor we need to add one 8654 // incoming edge to the PHI nodes, because both branch instructions target 8655 // now the same successor. Depending on the original branch condition 8656 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8657 // we perform the correct update for the PHI nodes. 8658 // This doesn't change the successor order of the just created branch 8659 // instruction (or any other instruction). 8660 if (Opc == Instruction::Or) 8661 std::swap(TBB, FBB); 8662 8663 // Replace the old BB with the new BB. 8664 TBB->replacePhiUsesWith(&BB, TmpBB); 8665 8666 // Add another incoming edge from the new BB. 8667 for (PHINode &PN : FBB->phis()) { 8668 auto *Val = PN.getIncomingValueForBlock(&BB); 8669 PN.addIncoming(Val, TmpBB); 8670 } 8671 8672 // Update the branch weights (from SelectionDAGBuilder:: 8673 // FindMergedConditions). 8674 if (Opc == Instruction::Or) { 8675 // Codegen X | Y as: 8676 // BB1: 8677 // jmp_if_X TBB 8678 // jmp TmpBB 8679 // TmpBB: 8680 // jmp_if_Y TBB 8681 // jmp FBB 8682 // 8683 8684 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8685 // The requirement is that 8686 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8687 // = TrueProb for original BB. 8688 // Assuming the original weights are A and B, one choice is to set BB1's 8689 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8690 // assumes that 8691 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8692 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8693 // TmpBB, but the math is more complicated. 8694 uint64_t TrueWeight, FalseWeight; 8695 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8696 uint64_t NewTrueWeight = TrueWeight; 8697 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8698 scaleWeights(NewTrueWeight, NewFalseWeight); 8699 Br1->setMetadata(LLVMContext::MD_prof, 8700 MDBuilder(Br1->getContext()) 8701 .createBranchWeights(TrueWeight, FalseWeight)); 8702 8703 NewTrueWeight = TrueWeight; 8704 NewFalseWeight = 2 * FalseWeight; 8705 scaleWeights(NewTrueWeight, NewFalseWeight); 8706 Br2->setMetadata(LLVMContext::MD_prof, 8707 MDBuilder(Br2->getContext()) 8708 .createBranchWeights(TrueWeight, FalseWeight)); 8709 } 8710 } else { 8711 // Codegen X & Y as: 8712 // BB1: 8713 // jmp_if_X TmpBB 8714 // jmp FBB 8715 // TmpBB: 8716 // jmp_if_Y TBB 8717 // jmp FBB 8718 // 8719 // This requires creation of TmpBB after CurBB. 8720 8721 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8722 // The requirement is that 8723 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8724 // = FalseProb for original BB. 8725 // Assuming the original weights are A and B, one choice is to set BB1's 8726 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8727 // assumes that 8728 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8729 uint64_t TrueWeight, FalseWeight; 8730 if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) { 8731 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8732 uint64_t NewFalseWeight = FalseWeight; 8733 scaleWeights(NewTrueWeight, NewFalseWeight); 8734 Br1->setMetadata(LLVMContext::MD_prof, 8735 MDBuilder(Br1->getContext()) 8736 .createBranchWeights(TrueWeight, FalseWeight)); 8737 8738 NewTrueWeight = 2 * TrueWeight; 8739 NewFalseWeight = FalseWeight; 8740 scaleWeights(NewTrueWeight, NewFalseWeight); 8741 Br2->setMetadata(LLVMContext::MD_prof, 8742 MDBuilder(Br2->getContext()) 8743 .createBranchWeights(TrueWeight, FalseWeight)); 8744 } 8745 } 8746 8747 ModifiedDT = ModifyDT::ModifyBBDT; 8748 MadeChange = true; 8749 8750 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8751 TmpBB->dump()); 8752 } 8753 return MadeChange; 8754 } 8755